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Preface

Operational risk (OpRisk) has been through significant changes in the past few years with
increased regulatory pressure for more comprehensive frameworks. Nowadays, every mid-sized
and larger financial institution across the planet has an OpRisk department. However, if we
compare the pace of progress of OpRisk to market and credit risks, we would realize that
OpRisk is not advancing as fast as its sister risks moved in the past. Market risk management
and measurement had its major breakthrough in the early 1990s as ].P. Morgan released publicly
its Value-at-Risk (VaR) framework. Only a couple of years after this release, most of the 100
global largest banks had developed a market risk framework and were using, at least to a certain
level, VaR methods to measure and manage market risk. A few years later, the Basel Committee
allowed banks to use their VaR models for regulatory capital purposes. From the release of JP
Morgan’s methodology to becoming accepted by Basel and local regulators, it took only about
4 years. This is basically because the methods were widely discussed and the regulators could
also see in practice how they would work. As we see it, one of the biggest challenges in OpRisk
is to take this area to the same level that market and credit risk management are at. Those two
risks are managed proactively and risk managers usually have a say if deals or businesses are
approved based on the risk level. OpRisk is largely kept out of these internal decisions at this
stage and this is a very worrying issue as quite a few financial institutions have OpRisk as its
dominant exposure. We believe that considerable effort in the industry would have to be put
into data collection and modeling improvements, and making a contribution to close this gap
is the main objective of our book.

Unlike market and credit risks, the methodologies and practices used in OpRisk still vary
substantially between banks. Regulators are trying to close the methodological gap by hold-
ing meetings with the industry and incentivizing convergence among the different approaches
through more individualized guidance. Although some success might be credited to these efforts,
there are still considerable challenges and this is where the Fundamental Aspects of Operational
Risk and Insurance Analytics: A Handbook of Operational Risk can add value to the industry.

In addition, by using this text as a graduate text from which to teach the key components
of OpRisk in universities, one will begin to achieve a concensus and understanding of the disci-
pline for junior quantitative risk managers and actuaries. These challenges involve the practical
business environment, regulator requirements, as well as the serious and detailed quantitative
challenges in the modeling aspects.

This book is a comprehensive treatment of all aspects of OpRisk management and insur-
ance with a focus on the analytical and modeling side but also covering the basic quali-
tative aspects. The initial chapters cover the building blocks of OpRisk management and
measurement. There is broad coverage on the four data elements that need to be used in the

xvii
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OpRisk framework as well as how a risk taxonomy process should be developed. Consider-
able focus is given to internal loss data and key risk indicators, as these would be fundamen-
tal in developing a risk-sensitive framework similar to market and credit risks. An example is
also shown of how OpRisk can be inserted into a firm’s strategic decisions. In addition, we
cover basic concepts of probability theory and the basic framework for modeling and measur-
ing OpRisk and how loss aggregation should work. We conclude this part of the text with a
model to perform stress-testing in OpRisk under the US Comprehensive Capital Analysis and
Review (CCAR) program.

We continue by covering more special topics in OpRisk measurement. For example, diverse
methods to estimate frequency and severity models are discussed. Another very popular issue
in this industry is how to select severity models and this is also comprehensively discussed. One
of the biggest challenges in OpRisk is that data used in measurement can be very different, so
combining them into a single measure is not trivial. In this part of the book, we show a number
of methods to do so.

After the core risk measurement work is done, there are still some issues to address that
can potentially mitigate the capital and also indicate how to manage risks. In the third part,
we discuss correlation and dependency modeling as well as insurance and risk transfer tools
and methods. This is particularly relevant when considering risk mitigation procedures for loss
processes that may generate catastrophic losses due to, for instance, nature risk.

This book provides a consistent and comprehensive coverage of all aspects of risk man-
agement, more specifically OpRisk—organizational structure, methodologies, policies, and
infrastructure—for both financial and nonfinancial institutions. The risk measurement and
modeling techniques discussed in the book are based on the latest research. They are presented,
however, with considerations based on practical experience of the authors with the daily appli-
cation of risk measurement tools.

We have incorporated the latest evolution of the regulatory framework. The book offers a
unique presentation of the latest OpRisk management techniques and provides one-stop shop-
ping for knowledge in risk management ranging from current regulatory issues, data collec-
tion and management to technological infrastructure, hedging techniques, and organizational
structure.

It is important to mention that we are publishing at the same time a companion
book Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk (Peters and
Shevchenko, 2015), which, although can be seen as an independent tome, covers many impor-
tant ideas in OpRisk and insurance modeling. This book would be ideally treated as a mathe-
matically detailed companion to this current text, which would go hand in hand with a more
advanced graduate course on OpRisk. In this text, we cover in detail significant components of
heavy-tailed loss modeling, which is of key importance to many areas of OpRisk.

We would like to thank our families for their patience in our absence while we were writing

this book.
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OpRisk in Perspective

1.1 Brief History

Operational risk (OpRisk) is the youngest of the three major risk branches, the others being
market and credit risks. The term OpRisk started to be used after the Barings event in 1995,
when a rogue trader caused the collapse of a venerable institution by placing bets in the Asian
markets and keeping these contracts out of sight of management. At the time, these losses
could be classified neither as market nor as credit risks and the term OpRisk started to be
used in the industry to define situations where such losses could arise. It took quite some time
until this definition was abandoned and a proper definition was established for OpRisk. In
these early days, OpRisk had a negative definition as “every risk that is not market and credit”,
which was not very helpful to assess and manage this risk. Looking back at the history of risk
management research, we observe that early academics found the same issue of classifying risk
in general, as Crockford (1982) noticed: “Research into risk management immediately encoun-
ters some basic problems of definition. There is still no general agreement on where the bound-
aries of the subject lie, and a satisfactory definition of risk management is notoriously difficult ro
Jormulate”.

Before delving into the brief history of OpRisk it might be useful to first understand how
risk management is evolving and where OpRisk fits in this evolution. Risk in general is a rela-
tively new area that began to be studied only after World War II. The concept of risk manage-
ment came from the insurance industry and this was clear in the early days’ definitions. Accord-
ing to Crockford (1982) the term “risk management”, in its earliest incarnations, “encompassed
primarily those activities performed to prevent accidental loss”. In one of the first textbooks on risk,
Mehr and Hedges (1963) used a definition that reflected this close identification with insurance:
“[T]he management of those risks for which the organization, principles and techniques appropriate
to insurance management is useful”. Almost 20 years later, Bannister and Bawcutt (1981) defined
risk management as “the identification, measurement and economic control of risks that threaten
the assets and earnings of a business or other enterprise”, which is much closer to the definition
used in the financial industry in the twenty-first century.

The association of risk management and insurance came from the regular use of insurance
by individuals and corporations to protect themselves against these “accidental losses”. It is
interesting to see that even early authors on the subject made a case for the separation between
risk management and risk-takers (the businesses). Crockford (1982) wrote that “operational

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
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convenience continues to dictate that pure and speculative risks should be handled by different func-
tions within a company, even though theory may argue for them being managed as one”.

New tools for managing risks started to emerge in the 1950s, in addition to insurance,
when many types of insurance coverage became very costly and incomplete; or certainly this
“incompletion” started to be better noticed as risk management was beginning to evolve. Sev-
eral business risks were either impossible or too expensive to insure. Contingent planning activ-
ities, an embryo of what is today called Business Continuity Planning (BCP), were developed,
and various risk prevention or self-prevention activities and self-insurance instruments against
some losses were put in place. Coverage for work-related illnesses and accidents also started to
be offered during the 1960s. The 1960s were when a more formal, organized scholarly interest
started to blossom in academia on issues related to risk. The first academic journal to show “risk”
in their title was the journal of Risk and Insurance in 1964. This journal was actually titled jour-
nal of Insurance until then. Other specialized journals followed including Risk Management—
published by the Risk and Insurance Management Society (RIMS), a professional association
of risk managers founded in 1950 and the Geneva Papers on Risk and Insurance, published by
the Geneva Association since 1976.

Risk management had its major breakthrough as the use of financial derivatives by investors
became more spread out. Before the 1970s, derivatives were basically used for commodi-
ties and agricultural products; however, in the 1970s but more strongly in the 1980s, the
use of derivatives to manage and hedge risks began. In the 1980s, companies began to con-
sider financial risk management of “risk portfolios”. Financial risk management has become
complementary to pure risk management for many companies. Most financial institutions,
particularly investment banks, intensified their market and credit risk management activities
during the 1980s. Given this enhanced activity and a number of major losses, it was no sur-
prise that more intense scrutiny drew international regulatory attention. Governance of risk
management became essential and the first risk management positions were created within
organizations.

A sort of “risk management revolution” was sparked in the 1980s by a number of macroe-
conomic events that were present during this decade as, for example, fixed currency parities
disappeared, the price of commodities became much more volatile, and the price fluctuations
of many financial assets like interest rates, stock markets, exchange rates, etc. became much
more volatile. This volatility, and the many headline losses that succeeded, revolutionized the
concept of financial risk management as most financial institutions had such assets in their
balance sheets and managing these risks became a priority for senior management and board of
directors. At the same time, the definition of risk management became broader. Risk manage-
ment decisions became financial decisions that had to be evaluated based on their effect on a
firm or portfolio value, rather than on how well they cover certain risks. This change in defini-
tion applies particularly to large public corporations, due to the risk these bring to the overall
financial system.

These exposures to financial derivatives brought new challenges with regard to risk assess-
ment. Quantifying the risk exposures, given the complexity of these assets, was (and still
remains) quite complex and there were no generally accepted models to do so. The first and
most popular model to quantify market risks was the famous “Black & Scholes” developed by
Black and Scholes (1973) in which an explicit formula for pricing a derivative was proposed—in
this case, an equity derivative. The model was so revolutionary that the major finance journals
refused to publish it at first. It was finally published in the journal of Political Economy in 1973.
An extension of this article was later published by Merton in the Bell journal of Economics
and Management Science (Merton, 1973). The impact of the article in the financial industry
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was significant and the risk coverage of derivatives grew quickly, expanding to many distinct
assets like interest rate swaps, currencies, etc.

As risk management started to grow as a discipline, regulation also began to get more
complex to catch up with new tools and techniques. It is not a stretch to say that financial
institutions have always been regulated one way or another given the risk they bring to the
financial system. Regulation was mostly on a country-by-country basis and very uneven, allow-
ing arbitrages. As financial institutions became more globalized, the need for more symmetric
regulation that could level the way institutions would be supervised and regulated increased
worldwide. The G10, the group of 10 most industrialized countries, started meetings in the
city of Basel in Switzerland under the auspices of the Bank for International Settlements (BIS).
The so-called Basel Committee on Banking Supervision or Basel Committee was established
by the central bank governors of the group of 10 countries at the end of 1974, and continues
to meet regularly four times a year. It has four main working groups, which also meet regularly.

The Basel Committee does not possess any formal supranational supervisory authority,
and its conclusions cannot, and were never intended to, have legal force. Rather, it formulates
broad supervisory standards and guidelines and recommends statements of best practice in
the expectation that individual authorities will take steps to implement them through detailed
arrangements, statutory or otherwise, which are best suited to their own national systems.
In this way, the Committee encourages convergence toward common approaches and com-
mon standards without attempting detailed standardization of member countries’ supervisory
techniques.

The Committee reports to the central bank governors and heads of supervision of its mem-
ber countries. It seeks their endorsement for its major initiatives. These decisions cover a very
wide range of financial issues. One important objective of the Committee’s work has been
to close gaps in international supervisory coverage in pursuit of two basic principles: that no
foreign banking establishment should escape supervision; and that supervision should be ade-
quate. To achieve this, the Committee has issued a long series of documents since 1975 that
guide regulators worldwide on best practices that can be found on the website:
www.bis.org/bcbs/publications.htm.

The first major outcome of these meetings was the Basel Accord, now called Basel 1, signed
in 1988 (see BCBS, 1988). This first accord was limited to credit risk only and required each
bank to set aside a capital reserve of 8%, the so-called Cooke ratio, of the value of the securities
representing the credit risk in their portfolio. The accord also extended the definition of capital
to create reserves encompassing more than bank equity, which were namely:

* Tier 1 (core capital), consisting of common stock, holding in subsidiaries, and some
reserves disclosed to the regulatory body;

* Tier 2 (supplementary capital), made up of hybrid capital instruments, subordinated
debts with terms to maturity greater than 5 years, other securities, other reserves.

The Basel I Accord left behind one important risk component, which was market risk. In
the meantime, JP Morgan released publicly its market risk methodology called Risk Metrics
(JP Morgan, 1996), and the popularization of market risk measurement became widespread in
the early 1990s. Reacting to that, in 1996 the Basel Committee issued the market risk amend-
ment (BCBS, 1996), which included market risk in the regulatory framework. The acceptance
of more sophisticated models like Value at Risk (VaR) as regulatory capital was a significant
milestone in risk management. However, this initial rule had a number of limitations as it did
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not allow diversification, that is, the total VaR of the firm would be the sum of the VaR for all
assets without allowing for correlation between these risks.

As the global financial markets became increasingly interconnected and sophisticated as
well as financial products, like credit derivatives, it soon became clear to the Basel Committee
that a new regulatory framework was needed. In June 1999, the Committee issued a proposal
for a revised Capital Adequacy Framework. The proposed capital framework consisted of the
following three pillars:

* Pillar 1. Minimum capital requirements, which seek to refine the standardized rules set
forth in the 1988 Accord;

* Pillar 2. Supervisory review of an institution’s internal assessment process and capital ade-
quacy;

* Pillar 3. Market discipline focused on effective use of disclosure to strengthen market
discipline as a complement to supervisory efforts.

Following extensive interaction with banks, industry groups, and supervisory authorities that
are not members of the Committee, the revised framework (referred to as Basel IT) BCBS (2004)
was issued on June 26, 2004; the comprehensive version was published as BCBS (2006). This
text serves as a basis for national rule-making and for banks to complete their preparations for
the new framework’s implementation.

With Basel II, there also came for the first time the inclusion of OpRisk into the regulatory
framework. The OpRisk situation was different from the one faced by market and credit risks.
For those risks, regulators were looking at the best practice in the industry and issuing regulation
mirroring these. The progress in OpRisk during the late 1990s and early 2000s was very slow.
Some very large global banks like Lehman Brothers did not have an OpRisk department until
2004, so the regulators were issuing rules without the benefit of seeing how these rules would
work in practice. This was a challenge for the industry.

In order to address these challenges, the Basel Committee allowed a few options for banks
to assess capital. The framework outlined and presented three methods for calculating OpRisk
capital charges in a continuum of increasing sophistication and risk sensitivity: (i) the Basic Indi-
cator Approach (BIA); (ii) the Standardized Approach (SA); and (iii) Advanced Measurement
Approaches (AMA). Internationally active banks and banks with significant OpRisk exposures
(e.g., specialized processing banks) are expected to use an approach that is more sophisticated
than the BIA and that is appropriate for the risk profile of the institution.

Many models have been suggested for modeling OpRisk under Basel II; for an overview,
see Chernobai ez al. (2007, chapter 4), Allen ez al. (2005), and Shevchenko (2011, Section 1.5).
Fundamentally there are two different approaches used to model OpRisk:

* The top—down approach; and
* The bottom—up approach.

The top—down approach quantifies OpRisk without attempting to identify the events
or causes of losses while the bottom—up approach quantifies OpRisk on a microlevel as it is
based on identified internal events. The top-down approach includes the Risk Indicator mod-
els that rely on a number of operational risk exposure indicators to track OpRisks and the
Scenario Analysis and Stress Testing Models that are estimated based on the what-if scenarios.
The bottom—up approaches include actuarial-type models (referred to as the Loss Distribution
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Approach) that model frequency and severity of OpRisk losses. In this book we provide a
detailed quantitative discussion on a range of models some of which are appropriate for top-
down modelling whilst others are directly applicable to bottom-up frameworks.

1.2 Risk-Based Capital Ratios for Banks

Until the late 1970s, banks in most countries were in general highly regulated and protected
entities. This protection was largely a result of the bitter memories of the Great Depression in
the US as well as the role that high (or hyper) inflation played in the political developments in
Europe in the 1930s, and banks arguably play a significant part in the spreading of inflation.
Due to these memories, the activities banks were allowed to undertake were tightly restricted by
national regulators and, in return, banks were mostly protected from competitive forces. This
cozy relationship was intended to ensure stability of the banking system, and it succeeded in
its goals throughout the reconstruction and growth phases, which followed World War II. This
agreement held well until the collapse of Bretton Woods' (Eichengreen, 2008) in the 1970s.
The resulting strain in the banking system was enormous. Banks suddenly were faced with an
increasingly volatile environment, but at the same time had very inelastic pricing control over
their assets and liabilities, which were subject not just to government regulation but also to
protective cartel-like arrangements. The only solution seen by national authorities at this time
was to ease regulations on banks. As the banking sector was not used to competitive pressures,
the result of the deregulation was that banks started to take too much risk in search of large pay-
offs. Suddenly banks were overlending to Latin American countries (and other emerging mar-
kets); overpaying for expansion (e.g., buying competitors looking for geographic expansion),
etc. With the crisis in Latin America in the 1980s, these countries could not repay their debts
and banks were once again in trouble. Given that the problems were mostly cross-boundary
as the less regulated banks became more international, the only way to address this situation
was at the international level and the Basel Committee was consequently established under the
auspices of the BIS.

In 1988, the Basel Committee decided to introduce an internationally accepted capital
measurement system commonly referred to as Basel I, (BCBS, 1988). This framework was
replaced by a significantly more complex capital adequacy framework commonly known as
Basel II (BCBS, 2004) and, more recently, the Basel Committee issued the Basel III Accord
(BCBS, 2011, 2013), which will add more capital requirements to banks. Table 1.1 shows a
summary of key takeaways of the Basel Accords.

Basel I primarily focuses on credit risk and developed a system of risk-weighting of assets.
Assets of banks were classified and grouped in five categories according to credit risk, carrying
risk weights of 0% for the safest, most liquid assets (e.g., cash, bullion, home country debt
like Treasuries) to 100% (e.g., most corporate debt). Banks with an international presence were
required to at least hold capital equal to 8% of their risk-weighted assets (RWA). The concept
of RWA was kept in all Accords with changes on the weights and in the composition of assets by
category. An example of how risk-weighting works can be seen in Table 1.2. In this example, the
sum of the assets of this bank is $1015; however, applying the risk-weighting rule established
in Basel I, the RWA is actually $675.

"The Bretton Woods agreement was established in the summer of 1944 and put in place a system of exchange
and interest rate stability which ensured that banks could easily manage their exposures.
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TABLE 1.1 Basel framework general summary

Accord Year Key points

Basel I 1988 Introduces minimal capital requirement for the banking book.
Introduces tier concept for capital requirement.
Incorporates trading book into the framework later on through the

Market Risk Amendment (MRA).

Basel 1I 2004 Allows usage of internal models and inputs in risk measurement.
Introduces operational risk.
Basel II/III 2010 Increases capital requirement for trading book, with significant increase
for correlation trading and securitizations.
Basel I1I 2010 Motivated by the great financial crisis of 2008, increases capital

requirements, introduces leverage constraints and minimum liquidity
and funding requirements.

TABLE 1.2 Example of risk-weighted assets calculation under Basel I

Risk-weight (%) Asset Amount ($) RWA (%)
0 Cash 10 0
Treasury bills 50 0
Long-term treasury securities 100 0
20 Municipal bonds 20 4
Items in collection 20 4
50 Residential mortgages 300 150
100 AA+ rated loan 20 20
Commercial loans, AAA- rated 55 55
Commercial loans, BB- rated 200 200
Sovereign loans B- rated 200 200
Fixed assets 50 50
Not rated Reserve for loan losses (10) (10)
Total 1015 675

Since Basel I, a bank’s capital also started to be classified into Tier 1 and Tier 2. Tier 1
capital is considered the primary capital or “core capital”; Tier 2 capital is the supplementary
capital. The total capital that a bank holds is defined as the sum of Tier 1 and Tier 2 capitals.
Table 1.3 provides a more detailed view of the components of each tier of capital. The key
component of Tier 1 capital is the common shareholders equity. This item is so important that
a number of banks also report the so-called Tier 1 Common Equity in which only common
shareholder equity is considered as Tier 1. As shown in Table 1.3, the Basel Committee made
capital requirement much stricter in the latest Basel Accords by changing the definition of
some of the current items but also by sending a couple of items to Tier 2 (e.g., trust preferred
securities and remaining noncontrolling interest), making it more difficult for banks to comply
with these new capital rules.

Another important contribution from Basel I is the concept of capital ratios that remains
until today. Basically, a bank needs to assert its capital requirements based on the formula:

Eligible capital

RWA (1.1)

Capital ratio =
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TABLE 1.3 Tiered capital definition under Basel II and Basel III
Tier Capital requirement under Basel II Basel III capital requirement
Tier 1 (+) Common shareholders equity (+) Common shareholders equity
(+) Partial noncontrolling interest (NCI) (+) Partial noncontrolling interest
(—) Certain deferred tax assets (DTA) (NCD*
(—) Goodwill and intangibles (—) Certain deferred tax assets (DTA)*
(—) Debt valuation adjustments (DVA) (—) Goodwill and intangibles
(—) Other deductions (—) Debt valuation adjustments (DVA)
= Tier 1 common (—) Other deductions™
(+) Perpetual preferred stock = Tier 1 common
(+) Trust preferred securities (+) Perpetual preferred stock
(+) Remaining NCI = Tier 1 capital
= Tier 1 capital
Tier 2 (4+) Subordinated debt (+) Trust preferred securities™

(+) Allowance for loan loss reserves

(+) Remaining NCI*

(+) Subordinated debt

(4+) Allowance for loan loss reserves

Basel III changes are indicated by .

TABLE 1.4 Example of capital ratios in some large European banks

in 2012

UBS Credit Suisse Deutsche Bank
Tier 1 capital 40,982 43,547 50,483
Total capital 48,498 49,936 57,015
RWA total 192,505 224,296 333,849
RWA market risk 21,173 29,366 53,058
RWA credit risk 105,807 143,679 229,196
RWA OpRisk 53,277 45,125 51,595
Other risks 6,248 6,126 —
Tier 1 capital ratio 21.3% 19.4% 15.1%
Total capital ratio 25.2% 22.3% 17.1%

Source: Banks annual reports. Figures are in Swiss Francs (CHF) millions for UBS and
Credit Suisse and in Euros millions for Deutsche Bank.

Therefore, to find its Tier 1 capital ratio a bank would have to calculate its RWA based on
the current Basel rules and also retrieve the elements that compose Tier 1 capital from its balance
sheet. Dividing the Tier 1 capital by the RWA would provide the Tier 1 capital ratio. In order
to make this process very clear, we show examples on how to calculate each of the steps. Table
1.2 shows an example of RWA calculation using only credit risk-weightings; Table 1.3 provides
an overview of capital requirement definitions on the balance sheet; and Table 1.4 shows a
real-life example of capital ratios in a few Large European banks that are Basel II approved and,
therefore, have to show their capital breakdown.

Basel II discussions started in the late 1990s and ended with the publication of the second
Accord, or “Basel II” in 2004 (BCBS, 2004). Basel II was implemented in an era where banks
posted record profits and the global macroeconomic scenario did not show many clouds on
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TABLE 1.5 New capital charges on Basel III

Capital conservation buffer Countercyclical capital buffer
2.5% added to the minimum ratios Up to 2.5% added to the minimum ratios
To be built up in good times and available in Declared by any country that is experiencing
period of stress overheated credit markets—preannouncement of
Inclusion in target capital ratios by end of decision by up to 12 months
transition period (2018) Can be relaxed when the market “cools down”
Restriction on distributions (dividends, share again—takes effect immediately with
buybacks, and bonuses) if the full buffer announcement
requirement is not met Restriction on distributions (dividends, share
buybacks, and bonuses) if the buffer requirement
is not met

TABLE 1.6 Minimum capital requirements

Capital Countercyclical
Before conservation capital Total
Type of capital Basel II1(%) Basel I11(%)  buffer (%) buffer (%) Basel 1I1(%)
Common Equity Tier 1 2 4.5 2.5 0-2.5 9.5
Tier 1 4 6 2.5 0-2.5 11
Total risk-based capital 8 8 2.5 0-2.5 13

Source: BCBS (2013).

the horizon. In this Accord, banks were allowed to use their own internal models to calcu-
late regulatory capital for market, credit, and also operational risk, which was introduced in
this Accord. The overall idea of Basel II was that banks would be able to reduce their capital
requirements by adopting internal models and following the strict qualification criteria.

In order to calculate the RWA in market and operational risks, where the risk-weighting
asset in the example of Table 1.2 would obviously not apply, banks would have to convert the
outcomes of their internal models, calculated at the 99.9% quantile, and divide this number by
8% (or multiply by 12.5). Reverse engineering these numbers from Table 1.4, i.e. calculating
operational risk capital as RWA OpRisk divided by 12.5, we can see that the operational risk
capital at UBS in 2012 was CHF 4264 million, Credit Suisse was CHF 3610 million, and
Deutsche Bank was €4127 million.

Unlike Basel I and Basel II, Basel III was motivated by the great banking crisis in 2008 and
this motivation made this 3-rd version of the Accord primarily focussed on addressing concerns
about a run on the bank risks (i.e., liquidity issues on customers withdrawing resources from a
bank due to lack of confidence in its financial health), consequently requiring differing levels
of reserves for different forms of bank deposits and other borrowings. Therefore, contrary to
what might be expected by its name, Basel III rules do not, for the most part, supersede the
guidelines established in Basel I and Basel II but work alongside them. The main changes in
the Basel III framework are shown in Table 1.5 and are mostly related to the creation of new
capital buffers to ensure banks are enough capitalized in the next crisis.

In addition to the minimum capital ratios already established in the previous Accords (see
Table 1.6), Basel III requires that all banking organizations maintain a “capital conservation
buffer” consisting of Tier 1 Common Equity capital in an amount equal to 2.5% of risk-
weighted assets in order to avoid restrictions on their ability to make capital distributions and to
make certain discretionary bonus payments to executive officers. Thus, the capital conservation
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buffer effectively increases the minimum Tier 1 common equity capital, Tier 1 capital, and total
capital requirements for US banking organizations to 7.0%, 8.5%, and 10.5%, respectively.
Banking organizations with capital levels that fall within the buffer will be forced to limit divi-
dends, share repurchases or redemptions (unless replaced within the same calendar quarter by
capital instruments of equal or higher quality), and make discretionary bonus payments. The
limits consist of a sliding scale, so that as the buffer decreases, so does the maximum payout
as a percentage of the banking organization’s net income over the past four quarters. For large
global banks, the capital buffer may be increased during periods of “excessive credit growth” by
an incremental “countercyclical capital buffer” of up to 2.5% of risk-weighted assets. In a change
from the proposed rules (i.e., presigning the Accord), large global banks would (after complet-
ing the “parallel run” process for migrating to the advanced approaches regime) be required
to use the lesser of their standardized and advanced approaches risk-based capital ratios as the
basis for calculating their capital conservation buffer (and any applicable countercyclical capital
buffer). This change will likely increase the capital buffer for at least some large global banks
compared to the proposed rules.

Basel III also imposes a Tier 1 minimum leverage ratio of 4.0% for all banking organi-
zations and an additional supplementary Tier 1 leverage ratio of 3.0% for large global banks
(BCBS, 2013). The 3.0% supplementary leverage ratio (which, consistent with Basel IIT sched-
ule, will take effect in January 2018 but be reported beginning in January 2015) incorporates in
the denominator certain off-balance sheet exposures that are not included in the standard lever-
age ratio. Despite significant criticism from the industry, Basel III continues to include in the
supplementary leverage ratio derivative exposures based on potential future exposure (without
collateral recognition) and 10% of unconditionally cancellable commitments.

1.3 The Basic Indicator and Standardized Approaches
for OpRisk

Under the Basel II framework, the simplest method that banks could use to calculate OpRisk
capital is the BIA. Banks using the BIA must hold capital for OpRisk equal to the average over
the previous 3 years of a fixed percentage (denoted ) of positive annual gross income. Figures
for any year in which annual gross income is negative or zero should be excluded from both
the numerator and denominator when calculating the average. The capital charge K74 may be
expressed as follows:

3 3
1 .
KB]A = Oé; Z max {G[(]), 0} 5 n= ZH{G](]-)>O}, (1.2)

j=1 j=1

where GI(j), j = 1,2,3 are the annual gross incomes over the last 3 years; I{¢/(j)>0) is an
indicator function that equals 1 if condition in {.} is true and 0 otherwise; 7 is the number of
previous years in which income is positive (expected to be three); and a = 0.15 (as of 2013)
as established by the Committee (BCBS, 2006, pp. 144-145).

Another simple approach to calculate OpRisk capital under the Basel II framework is the
SA where, bank activities are divided into eight business lines: Corporate finance, Trading and
sales, Retail banking, Commercial banking, Payment and settlement, Agency services, Asset
management, and Retail brokerage. Within each business line, gross income is a broad indi-
cator that serves as a proxy for the scale of business operations and thus the likely scale of
OpRisk exposure within each of these business lines. The capital charge for each business line
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TABLE 1.7 Coefficients 3, for each

business line as determined by Basel IT
in BCBS (2006, p. 147)

Business line Bi

Corporate finance 0.18
Trading and sales 0.18
Retail banking 0.12
Commercial banking 0.15
Payment and settlements 0.18
Agency services 0.15
Asset management 0.12
Retail brokerage 0.12

is calculated by multiplying gross income by a factor (denoted /3) assigned to that business line.
The value of 3 serves as a proxy for the industry-wide relationship between the OpRisk loss
experience for a given business line and the aggregate level of gross income for that business
line. It should be noted that in the SA gross income is measured for each business line, not the
whole institution, that is, in Corporate finance, the indicator is the gross income generated in
the Corporate finance business line.

The total capital charge is calculated as the 3-year average of the simple summation of
the regulatory capital charges across each of the business lines in each year. In any given year,
negative capital charges (resulting from negative gross income) in any business line may offset
positive capital charges in other business lines without limit. However, where the aggregate
capital charge across all business lines within a given year is negative, the input to the numerator
for that year will be zero. The total capital charge K754 may be expressed as

R 8
Krsq = 3 Zmax (Z 5iGIi(j)a0> , (1.3)
= i—1

where GI;(f) is the annual gross income of business line 7 in year j and /3; a fixed coefficient, set
by the Committee, relating the level of required capital to the level of gross income for each of
the eight business lines. These details can be found in (BCBS, 2006, pp. 146-147); the values
of 3; (as of 2013) are presented in Table 1.7.

1.4 The Advanced Measurement Approach

Under the Basel II AMA for OpRisk, banks are allowed to use their own internal models to
estimate capital. A bank intending to use the AMA should demonstrate the accuracy of the
internal models within the matrix of Basel II risk cells (eight business lines by seven event
types) relevant to the bank. The eight business lines are listed in Table 1.7 and the seven event
types are as follows:

¢ Internal fraud;
¢ External fraud;

* Employment practices and workplace safety;
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* Clients, products, and business practices;
* Damage to physical assets;
* Business disruption and system failures;

* Execution, delivery, and process management.

As imagined, given the early stages of bank frameworks, the range of practice was quite
broad. In Europe, the methodological focus of most banks was on using scenario analysis while
in the US the focus was on internal and external loss data. Understanding the evolutionary
nature of OpRisk management as a developing risk management discipline, the Basel Commit-
tee provided significant flexibility to banks in the development of an OpRisk measurement and
management system. This flexibility was, and continues to be, a critical feature of the AMA.
However, substantial efforts are required by national authorities to ensure sufficient consis-
tency in the application of these features. The Basel II framework envisaged that, over time, the
OpRisk discipline will mature and converge toward a narrower band of effective risk manage-
ment and risk measurement practices. Understanding the current range of observed operational
risk management and measurement practices, both within and across geographic regions, con-
tributes significantly to the efforts to establish consistent supervisory expectations. Through the
analysis of existing practices, and the publication of papers reporting those practices, the Basel
Committee expects the maturation of OpRisk practices and supports supervisors in developing
more consistent regulatory expectations.

The initial Basel II proposal (BCBS, 2001, Annex 4) suggested three approaches for AMA:

* Internal Measurement Approach (IMA);
* Score Card Approach (SCA);
* Loss Distribution Approach (LDA).

The latest Basel II document (see BCBS, 2006) does not give any guidance for the AMA
approach and allows flexibility.

1.4.1 INTERNAL MEASUREMENT APPROACH

Under the IMA, OpRisk events are divided into business lines i = 1,2, ... and event types
Jj = 1,2,...; an exposure indicator EJj is set for each business line/event type combination
(risk cell) to capture the scale of the bank’s activities in the risk cell; probability P; that the
event will occur over the next year and average loss AL;; are estimated using internal loss data.
Then, the capital charge K4 is calculated as

Kinua =Y vyELP;ALy, (1.4)
-

where ;i is the conversion factor translating expected loss, £7;;PzALj;, for business line/event

type risk cell into a capital charge; see BCBS (2001, Annex 4).

ij>

1.4.2 SCORE CARD APPROACH

Under a scorecard based approach the bank determines an initial level of OpRisk capital at the
firm or business line level, and then attempts to modify the calculated amounts over time on
the basis of a qualitative ranking or scoring of each risks evolution.
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As stated in the Basel working paper on the regulatory treatment of OpRisk (BCBS 2001,
p- 35)

“These scorecards are intended to bring a forward-looking component ro the capital calculations,
that is, to reflect improvements in the risk control environment thar will reduce both the frequency
and severity of future operational risk losses. The scorecards may be based on actual measures of risk,
but more usually identify a number of indicators as proxies for particular risk types within business
units/lines. The scorecard will normally be completed by line personnel at regular intervals, often
annually, and subject to review by a central risk function”.

The SCA approach calculates the capital charge Kscy4 as

Kscq = Zw,,E[l-sz,-j, (1.5)
i

where wj; is the amount of capital per unit of the indicator of exposure, £7j; is the exposure
index from a set for each business line/event type combination (risk cell) and RS;; is the risk
factor. Under the SCA, a bank assigns a value to each OpRisk event and compares the different
OpRisks according to the values. This method relies on experts’ assessment in the selection of
indicators and their weights (see, e.g., Anders and Sandstedt, 2003). There are a number of
references discussing in more detail the nature of scorecard based approaches, see for instance
Blunden (2003) and Alexander (2003) and the references therein for more details.

As noted in Alexander (2003), scorecards can be higly subjective and the following impor-
tant issues are still in the process of being better understood:

* The industry has still been unable to develop industry wide standards for the key risk
indicators (KRIs) that should be used for each risk type and underpin the development of
scorecard methods;

* They may be inherent biases and moral hazards that must be better understood, modelled
and managed before scorecard based methods can be considered reliable. To understand
this point, typically, given a set of risk indicators, frequency and severity scores are assigned
by a business manager or risk expert in the business that ‘owns’ the particular operational
risk. Hence, one requires a considered design of the management process in order to avoid
subjective biases or moral hazard from occurring in the scoring process;

* In addition to the subjectivity of the scores there is also a second problem that under an
AMA approach one should figure out a method to map scorecard data to a loss distribution
model. This involves the mapping of the scores subjectively to monetary loss amounts.

For these reasons we don't elaborate further on scorecard based approaches. In fact we suggest
users of scorecard approaches to consider formulating them under a regression based frame-
work such as those developed in Item Response Theory (IRT), see discussions in Linden and

Hambleton (1997).

1.4.3 LOSS DISTRIBUTION APPROACH

The LDA approach is based on modelling annual frequency IV and severity X7,X;,... of
OpRisk events for a risk cell. Then the annual loss for the j-th risk cell is calculated as aggrega-
tion of severities over a 1-year time horizon

) (16)
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and the total loss over all risk cells in a given year is obtained by the following sum over the

d risk cells

d
z=Y zU,

Then, the regulatory capital is defined as the 0.999 VaR, which is the quantile of the distribution
for the next year’s annual loss Z:

VaR,[Z] = inf{z € R: Pr[Z > 2] <1 — g} (1.7)

at the level g = 0.999. For economic capital, banks often use quantile levels in the range
g € [0.9995,0.9997] depending on a banks credit rating. The risk cells can be selected at the
actual loss generating process level. However, currently, many banks use the LDA for business
line/event type risk cells.

Remark 1.1 The LDA is considered to be the most comprehensive approach and is a focus
of this book. Hereafter, we consider the LDA model only.

1.4.4 REQUIREMENTS FOR AMA

The qualifying criteria for using the AMA are quite stringent and, in practice, it takes many
years of implementation and regulatory exams to validate the approach. The Basel II Accord
states that a bank must meet a number of qualitative standards before it is permitted to use an
AMA for OpRisk capital (BCBS, 2006, pp. 150-151). In brief, these are as follows:

* The bank must have an independent OpRisk management function responsible for codi-
fying firm-level policies and procedures concerning OpRisk management and controls; the
design and implementation of the firm’s OpRisk measurement methodology; the design
and implementation of a risk-reporting system for OpRisk; and developing strategies to
identify, measure, monitor, and control/mitigate OpRisk;

* The bank’s internal OpRisk measurement system must be closely integrated into the day-
to-day risk management processes. Its output must be an integral part of the process of
monitoring and controlling the OpRisk profile. The bank must have techniques for allo-
cating OpRisk capital to major business lines and for creating incentives to improve the
management of OpRisk throughout the firm;

* There must be regular reporting of OpRisk exposures and loss experience to business unit
management, senior management, and to the board of directors. The bank must have pro-
cedures for taking appropriate action according to the information within the management
reports;

* The bank’s OpRisk management system must be well documented;

* Internal and/or external auditors must perform regular reviews of the OpRisk management
processes and measurement systems;

* The validation of the OpRisk measurement system by external auditors and/or supervisory
authorities must include:
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° Verifying that the internal validation processes are operating in a satisfactory manner;

° Making sure that data flows and processes associated with the risk measurement system
are transparent and accessible.

In addition to these qualitative factors, Basel II also has quite stringent criteria on AMA
acceptance based on a series of quantitative standards (BCBS, 2006, pp. 151-152) as follows:

* Any internal OpRisk measurement system must be consistent with the OpRisk defined by
the Committee and the loss event types defined in BCBS (2006);

* The risk measure used for capital charge should correspond to the 99.9% confidence level
for a 1-year holding period, that is, VaR 999 defined in (1.7). Supervisors will require
the bank to calculate its regulatory capital requirement VaRyg 999 as the sum of expected
loss (EL) and unexpected loss (UL), unless the bank can demonstrate that it is adequately
capturing EL in its internal business practices. To calculate the minimum regulatory capital
as UL, the bank must be able to demonstrate to the satisfaction of its national supervisor
that it has measured and accounted for its EL exposure. For illustration, see Figure 1.1.
Hereafter, for simplicity, we consider the regulatory capital to be the sum of EL and UL,
which is the 99.9% VaR;

* A banK’s risk measurement system must be sufficiently “granular” to capture the major
drivers of OpRisk affecting the shape of the tail of the loss estimates;

OpRisk capital charge measures for different risk cells must be added for purposes of cal-
culating the regulatory minimum capital requirement over all risk cells in a bank. How-
ever, the bank may be permitted to use internally determined correlations between risk
cells, provided it can demonstrate to the satisfaction of the national supervisor that its
systems for determining correlations are sound, implemented with integrity, and take
into account the uncertainty surrounding any such correlation estimates (particularly in

Expected loss

A

Catastrophic loss

A
\4

Unexpected loss

Value-at-Risk, VaRgggg

f(z)
7y
A4

Pr [Z>VaR ggo] =0.001

Value of the annual loss, z

FIGURE 1.1 Illustration of the expected and unexpected losses in the capital requirements at the 99.9%
confidence level for a 1-year holding period; £ (z) is the probability density function of the annual loss
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periods of stress). The bank must validate its correlation assumptions using appropriate
quantitative and qualitative techniques;

* OpRisk measurement system must be based on the use of internal data, relevant exter-
nal data, scenario analysis, and factors reflecting the business environment and internal
control systems (BEICF). A bank needs to have a credible, transparent, well-documented
and verifiable approach for weighting these fundamental elements in its overall OpRisk
measurement system. If the estimates of the 99.9% VaR based primarily on internal and
external loss event data are unreliable for business lines with a heavy-tailed loss distribu-
tion and a small number of observed losses, then scenario analysis and BEICF may play a
more dominant role in the risk measurement system. Conversely, OpRisk loss event data
may play a more dominant role in the risk measurement system for business lines where
estimates of the 99.9% VaR based primarily on such data are deemed reliable.

Given that these rules are quite stringent and were made without benchmarks, unlike mar-
ket and credit risks, the range of practice can vary significantly from bank to bank. Even banks
based in the same block in Midtown Manhattan, just to be very graphic, can have completely
different methodologies and frameworks to measure OpRisk. This is very different from market
and credit risks where the measurement frameworks are similar across the banks.

The Basel Committee performs surveys on the range of practices for AMA and then issues
reports to divulge the results. These reports describe industry practices for some key areas of
the governance, data, and modeling components of an AMA framework identifying emerging
effective practices as well as practices that are inconsistent with supervisory expectations. The
findings from the latest range of practices report (BCBS, 2009a) based on the 2008 Loss Data
Collection Exercise (BCBS, 2009b) include the following:

* The absence of definitions in the Basel II text for “gross loss” or “recoveries” and varying
loss data collection practices among AMA banks results in differences in the loss amounts
recorded for similar events. This practice may lead to potentially large differences in banks’
respective capital calculations;

* There was a broad range of practices in the use of loss amount as the AMA input. Most
of the 42 participating AMA banks (43%) used “gross loss after all recoveries” (except
insurance). “Gross loss before any recoveries” was used by 29%. Other loss amounts used
by participating banks include “net loss” (14%) and “other definition” (12%);

Data collection thresholds vary widely across institutions and types of activity. A bank
should be aware of the impact that its choice of thresholds has on OpRisk capital

computations;

* There is a broad range of practices for when the loss amounts from legal events are used
as a direct input into the model quantifying operational capital, which raises questions of
transparency and industry consistency in how these OpRisk exposures are quantified for
capital purposes;

* There is considerable diversity across banks in the choice of granularity of their models
that may be driven as much by modeler’s preferences as by actual differences in OpRisk

profiles;

* While it is common for banks to use the Poisson distribution for estimating frequency,
there are significant differences in the way banks model severity, including the choice of
severity distribution; and
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* The combination and weighting of the four elements (internal data, external data, scenario
analysis, and BEICF) are significant issues for many banks, given the many possible com-
bination techniques. This is an area where the range of practices is particularly broad both
within and across jurisdictions.

1.5 General Remarks and Book Structure

Regulators are trying to close the methodology gap by holding meetings with the industry and
they are attempting to incentivize convergence among the different approaches through more
individualized guidance. Although some success might be credited to these efforts, there are
still considerable challenges and this is where our book Fundamental Aspects of Operational Risk
and Insurance Analytics: A Handbook of Operational Risk can add value to the industry.

We consider that one of the biggest challenges in OpRisk is to take this risk management
branch to the same level that market and credit risk management play. Those two risks are
managed proactively and risk managers usually have a say if deals or businesses are approved
based on the risk level. OpRisk is mostly kept out of these discussions at this stage and this is an
issue as quite a few financial institutions have OpRisk as their dominant exposure. We believe
that considerable effort in the industry would have to be put into data collection and modeling
improvements, and that is the focus of our work in this book.

Our book can be divided into two parts. The first part (Chapters 1-5) covers the basics,
the building blocks, of OpRisk management and measurement. In Chapter 2, there is a broad
coverage on the four data elements that need to be used in the OpRisk framework as well as
how a risk taxonomy process should be developed. Considerable focus is given to internal loss
data and key risk indicators as these would be fundamental in developing a risk-sensitive frame-
work similar to market and credit risks. Subsequently, Chapter 3 shows how OpRisk can be
inserted into a firm’s strategic decisions and Chapter 4 shows a model to stress-test OpRisk
under the US Comprehensive Capital Analysis and Review (CCAR) program. The basic con-
cepts of probability theory and the basic framework for modeling and measuring OpRisk and
how loss aggregation should work are considered in Chapter 5.

In the second part of the book (Chapters 6-18), we cover more special topics in OpRisk
measurement. For example, diverse methods to estimate frequency and severity models are
discussed. Another very popular issue in this industry is how to select severity models and this
is also comprehensively discussed in this part. One of the biggest challenges in OpRisk is that
data used in measurement can be very different, so combining them into a single measure is
not a trivial task. In this part of the book, we show a number of methods to do so. After the
core risk measurement work is done, there are still some issues to address that can potentially
mitigate the capital found and also on how to manage risks. We also discuss correlation and
dependency modeling as well as insurance and risk transfer tools and methods.

We hope this book can be the basis for a number of discussions in the industry. This book
can helps novices in the field to learn the building blocks of OpRisk and also suggest new
techniques and ideas for those who have been practicing or researching for a while.

Most OpRisk practitioners would say that their focus is always on the tail events as these
are the ones that can cause real damage and even force a financial institution into bankruptcy.
Realizing this and understanding these tail events and how to model these is a crucial part
of OpRisk. Comprehensive treatment of the modeling of heavy-tailed events requires a book-
length text and it is a subject covered in the more advanced companion book Advances in Heavy

Tailed Risk Modeling: A Handbook of Operational Risk, Peters and Shevchenko (2015).
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2.1 Introduction

One of the first and most important phases in any analytical process, and this is certainly no
different when developing OpRisk models, is to cast the data into a form amenable to analy-
sis. This is the very first challenge that an analyst or quant faces when determined to model,
measure, and even manage OpRisk. At this stage, there is a need to establish how the infor-
mation available can be modeled to act as an input in the analytical process that would allow
proper risk assessment to be used in risk management and mitigation. In risk management, and
particularly in OpRisk, this activity is today quite regulated and the entire data process, from
collection to maintenance and use, has strict rules, which in a way reduces the variance in the
use of the data across the industry.

The OpRisk framework starts by having solid risk taxonomy so risks are properly classified.
Firms also need to perform a comprehensive risk mapping across their processes to make sure
that no risk is left out of the measurement process. This is a key process to be accomplished
and where a number of firms should be paying more attention.

In this chapter, we lay the ground for the basic building blocks of OpRisk management.
First we describe how risk taxonomy works, classifying loss events into the major risk categories.
Then we describe the four major data elements that should be used to measure and manage
OpRisk: internal loss data, external loss data, scenario analysis, and business and control envi-
ronment factors. When these risk mapping, taxonomy, and data building blocks are reasonably
structured, it becomes important to configure the organization of the OpRisk department and
a firm’s risk governance. Even a very efficient and well-developed OpRisk framework would fail
if the proper organization and policies are not in place.

2.2 OpRisk Taxonomy

The term “taxonomy” has become quite popular in the risk management industry. In most
conferences and industrial workshops, and most certainly among consultants, the term “risk
taxonomy” has become a regular mantra. So, what is risk taxonomy? Taxonomy is actually a
term borrowed from biology. One of the missions of the biologist is to discover new species
on remote places of the planet and it would make their work easier if they could classify a new

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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species into a new group based on some characteristics. So taxonomy means the conception,
naming, and classifying organisms into groups. It is a common practice in biology to group
individuals into species, arranging species into larger groups, and giving those groups names,
thus producing a classification. For example, the fact that dolphins live in the sea and look
like a fish does not make them a fish as many of their characteristics made biologists classify
them as “mammals”. Taxonomy basically encompasses description, identification, nomencla-
ture, and classification. Therefore, taxonomy has become an interesting and a popular turn in
risk management industry as new risks are being encountered at regular intervals.

Before getting onboard the risk taxonomy bandwagon, a firm must perform a compre-
hensive risk mapping exercise. This means going through, in excruciating details, every major
process of the firm. For example, let us imagine the equity trading process. Analyzing this pro-
cess would mean going through the risks since the customer places an order until the transaction
gets fully settled with exchanges of payment and securities delivered. Those will be the basic
risks that unlikely would change, unless there is a change in the process. From this process, a
risk manager should also be able to point out where losses are coming from and develop mech-
anisms to collect them. The outcome of this exercise would be the building block of any risk
classification study.

It is interesting to note that even today firms are struggling with basic risk classification,
which is the base of the risk management pyramid, the very first building block of a robust
risk management framework. Mistakes made in the past years in classifying a risk will have
repercussions in the risk management and on the communication of risks, at a minimum, to
outside parties like regulators, and might compromise any good work done elsewhere in the
framework. There are roughly three ways that firms drive this risk taxonomy exercise: cause-
driven, impact-driven, and event-driven. In many firms, risk taxonomy is a mixture of these
three making it even more difficult to get it right. Let us discuss these three methods. In the
cause-driven method, the risk classification is based on the reasons that cause operational losses.
This usually follows the old OpRisk definition (which most firms use in their annual reports) in
which OpRisk is defined as a function of “people, systems, and external events”. Some risk types
in this classification would be, for example, “lack of skills in trade control” or “inappropriate
access control to systems”. Although there are some advantages in this type of classification,
as a “root cause” is pretty much embedded into the risk classification, challenges arise when
multiple causes exist or the cause is not immediately clear. If this cause-driven risk classification
is applied to a process in which operational losses have high frequency, it would be very difficult
for risk managers to classify correctly every single loss, and the attrition with the business and
within the department is likely to be high. Another way to perform this classification exercise
is through an impact-driven method. In this method, the classification is made according to
the financial impact of operational losses. Most firms that follow this type of classification do
not invest heavily in OpRisk management; they just use this type to retrieve data from their
systems. This is quite common in smaller firms. In this type of classification, it is quite difficult
to manage OpRisk as, although the exposures are known, it is difficult to understand what is
driving these losses.

The event-driven risk classification is probably the most common one used by large firms.
It classifies risk according to OpRisk events. This is the classification used by the Basel Com-
mittee. It is interesting to know that during the Basel II discussions, when this type of risk
taxonomy was presented, most of the industries were reluctant to accept it. A number of firms,
even today, follow their own classification initially and map to the Basel event-type category
later. What is interesting in this classification is that the definition is rather broad which should
make it easier to accept changes in the process. For example, under “Execution, Delivery, and
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Process Management” (EDPM), which is the level-1 event type, there is a category named
“Transaction Capture, Execution, and Maintenance” that can be an umbrella for a number of
event types. For example, if the equity trading process changes from a old-fashioned phone-
based to an online high-frequency trading, using this classification would be easy to define the
taxonomy of these risks.

Given how new risks emerge in OpRisk, and also the breadth of its scope, the concept and
the ideas behind risk taxonomy in OpRisk sound quite appealing. However, as this is a building
block of the OpRisk framework, firms need to be very careful. In the following sections, all seven
Basel II event types required for advanced method approach (AMA) are defined and discussed
in detail; detailed breakdown into event types at level 1, level 2, and activity groups is provided

in BCBS (2006, pp. 305-307).

2.2.1 EXECUTION, DELIVERY, AND PROCESS MANAGEMENT

EDPM loss event type is one of the most prominant in the OpRisk profile of firms or business
units with heavy transaction processing and execution businesses. It encompasses losses from
failed transaction processing, as well as problems with counterparties and vendors. Table 2.1
describes the Basel event-type breakdown for this risk.

Losses of this event type are quite frequent as these can be due to human errors, mis-
communications, and so on, which are very common in an environment where banks have to
process millions of transactions per day. A typical example of execution losses might help to
illustrate how frequent these losses can be.

TABLE 2.1 Execution, Delivery & Process Management (EDPM) event-type defined as
losses from failed transaction processing or process management, from relations with trade
counterparties and vendors. Basel 11 event type classification as provided in BCBS (2006,
pp- 305-307)

Category (level 1) Categories (level 2) Activity examples

Miscommunication; data entry, maintenance or
loading error; missed deadline or responsibility;
model/system misoperation; accounting
error/entity attribution error; other task

Transaction Capture,
Execution and
Maintenance

Execution, misperformance; delivery failure; collateral
Delivery & management failure; reference data maintenance
Process .. . . .. .

Monitoring and Failed mandatory reporting obligation; inaccurate
Management

Reporting

external report (loss incurred)

Customer Intake and
Documentation

Client permissions/disclaimers missing; legal
documents missing/incomplete

Customer/Client
Account Management

Unapproved access given to accounts; incorrect
client records (loss incurred); negligent loss or
damage of client assets

Trade Counterparties

Nonclient counterparty misperformance; misc.
nonclient counterparty disputes

Vendors and Suppliers

Outsourcing; vendor disputes
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Consider the following deal: A foreign exchange (FX) trader bought USD 100,000,000
for €90,000,000 (i.e., USD 1 = €0.90) and then sold USD 100,000,000 for €90,050,000 (i.e.,
USD 1 = €0.9005) with a trading initial profit of €50,000. Both transactions were made almost
at the same time, and the trader was obviously very satisfied with a profit of €50,000. In his/her
excitement at the successful deal, however, there were some snags in the back-office with some
confusion on where to remit the payments of one leg of the deal, and the transaction was finally
settled 3 days later than it should have been.

In FX transactions trading tickets are usually larger to compensate for the low margins.
Similar situations as described earlier may lead to errors. The counterparties obviously would
have demanded a compensation as the settlement has been delayed for 3 days, and the bank
would also have paid a penalty, in the form of interest claims of €55,000. Therefore, any error
has the potential to be higher than a transactions eventual economic profit.

The overall scenario is alarming. There was a loss of €5000 on the aggregate due to opera-
tional errors (€50,000 transaction profit less €55,000 interest claims due for late payment). This
is the reality a trading environment faces on the day-to-day. The actions of traders are recog-
nized at the closing of the deal, and errors coming to light at a later time (e.g., mis-pricing, late
settlement) are not linked back to the underlying cause. The error goes to an “error account” or
the like and, in terms of OpRisk management, those who are responsible for the errors are never
identified; even worse is that the real profitability of individual transactions is rarely understood.
The cost side (and the OpRisks involved) is in general ignored.

Knowing where these errors occur is very important for OpRisk management. We will see
examples like that throughout the book.

Execution, Delivery and Process Management: Misunderstanding a Trading Order:
Large US Private Bank, August 2012

Despite the fact that there are currently many options to place orders, where techno-
logical devices such as e-mail, Internet, live chats are available, many purchase orders,
particularly in private banking, are still being placed by old-fashioned telephone meth-
ods. A very common mistake is the misunderstanding of the order, especially frequent
when the counterparty is a foreign-language speaker and the communication chain usu-
ally goes from client to banker to trader assistant to trader, and in any one of these links
there is potential for communication breakdowns to happen.

In a busy afternoon at the end of summer 2012, a client asked his private banker to
purchase “USD 100,000 of a particular share”. The private banker passed this order to
the trader, and at the end of the day the trader passed a bill to the private banker for several
million US dollars. The private banker was absolutely stunned to see that they had bought
a significant portion of this particular company. As a consequence of this transaction,
the share price of this company rose significantly which also generated questions from
authorities that suspected some type of pump-and-dump scheme. Considering it all, the
bank decided to keep the shares and sell it little by little. The operational loss in this
case was reflected in the value lost in returning the stocks to the market after the shares
returned to their average price.
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2.2.2 CLIENTS, PRODUCTS, AND BUSINESS PRACTICES

Loss events under Clients, Products and Business Practices (CPBP) risk type are usually the
largest, particularly in the US. These events encompass losses, for example, from disputes with
clients and counterparties, regulatory fines from improper business practices, or wrongful advi-
sory activities. Table 2.2 presents the Basel event-type breakdown and definition for this risk
type. This is a specific and an important risk type for firms with operations in the US where lit-
igation is very common. As seen in recent regulatory fines imposed on French banks and other
foreign banks operating in US jurisdiction, this loss type can also be significant to off-shore
entities.

Real OpRisk Events: SBC Warburg (Investment Bank), October 1996

The Securities and Futures Authority in the UK (the former City of London regulator
since superseded by the Financial Services Authority) released partial details in March
1997 of an investigation that had commenced in October 1996 into rogue trading in
a program trade in SBC Warburg. (A program trade is a transaction where one agent,
generally a fund, chooses another agent, generally a bank or a broker, to sell part of
its shares in the market in a determined day and hour determined by market prices.)
The program trading error that made SBC Warburg the subject of the investigation is
thought to have cost it no more than £5 million. Nevertheless, this program trade was
one of the largest ever to be awarded to SBC Warburg, and the SFA investigation has
clearly embarrassed it. The investigation relates to a mistake made during the execution
of a £300 million program trade for an investment trust which caused the price of a

TABLE 2.2 CPBP event-type defined as losses arising from an unintentional or negligent
Jfailure to meet a professional obligation to specific clients (including fiduciary and suitability
requirements) or from the nature or design of a product. Basel II event type classification as

provided in BCBS (2006, pp. 305-307)

Category (level 1) Category (level 2) Activity examples

Fiduciary breaches/guideline violations;

Suitability, suitability/disclosure issues (e.g., KYC); retail

Disclosure, and Fiduciary . S .
customer disclosure violations; breach of privacy;

aggressive sales; account churning; misuse of

Clients, Products, confidential information; lender liability

and
Business Practices Improper Business or Antitrust; improper trade/market practices; market
Market Practices manipulation; insider trading (on firm’s account);

unlicensed activity; money laundering

Product Flaws Product defects (e.g., unauthorised); model errors

Selection, Sponsorship,  Failure to investigate client per guidelines;
and Exposure exceeding client exposure limits

Advisory Activities Disputes over performance of advisory activities
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number of French stocks to fall sharply. The investigation is being extended whether
this bank made a similar error when selling Spanish shares as part of the same program
deal.

The SFA investigation focused on a 30-min period on October 30, 1996. At some
time around mid-day, SBC Warburg traders learnt that the bank had been awarded three
contracts by Kleinwort Benson European Privatization Investment (Kepit) to execute a
series of share sales (the so-called program trade) on its behalf. Contracts for programme
trades are often awarded just before the deal takes place, and the Kepit deal was no dif-
ferent. It involved SBC Warburg taking the £300 million-worth of shares onto its books
just minutes later, at 12:30 pm, and paying Kepit the mid-market prices for each share at
that time. In the remaining minutes before the 12:30 pm deadline, SBC Warburg traders
sought to sell some of the same shares they were about to get from Kepit in order to reduce
the risk (this process is known as short sell, and it is accepted as a normal practice in a
program trade, as long as the price does not fall too much).

Elsewhere at SBC Warburg, a trader was running an arbitrage position on Kepit,
seeking to make money by exploiting differences between Kepit's own share price and
the price of the shares the bank owned. SFA investigators were told that in the minutes
before the 12:30 pm deadline, the SBC Warburg trader running the arbitrage position
was seen on the trading floor making gestures with his hands for traders to get the price of
the shares down. Nevertheless, a mistake by one of the SBC Warburg’s Paris-based traders
attracted the attention of SFA. Instead of selling as much as he could before 12:30 pm,
SFA investigators have been told that the trader misunderstood his instructions and
instead attempted to sell at the strike time. The trader also failed to put a so-called down
limit on his proposed share sales, effectively turning it into an unlimited sell order.

In the tapes passed to the SFA (all conversations on the trading desk are recorded),
the London-based trader is heard talking with a colleague about how the price of the
French shares had fallen much further than they had planned. The trader complained that
a colleague had just told him, in hindsight after the share prices had collapsed, that they
should only have pushed the prices down by 1%. SBC admitted in March 1997 that its
shortselling had contributed to adverse price movements and dismissed several employees
involved in the trade.

2.2.3 BUSINESS DISRUPTION AND SYSTEM FAILURES

Business Disruption and System Failures (BDSF) event type is one the most difficult to spot in
a large organization. A system crash, for example, would almost certainly bear some financial
loss for a firm, but these losses most likely would be classified as EDPM. An example might
help to clarify this point. Suppose that the funding system of a large bank crashes at 9:00 am.
Despite all efforts from IT, the system comes back online only by 4:00 pm when money markets
are already closed. When the system returns, the bank learns that it needs to fund an extra USD
20 billion on that day. As the markets are already closed, they need to make requests to their
counterparties to allow them special conditions; however, the rates in which they capture these
funds are higher than the daily average. This extra cost, although due to a system failure and,
therefore, should be classified as BDSE would hardly be captured at all. Table 2.3 presents the
formal Basel definition and breakdown of this risk type.
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TABLE 2.3 BDSF event risk type defined as losses arising from disruption of business or
system failures. Basel I event type classification as provided in BCBS (2006, pp. 305-307)

Category (level 1) Category (level 2) Activity examples
Business Disruption Systems Hardware; software; telecommunications;
and System Failures utility outage/disruptions

TABLE 2.4 External fraud event risk type defined as losses due to acts of a type intended to
defraud, misappropriate property, or circumvent the law, by a third party. Basel 11 event type
classification as provided in BCBS (2006, pp. 305-307)

Category (level 1) Category (level 2) Activity examples

Theft and fraud Theft/robbery; forgery; check kiting

External fraud

Systems security Hacking damage; theft of information
(w/monetary loss)

The difficulty to capture this event type is reflected in external databases where, aside
damage to physical assets, this risk type has least number of events.

2.2.4 EXTERNAL FRAUDS

External frauds are frauds committed or attempted by third parties or outsiders against the
firm. Examples would be system hacking and checque and credit card frauds. External fraud
is very common in retail businesses where financial firms deal with millions of clients. Frauds
attempted or committed by clients are a daily event in sectors such as retail banking, retail
brokerage, and credit card services; see Table 2.4 for Basel II definition and breakdown.

2.2.5 INTERNAL FRAUD

Internal frauds are frauds committed or attempted by a firm’s own employees. It is one of the
less frequent types of OpRisk loss. Given the sophisticated, controls that most institutions have
this would be unlikely. However, events such as traders mismarking positions, particularly in
assets that are hard to establish an accepted mark-to-market price are not uncommon. Recently
there were a number of large internal frauds in which billions of dollars were lost as traders of a
particular bank failed to mention their position. These are usually low-frequency/high-severity
events. Table 2.5 presents the formal Basel definition and breakdown of this risk type.

Real OpRisk Events: Model Inputs Fraud, NatWest, March 1997

One of the most famous case in derivatives mispricing was the one that happened at
NatWest in 1997. On February 28, 1997, a few days after the bank released its annual
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results, it announced a loss of approximately USD 150 million caused by a junior trader
who has already left the bank. The trader was said to be dealing in long-dated OTC
interest rate options, used by companies that borrow at a floating rate and purchase a
cap on the interest payments. The major problem in valuing these options is that they
are relatively illiquid. The trader calculated the price of the options by providing his own
estimates of volatility, which he apparently overestimated, creating fictitious profits that
built up in the books over time.

The volatility estimates resulted in the options being underpriced. The trader
attracted more clients, booking the requested premium, thereby increasing the appar-
ent profitability of his desk (and, by extension, his remuneration). The loss was realized
when the options were exercised.

TABLE 2.5 Internal fraud event risk type defined as losses due to acts of a type intended to
defraud, misappropriate property or circumvent regulations, the law or company policy,
excluding diversity/discrimination events, which involves at least one internal party. Basel 11
event type classification as provided in BCBS (2006, pp. 305-307)

Category (level 1) Category (level 2) Activity examples

Transactions not reported (intentional);
transaction type unauthorised (w/monetary
loss); mismarking of position (intentional)

Unauthorised/Activity

Internal fraud Fraud/credit fraud/worthless deposits; theft/

extortion/embezzlement/robbery;

Theft and fraud misappropriation of assets, malicious
destruction of assets; forgery; check kiting;
smuggling; account take-over/impersonation/
etc.; tax noncompliance/evasion (wilful); bribes/
kickbacks; insider trading (not on firm’s
account)

2.2.6 EMPLOYMENT PRACTICES AND WORKPLACE SAFETY

Employment Practices and Workplace Safety (EPWS) type of risk is more prominent in the
Americas than Europe or Asia as either the labor laws are old-fashioned and/or there is more a
culture of litigation against the employers (Table 2.6). For example, some large banks in Brazil
would count employment litigation on the tens of thousand and it is one of the main OpRisks
for banks. In some lines of business like investment banking employment issues are also quite
important. As these line of business mostly provide advisory to large corporations and the key
personnel is highly compensated, litigation against some of these key employees and losing
them can cost millions of dollars.
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TABLE 2.6 EPWS event risk type defined as losses arising from acts inconsistent with
employment, health or safety laws or agreements, from payment of personal injury claims, or
from diversity/discrimination events. Basel 11 event type classification as provided in BCBS
(2006, pp. 305-307)

Category (level 1) Category (level 2) Activity examples

Employee relations Compensation, benefit, termination issues;
Employment organised labor activity
Practices and o .

. General liability (e.g., slip and fall.); employee
Workplace Safety Safe environment health and safety rules events; workers
compensation
Diversity and All discrimination types
discrimination

2.2.7 DAMAGE TO PHYSICAL ASSETS

Damage to Physical Assets (DPA) is another OpRisk event type. The most common method
to assess the exposure to this risk is through scenario analysis using insurance information.
Very few firms actively collect losses on this risk type as these are usually either too small or
incredibly large. The formal Basel definition and breakdown of this risk type is presented in
Table 2.7.

TABLE 2.7 DPA event risk type defined as losses arising from loss or damage to physical
assets from natural disaster or other events. Basel II event type classification as provided in
BCBS (2006, pp. 305-307)

Category (level 1) Category (level 2) Activity examples
Damage to Disasters and Natural disaster losses; human losses from external
physical assets other events sources (e.g., terrorism, vandalism)

2.3 The Elements of the OpRisk Framework

The four elements that should be used in any OpRisk framework are as follows:

¢ Internal loss data;
* Business environment and internal control factors;
* External loss data;

* Scenario analysis.

We provide a description of each of these elements in the following text.



26 CHAPTER 2 OpRisk Data and Governance

2.3.1 INTERNAL LOSS DATA

Operational loss means a gross monetary loss (excluding insurance or tax effects) resulting from
an operational loss event. An operational loss includes all expenses associated with an opera-
tional loss event except for opportunity costs, forgone revenue, and costs related to risk man-
agement and control enhancements implemented to prevent future operational losses.

Having a robust historical internal loss database is the basis of any OpRisk framework.
These losses need to be classified into the Basel categories (and internal if different than the
Basel) and mapped to a firm’s business units. Given their importance for the OpRisk framework,
the collection and maintenance of these data are heavily regulated. Basel II regulation says that
firms need to collect at least 5 years of data, (BCBS, 2006), but most decided not to discard
any loss even when these are older than this limit. Since losses are difficult to acquire and take
years to build up a reliable and informative loss database, consequently most firms even pay
to supplement internal losses (see the external loss database). Hence, it is clear that it would
not make sense to discard losses that took place in the own firm unless the business in which
this loss took place was sold. There are a number of issues that can come from internal data
modeling that are worth comments and are listed below.

Considerable challenges exist in collating a large volume of data, in different formats and
from different geographical locations, into a central repository, and ensuring that these data
feeds are secure and can be backed up and replicated in case of an accident.

2.3.2 SETTING A COLLECTION THRESHOLD AND POSSIBLE
IMPACTS

Most firms set a threshold for loss collection as allowed by Basel. However, this decision can
have significant impact in establishing the risk profile of a business unit. This is usually the case
in businesses that have heavy transaction execution like asset management or equities. See the
example in Table 2.8. If the OpRisk department had chosen USD 100,000 as the threshold,
usually under the argument that only tail events drive OpRisk capital, that firm would think
that its total loss in that year was USD 49 million. If the threshold choice was USD 20,000,
the total losses would be USD 53 million. However, most losses are due to compensating retail
clients whose orders are usually ranging from USD 1000 to USD 50,000. The sum of the
losses under USD 50,000 is about USD 20 million, which is almost equivalent to the losses

TABLE 2.8 The impact of threshold choice: losses in a certain year for the asset
management division of a bank

Loss brackets (USD) Number of losses Total (USD) Accumulated total (USD)
> 5,000,000 3 23,750,325 23,750,325
1,000,000-5,000,000 7 13,775,000 37,525,325
500,000-1,000,000 10 8,250,781 45,776,106
100,000 -500,000 12 3,562,177 49,338,283
50,000 —100,000 22 1,723,490 51,061,773
20,000 -50,000 71 2,159,021 53,220,794

< 20,000 1520 17,500,235 70,721,029




2.3 The Elements of the OpRisk Framework 27

above USD 5 million. For this particular firm, setting the loss collection threshold in USD
100,000 would show total losses for the year as USD 49 million. However, if this firm had not
set a loss collection threshold they would observe that their actual losses were USD 71 million,
a very different risk profile.

A number of OpRisk managers pick their threshold thinking only in terms of OpRisk
capital. Disregarding these small losses in many cases can bias the risk profile of a business unit
and, of course, this will also have an impact on OpRisk capital.

2.3.3 COMPLETENESS OF DATABASE (UNDER-REPORTING
EVENTYS)

In gathering data from disparate sources, we need to avoid an OpRisk in collecting the OpRisk
data collection. Such risks and subsequent losses may arise, for example, the employee respon-
sible for reporting losses does not send the loss information to the central database, whether
accidental or not. The Basel II document BCBS (2006) refers to this scenario with the possible
consequence being that an institution that could not prove that loss data is flowing with a high
degree of reliability to the central database(s) is likely to be disallowed to employ more advanced
techniques for assessing the levels of risk.

The development of filters that capture operational issues and calculate an eventual oper-
ational loss is one of the most expensive parts of the entire data collation process, but the
outcome can be decisive in making an OpRisk project successful and increasing confidence in
the completeness of the loss database.

This OpRisk filter will vary from bank to bank depending on their systems, but in all cases
it works like a conduit between systems, collecting every cancellation or alteration made to a
transaction or any differences between the attributes of a transaction in one system compared
to its attributes in another system. The transaction flow starts at the front-office system that
registers the transaction passing it to the accounting and clearing systems. Any discrepancy,
alteration, or cancellation must be extracted by the OpRisk filter. Also, abnormal inputs (e.g.,
a lower volatility in a derivative) can be flagged and investigated. The filter will calculate the
OpRisk loss event and several other impacts in the organization.

2.3.4 RECOVERIES AND NEAR MISSES

The Basel II rules (BCBS, 20006) in general do not allow for the use of recoveries to be considered
for capital calculation purposes. The issue again is that if firms are trying to estimate losses that
can happen once every thousand years, it would not make sense to start applying mitigating
factors to reduce the losses and eventually reducing also capital. For this reason, gross losses
should be considered for OpRisk calculation purposes.

The only exception is on rapidly recovered loss events but even this exception is not
accepted everywhere. Rapidly recovered loss events are OpRisk events that lead to losses recog-
nized in financial statements that are recovered over a short period. For instance, a large internal
loss is rapidly recovered when a bank transfers money to a wrong party but recovers all or part
of the loss soon thereafter. A bank may consider this to be a gross loss and a recovery. However,
when the recovery is made rapidly, the bank may consider that only the loss net of the rapid
recovery constitutes an actual loss. When the rapid recovery is full, the event is considered to
be a “near miss”.
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2.3.5 TIME PERIOD FOR RESOLUTION OF OPERATIONAL LOSSES

Some OpRisk events, usually some of the largest, will have a large time gap between the incep-
tion of the event and the final closure, due to the complexity of these cases. As an example,
most litigation cases that came up from the financial crisis in 2007/2008 were only settled by
2012/2013. These legal cases have their own life cycle and start with a discovery phase in which
lawyers and investigators would argue if the other party has a proper case to actually take the
action to court or not. At this stage, it is difficult to even come up with an estimate for eventual
losses. Even when a case is accepted by the judge it might be several years until lawyers and
risk managers are able to estimate properly the losses. Firms can set up reserves for these losses
(and these reserves should be included in the loss database), but they usually do that only for a
few weeks before the case is settled to avoid disclosure issues (i.e., the counterparty eventually
knows the amount reserved and uses this information in their favor). This creates an issue for
setting up OpRisk capital because firms would know that they are going to under go a large loss
and yet are unable to include it in the database; the inclusion of this settlement would cause
some volatility in the capital. The same would happen if a firm set a reserve of, for example,
USD 1 billion for a case, and then a few months later, if a judge decides to remove the loss in
favor of the firm. For this reason, firms need to have a clear procedure on how to handle those
large, long-duration losses.

2.3.6 ADDING COSTS TO LOSSES

As said earlier, an operational loss includes all expenses associated with an operational loss event
except for opportunity costs, forgone revenue, and costs related to risk management and control
enhancements implemented to prevent future operational losses. Most firms, for example, do
not have enough lawyers on payroll (or expertise) to deal with all the cases, particularly some of
the largest or those that demand some specific expertise and whose legal fees are quite expensive.
There are cases in which the firm wins in the end, maybe due to some external law firms, but the
cost can reach tens of millions of dollars. In such cases, though the firms wins a court victory,
there will be an operational loss.

2.3.7 PROVISIONING TREATMENT OF EXPECTED OPERATIONAL
LOSSES

Unlike credit risk, the calculated expected credit losses might be covered by general and/or spe-
cific provisions in the balance sheet. For OpRisk, due to its multidimensional nature, the treat-
ment of expected losses is more complex and restrictive. Recently, with the issuing of IAS37 by
the International Accounting Standards Board, Wittsiepe (2008), the rules have become clearer
as to what might be subject to provisions (or not). IAS37 establishes three specific applications
of these general requirements, namely:

* a provision should not be recognized for future operating losses;

* a provision should be recognized for an onerous contract—a contract in which the
unavoidable costs of meeting its obligations exceeds the expected economic benefits;

* a provision for restructuring costs should be recognized only when an enterprise has a
detailed formal plan for restructuring and has raised a valid expectation in those affected.
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These provisions should not include costs, such as retraining or relocating continuing staff,
marketing or investing in new systems and distribution networks; the restructuring does not
necessarily entail that.

IAS37 requires that provisions should be recognized in the balance sheet when, and only
when, an enterprise has a present obligation (legal or constructive) as a result of a past event. The
event must be likely to call upon the resources of the institution to settle the obligation, and,
more importantly, it must be possible to form a reliable estimate of the amount of the obligation.
Provisions should be measured in the balance sheet at the best estimate of the expenditure
required to settle the present obligation at the balance sheet date. Any future changes, like
changes in the law or technological changes, may be taken into account where there is sufficient
objective evidence that they will occur. IAS37 also indicates that the amount of the provision
should not be reduced by gains from the expected disposal of assets (even if the expected disposal
is closely linked to the event giving rise to the provision) nor by expected reimbursements
(arising from, for example, insurance contracts or indemnity clauses). When and if it is virtually
certain that reimbursement will be received should the enterprise settle the obligation, this
reimbursement should be recognized as a separate asset.

2.4 Business Environment and Internal Control
Environment Factors (BEICFs)

One can see OpRisk as a function of the control environment. If the control environment is fair
and under control, large operational losses are not likely to take place and OpRisk is considered
to be under control. Therefore, understanding the firm’s business processes, mapping the risks
on these processes, and assessing the control of these processes are the fundamental roles of an
OpRisk manager. A simple example is the equities trading process and is shown in Figure 2.1.

Firms need to be able to assess risk on the many steps of the settlement process and
report them regularly. There are a couple of tools that are commonly used by financial firms
to perform this task: Risk Control Self-Assessment and Business and Control Environment
programs.

2.4.1 RISK CONTROL SELF-ASSESSMENT (RCSA)

These are also knowns as Control Self-Assessment (CSA) in some firms. According to this
procedure, firms regularly ask experts about their views on the status of each business pro-
cess and subprocess. These reviews are usually done every 12 or 18 months and color rated
Red/Amber/Green (RAG) according to the perceived status. Some firms go beyond and try
to quantify these risks using subjective approaches or through a scorecard. For many firms,

Tr
ade Custody and Clear and Settle
Trade capture matching and
. ) control trades
confirmation

FIGURE 2.1 Equity Settlement Process
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RCSA is the anchor of the OpRisk framework and most OpRisk activities are linked to this
procedure.

In a broad sense, the RCSA program requires the documentation and assessment of risks
embedded in a firm’s processes. Levels of risks are derived (usually from a frequency and severity
basis), and controls associated with these risks are identified. As risks are usually reported by
business units, these processes are aggregated to a certain business unit and rated/assessed.

In the RCSA program, managers first identify and assess inherent risks by making no
inferences about controls embedded in the process: controls are assumed to be absent. Under
this assumption, managers must carefully identify how risk manifests within the activities in
the processes. The following are the usual questions asked by risk managers in this phase:

* Risk scenarios. Where are the potential failure points in each of these processes?
* Exposure. How big a loss could happen to my operation if a failure happens?

* Correlation to other risks. Could a failure altogether change my organization’s perfor-
mance, either financially, its reputation, or affect any other area?

The answers point toward the specific inherent risks embedded within a business unit’s process,
which must be assessed to determine the likelihood the events could occur (frequency) and
severity. The results of this analysis provide a birds’ eye view of the inherent risk of a firm’s
business processes. Management can then use this assessment to prioritize and focus on the
most critical risks that must be proactively managed.

Once these inherent risks are understood, controls will be added in the RCSA framework.
The effectiveness of these controls are then assessed to understand how efficient these are to
mitigate risks. At this stage, the residual risk is also calculated, which is the risk that is left after
inherent risks are controlled. Put another way, residual risk is the probability of loss that remains
to systems that store, process, or transmit information after security measures or controls have
been implemented.

For a firm that has the RCSA program as the core of the OpRisk framework, all other
OpRisk initiatives under the firms OpRisk program are usually structured to feed the RCSA.
Risk metrics such as key risk indicators (KRIs), internal loss events, and external events would
contribute to the risk identification process ensuring the organization has considered all readily
available data and benchmark risk assessments.

Once the universe of controls and mitigation measures has been identified, the business
unit can partner with various control functions to conduct the control testing phase of the
RCSA. Control testing is critical to a mutual understanding of expectations and actions across
business units and between the front and back offices.

One significant challenge that arises due to combining RCSA data is interpreting what the
data actually means. For example, outputs from a RCSA program might lead a risk manager
to conclude that no immediate action is required if the risk exposures are controlled within
the tolerances acceptable to the firm. On the other hand, if the RCSA data indicates that the
control environment is weakening and threatening the success of a particular business goal, a
risk manager might decide to recommend a corrective action. However, weighting those risks
across the entire risk universe and naming the most important or “key” might not be an easy
and objective task.

There are a number of vendors that provide systems that help to collate these results. The
issue with these programs in general is that they make it harder to integrate with the other
data inputs that are numeric. Even if these RAG assessments can be converted to a number or
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rating, there is always a bias embedded that the person who does the assessment would have a
motivation to improve their ratings so as to reduce their capital.

2.4.2 KEY RISK INDICATORS

These indicators/factors are mostly quantitative and are used as a proxy for the quality of the
control environment of a business. For example, in order to report the quality of the processing
systems of an investment bank, we might design factors such as “system downtime” (measuring
the number of minutes that a system stayed offline), and “system slow time” (counting the
minutes that a system was overload and running slow). These KRIs can be extremely important
in OpRisk measurement as they can allow OpRisk models to behave very similarly to those in
market and credit risks.

Going back to the equity settlement example, instead of using RAG self-assessment, a
better way to assess the quality of these processes is to establish a few KRIs that provides an
accurate picture of the control environment as seen in Figure 2.2. As an example, on the trade
confirmation stage of the settlement process, if the number of unsigned confirmations older
than 30 days increases to over a certain percent of the total population, and the number of
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repudiated trades increases, one might say that this process is facing challenges that need to be
addressed.

The process of KRI collection deserves special attention. It is important that these data
are absolutely reliable, in order to display relationships between KRIs and losses. Automating
the collection straight from the firm’s operational systems might help to create a more realistic
reflection of the true profile of the infrastructure of a certain business. There are many stages
in establishing these links and of course there is a cost associated with the implementation of
the KRI program, but probably no other type of data will be more powerful than KRIs for
managing and measuring operational risk. It is much easier to explain OpRisk as a function of
the control environment in which a firm exists than to say that OpRisk capital is moving up or
down because of past losses or changes in scenarios.

The first stage of the KRI collection process is trying to establish assumptions on the
OpRisk profile of a certain business. For example, we might assume that execution errors in
the equities division can be explained by the trade volume on the day, the number of securities
that failed to be received or delivered, the head count available on the trading desk and the
back office, and system downtime (measured by minutes offline). The decision to be made is:
at what organizational level should this relationship be measured? Equities division as a whole?
Should we break down equities division into cash equities, listed derivatives and OTC deriva-
tives, or along any other lines? Should we consider breaking it down along regional lines? All
these questions are fundamental for the success of the analysis. The quantitative incorporation
of KRI data into OpRisk modeling is discussed in Chapter 16.

If loss data and KRIs are collected at cost center level (the lowest possible level), it becomes
possible to perform this disaggregation. In general, the lower the level you model the causal
relationship, the better the chances that you will find higher level fits to the model. Put this
another way, it is easier to find strong causal relationships, if you model, for example, the US
cash equities department than modeling at the global equities division level, as the lower level
would better capture local nuances, idiosyncrasies, and trends.

The modeler might also consider using external factors such as equity indexes and interest
rates. It is common to find strong relationships between a stock market index and operational
losses, for example, higher volatility on stock markets is usually associated with high trading
volumes, which in turn is highly associated with execution losses in OpRisk. Table 2.9 presents

TABLE 2.9 Examples of BEICFs used in few environments

Business environment

Factor

Description

Systems

Information Security
People/Organization

Execution/Processing

System downtime
System slow time
Software stability

Malware attacks
Hacking attempts
Employees
Employees experience
Transactions

Failed transactions
Data quality

Breaks

Number of minutes a system is offline
Number of minutes a system is slow
Number of code lines changed in a program
or software in a certain period of time
Number of malware attacks

Number of hacking attempts

Number of employees

Average experience of employees

Number of transactions processed
Number of transactions that failed to settle
Ratio of transactions with errors

Number of transactions breaks
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few examples of Business Environment and Internal Control Factors (BEICFs) used in few
environments.

2.5 External Databases

According to the Basel Accord, OpRisk modelers need to calculate regulatory capital at the
99.9% confidence level, which is equivalent to finding enough capital to protect against losses
in the worse year in a 1,000 year period. One way to try to overcome these challenges is through
using other firms’ loss experiences. This is common in insurance. For example, suppose that a
US insurer wants to expand to a new state, say New Jersey. This insurer does not have expe-
rience in New Jersey; New Jersey has different characteristics, for example it may have much
more cars per square foot than other states and hence the accident ratio is known to be higher.
How can this insurer price correctly its premium in New Jersey? The most used alternative
is to start with a local database of car accidents. This database is available, with consider-
able details, for insurance companies to acquire. Obviously, this database would never replace
the insurer’s own loss experience in their portfolio, but while this loss experience is not avail-
able, the best way to start the business is using this external database. As the insurer starts
building up their own loss experience, it can start weighting the importance of the external
database in their premium through credibility theory methods (which will be discussed later in
Chapter 15).

Similarly, banks and other financial firms might struggle to come up with reasonable mea-
sures for some types of risk because they were never exposed to large losses, but, despite that,
they understand that they are still under the risk that such a loss-would happen eventually.
These loss-gathering databases can be very useful in these cases.

There are basically three ways to get hold of these databases as seen in Table 2.10. The best
choice for a firm would depend significantly on how their framework is structured and how
the modeler expects to use these losses.

TABLE 2.10 Methods to acquire external data and details

Type Details Pros Cons
Internally developed ~ Firm gathers these losses  Cheapest way It might not be
from news feeds and comprehensive enough
magazines and miss losses in
many industries and
jurisdictions
Consortia The most popular is Loss reporting threshold No details on the losses.
ORX which has some is €20,000 It can only be used for
of the largest banks in measurement
the industry
Vendors There are a number of ~ More detailed analysis on Loss threshold is usually
vendors like IBM the loss. It can be used ~ high (USD 1 million).
OpVantage and SAS for management or Loss details might not
scenarios be accurate as these

were taken from
newspapers
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2.6 Scenario Analysis

Another important tool in OpRisk management and measurement is scenario analysis. For
a significant number of firms, the scenario analysis program is the pillar of their framework.
These scenarios estimates are usually gathered through expert opinions, where these experts
(or a group of experts) communicate their estimates on how losses can happen on an extreme
situation. These experts are commonly guided by information gathered from external data or
KRIs and internal loss trends, see for instance discussions on scenario analysis for OpRisk in
Rippel and Teply (2008), Alderweireld ez a/. (2006) and Hoffman (2002).

Though there are different approaches to run a scenario workshop, only three approaches
are widiley used: structured workshops, surveys, or individualized discussions. A recent survey
in 2012 with the largest US financial firms (the results are not in public domain and reference
cannot be provided) shows that information from experts is obtained mainly through struc-
tured workshops (Figure 2.3). A comprehensive guide to performing and establishing appro-
priate statistical structures for surveys in such workshops is provided in detail in O’Hagan ez a/.
(20006).

Scenarios can be a useful tool in case of emerging risks where a loss experience would
not be available. Financial institutions understanding this challenge are creating many new
scenarios for these emerging risks every year. Figure 2.4 presents some other results of this
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TABLE 2.11 Using scenario analysis outcome for measurement

Loss bracket (in USD thousand) Loss frequency Relative frequency
USD 5,000 7 6.9%
1,000-5,000 10 9.8
500-1,000 15 14.7
100-500 30 29.4
50-100 40 39.2

Total 102

survey about the number of new scenarios developed annually by financial firms showing that
most firms develop between 51 and 100 scenarios every year.

In order to make the outcomes of the scenario analysis workshops useful to the OpRisk
measurement and quantification efforts, the opinions need to be converted into numbers. There
are a few ways to do so, but the most frequent is through gathering estimates on the loss fre-
quencies on predefined severity brackets. These numbers are then converted to empirical dis-
tributions, see example in Table 2.11, that are aggregated with internal losses later.

After converting expert opinion into an empirical distribution, the question is how to

incorporate this into the OpRisk framework. There are a number of articles on the subject, for
example, see recent publications of Dutta and Babbel (2013), Ergashev (2012), and Shevchenko
(2011). It will be discussed in detail in Chapters 14 and 15.
Common Issues and Bias in Scenarios. Because scenarios are usually based on expert opin-
ion, they present a number of biases, see for example, a demonstration of such features in the
experiments designed by Lin and Bier (2008). This is one of the key limitations of this process
as these bias are very difficult to mitigate or avoid. Some of the biases are as follos:

* Presentation Bias. This arises when the order in which the information is provided can
skew or alter the assessment from the experts; see discussion in Hogarth and Einhorn

(1992);

* Availability bias. It is related to the over/underestimation of loss events due to respondents’
exposure or familiarity to a particular experience or risk. For example, if the expert hasa 30
years career in FX trading and had never experimented or seen an individual loss of USD
1 billion or larger, he/she might be unable to accept the risk that such a loss would take
place;

* Anchoring bias. Anchoring occurs when participants restrict their estimates to being
within a range of a given value, which may come from their own experiences, a value they
have seen elsewhere (e.g., internally, in the media) or a value provided in the workshop;
see discussion in Wright and Anderson (1989);

* “Huddle” bias or anxiety bias. It involves the tendency of groups to avoid conflicts and
differences of opinion, either because individuals do not want to disrupt the smooth func-
tioning of the group through dissent, or because they are unwilling to disagree openly
with the more senior, expert, or powerful people in the room; see discussions in O’Hagan

(2005);

* Gaming. Conlflicts of participants’ interests with the goals or consequences of the work-
shops can cause motivational biases or gaming. Participants may be unwilling to disclose
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information or engage meaningfully in the workshop or may seek to influence the
outcomes;

¢ Over/under confidence bias. This bias involves over/underestimation of risk due to the
available experience and/or literature on the risk being limited;

* Inexpert opinion. In many firms, scenario workshops do not attract the expert (or the
expert is not identified) and a more junior or someone with much less experience ends up
participating in the workshop and providing inaccurate estimates;

* Context bias. This bias arises when framing in a certain manner alters the response of
experts, that is, color their opinion; see discussion in Fischhoff ez 2/ (1978).

A fundamental problem that scenario analysis programs face is the disparity of under-
standing and opinions on losses sizes and frequencies. To circumvent some of these problems,
application of the Delphi technique may be of help. The Delphi technique, as Linstone and
Turoff (1975) defined, “...may be characterized as a method for structuring a group communica-
tion process so that the process is effective in allowing a group of individuals, as a whole, to deal with
a complex problem”.

The Delphi concept is a spin off from defense research. “Project Delphi” is the name given
to an American Air Force project, started in the early 1950s, that made use of expert opinion
(see Dalkey and Helmer, 1963). The objective of the original study was to “obtain the most
reliable consensus of opinions within a group of experts” by a series of intensive questionnaires
interspersed with controlled opinion feedback.

Delphi has been tested and broadly used in several applications such as gathering current
and historical data not accurately known or available and examining the significance of events.
Usually, one or more of the following properties of the problem to be solved leads to the need
for employing Delphi.

* The problem does not lend itself to precise analytical techniques but can benefit from
subjective judgments on a collective basis;

* The individuals needed to contribute to the examination of a broad or complex problem
have no history of adequate communication and may represent diverse backgrounds in
respect of experience or expertise;

* Time and cost make frequent group meetings infeasible; and

* More individuals are needed than can effectively interact in a face-to-face exchange.

Therefore, for Delphi to work, it necessary that a group of experts in each business get
together in order to estimate OpRisk occurrences at a given confidence level. Consider an exam-
ple: bank in order to assess transaction execution risk in the fixed income desk decided to get
three different perspectives: from the front desk (traders), from the finance, and from the oper-
ations. Each one of these areas has a different perspective on what risks would be and how many
losses would happen. As the estimates from each of the three areas were very different, a separate
scenario workshop was performed in each department and the participants were elicited to esti-
mate extreme losses. At the end, a final number was agreed by the three areas and all recognized
that tremendous education took place as traders, for example, did not have the perspective of
losses due to settlement failures. Delphi technique (Dalkey and Helmer, 1963) has a number
of stages:
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1. In the first step, the subject under discussion should be explored with as many individuals
contributing additional information;

2. Given the information from step 1, a feedback and a description of the issues are provided
to the group;

3. (Optional) Bring out the possible differences found in step 2 and evaluate them; and

4. A final evaluation occurs when all the previously gathered information has been initially
analyzed and the evaluations have been fed back to the respondents for consideration.

Finally, we would like to mention that ideas from works on expert elicitation processes
were implemented in a freely available toolkit known as the Sheffield Elicitation Framework
(SHELF)', which is covered under copyright when it comes to commercial usage; see details on
the associated website. In agreement with the standard industrial practice of structured work-
shops, the SHELF framework is developed to be performed with a group elicitation in mind
and comprises a framework for eliciting beliefs of one or more experts as a group; SHELF will
be discussed further in Chapter 14.

2.7 OpRisk Profile in Different Financial Sectors

After deciding the form of the operational loss data model and the types of losses that need
to be reported, it is useful to split the financial institution into different business lines, given
that the OpRisk profile is generally very diverse across different businesses within a financial
institution. While an asset management unit is more inclined to have legal/liability problems
(although still having a few transaction processing problems, in general, asset managers hold
their positions longer than treasury), the investment bank arm is more inclined to operational
errors in processing transaction. A large investment bank might process over a million transac-
tions a day.

A typical list of business units includes Corporate Finance, Trading and Sales, Retail Banking,
Commercial Banking, Payment and Settlement, Agency Services, Asset Management, and Retail
Brokerage. These are business units at level 1 as suggested in Basel II. Detailed breakdown into
level 2 business units and activity groups can be found in BCBS (2006, pp. 302). Also it can
be appropriate to add extra business unit /nsurance. Most of these business units are discussed
in the following sections.

2.7.1 TRADING AND SALES

It should not come as a surprise that trading and sales OpRisk profile is dominated by “EDPM”
or just “Execution”. This can be clearly seen Table 2.12, where both frequency and severity
execution losses dominate. The business model in trading is quite simple; traders perform trades
on behalf of either their own firms or clients, and these trades get settled by exchanging the
securities against some form of payments. However, as the products are diverse and complex
and settlements deadlines and procedures vary significantly it is not surprising that executing

ISHELF is available at htep://www.tonyohagan.co.uk/shelf/
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TABLE 2.12 Trading and Sales OpRisk Profile

Event type Frequency (%) Severity (%)
Internal Fraud 1.0 11.0
External Fraud 1.0 0.3
Employment Practices and Workplace safety 3.1 2.3
Clients, Products, and Business Practices 12.7 29.0
Damage to Physical Assets 0.4 0.2
Business Disruption and System Failures 5.0 1.8
Execution, Delivery & Process Management 76.7 55.3

Source: Results from the 2008 Loss Data Collection Exercise for Operational Risk, see BCBS (2009b).

TABLE 2.13 Corporate Finance OpRisk Profile

Event type Frequency (%) Severity (%)
Internal Fraud 1.6 0.24
External Fraud 5.4 0.12
Employment Practices and Workplace safety 10.1 0.59
Clients, Products, and Business Practices 47.1 93.67
Damage to Physical Assets 1.1 0.004
Business Disruption and System Failures 2.2 0.02
Execution, Delivery & Process Management 32.5 5.36

Source: Results from the 2008 Loss Data Collection Exercise for Operational Risk, see BCBS (2009b).

these transactions is the major OpRisk of this business and, for many trading shops, the major
overall risk that they are exposed to.

2.7.2 CORPORATE FINANCE

This business is where financial firms many times behave similar to consulting firms by provid-
ing advise to corporations in possible mergers and acquisitions, doing an IPO or even assessing
strategic alternatives. The differences to consulting firms are due to the fact that corporate
finance in banks constantly offers financing options, so deals are made. Therefore, it is expected
that most of the losses fall under the umbrella of “litigation” or disputes with clients for arguably
poor advice when, for example, IPOs go wrong; see Table 2.13.

2.7.3 RETAIL BANKING

The OpRisk profile of retail banks is not too dissimilar to that of retail brokerage; see Table
2.14. On the frequency side, most losses are due to external frauds that are daily events for
these firms. Execution comes in a far second. However, when looking at severity, the largest
risk exposure is due to litigation once again.
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TABLE 2.14 Retail Banking OpRisk Profile

Event type Frequency (%) Severity (%)
Internal Fraud 5.4 6.3
External Fraud 40.3 19.4
Employment Practices and Workplace safety 17.6 9.8
Clients, Products, and Business Practices 13.1 40.4
Damage to Physical Assets 1.4 1.1
Business Disruption and System Failures 1.6 1.5
Execution, Delivery & Process Management 20.6 21.4

Source: Results from the 2008 Loss Data Collection Exercise for Operational Risk, see BCBS (2009b).

2.7.4 INSURANCE

For those not familiar with this industry, this sector can be actually divided into three types given
the significant differences: life insurance, health insurance, and property/casualty or “P&C”
insurance (or general insurance as known in Europe). To put very simply, life insurers basi-
cally charge a premium from individuals in exchange to providing a sum of money when they
die. Life insurers also offer retirement and income-protection products. Health insurers pro-
vide medical and hospital coverage. P&C insurers offer coverage against damage to properties
caused by fire, natural disasters, theft, etc. They also offer protection against liabilities (e.g.,
directors being sued and professional errors). The actuarial calculation used in the P&C insur-
ance is very similar to the one used in OpRisk capital calculation. Most of operational risk
capital techniques, are derived from P&C actuarial techniques, and there are many articles in
the Journal of OpRisk that were written by P&C actuaries; also Chapters 17 and 18 discuss
modeling insurance in detail.

Regarding the sector’s overall current financial situation, similar to most of the financial
sectors, the effects of the financial crisis still lingers. Life insurers started to feel the consequential
effects from the long low-interest rate environment, which affects their profitability and com-
pany valuations and also, as consumers struggle, declining sales and revenue. If interest rates
continue to stay low, and it appears likely that they will for at least another two years, then life
insurers financial pain will be broader and deeper. On the P&C side, the continuing prospects
for weak investment returns and low interest rates over an extended period compel carriers to
improve underwriting margins, requiring difficult decisions concerning pricing and operating
approaches. Organic growth continues to be a challenge, given the economic situation and the
competitive landscape. Individual insurers confront greater competition, driven by an abun-
dance of capital, uncertainty around the timing, and the scope of regulatory changes and the
continuing volatility caused by weather-related losses, highlighted recently by Hurricane Sandy
in 2012 (in the US, Hurricane Sandy affected 24 states with particularly severe damage in New
Jersey and New York). Health insurers in the US, given the advent of the Patient Protection
and Affordable Care Act (signed into law by US President Barack Obama on March 23, 2010,
and commonly referred to as “Obamacare”), are in much better shape than their counterparts
with a better perspective ahead of them.

Regarding risk regulation in this sector, there are significant differences between Europe
and the US. In Europe, a process similar to Basel II was developed by insurance regulators,
called Solvency 2. Two key themes have dominated regulatory discussions in the past year:
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supervisory focus on risk and capital management and concerted efforts to move toward a con-
sistent approach to cross-territory supervision of insurance groups. These initiatives underscore
the importance of embedding strong risk management principles throughout an enterprise and
moving beyond just “tick the box” compliance, similar to what Basel II has been influencing in
the banking industry.

In the US, the regulatory environment also has been changing as State insurance depart-
ments and rating agencies, in addition to National Association of Insurance Commissioners
(NAIC), are also influencing the direction of solvency regulation. While these varied initia-
tives place differing degrees of emphasis on capital requirements, reporting standards and risk
measures, a common theme, is their intensified focus on clearly articulating an insurer’s risk
profile. To prepare and address the regulatory pressures to enhance risk management, insurers
must significantly enhance their data management, reporting and analytical resources, and their
organizations’ ability to integrate risk data across disciplines. The US insurance industry is also
anticipating potential impacts of Dodd-Frank legislation, including in the systemically impor-
tant financial institution (SIFI) designation and the Federal Insurance Office’s (FIO) pending
report to Congress on the state of US insurance regulation, which in practice creates a national
insurance regulator.

Regarding OpRisk more specifically, insurers are still in the early stages of the development
of their OpRisk frameworks. This comes somehow as a surprise as insurers suffered several large
operational losses that were very public and reported in the media. Some of the examples over
the last decade? are the USD 250 million loss that a large US insurer suffered a few years ago
for discrimination (i.e., allegedly pricing their policies differently according to race); a large
European reinsurer lost USD 3.5 billion for not having final contracts in place on the 9/11
terror attacks inflicting damages to clients; a large US auto insurer lost USD 1 billion for using
low-quality auto parts in vehicle repairs; a large US life insurer lost USD 2 billion for abusive
sales practices and illegal sales of securities and the list goes on and on.

Insurers face a number of OpRisks; some of these are mis-selling their products to clients.
A number of insurers worldwide got severe penalties for these sales practices. As with any retail
sector, insurers are exposed to bad faith claims (i.e., frauds by customers)—Hollywood has a
number of movies on these interesting stories. More recently, the issue of unclaimed property
has become a concern for insurers as public officials are now focusing much more on the issue
than they did in the past. Given these pressures, insurers have been more diligent to catch up
with banks in developing more robust OpRisk frameworks. However, they have a long road

ahead of them.

2.7.5 ASSET MANAGEMENT

The financial crisis brought to the global asset management industry challenges it has not seen
in decades as the industry was accustomed to high margins and substantial profits (particu-
larly in the years 2000-2007 due to the availability of excess liquidity). As the financial mar-
kets climbed regularly over the last 30 years, occasional dips notwithstanding, asset managers
became used to the steady increases in their assets under management (AUM) and easy profits.
However, in the wake of the biggest downturn since the Great Depression, a slow recovery has

>To preserve confidentiality, the company names are not mentioned.
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left many firms struggling. Even in 2012, most of the growth of the asset management came
from market appreciation and not due to increase in flow of resources from clients.

This new environment changed the asset management industry. During the precrisis
“golden years” of abundant liquidity, most asset managers were not overly worried about the
costs incurred in running their operations and did not pay close attention to the risks involved,
since the continuous growth in personal wealth steadily increased their AUM, covering for
these expenses. Errors and high operating costs were buried under the increased revenues from
a larger asset base and the profits that came from high returns in the world markets. Postcrisis,
the situation has changed dramatically. Large asset managers have seen their AUM go down by
30 or 40%, not only because of the drop in asset prices but also because clients are withdrawing
funds, either out of necessity to cover debts, because they fear that the stock markets will take
a long time to recover, or sometimes even out of concern for the financial well-being of some
asset managers. The crisis also showed historic regulatory failures, like the Bernie Madoff case,
in which he created a Ponzi scheme, that was discovered during the 2008 financial crisis, and
lost USD 6 billion from investors (this case is one of the largest OpRisk events in history). Many
investors close to retirement lost their pensions not only because of the market conditions but
also because of a lack of caution and risk management from pension fund managers.

This long-lasting dire economic environment forces asset managers to develop a much
more careful discipline around costs, risk management, and productivity. Each of these factors
has received widespread attention in the specialized media.

The industry has reacted quickly to this new reality. For example, a large independent
US asset manager has already put in place several measures to reduce costs, by sharing ser-
vices in its distribution and administration departments to reduce costs across geographical
areas. This same firm has also launched an initiative to reduce its NCE by 20% in 2009, with
the development of an inter-company committee to determine the expenses that have to be
eliminated.

A European-based global firm decided to reduce the number of products it offered and the
development efforts for a few products where it can build competitive advantage on a global
scale. This firm also decided to immediately implement a plan, which had been on the shelf
for many years, to streamline its operational platforms on a global basis. Currently, each geo-
graphical location (and sometimes within the same country) has its own platform with different
vendors and frameworks to process securities.

Asset managers are susceptible to all forms of risks, namely market, credit, and OpRisks.
However, due to the characteristics of their business (and perhaps helped by a historic disregard
for strong controls), OpRisk is typically the largest risk exposure an asset manager has. Market
and credit risk associated losses would usually have an indirect impact on the asset manager’s
revenue, as any loss to the client funds entails lower commissions. However, these losses are
usually held by the fund’s; clients not the asset manager as financial institution. These market
and credit risks losses would impact the quotas and NAVs, so the client would take a direct hit;
the asset manager would just have less fee revenue in these cases, an indirect impact. OpRisk
can be manifested in many different ways for an asset manager as, for example, in errors in
processing transactions or a system failure that can cause severe damage and impact the balance
sheet of the asset manager. Asset managers are also regularly sued for poor performance by
clients. Consistently failing to comply with local regulations, or with very basic business ethics,
can generate very large operational losses and subsequent reputational damage. A number of
examples are available in the media for large losses in each of these cases (Table 2.15).

Coming to realize the need to focus in OpRisk, asset managers have been setting up
OpRisk departments at a fast speed in the last few years. The higher focus from regulators
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TABLE 2.15 Asset Management OpRisk Profile

Event type Frequency (%) Severity (%)
Internal Fraud 1.5 11.1
External Fraud 2.7 0.9
Employment Practices and Workplace safety 4.3 2.5
Clients, Products, and Business Practices 13.7 30.8
Damage to Physical Assets 0.3 0.2
Business Disruption and System Failures 3.3 1.5
Execution, Delivery & Process Management 74.2 52.8

Source: Results from the 2008 Loss Data Collection Exercise for Operational Risk, see BCBS (2009b).

on hedge funds also made these more sophisticated asset managers to set up better OpRisk
procedures around their operations. This new focus on control and risks would actually facil-
itate a more stabled growth, with less bumps, when the economic environment eventually
improves.

2.7.6 RETAIL BROKERAGE

For OpRisk practitioners, this sector is possibly the one of the most interesting. Although we
obviously need to consider that risk profiles would vary significantly between institutions given
their different business strategies, broker-dealers risk profile is usually dominated by OpRisk,
which accounts for at least 60-70% of the total risk capital in these firms. This OpRisk type
becomes clear when we review the sector.

Broker-dealers of these days can be roughly classified into online and brick-and-mortar
brokers. Although what separation then cannot be precisely defined, the customer focus of
these brokers is different. While online brokers tend to compete on the retail, offering the
convenience of trading from home or work and charging a reasonable fee for trades and usually
offering free online research tools and a few other services, brick-and-mortar brokers are mostly
a division of larger financial institution and tend to focus on a wealthier customer base that
would pay for high fees they charge, advice from financial advisors, etc.

Over the past decade, the industry had a dramatic transformation with the prolifera-
tion of sophisticated, high-speed trading technology that has changed the way broker-dealers
trade for their own accounts and as agent for their customers. In addition, customers of these
broker-dealers—particularly leading-edge institutions—have themselves begun using techno-
logical tools to place orders and to trade on markets with little or no substantive intermedi-
ation of their broker-dealers. This, in turn, has given rise to the increased use and reliance
on “direct market access” or “sponsored access” arrangements. Under these arrangements, the
broker-dealer allows its customers—whether an institution such as a hedge fund, mutual fund,
bank or insurance company, an individual, or another broker-dealer—to use the broker-dealer’s
market participant identifier (“MPID”) or other mechanism for the purposes of electronically
accessing the exchange. With “direct market access”, as commonly understood, the customer’s
orders first flow through the broker-dealer’s systems and then enters the markets, while with
“sponsored access”, the customer’s orders flow directly into the markets without passing through
the broker-dealer’s systems. In all cases, irrespectively, whether the broker-dealer is trading
for its own account, is trading for customers through more traditionally intermediated bro-
kerage arrangements, or is allowing customers direct market access or sponsored access, the
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broker-dealer with market access is legally responsible for all trading activities that occur under
its MPID. In some cases, the broker-dealer providing sponsored access may not utilize any
pretrade risk management controls (i.e., “unfiltered” or “naked” access), and thus could be
unaware of the trading activity occurring under its market identifier and has no mechanism to
control it.

Nowadays, order placement rates can exceed 1000 orders per second with the use of high-
speed, automated algorithms. If, for example, an algorithm such as this malfunctions and places
repetitive orders with an average size of 300 shares and an average price of USD 20, a two-
minute delay in the detection of the problem could result in the entry of, for example, 120,000
orders that values USD 720 million. In sponsored access arrangements, as well as other access
arrangements, appropriate pretrade risk controls could prevent this outcome from occurring
by blocking unintended orders from being routed to an exchange. Incidents involving algorith-
mic or other trading errors in connection with market access occur with some regularity. For
example, it was reported that, on September 30, 2008, trading in Google became extremely
volatile toward the end of the day, dropping 93% in value at one point, due to an influx of
erroneous orders onto an exchange from a single market participant. As a result, Nasdaq had to
cancel numerous trades, and adjust the closing price for Google and the closing value for the
Nasdaq 100 Index. In addition, it was reported that, in September 2009, Southwest Securities
announced a USD 6.3 million quarterly loss resulting from deficient market access controls
with respect to one of its correspondent brokers that vastly exceeded its credit limits. Despite
receiving intra-day alerts from the exchange, Southwest Securities’ controls proved insufficient
to allow it to respond in a timely manner, and trading by the correspondent continued for
the rest of the day, resulting in a significant loss. Another example that highlights the need
for appropriate controls in connection with market access occurred in December 2005, when
Mizuho Securities, one of Japan’s largest brokerage firms, sustained a significant loss due to an
erroneous manual order entry that resulted in a trade that, under the applicable exchange rules,
could not be canceled. Specifically, it was reported that a trader at Mizuho Securities intended
to enter a customer sale order for one share of a security at a price of 610,000 Yen, but the num-
bers were mistakenly transposed and an order to sell 610,000 shares of the security at a price
of 1 Yen was entered instead. A system-driven, pretrade control reasonably designed to reject
orders that are not reasonably related to the quoted price of the security would have prevented
this order from reaching the market.

As these examples show, broker-dealers are intensively exposed to OpRisk that usually
occupies the headlines of most of the newspapers and media. Brokers usually do not hold large
proprietary positions and lending, particularly after the 2008 crash, has been limited; therefore,
most exposure comes from potentially explosive system issues, execution errors, litigation with
retail customers, fraud committed by clients, etc. (Table 2.16)

2.8 Risk Organization and Governance

Developing a solid risk organization is a key part of the framework. Understanding the report-
ing lines and establishing the position of this organization on the firm would have probably
as much importance as having a good measurement system. Also having proper organizational
involvement in OpRisk issues where key stakeholders are regularly informed and oversee risk
is fundamental for success. Developing a framework in a silo that no one sees or cares is not a
desirable situation. The OpRisk manager needs to be integrated to the rest of the organization.
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TABLE 2.16 Asset Management OpRisk Profile

Event type Frequency (%) Severity (%)
Internal Fraud 5.8 18.1
External Fraud 2.3 1.4
Employment Practices and Workplace safety 4.4 6.3
Clients, Products, and Business Practices 66.9 59.5
Damage to Physical Assets 0.1 0.1
Business Disruption and System Failures 0.5 0.2
Execution, Delivery & Process Management 20.0 14.4

Source: Results from the 2008 Loss Data Collection Exercise for Operational Risk, see BCBS (2009b).

In this section, we provide an overview of how risk is organized in financial firms, how policies
are structured, and the importance of a solid committee and governance structure. Sound inter-
nal governance forms the foundation of an effective OpRisk management framework. Although
internal governance issues related to the management of operational risk are not unlike, those
encountered in the management of credit or market risk OpRisk management challenges may
differ from those in other risk areas.

2.8.1 ORGANIZATION OF RISK DEPARTMENTS

One cannot downplay the role of an organization in any large business. Although many times
the focus is on the measurement models with its complex formulas, most of the times the success
of implementing an OpRisk framework lies in having the right organization. The organizational
design would usually hint at the strength and degree of development of an OpRisk framework
at a firm. In the following text, we show a few organizational designs and the beliefs that firms
need to have to make them work. Usually firms start with Design 1 and go to Design 4 presented
in Figure 2.5.

* Design 1—Central Risk Function as Coordinator. In this organizational design, risk
management role is more of a facilitator. Usually in this structure, risk management gathers
information and reports to the CEO or the Board. Sometimes risk management would add
some layer of analysis, but in most cases, the Central Risk group would be a small group.
One of the issues with this structure is that the regulators dislike the idea that risk managers
report to revenue generating businesses;

In order for this structure to be successful, one should believe that the Business Units
will be responsive to the Central Risk demands even without being part of their reporting
line and the control and incentives that such reporting includes (e.g., control over com-
pensation, etc.);

Design 2—Matrix reporting—the “dotted lines”. In this organizational design, a sort
of evolution to the previous design, risk managers have a dotted line to the Central Risk
function; however, they are appointed by the Business Units and compensation decisions
are still taken by these. In order for this to be successful, the Business Units should have a
strong risk culture and collaborate very closely with the Central Risk function. This dotted
line structure works well when there is a culture of Business Unit independence and distrust
of the Central Risk function for some reason or event that happened in the past;
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FIGURE 2.5 Organization of risk departments: designs 1-4
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* Design 3—Solid reporting lines to Central Risk Management. This organization struc-
ture is reasonably popular within large firms. Risk Managers still physically work in the
Business Units but report to the Central Risk function usually based in the headquarters.
The Central Risk function will be better positioned to prioritize risk management efforts

across different initiatives. This solid line reporting will also assist in the creation of a more

homogenous risk culture and consistent approach across the enterprise;

* Design 4—Strong Central Risk Management. Large firms have adopted this structure
lately, either by internal agreement or through regulatory pressure. In this structure, the
Corporate Chief Risk Officer is the key decision maker in risk management and fully
responsible for risk across the firm. Central Risk Management is responsible to monitor
and manage all the firm’s risks and report to senior management and Board. Such structure
makes much easier for the regulator to streamline supervision as they can focus to one

particular group instead of being scattered in many business units and geographical areas.

2.8.2 STRUCTURING A FIRM WIDE POLICY: EXAMPLE OF AN

OPRISK POLICY

Example of a policy is presented in Table 2.17. A policy defines a firm’s operational risk

management framework, which includes governance structure, roles and responsibilities, and

TABLE 2.17 Example of an OpRisk policy

Content

Description

Executive summary
Policy statements

Risk taxonomy

Loss collection
Risk assessment

Risk measurement

Validation

Policy assurance and testing

Governance

References

Defines the rationale and scope of the policy

Provide a quick definition of the standards that will be used across the
policy

Categorize OpRisk in different risk types. It can follow the Basel
categories, but if it does not, it usually provides a mapping of internal
categories to the Basel-defined

Defines what losses or incidents should be reported. Discusses concepts
of “near misses” and describes recoveries

Usually describes other programs used to supplement internal loss data
collection like scenario analysis or risk factor analysis

Describes the basic framework for measuring OpRisk, which types of
data are used, and how capital is calculated (overall view of the
building blocks not a detailed manual)

Describes how the risk assessment and measurement are validated, how
frequent validation takes place, and which departments are
responsible for the validation

Determines which department(s) in the firm, will be responsible for
assurance that the policy is being followed and the reports that assure
this firm-wide compliance

Describes where this policy is situated, which committee approves it,
and how the OpRisk governance works

Determine on which regulations, external standards, and/or other firm
policies this was based upon
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standards for OpRisk management and measurement. It also describes the OpRisk manage-
ment programs, which are the functional activities requiring guidelines for consistent firm wide
execution (e.g. loss capture program, risk control self-assessment, and scenario analysis).

2.8.3 GOVERNANCE

Common industry practice for sound OpRisk governance often relies on three lines
of defense:

* Business line management;
* An independent corporate OpRisk management function; and

* An independent review (usually internal audit).

Depending on the bank’s nature, size and complexity, and the risk profile of a bank’s activ-
ities, the degree of formality of how these three lines of defense are implemented will vary. In all
cases, however, a bank’s OpRisk governance function should be fully integrated into the bank’s
overall risk management governance structure and the regulators closely monitor this.

If OpRisk governance utilizes the three lines of defense model (i.e., the business is the
first line of defense, risk management is the second line, and internal audit being the third),
the structure and activities of the three lines often varies, depending on the bank’s portfolio of
products, activities, processes, and systems; the bank’s size; and its risk management approach.
Strong risk culture and good communications among the three lines of defense, are important
characteristics of good OpRisk governance.

The regulators also reinforce the role of the board of directors. In the US and UK it is
common that the regulators meet separately with financial firms board of directors regularly
to discuss their expectations regarding risk management. The board of directors should take
the lead in establishing a strong risk management culture. The board of directors and senior
management should establish a corporate culture that is guided by strong risk management and
that supports and provides appropriate standards and incentives for professional and responsible
behavior. In this regard, it is the responsibility of the board of directors to ensure that a strong
OpRisk management culture exists throughout the whole organization and this will be closely
monitored by regulators.



CHAPTER | THREE

Using OpRisk Data for Business
Analysis

The financial crisis that started in 2008 made the financial industry face challenges it had not seen
in decades. The industry was accustomed to high margins and substantial profits (particularly
in the years 2000-2007, due to the availability of excess liquidity). However, in the wake of the
biggest downturn since the Great Depression, a slow recovery left many firms struggling. Even
in 2012/2013, the recovery seemed stalled, as the crisis still lingers to a certain extent, and the
high regulatory pressure on financial firms not to take risks is putting a cap on their profits; as
a result, most firms across the globe are going through severe cost-cutting programs.

This new economic environment is forcing financial firms to develop a much more careful
discipline around costs, risk management, and productivity. Each of these factors has received
widespread attention in the media. Productivity is a concept usually associated with manufac-
turing, but it can also play an important role in asset management.

In this chapter, we argue that, within the options available to them for returning to their
former profitability levels, financial firms will have to take a very careful look at their cost
structure and risk management frameworks. We analyze the cost structure of financial firms and
describe strategic/tactical options to reduce costs on an item-by-item basis. In the last section,
we describe how a well-tailored and well-implemented risk management program can impact
a financial firm bottom line and avoid extreme cost-cutting measures.

To illustrate the impact of the crisis on the financial bottom line in the entire financial
industry, we take the example of the asset management industry, which is interesting, as this
industry gauges quite well the temperature of the economy; for example, if customers are getting
wealthy, they would be investing more and this sector would be performing well. We analyze
the impact of the crisis on the 10 largest global asset managers™ profitability, measured in basis
points. The average profit (operating margin) for an asset manager fell from 38 points at the end
0f 2007 to 34 at the end of 2008 and in 2011 this figure was at about 28 points. Most players
in the industry are also suffering from a substantial decrease in Assets Under Management
(AUM) either because of a decrease in asset value or because of client withdrawals. For this
reason, their financial bottom line is being severely impacted, and the most tactical way to
try to return to a higher level of profitability is via cost-cutting and by developing a robust
risk management framework. We examine these two options in detail in the next two main
sections.

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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3.1 Cost Reduction Programs in Financial Firms

Considering the long-term numb economic environment, a means by which a financial firm
may gain some measure of control is to consider cost cutting measures, as shown in Table 3.1,
to provide a means to return to their previous levels of profitability. Even if we assume that
the economic conditions in the near future will be no worse than those in 2008 and that their
revenues will remain at the same level, financial firms may have to cut their current costs by up
to 50% to return to their 2006 profitability levels, such is the extent of the current financial
crisis. This cost-cutting exercise would need to be accomplished in a much tougher regulatory
environment, with regulators keeping close tabs on financial firms to ensure that non-revenue-
generating back office functions like risk, legal, and compliance (usually some of the first to be
cut in tough times) remain in place. On the positive side, such cost optimization exercises were
long overdue. Most financial firms preferred not to face these issues while they were focusing
on an expansion of their funds; however, these new lean times are now forcing them to make
such adjustments. The industry has indeed been quick to react to this new reality. However,
as usual, the “lowest-hanging fruit” is a reduction of headcount. These cuts show companies
adapting to the new environment with lower margin products and less demand. While the
initial focus was this reduction in headcount, financial firms can optimize their operational

TABLE 3.1 Economic crisis impact on the fundamentals of the financial industry

Factor Description Impact/reaction
Change in client behavior ~ Client risk-averse behavior, preferring Development of new
simpler, transparent products products with lower
margins
Regulatory pressure Increasing regulation demands that Higher compliance costs

financial firms enhance transparency
through risk disclosure and maintain
capital requirements through balance
sheet management

Change in industry structure Sharper differentiation based on chosen Immediate strategic
business models, increase in the number decisions need to be taken
of independent firms, as well as larger and, based on that, a new
players, due to consolidation focus for tactical decisions
Higher costs in developing  Risk management will enter a new Higher focus on risk
robust risk management paradigm, shifting from client risk management

reporting to protecting the institution
itself, requiring asset managers to
develop new tools and techniques

Pressure on the financial Fundamental shift in cost structure Cutting costs
bottom line (revenue, (toward more variable costs and
profits, and costs) “industrial” processes) necessary to

address profitability challenges; pressures
on revenue and profits due to threat
from substitute products; and margin
pressure from shifting product mix and
lower volumes




50 CHAPTER 3 Using OpRisk Data for Business Analysis

TABLE 3.2 Examples of cost-cutting (in USD million) in noncompensation costs in three
major global asset managers

BlackRock Legg Mason Franklin Templeton
2007 AUM USD 1357 USD 999 USD 644
Revenues USD 4845 USD 4707 USD 4228
Non-compensation expenses (NCE) USD 1784 USD 1874 USD 923
NCE/revenues 37% 40% 22%
2008 AUM USD 1154 USD 711 USD 400
Revenues USD 5112 USD 3935 USD 3711
Non-compensation expenses (NCE) USD 1613 USD 1706 USD 849
NCE/revenues 32% 43% 23%
Delta variation NCE/revenues —5% 3% 1%
Decrease in AUM —USD 203 —USD 288 —USD 244
Variation in revenues 6% —16% —12%
Variation in NCE —USD 171 —USD 168 —USD 74

Source: Company websites.

platforms significantly in order to decrease costs. These platforms were mostly developed and
implemented when the industry was growing at double-digit rates per annum and companies
were scrambling to keep up with growth and geographical expansion. Cost containment was
not the highest priority in those good times; it was consistently of lesser importance than the
speed of development.

The cost structure in the financial industry can basically be broken down into two main
components, namely, compensation and noncompensation expenses (NCE). It is more dif-
ficult for firms to balance the cuts in direct compensation, since, as in any financial service
organization, rewarding portfolio managers and investment and quantitative research analysts
is key to having good performance and attracting new business. If cuts are too deep in these
areas, then firms run the risk of losing their key personnel to competitors who may offer higher
renumeration; therefore, they hesitate to make heavy cuts on the revenue-generating side.

Many firms made steep adjustments on the NCE side of their costs in view of the impact
that the recession is having on their businesses. A sample of three very large asset managers in
the US (see Table 3.2) shows how they have been reducing their NCE. BlackRock, for example,
in spite of an unusual increase in revenue from 2007 to 2008, reduced its NCE by USD 171
million, and its NCE/revenue ratio fell from 37% to 32% in 2008. Legg Mason reduced its
NCE in absolute value by USD 168 million (very close to BlackRock); however, as its revenue
declined 16% in 1 year, its NCE/revenue ratio actually increased to 43% in 2008. Franklin
Templeton also had the same problem; although it made a cut in its NCE, its revenue decrease
more than offset the NCE cut. This illustrates how deep the cost cuts have to be in order to
return to higher levels of profitability. Indeed one may also question the sustainability of such
high rates of returns for the financial industry as it continues to mature.

In order to design optimal cost reduction programs, we need to break the NCE down into
more detailed categories. The analysis of the cost breakdown of the largest 50 global, US, and
European asset managers as a percentage of their total costs in 2008 is shown in Figure 3.1.
Occupational expenses (real estate, rents, etc.) represent slightly more than a quarter of the
total NCE.

A branch network usually entails a significant real estate cost. A network of branches is
useful if the asset manager is focused on retail clients. A branch may be useful in attracting
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FIGURE 3.1 Breakdown of noncompensation expenses. Source: Fifty largest asset manager’s financial

statements from 2008

new clients by facilitating a first face-to-face contact. (Later on, an investor may communicate
with the asset manager through one of the other channels of communication.) If the asset man-
ager is focused on the institutional side, then an extensive network of branches is not necessary.
(An asset manager may be content with having a small number of offices only in big cities.) If
the asset manager has a large number of smaller individual investors, then a larger and more
extensive network of branches may be advantageous. When cutting these costs, a firm needs to
bear in mind the strategic consequences when it comes to attracting and retaining clients. The
second-largest expense would be in technology and telecommunications. Given their impor-
tance, most of the cost savings would have to come from these categories, but cost cutting in
these areas is never easy.

Personnel-related cuts are also important, but firms need to be careful to cut only in areas
that are directly related to the volume of business. Changes that were not made in previous years
because of accelerated growth, like delayering levels of hierarchy inside the firm, should now
be a priority, as this can cut headcount by up to 30%. In Table 3.3, we summarize a few cost
reduction activities by type of cost, considering the time they would take to be achieved and
the average savings they would produce. IT and real estate cost cuts, for example, are extremely
relevant, but would take longer to achieve results. Reducing these costs usually demands invest-
ment, as breaking or renegotiating leasing contracts, for example, commonly commands fees
and charges. The same applies to IT optimization, which needs to be implemented very care-
fully to avoid serious operational problems in the future.

The industry has been quick to react to this new reality. For example, a large indepen-
dent US asset manager has already put in place several measures to reduce costs, by sharing
services in its distribution and administration departments to reduce costs across geographies.
This same firm has also launched an initiative to reduce its NCE by 20% in 2009, with the
development of an intercompany committee to determine which expenses will have to be
eliminated.

A European-based global firm decided to reduce the amount of product offering and
the development efforts for a few products where it can build competitive advantage on a
global scale. This firm also decided to immediately implement a plan, which had been on
the shelf for many years, to streamline its operational platforms on a global basis. Currently,
each geographical location (and sometimes within the same country) has its own platform with
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TABLE 3.3 Cost—cutting activities and average savings

Cost Possible cost-cutting activities (%) Average savings (%)* Timeline

IT Outsourcing programs 10-20
Re-evaluate IT and telecommunication

needs due to the new activity levels

1 year

Reassess redundancy

Server consolidation and right-size laptop
and PC ratios

Cut layers of hierarchy

Push activities to lower cost personnel

Personnel — organization 5-10 3—6 months
(“empowering”)

Cut headcount across the board, adapting
to the new level of activity

Optimize the product range to better use

Personnel — headcount 10-30 Immediate

Products range 15-20 3—6 months
investment teams, portfolio managers,
and research
Real estate Close facilities and/or renegotiate leases 5-20 6—12 months
Increase use of outsourced resources that
do not demand real estate use
Use shared services
Consolidate functions
Consolidate marketing functions across
the firm

Shift spending to the most efficient

Marketing and
advertising

vehicles
Cut advertising spending
* Average savings, considering only their base cost

Source: Author’s work with asset managers.

TABLE 3.4 Most common types of cost-cutting programs

Type Definition

Situation

Cost blitz Companies start cutting
costs immediately in a
desperate fashion;

Category specific Focus on only one category
to cut costs—for example,
cutting IT costs seen as
the solution;

Deep dive/transformation A more analytical and

programs holistic way to optimize

costs and spending;

Sudden market changes that caught
companies unprepared;

Quick loss of profitability;

There is an obvious need for cost
reduction in this expense category
that market conditions aggravate;

As the economic environment keeps
deteriorating, companies see the
need for a more structural change in
their cost management.

different vendors and frameworks to process securities. Another US-based global firm followed

the same path, creating and developing global centers of excellence in an attempt to provide

their clients with the best possible service.

There are a few ways to perform such cost-cutting programs. Firms tend to go through all
of them in recessionary times. These types are shown in Table 3.4.
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When suddenly hit by a very serious crisis, as in September 2008 with the demise of
Lehman Brothers, a company may often go immediately on a “cost blitz”, which may result
in a major round of layoffs. As the current situation does not seem to improve, many firms now
also have to manage costs in specific categories, such as closing locations that are not profitable
and are only viable if experiencing accelerated growth. Some firms still focus all their efforts
on the IT category. As the current economic downturn seems to be lasting longer than ini-
tially expected, quite a few firms are now cutting their costs dramatically. These transformation
programs tend to be longer, but usually present long-lasting results.

On a positive note, these changes are coming at a good time, as the previous fast growth
meant that these firms did not use these resources in an optimal way. The crisis is therefore a
good opportunity to check all these costs, and, when growth returns, this may stimulate large
productivity increases.

3.2 Using OpRisk Data to Perform Business Analysis

As mentioned earlier in this chapter, financial firms are being pushed by regulators to dramati-
cally strengthen their risk management frameworks. This will certainly require not just invest-
ments, but also greater management time and attention. However, we show in this section
that better risk management, particularly OpRisk management, can also bring opportunities
to reduce costs.

Financial firms are susceptible to all forms of risks, namely, market, credit, and OpRisks.
Market risks are due to the daily fluctuation of asset prices, and credit risks are due to the
possibility that some counterparties with whom the funds do business might default and make
a financial asset worthless. Financial firms are particularly subject to OpRisk. In quite a few
sectors in the financial industry such as retail brokerage, retail banking, and asset management,
OpRisks are predominant. Errors in processing transactions or a system failure can cause severe
damage and impact the balance sheet of the financial firm. Consistently failing to comply with
local regulations, or with very basic business ethics, can generate very large operational losses
and subsequent reputational damage. Clients can also sue for poor performance. OpRisk can
be modeled in a few different ways. It particularly affects factors like people (human resources)
and IT systems. In what follows, we elaborate on these two risk factors and how good risk
management can translate into a positive impact on the bottom line.

3.2.1 THE RISK OF LOSING KEY TALENTS: OPRISK IN HUMAN
RESOURCES

As a service sector firm, any type of asset manager needs to hire top talent in order to provide
the best return and service for its clients. Human resource talent is needed for the following:

* General management (portfolio managers, etc.);

* Administrative personnel (operations settlements, accountants, etc.);
* Research (equity, bond and currency analysts, risk analysts, etc.);

* Technologists (e.g., IT specialists); and

* Sales force.
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As in many financial firms, asset managers have to ensure that they are able to attract and
retain, above all, portfolio managers with an established track record and a potential to bring
in clients and provide high returns to their funds. Such people are the face of the firm to the
outside world and are a basis for attracting clients. Compensation of such personnel is one of
the highest costs of any financial firm. Losing top talent is very costly and also increases the
susceptibility to OpRisk. There is a learning curve for apprentices and, during this period, the
probabilities of error are higher. Asset managers are, therefore, highly exposed to key personnel
risk. Particularly in the US, but also in other countries, funds are often named after their port-
folio managers. Typically, these portfolio managers develop such a track record and reputation
that clients want to invest with them. These funds linked to a name can hold many billions of
dollars in investments, and the asset manager may become very dependent on this particular
person. The risk of losing such a portfolio manager may represent a loss of revenue of many
millions per year in administration and performance fees.

In the front office, sales people need to follow procedures and local regulations to sell
pension and other types of funds. Several pension mis-selling cases have occurred in different
countries. Probably the most infamous case of pension mis-selling was the situation that arose
in Britain between 1988 and 1994, after British regulators decided to allow individuals to buy
pensions from private-sector providers. The regulators determined at that time that pension
investors should have the choice of who would provide their pension (not necessarily their
employer) and that they should be allowed to invest, in effect, in a retail pension fund. Many
who decided, or who were persuaded, to buy a retail fund should not have done so. High-
pressure tactics by commission-based salespeople led to tens of thousands of people purchasing
products that proved to be entirely unsuitable. High fees and charges and poor investment
returns combined to shrink the retirement savings of these investors. Many found themselves
locked in and unable to switch to more appropriate products without incurring very high exit
fees. The result was a nightmare for investors, pension providers, and the government. After
a long legal process, the funds were told to reimburse the investor for mis-selling these pen-
sions. Until 2008, an estimated GBP 11.5 billion (nearly USD 20 billion) had been paid in
compensation for mis-selling by certain asset managers who operated in this market.

The British experience serves to illustrate what can go wrong when, even with the best
intentions, a choice is given to people who are unprepared for it. It also shows how greedy
salespeople can exploit unsuspecting consumers, and how something that starts out as a good
idea can turn into a major financial liability to asset managers if not properly conducted.

OpRisk can also manifest itself in back office personnel. For example, risk managers, audi-
tors, and accountants play an important role, since they have to guard the firm against the likes
of rogue traders, accounting frauds, and Ponzi schemes (like the aforementioned Madoff case).
It is important that the reporting lines of the traders and risk managers are kept separate.

3.2.2 OPRISKIN SYSTEMS DEVELOPMENT AND TRANSACTION
PROCESSING

Scale plays an important role in asset management. The larger the portfolio, the lower is the
cost per transaction. However, the optimal size of a managed fund is often a balance of various
trade-offs. For example, while an overall larger scale for an asset manager is preferred because
of economies of scale, a small fund would be more agile to move a fund’s allocation in reaction
to market movements, and would probably be better able to outperform the competition. This
is the case with hedge funds. Another aspect that has an impact on the optimal size of a fund
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is the error rate (OpRisk), which is a function of the transaction frequency. It is to be expected
that the probability of error increases with an increasing frequency in the rate of transactions.
A larger fund, in order to meet its benchmarks, will have to take bigger bets. So, for each type
of fund there is an optimal size and an optimal focus. Historically, several funds that reached a
size deemed to be larger than optimal decided to close entry for new clients, such as Fidelity’s
Magellan.

Financial institutions in general, and asset managers in particular, have traditionally never
been as careful with costs as other industries have been. In several industries, like car manufac-
turing, error rates are extremely low and very well controlled by sophisticated quality control
departments, which are usually the most sophisticated areas within an organization except for
research (or product) development. On the other hand, in the financial services industry, the
most sophisticated departments are located either in the front office or on the revenue side.
Financial derivatives are priced taking only market opportunity costs (and rarely transaction
costs) into consideration; even if transaction costs are taken into account, the analysis is not
very deep. In the portfolio aggregation of these products, the final effects of processing are
never considered. In this section, we try to briefly depict how a more sophisticated cost analysis
can be developed for financial products based on a traditional microeconomic analysis.

Economic theory postulates that, for a firm to maximize its results, it is necessary that it
produces such a quantity that allows equilibrium between the variation of the total cost and
the variation of the total revenue. The total (or gross) revenue, Ry, is simply the result of
multiplying the price, p, of a certain product by the quantity, K, negotiated, that is, Ryp; =
p x K. In general, the price is a function of quantity, that is, p = p(K), and the marginal
revenue, R, corresponds to the variation of the total revenue with respect to the quantity
sold K. Assuming that the variation of the quantity and the gross revenue can be admitted
as infinitesimal (this works in theory, but is unlikely to be the case in business practice), the
marginal revenue can be determined by the first derivative of the gross revenue in relation to
the quantity sold:

ORgyps;

Ry = —2". (3.1)

In asset management, the increased number of transactions K (the production) will bring

an unexpected variable cost, which is an increase in operational error (human and system factors
would not perform the same when subject to a higher volume of transactions). The relationship
between the number of operational errors and the transaction volume can be estimated through
multifactor models. Denote the total cost of the production as Cpys,, which is a function of K.
Then the marginal cost is defined as

anmsx
oK
The entire analysis of revenues, production, and costs based on the (micro)economic

theory is complex, and there is vast literature on the subject (see, e.g., Krugman and Wells
2012 and references therein). We will not delve into more detail in this section, but strongly

Cog = (3.2)

recommend understanding these relationships when developing any growth strategy. It is worth
noting that perhaps the most important conclusion from these considerations is that the firm’s
profit will be maximized when the marginal cost and the marginal revenue are the same, that is,
Cong = R,y (when the profit P(K) = Ryypss — Cyross is a concave function of K, this corresponds
to the standard condition of maximum dP(K)/OK = 0). In what follows, we present a very
simple stylized example to illustrate this concept.
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Maximizing profit with respect to the number of trades

Suppose a fund trades a single product with a very tight margin at y = 0.006% per
trade (one trade is A = USD 100,000). Therefore, the gross revenue for X trades

(e.g., per day) is

R

eross = A X K X 7. (3.3)

In general, the fund trader would only see the trades from the revenue side and
would be happy to see the revenue growth as the number of trades X increases. Using
(3.3), it is easy to see that, for example, the revenue grows from USD 1,200,000 to
USD 4,200,000 when the number of trades X increases from USD 200,000 to USD
700,000. This is a very general view, but revenue generators will not bother about
the costs incurred to achieve that revenue.

Let us now analyze the costs. We divide the costs into two components: pro-
cessing cost Gz and error cost Cpyyyp. Assume that the processing cost per trade
is 0 = USD 5, that is, the total processing cost is C,es = K 0. The error cost € is
random, and assume that the expected value of the error cost is u = E[e] = USD
9.43. So it would cost USD 5 to process a trade and an additional USD 9.43 to
reprocess it in the case of the error on average.

Denote the number of failed trades as K.y and expected number of failed
trades as A = E[Kq]. Then the total error cost is €Kji.4 and expected error cost
is Cpppor = E[s[(ﬁd;ed} = p X A (assuming that € and K., are independent). Thus,
the total expected gross cost is Cproe = Chrocess + Copror-

Assume a simple linear model for the expected error ratio A/ K with respect to
the number of trades K:

%:aJrﬁxK, (3.4)

where o = 0.0095 and 3 = 1.1 x 1077 For this model, one can easily see that the
error ratio is about 3.15% when the number of trades is X = 200, 000; and when
the number of trades grows to 700,000, the error ratio climbs to 8.65%!

The total expected profit from K trades is

P ([( ) = Rgro:: - Cprocm - Cermr
=AXK xvy—Ké— uK(a+ K). (3.5)

It is easy to see that the maximum expected profit P(K) is achieved at K =
K*; where OP(K)/OK = 0, this gives a closed form of expression for the optimal
number of trades

Ay -6 — pa
2uB

The profit P(K) as a function of K is shown in Figure 3.2.

K* (3.6)
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FIGURE 3.2 The profit of the business as a function of the number of trades K; for details, see
Example 3.1

It is also easy to see that the maximum condition OP(K)/OK = 0 corresponds
t0 Cyg = Ryg; see formulas (3.1) and (3.2). For the parameter values used in this
example, it is easy to calculate using (3.6) that the maximum profit USD 199,762
is achieved at K* = 438, 838. If we trade more than K™, we have declining prof-
its. If the asset manager has any strategy of trading more than that, he/she will also
have to take the costs into consideration. This type of modeling also offers us con-
ditions to verify our capacity and see how an improvement in the process (system
improvement, training process, hiring employees, etc.) will benefit the organization
and increase productivity.

In this example, if the error rate (3.4) and expected error cost € are reduced by
20% (i.e., o, B, and € are multiplied by 0.8), due to OpRisk reduction (e.g., by
training employees and improving systems), the maximum profit USD 334,634 is
reached at K* = 709, 975 trades. Therefore, the fact that we reduced the OpRisk
in a business by 20% increased profit by about 70% and increased our optimal
capacity by about 60%, achieving a dramatic productivity gain by managing the
OpRisk better.

There are several other factors that affect the costs and risks of transaction pro-
cessing. Transaction processing can be outsourced (however, usually not offshore,
but preferably to some firm relatively close by, so that any form of OpRisk does not
increase too much). Another important factor is manual versus automated trans-
action processing (e.g., society for world interbank financial telecommunication
(SWIFT)). Automated transaction processing clearly has a higher productivity than

manual transaction processing. However, automated transactions can only be done
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with regard to standard, plain vanilla transactions, not with regard to more compli-
cated esoteric transactions. Even though one may think that automated processing
is more reliable and less susceptible than manual processing to OpRisk, it is not
clear that this is actually the case (e.g., automated transactions are still subject to
typographical errors, which have often cost managed funds millions).

3.3 Conclusions

The financial and economic crisis has changed the financial industry landscape completely, and
this now presents many challenges for financial firms all over the world. Senior management
and boards at these companies are using the best possible tactics to return to higher levels of
profitability, in some cases even in order to survive. The easiest way to control this is through
cost reduction programs. Finding the optimal cost structure in the current environment without
losing clients for poor quality of service is key. These cost optimization programs in financial
firms were overdue. As they were concerned only with expansion in the last few years, there
are usually a number of legacy systems that need to be closed (duplicate processing, unneces-
sary office locations, etc.), which would make these firms leaner and more productive. Costs,
productivity, and OpRisk are strongly intertwined. For a firm to optimize its investments and
operations, all possible factors and trade-offs have to be taken into account. Such an optimiza-
tion process is an analytical task that needs to be carefully executed. However, asset managers
who survive this crisis will be much stronger when markets recover.



CHAPTER FOUR

Stress-Testing OpRisk Capital and

the Comprehensive Capital
Analysis and Review (CCAR)

4.1 The Need for Stressing OpRisk Capital
Even Beyond 99.9%

Since the Lehman Brothers collapse that culminated in a financial crisis in 2008, banks across
the globe have been constantly demanded by regulators, investors, lawmakers, and the public
in general to prove their financial health and resilience of their balance sheet under stressed
financial conditions. In order to standardize and formalize this process, more formal tests were
established by the leading world regulators, which periodically require banks to stress-test their
capital base given certain scenarios. On both sides of the Atlantic, this process is similar to that
shown in Figure 4.1. It basically requires a firm to develop a set of scenarios or use scenarios
developed by the regulators. Regulators would then get the individual results from firms and
develop their own systemic stress test to verify if the financial industry can withstand negative
scenarios and where regulators need to enforce banks to avoid another situation like the one
in 2008.

These scenarios are expressed in stressed macroeconomic factors and financial indicators,
and regulators provide these figures on a quarterly basis for a period of 2 or 3 years ahead.
For example, in a certain quarter, regulators might establish that the S&P 500 would go down
30% and US unemployment would reach 12% (there are many other factors). Based on this
information, banks would then assess the impact of this economic scenario reflected in market
and credit losses in their portfolios and how their capital base would behave in this situation.
These tests are motivated from the government bailout days in which banks did not have enough
capital to cope with extremely negative scenarios and had to be helped by tax payers’ money.
The novelty is that banks are also required to analyze the impact of this scenario in OpRisk.
The relationship between these macroeconomic factors and indicators to market and credit
risks is straightforward, but what about OpRisk?

As OpRisk capital is already reported to regulators at 99.9% and considering that the
fitted distributions are usually heavy-tailed, it is a regular discussion in the OpRisk community
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FIGURE 4.1 Generic stress test framework

whether or not this large confidence interval is already sufficient to protect against large loss
events. Many think that OpRisk capital is large enough and it would be a pointless exercise to
estimate it even further down the tail. However, in practice, a number of issues with OpRisk
modeling can show the clear need for even deeper estimation in the tail stress of OpRisk events.
As an effect of the great financial crisis of 2008, most large financial firms were sued by clients
for many reasons, for example, because mortgages were irregularly granted or funds in large
asset management were unduly keeping mortgage-backed securities and, therefore, suffered
large financial losses in the post crisis. The settlement of these lawsuits is still taking place in
2014 and beyond, and they amount to multibillion dollar amounts. In addition to these large
settlements, banks also still continue to face the usual threat of internal frauds. It is understood
that banks allocate significant capital against internal frauds but these losses keep exceeding
their largest estimates. The same can be applied to business disruptions due to system crashes
or pretty much every OpRisk event type. Given that, many firms already have a process to stress-
test capital to even higher levels and a number of regulators, particularly the Federal Reserve
Bank (FED) in the US, developed a more rigorous process to stress-test OpRisk it seems that
the industry is responding with an increased level of caution already indirectly.

4.2 Comprehensive Capital Review and Analysis (CCAR)

Since the great financial crisis in 2008, the regulators in the financial industry have been duly
concerned in finding ways to assess the financial health of financial companies on a more regu-
lar basis and, more particularly, under stress conditions. In 2009, in the aftermath of the crisis,
the FED launched the so-called Supervisory Capital Assessment Program (SCAP) (see FED
2009) as an attempt to try and get a better assessment on how institutions would fare given
a number of adverse macroeconomic factors during a period of 2 years ahead. This exercise
was very extensive as it involved impacts in the pre-provision net revenue and expenses given
a set of scenarios for a number of key macroeconomic factors. However, the main focus was
on the impact on bank capital. As the FED noticed at the time, “capital reassures an insti-
tution’s depositors, creditors and counterparties — and the institution itself — that an event such
as an unexpected surge in losses or an unanticipated deterioration in earnings will not impair its
ability to engage in lending to creditworthy borrowers and protect the savings of its depositors”.
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Before embarking on a discussion on the recent stress testing of capital being performed in the
US, it is useful to observe (Schuermann, 2013, figure 1) relating to the arms race for capital
adequacy and its evolution under the Basel Accords. To understand the context of such stress
tests, it should be noted that during the 2007/2008 crisis period, banks the failed or came close
to failure requiring some form of bailout or assistance in the UK and US were all considered,
prior to the crisis, well capitalized by existing regulatory standards. In this initial SCAD, only
the 19 largest bank-holding companies (BHCs) were required to participate. Not just com-
mercial or investment banks were participants among these 19 but also a few large insurance
and credit card companies. The idea was that the largest financial institutions, deemed capa-
ble of impacting the financial system significantly in case they are in financial trouble, had
to perform this what-if test to give regulators some assurance. SCAP was a very stringent test
and all hypotheses and calculations performed by these institutions were thoroughly audited
by the FED and some of them actually failed the test, meaning that under the stress conditions
under SCAD, these institutions would not have the expected capital buffer to protect them. The
exercise focused not only on the amount of capital but also on the composition of capital held
by each of the 19 BHCs. The SCAP’s emphasis on what is termed “Tier 1 common capital”!
reflects the fact that common equity is the first element of the capital structure to absorb losses,
offering protection to more senior parts of the capital structure and lowering the risk of insol-
vency; for more details on bank capital definition, see BCBS (2011). All else equal, more Tier
1 common capital gives a BHC greater permanent loss absorption capacity and a greater ability
to conserve resources under stress by changing the amount and timing of dividends and other
distributions. This means that institutions would have to be preapproved by the regulators to
do any activity that might impact capital, for example, pay dividends, enter a shares buyback
program, issue shares, etc.

SCAP was initially designed to be a one-off test; however, it returned in the following year,
now named as Comprehensive Capital Analysis and Review (CCAR). It has been run on a
yearly basis since then, see for instance the discussion of the results in 2012 available in Federal
Reserve (2012) and the more recent summary of findings from such stress tests discussed in
Bernanke (2013). These stress tests had to be delivered to the FED around January 7 of the
following year so it became a new tradition for risk managers in the US to work extremely
long hours during the holidays. The slow period of holiday celebrations became a casualty
of the CCAR process as this time of the year became one of the most intense for US-based
risk managers. In 2011, the FED created a new program called “Capital Plan Review” that in
practice extended CCAR to another 11 institutions and this number is expected to grow in
the next few years. As a result of these stress testing exercises several academics have begun to
question the outcomes of the tests and to assess them, see for instance the study of Petrella and
Resti (2013) and Acharya ez al. (2014) and the references therein. In addition to the stress tests
performed by the FED in the US, there were also a number of stress tests performed in Europe,
for instance in 2010 there were reported 91 banks undergoing stress testing in Europe which
covered 20 countries. The result of the tests in Europe were alarming with 7 major banks in
the set considered failing to meet the capital adequacy standards required under the prescribed
stress tests, requiring additional bailouts to stay solvent in excess of €3 billion. In addition,
subsequent to this stress testing, there were a number of European countries going into distress

"Tier 1 common capital is composed of common shareholders equity + partial noncontrolling interest — certain
deferred tax assets — goodwill and intangibles — debt valuation adjustments — other deductions. Tier 1 capital
is all of this plus perpetual preferred stocks, trust preferred securities, and remaining noncontrolling interest.
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with large scale bank bailouts occurring, such as in Ireland, even when banks that participated
in the stress test had passed the capital adequacy standards. This suggests that such exercises
need to be further expanded and capital adequacy further explored.

In the recent study of Petrella and Resti (2013) it was noted that since supervisory stress
tests can be used to assess the impact of an adverse macroeconomic scenario on the profitability
and capitalization of the largest banks in a given economy, then such results should be used to
reduce the perceived public opinion that there is an opaqueness in the way tax-payer money
may be being used to help support and bailout struggling financial companies. Consequently,
as noted in Petrella and Resti (2013) the EU regulators took unprecedented step in releasing
the results of the stress test exercises performed to the public in order to help investors dis-
tinguish between robust and under capitalized institutions. This involved releasing the results
of the 2011 EU region stress test which include around 3,400 data points for each of the 90
participating banks. It was noted in Petrella and Resti (2013) that the important features of the
data released included:

* Data on risk-weighted assets and own funds, which also included a breakdown of items
recognised as core Tier 1 capital, compulsory deductions, governmental support and other
mitigating measures fully committed by 30 April 2011;

* P&L figures which included: net interest income, trading income, impairments, other
income/losses and net profit after tax;

* Details on provisions, loss rates and coverage ratios for performing and non-performing
exposures. In addition this was separated by retail, corporate, bank and sovereign
portfolios;

* Credit exposures by geographic area, counterparty and default status;

* Sovereign exposures by geographic area, accounting treatment (e.g. trading book, fair
value option, available for sale, etc.), duration band. This included derivative exposures
at fair value.

Based on this stress testing data, academic works such as Petrella and Resti (2013) started
to study meaningful questions relating to the impact of such tests on perceived confidence and
stability of the financial sector in different regions. For instance they studied questions like:

* Did the stress tests produce relevant information for market participants (“irrelevance
hypothesis”)?

o If the test’s results triggered a market reaction, was this reaction caused by the release of
more granular historical data (“zoom hypothesis”); or

* By the resiliency indicators generated by the stress test exercise (“stress hypothesis”)?

The outcomes of testing these three hypotheses were that there was evidence obtained to reject
the irrelevance hypothesis since the market was shown to significantly react once the disclosure
of the results was performed by the EU regulators. In addition, it was shown that the abnormal
returns of tested banks could be strongly related to some stress test outputs released by the EU
regulators. Finally, with regard to the “zoom” and the “stress hypothesis” it was concluded that
these were supported by the analysis post the EU regulators release of information.
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CCAR is a comprehensive test not just for OpRisks but also for market, liquidity, and credit
risks. As part of the CCAR, the FED assesses institutions’ capital adequacy, internal capital
adequacy assessment processes, and their plans to make capital distributions, such as dividend
payments or stock repurchases. The CCAR includes a supervisory stress test to support the
FED’s analysis of the adequacy of the firms’ capital. Boards of directors of the institutions are
required each year to review and approve capital plans before submitting them to the FED.
The CCAR process is an intense exercise that involves many top-level executives in BHCs. The
general view seen from the industry regarding stress testing is that it possess some important
advantages when used as a quantitative tool to assess and determine aggregate capitalization. It
delivers a specific annual set of transparent scenarios that are readily understood by a range of
members of the financial institution and the executive board and covers not just financial losses
but also revenue and costs. Also, it provides regulators with a tool by which they may better
understand the country and industry wide risk known as systemic risk. Moreover, it allows for a
direct study of practical accounting measures of financial performance such as a lack of capital
fungibility.

Before going into specific details of the CCAR process it is worthwhile to first discuss the
main constituents of a stress test framework which include:

* defining a risk apetite for the given financial institution;

* given a particular risk appetite, there is a stage of process and governance to be per-
g p pp & p g p
formed. This includes a clear mapping of the role and responsibilities of senior manage-
ment involved in the exercise;

the scenario definitions are to be developed and considered/discussed with each busi-
ness/divisional stakeholder. This can include macro-economic assumptions to be consid-
ered, which should be done with historical relationships kept in mind. Then in addition
to potential macro-economic scenarios based on historical events, there should be an addi-
tional level of expert opinion incorporated to develop additional what-if and plausible
scenarios that could be faced in future not yet present in historical realized events;

there is a stage of credit forecasting for loan losses, provisions and ending reserves. In
addition it should consider permanent impairments of investment securities;

there is a stage of pre-provision net revenue forecasting to consider balance sheet dynamics,
net interest income forecasts and other aspects of income and expenses;

all unaccounted for risks are then considered such as mark-to-market trading losses from
given scenarios, operational risk losses and liquidity impacts;

finally, these items are combined into the final stage of capital assessment which involves
a forecasting of the capital position post the stress events.

Having discussed these high level stages, we now discuss in more detail the CCAR process.
However, we note at this stage that a set of stress tests is provided each year in the FED CCAR
guidelines along with generic templates for reporting of results. In the CCAR process, the
FED assesses a BHC’s pro forma post-stress capital ratios resulting from the combination of
stress performance measures (e.g., revenues, losses, and reserves from the supervisory severely
adverse scenario) and the BHC’s planned capital actions (e.g., planned dividends, issuance, and
repurchases as provided in the BHC baseline scenario) against each minimum regulatory capital
ratio and a 5 % Tier 1 common ratio as shown in Table 4.1.
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TABLE 4.1 CCAR regulatory minimum ratios

Regulatory ratio Minimum level (%)
Tier 1 common ratio 6

Tier 1 leverage ratio 3or4

Tier 1 risk-based capital ratio 4

Total risk-based capital ratio 8

TABLE 4.2 Types of scenarios in the CCAR process

Type of scenario Description

Bank-holding company (BHC) baseline A baseline scenario for OpRisk defined and built by the

own firm

Bank-holding company (BHC) stress A stress scenario for OpRisk defined and built by the own
firm

Supervisory baseline A baseline scenario provided by the Federal Reserve under
the capital plan rule

Supervisory severely adverse A severely adverse scenario provided by the Federal

Reserve under the capital plan rule

The types of scenarios in the CCAR process are presented in Table 4.2 and some elements
of process to project preprovision net revenue and capital are presented in Figure 4.2. The results
of a BHC’s analysis for each scenario should encompass all potential losses and other impacts
to net income that the BHC might experience under the scenarios described earlier. In all cases,
BHC:s should substantiate that their results are consistent with the specified macroeconomic
and financial environment, and that the components of their results are internally consistent
within each scenario.

The BHC baseline scenario should reflect the BHC’s view of the expected path of econ-
omy over the planning horizon. A BHC may use the same baseline scenario as the Federal
Reserve baseline scenario if the BHC believes the Federal Reserve baseline scenario appropriately
represents their view of the most likely outlook for the risk factors salient to the BHC.

The BHC stress scenario should be based on a coherent, logical narrative of a severely
adverse economic and financial market environment and potential BHC-specific events. The
scenario narrative should detail key events and circumstances that occur in the scenario. BHC:s
must provide the quarterly trajectories of key macroeconomic and financial variables for its
BHC baseline and BHC stress scenario.

A BHCs stress scenario should describe a severely adverse hypothetical combination of
circumstances designed with the BHC’s particular vulnerabilities in mind. Specifically, and
as noted earlier, the BHC stress scenario should be designed to stress factors that affect all
of its material exposures and activities, capturing potential exposures from both on- and off-
balance sheet positions. In addition, a forward-looking analysis is also required in the BHC
stress scenario.

A BHC is required to perform an assessment of the expected uses and sources of capital
over the planning horizon assuming both expected and stressful conditions. This assessment
must contain the following elements:
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FIGURE 4.2 Process to project preprovision net revenue and capital

* Estimates of projected revenues, losses, reserves, and pro forma capital levels, including
any regulatory capital ratios (e.g., leverage, Tier 1 risk-based, and total risk-based capital
ratios) and any additional capital measures deemed relevant by the BHC, over the planning
horizon under expected conditions and under a range of stressed scenarios, including any
scenarios provided by the FED and at least one stress scenario developed by the BHC
appropriate to its business model and portfolios;

* A calculation of the Tier 1 common ratio over the planning horizon under expected con-
ditions and under a range of stressed scenarios and discussion of how the company will
maintain all minimum regulatory capital ratios and a Tier 1 common ratio above 5%
under expected conditions and the stressed scenarios required;

* A discussion of the results of the stress tests required by law or regulation, and an explana-
tion of how the capital plan takes these results into account;

* A description of all planned capital actions over the planning horizon.
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BHC:s should demonstrate that their results are consistent with the macroeconomic and
financial environments specified in the scenarios being used, and that the various components
of their results are internally consistent. For instance, it might be inconsistent to project a
shrinking balance sheet while also projecting large increases in net income in a stress or base-
line environment, as this would certainly raise a red flag. BHCs should submit background
information on the methodologies supporting their estimates. This material should include a
discussion of key approaches and assumptions used to measure BHC-wide exposures and to
arrive at stress loss estimates, along with relevant background on positions or business lines that
could have a material influence on outcomes.

At the end of this process, the FED can object to a capital plan based on qualitative or
quantitative concerns, or both. The FED can make new capital plans from an institution at any
time to make improvements in the capital planning process, or if there is a change in condition
of an individual institution or in the economy that could potentially lead to a change in a firm’s
capital position. The outcome of the CCAR is public and by March the industry will know
how BHC: fared in the stress test.

It will be interesting to see the impact that the CCAR exercise has in the US financial
industry. This exercise has become so important that a number of firms now instead of per-
forming this only annually as required are doing it either semiannually or a few even every
quarter. As almost every firm uses the results of CCAR in Pillar 2 instead of Pillar 1, it turns
out that the outcome from CCAR tends to be larger and more important than the Basel num-
bers for US banks, reducing somehow the importance of Basel.

The Macroeconomic Factors and Financial Indicators Used in the Three Scenarios

The main characteristics of the scenarios for the CCAR 2013 are listed in Table 4.3. All scenarios
start in the fourth quarter of the current year (e.g., 2014:Q4) and extend through the fourth
quarter of 2016 (2016:Q4). The three scenarios are defined over 26 variables. In its description
of US economic conditions, each scenario includes the following:

* Six measures of economic activity and prices. Real and nominal gross domestic product
(GDP), the unemployment rate of the civilian noninstitutional population aged 16 and
over, real and nominal disposable personal income, and the Consumer Price Index (CPI);

* Four aggregate measures of asset prices or financial conditions. Indexes of house prices,
commercial property prices, and equity prices, and US stock market volatility;

* Four measures of interest rates. The rate on the 3-month Treasury bill; the yield on
the 10-year Treasury bond; the yield on a 10-year Better Business Bureau (BBB) corpo-
rate security; and the interest rate associated with a conforming, conventional, fixed-rate,
30-year mortgage.

For the international variables, each scenario includes three variables in four countries/
country blocks:

* The three variables for each country/country block are the annualized percent change
in real GDP, the annualized percent change in the CPI or local equivalent, and the US
dollar/foreign currency exchange rate;

* The four countries/country blocks included are the European area, the UK, developing
Asia, and Japan. The European area is defined as the 17 European Union member states
that have adopted the € as their common currency, and developing Asia is defined as
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the nominal GDP-weighted aggregate of China, India, Hong Kong Special Administrative
Region (SAR), and Taiwan.

Having discussed in some length the CCAR and stress testing exercises and scenarios with
associated assumptions performed in the US, we also briefly note some features of the EU
stress tests and associated assumptions. In 2011 the EU stress test performed by the European
Banking Authority was undertaken on 90 banks which covered in excess of 65% of the total
assets in the EU banking system. The stress testing simulation scenarios began witha baseline
based on real financial data at the financial close of 2010 and covered forecasted scenarios for
two years, 2011 and 2012. Overall, two core scenarios were considered which included: baseline
and adverse categories.

The baseline scenarios involved a consideration of a strengthening macroeconomic recov-
ery, where it was assumed that there would be a growth in GDP of 1.7% and 2% in the EU.
Alternatively, under the adverse stress scenarios it was assumed that the GDP would instead
reduce by 0.4% in 2011 and stay flat in 2012. In addition, it was furthermore assumed that
equity prices would drop by 15%; and short-term risk-free rates would increase by 1.40% and
long-term ones by 1.25%. Finally, it was assumed that credit spreads for sovereign debts in
Europe would also rise, with different increases in each country.

Under these assumptions, the 90 participating banks were requested to utilise their internal
capital estimation models, of which OpRisk is a core contributor, to generate values for balance-
sheet items and P&L results. There was also imposed a stringent methodology that must be
followed according to specifications developed by the European Banking Authority. Then each
countries national supervisory body studied each of the firm specific assumptions made and
these were cross checked with each countries national supervisors and the European Banking
Authority for a uniformity analysis, resulting in additional calibration as was deemed suitable
on a case by case basis. For further details see the account provided in Petrella and Resti (2013)
as well as a list of outcomes of such stress tests in the EU over the last few years.

4.3 OpRisk and Stress Tests

As OpRisk capital represents a significant chunk of the total capital in most firms, it is obvious
that it should be a key part of the stress test exercise. However, if for market and credit risks
there is a more apparent relationship between the macroeconomic factors and the key drivers
for these risks, this relationship is not clear for OpRisk. Therefore, most banks are heavily using
more subjective tools like scenario analysis as the key input in the stress exercise. That does not
mean that banks changed their scenario analysis program to deal with CCAR; in reality, new
adverse scenarios were added that were very specific to the CCAR questions. Almost every bank
developed a special “stress test scenario analysis” program to respond to the regulatory stress test
exercise; however, quite a few are moving to integrate the two scenario programs somehow.

In OpRisk, to find a consistent statistical relationship between these factors and indicators
and to incorporate them in a sound way into the framework is a significant challenge for a few
reasons. The most obvious one is the usual culprit in OpRisk, which is data issues. Although
significant progress is under way across the industry to improve the quality of operational loss
data, this is still a major challenge. Some of the major issues are as follows:

* Completeness. The completeness of internal and external data, while an objective for the
industry, is still elusive. Even when using external data to assess correlations, it can be



4.3 OpRisk and Stress Tests 69

questioned whether banks’ loss database in the OpRisk data Exchange Association (ORX)

consortia are actually fully comprehensive and, if so, whether they are reporting all losses
they suffered;

* Varying collecting thresholds. Several banks started with very high collection thresholds
and have been reducing these thresholds this so makes it difficult to find a long time series
of standard events;

* Natural scarcity. Operational losses are sparser and for some risk types losses would not
happen at daily or even weekly frequencies, while economic indicators are available daily.
The solution in this case is to aggregate losses monthly, quarterly, etc. However, as the
aggregation increases, quite a few spurious correlations would appear that would bear no
logical support. For example, West Texas Intermediate (WTT) crude oil prices would show
a 32% correlation with losses of Business Disruption and System Failures (BDSF) type
(aggregated quarterly, using ORX data);

* Dates. Operational losses would have many dates associated, for example, “occurrence
date” (when losses occur), “impact date” (when losses are realized), and “account date”
(when losses are booked to the general ledger). Changing the type of date used would

affect correlations.

Another issue is that, for several very important OpRisk types, the lag that exists between a
macroeconomic event and the losses can be of many years, way beyond the exercise proposed by
the regulators. This is a clear example of litigation losses (mostly under the risk type “Clients,
Products, and Business Practices”). For example, only in 2011, banks started to set reserves for
litigation originating from the mortgage crisis in the US that took place in 2007/2008. The
cycle for a litigation process can take anywhere from 3 to 6 years or even longer. Considering
the regulatory stress tests only span for a couple of years ahead, it is very difficult to find a
meaningful correlation between a certain macroeconomic scenario and litigation losses within
this time frame.

Given these constraints, modelers need to take quite a few cautionary measures. The first
one is to break down OpRisks into their Basel risk types. OpRisks are actually an amalgamation
of different risk types, and the impact of the macroeconomic factors can vary significantly
among them. For execution losses (the “Execution, Delivery, and Process Management” type),
a steep decline or volatility in the financial markets usually increase the trading volume, which
can increase the execution losses. Using ORX data, this relationship is not so apparent in daily
data, but starts to show up on a quarterly aggregation. Considering that execution risk would
represent about 20-40% of the total OpRisk, a volatile macroeconomic scenario can potentially
have some significance. However, there is no absolutely robust and conclusive correlation using
these data. An example of a strong correlation is when this correlation is maintained at any
aggregation level. For example, if we analyze the relationship between DJIA and S&P 500, we
will find a strong relationship on a daily basis and if we extend this to weekly, monthly, and
quarterly bases, the association will hold. If data from ORX were used against any of these
macroeconomic factors, this would never happen.

For some risk types, like Employment Practices and Workplace Safety (EPWS), a stress
scenario can actually lower the risk. Analyzing unemployment data against employment-related
losses in the US, it can be seen that higher unemployment levels reduce the risk, as most employ-
ees are more worried about securing their jobs and avoid litigation with employers.

Bearing in mind these difficulties, many banks prefer to use subjective modeling of these
correlations and relationships in the preparation of these scenarios. The danger of this method
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is that we can establish relationships, which although seem logical, might fail to actually be
proven with hard data and, therefore, have any connection with reality.

4.4 OpRisk in CCAR in Practice

It has long been the practice of economists and finance professionals to seek out relationships
between certain quantifiable factors that are thought to explain the behavior of some variable
under study. Regression analysis, the chosen approach to solving this type of problem, is a
statistical process for estimating the relationships among variables. It includes many techniques
for modeling and analyzing several variables, when the focus is on the relationship between a
dependent variable and one or more independent variables.

Regression models most frequently involve the following variables:

* The unknown parameters, denoted as 3, which can be either scalar or vector;
* The independent (explanatory) variables, X;
* The dependent (or response) variable, Y.

In what follows, we show an example of a study to find the relationship between OpRisk
and the macroeconomic factors and financial indicators given by the FED through the use
of trade volume (i.e., the count of how many trades are processed in a certain day) as the
independent variable and five macroeconomic variables, as supplied by the FED through
the CCAR process, as the independent variables. We then analyze the resulting model for
stresses in those variables, as prepared by CCAR, in order to test the behavior of trade count
under adverse conditions. The study has three steps:

* Find a relationship between a financial firm’s internal factor and the FED/Office of the
Comptroller of the Currency (OCC) macroeconomic factors;

* Find a relationship between operational losses and a financial institution’s internal factor;

* Project stress capital estimates.

We are actually using a “bridge” between the macroeconomic factors and losses because a
direct relationship might not be that strong or obvious.

The data used in this example belong to a medium-sized US bank and broker. Due to
confidentiality issues we cannot provide much detail about the data, but we can say that losses
happen many times every day and most losses would be on the risk event types “Execution,
Delivery, and Process Management”, and “Business Disruption and System Failures”.

For a brokerage, trade volume is the main driver of revenue. As such, it is important to assess
how this indicator would behave under economic stress from a revenue perspective. However,
large trade volumes also tend to put pressure on the processing platform and more operational
losses might happen. As finding a direct relationship between macroeconomic variables and
operational losses is complicated by the issues discussed in the previous section, it might be
easier to find these relationships with trade volumes, and then we can assess the relationship
between trade volume and losses.

In order to relate responses to linear combinations of predictor variables, we use the
Generalized Linear Models (GLMs). A detailed discussion on GLM modeling is provided in
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Chapter 16. The GLM approach has become popular given its ability to model more than
simply continuous dependent variables: for example, rates, proportions, binary, ordinal, and
counts are among the many different types of variables that can be incorporated into GLMs.
The canonical treatment of GLMs was defined by McCullagh and Nelder (1989). Overall, the
model works by considering a mean of the response variable ¥ to be a function of the indepen-
dent variables X as

p=EY]=¢ ' (XB), iec,gly)=XB, (4.1)

where 7 = X3 is the so-called linear predictor and g(-) is a link function. The distribution
of Y has to belong to the exponential family (that includes Normal, Poisson, Gamma, and
many others). For example, in the case of Normal distribution, the link function is identity,
g(1) = p; in the case of Poisson distribution, g(1) = In . There are efficient schemes to
estimate GLMs; for details and extensions, see Chapter 16.

After testing several variants of the GLM, we decided on the Normal distribution. Table 4.4
shows the results of the best fit (where 8y corresponds to the explanatory variable Xp = 1).
As can be seen in Table 4.4, the Normal model possesses the best combination of a lower
Akaike Information Criterion (AIC) and significant p-values as well as a stable R%; in spite
of the R? not being the highest, the Normal probability plot of the residuals (Figure 4.3)

TABLE 4.4 GLM candidates

Normal distribution

B Estimate StdErr tStat p-value

Bo —0.08992 0.034089 —2.63768 0.016224 AIC —-197
Bi 0.005348 0.001772 3.017435 0.007083 AlICc —192
52 0.005082 0.001439 3.530408 0.002236 BIC —189
53 0.000336 9.70E—05 3.467959 0.002576

B 0.000313 8.75E—05 3.573972 0.002025 R’ 0.8064
Bs 0.001329 0.000359 3.706702 0.001497 R 0.7554

Gamma distribution

B Estimate StdErr tStat p-value

Bo 62.47991 10.20403 6.12306 6.9E—06 AIC —196
51 —1.67135 0.53389 —3.1305 0.00550 AlICc —192
52 —1.80615 0.46723 —3.86561 0.00104 BIC —189
B3 —0.09896 0.02841 —3.48295 0.00249

Bi —0.08771 0.02444 —3.58894 0.00195 R 0.8366
Bs —0.36049 0.09528 —3.78339 0.00125 R 0.7936

Inverse Gaussian distribution

B Estimate StdErr tStat p-value

Bo 1876.013 363.2361 5.16472 5.5E—05 AIC —194
B —58.966 19.0674 —3.09253 0.005994 AICc —190
Ba —67.461 17.3470 —3.88895 0.000987 BIC —187
B3 —3.392 0.99980 —3.39266 0.003055

B —2.896 0.83323 —3.47673 0.002525 R? 0.8389

Bs —11.698 3.16406 —3.69722 0.001529 Rfﬁ 0.7965
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FIGURE 4.3 Model fit results

of the model also shows a reasonable fit. Model selection criteria, probability plots, and p-values
will be formally defined later in Chapter 8.

In this model, we regressed the quarterly average trade volume from the third quarter 2006

to the third quarter 2012 (the response variable) against the following macroeconomic variables
(the independent variables)—as supplied by regulators in the CCAR process:

* X;, US unemployment rate. Quarterly average of monthly data, Bureau of Labor
Statistics;

* X;, US 10-year Treasury yield. Quarterly average of the yield on 10-year US Treasury
bonds, constructed for the Federal Reserve Board (FRB)/US model by Federal Reserve
staff based on the Svensson smoothed term structure model;

* X3, US Commercial Real Estate Price Index. From flow of funds accounts of the US,
FRB; the series corresponds to the data for price indexes: Commercial Real Estate Price
Index divided by 1000;

* X4, US market Volatility Index (VIX). Chicago Board Options Exchange, converted to
quarterly by using the maximum value in any quarter;

* X5, developing Asia real GDP growth. Staff calculations based on Bank of Korea via
Haver; Chinese National Bureau of Statistics via CEIC; Indian Central Statistical Organi-
zation via CEIC; Census and Statistics Department of Hong Kong via CEIC; and Taiwan
Directorate-General of Budget, Accounting, and Statistics via CEIC.

One tool that can be used to assess the goodness of fit is the relative variable impact.

This is used to assess how much each variable in the model contributes to the formation

of

the resulting response variable. The results are presented in Figure 4.4. In this case, we
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Relative variable impacts
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10-year Treasury yield 26.70%
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Commercial real estate price index 23.09%

Unemployment rate _ 17.62%
Developing Asia real GDP growth _ 17.19%
Market volatility index (VIX) F 15.40%

FIGURE 4.4  Relative impact of the explanatory variables

see that the 10-year Treasury yield and the Commercial Real-Estate Price Index combined con-
tribute 49.8% (almost half) to the variation in trade volume while the remaining three variables
account for 50.2% of the same variation. This calculation was done using the Garson relative
contribution method (see Garson, 1991).

As described in previous sections, CCAR defines three scenarios: supervisory base-
line, supervisory adverse, and supervisory severely adverse, where a predefined number of
macro-economic variables are stressed in adverse direction. With the fitted model we projected
the behavior of this bank/brokerage trade volume for each of these scenarios (Figure 4.5).

The economic rationale underlying the behavior of the trade volume for the three scenarios
is very straightforward. In the baseline case, trade volume grows at a similar rate to expected
economic growth. In the adverse case, trade volume grows at first (because market volatility will
cause overall activity to increase) but dips down as the effects of economic weakness are felt. In
the severely adverse case, trade volume experiences initial growth driven by increased volatility
and deteriorating market conditions but declines to near baseline level as the economy returns
to normal.

The last step of this analysis is to find a relationship between trade volume and operational
losses so we can estimate losses based on the estimated trade volume. In order to keep the con-
fidentiality of the data, we promised our data, provider to only state that a strong relationship
was found and that the R* = 66%.

The main objective of this section was to provide a practical view on how models are used
by OpRisk analysts in determining the impact of operational losses in the pre provision net
revenue and, ultimately, in the capital ratios. Table 4.5 depicts how these models are used in
the exercise. The example in this section is quite simplistic and, in more realistic terms, a signif-
icantly higher number of models would be used for the determination of the final operational
losses impact. For example, a separate model might be developed for litigation risk using models
with multiyear temporal lags.
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FIGURE 4.5 DARTs (daily average revenue trades) under different CCAR scenarios
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TABLE 4.5 Assessing preprovision net revenue (PPNR) impact

PPNR Models (example) Description of model behavior in the example

Net interest income NA NA

Noninterest income Trade volume against a Revenue would grow for the broker as market
number of CCAR volatility grows as clients would sell and
variables (e.g., VIX, buy—this is a relationship found by most
unemployment, etc.) firms. As the environment settles, the

worsened economic environment would
lower the trade volume, impacting revenue

Noninterest expenses  Establish how operational As the operational platform is constant in the
losses are related to trade short term (i.e., no major improvements
volume growth happen), an increase in trade volume

would increase operational losses,
particular in transaction execution and
systems losses
Total impact Assess the net impact in
PPNR of these variables

4.5 Reverse Stress Test

Another popular type of stress test in the industry (and mandatory in the UK) is the so-called
“reverse stress test”. Reverse stress tests require a firm to assess scenarios and circumstances that
would render its business model unviable, thereby identifying potential business vulnerabilities.
Reverse stress-testing starts from an outcome of business failure and identifies circumstances in
which this might occur, for illustrative example see Table 4.6. This is different from general
stress and scenario testing, which tests for outcomes arising from changes in circumstances.

In 2009, the financial authority in the UK (then the FSA now the Prudential Regula-
tion Authority) issued the Policy Statement 09/20, which goes into details about the reverse
stress test.

Reverse stress-testing is primarily designed to be a risk management tool rather than a
highly analytical exercise. It should encourage financial institutions to explore more fully the
vulnerabilities and fault lines in their business model and inherent controls, including “tail
risks”. Based on the analysis of its reverse stress tests, senior management should determine
whether it should put in place any mitigating actions at the current time or whether it should put
in place triggers for future action should the scenario develop. It is separate but complementary
to other stress tests, starting from the outcome of business failure.

Undertaking reverse stress-testing and taking action on its results should also inform con-
tingency planning and enable financial institutions to make decisions that are consistent with
both business and capital planning, very similar to the CCAR process in the US but with a
more qualitative focus.

The objective is that financial institutions, based on these reverse stress tests, develop
mitigation and recovery strategies. This recovery strategy is about the management of a firm
taking actions that are aimed at preventing it from failing in circumstances in which it is fac-
ing severe stress as identified in the process. In order to avoid failure, the management may
need to eventually undertake extreme measures. A recovery plan is one of the outcomes of the
reverse stress test and details what options the management may pursue, what would need to
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TABLE 4.6

Reverse engineering stress losses with 1 year horizon

Loss size Risk type Event Mitigation/ control
USD 4000 CPBP Litigation settlement on
mortgage financing
USD 1000 Internal Fraud Trades are not reported in Number of unconfirmed
management system trades over 90 days
Daily match of accounting
and desk exposures
USD 800 External Fraud Denial of service attack Consultancy that monitor
overload systems and and protects against these
force site to be off the air attacks
for a day Independent backup system
based in different geography
USD 500 EPWS Class action lawsuit
USD 300 EDPM Known deficiencies in Intra-day monitoring of

settlement failures
Budget allocated to system
upgrade

internal transactions
operations system can
significant delay
settlements causing steep
losses

All amounts are in USD million.

happen for each action to be implemented, and the risks to implementing each action. In this
way, a recovery plan can build on existing stress and scenario testing requirements, and on
management actions that would be taken in response to these events.

In the resolution plan, firms will provide the information that would be necessary for the
authorities and central banks to undertake the resolution of the firm and identify the actions
that would need to be taken for the authorities to resolve a failing firm in an orderly manner.
In the US, a similar process was called “living will”. This is a separate process from the reverse
stress test which requires a firm to identify and assess the scenarios most likely to cause its
current business model to fail and, using these results, to put in place appropriate mitigating
action. However, the reverse stress test can be seen as the starting point for resolution plans, as
the point at which the risks identified in the reverse stress test crystallize may be the point at
which resolution plans are required.

4.6 Stressing OpRisk Multivariate
Models—Understanding the Relationship Among Internal
Control Factors and Their Impact on Operational Losses

One type of modeling that has become more popular recently, particularly in US banks influ-
enced by the CCAR process, is the multivariate model that relates operational losses to key con-
trol and business environment variables and also to external macroeconomic variables. These
models are a very powerful tool for risk management as they allow to spotting the factors that
are determinant to control losses and bring OpRisk to a similar level to market and credit
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TABLE 4.7 Operational loss data and control environment factors

Date Losses No. losses Downtime No. employees Data quality (%) No. transactions
July2 USD 234412 10,004 3 22 94 250,096
July3  USD 91,234 7,284 1 24 96 208,111
July 5 USD 2,734,009 17,792 10 19 88 345,611
July 6 USD 545 5,745 0 24 98 185,321
July9 USD 115,912 9,745 1 24 97 249,876
July 10 USD 1,234 8,075 0 24 98 252,345
July 11 USD 91,233 9,287 1 24 98 250,987
July 12 USD 55,908 8,879 1 24 98 236,765
July 13 USD 12,002 9,079 0 24 98 238,911
July 16 USD 23,456 9,078 0 24 98 237,654
July 17 USD 1,787,634 13,514 8 21 89 293,778
July 18 USD 7,233,704 24,510 16 17 81 415,422
July 19 USD 2,891 8,054 0 24 97 250,912
July 22 USD 122 6,061 0 24 98 191,210
July23 USD 0 5,360 0 24 99 172,901
July 24 USD 0 5,283 0 2% 99 170,415
July25 USD 200,786 8,387 1 24 95 221,876
July 26 USD 1,456 6,604 0 24 97 200,121
July 27 USD 918 5,934 0 24 98 191,435
July 30 USD 1,234,095 11,438 5 22 95 278,987
July 31 USD 17,654 7,287 0 24 96 238,908
Aug1 USD 9,871 7,549 0 24 97 235,908
Aug?2 USD 1,095,033 10,988 3 22 97 268,001
Aug3  USD 1,200 6,492 0 23 99 199,761

Downtime is system downtime in minutes.

risks. GLM and its extensions help to accomplish this task; this will be discussed in detail in
Chapter 16.

Here, for illustration, we consider a simple example using data from a retail bank (see
Table 4.7) and assume a simple multifactor model for operational daily losses in a particular
business or area inside the bank as follows:

Y; = 50 + /BIXIJ +...+ ﬂan,t + €ty (42)
where Y represents the operational loss for a day ¢, (X, ..., X, ) represent the control envi-
ronment factors, (5o, ..., [3,) are model parameters, and &;, t = 1,2,... are independent

random variables from zero mean Normal distribution.

Picking the right variables makes this model work very well. Four variables showed
significance here: Xj— systems downtime, X,— number of employees in a department,
X3— number of transactions, and X;— data quality (% of data moving from front to back
office correctly with no need of amendments). These data were provided by a custodian bank.
It may be mentioned that the individual losses are mostly very small or even zero. This bank
had developed a system to collect every single error even if no losses took place. This was really
important in the multivariate analysis.
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Running a multivariate regression with these data, we estimate

Bo = 3,379,940; B = 319,294; B, = —35,455; B3 = 0.906; B4 = —2,945,102
(4.3)

with R2 = 91%. The averages of the explanatory variables from July 2 to August 3 are
2.08 minutes for system downtime; 23.08 for number of employees; 241, 055 for number of
daily transactions; and 95.83% for data quality. The high R found in this model is surprisingly
common within heavy transaction processing environments where the quality of processing is
very dependent on system availability, volume, and personnel. Note that the specific model
and specific choice of explanatory variables are for illustration only. More advanced analysis
should involve a comparison with other distribution types for daily losses (at least within a
GLM framework) and consider other possible explanatory variables and their transforms.

We can use this model to stress internal factors and see their impact on losses and OpRisk.
For example, we can assume an increase of 30% in the volume of transactions, 20% decrease
for the number of employees, etc. As an example, suppose that, in order to increase the prof-
itability of the products traded in the area, the bank decides to increase the daily volume by
30%. Executive management then asks OpRisk management to assess the operational impact
of this decision; however, this increase in transactions would not be followed by an increase in
headcount, as the bank wants to keep tabs on costs. The average daily number of transactions
during the period July 2 to August 3 was 241,055 and average daily loss was USD 622,721.
This 30% increase in the number of transactions will mean that the average number of trans-
actions will move to 313,371; then using (4.2) and (4.3) one can calculate that the average
daily loss will increase to USD 688,241. As no employees can be hired, we should find ways to
improve the system or the average data quality that was on average 95.83%. Using model (4.2)
with parameter estimates (4.3), it is easy to find that if an internal quality program is developed
and the quality of the input is increased to an average of 98.06%, then it will offset the impact
of the 30% growth in the number of transactions and there will be almost no change in the
average daily loss. Understanding the level of risk a bank faces given the increase in the number
of transactions is quite important and a number of financial institutions are performing this
analysis.

The model described is useful however, it is deterministic in explanatory variables. We
could let the explanatory variables X ,, ..., X, be stochastic and perform a more informa-
tive stress test. For example, assuming that X;,, # = 1,2,... are independent and identi-
cally distributed, we can calibrate the distributions for the explanatory variables as follows:
system downtime, X;, ~ Poisson(A = 2.08); number of employees working per day,
X5,; ~ Normal(p = 23.08,0 = 1.81); number of transactions, X3, ~ LogNormal(p =
12.37,0 = 0.208); and data quality, X;, ~ Beta(o = 20.65,8 = 0.898); for definition
of distributions, see Appendix A. Then we could find the quantiles of the explanatory variables
that can be used in stress-testing. In addition, given the multifactor model (4.2) and know-
ing the distributions for each independent (explanatory) variable X;, we could calculate the
unconditional distribution of daily losses and find its high quantiles.



CHAPTER FIVE

Basic Probability Concepts in Loss
Distribution Approach

In risk management in general, modelers attempt to assess the uncertain risk exposures or threats
using past experiences and other information available. Probability theory seems to be the nat-
ural fit for these types of analyses. This chapter provides a description of basic concepts of the
probability theory used in this book and introduces relevant notation. There is a range of impor-
tant concepts that are required to be considered when developing OpRisk models in practical
settings. This chapter establishes what will be considered in future chapters as basic presumed
knowledge. It covers the following basic concepts:

* Loss Distributional Approach (LDA) modelling;

* Definitions of a probability distribution function and density functions in univariate and
multivariate settings, as well as discrete, continuous and mixed type random variables;

* Statements of the Law of Large Numbers and distributional convergence of scaled and
translated sums are briefly discussed;

* Then moments and quantile functions for random variables are discussed;

* Following this, the notion of frequency distributional models are discussed for the number
of losses in a given year;

* Then naturally, the notion of severity loss models is briefly discussed for the size of each
loss event in a given year;

* Next, the compound process is discussed with additional discussion on convolutions and
transform methods;

* Finally, a very brief overview of Extreme Value Theory is presented, for a more compre-
hensive coverage see the companion book (Peters and Shevchenko, 2015, chapter 2).

5.1 Loss Distribution Approach

OpRisks are modeled by random variables representing unknown size of the loss, time of
the loss occurrence, number of losses, etc. The value of a random variable is a result of a

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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measurement (e.g., size of the loss). Specifically, under the Loss Distribution Approach, the
OpRisk loss over a 1-one year time horizon is modeled as

Z=X + - +Xn,

where the number of events per year (frequency) is a random variable V, and the sizes of the loss
(severity) when the events occur are X1, X, . ... It is common to assume that frequency and
severity are independent, and severities X;, X5, . . . are independent and identically distributed.
These assumptions will be made throughout unless stated otherwise in more advanced chapters
of this text. Hereafter, we use the following notation:

* Random variables are denoted by upper case symbols (capital letters) and their realizations
are denoted by lower case symbols, for example, random variable X and its realization x;

* Vectors are considered as column vectors and are written in bold, for example,

n-dimensional random vector X = (X1,Xa, ..., X,)7, where superscript “7” denotes
transposition;
* The realizations of random variables are real numbers, so thatx = (x1,x;, .. .,x,) means

a point in the #-dimensional Euclidean space of real numbers R”;

* Operators on random variables are written with square brackets, for example, the variance
of a random variable X is denoted as Var[X].

Random variables representing frequency and severity are characterized by distribution func-
tions formally defined as follows.

Definition 5.1 (Univariate distribution function) 7he distribution function of a random vari-
able X, denoted as Fx(x), is defined as the probability that X is less than or equal to a number x

Fx(x) = Pr[X < x].

The support of a random variable X with a distribution function Fx(-) is a set of all points, where

Fx (+) is strictly increasing. Often used notation for the survival function or tail distribution function
of a random variable X is defined as

Fx(x) =1— Fx(x) = Pr[X > «x].
Frequently used notation, X ~ Fx(x), means a random variable X has a distribution function

Fx(x). Often, for simplicity of notation, we may drop the subscript and write X ~ F(-). L]

The distribution function has to satisfy the following conditions:

* F(x) is nondecreasing;

F(x)
'F(x)—> 1,as x — 00;
* F(x) = 0asx — —0o0;

* F(x) is right continuous, that is, the limiting value of F(x) as x approaches xy from the
right equals F(xp).

Most of the standard distributions used throughout the book are formally defined in
Appendix A.
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Random variables can be classified into different categories (continuous, discrete, or mixed)
according to a set of all possible outcomes (supporz). In particular, severities X7, X, ... (the
loss sizes) are typically modeled as continuous random variables and frequency /N (number of
events per time interval) are typically modeled by a discrete random variable; the aggregate loss
Z =X, + -+ + Xy is typically a mixed random variable (e.g., if Pr[V = 0] > 0). Formal
definitions are as follows.

Definition 5.2 (Continuous random variable) A continuous random variable X bas its support
on an interval, a union of intervals, or real line (half-line). The distribution function of a continuous
random variable can be written as

Fx(x) = ] Jx )y,

where fx (x) is called the continuous probability density function. m

Definition 5.3 (Discrete random variable) A discrete random variable X has a finite or count-
able number of values x1, x,, . ... The distribution function of a discrete random variable has jump
discontinuities at x1,xy, . . . and is constant between. The probability function (also called the prob-
ability mass function) of a discrete random variable is defined as

px(x) =Pr[X =x), for i=1,2,...

px(x) =0, for x#x1,%, .... (]

Definition 5.4 (Mixed random variable) A mixed random variable X is a continuous random
variable with positive probability of occurrence on a countable set of exception points. Its distribution
Sfunction Fx has jumps at these exception points and can be written as

Fe(x) = wE{ (x) + (1 — w)FY (),

where 0 < w < 1, F)(([) is a continuous distribution function, and F)(( )(x) is a discrete distribution
Sfunction. (]

A mixed random variable is common in OpRisk for the loss aggregated over some period
of time. This is because typically there is a probability of nonoccurrence loss during a period of
time (giving finite probability mass at zero) while the loss amount is a continuous random vari-
able. In general, any distribution function can be represented as a mixture of discrete distribu-
tion function, continuous distribution function, and singular continuous distribution function
(a continuous distribution function with points of increase on a set of zero Lebesgue measure).
The last type of random variable will not be considered in this book. The case of mixed random
variables with discrete and continuous components covers all situations encountered in OpRisk
practice.

To unify notation for discrete and continuous densities, it may be convenient to write
the density functions using the Dirac -function (also called the impulse d-function), which is
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zero everywhere except from the origin, where it is infinite, and its integral over any arbitrary
interval containing the origin is equal to 1:

d(x) =0, if x # 0; §(0) = oo,

/5(x)dx =1, for any € > 0.

This implies that for any function g(x),

b
/g(x)(?(x —xp)dx = g(x), if a <xg < b, (5.1)

a

and the integral is zero if («, ) interval does not contain xy. This definition of ¢ function is
a heuristic definition but it is enough for the purposes of this book; the theory of the Dirac
d-function can be found in many textbooks (see, e.g., Pugachev 1965, section 9).

Then, the density of discrete random variable can be written as

felx) =D px()3(x — ), (52)
i>1
and the density of a mixed random variable is

i) =w px()d(x —x) + (1 — w) (%), (5.3)

i>1

where ﬁ((f) (x) is the continuous density function and px (x;) is a probability mass function of a
discrete distribution.

Similarly, vectors of random numbers are characterized by multivariate distributions,
formally defined as follows.

Definition 5.5 (Multivariate distribution function) 7he multivariate distribution function
of a random vector X = (X1, Xa, ..., X,) 7 is defined as

FX(.X'l,Xz, R 7xn) = Pr[Xl S .X'17X2 S X2y o 7Xn S xn]
and the corresponding survival function is

Fx(x1,%, ...,%,) = Pr[X > x]. [

Often we are interested in convergence of some sequences of random numbers. For exam-
ple, the well-known probability theorem Strong Law of Large Numbers is stated as follows.

Theorem 5.1 (Strong Law of Large Numbers) Given a sequence of independent and identically
distributed random variables X1,X,, . .., which are integrable E[|X1|] < oo,

= 1
X, =-> X to E[X], — 00.
nz converges to B[ X]|,  for n — o0

i=1
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The convergence stated is the so-called almost surely convergence. This means that the
probability of lim,, oo X, = E[X;] is 1, that is, there might be a sequence of random numbers
that will not satisfy this limit but the probability of that sequence is zero. Often it is written as

X, = E[X)], forn— oo almost surely

or

X, = E[X)], forn— co as.

™ EXAMPLES.1 Distribution functions

Consider the following three functions:

(@)
F(x) =0.05x, 0<x<20;
(b)
0.05x, 0<x<5,
F(x) =< 0.25, 5 <x <10,
0.25 + 0.075(x — 10), 10 < x < 20;
(©

Flay — {00255 0<x <10
7 00.05x, 10 < x < 20.

All these functions are distribution functions and are presented in
Figures 5.1a—c, and respectively. Case (a) corresponds to the so-called uniform
distribution where all possible values of X have the same chance to occur. Case (b)

0 ‘ 0 ‘ 0 ‘
0 10 20 0 10 20 0 10 20
X X

FIGURE 5.1
flat piece; (c) distribution with a jump. See Example 5.1 for details

Simple examples of distributions: (a) uniform distribution; (b) distribution with a
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corresponds to the distribution with a flat piece. Note that there is no chance for X
to occur within a flat piece. Finally, Case (c) is a distribution with a jump; note here
that the function is right continuous at the point of the jump. ]

™ EXAMPLES.2 Empirical distribution

Often, modelers use parametric distribution functions to model severity and fre-
quency. However, it is also often convenient to use empirical distributions
constructed from observed data. For example, a modeler may use empirical distri-
bution to model severities below some large threshold and continuous distribution
for severities above the threshold.

Given independent identically distributed realizations xi, ...,x,, empirical
distribution is defined as

1 n
F(x) = - D Tz (5.4)
=1

Consider a sample (0.5;2;1;1.2;0;1.5;1.8;0.7;1;1.9). Then the ordered
sample is (0;0.5;0.7;1;1;1.2;1.5; 1.8; 1.9; 2). Using (5.4), it is easy to calculate
the empirical distribution of the sample, which is presented in Figure 5.2. Note that
point 1 is repeated in the sample and thus the jump at this point is 2/10, while for
all other points the jump is 1/10.

1 *
—
—
-—
?_I
= 05 —
,_Z
,_I

. .
0 T T
0 1 2

v

FIGURE 5.2 Empirical distribution. See Example 5.2 for details
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5.2 Quantiles and Moments

Quantiles and moments of distribution are important characteristics/measures of random vari-
ables. Throughout the book we use the following standard definition of a generalized inverse
function (also called guantile function) for a distribution function.

Definition 5.6 (Quantile function) Given a distribution function Fx(x), the inverse function
Fy' of Fy is

Fy'(a) = inf{x € R: Fy(x) > a} = sup{x € R : Fy(x) < a},
where 0 < o < 1. It is also often denoted as F§ (). (]

Given a probability level ¢, Fy '(a) is the a-th quantile of X (often, it is denoted as ga)-
The inverse function is defined as the left continuous generalized inverse of the distribution
function. This is to handle cases when o corresponds to a flat piece in the distribution (in this
case, the quantile corresponds to the left end of the flat piece). In the case when o does not sit
on a flat piece, the quantile is the ordinary inverse of F(x). Figure 5.3 illustrates quantiles for
the standard and tricky cases such as distribution with flat pieces or jumps. Alternatively, the
inverse function can be defined as the right continuous generalized inverse

F " (a) =inf{x: F(x) > a} = sup{x: F(x) < a}. (5.5)

That is, the quantile would be to the right end of the flat piece if v corresponds to this flat piece;
see Figure 5.3b for an example. We could also define the quantile as a convex combination of
left and right continuous generalized inverse distributions. In this book (and in most of the
literature), we consider the definition of quantile as F~! ().

The expected value (mean) of a random variable X is denoted as E[X]. A formal construc-
tion of the operator E[-] is somewhat involved but for the purposes of this book we will use the
following short definition.

(a) (b) (c)
1 1 1
v/
a
a
a
F(a) Fla) F*(a) F(a)

FIGURE 5.3 Calculation of quantiles: (a) continuous distribution; (b) distribution with a flat piece; (c)

the case of probability atom in distribution function
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Definition 5.7 (Expected value)

o If X is a continuous random variable with the density function fx(x), then

oo

EM:/%@M (5.6)

— 00

o If X is a discrete random variable with supportx\, xy, . . . and probability mass function px (x),
then

ElX] = xipx()-

j21

* In the case of a mixed random variable X (see Definition 5.4), the expected value is

E[X] = WZX]PX(X/') + (1 —w) / xjg(([)(x)dx. [
=1 .

The expected value integral or sum may not converge to a finite value for some distribu-
tions. In this case, it is said that the mean does not exist.

The definition of the expected value (5.6) can also be used in the case of the discrete and
mixed random variables if their density functions are defined as (5.2) and (5.3), respectively.
This gives a unified notation for the expected value of the continuous, discrete, and mixed
random variables. Another way to introduce a unified notation is to use Riemann-Stieltjes
integral

(oo}

Em:/mm@ (5.7)

— 00

See Carter and Van Brunt (2000) for a good introduction to this topic.

The expected value is the first moment about the origin (also called the first raw moment).
There are two standard types of moments: the raw moments and central moments, defined as
follows.

Definition 5.8 (Moments)

o The k-th moment about the origin (raw moment) of a random variable X is the expected value
of X*, that is, E[X*);

o The k-th central moment of a random variable X is the expected value of
(X — E[X))%, that is, E[(X — E[X])*]. "

Typically, £ is a nonnegative integer # = 0, 1,2, .. .. The expected value may not exist for
some values of 4; then it is said that the 4-th moment does not exist. The first four moments
are most frequently used and the relevant characteristics are defined as follows:
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¢ Variance. The variance of a random variable X is the second central moment
Var[X] = E[(X — E[X])?] = E[X?] — (E[X])*. (5.8)
¢ Standard deviation. The standard deviation,

stdev[X] = v/Var[X], (5.9)

is a measure of spread of the random variable around the mean. It is measured in the same
units as the mean (i.e., the same units as the values of the random variable).

* Variational coefficient. The variational coefficient (also called the coefficient of variation)
is a dimensionless quantity,

Veo[X] = w, (5.10)

which measures the spread relative to the mean;

* Skewness. The skewness is a dimensionless quantity that measures an asymmetry of a
random variable X and is defined as

E[(X - E[X])’]
3

(stdev[X]) G.11)

"M =
For symmetric distributions, the skewness is zero;

* Kurtosis. The kurtosis is a dimensionless quantity that measures the flatness of the distri-
bution (tail heaviness) relative to the Normal distribution. It is defined as

E[X —EX)Y

(stdev[X]) 6.12)

T2 =
For the Normal distribution, kurtosis is zero.

Again, for some distributions these characteristics may not exist. Moreover, central moments
can be expressed through the raw moments and vice versa. Detailed discussions, definitions,
and relationships for these quantities can be found in most undergraduate statistical texts.
To conclude this section, we define the covariance and the linear correlation coefficient that
measure the dependence between random variables.

Definition 5.9 (Covariance and linear correlation) 7he covariance of random variables X

and Y is defined as
Cov[X, Y] =E[(X — EX])(Y — E[Y])] = E[XY] — E[X]E[Y].
The linear correlation between X and Y is
plX, Y] = Cov[X, Y]/+/Var[X]Var[Y]. (]

These quantities are popular measures of the dependence between X and Y. However, as
will be discussed later in the book, the linear correlation can be a bad indicator of dependence for
non-Gaussian random variables. Moreover, for some distributions these measures may not exist.
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5.3 Frequency Distributions

The most commonly used frequency distributions for the annual number of events N are
Poisson, Binomial, and Negative Binomial distributions. An interesting property (that is often
used as a criterion to select a frequency distribution) is that a Binomial’s variance is less than
its mean, it is therefore called under-dispersed; the variance of the Negative Binomial is larger
than its mean, it is therefore called over-dispersed; and the Poisson mean equals its variance. The
BCBS paper on the range of practices for OpRisk AMA BCBS (2009a) reports that among 42
AMA banks participating in the survey,! 93% use the Poisson distribution, 19% use the Neg-
ative Binomial, and 7% use other distributions to model frequency. We formally define these
distributions as follows.

* A Poisson distribution function is denoted as Poisson()). The random variable NV has a
Poisson distribution N ~ Poisson(\) if its probability mass function is

)\/e Y

= et A0 (5.13)

P = BefN = 4
for all £ € {0,1,2,...}. Expectation, variance, and variational coefficient of a random
variable N ~ Poisson(\) are

E[N] =\, Var[N]= A, Vco[N] = % (5.14)

* The Binomial distribution function is denoted as Binomial(n, p). The random variable
N has a Binomial distribution N ~ Binomial(n, p) if its probability mass function is

2(k) = Pr[N = 4] = (Z

)pk(l —p)"k pe(0,1), ne1,2,... (5.15)

forall # € {0,1,2, ..., n}. Expectation, variance, and variational coefficient of a random
variable N ~ Binomial(n, p) are

E[N] = np, Var[N] = np(1 — p), Vco[N] = 1};]’. (5.16)

In a common interpretation, N is the number of successes in 7 independent trials, where
2 is the probability of a success in each trial;

* A Negative Binomial distribution function is denoted as NegBinomial(r, p). The random
variable V has a Negative Binomial distribution V ~ NegBinomial(r, p) if its probability

mass function is

r+k—1

ﬂ@:mw:a:< )

)p’(l —p)k, p€(0,1), r€ (0,00) (5.17)

'Note that banks participating in the survey were able to select more than one answer per question.
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forall £ € {0,1,2,...}. Here, the generalized binomial coefficient is

r+k—1 B F(/eJrr)
< b )—k!r(r), (5.18)

where I'(7) is the Gamma function. Expectation, variance, and variational coefficient of a
random variable V ~ NegBinomial(r, p) are

1 —p), Vco[N]:(ll)' G:19)
(T=»

BN = 078 yarny = 102
» »

If 7 is a positive integer, then in common interpretation, /V is the number of failures
in a sequence of independent trials until 7 successes, where p is the probability of a success
in each trial.

There are many other discrete distribution types that can be found in many books; for
example, for OpRisk context, see Panjer (2006). It can be useful to consider zero-truncated
distributions: p” (k) = p(k)/(1 — p(0)), £ = 1,2, ..., where p(k) is a discrete distribution
defined with £ = 0,1, ... such as Poisson or Binomial. These truncated distributions can be
used when zero value is impossible. Mixing and splicing methods can also be used to create
other distributions from simple distributions (e.g., for special handling of zero values); these
methods will be discussed in Section 5.4.3.

5.4 Severity Distributions

There are many standard parametric distributions that can be used for modelling severity.
Some of these are listed in Appendix A, and some nonstandard distributions are discussed in
Chapter 9. Many statistical books list two-, three-, and four- parameter continuous distribu-
tions; for a good review of possible distributions in the context of OpRisk, the reader is referred
to Panjer (2006). These standard distributions can be used to create more flexible distributions
via mixture and splicing methods discussed in Section 5.4.3.

The BCBS paper on the range of practices for OpRisk AMA BCBS (2009a) reports that
among 42 AMA banks participating in the survey”

* About 31% banks apply a single severity distribution to model body and tail, with the
LogNormal (33%) and Weibull (17%) most widely used;

* About 30% of banks use two distributions for body and tail: LogNormal (19%) and empir-
ical (26%) for modeling the body and LogNormal (14%) and generalized Pareto (31%)
for estimating the tail;

* Other distributions used for modeling severity include Gamma, g-and-h, generalized Beta,
mixture of LogNormals.

Most of these distributions are formally defined in this section and in Chapter 9.

2Note that banks participating in the survey were able to select more than one answer per question.
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5.4.1 SIMPLE PARAMETRIC DISTRIBUTIONS

Here, for illustration, we formally define few simple parametric distributions such as
LogNormal and Exponential; for many nonstandard distributions the reader is referred to

Chapter 9.
5.4.1.1 One-Parameter Distributions.

* Exponential distribution function is denoted as £xp(6). The random variable X has an
Exponential distribution, denoted as X ~ Exp(fs, o), if its probability density function is

ﬂ@:éf”ﬂ >0 (5.20)

for x>0. The corresponding distribution function is simply F(x)=1—¢"*/? All
moments can be calculated as E[X*] = 0*T'(£ + 1) for k> — 1, that is, E[X*] = 0*F!
for integer k. Here, I'(#) is a standard Gamma function formally defined by (A.2) in
Appendix A. A very special feature of Exponential distribution is that the expected size
of the loss above a threshold does not depend on the threshold;

* One-parameter Pareto distribution function is denoted as Pareto(§,xy). The random
variable X has a Pareto distribution, denoted as X ~ Pareto(€, xo), if its distribution func-
tion is

=€
n@:1—<x) x> 0, (5.21)

X0

where xg > 0 and £ > 0. The support starts at xp, which is typically known and not consid-
ered as a parameter. Therefore the distribution is referred to as a single parameter Pareto.
The corresponding probability density function is

f@)zf(x)§3 .22

X0

This distribution is heavy-tailed and has only a finite number of moments that can be

calculated as E[X*] = &xt /(€ — k) for k < €.
5.4.1.2 Two-Parameter Distributions.
* LogNormal distribution function is denoted as LogNormal(y, 0?). The random variable

X has a LogNormal distribution, denoted as X ~ LogNormal (1, o%), if its probability
density function is,

flx) =

i (In(x) — )’
xV2mo? P <_ 202

for x > 0. Expectation, variance, and variational coefficient are,

), c*>0, peR (5.23)

2

E[X] = #7327, Var[X] = et (¢7 — 1), Veo[X] = Vo — 1. (5.24)
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LogNormal is formally a heavy-tailed distribution (it belongs to the so-called class of subex-
ponential distributions), but it is a very light heavy-tailed distribution with all moments
existing;

* Gamma distribution function is denoted as Gamma(c, 3). The random variable X has a
gamma distribution, denoted as X ~ Gamma(c, 3), if its probability density function is

a—1

fe) =

@5 exp(—x/8), a>0,8>0 (5.25)

for x > 0. The Gamma distribution Gamma(c, 3) is a light tail distribution. However, if
InX ~ Gamma(a, [3), then X is from Log-Gamma distribution, which is a heavy-tailed
distribution with a Pareto-type power tail behavior. Expectation, variance, and variational
coefficient of a random variable X ~ Gamma(a, 3) are

EX] = af, Var[X]=aB?, Veo[X]=1/Va. (5.26)

* Pareto distribution (two-parameter) function is denoted as Pareto; (e, 3). The random
variable X has a Pareto distribution, denoted as X ~ Pareto,(cv, 3), if its distribution
function is

F(x)l<1+;> , x>0, (5.27)

where & > 0 and 8 > 0. The corresponding probability density function is

af®

fx) = Gt A (5.28)

The moments of a random variable X ~ Pareto,(cx, /3) are

kb
E[X*) = L; a> k.

T (=)

Pareto distribution Pareto;(cv, 3) has a very heavy tail such that the £-th moment and
higher do not exist when the tail parameter o < 4;

* Weibull distribution function is denoted as Weibull(cv, ). The random variable X has a
Weibull distribution, denoted as X ~ Weibull(c, 3), if its probability density function is,

fvr7%w4mm4wm%,a>mﬁ>o (5.29)

for x > 0. The corresponding distribution function is,
Flx)=1—exp(—(x/8)*), a>0, 3>0. (5.30)
Expectation and variance of a random variable X ~ Weibull(c, 3) are,

EX] = BL(1+1/a), Var[X]=pg*(T(1+2/a)— T(1+1/a))?).
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5.4.1.3 Three-Parameter Distributions.

* Generalized Inverse Gaussian (GIG) distribution function is denoted as GIG(w, ¢, V).
The random variable X has a GIG distribution, denoted as X ~ GIG(w, ¢,v), if its
probability density function is,

(w/g)H1r2

—

ZKV+1 (2\/ O\)Qb)

where ¢ > 0, w > 0ifvr < —1;¢0 > 0,w >0ifv =—1;¢>0,w > 0ifv > —1; and

vemm=x ' 5, (5.31)

flx) =

1 o0
Ky1(2) = 5 /u”efz(”ﬁ/”)/zdu.
0

K, (2) is called a modified Bessel function of the third kind (see, e.g., Abramowitz and
Stegun 1965, p. 375). The moments of a random variable X ~ GIG(w, ¢, V) are not
available in a closed form through elementary functions but can be expressed in terms of
Bessel functions:

/2
E[X]<¢> M a>1,¢>0, w>0.

w K1 (2vwe)

* Burr distribution. The random variable X has a Burr distribution, denoted as X ~
Burr(a, 8,7), if its distribution function is,

1
= —uy® = > (. .
Flx)=1—u% u T /A x>0 (5.32)
The density and moments are expressed in closed form as,
_ay(x/B)

FO) = S+ e

kT I'lar —
E[x* = s kp(;)(a k/7)7 —y < k<ay.

This distribution is also known as the Burr Type XII or Singh—Maddala distribution. It is
often used to model household income.

5.4.2 TRUNCATED DISTRIBUTIONS

It is often convenient to model data using a truncated version of the standard distributions.
For example, a standard distribution F(x) (such as LogNormal, Gamma, etc.) is defined as
x> 0 with a corresponding density function f'(x). However, one may be interested in modeling
losses above some threshold Z > 0 only. Then, one can consider a distribution truncated below
L formally defined as

 F(x) - F(L)

F”(x) = 1 F(L) HxZL (533)
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with a corresponding truncated density function

fr(x) = lf(;)(L)]Ix>L- (5.34)

o0
Note that this truncated density is a proper density function, thatis, [ 7 (x)dx = 1. Similarly,
0

one can model losses below L using distribution truncated above L:

Ftr(x) = ;;:-Ez))ﬂx<b fﬂ(x) = %HX<L' (5.35)

If there is a need to model losses in a specific range [L, U], one can use distribution F(x)
truncated below L and above U:

F7(x) = I<i<u. (5.36)

For example, in OpRisk settings, the lower threshold Z may correspond to the data collection
loss threshold and the upper threshold U may correspond to the high level separating body and

tail losses.

5.4.3 MIXTURE AND SPLICED DISTRIBUTIONS

It is common practice for actuarial scientist and risk managers to consider the class of flexible
distributional models known as mixture and spliced distributions. A mixture distribution is just
a weighted average of other distributions formally defined as follows.

Definition 5.10 (Mixture distribution) A random variable X has a mixture distribution if its
distribution function is given by

F(x) = wiFi(x) + - - + wpF(x),

where the weights w; > 0, wy + - - - + wy, = 1 and Fi(x) are proper distributions. The density of
the mixture is just

fx) = wifi(x) + -+ wifel%). =

The total number of parameters in the mixture distribution is the number of parame-
ters across all distributions F;(x) plus £ — 1 weights. The mixture approach allows to create
many possible distributions from simple known distributions. For example, for a risk cell, one
may consider a mixture of two different LogNormal distributions: LogNormal(py,0?) and
LogNormal(j,,0%), both defined by (5.23) for x > 0, to model a situation when the losses are
generated by two different mechanisms. In this case, the total number of parameters is five.

Another closely related approach is splicing together pieces of different distributions (the
so-called spliced distribution).
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Definition 5.11 (Spliced distribution) A random variable X has a spliced distribution if its
density function is given by

wi fi(x), xp < x < xi,
wafa(x), x1 < x < X,
Jilx) =9 ¢ (5.37)
w/e—l,f/e—l(x>7 Xp—2 S x < Xp—1,
wife(x), xp—1 < x < xp,
]
where w; > 0 and fi(x) is a proper density function on (x;,_1,x;) for i = 1, ..., 4, that

is, f}:“ Jfi(x)dx = 1;also wy + -+ + w, = 1. Typically, the motivation for splicing is to
model large losses in the tail using one distribution (e.g., Pareto) and small losses using another
distribution (e.g., LogNormal), because it is too restrictive to model both large and small losses
using one simple distribution (e.g., Pareto or LogNormal). For example, to model the tail and
body losses in a risk cell, one may consider a splicing of two truncated LogNormal distributions:
one truncated below level L and another truncated above L (where L is body/tail large threshold
level), that is,

fx) = wfp(x) + (1 —w)fr(x), 0<w<l, (5.38)

where

folw) = FCmon) y e finbspror)

 Fn(L; pp, 0p) o<t 1 - Fy(Lpr,o7) =

Here, fin(x;p,0) and Fry(x;p,0) are the density and distribution functions of
LogNormal(j,0?) defined in (5.23).

Typically, component densities in the mixture distribution are defined on the same interval
while splicing can be viewed as a mixture distribution with component densities defined on
nonoverlapping intervals.

5.5 Convolutions and Characteristic Functions

Often we need to calculate the distribution of the sum of independent random variables such
as the aggregate loss Xj + X, + - - - + Xp. It can be convenient to calculate these distributions
through convolution of corresponding distribution functions.

Definition 5.12 (Convolution) The convolution of two functions g(x) and h(x) is

g(x) % h(x) = / b — )g (o). .

The density and distribution functions of the sum of two independent continuous random
variables ¥; ~ F(-) and ¥, ~ F,(-), with the densities £;(-) and f(+), respectively, can be
calculated via convolution as
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frn0) =f0) <£0) = [ 6= )0 (5.39)

and
Frn() = A0) x B20) = /Fz(y — A0y (5.40)
respectively.
This can be generalized to the sum of many independent random variables using #-fold
convolutions.
Definition 5.13 (n-fold convolution) Given distribution functions Fi(-), ..., F,(-), the

n-fold convolution is
F{"(x) = F 0 () % B (x),
calculated recursively as
FP(x) = FE " () « Fux), k=2, ...,n
with F* (x) = Fy(x). In the case of the same function F(x) = Fy(x) = - - - = F,(x), we have
FO*(x) = FO=D* () % F(x). .

Using 7-fold convolutions, it is easy to calculate the distribution of the sum of independent
random variables using the following well-known resul.

Proposition 5.1 (Distribution of sum of independent random variables via convolution)
Given Xy, ..., X, are independent random variables with X; ~ F;(-), the distribution of the sum
X =X\ + -+ + X, is the n-fold convolution

PrX; + - + X, < x] = F"*(x).

In the case of independent identically distributed (i.i.d.) X, ..., X,, where X; ~ F(x),
PriX; + -+ X, < x] = F"*(x). (5.41)
Thus, the distribution of the annual loss Xj + - - - + Xjy, where X1, ..., Xy arei.i.d. from

the severity distribution F(-) and annual frequency N is random with Pr[N = k] = py, can
be calculated as

H(z) =Pr[Z < o = iPr[Z < 2|N = KPX[N = 4
k=0

=3 pF " (2). (5.42)
k=0
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The k-fold convolution F*)*(z) is calculated recursively as

z

ﬂm@:/ﬂﬁmgﬂy@ﬂ

0
with

1, >0,
F@%d:{o 2<0

Here the integration limits are 0 and z. This is because we consider nonnegative severities.
The obtained formula is analytic. However, closed-form solutions are rare. Panjer recursion
and FFT, discussed in Sections 11.4 and 11.6, are very efficient numerical methods to calculate
these convolutions.

Another powerful tool to calculate the distribution of the sum of independent random
variables is the method of characteristic functions. It is explained in many textbooks on prob-
ability theory. In particular, it is often used for calculating aggregate loss distributions. some
distributions are defined via characteristic functions and are not available in closed form (e.g.,
alpha stable distributions).

Definition 5.14 (Characteristic function) 7he characteristic function of the density f(x) is
defined as

() = / F)e=ds, (5.43)

wherei = \/—1 is a unit imaginary number. [

If the characteristic function is known, then the original density function can be calculated
by inverse Fourier transform

1

flx)= b / o(t) exp(—itx)dt. (5.44)

The corresponding analogy for discrete distributions is called the probability generating
Sfunction

Definition 5.15 (Probability generating function) The probability generating function of a
discrete distribution with probability mass function p;, = Pr[N = k| is

oo

P(s) = Zskpk. (5.45)

k=0
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Using a well-known property that the characteristic function of the sum of independent
random variables is just a product of their characteristic functions, the characteristic function
of the annual loss X; + - - - + Xy, denoted by x(#), can be expressed through the probability
generating function of the frequency distribution and characteristic function of the severity
distribution as

X(0) =" (p(e) i = 1((2)). (5.46)

k=0

Given the characteristic function, the density of the annual loss Z can be calculated via the
inverse Fourier transform; this will be discussed in detail in Chapter 11.

5.6 Extreme Value Theory

The topic of extreme value modeling is discussed in detail in companion book Advances in
Heavy Tail Risk Modeling: A Handbook of Operational Risk, Peters and Shevchenko (2015).
However, for completeness of this manuscript, we briefly discuss the main concepts of extreme
value theory (EVT).

There are two types of EVT models: traditional block maxima and threshold exceedances.
Block maxima EVT is focused on modeling the largest loss per time period of interest. This is
used in insurance and in many other fields. For example, it is used in the design of dams for
flood control where engineers are interested in quantification of the probability of the annual
maximum water level. It is certainly important for operational risk too. However, for capital
calculations, the primary focus is to quantify the impact of all losses per year. Modeling of all
large losses exceeding a threshold is dealt by EVT threshold exceedances. The key result of EVT is
that the largest losses or losses exceeding a large threshold can be approximated by the limiting
distribution—which is the same regardless of the underlying process. This allows for rational
extrapolation to losses beyond those historically observed and estimation of their probability.
However, as with any extrapolation method, EVT should be applied with caution.

Typically, to apply EVT (or any other extrapolation method) on a dataset, we assume that
there is a single physical process responsible for the observed data and any future losses exceeding
the observed levels. This is often the case in physical sciences (e.g., hydrology). However, in
assessing operational risk, some people may argue that extreme values are anomalous and are
not strongly related to the rest of the data. In addition, multiple processes might be responsible
for extreme events within a risk cell and these processes might be different from the processes
generating less severe losses. A good discussion on these issues can be found by Cope ez al.
(2009) and Neslehovi ez a/. (2006).

If we assume that a single mechanism is responsible for the losses in dataset and extrapola-
tion can be done, then EVT is a very powerful tool. A detailed presentation of EVT is provided
by Embrechts ef al. (1997), McNeil et al. (2005, chapter 7). In this chapter, we summarize
the main results relevant to operational risk. It is important to note that EVT is an asymptotic
theory. Whether the conditions validating the use of the asymptotic theory are satisfied is often
a difficult question to answer. The convergence of some parametric models to the EVT regime
is also very slow. For example, this is the case for the by LogNormal and g-and-h distribu-
tions studied Mignola and Ugoccioni (October 2005) and Degen ez al. (2007), respectively. In
general, EVT should not preclude the use of other parametric distributions.
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5.6.1 EVT—BLOCK MAXIMA

Consider a sequence of # independent random variables Xj, ..., X, from a distribution F(x)
representing losses. Denote the maximum loss as

M, = max(Xj, ..., X,).

Because each loss cannot exceed the maximum and due to independence between the losses,
the distribution of the maximum is

Fu, (x) =Pr[M, < x] =Pr[X; <x,...,X, <x]

_ ﬁ]P’r[Xi < x| = (Flx)". (5.47)

i=1

Given that F(x) < 1 or F(x) = 1, it is easy to see that if # — 00, then the distribution
of maximum (5.47) converges to the degenerate distribution, which is either 0 or 1 (i.e., the
density concentrates on a single point), which is not very useful information. That is why the
study of the largest losses in the limit # — 00 requires appropriate normalization. This is
somewhat similar to the central limit theory stating that the appropriately normalized sum

Sn = (Sn - ﬂn)/bm

where S, = Xi +---+X,and X, ..., X, are independent and identically distributed random
variables with finite variance, converges to the standard Normal distribution as 7 — co. Here,
the normalized constants are

a, = ﬂE[XlL b,, =/ ﬂVaI‘[Xl].

Similarly, the limiting result for the distribution of the normalized maximum
M, = (M, — d,)/c, shows that for some sequences of ¢, > 0 and 4,

lim Pr[(M, —d,)/c, < x] = ILIEO(F(cnx+ d,))" = H(x). (5.48)

n— oo

If H(x) is a nondegenerate distribution, then F is said to be in the maximum domain of
attraction of H, which is denoted as F € MDA(H). Then the well-known Fisher—Trippet,
Gnedenko Theorem essentially says that A (x) must be the generalized extreme value (GEV)

distribution He ((x — p)/0), o > 0, p € R with the standard form

Xp (— x)71/¢
Hg(x)_{e p(—(1+&)71%), €#0, (5.49)

exp(—exp(—x),  £=0,
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where 1 4+&x > 0. The standard GEV will often be referred to as GEV' (). If convergence takes
place, then it is always possible to choose normalizing sequences ¢, and 4, so that the limit will
be in the standard form He (x). The shape parameter £ determines a type of distribution:

* £ > 0 corresponds to a Fréchet distribution;
* £ = 0 corresponds to a Gumbel distribution;

* £ < 0 corresponds to a Weibull distribution.

The Weibull distribution (§ < 0) has a bounded right tail (i.e., x < —1/&), while Gumbel and
Fréchet have an unbounded right tail. In addition, the decay of the Fréchet tail is much slower
than the Gumbel tail.

5.6.2 EVI—RANDOM NUMBER OF LOSSES

As earlier mentioned, in OpRisk, the number of losses per time period is not fixed and is
modeled as a random variable N with p, = Pr[N = #]. This has some implications for the use

of the previously described EVT.

Distribution of maximum. If the frequency IV is random, then, instead of (5.47), the distri-
bution of a maximum My is calculated as

Fagy(x) = Y Pr[My < x|N = n|Pr[N = 7]

n=0

= > (F())"Pr[N = n) = yw(F(x)), (5.50)

where

v () = B[] =) purt,
k

is the probability generating function of the frequency distribution. Note that there is a finite
probability for zero maximum, that is, Pr[My = 0] = 1 (F(0)). Typically, severity distri-
bution has F(0) = 0 and frequency distribution has a finite probability at zero; in this case,
Pr[My = 0] = Pr[N = 0].

For example, if the annual number of losses N ~ Poisson(\), then 1) (¢) = exp(—A(1—¢))
and thus the distribution of the maximum loss (per annum) is

Fugy () = exp(—A(1 — F(x)). 6.5
The distribution of the maximum loss over m years is

(Fary (x))” = exp(—mA(1 — F(x)). (5.52)
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5.6.3 EVI—THRESHOLD EXCEEDANCES

While it is important to understand and measure maximum possible loss over a 1-year time
horizon, the primary focus in operational risk capital charge calculations is quantification of
overall impact of all losses. For this purpose, the method of EVT threshold exceedances is very
useful. Consider a random variable X, whose distribution is F(x) = Pr[X < x|. Given a
threshold #, the exceedance of X over # is distributed from

Fly+u) —F(u)'

1= F(w) 653

Fuy) = Pr[X — 0 < 5IX > 4] =

As the threshold # increases, the limiting distribution of F,(-) is given by the Pickands—
Balkema-de Haan theorem (see McNeil ez 2. 2005, section 7.2). The theorem essentially states
that if and only if F(x) is the distribution for which the distribution of the maximum (5.48)
is GEV (£) given by (5.49), then, as # increases, the excess distribution F,(-) converges to a
generalized Pareto distribution (GPD), GPD(§, §):

_[-ares gt
Gg’ﬁw‘{l—exp(—y/ﬁ), e=o o0

Here, the shape parameter  is the same as the shape parameter of the GEV distribution Hp.
More strictly, we can find a function 3(#) such that

lim sup |F,(y) — Ge ()| =0, (5.55)

u—ra OS}’S‘{_”

where 2 < 00 is the right end point of F(x), £ is the GPD shape parameter, and 5 > 0 is the
GPD scale parameter. The domain of GPD is

0 if €>0
ye{[’oo)’ 620, (5.56)

[0,—5/¢], if £<O0.

The properties of GPD depend on the value of the shape parameter &:

* The case £ = 0 corresponds to an exponential distribution with the right tail unbounded;

o If £ > 0, the GPD right tail is unbounded and the distribution is heavy-tailed, so that
some moments do not exist. In particular, if £ > 1/m, then the m-th and higher moments
do not exist. For example, for & > 1/2, the variance and higher moments do not exist.
The analysis of operational risk data by Moscadelli (2004) reported even cases of £ > 1 for
some business lines, that is, infinite mean distributions; also see discussions by Neslehovd

et al. (2000);

* £ < 0 leads to a bounded right tail, that is, x € [0, —/£]. It seems that this case is not
relevant to modeling operational risk as all reported results indicate a non-negative shape
parameter. One could think though of a risk control mechanism restricting the losses by
an upper level and then the case of £ < 0 might be relevant.
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The density of GPD is

S+ ex/B) V620,
h(x;€,8) = ) (5.57)
B@Xp(*%‘/,ﬁ), 5: 07

where #(x = 0) = 1/. Note some special cases of negative shape parameter: if £ = —1/2,
then h(x) = %(1 — 1x/p) is a linear function; if ¢ = —1, then h(x) = 1/f is constang; if
& < —1, then A(x) is infinity at the boundary of the domain —/3/¢. The latter case is certainly
not relevant to operational risk in practice and can be excluded during fitting procedures.

The GPD has a special stability property with respect to excesses. Specifically, if
X ~ Gg¢p(x), x > 0, then the distribution of the conditional excesses X — L|X > L over
the threshold L is also the GPD with the same shape parameter £ and changed scale parameter

from B to B+ £L:
]P’I‘[X — L S}/|X > L} = G&/@q.&()/), y>0. (5.58)

This stability property implies that if £ < 1, then the mean excess function is

€L

L) =B~ LX > 1] = S

i (5.59)
1—
That is, the mean excess function is linear in L. This is often used as a diagnostic to check
that the data follow the GPD model. In particular, it is used in a graphical method (plotting
the mean excess of the data versus the threshold) to choose a threshold when the plot becomes
approximately “linear”.



CHAPTER S X

Risk Measures and Capital

Allocation

OpRisk is a significant risk exposure to most firms and therefore requires effective risk manage-
ment. Thus, these risks should be modeled, measured, and capital should be held so that a bank
can withstand extreme losses. A risk measure is a single number quantifying an exposure to the
risk. In particular, risk managers and regulators are interested in assessing the probability that
extreme losses may occur and this can be represented through the quantile of the loss distribu-
tion (over a specified time horizon). This led to the regulatory requirement for risk capital to
be measured as a Value-at-Risk (VaR), which is just a quantile of the loss distribution at some
high confidence level (i.c., quantile of the loss distribution at the 0.999 confidence level over a
1-year horizon for OpRisk).

Since VaR had come into widespread use in the financial markets for quantifying market
risk, adacemics began to undertake theoretical studies of the properties of such a risk measure
and they began to notice that using VaR as a risk measure could sometimes have a poor out-
come. Specifically, the diversification principle may fail in some circumstances. The wisdom in
choosing the 0.999 VaR as a risk measure for capital is highly contested (see, e.g., Daniélsson
et al. 2001). Using economic reasoning, a list of axiomatic properties for a good (coberent) risk
measure was suggested in the seminal paper by Arezner ez al. (1999). In particular, an alternative
risk measure known as expected shortfall (ES) is coherent and considered to be better suited for
risk management as it provides information not only about the probability of the default but
also about its severity; it can be viewed as an average of losses larger than or equal to the VaR.
However, the use of VaR for a capital has good justification from a regulator’s point of view
when considering minimization of the possible shortfall and cost of the capital. Moreover, it is
clear that ES is not so good a measure for OpRisk because some OpRisks exhibit such heavy
tails that even the mean (expected loss) may not exist; these are the so-called infinite mean dis-
tributions reported in the literature for OpRisk. In addition, ES can be too sensitive to the tail
index of heavy-tailed distributions while VaR is more stable.

A lot of research has been done in the area of risk measures. The choice of risk measure
is currently discussed in the literature; for example, Basel Committee on Banking Supervision
(BCBS, 2012) asks for a possible transition from VaR to ES as the underlying risk measure.
We know that in general VaR does not have diversification property, while ES does. How-
ever, Gneiting (2011) implies that, while VaR in general is statistically backtestable, ES is not.

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Furthermore, while VaR in general has certain robustness properties, ES does not, at least as
discussed by Cont ez al. (2010). So, it is likely that VaR, despite all its shortcomings, will remain
in force.

In this chapter, we focus on VaR and ES, which are the most relevant risk measures for
OpRisk; their definitions, advantages, and drawbacks are considered throughout Section 6.2.

Typical risk models are parameterized, where the true value of the parameter is unknown
and should be estimated. It is expected that the uncertainty in parameters should increase
the capital. Accounting for parameter uncertainty in the risk measure is a subject of
Section 6.2.9.

A closely related problem is capital allocation. An overall bank capital should be allocated
to various levels within a bank. In particular, it is allocated to business line or business line/event
type (e.g. execution, delivery and process management event type in asset management busi-
ness line) level and is often required to be allocated below, that is, to the process level or general
manager level. The allocation mechanism should provide incentive to better manage OpRisk.
Also, it is desirable that the allocation procedure to different levels shares the same risk fac-
tors/drivers. It is a challenging and currently unresolved issue as these two objectives seem to
be in conflict. Optimal management of OpRisks considers risks and controls of typical events
rather than extreme events that are outside of a risk manager’s control. While a bank capital is
driven by the risk tail events and the corresponding risk tail measure, risk body events and mea-
sure are more meaningful to the business incentives. Moreover, the availability of data below the
business line/event type level is typically limited. In this book, we consider the allocation mech-
anisms to the risk cells (i.e., to the level where OpRisks are modeled, e.g. business line/event
type level). Similar to defining a coherent risk measure using a set of axioms, a coherent allo-
cation principle can be defined. It has been demonstrated (using different sets of axioms of
economic reasoning) that the capital allocations can be calculated as the gradient of the capital
with respect to risk exposures (the so-called the Euler’s principle). The subject of risk allocations
is considered in Section 6.3.

Before presenting an overview of the different classes of risk measures, we present some
motivation and background context of the Basel accords and how they have developed in terms
of requirements for capital estimation and risk measure quantification.

6.1 Development of Capital Accords Base I, II and III

In jurisdictions in which active regulation is applied to the banking sector, the modeling of
OpRisk has progressively taken a prominent place in financial quantitative measurement. This
has occurred as a result of Basel II and now Basel III regulatory requirements. There has been
a significant amount of research dedicated to understanding the features of Basel II (see, e.g.,
Daniélsson et al. 2001, Decamps et al. 2004, and Kashyap and Stein 2004). In addition, the
mathematical and statistical properties of the key risk processes that comprise OpRisk, especially
those that contribute significantly to the capital charge required to be held against OpRisk
losses, have also been carefully studied; see, for example, the book length discussions in Cruz
(2002), King (2001), and Shevchenko (2011).

In January 2001, the Basel Committee on Banking Supervision proposed the Basel 1I
Accord (BCBS, 2002, 2004, 2006), which replaced the 1988 Capital Accord. In 2013, the
Basel III Accord was due to start to be considered. Since the initiation of the Basel capi-
tal accords, the discipline of OpRisk and its quantification have grown in prominence in
the financial sector. Paralleling these developments have been similar regulatory requirements
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for the insurance industry which are referred to as Solvency 2. In both accords, the primary
component of such a regulation revolves around the quantitative modeling of capital.

Under the Basel 1I/Basel III structures, there is at the core the notion of three pillars,
which, by their very nature, emphasize the importance of assessing, modeling, and under-
standing OpRisk loss profiles. These three pillars are minimum capital requirements (refining
and enhancing risk-modeling frameworks), supervisory review of an institution’s capital ade-
quacy, and internal assessment processes and market discipline, which deals with disclosure of
information.

In the third update to the Basel Accords due for implementation in the period 2013-
2018, a global regulatory standard that draws together bank capital adequacy, stress-testing, and
market liquidity was developed. It is established as an international best practice for modeling
OpRisk by the members of the Basel Committee on Banking Supervision (see Gregoriou 2009
and discussions in Blundell-Wignall and Atkinson 2010).

The Basel III Accord naturally extends the work developed in both the Basel I and Basel 11
accords, with the new accord arising primarily as a response to the identified issues associated
with financial regulation that arose during the recent global financial crisis in the late 2000s.
In this regard, the Basel III accord builds on Basel II by strengthening the bank capital require-
ments as well as introducing additional regulatory requirements on bank liquidity and leverage.
The quantification of capital requirements is principally concerned with an evaluation of the
risk associated with losses arising from a range of different loss processes in different lines of
business.

Banking regulation under Basel II and Basel III specifies that banks are required to hold
adequate capital against OpRisk losses. OpRisk is a relatively new category of risk that is addi-
tional to more well-established risk areas such as market and credit risks. As such, in its own
right, OpRisk attracts a capital charge, which is defined by Basel II (BCBS 20006, p. 144) as “zhe
risk of loss resulting from inadequate or failed internal processes, people and systems or from external
events. This definition includes legal risk, but excludes strategic and reputational risk”. OpRisk is
significant in many financial institutions, e.g. see Table 1.4 for examples of capital ratios in
some large European banks in 2012.

Before detailing the changes to capital requirements due to come into industry practice
under Basel 111, it is prudent to recall the Basel definition of Tier 1 capital, which is the key
measure of a bank’s financial strength from the perspective of the regulatory authority. In partic-
ular, the capital accord in Basel II and III states that financial institutions must provide capital
above the minimum required amount, known as the floor capital. In addition, this capital as
specified in the regulation is comprised of three key components: Tier 1, Tier 2 and Tier 3.
Both Tier 1 and Tier 2, capital were first defined in the Basel I capital accord and remained
substantially the same in the replacement Basel II and Basel IIT accords.

Definition 6.1 (Tier 1 capital) The Tier 1 capital under regulation is comprised of the following

main components:

1. Paid-up share capital/common stock;

2. Disclosed reserves (or retained earnings).
It may also include nonredeemable noncumulative preferred srock. (]

The Basel Committee also noted the existence of banking strategies to develop instru-
ments in order to generate Tier 1 capital. As a consequence, these must be carefully regulated
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through the imposition of stringent conditions, with a limit to such instruments at a maximum
of 15% of total Tier 1 capital.

Definition 6.2 (Tier 2 capital) The Tier 2 capital under regulation is comprised of the following
main components:

1. Undisclosed reserves;

2. Asset revaluation reserves;

3. General provisions/general loan-loss reserves;
4. Hybrid (debt/equity) capital instruments;
5. Long-term subordinated debt.

In this regard, one may consider Tier 2 capital as representing the so-called, supplementary capiral. m

We note at this stage that as a consequence of different legal systems in each jurisdiction,
the accord has had to be sufficiently flexible to allow for some interpretation of specific capital
components within the context of each regulator’s jurisdiction. Depending on the particular
jurisdiction in question, the specific country’s banking regulator has some discretionary control
over how exactly differing financial instruments may count in a capital calculations.

Remark 6.1 The key reason that Basel III requires financial institutions to hold capital is that it
is aimed to provide protection against unexpected losses. This is different to mitigation of expected
losses, which are covered by provisions, reserves, and current year profits.

We note that modifications under the Basel III Accord relative to its predecessor refer to
limitations on risk-weighted capital (RWC) and the Tier 1 capital ratio, defined as follows.

Definition 6.3 (Risk-weighted assets (RWA)) These assets comprise the total of all assets held
by the bank weighted by credit risk according to a formula determined by either the jurisdiction’s
regulatory authority or in some cases the central bank. Most regulators and central banks adpere ro
the definitions specified by the BCBS guidelines in setting formulae for asset risk weights. Liquid
assets such as cash and coins typically have zero risk weight, while certain loans have a risk weight
at 100% of their face value. As specified by the BCBS, the total RWA is not limited to credit risk.
It contains components for market risk (typically based on VAR) and OpRisk. The BCBS rules for
calculating the components of total RWA have also been updated as a result of the recent financial
crisis. [

Definition 6.4 (Tier 1 capital ratio) The Tier 1 capital ratio is the ratio of a banks core equity
capital to its total RWA. [

Next, we highlight the prominent extensions to the Basel IT Accord, established in the
Basel III Accord. In particular, the Basel III Accord will require financial institutions to hold
for RWA, 4.5% of common equity, which is an increase from the previous 2% under Basel II
as well as 6% of Tier 1 capital, itself an increase by 2% relative to Basel II. In addition to these
changes to common equity and Tier 1 capital, Basel III also introduces a minimum leverage
ratio and two additional required liquidity ratio limits. Finally, of the significant changes, there
are also additional capital buffers introduced:



106 CHAPTER 6 Risk Measures and Capital Allocation

1. A mandatory capital conservation buffer of 2.5%;

2. Adiscretionary countercyclical buffer, allowing national regulators to require up to another
2.5% of capital during periods of high credit growth.

Against the backdrop of these capital regulatory accord changes and extensions, there is
always the base fundamental requirement of risk analysts, actuaries, and quants, which involves
the quantitative modeling and reporting of such capital estimates. To quantify the OpRisk
capital charge under the current regulatory framework for banking supervision, referred to as
Basel I1/Basel III, many banks adopt the Loss Distribution Approach (LDA). In this context, we
are working with frequency and severity and resulting compound processes. In this chapter, the
primary concern involves the development of quantification of risk utilizing different classes of
risk measures for LDA models. There are typically three main families of risk measure that are
considered for the calculation of OpRisk capital: VaR (LDA annual loss distribution quantile
function); ES (LDA annual loss distribution tail conditional expectation), and spectral risk
measures. These risk measures and their associated quantitative properties are covered in detail
in the remainder of this chapter.

6.2 Measures of Risk

In general, a risk is an event that may or may not occur (i.e., random event) and brings some
adverse consequences. It is natural to model OpRisk by a random variable that represents the
random amount of loss that a company may experience. It can be assumed that random variables
modeling OpRisk losses are non-negative (similar to insurance risk). In general, risk can be
defined as a random variable representing future worth, but in OpRisk we focus on losses, not
profits.

Given this definition of risk, measuring OpRisk means establishing a correspondence
between the random variable representing risk and a non-negative real number. This leads us
to the following definition of risk measure.

Definition 6.5 (Risk measure) A risk measure is a mapping of a random variable representing
risk to a real number. Henceforth, denote a general risk measure related to the risk X as p[X]. =

That is, a risk measure (for OpRisk) is a functional that assigns a single non-negative
real number to a non-negative random variable representing risk. No single risk measure can
describe all aspects of risk. In this book, we consider risk measures used for setting capital
requirements, that is, we focus on measuring the upper tail of a loss distribution. Moreover, the
risk measure should describe not only the aspects of the overall risk but also the relative impor-
tance of risks within a collection. In particular, risk managers are interested in diversification
benefits if risks are merged into a collection. This is typically measured using the diversification
coefficient.

Definition 6.6 (Diversification coefficient) For a collection of risks X, . .., X, the diversifi-
cation coefficient is defined as

plXi + -4 X,

Ty a

6.1)
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This coefficient is positive if there are diversification benefits and is negative if diversifica-
tion fails.

The choice of a risk measure for capital quantification is not a trivial task. The current
Basel II requirement is to use VaR as a risk measure. However, VaR has some shortcomings,
and other risk measures such as ES are widely discussed in the literature. At the same time,
the use of VaR has a justification from the regulator’s point of view. In this section, we treat
the issue of risk measurement with a particular emphasis on VaR and ES risk measures, which
are the most relevant to operational risk.

6.2.1 COHERENT AND CONVEX RISK MEASURES

There are many different risk measures introduced in the literature and practice, and the choice
of a risk measure might be difficult. One approach to treat the issue of risk measurement is to
start with a list of properties that a risk measure should satisfy. Using economic reasoning, a list
of axiomatic properties for a good (coberent) risk measure was suggested in the seminal paper

by Artzner ez al. (1999).

Definition 6.7 (A coherent risk measure) A coberent risk measure, p|X), is defined to have the
Jollowing properties for any two random variables X and Y :

o Translation invariance: for any constant ¢, p|X + ¢| = p[X| + ¢
* Monotonicity: if X < Y for all possible outcomes, then p|X] < p[Y];
* Subadditivity: p[X + Y] < p[X] + p[Y];

* Positive homageneity: for any positive constant ¢, p[cX| = cp[X].
L]

Note that in OpRisk we define loss to have a positive value while the original paper by Artzner
et al. (1999) works with the future value of a position (which is negative for losses). As a result,
there are changes in sign in some of the axioms (we also set interest rates to zero, i.e., no dis-
counting).

The topic of coherent risk measures has been widely discussed in the literature (see McNeil
et al. 2005). We list some arguments typically used to explain why the axioms are reasonable
requirements.

* Translation invariance. This axiom means that adding a fixed amount to a collection of
risks will change the capital requirement by the same amount. This is necessary to make
sense of p as a risk capital, that is, adding cash amount p[X] to the risk X gives adjusted
loss X = X — p[X], whose capital is p[X] = p[X] — p[X] = 0 and thus the new risk
X is acceptable without further capital requirement (note that loss is defined as a positive
value);

* Monotonicity. This is perhaps the most obvious axiom: risks that lead to smaller losses in
every state require less risk capital. However, some traditional risk measures such as those
based on standard deviation can fail this condition (see, e.g., Kalkbrener 2005). This has
unpleasant consequences for the capital allocation. For example, if potential losses X are
bounded by some level, then the contributory capital of X to the risk collection might
exceed this level (see Kalkbrener ez 2/ 2004);
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* Subadditivity. This axiom is the most known because VaR fails to satisfy this condition
in some situations. The rationale behind this axiom is to allow diversification benefit. It is
easy to see that the diversification coefficient, as defined in (6.1), is positive for subadditive
risks and is negative if subadditivity (diversification) fails. Artzner ez al. (1999) support this
by the statement that “a merger does not create extra risk”, that is, merging two risks X;
and X, with stand-alone capitals p[X;] and p[X;] will create overall risk X = X; + X,
with a capital p[X] less than or equal to the sum of stand-alone capitals p[X;] + p[X3].
Of course, anyone with experience through a merger can question this statement. So, it
might be better to argue that breaking up will increase the capital requirement. If the risk
manager wants to restrict p[X; + X3 by some level 4, then he or she can just impose levels
Ay and A, (A1 + A> < A) such that p[Xj] < A; and p[X5] < 4. Then subadditivity will
ensure that p[X] < A4; + A, < A. Note that if a non-subadditive risk measure is used for
regulatory capital, then a bank might have an incentive to legally break up into subsidiaries
to reduce the overall regulatory capital;

Positive homogeneity. This axiom means that increasing a risk by a factor a should
increase the capital by the same factor. Note that the subadditivity axiom implies
that p[2X] < p[X] + p[X]. Thus, positive homogeneity adds an extra condition that
pl2X] = p[X] + plX].

Artzner e al. (1999) demonstrated that any coherent risk measure (on a finite set of prob-
ability measures) can be written as the so-called scenario-based risk measure.

Definition 6.8 (Scenario-based risk measure) 7he scenario-based risk measure for a risky loss
random variable X is

plX] = sup{E?[X]|Q € P}, (6.2)

where BR[| means that the expectation is calculated with respect to probability distribution Q, and
P is a nonempty set of probability measures (generalized scenarios). ]

It is straightforward to prove the coherence of this risk measure. The properties of monotonicity,
positive homogeneity, and translational invariance can be easily followed by the definition. The
subadditivity follows from

sup{EQ[X + Y]|Q € P} = sup{E?[X] + E¢[Y]|Q € P}
< sup{E?[X]|Q € P} + sup{E?[Y]|Q € P}. (6.3)

For a more technical proof that any coherent risk measure can be represented as (6.2), see
McNeil ez al. (2005, section 6.1.4). The earlier defined risk measure is expectation with respect
to a worst case scenario because supremum is taken over different distributions Q in a set P.
For most of this book, we consider risk measures defined with respect to a single distribution.

It is important to note that the previously listed coherence axioms are accepted by many
researchers and practitioners. However, there is no set of desirable axioms universally accepted.
One can change a set of axioms and introduce other “coherent” risk measures. In particular,
the condition of positive homogeneity has been criticized due to potential liquidity and risk
concentration issues. One can argue that doubling the position will lead to a portfolio with
more than double risk. It has been suggested to have p[AX] > Ap[X], A > 0, to penalize for
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possible lack of liquidity. The condition p[AX] > Ap[X] cannot be satisfied for a subadditive
risk measure. As a result, another larger class of convex risk measures has been introduced by
Féllmer and Schied (2002), in whose work subadditivity and positive homogeneity axioms are
replaced by weaker property of convexizy. It is formally defined as follows.

Definition 6.9 (Convex risk measure) A convex risk measure p|X| is defined to have the follow-
ing properties for any two random variables X and Y :

* Monotonicity: if X <Y for all possible outcomes, then p[X] < p[Y];
o Translation invariance: for any constant ¢, p|X + c| = p[X] + ¢
* Convexity: pAX + (1 = N)Y] < Ap[X] 4+ (1 = X\)p[Y], A €]o0,1].

That is, convex risk measure axioms are translation invariance, monotonicity, and convexity.

6.2.2 COMONOTONIC ADDITIVE RISK MEASURES

A desirable property for a risk measure is the so-called comonotonic additivity, which means
that diversification (6.1) is zero for risks that are perfectly (and positively) dependent. This is
formally defined as follows.

Definition 6.10 (Comonotonic additivity) The risk measure p[-] is comonotonic additive
if
plXi + -+ X = plXi] + - + p[X], (6.4)

where Xy, . .., X, are comonotonic risks (i.e., perfectly positively dependent risks). The risks are called
comonotonic if there exist a random variable Z and nondecreasing functions by, . . ., b, such that
X, =hi(2),i=1,...,n Inparticular, comonotonic risks can always be represented as

Xi :Fl_l(U)v"'aXn :FJI(U)v

where U is a random variable from the uniform (0,1) distribution and F;(-) is the distribution
of X.. (]

VaR and expected shortfall risk measures (formally defined later) are comonotonic additive.
Itis important to note that the risk measure might fail subadditivity butstill satisfy comonotonic
additivity (e.g., this is the case of VaR in some situations). For coherent risks, p[Xi +- - - +X,] <

plXi]+- -+ p[X,], and thus p[X;]+ - - - + p[X,], is the worst possible case for p[X; +- - - +X,].

A class of coherent risk measures with such a property is the so-called spectral risk measures (see
Acerbi 2002, Tasche 2002, and Kusuoka 2001). In fact in (Acerbi, 2002, theorem 7) they show
that the class of spectral risk measures can be identified as all the coherent measures which are
also law-invariant and comonotonic additive.

6.2.3 VALUE-AT-RISK

The concept of VaR as a quantile of a loss distribution has become a benchmark risk measure
and is adopted by Basel regulations for setting the capital requirement. It allows addressing the
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question of what loss we can experience over a time period (i.e., 1 year for OpRisk) with a given
probability and is formally defined as follows.

Definition 6.11 (Value-at-Risk) 7he VaR of a random variable X ~ F(x) at the a-th proba-
bility level, VaR o [X], is defined as the a-th quantile of the distribution of X :

VaR,[X] = F7'(a) = inf{x: Pr[X > x] <1 —a} =inf{x: F(x) > a}
=sup{x: F(x) < a}. (6.5)

That is, VaR is the minimum threshold exceeded by X with probability at most 1 — cv. n

The above VaR is defined as the left-continuous generalized inverse of the distribution
function. This is to handle cases when a corresponds to a flat piece in the distribution (in this
case, VaR corresponds to the left end of the flat piece). In the case when o does not sit on a
flat piece, VaR is the ordinary inverse of F(x). Figure 6.1 illustrates VaR for the standard and
tricky cases such as a distribution with flat pieces or jumps. Alternatively, VaR can be defined
as the right-continuous generalized inverse

F~'"(a) =inf{x: F(x) > a} = sup{x: F(x) < a} (6.6)

that is, VaR would be the right end of the flat piece if o corresponds to this flat piece; see
Figure 6.1b as an example. We could also define VaR as a convex combination of left- and
right-continuous generalized inverse distributions. In this book (and in most of the literature),
we take the definition of VaR as F~1(a).

The VaR has the following obvious properties:

* VaR,, [X] < max[X] for any @ € (0, 1);
* VaR is monotonic: VaRo[X] < VaR,[Y]if X < V;

: e

F(a) F(a) F'*(a) F(a)

FIGURE 6.1 Calculation of quantiles: (a) continuous distribution; (b) distribution with a flat piece; (c)

the case of probability atom in distribution function
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* VaR is translation invariant, VaRo[X + ] = VaR,[X] + ¢
* VaR is positive homageneous VaRy[cX] = ¢ X VaRq[X].

The last two properties also follow from the following general relation.

Proposition 6.1 (VaR of transformed random variable) VR ofa random variable Y = g(X),
where g(+) is a nondecreasing function of a random variable X, can be calculated as

VaRa[Y] = ¢(VaRq[X]).

Proof': Let F(x) be a distribution of X. Then the proof is straightforward from the probability
transform Pr[X < F~!(«a)] = Prg(X) < g(F~'(a))]. L]

It is also easy to see that VaR is comonotonic additive, that is, there is no diversification for
perfectly dependent risks.

Proposition 6.2 (VaR comonotonic additivity) [f7risks X,,X;, ..., X, are comonotonic, then

VaRq[Xi + - 4+ X,] = VaR,[Xi] + - - - + VaR,[X,]. (6.7)

Proof: Comonotonic risks can always be represented as X; = F;'(U), where U is a random
variable from Uniform(0, 1) distribution Fyy(-) and F;(+) is the distribution of X;. Thus

VaRo[Xi + -+ X,] = VaRo[F ' (U) +--- + F, ' (U)] = VaR[g(U)],
where g(x) = F ' (x) + - - - + F;'(x). Given that g(x) is a nondecreasing function, we have
VaRa[g(U)] = g (Fy' (@) = gla) = F (@) + -+ F7 (o),

which completes the proof. n

Remark 6.2 (VaR is not a coherent measure) Iz is important to note that the case of perfectly
dependent risks is not necessarily an upper bound for VaR o [ X1 +- - -+X,] because subadditivity may
Jail for VaR. In general, VaR possesses all the properties of a coberent risk measure in Definition 6.7
except subadditivity. For some cases, such as a multivariate Normal distribution, VaR is subadditive.
However, in general, the VaR of a sum of risks may be larger than the sum of VaRs of these risks.
For examples and discussions, see McNeil et al. (2005); also see Examples 6.1 and 6.2. This has
a direct implication for measuring OpRisk. In particular, VaR calculated for individual portfolios
(e.g., business lines) may not be summed to produce the upper bound for the VaR of the overall risk.

A formal Basel II regulatory requirement for OpRisk capital charge refers to a VaR and
it can be justified using the following logic. The regulator’s objective is to ensure that capital
requirement against loss X is large enough so that the shortfall measure E[max[X — p[X], 0]] is
small enough. At the same time, the regulator should avoid requiring too much capital because
the capital has a cost for the bank. Thus, the regulatory capital p[X] can be determined as the
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solution of the following minimization problem (balance between low residual risk and low
cost capital):

min{E[max(X — p,0)] + (1 —a)p}, 0<a<l. (6.8)
p
The following elegant result justifies the VaR-based regulatory capital.

Proposition 6.3 (VaR as an optimal capital requirement) f oo € (0,1) does not correspond
to a flat part of the distribution of X, then

VaR,[X] = arg m}n{E[maX(X —p,0)]+(1—a)p}

and the solution is unique. In general, including the case when o corresponds to a flat piece in the
distribution of X, VaRy|X] is the lowest p which is a solution to

min{Elmax(X — p,0)] + (1 = a)p}.

In the case when o corresponds to a flat piece, the minimum is achieved for any p that satisfies
F(p) = o, that is, the smallest p in this case corresponds to VaR; otherwise, the minimum is
unique.

Proof :  This result is taken from Dhaene ¢¢ 2/. (2003) and an elegant proof based on geometrical
reasoning is presented by Denuit ez al. (2005, p. 70). n

This result supports the current Basel II regulatory choice of VaR. However, it is important to
note that here the VaR is not really used to measure risk but appears as an optimal requirement.
The risk controlled here is max(X — p, 0), which is measured by E[max(X — p, 0)].

VaR is certainly meaningful when the objective is to avoid the default event while the size
of the shortfall is not important. One can argue that for bank management and shareholders,
avoiding the default is the primary objective while the size of the shortfall in the event of default
is of secondary importance due to limited liability. If a bank has aggregate annual loss X and
provision (for this loss) 4, then VaR,[X] — A4 is the smallest additional capital required such
that the bank may default with a small probability at most (1 — «). For & = 0.999, this
means that a bank will have a capital sufficient (on average) to cover losses in 999 out of 1000
years.

As already mentioned, VaR is not a coherent risk measure in general. In particular, under
some circumstances, the VaR risk measure may fail a subadditivity property, that is, the diver-
sification

_ VaRalXi - £ X
VaR,[Xi] + - - - + VaR4 [ X))

D, =1 6.9)
may appear to be negative (see Embrechts ¢z 2/. 2009a,b). This may occur even for independent
risks when the risks are heavy-tailed. It was shown and discussed by Neslehovd ez a/. (2006)
that if independent risks are Pareto type, X; ~ F;(x) = 1 — x~ % C;(x), with the tail indexes
0 < \; <1, then

VaRo[X + -+ +X,] > > VaRa[X], (6.10)
i=1
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at least for sufficiently large ov. Here, C(x) is a slowly varying function, that is, C(#x)/C(x) — 1
when x — oo forall # > 0. The case of 0 < A; < 1 corresponds to infinite mean distribution,
that is, E[X;] = oco. There are many examples in the literature of subadditivity failure for
VaR; for illustration, we calculate two examples presented in Shevchenko (2011, examples 7.2

and 7.3).

@ EXAMPLE 6.1

Consider two independent risks
X ~ Pareto(3,1) and Y ~ Pareto(3,1),

where Pareto(3,4) is a distribution function F(x) = 1 — (x/a)~?. Using the
FFT numerical method, we calculate VaRyg 999[X + Y] and diversification Dy 999 as
defined in (6.1). The results for Dy 999 versus 3 that demonstrate negative diversi-
fication for 5 < 1 are presented in Figure 6.2.

Diversification at the 0.999 quantile

0.2 1

—0.2

-0.4

Diversification

—0.6

—-0.8

0.5 1 1.5 2 2.5 3 3.5 4

FIGURE 6.2 The diversification coefficient for X ~ Pareto(3,1) and Y ~ Pareto(3, 1) versus
Bs see Example 6.1 for details

@ EXAMPLE 6.2

In the case of VaR, the diversification might be present for some quantile levels and
might fail for other levels. In Example 6.1, the diversification is positive for 8 > 1.
For example, Dy999 =~ 0.27 for f = 4; note that in this case mean, variance,
and skewness are finite. Results for D, versus & when 8 = 4 are shown in Figure 6.3.
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Diversification versus quantile level

0.3
0.25
0.2
0.15

0.1 1

Diversification

0.05

0 T : | |

-0.05
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Quantile level

FIGURE 6.3 The diversification coefficient for X ~ Pareto(4,1) and Y ~ Pareto(4, 1) versus
quantile level; see Example 6.2 for details

It is easy to see that for high-level quantiles the diversification coefficient is positive
but for lower quantiles it becomes negative. [ ]

6.2.4 EXPECTED SHORTFALL

A VaR at a specified probability level o does not provide any information about the fatness of
the distribution upper tail. Often the management and regulators are concerned not only with
the probability of default but also with its severity. Therefore, other risk measures are considered
such as ES (sometimes referred to as the tail VaR).

Definition 6.12 (Expected shortfall) The expected shortfall of a random variable X ~ F(x) at
the a-th probability level ES,[X)] is

1

ES.[X] = i VaR, [X]dp, 6.11)

which is the ‘arithmetic average” of the VaRs of X from o to 1. (]
In general, the following identity is valid
1

ES,[X] = VaR,[X] + mE[max(X — VaR,[X],0)], (6.12)

because
E[max(X — VaR,[X],0)] = /max (VaR,[X] — VaR,[X],0) dg

= (1 - )ES,[X] — (1 — a)VaRa[X].  (6.13)
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A
Expected loss E[X]

<€ Y
< L

= /

Expected shortfall, ESj gg9

\ Value-at-Risk, VaR gg9

) 4

A 4

|
Pr[X>:VaR0_999]=O.OO1

Value of the annual loss, x

FIGURE 6.4 Illustration of the 0.999 Value-at-Risk (VaR) and the 0.999 expected shortfall (ES) of the
annual loss X with the probability density f(x)

This identity shows that the ES is not less than VaR
ES,[X] > VaR.[X]; (6.14)

for a simple illustration see Figure 6.4.
In the case of continuous distributions, it can be shown that ES, [X] is just expected loss
given that the loss exceeds VaR, [X].

Proposition 6.4 For a random variable X with a continuous distribution function F(x), we have
ES,[X] = E[X|X > VaR,[X]] = E[X|X > VaR,[X]],

which is the conditional expected loss given that the loss exceeds VaR, [X].

Proof :  Using Definition 6.12, the proof is trivial: simply change the integration variable to
x=Fy'(p). L]

For a distribution function Fx (x) discontinuous (i.e., with a jump) at the VaR,, [X] thresh-
old, we have more general relation expressions and

E[X|X > VaR,[X]] < ES4[X] < E[X|X > VaR,[X]], (6.15)

where the equality on the right side is achieved when @ = apy = Pr[X < VaR,[X]]; the
equality on the left side is achieved when a@ = a; = Pr[X < VaR,[X]]; and other cases
correspond to strict inequalities; for illustration, see Figure 6.5. This is proved in the following
proposition.

Proposition 6.5 For a random variable X the ES can be calculated as

ESa[X] = E[X][X > VaR[X]] - 24— 2

E[X — VaRo[X]|X > VaRo[X]]  (6.16)
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ay

a

F(a)

FIGURE 6.5 An example of distribution F(x) with a jump at VaR, [X]

or

o — of

ES.[X] = E[X|X > VaRa[X]] + E[X — VaRo[X][X > VaRa[X]],  (6.17)

11—«

where oy = Pr[X < VaR,[X]] and oy = Pr[X < VaR,[X]].

Proof :  For a distribution continuous at «, we have @ = ay = « and the above relations
simplify to the correct expression (given by Proposition 6.4)

ES.[X] = E[X|X > VaRa[X]] = E[X|X > VaR.[X]].

If there is a jump in distribution at level o, then oy < o < gy (see Figure 6.5), and relation
(6.16) can be proved using simple calculus and splitting the probability atom at « as follows:

1 ay 1
1 1 1
_— = — _ X
— /VaRP[X]dp — /VaRP[X]dp—i— — /VaRp[ dp

[e3

ES. [X]

ay

— 1—
= W TR, [X] + 1 EX]X > VaRa[X]].
—

11—«

Also, the relation (6.17) can be proved by the following splitting:

1

1 @
S, [X] = — / VaR, [X]dp = ﬁ / VaR,[X]dp — ﬁ / VaR,[X]dp

1 -«
« (74 ar
1 _ —
= ——YEXX > VaRa[X]] - 2 %LVaR, [X].
1 -« 11—«

Given that ¢y < a < ay, it is obvious from relations (6.16) and (6.17) that
E[X|X > VaR,[X]] < ES,[X] < E[X|X > VaR,[X]] is true (see Acerbi and Tasche
2002, proposition 3.2). (]
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This relation might look a bit complicated but is easy to understand from finite sample
estimators. Consider a sample of i.i.d. random variables Xj, ..., Xy and the corresponding
ordered sample X(; ) < -+ < X(v, ). Then, the VaR at level o can be estimated as X4 vy,
where £ = [Na/] is the smallest integer larger or equal to Naw. Then, in general (i.e., the sample
can be from distribution with jumps and there might be repeated values in a sample), the ES
(6.11) can be calculated empirically according to results based on the following asymptotic limit
of the empirical process of the weighted order statistics:

Zj'\ik X6m
E = lim ==/ ——. .
SalX] = Jim = (6.18)
At the same time, conditional tail expectation E[X|X > VaR,[X]] is calculated as a simple
average of losses larger than or equal to VaR which can also be empirically estimated and shown
to asymptotically satisfy the following relationship in the empirical process limit given by:

N
lim Y1 Xl >var, X))

> _
Eiz VaRalXl] = i, S Lxsvar., (]}

, (6.19)

which is clearly different from the ES estimator (6.18) if there are repeated samples at the level
« (i.e., there is a jump in distribution at VaR,, [X] as in Figure 6.5).

The relationship between ES and VaR (6.12) allows to reformulate Proposition 6.3 as
follows.

Proposition 6.6 (ES as the minimum of cost function) ES can be written as

ES. [X] = min {IIE[maX(X 0] + p} ,

P -«
where the smallest p solving the minimization problem is VaR ,, [X].

Proof : This follows directly from Proposition 6.3 and identity (6.12); also see (Rockafellar
and Uryasev 2002, theorem 10). (]

Note that this function is valid for continuous and discrete distributions. Moreover the function
—E[max(X — p,0)] 4 p is convex as a function of p.

ES is a coberent risk measure. It satisfies coherent risk measure axioms in Definition 6.7, that
is, subadditivity, monotonicity, translation invariance, and positive homogeneity. It is, comonotonic
additive.

* Translational invariance, positive homogeneity, and monotonicity follow from correspond-
ing properties of VaR and ES definition:

1

1
1 1
ESu[X + 4] = T—a VaR,[X +aldp = a + 1o /VaRP[X]dp

=a+ES,[X], forany z€R, (6.20)
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ESq [AX

l—a/vaR XX|dp = Ai/VaR \dp

= AES,[X], forany A >0 (6.21)

and if X < Y, then
1

ES[X] = ﬁ VaR, [X]dp

1
< / VaR,[Y]dp = ES.[Y]. 6.22)

* ES is comonotonic additive, that is, for comonotonic (perfectly positively dependent) risks
Xi,...,X,, the ES of their sum X; + - - - + X, is the sum of individual ESs

ESa[X + -+ X,) = ES,[X1] + - - - + ES,[X,)- (6.23)

This follows from the comonotonic additivity property of VaR
1

1
ESq[Xi + - +X,) = f VaR,[X; + - - + X,]dp

1
1 n
= 1_a/2VaRP[X]dp

= ES.[Xi] + - - + ES4[X,]. (6.24)

ES is not just subadditive but also convex, and this is proved in the following proposition.

Proposition 6.7 ES is a subadditive and convex risk measure.

Proof:  Using Proposition 6.6 with p = AVaR,[X] + (1 — A)VaR,[Y], A € (0,1), and

convexity of function max(x — 4, 0), we obtain
ESa[AX + (1 — A)Y] = AVaRa[X] + (1 — A)VaRa|[Y]
+ ﬁE[maX(AX—Q— (1= A\)Y — AVaRa[X] — (1 — A\)VaRa[Y], 0)]
< AVaRa[X] + (1 — A)VaRa[¥] + ﬁE[maX()\X — AVaRa[X],0)]
+ gﬂi[max(lf ~ VaRa[Y],0)]
— AESa[X] + (1 — NESa]Y]. (6.25)

This proves the convexity and in the case A = 1/2 (also using positive homogeneity) gives the

subadditivity
ES.[X + V] < ES,[X] + ES,[Y].
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The fact that ES is subadditive and comonotonic additive implies that the case of perfectly
dependent risks is the worst-case scenario for ESy[Xi + - - - + X,].

™ EXAMPLE 6.3 ES for LogNormal distribution.

Assume that loss X is from LogNormal density £ (x; f1, 0), i.e., In X is from Normal
distribution with mean p and variance o2, Then VaR is

go = VaR,[X] = exp(pu + 0@ (a))

and ES is calculated as follows:

1 Vi 1 ¥
= — . — pntoy
ES. T—o /xf(x, W, 0)dx T—o e o(y)dy
9a (Inga—n)/o
]. 1.2
=1 ae“+5” O(o — &7 (a)). (6.26)

Here, ®(-) and @~ (+) are the standard Normal distribution and its inverse, respec-
tively; ¢(-) is the standard Normal density, and we used the closed form integral

[ee]

/ O p(x)dx = 27 (v — a). (6.27)

a

™ EXAMPLE 6.4 ES for exponential distribution.

Assume that loss X is from exponential distribution F(x) = 1 — exp(—Ax), that
is, with the density f(x) = X exp(—Ax). Then VaR is

go i= VaRo[X] = F~'(a) = —§ In(1 — a)
and ES is calculated as

ES,[X] = ﬁ / xhe Mdx = VaRa[X] + % (6.28)

Jo

Note that the difference between ES and VaR does not depend on «; this is because
the exponential distribution is memoryless. ]
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6.2.5 SPECTRAL RISK MEASURE

Having defined the class of ES risk measures and demonstrated several examples of LDA models
under this risk measure, we now observe that ES is a special subclass of a larger class of risk
measures known as the Spectral Risk Measures (SRM) as given in Definition 6.14.

It is important at this stage to make the following technical clarification on the use of the
notation, ES, Conditional VaR (CVaR), and Tail Conditional Expectation TCE (or CTE). As
stated, we treat the ES as defined by the following form:

1
BSo[X] = / VaR, [X]dp. 6.29)

In addition, one often reads about the notions of CVaR,[X] and TCE,, [X], which has the
following definitions:

CVaR,[X] = TCE,[X] = E [X|X > Fy ()] . (6.30)

In general, one will find that CVaR is not a coherent measure of risk in the most general context.
However, in the case of a strictly continuous loss distribution, one will have equivalence between
the CVaR and the ES measures, which will be coherent.

Furthermore, we note that in the case that &« = 0, one can see that at level @ = 0, ESy[X]
can be extended to be understood as the worst-case loss scenario given by

ESy[X] = ess. sup[X], (6.31)

where ess. sup stands for the essential supremum defined in Definition 6.13 below.

Definition 6.13 (Essential Supremum and Essential Infimum) Consider a measurable func-
tionf : X — R, where X is a measure space with measure |1, the essential supremum is the smallest
number & such that the set {x : f(x) > o} has measure zero. If no such number exists, then the
essential supremum is 0. ]

Remark 6.3 The essential supremum is the generalization to measurable functions of the maximum.
The main difference is that the values of a function on a set of measure zero do not affect the essential
supremum. The essential supremum of the absolute value of a function |f| is usually denoted | |f || v
and this serves as the norm for L-co-space.

Returning to discussion on risk measures, next we turn to the question of how one may
utilize the notion of the ES risk measure to extend to a wider class of risk measures. The answer
to this question was studied by Acerbi (2002).

To build new risk measures we first consider the result in Proposition 6.8 (see Acerbi 2002,
proposition 2.2).

Proposition 6.8 (Linear Combinations of Risk Measures) Consider the set of risk measures
{pi}_,, then any convex combination given by

p= Za,-pl- (6.32)
i=1
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for weights subject to the restrictions {c,},_| and Y, | o; = 1 will produce a risk measure. In
addition, if pq, is a risk measure defined with respect to a parameter o € [2, b], then for any measure

Al on |a, b) with ff du(a) =1, p= f; Ap(a)po is also a risk measure.

The observation of this result allows one to then define a general family of risk measures
based on considering the measure 4pi() for o € [0, 1]. As observed by Acerbi (2002), if the
measure dji(c) is selected to satisfy some basic integrability conditions, then one may now
define a class of risk measures based on the ES risk measure as follows:

1

MM[X]:/JZM( )(1 - a)ESa[X] / /dpF ). (633)

0
This will be a risk measure so long as the following condition is satisfied,

1

/ 1 —a)du(a) =1. (6.34)

0

Then under the same integrability conditions, one may apply the Fubini~Tonelli theorem to
swap orders of integration in the definition of the class of risk measures such that one has

X = [ dpE pholo) = M 1x) (635)

in other words, parameterization in terms of a risk measure () can be transformed into a
parameterization in terms of a function ¢ typically termed the “risk spectrum” given by ¢(p) =

1 o .
fp dp(a) and normalization condition

[ o= [ dutarr = oy =1 (6.36)

This realization led to the definition of the class of Spectral Risk Measures (SRM).
Definition 6.14 (Spectral Risk Measures) Consider an LDA model for an OpRisk single loss
process with annual loss random variable Zy ~ Fz,(z) with severity distribution X; ~ Fx(x)

Jor all losses X; and frequency distribution N~ Fy(n). The SRM for a weight function
¢ :[0,1] — R is given by

1
SRM_, (¢ / 6(s)VaR, [Zy] ds (6.37)
0

withN't € (1,00) and function p(1 — 1/t) < Ke=/PH1=¢ for some K > 0 and e > 0. n
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Remark 6.4 Tong and Wu (2012) showed that if an individual has a Constant Absolute Risk
Aversion (CARA) utility function with coefficient of absolute risk aversion &, then the SRM should

be given according ro

1

SRM,, () = / 6 (5)VaR, s,

K

where the weighting function (visk spectrum or risk aversion function) ¢, (s) is given by

1—5

00 = (1970 (115 ) T

with

Ee(1=n)

B(k) = T

Note that if one considers ¢(t) = 1Vt € [0, 1], then the SRM resumes to the ES.

Dowd and Blake (2006) explain that the following three properties are required to be
satisfied in order for a SRM to be coherent:

1. Non-negativity. The risk aversion function ¢,;(s) > 0 for all , s € [0, 1];

2. Normalization. The risk aversion function ¢ (s) should be normalized as follows:

1
/¢o(s)ds =1 (6.38)
0

3. Increasing. The risk aversion function @,(s) should be increasing such that for any
k € (0,1), one has ¢y (51) < pp (52) forall K <51 <55 < 15

These should therefore act as a minimal set of requirements for risk managers to consider
when specifying their risk aversion function. The last condition simply implies that larger losses
should be no smaller than weights attached to smaller loss amounts. This last point, simple as
it may be, is the key to coherency of ES and SRM and also the reason why VaR fails to be a
coherent risk measure.

6.2.6 HIGHER-ORDER RISK MEASURES

As observed, the VaR is not a coherent risk measure since the convexity requirement reflects the
view that diversification should not increase risk. It has been observed that the VaR will not be
a coherent risk measure; consequently, alternatives to VaR have been suggested and investigated
such as ES and SRM.

Among the risk measures that satisfy the coherency properties, the notions of CVaR have
been already considered. There are also other measures such as Maximum Loss described by
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Pflug (2000), as well as other coherent risk measures that are based on one-sided moments such
as described by Fischer (2003) and the deviation d-based risk measures discussed by Rockafellar
et al. (20006).

Other notions that extend the idea of the Average VaR (AVaR or TCE), which in the
continuous loss distribution case corresponds to the coherent risk measure ES, have also been
considered such as the general higher-order moment representations by Krokhmal (2007).
Such higher moment risk measures were also considered in the dual representation under the
Kusuoka form by Dentcheva e# al. (2010). The definition of the class of Higher Moment
Coherent Risk (HMCR) measures is given in Definition 6.15 (see Krokhmal 2007). Noze that
throughout the remainder of this section, the loss distribution will be assumed continous such
that the AVaR will be equivalent to the ES.

Definition 6.15 (Higher Moment Coherent Risk Measures) Consider the probability space
(Q, F, ) with sample space Q, sigma algebra F, and probability measure pi. Then consider the lin-
ear space X of F -measurable function mappings, that is, loss random variables given by X : © — R
such as x = L, (0, F, P) for some p € (1,00). Then for some o € (0, 1), consider the function

1

1), (6.39)

where the p-norm is defined by || X||, = (E\XV’)VP. Then the HMCRs are defined by

HMCRy,o(X) = min (y + ﬁH(X - u)+||p> . p>1, ac(0,1). (6.40)
L]
One may make the following remarks about the properties of the HMCR measures.
Remark 6.5 The HMCR measures satisfy the following properties:
* For p < q and loss random variable in the space X € L, one has
HMCR, o(X) < HMCR, (X). (6.41)

» The HMCR measures are tail measures or risks, that are coberent measures of risk. They can
therefore be seen as generalizations of the convex but not positive homogeneous or translation
invariant risk measures considered by Bawa (1975) known as the Lower Partial Moments and

given by
LPM,(X;0) =E[(X —)*]", p>1,r€R. (6.42)

o The HMCR measures are also related to the Central One-Sided Moment (COSM)-based risk
measures considered by Fischer (2003) and defined by the class of coberent measures of semi-L,

type given by

COSM, 5(X) = E[X] + B||(X — E[X])||,, p>1, 8>0. (6.43)



124 CHAPTER 6 Risk Measures and Capital Allocation

These COSM risk measures are central one-sided moment risk measures whereas the HMCR
measures are tail-based risk measures;

* An advantage of HMCR measures when compared to other coberent risk measures is that their
tail cutofff point is adjustable to the chosen level o € (0, 1).

Krokhmal (2007) pays particular attention to the second-order HMCR case where p = 2,
which displays remarkably similar characteristics to the CVaR while at the same time measuring
the risk relative to the second-order moments of the loss distributon. Dentcheva ez /. (2010)
consider a dual representation also known as the Kusuoka representation. This involves defining
the notion of a Kusuoka measure of risk given in Definition 6.16 (see Kusuoka 2001).

Definition 6.16 (Kusuoka risk measure) Consider the probability space (U, F, p) with sam-
ple space ), sigma algebra F, and probability measure 1. Then consider the linear space X of
F-measurable function mappings, that is, loss random variables given by X : Q@ — R such as
X = L, (2, F, P) for some p € [1,00). Then a Kusuoka risk measure denoted by p(Z) is defined
Jfor a convex set of measures M in the set P((0, 1]) of probability measures on (0, 1] such that for
all loss random variables Z one has

1

/ AVaRo (Z)m(da), (6.44)

0

where AVaRy, is the average VaR at level cv. ]

Remark 6.6 It was shown by Kusuoka (2001) that the Kusuoka representable risk measures are
coberent when defined on Lo (U, F, P), and then by Dentcheva et al. (2010) showed that this
result could be extended to risk measures defined on spaces L,. In addition, it was shown that the
HMCR class of risk measures has a Kusuoka representation.

The AVaR plays a central role in the description of every coherent risk measure via the
Kusuoka representation. AVaR is a coherent risk measure, hence it is preferred in stochastic
optimization. However, there are other coherent risk measures, generated from AVaR via the
Kusuoka representation. To further understand the role played by the AVaR, consider the loss
random variable X € £,(€2, F, P) and consider the tail of the severity distribution for this loss
random variable given by,

Fe(v) = Pr[X < 1], (6.45)

and,

FP(v) = / FNa)da, k> 2. (6.46)
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Then define the inverse F)((_l) (o) =1inf{v : Fx(v) > a} for a € (0,1) where the AVaR at a
level o is given by

AVaR, (X) = mF)((_Z) ()
L (6.47)
= 7/VaRS[X]d:,
11—«

«

where one can identify F)((_z) () as the absolute Lorenz function. One can then use the result
of Kusuoka (2001) to obtain the following alternative extremal representation that generalizes
the AVaR. To see this, consider the AVaR, (X) given by

AVaR,, (X) = I i - sgﬁ {Va - F)((z)(u)}

s {rasle 0],

which can be generalized to the representation given by the HMCR measure according to

(6.48)

. 1 T
;2&{@”(1/—)() |P—1/}, p>1. (6.49)

Dentcheva ez al. (2010) demonstrated that the resulting Kusuoka representation can then be
obtained by considering the risk measures defined with respect to the convex set of measures

M given by M = M, with p~' 4+ 47" = 1 such that

1 1 9
M, = ueP((O,l]):/ /% da<ab. (6.50)
0

e

6.2.7 DISTORTION RISK MEASURES

Another popular class of risk measures used in insurance are the so-called distortion risk measures
introduced by Wang (1996). Distortion risk measures form an important class; they include
Value at Risk, Conditional Tail Expectation and Wang’s PH transform premium principle.
Before definition the distortion risk measure, we first need to introduce the definition of dis-
tortion function.

Definition 6.17 (Distortion function) A distortion function g(-) is a non-decreasing function
with g(0) = 0 and g(1) = 1 such that g : [0,1] — [0, 1] . [

One can then define the class of distortion risk measures based on the class of distortion
funtions as follows in Definition 6.18.
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Definition 6.18 (Distortion risk measure) For a non-negative random variable X from a dis-
tribution F(x), the distortion risk measure is defined as

where F(x) = 1 — F(x) and g(-) is a nondecreasing distortion function such that g(0) = 0 and
g() =1 L]

Remark 6.7 The distortion risk measure can be interpreted as adjusting the true probability mea-

sure to give more weight to higher risk events. Hence, the distortion function g(F(x)) can be thought
of as a risk adjusted decumulative distribution function. Since X is a non-negative random variable,
p(X) = B [X] where the subscript indicates in this case the change of measure for the expectation.

The properties and several examples of viable distortion functions ¢(-) are provided in the
discussions in (Wirch, 2001).

This risk measure is positively homogeneous, translation invariant, monotonic, and comono-
tonic additive. It is also subadditive (i.e., coherent) if distortion function g(+) is concave.

Definition 6.19 A real-valued function g(x) defined on an interval I is called convex if

gl + (1= 1)x2) < ag(r) + (1 = £)g(x2)

Jort € [0,1] and all x,,x, € I, that is, the graph of the function lies below the line segment joining
any two points of the graph. Similarly, the function g(x) is called concave if

gloa + (1= #)x) > #g(x) + (1 = £)g(x2)

Jort € [0,1) and all x1,xy € I, that is, the graph of the function lies above the line segment joining
any two points of the graph. (]

The well-known risk measures such as VaR and ES are the distortion risk measures for
specific choice of ¢(). In particular, for a confidence level & € (0, 1), VaR corresponds to

g(x)_{ 1, if x>1—q, 651)

0, otherwise,

which is not a concave function; and ES corresponds to a concave distortion function

¢(x) = min (1, 1 X ) . (6.52)

—

For more details on distortion risk measures, see Denuit ez a/. (2005, sections 2.6.2 and 2.6.3).

6.2.8 ELICITABLE RISK MEASURES

Recently, the notion of an elicitable risk measure has been introduced by Bellini and Bignozzi
(2013) as an adaption to financial risk measures from the more general point estimator setting
developed by Gneiting (2011), Osband and Reichelstein (1985), and Lambert ez a/. (2008).
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To understand this class of risk measures one must first consider the notion of an elicitable
function, which was defined with respect to forecast point estimators under a decision theoretic
framework by Lambert ez a/. (2008). Therefore, to understand this class of risk measures we
present the general decision theoretic structure introduced before considering this structure for
financial risk measures. In particular, we will consider the formal definition of the decision
theory framework, the scoring function, the consistency of the scoring function, and then the
class of elicitable scoring functions. We start with the notion of a decision theoretic structure,
as discussed in detail by, for instance, Berger (1985).

Definition 6.20 (Classical decision theoretic structure) Consider the following components of
the decision theoretic structure:

* Space of outcomes of the random process known as the observation domain, O;
* A class of probability measures F defined on the observation domain;
o The action space A;

* A loss function that maps the cross space of actions and observations for a loss/reward given
generically by

L:0Ox A~ [0,00). (6.53)

The loss function quantifies the consequence that would be incurred for each possible decision
Jor various possible values of the ‘state of nature” observed in the observation space of the loss
process.

m

Typically, an action in this context is the formation of an estimator, generically denoted
by 6(X), which is a function of the random loss process. The loss process itself can be assumed
to involve a probability distribution X ~ Fyx(x; 6) with true (unknown) state of nature, char-
acterized, for example, by parameter(s) 6. The loss function then helps one to decide upon the
appropriate choice of action that is, to make a decision regarding the estimator. The typical loss
functions include the following:

« Squared loss function: L(6,60) = (0 — 6%

« Absolute error loss function: L(6,60) = ||0 — 8];
* L, loss function: L(6, 6)=16—-4 5
* Binary loss function: Z(6, é) =1[0 # é]

If one then considers, for a given loss function choice, a decision rule (action) with a small
“expected (long-term average) loss” obtained by using the estimator 0(X) for different real-
izations of the loss process X, then this leads one naturally to the notion of a statistical risk
function in statistical decision theory given by

R(0.6) = [1(6,0)]. (6.54)

Using this general decision theoretic structure, Gneiting (2011) makes a particular choice
in which it is assumed that the observation and action spaces coincide, thatis, O = A € R;
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note that in the remainder of this section we assume these spaces to be the real line. Then one
can define a scoring function analogously to the notion of a loss function in a decision theoretic
setting.

Then the following assumptions are made about the scoring (loss) function S(x, y):

* [A1] The scoring function S(x, y) is positive S(x,y) > 0 with equality when x = y;
* [A2] The scoring function S(x, y) is a continuous function in x;

* [A3] The partial derivative with respect to the first argument exists and is continuous
whenever x # y.

In addition, it will be desirable to consider scoring (loss) functions that are homogeneous (scale
invariant) such that

S(ex, ¢y) = |t|[’S(x,y), Vx,y € R,c € R. (6.55)

From this general statistical decision theory setup, one may now consider a functional (i.e.,
a statistical function), which is, for instance, a set valued mapping, denoted 7', from a class of
probability measures (distributions) F to a Euclidean space. From this notion, one may define
a consistent scoring function as given in Definition 6.21.

Definition 6.21 (Consistent scoring function) A scoring function S(x,y) is consistent for a
Sfunctional T relative to a class of measures (distributions) F if it satisfies the condition

Er[S(z, V)] < Er [S(x, )] (6.56)

Jor all probability distributions F € F, all t € T(F), and all x € R. L]

Note that strict consistency of a scoring function arises when the scoring function is consistent
and equality in Equation (6.56) implies that x € 7'(F).

One may now observe that the class of the scoring functions, that are consistent for a
certain functional 7 is identical to the class of the loss functions under which the functional is
an optimal point forecast.

From the notion of a consistent scoring function, one may now define the concept of an
elicitable function, as given in Definition 6.22.

Definition 6.22 (Elicitable function) A functional T is elicitable with respect to a class of
measures (probability distributions) F if there exists a scoring function (loss function) S which
is strictly consistent for the functional T relative to F. That is possibly a set valued functional
T : Mi(R) — R, for the set of probability distributions on the real line, My (R), is measur-
able if it satisfies

T(F) = argmin / S(x,y)dF(y), (6.57)
where the scoring function satisfies the conditions A1-A3 defined earlier. (]
Simple examples of elicitable functionals include the mean, which minimizes the quadratic

score (loss) function; the quantile interval, which is the set of minimizers of a piecewise linear
score function; and the expectiles, which minimize the asymmetric piecewise quadratic score.
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One may now define an important class of loss distribution functionals that are of direct
importance when considering risk measures, as studied by Thomson (1979) and Saerens
(2000); see Theorem 6.1.

Theorem 6.1 (Quantile elicitable risk measures) Consider the class of loss distributions F on
the interval 1 C R and the value o € (0, 1). Then the following holds:

* The a-quantile function is elicitable relative to the class of loss distributions F;

o If the scoring function S(x, y) satisfies conditions A1-A3 on domain I X I, then S is consistent
Jor the a-quantile relative to the class of compactly supported loss distributions on 1 if and only
if it has the form

S(x,5) = Ilx 2 9) (g(x) —g)) (6.58)

Jfor a nondecreasing function g on 1.

Remark 6.8 (Elicitabilty and the relationship with backtesting risk measures) [t was 0bs-
erved by Bellini and Bignozzi (2013) for the case of financial risk measures, that it is valuable
to consider the elicitability property as it provides a natural methodology to perform backtesting of
risk measures. Here, we define the notion of backtesting as the activity of periodically comparing
the forecasted risk measure with the realized value of the variable under interest, so as ro assess the
accuracy of the forecasting methodology.

A typical example of backtesting involves the VaR measure in which the VR, [X] = g4(X)
where g, (X) denotes the quantile of the loss distribution for a loss random variable X ~ F.
Then given a model estimated VaR, the question becomes how one may test such an estimated
VaR using historical data. A typical approach to backtesting of an estimated VaR measure in
OpRisk is to consider counting the number of violations during a fixed time interval (in years
for OpRisk) and then comparing this to a theoretical model estimated quantity through a
formal binomial hypothesis test. Note that a positive count is recorded for each violation of the
historical empirical losses in given sets of periods when compared to the model VaR, that is, in
this case, a violation in a year or so period of interest occurs when the realized order statistic
for the quantile level a at which one calculates the model-based VzR falls below the model
estimate.

This concept of backtesting of the risk measure can be generalized to more complex risk
measures p(x) as long as they satisfy the condition that they are elicitable. Bellini and Bignozzi
(2013) observe that an important example of a coherent and backtestable risk measure is the
class of expectile risk measures, given in Definition 6.23.

Definition 6.23 (Expectiles) The r-level expectile for a random variable Z, denoted by .., is a

parameter that minimizges the expectation given by
E [m “1[Z < 1| (Z — ) (6.59)
fork € (0,1). [

Remark 6.9 Generally, the k-level expectile . is neither the VaR nor the ES and does not have a
simple intuitive explanation.
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One can observe that p,; occurs at a quantile level of the annual loss Z, denoted by g,; and
typically one has k < g,;; hence, one can also see that j1,; also minimizes the expectation

E((gx =12 < pe]) (Z = )] - (6.60)
Newey and Powell (1987) then showed that there is a one-to-one relationship between the
expectiles and the ES risk measure. In the simple case that E[Z] = 0, one would obtain the
relationship
ESalZ) = (14— — (6.61)
feY = (1 — 25)%{ M- .

Note: Typically, this will not be a case of interest in OpRisk settings, and more general expres-
sions may be obtained in the earlier mentioned reference. This relationship provides interesting
alternative statistical methods to perform estimation of ES for OpRisk settings based on quan-
tile regressions.

Definition 6.24 (Expectile risk measures) The expectiles can also be shown to correspond to a
class of coherent and elicitable risk measures that correspond to a scoring function given by

S(x,)/) = CUI},>X(x *}’)2 +(1— a)Hy<X(x *}’)2' (6.62)

A second example of a nonstandard elicitable risk measure is the class of measures known
as the A-VaR as defined by Frittelli ez /. (2014) and given in Definition 6.25.

Definition 6.25 (A-Value-at-Risk) The elicitable A-VaR measure is given by considering the con-
tinuous and strictly decreasing mapping A : R — (0, 1) satisfying the conditions that A(x) — 1~
for x — —00 and A(x) — O for x — o00. Then one can define the functional T (F) as the
A-VaR measure with respect to a class of loss distributions F € F according to the definition

T(F) = inf {m € R : Fx(m) > \(¢)}. (6.63)

The corresponding scoring (loss) function for this tail functional (visk measure) is given by

S(x,y) = (x =) " = o), (6.64)
with
o(x) = /A(:)ds. (6.65)
y
[ ]

6.2.9 RISK MEASURE ACCOUNTING FOR
PARAMETER UNCERTAINTY

Typical risk models are parameterized by a generic parameter vector @, where the true value
of the parameter 6 is unknown and should be estimated. It is expected that the uncertainty
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in parameters should increase the capital. A convenient way to deal with this problem is to
model parameter € by a random variable vector ® with its own distribution. Consider risk X
with conditional density f(x|®), where ® is a random variable vector from 7(8). Then the
predictive density of X is

= / £(x|0)7(0)40 (6.66)

and we can calculate a capital using some risk measure p[X] based on this distribution.

Denote a risk measure based on the conditional distribution 7 (x|0) as p[X|®]. It is pos-
sible to get the following useful result for a risk measure that can be represented as a distortion
risk measure (see Definition 6.18)

plX] = Ee[p[X]O]] (6.67)

if the distortion function g(-) is concave. This can be proved using Jensen’s inequality’ as
follows:

7g (F(y))dy = 7 ([ Folorioras) &
> [ (oo /OO £(F016))dy = Eoo[X|O)]. (6.68)

One can also consider risk measure p[X|®] as a function of a random variable vector ©;
find the distribution of p[X|®]; and form a predictive interval [Z, U] to contain the true value
with a probability ~:

Pr[L < plX|®] < U] =1, (6.69)

or form a one-sided predictive interval Pr[p[X|®] < U] = ~. Then it can be argued that
the conservative estimate of the capital accounting for parameter uncertainty should be based
on the upper bound of the constructed predictive interval. However, it might be difficult to
justify a particular choice of confidence y. One should answer the question as to whether it is
conservative enough to use, for example, v = 0.95 for estimation of 0.999 quantile.
Modeling parameter 8 by a random variable vector ® corresponds to the Bayesian inference
approach. In this case, 7(@) would be a posterior distribution for given observed data. The
frequentist analogy is to replace parameter @ by its point estimator 6, which is treated as random.

Remark 6.10

* Note that VaR is a distorted risk measure with a function g(-) given by (6.51), which is neither
concave nor convex. ES is a distorted risk measure with g(-) given by (6.52), which is concave.
Thus, inequality (6.67) is guaranteed for ES. However, it is not true in general for VaR; see
Example 6.5;

ensen’s inequality for a random variable Z states that o(E[Z]) < E[p(Z)] if ¢(+) is a convex function and
inequality is reversed if ¢(-) is concave.
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* Assuming that the distribution parameter has some distribution itself is also known as mixing.
As a result, the unconditional distribution typically has a heavier tail than the conditional one;

see Example 6.5.

W EXAMPLE 6.5 Exponential distribution with the Gamma distributed parameter

Assume that for a given parameter A, loss X is from the exponential distribution
F(x|A\) = 1 — exp(—Ax), that is, with the density f(x|\) = Aexp(—Ax). Also
assume that parameter A is modeled by a random variable A from the Gamma dis-
tribution Gamma(a, 1/3) with the density denoted 7w(\). Then the unconditional
density of loss X is

£ = [ fEnmar

[ee]

_ 604 —Axya—1 —A\j3
= o) e AT e
0
_ B [ ya,~rw+8)
= e A% dx
0
B Y T(a+1)
~ D(a) (x+ )t
/BCM
= i fﬂ)w, (6.70)

which is a density of Pareto distribution Pareto(cv, 3)

F@y_1—<1+;>(a

VaR,[X] = <exp <; In(1 — q)) - 1) . 6.71)

Thus,

The CVaR, VaR, [X|A], is just the inverse of the exponential distribution
1
VaR, [X|A] = —Xln(l —a)

Given that A is from Gamma(cr, 1/ ), Q,(A) = VaR,[X|A]is from inverse Gamma
distribution with the shape parameter v and scale parameter —3 In(1 — ¢). Then it
is easy to find the quantiles of Q,(A) and other characteristics such as the mean:

_Bn(1—4q)

E[Q() = -"——%, a>1. 6.72)




6.3 Capital Allocation 133

Comparing (6.72) and (6.71), it is easy to see that VaR, [X] is not always larger
than E[VaR,[X|A]]. It depends on the shape o and quantile level 4. It is easy to
find that

VaR,[X] > E[VaR,[X|A]] if g€ [g.(a),1), (6.73)

where ¢.(a) = 1 — exp(ay,) and y, is a solution of A(y) = exp(—y) + ya/
(¢ —1) —1 =0,y < 0. Conversely,

VaR,[X] < E[VaR,[X|A]] if 4 € (0,4.(a)). (6.74)

The function ¢.(«) is presented in Figure 6.6. One can see that for large o, only
small quantile levels will break the inequality (6.73). However, for « — 1, only
large quantiles g, — 1 will have loading for parameter uncertainty.

1

0.98 1

0.96 1

0.94 1

0.92 1

0.9

Critical quantile level, g,

0.88 1

0.86
0 4 8 12 16 20

Shape parameter, a

FIGURE 6.6 Critical quantile level ¢, versus shape parameter o; see Example 6.5 for details

6.3 Capital Allocation

Bank capital should be allocated to the various levels within a bank. The allocated capital can
be used by risk managers as a mechanism to provide incentives for better risk management.
Risk allocation is closely related to the choice of risk measure but in addition should account
for diversification in a risk collection. In this section, we treat the issue of risk allocation with
a focus on cases of VaR and ES risk measures.

Consider a collection of risks X7, . . ., X,,. If the risk measure p[-] is chosen, then risk cap-
ital can be quantified for each risk p; = p[X;]. If these risks are combined into one business
(collections), then the total capital for the business is p[X; + - - - + X,], which is less than or
equal to p; + - - - + p,, for coherent risk measures. After the total capital is measured by p[-], it
is important to answer the question as to how much a risk cell 7 contributes to the total capital.
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Calculation of the bank overall capital p[X], where

X:X1++Xm

is the annual loss in a bank over the next year and should be followed by an important procedure
of allocation of the capital into risk cells in such a way that

plx] = 1L, (6.75)
Here, 11, denotes the capital allocated to the i-th risk cell. To formalize this statement, define

the allocation principle as follows.

Definition 6.26 (Allocation principle) An allocation principle is a mapping of a collection of
risks X, i = 1,2, ..., n into unique allocations II; = IL[Xy, ..., X,], i =1,..., nsuch that

ZHi = plX].

Capital allocation II; can be used for performance measurement providing incentives for
a business to improve its risk management practices. Naive choice II; = p[Xj] is certainly not
appropriate because it disregards risk diversification. Moreover, the sum of p[X;] adds up to p[X]
only in the case of perfect positive dependence between risk cells. In this section, we present two
popular methods, the Euler principle and marginal contribution, to allocate the capital.

6.3.1 COHERENT CAPITAL ALLOCATION

Similar to defining a coherent risk measure using a set of axioms, a coherent allocation principle
can be defined. A set of axioms (argued to be necessary properties of a reasonable allocation
principle) are introduced by Denault (2001).

Definition 6.27 (Coherent allocation axioms set 1) An allocation principle is coberent if it
satisfies the following three properties:

* No undercut. For any subset M of {1, ..., n}
el
ieM ieM
o Symmetry. If for any subset M of {1, ..., n} that excludes risks i and k,
PG+ X =p X+ X,
jeM jeM

then 11; = 11;. That is, if by joining a subset M, risks i and k make the same contribution to
the risk capital, then 11; = 11;

* Riskless allocation. If X; is riskless, that is, X; = «, then 11, = pla] = a.
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Remark 6.11

o While the risk measure of the i-th risk p; = p|[X;| does not depend on other risks, the contribution
of this risk to the total risk p[ X, + - - + X, is II; = IL,[Xy, . .., X,), which depends on all

other risks;
* Often we are interested in non-negative allocation that satisfies 11, > 0 fori =1,.. ., n;

* Note that we define loss as a positive random variable, that is, cash amount corresponds to a
negative value.

The proposition is that the three axioms in Definition 6.27 are necessary conditions of the
fairness of allocation principle. These conditions can be justified as follows:

* No-undercur ensures that no risk can undercut the proposed allocation. An undercut is the
situation when a capital allocation to a risk is higher than the amount of capital this risk
would face if it were an entity separate from a collection of risks. If a risk joins the collection
of risks (or any subset of the collection), then the capital of the collection increases by no
more than the capital of this risk. In addition, the property ensures that the coalitions of
risks cannot create an undercug;

* Symmetry ensures that risk allocation depends only on its contribution to the risk within a
collection and nothing else;

* Riskless allocation means that riskless position should be allocated a capital exactly the same
as its risk measure. It also means that allocated capital decreases by the amount of increase
in a cash position.

A different set of axioms is considered by Kalkbrener (2005), who assumes that capital
allocation II; depends on X; and X only; we denote this allocation as p[X;, X] = II,.

Definition 6.28 (Coherent allocation axioms set 2)

* Linear aggregation. The risk capital of the portfolio (collection) of risks equals the sum of the
contributory risk capital of its individual risks, that is,

plX] = p[X1, X] + -+ + p[X,, X].

* Diversification. The risk capital p|X, Y| of X considered as a subportfolio of Y does not exceed
the risk capital p|X| of X considered as a stand-alone portfolio;

o Continuity. Small changes to the portfolio of risks only have a limited effect on the risk capital
of its subportfolios. More formally, the risk capital p[X,Y + €X] converges to p[X,Y] if €
converges to 0.

L]

Both sets of axioms lead to the same result that allocation should be done using Euler’s
principle if the utilized risk measure is coherent, which is the subject of the next section.
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6.3.2 EULER ALLOCATION

Typically, the allocated capital is calculated as

II, = W . subject to  p[X] = ;Hi; (6.76)
(see Litterman 1996, Tasche 1999, 2008, and McNeil ez 2/ 2005, section 6.3). These are called
the Euler allocations and represent capital allocation per unit of exposure X;. They are consistent
with axioms of coherent allocations; see Definition 6.27 and 6.28, for coherent risk measures.
However, only positive homogeneity and differentiability of the risk measure are required for
formula (6.76), which is based on the following well-known Euler theorem for homogeneous
functions.

Definition 6.29 (Homogeneous function) A function f(u) = f(u,...,u,), u € R”, is
called homageneous of degree T if for all A > 0

FQup, oo, duy) = XN F(ury .oy uy).

Homogeneous functions that are continuous and differentiable have several properties rel-
evant to risk modeling summarized later; for a proof, see Tasche (2002 later, 2008).

Theorem 6.2 (Euler’s theorem for homogeneous functions) If function f(u) is a continu-

ously differentiable function, then f(u) is homogeneous of degree T if and only if it satisfies

7f(u) = Z u; aj(;iz) .

i=1

Proposition 6.9 Function f(u), which is homogeneous of degree 1, that is, f(Au) = A (u), is

ftu+ (1 —1)o) < tf(u) + (1 —t)f(v), t€][0,1], mwveR"
if and only if it is subadditive, that is,
flutv) <f(u) +f(v).

In addition, a continuously differentiable homogencous function of degree 1 is subadditive (and
convex) if and only if,

Zui%ﬁ < F(u).

Consider random variables Xj, . .., X, representing risks (losses) with the total loss X =
X1+ - -+X,. The capital for this risk collection is determined by risk measure p[X]. Introducing
weight variables # = (u, ..., u,), so that,

X(u) = wmXi + - + u,X,,



6.3 Capital Allocation 137

thatis, X = X(1,..., 1), we can consider the risk measure as a function of #,

It is obvious that the function f;, corresponding to risk measure p is homogeneous of degree
7 if p is homogeneous of degree 7; the risk measure is homogeneous of degree 7 if for all A > 0,
p[AX] = A7 p|X]. This correspondence allows translating properties of homogeneous functions
(such as Euler theorem) to the homogeneous risk measures. In OpRisk, we are interested in the
case of homogeneous functions (homogeneous risk measures) of degree 1, which is the case for
risk measures such as VaR and ES. Now it is easy to prove the Euler allocation formula (6.76),
formally given by the following theorem.

Theorem 6.3 (Euler allocation principle) If risk measure p|-] is positive homageneous of degree
1 (i.e, p[AX] = Ap[X], A > 0) and differentiable, then

plx] =TI, (6.77)
i=1
where
OplX + hX;
H[Eu/er — p[ 8—}; ] ) (678)
h=0

Proof: Consider X (u) = w1 X; + - - - + u,X,, where # € R/. Then risk measure p[X (#)] can
be considered as a function of #, f,(#) = p[X(#)], which is a homogenous function of degree
1. Applying Euler’s theorem for homogeneous functions, Theorem 6.2 with # = (1,...,1)
gives (6.78). It is also easy to prove this result directly. Consider f,(Au) = p[AX(«)], A > 0.
Then using the homogeneity property p[AX] = Ap[X],

dfp(Nu) _
TN plX(u)].

On the other hand, using the standard rule of derivative calculus,

AN 00w T

dfy(Aw) _ ~ Ofp (D) Z":f‘%(u)u
Ou; "

where the last equality follows from the homogeneity property. Thus,

h=0

which completes the proof. [
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Remark 6.12

* Note that for Euler allocations, it is only required that the risk measure be homogeneous of degree
1, which is the case for VaR and ES. Formally, subadditivity is not required for the Euler theorem
to hold. However, allocations will be coberent in a sense of Definition 6.27 or 6.28 if the risk
measure is coberent; this has been demonstrated by Denault (2001), who used game-theoretic
considerations, and also by Kalkbrener (2005);

o Tasche (1999) showed that Euler allocation is the only allocation principle compatible with the
return on risk-adjusted capital (RORAG; i.c., expected return divided by risk capital) measure
of performance in portfolio management.

Another property of homogeneous functions allows us to get a useful result. A contin-
uously differentiable homogeneous function of degree 1 is subadditive (and convex) if and
only if,

(see Tasche 2002b, proposition 2.5). Substituting #, = 1,2, = 0if #=iand u, = 0,7, = 1
ifk#i(fork=1,...,n), weobtain

15 < p[x;). (6.79)

Risk contributions calculated as Euler contributions will never exceed the stand-alone risk cap-
ital if the risk measure is positive homogeneous and subadditive. Often violations of subaddi-
tivity property are observed through violation of (6.79).

6.3.3 STANDARD DEVIATION

Standard deviation is a risk measure in classical portfolio theory. It is frequently used in finance;
however, it is not well suited for heavy-tailed distribution and nonsymmetric distributions in
OpRisk. Here, we consider this risk measure to illustrate the concept of risk allocation. Formally,
a capital based on standard deviation risk measure can be defined as

p[X] = v/ Var[X] + E[X], (6.80)

where 7y is a non-negative real number (that can be chosen to correspond to some confidence
level). The Euler capital allocation (6.78) in this case is

Cov[X;, X]

Euler 2

T = + E[X;]. 6.81
7 Var[X] & (681

I3

If Var[X] = 0, then pf = E[X]]. It is easy to see that these risk allocations depend not
only on the distribution of X; but also on the dependence between the risk X; and overall risk
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X =X, +---+X,. Formula (6.81) can be easily proven by considering X (#) = s X; + - - +
1, Xy, calculating Var[X (a)] = >, u;;,Cov[X;, X] and

0 (vy/VarlX(w)] + EX)])  Covlx, X(u) ]
9, S VValk@] T

and setting # = (1,...,1).
It is obvious that the standard deviation risk measure (6.80) is

o Translation invariant: p[X + a) = p[X] + &
* Positively homogeneous: p]AX] = Ap[X], A > 0;
* Subadditive: p[X + Y] < p[X] + p[Y].

However, in general, it is not monotonic, that is, X < Y = p[X] < p[Y] is not valid in
general (see, e.g., Kalkbrener 2005). This has unpleasant consequences for the allocation. For
example, if potential losses X are bounded by some level, then contributory capital of X to the
portfolio ¥ might exceed this level (see Kalkbrener ez /. 2004).

6.3.4 EXPECTED SHORTFALL

If there is no jump in the distribution of X at confidence level v, that is, Pr[X = VaR,[X]] = 0,
then Euler’s allocations (6.78) for ES,, [-] can be easily calculated, that is, the derivatives in (6.76)
are

T _ W = E[X,|X > VaR,[X]]; (6.82)
h=0

(see McNeil ez al. 2005, section 6.3). It is trivial to verify that,
D EX|X > VaRa[X]] = E[X][X > VaRq[X]] = ES,[X].
i=1
In general, that is, if there are jumps in distribution of X at « level,

OES[X + AX]
b

1
=1—a (E [XIx>var. ] + BxE [Xily—var.q]),  (6.83)

where

~ PriX < VaR,[X]] — «
YT T Pr[X = VaR,[X]]

if Pr[X = VaR,[X]] > 0,

(see, e.g., Kalkbrener 2005). This expression is equivalent to (6.82) if Pr[X = VaR,[X]] = 0.
Typically, the Euler allocations should be calculated numerically. Assume that the total cap-
ital is quantified using Monte Carlo methods and Pr[X = VaR,[X]] = 0. That is, a sample of

independent and identically distributed annual losses x,Ej ), k=1,...,K is simulated for each
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risk cell 7 (here, the dependence between risk cells is allowed). Then, a sample x(l), ... ,x(K ),

where x(¥) = 7" x can be calculated and VaR, [X] is estimated in the usual way by sort-

i 0

ing the samples and taking a sample (after sorting) with the index [7a|. Denote this estimate
by VaR, [X]. Then the Euler allocations in the case of ES (6.82) are estimated via

K (k)
_x 1 —
E[X;|X > VaR,[X]] = 2=t {x® >VaRq[X]}

. (6.84)
K
Z/e:l ]I{xwe) >VaRq[X]}

For simplicity, in (6.84) we assumed that there are no repeated samples x(*) at VaR, [X].A
more general formula (6.83) can be estimated using Monte Carlo samples but it is not typically

required in OpRisk models.

6.3.5 VALUE-AT-RISK

Although the VaR is not subadditive and differentiable in general, the derivatives of VaR,,[]
to calculate risk allocations (6.76),

. VaR,[X + AX)] — VaR, [X]
lim

lim . /;:0 (6.85)

may exist for some risk collections. Under some technical conditions, it can be calculated as,

OVaR 4 [X + hX;]

o = E[X;|X = VaR, [X]] =: [T, (6.86)

h=0

For precise conditions when this is true, see Tasche (1999). Here we just note that it is easy to
verify that these contributions add up to the total risk,

E[X;|X = VaR,[X]] = E[X|X = VaR,[X]] = VaR,[X].

J
=1

J

In the case of VaR, the Euler allocation can be difficult to estimate using the Monte Carlo
sample, because Pr[X = VaR,[X]] = 0 in the case of continuous distributions. To handle this
problem, the condition X = VaR,, [X] can be replaced by |[X — VaR,, [X]| < € for some € > 0
large enough to have Pr[|X — VaR,[X]| < €] > 0. However, this condition will be satisfied
by only a few Monte Carlo simulations and important sampling techniques are needed to get
an accurate estimation (see Glasserman 2005).

It can be somewhat easier to calculate the Euler allocations using the finite difference
approximation,

OplX +hX]|  _ plX + AX] — plX]
T 3 (6.87)

with some small suitable A # 0. Note that the choice of A depends on the numerical accuracy
of the estimator for p[-] and curvature of the p[-] with respect to 4. So, A should be neither
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very small nor too large. This is a typical problem with estimating derivatives via finite differ-
ence, and details can be found in many books on numerical recipes (see, e.g., Press ez al. 2002,
section 5.7).

Another approach is to allocate VaR using ES,

ESQ(X) [X] = VaR,[X], (6.88)

if E[X] < VaR,[X]. This technique was proposed in several papers (Overbeck 2000, Bluhm
et al. 2002; see also Kalkbrener 2005). That is, we calculate VaR, [X] and then find a confidence
level 3 such that (6.88) is satisfied; then we allocate capital ESg[X] into risk cells using ES
allocations

II, = E[X|X > VaRg[X]]

or using ES allocations in (6.83) for the general case. Even if marginal distributions and depen-
dence are known, closed-form solutions are rarely available in OpRisk for VaR, ES, and their
allocations. However, all these quantities can easily be calculated using Monte Carlo by follow-
ing logical steps:

* Simulate all risks X7, . . ., X, and find corresponding X = Xj +- - - +X,,. For K simulations
Wehavexj(k),k =1,...,K,i=1,...,nand x® = xfk) + - +x,(,k),k =1,...,K.
Sort sample x*) in increasing order; for simplicity of notation, assume that x*) denotes

(%)

the ordered sample and samples x;"7, . .. ,xye) are reordered correspondingly;
* Using the ordered sample, estimate \EE{Q [X] = xloKT,

* Find the confidence level 5 = k3 /K such that Egﬂ [X] =~ VaR, [X]. This can be simply
achieved by calculating

E%M—K_@+r (6.89)

for different values of 8 < «, that is, for different values of kg < [aK|;
* Once (5 and the corresponding index kg are found, the allocations E[X;|X > VaRg[X]]

are estimated as

K k
;E£8 (6.90)
K*ngrl- '

Note that, here, x,.( ) is not originally simulated or ordered in increasing order sample; index

k here corresponds to the index in the ordered sample x(*).
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Allocation of VaR using ES for LogNormal distribution

Assume that overall loss X = Xj + - - - + X, is from LogNormal density f(x; i, 0),
that is, In X is from Normal distribution with mean z and variance 0. Then

VaR[X] = exp(u + 0@ ' (a))

and ES is

ES.[X] = ﬁewf%"z@(a —d7 (), (6.91)

See Example 6.3 for details. To allocate VaR,, [X] via ES, the following equation
should be solved for 53:

ESs[X] = VaRa[X].

For example, assume that t = 10, 0 = 2, & = 0.999. Then numerical root finding
gives B ~ 0.9961, where ESg[X] ~ VaR,[X] ~ 10,643, 550. This capital can
then be allocated to risk cells as E[X;|X > VaRg[X]], but this requires information
on individual risks and their dependence.

6.3.6 ALLOCATION BY MARGINAL CONTRIBUTIONS

Another popular way to allocate capital is based on marginal risk contribution
P = plX] = plX — X, (6.92)

which is the difference between total risk (across all risk cell) and total risk without risk cell 7.
This can be viewed as some crude approximation of Euler allocation derivatives (6.87), but
of course the risk measure differentiability is not required to calculate marginal contribution.
The sum of marginal contributions may not add up to p[X]. In particular, if the risk mea-
sure is subadditive, continuously differentiable, and homogeneous of degree 1, then it can be
shown that

P < TIPN plE < plX] (6.93)

i=1
(see Tasche 2008). One can define

I = ,”Lrgmpm, (6.94)
Zj:l Pj

to ensure that allocated capitals add up to p[X], that is, p[X] = II["* + - - - 4 II,“%.
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6.3.7 NUMERICAL EXAMPLE

To illustrate the allocation procedure using the previously described Euler allocation principle,
consider the following simple example.

Assume that there are four risk cells where the annual losses X; are independent random
variables from the LogNormal distribution LogNormal(0,07) with oy = 1.25, 05 = 1.5,
03 = 1.75, and 04 = 2, respectively. Results based on 4 x 10° Monte Carlo simulations are
given in Tables 6.1 and 6.2 for VaR and ES risk measures correspondingly.

Value-at-Risk results.
Monte Carlo estimate of the capital, measured as VaR of the total loss, is

6 = \78?{0,999 = 552.

> X

In Table 6.1, we present VaRs of individual risk cells VaRg.999[X;], i = 1,. .., 4; and marginal
and Euler risk allocations TI;”* and TIZ“¥", respectively. Marginal contributions p;“”* and
normalized marginal contributions 1% are calculated using (6.92) and (6.94), respectively.
The standard errors of Monte Carlo estimates (due to finite number of simulations) for the

capital and individual VaRs are on the order of 1%. IT5" estimated using finite difference

TABLE 6.1 Allocation of VaR capital C = VaR,.09[X; + - - - + X,| & 552 by marginal and

Euler contributions IT;"% and TT5¥", respectively; here, X; ~ LogNormal (o, o?)

; o; VaRo,999 [ X; } pjf’””g H;’Wg (% ) ﬁlEuler ﬁlﬁuln (% )
1 1.25 48 2 0.5 1 0.2

2 1.5 102 8 2.2 6 1.1

3 1.75 226 60 16 106 18.9

4 2.0 480 303 81.3 448 79.8
Total 856 373 100 561 100

Estimated II; are given in absolute terms and as a percentage of the total capital C. See Section 6.3.7 for details.

TABLE 6.2 Allocation of ES capital C = ES, 499 [X; + - - - + X,] ~ 1118 by marginal and

Euler contributions IT;"% and TT5“¥", respectively; here, X; ~ LogNormal (o, o?)
i o ESo.999[X]] P I (%) I TIF (%)
1 1.25 72 2 0.3 2 0.2
2 1.5 171 7 0.9 15 1.3
3 1.75 419 71 9.4 156 14.0
4 2 1036 675 89.4 945 84.5
Total 1698 755 100 1118 100

Estimated 1I; are given in absolute terms and as a percentage of the total capital C. See Section 6.3.7 for details.
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approximation (6.87) with A = 0.02 is denoted as [154er Due to finite difference approxima-
tion, Y, 115 = 561 is slighdly different from VaRg.999[>, Xi] ~ 552, so the final estimate
for capital allocations using Euler principle is

7 Euler
ﬁEuler _ Hi VaR, E
i Z 12[ Eu lor 0.999 )
j j

which is presented in Table 6.1 as percentage of the total capital C. The total diversification

VaRg.999 [, Xi]

— 6.9
>~ VaRg.099 [X]] (6.95)

is approximately 35%, which indicates that VaR is subadditive for given distributions and 0.999
quantile level. It is easy to observe that both marginal and Euler allocations are significantly less
than corresponding VaR.999[X;] as expected from (6.79) for subadditive risk measure. Due to
finite difference approximation and Monte Carlo errors, one can observe that inequality (6.93)
does not hold for the first and second risks whose contributions are very small but is satisfied
for the third and fourth risks where the errors are not material.

Finally, it is important to note that the relative importance of risk cells cannot be measured
by simple ratios

VaRyg.999 [ Xi]

H@ive _
' >, VaRo.099[X]]”

i=1,...,4,

which are 6, 12, 26, and 56%, respectively. These are referred to as “naive” allocation and com-
pared with the Euler allocation in Figure 6.7. “Naive” allocations are quite different from Euler
allocations; at the same time the Euler allocations are more skewed in a sense that risk cells with
large losses get relatively larger allocation, that is, the relative difference between risks increases
when risks are considered as a collection (when compared to the “naive” allocations); this feature
(typical in practice) can be observed in Figure 6.7.

Expected shortfall results.

Monte Carlo estimate of the capital, measured as ES of the total loss, is

C = ESo.99 [ZX] = 1118.

In Table 6.2, we present ES of individual risk cells ESg.999[X;],7 = 1,...,4; and marginal
and Euler risk allocations IT,"® and I15, respectively. Marginal contrlbutlons pr“® and nor-
malized marginal contributions I17* are calculated using (6.92) and (6.94), respectively. The
standard errors of Monte Carlo estimates (due to finite number of simulations) for the capital
and individual ESs are on the order of 1%. TI%", ; = 1,... 4, were estimated using (6.82)
and thus their sum is exactly the same as ESo.999 >, X] =1118.

The total diversification

B ESO.999 [Zz)(l]

6.96
>~ ES0.990[X/] (6.96)
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80% 80%
Allocation of VaR capital Allocation of ES capital
70% A 70% A
Naive Naive
W Euler W Euler
60% - 60%
500/0 T 50% 4
40% A 40% -
30% A 30%
20% A 20% A
10% 1 10% -
0% T — T 9 T o T T
1 2 3 4 0% 1 2 3 4

FIGURE 6.7 Capital allocation weights via “Naive” and Euler allocations to four risk cells (1, 2, 3,
and 4) considered in numerical example in Section 6.3.7. Left figure—allocation of VaR capital, right
figure—allocation of ES capital

is approximately 34%, which conforms with subadditivity of ES. It is easy to observe that
both marginal and Euler allocations are significantly less than corresponding ESg 999 [X;] as
expected from (6.79) for subadditive risk measure. In addition, marginal allocations are less
than corresponding Euler allocations, which is consistent with the inequality (6.93). Finally,
it is important to note that the relative importance of risk cells cannot be measured by simple
allocation weights

e — BBosmlXl

! > ES0.999[Xi]

which are 4, 10, 25, and 61%, respectively and referred to as “naive” allocation in Figure 6.7.
Similar to the results for VaR, “naive” allocations for ES can be quite different from Euler
allocations Hf”l”. At the same time, for Euler allocations, risk cells with large losses get relatively
larger allocation (when compared to the “naive” allocations); see Figure 6.7.



CHAPTER SEVEN

Estimation of Frequency and

Severity Models

Estimation of the frequency and severity distributions is a challenging task for low-frequency/
high-severity losses, due to very limited data for these risks. The main tasks involved in fitting
the frequency and severity distributions using data are as follows:

* Finding the best point estimates for the distribution parameters;
* Quantification of the parameter uncertainties;

* Assessing the model quality (model error).

In general, these tasks can be accomplished by undertaking either a frequentist or a Bayesian
approach. In this chapter, we present key aspects of each of these approaches. In addition, we
note that such modeling paradigms can be performed in both parametric and non-parametric
modeling frameworks, but here we focus primarily on a parametric modeling approach, typ-
ically adopted in OpRisk. In the context of parameteric modelling we cover components of
estimation based on key statistical methods such as Maximum Likelihood Estimation (MLE),
Expectation Maximization (EM) algorithm, Bayesian posterior inference methods such as
Markov chain Monte Carlo (MCMC), Sequential Monte Carlo Samplers (SMC Samplers)
as well as estimation in the presence of truncations. For a comprehensive overview of the non-
parametric case, see a book-length review for Bayesian approaches Ghosh and Ramamoorthi
(2003); Hjort ez al. (2010), and for frequentist approaches, Van der Vaart (2000).

7.1 Frequentist Estimation

Fitting distribution parameters using data via the frequentist approach is a classical problem
described in many textbooks. For the purposes of this book, we detail important components
of several methods that will be of practical use in OpRisk modelling. We note that, under the
frequentist approach, one says that the model parameters are fixed while their estimators have

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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associated uncertainties that typically converge to zero when a sample size increases. Several
popular methods to fit parameters (finding point estimators for the parameters) of the assumed
distribution include the following:

* Method of moments: finding the parameter estimators to match the observed moments;
* Matching certain quantiles of the empirical distribution;

* Maximum likelihood method: finding parameter values that maximize the joint density of
observed data;

* Estimating parameters by minimizing a certain distance between empirical and theoretical
distributions, for example, Anderson—Darling or other statistics.

A point estimator is a function of a data sample. Notationally, an estimator is a function of
the sample while an estimate is the realized value of an estimator for a realization of the data
sample. For example, given a vector of random variables X = (X, X, ..., Xx), the estimator
is a function of X while the estimate is a function of the realization x.

Given a sample X = (X1, X;,...,Xx)” from a density f(x|0), we try to find a point
estimator © for a parameter 6. In most cases, different methods will lead to different point
estimators. One of the standard ways to evaluate an estimator is to calculate its mean squared
error.

Definition 7.1 (Mean squared error) The mean squared error (MSE) of an estimator &} Jor a
parameter 0 is defined as

Any increasing function of the discrepancy |© — 6| can be used as a measure of the accuracy
of the estimator but MSE is the most popular due to tractability and clear interpretation. In
particular, it can be written according to the following decomposition,

A . 2
MSEg (0) = Var[6)] + (E[@] - 9) : (7.1)
where the first term is due to the uncertainty (variability) of the estimator and the second term

is due to the bias. The latter is defined as follows.

Definition 7.2 (Bias of a point estimator) 7he bias of a point estimator © for a para-
meter 0 is

Biasg (0) = E[O] — 0.

An estimator with zero bias, that is, E[(E)] = 0, is called unbiased. The MSE of an unbiased
estimator is reduced to MSE g (0) = Var[O)].



148 CHAPTER 7 Estimation of Frequency and Severity Models

Consider a sample of independent random variables Ny, NV,, ..., Ny from a
Poisson(\) distribution, with a mean given by E[V,,] = A, and an estimator of this

population parameter based on M samples given by A= = Zi:[:l N, (in this
case, it is a maximum likelihood estimator (MLE); see Section 7.1.1). Then

{ M
E[A] = —E N,,| =\
A= z::l
Thus, the estimator A is an unbiased estimator of .

It is important for the point estimator of a parameter to be a consistent estimator, that is,
converge to the “true” value of the parameter in probability as the sample size increases. For-
mally, a property of consistency is defined for a sequence of estimators as follows.

Definition 7.3 (Consistent estimator) For a sample X1, Xa, . .., a sequence of estimators

@n:(a,,(Xl,...,Xn), 7’!:1,2,...
Jor the parameter 0 is a consistent sequence of estimators if for every € > 0

lim Pr[|©, — 6] <€ =1.

n—r oo

We note that consistency is related to bias since a consistent estimator has the property
that it is convergent and asymptotically unbiased, therefore it converges to the correct value
asymptotically as the sample size increases. However, a consistent estimator may have that the
individual estimators in the sequence (i.e. for finite sample sizes) in a consistent sequence may
be biased, so long as the bias converges to zero as the sample size increases. A more informative
estimation of the parameter (in comparison with the point estimator) is based on a confidence
interval specifying the range of possible values.

Definition 7.4 (Confidence interval) Given a data realization X = x, the 1 — o confidence
interval for a parameter 0 is [L(x), U(x)] such that

PrL(X) << UX)]>1-a.

That is, the random interval [L, U|, where L = L(X) and U = U(X), contains the true value of
parameter 0 with at least probability 1 — . [

Typically, it is difficult to construct a confidence interval exactly. However, often it can
be found approximately using Gaussian distribution approximation in the case of large data
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samples (see e.g., Section 7.1.1). Specifically, if a point estimator © is distributed according to
a Normal(0, 0*(0)) distribution, then

©-0

Pr (0)

—Fy'(1—a/2) <

SFNlm—a/z)] —1-q,

where Fy ' (+) is the inverse of the standard Normal distribution Normal(0, 1). Note that o/(8)

depends on 6. For a given data realization, typically o(0) is replaced by (6) to approximate a
confidence interval by

0— E5'(1— a/2)0(0),0 + F7'(1 —a/Z)U(é)}. (7.2)

7.1.1 PARAMETERIC MAXIMUM LIKELIHOOD METHOD

The most popular approach to fit the parameters of the assumed distribution is the maximum
likelihood method. Given the model parameters @ = (6;,6,, ..., 0x)7, assume that the joint
density of data X = (X1, X, ..., X,)7 is £(%|0). Then the likelihood function is defined as the

joint density f(x|@) considered as a function of parameter 6.

Definition 7.5 (Likelihood function) For a sample X = x from the joint density f (x|0) with
the parameter vector 0, the likelihood function is a function of 0:

L.(0) = f(x]0). (7.3)
The log likelihood function is £, = In L,(0). L]
Often it is assumed that X7, X5, ..., X, are independent with a common density f(x|0);

then the likelihood function is L,(0) = ﬁf(xlw)
=1

The MLE®"" = O (X) of the parameters 0 are formally defined as follows.

Definition 7.6 (Maximum likelihood estimator) For 2 sample X, ©(X) is the MLE, if for

each realization x, O(x) is a value of parameter O maximizing the likelihood function L.(0) or
equivalently maximizing the log likelibood function £, = 1n L,(8). L]

An important property of MLEs is their convergence to the true value in probability as
the sample size increases, that is, MLEs are consistent estimators, under the weak regularity
conditions on the likelihood discussed later.

Theorem 7.1 For a sample X1,X,, ..., X, of independent and identically distributed random
variables from f(x|0) and corresponding MLE ©,, under the suitable regularity conditions, as

the sample size n increases,

lim Pr[|©, — 0| > ¢ =0, forevery €>0. (7.4)

n—r 00
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The required regularity conditions are as follows:

* The parameter should be identifiable: @ # 8 = £(x|0) # f(x|0);

* The true parameter should be an interior point of the parameter space;
* The support of f(x|@) should not depend on 6;

* f(x|0) should be differentiable in 6.

Asymptotically, for large sample size, under stronger conditions (that further require f(x|0)
to be differentiable three times with respect to 8 and to have continuous and bounded third
derivatives), the MLEs are distributed according to a Normal distribution.

Theorem 7.2 Under the suitable regularity conditions, for a sample X1,X,, . . ., X, of independent
and identically distributed random variables from f (x|0), 0 = (01,0, ... ,0x)", and correspond-
ing MLE ©,:

Vn(©, — 60) — Normal (0,[1(6)]7"), (7.5)

as the sample size n increases. Here, [1(0)] ™ is the inverse matrix of the expected Fisher information
matrix for one observation I(0), whose matrix elements are given by

1(60)un = E | 55 n(X16) - Inf(316)

62
) [aakaom In£(X; |e)} . (7.6)

Thatis, ©" converges to O as the sample size increases and asymptotically 6" is Nor-
mally distributed with the mean 6 and covariance matrix 2~ '1(6)~!. For precise details on
regularity conditions and proofs, see Lehmann (1983, theorems 6.2.1 and 6.2.3); these can
also be found in many other books such as Van der Vaart (2000), Casella and Berger (2002,
p. 516), Stuart ez al. (1999, chapter 18), Ferguson (1996, part 4), and Lehmann and Casella
(1998, section 6.3).

In practice, this asymptotic result is often used even for small samples and for the cases that
do not formally satisfy the regularity conditions. Note that the mean and covariances depend

on the unknown parameters € and are usually estimated by replacing € with 0" fora given
realization of data. Often in practice, the expected Fisher information matrix is approximated
by the observed information matrix
s 1 <~ 9*Inf(x]0)
1(9),, = Ly P/ xl0)

n P 80,@89,,,

_ 1 9InL.(0)

oe 7 00,00, |o_p’ 77

for a given realization of data. This should converge to the expected information matrix by
the law of large numbers. It has been suggested by Efron and Hinkley (1978) that the use of
the observed information matrix leads to a better inference in comparison with the expected
information matrix.

Though very useful and widely used, these asymptotic approximations are usually not
accurate enough for small samples, that is, the distribution of parameter errors can be materially
different from Normal and MLEs may have significant bias. Moreover, as for any asymptotic
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results, a priori, one cannot decide on a sample size that is large enough to use the asymptotic
approximation.

To assess the quality of the fit, there are several popular goodness-of-fit tests including
Kolmogorov—Smirnov, Anderson—Darling, and Chi-square tests. In addition, the likelihood
ratio test and Akaike’s information criterion are often used to compare models; these are dis-
cussed in detail in Chapter 8.

Usually maximization of the likelihood (or minimization of some distances in other meth-
ods) must be done numerically. Popular numerical optimization algorithms include simplex
method, Newton methods, expectation maximization (EM) algorithm, and simulated anneal-
ing. It is worth mentioning that the last is attempting to find a global maximum while other
methods find a local maximum. Moreover, EM is usually more stable and robust than the stan-
dard deterministic methods such as simplex or Newton methods.

Again, detailed descriptions of the earlier-mentioned methodologies can be found in many
textbooks; for application in an OpRisk context, see Panjer (2006).

7.1.2 MAXIMUM LIKELIHOOD METHOD FOR TRUNCATED AND
CENSORED DATA

When performing maximum likelihood for OpRisk models, one has to be aware of potential
data truncations and censoring as defined generically below.

Definition 7.7 (Censored loss processes) A general definition of data censoring in OpRisk is
that loss data are censored when the number of observations that fall in a given set is known, but the
specific values of the observations are unknown; data are said to be censored from below when the set
comprises all numbers less than a specific value. (]

Definition 7.8 (Truncated loss processes) A general definition of data truncation in OpRisk is
that loss data are said to be truncated when observations that fall in a given set are excluded and the
number of such observations is also unknown; data are said to be truncated from below when the set
comprises all numbers less than a specific value. (]

This would result in two potential modifications to the MLE given as follows.
Proposition 7.1 (Data Lower Truncated Likelihood) Given a  data-generating  model

X ~ Fx(x;0) for i.i.d. data with a lower truncation threshold of xr, the resulting truncated log
likelihood for n observations is given by

[(8;x) = —nln (1 — Fx(x.; 0 +Zlnf (x0). (7.8)

Proposition 7.2 (Data Left Censored Likelihood) Given — a  data-generating ~ model
X ~ Fx(x;0) for i.id. data with a left censoring threshold of x,, the resulting left censored log

likelihood for n observations (n, uncensored and n. = n — n, censored) is given by

[(8;x) = n.In (Fx(x.; 0 +Zlnf x;0)[x; € X,], (7.9)
%,_/

censored umemored
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where X, denotes the set of uncensored observed losses and X, denotes the set of censored observed
losses.

Modeling truncated data will be considered in detail in Section 7.9.

7.1.3 EXPECTATION MAXIMIZATION AND PARAMETER
ESTIMATION

The EM algorithm is a general iterative method to estimate model parameters maximizing
the likelihood of observed data when some of the variables/data are hidden (missing or not
observed). Under the Bayesian framework, it can be used to estimate parameters maximizing the
posterior of the parameters given observed data, though such approaches will be discussed later.

For simplicity, here we consider maximization of the data likelihood; extension to pos-
terior maximization in a Bayesian framework is trivial. The algorithm is very convenient and
efficient when maximization of the likelihood is simplified for the case of complete data (i.e.,
if hidden variables are known) in comparison with the maximization of the observed data like-
lihood. Often it is used for cases with truly missing data such as data truncation, but it may
also be convenient to artificially introduce hidden variables if the resulting maximization of the
complete likelihood is simplified by the addition of such variables.

Each iteration of the algorithm consists of two steps: an expectation step (E-step), and a
maximization step (M-step). In the E-step, the hidden variables are estimated given the observed
data and the current estimate of the model parameters. This is achieved using the conditional
expectation, explaining the choice of terminology. In the M-step, the likelihood function is
maximized under the assumption that the missing data are known. The algorithm convergence
is guaranteed because the likelihood increases at each iteration.

Dempster ez al. (1977) presented a proof of general results of the algorithm and intro-
duced the term EM algorithm. However, this idea was in use for many years. The reader is also
referred to a book by McLachlan and Krishnan (1997) devoted entirely to EM and applica-
tions. The algorithm is particularly suitable for situations with missing data (e.g., truncated
data or censored data). In OpRisk, it has been used by Bee (2005b) to fit a model accounting
for data truncation (typically data below some level are not reported in OpRisk). It is also often
used to fit mixture distributions; for a general approach to fitting mixtures, see McLachlan
and Krishnan (1997). Truncated mixtures are considered by Sansom and Thompson (1998).
McLachlan and Jones (1988) describe the EM algorithm for data grouped into intervals which
may also be truncated.

Maximizing of the log-likelihood function can be accomplished by other methods such as
gradient-based optimization algorithms or simplex-type algorithms. Often EM is preferred due
to its stability and convergence properties. However, it is important to note that in general EM
is guaranteed to converge to a local maximum (not global maximum), which is typical across
optimization algorithms. In such cases it may be wise to run the EM algorithm multiple times
from different starting points randomly selected in the parameter space, then keep the solution
maximizing the likelihood.

Consider observed data X, unobserved data (or factors) ¥, and a parameter vector 6 for a
chosen model with the density of the observed data £(X|@) and joint density of observed and
unobserved data (complete dataset) £ (X, ¥'|0). Denote the likelihood of complete data (X, ¥)
as Lx y(0) = f(X, Y|0). Then the marginal likelihood of observed data Lx(6) = f(X|6)

can be calculated from a complete likelihood as
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Lx(6) = f(x16) = [ F(X.50)dy. 7.10)

The maximum likelihood method estimates parameters 8 by maximizing the marginal like-
lihood Lx (). Often, this is more difficult in comparison with maximizing Lx y (). Starting
with the initial guess for parameters 8°, the EM algorithm proceeds as follows. For parameter
estimates at iteration #, 6”,

* E-step: calculate condition expectation

Q(0]6") =E[Inf(X,Y|6)|X,0'] = /hlf(X,yIO)fO'IX, 6")dy. (7.11)
* M-step: maximize Q(6|6") with respect to 6

0! = arg max Q(6)6). (7.12)

The E- and M-steps are repeated until the change in Q(H’Jrl |0”) (or estimated parameters 6")
is less than a user prescribed accuracy or tolerance level. In the M-step, we choose 8" as the
value of 0 that maximizes Q(0|6"). If this maximization is difficult, then it can be replaced
with finding " that simply increases Q(6|6°), that is, Q(8°7'|8") > Q(6'|0"); this is the

so-called Generalized Expectation Maximization (GEM) algorithm.

Remark 7.1 (EM for exponential family likelihoods) [fthe data are generated from the expo-
nential family distribution, the E-step and M-step are simplified. The E-step reduces to computing
the expectation of the complete-data sufficient statistics given the observed data. In the M-step, the
conditional expectations of the sufficient statistics computed in the E-step can be directly substituted
Jor the sufficient statistics that occur in the expressions obtained for the complete-data MLEs (i.e.,
explicit maximization of the expected log likelihood can be avoided).

As a general algorithm available for complex maximum likelihood computations, the EM
algorithm has several appealing properties relative to other iterative algorithms such as Newton—
Raphson. First, it is typically easily implemented because it relies on complete-data com-
putations: the E-step of each iteration only involves taking expectations over complete-data
conditional distributions. The M-step of each iteration only requires complete-data MLE,
for which simple closed-form expressions are already available. Second, it is numerically sta-
ble: each iteration is required to increase the log likelihood In Zx () in each iteration, and if
In Lx () is bounded, the sequence In Lx (0") converges to a stationary value. If the sequence
converges, it does so to a local maximum or saddle point of the likelihood and to the unique
MLE if the likelihood is unimodal. A disadvantage of EM is that its rate of convergence can
be extremely slow if a lot of data are missing: Dempster et al. (1977) show that convergence
is linear with rate proportional to the fraction of information about 0 in In Ly y () that is
observed.

In OpRisk settings, one would typically consider EM-type methods for estimation of
model parameters under a likelihood-based procedure when there is potential for data cen-
soring or truncation; see definitions by Klugman et a/. (1998).
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OpRisk Application of EM for LDA Model Estimation

The estimation of a Loss Distribution Approach (LDA) model in OpRisk, com-
prised of estimation of the model parameters for the frequency and severity models
in principle, is straightforward statistical estimation. However, in practice for
OpRisk modeling, as noted in Bee (2005b), a major difficulty may arise from
the fact that loss data are usually left-censored or, more frequently, left-truncated;
according to whether data are truncated or censored, specific inferential procedures
are needed. Consider the model for the severity in which one considers losses
given by {X;}"_, with each of the i.i.d. losses, given by X; ~ LogNormal(p,c?*)
with a total of 7, and #, = #n — n, censored and uncensored losses respec-
tively. Denote by xy.,, = (x1,x,...,x, ) the unobserved censored losses and
Vi, = (71,725, Jn,) as the observed uncensored losses given by x; > x, for
all i € {1,2,...,n}. One can then define the complete data and observed
data likelihoods, for log-transformed data X;=InX, ~ Normal(u,o*) and

Y; = InX; ~ Normal(i,0?), as follows:

1. The complete log-transformed data likelihood is given by

Ny e

L(6:20,31,) = T @0 TLr o)

i=1

2. The observed log-transformed data likelihood is given by

L (0531,) o (F G 0))" T[£ G:l0)

<o (5 20) ] Mﬁexp (—; (;ﬂ))] |

To perform the inference in this case one can then utilize the EM algorithm with
the following two steps, which are updated at iteration 7:

1. E-Step. Take the conditional expectation (w.r.t. censored data) of the complete
data likelihood function conditional on the observed (uncensored data) and

model parameters at iteration 7 given by 9(7) producing
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E[L(xlnayln7 xlnaa():|

Hf x,|0
- {Hf (x16)

YZ,G

xln ,BT)]

7.0z o™ .
E]E [f (K,G)‘xl_”uﬁ ] , (7.15)

where the distribution of the missing censored data is given by the right-
truncated Gaussian,

£G:;6) = _1 1 l—l <5/i u) ] Iy <. (710

() vare P |2

As detailed by Bee (2005b), the truncated conditional expectation
E [f (250)’551:71"79(7)} is simplified by the fact that the complete log-

transformed likelihood is linear in ¥; and Y2, which produces a first and
second moment given by

_ e
E [751,00] =4 = oa <W>

o)
=l 0] = () [ - (57) o (5)
x. — (™) 2 i ,
B (O‘ (m)) + [E [ 7] 510,07
b () <o (52) o ()]
2. M-Step. Then one takes the MLEs for the log-transformed likelihoods, which

are Gaussian and conditional upon the sufficient statistics estimated for the
missing (censored) data from the E-step giving
-
.X'] Ty 0( ):|> 5

M(T)_(Zxﬁrnc [
<U<T)>2 (Zx 4R [ ‘x“”g( >D

These two steps are then iterated progressively until convergence. [ ]

(7.17)
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The EM algorithm for the truncated Poisson—LogNormal LDA model is also developed
by Bee (2005b, section 3.3). We also note that the utilization of such EM steps in LDA model
parameter estimation has been explored, with regard to the impact on Value-at-Risk (VaR) and
Expected Shortfal (ES) estimations by Chernobai ez 2/. (2006). Again these results are developed
for both the truncated and censored cases.

7.1.4 BOOTSTRAP FOR ESTIMATION OF PARAMETER ACCURACY

A popular method often used in practice to estimate parameter uncertainties is the so-called
boorstrap. This method is based on a simple idea: that we can learn about the characteristics
of a sample by taking resamples from the original sample with replacement and calculating
the parameter estimates for each resampled set to asses the parameter variability. The boot-
strap method was originally developed by Efron in the 1970s. For a good introduction to the
method we refer the reader to Efron and Tibshirani (1993). Often the bootstrap estimators are
reasonable and consistent. Two types of bootstrapping, nonparametric bootstrap and parametric
bootstrap, are commonly used in practice.

Nonparametric bootstrap. Suppose we have a sample of independent and identically dis-
tributed random variables X = (X, X5, ..., Xx)” and there is an estimator ©(X). Then:
* Draw M independent samples

x0 = xtm xm XY =1, M

with replacement from the original sample X. That is Xk(m), k=1,.... K,m=1,....M
are independent and identically distributed, and drawn from the empirical distribution of
the original sample X;

« Calculate estimator O™ = (X)) for each resample m = 1, ..., M;

¢ Calculate

S O LS~ g
Var IZ( fu), where M:M;@ . (7.18)

m=1

Parametric bootstrap. Suppose we have a sample of independent and identically distributed
random variables X = (X;,X3,...,Xg)? from £(x|0) and we can calculate some estimator

O(X) (e.g., MLE) for . Then:
* Draw M independent samples
x00 = (x\" x"

where X/fm), k=1,....,K,m=1,...,M are independent and identically distributed
from f (x\é),

« Calculate estimator @) = ©(X ") for each resample m = 1, ..., M;

— ~ 2 A
* Calculate Var[0] = .7~ an/[:l (@(m) - ,u) , where pu = Zf:zl e,
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The obtained \/7a\r[é)} is used as an estimator for Var[©)]. Typically, for independent and
identically distributed samples, this estimator is consistent, that is,

@[@] — Var[®], as M — oo and K — oo, (7.19)

though in more general situations it may not occur.

Remark 7.2 More accurate treatment of nonparametric bootstrap estimators involves an estimator

given by
T L s~ (gm ) L\ g
Var [@]:NI;(@ —u) ) M:N;@ ,
where N = KX is the total number of nondistinct resamples. N is very large even for small

K, for example, for K = 10, N = 10'°. Calculations of the variance estimators (7.18) with

—
M < N is considered an approximation for Var variances. Then, convergence of bootstrap esti-

mators is considered in two steps: Var[©] — Var*[O] as M — oo; and Var*[©] — Var[O] as
K — oo.

7.1.5 INDIRECT INFERENCE-BASED LIKELIHOOD ESTIMATION

In cases in which one considers statistical models for OpRisk data that may not produce a
tractable likelihood distribution or density form that can be written down analytically or per-
haps evaluated pointwise. Then in such cases, there are also numerous estimation procedures
available often based on simulation based methods. Under a likelihood-based inference, there
is the method known in econometrics as indirect inference (see, e.g., Gourieroux e al. 20006,
Gallant and Tauchen 1996, and the book-length coverage by Gourieroux and Monfort 1997).

At its most fundamental level, indirect inference is a technique of parameter estimation
for simulation models, that is, models for which one can generate data given (unknown)
parameters but not evaluate the density for the data-generating model. One would then like
to compare the simulated data with the observed data to decide on the model parameter
estimations.

To achieve this via indirect inference one introduces a new model, called the “auxiliary
model”, which is misspecified and typically not even generative, but is easily fit to the data
via, say, standard closed-form estimators for the MLE of the parameters of the auxiliary model.
This auxiliary model has its own parameter vector 3, with estimator 3. These parameters of the
auxiliary model describe aspects of the distributions of the observations. The idea of indirect
inference is then to simply try to match aspects of the estimated parameters on the observed
data x given by B(x) and the simulated data x* using parameters of the actual model 8 given
by B(x*). The indirect inference estimator is then obtained by the following algorithm.

Algorithm 7.1 (Indirect Inference-Based Estimation)

1. Initialize parameter vector of intractable model Oy and simulate initial synthetic data from
intractable model X™ ~ F(x;0y);
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2. Develop an artificial simplified auxiliary model for which it is possible to make inference on
parameters of auxiliary model using observed data to obtain true data reference auxiliary model

parameter estimator 3 (x);
3. Estimate auxiliary model parameters using synthetic simulated data B3(x*(6o));

4. Estimate Mablanobis distance or Euclidean distances between auxiliary parameter vectors by

D(B(x),By(x"(80))) = \/ (BG)— Boler (00))) 51 (B () — Bole (00)).

5. Set optimal parameter vector 0 = 0, with distance D, = D (B (%), By (x* (90))) ;
6. Repeat until convergence or until you reach J total iterations; for iterations j = j+ 1, carry out
the following steps:

a) Generate proposed parameter vector 9]- from a proposal mechanism, for instance a genetic
algorithm mutation stage, to perturb the parameters in the parameter space;

b) Given parameter vector 0, generate synthetic data from intractable model X *~F (x; Oj),'
o) Calculate auxiliary model parameters from synthetic data Bj (x* (0]-) );

d) Calculate distance metric

D(B().B,(x (8))) = ¢ (B~ 86 (9)) = (B~ B, (+ ().

e) IfD,;, > D (ﬁ (x) ,ﬁj (x* (Hj))), then update the optimal parameter estimate 0 = 0,

Several theoretical properties are known about the estimators obtained from such a data-
generative procedure (see discussions by Smith 2008 and Genton and Ronchetti 2003). Under
several assumptions (see Gourieroux and Monfort, 1997), it can be shown that the indirect
inference procedure produces a point estimator of the model parameters which is both con-
sistent and asymptotically Normal under standard regularity conditions. In addition, indirect
inference can be shown to be asymptotically efficient when the model is correctly specified for
the observed data.

As a consequence, it has recently been proposed as a viable method even to tackle problems
in which the likelihood is tractable but perhaps the model parameter estimation is non-robust to
model misspecification. For example, consider the observed i.i.d. observations X;,X, ..., X,
from a parametric model (family), M = {P(0) : 6 € O} of probability measure P(6), which
are indexed by the parameter set @ C R?. If the model is correctly specified for the given data,
thatis, P = P (0y) for a unique 8y € O, then the MLE is typically a desirable estimator for 6,
since it is asymptotically efficient under well-known regularity conditions (see Van der Vaart
2000).

However, as discussed by Nickl and Pétscher (2010), if the model class M is misspecified,
that is, we select an inappropriate parametric model family to consider modeling the observed
data, then we would like the estimated parameter 6 to be robust to such misspecifications.
Such cases are considered in the review article of Huber (1972) and Daszykowski ez 2/. (2007)
where they discuss how to obtain an estimator that is robust to model misspecifications of the
form discussed earlier. That is, for an estimator of @y that is robust to perturbations of P (6)
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in a metric D(+, -), it would be advisable to utilize, instead, minimum distance estimators. For
example if P, is a suitable D-consistent estimator of P, then it is better to estimate € by the
minimizer over © of

Q,(0):=D (E,P (0)) . (7.20)

Beran and Millar (1987) showed that if the distance is selected specifically, such that D is the
Hellinger distance, and if P, is a kernel density estimator, then the resulting minimum-distance
estimator is both robust and simultaneously asymptotically efficient. Therefore, in such cases,
they will outperform the MLE in this sense.

Examples where indirect inference has been applied to parameter estimation in interesting

models for OpRisk include recent work on estimation of a-stable model parameters (see Garcia
et al., 2011).

7.2 Bayesian Inference Approach

There is a broad literature covering Bayesian inference and its applications for the insurance
industry. For a good generic introduction to the Bayesian inference method, see Berger (1985)
and Robert (2001), and in OpRisk settings, see Peters and Sisson (2006); Shevchenko (2011).
This approach is well suited for OpRisk. It is sketched later to introduce notation and concepts
it will also be discussed in detail in Chapter 15.

Consider a random vector of data X = (X, X,,...,X,)” whose density, for a given
vector of parameters @ = (01,6,,...,0x)", is fxjo (x/0). In the Bayesian approach, both
data and parameters are considered to be random. A convenient interpretation is to think that
the parameter vector is a random vector with some distribution and the true value (which is
deterministic but unknown) of the parameter is a realization of this random vector. Then the
joint density of the data and parameters is

fr.e(x,0) = fxje(x0)1e(0) = Tex(0]x)fx(x), (7.21)

where

* Te(0) is the density of parameters (a so-called prior density);
* Te|x (0|x) is the density of parameters given data X = x (a so-called posterior density);
* fx,o(x,0) is the joint density of the data and parameters;

* fxj@(x|0) is the density of the data given parameters ® = 6. This is the same as
a likelihood function see (7.3) if considered as a function of @ for a given «, that is,

Lx(0) = fxjo (x]0);
* fx(x) is the marginal density of X. If mg (@) is continuous, then

filx) = / o (xl0)me (0)40

and if m@(0) is a discrete probability mass function, then the integration should be
replaced by a corresponding summation.

Remark 7.3 Tpically, ne(0) depends on a set of further parameters, the so-called hyper-
parameters, omitted here for simplicity of notation. The choice and estimation of the prior will

be discussed in detail in Chapter 15.
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Using (7.21), the well-known Bayes’s theorem, Bayes (1763) gives the following.

Theorem 7.3 (Bayes’s theorem) 7he posterior density can be calculated as

Tox(0lx) = fxie (x|0)Te(0)/fx (x)- (7.22)

Here, fx(x) plays the role of a normalization constant and the posterior can be viewed
as a combination of prior knowledge (contained in 7@ (60)) with information from the data
(contained in fx|e(x]0)).

Given that fx(x) is a normalization constant, the posterior is often written up to propor-
tionality according to

Tex(Blx) x fxje (x|0)Te(6), (7.23)

where “x” means “is proportional to” with a constant of proportionality independent of the
parameter 6. Typically, in closed-form calculations, the right-hand side of the equation is cal-
culated as a function of @ and then the normalization constant is determined by integration
over 6.

Using the posterior 7g|x (@|x), one can easily construct a probability interval for ©, which
is the analogue for confidence intervals (see Definition 7.4) under the frequentist approach.

Definition 7.9 (Credibility interval) Given a data realization X = x, if mgx(0|x) is the pos-
terior density of © and

b
Prla<© < X = x| = /W@|X(0|x)d9 >1-a,

a

then the interval [a, b] contains the true value of parameter 0 with at least probability 1 — . The
interval |a, b] is called a credibility interval (sometimes referred to as predictive interval or credible
interval) for parameter 0. u

Remark 7.4

* The inequality in Definition 7.9 is to cover the case of discrete posterior distributions;

o Typically, one chooses the smallest possible interval [a, b). One can also consider one-sided inter-
vals, for example, Pr[© < b6|X = x];

o Extension to the multivariate case, that is, parameter vector 0, is trivial;

* Though the Bayesian credibility interval looks similar to the frequentist confidence interval (see
Definition 7.4), these intervals are conceptually different. To determine a confidence (probabil-
ity to contain the true value), the bounds of the frequentist confidence interval are considered
to be random (functions of random data) while bounds of the Bayesian credibility interval are
Sfunctions of a data realization. For some special cases, the intervals are the same (for given data
realization) but in general they are different, especially in the case of strong prior information.

If the data X, X, . . . are conditionally (given @ = 0) independent, then the posterior can
be calculated iteratively, that is, the posterior distribution calculated after # — 1 observations
can be treated as a prior distribution for the £-th observation. Thus, the loss history over many
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years is not required, making the model easier to understand and manage, and allowing experts
to adjust the priors at every step.

For simplicity of notation, the density and distribution subscripts indicating random vari-
ables will often be omitted, for example, 1 (0) will be written as 7(0).

7.2.1 CONJUGATE PRIOR DISTRIBUTIONS

Sometimes the posterior density can be calculated in closed form, which is very useful in practice
when Bayesian inference is applied. This is the case for the so-called conjugate prior distribu-
tions, where the prior and posterior distributions are of the same type.

Definition 7.10 (Conjugate prior) Let F denote a class of density functions f(x|0), indexed
by 0. A class U of prior densities w(0) is said to be a conjugate family for F and F —
U is called a conjugate pair, if the posterior density w(0|x) = f(x|0)7(0)/f(x), where
F(x) = [ £(x|0)7(0)40 is in the class U for all f € F and 7 € U. n

Formally, if the family U contains all distribution functions, then it is conjugate to any
family . However, to make a model useful in practice it is important that U should be as small
as possible while containing realistic distributions. In Chapter 15, we present F — U conjugate
pairs (Poisson—Gamma, LogNormal-Normal, Pareto—-Gamma) that are useful and illustrative
examples of modeling frequencies and severities in OpRisk. Several other pairs (Binomial-Beta,
Gamma—Gamma, Exponential-Gamma) can be found, for example, in Bithlmann and Gisler
(2005). In all these cases, the prior and posterior distributions have the same type and the
posterior distribution parameters are easily calculated using the prior distribution parameters
and observations (or recursively).

In general, if the posterior cannot be found in closed form or is difficult to evaluate, one
can use Gaussian approximation, Markov chain Monte Carlo methods, or Sequential Monte
Carlo methods, discussed next.

7.2.2 GAUSSIAN APPROXIMATION FOR POSTERIOR
(LAPLACE TYPE)

For a given data realization X = x, denote the mode of the posterior 7(8|x) by 6. If the prior is
continuous at 8, then a Gaussian approximation for the posterior is obtained by a second-order
Taylor series expansion around 6:

1 Z & Inr(0|x)

In7(0)x) ~ In7(0lx) + = 96,00,

2 (0; — éi)(ej - éj)' (7.24)
2

0=0

Under this approximation, w(0|x) is a multivariate Normal distribution with the mean 6 and
covariance matrix

& In(6]x)

f— —1 P
=17, (D) 90,00,

(7.25)

6=0
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Remark 7.5 In the case of improper constant priors, this approximation is comparable to the
Gaussian approximation for the MLEs (Equation 7.5). Note also that in the case of constant priors,
the mode of the posterior and the MLE are the same. This is also true if the prior is uniform within
a bounded region, provided that the MLE is within this region.

7.2.3 POSTERIOR POINT ESTIMATORS

Once the posterior density 7(0|x) is found, for given data X, one can define point estima-
tors of ©. The mode and mean of the posterior are the most popular point estimators. These
Bayesian estimators are typically referred to as the Maximum a Posteriori (MAP) estimator and
the Minimum Mean Square Estimator (MMSE), formally defined as follows:

MAP: O" = argmax[r(0 | X)], (7.26)
0

MMSE: 6" =Rk [0|X]. (7.27)

The median of the posterior is also often used as a point estimator for ©. Note also that if
the prior m(6) is constant and the parameter range includes the MLE, then the MAP of the
posterior is the same as the MLE (see Remark 7.5).

More formally, the choice of point estimators is considered using a loss function [(6, 0) that
measures the cost (loss) of a decision to use a particular point estimator ©. For example:

* Quadratic loss. /(0,0) = (6 — 0)%

* Absolute loss: /(6,6) = |0 — 4];

« All or nothing loss: /(0,0) = 0if§ = 0 and /(0,0) = 1 otherwise;

* Asymmetric loss function: e.g. /(6, 0) = 0—0if0 > Gand [(0,0) = —2(0—0) otherwise.

Then the value of © that minimizes E[/(©, ©)|X] is called a Bayesian point estimator
of ©. Here, the expectation is calculated with respect to the posterior 7(6].X ). In particular:

* The posterior mean is a Bayesian point estimator in the case of a quadratic loss function;

* In the case of an absolute loss function, the Bayesian point estimator is the median of the
posterior;

* All or nothing loss function gives the mode of the posterior as the point estimator.

Remark 7.6 © = O(X) is a function of data X and thus it is referred to as estimator. For a given
data realization X = x, we get © = 0, which is referred to as a point estimate.

In addition, one may be interested in reporting a marginal posterior confidence interval or
a measure of precision for the posterior point estimators defined for the i-th static parameter
with posterior distribution @, ~ F(©;). To achieve this one would typically utilize credibility
intervals, see Definition 7.9.

Though the point estimators and interval estimators are useful, for quantification of
OpRisk annual loss distribution and capital we recommend the use of the whole posterior,
as discussed in the following chapters.
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7.2.4 RESTRICTED PARAMETERS

In practice, it is not unusual to restrict parameters. In this case, the posterior distribution will
be a truncated version of the posterior distribution in the unrestricted case. That is, if 8 is
restricted to some range [0, 8], then the posterior distribution will have the same type as in
the unrestricted case but truncated outside this range.

For example, we choose the LogNormal distribution LogNormal(j1, o) to model the data
X = (Xi,...,X,)T and we choose a prior distribution for /i to be the Normal distribution
Normal(pg,03). This case will be considered in section 13.2.4. However, if we know that x
cannot be negative, we restrict Normal (119, 0§) to non-negative values only.

Another example is the Pareto-Gamma case, where the losses are modeled by Pareto(&, L)
and the prior distribution for the tail parameter & is Gamma(c, 3) (see section 13.2.5). The
prior is formally defined for £ > 0. However, if we do not want to allow infinite mean predicted
loss, then the parameter should be restricted to £ > 1.

These cases can be easily handled by using the truncated versions of the prior—posterior
distributions. Assume that 7(f) is the prior whose corresponding posterior density is
7(0]x) = f(x]0)7(0)/f (%), where 0 is unrestricted. If the parameter is restricted toz < 6 < b,
then we can consider the prior,

b
0
ﬂ.tr(e) = [Pr[aﬁg(a)gb]ﬂ{“gegb}’ IPI‘[&Z < 0 < b] = /71'(9)49, (728)

a

for some 2 and & with Pr[z < 6 < 6] > 0. Pr[z < 6 < 4] plays the role of normalization and
thus the posterior density for this prior is simply

7™ (0|x) =

b
w(0]x) /
B e o <ph< = . .
Frfa < 0 < 0] T<o<sy, Prla <0 < bla] w(0|x)d0 (7.29)

Remark 7.7 1t is obvious that if w(0) is a conjugate prior, then 7" () is a conjugate prior too.

7.2.5 NONINFORMATIVE PRIOR

Sometimes there is no prior knowledge about the model parameter 6, or we would like to
rely on data only and avoid an impact from any subjective information. In this case, we need
a noninformative prior (sometimes called vague prior) that attempts to represent a near-total
absence of prior knowledge. A natural noninformative prior is the uniform density

m(0) x const for all 8. (7.30)

If parameter 0 is restricted to a finite set, then this (@) corresponds to a proper uniform distri-
bution. For example, the parameter p in a Binomial distribution Binomial(n, p) is restricted to
the interval [0, 1]. Then one can choose a noninformative constant prior, which is the uniform
distribution Uniform(0, 1).

However, if the parameter 6 is not restricted, then a constant prior is not a proper density
(since [ £(0)d@ = c0). Such a prior is called an improper prior. For example, the parameter
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 (mean) of the Normal distribution Normal(p, 0?) is defined on (—00, o). Then, for any
constant ¢ > 0, (1) = c is not a proper density because [ 7(u)dpu = oco. It is not a problem
to use improper priors as long as the posterior is a proper dlstrlbutlon. Moreover, as noted in
previous sections, if the prior 7(@) is constant and the parameter range includes the MLE, then
the mode of the posterior is the same as the MLE (see Remark 7.5).

A constant prior is often used as a noninformative prior, though it can be criticized for a
lack of invariance under transformation. For example, if a constant prior is used for parameter
0 and the model is reparameterized in terms of 0 = exp(0), then the prior density for 0 is
proportional to 1/ 6. Thus, we cannot choose a constant prior for both 6 and 6. In this case,
one typically argues that some chosen parameterization is the most intuitively reasonable and
absence of prior information corresponds to a constant prior in this parameterization. One can
propose noninformative priors through consideration of problem transformations. This has
been considered in many studies starting with Jeffreys (1961). For discussion on this topic, see
Berger (1985, section 3.3). Here, we just mention that for scale densities of the form 6~ £ (x/6),
the recommended noninformative prior for a scale parameter > 0 is given by,

m(0) x -, (7.31)

which is an improper prior because [, 7(0)40 = oo

7.3 Mean Square Error of Prediction

To illustrate the difference between the frequentist and Bayesian approaches, consider the so-
called (conditional) mean squared error of prediction (MSEP), which is often used for predic-
tion of uncertainty.

Consider a sample X7, X, ..., X,, ... and assume that, given data,

X = (X17X27 s 7Xn)T7

we are interested in prediction of a random variable R, which is some function of
X1, Xut2, - - . . Assume that R is a predictor for R and an estimator for E[R|X]. Then, the
conditional MSEP is defined by

. N2
MSEP (R) ) [(R _ R) |X] . (7.32)
It allows for a good interpretation if decoupled into process variance and estimation error as
R N2
MSEP i (R) = Var[R|X] + (]E[R|X] - R)
= Process variance + estimation error. (7.33)

It is clear that the estimator R that minimizes conditional MSEP is R = E[R|X]. Assume
that the model is parameterized by the parameter vector @ = (61, ...,0x)”. Then under the
frequentist and Bayesian approaches we get the following estimators of MSEP,

Frequentist Approach. Unfortunately, in the frequentist approach, E[R|X] is unknown and
the second term in (7.33) is often estimated by Var[R] (see Wiithrich and Merz (2008,
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section 6.4.3)). Under the frequentist approach, Var[R|X] and E[R|X] are functions of
parameter 6 and can be denoted as Varg[R|X] and Eg[R|X], respectively. Typically, these are
estimated as Varg [RIX] = Varg[R|X] and Eo[RIX] = Eg[R|X], where © is a point esti-
mator of @ obtained by maximum likelihood or other methods. Also, typically, one chooses
R = Eg[R|X], so that now R is a function of © that we denote as R(©). The parameter

uncertainty term Varg|[R] is usually estimated using the first-order Taylor expansion of R(©)
around 0

AP OR(6 "
RO)~RO)+> () (0; —0,)
;90 6=0
leading to
Varg[R(©)] ~ 3 281 2K v, 6
irf 09 6=6 99 6=0

Estimating € by e gives the final estimator
Varg[R(©)] = Varg [R(©)].

Note that if the point estimators are unbiased, that is, E[©; — 6;] = 0, then E[R(0)] ~ R(6).
Finally, the estimator for conditional MSEP is
MSEP s x [ie} = Var[R|X] + Var[R]

= Process variance + estimation error. (7.34)

These estimators are typically consistent and unbiased in the limit of a large sample size.

Bayesian Approach. Under the Bayesian inference approach, where the unknown parameters
60 are modeled as random variables ®, Var [ R| X] can be decomposed as

Var[R|X| = E[Var [R| ©,X]| X| 4+ Var[E [R| ©,X]| X| (7.35)

= Average process variance + parameter estimation error,

which equals MSEP g x [j?} if we choose R = E[R|X]. Estimation of the terms involved

requires knowledge of the posterior distribution for ® that can be obtained either analytically
or approximated accurately using Markov chain Monte Carlo methods discussed in the next
section.

We also note that under the Bayesian setting it is often of interest to consider the posterior
predictive distribution for X additional losses (or annual losses), as defined generically by

F (et ili) = / £ (Srs1nsk]0) 7(O]x1.) 46 (7.36)

if x1., and x,,4 1.,4 x are independent given 8. If they are not independent then f(x,+1.,+160)
should be replaced by f(x,,41:41 (0, %1:)-
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7.4 Standard Markov Chain Monte Carlo (MCMCQC)
Methods

There are typically three main reasons why OpRisk practitioners may utilize the following sets
of Monte Carlo procedures when undertaking estimation in OpRisk settings.

1. The first involves working with the posterior distribution for the parameters of an LDA
model structure to obtain point estimators, posterior credible intervals for the model
parameters, and estimation of functions with respect to the posterior, which is the condi-
tional distribution of the LDA model parameters given the observed loss data (as discussed
in previous sections);

2. The second involves estimation with respect to annual loss models for a risk or group
of risk processes, such as integrals with respect to the LDA model(s). This could include
quantities such as predictive distributions for losses in future years, distributions for capital
allocations, distributions for joint loss processes with dependence or insurance features, or
perhaps sensitivity analysis in derived LDA quantities to changes in model parameters;

3. The third area of interest involves the estimation of risk measures and capital under a
particular LDA model.

The first case arises when, for example, the posterior distribution is not known in closed
form (i.e., up to normalization) or perhaps one wants to integrate functions with respect to
the posterior to find point estimates or predictive interval summaries of the conditional distri-
bution. This is particularly important when one is outside of the class of conjugate Bayesian
models. Hence, often practitioners would resort to numerical estimation procedures via sam-
pling. However, when the posterior is not easily sampled from by simple exact methods such
as inversion and transformation, then estimation of quantities of interest empirically by direct
simulation in a basic Monte Carlo strategy is also problematic. In general, Markov chain Monte
Carlo methods (hereafter referred to as MCMC methods) and Sequential Monte Carlo (here-
after referred to as SMC) methods can be used in such settings where direct sampling and basic
Monte Carlo procedures will not be possible.

A range of standard as well as more advanced MCMC and SMC methods of relevance
are presented here, and fundamentally all approaches to be discussed aim to achieve the same
common goal of obtaining samples efficiently from the posterior distribution, which are as
close to independent as possible. The biggest difference between each approach to be discussed
relates to the accuracy that one can perform such inference given a computational budget such
as total samples, total simulation time, etc.

Typically, there will be a trade-off for practitioners related to the complexity of the sampling
algorithm they wish to consider versus the reduction in variance in estimated quantities of
interest. Therefore, we provide a range of methods one may consider suiting those interested
in very simple approaches with nonrestrictive simulation budgets through to those looking for
state-of-the-art sampling methods that will provide sample estimates accurately for constrained
computational budgets or make challenging goals such as rare event estimation possible in
reasonable computational budgets.

Given the different estimation goals discussed, there is no unique way to present the fol-
lowing sampling algorithms based on Markov chain and Importance Sampling methodologies.
Therefore, throughout the following sections, we will present the sampling problems in gen-
eral as generating a sequence of L samples @(1), @(2), cel O which will be understood
in the following algorithmic descriptions to be generic random vectors that will correspond
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to quantities of interest in the inference, which are not necessarily always static LDA model
parameters as will be demonstrated in the examples provided.

7.4.1 MOTIVATION FOR MARKOV CHAIN METHODS

In the following sections, we will generally detail examples for the most common situation
encountered in practice which involves obtaining samples from a posterior conditional dis-
tribution for the OpRisk model parameters, given observed loss data. However, we note with
some examples alternative situations that are also of interest and can be addressed by the Monte
Carlo methods presented; these include situations in which we may assume we know the model
parameters and our target is to sample the distribution of the annual loss, or joint distribution
of multiple risk annual losses to obtain estimates of tail functionals, such as would be required
in risk measure estimation for capital purposes.
Note: we make the following note on notation used throughout this book, regarding the dirac-
delta function. In general we will utilise a range of representations for this special function
including 6(x — xo), d, and dy, () which will be all variations on presenting the same dirac-
delta function. In addition, we will also utilise 0, (#x) to represent the dirac-delta measure.
First, consider the generic question of quantification of the probability of a particular event
or set of events that are measurable with respect to outcomes of the model, denoted by A C R
some measurable subset of the support of the posterior for the OpRisk model. Now consider
computation of quantities such as Pr[@® € A] = [, 7 (Olx.7) dO.

Consider a sequence of samples (6( ))ISzS 1 of independent copies of the random vari-
able ®. In this situation, the traditional Monte Carlo approximation of quantities such as
Pr[® € A] (which is the most simple special case of the inference problems previously defined)
is given by the empirical measures with L samples

(@|x1 T L Z 5@() — 7T(6|x1 T) L — oo.
1<i<L

Under this most basic of Monte Carlo estimators, the convergence of the empirical measure is
understood as a weak convergence of empirical measures in the following sense for any bounded
and measurable test function ¢ on R?:

/1/J 7 (d®|x1.7) Z G (@(i))

RRE? (7.37)
/ H(©) 7 (dOlx1.7) = Er o) (1(O)), L — oo,

It is often highly informative for practitioners to consider the marginal behavior of sub-blocks of
the parameter vector ® € R?. From the samples obtained under a basic Monte Carlo strategy,
we observe that through the use of indicator functions for cells in R?, one can study visualiza-
tions for the shape of the posterior distribution marginally simply by plotting the histograms
of the samples ©”) in every dimension.

In the specific choice of test functions given by the indicator function on a set of events
A denoted 1 = 1, in the notational convention, the empirical measure of the poste-
rior 7 (I4|x1.7) and the true posterior measure 7 (I4|x.7) is denoted by 7 (A|x;.7) and
7 (A|x1.7). Hence, for indicator function ¢ = I4, one has by the a.s. convergence of the
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empirical measure of the test function 9, in Equation 7.37, the resulting empirical estimator is
an unbiased estimator given by,

E 7 (Alx.7)] = 7 (A|*1.7), (7.38)

and a variance in this estimator given by,

R 1
Var (7 (Alx1.7)) = A (Alx1.7) (1 — 7 (A|x1.7)). (7.39)
This assumes that these samples are attainable through techniques such as generic methods
based on the inverse transform exact sampling, or accept—reject Monte Carlo sampling methods;
(see Glasserman 2004, section 2.2).

Corollary 7.1 (The inverse transform) [fU ~ Uniform(0, 1), then the distribution of the ran-
dom variable X = F~'(U) is F(x).

That is, to simulate X from the distribution F(x) using the inverse transform, generate
U ~ Uniform(0, 1) and calculate X = F~1(U).

Corollary 7.2 Simulating X from the density f (x) is equivalent to simulating (X, U) from the
uniform distribution on (x, u), where 0 < u < f(x).

This means that to simulate X from the density f(x), generate (X, U) from the uniform
distribution under the curve of f(x). The latter is typically done through the accept—reject
algorithm (sometimes called rejection sampling).

Corollary 7.3 (Accept-reject method) Assume that the density f(x) is bounded by M (i.e.,
f(x) < M) and defined on the support a < x < b. Then, to simulate X with the density f(x)

* Draw X ~ Uniform(a, b) and U ~ Uniform(0, M);
o Accept the sample of X if U < f(X), otherwise repeat the previous steps.

If another density g(x) such that Mg(x) > f(x) can be found for constant M, then to simulate X
with the density f (x)

* Draw X from g(x) and U ~ Uniform(0, Mg(X));
o Accept the sample of X if U < f(X), otherwise repeat the previous steps.

The inverse method cannot be used if the normalization constant is unknown, and the
accept—reject method cannot be used if you cannot easily find the bounds for the density or
one is working in high dimension where rejection probabilities may be high and will scale
nonlinearly with the dimension of the parameter space of the posterior. These difficulties are
often arise for posterior densities; therefore, unfortunately in practice, one cannot typically
easily generate i.i.d. samples from the target posterior distribution, due to the intractability
of the inverse of the distribution function (i.e., the quantile function is not known in closed
form). In such cases, which incidentally correspond to the majority of situations in practice,
one must resort to alternative statistical approaches to provide samples. There are numerous
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such examples, which include Importance Sampling (IS), MCMC, SMC, Sequential Monte
Carlo Samplers (SMC Samplers), Particle Markov chain Monte Carlo (PMCMC), and their
adaptive versions. Each of these classes of algorithms is significantly different in its attributes
and in the problems for which it is appropriate to utilize each one when making inference in
OpRisk modeling. It is the intention of the following sections to introduce practitioners to a
subset of the many possible choices that are selected as their performance is efficient and widely
applicable for the types of problems discussed in the context of OpRisk Bayesian modeling.
We begin with MCMC general properties, then present a special case of what is known as
an auxiliary variable sampler illustrated by the Slice sampler of Neal (2003). This is widely
applicable to many Bayesian inference problems and is now a standard package in statistical
software such as R and Matlab.

For a good introduction on estimation (sampling) of the posterior 7(60|x) numerically
using MCMC methods, see Robert and Casella (2004). MCMC has almost unlimited applica-
bility though its performance depends on the problem particulars. The idea of MCMC methods
is based on a simple observation that to obtain an acceptable approximation to some integrals
depending on a distribution of interest 7(0|x), it is enough to sample a sequence (Markov
chain) {8V, 0%, ... }+, whose limiting density is the density of interest 7(6|x). This idea
appeared as early as the original Monte Carlo method but became very popular and practical
in the last few decades only when fast computing platforms became available.

A Markov chain is a sequence of random variables defined as follows.

Definition 7.11 (Markov chain) A sequence of random variables,
{0 oW .. e" . 1},

is a first-order Markov chain if; for any [, the conditional distribution of elth given G(i),
i = 0,1,...,/ is the same as the conditional distribution of@([H) given ©Y). A conditional
probability density of e!+y given ©Y s called transition kernel of the chain and is usually
denoted as K(© @D, [

Remark 7.8 The challenge is to construct a Markov chain sampling procedure that from any loca-
tion in the state space will produce samples (as close to uncorrelated and i.i.d. as possible) for a
given distribution of interest—either a posterior distribution for model parameters or, for example,
a distribution for the annual loss of a single risk process or multiple, dependent risk processes.

One way to achieve such goals is to utilizean MCMC approach. MCMC methods produce
an ergodic Markov chain with a stationary distribution (which is also a limiting distribution) that
is designed to match the distribution one wishes to obtain samples from. These chains are also
recurrent and irreducible (see details in Meyn ez al. 2009 or Robert and Casella 2004). In simpler
terms, one would like to design MCMC samplers that have certain desirable properties related
to their mixing rates; crudely put, the ability of the Markov chain to explore the state space of
the target distribution from any initial starting point, and how quickly the chain reaches the
stationary regime, i.e. obtains samples from the desired distribution of interest. In addition,
it would be nice to be able to rely upon the convergence of MCMC sample estimators of
functionals on the state space as provided by some form of ergodic theorem. In addition to this,
it is often of interest to ascertain knowledge around the accuracy and rates of convergence such
as through the existence of the Central Limit Theorem (CLT) and knowledge of the asymptotic
variance (see discussions by Jones 2004 and the references therein).
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Theorem 7.4 (Strong Law of Large Numbers) Consider a sequence of non-negative random
variables Y1, Ya, . .., which are i.i.d. with a mean E[Y\] = p. Then the following convergence
in probability holds for all e > 0:

HH+%+m+n
L

lim Pr
L—o0

u%&}& (7.40)
With this theorem in mind, consider the definition of the ergodic theorem for an MCMC

sampler. Ergodic theorems concern the limiting behavior of averages over time; therefore, an

ergodic theorem is basically a result describing the limiting behavior of a sequence such as

1 L—1
Zzy@w) (7.41)
=0

as L — oo. The formulation of the ergodic theorem considered in any given example will
depend on the class of functions f (e.g. integrable, I?,... continuous), and the notion of
convergence used (e.g., pointwise convergence, L* convergence, ...uniform convergence). In
the case of pointwise ergodic theorems, one would typically consider the Birkhoff Khinchin
theorem (see, e.g., Kornfeld ez a/. 1982); in the case of a mean ergodic theorem for Hilbert
spaces, one may consider Von Neumann’s mean ergodic theorem (see, e.g., Birkhoff 1931 and
Cohen 1940 and references therein). For a summary, see the book-length review of Krengel and
Brunel (1985).

For simplicity consider first a discrete state space and discrete time setting, and define the
proportion of time that the Markov chain spends in a state 7 before L is achieved, denoted by
7;(L) and defined by the sum of indicator events

L—1
mm:}jﬂﬂ”:ﬁ. (7.42)

=0

Then, if we normalize this sequence by the length of the chain Z to get the proportion of time
spent in a state 7, we can state one version of the ergodic theorem as follows, based on definitions
of irreducibility given by, for example, Meyn ez al. (2009).

Theorem 7.5 (Ergodic Theorem: Discrete Time and Discrete State Space) Consider a tran-
sition matrix for a Markov chain, denoted by P, which is irreducible, and let T be any distribution
[from which we wish to obtain samples. Furthermore, we assume that the Markov chain (X (L)) >0
that corresponds to this Markov(P, T0) structure has for all € > 0 the property -

-

i

lim Pr

. 6] _o, (7.43)

where ; = B [T}] is the expected return time to state i. Then, if the chain is also positive recurrent,
one can state that for any bounded function defined on the state space X € X given by f : X — R,
one has for all € > 0 the following convergence in probability:

P () -3 () ()

where T is the unique invariant distribution of the Markov chain.

n—r 00

lim Pr l

> e] =0, (7.44)
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In OpRisk, we are typically interested in more general state space settings, such as contin-
uous supports. So we generalize the previous notions to consider a general Markov transition
kernel P(x, dy) on a general state space (X, B(X)) with Borel sigma algebra B(X') for an asso-
ciated discrete time Markov chain X = (X ¢ )) >0

transition by P()(x, dy) and then for i € IL, x € X, and a measurable set A, we can define
PO (x,A) = Pr (X(l+i) € AlXY = x). If we then consider the class of Borel functions given
by f : X — R, then the following operator notation is well defined: Pf(x) = [ £(y)P(x, dy)
and Af(x) = Pf(x) — f(x). Furthermore, if we assume the Markov chain X to be Harris
ergodic, that is, aperiodic, ¢-irreducible, and positive Harris recurrent (see Meyn ez a/. 2009)

. Furthermore, we denote the /-step Markov

with invariant distribution 7 on some general state space X, then these assumptions are suffi-
cient to show the strong convergence in total variation norm, given for every initial distribution

v(-) on B(X) as [ — oo, by
1P, ) = 7()llrv = 0, (7.45)

where we define PV (X, A) = [, P (x, A)v(dx) and ||- || 7 denotes the Total variation norm
between probability measures, given in Definition 7.12.

Definition 7.12 (Total Variation Distance Norm) Consider two probability measures p and v.
Then the total variation distance between probability measures p and v can be defined by

Il = v||7v = sup {|u(4) —v(4)| : A€ X} (7.46)
and its values are non-trivial. ]

The meaning of this distance is that it measures the largest possible difference between
the probabilities that the two probability distributions can assign to the same event. In the
context of Markov chains, this will be the maximum difference between probabilities on all
Borel measurable events arising from the /-step Markov chain with initial distribution v and
the target stationary distribution 7.

In other words, a weaker version of this result tells us that if we consider a class of Borel
functions f that we use to define a sample average, from L samples,

Fo= S r (1)
/=0

and the target functional E,[f] = [, f(x)7(dx). Then, if we assume that E. [|f]] < oo,
a generalization of the previous ergodic theorem will guarantee that our sample average will
converge £, — E[f] with probability 1 as L — oo.

To extend these results by considering the 7ate at which these sample estimators, con-
structed by the Markov chain samples, will converge as well as the accuracy of such sam-
ple estimators, one needs to consider the existence of a Central Limit Theorem (CLT). The
CLT condition or result is important as it would state the following convergence in distri-
bution holds asymptotically in the length of the Markov chain (i.e. number of samples L),
according to

VI (fL _E., [f]) s Normal(0, o) (7.47)
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as L — 00 and where the asymptotic variance is given by

aj% = Varg [f (X0)] + 2 i Covr [f (X) f (X)] < 0. (7.48)

=1

The existence of a CLT result is far from certain, however it is highly informative and crucial to
sensible implementation of MCMC methods, since knowledge of the behaviour of the sample
average, for function £, using MCMC samples, informs directly the performance of £, as an
estimator of E; [f] and its accuracy in large samples through 2. As noted, in developing a CLT
result, generally the first step is to verify its existence which is typically obtained through con-
sideration of discussions on minorization conditions for the Markov transition kernel. Briefly,
one can consider conditions on the Markov chain that would result in some form of bound on
the following total variation norm

1P (x, ) =7 () |7 < M(x)g(n) (7.49)

for some non-negative function M (x) and a non-negative decreasing function g(/) for / € Z*.
That is some bound on the maximum difference between probabilities assigned to all measur-
able events from the Markov chain after / iterations and the target stationary distribution 7.
If this upper bound is in the form of a decreasing function of the length of the chain / then
one can utilise this convergence rate knowledge to verify the existance of a CLT result. Typi-
cally, one would consider cases such as geometric ergodicity of the Markov chain X in which
g(l) = ¢ for some # < 1, or uniform ergodicity in which M is bounded and g(/) = # again for
some ¢ < 1, or alternatively polynomial ergodicity on the order of m > 0, where g(/) = /=".
These minorization conditions can be translated to conditions on the Markov chain transition
kernel. For instance, a minorization condition will hold for a particular set A4 if there exists a
probability measure, say Q, taking support on the Borel sets B(X) such that for some positive
integer /) and a positive constant € on has the lower bound

PO (x, A) > eQ(A), Vx € A, Ae B(X). (7.50)

From this minorization condition on the transition kernel of the Markov chain one typically
then formulates some form or drift condition to verify different forms of ergodicity mixing,
such as polynomial, uniform or geometric. The minorization conditions required of a Markov
chain to achieve these convergence results and the implications on the resulting sequence of
estimators with regard to the existence of a CLT are summarized in the tutorial article of Jones
(2004) and the references therein. In particular from the related drift conditions there are known
results relating to the existence of the CLT for a Markov chain, see (Jones, 2004, theorem 1).

Throughout the presentation of this section, we assume that one is utilizing MCMC meth-
ods to sample from a target distribution, which, for illustration purposes, is going to be the pos-
terior distribution of the model parameters for an LDA risk framework given observed losses
and the total number of losses over time. Of course, as already discussed, this can be more gen-
eral to also include cases in which we just wish to sample from complex distributions efficiently;
to highlight this fact, we will also provide several examples of such applications throughout the
following presentation.

For the purposes of this book, we make the following further general remark regarding the
types of Markov chain methods that will be discussed and developed in future sections of this
chapter.
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Remark 7.9

* W are interested in the case where the chain stationary distribution corresponds to, for exam-
ple, the posterior density 7(0\|x) or perhaps, as a second example, the distribution of multiple
risk processes 1(Z W), Z2) . ZD) for which we know the parameters and wish to obtain
samples from this multivariate intractable distribution subject to tail dependence features after
restriction to a joint tail event;

* The ergodic property means that the distribution of ev converges ro a limiting distribution
(0|x) for almost any starting value of e, Therefore, for large I, e j approximately
distributed from (0 |x) regardless of the starting point. Of course, the problem is to decide what
is large 1. This can formally be accomplished by running diagnostic tests on the stationarity of
the chain;

* A Markov chain is said to have a stationary distribution if there is a distribution 7(0|x) such
that z'f@([) is distributed from 7(0|x), then e+ j distributed from 7(0|x) too;

* A Markov chain is irreducible if it is guaranteed to visit any set A of the support of w(0|x).
This property implies that the chain is recurrent, that is, that the average number of visits to
an arbitrary set A is infinite and even Harris recurrent. The latter means that the chain has
the same limiting behavior for every starting value rather than almost every starting value;

* Markov chains considered in MCMC algorithms are almost always homogeneous, that is, the
distribution of @ 0TV @D - @UHh) 4iyen @) s the same as the distribution of
0. 0 ... 0 given ®© forany ly > 0 and k > 0. We detail a fow special cases of
adaptive MCMC algorithms in which we do not make this assumption; for a general overview
of relevance to OpRisk, see Del Moral et al. (2013);

* Another important stability property is called reversibility, which means that the direction of
the chain does not matter. That is, the distribution of OtV conditional on O = @ i

the same as the distribution of @ "V conditional on @D = 0. The chain is reversible if the
transition kernel satisfies the detailed balance condition

K(6,0)7(0|x) = K(0',0)7(0'|x). (7.51)

The detailed balance condition is not necessary but sufficient condition for w(0|x) to be sta-
tionary density associated with the transitional kernel K (- , -), which usually can easily be
checked for MCMC algorithms.

Of course, the samples @1, @) .. . are not independent. However, the independence
is not required if we have to calculate some functionals of 7(8|x), because the Ergodic theorem
implies that for large Z, the average

L

1

- > g(@Y) (7.52)
=1

converges to E[g(©)|X = ] (if this expectation is finite), where expectation is calculated with
respect to 7(0|x).

In the following we illustrate a few example functionals that typically arise in practice for
OpRisk settings. Consider multiple risk processes denoted by ZzW ZzW 7@ Assume
that each risk process Z(!) satisfies marginally an LDA structure with frequency distribution
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)

N ~ Fyw(n) and severity distribution for the j-th loss X}(i ~ Fyo (x). Then assume

that the 4 risk processes are dependent upon each other and this dependence is modeled in
the following fashion where jointly the annual loss Z-variate random vector has distribution
(ZzW, ..., ZD) ~ C(Fs0)(21), .., Fyw(24)). Given this multivariate risk process model,
OpRisk practitioners may be interested in obtaining samples (e.g., by MCMC methods) from
the joint density given by

d
fzo. zw (21, 20) = ¢ (Fzoy (1), - -, Fz (24)) Hfz(f) (2i), (7.53)

i=1

These L samples, {(Z 4 (d))([)} can then be utilized to estimate quantities such

as the following:

¢ Joint tail functionals. In this case for some measurable and bounded test function
d .
©:R*T* = R one has the Monte Carlo estimator

2 (217 e ,zd)fé(l)l’__vz({l) (zl, e ,zd)a’zl N dzﬂr
R+ R+

~
~

1=

S ({Zm,... ,z@ﬂ(/)) . (754

/=1
Examples of such functionals include marginal distributions, conditional distributions, tail
functionals such as quantiles, and tail expectations;
* Conditional constrained tail functionals: In many settings, one is interested in calcu-

. . d
lating for some measurable and bounded test function ¢ : R™* — R a Monte Carlo
estimator of quantities such as

..........

R+ R+

¢ M @]® 1) ()
~ ZQD([Z 1o ® i| )]IR([z(l),,,.,z(J)}(l)) |:<Z 7"'JZ )i| 9
/=1

~1

(7.55)

subject to some constraints on the joint sequence of losses denoted generically by a con-
straint function R(ZW), ..., Z(@). Examples of constraints of interest in OpRisk settings
include choices such as the following:

° Example 1: to calculate marginal, joint, and groups of marginal tail functionals for the
joint loss distribution restricted to certain tail events of interest,

R(Z0,. 2D) =Lysp, sy, [(20,.29)]. (7.56)

° Example 2: constraints on linear combinations of the marginal annual losses would allow
one to obtain estimators for functionals of jointly constrained risk processes under con-
straints such as



7.4 Standard Markov Chain Monte Carlo (MCMC) Methods 175

d
R (z<1>, . ,Z(d)) =320 > . (7.57)

i=1

There are several possibilities one may consider in this context, and in general this is
relevant for insurance settings as well as coherent capital allocation methods.
. . . . . /
* Quantile function estimation. Given samples {(Z O 4 (‘l))( )} from the

I=1:L
dependent joint risk process, one can transform these samples via a measurable and

bounded test function ¢ : R+’ — R that corresponds to the new univariate samples
{WU)}/:I:L with W0) = ¢ ((Z(l)7 .. ,Z(d))(])) having density denoted fi (w). Now

sorting these samples to obtain the order statistics {"V(L L) } /., One can obtain an esti-
mator of the resulting quantile via

/-1

Go(W) = Wip), with —— <a < (7.58)

1~

This is of relevance for risk measure estimations and capital estimation of, for example, the
institutional capital, such as when one considers

d

0 (Z<1>, . ,Z(")) =3 20,

i=1

Note that in this case we can state two things about the accuracy of such a quantile estimator
(see discussions by Flegal ez @/ 2012) depending on whether the samples obtained are
independent or autocorrelated. In the case of independent samples, one has the following
convergence in distribution between the obtained sample estimated quantiles g, (W) and
the target theoretical quantile g (W) at level o for the chosen constraint function ¢,
asymptoticly according to:

a(l —a)

VI (5a — ormal | 0, ————
L(3a(W) = ga(W)) — N <0 [fir (g (W))]

> , as L — oo. (7.59)

If the samples are autocorrelated, as would typically be the case if the samples

L
{( FACRS (d))([)}l , used to construct the constrained samples {W( }/ > were

obtained by a Markov cham procedure, then Flegal ez 2l (2012, theorem 1) state that
under polynomial mixing (of order 3) of the MCMC sampler, the following convergence
in distribution is satisfied in Theorem 7.6.

Theorem 7.6 [f there exists an € > 0 such that W is polynomially ergodic of order 2.5 + €, and
if W has density satisfying that its derivative f, is positive and bounded in the neighborhood of the
quantile g, (W), then as L — 00, one obtains the following convergence in distribution:

VL (3a(W) — ga(W Normal ,W), as L — oo. .6
(90 (W) = 90 (W)) — <0 o lga (V) — (7.60)
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with 02 (y) defined by

02(},) = Varf(z(l) Z(d))(Z“%mZ(’”) (]I [W(O) <}/D

0o (7.61)

Remark 7.10 Note that this variance expression is then approximated using the MCMC samples in
order to use this information to form confidence intervals for the resulting quantile estimator, which

will be of the form o (W) £ £, w for some desired t distributed confidence interval at level
* with t-score t,.. See examples in Flegal et al. (2012).

Having defined the notions required to understand Markov chain methods at a rudimen-
tary level, we now summarize how we utilize these concepts to proceed with MCMC algo-
rithms (see further discussion by Roberts 1995). The MCMC approach constructs an ergodic
Markov chain (9(1), ey CIRAS taking values in R?. This Markov chain is constructed to
have the property that it has a limiting, invariant distribution is the target distribution of interest
7 (dO®|xy.7). This invariant distribution is the target distribution, that, in the cases considered
in this chapter, will correspond to the posterior for the OpRisk model. For the Markov chain
samples to be used as samples from the target distribution, it is necessary that there exist a
unique invariant distribution of the Markov chain corresponding to the posterior of interest
for the OpRisk model. A detailed review of the properties of more general state space Markov
chain theory can be found in, for example, Meyn ez 4/. (2009) and Del Moral (2004).

To achieve this construction of a Markov chain with desired stationary distribution, the
majority of methods developed in the statistics literature have focused on the case in which the
Markov chain created satisfies the condition of reversibility, whereby the following holds:

. (d@w |x1,r) QO", 4109) = 1 (d@@\xm) QO 401), (7.62)

where @) and @Y represent states of the Markov chain and Q(®Y, /@) denotes the
Markov transition representing the probability of starting in state ©") and transition to a
neighborhood of the state e,

Under this condition, there is a wide range of methods that one may utilize to construct
the desired Markov chain, which in a large number of instances involves the careful design of

the transition kernel Q(©”, 4@1)). The transition kernel for the class of MCMC methods

of interest in this section is typically given by

Q (@u)’d@(m)) =y <@</>’d@</+1>) o (@</>7d@</+1>>

n [1 - [4(00.2)a(0.5) dz} 1ot~ o).

where the design of transition density ¢ (@(/), d @UH)) is of direct interest for reducing vari-

(7.63)

ance in Monte Carlo estimates. The first component

7(©". 400V} a (00, 40D) (7.64)
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corresponds to the probability of starting in a state ©" at iteration / of the Markov chain
and moving to some state O+ with acceptance of such a proposed sampled move typically

denoted generically by acceptance probability o (9(1), d @UH)). The remainder of the ker-

nel, that is, the second term, corresponds to rejecting such a proposed move and remaining in
the current state for the next iteration of the Markov chain.

Algorithms of this form are generally considered as special cases of the general framework
established by Metropolis ¢z a/. (1953) and extended by Hastings (1970). It is instructive to first
present the basic Metropolis—Hastings (MH) MCMC sampler and the univariate Gibbs sam-
pler prior to explaining how more recent advances in these methods can be utilized effectively
for OpRisk model inference.

7.4.2 METROPOLIS-HASTINGS ALGORITHM

The MH algorithm is almost a universal algorithm used to generate a Markov chain with a
stationary distribution 7(80|x). It has been developed by Metropolis ez 2/. (1953) in mechanical
physics and generalized by Hastings (1970) in a statistical setting. It can be applied to a variety
of problems since it requires the knowledge of the distribution of interest up to a normaliz-
ing constant only, i.e. as is typically the case in practice, the normalizing constant does not
need to be known for the posterior for one to apply the following methods. Given a density
7(0|x), known up to a normalization constant, and a conditional density (6" |@), the method
generates the chain {0(1)7 6%, ... } using the following algorithm.

Algorithm 7.2 (Metropolis—Hastings algorithm)

1. Initialize =) with any value within a support of w(0|x);
2. Forl=1,...,L

a) Ser0") =0!"Y;

b) Generate a proposal 0% from q(0*|0V);

©) Accept a proposal with the acceptance probability

0D 6%) — mi (0% [x)q(6™| P

that is, simulate U from the uniform distribution function Uniform(0,1) and set
6" = o* if U < (0, 0%). Note that the normalization constant of the posterior
does not contribute here.

3. Next [ (i.e., do an increment, | = [ + 1, and return to step 2).

Remark 7.11

o The density m(0|x) is called the target or objective density;
* 4(07\0) is called the proposal density and will be discussed shortly.
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For further discussions on this algorithm and tutorials on its properties and variants, see

examples by Chib and Greenberg (1995), Gilks ez a/. (1996), and Andrieu ez a/. (2003).

7.4.3 GIBBS SAMPLER

The Gibbs sampler is a technique for generating random variables from a distribution indirectly,
without having to calculate the density. The method takes its name from the Gibbs random
fields in image-processing models starting with the paper of Geman and Geman (1984). Its
roots can be traced back to the 1950s; see Robert and Casella (2004) for a brief summary of
the early history.

To illustrate the idea of the Gibbs sampler, consider the case of two random variables X and
Y that have a joint bivariate density 7(x, y). Assume that simulation of X from 7(x) cannot be
done directly but we can easily sample X from the conditional density (x|y) and ¥ from the
conditional density 7(y|x). Then, the Gibbs sampler generates samples as follows.

Algorithm 7.3 (Gibbs sampler, bivariate case)

1. Initialize y\'=°) with an arbitrary value within a support of Y;
2. Forl=1,...,L

(a) Simulate x from (x[y(l_l)>;

(b) Simu/atey([) from (y|x(l)).
3. Next [ (i.e., do an increment, | = [ + 1, and return to step 2).

Under quite general conditions, 7(x,y) is a stationary distribution of the chain
{(x,5"),1 = 1,2,...}; and the chain is ergodic with a limiting distribution 7(x, y), that
is, the distribution of X(¥) converges to 7(x) and the distribution of ¥) converges to 7(y) for
large /.

Gibbs sampling can be thought of as a practical implementation of the fact that knowledge
of the conditional distributions is sufficient to determine a joint distribution (if it exists!).
The generalization of the Gibbs sampling to a multidimensional case is as follows.
Consider a random vector X with a joint density 7m(x). Denote full conditionals
mi(xi|x—;) = w(x|%r, . o xi—1, %41, - - -, xv). Then, do the following steps.

Algorithm 7.4 (Gibbs sampler, multivariate case)

(1=0)

7 =0 . .
1. Initialize x e ,xl(v ) with an arbitrary value;

2. Forl=1,...,L
1) Simulate xl(l) Sfrom ™ (xl |x§l_1), e ,x](\f_l));

2) Simulate xél) Sfrom T, <X2|xfl)7x§171)7 ... 7){}(\#1));

N) Simulate xl(\ﬁ) Sfrom wy (xN|x§l), e ,X%:i))
3. Next .
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Again, under general conditions, the joint density 7(x) is a stationary distribution of the
generated chain {x(),/ = 1,2,... }; and the chain is ergodic, that is, 7(x) is a limiting
distribution of the chain.

For detailed analysis of properties and justification of this algorithm, see analyses by Casella
and George (1992), Liu ez al. (1995), Chan (1993) and Smith and Roberts (1993).

In many cases, such as in the univariate Gibb’s sampler framework, the full conditional
posterior distributions may not be sampled via inversion. To handle this complication, there
have been several developments in which adaptive rejection sampling has been utilized to
sample from each successive full conditional posterior distribution. Well-known examples of
these include Gilks and Wild (1992); Gilks ez a/. (1994, 1995), and Gelfand (2000). Another
approach to tackle this challenge in general is to adopt a mixed strategy in which one utilizes
combinations of Gibbs steps for some “blocks” of parameters and MH within Gibbs steps for
other parameter blocks.

7.44 RANDOM WALK METROPOLIS-HASTINGS WITHIN GIBBS

The Random Walk Metropolis—Hastings (RW-MH) within the Gibbs algorithm is easy to imple-
ment and often efficient if the likelihood function can be easily evaluated. It is referred to
as single-component Metropolis—Hastings by Gilks er al. (1996, section 1.4). The algorithm is
not well known among OpRisk practitioners and we would like to mention its main features;
see Peters and Sisson (2006); Shevchenko and Temnov (2009) for application in the context
of OpRisk and Peters ez al. (2009a) for application in the context of a similar problem in
insurance.

The RW-MH within the Gibbs algorithm creates a reversible Markov chain with a station-
ary distribution corresponding to our target posterior distribution 7. Denote by 8'") the state of
the chain at iteration /. The algorithm proceeds by proposing to move the i-th parameter from

Y to a new proposed state 8} sampled from the MCMC proposal transi-
tion kernel denoted generically here by density £ with distribution F. Typically, the parameters
are restricted by simple ranges, 6; € [4;, 4,], and proposals are sampled from the Normal distri-
bution. Then, the logical steps of the algorithm are as follows.

/—
the current state 95

Algorithm 7.5 (RW-MH within Gibbs)

1. Initialize 05120), i=1,...,1 by for example, using MLES;
2. Forl=1,...,L

a) Set6) = 9!V,

b) Fori=1,...,1.

i. Sample proposal 0F from the transition kernel, for example, from the truncated Normal
density

qp®
ftr(9j|0i([)70'i) = f(al |91 701)

— , (7.66)
F(616,0,) — F(a]6, 0,)

where f(x|p, o) and F(x|p, o) are the Normal density and its distribution with mean
b and standard deviation o;
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ii. Accept proposal with the acceptance probability

* tr( gD+
o(0%.6%) — min {1, (8" (6, |9i,az>}7 06

7(6Vx)ftx (6716, o)

where 0™ = (GY), ce 91@1,91-*, HEijl), ...), that is, simulate U from Uniform(0,1)
and set 951) =0 ifU < (0, 0%). Note that the normalization constant of the
posterior does not contribute here.

c) Nexti.
3. Nextl.

This procedure builds a set of correlated samples from the target posterior distribution.
One of the most useful asymptotic properties is the convergence of ergodic averages constructed
using the Markov chain samples to the averages obtained under the posterior distribution. The
chain has to be run until it has sufficiently converged to the stationary distribution (the poste-
rior distribution) and then one obtains samples from the posterior distribution. General prop-
erties of this algorithm, including convergence results, can be found in Robert and Casella
(2004, sections 6-10). The RW-MH algorithm is simple in nature and easy to implement.
However, for a bad choice of the proposal distribution, in the case above the tuning of the
proposal f variance parameters, the algorithm gives a very slow convergence to the station-
ary distribution. There have been several recent studies regarding the optimal scaling of the
proposal distributions to ensure optimal convergence rates (see Bedard and Rosenthal, 2008).
The suggested asymptotic acceptance rate optimizing the efficiency of the process is 0.234.
Usually, it is recommended that the o; in (7.66) be chosen to ensure that the acceptance
probability is roughly close to 0.234. This requires some tuning of the o; prior to the final
simulations.

7.5 Standard MCMC Guidelines for Implementation

There are several numerical issues when implementing MCMC. For the majority of standard
MCMC algorithms, one must consider the following practical advice. In practice, an MCMC
run consists of three stages: tuning, burn-in, and sampling stages. It is also important to assess
the numerical errors of the obtained estimators due to finite number of MCMC iterations.

7.5.1 TUNING, BURN-IN, AND SAMPLING STAGES

Tuning. The use of MCMC samples can be very inefficient for an arbitrary chosen proposal
distribution. Typically, parameters of a chosen proposal distribution are adjusted to achieve
a reasonable acceptance rate for each component. There have been several studies regarding
the optimal scaling of proposal distributions to ensure optimal convergence rates. Gelman
et al. (1997), Bedard and Rosenthal (2008), and Roberts and Rosenthal (2001) were the first
authors to publish theoretical results for the optimal scaling problem in RW-MH algorithms
with Gaussian proposals. For the d-dimensional target distributions with independent and
identically distributed components, the asymptotic acceptance rate optimizing the efficiency of
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the process is 0.234 independent of the target density. Though for most problems the posterior
parameters are not independent Gaussian, it provides a practical guide.

There is no need to be very precise in this stage. In practice, the chains with acceptance
rate between 0.2 and 0.8 work well. Typically, turning is easy. In an ad hoc procedure, one can
initialize the proposal distribution parameters with the values corresponding to the proposal
with a very small variability, and start the chain. This will lead to a very high acceptance rate.
Then run the chain and gradually change the parameters toward the values that correspond to
the proposal with a large uncertainty. This will gradually decrease the acceptance rate. Continue
this procedure until the acceptance rate is within the 0.2—0.8 range. For example, for Gaussian
proposal choose a very small standard deviation parameter. Then increase the standard deviation
in small steps and measure the average acceptance rate over the completed iterations until the
rate is within the 0.2-0.8 range. One can apply a reverse procedure, that is, start with parameter
values corresponding to a very uncertain proposal resulting in a very low acceptance rate. Then
gradually change the parameters toward the values corresponding to the proposal with small
variability. Many other alternative ways can be used in this context.

Gaussian proposals are often useful with the covariance matrix given by (7.25), that is,
using Gaussian approximation for the posterior, or just MLE observed information matrix (7.7)
in the case of constant prior. An alternative approach is to utilize a new class of adaptive MCMC
algorithms recently proposed in the literature (see Atchadé and Rosenthal 2005 and Rosenthal
2007).

Burn-in stage. Subject to regularity conditions, the chain converges to the stationary target
distribution. The number of iterations required for the chain to converge should be discarded
and called burn-in iterations. Again, we do not need to identify this quantity precisely. Rough
approximations of the order of magnitude work well. Visual inspections of the chain trace plot
is the most commonly used method. If the chain is run long enough, then the impact of these
burn-in iterations on the final estimates is not significant. There are many formal convergence
diagnostics that can be used to determine the length of burn-in (for a review, see Cowles and

Carlin 1996).

Sampling stage. Consider the chain {0(1), 6%, ... ,G(L)} and the number of burn-in iter-
ations is L,. Then, O(L“H), 0(L1’+2), cel 0" are considered as dependent samples from the
target distribution 7(60|x) and used for estimation purposes. For example, E[g(©)|X = «] is
estimated as

L

E[¢(©)|X — ] — / €(O)r(0x)d0 ~ - ! = > g0, (7.68)

/iL/,—‘rI

Typically, when we calculate the posterior characteristics using MCMC samples, we assume that
the samples are taken after burn-in and Z, is dropped in corresponding formulas to simplify
notation.

In addition to visual inspection of MCMC, checking that after the burn-in period the
samples are mixing well over the support of the posterior distribution, it is useful to moni-
tor the serial correlation of the MCMC samples. For a given chain sample 051), ceey 01-(“, the
autocorrelation at lag £ is estimated as

B~

—k
0 — (6" — ), (7.69)
1

ACF[0,, 4 = T—r2

/
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where /i and §* are the mean and variance of a sample 951), cey 91@. In well-mixed MCMC
samples, the autocorrelation falls to near zero quickly and stays near zero at larger lags. It is
useful to find a lag £™**
near zero (for some interesting discussion on this issue, see e.g., Kass ¢z 2/ 1998). It is not
unusual to choose a £** for each component such that the autocorrelation at lag £*** has
reduced to less than 0.01.

where the autocorrelations seem to have ‘@ied out”, that is, fallen to

To illustrate the described stages, consider a dataset of the annual counts
n = (9,12,7,9) simulated from Poisson(10). Then, we obtain the chain
MO XM using the RW-MH algorithm with the Gaussian proposal distribu-
tion for the Poisson(A\) model and constant prior on a very wide range [0.1, 100].
Figure 7.1 shows the chains in the case of different starting values \(*) and different
standard deviations oy of the Gaussian proposal. One can see that after the
burn-in stage indicated by the vertical broken line, the chain looks stationary.

Figure 7.1a and b were obtained when ozy = s@[S\MLE] ~ 1.521, leading to
the acceptance probability of approximately 0.7, while Figure 7.1c and d were
obtained when oz = 0.4 and oy = 30, leading to the acceptance probability
of about 0.91 and 0.10, respectively. The MLE was calculated in the usual way

as Std/EV[S\MLE] = (X0, mi/m)'/?/\/m, where m = 4. The impact of the value
of opw is easy to see: the chains on Figures 7.1c and d are mixing slowly (moving
slowly around the support of the posterior) while the chains on Figure 7.1a and b
are mixing rapidly. Slow mixing means that much longer chain should be run to
get good estimates.

7.5.1.1 MCMC Convergence Diagnostics. In all cases of using MCMC algorithms
in practice, one has to decide on how many samples to draw from the Markov chain mechanism,
that is, how long a Markov chain to run in the burn-in and sampling phase. In principle,
this will dependent on a few different factors such as the precision in the estimated inferential
quantities that one wishes to achieve, since we have seen that the accuracy of Monte Carlo
estimates increases with the number of samples.

In addition, one must remember that when using MCMC samplers, if one initializes the
sampler from an arbitrary point in the parameter space, it will take a certain number of iter-
ations before the Markov chain reaches what can be considered the stationary regime, that
is, begins to sample from the true posterior target distribution (the reason for the burn-in
phase). Therefore, it is common in practice to do two things: the first is to discard the ini-
tial samples that may not have come from the stationary distribution (know as discarding
“burn-in”), and the second is to monitor the mixing (exploration of the Markov chain) around
the support of the posterior distribution. This helps to ensure that we are not using samples
that are too autocorrelated. Both these tasks require some version of monitoring, and generally
there have been statistical approaches developed to monitor these aspects as the Markov chain
progresses, which are known as convergence diagnostics (see the review by Mengersen ez 4.

1999).
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FIGURE 7.1 MCMC chains of A parameter of Poisson(\) model in the case of different starting points
() and different standard deviations of the Gaussian proposal distribution: (a) starting point A(®) = 30
and ogw = L.521; (b) \(®) = rand oz = 1.521; (c) A\(?) = 30 and orw = 0.45 (d) A(®) =30 and

orw = 30. The burn-in stage is to the left of the vertical broken line. The dataset consisting of the annual

number of events (9, 12,7, 9) over 4 years was simulated from Poisson(10)
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Hence, we stress that when using an MCMC algorithm, it is crucial to carefully monitor
the convergence diagnostics of the Markov chain. This is more important in general MCMC
contexts and approximate Bayesian computation settings due to the possibility of extended
rejections where the Markov chain can stick in a given state for long periods.

If the total chain has length Z, the initial burn-in stage will correspond to the first Z,
samples and we define I=1- Ly. Note that in this particular section, we will denote by
{©W},_, 7 the Markov chain of the i-th parameter after burn-in; for simplicity of notation,
the parameter index 7 is dropped. The diagnostics we consider are given as follows.

* Geweke et al. (1991); Cowles and Carlin (1996) time series diagnostic;

1. Split the Markov chain samples into two subsequences,

{(—)(1)}[:1:L1 and {(—:)(l)}[zL*:Zv

such that L* = L—L,+1,and with ratios L, /L and L, /L fixed such that (L, +L,)/L <
1 for all Z;

2. Evaluate fi;, and fi;, corresponding to the sample means of each subsequence;

3. Evaluate consistent spectral density estimates for each subsequence, at frequency 0,

denoted SD;, and SDy,. The spectral density estimator is the classical non-parametric
periodogram or power spectral density estimator; for details of the power spectral den-

sity, see Oppenheim ez /. (1989);
4. Evaluate convergence diagnostic given by
ﬂb - [I’Lz
L'SDy, + L, 'SDy,

7=

According to the CLT, as L — oo one has Zz — Normal(0,1) if the sequence
{©"},_ 5 is stationary.

* Gelman and Rubin (1992), and Brooks and Gelman (1998), R-statistic diagnostic. This
approach to convergence analysis requires that one run multiple parallel independent
Markov chains each starting at randomly selected initial starting points (e.g., consider
running five chains). For comparison purposes, we split the total computational budget
of Linto Ly = L, = --- = Ls = L/5. The convergence diagnostic for parameter © is
calculated using the following steps:

1. Generate five independent Markov chain sequences, producing the chains for parameter
O denoted {0}y, for k€ {1,...,5}%
2. Calculate the sample means iz, for each sequence and the overall mean fi3;

3. Calculate the variance of the sequence means

s

5
Z fu, — i)’ =: B/L,.

4. Calculate the within-sequence variances 5, for each sequence;

5. Calculate the average within-sequence variance, 5 Ly b1, = W
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6. Estimate the target posterior variance for parameter O by the weighted linear combi-
nation 6% = L”l—;l W + . B. This estimate is unbiased for samples that are from the
stationary distribution. In the case in which not all subchains have reached stationarity,
this overestimates the posterior variance for a finite L but asymprotically, L — o0, it

converges to the posterior variance;

7. Improve on the Gaussian estimate of the target posterior given by Normal(fi;, &%)
by accounting for sampling variability in the estimates of the posterior mean
and variance. This can be achieved by making a Student-z approximation with
location /iy, scale V'V, and degrees of freedom df, each given respectively by:
V= O'N + B/Land df = 2(V)?/ Var(V), where the variance is estimated as

L —1 6\
ar (T7) — — 2
Var (V) = 5( . ) Var[:Lk]-i-(\/ﬁ) B
12(L; — 1) — 24(L; — 1)
25L1 25L1

(7.70)

Cov (SLH ﬂL) 'uLCOV [ka’ 'UL}

Note that the covariance terms are estimated empirically using the within-sequence
estimates of the mean and variance obtained for each sequence;

8. Calculate the convergence diagnostic R = Vdf /W (df — 2), where as L — 00 one
can prove that R — 1. This convergence diagnostic monitors the scale factor by
which the current distribution for © may be reduced if simulations are continued for
L — oo.

7.5.2 NUMERICAL ERROR

Due to the finite number of iterations, MCMC estimates have numerical error that reduces as
the chain length increases. Consider the estimator

O — Blg(@)X = x] = % S g(@0), 7.71)

If the samples @V ..., @®) are independent and identically distributed then the standard
error of € (due to the finite L) is estimated using

stdev[Q)] = stdev[g(®)|X = x]/VL,

where stdev[g(®)|X] is estimated by the standard deviation of the sample g((")(l)),
!/ =1,...,L. This formula is only approximate for MCMC samples due to serial correla-
tions between the samples. Of course, one can keep every kmax sample from the chain to get
approximately independent samples, but it is always a suboptimal approach (see MacEachern

and Berliner 1994).
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Effective sample size. If there is only one parameter 6, then one of the popular approaches is
to calculate effective sample size, Ty = T /7, where T is autocorrelation time

T=1+2) ACF[0,4]. (7.72)
k=1

To estimate 7, it is necessary to cut off the sum in (7.72) at a value of £ = £, where the
autocorrelations seem to have fallen to near zero. Then the standard error of the ) (7.71) is
estimated using

stdev[g(©)]

V[T

stdev[Q)] =

(see Ripley 1987, and Neal 1993).

Batch sampling. Probably the most popular approach to estimating the numerical error of the
MCMC posterior averages is the so-called batch sampling (see Gilks ez al. 1996, section 3.4.1).
Consider MCMC posterior samples 9(1), ey 0Y of ® with the length L = K x N, and
an estimator () = Zle g((")(l)) of E[g(®)]. If N is sufficiently large, the means

JXN

A 1 ;

= Yo g®Y), j=1,....K (7.73)
i=(j—1)N+1

are approximately independent and identically distributed. Then the overall estimator and its
variance are

Q:E(QHL- + Qk),
Varl0)] = -5 (Varl] + - + Varff]) = &
ar[()] = -7 (Var[t, ar[{]) = 2.
where 02 = Var[fll] == Var[flk]. In the limit of large K, by the CLT (we also assume

that o2 is finite), the distribution of 2 is Normal with the standard deviation o /v K. The latter
is referred to as the standard error of €. Finally, 0% can be estimated using sample variance

~2 1 < A A\ 2
6= > (- Q)" (7.74)

Note that X is the number of quasi-independent bins, and V = L/K is the size of each bin or
batch. Typically, in practice K > 20 and N > 100£™2%, where #™%* = max (£, B2 .. .)
is the maximum of the cutoff lags over components. In general, we would like to run the chain
until the numerical error is not significant. So, one can set /V using #™** identified during
tuning and burning stages, for example, set N = 100£™?, then run the chain in batches until
the numerical error of the estimates is less than the desired accuracy.
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7.5.3 MCMC EXTENSIONS: REDUCING SAMPLE
AUTOCORRELATION

Sometimes, in the developed Bayesian models, there is a strong correlation between the model
parameters in the posterior. In extreme cases, this can cause slow rates of convergence in the
Markov chain to reach the ergodic regime, translating into longer Markov chain simulations.
In such a situation, several approaches can be tried to overcome this problem. The following
are suggestions that are widely used in practice.

* Hybrid Samplers. The first involves the use of a mixture transition kernel for the Markov
chain, where one combines local and global moves. Local moves are from Markov transi-
tion kernels that sample the next chain transition based on local information of the current
chain’s state, whereas global moves sample the next state of the Markov chain independently
of the current state location. Global moves can produce a wider exploration potential of
the state space, whereas local moves produce a local exploration with a higher chance of
acceptance of a proposed move. For example, one can perform local moves via a univariate
slice sampler and global moves via an independent MH sampler with adaptive learning
of its covariance structure. Such an approach is known as a hybrid sampler (see compar-
isons in Brewer et al. 1996); the slice sampler will be discussed later. Alternatively, for
the global move if determination of level sets in multiple dimensions is not problematic
for the model under consideration, then some of the multivariate slice sampler approaches
designed to account for correlation between parameters can be incorporated (see Neal 2003
for details);

Transformations of Parameters (change of variable). Another approach to breaking cor-
relation between parameters in the posterior is via the transformation of the parameter
space. If the transformation is effective, this will reduce correlation between parameters of
the transformed target posterior. Sampling can then proceed in the transformed space, and
then samples can be transformed back to the original space. It is not always straightforward
to find such transformations;

Change of Target Distribution (distortion of target). A third alternative is based on
simulated tempering, introduced by Marinari and Parisi (1992) and discussed extensively
by Geyer and Thompson (1995). In particular, a special version of simulated tempering,
first introduced by Neal (1996), can be utilized in which one considers a sequence of target
distributions {7} constructed such that they correspond to the objective posterior in the
following way:

7= (7 (0]x))" (7.75)

with sequence {~;}. Then one can use the standard MCMC algorithms (e.g., slice sampler)
and replace 7 with 7;. Running a Markov chain such that at each iteration / we target
the posterior 7; and then only keeping samples from the Markov chain corresponding to
situations in which 7, = 1 can result in significant improvement in exploration around
the posterior support. This can overcome slow mixing arising from a univariate sampling
regime. The intuition for this is that for values of 7, << 1 the target posterior is almost
uniform over the space, resulting in large moves being possible around the support of the
posterior, then as 7y, returns to a value of 1, several iterations later, it will be in potentially
new unexplored regions of the posterior support.
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For example, one can utilize a sine function

= min ( sin Zjl +1,1
Y= K )

with large K (e.g., K = 1000), which has its amplitude truncated to ensure it ranges
between 0 and 1. That is, the function is truncated at 7; = 1 for extended iteration periods
for our simulation index / to ensure the sampler spends significant time sampling from the
actual posterior distribution.

In the application of tempering, one must discard many simulated states of the Markov
chain, whenever y; # 1. There is, however, a computational way to avoid discarding these
samples (see Gramacy ez al., 2010);

* Adaptive Transition Kernels and Mixed Samplers. Finally, we note that there are several
alternatives to an MH within a Gibbs sampler such as a basic Gibbs sampler combined
with adaptive rejection sampling (ARS) (Gilks and Wild 1992). Note that ARS requires
distributions to be log-concave. Alternatively, an adaptive version of this known as the
adaptive Metropolis rejection sampler could be used (see Gilks ez 2. 1995).

Remark 7.12 Knowing which of theses strategies is most appropriate for a given application is a
combination of three factors: careful consideration of the properties of the target distribution to deter-
mine which approach may be possible to implement efficiently; consideration of the total compura-
tional budget and desired precision in the estimation target; and some trial of competing methods
prior to full simulation. It is still a challenge to definitively state that a particular MCMC approach
or sampling procedure will work universally for all problems in an efficient manner and so some trial
and error is required.

It is the intention of the following sections to provide more advanced techniques that
we recommend be adopted only if one has already tried the simple MCMC procedures dis-
cussed previously and found them to be inefficient for the given sampling challenge. Therefore,
these more advanced methods will provide a significant increase in sampler “performance” at
an increased cost of complexity of understanding and implementation.

7.6 Advanced MCMC Methods

In this section, we will survey a few examples of more recently developed MCMC methods
aimed at improving the performance of the fundamental approaches discussed in the section
presenting the standard MCMC algorithms. The first methods we present are a class of aux-
iliary variable MCMC methods in which we focus on the special case of the univariate Gibbs
sampler algorithm, with discussions and references to more recent advanced multivariate ver-
sions. Following this we present the framework of adaptive MCMC methods, illustrating the
properties briefly in order to explain to practitioners how such an approach can be imple-
mented. The adaptive strategies chosen to be presented will be based on nontrivial mod-
ifications to the standard algorithms to obtain the adaptive Metropolis algorithm and the
Reimann—Manifold Hamiltonian Monte Carlo algorithms. Then we introduce briefly the fam-
ily of sequential IS methods known in the statistics literature as SMC Samplers, which are
direct competitors to MCMC methods (see Del Moral et al. 2006, Peters et al. 2009 and
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DPeters 2005). We discuss these briefly and then present particular detailed examples of such
algorithms are also presented in the companion book by Peters and Shevchenko (2015) under
the topic of rare-event simulation.

7.6.1 AUXILIARY VARIABLE MCMC METHODS: SLICE SAMPLING

In this section, we explain the general class of auxiliary variable methods that are available to
practitioners to improve the efficiency of MCMC algorithms in exploring complex posterior
supports. In general, there are different classes of such algorithms ranging from slice samplers by,
for example, Neal (2003) and for OpRisk, Peters e a/. (2009); auxiliary variable techniques to
remove intractability in likelihood models such as by Godsill (2000), West (1987), and Peters
et al. (2011b); data augmentation schemes (Tanner and Wong, 1987) such as those used to
tackle complicated dependence structures by Peters ez a/. (2012b); and the general summary of
such methods by Higdon (1998).

7.6.2 GENERIC UNIVARIATE AUXILIARY VARIABLE GIBBS
SAMPLER: SLICE SAMPLER

In this section, we focus on settings in which the approach of auxiliary variables can be utilized to
improve sampling performance. Often, the full conditional distributions in Gibbs samplers do
not take standard explicit closed forms and typically the normalizing constants are not known in
closed form. Therefore, this will exclude straightforward simulation using the inversion method
(see Corollary 7.1) or basic rejection sampling (see Corollaries 7.2 and 7.3). In this case, for
sampling, one may adopt a Metropolis—Hastings within a Gibbs algorithm (described in Section
7.4.4). This typically requires tuning of the proposal for a given target distribution, which
becomes computationally expensive, especially for high-dimensional problems. To overcome
this problem one may use an adaptive Metropolis—Hastings within a Gibbs sampling algorithm
(see Atchadé and Rosenthal 2005 and Rosenthal 2009). An alternative approach, which is more
efficient in some cases, is known as a univariate slice sampler (see Neal 2003). The latter was
developed with the intention of providing a “black box” approach for sampling from a target
distribution, which may not have a simple form.

The slice sampling methodology we develop will be automatically tailored to the desired
target posterior. As such, it does not require pretuning and in many cases will be more efficient
than an MH within Gibbs sampler. The reason for this, pointed out by Neal (2003), is that an
MH within Gibbs has two potential problems. The first arises when an MH approach attempts
moves that are not well adapted to local properties of the density, resulting in slow mixing of the
Markov chain. Second, the small moves arising from the slow mixing typically lead to traversal
of a region of posterior support in the form of a Random Walk. Therefore, L? steps are required
to traverse a distance that could be traversed in only L steps if moving consistently in the same
direction. A univariate slice sampler can adaptively change the scale of the moves proposed
avoiding problems that can arise with the MH sampler when the appropriate scale of proposed
moves varies over the support of the distribution.

We will utilize the notations @(_;) = (O1,...,0,.1,0;41,...,0,) with 8 € R4,
The intuition behind slice sampling arises from the fact that sampling from a univariate dis-
tribution, in this case given by say the i-th component full conditional of the posterior for the
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Bayesian model, given by 7 (©;/©(_;), x1.7), can always be achieved by sampling uniformly
from the region under the distribution 7 (@A@(,i) , xl;r) .

The procedure in Algorithm 7.6 is repeated for each of the & elements of the posterior
parameter vector ® to obtain the /-th sample from the univariate slice sampler. Then typically,
such a procedure is repeated L times to obtain sufficient draws for resulting estimation chal-
lenges. We note that in applying Algorithm 7.6 we actually discard the auxiliary variable sample
u]l for each of the dimensions, j € {1,2,...,d}, just keeping the resulting correlated samples

@;Z) which when combined together in a vector (@El), @5[), ey @y)) will make a draw @)

from 7 (®|x;.7). Neal (2003) demonstrates that a Markov chain (U, ©®) constructed in this
way will have stationary distribution defined by a uniform distribution under 7 (®|x;.7) and
therefore discarding the vector of auxiliary variables U at each of the / iterations allows one to
obtain the marginal of ® which will produce samples from the desired stationary distribution
7 (O |xy.7) . Additionally, Mira and Tierney (2003), and Mira ez a/. (2002) proved that the slice
sampler algorithm, assuming a bounded target distribution 7 (®|x1.7) with bounded support
is uniformly ergodic.

Similar to a deterministic scan Gibbs sampler, the simplest way to apply the slice sampler
to a multivariate distribution is by considering each of the univariate full conditional distribu-
tions either in turn under a deterministic scan Gibbs sampler; or alternatively under a random
scan Gibbs sampler in which the dimension of ® to be updated at the /-th iteration of the
slice sampler is randomly selected. Discussions that relate to the benefits provided by Random
Walk behavior suppression, as achieved by the slice sampler, are presented in the context of
nonreversible Markov chains in for instance Diaconis et 2/ (2000).

A single iteration of the slice sampler algorithm for a toy example is presented in
Figure 7.2. The intuition behind the slice sampling arises from the fact that sampling from
a univariate density 7 () can always be achieved by sampling uniformly from the region
under the density 7 (), where, for instance, 7() could be a posterior distribution 7 (6|x1.7)

v

)

ol=1 i

FIGURE 7.2 Markov chain created for © and auxiliary random variable U,
(u('), 9(')) e (u(l_'), 9(1_‘)) , (u(l) , 0(1)) , - . . has a stationary distribution with the desired marginal
density 7 (0)
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or any desired target distribution. The example we present is for a single univariate distribu-
tion; if one has a multivariate posterior, then the algorithm is applied iteratively via either a
random scan or a deterministic scan over each of the univariate full conditional distributions.
This is basically then a version of an auxiliary variable Gibbs sampler as discussed above with
the sampling stage at each iteration replaced with the two steps of Algorithm 7.6 below for
each full conditional target distribution. Again, we note that this algorithm only requires that
the target posterior distribution and univariate full conditional posterior distributions are only
required to be known up to a normalization constant. That is, the normalization constant is
not required to be known to apply this method.

Algorithm 7.6 (Univariate slice sampler)

1. Initialize 0°) by any value within the support of w(0);
2. Forl=1,2,...,L
a) Sample a value ) ~ Uniform (0, T (9([71)));
b) Sample a value 10 uniformly from the level set A; = {0 2w (0) > u(/)}, that is,
0 ~ Uniform (A;) .
3. Next .

As noted above, in general to apply this univariate procedure to a multivariate posterior distri-
bution, with ® € R?, one would use at iteration /, of a deterministic scan Gibbs sampler, for
the i-th element, having updated i — 1 elements / times the full conditional posterior choice

™ (9i|951)729y)7 s 79501701(4711)7 tee 790({[71)axl:T> . (776)

The sampling in Algorithm 7.6 above would then be applied for each i € {1,2,...,d} to
obtain the complete /-th sample of the Markov chain from 7 (6|x;.7).

There are many approaches that could be used in the determination of the level sets A4,
for the density 7(+) (see Neal 2003, section 4). For example, one can use a stepping out and a
shrinkage procedure (see Neal 2003, figure 1, p. 713).

The basic idea is that given a sampled vertical level #(*), the level sets A; can be found by
positioning an interval of width w randomly around #¢~"). This interval is expanded in step
sizes of width w until both ends are outside the slice. Then a new state is obtained by sampling
uniformly from the interval until a point in the slice 4; is obtained. Points that fail can be
used to shrink the interval. Developing such a procedure can be rather intricate in practice
to implement if the full conditional posterior distributions are multi-modal. Thankfully, there
are now efficient Slice Sampler packages available in standard softwares such as R, Matlab and
Python.

Additionally, it is important to note that we only need to know the target full conditional
posterior up to normalization (see Neal 2003, p. 710). To make more precise the intuitive
description of the slice sampler presented earlier, we briefly detail the argument made by Neal
on this point. Suppose we wish to sample a random vector @ whose density 7 (8) is propor-
tional to some function £(@). This can be achieved by sampling uniformly from the (7 + 1)-
dimensional region that lies under the plot of £ (@). This is formalized by introducing the
auxiliary random variable U and defining a joint distribution over ® and U (which is uniform

over the region {(®, U) : 0 < u < f (6)} below the surface defined by f (8)) given by
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7 (O,) = {é/ ) ih;wz: <f0), (7.77)
where Z = [ £ (0) 46. Then the target marginal density for © is given by
£(9) ) 7(0)
7 (6) = / du =122 (7.78)

(=]

as required.

Remark 7.13 We note that such an algorithm aims to improve the mixing of the Markov chain
around the support of the posterior through the use of the auxiliary variables, which means that the
Jjoint Markov chain on the parameters and auxiliary variables has a stationary distribution that is
uniform in some domain for the volume under the posterior, such that the marginal distribution
obtained by discarding the Markov chain samples for the auxiliary variables are actually samples
[from the true posterior. The challenge with the implementation of this algorithm is to obtain ar
each slice the level sets (or an approximation of the level sets) of the posterior. This is typically done
numerically through a stepping in and stepping out routine, followed by a rejection sample. The
interested reader is referred to Neal (2003, section 4).

The simplest way to apply the slice sampler in a multivariate case is by applying the univari-
ate slice sampler for each fully conditional distribution within the Gibbs sampler; for example,
in the OpRisk context, see Peters ez al. (2009).

Recently, several extensions have been developed for the slice sampler algorithm with a view
to generalizing it to multivariate block Gibbs samplers known as reflective slice samplers, hyper
rectangle slice samplers, and “crumbs” see the approaches presented by Tibbits ez 2. (2011),
Mira ez al. (2002), Murray ez al. (2010), Thompson and Neal (2010a), Thompson (2011),
Roberts and Rosenthal (2002), and Thompson and Neal (2010).

7.6.3 ADAPTIVE MCMC

As has now been demonstrated in the previous few sections, MCMC sampling has gained wide
recognition in all areas of modeling and statistical estimation as an essential tool for performing
inference in Bayesian models (see reviews and discussions by Gilks ez /. 1996 and Brooks
1998). In this section, we discuss two recently developed classes of algorithms known as forms
of adaptive MCMC (see a review by Andrieu and Thoms 2008).

As discussed in the section on MH algorithms, standard MCMC algorithms that do not
incorporate adaptation often require a degree of “tuning” of the parameters controlling the
algorithms’ performance. This is typically performed by offline simulations to assess perfor-
mance of the mixing of the resulting Markov chain followed by numerical investigation of the
convergence rates to stationarity of the chain for different algorithmic settings of the proposal
distribution. For example, the variant of the MH algorithm, the RW-MH algorithm with the
widely used multivariate Gaussian proposal, has mixing performance that is controlled through
specification of the Markov chain proposal distributions covariance matrix. Tuning this matrix
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for optimal performance can be computationally expensive and inefficient (see detailed discus-
sions by Gilks ez al. 1996, Brooks 1998, and Chib and Greenberg 1995). Optimal performance
ofan MCMC algorithm is typically either specified by the convergence rate of the Markov chain
to stationarity or through the related quantity, the acceptance probability of the rejection step
in the MCMC algorithm. In this regard, theoretically optimal results have been derived for
several classes of statistical models, which now act as guides for more complicated sampling
problems (see discussions by Roberts and Rosenthal 2001).

The potential in OpRisk modeling to have high dimensionality in the posterior parame-
ter space provides a significant challenge for standard MCMC algorithms with respect to the
design of an efficient proposal mechanism for the Markov chain. Therefore, it is desirable to
automate this proposal construction for the MCMC sampler, avoiding computationally expen-
sive tuning processes. Hence, we develop an adaptive version of the RW-MH algorithm. The
incorporation of an adaptive proposal mechanism in an MCMC algorithm has been demon-
strated to improve the performance of the sampling algorithm relative to standard MCMC
approaches (see reviews of several examples of this improvement by Andrieu and Thoms
2008). The improvement is achieved by learning the structure of the Markov chain proposal
distribution online in an automated fashion, avoiding offline tuning of the MCMC proposal
mechanism.

There are several classes of adaptive MCMC algorithms and each class has several adapta-
tion strategies (Roberts and Rosenthal 2009, Atchadé and Rosenthal 2005, Andrieu and Thoms
2008). These approaches can be classified as either internal adaptation mechanisms, including
controlled MCMC methods, or external adaptation strategies (see discussion by Atchadé and
Rosenthal, 2005).

Remark 7.14 The distinguishing feature of adaptive MCMC algorithms, when compared to stan-
dard MCMGC, is that the Markov chain is generated via a sequence of transition kernels. Adaptive
algorithms get their name from the fact that they utilize a combination of time or state inhomoge-
neous proposal kernels. Each proposal in the sequence is allowed to depend on the past history of the
Markov chain generated, resulting in many possible variants.

When using inhomogeneous Markov kernels, it is particularly important to ensure that the
generated Markov chain is ergodic, with the appropriate stationary distribution. Several recent
papers proposing theoretical conditions that must be satisfied to ensure ergodicity of adaptive
algorithms include Atchadé and Rosenthal (2005) and Haario ez 4/. (2001, 2006). The papers
by Roberts and Rosenthal (2007), Latuszynski ez /. (2013), and Bai ez a/. (2009) consider
properties such as the ergodicity of the adaptive MCMC under conditions such as Diminishing
Adaptation and Bounded Convergence.

Designing an adaptation strategy that satisfies these conditions guarantees asymptotic con-
vergence of the law of the Markov chain samples to the target posterior and ensures that the
Weak Law of Large Numbers holds for bounded test functions of the parameter space (inter-
ested readers are referred to Roberts and Rosenthal 2009 for details).

Technical Notes Regarding Adaptive MCMC. The practitioner reading this section may wish
to skip the following technical notes relating to the validity of the adaptive MCMC algo-
rithm. Primarily the focus of this section involves discussing under what types of conditions one
way achieve a sensible notion of sample average from a Markov chain in which the transition
matrix is constantly changing, that is, “adapting”. However, if a practitioner wishes to adopt
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or try such methods with confidence that they are theoretically justified, they may go directly
past this section to the description of the algorithms.

In stating these conditions more precisely, we consider the distance between two probabil-
ity distributions generically denoted by v and , that are formed from measures that we assume
admit a density with respect to, say, the Lebesgue measure. We can again recall this distance in
a slightly different form from where we denoted it by || - || 7v, where we define this distance
generically according to

d(p,v) Sup{‘/sﬁdu/wdv

for some test function ¢ in a class of functions denoted D, for example, the class of all bounded
and /-th order differentiable functions, etc. In the case of considering the Total Variation dis-
tance ||y — V|| 7v, we consider the space of Borel sets 5 and define the distance

Lpe D} (7.79)

d(p,v) = || — vl|7v = sup |v(A4) — u(A)| (7.80)
AeB

with the class of functions given by the indicators on the Borel sets D = {I4 : A € B}. This
distance in the case of two probability measures v and p will clearly be between 0 and 1 and
will provide a comparison of convergence between two probability measures, which will imply
weak convergence (convergence in distribution).

One can formally consider this distance and utilize it to develop a condition that will
succinctly state one of the required conditions for an adaptive Markov chain to satisfy ergodicity.
This condition is known as diminishing adaptation and is given as follows.

Diminishing Adaptation.

lim sup || Qr,,, (©,0") — Qr,(©,0’) | 7v=0in prob.,

n—r00 OcR?

where @ is the vector of parameters in the Bayesian model and the measures v and p are selected
to be the Markov transition kernel Qr,,, at a random time denoted by index I',;; when the
n + 1-th update of the kernel (in the learning phase) was applied.

The second condition required for a transition kernel to satisfy ergodicity is known as
bounded convergence and is given as follows.

Bounded Convergence.

{M (0, T;)}2, is bounded in prob., € > 0

with convergence time defined as M, (0,~) = inf {/ > 1 || Qé(@, ) =Pl <€}
Creating an adaptive MCMC sampler with a proposal distribution that satisfies these tech-
nical conditions ensures the following:

o Asymptotic convergence:

/lim | £(©D) —7(-)||7v = 0 in prob.,
— 00
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where 7(-) is the target posterior distribution—intended stationary distribution of the
Markov chain and £(+) denotes the law of the random variable (distribution);

* Weak Law of Large Numbers (for all bounded functions g)

In the following, we discuss one particular illustrative choice of transition kernel that sat-
isfies these conditions and has been used successfully in several applications (see Andrieu and
Thoms 2008, Peters et al. 2010, Korostil ez al. 2012, and Roberts and Rosenthal 2009). The
algorithm we present is one of many possibilities in this literature and is known as the adaptive
Metropolis algorithm. It involves utilizing an MCMC proposal distribution, parameterized by
parameter vector or matrix ¥, and learning the appropriate values for ¥ recursively utilizing
the previous samples of the Markov chain that have been accepted under the MCMC accept—
reject mechanism. This is achieved online, adapting according to the support of the posterior
distribution, thereby allowing the Markov chain to discover and explore the regions of the
posterior distribution that have the most mass. Through this online adaptive learning mech-
anism, the Markov chain proposal distribution can significantly improve the acceptance rate
of the Markov chain, enabling efficient mixing and improving the exploration of the posterior
support by the Markov chain.

To provide practitioners with perhaps the simplest version of an adaptive MCMC algo-
rithm proposal that could be considered, we present the internal adaptation strategy based on
the adaptive Metropolis algorithm detailed by Roberts and Rosenthal (2009). This is a variant
of the approach proposed by Haario ez 2. (2001), which develops an RW-MH that estimates
the global covariance structure from the past samples.

Under an adaptive Metropolis algorithm, the proposal distribution is based on a Gaussian

mixture kernel detailed by Roberts and Rosenthal (2009). The proposal, ¢ (@(7_1), @(7)),

involves an adaptive Gaussian-mixture Metropolis proposal, one component of which has a
covariance structure that is adaptively learnt online as the algorithm explores the posterior dis-
tribution. For iteration j of the Markov chain the proposal is

, 1 (2.38)°
4 (@0*”, ) — ~Normal <@<*>; el (28)2]_)

. 1)?
+ (1 — ) Normal <®<*>; eu-Y, (()61)1,,7”1) . (7.81)

Here, ¥; = ¥; is the current empirical estimate of the proposal parameters; in this case, the
posterior covariance between the parameters of ®, estimated using samples from the Markov
chain up to time j — 1. Small positive constant -y is usually taken as equal to 0.05 (Roberts
and Rosenthal 2009). The theoretical motivation for the choices of scale factors 2.38, 0.1 and
dimension 4 are all provided by Roberts and Rosenthal (2009) and are based on optimality
conditions presented by Roberts and Rosenthal (2001).

We note that the update of the covariance matrix can be done recursively online via the fol-
lowing recursion (as detailed by Atchadé ez a/. 2011) and presented in the following algorithm.
In the following sequence of steps for the j-th iteration of the adaptive Metropolis algorithm,
we will update the state of the Markov chain from 00V parameter vector e according
to the steps in Algorithm 7.7.
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Algorithm 7.7 (Adaptive Metropolis Algorithm)
1. Initialize the parameter vector 0 € R? and the covariance matrix of the proposal
w0 = n0) — 4(0;)*14,4,
2, Forl=1,...,L

a) If| > 1 then update the adaptive Metropolis proposal covariance matrix recursively using
previous samples from the Markov chain created via

1
- (@D _ )
Hit1 u1+1+1( Bl s

Y =X+ HLI ((@(l_l) - uz) (9(1_1) - M/) g E/) :

b) Sample a proposed vector of parameters %) ~ q (0(/71), ) from an adaptive MCMC
proposal (q[ (@(171), )) constructed using previous Markov chain samples
{6(0), cee el } as detailed by the mixture proposal in Equation (7.81);

<) Accept the proposed new Markov chain state comprised of 0 with acceptance probability
given by

(0% |x1,...,x7)q (9(/71), 0*)
T (0(l_1)|x1, . ,xT) g (0*, 0“‘1))

where we evaluate this acceptance probability utilizing the expressions detailed previously. If
there is acceptance, then o) = 0(*), else one sets 9 = U=,
3. Next .

o (0(1_1),0*) =min | 1, , (7.82)

7.6.4 RIEMANN-MANIFOLD HAMILTONIAN MONTE CARLO
SAMPLER (AUTOMATED LOCAL ADAPTION)

By this stage, we have clearly established the fact that the design of the proposal distribution
for the Markov chain that is created for an MCMC method with target posterior 7 (®|x.7)
can directly effect the ability to make accurate inference. In addition, we have discovered that
the transition kernel for the class of MCMC methods of interest is typically given by

Q (@)(z)’d@(m)) =y (@(1)’49(”1)) o (@u),d@(m))

T [1 - [4(0®.2)a(0%.2) dz} 1o — o],

where the (adaptive) design of ¢ (G)(l), a’(-')(H'l)) is of direct interest for reducing variance in

(7.83)

Monte Carlo estimates. In the following sections, we will primarily focus on how to adaptively
modify ¢ (@(/), d®(1+1)) to improve the mixing of the resulting MCMC samplers.
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Next we present another more advanced class of algorithms known as Hamiltonian Monte
Carlo (HMC) methods. The extension to this class of algorithms we discuss is a recently intro-
duced class of MCMC samplers by Girolami and Calderhead (2011), which was developed to
help automate the design of the proposal distributions within the Markov kernel; in this case,
this will be achieved through the use of what is known as Riemann—Manifold Hamiltonian
Monte Carlo (RM-HMC; see a detailed tutorial overview by Neal 2010).

We first define the basic principles on which RM-HMC is discussed in detail by Duane
et al. (1987), Girolami and Calderhead (2011), and Neal (2010). The context of the RM-HMC
algorithm derives from the design of a Markov chain proposal obtained from a discretized
Langevin diffusion with two components: a stochastic discretized diffusion component and a
second component based on a discretized deterministic component constructed from gradient
information of the target density. This first class of algorithm was known as the Metropolis-
Adjusted Langevin Algorithm (MALA) method of Stramer and Tweedie (1999) and adaptive
versions by Marshall and Roberts (2012). Alternative approaches of a similar nature were also
developed and are generally known as Hybrid Monte Carlo (hybrid MC) proposals as they
also involve a combination of deterministic and stochastic components obtained from dis-
cretization of a physical stochastic process. Such hybrid MC algorithms typically produce an
ergodic Markov chain in which large traversals of the posterior support are accepted with high
probability.

7.6.4.1 Sampling the Posterior Density via Establishing Related Hamiltonian
Mechanics. This section provides basic details to aid the understanding of how one devel-
ops such an HMC proposal mechanism to efficiently explore the support of the target posterior
distribution. It is instructive to consider the following nonstandard formulation of a posterior
distribution, which we repose as the equations of motion under Hamiltonian mechanics. This
involves specification of a system of partial differential equations that can be solved to provide
the building blocks of the HMC algorithms. Consider the random vector of posterior param-
eters @ € R? with @ ~ 7 (®|x,.7) and an independent auxiliary random vector denoted by
Z € R with Z ~ Normal(0,%). Now consider construction of the negative log joint den-
sity given by the equivalent interpretation as a Hamiltonian H(®, z) of an energy-conserving
physical dynamic system described by

1 1
H(®,z) = —In7 (Olx1.7) + 3 In(27)? |3 + Eszflz, (7.84)

with —In7 (©lxy.7) the accumulated potential energy at location ©, the term 1z’ %7 'z
representing the kinetic energy, and z the momentum and mass matrix X (see discussions by
Girolami and Calderhead, 2011) and Neal (2010). To understand why this interpretation may
be of relevance to the design of an MCMC sampler one needs to consider the score function

of the joint distribution of random vectors ® and Z given by

o _
0z

0H

nlg, 22
Te)

=Velnr (Olx.7). (7.85)

This deterministic system of partial differential equations can be used to re-interpret, with
respect to the joint distribution of the two random vectors, a dynamical system with artificial
“time” unit 7 given by
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40 04 4= _ OH
ir 0z Y 47T T ee

By linking the joint distribution of random vectors ® and Z to a physical system evolution,
one may now construct from these artificial dynamics a dynamic proposal mechanism for a

Markov chain sampler (see Algorithm 7.8).

Remark 7.15 [t should be noted that the numerical integrator should provide a dynamic solution,
which is interpreted as a transformation mapping from the parameter vector (©, z) to the newly
“Droposed” parameter vector (@', 2'). If this mapping is time-reversible (in the artificial time )
and volume-preserving, then it can be utilized to design an MH Markov chain reject—accept sampler,
that is, it may used as a proposal mechanism in an MCMC sampler.

Fortunately, by constructing such a Hamiltonian dynamical system for utilization in the
proposal as an efficient and perhaps adaptive MCMC sampler, one automatically satisfies the
following important properties (see proofs by Neal 2010):

1. Reversible proposals. Hamiltonian mechanics preserve the reversibility of a Markov chain
constructed with a proposal that utilizes such a dynamic system to explore the support of
the posterior. In other words, one may define a mapping from the state of the system at
time 71 given by (0(71),2(71)) to a new state at time 7, > 71, denoted (6(72),2(72)),
which is one-to-one and therefore invertible;

2. Invariance of the Hamiltonian system. Designing a proposal from a Hamiltonian system
of equations will create dynamics that are invariant within the Hamiltonian system. That
is, the dynamics preserve the structure of the Hamiltonian system;

3. Volume preservation (Liouville theorem). It is well known that a Hamiltonian system is
volume-preserving. The consequence of this is that using this dynamic system to construct
a proposal in MCMC will result in an acceptance probability that does not require a Jaco-
bian mass transform. This is a significant advantage of such a transformational proposal,
making evaluation of the proposal in the MCMC acceptance probability numerically eas-
ier and more numerically well behaved.

7.6.4.2 Sampling the Posterior via Discretization of the Hamiltonian
Mechanics. Utilising this Hamiltonian dynamic system for the MCMC proposal there-
fore requires a numerical solver for the two partial differential equations (PDEs) in order to
generate the proposal at each iteration of the HMC. Therefore, the challenge lies in finding
numerical integrators that are both time-reversible and volume-preserving. Fortunately, one
such explicit class of integrators is; the symplectic class, a particular example from this class is
the leapfrog integrator (see Duane ez al. 1987). This was utilized to define an HMC solution,
where one iteration of the HMC algorithm therefore involves drawing randomly a realized vec-
tor z and then iterating the leapfrog integrator defined by deterministic recursions for step size
€ in Algorithm 7.8.

Hence, the generation of an MCMC proposal under the HMC system would proceed as
follows.



7.6 Advanced MCMC Methods 199

Algorithm 7.8 (Hybrid Monte Carlo Algorithm Proposal)

1. Sample a realization of auxiliary random vector Z ~ Normal(0,X);

.y - d© _ OH  ds _ _OH
2. Perform numerical integration to solve °7> = 5= and & = — 53, using the sampled value

of the auxiliary variable, thus providing an evolution equation in the joint distribution space
Jfor random vectors © and Z which are characterized as follows:

a) z(7+¢€/2) = 2(7) + Ve Inm (Olx1.7)|g_g(r) /2
b) O(7T +¢€) = O(7) + X7 12(7 + €¢/2);

o z(t+¢€) =2(1+¢/2) + $Velnn (G‘xer)’@:9(7+e) :

Iteration of this algorithm generates a sequence of random proposals of initial value for
Z followed by a deterministic trajectory solution for 7 steps of size € via a leapfrog integration
iteration for the proposal. Taking the last point @7 = @, as the proposal, one then accepts
this proposed point under the MCMC accept—reject mechanism with the following probability,
which involves the Hamiltonian energy functions:

a(z,0;2,,0,) =min (1, —H(z.,0.) + H(z,0)). (7.86)

It was recently realized that one could further adapt this Hamiltonian proposal through
observing that the behavior of the simulated trajectory was directly affected by “tuning” the
matrix Y; therefore, one could try to find a way to learn efficient choices for ¥ to improve
the acceptance probability of a move by adapting 3 to local structure of the target distribution
posterior. Therefore, the MCMC proposal constructed in this fashion is then tuned via the
selection of the mass matrix 3, the number of iteration steps 7, and the step size €. In gen-
eral, one may summarize this HMC algorithm according to the Langevin discretized diffusion
recursion

2
O(r+6)=0(r)+ <3! Ve Inr (Olx1.7) + S 2%(r) . (7.87)
2 2 @:@(7-) N———

Stochastic innovation
Preconditioned deterministic innovation

The adaptive MCMC development of this algorithm is discussed extensively by Girolami
and Calderhead (2011) and involves primarily the adaption of the mass matrix ¥. The other
algorithmic parameters to consider involve the number of steps 7 and the step size € — these
may typically be effectively estimated from acceptance probabilities of the MCMC chain. The
following two key points were noted by Girolami and Calderhead (2011) to consider in order
to improve the performance of the HMC algorithm.

Remark 7.16 Stochastic transitions that account for local geometric structure of the target distribu-
tion when making proposals to different regions of the distributional support can improve the Markov
chain exploration and mixing. One way to achieve this is to replace the HMC global covariance
matrix proposal ¥ (mixing matrix) with a position specific version.
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Remark 7.17 Under the HMC algorithm described, the deterministic component of the Langevin

proposal involves the gradient of the target distribution, which is preconditioned by the inverse global
mass matrix. It was noted that adapting this mass matrix X to local structure of the target distribution

would improve mixing performance. This can be achieved by exploiting a Riemannian structure of
the target distribution parameter space using a localized metric tensor.

To address these remarks the approach of Girolami and Calderhead (2011) was to develop
an RM-HMC algorithm. Here we briefly discuss this adaptive HMC algorithm and present
the details so that it may be utilized to make inference in model estimation.

In the RM-HMC setting, one considers locally adapting the generic Hamiltonian given
by —In7(®,2) = —In7(O) — In7(z) in the HMC setting. This is achieved by interpreting
the family of parameterized probability densities for 4-dimensional random vector ® given by
In p(©) as defining a Riemannian manifold that has an associated metric tensor, which may,
for example, be selected to be the Fisher information matrix for the target distribution model
given by Z(©) = E [Ve In7(©)Ve In7(0)7].

Under this modified specification using the alternate metric tensor, say, the Fisher infor-
mation matrix Z(@), one obtains a Hamiltonian equation given by

H(®,2) = —In (Ox1.1) + %ln(27r)d\1(®)| + %ZTI(@)%. (7.88)

Under this formulation, one can sample the auxiliary variable vectors in the RM-HMC scheme
for z given by a conditionally Gaussian distribution Z ~ Normal(z;0,Z(©)). It is now clear
that such a modification through the Riemannian structure of the target distribution allows
one to utilize a locally adapted proposal; however, the consequence of this structure is that
the Hamiltonian is no longer separable. The consequence of this loss of separability is that
the symplectic integration procedure previously proposed for the standard HMC algorithm
will be required to be modified, as detailed by Girolami and Calderhead (2011) and shown
later.

Consider designing an RM-HMC algorithm to move from state (29, @), that is, some
previous RM-HMC state, to the proposed state (2., ©.). If one defines the metric tensor for
the local adaption of the covariance ¥ in which ¥ (@;_1) = Z(©) and the integration step
size is given by € and total number of iterations by 7', then the full symplectic integrator for
the RM-HMC algorithm is now adjusted to the following five steps:

1
21 = 3y — EVQ (— Inm (@‘xI;T) + E ].D(Zﬂ')d|I(®)|)‘

[ON)
€
Z =g (607z1a E)
0, =0, +(0)!
€
3 Zg(@*,zbi)
1
2y = 233 — EVQ (— In7 (@‘xI;T) + 1n(27r)d|I(®)|)‘
2 2 0.

with the vector valued function g defined as presented in the technical appendix by Girolami
and Calderhead (2011) for both the scalar and multivariate parameter © cases.
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This is then iteratively applied in Algorithm 7.8 with the new symplectic integration
scheme (five steps), and the final proposed state after 7" iterations of the proposal is accepted
with the MH-rejection scheme with acceptance probability again presented with the appropri-
ate exponential of the difference between the nonseparable Hamiltonian (see Equation (7.88))
at the old proposed state minus the Hamiltonian at the newly proposed Markov chain state
obtained from the symplectic integrator proposal.

7.7 Sequential Monte Carlo (SMC) Samplers and
Importance Sampling

SMC methods have emerged out of the fields of engineering, probability and statistics in recent
years. Variants of the methods sometimes appear under the names of particle filtering or inter-
acting particle systems (e.g., Ristic ez a/. 2004, Doucet ez al. 2001, Del Moral 2004), and their
theoretical properties have been extensively studied by Crisan and Doucet (2002), Del Moral
(2004), Chopin (2004), and Kiinsch (2005). In the OpRisk context, such algorithms have been
developed for insurance and OpRisk applications (see Peters ez 2. 2009 and Del Moral ez al.
2013).

The standard SMC algorithm involves finding a numerical solution to a set of filter-
ing recursions, such as filtering problems arising from nonlinear/non-Gaussian state space
models. Under this framework, the SMC algorithm samples from a (often naturally occur-
ring) sequence of distributions 7, indexed by # = 1,..., 7. Each distribution is defined
on the support £/ = E x E X --- x E for some generic space denoted £. This context
is not typically of interest to OpRisk settings; however, this class of algorithms was adapted
to tackle the same class of problems typically addressed by MCMC methods where one has
instead a sequence of distributions {7} ,~., each defined on fixed support £5 NOTE: not a
product space £; = E x E--- x E but a fixed space E. Del Moral ez al. (20006), Peters
(2005), and Deters er al. (2009) generalize the SMC algorithm to the case where the tar-
get distributions 7, are all defined on the same support E. This generalization, termed the
SMC sampler, adapts the SMC algorithm to the more popular setting in which the state space
E remains static, that is, the settings we have discussed earlier with regard to the MCMC
algorithms.

In short, the SMC sampler generates weighted samples (termed particles) from a sequence
of distributions 7, for r = 1,..., T, where m7 may be of particular interest. We refer to
mr as the target distribution such as a posterior distribution for model parameters in an LDA
model.

Procedurally, particles obtained from an arbitrary initial distribution 7y, with a set of
corresponding initial weights, are sequentially propagated through each distribution 7, in
the sequence via three processes, involving mutation (or move), correction (or importance
weighting), and selection (or resampling). The final weighted particles at distribution 77 are
considered weighted samples from the target distribution 7. The mechanism is similar to
sequential IS (resampling), see details by Liu 2008 and Doucet ez al. 2001, with one of the
crucial differences being the framework under which the particles are allowed to move, result-
ing in differences in the calculation of the importance weights of the particles.

One of the major difficulties with SMC-type algorithms is particle depletion, in which the
weights of the majority of the particles gradually decrease to zero, while a few particle weights



202 CHAPTER 7 Estimation of Frequency and Severity Models

dominate the population. This severely increases the variability of Monte Carlo estimates of
expectations under 7. In this chapter, we develop an algorithm that incorporates the partial
rejection control (PRC) strategy of Liu (1998) into the SMC sampler framework. A particular
motivation for this stems from the recent developments in “likelihood-free” (or approximate
Bayesian) computation to be discussed in Section 7.8, where an extremely high proportion
of mutated particles are expected to have very small, or exactly zero, posterior weights (see
discussions in this context by Peters ¢z al. 2009).

In this chapter, we survey some basic developments in the SMC samplers and SMC sam-
plers PRC algorithm, in which the PRC mechanism is built directly into the mutation kernel
of the SMC sampler. This choice of algorithm allows a particle mutation to be rejected if the
resulting importance weight is below a certain threshold. This turns out to be very valuable
for a range of estimation and sampling problems in OpRisk. We also discuss implementation
issues arising from the inclusion of the PRC stage, including estimation for the resultant kernel
normalizing constant. The theoretical properties and justifications for this class of algorithms
is provided by Peters ez al. (2009).

7.7.1 MOTIVATING OPRISK APPLICATIONS FOR SMC SAMPLERS

The context of the SMC sampler algorithm involves sampling from a sequence of distribu-

tions {7‘(,(6[0)};1. This has many applications in practice for OpRisk modeling and includes
settings such as the following:

1. Tempering (on the data). In this case, the sequence of distributions is constructed as
7:(d0) = 7 (d0|x.,); see discussions and motivation for this type of application by
Chopin (2002). Alternatively, versions of tempering one could also consider would involve
sequences of distributions given by m,(46) o [1(d40)]" [x(40)]' " for some schedule
of increasing powers, 7, € [0, 1], with0 <y <y <--- <. =1;

2. Progressively constrained distributions and rare events. A second common application
for such a sequence of distributions would be to move from a simple and tractable posterior
distribution 7y(40) to a distribution of interest (such as constrained or truncated distri-
bution) 77 (40). This could be achieved through a progressive sequence of distributions;
see applications in rare-event simulations by Johansen (2009). In this context, one may
consider 7,(d0) = w,(d0 € A,) with a successively contracting sequence of sets
Ay 2 A1 D -+ D Ar. Examples may include 49 = R and 4, = [4,,00) with
a Sap < Sarp < 00;

3. Stochastic optimization and parameter estimation. A third application of such
sequences of distributions would involve the notion of simulated annealing in which the
sequence of distributions is given by 7,(40) o [m(46)]™ for some sequence of increasing

T
powers {7:},_-

In the following three examples, we provide details of a few of the particular applications
that are of relevance and important to OpRisk settings where such sequences of distributions
can be used effectively in an OpRisk setting to simulate via SMC samplers algorithm key
quantities.
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Sampling Rare Events in Compound Processes Tails

Consider a single risk LDA model defined by the compound process Z = Zn 1 X
with a random number of losses given by frequency distribution N ~ Fp and a
severity distribution X, ~ Fy for each i.i.d. loss. In many settings in OpRisk, one is
interested in quantifying tail functionals, which would require being able to obtain
draws from the tail of the compound process given by Z|Z > A ~ Fz|z~ 4 given
in terms of the frequency and severity models for some 4 > 0 by

N
an >A>
n=1

- o2 Pr(N = m)E" (x)
1— (Pr(N=0) + 3% Pr(N = ) F" (4)

™ <Z|ZXn >A>fz (z

ZX > Al.

n=1
(7.89)

In general, it will be difficult to sample directly via standard Monte Carlo simulation
techniques from such a distribution when 4 is very large, such as 4 = VaR,_,[Z]
for some small cv. Therefore, it is sensible and computationally more efficient to con-
sider constructing a sequence of such distributions, defined by a decreasing sequence
of levels {a, } that are progressively moving the focus of the samples obtained toward
the tails of the target distribution. One example of such a sequence involves the fol-
lowing choice:

™ <z > X, > VaRla,[z}>

S Pr(N = n)f" (%)
— (Pr(NV = 0) + 3°°°, Pr(N = n)F{"* (VaR,_4,[Z))

N
x I lZX > VaR,_o,[Z]

n=1

(7.90)

Specific examples of this type of sequence construction are detailed extensively in
Peters and Shevchenko (2015).

Poisson—Inverse Gaussian LDA Model Tail Estimation. In Figure 7.3, we
show the sequence of such target distributions for a simple LDA model with
Poisson—Inverse Gaussian frequency and severity models. In such a framework,
we consider the losses in the risk process generated from shape-scale Inverse-
Gaussian severity models (with strictly positive support) and closed under convolu-
tion given by

esen=o (1) ron (o2 )

(7.91)
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FIGURE 7.3 Plot of the sequence of truncated annual loss distributions for a Poisson(\ = 2)
and Inverse Gaussian(y = 1,y = 2) with a truncation of N € {o0,1,2...,20}. The sequence of

truncations correspond to &, € {0, a1, @, a3 }, which produce quantile values of

qat(Z) € {0> 5, 10, 15}

with density

27x3 212x

Sl ) = [L] : exp <M> : (7.92)

Then each target distribution is attainable in closed form using the fact that

Sp=D X~ FY (x) = Fx (s mp, ), (7.93)
i=1

which allows one to specify uniquely the sequence of distributions according to

1

~ ¢(VaRi_o,[2])

> X, > VaR,_,, [Z])

] gPr(N — ) { [%] : exp ("’zzij—u—z:ﬁ> H

(7.94)

N
x I ZX,, > VaR|_,,[Z]

n=1
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with the normalizing constant for a given truncation threshold given by

g (VaRi_q, [Z])

1m0l St (g (M5 -))
B i FrllV = nfexp <ZZ;7> ? <_ VaRTZ_Z, ] (VaR;um s 1)) '

In practice, one would also place an upper bound on the total number of losses N7
that may occur in a given year for this risk process and then these Poisson-weighted
mixtures would have finite numbers of terms.

Multivariate Risk Process with Copula Dependence

Consider 4 risk processes each characterized by a compound process
70 = ZN(Z) X9 for i€ {1,2,...,d} with frequency distributions {F(i)}d

and severity distributions {FX)} - Furthermore, assume that one wishes to
model dependence between the risk process for the random vector of annual losses
zZ = (Z W, z@ .z (‘l)) given by the multivariate copula model generically
denoted by the distribution function given three elements, the copula dependence
function, the marginal single risk process annual loss distributions, and the mapping
from the marginal annual loss positive random variables to the unit cube, as denoted
by C(Uy, Uy, ..., Uy), {Fs0)(2) }le, and G;(z), respectively. Note that we set
U, = G; (Z(i)) for each risk process i € {1,2,...,d} for mappings G, which are
monotonic and strictly increasing functions. That is, one can consider any G; for
i€ {1,2,...,d}, whichisanonunique transform selected to map the i-th marginal
risk process annual loss random variable from R to [0, 1], thatis G; : RT — [0, 1],
s.t. G; is a monotonically increasing function. Note that a natural choice for G;(-)
is the annual loss distribution F) (+). The resulting joint distribution function is
then given by

Pr (z<1> <z, 7@ < zd) = C(Gi(21),....Gy(z)). (7.96)

Now if one differentiates this distribution to get the density, it produces in general
the result

d —1
dG (u;)
=c(G . Ty NI ]
m(2) = ¢ (G (21), I;Ifzo) z) dy |’ (7.97)
where z; = G (). It is common practice to work with transformations that

avoid the need for the Jacobian terms mentioned earlier, which would correspond
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to mapping to the unit cube each marginal risk process annual loss random variable
by the marginal annual loss distribution, that is, G;(z) = F, (2). In this case, one
would obtain for the density of the joint risk process the expression

7 (2) = fz (2)
d
= (FZU) (Zl) Fz<d) Za’ HfZ(i)

d

=c(Fy0 (1) .- Fr (24) H ZIP’I (ND = » f . (%)

(7.98)

Then, in general sampling, such a multivariate distribution is very challenging when
using standard Monte Carlo approaches. Here we demonstrate how to construct an
SMC sampler solution where one must decide upon a suitable sequence of interme-

. N T . .

diate distributions {m,},_,, which are easier to sample, and such that the sequence
will progressively target the original distribution of interest 77 (2) = 7 (). Next
we provide a few examples one may consider for achieving this goal.

1. Annealing via power schedule: from independence to dependence
One of many possible examples of such a sequence could involve the following
annealing scheme, which would start from the case of completely independent
risks, for which it is trivial to generate Monte Carlo draws from the distribution
and progress through to the copula-coupled processes via the sequence

d
m(2) = {c(Gi(21), - -, Ga(za); ®)} Hfzw () (7.99)

with {~,} some schedule starting with 79 = 0 through to a maximum 7 = 1;

2. Annealing via copula parameter schedule: from independence to depen-
dence
An alternative approach to constructing such a sequence of distributions would
be to consider the sequence defined by annealing on the copula parameter, as
opposed to the previous example where one anneals on the power of the copula
density, in which one defines the sequence by

d
m(2) = {c(Gi(a1), - - Galza); ¥:)} Hfzo‘) (%), (7.100)

where now one may define a sequence of tempered copula models index by
parameter vector sequence {W,}. For example, in the Archimedean copula
families, popular in practice, this could correspond to a sequence on a univari-
ate parameter ranging from independence through to the final value ¥ = ¥ 7.
In the case of, for example, the Student-# copula model, this could be based on
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FIGURE 7.4 Top left subplot: target distribution 7, at a low temperature, where the
distribution is fairly flat and simple to sample. Top right subplot: target distribution 7, at an
intermediate temperature, where the distribution is still fairly flat and simple to sample. Bottom left
subplot: target distribution 7,, at an intermediate temperature, where the distribution is
increasingly concentrated. Bottom right subplot: target distribution 77 final distribution, which is

the target distribution. (For color detail please see color plate section.)

a sequence of Student-# copulas, which would have a progressively decreasing
degree of freedom parameters v, such that v, > v,_; and v = v are the actual
model d.f. Details of different copula models can be found in Chapter 10-12.

In Figure 7.4, ignoring the marginals we show the sequence of such intermediate
distributions that are constructed to allow the SMC sampler to progress successively
through the case of independence to dependence for a mixture of Clayton and Gum-
bel copulas in a bivariate example, with two risk processes. The model considered is
given by

Tr (Z) = 046‘ (Gl (Zl) 5 G2 (Zz) ,2) +04C (Gl (Zl) 5 G2 (Zz) 5 —3)

Frank Frank
+ 0.2£‘<G1 (zl) 5 G2 <Zz> N 16) .

Gumbel

In the next example, we consider a challenging multivariate set of annual losses under
constraints, making for a challenging rare event problem.
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Constrained Dependent Multivariate Risk Processes

Consider 4 risk processes, each characterized by a compound process
A O i
Z00) = Zivlen(’) for i€ {1,2,...,d} with frequency distributions {FIE/)}EIZI

. NI 4 .
and severity distributions {F)((Z) }°_,. Furthermore, assume that one wishes to
Ji=1

model dependence between the risk process for the random vector of annual losses
Z=(2ZW 722 . ZD) given by the multivariate copula model generically
denoted by the density, this time subject to constraints. For example, one may be
interested in considering the constraints on each of the 4 risk processes written as a
joint restriction on the aggregate of the  annual losses according to

d
ZZ(")] (7.101)
=1

for some tail aggregate process events as characterized by . Such constraints arise
naturally in OpRisk when considering capital allocations under a Euler principle
(see discussions and details in Chapter 6). In this case, one is interested in a joint
distribution given by

d
Z 70 > VaR,_,

i=1

d
ZZ@ > VaR,_,

i=1

d
Z Z9D > VaR,_,

i=1

d
Z 7()

i=1

7 (2) =fz<

d
Sz
i=1

;‘I')
d

Z 7()

i=1

—f(Gl (z1) .-, Gy (z9)

d
Z 7@ > VaR,_,

i=1

dG'j_ ! (uj)

I

Y

d
<150 (5)

(7.102)

where z; = G]-_1 (#;). In general, sampling such a distribution is very challenging
and cannot be efficiently done via standard Monte Carlo methods. Again we pro-
pose such a problem is ideal for SMC sampler solutions. As discussed already in
previous examples, to utilize this solution technique one must select a sequence of
intermediate distributions {m}til which are easier to sample such that the sequence
will progressively target the original distribution of interest 77 (z) =7 (2).

In this case, it is natural to consider the schedule given by a sequence of tail
quantiles 0<ay < -+ <a,1 <, < -+« <ar. If one considers how this con-
straint region looks in the bivariate risk process setting, using the models of Exam-
ple 7.4, which would produce risk processes with Poisson—Inverse Gaussian LDA
models, coupled with a bivariate Frank copula model, then the sequence of con-
straints given by (ay, @z, a3, as) = (0.25,0.5,0.75,0.95) would produce the fol-
lowing constrained distributions, where we show both the joint distribution and the
constrained copula dependence distributions. Note that depending on the mappings
Gy (Z(l)) and G, (Z(z)) from the space of the annual losses (Z(l),Z(z)) in space
R x R* to [0, 1] x [0, 1] in the copula, the constraint region will take different
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shapes. For simplicity, we consider marginal annual loss processes with finite sup-
port for the maximum losses achieved in an interval [0, Zj,ax] and we take as G
and G, uniform distribution functions, each on the support [0, Zax]. This means

the resulting density is given by defining the uniform distribution transform for
each i€ {1,2} by U;=G; (Z) = ZZml and inverse transform function given by

ax

ZU) = G (U;) = U Zyax, which results in density

2 2
m(z) =c| um,u Zz(i) > VaR,_, ZZ(i) P
=1 i=1

, y g (7.103)
X Zoas | [ o0 (3) 1D 29 = VaRy o | > 20
j=1 i=1

i=1
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FIGURE 7.5 Top left subplot: target distribution copula component under uniform
distribution function transformation for 7, at little truncation, where the distribution is fairly flat
and simple to sample. Top right subplot: target distribution copula component under uniform
distribution function transformation for 7, at an intermediate truncation. Bottom left subplot:
target distribution copula component under uniform distribution function transformation for 7, at
an intermediate truncation. Bottom right subplot: target distribution copula component under
uniform distribution function transformation for 77 final distribution, which is the target

distribution. (For color detail please see color plate section.)
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The choice of mapping as performed by a Uniform distribution function results in
the constraint regions remaining linear as presented in Figures 7.5 and 7.6; however,
generally, one would chose alternative mappings with noncompact supports.

. N

20

15

FIGURE 7.6 Top left subplot: target distribution 7, at little truncation, where the distribution

is fairly flat and simple to sample. Top right subplot: target distribution 7, at an intermediate
truncation. Bottom left subplot: target distribution 7, at an intermediate truncation. Bottom right
subplot: target distribution 77 final distribution, which is the target distribution. (For color detail
please see color plate section.)

|

7.7.2 SMC SAMPLER METHODOLOGY AND COMPONENTS

To address such sampling challenges for a sequence of distributions {ﬂ't(dB)}tT:l,

is to develop a large collection of N-weighted random samples at each time # denoted by

. N A .
{Wt(l), @S’)} such that W) > 0 and Zf\il W) = 1. These importance weights and sam-
i=1
A AN
ples, denoted by { Wt(’), @E’)} , are known as particles (hence the name often given to such
=1
algorithms as particle filters or interacting particle systems). For such approaches to be sensible
we would require that the empirical distributions constructed through these samples should

converge asymptotically (V — 00) to the target distribution 7, for each time #. This means

the aim
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that for any 7, integrable function, denoted, for example, by ¢(0) : £ — R’ one would have
the following convergence:

N
Z W g (050) % By, [0(©)]. (7.104)
i=1

The sequential nature of such algorithms arises from the fact that they iteratively construct
the sets of weighted particles recursively through a sequential IS framework (see many examples
of such algorithms in Doucet ez a/. 2000, Oh and Berger 1993, Givens and Raftery 1996, Gilks
and Berzuini 2002, Neal 2001 and the tutorial of Doucet and Johansen 2009).

In the SMC Samplers algorithm, a particular variant of SMC algorithms, a modification
of the SMC algorithm, is developed. Consider a generic sequence of distributions given by
m(0),t=1,..., T, with @ € E, where the final distribution 77 is the distribution of interest.
By introducing a sequence of backward kernels Z;, a new distribution

t—1

7(61,...,0,) = m,(0:) [ [ e (Os1,64) (7.105)
k=1

may be defined for the path of a particle (04, ...,0,) € E’ through the sequence 7y, . .., 7.

The only restriction on the backward kernels is that the correct marginal distributions

7 (61,...,0,)d0,....d0, 1 =m,(0,) are available. Within this framework, one may then

work with the constructed sequence of distributions, 7, under the standard SMC algorithm.
In summary, the SMC Sampler algorithm involves three stages:

1. Mutation, whereby the particles are moved from 6,_; to 6, via a mutation kernel
Mt(et—l) 0:);

2. Correction, where the particles are reweighted with respect to 7, via the incremental impor-
tance weight (Eq. 7.106);

3. Selection, where according to some measure of particle diversity, commonly the effective
sample size, the weighted particles may be resampled in order to reduce the variability of
the importance weights.

In more detail, suppose that at time # — 1, the distribution 7,_; can be approximated
empirically by 7Y ; using N-weighted particles. These particles are first propagated to the
next distribution 7, using a mutation kernel M,(0,_1,0,), and then assigned new weights
W, = W,_1w, (61, ...0,), where W,_; is the weight of a particle at time # — 1 and w, is the
incremental importance weight given by

w (0 0) _ %t (61,...,0;) _ Ty (at)erl (9”0}‘71)
t 15---,0; %t—l (017~-~;0t—1)Mf (gf_het) T (et—l)Mt (gt_l,et).
(7.1006)

The resulting particles are now weighted samples from 7,. Consequently, from Eq. (7.106),
under the SMC Sampler framework, one may work directly with the marginal distributions
7,(0;) such that w,(01,...,0,) = w,(0,_1,0,). While the choice of the backward kernels
L, is essentially arbitrary, their specification can strongly affect the performance of the algo-
rithm, as will be discussed in the following subsections.

The basic version of the SMC Sampler algorithm therefore proceeds explicitly as given in
Algorithm 7.9.
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Remark 7.18 In all cases in which we utilize the incremental importance sampling weight cor-
rection, the arguments in the expressions only need to be known up to normalization. That is, it is
perfectly acceptable to only be able to evaluate the sequence of target distributions {m,} up to nor-
malization constant. This is tue as long as the same normalization constant is present for all particles,
since the renormalization step will correct for this lack of knowledge in the importance weighting. In
practice, this is critical to the application of such methods.

Algorithm 7.9 (Sequential Monte Carlo Sampler)

1. Initialize the particle system;
a) Setn=1;
b) Fori=1,...,N, draw initial particles @gi) ~ p(0);
©) Evaluate incremental importance weights {wl @@) } using Equation (7.106) and nor-

malize the weights to obtain { Wl(i) }

Irerate the following steps through each distribution in sequence {W,}t:r:z.
2. Resampling
a) If the effective sampling size (ESS) = ————— < Ny is less than a threshold Ny,

va=1 (wf(l)>

then resample the particles via the empirical distribution of the weighted sample either by
multinomial or stratefied methods; see discussions on unbiased resampling schemes by Kiinsch

(2005) and Del Moral (2004).
3. Mutation and correction

a) Sett=1t+1,ift =T + 1, then stop;
b) Fori=1,...,N draw samples from mutation kernel @Ei) ~ M, (@E?l);

©) Evaluate incremental importance weights {w1 ((‘)P)} using Equation (7.106) and

normalize the weights to obtain {VVl(i) } via

W _ o @’ (©,1,0)

g (O . (7.107)
1 i i
TN W e,

7.7.2.1 Choice of Mutation Kernel and Backward Kernel. There are many
choices for mutation kernel and backward kernel that could be considered when designing an
SMC Sampler algorithm. In this section, we survey a few possible choices and note an impor-
tant difference between the SMC Sampler and MCMC methods in the following remark.

Remark 7.19 In the MCMC methods presented previously, the proposal kernel was typically selected
to ensure the resulting Markov chain satisfied reversibility and detailed balance conditions, or in
the case of the adaptive proposals, some notion of eventual non-adaption (diminishing adaptation
and bounded convergence). Unlike the MCMC methods, in the case of the SMC Sampler algo-
rithms, the mutation kernel is significantly more flexible with regard to choice and with regard
to adaption strategies. It is clear that the optimal choice of mutation kernel would be the next
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distribution in the sequence M, (0,_1,0,) = 7, (0;), as this would minimize the variance of the
incremental weights, though clearly the context of the application of SMC Samplers is one in which
the targer distribution cannot be sampled directly via inversion or rejection sampling methods, so this
choice is not practical.

Some examples of possible choices of the mutation kernel are given as follows:

1. Independent kernels. In this setting, one would select a mutation kernel given for all
t€{1,2,...,T}by M, (0,-1,0,) = M, (0,);

2. Local Random Walks. In this setting, the kernel would be selected for all
t € {1,2,..., T} to be of the form M, (0,_1,0,), where the mutation from 6,_; to
0, follows a local Random Walk based around, say, a Gaussian smoothing kernel as given

by Givens and Raftery (1996);

3. Markov chain Monte Carlo Kernels. In this setting, the kernel would be selected for all
t € {1,2,..., T} to be an MCMC kernel of invariant distribution 7,. As noted by Del
Moral ez al. (2006) and Peters (2005), this option is suitable if the Markov chain kernel
is mixing rapidly or if the sequence of distributions is such that 7,_; is close to 7,, which
is often the case by design. Then the use of an MCMC kernel would result in running
for each stage, V inhomogeneous Markov chains. Then one must correct for the fact that
one is not targeting the correct distribution under these Markov chains, which is achieved

using IS: 7V | = Zf\;l W/t(i)l 5091 (0) and running L iterations of the Markov chain for

each particle, where each of the V chains will target Zf\il LVt(i)l HLI M; (0;21, 01),
which is not in general 7, then with an IS correction, such an approach is accurate and
unbiased (i.e., targets the distribution of interest at time # given by 7;

4. Gibbs Sampler kernels. If the sequence of target distributions {7}, is such that its
support is multivariate, then it may also be possible to sample from the full conditional
distributions in the sequence of distributions. This approach allows one to undertake a
Gibbs step, which would involve a kernel for update of the -th element given in the form

M, (Gt_l,det) = 59r7117‘E (dat’,/e) T (0t7k|0t7,/e) (7108)

with 0, _, = (0,1,0:2,...,0,4-1,0,441,...,0,), where there are / parameters in
the OpRisk model target posterior. If the full conditionals are not available, one could
approximate them accurately at each stage and then correct for the approximation error

through IS;

5. Mixture kernels. It is always possible to consider a mixture kernel choice given by
M
M, (6,1,0,) =>  yp (6,-1) M, (8:-1,6,), (7.109)
m=1

with @, (0,—1) > 0 and ZZ:I 0, (0,21) = 1. One special case of this type

of kernel would be an independent kernel constructed by a kernel density estimate of

M, ,,(6,_1,0,) = M,(0,_,,6,) forall m and ., (8,_,) = W, with M = N;
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6. Partial Rejection Control kernels. In this case, one aims to construct a mutation kernel
in the SMC Sampler that guarantees all sampled particles have importance weights with
a “fitness” exceeding a user-specified threshold at each time #, denoted by ¢, such that

w > ¢, Vi € {1,2,...,N}. To achieve this, one modifies any of the earlier mutation
kernels to take the form given by

; N 052 ,0 ,
(0; 1 0 ) - r([‘ta 0521)_1 min 1, ‘)Vt(—l)l M Mt (9(’) 9:)

=13
Cr

(7.110)

The quantity 7(c;, 0( 1) denotes the normalizing constant for particle 0; 1> given by

0
r(c,09) /mm : tilwt(et_"a’) (0“ 0>d0t. (7.111)

=15
Cr

Note that 0 < 7(c;,0,—1) < 1if (wl.o.g.) the mutation kernel A, is normalized, so that
fM,(@tfl, 0,)d0, = 1, and if the PRC threshold 0 < ¢, < o0 is finite. The sequence of
PRC thresholds is then user-specified to ensure a certain particle “fitness” at each stage of
the SMC Sampler. We will detail more explicitly this example in a future section.

Proposition 7.3 (Optimal Backward Kernel) Given any of the possible mutation kernels
M, (0,-1,8,), one can define the optimal backward kernel in the SMC Sampler as the one that
minimizes the variance of the incremental (unnormalized) IS weights, given by Peters (2005) and
Del Moral et al. (2006) by

Vi1 (Ot—l) M, (Ot—la Ot)

0pt
1 (0,,0,_1) = 2, (6, , (7.112)
where one defines the sequence of integrated distributions on the path space by
t
= / . /m (61) [, (6,-1,6,) 46,46, -- - d6,. (7.113)
/=1

This optimal choice is difficult to utilize in practice as it involves knowledge of the ability to draw
[from each of the distributions in the sequence.

This choice of optimal backward kernel is easily understood by interpreting it as the choice of

kernel in which one would perform IS on the space £ rather than the product space £7. The
resulting incremental IS weight for the optimal choice of backward kernel is simply

Wy (elct) =

(7.114)

In addition, we also note some examples of possible choices of the backward kernel given
along with the corresponding incremental IS weights.
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1. Mixture Backward kernel. Given a mixture mutation kernel in Equation (7.109), the
equivalent backward kernel is given by

t 1,m Otaat l Z/@’ lm z l—l,m(amgl—l) (7-115)

with 3, ,, (0;) > 0 and Zﬁf:l Bsm (8;) = 1. In this case, the incremental IS weight can
be written in the following form, with respect to an index auxiliary random variable for
the mixture /, that was sampled:

Ty (et) 6;—1,1‘, (01) Lz—l,z‘, (01; 0;—1)
Tr—1 (et—l) Q (Ot—l) Mt,i, (Ot—l s Ot) '

wy (0,,1,0”2}) = (7.116)

2. Approximate Optimal Backward kernel. One of the best possible approximations to the
optimal backward kernel is to consider replacing v, (8;) with 7, (0,), to get

Tp— l(gz 1)Mt (Gt—lvgl)

L”,(6:,0 , (7.117)
( A I) fﬂ't 1 det 1) t(et—179t)
which would give an incremental importance weight of
w: (0,-1,0,) = mi—1 (6-1) (7.118)

[ (0,=1) M, (0,1,0,)d0,_,"

Note that if resampling has occurred at time # — 1, then this kernel is already equivalent to
the optimal choice and therefore its particle approximation is already the optimal option.
In general, if using the optimal backward kernel, one would still need to typically be able
to approximate the univariate integrals, usually done via approximation using the particles
at time ¢ — 1 as follows:

N
/m (0,0 M, (0,1.0,)d0, =~ 3w, (60,0,).  G.119)
=1

Note that this results in an O(N?) algorithm, which is not ideal computationally;

3. MCMC Backward kernel. A generic approximation of the “approximate optimal back-
ward kernel” in Equation (7.117) is often selected as an MCMC kernel in which one uses
for the mutation kernel M, an invariant MCMC kernel for target distribution 7, and the
backward kernel given by

Uy (thl) M, (9171 s 0:)

L,,1 (0t7170t) = T (0 )
t \YUr

(7.120)
This choice is a good approximation whenever the sequence of distributions 7,_; and 7,
is close for all #, since this choice simply correspond to the time-reversed Markov kernel
of the mutation kernel A,. In addition, we note that you cannot adopt this choice for
examples such as the successive sequence of constrained distributions as in the rare-event
setting. When this backward kernel is utilized, one obtains an incremental importance
weight given by a very simple form

w, (0,-1,0,) = —————, (7.121)
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7.7.3 INCORPORATING PARTIAL REJECTION CONTROL
INTO SMC SAMPLERS

It is well known that the performance of SMC methods is strongly dependent on the mutation
kernel. If M, is poorly chosen, such that it does not place particles in regions of the support of 7,
with high density, then many IS weights will be close to zero. This leads to sample degeneracy,
as a few well-located particles with large weights dominate the particle population, resulting in
large variance for estimates made using these samples.

Liu (2008) and Liu ez al. (1998) introduced a method, known as PRC strategy, to overcome
particle degeneracy in a sequential IS setting. Under this mechanism, when the weight of a
particle at distribution 7, falls below a finite threshold ¢, > 0, the particle is probabilistically
discarded. It is replaced with a particle drawn from the previous distribution 7,_1, which is
then mutated to 7,. This new particle’s weight is then compared to the threshold, with this
process repeating until a particle is accepted. This concept was extended into an understanding
of the resulting mutation kernel and developed under an SMC Sampler framework by Peters
et al. (2009). This approach is termed partial rejection, as the replacement particle is drawn
from 7,_;, not 7y (see Liu 2008).

As demonstrated by Peters ez al. (2009), under the SMC sampler framework, one may
modify this approach and incorporate the partial rejection mechanism directly within the
mutation kernel. Hence, at time # — 1, the particle 8,_; is moved via the mutation kernel
M,(6,_1,0,) and weighted according to (16.55). This particle is accepted with probability p,
determined by the particle’s weight and the weight threshold ¢,. If rejected, a new particle is
obtained via the mutation kernel M, until a particle is accepted.

For the sequence of distributions 7,, # = 1,..., T, the mutation and backward kernels
M, and L,_, a sequence of weight thresholds ¢;, and PRC normalizing constants 7(c;, 0,—1)
(defined later), the SMC sampler PRC algorithm is given in Algorithm 7.10.

Algorithm 7.10 (SMC Sampler PRC Algorithm)

1. Initialization:

Sert = 1.

Fori=1,...,N, sample 050 ~ m1(0), and set weights VVl(i) =+
2. Resample:

Normalize the weights . W) = 1. IFI> (W, )2]71 < H resample N particles with

respect to \V, ) and ser W() = ﬁ i=1,...,N.
3. Mutation and correction:

Sett=t+1andi=1:

(@) Sample 8 ~ M, (05 1, 0,) and set wez'g/ztfor 0" 1o
: NESNG, .90,
o= w Sy

(b) With probability 1 fp( ) = mln{l W/t /L‘t} reject 0( i) and go to (a).
(c)  Otherwise, accept 95” ﬂnd:et W 0 _ W() (cs, 0( D/t ),
(d)  Incrementi =i+ 1.1fi <N, go ro (a).
(¢)  Ifr < T, goto Resample.
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Remark 7.20 In the SMC Sampler PRC algorithm, we present the general framework in which
we consider adaptive resampling. The derivation of the resulting normalizing constant for the PRC
mechanism can be addressed under both adaptive and non-adaptive resampling schemes, which can
be found in Peters et al. (2009, section 2.3). However, as they discuss, it will be shown to be compu-
tationally convenient when estimating the normalizing constant under PRC to consider the special
case of H=N, thereby resampling at each iteration t.

Algorithm 7.10, without the mutation and correction steps (b) and (c), is equivalent
to the standard SMC Sampler algorithm. In the resample stage, the degeneracy of the par-
ticle approximation is quantified through the usual estimate of the effective sample size,
1 < [Zi(VVt(i))Z]*l < N (see Liu and Chen 1998). The addition of a rejection step at
each time # effectively modifies the mutation kernel A,. We denote the resulting kernel by
M, to the choice presented in Equation (7.110). Thus, the SMC sampler PRC algorithm can
be considered as an SMC sampler algorithm with the mutation kernel M (6,_1,6,), and the
correction weight

Uy (et) L, (em 9t,1)

W,=W,_ .
' ! 17Tz—1 (at—l>M;* (et—170t)

(7.122)

Remark 7.21

o Estimation of the normalizing constant. As the normalizing constant r(c;,0,—,) in the
weight calculation (7.122) in general depends on 0,_1, it must be evaluated as it will not
disappear in the renormalization across all weights for each particle. Where no analytic solu-
tion can be found, approximating (7.111) may be achieved by, for example, quadrature meth-
ods if the sample space E is relatively low-dimensional or Monte Carlo methods if E is high-
dimensional;

* Exact kernel selection normalization. This is an alternative approach that restricts the
mutation and backward kernel choices admitting an exact solution for the normalizing con-
stant. Furthermore, this approach provides a computationally efficient approach to dealing
with the PRC normalizing constant. This involves selecting kernels M, and L,_, such that
(e, 0,—1) = r(c;) will be constant for all particles 0,_,. In this case, the value of r(c,)
may be absorbed into the proportionality constant of the weights, and safely ignored. Equa-
tion (7.111) suggests that this can be achieved if M,(0,_1,0,), W,_1, and w(0,_1,0,) are
independent of 0,_;.

Specifying mutation kernels M, such that M,(6,—,,0,) = M,(6,) amounts to choosing a
global kernel that is the same for all particles 8,_;. The particle-dependent weight W,_; can be
set to 1/ for all particles following a resampling (or preselection) step; hence, setting H = N
will induce resampling at each iteration. Finally, consider for a moment the backward kernel of
the form

0; t— 0 — )Mr(etfl 0;)
17 (0,0, 1) = - "=t 0 ’ . 12
t_l( ’ 1) fﬂ-tfl(etfl)Mt<6t717Gt)detfl (7 3)
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Under the backward kernel (7.123), the incremental weight can be approximated by

wt(etfla 0t> = 7T't(az)//7"'t71<6t71)[l/[r(0t717 at)datfl

/Z w9 m,07,,6,). (7.124)

Under a global mutation kernel A£,(6,), and following a resampling step, the incremental
weight under this backward kernel reduces to w,(6,_1,0,) = 7,(0,)/M,(6,), which is inde-
pendent of 0,_;.

Remark 7.22 One such example of a global mutation kernel one may consider involves
M, ({0521} . Ot) = Zf\; LVt(i)lM (95 )1, 0,). Thus, the weight calculation in (7.122)
i=1:

becomes

W, (0, [min {1, “Co18 L o)

Ne,
= 7,(0,)/M,(8,), if min {1, W(GtNé 6.) }
Ne,, otherwise.

It is instructive to consider the implications of this finding. Firstly, the resulting acceptance
probability for each particle will range over the interval (0, 1). To see this consider two illustra-
tive scenarios, the first involving the trivial case of simply setting the user-controlled threshold
to ¢c; = 1/N, thereby ensuring that as V increases, the acceptance probability does not neces-
sarily decrease. This may not always be desirable since it reduces the threshold condition that
particles must satisfy for large particle systems. The second nontrivial setting is to consider the
incremental weight expression obtained in Equation (7.124). Under these choices for mutation
and backward kernel, and assuming resampling in the setting H = N, we obtain an expression
for the PRC probability of acceptance given by

min{l MM} =min\ 1, ™.(6,)
T Ne Ne, SN (1/N)p,(6,,6,)

=min< 1, m(6:)
QE, 1M( 5)170) .

Note that under this setting, the SMC sampler PRC algorithm can be considered as a sequence

(7.125)

of IS strategies with partial rejection control.

Finally, we observe that there are several variants of the SMC Sampler algorithm available
in the context of interacting SMC Samplers: Annealed Importance Sampling and Population
Monte Catlo, Island models, and transdimensional SMC Samplers (see examples in Jasra ez 4/.
2007, 2008, Neal 2001, and Cappé et al. 2004.)
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7.7.4 FINITE SAMPLE (NONASYMPTOTIC) ACCURACY FOR
PARTICLE INTEGRATION

In this section, we detail some properties of the class of SMC algorithms discussed earlier,
in particular, what is known about the accuracy of such methods. In addition, we also present
examples for estimators of quantiles of annual loss distributions from such approaches, of direct
interest to capital estimation. We begin by presenting some recent examples of concentration
inequalities for particle methods that are finite sample result (see discussion and references by
Del Moral et al. 2013).

The exponential concentration inequalities presented here are satisfied under some regu-
larity conditions on the particle weights and the mutation kernel M, when defined on some
general state space E,,; see specific probabilistic details of these conditions by Del Moral (2004).

Using the concentration analysis of mean field particle models, the following exponential
estimate can be obtained (see discussion by Del Moral 2004) and references therein. Note in
the following when the /V particle approximation to a distribution or density, such as 7, is used

we will denote it by 7.

Theorem 7.7 (Finite Sample Exponential Concentration Inequality) For any x > 0,
t > 0, and any population size N > 1, the probability of the event is

]P’f(|7ffv(so)7rt(90)| < ﬁ‘ (1+x+ V) + — \/?c> >1-e", (7.126)

VN

where one defines the N particle sample estimator as follows:
N o
N p) =Y W (0)
i=1

and
() = /‘P (0,) 7, (0,) 46,. (7.127)

In the case of a stable SMC algorithm, that is, one that is insensitive to initial condi-
tions, such as those we discussed earlier, the constants ¢ and (¢1, ;) do not depend on the time
parameter. One can also bound the difference between the particle estimate of the target dis-
tribution and the true distribution as follows. Consider that for any @ = (6;);<;<, and any

(—o0,x] = Hji:l(fooﬁi] cells in E, = R?, we let
Fi(x) =, (H(_OOW]) and FtN(x) = ’/Tﬁv (H(_Oo7x]) .

Using these definitions of the empirical particle constructed distribution function and the target
distribution function at sequence number # in the sequence of distribution {7y, 72, ..., 77},
we can state the following corollary for the distribution functions for sequence of densities 7,
given previously.

Corollary 7.4 For anyy > 0, t > 0, and any population size N > 1, the probability of the

Jollowing event
VN [[EY = Ell <ey/dG+1)

is greater than 1 — ¢/
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This concentration inequality ensures that the particle repartition function F¥ converges
to F;, almost surely for the uniform norm. We complete this section with an example of a
nonasymptotic estimate for a risk measure estimation via SMC Sampler output.

SMC Samplers Estimators for Risk Measures

Consider the single risk measure, where 4 = 1. Then let F~ be the generalized
inverse on [0, 1] of the function F;, which is the annual loss distribution for the
LDA model under consideration; that is, we have

F7(a):=inf{# € R : F(x) > a}. (7.128)
Now let £ (a) = g,(v) be the quantile, of order ¢, and we denote by C,(i) the
order particle statistic associated with the particle system 6! at time #; that is, we
have

(V=7 < (P07 <o < (= 7

for some random permutation . We also denote by ¢V (a) = JTWel

particle quantile. By construction, we have

e«

|F: (¢ (@) = F(gi())| < |F: (4 () = EN (g ()] + |EN (4 () —
1+ [N
<l =)+ (F o)
<||F¥-FE|+1/N. (7.129)
This clearly implies that ¢ (o) converges almost surely to g;(cx), as IV tends to cc.

In addition, for any y > 0, » > 0, and any population size N > 1, the probability
of the following event

VI [F, (4Y(@)) — o] < cyfd 4+ 1) + —

is greater than 1 — ¢77.

=

7.8 Approximate Bayesian Computation (ABC) Methods

Here we present a class of estimation methods that generalize the classes of applicable mod-
els for the posterior to those which have intractable likelihoods. That is, we generalize now
to classes of Monte Carlo algorithms that can tackle settings in which the posterior distribu-
tion may be constructed from a likelihood model for which the density of the observations
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(likelihood of the parameters) cannot be evaluated pointwise in closed form. This arises
surprisingly often in settings related to heavy-tailed models; see discussions in the context of
OpRisk Peters and Sisson (2006) or in financial modeling by Peters ez a/. (2010, 2011b).

The standard MCMC methods described previously assume that the likelihood of the
data for given model parameters can be easily evaluated. If this is not the case, but synthetic
data are easily simulated from the model for given parameters, then the so-called approximate
Bayesian computation (ABC) methods can be utilized to estimate the model. For example, this
is the case when the severity is modeled by the a-stable or g-and-h distributions that can easily
be simulated but the density is not available in closed form (see the discussion in the OpRisk
context by Peters and Sisson 2006, and Peters ez a/. 2010, 2008).

ABC methods are relatively recent developments in computational statistics (see Beaumont
et al. 2002 and Tavaré et al. 2003). For applications in the context of OpRisk and insurance,
see Peters and Sisson (2006) and Peters et a/. (2010).

Consider the data X and denote the model parameters by 6. Then the posterior from which
we wish to draw samples is 7(0|x) o< f(x]|0)7(0). The purpose of ABC is to sample from the
posterior 7(0|x) without evaluating the computationally intractable £ (x|@). The logical steps
of the simplest ABC algorithm are as follows.

Algorithm 7.11 (Rejection Sampling ABC)

1. Choose a small tolerance level €;
2. Forl=1,2,...
a) Draw 0™ from the prior w(-);
b) Simulate a synthetic dataset x* from the model given parameters 0%, that is, simulate from
f16%);
©) Rejection condition: calculate a distance metric p(x,x*) that measures a difference between

x and x*. Accept the sample, that is, set 0" = 6" if p(x, x*) < € otherwise return to step
(@).
3. Next [.

It is easy to show that, if the support of the distributions on x is discrete and the rejection
condition p(x,x*) < € is a simple condition of accepting the proposal only if x* = x, then the
obtained 8,0 . are exact samples from 7(0|x). For more general cases, the obtained

samples 8 are from
Tapc(Ox, €) /W(B)W(x*\e)gé(x\x*)dx*, (7.130)

where a weighting function gc(x|x*) is used. The previous rejection algorithm considers a
weight function such as the hard decision choice

1, if plx,x*) <e,
ge(xlx™) o . (7.131)
0, otherwise.
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As € — 0, for appropriate choices of distance p(-, -),
7T'Agc(0|x, 6) — 7T(9|x)

Of course, for a finite € we obtain an approximation for 7(0|x).

To improve the computational efficiency, p(x,x*) is often replaced by p(S(x), S(x*)),
where S(x) is a summary statistic of the data sample. Other weighting functions can be used. In
general, the procedure is simple: given a realization of the model parameters, a synthetic dataset
x* is simulated and compared to the original dataset x. Then the summary statistic S(x*) is
calculated for the simulated dataset #* and compared to the summary statistic of the observed
data S(x); and a distance p(S(x), S(x*)) is calculated. Finally, a greater weight is given to the
parameter values producing S(x*) close to S(x) according to the weighting function g, (x]x™).
The obtained sample is from 745¢(0|x, €), which converges to the target posterior 7(0|x) as
€ — 0, assuming that S(x) is a sufficient statistic' and the weighting function converges to a
point mass on S(x). The tolerance € is typically set as small as possible for a given computa-
tional budget. One can calculate the results for subsequently reduced values of € until further
reduction does not make material difference for the model outputs. The described ABC can be
viewed as a general augmented model

(0, x,x) = w(x|x*, 0)7(x*|0)7(0),

where 7(x|x*, 0) is replaced by g(x|x*).

To improve the performance of the ABC algorithm, it can be combined with MCMC,
producing the stationary distribution m45¢(0|x, €). For example, the MCMC-ABC can be
implemented as follows.

Algorithm 7.12 (MCMC-ABC)

1. Initialize '=");

2 Forl=1,...,1
a) Draw proposal 0" from the proposal density q(- 16U~ 1);
b) Simulate a synthetic dataset x* from the model given parameters 0" ;
) Accept the proposal with the acceptance probability

n(6")g(6"~"16")
(07 )g(6"167)

20", 6%) = min {1 H{p(s(x),s(x*))ge}} ;
that is, simulate U from the Uniform(0,1) and set 0 = g* ifU < p(ﬂ(l_l),e*)
otherwise set 0 = 0=V Here, Iy y is a standard indicator function.

3. Next /.

Various summary statistics of the dataset x1, ..., xy are used in practice. For example, the
statistic S(x) can be defined as the following vectors:

LA sufficient statistic is a function of the dataset x that summarizes all the available sample information about
0; for a formal definition, see Berger (1985, section 1.7).
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* S = (1,0), where i and & are empirical mean and standard deviation of the dataset x,

respectively;
* 8 = (x1,...,xy), that is, all data points in the dataset;
*S(q1(x),...,4,(x)) avector of empirical quantities summarizing the empirical distribu-

tion function at a fixed set of probabilities.
Popular choices for the distance metrics, p(§, 8¥), include the following:

* Euclidean distance: p(S,8*) = Z/LZI(S[ e
e L;-distance p(S,8*) = Z/L=1 1S, — 87

We also note that there are efficient SMC Sampler versions of these ABC algorithms devel-
oped by Peters e a/l. (2009) and Del Moral ez al. (2012).

7.9 OpRisk Estimation and Modeling for Truncated Data

Accurate modeling of the severity and frequency distributions is the key to estimating a cap-
ital charge. One of the challenges in modeling OpRisk is the lack of complete data—often a
bank’s internal data are not reported below a certain level (typically on the order of € 10,000).
These data are said to be left-truncated. Generally speaking, missing data increase uncertainty
in modeling. Sometimes, a threshold level is introduced to avoid difficulties with collection of
too many small losses. Industry data in external databases from vendors and consortia of banks
are available above some thresholds: Algo OpData provides publicly reported operational risk
losses above USD 1 million and ORX provides OpRisk losses above € 20,000 reported by ORX
members. The OpRisk data from Loss Data Collection Exercises (LDCE) over many institu-
tions are truncated too. For example, Moscadelli (2004) analyzed 2002 LDCE and Dutta and
Perry (2006) analyzed 2004 LDCE, where the data were mainly above € 10,000 and USD
10,000, respectively. Fitting data reported above a constant threshold is a well-known and stud-
ied problem. However, in practice, the losses are scaled for business and other factors before the
fitting and thus the threshold varies across the scaled data sample. Moreover, the actual thresh-
old might be unknown for some external databases and should be treated as stochastic (see,
e.g., Baud ¢z al. 2003 by De Fontnouvelle ez al. 2006).

The reporting level may also change when a bank changes its reporting policy. In this
section, we consider the cases of constant, time-varying, unknown, and stochastic thresholds.
We also discuss the approaches to fit these models and the impact of ignoring data truncation
on the estimation of the 0.999 quantile of the annual loss distribution.

Often, modeling of missing data is done assuming a parametric distribution for losses
below and above the threshold. Then fitting is accomplished using losses reported above the
threshold via the maximum likelihood method (see, e.g., Frachot ez al. 2004b) or the EM
algorithm (see, e.g., Bee 2005b). In practice, often the missing data are ignored completely.
This may lead to a significant underestimation or overestimation of the capital. The impact
of data truncation in OpRisk was discussed in the literature (see Baud ez /. 2003, Chernobai
et al. 2006, Mignola and Ugoccioni 2006, Luo ¢t al. 2007, and Ergashev ez al. 2012). Typically,
the case of a constant threshold is discussed in research studies, though in practice, a threshold
level varies across observations (see Shevchenko and Temnov 2009). One of the reasons for a
varying threshold appearing in OpRisk loss data is that the losses are scaled for inflation and
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other factors before fitting to reflect changes in risk over time. The reporting level may also
change from time to time within a bank when the reporting policy is changed. The problem
with multiple thresholds also appears when the different companies report losses into the same
database using different threshold levels (see Baud ez /. 2003).

Of course, for risks with heavy-tailed severities, the impact of the data threshold should not
be important in a limit of high quantiles. However, it should be quantified first before making
such a conclusion and to justify a chosen reporting level. For light-tailed risks too the impact
can be significant.

In this section, we consider the case of a single risk cell and use the following notation and
assumptions.

Model Assumptions 7.1 Consider a single risk cell where

* The annual loss in a risk cell in year m is

Ny
Zn=Y_ Xi(m). (7.132)
i=1

* N, is the number of events (frequency) and X;(m), i = 1,..., N, are the severities of the
events in year m;

o If convenient, we may index severities X;(m) and their event times T;(m), i = 1,...,N,,
m = 1,2,... (ordered in time) as X; and T;, j = 1,2,..., respectively, where
T1 < Tz < vy

* The severities of the events X, j = 1,2, ..., occurring at times T}, j = 1,2, ..., respectively

are modeled as independent and identically distributed random variables from a continuous
distribution F(x|3), 0 < x < 00, whose density is denoted as f (x|3). Here, 3 are the severity

distribution parameters;

* N, m= 1,2, ... areindependent and identically distributed random variables from a discrete
Jrequency distribution with probability mass function p(n|X) = Pr[N,, = n|, where X is a
[frequency parameter (or a vector of parameters);

o The severities X;(m) and frequencies N, of the events are independent;

oy = (X, B) is a vector of frequency and severity distribution parameters.

7.9.1 CONSTANT THRESHOLD - POISSON PROCESS

If we assume that loss events follow a homogeneous Poisson process with the intensity parame-
ter A, then Vi, IV, . . . are independent and identically distributed random variables from the
Poisson distribution, Poisson(\), with

n

A
Pr[N,, = n] = p(n|A) = — exp(=A), A>0,n=0,1,... (7.133)
n.

and the event interarrival times 6 7; = 7;—7;_1,j = 1,2, (where Ty < 77 < T < --- are
the event times and 7y = 7 is the start of the observation period) are independent exponentially
distributed random variables with the density and distribution functions

g(7|A) = Aexp(=A7T) and G(7|A) =1 — exp(—A1), (7.134)

respectively.
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If the losses, originating from severity £ (x|3) and frequency p(n|\) densities, are recorded
above a known reporting level (truncation level) Z, then the density of the losses above L is
left-truncated density,

Jj(xi- L<x< oo (7.135)

A8 = L5

The events of the losses above L follow the Poisson process with the intensity,
0(v, 1) = A1 — F(L18)), 7.136)

the so-called thinned Poisson process, and the annual number of events above the threshold is
distributed from Poisson(6).

The series of the annual counts or event times can be used for estimating frequency distri-
bution. These cases are considered separately here.

Proposition 7.4 (Likelihood for Annual Counts and Truncated Severities) For independent

losses from Poisson process with intensity \ and severity density f (x|3), consider a corresponding ran-
dom vector Y of the events recorded above the threshold L over a period of T years comzstzng of the

annual frequencies Nm, m=1,...,T and severztzesX ] =1,...,/, ] N1 +. +NT Then,
Jor given model parameters v, t/]e Jjoint density of Y at Nm = ;7zm and X} = Xj can be written as

T
hyly) = Hﬁ (%(8) H (im0, L)) (7.137)

That is, the log likelihood function for this model is £,,(~y) = In h(y|~y).

Proof : The proof is obvious because severities and frequencies are independent. [

From (7.137), the MLEs for model parameters % can be found as a solution of

Aly(v) _ SN _
o = (1= F(Ll8)) ; 55 e (N[0(v, 1)) =0, (7.138)
Ay (y) _ 9 o
OF(LIB) N~ D = _
. AT mz::l 55 P (Nulf (v, 1)) = 0. (7.139)

It is easy to see that the MLEs ,3 for the severity parameters can be found marginally (indepen-
dently from frequency) by maximizing

J
> mfi(X(8) (7.140)
—
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and then Equation (7.138) gives the MLE for the intensity

T
A= ———— (7.141)
IR Y

Proposition 7.5 (Likelihood for Event Times and Truncated Severities) For  independent
losses from Poisson process with intensity X and severity density f(x|B), consider the data Y of

the events above a constant threshold over the time period [ty, tg) consisting of the event interarrival
times §T = T T Lj=1,...,] (where T,] = 1,2,... are the event times and To = 1)
cind the severities X}, j = 1,...,]. Then the joint density (for given ) of Y at 57} = T; and
=g

J
hyly) = (1= Gz — 510, 1)) | [ £ZIB)g(F10(v, 1))
j=1

J
= X exp(—0(~, L) (2 — 0)) | [ F%18). (7.142)
j=1

Here, 1 — G(tg — 5|0(y, L)) is the probability that no event will occur within (3, tg). The log
likelihood finction for this model is £, (~y) = In h(y|7y).

Proof: The proof is obvious using the distribution of interarrival time (7.134) and the fact
that severities and frequencies are independent, severities are independent. [

From (7.142), the MLEs 4 can be found as a solution of

agy):§—< F(LIB)) (e — ) =0,

aeggy) — At — 3F Llﬁ Z Y (7.143)
This gives the MLE for the intensity parameter
A= ! (7.144)

(1= FWB)| (s )

which is equivalent to (7.141) if the start and end of the observation period correspond to
the beginning and end of the first and last years, respectively. Substituting A into the second

equation in (7.143), it is easy to see that the severity MLEs ,3 can be obtained by maximizing
J ~

Zl Inf; (X[ B).

i=

Remark 7.23

o [f the start and end of the observation period correspond to the beginning and end of the first
and last years, respectively, then the inferences based on the likeliboods (7.142) and (7.137)
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are equivalent. This is because the likelihoods, in this case, are different by a factor that does not
depend on the model parameters;

o The MLE errors are typically estimated using asymptotic Gaussian approximation via the inverse
of the Fisher information matrix (see Section 7.1.1). The latter is often estimated by the observed
information matrix. That is,

A=l s _82€y(’y)

Covlii 3~ (g (D= =550 7.145)
P =5

Whether the sample size is large enough to use this asymptotic approximation is a difficult
question that should be addressed in a practical solution. Also, the regularity conditions required
Jfor this approximation are mild but difficult to prove.

Detailed illustrative examples of fitting truncated data in the case of constant threshold
using maximum likelihood and Bayesian MCMC methods are given by Shevchenko (2011,
examples 5.1 and 5.2, pp. 184-188).

7.9.2 NEGATIVE BINOMIAL AND BINOMIAL FREQUENCIES

Negative Binomial and Binomial are other distributions often used to model frequencies. The
mean of a Binomial is less than the variance; the mean of the Negative Binomial is larger than
its variance; and Poisson mean equals its variance. This property is often used as a criterion to
choose a frequency distribution, and is known as under and over dispersion of the counting
distribution (frequency distribution).

Another convenient property of these distributions is that their type is preserved in the
case of loss truncation as given by the following proposition.

Proposition 7.6 (Frequency of Truncated Losses) Consider independent losses X1,X;, .. .,
Xy with a common distribution F(x) over some time period. Assume that the losses are independent

of the loss frequency N. Denote the frequency of the losses above the reporting level L as Ny. Then

(@) IfN ~ Poisson(X\), Np ~ Poisson(A\(1 — F(L));

(b) If N ~ NegBinomial(r, p), where the parameter p=1/(1+ q), then Ny ~ NegBinomial
(r,p) withp =1/(1 + g), where g = q(1 — F(L));

() IfN ~ Binomial(n,p), then N ~ Binomial(n, p), where p = p(1 — F(L)).

Proof :  The proof is trivial using a more general result given by Equation (7.150) derived
later. [ ]

In general, the relation between the distributions of N and N; can be calculated as
follows. Assume that the probability function for the number of events N is known to be
pn = Pr[N = 7] and its probability-generating function is

dn () =B[N = put. (7.146)

k
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Consider a compound sum § = M + - - - + My, where V is a discrete random variable with
probability-generating function 1 (¢), and M; are independent discrete random variables with
probability-generating function v, (#). Utilizing the fact that the probability-generating func-
tion of the sum of independent random variables is the product of the individual probability-
generating functions, the probability-generating function of S can be found as

Us(e) = Pr[S = k¢t
k
=S S PeMy 4+ M, = N = alPr[N = n]¢
b n

= ZPY[N = n](Yu(2))"
= Un(Ym(t))- (7.147)

The number of events above the threshold can be written as
Ny=5L+--+1y,

where /; are independent and identically distributed indicator random variables

[j:{l, Pr[ﬁj:(l)}f —F(d), if X;>u, (7.148)
J

]:F(d)v it )(]gu7
with probability-generating function
() =F(L)+t(1—=F(L) =14+ (1—-F(L)(r-1).

The probability-generating function of the number of events above the threshold L can then
be calculated as

Y, (2) = Y (i (2)). (7.149)

Moreover, if the distribution of /V is parameterized by some 6 and its probability-generating
function has a special form ¥y (#6) = g(6(r — 1)), that is, # and 6 appear in Py (£ 6) as
0(¢t — 1) only, then

U, (156) = (01 — F(L)) (£ — 1)) = (1501 - F(L). (7.150)

That is, both N and V; have the same distribution type with different parameter 6. Specifically,
if V is distributed from P(-|6), then NN} is distributed from P(-|6), where 6 = (1 — F(L)).
It can be checked directly that this relationship holds for Poisson, Binomial, and Negative
Binomial. This property of Poisson distribution has already been used in Section 7.9.1. For
more details and examples, see Panjer (2000, sections 5.7 and 7.8.2).

7.9.3 IGNORING DATA TRUNCATION

Often, the data below a reported level are simply ignored in the analysis, arguing that the high
quantiles are mainly determined by the low-frequency/heavy-tailed severity risks. However,
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even if the impact is small, often it should be estimated to justify the reporting level. There are
several ways to ignore truncation discussed here.

Assume that the true model is based on the annual number of events /V and severities
X; coming from distributions P(:|A) and F(:|3), respectively. Here, P(-|A) can be different
from Poisson and A denotes all frequency parameters. The density of the distribution F(+|3) is
f(-|8). If it is further assumed that severities are independent and identically distributed, and
independent of frequency. Then the frequency N and losses )~(] above the threshold L are from

P(-|0) and

F(x[8) — F(L|B)

FL(x|/6) = 1 —F(L‘,@) )

x> L,

respectively. Note that 6 is a function of A, 3, and L (see Section 7.9.2). The corresponding
truncated severity density is

f(18) .

x >

8 = T €2

Denote the data above the threshold as ¥. Then fitting of the correct model proceeds as
follows.
“True model”. Using the frequency P(-|0) and severity F; (x|3) distributions of the truncated
data Y, fit the model parameters A and 3, using the likelihood of the observed data ¥ via the

MLE or Bayesian inference methods as described in Section 7.9.1. Then calculate the annual
loss as

N
ZO=3"x, N~ P(N). X% E(|8). (7.151)

i=1

Of course, it is assumed that data below the threshold are generated from the same process
as for data above. To simplify the fitting procedure or to avoid making the assumptions about
data below the level, several approaches are popular in practice. In particular “naive model”,

Shifted model”, and “truncated model” are defined.

“Naive model”. Using truncated data Y, fit frequency distribution (@) and severity F(-|8,;)

assuming that there is no truncation. Then calculate the annual loss as
N B o
ZW=3"X, N~ P(0), X'~ F(|8y) (7.152)
i=1

“Shifted model”. Using truncated data Y, fit frequency P(-|) and severity
FL(S) (x) = F(x — L|3). Then calculate the annual loss as

N
7O =3"x, N~D(l8), X% E(|8y). (7.153)

i=1
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“Truncated model”. Using truncated data Y, fit frequency P(-|0) and severity F;(x|3). Then

calculate the annual loss as

1

N
20 =3, N~ Pl9), X% % F((8). (7.154)

i=1

Denote the 0.999 quantiles of the annual losses under the “true”, “naive”, “shifted” and
“truncated” models as Q(®), Q(V), Q1) and Q(7), respectively. The bias introduced into the
0.999 quantile of the annual loss distribution from use of the wrong model can be quantified
by the relative difference

=) — 00O
s = L Q7 Q<0>Q . () =1UCT S (7.155)
Calculation of the annual loss quantile using the incorrect model (wrong frequency and severity
distributions) will induce a bias. One may think that the bias is not significant and use one of
the mentioned methods.

Each of the “naive model”, “shifted model”, and “truncated model” is biased for finite
truncation, that is, their quantile estimates will never converge to the true value as the data
sample size increases.

The difference (bias) between Q(®) and Q(), and between Q(® and Q(V) was studied
by Luo ez al. (2007) and Ergashev ez al. (2012). The difference between Q) and Q(®) was
studied by Mignola and Ugoccioni (2006). The “naive model” was analyzed by Chernobai ez a/.
(2006) and Frachot et 2l (2004b).

Example for Poisson—LogNormal case. To demonstrate the impact of ignoring data trunca-
tion consider NV and X; modeled by the Poisson(\) and LogNormal(j1, o*) with the probability
mass p(-|A) and the density f (x|, ), 0 < x < 00, respectively. The density of a left-truncated
LogNormal distribution is

f(xlp, o)

et L<x< oo (7.156)

Jilxlp, o) =

Assuming that losses originating from f(x|y, o) and p(k|\) are recorded above known
reporting level Z, the data above L are counts from Poisson(), 6 = A(1 — F(L|u,0)), and
losses from f; (x|, o). Then the following models are calculated.

* “True model” is obtained by using A, pt, and o in (7.151);
o “Shifted model”. Suppose that the shifted LogNormal density

where L < x < 00, is fitted to the truncated data using the method of maximum likeli-
hood. In the limit of large sample size, the parameters of this distribution pis and o5 can be
determined using the first two moments, that is, expressed in terms of the true parameters

£9 (el 0,) = (7.157)

i and o as follows:
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In(x — L) (x|, o), (7.158)

Mn(x — L)1 47 (x|, o) doe — pi2- (7.159)

These integrals can be efficiently calculated using Gaussian quadrature or just using stan-
dard adaptive integration routines available from most of software packages e.g. In this
model, the frequency is modeled by Poisson(6), that is, the losses below L are ignored.
Finally, 6, ps, and o are used in (7.153);

* “Naive model”. This model is based on the untruncated LogNormal with density
f (x|, ou) defined by (2) and fitted to data above the threshold L using the method
of maximum likelihood. Similar to the “shifted model”, in the limit of large sample size,
parameters (17 and o7 can be determined via the true parameters p and o as follows (see
Chernobai ez al. 20006):

In(x) 5" (el 1, 0 ) (7.160)

(Inx) 27 (x|, o) — i (7.161)

Unlike the “shifted model”, these integrals can be evaluated in closed form. The fre-
quency under the “naive model” is modeled by Poisson(f), that is, the losses below the
threshold, are ignored when the intensity of loss events is estimated. Finally, 6, 1117, and
oy are used in (7.152);

» “Truncated model” is obtained by using 6, i, and ¢ in (7.154).

Figure 7.7 shows the relative bias in the 0.999 annual loss quantile (7.155) versus a fraction
of truncated points ¥ = F(L|u, o) x 100%, for the cases of light- and heavy-tailed severities.
In this example, the parameter values are chosen the same as some cases considered in Luo ez 4/.
(2007). In particular, we show the results for (¢ = 10,0 = 1) and (6 = 10, 0 = 2). The latter
corresponds to the heavier-tailed severity. Here, the calculated bias is due to the model error
only, that is, the bias corresponds to the limiting case of a very large data sample. Also note
that the actual value of the scale parameter p is not relevant because only relative quantities
are calculated. “Naive model” and “shifted model” are easy to fit but induced bias can be very
large. Typically, “naive model” leads to a significant underestimation of the capital, even for
a heavy-tailed severity; “shifted model” is better than “naive model” but worse than “truncated
model”; the bias from “truncated model” is less for heavier-tailed severities.

The biases introduced by the “naive” and “shifted” models, studied in this example, are
the biases in the limit of large sample size. The parameters fitted using real data are estimates
that have statistical fitting errors due to finite sample size. The true parameters are not known.
The impact of parameter uncertainty on quantile estimates can be taken into account using a
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FIGURE 7.7 Relative bias in the 0.999 quantile of the annual loss versus percentage of truncated
points for several models ignoring truncation in the case of light-tailed severities from
LogNormal(p = 3,0 = 1) (top figure) and heavy-tailed severities from LogNormal(pn = 3,0 = 2)

(bottom figure). The annual counts above the truncation level are from Poisson(10)

Bayesian framework. The problem with the use of the simplified models that ignore data trun-
cation, such as “naive” and “shifted” models, is not just the introduced bias but underestimation
of extra capital required to cover parameter uncertainty. Typically, these simplified models lead
to smaller fitting errors. It is not difficult to find a realistic example where the “shifted model”
overestimating the quantile leads to underestimation when the parameter uncertainty is taken
into account; for an example, see Luo ¢z a/. (2007, section 6, table 1). “Naive model” typi-
cally underestimates the capital even if the parameter uncertainty is taken into account This
is because the “shifted” and “naive” models lead to smaller fitting errors in comparison to the
“unbiased model”. Of course, as the number of observations increases, the impact of parameter
uncertainty diminishes. However, for modest fitting errors 5-10% (often, in modeling OpRisk
data, the errors are larger) the impact of parameter uncertainty is significant.

7.9.4 THRESHOLD VARYING IN TIME

Often, in practice, a modeler should handle a reporting threshold varying in time. This might
be due to scaling losses by some factors (inflation, business factors, etc.) that scales the reporting
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threshold too or changes in reporting policy in time. As a result, the losses in the fitted sample
will have different threshold levels. Consider the following model assumptions.

Model Assumptions 7.2

* [n the absence of a threshold, the events follow a homogeneous Poisson process with the intensity A
and the severities X; are independent with a common distribution F(-|3); denote y = (X, B);

* The losses are reported above the known time-dependent level L(t). Denote the severities and

arrival times of the reported losses as X; and T}, j = 1,. .., ], respectively, and t, is the start of
the observation period.

Under these assumptions, the events above L(¢) follow a nonhomogeneous Poisson process
with the intensity given by,

0(v, L) = A(1 — F(L(5)|8)). 7,162
Furthermore, denote by A(z, 4) the following integral

t+h
At h) = / 0(, L(x))dx. (7.163)

t

Then, given that (j — 1)-th event occurred at %_j, the interarrival time for the j-th event

0T; = T; — T;— is distributed from
Gi(tly) =1 — exp(—A(f-1,7)) (7.164)

with the density

(1Y) = 0(v, L1 + 7)) exp(—=A(4-1,7)). (7.165)

The implied number of events in year m is Poisson(A(s,,, 1))-distributed, where s,, is the time
of the beginning of year m, and the number of events over the nonoverlapping periods are
independent.

Proposition 7.7 (Likelihood for Event Times and Truncated Severities) Under Model
Assumptions 7.2, for given parameters y, the joint density of the data Y of the events above L(t)

over the time period [ty, 1), consisting of the interarrival times §T; = T; — T;_\ and severities X;,
j=1,...,] above L(t), can be written as

J
hyly) = (1= G ez = 51)) [ [ i) 18T )

j=1

J
= X exp(—A(t, 2z — 0)) [ [ F®19)- (7.166)
j=1
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Here, explicitly,

Alto, 5 — 16) = A / [1 — F(L(x)|8)]dx.

to

Then, the likelihood function for the model is £, () = In h(y|7).

Proof :  This follows from independence between frequencies and severities, independence
between severities, distribution of interarrival times (7.164), and its density (7.165). (]

The MLEs for model parameters 7 can be found by solving the maximum likelihood
equations

T
() 7 _
=T / [1 — F(L(x)|8)]dx = 0, (7.167)
at,(v) B o
5ﬂ = —%A(to, T — 1) —l-;%lnf(xﬂﬂ) =0. (7.168)
The first equation gives
A= J , (7.169)

T A~
J 1= F(L(x)|B)]dx

which can be substituted into (7.166) and maximization will be required with respect to 8 only.
The likelihood contains integral over the severity distribution. If integration is not possible in
closed form, then it can be calculated numerically (which can be done efficiently using standard
routines available in many numerical packages). For convenience, one can assume that a thresh-
old is constant between the reported events L(#) = L(z), 51 < ¢t < f;and L(¢) = L(#g) for
7 < t < tg, so that

173

[ 1= Fe@I8) = [t = Fl ) - )

)

+

J

J
[1—F(L(%)|8)]T;. (7.170)

=1

Of course, this assumption is reasonable if the intensity of the events is not small. Typically,

scaling is done on the annual basis and one can assume a piece-wise constant threshold per

annum and the integral is replaced by a simple summation.

Proposition 7.8 (Likelihood for Annual Counts and Truncated Severities) Under Model
Assumptions 7.2, the joint density of data Y of the events above the reporting threshold L(t) consist-
ingoft/ﬂeannualcountsﬂlm, m=1,..., Tandseverities)?j,j =1,....](J= Ni+... —l—NT)
can be written as
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J T
hyly) = i) ®18) H (| A(sm; 1)), (7.171)
=1 m=1

where p(-|A(sn, 1)) is probability mass function of Poisson(A(s,,, 1)). Then, the likelihood function
JSor the model is £,,(y) = In h(y|v).

Proof :  This follows from independence between frequencies and severities, independence
between severities, and intensity of nonhomogenous Poisson process (7.162). [

Usually, in practice, scaling is done on an annual basis. Thus, we can consider the case of
a piece-wise constant threshold per annum such that for year

L(#) =L, O =007, (1)) = A1 = F(Ln|B)), sn <t <sut1,

where s,, is the time of the beginning of year 7. The joint density in this case is

J T
Wyl = [ i) ®18) H (72| O) (7.172)
j=1 S

and equations to find MLEs using the likelihood function £,(v) = In A(y|~y) are

T
=> [1=F(L, 18)]5 lnp(nm|9 )= (7.173)
m=1
J
:Za Inf; ) (%16)
j=1
)\Z OF( L W a(o? Inp(72|0,) = (7.174)
m=1

The first equation gives

) ST a
A= ==l (7.175)
2=t (1= F(Ln]B))

The MLE:s of the severity parameters should be estimated jointly with the intensity. Given
that the intensity MLE can be expressed in terms of the severity parameter MLEs via the given
equation, one can substitute (7.175) into the likelihood function (7.172) and find severity
parameter MLEs by maximizing the obtained likelihood profile.

Often the MLE:s for severity parameters calculated marginally (i.e., by simply maximizing
> Infi,)(%8)) do not differ materially from the results of the joint estimation if the vari-
ability of the threshold is not extremely fast. In addition, marginal estimation does not allow

for quantification of the covariances between frequency and severity parameters required to
account for parameter uncertainty. For an illustrative example of fitting truncated data with
time-varying threshold using maximum likelihood and Bayesian MCMC methods, the reader
is referred to Shevchenko (2011, example 5.4, pp. 199-200).
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7.9.5 UNKNOWN AND STOCHASTIC TRUNCATION LEVEL

One of the most significant problems in fitting OpRisk models using publicly available data
is handling the issue that not all losses are reported above the threshold (typical threshold for
external databases of public data is USD 1 million). Moreover, the truncation level for differ-
ent losses is unknown. It is expected that there will be a positive relationship between the loss
amount and the probability of its reporting. In this case, the dataset is a biased sample con-
taining a disproportionate number of very large losses. One can say that an operational loss is
publicly reported only if it exceeds some unobserved truncation point. This can be modeled as
an unknown deterministic truncation level or stochastic truncation level.

Unknown deterministic truncation level. Baud ez 2/ (2002) consider the case of unknown
deterministic truncation level L. In this case, it is considered as an additional parameter to
be estimated along with the parameters characterizing the loss distribution. The log likelihood
function is identical to the one given in the previous sections for known truncation level, except
that it is now an explicit function of both severity distribution parameters and L. Now the
maximum likelihood approach corresponds to maximization of the likelihood with respect to
distribution parameters and L. Furthermore, it can be immediately observed that the MLE
for L is just the smallest observed loss in the fitted dataset. In practice, Baud et 2/ (2002)
suggest the following procedure to account for possible contamination with untruncated or

badly recorded data.

* Estimate severity parameters 6 for each L ranging from 0 to oo;
* Plot O as a function of L;

« Truncation level estimator L is eventually calculated as the threshold beyond which @
remains approximately flat as a function of L.

As a result, the loss parameters are eventually estimated with fewer data than available,
that is, losses above the highest threshold. In order to avoid this loss of information, one can
consider modeling truncation level as a stochastic variable.

Stochastic truncation level. Stochastic truncation problem was reviewed in many papers (see,
e.g., Amemiya 1984, Maddala 1983). Application of this technique to operational loss data is
considered by De Fontnouvelle ez /. (2006) and Baud ez /. (2002). Note that here we refer
to a threshold level as a known reporting level in the database while the truncation level is
unknown.

Let X and ¥ be random variables with joint density 4(x, y) and marginal densities £ (x)
and g(y), respectively. Denote corresponding distribution functions as F(x) and G(y). Here,
X is randomly truncated if it is observed only when it exceeds the unobserved truncation level
Y. If X and Y are statistically independent, then the joint density 4(x,y) is the product of
the marginal densities f(x) and g(y). The joint density of X and Y, conditional on X being
observed, can be written as

f(x)gk)
Pr[X> Y]
g@
f_ f_ g(y d)/dx
_ f¥eby)
[T @G dx (7.176)

hx,ylx > y) =
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The marginal density of X, conditional on X > Y, is obtained by integrating out the unob-
served variable y

m IACLSC))
fxlx > y) = FGwa (7.177)

Thus, the likelihood of the observed data x1, . . . , x,, can be written as

T f(®)G(x)
L OH=\|| ==———7—. 1

xx>v(6) 11;[1 T F)G(x)d (7.178)
Here, 0 are parameters of severity and truncation level distributions that can be estimated using
maximum likelihood or Bayesian MCMC methods. Of course, in practice, we fit data above
some known threshold (e.g., USD 1 million); then one can consider the above formulas for
the loss exceedances above the threshold or log of the loss minus log of the threshold. This
approach was used by De Fontnouvelle ez a/. (2006) to fit SAS OpRisk Global Data and Fitch
Risk/OpVantage OpVar Loss Database.

There are many factors that affect whether a loss is publicly reported or not. It may depend
on the type of loss, the business line, legal proceedings related to the loss, executives and
reporters deciding whether to report the loss or not, etc. Thus, one can argue that the trunca-
tion level should be normally distributed. However, De Fontnouvelle ez /. (2006) found that
assumption of Normal distribution often leads to nonconvergence of the numerical optimiza-
tion of the maximum likelihood and recommend using a logistic distribution (for truncation
level of log losses)

1

) = e =D/

(7.179)

Here, the location parameter 7 corresponds to the amount with a 50% chance of being reported
and a scale parameter (3 regulates the increase (decrease) of the probability of reporting as the
loss amount increases (decreases).



CHAPTER EIGHT

Model Selection and
Goodness-of-Fit Testing for
Frequency and Severity Models

In this chapter, we present details on statistical approaches to performing model selection.
We separate the sections first into diagnostic tools that may be adopted to make quantitative
assessments for model selection purposes. This includes analysis of the presence of heavy-tailed
features of the data. Then the focus of the next few sections is on individual risk process model
selections under a Loss Distribution Approach (LDA) structure, for the severity model and
the frequency models. This can be achieved under a number of different frameworks such as
information criteria, frequentist hypothesis testing, and Bayesian model selection approaches.
A particular focus in these sections involves the suitable modifications to classical hypothesis
tests that should be considered when performing model selection on heavy-tailed models, for
instance, for the severity distribution. This is important to consider as it can have a substantial
impact on the choice of the model and therefore on the capital. The last sections of this chapter
involve the model selection of dependence features between multiple risks, such as model selec-
tion for the copula distribution, which may be used to link multiple risk processes as discussed
in detail in Chapters 10-12.

8.1 Qualitative Model Diagnostic Tools

In general, it is often practical to utilize a range of model diagnostic tools to make qualitative
judgments on the suitability of a particular choice of severity or frequency model. In this regard,
there are a range of possible tools one can consider, each providing different interpretations as
to the suitability of a particular aspect of the fitted model. In this section, we discuss the popular
Quantile-Quantile plot (Q—Q plot) and analog Probability—Probability plots (P-P plot) as well
as diagnostics for heavy-tailed behavior such as Mean Excess (ME) plots and Hill plots.

A Q-Q plot is a graphical method of comparing two probability distributions by plot-
ting their quantiles against each other. One first selects a set of intervals for the quantiles

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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to be plotted and then a point (x, y) on the plot corresponds to one of the quantiles of the
second distribution (y-coordinate) plotted against the same quantile of the first distribution
(x-coordinate). Typically, one considers the empirical quantiles from a sample to be plotted on
the y-axis versus the hypothesized model quantiles on the x-axis.

The main step in constructing a Q—Q plot is calculating or estimating the quantiles to
be plotted. In the case in which the distribution function(s) for one or both of the axes is
based on a theoretical distribution that is continuous, all quantiles are uniquely defined and
can be obtained by inverting the distribution function. If there is an atom in the support of the
distribution function, that is, a discontinuity in the distribution for one or both of the axes,
and a theoretical probability distribution is considered, then one should take care to observe
that the definition used for the quantile at such points may utilise an interpolated quantile.

Typically, the Q-Q plot is based on data, such as losses, for which there can be multiple
choices for quantile estimators. The approach adopted with regard to forming Q—Q plots when
quantiles must be estimated or interpolated is called selection of “plotting positions”, which
literally means selecting which quantile levels to plot.

Remark 8.1 (Properties of Q-Q plots) The following is worth noting when considering the
interpretation of a Q—Q plot. The points plotted are always nondecreasing when viewed from left
to right. In the case in which the two distributions compared are identical, the resulting Q—Q plor
would follow the 45° line y = x. However, if there is a mismatch between the Q—Q plot curve
and the line y = x, then this provides qualitative evidence of features of the data that are not in
agreement with the proposed parametric model.

Examples of such qualitative analysis are provided as follows:

1. If the overall trend in the Q-Q plot tends to be flatter (gradient less than 1) than the
line y = x, then this implies that the hypothesized distribution plotted on the x-axis will
be more dispersed than the distribution plotted on the vertical axis, which relates to the
population distribution from which the sample was obtained;

2. If the overall trend of the Q—Q plot tends to be steeper (gradient greater than 1) than the
line y = x, then this implies that the population distribution plotted on the vertical axis
is more dispersed than the hypothesized distribution plotted on the horizontal axis;

3. If the Q-Q plot is curved, arched, or S-shaped, then this can indicate that relative to the
hypothesized parametric distribution the population distribution from which the sample is
obtained has different skew characteristics. It can also indicate that one of the distributions
has heavier tails than the other.

An example is provided in Figure 8.1 where we consider a sample of » = 100 losses from
a distribution F (unknown population distribution) and we compare this to the hypothesized
severity model we are considering to use as a model. In these examples, we will consider a
LogNormal model for the hypothesized model and simulate data from three different cases.
The first is the ideal case where we simulate the data also from a LogNormal with the same
parameters, the second is the case where the data come from a Weibull, and the third is the case
where the data come from an exponential distribution.

Similar in concept, one can also plot what are known as P-P plots, in which a comparison
between the empirical cumulative distribution function of a data set of size 7 samples, denoted
by £, is compared with a specified theoretical cumulative distribution function F. We note
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FIGURE 8.1 In each plot, the x-axis corresponds to quantiles from a LogNormal(p = 1,0 = 2) model.
Left subplot: generated data are from a LogNormal(pn = 1,0 = 2) model. Middle subplot: generated data
are from a Weibull(c = 1, 8 = 2) model. Right subplot: generated data are from an Exp(u = 1) model

some basic differences in the way that P-P plots and Q-Q plots are constructed. A Q-Q plot
doesn’t require information on the location or scale parameters of F to be known. The reason
for this is that a linear relationship in the plotted Q—Q points indicates that the specified family
describes the data distribution. However, the location and scale parameters do not affect the fact
that this linear relationship will be present as they only affect the slope and intercept. However,
when constructing a P-P plot one must be careful as it requires the location and scale parameters
of F to be specified in order to evaluate the distribution at the ordered values. This is important
since, on a P-P plot, changes in location or scale do not necessarily preserve linearity. Hence,
one is advised to utilize the Q—Q plot when the intention is to assess the suitability of a family
of parametric models from which the data may have been drawn.

The advantage of a P-P plot, when it is appropriate to utilize one, is that they are discrim-
inating in regions of high probability density. To understand this point, we note that in these
regions the empirical and theoretical cumulative distributions are changing more rapidly than
where there is low probability; see further discussions on these plots by Wilk and Gnanadesikan

(1968).

8.2 Tail Diagnostics

In many cases in which one is fitting a heavy-tailed severity model to data, one may be interested
in diagnostic tools to assess the suitability of such a model feature. There are several qualitative
plots that are available for such analysis such as the Mean Excess (ME) plot and the Hill plot,
see Kratz and Resnick (1996).
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When considering heavy-tailed features under a parametric model, it is often natural to
consider the distribution of exceedances above a threshold such as under a Peaks Over Thresh-
old (POT) estimation framework. The choice of threshold for which to consider the Gener-
alized Pareto Distribution (GPD) is a challenging quantity to assess. Selecting the threshold
and assessing the appropriateness of a heavy-tailed GPD model for data is often aided by an
ME plot analysis. In the special case of a GPD model GPD(¢, ), the ME function takes a
closed-form expression in terms of the extreme value index (EVI) parameter £, which for a level
u threshold is given by

M(u):E[X—u|X>u]=%—|— 3 u, (8.1)

£ 1-¢

which clearly indicates that the sample estimated ME should form a linear relationship if the
GPD heavy-tailed model is suitable to describe the tail behavior of the data. In fact, any heavy-
tailed subexponential model (though it may not have a parametric form for the ME function)
will produce an upward-sloping ME plot, where as light-tailed or exponentially tailed models
will produce a downward or decreasing ME plot; see discussion and references by Ghosh and
Resnick (2010) for details.

As mentioned, for plotting the ME plot we consider the sample ME function defined by
Equation (8.2), which represents the sum of excesses over a threshold # divided by the number
of data points that exceed the threshold #. It approximates the ME function describing the
expected exceedance amount for a particular threshold # given an exceedance occurred. If the
empirical ME function estimate has a positive slope for large thresholds #, then this indicates
that the observed data are consistent with a GPD with a positive tail index parameter (Beirlant
et al. 2004, chapter 1). The sample ME is then given by

Zz 1( )H{X>u}
Zz:l ]I{)(i>u}

en(u) = (8.2)

which estimates the conditional expectation e(#) = E [(X — u)|X > u].

We note that the ME plot is only one of a large set of widely used tools for extreme
value model selection. Other diagnostic tools include the Hill plot, the Pickands plot, and
the moment estimator plot, see discussion by Ghosh and Resnick (2010).

In addition, when performing qualitative assessments of the tail thickness of the data-
generating distribution, it is common to consider the Hill plot. The Hill plot represents the
estimated inverse tail index as a function of the upper-order statistics 4. In other words, it
considers the order statistics of the data set of length # given by {X( i) }:l: and takes the m

1
upper-order statistics to obtain the Hill estimator of the extreme value tail index given by

” -1
Zl Hom 1<m<n (8.3)
m+1 ) o o
The Hill plot is then the plot of points { (£, H}, ,) : 1 < # < n}. This plot provides feedback on
the suitability of the selected threshold utilized in the estimation of the Extreme Value Theory
(EVT) models, in particular the POT’s method, see Beirlant ez /. (2004) for details. For further
detailed discussions on the suitability of such a plot to certain model assumptions, see discussion
by Ghosh and Resnick (2010, section 4).
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8.3 Information Criterion for Model Selection

In this section, we provide background on alternative popular model selection and penalization
approaches developed in the statistical literature, which include the frequentist Akaike Informa-
tion Ciriterion (AIC) and small sample results of AICc. We also present the Bayesian equivalent
quantities given by the Bayesian Information Criterion (BIC) and the Deviance Information
Criterion (DIC). Hence, we discuss methods of model comparison based on ideas of informa-
tion theory, model complexity and accuracy or bias, and variance trade-off. However, these are
not measures of absolute suitability of a model choice as would be obtained from goodness-of-
fit (GOF) testing under a formal hypothesis test. In other words, if all the candidate models
for the severity fit poorly, these criteria will not give any warning of this possibility. We there-
fore also comment on the importance of estimation of both the tail properties of a heavy-tailed
severity model in an LDA framework, as well as the assessment of the suitability of the model
more generally—these are related but not equivalent concepts.

8.3.1 AKAIKE INFORMATION CRITERION FOR LDA MODEL
SELECTION

The AIC is a measure of the relative GOF of OpRisk LDA model components such as the
severity or frequency distribution under consideration. One can interpret this criterion as pro-
viding an entropy-based trade-off between bias and variance in an OpRisk model construction.
To understand the connection to the concept of entropy we observe that the AIC is based on
the Kullback—Leibler (KL) divergence given in Definition 8.1.

Definition 8.1 (Kullback-Leibler divergence) The Kullback—Leibler divergence, in this case
Jor two densities | and g, is given by the following two components:

KL(fllg)=- / ) Ing(x)dx + / ) Inf (x)dx (8.4)

Cross Entropy N(f||g) Entropy

If one now considers f(x; @) and g(x; 1) to be the likelihoods of two competing models
and notes that the integrals are taken with respect to the observed losses, then the cross entropy
term represents the expected negative log-likelihood of data coming from f under g. Now,
since we don’t know the true model generating process of the losses, we assume we have a set
of possible candidates and we rank them by their AIC score given in Definition 8.2.

Definition 8.2 (Akaike Information Criterion for severity models in OpRisk) Consider a
given model for severity loss random variable X ~ Fx(x;0) parameterized by (k X 1) dimen-
sional vector 0. Given observed losses one obtains the value of the maximum likelibood estimation

~ MLE
(MLE) of the severity model parameters © (%), which is a function of the observed data. Then
the AIC is given by

AIC(©" (k) = —200™" " %) + 2k (8.5)

Maximum of Likelihood ~ Model Complexity Penalty
n
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Given several possible candidate severity models for an OpRisk LDA model, the preferred
model is the one with the minimum AIC value.

Remark 8.2 (Cautionary comments on application of AIC) The following general issues are
required to be considered for the application of AIC:

1. AIC is asymprotic; it requires conventional large-sample properties;

2. The maximum number of parameters in the severity model should not exceed 2kn, where n is
the number of observations. This is because larger values will weaken the bias correction;

3. There are cases when AIC decreases monotonically, that is, there is no solution. In most of these
cases, the culprit is poor selection of model class;

4. If an AIC score difference between two severity models has a magnitude of between 1 to 2 or
more, then the difference is significant;

5. In some cases, AIC has been shown to be inconsistent.

In general, in OpRisk settings where the sample sizes are low, it may be better to consider
the small sample AIC with a different bias correction given in Definition 8.3 (see discussions in
Burnham and Anderson 2002). In this text of model selection, they advise to utilize AICc, rather
than AIC, when the number of losses 7 is small or the number of severity model parameters
k is large. Note further that the AICc will converge to AIC as the sample size grows and for
small sample sizes we see that the bias is reduced by keeping AIC with a greater penalty for extra
parameters.

Definition 8.3 (Small-sample Akaike Information Criterion AICc) The correction to AIC
Jor small sample sizes, known as the AICc is given by

~ ML ~ MLE

AICe (@ E(x)) — AIC (@ (x)) L 2kk+1)

PRy 36

where n denotes the sample size and k the number of parameters in the severity model. ]

8.3.1.1 Understanding How the AIC Ciriterion is Obtained. To understand how
the AIC criterion is obtained, we consider a hypothetical true data-generating (losses) severity
model denoted by 4 (x|0™) with true parameters 8. Furthermore, consider a class of models
M, = {f (x|6,) |6, € Q(k)}, where each member of this class is a data-generating density

that is parameterized by a &-dimensional parameter vector (risk profile) 6. For each model in
this class of models, denote the log-likelihood at the MLE by / (él/:/[LE) Then one may define

the expected log likelihood, with respect to the true model parameters 8™, for a given model in

class M,, by
Eg- [Inf (X|60;)] = //J(x|0*)lnf (x|0,) dx, 8.7)

where this expectation is interpreted as that taken with respect to the hypothetical true data-
generating distribution 4 (x|0™). In addition, one may define this expectation at a particular
point corresponding to the expected maximized log-likelihood given by
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Eg- [m f (X|92“E)} - / b (x67) Inf (x|é2m) dx, (8.8)

~MLE
where the point estimator of the MLE 6,  is clearly dependent on one fixed realization of
~MLE
the observations. The use of Eg~ [lnf <X|0k )} to estimate Eg+ [In f (X'|6,)] is critical to

the derivation of the AIC. That is, the AIC is derived by making an estimate of the expected
log-likelihood using the maximized log-likelihood function. However, since the MLE will
depend on one realization of the data X, it will produce a biased estimator of the mean expected
log-likelihood w.r.t. to the loss data and this bias is asymptotically given by #, the number of
parameters in the model, see Akaike (1981).

To proceed with the understanding of how the AIC is obtained, we consider improving
the estimator of the expected maximum log-likelihood. This will be achieved by considering
the mean expected maximum log-likelihood, where the single realization of observation vector
X is observed and then averaging over the MLE estimator from i.i.d. observation vectors Y,
each assumed to come from the same hypothetical true distribution as the observed losses X,
thus producing the following expectations to be considered:

Eyie+Exjo- [Inf (X|0;"(Y))] . (8.9)

In the work of Akaike, it was postulated that as the mean expected maximum log-likelihood
increases, the model provides an improving fit. It can also be shown that the estimator of this
mean expected log-likelihood is estimated by the maximum likelihood function, with a bias,
and that the bias can be obtained easily as the number of free parameters in the model.

Another way of seeing this is to note that one can show that the AIC score relates to the
cross entropy between the unknown “true” data-generating model 4 with true parameters 8™
and a model under consideration f, where we denote the cross entropy by A(% || f), which is
given in the following way for an (7 X 1) vector of observed losses x according to the following
expectation,

Eq- [(Q)MLE(x)} = - [ (0*||(2)MLE(x))} + on(1). (8.10)

This shows that the AIC score, given for model M, by

~ MLE ~MLE

A[C(@ (x)):—lnf(xwk )+/e, (8.11)

is an asymptotically unbiased estimator of the cross-entropy risk and can only be accurately
applied in the large sample size setting, something that is not often available in OpRisk mod-
eling. One way to show this property of the AIC score estimator is by taking the case in which
the true model M« is nested in the class of models considered and there are two sources of
error in the model selection:

1. Discrepancy from approximation. This is the main source of error when underfitting where
the number of parameters in the fitted model M, is such that £ < £*;

2. Discrepancy from estimation. This is the main source of error when overfitting where the
number of parameters in the fitted model M, is such that £ > £*.
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To complete this derivation, one shows that under particular regularity conditions discussed
in Akaike (1981) the mean of the AIC score with respect to the true data-generating model is

given by the mean cross entropy A (0* | \(':)MLE (x)) up to the first order. In other words, one
must show that
Eo- [lnf <X|9ZALE) +4]

~ MLE

— Eo- [A (9*\|® (x))} +0,(1)

— A (67]|©0] + % [@MLE(x) - 0] CH [éMLE(x) ~ 0] +0,(1)

. 11 T . A
— Eq- [m r (X\@Z“Eﬂ +3 {@MLE(x) - @0] H (@MLE(x)) [@MLE(x) — e,
A T N

+2 (0" - @] /(1) [0 ()~ @] +a1),

(8.12)
where the matrices / and H are given at location 6, by,
_|gaE)e]
J(®) = l 2000" | ,_o,
s (10 (8.13)
~ MLE n
H (6 (x)) - l 0000’ G—éyLE]

Then one notes that under the same regularity conditions utilised to obtain this expansion, the

following holds

%Eg* “éMLE(x) =l " (®0) [éMLE(x) - @OH - § +ou(1)
(8.14)

%Eo* |:|:(:)MLE(x) B @0} TH <©MLE(x)> [(Z)MLE(x) _ (._)OH = ; +0,(1).

After substitution of these results one obtains the required result for the AIC criterion
expression.

8.3.2 DEVIANCE INFORMATION CRITERION

There are also a number of other information crtiria, some of which are particular relevant for
Baysian modelling. One such example, commonly used in practice, is the Deviance Information
Criterion (DIC). For a dataset X = x generated by the model with the posterior density 7(0|x),
define the deviance by

D(6) = —2In7(x|0) + C, (8.15)
where the constant C is common to all candidate models. Then the DIC is calculated as

DIC = 2E[D(®)|X = x] — D(E[®|X = x])
=E[D(®)|X = x| + (E[D(®)|X =] — D(E[O|X =x])),  (8.16)
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where

* E[-|X = x] is the expectation with respect to the posterior density of ®;

* The expectation E[D(®)|X = x| is a measure of how well the model fits the data; the
smaller this is, the better the fit;

* The difference E[D(®)|X = x| — D(E[®|X = x]) can be regarded as the effective

number of parameters. The larger this difference, the easier it is for the model to fit the data.

The DIC criterion favors the model with a better fit but at the same time penalizes the
model with more parameters. Under this setting the model with the smallest DIC value is the
preferred model.

DIC is a Bayesian alternative to BIC (Schwarzs criterion Schwarz 1978) and AIC (Akaike,
1983). For more details on these criteria, see, for example, Robert (2001, chapter 7).

8.4 Goodness-of-Fit Testing for Model Choice
(How to Account for Heavy Tails!)

It is also natural under a frequentist modeling perspective to consider performing a Goodness
of Fit (GOF) hypothesis test. This is a formal hypothesis testing procedure for assessing the
statistical significance of whether the observed loss process was likely to have been generated
from the statistical model considered. Measures of GOF typically summarize the discrepancy
between observed loss values and the loss values expected under the model in question. In
this section, we will consider several possible tests, such as the Kolmogorov—Smirnov, test, the
Chi-squared test, and heavy-tailed tests of particular relevance to OpRisk when considering the
appropriateness of particular tail properties of the severity model.

Stated more formally, one can say that a GOF test for a set of # i.i.d. random vari-
ables X, ..., X, with an unspecified distribution function Gx(x) aims to inform a decision
between whether the samples follow a null distribution Fx (x; ), where € contains possibly
unknown model parameters, or an alternative. This can be stated according to the two following
hypotheses:

7‘[0 : Gx(x) = Fx(x; 0)
Hl : Gx(x) 7é Fx(x; 0)

To be more precise, we will first recall some basic inference definitions. Generally, when per-
forming such inferential procedures, one should distinguish between simple hypotheses and
compound hypotheses as detailed below:

* Simple hypothesis. A hypothesis that completely specifies the probability distribution;
° Example 1. The parameter of this Binomial distribution is p = 0.6;

° Example 2. The distribution is a Normal one of average ;& = 4 and standard deviation
o=1
* Compound hypothesis. A hypothesis that does not completely specify the distribution.
Note. In this case the alternative hypothesis cannot be directional; it must measure devia-
tions in all directions;
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° Example 1. The parameter p of this Binomial distribution is greater than 0.1;

° Example 2. These two distributions have the same mean and common standard deviation
ofoc =1.

In addition, we need to consider how we handle Type I and Type II errors that specify the
possible mistakes we can make in our decision.

Definition 8.4 (Type I and Type Il errors) A Tjpe I error occurs when the null hypothesis H,
is rejected though it should have been accepted, and a Type II error occurs when the alternative
hypothesis Hy is rejected though it should have been accepted. Note that this is equivalent in logic to
the case in which the null hypothesis H is accepted though it should have been rejected. (]

We also note that a hypothesis test will partition the space of observations into two regions
denoted by R and A. These can then be considered to help define the attributes of a given test
according to the characteristics that define a given testing procedure, known as the significance
of the test and the power of the test. These characteristics are directly related to the decision
errors of Type I and II, which are specified formally according to the following definition.

Definition 8.5 (Power and significance of hypothesis test) The significance of a hypothesis
test refers to the Type I errors and is defined by

S:l—a:1—]Pr(x€R|Ho)=1—/Pr(x|7-[o)afx. (8.17)
R

The power of a hypothesis test refers to the Type 11 errors and is defined by

P:l—ﬂ:I—Pr(xGA\Hl):1—/Pr(x|7—[1)dx. (8.18)
A

To select a test and study its properties one will typically encounter a trade-off between
o and f. It is therefore standard practice to set a priori the significance to a fixed value
(o = 0.01;0.05;...) and then to find the most powerful test, where 3 is as small as pos-
sible. In general, the results will correspond to the class of testing procedures referred to as the
Neyman Pearson tests, which apply to the setting of a simple null hypothesis against a simple
alternative hypothesis.

8.4.1 CONVERGENCE RESULTS OF THE EMPIRICAL PROCESS FOR
GOF TESTING

In characterizing the decision rule for the hypothesis test, one can either specify the decision
boundary (critical values) for a given acceptable level of precision or significance level o, or
one can specify the probability of events exceeding these critical values for any given value o
(a p-value). Both specifications are equivalent and require knowledge of the distribution of the
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statistic used to make the decision in the test under the assumption that the null hypothesis
is correct.

In the context of GOF testing, typically the distribution for the statistic is based on a func-
tional or transformation that maps an empirical process and its limiting (large sample) asymp-
totic process to a random vector or random variable; this random vector/variable is known as
the test statistic. It is typically obtained conditional on the assumption that the nominal claim
is correct. We will see that while evaluation of the statistic in practice requires the knowledge of
the model, the actual distribution of this statistic turns out to be model-free (distribution-free)
and can be evaluated, stated, or tabulated once for any desired model.

The distribution of this test statistic in a distribution-free GOF test is based entirely on the
limiting process of the empirical process under study. For example, if the statistic were the
maximal vertical distance between the empirical distribution and the null distribution over
the support of the null distribution (KS test), then we are talking about a p-value for such a
test using this statistic which is obtained by first understanding the limiting behavior of the
empirical distribution process as the sample size increases. This understanding of the limiting
behavior of the empirical process can then be used to study functionals of the empirical and
limiting process and in particular the tail events of the distributions of such functions (which
are then random variables/vectors) in order to obtain well-defined p-values. With these p-values
one can then probabilistically characterize events under the null hypothesis, using the given
statistic that would lead one to decide against the nominal claim, based on the evidence from
the observation of the process.

Therefore, it will also be beneficial to observe the following results that are based on
comparisons between properties of the empirical distribution function and a hypothesized
distribution function which regularly arise in the context of GOF testing. We first detail
two fundamental results of relevance to these tests: the Glivenko—Cantelli theorem (Cantelli
1933) and the Dvoretzky—Kiefer—Wolfowitz (DKW) inequality (see Dvoretzky et /. 1956 and
Birnbaum and McCarty 1958).

Definition 8.6 (Empirical distribution function) Given a continuous distribution, let

X1, X2, ..., X, be a sequence of i.i.d. random variables from this distribution with observed real-
iZALIONS X1, X2, X3, . . . , Xy. 1hen the empirical distribution function denoted by E,is defined accord-
ing to
. 1 —
E)==5 T <. 8.1
CEPRLES 19
m

In Figure 8.2, we present an example of the empirical distribution function for a small
sample size generated from an example of a Gamma distribution. As expected for each location
in which there is a Dirac mass, there will be a jump in probability of 1/x. Throughout this
chapter we will study different functions of this basic quantity in the context of hypothesis
testing.

One can also bound the probability of all measurable events for a given distribution func-
tion F, from which 7 i.i.d. samples are assumed to be drawn, the accuracy of the sample esti-
mated empirical distribution function probabilities and the true distribution via the results in
Theorems 8.1 and 8.2
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FIGURE 8.2 Example of an empirical distribution function given by F, with n = 6

Theorem 8.1 (Glivenko—Cantelli theorem) Given a sample size n of i.i.d. real-valued sample
realizations of random variables X,,X,, . . ., X, with distribution F, the following uniform conver-
gence holds. For every fixed x, F,(x) is a sequence that converge to F(x) almost surely by the strong
law of large numbers, that is, E, converges to F pointwise. In addition, this convergence is uniform,

|E, = Flloo = sup |F,(x) — F(x)| — 0, almost surely. (8.20)
x€R

One can strengthen this result of uniform convergence with information on the rate via

the following inequality of Dvoretzky-Keifer-Wolfowitz (DKW).

Theorem 8.2 (Dvoretzky—Keifer—Wolfowitz inequality) Given a sample size n of i.i.d. real-

valued sample realizations of random variables X1,X;, . . ., X, with distribution F, the following
inequality holds
Pr (sup (ﬁn(x) - F(x)) > e) < exp(—2ne?) (8.21)
x€R

foreverye > \/5-1n2.
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Remark 8.3 Therefore, the DKW inequality predicts how close an empirically determined distri-
bution function will be ro the distribution function from which the empirical samples are drawn.
We will also see thar the DKW inequality can inform the tail of the KS test statistic under the null
hypothesis.

8.4.1.1 Convergence of the empirical distribution function for simple
hypotheses. We first start by assuming a parametric family of models in which the parame-
ters of the population distribution are fixed and known; they do not require estimation. This is
in agreement with a hypothesis test in which the hypotheses are stated in a simple form. Then it
is directly relevant to understand further the convergence of the empirical distribution function
to the true population distribution function pointwise, as this will be utilized in the GOF tests.
We therefore consider the following additional results that are discussed by Chicheportiche
and Bouchaud (2012), Mason and Schuenemeyer (1983), and the right censored analysis by
Fleming et a/. (1980). Start by defining the Bernoulli random variables ¥;(x) = I [X; < x| and
denoting # = F(x) and v = F(y); we note the following properties of the mean and covariance
of these random variables

E[Yi(x)] = F(x),

, F(min(x,x")), i=j, (8.22)
E 1 5()] = {ng)F((x,), b

as discussed by Chicheportiche and Bouchaud (2012).

Now we consider constructing sample estimators for the centered sample mean, ¥, of
the random vector of Bernoulli random variables ¥ = [Yi(x), ..., ¥,(x)], given by Equation
(8.23). This sample estimator is a measure of the difference between the true distribution and
the empirical distribution at a point x, which as we will see shortly, is used to construct a GOF
test statistic and is defined by one of the following representations:

_ 1 <&
Y(x)=~- Yi(x) = F 8.2
() =~ ; k(%) = F(x) (8.23)
for any x in the support of F(x), or equivalently for any « € [0, 1] by
_ 1 —
Y(u)==-> Y (F ' (u)—u 8.24
(w) =~ ; e (F () — (8.24)

In addition, one can show the covariance between the sample means of two quantile levels as
given in Equation (8.25):

Cov (V(u), T(v)) = i (min {x, v} — u) [1 + Dy (s, )], (8.25)

for u = F(x), v = F(x") and where one defines

1 i Cov (Yj(x), i(x')) — m/’

D ) = - N
(2 ) n 4~ min {u, v} — uv
Jok#j

(8.26)

which quantifies the departure from independence in which case one would have
Cov (Y(x), Y3(x")) = v and Dy (u,v) = 0.
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Now, given the manner in which the random variable ¥ () is constructed for a given
quantile level #, one can state the asymptotic behavior of an appropriately scaled version of this
random variable, as detailed in Theorem 8.3

Theorem 8.3 (Convergence of the empirical distribution function process) According to
the Lindeberg—Lévy Central limit theorem, given a sample size n of i.i.d. real-valued random vari-
ables Xy, X, . .., X, with distribution F, the following convergence in distribution holds asn — oo:

V(Y () = y(u)) 4 Normal (0,0%(n,v)) (8.27)

with covariance function
o(u,v) = min(u, v) — uv. (8.28)
One can think about this covariance function (kernel) as characterizing the Brownian motion
y(u), which satisfies y(0) = y(1) = 0 and therefore forms what is known as a Brownian bridge.
An example of such Brownian bridge sample paths are constructed to illustrate the concept

in Figure 8.3. As expected, each realization of the bridge trajectory involves a smooth continous
function with variability as a function of the distance and tied down pointsat # = 0 and » = 1.

Y(u)

2 1
0 0.1 0.2 0.3 0.4
uy

FIGURE 8.3 Example of realizations of a Brownian bridge formed from the random emprical process

convergence of \/7 (¥ () — y(u)) as the number of samples 7 — co



252 CHAPTER 8 Model Selection and Goodness-of-Fit Testing

Remark 8.4 The key insight of this result realized by Kolmogorov when forming the GOF test that
takes his name was that this limiting process and the resulting law of any functional of the limiting
process y is not explicitly a function of the data-generating distribution F. This is precisely what
makes it possible to design “universal” GOF tests.

8.4.1.2 Convergence of the empirical distribution function for compound
hypotheses. In the case of the compound hypothesis setting, in which the population dis-
tribution contains a set of unknown parameters, one must consider carefully the convergence of
the empirical distribution function to the population distribution under the additional compo-
nent of estimation of the population parameters and the effect this may have. This exact prob-
lem was studied by Durbin (1973). Consider the setting involving i.i.d. observations Xj, . . ., X,
from a continuous distribution function F(x; ) in which 8 = [0y, 0,] is p-dimensional.
Assume that under the null one has a statement about 0 < ¢ < p of the parameters 8, given
by Ho : 6, = 04, and the remaining p — g parameters, denoted by sub-vector of parameters
0, are unknown and must be estimated from the sample data according to an estimator with
n samples denoted by 6, ,,. For convenience, we refer to the null hypothesis values for vector
of parameters 0 by the notation 6 o and analgous notation holds for 6,.

In this case, one can show that the sample process is not going to display the same
weak convergence to a tied down Brownian motion discussed earlier for the simple hypoth-
esis setting. Instead, we can make certain assumptions about the properties of the estimator

0, = [01,0, 024 to obtain a weak convergence of the empirical distribution function for

a sample of size 7 with estimated parameters F, (x; 0., 927n> to the population distribution
F (X; 91 y 02)

Durbin (1973) considered the analogous estimated sample process to that defined earlier
in terms of the Bernoulli random variables, where now the difference in Y () will be studied
in terms of the estimated sample process Z(u) = /n(V () — y(u; éz’n)). In terms of the
alternative hypothesis, the author assumes that it can be defined according to a sequence of
alternative hypothesis with the special form

Hy: 0= 010+ ny (8.29)

for a given vector 7y and sample size 7. Then, with this structure, one can show the weak con-
vergence of the empirical distribution function to the population distribution under specific
conditions on the decomposition and regularity of the estimator 92,,! (see details in Durbin
1973, p. 281, assumptions 1 and 2). More precisely, it can be shown that ¥ (#) converges
to a Gaussian process with a modified mean and covariance, as stated in Theorem 8.4. It is
assumed that the estimator for the unknown parameters after appropriate scaling and transla-
tion by the true unknown parameters will satisfy the following structural form of decomposition
given by,

R 1 <
Vi (02— 020) = 7 ; I(x:,6,) + Ay + €1, (8.30)

where assumptions on the random function /(x;, 8,,) and other terms are specified in detail by
the conditions presented by Durbin (1973).
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Theorem 8.4 (Convergence of the empirical distribution function for a compound
hypothesis) Assume that éz,n satisfies conditions (A1) and (A2) (Durbin 1973, p. 281, assump-
tions 1 and 2); then under the sequence of alternative hypothesis {M,,}, Z(u) converges weakly to a
Gaussian process, where the convergence is understood to be in the space of right continuous functions
with left limits on [0, 1]. The resulting mean and covariance functions of the Gaussian process are
given by

E[Z(u)] =+ (g,() — A'g,(u))
Cov [Z(w), Z(1)] = min(u, v) — w — h(w) g, (v) — b(r) g, (w) + g,() " Lg, ()

modification to covariance function

(8.31)
where one defines the vector-valued functions
g = 2020 TR S IR
and
x(1,0)
b(u) = b (u,0y,) with h(u,0) = / /(x,0)dF (x; 0) (8.33)

and the finite non-negative definite matrix sequence L(0,) = E [I(x,8,)!(x, Bn)T| 6=206,
converges to the resulting matrix L, i.e. L(0,) — L(6y) = L asn — oo.

Often in the case of heavy-tailed models we may also be interested in hypothesis testing on
nominal claims relating to the characteristic function and therefore we will be concerned with
convergence of the empirical characteristic function (ECF).

8.4.1.3 Convergence of the ECF for simple and compound hypotheses. It will
also be beneficial to observe the following results which are based on comparisons between
properties of the ECF (Definition 8.7) as detailed by Parzen (1962) and a hypothesized distri-
bution characteristic function, which regularly arises in the context of GOF testing in the work
of for example Heathcote (1972), Press (1972), and Koutrouvelis and Kellermeier (1981).

Definition 8.7 (Empirical characteristic function) Given a continuous distribution, let X,
Xo, ..., X, be a sequence of i.i.d. random variables from this distribution with observed realiza-

tions x1,%2, . . ., X,. 1hen the ECF ¢Z is defined according ro

Sx(t) = i > exp (itX;) . (8.34)
j=1

To illustrate the ECEF, consider Example 8.1.
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M EXAMPLE 8.1 Understanding the Empirical Characteristic Function

Consider a continuous distribution F that is LogNormal and let X7, X5, ..., X, bea
sequence of i.i.d. random variables from this distribution with observed realizations
X1,X2,%3, . . ., X,. Then the ECF ngS can be thought of as taking the realization of each
random sample and considering it as orbiting the unit circle in the complex plane,
that s, the transformation of the i-th sample via the mapping exp (izX;) will produce
a set of points on the unit disk in the complex plane (as depicted in red circles, see
Figure 8.4). These points are then averaged to get an estimated reconstruction of the
characteristic function as depicted in the dashed black line for the estimate and the
solid black line for the true characteristic function.

Basically, we can consider the ECF as the expected orbit or mean of the ran-
dom variable orbits. For large sample sizes, the ECF converges to the distribution
characteristic function as formalized in the figure.

FIGURE 8.4 Red circles depict the project’s observation realizations x;, x,, %3, . . . , X, on the
unit disk in the complex plane for a severity model LogNormal(pn = 1,0 = 2). In the dashed black
line we see the ECF estimated for the model from the data and the solid black line demonstrates the

true characteristic function. (see insert for color representation of the figure.)
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Theorem 8.5 (Convergence in probability of empirical characteristic function) Given a
sample size n of i.i.d. real-valued sample realizations of random variables X1,X;, . . . , X, with dis-
tribution F, the following convergence in probability applies according ro the Strong Law of Large
Numbers for any fixed T < 00:

Pr (hm sup ¢Xn( ) — qu(t)’ = 0) =1 as. (8.35)

n—r 00 |t|<T

Other results related to the convergence of the ECF to the population characteristic func-
tion are discussed in detail by Feuerverger and Mureika (1977). As was done with the empirical
distribution function, one can also consider the definition of a stochastic process representation
of the ECEF, given in Definition 8.8.

Definition 8.8 (Empirical characteristic function process) Given a continuous distribution,
let X0,X,,...,X, be a sequence of i.i.d. random variables from this distribution with observed
realizations x1,x2,%3, . . ., X,. 1hen the stochastic process given by

Ri() = v/ (x(s) — 6x()) (836)
is a random complex process in t with the following mean and covariance function characteristics:

E [Rn<t)] =0,

E[R,(1)R. ()] = dx(t1 + &) — dx(t1)dx(22). (8.37)

One can then consider the convergence of the appropriately scaled and translated ECF
process and one can state the following weak convergence result in Theorem 8.6.

Theorem 8.6 (Weak convergence of the ECF process) Consider a continuous distribution
and let X1, X, ..., X, be a sequence of i.i.d. random variables from this distribution; then the
stochastic process given by

Ru() = v/ (Sxa(t) — éx(1)) (8.38)

is a random complex process in t, which converges weakly to a process R(t) in every finite interval,
where R(t) is a zero mean complex valued Gaussian process satisfying the symmetry condition that
R(t) = R(—t) with covariance structure of the real and imaginary components as follows:

Cov [Re [R,(1)] Re [R,(1)]] = % [Re [6x(s1 + 0)] + Relx(n — n)]
— Re[px(n)] Re [¢x ()],

Cov [Re[R,(1)] Zm R,(0)] = 5 [Tm[gx(n + )] + Tmgx(n - 0)]
—Re [6x(#1)] Im [px(1)],

Cov [Tm [R,(n)] Tm [R,(0)]] = 5 [~Re[ox(n + )] + Relpx(n — )]
— Im [px(#)] Tm [px ()] .

(8.39)
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Remark 8.5 (ECF central limit theorem) [t will also be useful to note the following result that
will specify the conditions required for the complex valued ECF to converge weakly to a Gaussian
process (see discussion by Feigin and Heathcote 1976). The real component of the ECF process

Re{R, (1)} = i (Re {éxm(t)} - Re{¢x(t)})
= i .” cos (£.X;) — E [cos(tX)]>
= (U0) ~ u(e) (5.40)

will converge in distribution to a zero mean Gaussian random variable for any t that satisfies
1+ u(2¢) — 24*(¢) > 0. (8.41)

The imaginary component of the ECF process

T {R,()) = © (Tm {dra()} — Tm (x4}
— % (Z sin (£X;) — E[sin(rX)])
= V(0 = ol2) 842

will converge in distribution to a zero mean Gaussian random variable for any t that satisfies
1+ 0(2¢) — 20%(¢) > 0. (8.43)

In general, it is possible to work with multiple t values to obtain convergence to a multivariate
Gaussian for the real and imaginary components. It is also common in practice to work with one
value of t that may be selected in order to maximize the power of the resulting test.

Again, as was the case in the empirical distribution function process for a compound
hypothesis, the behavior of the ECF process when parameters of the model are estimated is
studied by Koutrouvelis and Kellermeier (1981).

We are now in a position to state some general results for generic GOF tests and their
properties, which are based on the empirical process convergence results considered in this
section just completed.

8.4.2 OVERVIEW OF GENERIC GOF TESTS—OMNIBUS
DISTRIBUTIONAL TESTS

In this section, we briefly mention the notion of generic GOF tests, which include approaches
based on P-P plots, x* tests, empirical distribution function, and ECF tests. In all cases of
formal inference, we consider the following generic steps appropriate to formally set out the
test and its outcomes.
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Generic Structure of a Hypothesis Test Procedure

1. Set up suitable notation for the random variables and distributions being tested;

2. Make a statement of the null and alternative hypotheses in terms of population
distribution/parameters;

3. State the test statistic and its observed value as well as the distribution of the test statistic;
4. State a formal mathematical expression for the p-value;

5. State the range of values within which the p-value falls (and a statement of how these are
obtained);

6. State the conclusion of the test in plain language (relevant to the experimental context).

With this generic framework, we can now state some well-known examples of hypothesis
tests and their properties.

* P-P plots. As discussed earlier, in addition to plotting P-P plots as a qualitative diagnostic
tool, one can also perform a hypothesis test on the relevance of a regression relationship
formed by regressing the percentiles of the data against the percentiles under the null
hypothesis;

Pearson’s x> GOF test. In this type of universal test, the observations are binned into a
partition of the observed random variables’ support. Then the x? test statistics compare the
observed counts from the realized data sample with those one would expect to see under
the null hypothesis distributions” support on the given partition. These comparisons are
then summed over all partitions to obtain the observed value of the test statistic (denoted
d), which under the null hypothesis will have asymptotically a x? distribution. This allows
for the calculation of a p-value (p = Pr (D > d|H,)) in order to make a decision at a
given level of significance.

If the data are divided into % bins, then the test statistic under the null is defined as

¢ 2
2 (0, — E)
X—E — (8.44)

i=1

where O; is the observed frequency for bin 7 obtained from the counts on the empirical
loss data and E; is the expected frequency for bin 7 using the null hypothesis claim on the
distribution for data generation. The expected frequency is calculated by

£y = n(F(X(7) = F(X(4))) (8.45)

where X,,(7) and X (7) are the upper and lower limits, respectively, of the i-th partition (bin).
This test statistic follows, approximately, a chi-square distribution with (# — p) degrees of
freedom, where £ is the number of nonempty cells and p is the number of estimated param-
eters (including location and scale parameters and shape parameters) for the distribution
+1. For example, for a two-parameter LogNormal distribution, p = 3. Then under the
null, this statistic will produce a p-value given by

p=Pr(x*>cHo) =1—F(sn—p—1), (8.46)
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where F(c;n — p — 1) is a x?* distribution with #n — p — 1 degrees of freedom and a
distribution given by

n—p—1
Y 2 1)
Flon—p—1)= ——~ (8.47)
T (n—p—l )
2
with the lower incomplete Gamma function 7 (x,y) =[5 #* Y exp(—t)dr.

Note 1. This test is sensitive to the choice of bins and there is no optimal choice for the
bin width as it will be distribution-specific.

Note 2. The asymptotic chi-square distributional approximation under the null is valid
when the expected frequency is sufficiently large. Hence, it should not be applied for small
samples, and if some of the counts are less than 5, you may need to combine some bins in
the tails.

Note 3. If one is considering a compound hypothesis where parameters of the model under
the null must be estimated, there is a well-established correction for the x? p-values due to
the fact that the resulting test statistic is no longer asymprotically x? (see Snedecor 1989,
Chernoffand Lehmann 1954 and LeCam ez a/. 1983). More precisely, when estimating the
parameters for the test, it is possible to utilize an MLE (or equivalent) estimator based on
either the cell frequencies or the original observations. If the observations are utilized in the
estimation of the parameters, then the resulting test statistic constructed would be a func-

tion of the parameter estimates x* (é”) , which under the null is no longer asymptotically

x? distributed. In particular, when the test statistic is evaluated by using the MLE proce-
dure and it does not coincide with a minimum chi-squared estimation, then the resulting
asymptotic distribution of the test statistic can be shown to lie somewhere between a chi-
squared distribution with » — p — 1 and 7» — 1 degrees of freedom (see Chernoff and
Lehmann 1954, p. 580, theorem 1).

Note 4. Pearson’s x> GOF test is the best known of several chi-squared tests (Yates, likeli-
hood ratio, portmanteau test in time series, etc.)

Note 5. The chi-square GOF test can be applied to discrete distributions such as the
Binomial and the Poisson. The KS and Anderson—Darling (AD) tests are restricted to
continuous distributions.

Note 6. The disadvantage is that you must evaluate the distribution function and there
will also be a loss of information from the grouping of observations;

Empirical distribution function GOF tests. In this type of universal test, one measures
the distance between the empirical distribution and the null distribution. In a general
sense, one can consider measuring a limit distance between distributions under a norm ||-||
over the space of continuous bridges. Examples include norm-2 on the limiting bridge
process,

1

bl, = / y(u)*du, (8.48)

0
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or the norm-sup on the limiting bridge process,

Voo = sup [y(u)]. (8.49)
u€[0,1]
These general ideas translate in practice into the evaluation of the quadratic measures
(Cramer-von-Mises (CVM) family) and (AD) tests given for a null hypothesis of distri-
bution F given according to the test statistic given by

Q= / w(x) (ﬁ(x) —F(x;O))za’F(x; 9), (8.50)

for some weight function such as the quadratic Cramer-von-Mises statistic when w(x) = 1
or the AD statistic when w(x) = F(x;0) (1 — F(x;0)) . There is also the vertical max-
imum distance measure given by the supremum norm for example, KS test and their
weighted versions:

D = sup |F(x) — F(x; 9)’ . (8.51)
Empirical characteristic function GOF tests. In this type of universal test, one mea-
sures the distance between the empirical characteristic function, given for an i.i.d.
sample X, ..., X, by

. 1 <& )
Ox.a(t) = - ; exp (1th) , (8.52)
and the null characteristic function, given by
ox(t) = / exp (ieX) dFx (x). (8.53)

Typically, one still utilizes distance-based measures such as

bxn(t) — ¢X(t)‘ : (8.54)

sup
t

In addition to GOF tests based on the characteristic function for the distributional form,
there are also interesting tests for general attributes of the distribution under the null that
utilize the characteristic function and ECE. For example, one can utilize the fact that a
characteristic function is real if and only if the corresponding distribution function is sym-
metric about the origin; Feuerverger and Mureika (1977) suggest that such a result could
consider testing for symmetry through the consideration of a statistic such as

o0

/ (Im [&Xm(t)} )2 dE(). (8.55)

—00

Other tests based on the characteristic function have been discussed by Feuerverger and
Mureika (1977), who note that for testing the symmetry of a distribution function about
the origin, it suffices to test if the characteristic function is real. In addition, other tests that
have been proposed based on the ECF have included the work of Heathcote (1972) and
Feigin and Heathcote (1976), who studied the case of simply hypothesis testing for the null
specification that Hy : ¢x(#) = ¢x,(#), under a test statistic that could be constructed
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from the real or imaginary component at a single value of #, which was specifically selected.
This test was generalized by Koutrouvelis (1980) to multiple points #, ..., #, under a
test statistic constructed on these points, which comprised of measuring the Mahlanobis
distance between the vector of the ECF evaluated at the points after it had been suitably
translated and scaled by the null hypothesis mean and covariance functions evaluated at
these points for the null characteristic function. The points must be selected to ensure that
the inverse covariance function at these points is not singular.

8.4.3 KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST AND
WEIGHTED VARIANTS: TESTING IN THE PRESENCE OF
HEAVY TAILS

There are many situations where OpRisk practitioners need to assess the adequacy of assump-
tions or hypotheses regarding the distribution from which their observed losses may have been
sampled. This would typically be in the form of addressing a question such as the following
“What is an appropriate model for the observed losses in a given business unit and risk event type?”

To address such questions one may adopt a hypothesis-testing procedure based on a KS
test, which is a formal inference procedure for verifying that a sample comes from a population
with some known distribution (one-sample test) or alternatively for considering whether two
populations have the same distribution (two-sample test). We will proceed below under the
setting in which the simple hypothesis is assumed.

Remark 8.6 (Relevance of heavy-tailed GOF testing to OpRisk severity models) Wher
assessing the tail behavior of the loss process severity model in an LDA structure, the assessment
of the heavy-tailed behavior under a particular model is often the focus, see detailed discussion in
our companion book Peters and Shevchenko (2015). However, the point of the following section is
to make clear that the analysis of the tail index (heaviness or fatness) of the right severity tail under
a parametric model assumption is not the complete analysis. In particular, the presence of heavy tails
does not tell you that the correct model has been considered; instead, one should also consider a formal
inferential procedure to assess this question regarding the appropriate model structure.

We present in detail the standard GOF testing for general LDA severity models, then we
explain why in OpRisk settings one should consider nonstandard modifications to the basic
statistical GOF tests, in particular, how such modifications allow one to correctly account for
the right tail behavior appropriately when informing a decision of a nominal claim via a p-value.
The tail-weighted variants are particularly important for testing model hypotheses regarding the
right tail of a heavy-tailed severity model.

The one-sample KS test is defined for observed loss realizations x1, x,, . . . , x,, of a set of
continuous i.i.d. random loss variables X1, X5, . .., X, for which it is hypothesized that their
sampling distribution function is F. The test is performed according to the following stages in
Algorithm 8.1 that are based on the results in Theorem 8.7.

Theorem 8.7 (Kolmogorov-Smirnov’s approximation of null distribution) Consider a
null hypothesis for the data-generating distribution Fy, which one assumes is a continuous distri-
bution. Ler X1,X, . .., X, be a sequence of i.i.d. random variables with distribution Fy. Then the
Jollowing holds:
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1. The test statistic is evaluated as,

D, = sup ﬁn(x) — Fy(x) (8.56)
x€R

and it depends only on the sample size n, and second the maximum will always occur at one of
the sample points in the unweighted test;

2. Ifn — 00, the distribution \/nD,, is asymptotically Kolmogorov’s distribution given by

oo

=1- 22 Vexp(—2kx%), (8.57)

where this defines the following probability limit

lim Pr (v/zD, < x) = Q(x). (8.58)

n—0o0

Remark 8.7 The Kolmogorov distribution can be shown to be formally the distribution of the
random variable

K=Y [B() (8.59)

+€[0,1]

where B(t) is the Brownian bridge (see Kolmogorov 1933, Smirnov 1948, Anderson and Darling
1952; and Massey 1951).

The KS GOF hypothesis test then proceeds as further detailed.

Algorithm 8.1 (Kolmogorov—Smirnov One-Sample Test)

1. Step 1. Set up suitable notation for the random variables and distributions being tested and
make a statement of the null and alternative hypotheses in terms of population distribu-
tion/parameters. Determine hypothesis for GOF testing where null claims loss data are from
a hypothesized distribution Fy(x)

Hy : F(x) = Fy(x), Vx (8.60)
versus an alternative claim that the observed losses are not realizations from Fy
F(x) # Fy(x), Vx. (8.61)

2. Step 2. State the test statistic and its observed value and when possible state the distribution of
the test statistic or its approximation. Under the null hypothesis calculate the KS test statistic
given by

D, =

o) = Folos)|

x€R

:mm(%myf_ﬂi—%wo,

1<i<n

(8.62)
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where F is the empirical cumulative distribution defined according to

n

Fy(x) = 1 ZH [x; < «], (8.63)

n -
=1

and the supremum occurs at one of the observed values x; ro the left of x;. This procedure will
produce an observed realization of the test statistic based on the observed data samples {x;})_,
under the null hypothesis, denoted by d,,.

3. Step 3. State a formal mathematical expression for the p-value. Determine the p-value for the
test under the null hypothesis given by considering

p-value =Pr[|D,| > d,|H] .

10 obrain the p-value one first needs to obtain an approximation of the distribution of the
test statistic under the null. This can be done in two cases, depending on the size of the
sample:

Small-sample p-value evaluation. If the sample size n is small, one can perform eval-
uation of the p-value for making a decision on the test via the following simple simula-
tion procedure, where {X;},_, are the samples from the experiment and j = 1,....]

is the index of the simulated test statistic realizations {déf )} obtained by the following

procedures:

o Simulate a set of samples {Ui(j )} with U; ~ Uniform(0,1) that is, distribution
i=1
F(u) = u;
o Construct the empirical distribution function FG) using the samples { (] )} ;
i=1

* Evaluate for each set of samples { Ui(j ) } the maximum distance between the distribu-
=1

i=

tion F(u) = u and the empirical distribution function for the generated sample F\) in

the verticle direction, to get 4. Repeat many times j € {1,2,...,]} to get an estimate
of the distribution for the test statistic under the null D,, that is, the null distribution of

the test statistic D, is then approximated by the samples {d,gj )} known by simulation.

Given the empirical estimator for the distribution of the test statistic under the null Fp, (x), use
this to evaluate the p-value.

Large-sample p-value evaluation. If the sample size n is large, one can perform evaluation
of the p-value for making a decision on the test via the asymptotic result for the KS distribu-
tion function. If n — 00, the distribution \/nD,, is asymptotically Kolmogorov’s distribution
given by

=1- 22 Vexp(—2kx%), (8.64)

where this defines the following probability limit
lim Pr(v/2D, < x) = Q(x). (8.65)
n—o00
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4. Step 4. State the range of values within which the p-value falls (and a statement of how these are
obtained. If the p-value is significantly lower than a given level of testing significance, typically
5%, then one has sufficient evidence from the observed loss data ro reject the claim of the null
hypothesis in_favor of the alternative;

5. Step 5. State the conclusion of the test in plain language (relevant to the experimental context).

Remark 8.8 When applying the standard KS GOF test specified earlier, it is well known that these
tests will overweight the quantiles around the median and downweight the quantiles in the rails. In
the case of a heavy-tailed model, this is not ideal, as in such cases, it is precisely the null assumption

on the tail decay of the statistical model that is of most interest for testing and practical features of
the use of the model.

Kolmogorov—Smirnov Test and Heavy-Tailed Severity Model

Consider a GPD for the severity model with tail index (shape) parameter £ = 1,
scale parameter 0 = 1, and threshold (location) parameter § = 0. This is a
heavy-tailed loss model in the sense that the mean is not finite when X > 1
under this GPD model specification. We simulate loss data realizations {X;}}_,
for sample sizes of #» = 10,20, 50, 100. Then we evaluate the test statistic for a
standard KS test in the following three cases:

* CASE 1. Nominal claimed distribution F is the GPD with exact parameters
GPD(k = 1,0 = 1,0 = 0)—that is, no model or parameter misspecification;

* CASE 2. Nominal claimed distribution £ is the exponential distribution with
parameter GPD(k = 0,0 = 1,60 = 0)—that is, (in this special cases) there is a
parameter misspecification producing a light-tailed nominal claim when really
the data are from a heavy-tailed population distribution;

* CASE 3. Nominal claimed distribution Fj is the LogNormal distribution with
parameters LogNormal(jn = 0,0 = 1)—that is, model and parameter misspec-
ification.

Using these nominal claim models, the test statistics distribution under each sam-
ple size is simulated via Monte Carlo and plotted in Figure 8.5. In Tables 8.1, 8.2
and 8.3, we also show the quantile (critical values) for the distribution of the KS
test statistic for each case as a function of sample size. The results of this analy-
sis demonstrate that as the sample size increases, one should expect the maximum
absolute distance between the empirical distribution function and the null hypoth-
esis (verticle direction) to reduce if in fact the nominal claim is correct. In Case 1,
the true distribution that generated the sample loss data was used for the nom-
inal claim and therefore, as expected, the distribution of the test statistic, as the
sample size increases, produces critical values at each level of significance closer to
zero, making it less and less likely that the nominal claim will be rejected by the
test. In Case 2, the nominal claim involves the correct distribution; however, the
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parameters are estimated incorrectly and, importantly, this results in the nominal
claim for the GPD severity distribution resembling an exponential distribution that
is much more lightly tailed than the true data-generating distribution. In this case,
there is still a strong chance that one would reject the nominal claim even for a
large sample size, as expected especially when the tails are so poorly matched by the
nominal claim. The same occurs for the case when the nominal claim is the wrong
distributional family, but the tails are still subexponential as occurs in Case 3 with
the LogNormal example. It is clear from the reported critical values in the table that
the misspecification of the tails can have a big effect on the performance of this test,
as shown with the LogNormal example, where it is hard to distinguish this model
from the true model that was used in Case 3.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.5f

0 L - 1 Il Il Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

FIGURE 8.5 In each subplot, the distribution of the KS test statistic is displayed under the
assumption that the null hypothesis is correct for data sizes » = 10, 20, 50, 100. The top subplot
shows the distribution of the KS test statistic under CASE 1. The middle subplot shows the
distribution of the KS test statistic under CASE 2. The bottom subplot shows the distribution of
the KS test statistic under CASE 3

To overcome these problems in the supremum norm context, one can develop the weighted
KS GOF test as given in Proposition 8.1. One, then, still measures the largest verticle distance
between the empirical distribution function and the distribution; however, weights are now
attributed to each deviation as a function of the quantile level.
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TABLE 8.1 Assessing the heavy tailed feature of loss data
under a GOF test based on KS. True population loss model is
GPD(k=1,0 =1,0 =0). Nominal claim is GPD with correct
population parameters, test is performed at a number of sample
sizes n and a range of significance levels 1— o

Case 1: Hy : GPD(k=1,0=1,0=0)

1l -« n=10 n=20 n=>50 n =100
80% 0.2444 0.1913 0.1590 0.1422
90% 0.2854 0.2094 0.1687 0.1470
95% 0.3327 0.2345 0.1750 0.1517
97.5% 0.3745 0.2710 0.1810 0.1542
99% 0.4017 0.2947 0.2037 0.1606
99.5% 0.4392 0.3198 0.2294 0.1668

TABLE 8.2 Assessing the heavy tailed feature of loss data
under a GOF test based on KS. True population loss model is
GPD(k=1,0 =1,0 =0). Nominal claim is Exponential with
incorrect population parameters, test is performed at a number
of sample sizes 7 and a range of significance levels 1— .
Nominal claim is light tailed, true population distribution is
heavy tailed

Case2: Hy : GPD(k=0,0=1,0 =0) = Exp(c = 1)

11—« n=10 n=20 n=>50 n =100
80% 0.3683 0.3268 0.2783 0.2551
90% 0.4339 0.3756 0.3077 0.2821
95% 0.4840 0.4153 0.3297 0.2980
97.5% 0.5310 0.4559 0.3536 0.3125
99% 0.5806 0.4844 0.3760 0.3306
99.5% 0.5981 0.5080 0.4069 0.3350

TABLE 8.3 Assessing the heavy tailed feature of loss data
under a GOF test based on KS. True population loss model is
GPD(k=1,0 =1,0 =0). Nominal claim is LogNormal and
the test is performed at a number of sample sizes # and a range
of significance levels 1— cx. Nominal claim is heavy-tailed but
misspecified relative to the true population distribution which is
also heavy-tailed

Case 3: Hy : LogNormal(p = 0,0 = 1)

11—« n=10 n=20 n=>50 n =100
80% 0.3024 0.2376 0.1953 0.1720
90% 0.3575 0.2817 0.2127 0.1872
95% 0.4127 0.3195 0.2314 0.1989
97.5% 0.4623 0.3588 0.2558 0.2132
99% 0.5119 0.3880 0.2766 0.2276

99.5% 0.5399 0.4175 0.3114 0.2393
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Proposition 8.1 (Weighted supremum norm tests) Consider a null hypothesis for the data-
generating distribution Fy, which one assumes is a continuous distribution. Let X1,X, ..., X, be
a sequence of i.i.d. random variables with distribution Fy (null distribution). The resulting test
statistic then takes the form

B, = sup [w(Fofx) (o) — Fo())| (8.66)

Jfor some weight function w(u). Now, the weighted fluctuation analysis for this statistic can be studied

under the null to find the tail distribution to obtain the p-values. Asn — 0o, the distribution VnDn
should be considered; this is nontrivial and involves studying the behavior of the Brownian bridge
Jor quantile levels u € [0, 1] given by

¥(u) = Jw(u)y(u) (8.67)

such that y(0) = y(1) = 0.

The distribution of the limiting fluctuation process has been studied for different weight
functions in different regimes for the number of samples obtained. For example, one could
focus attention on the left or right or both tails using indicator functions on tail regions
with weights such as w(u;4) = I[u > 4] for the right tail and w(u;6) = I[u < 4] for
the left tail. It should be noted that in OpRisk settings it will typically be the case that one
would only be interested in the right tail behavior and the suitability of a fitted model in this
region.

Another popular choice for the weight function, studied by Noé and Vandewiele (1968),
Niederhausen (1981), Borokov and Sycheva (1968), and Chicheportiche and Bouchaud
(2012), involves w(#) = 1/Var (y(u)). This choice is made in order to allocate equal
weight to all quantile levels. Noé and Vandewiele (1968) studied the supremum norm over
the interval [0,1] and derived the distribution for the test statistic under one-and two-
sided simple hypotheses, which were then studied and numerically tabulated Niederhausen
(1981, example 4) via a basis expansion using Sheffer polynomials. They noted that this
case was studied by Borokov and Sycheva (1968), who obtained an exact distribution for
finite samples as well as the asymptotic distribution for the case of a test statistic defined in
Equation (8.68):

- (A - A) 868
" ﬂgFo(ggb Fo(x) (1 — Fy(x)) .

In the case of the GOF tests we typically consider, we do not wish to differentiate our
analysis between positive and negative vertical deviations between the empirical distribution
function and the null distribution, and for this reason we are interested in the distribution for
maximum absolute deviations. In this case, the tractability of the results obtained by Borokov
and Sycheva (1968) disappears. To address this Chicheportiche and Bouchaud (2012) obtained
an interesting result for a large-sample analysis for this variance-weighted KS test as detailed
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in Proposition 8.2. Then the general result for any finite sample size is obtained recursively
according to Niederhausen (1981).

Proposition 8.2 (Kolmogorov-Smirnov’s variance—weighted test for the tails) Consider a
null hypothesis for the data-generating distribution Fy, which one assumes is a continuous distri-
bution. Let X1,X;,...,X, be a sequence of i.i.d. random variables with distribution Fy. Then
one may characterize the distribution for the law of the weighted supremum of a Brownian bridge
given by,

D(a,b) = sup [y(u)] = sup ‘ (u;a,6)y(n) (8.69)

u€[a,b) u€[a,b)

such that y(0) = y(1) = 0 with probability 1 and the weight applied to interval a €]0,1] and
b € |a, 1] given by

_1
w(u; a,b) = { "1’ asush (8.70)
0, otherwise

according to a large-sample asymptotic result (see Chicheportiche and Bouchaud 2012,
equation 13), which considers

Pr[D(a,b) < dla=Innb=1—Inn = A(d)n" (8.71)

with the expressions for Z(d) and 0o(d) provided explicitly in general by Chicheportiche and
Bouchaud (2012), and the right and left tail asymprotic behavior that one cares about for the
two-sided test given by

w2 1

442 2
16
7r2\/27r

Remark 8.9 Note that the critical value for this test, that is, the decision boundary for a level
of significance o« = 5%, will produce a value d*(n), which is a function of the sample size n.
Thankfully, the critical values of the test have been tabluted by Chicheportiche and Bouchaud (2012)
as follows:

Oo(d) “=5°— 0, 0o(d) =3
N B (8.72)
Ad) =501, Ad) S ——

Sample size n 103 10* 10° 106
Critical value d*(n) | 3.439 3.529 3.597 3.651

1t should be noted that in general in OpRisk settings one would not be in the setting of large n sample
size as earlier; therefore, it would be advisable to evaluate the law of Pr[D(a, b) < dla =1, = 0]
exactly for small n. Niederbausen (1981, section 2) demonstrates how to calculate the null distri-
bution of the weighted KS test for any sample size. This is achieved by utilizing the well-known
generalized representation of this problem as a class of bivariate Renyi statistics, which, under suitable
choices of parameters, can be molded into the modified variance-weighted KS test discussed earlier.
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Then the evaluation of the tail probability for the p-values of this test is specified as a special member
of @ more general distribution given by the family of Renyi distributions. Given this Reyni family of
distributions, one can write the probability of a particular rail event according to a system of differen-

tial equations (see discussion by Steinbrecher and Shaw 2008). However, in this particular context,

the resulting boundary conditions are challenging to work with and typically one adopts a piecewise
solution, which is presented with regard to a Sheffer polynomial recursive solution approach to obtain

the p-value as specified by Niederhausen (1981, section 2, example 4 and table 1).

The tail-weighted KS GOF hypothesis test then proceeds as further detailed.

Algorithm 8.2 (Tail-Weighted Kolmogorov—Smirnov One-Sample Test)

1. Step 1. Set up suitable notation for the random variables and distributions being tested and
make a statement of the null and alternative hypotheses in terms of population distribu-
tion/parameters. Determine hypothesis for GOF testing where null claims loss data are from
a hypothesised distribution Fy(x)

Hy : F(x) = Fy(x), Vx (8.73)
versus an alternative claim that the observed losses are not realizations from Fy
Hy : F(x) # Fy(x), Vx. (8.74)

2. Step 2. State the test statistic and its observed value and when possible state the distribution of
the test statistic or its approximation. Under the null hypothesis calculate the tail-weighted KS
test statistic given by

b (£~ Fow))

<)<t /Fo(x) (1 — Fy(x))

(8.75)

with the weight applied to interval a €)0,1[ and b € [a, 1| and where F, is the empirical
cumulative distribution defined according to

() = % Sy <, (8.76)

and the supremum occurs at one of the observed values x; to the left of x;. This procedure will
produce an observed realization of the test statistic based on the observed data samples {x;},_,
under the null hypothesis, denoted by d,,;
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3. Step 3. State a formal mathematical expression for the p-value. Determine the p-value for the
test under the null hypothesis given by considering

p-value =Pr[|D,| > d,|Hy] .

10 obtain the p-value one first needs to obtain an approximation of the distribution of the test
statistic under the null. In this case, one can either use the large-sample results for the critical
values, as a function of sample size for testing at o = 5% significance given in the remark
before Equation (8.9) or perform a simulation estimation.

Small-sample p-value evaluation. If the sample size n is small, one can perform an evaluation
of the p-value for making a decision on the test via the following simple simulation procedure,
where {X;}_, are the samples from the experiment and j = 1,...,] is the index of the

simulated test statistic realizations {d,ﬁf )} obtained by the following procedures:
* Simulate a set of samples {Ui(j ) }n with U; ~ Uniform(0,1) that is, distribution
=1
Flu) = uw
o Transform  the samples { Ul.(j ) }n to samples from the Null distribution
=1

» Construct the empirical distribution function F\7) using the samples {Xi(j )} ;
i=1
* Evaluate the realized test statistic
(f:n(f () — R (x))

4D = sup (8.77)
a<hy(x)<b \/Fo(x) (1 — Fo(x))

for each set of samples {Ul-(j)} to get a7 Repeat many timesj € {1,2,...,]} to
i=1

ger an estimate of the distribution for the test statistic under the null D, that is, the null

distribution of the test statistic D, is then approximated by the samples {d,ﬁf ) } known by

simulation.

Given the empirical estimator for the distribution of the test statistic under the null, Fp (x),
use this to evaluate the p-value.

4. Step 4. State the range of values within which the p-value falls (and a statement of how these are
obtained. If the p-value is significantly lower than a given level of testing significance, typically
5%, then one has sufficient evidence from the observed loss data ro reject the claim of the null
hypothesis in_favor of the alternative.

5. Step 5. State the conclusion of the test in plain language (relevant to the experimental
context).

In the following example, we show the resulting estimated empirical distributions for the
distribution of a KS and tail-weighted KS test statistic as a function of sample size.
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™ EXAMPLE 8.3 Standard versus Tail-Weighted Kolmogorov-Smirnov Tests

Consider a GPD for the severity model with tail index (shape) parameter £ = 1,
scale parameter ¢ = 1, and threshold (location) parameter # = 0. This is a
heavy-tailed loss model in the sense that the mean is not finite when X > 1 under
this GPD model specification. We simulate loss data realizations {X;}}_, for sample
sizes of » = 10,20, 50, 100. Then we evaluate the test statistic for a standard KS
test and the tail-weighted KS test in the case that the nominal claimed distribution
Fy is the GPD with exact parameters GPD(k = 1,0 = 1,0 = 0)—that is, no
model or parameter misspecification. Using these nominal claim models, the test
statistics distribution under each sample size is simulated via Monte Carlo and
ploted in Figure 8.6.

It is clear from the results in the bottom subplot that when one accounts more
for the tails of the distribution in deciding whether to reject the nominal claim or
not (as with the tail-weighted KS test), one requires a larger number of samples to
be able to reject the nominal claim as would be the case when the tails are not taken
into account. This will be particularly the case for the heavy-tailed loss models. In
Table 8.4, we also show the quantile (critical values) for the distribution of the KS
test statistic as a function of sample size.

)
[

3333
i

o
o
T

I
~
T

o
™
T
\
\
|

06 _
04 /s -

T
,\'
\
1

0.2

0 1 L — Il Il Il Il Il Il

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 8.6 In each subplot, the distribution of the KS test statistic is displayed under the
assumption that the null hypothesis is correct for data sizes » = 10, 20, 50, 100. The top subplot
shows the distribution of the standard KS test statistic. The bottom subplot shows the distribution
of the tail-weighted KS test statistic
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TABLE 8.4 Assessing the heavy tailed feature of loss data
under a GOF test based on KS. True population loss model is
GPD(k=1, 0 =1, 0 =0). Nominal claim is GPD with correct
population parameters, test is performed at a number of sample
sizes n and a range of significance levels 1— cx. The top table
presents the results from a standard KS test, the bottom table
presents the results from a weighted KS test, with equal
contribution from all quantiles in the distribution

Hy : GPD(k=1,0=1,0=0)

11—« n=10 n=20 n=>50 n =100
80% 0.2444 0.1913 0.1590 0.1422
90% 0.2854 0.2094 0.1687 0.1470
95% 0.3327 0.2345 0.1750 0.1517
97.5% 0.3745 0.2710 0.1810 0.1542
99% 0.4017 0.2947 0.2037 0.1606
99.5% 0.4392 0.3198 0.2294 0.1668

Hy : GPD(k=1,0=1,0=0)

l -« n=10 n =20 n=>50 n =100
80% 0.8465 0.6821 0.5723 0.5029
90% 0.9097 0.7391 0.6101 0.5302
95% 1.0410 0.7922 0.6390 0.5488
97.5% 1.3434 0.8446 0.6662 0.5657
99% 1.7852 0.9097 0.6872 0.5843
99.5% 1.9195 1.0100 0.7066 0.6021

8.4.4 CRAMER-VON-MISES GOODNESS-OF-FIT TESTS AND
WEIGHTED VARIANTS: TESTING IN THE PRESENCE OF
HEAVY TAILS

The one-sample Cramer-von-Mises (CvM) tests are defined for observed loss realizations
X1,%2,...,%, of a set of continuous i.i.d. random loss variables X7,X;, ..., X,, for which it
is hypothesized that their sampling distribution function is F. To test this hypothesis one can
consider the weighted 2-norm distributional test statistic given by,

Q= / w(x) ([vn(x) —F(x;@))zdF(x; 0) (8.78)

for some weight function such as the quadratic CvM statistic when w(x) = 1 or the Anderson—
Darling (AD) statistic when w(x) = F(x; ) (1 — F(x; 8)) " In this section, we present both
the AD test and its tail-weighted variant, as well as the CvM test and its right tail-weighted
variant.
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8.4.4.1 Weighted Anderson—Darling Goodness-of-Fit Tests for Heavy Tails.
In the case of the AD form of the CvM test statistic Q, the test is performed according to the
following stages in Algorithm 8.3. As it turns out two of the more important results one can
derive for the asymptotic expansions of the right tail of the AD test statistic, under the nominal
claim, are based on a result derived by Zolotarev (1961); we provide this result in Theorem 8.8.

Theorem 8.8 (Distribution of positively weighted quadratic Gaussian infinite sums)
Consider Zy, 2, . . . as i.i.d. random variables with Z; ~ Normal(0, 1). Then the limiting distri-
bution of the positively weighted quadratic sequence given by

Y, =Y NZ} ~F, (8.79)
=1
with \; > 0 foralli € {1,2,...,n} and decreasing \y > Ny > -+~ > A, for all n, satisfies
F, = F as n — oo with the distribution right tail given explicitly by the product

1 — Fx) = [ﬁ (1 - ii)_é/m/z)] (2’;1>_5exp< 7y )[1+e( ). (8.80)

i=2
See details in Zolotarev (1961).

In Figure 8.7, the distribution for the random sum

Y, = Z \NZ} ~ F, (8.81)

is displayed as a function of sample size 7 with two different weight functions for {\;},_, given
by the following;

* Case 1: weight function \; = , top subplot;

(/+1)
* Case 2: weight function \; = ;, bottom subplot.

It is clear that the weight function also has a strong influence on the asymptotic convergence rate
as a function of the number of summand terms. This is clearly the reason why in the literature
it is typically preferred to utilize a weight function such as Case 1, as the convergence even for
small sample size to the asymptotic distribution is more rapid. In practice, it should be pointed
out that there will be a direct relationship between the A; weights and the weight function w(x)
chosen in the GOF citerion. This small illustration shows that in general one can expect a large
influence on the rate of convergence, and therefore the suitability of asymptotic results for the
distribution of the test statistic under the null claim, for different choices of weight function.
In other words, one should carefully consider the sample size before applying the asymptotic
results for the tail of the distribution of the test statistic under the nominal claim. In cases where
it is suspected that such an asymptotic may not be utilized accurately, a closed-form expression
for the finite sample test statistic distribution under the null will be noted and in other cases,
it is also possible to adopt other approximations such as the saddle point. If all these cases fail,
then one can resort to numerical procedures to reconstruct the distribution of the test statistic
numerically.

One can then utilize this result to obtain the asymptotic behavior of the distribution of
the AD test.
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FIGURE 8.7 Distribution of the test statistic as a function of the number of random variables {\;}7_,

for n € {2, 10, 20, 30, 50, 100}. Top subplot is for weight function Case 1 and the bottom subplot is for

weight function Case 2. (see insert for color representation of the figure.)

Proposition 8.3 (Characterizing the Anderson-Darling null distribution) Consider a null
hypothesis for the data-generating distribution Fy, which one assumes is a continous distribution. Let
X1,X, ..., X, be a sequence of i.i.d. random variables with distribution Fy. Then the following
holds:

. Test statistic. The test statistic is given by

% (Fu) - F)
@=r M”f’“’”

-0 (8.82)
"\ 2i—1
=== (W (F (X)) +10 (1= F Xes1i)))) »
=1
which is constructed using the order statistics X1,y < X < o0+ < Xyn) and can be

shown to be strictly contained in the interval Q € [0, 8] assymptotically for large samples n
(see Lewis 1961);
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2. Characteristic function. The characteristic function of the AD test statistic Q for large samples
n — 00 is given by

—2mit

o) = | —F—| - (8.83)
' cos(ﬁ)

which one can then observe is equivalent to the characteristic function of an infinite weighted
sum of independent chi-squared random variables with positive weights

1
Ai = G (8.84)

This means one can use the result of Zolotarev (1986) given in Theorem 8.8 to obtain the tail
distribution of the AD test statistic;

3. Large-sample asymptotic tail expansion. An asymptotic expansion of the large-sample right
tail of the AD test statistic under the null is attainable in closed form. If the sampe size
n — 00, then the upper right tail of the distribution \/nQ,, is asymptotically approximated as

x — 00 by
@0 = |T1(1- 7%/r<1/2> ) e (=2 14 )
V=l 3V AT el
(8.85)
where \; = (—H ande( ) — 0 (see Sinclair and Spurr 1988);

4. Cumulant-generating function. The cummulant-generating function of the distribution for
Q can be obrained in closed form according to

1) = —% D In(1-2x1). (8.86)

5. Saddle point approximation. One can then obrain a saddle point approximation of the
distribution for the AD test statistic via the derivatives of the cummulants when they exist and
are analytic, which are given by

Z: 172)\t)

[ 1—2/\t)r’

giving a saddle point approximation for the right tail at location x according to

(8.87)

uMg

a’t2

Pr(Q>x)=1-® (&) +¢ (@) [a" —a '] (8.88)
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with t the unique and existing solution to the inverse problem %/e(t) = x and

NV RE (8.89)
itl'{drzli(t)} .

See details in Giles (2001), Daniels (1954), and Lugannani and Rice (1980).

These details are then sufficient to perform the AD GOF hypothesis test, which is sum-
marized in the following algorithm.

Algorithm 8.3 (Anderson—Darling One-Sample Test)

o Step 1. Set up suitable notation for the random variables and distributions being tested and
make a statement of the null and alternative hypotheses in terms of population distribu-
tion/parameters. Determine hypothesis for GOF testing where null claims loss data are from
a hypothesized distribution Fy(x)

Hy : F(x) = Fy(x), Vx (8.90)
versus an alternative claim that the observed losses are not realizations from Fy
Hy: F(x) # Fo(x), Vx. (8.91)

o Step 2. State the test statistic and its observed value and when possible state the distribution of
the test statistic or its approximation. Under the null hypothesis calculate the AD test statistic
given by

F(x) (1= Fx))

= S 1 (F (X)) + 10 (1= F (X))

n
i=1

% () — F(x))2
Qn =1n / 7}7()( dF(x)
—c0 (8.92)

which is constructed using the order statistics X(1 ;) < X2, < -+ < Xy ) and F, is the
empirical cumulative distribution defined according to

Falx) = i S w <o (8.93)
i=1

This procedure will produce an observed realization of the test statistic based on the observed

data samples {x,}le under the null hypothesis, denoted by d,,;

o Step 3. State a formal mathematical expression for the p-value. Determine the p-value for the
test under the null hypothesis given by considering

p-value =Pr[|Q,| > q,|Ho) -
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10 obtain the p-value one first needs to obtain an approximation of the distribution of the test
statistic under the null. This can be done in two cases, depending on the size of the sample:

Small-sample p-value evaluation. If the sample size n is small, one can perform evaluation
of the p-value for making a decision on the test via the following simple simulation procedure,
where {X;},_, are the samples from the experiment and j = 1,...,] is the index of the

simulated test statistic realizations {qg/ ) } obtained by the following procedures:

o Simulate a set of samples {Ul-(j )} with U; ~ Uniform(0,1), that is, distribution
i=1
Flu) = u
o Transform  the  samples {Ui(j )} to samples from the null distribution
i=1
‘Xz(]) — FO*I (ljz(]))’

° Evaluate for each set of samples { x) } the test statistic
=1

n

o) = =3 F (P () i (1= F (o)) - 699
i=1

Repeat many timesj € {1,2,...,]} to get an estimate of the distribution for the test statistic
under the null Q,, that is, the null distribution of the test statistic Q, is then approximated

by the samples {qg,j )} known by simulation.

Given the empirical estimator for the distribution of the test statistic under the null, j:Qn (%),
use this to evaluate the p-value.

Large-sample p-value evaluation. If the sample size n is large, one can perform evaluation
of the p-value for making a decision on the test via the asymptotic expansion of the large-sample
right tail of the AD test statistic under the null; whereas, if the sample size n — 00, then the
upper right tail of the distribution \/nQ, is asymptotically approximated as x — oo by

@i (-5) (&) o (5) e

(8.95)

where \; = and €(x) — 0;

z(z+ 1)

* Step 4. State the range of values within which the p-value falls (and a statement of how these are
obtained. If the p-value is significantly lower than a given level of testing significance, typically
5%, then one has sufficient evidence from the observed loss data ro reject the claim of the null
hypothesis in_favor of the alternative;

o Step 5. State the conclusion of the test in plain language (velevant to the experimental context).

In the following example, a small case study illustrating the properties of the standard AD
test is illustrated for a few simple distribution models in OpRisk.
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Anderson—Darling GOF Test Example

A sample of J = 1000 random numbers for a Normal, double exponential, Cauchy,
and LogNormal distribution was considered. In each case, the AD test was utilized
to see if the data had come from a model with exponential tail decay, in this simple
example a Gaussian distribution. In this case, the nominal and alternative claims
were given by the following:

* Hy: the data are Gaussian distributed;
e H,: the data are not Gaussian distributed.

In the case of the Gaussian sample, the estimated test statistic is given by
gs00 = 0.2576; in the case of the double exponential sample, the estimated test
statistic is given by gsoo = 5.8492; in the case of the Cauchy sample, the estimated
test statistic is given by ¢so0 = 288.7863; in the case of the Cauchy sample, the
estimated test statistic is given by gso0 = 83.3935. In this case, when looking at
the GOF test, at a significance level of o = 0.05, the resulting critical value for the
test under the null is given by 0.75 so that the nominal claim is rejected if the test
statistic exceeds this critical value.

There have also been versions of the AD test developed to tackle situations in which the
tails of the distribution of the observed sample are also given more importance. For example,
Sinclair ez a/. (1990) developed a modification to the AD test statistic to obtain two test statistics
for testing suitablity of the null claim about the upper or the lower tails. We will focus here on
the upper tail test, which is of most relevance for OpRisk settings (see Proposition 8.4). In par-
ticular, such a test will be directly of interest for those wishing to assess the validity of a nominal
claim relating to the presence of a particular tail behavior believed to be present in the data.

Proposition 8.4 (Upper tail modified Anderson—Darling test for heavy tails) Consider a
null hypothesis for the data-generating distribution Fy, which one assumes is a continous distri-
bution. Let X1,X, . .., X, be a sequence of i.i.d. random variables with distribution Fy. Then the
Jollowing holds:

1. Upper tail modified test statistic. The modified AD test statistic given below will give heavier
weight to the upper tail compared to the classical AD rtest statistic. The evaluation of the statistic
Jfor n samples involves

e (8.96)

n n

2 F(Xum) =Y [2— =i 1] In (1= F (Xi.))

- X n
i=1 i=1

NSRIN

which is constructed using the order statistics X(1 ) < Xa,n) <

< oo < Xy (see Sinclair
et al. 1990, equation 2.5);
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2. Modified characteristic function. The characteristic function of this modified AD test statis-
tic Q for large samples n — oo is given by

v ]
P(r) = ll@@] , (8.97)

which, as noted by Sinclair et al. (1990), can be written in terms of an infinite number of eigen
values \;, where each is obtained as a real solution to | (2\&) =0 for A\ # 0, that is, the

roots of the Bessel function. These eigenvalues are denoted by Abramowitz and Stegun (1965,
section 9.5, p. 370) according to j11 < j12 < -+ <ji; < ... giving eigenvalues

2
T
n="1 (8.98)

Using these eigenvalues one can re-express the characteristic function of the modified test statistic
according ro the equivalent form of an infinite weighted sum of independent X -squared random
variables with one degree of freedom according to

J

o) =11 [1 - 2;] . (8.99)
j=1

where the weights are given by the inverse of the eigen values \; L.

3. Large-sample asymptotic tail expansion. The distribution of the large sample n — oo as
Q, — Q is given by Sinclair et al. (1990) and MacNeill (1974) according to

Pr(Q>x) = lﬁ P(l) (1 _ i)] (u) exp (‘n) 1+ ()],

(8.100)
with €(x) — 0 as x — 00.

Remark 8.10 It is interesting to note that the asymptotic result for the distribution tail for the
upper tail modified AD test takes the same basic structural form as the same expression obtained
Jor the standard AD GOF test distribution with no modification to the right tail. Of course, the
key component that differentiates the two cases and changes the resulting p-values accordingly is the
different expressions for the resulting eigenvalues \; used in the representation of the characteristic
Sfunction.

These details are then sufficient to perform the AD GOF hypothesis test, which is sum-
marized in the following algorithm.

Algorithm 8.4 (Tail-weighted Anderson—Darling One-Sample Test)

* Step 1. Ser up suitable notation for the random variables and distributions being tested
and make a statement of the null and alternative hypotheses in terms of population
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distribution/parameters. Determine hypothesis for GOF testing where null claims loss data are
[from a hypothesized distribution Fy(x)

Hy : F(x) = Fy(x), Vx (8.101)
versus an alternative claim that the observed losses are not realizations from Fy
F(x) # Fy(x), Vx. (8.102)
o Step 2. State the test statistic and its observed value and when possible state the distribution of

the test statistic or its approximation. Under the null hypothesis calculate the tail-weighted AD
test statistic given for n samples involving

7,,221: X)) Z[ Zil}ln(l—F(X(M))) (8.103)

n
i=1

which is constructed using the order statistics X1,y < Xy < -+ < Xy ). This procedure
will produce an observed realization of the test statistic lm;m’ on t/oe observed data samples

{x,-}z;l under the null hypothesis, denoted by q,,;

o Step 3. State a formal mathematical expression for the p-value. Determine the p-value for the
test under the null hypothesis given by considering

pvalue = Pr[|Q,| > q,|Ho) -

10 obtain the p-value one first needs to obtain an approximation of the distribution of the test
statistic under the null. This can be done in two cases, depending on the size of the sample:

Small-sample p-value evaluation. If the sample size n is small, one can perform evaluation
of the p-value for making a decision on the test via the following simple simulation procedure,
where {X;}_, are the samples from the experiment and j = 1,...,] is the index of the

simulated test statistic realizations {q,(qj ) } obtained by the following procedures:

° Simulate a set of samples {Ul-(j )} with U; ~ Uniform(0,1), that is, distribution
i=1
Flu) = u
o Transform  the  samples {Ui(j )} to samples from the null distribution
i=1

X9 = ((Ji(j))"

. n
° Evaluate for each set of samples {Xi(] ) } the test statistic
i=1

<;>_, QZF(M) i[z—zi;l]ln( (X((/)))). (8.104)

i=1

Repeat many timesj € {1,2,. .., ]} to get an estimate of the distribution for the test statistic
under the null Q,, that is, the null distribution of the test statistic Q,, is then approximated by

the samples {qﬁ,j )} known by simulation.
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Given the empirical estimator for the distribution of the test statistic under the null, IA:QW (x),
use this to evaluate the p-value.

Large-sample p-value evaluation. If the sample size n is large, one can perform evaluation
of the p-value for making a decision on the test via the asymprotic expansion of the large-sample
right tail of the AD test statistic under the null; whereas, if the sample size n — 0o, then the
upper right tail of the distribution \/nQ,, is asymptotically approximated as x — oo by

1 1

@ i (5) () o (5)0een

(8.105)

with €(x) — 0 asx — 005

o Step 4. State the range of values within which the p-value falls (and a statement of how these are
obtained. If the p-value is significantly lower than a given level of testing significance, typically
5%, then one has sufficient evidence from the observed loss data ro reject the claim of the null
hypothesis in_favor of the alternative;

o Step 5. State the conclusion of the test in plain language (relevant to the experimental context).

8.4.4.2 Weighted Cramer-von-Mises Goodness-of-Fit Tests for Heavy Tails.

An alternative test one may consider is the CvM test (see details in Csorgo and Faraway 1996
and Brown 1982). The test statistic considered in the CvM test is given in Proposition 8.5 and
is based on the CvM family of test statistics given by,

e 0))2 dF(x: 0), (8.106)

1
N
g3

N

=
_

where w(x) = 1.
Proposition 8.5 (Characterizing the Cramer-von-Mises null distribution) Consider a null
hypothesis for the data-generating distribution Fy, which one assumes is a continous distribution. Let

X1,X2, ..., X, be a sequence of i.i.d. random variables with distribution Fy. Then the following
holds

1. Test statistic. The test statistic is given by

e (8.107)

which is constructed using the order statistics X1 ) < Xy < 00 < X,y and can be
shown to be strictly contained in the interval Q € [% 51 (see Csorgo and Faraway 1996);
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2. Characteristic function. The characteristic function of the AD test statistic Q for large samples
n — 00 is given by

<—2>1 5.108
sinh (—2i¢)

o(2) = l

=

(see discussions by Mises 1947 and Smirnov 1936);

3. Large-sample distribution. If the sampe size n — 00, then the distribution \/nQ,, is asymp-
totically given by inversion of the characteristic function, as first performed by Smirnov (1936)
and detailed by Csorgo and Faraway (1996, equation 1.3) to produce, for x > 0,

Pr(Q<x) = : i::r(k/; 2) (4/e+1)%exp (—(4k+1)2>1(1 <4k+1>

16x 4 3
mix: 2x2

(8.109)

Rl
Dl

Jor K, (x), the modified Bessel function of the third kind. Evaluation of finite sample approxi-
mations of this distribution has been studied by Gitze (1979) and summarized by Csorgo and
Faraway (1996);

4. The result by Prokhorov (1968, theorem 1) is utilized by Csorgo and Faraway (1996) to
illustrate that one may obtain a bound for the right tail of the finite sample distribution for
Q, ~ Fo,(x) given for any sample sizen > 1 by

sup {1 — Fo,(x)} < Cexp (—Kx) (8.110)
with x > %, C=1+ %\/5 exp (%), and K = %exp (=2). Knott (1974) and later

Csorgo and Faraway (1996) showed that one can evaluate the distribution for the small-sample
n distribution of the CoM statistic in a bounded range according ro

nlms 1 3
Fo(x) = — (oo — 8.111
o) =1 (2 +1) (x l2n> (8.111)

forx € [, 152

These details are then sufficient to perform the CvM GOF hypothesis test, which is summarized
in the following algorithm.

Algorithm 8.5 (Tail-Weighted Cramers-Von-Mise-One-Sample Test)

o Step 1. Set up suitable notation for the random variables and distributions being tested and
make a statement of the null and alternative hypotheses in terms of population distribu-
tion/parameters. Determine hypothesis for GOF testing where null claims loss data are from
a hypothesized distribution Fy(x)

Hy : F(x) = Fy(x), Vx (8.112)
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versus an alternative claim that the observed losses are not realizations from Fy

F(x) # Fy(x), Vx. (8.113)

o Step 2. State the test statistic and its observed value and when possible state the distribution
of the test statistic or its approximation. Under the null hypothesis calculate the tail-weighted
CvM test statistic given for n samples involving

2

1 L [2i—1
Q,, = nwz = m + ; |: 2 —F (X(im)) s (8.114)

which is constructed using the order statistics X(1 ) < X2, < -+ < X ). This procedure
will produce an observed realization of the test statistic based on the observed data samples

{x;}\_ | under the null hypothesis, denoted by q,;

o Step 3. State a formal mathematical expression for the p-value. Determine the p-value for the
test under the null hypothesis given by considering

p-value =Pr[|Q,| > q,|Ho) .

10 obtain the p-value one first needs to obtain an approximation of the distribution of the test
statistic under the null. This can be done in two cases, depending on the size of the sample:
Small-sample p-value evaluation. If the sample size n is small, one can perform evaluation of
the p-value for making a decision on the test via either first using the following simple simulation
procedure, where {X;},_, are the samples from the experiment and j = 1, ..., ] is the index

of the simulated test statistic realizations {qn } obtained by the following procedures:

° Simulate a set of samples { Ut )} with U; ~  Uniform(0,1) that is, distribution
i=1

F (u) = u

o Transform  the  samples {Ui(j )}n to samples from the null distribution

‘Xz(]) — FO*I (ljz(/))’

° Evaluate for each set of samples { x) } the test statistic

—u(i-r(x)). 609

Repeat many timesj € {1,2, ..., ]} to get an estimate of the distribution for the test statistic
under the null Q,, that is, the null distribution of the test statistic Q,, is then approximated by

=32 nr () - R ?

i=1

the samples {q,(gj )} known by simulation.

Alternatively, if the smaple size is appropriate for the quantile of the test statistic distribution ro
Jall in the interval for [L nt3 ] at the desired level of significance, then the p-value can be

1217 12#2
obtained using the representation

nln? 1 \?
FQ”(x) =7 (x ) . (8.116)
5 127
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Given the empirical estimator for the distribution of the test statistic under the null, Fq, (x),
use this to evaluate the p-value.

Large-sample p-value evaluation. If the sample size n is large, one can perform evalua-
tion of the p-value for making a decision on the test via the asymptotic expansion of the large-
sample right tail of the tail-weighted CoM test statistic under the null; whereas if the sample size
n — 00, then the upper right tail of the distribution \/nQ,, is asymptotically approximated as

x — 00 by
P < _ 2 4 1)2 - K
HQEI =g D exp( 16x > ( P >
(8.117)

for K, (x), the modified Bessel function of the third kind;

o Step 4. State the range of values within which the p-value falls (and a statement of how these are
obtained. If the p-value is significantly lower than a given level of testing significance, typically
5%, then one has sufficient evidence from the observed loss data to reject the claim of the null
hypothesis in_favor of the alternative;

o Step 5. State the conclusion of the test in plain language (velevant to the experimental context).

We finish this section on model selection for components of an LDA model structure in a
single risk by discussing briefly how one may undertake Bayesian model selection.

8.5 Bayesian Model Selection

Consider a model M with parameter vector 6. The model likelihood with data x can be found
by integrating out the parameter 6

(x| M) = / (x|0, M) (0|M)d6, (8.118)

where 7(0|M) is the prior density of @ in the model indexed by M. Given a set of X' competing
models (M, ..., M) with parameters 6y, . . ., 0] respectively, the Bayesian alternative to
traditional hypothesis testing is to evaluate and compare the posterior probability ratio between
the models. Assuming we have some prior knowledge about the model probability 7(Af;), we
can compute the posterior probabilities for all models using the model likelihoods

el — M) (M)

- Z§=1 7r(x|M/€) ’/T(M/e) ’ (8119)

Consider two competing models M and M,, parameterized by 6 1] and @ [2]5 respectively.
The choice between the two models can be based on the posterior model probability ratio,
given by

T(Milx) _ w(x[M) m(My) _ w(Mi)

(M) ~ mOlME) 7(0L) 70 (8.120)
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where By = mw(x|M;)/7(x|M,) is the Bayes factor, the ratio of the posterior odds of model
M to that of model M,. As shown by Lavin and Scherrish (1999), an accurate interpretation
of the Bayes factor is that the ratio By, captures the change of the odds in favor of model M as
we move from the prior to the posterior. Jeffreys (1961) recommended a scale of evidence for
interpreting the Bayes factor, which was later modified by Wasserman (1997). A Bayes factor
By, > 10 is considered strong evidence in favor of ;. Kass and Raftery (1995) give a detailed
review of the Bayes factor.

Typically, the integral (8.118) required by the Bayes factor is not analytically tractable, and
sampling-based methods must be used to obtain estimates of the model likelihoods. There are
quite a few methods in the literature for direct computation of the Bayes factor or indirect con-
struction of the Bayesian model selection criterion, both based on Markov chain Monto Carlo
(MCMC) outputs. The popular methods are direct estimation of the model likelihood, thus
the Bayes factor; indirect calculation of an asymptotic approximation as the model selection
criterion; and direct computation of the posterior model probabilities, as discussed later. Pop-
ular model selection criteria, based on simplifying approximations, include DIC and Bayesian
information criterion BIC; see, e.g., Robert (2001, chapter 7).

In general, given a set of possible models (M, ..., Mg), the model uncertainty can be
incorporated in the Bayesian framework by considering the joint posterior for the model and the
model parameters 7 (M}, 04 |x), where 8 is a vector of parameters for model k. Subsequently,
calculated posterior model probabilities 7(#;|x) can be used to select an optimal model as the
model with the largest probability or average over possible models according to the full joint
posterior.

Accurate estimation of the required posterior distributions usually involves the develop-
ment of a Reversible Jump MCMC framework. This type of Markov chain sampler is com-
plicated to develop and analyze. It goes beyond the scope of this book but interested readers
can find details in Green (1995). In the case of a small number of models, Congdon (2006)
suggests running a standard MCMC (e.g., Random Walk Metropolis Hastings (RW-MH))
for each model separately and using the obtained MCMC samples to estimate 7(My|x).
DPeters ez al. (2009a) adopted this method for modeling claims-reserving problem in the insur-
ance literature with an appropriate modification. They used the following modified version
for the special case of nested models and utilized the Markov chain results for each model,
in the case of equiprobable nested models, and calculated the posterior model probabilities

w(M;|x) as

1 & f<x|M,0(,[))
I S (w600 )

w(Mlx) = (8.121)

where QEZ.[]) is the MCMC posterior sample at Markov chain step / for model M;, £ (x|M;, 0%1.1]))

is the joint density of the data x given the parameter vector OE;]) for model M;, and L is the total

number of MCMC steps after the burn-in period.

8.5.1 RECIPROCAL IMPORTANCE SAMPLING ESTIMATOR

Given MCMC samples 0",/ =1,...,L from the posterior distribution obtained through
MCMC, Gelfand and Dey (1994) proposed the reciprocal importance sampling estimator (RISE)
to approximate the model likelihood
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—1

L )
1 h(OD)

E— , (8.122)
L[:I (x/0D) w(6")

where / plays the role of an importance sampling density roughly matching the posterior.
Gelfand and Dey (1994) suggested the multivariate Normal or # distribution density with mean
and covariance fitted to the posterior sample.

The RISE estimator can be regarded as a generalization of the harmonic mean estimaror
suggested by Newton and Raftery (1994). The latter is obtained from the RISE estimator by
setting » = 1. However, we strongly advise against such choices since it is known that the har-
monic mean estimator will produce an estimator with infinite variance as discussed by Wolpert
and Schmidler (2012). Other estimators include the bridge sampling proposed by Meng and
Wong (1996), and Chib’s candidate estimator by Chib (1995). In addition, there are also alterna-
tive approaches recently proposed that are efficient to implement in convex likelihood models
such as the nested sampling framework of Skilling (2006).

In a recent comparison study by Miazhynskaia and Dorffner (2006), these estimators were
employed as competing methods for Bayesian model selection on GARCH-type models, along
with the reversible jump MCMC. It was demonstrated that the RISE estimator (either with
Normal or # importance sampling density), the bridge sampling method, and Chib’s algorithm
gave statistically equal performance in model selection. Also, the performance more or less
matched the much more involved reversible jump MCMC; however, it should be clearly noted
that the relative computational costs and efficiency in general between each of these approaches
will differ depending on the complexity of the model selection task. For this reason, we also
present the details of the simplest form of the Chib estimator for model evidence (see Carlin

and Chib 1995).

8.5.2 CHIB ESTIMATOR FOR MODEL EVIDENCE

The version of the Chib estimator that we propose for practitioners to utilize for the estimation
of the Bayes factors is still based on sample output from the posterior model, typically from
Markov chain samples. An important statistical property of this estimator from Chib is that it
satisfies a standard Gaussian Central Limit Theorem and has finite variance. Therefore, we can
estimate not only the model evidence but also, for a given set of simulations, we can report a
measure of uncertainty in our model selections through an assessment of the accuracy of our
evidence estimation.

In the following, we provide a brief description of the simplest form of the Chib estimator,
the single block estimator. Under this approach, one proceeds to evaluate the evidence for the
i-th model, denoted by In p (x|A1;), according to the log decomposition as a function of the
posterior with generic vector of parameters € and data x as follows:

Inp (x[M;) = Inp (x|0%, M) + Inp (7| M;) — Inp (8% |x, M) , (8.123)

where 0™ represents a point estimator for the parameters obtained from the MCMC output,
such as the posterior mean (minimum mean square error (MMSE)) or the posterior mode
(maximum a posteriori (MAP)) estimators. Here the estimator of (8™ |x, M;) obtained via
Chib’s approach is given for / samples from the proposal {O(j) :0U) ~ q(0, 0*\x)}

=1/
and M samples from the MCMC output (i.e., correlated draws from the posterior) by
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B0 (87,0%1x) 4 (67, 6%)x)

: (8.124)
15 a (676 )

p(07|x, M;) =

Here, the function o (6, 6'|x) represents the standard Metropolis—Hastings acceptance prob-
ability given by

p(x(6)p(0)4(6,6")

o (67,6]x) :min{l,p(xw)p(e)qg ’9)}. (8.125)

The proposal often considered is a multivariate student-t distribution for g (6, 8") given for
location parameter vector @ € R? and covariance matrix ¥ € SP*(p), where SPT is the space
of symmetric and positive definite matrices in R?, for parameter " € R’ by a probability

density of

(=)

L (3) wlml|s) /2 (141 (6"~ 6)" = (6 - 6)

(8.126)

9(0.0") = } p)/2°

where one could estimate the covariance of the proposal, X, from the empirical sample covari-
ance obtained from the samples out of the MCMC output for the M;-th model according to

M T
= — 12(0(’”> )( o) —é) , (8.127)

m=1

where 0 is the empirical mean of the parameters for the model.

8.6 SMC Sampler Estimators of Model Evidence

Del Moral ¢t al. (2012) note that one can also utilize specially developed evidence estimators in

the sequential Monto Carlo (SMC) samplers output, based on bridge sampling estimators of

Gelman and Meng (1998) as follows. The particle estimate of target distribution evidence for 7,

and ,_1 for each time step is given by using { VVI @( } to approximate the normalizing
=1

constant ratios (model evidence that is denoted here as Z,,)

Z IEAC

(8.128)
Z fﬂ-tl :16{9t1

using the particle estimator given by

—

N
=3 wuw, (@5 D,ev )) (8.129)
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Then one notes that to estimate the ratio Z;/Z; one forms a product estimate based on
these local ratio SMC sampler approximations; see discussions in Chapter 7 for SMC sam-
pler algorithms.

8.7 Multiple Risk Dependence Structure Model Selection:
Copula Choice

In this section, we discuss how to perform model selection for the dependence structure link-
ing multiple risk processes, with a particular emphasis on copula model representations. For
a model choice of copula using frequentist GOF testing, see Klugman and Parsa (1999) and
Panjer (20006, section 14.5). One can also use the AIC to choose a copula. However, formally,
it does not hold for copulas fitted using data marginally transformed into [0, 1]%; a proper
correction, referred to as copula information criterion, has been derived by Grenneberg and
Hjort (2008). Under the Bayesian approach, model choice can be made using Bayesian cri-
teria presented in Section 8.5; for a case study of #-copula choice, see Luo and Shevchenko
(2012).

To proceed, in this section we first discuss how to perform model selection purely on
the dependence component of the model that is used to combine or relate multiple risk
processes LDA models. The detailed presentation of such model structures is presented in
Chapters 10-12. The generic parametric copula model considered in this section will be
denoted by distribution C. In this section, the presentation of such model selection approaches
will assume that one has already made inference on the appropriate models for the marginal
(each individual loss processes) LDA structures. On this point, it is important to observe the
following fact: if one truly wants to test the hypothesis given by

Ho . Ce C() (8130)

that is, that the dependence structure between the risk processes is well represented by a partic-
ular parameteric multivariate distribution in the copula family Cy, then the option of modeling
the marginal LDA models by parameteric families first is no longer strictly viable. To under-
stand why this is the case, one must realize that such a procedure would actually correspond to
a different much more restricted null hypothesis, corresponding to Hy N H{ where Hj relates
to the assumption of the structure of the marginal models, producing a hypothesis for the full
parameteric model of the multiple risk processes and not just their dependence features.

Hence, this indicates that when testing purely for the dependence structure between multi-
ple risk process LDA models, one should consider the marginal distributions, such as the annual
losses between d risk processes Fz, (z1), Fz, (z2) , - - .» Fz, (z4) or the equivalent quantitites for
the 4 severity of frequency models, as infinite dimensional nuisance parameters (i.e., nuisance
functions). Having recognized this fact, one needs to also utilize the property of all copula distri-
butions, that they are multivariate distributions for & risk processes on support [0, 1]4, which
are invariant to strictly increasing transformations of their components. The implications of
this for the perspective of hypothesis testing and model selection is that one may instead make
inference on the evidence against Hj based on the maximally invariant statistics with respect
to these types of transformations, that is, one may work directly on the ranks or order statis-
tics. This leads one to the notion of pseudo observations for copula GOF hypothesis testing as
detailed in Definition 8.9.
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Definition 8.9 (Pseudo observations for copula GOF testing) Consider the d-dimensional
multivariate loss data {Z;};_, for n loses from the d risk processes, with Z; = (Zl-(l), . ,Zi(d)).

Convert the individual loss data into pseudo observations based on scaled ranks by considering new
data {U;},_, with the j-th component of the i-th random vector observation given by

()
. R} N .
lzl_(]) _ i _ n F ) (Z(])) ,

8.131
n+1 n+1 ! ( )

where U; € (0,1 foralli € {1,2,...,n} and Ri(j) is the rank of the j-th component of vector
Z; among the samples, that is, the rank onZ-(j) among {Zl(j), e ,Z,Ej) } This transformation
of each margin through the normalized ranks is known as the empirical marginal transformation.

Therefore, these pseudo observations can then be interpreted as draws from the underlying copula C
acting as the dependence structure between the multiple risk processes. (]

Remark 8.11 The pseudo observations discussed earlier are not mutually independent of each other
and therefore the components are only approximately uniform on [0, 1] in each margin. They will
only be exactly uniform if the exact model is considered. If a model selection or hypothesis-testing
procedure is developed which ignores these features, it will suffer from a lack of power and may fail

to hold its nominal level.

Pseudo Data for GOF Dependence Structure Analysis

The aim of this example is to illustrate that one can recover samples that closely
resemble the true samples from the copula density for a multivariate distribution,
via the pseudo data in practical applications in OpRisk. Consider a multivariate

loss model for Z; = (Zi(l),Zl-(z)7 o ,Zi(d)) with the following density:

d

fz (o, sz) = (Fz (21) - Fry (20) [ [ £ (20) (8.132)

i=1

where we consider each marginal loss process Fy, (z;) to be given by annual loss
density from the compound sum LDA model

Zi=>_X (8.133)

with N~ DPoisson()\;) and iid. losses for risk process i given by
X; ~ InverseGaussian (1;,7;). Then the marginal for the i-th loss process is a
Poisson-weighted mixture of inverse Gamma distributions given by

- IR i (& = npus)’
_fZ,(Z) = Zexp (—)\l> ; { |:27rz3:| exp <_2712Mzz . (8134)
n=1 i
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Consider the case withd =2, A\ = A\, =3, u1 =2, = l,and v = 1,7y, = 2.
Furthermore, assume the annual losses are jointly dependent with a Frank copula
dependence structure for the density ¢, (Fz (21) ..., Fz, (24)) with dependence
parameter p = —1 and density given by

p[1 = exp(=p)]exp (=p (1 + u2))

([1 — exp(—=p)] — (1 — exp (—pu1)) (1 — exp (—puz)))*
(8.135)

c(ul, Mz) =

Under this model it is assumed that a total of 100 samples have been obtained and
the true copula density contour plots are drawn, followed by the true joint density
of (Z1,2,). The pseudo data are then plotted over the top of the copula contours;
see Figure 8.8. Clearly, the pseudo data display behavior consistent with the Frank
copula model from which they are approximately drawn. It should also be noted
that the accuracy of this pseudo data transformation by the rank will diminish (i.e.,
how representative the pseudo data are of the true copula) and be affected by the
sample size available.

Having briefly explained the need to be cautious when performing specialized GOF tests
specifically for the copula dependence structures and the definition of pseudo data that may
be used to undertake such testing procedures, we next provide a brief summary of the various
approaches that have been adopted in the literature for undertaking such testing (see detailed
discussions in Berg 2009). Before proceeding with the overview of these different testing pro-
cedures, we need to introduce a few additional basic concepts. The first is the transformation
of a random vector known as Rosenblatt’s probability integral transformation, as detailed in
Definition 8.10 (see Bickel and Rosenblatt 1973).

Definition 8.10 (Rosenblatt’s probability integral transformation) Rosenblatts probability
integral transformation (PIT) of a copula distribution C is a mapping T : (0,1)% +— (0,1)4
such that every vector w = (w1, ua, . . ., uy) € (0,1)? is assigned to a new vector under the map-

pintT (wy,ua,. .. uy) = (e1, €2, .., 64) such that the following holds:

€1 = Uy

07 C(wy, w1, 1) [0 C (w1, )
- 8u1 ...8u,-,1 8%1 ...aui,l

, Vie{2,...,d}.
(8.136)

43

Under this transformation, the original random vector U is distributed from a copula C that is,
U ~ C if and only if the resulting transformed random vector E is distributed from a uniform
distribution E ~ [0,1]%, that is, the resulting copula of E is the independence copula with uniform
marginals. (]

Remark 8.12 Under the application of Rosenblatts transformation of a random vector with depen-
dence features given by copula distribution C, one may transform a hypothesis test from the nominal
claim that
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FIGURE 8.8 Top subplot: this plot shows the true copula contours used in this model, that is, a Frank
copula, and the points correspond to the pseudo data obtained by transformation through the empirical
marginals (i.e., using the marginal scaled ranks). Bottom subplot: this plot shows the contours of the joint
loss process density for (Z(), Z(2)). (see insert for color representation of the figure.)
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Hy: U~CEe€C( (8.137)
to an equivalent omnibus claim that
Hy: T(U)~ U0,1]" (8.138)

Jfor some parameter vector p that parameterizes the copula C.

In the following examples, the required Rosenblatt PIT is provided for several examples. In
each case, one makes use of the multivariate Faa Di Bruno composite derivative expressions to
obtain simple closed-form expressions for the PIT transforms for Archimedean families. This
first involves recognizing that the Archimedean copula family has a particular distribution form
given by a composite function comprised of ¢(+) and linear combinations of its inverse 1)~ (+):

Clur, ... uy) =1 (Z P! (;;,)) (8.139)
i=1

See detailed discussions in Chapters 10—12 on dependence modeling. It should then be noted
that to find the evaluation of the distribution given by C(uy, u,...,4,-4,1,1,...,1), one
obtains

n—k
Clug,try .oy tty_py 1,1,...,1) =1 (Zw_l (u,)> , (8.140)
i=1

since ! (1) = 0 in order for ¢ to be a well-defined generator for the Archimedean family;
see details in Chapters 10-12. Hence, this means that taking the derivatives for the terms ¢;
under Rosenblatt’s PIT for the Archimedean family of copula models will result in terms, for
Vi € {2,...,d}, given by the ratio of the integrated density in dimension i with respect to
argument #; and the density in dimension 7 — 1 according to

¢, =

_81'—1C(u1,...,u,-,1,...,1)/6"—1C(u1,...,u,-_1,1,...,1)

aul .. .3ui,1 8141 .. .c'?ul-,l
B Jo c(ur, ... s)ds
o c(ul,...,ui_l)

L2 )] o' O+ S0 bY@ G4
POLT, = 170 () T () ()
s () + T )b 0
POV v ()} |

One can then utilize closed-form expressions for the derivatives of these generators for any
dimension; see details in Chapter 10. We present examples for the bivariate setting in a few
popular models in the Archimedean family.
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W EXAMPLE 8.6 Rosenblatt’s Probability Integral Transform Clayton Copula

Consider the Clayton copula given by distribution and density
n _I/PC
Cc(ul,...,un): (1_”_’_2%—,}) , (8.142)
=1

n 7”7;7% n
Ew, ) = <I —n+ Z(ui)_pc> H((ui)_pc_l((i —1)p° + 1)),
=1 =1
(8.143)
where p¢ € [0,00) is the dependence parameter. Hence, given a random vector

U = (U, U,) distributed from this copula model, one can obtain the Rosenblatt
PIT as for the bivariate case:

€1 = uj,

8141 [( 1+ 4 )—1/;1

oo [1]

€ =

W EXAMPLE 8.7 Rosenblatt’s Probability Integral Transform Gumbel Copula

Consider the Gumbel copula given by distribution

L
d pC

Cuy, ... uy) =exp | — lZ(— ln(ui))pG] , (8.144)

i=1
where p© € [1,00) is the dependence parameter. In the bivariate case, the explicit
expression for the Gumbel copula density is given by

92
Ou10uy

2 2(5-1)
= C(uy,m) u; "1y lz —Inw) 1 (In 2 In2)? ™"

i=1

c(uymy) = ———C(u1,u)

X [1+(p—1) lz (—Inwu) ] ’

i=1
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Hence, given a random vector U = (U, U,) distributed from this copula model,
one can obtain the Rosenblatt PIT as for the bivariate case:

ézl@q)<_|§:;10—hmmnp1pc>]
2= a0 ]
) : BE:
= o exp | — l;(— In(u;)) ‘| ) (8.145)
1 ﬁil

2

U; .

i=1

=Gmwm”1[ 04mmfﬂ

2

xexp | — [Z( ln(u,-))pG] .

i=1

8.7.1 APPROACHES TO GOODNESS-OF-FIT TESTING FOR
DEPENDENCE STRUCTURES

The following are popular approaches that have been proposed to perform copula dependence
GOF testing and model selection.

* Rosenblatt’s transformation test. The Rosenblatt transformation has been proposed for
copula GOF testing by several authors including Genest ez a/. (2006), Dobri¢ and Schmid
(2007), Berg and Bakken (2005), and Berg (2009). In this case, the pseudo observations
{U,}/_, given in Definition 8.9 are transformed through Rosenblatt’s transformation 77(-)
to obtain new observations { E;},_, with each E; = T (U,) and the null hypothesis being
tested is then transformed to become

Hy: T(U)~ U[0,1]%. (8.146)

The resulting test statistic under this new nominal claim can then be considered under two
different sets of assumptions. The simplest would be to assume that the pseudo observa-
tions are mutually independent and uniformly distributed on (0,1)? if U; ~ C € Cy. Of
course, as noted by several authors (see discussion by Genest ez /. 2009b), the approximate
uniformity of the transformed observations {E;}_, on the space (0,1)? allows one to
utilize the following transform on each marginal component followed by the convolution
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of the approximately i.i.d. components to make up a GOF test as follows: first, construct
new aggregate univariate random variables given by

w=3 ot (B vie 2. 8.147)

j=1

Next, consider the distribution of the set {;},_, and in particular the empirical distribu-
tion function

. 1 —
Fyfx) =~ > Ly<w, x>0 (8.148)
=1

If the assumption of uniformity of the sample {E;}’_, were valid, then one can construct
the empirical process convergence to a Brownian bridge, as discussed previously by con-
sidering the process as 7 — 0o given by

Jn (ﬁn (x) — F(x)) , (8.149)

which would then allow one (if the copula parameter was assumed to be known—not a
compound test) to perform, for instance, an AD test to test the nominal claim

Hy: U~CeC( (8.150)

using the test statisic given by

I .
Ay=—n—- Zl (2i = DI [F (xG)] + 10 [1 = F (Xut1-im))]  (8:151)

with X(; ) the i-th order statistic where x(1,,) < -++ < X(n,). As noted by Breymann
et al. (2003) and Dobri¢ and Schmid (2007), the assumption underpinning this asymp-
totic convergence may not apply in many settings and, consequently, the test statistic and
p-value must be adjusted or calculated numerically via a bootstrap procedure as discussed

by Genest ez al. (2009b, appendix C);

* Rosenblatt’s weighted transformation test. Malevergne ez /. (2003) and Berg (2009)
considered the pseudo data samples {#;},_, and applied the Rosenblatt transformation to
obtain samples {e;} _,, which under the nominal claim copula Cj , will produce samples
that are from the independence copula. They note that when the pseudo data are obtained
from the rank data, this assumption on uniformity is not strictly achieved. The Rosenblatt
transformed data are then transformed further to produce a univariate sample given by the
weighted transformation

7AT) = zn:r (47:9), (8.152)
j=1

where T'(+; %)) is a weighting function parameterized by parameter vector 1. This func-
tion can be used to focus testing on different regions of the unit cube such as particular
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quadrants of interest or the tails of the dependence copula tails in different regions of the
unit hyper cube. Examples of such weighting functions include the following:

Iy (ffj)ﬂ/’) =
I, (efj);'d)) =¢! (efj))z.

In the case of weighting function I'; (+), the resulting dimension-reduced data x; (I';) will
be a x3 distribution for all data samples 7 € {1,2,...,n}. If the dimension-reduced
data are obtained with the second weighting functlon Xi (Fz), then one does not have a
simple closed-form distribution for these random variables and hence a double bootstrap
procedure is required.

In general, for any choice of weighting function I'(-;%)), the resulting random
variables {X;(I')},_,, are each distributed under the null according to the distribution
F[X;(T")], producing the process

el-(j) — 0.5‘ ;
(8.153)

Si(w) =Pr(F[x1(I')] <w), wel0,1]. (8.154)

Under the null, Berg (2009) showed that one can empirically estimate the process S (w)
using the sample estimate

n

- 1

Si(w) = — ZH[F Xu(D)] < w]. (8.155)

Then using this emprical process estimator, one can obtain an estimate of the resulting
CvM test statistic

1
2
T :n/ — 5 )) dS, (w), (8.156)
0

which is empirically evaluated using the statistic
A n 7o e J ’ n “ i
T =— \) - 2i+1D)8S | —— ). 8.1
: 3+n—|—1; 1(}1—1—1) (n—|—1)zz(]+ )1<n—|—1> (8.157)

Empirical Copula Distribution Functions. As discussed by Genest ez /. (2009b), two
copula GOF tests based on emprical copula distribution functions are summarized from
those developed by Fermanian ez a/. (2004) and Tsukahara (2005). The first test devel-
oped involves the approximation of the copula distribution using the pseudo data and the

d-variate empirical distribution function given by

Z]I U <, 0 <, ., U(d)gud) (8.158)

foru = (u1,uy,...,uy) € [0,1]%, which is known as the emprical copula, though tech-
nically it is not strictly a copula distribution (see discussions by Deheuvels 1979). Under
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conditions discussed by Fermanian ez a/. (2004) and Tsukahara (2005), the empirical cop-
ula distribution will converge as # — o0 such that C, — C as a consistent estimator
whether the nominal claim holds or not. One may therefore test the hypothesis

Hy: U~ CeC( (8.159)

using a distance-based measure comparing the empirical copula Cn and an estimate Cj_
obtained under the nominal claim. To develop such a hypothesis test, Genest and Rémillard
(2008) considered rank-based versions of the CvM and KS tests with statistics given by

considering the process C, = /n (én — Cf,ﬂ) , which produces a CvM statistic

Sp= [ Cu(u)*dC,(u) (8.160)
[0,1])
or a KS statistic
T, = sup |C,(«). (8.161)
u€[0,1]4

As discussed by Genest and Rémillard (2008), one can be sure that under particular reg-
ularity conditions on the parameteric copula family Cy and the sequence of parameter
estimators {p,} as » — 00, the tests based on S, and 7, are consistent in that they will
reject the nominal claim if the true copula for the data is not in the nominal class. The
evaluation of the empirical test statistic for the CvM test was shown by Berg (2009) to be
estimated by

5, = Z [(“:,, () = Cp, ()] . (8.162)

n
i=1

It is generally not possible to find the asymptotic distribution of the test statistics to find
the tabulation of the p-values for the decision rule on these tests since the distribution will
depend heavily on the nominal claims class of copula distributions Cy. The p-values for
these test statistics can be obtained via a bootstrap procedure (see discussions in Genest

er al. 2009b, appendix A);

Empirical Copula Distribution and Rosenblatt’s Transformation. This idea basically
follows equivalently the idea proposed in the empirical copula process test, except that there
are two transformations applied to the data: the first is that the data are transformed under
a rank-based transform to obtain the pseudo data, and the second is to apply Rosenblatt’s
transformation. The empirical copula process considered then should be compared to the

resulting independence copula as the nominal claim, rather than a particular copula model
family;

* Kendall’s Tau Transformation Tests. Under Kendall’s tau transformation testing approach
to inference on the copula linking  risk processes, the approach considered by Genest ez a/.
(20006) involves the transformation of the data Z via a transformation

Z— V:C(UhUz,...,Ud) (8163)
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with U; = Fy (Z (i)). This transform relates to Kendall’s tau since the expectation of V' is
the affine transformation of the multivariate version of Kendall’s coefficient of concordance
as discussed in Chapter 10 and by Barbe ¢z a/. (1996). As discussed by Berg (2009), the
resulting empirical process for the case of Kendall’s tau tests is to consider the pseudo data
{U,}/_, to construct the process

K(w) =Pt (C(U,Us,...,U) <w), welo,1]. (8.164)

Then the nominal claim is that K (w) = K}, (w), which is copula-specific (see details in
Chapter 10). The resulting empirical estimate is given by

n

K, (w) = nJlr . M1 [&n (u;) < w] (8.165)
i=1

and the resulting CvM test statistic is given by

S, = n / (&) - Kﬁn(w))zdl(n(w), (8.166)

which can be evaluated empirically by the following expression:

n . ' )
AN
S"_;<K” (n+1> Kpn(nﬂ)) : (8.167)

There are also a number of other tests available based on Spearman’s rho, Shih’s test, and
other alternatives; see detailed discussions and references in Berg (2009) and Genest et al.
(2009b).

We finish this section by discussing how one would calculate the p-values in a double

bootstrap procedure, which will be required for most tests that do not admit a distributional
form under the nominal claim for the test statistic that is noncopula family—specific. There
are several approaches one may adopt; we provide briefly the details of the standard example

detailed by Genest ez al. (2009b, appendix A).

8.7.2 DOUBLE PARAMETERIC BOOTSTRAP FOR COPULA GOF

The following procedure allows one to calculate the p-value of tests based on, for instance, the
CvM test statistic via a double bootstrap procedure. This is particularly useful in cases where
one may not be able to calculate the copula distribution in closed form, but generation of data
from this model is trivial and efficient.

Algorithm 8.6 (Double Parameteric Bootstrap for Copula GOF)

o Step 1. Compute the emprical copula according to the expression to obtain the approximation of
the copula distribution using the pseudo data and the d-variate empirical distribution function
given by
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N 1
C, (u) = - ; ]I(U,(l)SulyU,(z)Suz,...,U,(d)Su,,) (8.168)
oru = (w1, uz,...,uy) € [0,1]%, which is known as the empirical copula. Then make an
p p

estimation of the copula parameter p,, using the pseudo dara;

o Step 2. If the copula family under the nominal claim can be evaluated in closed form, then
evaluate the test statistic S, given by

S, = / C()?dC,(u) (8.169)
[0,1)4
via the empirical approximation
. LN 2
5= [Cn () — Cp, (w7)] . (8.170)

i=1
* Step 3. If the copula family under the nominal claim cannot be evaluated pointwise in closed
Jform, then perform the following steps:
1. Generate random sample { U} }!_ | as i.i.d. draws from the distribution Cp, ;
2. Evaluate the empirical copula to approximate Cp, using the estimator

m

Cx (w) = iZH U <. (8.171)
i=1

3. Approximate the test statistic using the two empirically estimated copula distributions via
the original pseudo data {U;}_ |,

=Y [6,1 (U) - ¢ (U)] (8.172)

i=1
o Step 4. Then perform a large number of repetitions (]) of the following steps forj € {1, ..., J}:
1. Generate random sample { Vi J} as i.i.d. draws from the distribution Cpy, and evaluate
i=1 !
their ranks given by {Rf]} ;
7} i=

2. Compute the pseudo data using the ranks to obtain {(7 jj} where each sampel is
V) i=1
obtained by

o 1
= R .. 8.1
W1 (8.173)

3. Evaluate the empirical copula given by

Crj(w) = %ZH [17] < u] (8.174)
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and evaluate the resulting copula parameter estimate p,, j using the pseudo data samples

{ Ui’j}z'ZI;

* Step 5. If the nominal claim copula distribution admits a parametric form that can be evaluated

pointwise, then evaluate the test statistic for eachj € {1,2,...,]} according to
. LN & w72
Se=> 16 (02) = 6, (U2)] (8.175)
i=1

* Step 6. If the nominal claim copula is not available in closed parameteric form to be evaluared
pointwise, then proceed as follows forj € {1,2,...,]}:

° Generate random sample { V;k]*} as i.i.d. draws from the distribution Cj, ;
v Ji=1 "
° Evaluate the empirical copula given by
. 1< .
Gy ) = — Z;]I [VM < u} . (8.176)

° Evaluate the approximation of the test statistic according to

§i = Z [é;,j (ZJ;) - é;;(b;)]z. (8.177)

i=1

o Step 7. Evaluate the p-value for the CoM test using the empirical estimator given by

»= z]:n (5> 8] (8.178)
j=1

S~ =




CHAPTERININE

Flexible Parametric Severity

Models: Basics

9.1 Motivation for Flexible Parametric Severity
Loss Models

In Chapter 5, we provided a description of standard loss distribution models. In the case
of severity models, this has included LogNormal, Gamma, Weibull, Pareto, and Generalized
Pareto models. In the case of frequency-based models, the families of Poisson, Binomial, and
Negative Binomial have been considered. In this chapter, we provide a more flexible set of mod-
els that should be considered by OpRisk practitioners, especially in the modeling of heavy-tailed
loss processes.

In the following subsections, we will first introduce important members of the general
family of heavy-tailed loss models for the severity distribution; some of these will also be mem-
bers of the subexponential family of models or models with different properties of tail variation
as well as flexible skew and kurtosis characteristics. It is typical when modeling such severity
distributions to consider families of models that have members which take positive support
and are typically unimodal and left skewed. The models presented in the following sections
introduce several families of parametric statistical models that are of direct interest in the areas
of OpRisk and insurance modeling. The focus will be on severity models under a Loss Distri-
bution Approach (LDA) structure and the properties of the considered parametric families that
make them amenable to heavy-tailed modeling in OpRisk.

The intention of this section will be to define the key properties of each of these subclasses
of models and explain how they are of relevance to modeling OpRisk loss processes. We will
then consider properties of subexponential family members when incorporated into compound
process models in an LDA framework, illustrating in the process how such models can be
successfully incorporated into OpRisk models.

In particular, we will provide detailed discussions on several important families of severity
models for capturing features of heavy-tailed loss processes. The models covered will include
important basic model choices that have been proposed in OpRisk modeling scenarios in prac-
tice as well as in academic literature:

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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* Generalized hyperbolic (GIG);

¢ Normal inverse-Gaussian (NIG);

¢ Generalized inverse Gaussian (GIG);

* Inverse Gaussian (IG) and the related family of Halphen severity models; and

* Elongation transform quantile function g-and-h severity distribution models.

This chapter will aim to make such models accessible and better understood by practition-
ers so they may consider application of such models in practice. For a detailed discussion on
the properties of heavy-tailed models and additional results relating to their characterization,
estimation, and modeling properties, we refer the interested reader to the advanced coverage in
the companion book Peters and Shevchenko (2015).

9.2 Context of Flexible Heavy-Tailed Loss Models in
OpRisk and Insurance LDA Models

In this section, we will seek to first provide the motivation for such families of models based on
empirical studies on OpRisk banking losses, we will characterize each family of models as well as
present relevant and useful modeling properties of these models. Then we will discuss parameter
estimation under each model as well as properties that may be of relevance for each model
when it comes to incorporation of these models into compound process LDA frameworks.
In several cases, we will provide examples that illustrate how one may incorporate such models
into LDA OpRisk modeling settings. The resulting features of the loss process will be examined
analytically and numerically in the process.

Before entering into the detail of such models, we find it important to understand the
motivation and justifications for considering such models in an OpRisk modeling framework.
A bank adopting an Advanced Measurement Approach (AMA) must develop a comprehen-
sive internal risk quantification system. This approach is the most flexible from a quantitative
perspective, as banks may use a variety of methods and models, which they believe are most
suitable for their operating environment and culture, provided they can convince the local reg-
ulator (BCBS, 2006, pp. 150-152). The key quantitative criterion is that a bank’s models must
sufficiently account for potentially high-impact rare events. As discussed previously, the idea of
the LDA involves modeling the severity and frequency distributions over a predetermined time
horizon, typically annual, as specified in, for instance, the Australian regulators documents, the
prudential standard APS115 (see APRA 2008).

The fitting of frequency and severity distributions, as opposed to simply fitting a sin-
gle parametric annual loss distribution, involves making the mathematical choice of work-
ing with compound distributions. This would seem to complicate the matter, since it is
well known that, for most situations, analytical expressions for the distribution of a com-
pound random variable are not attainable. However, as demonstrated in this section, there
are particular model choices that can overcome this complication as they have severity dis-
tributions which will produce loss processes closed under convolution. These models include
members of the Generalized Hypergometric family of severity models and also the a-Stable
family of severity models; see detailed discussions on such models in Peters and Shevchenko

(2015).
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Typically, the reason for modeling severity and frequency distributions separately and then
constructing a compound process is because some factors affect the frequency, while others may
affect only the severity, see discussions in Panjer (2006). Some of the key points relating to why
this is important in most practical settings are provided here in brief:

1. The expected number of operational losses will change as the company grows. Typically,
growth needs to be accounted for in forecasting the number of OpRisk losses in future
years, based on previous years;

2. Economic inflationary effects can be directly factored into the size of losses through scaling
of the severity distribution;

3. Insurance and the impacts of altering policy limits and excesses are more easily understood
by directly altering severity distributions;

4. Changing recording thresholds for loss events and the impact this will have on the number
of losses required to be recorded is more transparent.

This can easily be understood when modeling is performed for frequency and severity sep-
arately. Alternative modeling approaches that also consider utilization of some of the heavy-
tailed distributions discussed in this chapter have been proposed under a semi-linear credibility
theory and Extreme Value Theory (EVT)-based framework, see discussions Lu ez a/. (2012).
However, the most popular choices for frequency distributions in practical settings are Poisson,
Binomial, and Negative Binomial. The typical choices of severity distribution include exponen-
tial, Weibull, LogNormal, Generalized Pareto, and the g-and-/4 family of distributions (Dutta
and Perry 2006, Peters and Sisson 2006) and recently the a-Stable family (Peters ez a/. 2010).

Remark 9.1 From the perspective of capital calculation, the most important processes to model
accurately are those that have relatively infrequent losses. However, when these losses do occur, they
are distributed as a very heavy-tailed severity distribution such as members of the subexponential
Jamily. Therefore, the intention of the following sections is to present families of models suitable for
such severity distribution modeling, as well as their properties and estimators for the parameters that

specify these models.

The importance of the focus on particular heavy-tailed processes is highlighted in numer-
ous reviews on OpRisk modeling. For instance, it was reported by Gagan (2008) that the total
loss associated with OpRisk has reached as high as USD 96 billion in the US during the finan-
cial crisis in 2008. There have also been numerous OpRisk loss events that have been high-
lighted in the media to support such enormous aggregate figures. Some of the lesser reported
cases have recently come to light with the paper of Lu e¢# 2/ (2012), who paint similar pic-
tures in Chinese banking sectors as have been observed in US and European markets. For
example, they state that typical examples of large OpRisk loss events in recent years in the Chi-
nese banking sector include the Guangdong branch of the Industrial and Commercial Bank
of China (ICBC), which in 2003 lost 740 million yuan; the Jinzhou branch of the Bank of
Communications in 2004, which lost 22.1 million yuan; the Heilongjiang branch of the Bank
of China (BOC) in 2005, which lost 100 million yuan; the Guangdong branch of BOC in
2006, which lost 400 million yuan; and the Qilu Bank in 2010, which lost 100 million yuan.
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These single loss events are significant and indicate the importance of models for loss processes
which will capture such extreme loss events adequately when undertaking capital estimation.

9.3 Empirical Analysis Justifying Heavy-Tailed Loss
Models in OpRisk

In this section, we summarize some of the key findings in an instrumental paper on empirical
features of OpRisk data in US banking institutions from the Federal Reserve Bank of Boston
(see Dutta and Perry 2006). In addition, we discuss and compare these findings with those of
the Chinese banking system recently reported by Lu ez /. (2012).

The first study of US banking institutions considered the 2004 Loss Data Collection Exer-
cise (LDCE) survey data and narrowed down the number of suitable candidate data sets from all
institutions surveyed to just seven institutions for which it was deemed that sufficient numbers
of reported losses were acquired. The somewhat heuristic selection criterion that the authors
utilized was that a total of at least 1000 reported total losses was required, and in addition each
institution was required to have consistent and coherent risk profiles relative to each other, which
would cover a range of business types and risk types as well as asset sizes for the institutions.

The second study on the Chinese banking sector utilized less reliable data sources as they
adopted the approach of Feng ez al. (2012), who collected loss data of Chinese commercial
banks through the national media, covering 1990-2010. In the process of collecting data for
banks, which include the four major state-owned commercial banks (SOCBs), nine joint-stock
commercial banks (JSCBs), 35 city commercial banks (CCBs), 74 urban and rural credit coop-
eratives (URCCs), and 13 China Postal Savings (CPS) subsidiaries. The authors also note that
the highest single OpRisk loss amount is up to 7.4 billion yuan, whereas the lowest amount is
50,000 yuan. In addition, losses measured in foreign currency were converted back via the real
exchange rate when the loss occurred to convert it to the equivalent amount in yuan. Details
of the incidence bank, incidence bank location, type of OpRisk loss, amount of loss, incident
time and time span, and the sources of OpRisk events were noted.

Starting with the first study, the work of Dutta and Perry (2006), we note that in this
paper the authors explored a number of key statistical questions relating to the modelling of
OpRisk data in practical banking settings. As noted by Dutta and Perry (2006), a key concern
for banks and financial institutions, when designing an LDA model, is the choice of model to
use for modeling the severity (dollar value) of operational losses. In addition, a key concern for
regulatory authorities is the question of whether institutions using different severity-modeling
techniques can arrive at very different (and inconsistent) estimates of their exposure. They find,
not surprisingly, that using different models for the same institution can result in materially dif-
ferent capital estimates. However, on the more promising side for LDA modeling in OpRisk,
they find that there are some models that yield consistent and plausible results for different
institutions even when their data differ in some core characteristics related to collection pro-
cesses. This suggests that OpRisk data display some regularity across institutions which can be
modeled. In this analysis, the authors note that they were careful to consider both the modeling
of aggregate data at the enterprise level, which would group losses from different business lines
and risk types, as well as modeling the attributes of the individual business line and risk types
under the recommended business lines of Basel II/Basel II1.

Data were collected from seven institutions, with each institution selected as it had at
least 1000 loss events in total, and these data were part of the 2004 LDCE. Using these data,
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the authors performed a detailed statistical study of attributes of the data and flexible dis-
tributional models that could be considered for OpRisk models. Based on these seven data
sources, over a range of different business units and risk types, they found that to fit all of the
various data sets one would need to use a model that is flexible enough in its structure. Dutta
and Perry (2006) considered modeling via several different means: parametric distributions,
Extreme Value Theory (EVT) models, and nonparametric empirical models. In this chapter,
we focus on the parametric models.

Dutta and Perry (2006) focused on models considered by financial institutions in Quan-
titative Impact Study 4 (QIS-4) submissions; these included one-two-, and four-parameter
models. The one- and two-parameter distributions for the severity models included exponen-
tial, gamma, Generalized Pareto, loglogistic, truncated LogNormal, and Weibull. The four-
parameter distributions included models such as the Generalized Beta Distribution of Second
Kind (GB2) and the g-and-h distribution. These models were also considered Peters and Sisson
(2006) for modeling severity models in OpRisk under a Bayesian framework. In this chapter,
we consider these models as well as generalizations of these families of severity models.

Dutta and Perry (2006) discusss the importance of fitting distributions that are flexible
but appropriate for the accurate modeling of OpRisk data, focus on the following five simple
attributes in deciding upon a suitable statistical model for the severity distribution:

1. Good fir. Statistically, how well does the model fit the data?

2. Realistic. If a model fits well in a statistical sense, does it generate a loss distribution with
a realistic capital estimate?

3. Well-specified. Are the characteristics of the fitted data similar to the loss data and logically
consistent?

4. Flexible. How well is the model able to reasonably accommodate a wide variety of empirical
loss data?

5. Simple. Is the model easy to apply in practice, and is it easy to generate random numbers
for the purposes of loss simulation?

Their criterion was to regard any technique that is rejected as a poor statistical fit for the majority
of institutions to be inferior for modeling OpRisk. The reason for this consideration was related
to their desire to investigate the ability to find aspects of uniformity or universality in the
OpRisk loss process that they studied. They concluded from the analysis undertaken that such
an approach would suggest that OpRisk can be modeled and there is regularity in the loss data
across institutions. While this approach combined elements of expert judgment and statistical
hypothesis testing, it was partially heuristic and not the most formal statistical approach to
address such problems. However, it does represent a plausible attempt given the limited data
sources and resources, as well as the competing constraints mentioned in the measurement
criterion they considered.

We note that an alternative purely statistical approach to such model selection processes
was proposed for OpRisk modeling in the work of Peters and Sisson (2006), whose approach to
model selection was to consider a Bayesian model selection based on Bayesian methodology of
the Bayes Factor and information criterion for penalized model selection such as the Bayesian
Information Criterion.

In both approaches, it is generally acknowledged that accurate selection of an appropriate
severity model is paramount to appropriate modeling of the loss processes and therefore to the
accurate estimation of capital.
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Returning to the findings from the seven sources of OpRisk data studied by Dutta and
Perry (2006), they found that the Exponential, Gamma, and Weibull distributions are rejected
as good fits to the loss data for virtually all institutions at the enterprise, business line, and
event-type levels. This was decided based on formal one-sample statistical goodness-of-fit tests
for these models.

When considering the g-and-h distribution, they did not perform the standard hypothesis
test for the goodness-of-fit, opting instead for a comparison of Quantile-Quantile (Q-Q) plots
and diagnostics based on the five criteria posed earlier. In all situations, they found that the
g-and-h distribution fit as well as other distributions on the Q—Q plot. The next most preferred
distributions were the GB2, loglogistic, truncated LogNormal, and Generalized Pareto models,
indicating the importance of considering flexible severity loss models. In addition, they noted
that the EVT models fitted under a Peaks Over Threshold (POT) framework were also generally
suitable fits for the tails, consistent with the discussions and findings for OpRisk data in the
Chinese banking sector reported by Lu ez al. (2012).

Having motivated the need for flexible families of loss distribution in OpRisk, in the fol-
lowing sections we present, several different families of severity distributional models along
with a description of their features. This will allow practitioners and researchers to gain a deeper
understanding of the flexible classes of models that are available from statistics to utilize in their
LDA modeling exercises and more importantly the features and properties of such models that
make them appropriate for OpRisk settings.

In general, when considering models for severity distributions in OpRisk, it is useful to
recognize that distributional families typically fall into two broad classes of models: those with
general forms for the density or distribution functions; and those that are defined by a family
of transformations of a base distribution, and hence by their quantile function.

9.4 Quantile Function Heavy-Tailed Severity Models

In this section, we discuss a popular distributional family for severity models in OpRisk which
can only be specified via the transformation of another standard random variable such as a
Gaussian. Examples of OpRisk severity models defined through their quantile functions include
the Johnson family with base distribution given by Gaussian or logisitic and the Tukey family
with base distribution Gaussian or logistic. The concept of constructing skew and heavy-tailed
distributions through the use of a transformation of a Gaussian random variable was originally
proposed in the work of Tukey (1977a) and is therefore aptly named the family of Tukey dis-
tributions. This family of distributions was then extended by Hoaglin (1985) and Jorge and
Boris (1984). Within this family of distributions, two particular subfamilies have received the
most attention in the literature; these correspond to the g-and-h and the g-and-k distribu-
tions. The first of these families has been studied in a few contexts in OpRisk (see Dutta and
Perry 2006, Peters and Sisson 2006, Degen ez al. 2007, and Jiménez and Arunachalam 2011,
and the references therein for applications).

Before presenting details of the g-and-h and the g-and-k distributions, we first discuss
the general family of Tukey distributions. Basically, Tukey suggested several nonlinear trans-
formations of a standard Gaussian random variable, denoted here by W ~ Normal(0,1) so
as not to be confused with the annual loss that we denote throughout by Z. The g-and-h
transformations involve a skewness transformation g and a kurtosis transformation h. If one
replaces the kurtosis transformation of the type h with the type k, one obtains the g-and-k
family of distributions discussed by Rayner and MacGillivray (2002). If the h transformation
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is replaced by the j transformation, one obtains the g-and-j transformations of Fischer and
Klein (2004).

We begin with the generic specification of the Tukey transformation given in Defini-
tion 9.1. These types of transformations were labelled elongation transformations, where the
notion of elongation was noted to be closely related to tail properties such as heavy-tailedness
(see discussions by Hoaglin 1985). In considering such a class of elongation transformations
to obtain a distribution, one is comparing the tail strength of the new distribution with that
of the base distribution (such as a Gaussian or logistic). In this regard, one can think of tail
strength or heavy-tailedness as an absolute concept, whereas the notion of elongation strength
is a relative concept. In the following, we will first consider relative elongation compared to a
base distribution for a generic random variable W. It should be clear that such a measure of
relative tail behavior is independent of location and scale. Other properties, that such an elon-
gation transform 7'(+), should satisfy are that it should preserve symmetry 7 (w) = 7T (—w),
and the base distribution should not be significantly transformed in the center, such that
T(w)=w+ O(w?) for w around the mode. Then, to increase the tails of the resulting distri-
bution relative to the base, it is important to assume that 7" is strictly monotonically increasing
transform that is convex, that is, one has the transform satisfying for positive w > 0 that
T'(w) > 0and 7”(w) > 0. One such transformation family satisfying these properties
includes the Tukey transformations.

Definition 9.1 (Tukey transformations) Consider —a  Gaussian ~ random  variable
W ~ Normal(0, 1) and a transformation T (w) given by

X=wT(w)?, 9.1)
Jor a parameter § € R. [

Typically, in the OpRisk setting, it will be desirable when working with such severity
models to enforce a constraint that the tails of the resulting distribution after transformation
are heavier than the Gaussian distribution. In this case, one should consider a transformation
T'(w), which is positive, symmetric, and strictly monotonically increasing for positive values
of W > 0. In addition, it will be desirable to obtain this property of heavy tails relative to
the Gaussian to also consider setting the parameter # > 0. As discussed, a series of kurtosis
transformations were proposed in the literature. The Tukey h, k, and j transforms are provided
in Definition 9.2.

Definition 9.2 (Tukey’s kurtosis transformations, h, k and j types)
The h-type of transformation, denoted by T),(w), is given by

Ty(w) = exp (wz) . 9.2)
The k-type of transformation, denoted by T,(w), is given by
Te(w) = 14 w*. 9.3)

The j-type of transformation, denoted by T;(w), is given by

T(w) = % lexp(w) + exp(—w)] . 9.4)
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™ EXAMPLE9.1  Shape of Tukey Base Elongation Transforms for Kurtosis: h, j, k

In Figure 9.1, we plot the simple base transforms for the h, j and k Tukey elongation
transforms.
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FIGURE 9.1 Base transforms for the Tukey elongation kurtosis transforms

These plots demonstrate that the base j and k transforms have a similar effect
on the tails of the base distribution, which is distinct in the kurtosis introduced by
the h transform. [

To nest all these transformations within one class of transformations, the work of Fischer
(2010) proposed a power series representation denoted by the subscript  given in Equation
(9.5). This suggestion, though it nested the other families of distributions, is not practical for
use as it involves the requirement of estimating a very large (infinite) number of parameters 4;
to obtain the data-generating mechanism:

Tu(w) =Y aw”. (9.5)
=0
As a consequence, this nesting structure was replaced with the general transformation given by
Fischer (2010) which took the form given in Equation (9.6):

(@ +9)" = \"
Typlwia,,7) = (14+°5—5——) , a>05217>0 06

Then it is clear that the original h, k, and j transformations are recovered with
Ty(w) = Ty(w; 1,00,7), Te(w) = Tyu(w; 1,1,7), and Tj(w) ~ Tjp(w;0.5,00,0.5).
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@ EXAMPLE 9.2 Tukey Elongation Transform Density Shapes

Consider the Tukey elongation transform of a base reference random variable
W ~ Normal(0, 1) given by the generic transform super class of Fischer (2010)
according to

2 o B
WH) . a>0,8>1,7>0. (9.7)

Thjk(w;CV?ﬂ”Y) = <1 +

The plots in Figures 9.2-9.4 show the distributions of this general transform relative
to the base Gaussian distribution without truncation, scaling, or translation param-
eters — purely the elongation transform effects. In the first set of plots (Figure 9.2),
we consider the effect of the parameter o in the generalized transform.

In the second set of plots (Figure 9.3), we consider the effect of the parameter
B in the generalized transform.
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FIGURE 9.2 Top left subplot: The density of the 7} transform with base standard Gaussian
distribution and parameters o € {0.05,0.1,0.5,1}, 8 = 0.1, and v = o.1. Top right subplot: The
distribution function of the T} transform with base standard Gaussian distribution and
parameters & € {0.05,0.1,0.5,1}, 3 = 0.1, and v = 0.1. Bottom left subplot: The density of the
T} transform with base standard Gaussian distribution and parameters o € {0.05,0.1,0.5,1},

B = 0.001, and ¥ = 0.001. Bottom right subplot: The distribution of the 7} transform with base
standard Gaussian distribution and parameters « € {0.0s,0.1,0.5,1}, 8 = 0.001, and

Y = o.001
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FIGURE 9.3 Top subplot: The density of the 7}, transform with base standard Gaussian
distribution and parameters @ = 0.0s, 3 € {0.01,0.1,1, 2}, and ¥ = 0.001. Bottom subplot: The
distribution of the T} transform with base standard Gaussian distribution and parameters

a = o0.05, 8 € {o.01,0.1,1,2}, and 7 = o0.001

In the third set of plots (Figure 9.4), we consider the effect of the parameter
in the generalized transform. ]

These examples simply demonstrate the flexible distributional shapes that can be obtained

with the basic elongation transform given by the generalized transform of Fischer (2010) for

different sets of parameter values. In terms of practical severity models, we will now continue
to parameterize these transforms to provide sufficient parameters that may make these models
suitable for OpRisk loss modeling, leading to, for example, the g-and-h distribution family.
Under the 7} superclass of transformations, one can state the following basic prop-
erties. Assuming that W~ Normal(0,1) will produce the severity random variable
X = K(W) = WT)j(W)?, the severity density f¢(-) and quantile functions Qx(+), for loss

random variable X, are given by

1
Qi (@' (%)
_ K)o e x < sup {x:
= )’ f{x:xe S} <x<sup{x:x€S} (9.8)
QX(a):K(Q (OZ)), 046[0,1],

Jilx) =

309
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FIGURE 9.4  Top left subplot: The density of the T}, transform with base standard Gaussian
distribution and parameters o = 0.1, 8 = 0.1, and 7y € {o.01, 0.1, 1}. Top right subplot: The distribution
function of the 7} transform with base standard Gaussian distribution and parameters o = 0.1, 8 = o.1,
and v € {o.or1, 0.1, 1}. Bottom left subplot: The density of the T} transform with base standard Gaussian
distribution and parameters a = 1, 8 = 1, and v = 1. Bottom right subplot: The distribution of the T}

transform with base standard Gaussian distribution and parameters o =1, 8 =1,and v =1

with § the appropriate support of the random variable X and
K/(w) — Thj/e(LU)e_l (T/ajk(w) + GwT;fj,?(w)> .

Other generalizations to the Tukey family include those of Rayner and MacGillivray (2002),
who propose the generalized forms for the quantile functions of the g-and-h and g-and-k fam-
ilies of distributions given in Equations (9.9) and (9.10). The generalized g-and-h and g-and-k
families have 4 > 0 and ¢ is a constant to ensure proper distributions are obtained.

— exp (—gQw(e))
£Qw(a))

Qx(a;a,b,g,k) = a+ bQw(a) (1 + cl — P (_gQWEZ;;> (1+ QW(a)z)/e. (9.10)

Qx(a;a,b,g,h) = a+ bQw () (1 + cl > exp <;bQW(a)2> 9.9)

1 +exp(—

Next, we explain the properties of specific subfamilies of distributions, showing how these
results are derived for the basic g-and-h family.
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9.4.1 G-AND-H SEVERITY MODEL FAMILY IN OPRISK

The family of g-and-h distributions was first scudied by Tukey (1977b) and then considered in
a number of works such as those by Hoaglin (1985), Azzalini (1985), and Fischer ez al. (2007).
The multivariate versions of this model have been discussed by Field and Genton (2006).

The advantage of the g-and-h family for modeling severity in an OpRisk LDA framework
is the fact that it provides a very flexible range of skew, kurtosis, and heavy-tailed features while
also being specified as a rather simple transformation of standard Gaussian random variates,
making simulation of the annual loss under such a model efficient and simple. It is important
to note that the support of the g-and-h density incudes the entire real line, as such, one must
be cautious in OpRisk settings to manage the treatment of the parameter settings to restrict the
probability of negative values as much as possible. This can be achieved either by truncation or
by restriction of the parameter values. In some subfamily members, the g-and-h family auto-
matically takes a positive support such as the Double h—h subfamily. In addition, it has been
shown that the g-and-h distribution can approximate most members of the Personian family
of distributions up to a desired level of accuracy.

9.4.1.1 g-and-h, g, h, and h-h Family Transformations. The g-and-h family can
be considered as composed of three transformations that can produce subfamilies of non-
Gaussian distributions for severity based on the g-distributions, the h-distributions, and the
g-and-h distributional families. The basic specifications in which ¢ and 4 components are
treated as constants are given in Definitions 9.3, 9.4, and 9.5 in terms of transformations of
Gaussian random variables.

Definition 9.3 (g-and-h Distributional family) Ler W ~ Normal(0,1) be a standard Gaus-
sian random variable. Then the loss random variable X has severity distribution given by the g-and-h
distribution with parameters a, b, g, h € R, denoted X ~ GH(a, b, g, h), if X is given by (for
g#0)

—1 2
X=T,,(W;ab,gh):= a—l—bw exp (/ﬂf > . (9.11)
£

L]

The parameters 2 and & are linear transformations whereas the parameters g and 4 can

be significantly extended to polynomials as discussed later, and play an important role in the
skewness and kurtosis properties of the g-and-h family.

Remark 9.2 [n general, one may consider the constants g and b to be more flexibly selected as
polynomials, which would include higher orders of W?2. These polynomials could take the form, for
example, of any integers p and q :

g(w) = ao—i—alw—I—”-—i—a],w”, 9.12)
h(w) = Po + Prw+ - - - + By '
The addition of these polynomial terms can provide additional degrees of freedom ro improve the

ability ro fit data. These have been shown to be significant when modeling certain types of OpRisk
data, as demonstrated by Dutta and Perry (2006) and Peters and Sisson (2006).
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L

EXAMPLE 9.3 g-and-h Elongation Transform Density Shapes (Base Gaussian

Distribution)

Consider the g-and-h elongation transform of a base reference random variable
W ~ Normal(0, 1) given by

W) —1 LW2
XE:EJU%@@gﬁ%:a+b%p@ ) wp<§f>.
g

(9.13)

The plots in Figure 9.5 show the distributions of this general transform relative to the
base Gaussian distribution without truncation, scaling, or translation parameters —
purely the elongation transform effects. In the first set of plots (Figure 9.5), we con-
sider the effect of the parameters g and h in the generalized transform.
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FIGURE 9.5 Top subplot: This plot shows the effect of the skewness parameter g on the
elongation transformed severity distribution versus the base Gaussian distribution with

g € {o.1,0.5,0.75,1}. In this case, the other parameters were set to 2 =3, =1, and 5= 0.001.
Bottom subplot: This plot shows the effect of the kurtosis parameter 4 on the elongation
transformed severity distribution versus the base Gaussian distribution with 4 € {0.01,1,5}. In

this case, the other parameters were set to 2=0, =1, and g=1

In the second example (Figure 9.6), we demonstrate the effect of changing the base distri-

bution to a LogNormal density model instead of the Gaussian distribution.
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L

EXAMPLE 9.4 g-and-h Elongation Transform Density Shapes: Base Gaussian

versus Logistic Distribution

Consider the g-and-h elongation transform of one of two base reference random
variables W ~ Normal(0, 1) or W ~ LogNormal(0, 1) given by

_ 2
X =T, (W;a,b,g,h) = a+ b W) =1 (“;V ) . (9.14)
g

The plot in Figure 9.6 shows the distributions of this general transform rela-
tive to the base Gaussian distribution without truncation, scaling, or translation
parameters — purely the elongation transform effects. In the first set of plots, we
consider the effect of the parameter g and h in the generalized transform.
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FIGURE 9.6 Top left subplot: This plot shows the effect of the skewness parameter g on the
elongation transformed severity distribution versus the base Gaussian distribution with

g € {o.1,0.5,0.75,1}. In this case, the other parameters were set to 2 = 3, b = 1, and

h = o.oor. Top right subplot: This plot shows the effect of the kurtosis parameter 4 on the
elongation transformed severity distribution versus the base Gaussian distribution with

h € {o.o1,1,5}. In this case, the other parameters were set to 2 = 0, b = 1, and g = 1. Bottom
left subplot: This plot shows the effect of the skewness parameter g on the elongation
transformed severity distribution versus the base LogNormal(0,1) distribution with

g € {o.1,0.5,0.75,1}. In this case, the other parameters were set to 2 = 3, b = 1, and

b = o.oo1. Bottom right subplot: This plot shows the effect of the kurtosis parameter 4 on the
elongation transformed severity distribution versus the base LogNormal(0,1) distribution with

h € {o.o1,1,5}. In this case, the other parameters were set to 2 =0, 6 =1, and g =1

313
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Remark 9.3 Dutta and Perry (2006) recommended that a reasonable range of parameter values
Jor the parameters g and b was to restrict them to be g, h > 0 and in particular the enterprise level
modeling they performed involved the ranges g € [1.79,2.30] and b € [0.10,0.35].

Within this family of g-and-h distributions, one can also define the subfamilies of distribu-
tions given by the g and the h families. Again, we present these models in their simplest form,
with constant g or h, though in practice one may include polynomials in W for such models.

Definition 9.4 (g Distributional Family) Let W ~ Normal(0,1) be a standard Gaussian ran-
dom variable. Then the loss random variable X has severity distribution given by the g distribution
with parameters a, b, g € R, denoted X ~ G(a, b, g), if X is given by (for g # 0)

exp (gW) — 1

X=T,(W;a,b,g):==a+b (9.15)

Remark 9.4 Note that the g-distribution subfamily corresponds (in the case that g is a constant) to
a scaled LogNormal distribution.

Definition 9.5 (h Distributional Family) Ler W ~ Normal(0, 1) be a standard Gaussian ran-
dom variable. Then the loss random variable X has severity distribution given by the h distribution
with parameters a, b, h € R, denoted X ~ H(a, b, h), if X is given by

2
X=T,(W;a,b,h) :=a+ bWexp (lﬂf ) . (9.16)

In addition, one may obtain an asymmetric class of /-4 distributions studied by
Morgenthaler and Tukey (2000, section 2.2), Headrick and Pant (2012a and 2012b). The
asymmetric /-4 distribution transformation is given in Definition 9.6.

Definition 9.6 (Double »-4 Distributional Family) Let W ~ Normal(0,1) be a standard
Gaussian random variable. Then the loss random variable X has severity distribution given by the
unit h—bh distribution with parameters by, h, € R, denoted X ~ HH (b;, b,), if X is given by

1 2
W exp Eb[W , W<o,
X = Th/, (W; }]1, hr) = 1 (917)
W exp <2/a,W2> , W>0,

Jorbh, > 0 and by > 0. ]

In addition to these families of Tukey transformations discussed, there have been modi-
fied g-and-h families developed based on L-moments. The L-moment Tukey transformation
families developed by Headrick and Pant (2012b) are based on transformation of a random
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variable which involves a logistic distribution that is, the distribution of random variable W is
changed from the standard Gaussian to the following form W ~ F(w; p, s), which has density,
distribution, and quantile functions

) — e (=)

S s(U+exp(—(w—p)/s)"
1

T texp(—(w—p)fs)

), a € [0,1],

F(w) 9.18)

—

me):ﬂ+dn(1a

forallw € R, 1 € R, and s € R*. The motivation for modifying the distribution transformed
under the Tukey structure was related to the fact that inference on the parameters was to be
performed with L-moments and L-correlation. The four classes of modified Tukey quantile
function transformations are then given in Definition 9.7

Definition 9.7 (L-Moment Tukey Transforms) Let W ~ Logistic(p = 0,5 = 1) be a stan-
dard logistic distributed random variable. Then the loss random variable X has severity distribution
given by the L-moment Tukey family as follows:

1. The y—« Tukey family transformation is given by
X =T,,.(W)=~""(exp(yW) — 1) exp(x| W]). (9.19)

This is the analog of the g-and-h Tukey transform for the logistic distribution case for v # 0
and k > 0;

2. The k—kp Tukey family transformation is given by
Wexp (kr|W|), W<0

X = T,.@,J,.{R(W) = (9.20)
W exp (| W), W >0,

This is the analog of the double h—h Tikey transform for the logistic distribution case for ki > 0,
kg > 0, and kK # Kp.

L]
Algorithm 9.1 (Simulating Losses from a g-and-h Severity Model)
1. Draw a standard Gaussian random variate: Z; ~ Normal(0, 1);
2. Given p, q, and coefficients {c;}o_, and {B;}7_,, evaluate the polynomials
g(%):ao+alw+~~+a],w/f ©.21)

b(W3) = o+ Bi Wit -+ By W,
3. Then, given parameters a, b and polynomials g (W;) and h (W;), evaluate transformation

exp<g<uz>uz>—-1exp<h<“ﬂ>w?>.

Xi=a+b
g (W) 2
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9.4.1.2 g-and-h, g, h, and h-h Family Distribution, Density, and Statistical
Properties. Next we discuss properties of the g-and-h family and in particular different
ways that people have sought to evaluate and present the distribution and density functions for
the g-and-h family. In general, it will be informative for this section to remind the reader of the
following basic property.

Proposition 9.1 If X is a continuous random variable distributed according to distribution
X ~ F(x), which is monotonically increasing on support Supp {F(x)} = {x:0 < F(x) < 1},
then, in this general case, one can show that the quantile function Qx (o) = F~' () fora € [0, 1]
determines the relationship between the random variable X and any other continuous random vari-
able with monotonically increasing distribution, say W ~ G(w). The relationship is then specified
through the transformation

XL (G(W)). (9.22)

When the random variable of W is standard Gaussian as utilized in the g-and-h family,
one can show that for any continously differentiable transformation X = 7'(W), X will have
a density given in Equation (9.23) with respect to the standard Gaussian density ¢(-). In this
case, one can also observe that when the transform 7°(+) increases rapidly, the resulting density
is heavy-tailed. For instance, a linear growth in the function 7°(+) results in tail behavior for the
distribution of random variable X being equivalent to a Gaussian:

fr(x) = m. (9.23)

As observed previously, the Tukey family has a transformation 7°(-) given in Definition 9.1:

X=T(W)=W <§W2> . (9.24)

Note: The original Tukey h-type transformation had # = 1 and an addition scaling of 1 as
indicated earlier. This transformation has the property that its derivative

d 1
T (w) = (14 hw?) exp <2/Jw2> >1 (9.25)

forall » > 0.

In addition, in the following discussions, it will be useful to recall the following properties
of the g-and-h family of distributions (see discussions in Dutta and Babbel 2002):

1. The g-and-h transformation can be shown to be strictly monotonically increasing in its
argument, that is, for all w; < w; one has Ty (w:) < Ty (w,);

2. If =0, then the g-and-h transformation satisfies the condition 7_, (W)= —

Ty p(—=W).

Degen et al. (2007) observed that one can specify the distribution function of the g-and-h
distribution as given in Definition 9.8 via a composite function. Note that the scale parameters
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a and 4 can be dropped without loss of generality. The particular representation developed
by these authors was convenient to allow one to obtain a closed-form representation of the
Value-at-Risk for such a random variable.

Definition 9.8 (g-and-h Distribution Function (constant g and 4 with » > 0)) Consider
the g-and-h distributed random variable X ~ GH(a = 0,b = 1,g,h) with constant param-
eters g and h > 0. The distribution function can be specified according to the following composite
Sfunction:

Fx(x;g.h) = @ (£ ' (x)), (9.26)

where O(-) is the standard Gaussian distribution and the function k(x) is specified by

k(x) = exp(ix)—l exp (lﬂzxz) . (9.27)

In this parametrization, the parameter g will control the skew of the distribution both in
terms of the sign and the magnitude, while the parameter 4 will control heaviness of the tails
and is related directly to the kurtosis. This will be discussed further when the regular variation
properties of this model are explored. Under the restricted parametrization for the distribution
given in Definition 9.8, one can obtain the quantile function given in Definition 9.9.

Definition 9.9 (g-and-h Quantile Function (constant g and b with b > o)) Consider  the
g-and-h distributed random variable X ~ GH(a = 0,b = 1,g,h) with constant parameters
g and b > 0. The quantile function for a level & € [0, 1] can be specified according to the following
representation:

Qx(a) :=qx(asg,h) = Fy'l(osg,h) = k (@71(04)) , (9.28)

where O(-) is the standard Gaussian distribution and the function k(x) is specified by

_ 2
b(x) = M?l exp (}”2“> . 9.29)

Headrick et /. (2008) approach the problem of specification of the distribution and den-
sity for generic parameterizations of the g-and-h family from an analytic geometry perspec-
tive; this can be seen to be an analogous representation of the approach discussed earlier by
Degen ez al. (2007). In fact, the representations they obtained were equivalent with equivalent
parameter restrictions. We briefly mention these results here as they allow for an alternative
perspective on how one obtains the results in Definitions 9.8 and 9.9. To proceed with the
representation developed by Headrick et a/. (2008), one needs to define ¢p(w) = fir(w) and
®(w) = Fy(w), respectively, to be the curves that characterize the standard Gaussian density
and distribution. Then consider that w is actually comprised of two components (a vector) with
an additional auxiliary variable such that w = (x, ) will produce the following mappings of
the curves fiy(w) and Fiy(w) according to the following relationships:
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fw(w) 1w — R == fiy (w, fir(w)), 9.30)
Fy(w) : w— R? := Fy (w, Fy(w)) . .
Given these mappings, one may then define analytically the form of the quantile function for
the g-and-h distribution according to the expression given in Equation (9.1), which we reiterate
below to present the quantile function notation Qx(w) of the g-and-h loss random variable
given by

_ 2
q(w; g, h) = m(‘g:})l exp (@) . (9.31)

Here, g(w; g, b) is a strictly increasing monotonic function in w with the parameter restrictions
¢ # 0and » > 0. Using these definitions Headrick ez /. (2008) then provide a specification
for the density and distribution functions for the g-and-h family as detailed in Definition 9.10.

Definition 9.10 (g-and-h Distribution and Density Functions) Consider the g-and-h dis-
tributed random variable X ~ GH(a = 0,6 = 1,g, h) with constant parameters g and h > 0.
The density and distribution functions associated to the quantile function q(w; g, h) can be specified

according to the following composite functions based on the auxiliary variable w = (x, y):

o 2 _ , fiv(w)

Fo q: q(W;gv /7) — R := q(W;g,/i)(w) = Fq(W;gJJ) (”](W;gv /")aFW(w))v

where q' (z; g, h) denotes the derivative of the quantile function given by

d [exp(gz) — 1 hz?
/(e —
q (zagv /7) T dz |: g €xXp 2

- +L22 +é Lzz o)1) (9.33)
=exp gz + — gzexp 3 exp(gz .

One advantage of the specification of the distribution and density functions with regard
to a particular quantile function is that the statistical properties of these distributions can now
be easily studied. For instance, the mode and moments of the distribution can be characterized.
The result in Proposition 9.2 provides the mode for the g-and-h distribution in Definition 9.10.

Proposition 9.2 (Mode and Median of the g-and-h Density) Consider the g-and-h distributed
random variable X ~ GH(a = 0,6 = 1, g, h) with constant parameters g and h > 0. The mode
of the density is located at the value w = Mode [W), which produces a maximum value of the density
at fy(wg.p) (W) and can be found as the solution to the following equation when w = w, which is
selected to satisfy

% {%] =0. (9.34)
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The median of the g-and-h distributed random variable is then given by wy.s = Median [W| and
will correspond to the median being the limit of im,,_,o g(w; g, h) = 0. Therefore, one sees that
in the general g-and-h distribution the median of the data set will be the parameter a.

These can be found numerically and for the mode the solution obtained will be guaranteed
to be a globally optimal solution (see discussion by Headrick ez 2/. 2008). It may also be noted
that in the case of the h-type and double h-type Tukey distributions, the median and mode are
at the origin (for 2 = 0).

In addition, one may now express the moments of the g-and-h distributed random variable
according to the results in Proposition 9.3. It was noted by Dutta and Babbel (2002) that since
the g-distribution is a horizontally shifted LogNormal distribution, then the moments of the
g-distribution take the same form as those of a LogNormal model with appropriate adjustment
for the translation. The h-distributional family is symmetric (except the double h-h family);
consequently, all odd-order moments for the h-subfamily are zero.

Proposition 9.3 (Moments of the g-and-h Density) Consider the g-and-h distributed random
variable X ~ GH(a = 0,b = 1,g,h) with constant parameters g and h > 0. The r-th inte-
ger moment of the distribution in Equation (9.32) is given with respect to the standard Normal
distribution and the r-th power of the quantile function q(w) by

E[X'] = E[g(W;g, 4) /qwg, ) for () duo 9.35)

which will exist if b € [ ) One can also observe more generally that under the g-and-h transform
the following identity holds with regard to powers of the standard Gaussian, W ~ Normal(0, 1),
such that

X" =T, ,(W;a,b,g,h)"
= (zH- bTep)(Wia=0,b= l,g,/a))”

i (9.36)
=2 (n”'l)'l T, (Wia=0,b=1,g,h),
which will produce moments given by
EX"| =E[(a+bTyy(W;a=0,6=1,15)"]
:Z(n—n'z)'zb [T, )(Wia=0,6=1,g,h)] . ©.37)

i=0

Furthermore, it was shown by Dutta and Babbel (2002) that when it exists one can obtain the
general expression

Zi:o(_l)r(i—l}')!r! exp ((2i(_ly—)i§) )
(1 —ih)g

E [T, y(Wia=0,b=1,gh)] = , (9.38)
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which would produce the following four moments in closed form:

2

EX] =E[g(W;g h)] = [QXP (252/9) - 1} {g 1_4_1

E[X*] =E [9(W;g,h)] = [1 —2exp (2 4/7> (
2 g

E[X’] =E[q(W;g.h)] = [36XP (256/7) texp (2 6/9)

~3exp (12_g2 ) - 1} [gﬂ/@r

3h

) vl

E [X] =E [¢(W;g, /)] = s(g, ) exp (18_g24h> IS 1—4;;]_1.

with the function s(g, h) being given by

6g2 8g2 7g2 15g2
=1 —4 —4 .
s(g, h) <+6exp<4b_l>+exp<4h_1 exp (" e

Remark 9.5 These results allow one to perform model estimation via moment matching of model
moments to empirical moments of the loss data.

As a consequence, one can easily then find the skew, kurtosis, and coefficient of vari-
ations for the g-and-h distribution as well as the subfamilies for the g-distributions and
h-distributions. Note that one can also develop variations of the g-and-h distribution density
and distribution functions will which avoid the restrictions specified in Definitions 9.8 and
9.10. In addition, there are numerous authors who have studied the generalized properties of
quantile-based functionals of asymmetry and kurtosis (see examples in Definition 9.11; also
see Balanda and MacGillivray 1988, 1990, Rayner and MacGillivray 2002, and Balanda and
MacGillivray 1988).

Definition 9.11 (Generalized Skewness and Kurtosis Functionals in OpRisk) /7 consider-
ing the generalizations of the skewness and kurtosis for transformation-based quantile function sever-
ity models, one can utilize the generalized specifications given for the skewness functional, for a given
distribution Fx (x) with respect to its quantile function Qx (x) by

Qx(a) + Qx(1 —a) — 2Qx (3)

= , a€(0,1). 9.39)
=T Gea) - 1~ ) 0.1 (
In addition, there is the spread functional given by
Sr = Qx(a) — Qx(l — a), a € (0, 1). (940)
=

Such measures were discussed by Balanda and MacGillivray (1990) and it can be shown
that |yF(a)| < 1. In the case of the g-and-h family of severity models, one would obtain the
forms given in Definition 9.12.
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Definition 9.12 (Generalized Skewness and Kurtosis for g-and-h Family) Consider the g-
and-h distributed random varaible X ~ GH(a = 0,6 = 1, g, h) with constant parameters g
and b > 0 and a quantile function for a level o € [0, 1] given by

Qx(a;g,h) = FX_l(oz;g7 h) =k (<I>_1(a)) , (9.41)
where O(-) is the standard Gaussian distribution and the function k(x) is specified by
_ 2
b = SR L (}”2‘) . 9.42)
4

Then the generalized skewness and kurtosis are given by
Sp = Qx(a) = Q(1 - )
1 B
_ exp (g(I) (a)) 1 exp (;hq)l(a)Z)
g

_exp(g@‘l(l—a))—lex Loo—111— a2
P p (25@ (1-a) )
Qx (@) + Qx(1 — @) —2Qx (5)

Qx(a) — Qx(1—a)
exp(g2 ! (@)1 exp (%/J@’l(a)z) oxp(g? ! (1=0)) 1 exp (%}@*1(1 — a)z)

— g g
B Sr * Sr

) —eXp(g(big(o's))_l exp (16271(0.5)%)
_ . :

VF =

9.4.2 TAIL PROPERTIES OF THE G-AND-H, G, H, AND H-H
SEVERITY IN OPRISK

In terms of the tail behavior of the g-and-h family of distributions, the properties of such sever-
ity models have been studied by numerous authors such as Morgenthaler and Tukey (2000)
and Degen ez al. (2007). In particular, the tail property (index of regular variation) for the
g-and-h family of distributions was first studied for the h-distribution by Morgenthaler and
Tukey (2000) and later for the g-and-h distribution by Degen e al. (2007) (see Proposition
9.4). In addition, the second-order regular variation properties of the g-and-h family of distri-
butions was studied by Degen ez a/. (2007). In order to study the properties of regular variation
of the g-and-h family of loss distribution models it is first important to recall some basic defi-
nitions. First, we note that a postive measurable function £(-) is regularly varying if it satisfies
the conditions in Definition 9.13, see discussion in Karatzas and Shreve (1991).

Definition 9.13 (Regularly Varying Function) A positive measurable function f (-) is reqularly
varying (at infinity) with an index o € R if it satisfies:

o It is defined on some neighbourhood [xy, 00) of infinity; and
o [t satisfies the following limiting relationship
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) .
lim Zr5 =A% YA>o. (9.43)

We note that when o = 0, then the function () is said to be slowly varying (at infinity).
From this definition one can show that a random variable has a regularly varying distribution
if it satisfies the condition in Definition 9.14, see further discussion in detail in Peters and

Shevchenko (2015).

Definition 9.14 (Regularly Varying Random Variable) A loss random variable X with distri-
bution Fx(x) taking positive support is said to be reqularly varying with index o > 0 if the right
tail distribution Fx (x) = 1 — Fx(x) is reqularly varying with index —cv. L]

The following important features can be noted about regularly varying distributions as
shown in Theorem 9.1, see detailed discussion in Bingham ez 2/ (1989).

Theorem 9.1 (Properties of Regularly Varying Distributions) Given a loss distribution Fx (x)
satisfying Fx(x) < 1 for all x > 0, the following conditions on Fx(x) can be used to verify that it
is regularly varying such that Fx(x) € RVy:

o If Fx(x) is absolutely continuous with density fx(x) such that for some o« > 0 one has the

limit

o xf(x)
Xlgrolo Py (o) =aq. (9.44)

Then fx (x) is regularly varying with index —(1 + ) and consequently Fx (x) is regularly
varying with index — oy

o If the density fx(x) for loss distribution Fx(x) is assumed to be reqularly varying with index
—(1 4 «) for some o > 0. Then the following limit,

() (9.45)

lim = = a,
X—>00 FX(x)

will also be satisfied if Fx(x) is regularly varying with index —c for some o« > 0 and the
density fx (x) will be ultimately monotone.

Many additional properties are described for such heavy tailed distribution and density
functions. Here we will udilise the above stated conditions to assess the regular variation prop-
erties of the right tail of the g-and-h family of loss models. In particular we will see if a single
distributional parameter characterizes the heavy tailed feature as captured by the notion of
regular variation index, or if the relationship is more complex.
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Proposition 9.4 (Index of Regular Variation of g-and-h Distribution) Consider the random
variable W ~ Normal(0, 1) and a loss random variable X, which has severity distribution given
by the g-and-h distribution with parameters a,b,g,h € R, denoted X ~ GH(a,b,g,h), with
h > 0 and density (distribution) f (x) (and F(x)) . Then the index of regular variation is obtained
by considering the following limit

- xf (x) — lim & (u) (exp(gu) — 1) 1
A F) e (1= B(a) (goxplgn) + hlexplgn) — 1)) b ©.46)
for u = k1 (x) where the function k(x) is given by
k(x) = exp(ix)—l exp (/}3262> . (9.47)

Hence, one can state that F € RV_

=

The asymptotic tail behavior of the h-family of Tukey distributions was studied by
Morgenthaler and Tukey (2000 proposition 1) and is given in Proposition 9.5.

Proposition 9.5 (h-Type Tail Behaviour) Consider the h-type  transformation,  where
W~ Normal(0,1) is a standard Gaussian random variable and the loss random variable
X has severity distribution given by the h-distribution with parameters a,b,h € R, denoted
X ~ H(a, b, h) according to

2
X=T,(W;a,b,h):=a+ bWexp (lﬂf ) . (9.48)

Then the asymptotic tail index of the h-type distribution is then given by 1/ h. This is equivalent to
the g-and-h family for g # 0.

This shows that the h-type family has a Pareto heavy-tailed property, hence the restriction
that moments will only exist on the order of less than 1/4. The g-family of distributions can be
shown to be subexponential in the tail behavior but not regularly varying. It was shown Degen
et al. (2007, theorem 2.2) that one can obtain an explicit form for the function of slow variation
in the g-and-h family as detailed in Theorem 9.2.

Theorem 9.2 (Slow Variation Representation of g-and-h Severity Models) Consider  the
random variable W ~ Normal(0, 1) and a loss random variable X, which has severity distribution
given by the g-and-h distribution with parameters a, b,g,h € R, denoted X ~ GH(a, b, g, h),
with g > 0 and b > 0 and density (distribution) f (x) (and F(x)) . Then F(x) = x~ /" L(x) for
some slowly varying function L(x) given as x — 00 by

, 1/h
L) — b [exp ('/57 g2+ 2hIn(gx) — ‘%) — 1} o 1 0.4
(x) = V2mgt/h g2 +2hIn(gx) — ¢ ( - <1nx>> . .

From this explicit Karamata representation developed by Degen ez al. (2007), it was also
shown that one can obtain the second-order regular variation properites of the g-and-h family.
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The implications of these findings are that the g-and-h distribution, under the parame-
ter restrictions ¢ > 0 and 4 > 0, belongs to the domain of attraction of an Extreme Value
Distribution, such that X ~ GH(a, b, g, b) with distribution F satisfying F € MDA (H.,)
where v = / > 0. As a consequence, by the Pickands—Balkema—de Haan Theorem, dis-
cussed in detail in companion book Peters and Shevchenko (2015), one can state that there
exists an Extreme Value Index (EVI) constant 7y and a positive measurable function ((:)
such that the following result between the excess distribution of the g-and-h (denoted by
F,(x) = Pr(X — u < x|X > u) and the generalized Pareto distribution (GPD) is satisfied
in the tails

lim sup |F,(x)— G, g(n(x)| =0. (9.50)
”TOOxE(O,oo)| ) 7 )( )‘

For discussion on the rate of convergence in the tails, see Raoult and Worms (2003) and the
application of this theorem to the g-and-h case by Degen ez a/. (2007 lemma 3.1) where it is
shown that the order of covergence is given by O (Aexp (V~'(u))) for functions

V) :=F " (exp(—x)),
_ V"(Inx) 9.51)
() = V'(Inx) -

A

Hence, the conclusion from this analysis regarding the tail convergence of the excess distribution
of the g-and-h family toward the GPD G, g(,)(x) is given explicitly by

In Z(x) V- 1 .
o \/Eh% ol 0 (m (kl(x))> , % — 00. (9.52)

Remark 9.6 The implications of this slow rate of convergence are that when data for severities
are obatained from a loss process, if a goodness-of-fit test suggests that one may not reject the null
hypothesis that these data came from a g-and-h distribution (under a composite test as described in
Chapter 8), then one should avoid performing estimation of the extreme quantiles, such as those used
to measure the capital via the Value-ar-Risk, via methods based on Peaks Over Threshold (POT) or
Extreme Value Theory (EVT) based penultimate approximations.

9.4.3 PARAMETER ESTIMATION FOR THE G-AND-H SEVERITY
IN OPRISK

There have been many proposed methods for performing parameter estimation in the g-and-h
family of distributions. In this section, we survey a few of the possibilities. Dutta and Babbel
(2002) suggest a method of parameter estimation for constant ¢ and / parameters based on
percentile matching. This involves recognizing the relationships between data percentiles and
the g-and-h parameters given in Proposition 9.6.

Proposition 9.6 (g-and-h Distribution Percentile Matching Estimation) Consider a g-and-
b distributed random variable X ~ GH(a, b, g, h) and a sample of n loss data points with order
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statistics {X(h ) };;1 that will be used to fit the g-and-h distribution. Then the location parameter
is given by the following percentile:

&:Median{Xl,Xz,.. X} X(L%J ) (953)

Then the value of the g parameter is given by the following estimator (based on the p-th percentile
given by p = iforone ormorei € {1,2,...,n}) given by

1 Xi—p — Xos
= In| =/ 22 .54
g[’ VVpn<X0.S_)(p (95)

with W, = inf{w : ®(w) > p} the p-th percentile of a standard Normal and X, = inf{x :
F(x) > p} denotes the p-th percentile of the sample loss data. It would then be suggested to take
a robust estimate of a set of g,, for a range of percentiles taken from p € {pr, ... ,pu} and then to
Jform the median

g = Median {gL, v ,gU} . (955)

Then, given g, one can estimate the b parameter and the b parameters using the relationship

2 1 g (Xp - lep)
= —1 - . .
G (bexp W) — exp (—¢W)) 30

From this, the estimates of g and a would then allow one to select a range of percentiles taken from

pE€ApL, - put and then regress Y, = In (exp (g‘gé)?:i;zlgw )> ﬂgazmt the quadrative of the

corresponding percentiles of standard Gaussian with scaling given by -+, the resulting intercept of
the regression would be an estimate of \0.(b) and the resulting gradient would be an estimate of b.
Given a selection of k percentile levels in [pr, py), the resulting estimators would each be given by

k w; k k
h

2 2\ 2
S (£ -18n ) 9.57)
SR L 1 <&
_ - - 2
b_kg: MZ;%'

In addition, one could perform moment-based matching to estimate the parameters. In
this regard, there have been two approaches proposed: one which utilizes the expressions derived
earlier for the first four moments that define a system of four nonlinear equations that are solved
numerically via root search (see Mahbubul ¢z /. 2008 for the discussion on the solutions for g
and /) and the other (Jiménez and Arunachalam, 2011, section 2.2.2) for the simple moment-
based estimators for location and scale parameters « and .

Remark 9.7 Note, this simple matching moment-based approach is not particularly recommended
as in cases in OpRisk, where these models are of major interest, one is typically not only interested
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in light-tailed models for the severity but instead the heavy-tailed high kurtosis severity models are con-
sidered. In such cases, it may be that the population moments may not even be finite, though the
sample moments will always be finite. The consequence of this is that no matter how many data are
utilised to estimate the parameters, they will always be biased, or perhaps not well defined under
the system of moment conditions.

The more robust alternative to simple moment matching, especially when the tails of the
empirical distribution of the data suggest heavy-tailed features, such as in situations where
parameter estimates of / will be large positive values, then it will be numerically more robust to
consider an L-moments based approach such as those proposed by Headrick and Pant (2012b).
In the advanced text Peters and Shevchenko (2015), we detail extensively the properties of
L-moment estimators for EVT models; we therefore defer the reader to this section for details
on the estimators we present in Proposition 9.7. Before presenting these results, we briefly recall
the definition of the sample L-moments (see Greenwood ez al. 1979).

Definition 9.15 (Sample L-Moments) Consider a sample of n observed losses denoted by random
variables {X;}',_ with associated order statistics in increasing order { X; . }ln: 1+ Then the first four
sample L-moments from the data are given by

b = my,
b = 2m — my,
(9.58)
[3 = 67}12 - 67’)’11 + my,
14 = 207}’13 - 3077’12 + 127}’11 — My,
with the sample probability moments m; s given by
1 n
my — ; ZX(j,n)a
=1
¢ (G-1DG-2) 0
J - YU z
mip = — Z X(]a”)
2 D=2 (=)
|

Next we will define the population L-moments in terms of the parameters of the
L-moment 7 — x Tukey family as well as the asymmetric L-moment x; — kg Tukey fam-
ily, which can be matched to the sample-estimated L-moments and then utilized as a system of
nonlinear equations to be solve numerically via root search for the resulting L-moment param-
eter estimates.

Proposition 9.7 (L-Moment Estimators for the L-Moment vy —k Tukey Family) Consi-

der a y-and-k distributed random variable X ~ F(vy, k) and a sample of n loss data points with
order statistics {X( i) }:’:1 that will be used to fit the y-and-k distribution. Then under the restric-
tions that v + k < 1, k < 1, and 1 + v > K, which allow the first two L-moments to be
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[finite, one obtains the following rwo equations for the population first two L-moments Ny and X,
given by:

(—y = R)b + (v — k)b + (= + K) b3 + 2kbs + (7 + K)bs — 2kbs

A= 5
2 2 7 2 (960)
3 = 2y = (V+K)? i + (v = K) (b — b3) + (v + K)?bs
2 2’}/ )
where by, by, . . ., he are defined with respect ro the Harmonic number functions with the following
arguments according to
(1 1
h=H E(_l —7—5)} , h=H [2(—1—1—7—%)}
(1 1
by =H 2(’)/—%):| , h4=H|:2(—1—/€):| (9.61)
[ 1 1
/75:[—[ -_2(7+’€):| ) }]6:H|:_2K’:| )
with the harmonic number functions defined for any x > 0 by
= 1
Hx] '_x;k(er/e)' (9.62)

One can then estimate sample L-moments that can be matched to the population moments to solve
numerically for the parameters.

Remark 9.8 As noted by Headrick and Pant (20126, p. 9), expressions are also developed for the
population L-skewness T5 and L-kurtosis T4 should one wish to utilize these for L-moment matching
parameter estimation.

Analogously, the solutions for the first two population L-moments for the class of k;— kg
Tukey transformations were detailed by Headrick and Pant (2012b) and can be used to perform
parameter estimation, as detailed in Proposition 9.8.

Proposition 9.8 (L-Moment Estimators for the L-Moment k; — kg Tukey Family) Consi-
der the asymmetric Kr-and-Kk g distributed random variable X ~ F(k 1, kg) and a sample of n loss
data points with order statistics {X( in } ;1:1 that will be used to fit thek -and-k g distribution. Then
under the restrictions that ki < 1 and kg < 1, which allow the first two L-moments to be finite,
one obtains the following two equations for the population’ first two L-moments Ny and X, given by

1
Al = Z [2p5 — 2p6 — 2p7 + 2ps — Kipo + Krpio + Krp11 — Krp12)

1
Ay = i [4 + k1 (—4ps + 4ps + kL (po — p10)) + 4 + ke (—4p7 + 4ps + Kr (P11 — p12))]
(9.63)
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where ps, pe, - - . , p12 are defined with respect to the polygamma functions with the following argu-

ments according to

_plo L A _ _hL _plo L_nr
PS—P_072 2:|7 PG_P|:0a1 2:|a P7_P|:072 2:|
_plo1_ "R — L./ — _ ke
ps =P 0,1 2}, pg—P{LZ 2], plo_P[m 2} (9.64)
_pl Lo _ _ hr
Pnp_l,zz}, Plzfp[ll 2},
with the polygamma functions defined by
L m+1
Plm, x| == ; x—l—/e’”""l (9.65)

One can then estimate sample L-moments that can be matched to the population L-moments to solve
numerically for the parameters.

There are also approaches based on numerical maximum likelihood applied to the
estimation of parameters in the g-and-h family of models (see discussions by Rayner and
MacGillivray 2002).

Often in practice, the amount of observed data may not be large, however there may be
reasonable expert opinion available. As such, it is often beneficial to adopt a Bayesian estimation
framework, as detailed in the next section.

9.4.4 BAYESIAN MODELS FOR THE G-AND-H SEVERITY IN OPRISK

In this section, we consider two different approaches to constructing Bayesian models for the
g-and-h family of severity models. This is particularly important if one wishes to develop an
LDA modeling structure that would calibrate such models using a combination of expert opin-
ions as well as collected loss data, as required by Basel 11/Basel I1I standards. The two frameworks
we develop can be considered approximations in that the posterior distribution obtained will
be approximate up to any desired level of precision, as specified by the modeler. In particular,
we first consider an approach based on the work of Peters and Sisson (2006), which utilizes
an Approximate Bayesian Computation (ABC) formulation, which was the first application
of such statistical techniques in finance and risk; then we consider a specially designed conju-
gate Bayesian formulation based on Askey orthogonal polynomials (see detailed discussion in

Chapter 17).

9.4.4.1 Approximate Bayesian Computation and the g-and-h Severity Model.
The basic concept of ABC methods is covered in Chapter 7. Here we briefly review the concept
of ABC methods that is growing in popularity in statistics (see Peters and Sisson 2006, Peters
et al. 2012a, Beaumont ez al. 2009, Csillery ez al. 2010, Del Moral ez al. 2012, and Sisson
et al. 2010 and the references therein). In particular, we describe the basic Markov chain Monte
Carlo (MCMC) sampling methodology first developed by Peters and Sisson (2006) for the
g-and-h distribution. In this work, it was recognized that one could exploit the efficiency of
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simulation from the g-and-h distribution, which only required simulation of a single standard
Gaussian random variate for each observation in order to apply ABC methods.

Consider the parameters of the severity model, upon which one wishes to build a Bayesian
model, given in the case of the g-and-h model by vector

0= {d7b7a05ala"'7ap7607ﬁ1a"'76q} 697

where it is assumed we condition upon a choice of p and g for the dimension of the g(z) and
h(z) polynomials, which can be selected by a desired model selection criterion such as Bayesian
Information Criterion (BIC), Bayes Factors, or Deviance Information Criterion (DIC). Then,
we will denote the prior distribution generically for these severity model parameters by the
joint density 7 (a, b,ag, ..., 0, B, Br,. .. ,Bq). These priors can be elicited in a number of
methods & priori; see discussions on the different approaches for instance in O’Hagan (1998).

Given the prior distribution, essentially, the ABC methods first reduce the observed loss
data in a year, denoted by the 7 losses given by x = x1.,,, to a low-dimensional vector of sum-
mary statistics denoted by £, = T'(x) € T, where dim (®) < dim (%) << 7. Then, the true
posterior 7(0|x) is replaced with a new posterior given by 7(8|#.), which would theoretically
match exactly the true posterior in two cases if z, = x or if #, is sufficient for 6, otherwise it
is an approximation 7(0|z,) = m(0|x). The new target posterior, still assumed to be compu-
tationally intractable (with regard to evaluation of the density pointwise), is embedded within
an augmented model from which a Monte Carlo sampling scheme is viable, such as MCMC
or Sequential Monte Carlo (SMC) (see the Estimation section Chapter 7).

The secret to all ABC methods is the replacement of the evaluation of the intractable
likelihood model with the simulation of auxiliary data given a set of model parameters ©.
Hence, the auxilairy data will be denoted by vector X* = X/ and the i-th sam-
ple is obtained by X = x through simulation in the case of the g-and-h model by
X, ~ GH (a7 b, g, -0, Bo, By -y Bq) using the algorithm specified in the previous
subsection. The auxiliary data are then also summarized by the summary statistic z~ € 7T for
the given simulated realization.

Specifically, under the ABC method, one then expresses the joint posterior of the model
parameters ® and auxiliary data X™ conditional upon the observed data X according to the
kernel-based representation given in Equation (9.66):

(0, X" %) x K}, (£ — %) f (X|0) 7(0), (9.66)

where X* ~ f(X]0) and f(:|0) is in this case the g-and-h model. Then under this ABC

posterior framework, the marginal posterior distribution as given by
s (6] %) = cur / K (e — 2)f (X]0) 7(8)dX", 9.67)

where ¢! = [, [ K), (t- — ) f (X|0) 7(8)4X*d6, normalizes the posterior such that it isa
well-defined density (see discussions by Reeves and Pettitt 2005 and Peters and Hiibner 2009).

The function K}, (,« — ) is a standard kernel function with scale parameter 4 > 0,
which weights the intractable posterior with high density in regions in which #+ ~ z, where
the auxiliary and observed data sets are similar. Therefore, my (0| x) ~ 7 (0]|x) forms an
approximation of the intractable posterior through standard smoothing arguments (see Marin
etal. 2012). As b — 0, so that K}, (t,« — ) becomes a point mass at the origin (i.e., £« = #)
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and is zero elsewhere, if 7, is sufficient for 6, then the intractable posterior marginal is recovered
exactly where my (0| x) = 7 (0] x). Note typically setting 4 too small is computationally
impractical; see disucssions in the context of g-and-h models in this regard by Peters and Sisson
(2000). There has been a reasonable amount of discussion on the different possible choices one
may adopt in practice (see Peters ez 2/. 2009) and discussions therein.

Typically in practice, it is common to consider a generlization of this scheme in which
the joint posterior distribution in Equation (9.66) is augmented with more than one auxiliary
summary vector, by considering for § > 1 the auxiliary posterior

71' (B,X*’I:S) x) x Ky (15, 5) f (X1:5|0) (8), (9.68)

where £ = ()., £2.,... ;) and forall i € {1,2,..., 5} one has i.i.d. data sets generated

from the g-and-h intractable likelihood X** ~ f (X |0) By construction, the auxiliary data
are conditionally independent given 6, which gives

N
7 (X*’1‘5|0) = [1rx10). (9.69)

In addition, as discussed by Del Moral e 4/ (2012), one may select the kernel K, (t;is, tx)

according to
Ky (621 Z K, (1 9.70)

which will result in a joint posterior given by

N S
w (0.5 5) = o [; A a)] [Hf (xfw)] 7(6). ©.71)

with the normalizing constant ¢py > 0. In this case, by construction one again obtains the
appropriate marginal target distribution

/7TM (B,X*’IIS‘ x) AX*'S =1 (0)x). 9.72)

Working with such posterior ABC distributions, one needs to typically obtain samples via
a Monte Carlo sampling strategy. In this regard, there are two approaches one may adopt to
sample from the target posterior:

1. The first involves treating the summary quantities (statistics) for the auxiliary data, 7135, as
parameters in an augmented statespace model. This approach therefore involves sampling

directly on the augmented model, say 7y, (0,X *’hs‘ x), by obtaining joint samples on
the product space <O,X *’1:S> € © x X5. Then one a posteriori marginalizes over the

samples X*'*5 by simply discarding these realizations from the sampler output;

2. The second approach involves sampling the lower-dimensional ABC posterior given
by 7 (6| x). Within the Monte Carlo sampler this would involve approximation
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of the Monte Carlo integral, by draws at each iteration of sample for 6, using
X1 X% X5 ~ f(x]0) to obtain

1 (8] %) o 7(6) / By (51 1) f (X]0) dX
X

S 9.73)

T (0) Y K (60, 1) = s (8])

s=1

~
~

G| —

in lieu of posterior evaluation of 7, (0] x).

To proceed with the design of a Monte Carlo sampling strategy to obtain samples from the
posterior T (0]x) =~ 7(0|x), which is based upon a simple MCMC approach, there are sev-
eral more advanced strategies available; see, for instance, the SMC samplers—Partial Rejection
Control method proposed by Peters ez al. (2012a). An in complete list of such approaches are
provided here:

1.

2.
3.
4.

Marginal versus augmented auxiliary ABC posterior: Sisson er al. (2010), Sisson and
Fan (2011);

Rejection, MCMC: Beaumont ez 4/. (2002), Marjoram ez a/. (2003);
SMC samplers PRC: Peters et al. (2012a);
SMC samplers: Sisson et al. (2007).

The ABC-MCMC algorithm for the g-and-h family then proceeds as follows given the order
of the g and h polynomials p, g.

Algorithm 9.2 (ABC-MCMC for the Bayesian Posterior g-and-h Severity Model)

1.

Initialize the g-and-h model parameters (Markov chain sate):

0()_ 5013»51];, © bO)

and draw synthetic data realizations and evaluate summary statistics

t 2B ~ (] 0).

x* ) Px*

This involves for the j-th summary vector £, drawing n samples from the g-and-h model accord-
ing to the following step:

a) Draw a standard Gaussian random variate: Z; ~ Normal(0, 1);

b) Given p, q. and coefficients { o { © )}'70 and {61(0) }io’ evaluate the polynomials

cW) =al” + W+ ..+ a]()o) w?

1

(9.74)
h(W,) = (") +BOW + .+ BOW.
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Q) Then given parameters a, b\, and polynomials g(W;) and h(W;), evaluate

transformation

)¢j)::ﬂm)%_b«nexp(g(“Z)“Z)—-1eX¥)(h(uZ)u@2).
g (W) 2

d) Then given synthetic data samples {Xi(j ) } evaluate the summary statistic zi*
i=1

2. For iterations k > 1 perform one update on the ABC-MCMC algorithm as follows:
a) Generate a proposal vector of parameters for the new state of the Markov chain

0~ gq (O(k), 0) using an MCMC proposal for the g-and-h parameters such as a local
random walk or a mixture of local and global proposals for q (O(k), 0) ;

b) Draw synthetic data realizations independently from the model with the proposed parameters
0 such that

o2 5 ~ f(6).

This involves for the j-th summary vector t.. drawing n samples from the g-and-h model
according to the following steps:

i. Draw a standard Gaussian random variate: Z; ~ Normal(0,1);

ii. Given p, q, and coefficients {c;},_, and {B;}1_,, evaluate the polynomials

W) =ao+a Wi+ ...+, W

(9.75)
h(W;) = Bo+BiWi+...+B,W.

iii. Then given parameters a, b. and polynomials g (W) and h (W;) evaluate transformation

XD = 4t

oxp (g (W) Wi) =1 (h(W) W?
’ g (W) p( 2 )

. n .
iv. Then given synthetic data samples {Xi(] ) } evaluate the summary statistic ...
i=1

©) With probability

12K, (6. — 1) m(0)gq (9, 9(@)
ALK (g — )7 (09) 4 (09, 0)

min

accept the proposed state and set 0%t — 9 und keep track of the new sampled values
{# }le. Otherwise set @*+) = 9P,
d) Increment b=k + 1.
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Remark 9.9 The typical summary statistic one may consider involves a summary of the empirical
distribution function

. 1<
Fix) =~ D ey, (9.76)
i=1

such as a set of sample quantiles {q;}"_, with §; = x(; »). In addition, one typically has a wide

choice of kernel choice such as soft and hard decision kernels (see discussions by Peters et al. 2010).

9.5 Generalized Beta Family of Heavy-Tailed
Severity Models

McDonald and Xu (1995) present a general representation of the families of the Generalized
Beta form, which nests both the Generalized Beta of the first and second kinds (GB1 and GB2).
This is a five-parameter family of models, which is also related to the Exponential Generalized
Beta family. The standard Beta distributions of the first and second kinds are some of the
most widely utilized distributions in statistical applications as they include nested subfamilies
of models such as the power distirbutions, uniform distribution, gamma, Lomax, E Chi-square,
and exponential distributions (see discussions by Johnson ez al. 1970). Generalizations such as
the Generalized-F distribution, the Feller-Pareto, Generalized Beta Prime, and Transformed
Beta distributions have been proposed by various authors. They are all members of the GB2
family of models to be presented next. First, we present the global family of the five-parameter
Generalized Beta distributions of McDonald and Xu (1995) given in Definition 9.16

Definition 9.16 (Generalized Beta Distribution Severity Models) A loss random variable X
has a Generalized Beta distribution X ~ GB(x; a, b, ¢, p, q) if the density is given by

=1 (1 —(1— x)2) 77! b
ﬁ((x; a, bv 2y 2 6]) = ‘ﬂ| ( ( c) (i)p-)i-q ’ 0< x* < T/, (977)
rrB(pg) (1+¢ (5)°) e
withc € [0,1], a# 0, and b, p, q > 0 and where B(p, q) is the Beta function. L]

Remark 9.10 One can obtain the GBI family by setting ¢ = 0 and the GB2 family by setting
c=1

Next, we present the GB2 subfamily as these have been shown to be particulary relevant
to OpRisk modeling scenarios.

9.5.1 GENERALIZED BETA FAMILY TYPE II SEVERITY MODELS
IN OPRISK

In this section, we introduce a family of severity models known as the GB2 family that has been
utilized in OpRisk settings successfully (see discussions by Dutta and Perry 2006 and Peters and
Sisson 2006). The GB2 family, like the previously discussed quantile transformation models,
will also allow for a wide range of flexible skew and kurtosis distributions. In the case of the GB2
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family, it admits a parametric specification for its distribution and density functions. There is a
detailed account of this family, with some emphasis on financial and actuarial modeling in the
works of Bookstabber and McDonald (1987), McDonald (1996), McDonald and Xu (1995),
Cummins ez al. (1990), and the book-length review by Gupta and Nadarajah (2004). It is also
worth noting that a restricted form of the GB2 family was also studied for 2 > 0 where it was
termed the generalized F distribution (see Kalbfleisch and Prentice 2011).

The density and distribution for the four-parameter GB2 family is given in Definition
9.17 and automatically has the required support for a loss distribution, with positive support.
The GB2 family is parameterized by four parameters:

1. a is the location parameter that also determines the rate at which the tails approach the
x-axis; hence, large values of 2 imply a strong peakedness for the GB2 model density
function;

2. b is the scale parameter and it affects the height of the density;

3. g determines the kurtosis of the distribution and the product ag directly affects the
kurtosis;

4. p when combined with g affects the skewness of the distribution.

One can obtain expressions for the GB2 family distribution and density functions as
solutions to the differential equation given by

dnfy(x) ap—1—(ag+1)(3)"
_ , (9.78)
d *(1+(3)9)

where the solution will produce the closed-form distributional form given in Definition 9.17.
The differential equation representation is interesting to consider since it demonstrates any
possible relationships between the GB2 and other distributional families also specified in such
an integro-differential form. As a result of this differential equation representation, it can be
seen that the GB2 family is neither contained in nor contains other well-known distributional
families such as the Pearsonian family (Pearson 1894, 1895). It therefore warrants consideration
as a unique positively supported class of a heavy-tailed flexible skew—kurtosis model for OpRisk.

Definition 9.17 (Generalized Beta Family of the Second Kind (GB2) Severity Models) A
severity random variable X ~ GB2(x; a, b, p, q) if its distribution is given by

2(x)!

X~ Fx(x a, bp7 ) pB(p )

2Fp 1 —q, 1+ p2(x)], x>0 (9.79)

where 1 Fy [a, b, c; x| is a hypergeometric function given with respect to Pochhammer notation (x),, by

o0

2Fi(a, b, c; x] Z Jul (9.80)

and

z(x) 1= —H—. (9.81)
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The density of the GB2 model is also closed form and given by

Filxa,6,p,9) Jabe?™ >0
; 9 b b = b x
! P wBo.g) Lt () 9.82)

where B(p, q) is the Beta function. [

In Example 9.5, there are plots of the GB2 distribution displayed for a range of different
parameter settings.

W EXAMPLE 9.5 GB2 Severity Model Density Shapes

In the Figure 9.7 plots, the GB2 severity density is plotted for a range of parameter
values to illustrate the skewness and kurtosis properties this model offers, the
location and scale parameters are set to 2 = 0 and 4 = 1, and for the shape,
skewness and kurtosis parameters p and g are considered.
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FIGURE 9.7 Top subplot: the top subplot shows the effect of the parameter
2 € {o.1,0.5,1, 10}, showing the skewness that results from decreasing the value of p. Bottom
subplot: the bottom subplot shows the effect of the parameter ¢ € {0.1, 0.5, 1, 10}, showing the
kurtosis that results from decreasing the parameter q
|
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The tail properties of the GB2 model’s density function are given in Proposition 9.9, where
the regular variation feature will therefore also limit the existence of moments for certain param-
eter ranges.

Proposition 9.9 (Regular Variation of the GB2 Density Function) Ifa loss random variable
has GB2 distribution X ~ GB2(x;a,b,p, q), then the right tail of the GB2 density function is
regularly varying at infinity with index —aq — 1.

The mode of the GB2 model is given by the closed-form location specified in
Proposition 9.10.

Proposition 9.10 (Mode of GB2 Severity Model) f a loss random variable has GB2 distribu-
tion X ~ GB2(x;a, b, p, q), then the mode is given by the expression

M _ 1) , ap>1,
ode[X] = ag + 1 (9.83)

0, otherwise.

The moments of the GB2 model are given in Proposition 9.11 (see Bookstabber and
McDonald 1987). It is clear that as 2 — oo the variance will decrease to zero and the mean of
the distribution will tend toward &, which will therefore asymptotically become the location of
a dirac mass, where the distribution will collapse in the limit.

Proposition 9.11 (Moments of the GB2 Family of Severity Models) [f' a loss random vari-
able has GB2 distribution X ~ GB2(x;a,b,p,q), then the integer moments B [X"] exist if
—ap < r < aq forall r € J*. The first moment (mean) is given by

B L ,_1
qub(f&ﬁzﬁ. (9.84)

The moment-generating function of the GB2 family is given by

X B(p+ % ,g— %) it
Mﬂﬁ—}j@m;;»24, (9.85)
k=0 ’

s0 in general the r-th integer moment when it exists is given by

B Lg—1
quzy@;;;). (9.86)

9.5.2 SUB FAMILIES OF THE GENERALIZED BETA FAMILY TYPE II
SEVERITY MODELS

The GB2 family has a wide range of skew—kurtosis subfamilies, which are also well-known
distributions; for example, a first layer of nested distributions (in the sense that one of the four
parameters in the GB2 family is constrained) includes the following families:
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. Log-t distribution family when 2 — 0;
. Generalized Gamma distribution family when g — oo;
. Beta distribution of the second kind if 2 = 1;

. Singh—Maddala or Burr type XII distributions if p = 1;

Wi R W N =

. Dagum or Burr type III distributions if ¢ = 1.

When one constrains two parameters or more, one can also obtain the following nested distri-
butional families:

. Log-Cauchy severity models are obtained when # — 0 and g = 1;

. LogNormal severity models are obtained when 2 — 0 and ¢ — oo simultaneously;
. Weibull severity models are obtained when p = 1 and g — oc;

. Gamma severity models are obtained when 2 = 1 and g — o0;

. Lomax severity models are obtained when p = 1 and 2 = 1;

. Exponential distribution with 2 = 1, p = 1, and ¢ — o0;

N &N N AW N =

. Generalized Log-Logisticwithz =1,6=1,p=1,and ¢ = 1.

It may also be noted that the GB2 model has some nested family members that also overlap with
the Pearson family, such as when one sets @ = 1 to recover the subfamily of Beta distributions
of the second kind.

It is also useful to know how to simulate from any member of the GB2 family, as this is
critical for many applications in OpRisk when using the GB2 as a severity distribution model;
this can be achieved as follows.

Algorithm 9.3 (Simulating Losses from a GB2 Severity Model.)

1. Draw a standard Gamma random variate: Y1 ~ Gamma(p, 1);
2. Draw a standard Gamma random variate: Y, ~ Gamma(q, 1);

3. Construct the GB2 distributed random variable X ~ GB2(x;a, b, p, q) according to the trans-
Jformation

_(n)
X_b(yz) . (9.87)

9.5.3 MIXTURE REPRESENTATIONS OF THE GENERALIZED BETA
FAMILY TYPE II SEVERITY MODELS

It is also worth noting that the GB2 family can be represented as characterizing a large family
of mixed-type distributions. A mixed-type distribution is formally defined in Definition 9.18.

Definition 9.18 (Mixed-Type Distributions) A mixed distribution is one that is generated from
two distinct distributions, the first known as the structural distribution and the second known
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as a mixing density. Consider a severity random variable X ~ Fx(x; 01, $) parameterized by 6,
and ¢ and with a density that satisfies the relationship

i (x:01,8) = (x:01,602) @, g (623 0)
/f x;01,60y)  g(02;0) d 0y, (9.88)
N——

Structural distribution  Mixing density

where we denote the mixing integral operator by Qg, with respect to argument 0. ]

In the case of the GB2 family of models, one can show the following mixed-type distribu-
tional properties given in Proposition 9.12. This will result in many more flexible families of
distributions, some of which are nested in the GB2 family.

Proposition 9.12 (Mixed-Type GB2 Severity Models) IfX ~ GB2(a, b,p, q), then the den-
sity function satisfies the following mixing property:

ﬁ( (xa a, bapa q) :ﬁ( (x; 4797P7 q) ®9ﬁ( (0;47 ba 92303) . (989)

The resulting density takes the form

ab,—1
d ()" Blg+02p+03)
b 0<x<b.
bB(p, q)B (02,93) ’ -
Sfx(xsa,6,p,q) = abs3+1 (9.90)
¥ () Bg+6sp+65)
al > b
bB(p, 4)B (05, 05) I

Remark 9.11 One can show that the GB2 family is itself a mixture class, since the mixture between
the Generalized Gamma distribution as a base distribution when mixed with an Inverse Generalized
Gamma distribution as a mixing distribution will produce a GB2 distribution. In addition, one can
also show that the GB2 family can be used to characterize generalized LogNormal—Gamma mixtures.

The following is a list of popular mixture representations of members in the GB2 family
of severity distributions:

1. GB2 comes from a mixture between Generalized Gamma as structural distribution and
Inverse Generalized Gamma as mixing distribution:

GB2(x;a,b,p,q) = GG(x;a,0,p) @9 IGG(0;4,b,q).
2. Beta distribution of the second kind B2 comes from a mixture between Gamma as struc-
tural distribution and Inverse Gamma as mixing distribution:

B2(x; b, p,q) = Gamma(x; 0, p) @9 [Gamma(0; b, q).

3. GB2 (p = 1 Singh-Maddala distribution) comes from a mixture between Weibull as
structural distribution and Inverse Generalized Gamma as mixing distribution:

GB2(x;a,b,p = 1,q) = SM(x; a, b, q) = Weibull(x; a,0) @9 IGG(0;a,b,q).
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4. GB2 (g = 1 Dagum distribution) comes from a mixture between Generalized Gamma as
structural distribution and Inverse Weibull as mixing distribution:

GB2(x;a,b,p,q = 1) = Dagum(x; a, b,p) = GG(x;a,0,p) @9 IWeib(0; a, b).

5. GB2 (p = 1,4 = 1, Lomax distribution) comes from a mixture between Exponential as
structural distribution and Inverse Gamma as mixing distribution:

GB2(x;a,b,p = 1,q) = Lomax(x; b, q) = Exp(x;0) @g [Gamma(0; b, p).

Other useful properties one can observe about the GB2 model family that have been used
to great effect in certain applications of the GB2 family are the following:

1. Closure under multiplication of two independent GB2-distributed random variables (see
Proposition 9.13);

2. Closure under inversion (see Proposition 9.14 and Venter 1983).

Proposition 9.13 (GB2 Closure Under Multiplication) Given two i.i.d. random variables
X; ~ GB2(a, b,p,q) fori € {1,2}, one has the product random variable Y = Hle X; with
density given by

ap
() Be+ar+a 2
, 0<y< b,
1B(p, 9)?
fY()/): Y\ (991)
4] (p) Blp+4q.p+49)
y > b

¥B(p, q)? ’

Then to get closure under multiplication of the GB2 family, one needs to impose some additional
parameter restrictions such as would occur for the LogNormal model. In general, one also has the

property that if X ~ GB2(a, b,p, q), then X" ~ GB2 (‘—r’, v, p, q) .

Proposition 9.14 (GB2 Closure Under Inversion) Given a loss random variable X ~ GB2
(@, b,p, q), one observes that the inverse loss random variable Y = 1/X has a distribution given by
Y ~ GB2 (zz, %,q,p) .

9.5.4 ESTIMATION IN THE GENERALIZED BETA FAMILY TYPE II
SEVERITY MODELS

The estimation of the GB2 model parameters proceeds typically via maxiumum likelihood
estimation (MLE) or method of moments (see Chapter 7). Venter (1983) provides the system
of equations for the likelihood estimation with 7-samples from a severity model with GB2
distribution (see Proposition 9.15).

Proposition 9.15 (Maximum Likelihood Estimation GB2 Severity Model Parameters)
Given a severity model with i.i.d. losses distributed as X; ~ GB2(a, b, p, q), one has the following
system of nonlinear equations for the parameters when performing MLE:
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rn () -ora S () [(2) 1]
v S [(4) ]

gt )+ a3t (3) =i+ om [(5) 1],

G+

where ) (+) is the digamma function. This system is solved by first solving the first two linear equations
in p and q in terms of a and b followed by a Newton method for the second two equations for solving
Jfor a and b. Note that the Fisher Information matrix for the confidence intervals of such MLE
estimates is also known in closed form (see Brazauskas 2002).

(9.92)

mp(p+q) = nmp(q +Zln{

9.6 Generalized Hyperbolic Families of Heavy-Tailed
Severity Models

The family of distributions known as the Generalized Hyperbolic (GH) class was studied exten-
sively by Barndorff-Nielsen (1977, 1978a) and the book-length review by Barndorff-Nielsen
and Blaesild (1981). Since their introduction these models have found many applications where
initially they were very influential only in areas of physics and biology. Then, more recently,
they have become influential models in areas of financial mathematics; in this context, notable
examples include the works of Eberlein and Keller (1995), Cont (2001), Eberlein (2001), and
the thesis of Prause (1999). The widespread interest in the GH family of models has pri-
marily arisen due to their flexibility for skew—kurtosis characteristics as well as the tractabil-
ity and closed-form expressions for the density, characteristic function, cummulants, and
Levy measure.

In this section, we will first discuss some basic properties of the GH family before pre-
senting more details on two relevant subfamilies for the context of OpRisk given by the GIG
family and the NIG family. These two families are particularly interesting for OpRisk set-
tings as they display the property of closure under convolution, making specification of the
annual loss process in an LDA model comprising these models for the severity model partic-
ularly tractable as they admit closed-form representations for the annual loss distribution and
density.

A loss random variable X has a severity distributional model that is from the GH family
if its distribution satisfies the following definition for the distribution in Definition 9.19 (see
Barndorff-Nielsen and Stelzer 2005). The parameters of the GH family have the following
influence on the properties of the resulting distribution:

1. « is the shape parameter;
2. [ is the skewness parameter;
3. w is the location parameter;

4. 0 is the scale parameter;
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5. The special parameter v characterizes which subclass the model represents and in particular
the tail properties of the resulting subfamily.

The density is then given by the following expression in Definition 9.19 in terms of param-
eters a, 3, 7, and 6. It is also common practice to consider an alternative parameterization in
the scale invariant form where one uses instead the reparametrization involving

_B L _
p="=, x=pn,
«

n=(1+6va =5,

where  is the skewness-type measure (assymmetry) and 7 is the kurtosis-type measure (steep-
ness), which satisfy 0 < |x| <n < 1. We will see later that for particular cases of the model
parameter v such as in the NIG family these parameters are known as steepness and assymme-
try and can be used to characterize all distributional members by what is known as the “shape
triangles”, which are the analog of the classical skewness and kurtosis plots for the GH members.

(9.93)

Definition 9.19 (Generalized Hyperbolic Severity Models) A loss random variable X has a
GH distribution X ~ GH (x; v, o, 8, 1, 0) if it has a density given by

yat G\ T (o G e
= 1 K 14+ = 27 x—p) R
M) = s, (v)( T ) - (a AR R

1
2

with parametersv € R, 0 < |B| < o, p € R, and § € R*. In addition, one defines
7:\/0427/827 6:504, B:(Sﬂa 7:67
with K,, () the modified Bessel function of the third kind. L]

The cummulant-generating function of the GH family of severity models is also known
in closed form as specified in Proposition 9.16, which allows one to utilize a result from
Barndorff-Nielsen (1978b, corollary 7.1) to obtain expressions for the mean and variance in
closed from, as detailed in Proposition 9.17.

Proposition 9.16 (Cummulant-Generating Function GH Severity Models) A loss random
variable X with a GH distribution X ~ GH (x;v, v, B, , 0) has a cummulant-generating func-
tion given by

(9.94)

Consequently, using this result one may show that the mean and variance of a loss random
variable with GH severity are given as follows, as well as the integer centralized moments.

Proposition 9.17 (Mean and Variance of GH Severity Models) A /loss random variable X
with a GH distribution X ~ GH(x;v,«, 3, 1t,0) has a mean and variance given by the
Jollowing expressions
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5KV+1 ( )
K, (%)

_ _ 2 (9.95)
o (K (@) | B (K2 (K1 ()
Ve =0 (71@(7) i ( K, (7) ( K, () ) ))

In addition, the integer centralized and absolute centralized moments are given by the series expansion
(see BarndorfJ-Nielsen and Stelzer 2005, theorem 2):

o alslaralsl grmede & B (k4 [2] 4+ 1) _
e e Tl & @k + (mod) ++l11 @)

k

E[X] = +6

(9.96)
257”5’ szﬂ T4+
VK, (F)art: a(2k)!

The GH family of severity models also has the translation and scale invariance closure
properties given in Proposition 9.18.

E{lX —pl = ks (@) -

Proposition 9.18 (Scale and Translation Properties of GH Severity Models) Given a loss
random variable X with a GH distribution X ~ GH (x;v, «, B, i, 8), the scaled and translated
random variable is also distributed according ro a GH distribution as given by

aX+ b~ GH <x;u §,5|a|,a,u+ 17) . (9.97)

(%
IR
|a| " a

9.6.1 TAIL PROPERTIES AND INFINITE DIVISIBILITY OF THE
GENERALIZED HYPERBOLIC SEVERITY MODELS

To understand the asymptotic tail behavior of the GH family of severity models, it is important
to first consider the tail behavior of the modified Bessel function of the third kind K, (-) given
in Proposition 9.19 (see Gil ez al. 2002, p. 401, and for details on evaluation, see Lozier and
Olver 1994).

Proposition 9.19 (Tail Behavior of Modified Bessel Function of the Third Kind) Consider
the modified Bessel function of the third kind given by K,, (x), which can be represented asymptoti-

cally according to the series expansion

K (x) ~ (7) exp(— (9.98)
/e:O
with (v, k) representing the Hankel symbol given by
1, 1 1
(v, k) = wk'( 1)* cos(vm)T (2+y+k>F(2 —V+/€> , X — 00, 9.99)

and the special case of v = 1, which simplifies the asymptotic behavior as |x| — o0 to be given by

Ki(x) ~ % exp(—x). (9.100)
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The GH family of severity models exhibits a range of tail behaviors that are characterized
as semiheavy in nature. In general, the following asymptotic expression can be shown for the
tails of the GH family given in Proposition 9.20, (see Barndorff-Nielsen and Stelzer 2005).

Proposition 9.20 (Tail Behavior of the Generalized Hyperbolic Severity Models)
A loss random variable X with a GH distribution X ~ GH (x;v, «, 8, , 0) has a tail behavior
characterized by the expression

fy (v, 0, B8, =10,6) ~ Clx|" Texp[(B — a)x], x— oo, (9.101)
Jfor some constant C.

In the following example, we consider the special case when v = —3, which produces the
result shown in Proposition 9.21.

Proposition 9.21 (Tail Behavior of the Normal Inverse Gamma Models: (GH with
v=— %)) A loss random variable X with a GH distribution X ~ GH (x;v = —%, a, By, )
has a tail behavior characterized by the expression

1 3
fx (x;y = —E,a,ﬂ,u = 0,5) ~ |x|7% exp (Bx — alx]), |x|] — oo. (9.102)

In the case that o — |B| << 1, this asymptotic tail behavior has the same form as a Cauchy
distribution tail decay

1
fx (x;z/ = —E,a,ﬁ,u = 075) ~ |x| 2. (9.103)

In addition to having semiheavy tails, the GH family of severity models is also impor-
tant for modeling in OpRisk as it displays properties of infinite divisibility as characterized in
Proposition 9.22, though it is not closed under convolution in general.

Proposition 9.22 (Infinite Divisibility of GH Severity Models) A loss random variable X
with a GH distribution X ~ GH (x;v, o, B, 1, 0) is infinitely divisible, meaning that it can
be represented such that for every positive integer n, there exist n i.i.d. random variables with sum

n
S, = Y, suchthar X £, (9.104)
i=1
Again in the case in which v = —1, one obtains the subfamily of NIG which is not only
infinitely divisible but, under appropriate parameter restrictions, is also closed under convolu-
tions as shown in Proposition 9.23.

Proposition 9.23 (Closure Under Convolution of GH Severity Model with v = —2)

Given two i.i.d. loss random variables X, ~ GH (x; v= f%, a, B, p, 51) and
X, ~GH (x; v= —%, a, B, ta, 52), the sum of the two random variables

1
X:XI+X2N GH <.X',l/_ 2,&,6,M1+M2,61+62> .
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9.6.2 SUBFAMILIES OF THE GENERALIZED HYPERBOLIC
SEVERITY MODELS

As noted by Barndorff-Nielsen and Stelzer (2005), the GH family of models contains several
well-known subclasses of parametric severity models given by different values of v such as in
the following cases:

1. v = 1 one obtains the subfamily of hyperbolic distributions (see Example 9.6);
2. v = —1 one obtains the subfamily of NIG distributions;

3. Other distributional subfamilies include Gaussian, Exponential, Laplace, Variance-
Gamma and Student-t.

@ EXAMPLE 9.6 Examples of Flexible Hyperbolic Distributions (GH with v = 1)

In the Figure 9.8 plots and we explore the density shapes for the case of the subfamily
of GH distributions given by the hyperbolic distributions where v = 1.

0.4 T T
a=0.5
0.3 - — a=1 i
S s a=2
/‘ N = -a=5
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FIGURE 9.8 Top subplot: parameters used in this subplot study the effect of the shape
parameter ranges & = [0.5, I, 2, 5, skewness parameter 3 = o, location parameters 1. = 5, and
scale parameter § = 10. Bottom subplot: parameters used in this subplot study the effect of the
skewness parameter ranges 3 = [0.1, 0.25, 0.5, 0.75], shape parameter & = 1, location parameters

4 =5, and scale parameter 6 = 10 -
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One of the representations of the GH family of models that is particularly useful, especially
from the perspective of simulating draws from the GH family, is the Normal variance-mean
mixture representation presented in Proposition 9.24 (see Barndorff-Nielsen and Stelzer 2005).

Proposition 9.24 (Variance-Mean Mixture Representation of GH Family) Consider inde-
pendent random variables X ~ GH(v,a,f,1,9), the GIG distributed random variable
V ~ GIG(v, 8,7) such that v = \/a? — 3% and the standard Normal distributed random vari-
able € ~ Normal(0, 1), which produces the following distributional equality

XL+ BV + Ve (9.105)

The representation of the Variance—Mean mixture of the GH family results in the following
general algorithm for simulation from any of the GH severity models. In some subfamilies such
as the NIG case, there are even simpler samplers available, as discussed later.

Algorithm 9.4 (Simulating Losses from a GH Severity Model)

1. Draw a GIG random variate V ~ GIG(v,0,7), wherey = \/a* — [3%. This is achieved as
Jollows via a rejection envelope method (see Atkinson 1982):

a) Choose the envelope distribution function g(v) to sample via inversion from, for example
V =g Y (U) for Uy ~ Uniform(0, 1). In the GIG distribution case, the envelope function
and its domain [0, 00) is partitioned as follows:

¢(v) = | ) x e (01 (9.106)
/?261’2(7/)7 X € (t, OO)
Where we select t as the mode of the GIG distribution given by
1+ /A=) 170
v—1+/(1-v)+y >0
t=m(v,d,7) = ” 2 (9.107)
Y2 Y= 0;
2(1—v)
and the envelope functions are given by simple functions to sample from
di(v) = exp(sv), da(v) = exp(—pv), (9.108)

where s and p are selected numerically to maximize the objective function expression given by

(exP(“)_l> m(v, 8,7+ 25)" "V exp (_1
s 2
+ (eXp;—pt)) m(v, 8,y — 2p)’ "

1
exp (2 [67”(1/7 57’)/ - 2P)71 +"}/Wl(l/7 57’)/ - 2P)]> :

[0m(v, 8,7 +2) 7! +ym(v, 8,7 + 25)])
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b) Now denote the target distribution (GIG density) by f (v) = ce(v) and define the function
hi(v) = ;i((i;)) with maximum in each partition of the domain given by S; = sup h;(v).

One can then accept the generated value according to the following condition, after sampling
a second independent uniform variate Uy ~ Uniform(0, 1)

hi(V)

U, < S

(9.109)

Repear until one can accept a draw V.
2. Draw a standard Normal random variate: € ~ Normal(0,1);

3. Construct the GH distributed random variable X ~ GH (x;v, ., B, u, 0) according to the

transformation

X=pu+pBV+VVe (9.110)

Next we present a special subfamily of the GH class of severity models known as the NIG
severity distribution.

9.6.3 NORMAL INVERSE GAUSSIAN FAMILY OF HEAVY-TAILED
SEVERITY MODELS

The NIG distribution was recently introduced in the financial literature to capture non-
Gaussian residuals observed in the financial time series by Barndorff-Nielsen (1997) and
Barndorff-Nielsen and Shephard (2001). The NIG model takes its name from the fact that it
represents a normal variance-mean mixture that occurs as the marginal distribution for a ran-
dom variable X when considering a pair of random variables (X, Z), where Z is distributed

as an IG Z ~ InverseGaussian(d, /o> — $%), and X conditional on Z is (X|Z =2z) ~
Normal (i + Bz,z). The resulting density function for the NIG model is given in
Definition 9.20.

Definition 9.20 (Normal Inverse Gaussian (NIG) — Scale Invariant) A random variable
X ~ NIG (o, B, b, 0) is characterized by the density function

ad exp [p(x)]
L (€9)

where K[| is a modified Bessel function of the second kind with index 1 (see Olver 1960), with

P0) =6V = B2+ B(y— p)

ﬁf(x;avﬁ’ﬂvé): K[aq(x)]v 9.111)

and

1/2' -

90) = (9 — n)* +6%)

As with the GH family, for the NIG subfamily under this parametrization, the parameters
have the constraints p € R,0 > 0,0 < |8] < «. The parameter « is inversely related to
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the heaviness of the tails, where a small & corresponds to heavier tails. The skewness is directly
controlled by the parameter 3, where negative (positive) values of 5 result in a left (right) skew
and 8 = 0 is the symmetric model. The translation (or location) of the distribution is given by
the parameter ¢ and the scale of the distribution is given by the parameter J.

An alternative parametrization proposed by Eriksson ez a/. (2009), which is scale-invariant
and may be considered in further studies, is obtained by setting @ = dv and 3 = §3, which is
defined in Definition 9.21.

Definition 9.21 (Normal Inverse Gaussian (NIG) — scale invariant) A random variable
X ~ NIG (6, B, 1, (5) is characterized by the density function

_ aky | §/02 + (x — p)? - 3
Aic (@, B, u,d) = 1{5 }exp( azﬂz+§(xu)) (9.112)

T/ 0% + (x — p)?
]

When considering the NIG severity model subfamily of the GH distributions, it is more
convenient to simulate the severity losses via the following algorithm.

Algorithm 9.5 (Simulating Losses from a Normal Inverse Gaussian Severity Model)

1. Draw an IG random variate: Z ~ InverseGaussian(0, /o> — [32). This is achieved as follows
via a transformation and rejection stage:
a) Draw a standard Normal random variate: V' ~ Normal(0,1);
b) Evaluate Y = V?;

_ 5y B 5 .
c) Evaluate D = 6 + W o e
d) Sample a uniform random variate U ~ Uniform(0, 1) and perform rejection stage where
N
5
2. Draw a conditional Normal random variate X ~ Normal(p + 8Z,7) .

one accepts Z = D if U < 5_%9, otherwise set Z =

In addition, the NIG has the following features that relate it to other distributions:

1. If one restricts 5 = 0 and p is arbitrary, the NIG model asymptotically approaches the
popular Gaussian model X ~ Normal (u, g) as @ — 00 or & — O0;

2. If one restricts &« = [ = 0 with p and ¢ as arbitrary, the NIG model approaches the
Cauchy distribution;

3. The NIG model can also approximate the skewness and kurtosis of the LogNormal, Stu-
dent’s £, and Gamma distributions, among others (see Hosack ¢z /. 2012 and Hanssen
and Oigard 2001).

To better understand the flexible features of the NIG model, it is convenient to consider
the steepness—asymmetry specification. The shape of the NIG distribution can be conveniently
summarized with a graphical representation called the NIG shape triangle (Barndorff-Nielsen
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and Shephard 2001). This plot uses indices of steepness and asymmetry, which are analogous
to kurtosis and skewness, given by

~1)2
Steepness = (1 + 0/ a? — 52) ,
Asymmetry = B X Steepness,
a

with 0 < Steepness <1 and —1 < Asymmetry < 1. Distributions with Asymmetry =0
are symmetric, and the Gaussian and Cauchy distributions occur as limiting cases for
(Asymmetry, Steepness) near (0,0) and (0,1), respectively. Figure 9.9 provides a graphical
representation of NIG probability example density functions.

The expressions for the mean, variance, skewness, and kurtosis for the NIG model are
given conveniently in terms of the model parameters in the following closed, form expressions
in Proposition 9.25.

Proposition 9.25 (Moments of NIG Severity Models) A /loss random variable X ~ NIG
(v, B, b, 0) is characterized sufficiently by the first four moments

0
Var(X) = NETEL
(- (2))
3 (g) (9.113)
Skew(X) = R
N\ 1/
()
2
4 (§ +1
Kurt(X) =3 N
oo (1 — (g) >
In general, the moment-generating function is given by the expression
E [exp(£X)] = exp (5\/a2 — =62 - (B+1)?+ ut) . (9.114)

One may then solve these equations numerically to perform parameter estimation via
matching of the population moments and the sample estimated moments.

9.6.3.1 Parameter Estimation for Normal Inverse Gaussian Severity
Models. In this section, we consider the approach to parameter estimation based on
Method of Moments (MOM) and a variant of this approach, which ensures the strict
e-positivity of the support of the resulting NIG severity distribution. Other approaches, which
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FIGURE 9.9 NIG triangle characterizing the flexibility of the skewness and kurtosis properties of the
NIG family of models

are numerically slower to implement but provide accurate results, include maximum likelihood
(see Chapter 7).

Under the MOM approach, if the parameters are unconstrained, then one may achieve
any of the possible skew and kurtosis characteristics of the NIG family to be obtained, with
the computational constraint that no closed-form solution for the parameter estimates can be
obtained from algebraic manipulation of the system of equations produced by matching distri-
bution expressions for moments with empirical sample moments. Hence, for the unconstrained
case, one must resort to numerical root-finding solutions in four parameters and care should be
taken with the numerical procedures adopted. Alternatively, one may restrict to a subfamily of
the NIG distributions, through constraining of the existence of the first four cummulants, as
detailed by Eriksson ez /. (2004). These expressions for the parameters of the NIG distribution
in terms of its mean, variance, skewness, and excess kurtosis under these constraints are then
achieved as shown in Proposition 9.26.

Proposition 9.26 (Closed-Form Parameter Estimation for NIG Severity Models via
MOM) Consider that i.i.d. distributed loss random variables X; ~ NIG(«, B, 11, 0) with sam-
ple mean, sample variance, sample skewness, and sample excess kurtosis, denoted by M, V, S,
and l@, respectively, can be utilized to estimate the model parameters with a constraint imposed.
Assume that the following constraint applies to the kurtosis 3K > 5 and the skewness S* > 0,
then the method of moment estimators for the parameters are given in closed form under these
constraints by

(9.115)

6=3p""(p—1)/VVSI,

where p = 3KS™2 — 4> 1.
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In the case where one wishes to ensure e-strict positivity of support when estimating the
model parameters, one may wish to select = o — |¢| for € € n.¢.(0) where € is a small value
in the neighborhood of the origin. In this case, one has the estimating equations for the MOM
yield of the closed-from expressions given in Proposition 9.27.

Proposition 9.27 (Parameter Estimation of NIG Model with e-Positive Support) Consi-
der that i.i.d. distributed loss random variables X; ~ NIG (v, 3, 11, §) with sample mean, sample

variance, sample skewness, and sample excess kurtosis, denoted by M, \A/, S, and /@, respectively, can
be utilized to estimate the model parameters with a constraint imposed. In this case, the constraint
is selected to ensure the estimated model has e-positive support where § = a — |€| for € € n.e.(0)
where € is a small value in the neighborhood of the origin. The parameters are estimated via the
Jollowing closed- form expressions:

. €
@ = )

(“\/ﬁ)
B:d—G,
5 9 (& —¢) (9.116)
428224 — &

=

e )

Next, we briefly discuss the related class of GIG distributions, where it was first formed as
part of a family of distributions known as the Halphen family. The GIG submembers of this
family (Halphen Type A distribution) were shown to be instrumental in constructing the GH
family and the NIG family.

9.7 Halphen Family of Flexible Severity Models: GIG
and Hyperbolic

The history of the Halphen family of distributions is very interesting as pointed out by the
series of two expository papers by Perreault ez al. (1999a,b) and an article by Seshadri (2004).
The Halphen severity distribution is an interesting family of distributions that was first pro-
posed by a French statistician, Etienne Halphen. His publication of this work was complicated
by the fact that his country was in a war period and he had an early death. Consequently, the
official record of his work first appeared in his papers (Halphen 1941, 1953) on harmonic
distributions, which were renamed in the 1970s as the hyperbola distribution family (subfam-
ily of the GH) in the pioneering works of Rukhin (1974) and Barndorff-Nielsen and Hal-
green (1977), who seem to have rediscovered this family independently of Halphen’s original
works. In fact, as pointed out by Perreault ez al. (1999a), it was George Morlat, Halphen’s col-
league, who eventually published some of Halphen’s work (Morlat 1951). This work would
have remained hidden as it was written in lesser-known journals to the statistical community
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and was published in French, except for the exposition developed on this family by Perreault
et al. (1999a), which itself was not written for a wide statistical audience as it was published in
a hydrological engineering journal. This made sense as the primary motivation for Halphen for
this work was originally related to the modeling of river flows. Since this early work there have
only been a few applications of this family of models (under the name of Halphen family; see
Guillot 1964 and Cam 1949); however, there have been many more under the name of GIG
and GH distributions.

In this section, we will provide a brief introduction to the family of positive supported
Halphen Type A, Type B, and Type IB distributions for the modeling of OpRisk severity mod-
els in an LDA structure. These families will be shown to contain several important subfamilies
such as the GIG, GH, Inverese Gamma, Gamma, and Normal distributions. The family of
Halphen distributions has recently become popular in the hydrological literature for model-
ing flows, but remains, however, largely under utilized in the statistics literature even though
it provides comparative performance to other models of extreme events such as the General-
ized Extreme Value (GEV) models discussed in Peters and Shevchenko (2015); also see dis-
cussions by El Adlouni et /. (2009). We start with a general characterization of this family of
distributions.

One can characterize the Halphen family according to the differential equation in Propo-
sition 9.28, where four generic parameters ¢, @, a1, and 4, are specified. When considering
each subfamily of the Halphen distributions, the reparametrization in terms of parameters is as
follows:

* m > 0 is a scale parameter;

* v is a shape parameter with a range of admissible parameter values that will depend on the
subfamily (Type A, v € R; Type B, v > 0; and Type IB, v > 0);

* « is a shape parameter with a range of admissible parameter values that will depend on the
subfamily (Type A, & > 0; Type B, @ € R and Type IB, o € R).

The specification of the family via this o.d.e. representation is particularly useful as it allows
one to show the mode and antimode behaviors of each of the subfamilies of distributions (see
discussions in Perreault ez a/. 1999a).

Proposition 9.28 (Halphen Family of Severity Models) A loss random variable
X ~ Halphen (q, ay, a1, @2) is characterized generically by the ordinary differential equation

1 p{f(x) o ao +¢11x+42x2
o) e > ; (9.117)

which gives rise to the following three subfamilies of distributions known as Type A, Type B, and
Type IB:

* Bype A subfamily. Set the parametersto g =2, a9 = am, a1 = v — 1, and ay = —o/m;

» Tipe B subfamily. Set the parameters to ¢ = 1, ap = 2v — 1, &4 = «a/m, and
a = —2/m;

* Type IB subfamily. Ser the parameters to q = 3, ay = 2m?, 4y = —am, and

ay = —(21/ + 1)
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With this specification one can show the following model flexibility of each of the sub-
families of the Halphen distribution with regard to modes and antimodes simply by find-
ing the roots of the equation 2y + 21x + ax* (see Proposition 9.29 and details by Perreault
et al. 1999a).

Proposition 9.29 (Halphen Severity Model Mode and AntiModes) One can classify each
subfamily of the Halphen distributions via the existence of no mode, one mode or a mode and anti-
mode relationship. It can be shown that under this representation, the mode and antimode properties
of the distribution are obtained by equating df jdx = 0, which shows that such modes and antimodes
are simply solutions to the quadratic equation ay + ayx + ayx* = 0 given by

2
a) a ap
Mode(X) = —— £ — ) - —. 9.118

© e( ) 2512 (2612) ap ( )
As a result, the types of Halphen distribution can be characterized according to the existence of no
real solutions (no mode), one real solution (one mode), and two real solutions (mode and antimode)

subfamilies, labeled Type I, Type II, and Type 11, respectively.

* Lype L. No modes with conditions 5+ > 0 and 3= > 0;

2
* Bype II. A mode and an antimode with conditions © > 0, ( 2| > 2 gnd A < 0;
@ 2a; a 2ay

* Bype II1. One mode with conditions Z—‘Z’ < 0; or Z—Z =0 and 2’17‘2 < 0.

Before presenting details of each of the subfamilies of models in the Halphen class, we first
detail some general properties of the tail behavior of the Halphen Type A, Type B, and Type IB
distributions. As discussed by Perreault ez a/. (1999a), the Halphen family has the tail properties
specified in Proposition 9.30.

Proposition 9.30 (Halphen Family Distributional Tail Properties) Consider a loss random
variable X ~ Halphen (q, ay, a1, a2), then the following tail behaviors are possible in each
subfamily.

1. Type A subfamily. Set the parametersto g = 2, ay = oom, a1 = v—1, and ay = —o/m and
the tail properties of the Halphen Type A, Gumbel, and Gamma distributions are characterized
by the return period with quantiles x proportional to the log of the return period such that
x < InT;

2. Type B subfamily. Set the parametersto g = 1, a0 = 2v—1, a1 = o/m, and ay = =2/ m*
and the tail properties of the Halphen Type B and Gaussian distributions are characterized by
the return period with quantiles x proportional to the squareroot of the log of the return period
such that x < \/In T;

3. Type IB subfamily. Set the parameters to ¢ = 3, ay = 2m*, ay = —am, and ay =
—(2v + 1) and the tail properties of the Halphen Type IB distributions are characterized by
the return period with quantiles x proportional to the power of the return period such that
xoc T,

——1

In these properties T (x) denotes the return periods given by T (x) = F ().
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At this stage, it will be relevant to introduce a special function introduced by Halphen
(1955) that plays an equivalent role in normalization for the Type B and Type IB distributions
as the modified Bessel function of the second kind (third kind) in the Type A (Generalized
Inverse Gaussian) subfamily (see Proposition 9.31).

Proposition 9.31 (Exponential Factorial Function) 7he exponential factorial function ef,, (x)
is given by the integral equation

ey (a) = 2/x2”*1 exp [—x* + ax| dx, v>0 (9.119)
0

or by the series expansion

i)=Y (j—!rr (u + %) . (9.120)

r=0

The exponential factorial function is plotted in Example 9.7 for a few parameter settings.

W EXAMPLE 9.7 Features of the Exponential Factorial Function

In this example, we plot the value of the log of the exponential factorial function as
a function of v and « for a range of parameter settings (Figure 9.10).

\

FIGURE 9.10 Log of the exponential factorial function for a range of parameters v and o
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To conclude this general discussion on the Halphen family of distributions, we discuss
some basic sampling procedures for drawing loss random variates from a Halphen family dis-
tribution as discussed in detail by El Adlouni and Bobée (2007), where an acceptance—rejection
method is proposed for each of the Type A, Type B, and Type IB subfamilies.

Algorithm 9.6 (Simulating Losses from a Halphen Type A Severity Model)

1. Construct the instrumental distribution for aceptance—rejection sampling given by a Gamma
density

A

g(x; A\, 0) = kaq exp(—dx) (9.121)

with scale § > 0 and shape A\ > 0, where if X ~ HalphenA (m, v, o), one selects the shape
and scale of the instrumental distribution by

_ _EXP K7 (20)
2Var(X) K ,(20)K,12(2a) — K2 (20) 9.122)
A MK, (2a)

0= EX]  mKy41(20)

2. Numerically find the maximum point M such that the following inequality with the Halphen
Type A density f(x) and the instrumental Gamma density g(x) satisfy f(x) < Mg(x) where
one should select M as the minimum value such that Mg(x) is an envelope for f(x) over its
entire support;

3. Draw a Gamma random variate: X ~ Gamma(\, 0);

4. Draw a Uniform random variate: U ~ Uniform(0, 1);

5. Accept Draw X if U < %, otherwise repeat.

In the same manner, one can also design an acceptance—rejection algorithm for sampling
loss random variates from the Halphen Type B and Type IB distributions as follows. The only
real difference compared to the Type A samplers is in the specification of the shape and scale
parameters that will ensure the dominance of the instrumental distribution to act as an envelope
function of the support of the Type B and Type IB distributions.

Alg