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To know, is to know that you know nothing.
That is the meaning of true knowledge.

Socrates
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Preface

Operational risk (OpRisk) has been through significant changes in the past few years with
increased regulatory pressure for more comprehensive frameworks. Nowadays, every mid-sized
and larger financial institution across the planet has an OpRisk department. However, if we
compare the pace of progress of OpRisk to market and credit risks, we would realize that
OpRisk is not advancing as fast as its sister risks moved in the past. Market risk management
and measurement had its major breakthrough in the early 1990s as J.P. Morgan released publicly
its Value-at-Risk (VaR) framework. Only a couple of years after this release, most of the 100
global largest banks had developed a market risk framework and were using, at least to a certain
level, VaR methods to measure and manage market risk. A few years later, the Basel Committee
allowed banks to use their VaR models for regulatory capital purposes. From the release of JP
Morgan’s methodology to becoming accepted by Basel and local regulators, it took only about
4 years. This is basically because the methods were widely discussed and the regulators could
also see in practice how they would work. As we see it, one of the biggest challenges in OpRisk
is to take this area to the same level that market and credit risk management are at. Those two
risks are managed proactively and risk managers usually have a say if deals or businesses are
approved based on the risk level. OpRisk is largely kept out of these internal decisions at this
stage and this is a very worrying issue as quite a few financial institutions have OpRisk as its
dominant exposure. We believe that considerable effort in the industry would have to be put
into data collection and modeling improvements, and making a contribution to close this gap
is the main objective of our book.

Unlike market and credit risks, the methodologies and practices used in OpRisk still vary
substantially between banks. Regulators are trying to close the methodological gap by hold-
ing meetings with the industry and incentivizing convergence among the different approaches
through more individualized guidance. Although some success might be credited to these efforts,
there are still considerable challenges and this is where the Fundamental Aspects of Operational
Risk and Insurance Analytics: A Handbook of Operational Risk can add value to the industry.

In addition, by using this text as a graduate text from which to teach the key components
of OpRisk in universities, one will begin to achieve a concensus and understanding of the disci-
pline for junior quantitative risk managers and actuaries. These challenges involve the practical
business environment, regulator requirements, as well as the serious and detailed quantitative
challenges in the modeling aspects.

This book is a comprehensive treatment of all aspects of OpRisk management and insur-
ance with a focus on the analytical and modeling side but also covering the basic quali-
tative aspects. The initial chapters cover the building blocks of OpRisk management and
measurement. There is broad coverage on the four data elements that need to be used in the

xvii
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xviii Preface

OpRisk framework as well as how a risk taxonomy process should be developed. Consider-
able focus is given to internal loss data and key risk indicators, as these would be fundamen-
tal in developing a risk-sensitive framework similar to market and credit risks. An example is
also shown of how OpRisk can be inserted into a firm’s strategic decisions. In addition, we
cover basic concepts of probability theory and the basic framework for modeling and measur-
ing OpRisk and how loss aggregation should work. We conclude this part of the text with a
model to perform stress-testing in OpRisk under the US Comprehensive Capital Analysis and
Review (CCAR) program.

We continue by covering more special topics in OpRisk measurement. For example, diverse
methods to estimate frequency and severity models are discussed. Another very popular issue
in this industry is how to select severity models and this is also comprehensively discussed. One
of the biggest challenges in OpRisk is that data used in measurement can be very different, so
combining them into a single measure is not trivial. In this part of the book, we show a number
of methods to do so.

After the core risk measurement work is done, there are still some issues to address that
can potentially mitigate the capital and also indicate how to manage risks. In the third part,
we discuss correlation and dependency modeling as well as insurance and risk transfer tools
and methods. This is particularly relevant when considering risk mitigation procedures for loss
processes that may generate catastrophic losses due to, for instance, nature risk.

This book provides a consistent and comprehensive coverage of all aspects of risk man-
agement, more specifically OpRisk–organizational structure, methodologies, policies, and
infrastructure–for both financial and nonfinancial institutions. The risk measurement and
modeling techniques discussed in the book are based on the latest research. They are presented,
however, with considerations based on practical experience of the authors with the daily appli-
cation of risk measurement tools.

We have incorporated the latest evolution of the regulatory framework. The book offers a
unique presentation of the latest OpRisk management techniques and provides one-stop shop-
ping for knowledge in risk management ranging from current regulatory issues, data collec-
tion and management to technological infrastructure, hedging techniques, and organizational
structure.

It is important to mention that we are publishing at the same time a companion
book Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk (Peters and
Shevchenko, 2015), which, although can be seen as an independent tome, covers many impor-
tant ideas in OpRisk and insurance modeling. This book would be ideally treated as a mathe-
matically detailed companion to this current text, which would go hand in hand with a more
advanced graduate course on OpRisk. In this text, we cover in detail significant components of
heavy-tailed loss modeling, which is of key importance to many areas of OpRisk.

We would like to thank our families for their patience in our absence while we were writing
this book.
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Chapter One

OpRisk in Perspective

1.1 Brief History

Operational risk (OpRisk) is the youngest of the three major risk branches, the others being
market and credit risks. The term OpRisk started to be used after the Barings event in 1995,
when a rogue trader caused the collapse of a venerable institution by placing bets in the Asian
markets and keeping these contracts out of sight of management. At the time, these losses
could be classified neither as market nor as credit risks and the term OpRisk started to be
used in the industry to define situations where such losses could arise. It took quite some time
until this definition was abandoned and a proper definition was established for OpRisk. In
these early days, OpRisk had a negative definition as “every risk that is not market and credit”,
which was not very helpful to assess and manage this risk. Looking back at the history of risk
management research, we observe that early academics found the same issue of classifying risk
in general, as Crockford (1982) noticed: “Research into risk management immediately encoun-
ters some basic problems of definition. There is still no general agreement on where the bound-
aries of the subject lie, and a satisfactory definition of risk management is notoriously difficult to
formulate”.

Before delving into the brief history of OpRisk it might be useful to first understand how
risk management is evolving and where OpRisk fits in this evolution. Risk in general is a rela-
tively new area that began to be studied only after World War II. The concept of risk manage-
ment came from the insurance industry and this was clear in the early days’ definitions. Accord-
ing to Crockford (1982) the term “risk management”, in its earliest incarnations, “encompassed
primarily those activities performed to prevent accidental loss”. In one of the first textbooks on risk,
Mehr and Hedges (1963) used a definition that reflected this close identification with insurance:
“[T]he management of those risks for which the organization, principles and techniques appropriate
to insurance management is useful”. Almost 20 years later, Bannister and Bawcutt (1981) defined
risk management as “the identification, measurement and economic control of risks that threaten
the assets and earnings of a business or other enterprise”, which is much closer to the definition
used in the financial industry in the twenty-first century.

The association of risk management and insurance came from the regular use of insurance
by individuals and corporations to protect themselves against these “accidental losses”. It is
interesting to see that even early authors on the subject made a case for the separation between
risk management and risk-takers (the businesses). Crockford (1982) wrote that “operational

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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2 CHAPTER 1 OpRisk in Perspective

convenience continues to dictate that pure and speculative risks should be handled by different func-
tions within a company, even though theory may argue for them being managed as one”.

New tools for managing risks started to emerge in the 1950s, in addition to insurance,
when many types of insurance coverage became very costly and incomplete; or certainly this
“incompletion” started to be better noticed as risk management was beginning to evolve. Sev-
eral business risks were either impossible or too expensive to insure. Contingent planning activ-
ities, an embryo of what is today called Business Continuity Planning (BCP), were developed,
and various risk prevention or self-prevention activities and self-insurance instruments against
some losses were put in place. Coverage for work-related illnesses and accidents also started to
be offered during the 1960s. The 1960s were when a more formal, organized scholarly interest
started to blossom in academia on issues related to risk. The first academic journal to show “risk”
in their title was the Journal of Risk and Insurance in 1964. This journal was actually titled Jour-
nal of Insurance until then. Other specialized journals followed including Risk Management—
published by the Risk and Insurance Management Society (RIMS), a professional association
of risk managers founded in 1950 and the Geneva Papers on Risk and Insurance, published by
the Geneva Association since 1976.

Risk management had its major breakthrough as the use of financial derivatives by investors
became more spread out. Before the 1970s, derivatives were basically used for commodi-
ties and agricultural products; however, in the 1970s but more strongly in the 1980s, the
use of derivatives to manage and hedge risks began. In the 1980s, companies began to con-
sider financial risk management of “risk portfolios”. Financial risk management has become
complementary to pure risk management for many companies. Most financial institutions,
particularly investment banks, intensified their market and credit risk management activities
during the 1980s. Given this enhanced activity and a number of major losses, it was no sur-
prise that more intense scrutiny drew international regulatory attention. Governance of risk
management became essential and the first risk management positions were created within
organizations.

A sort of “risk management revolution” was sparked in the 1980s by a number of macroe-
conomic events that were present during this decade as, for example, fixed currency parities
disappeared, the price of commodities became much more volatile, and the price fluctuations
of many financial assets like interest rates, stock markets, exchange rates, etc. became much
more volatile. This volatility, and the many headline losses that succeeded, revolutionized the
concept of financial risk management as most financial institutions had such assets in their
balance sheets and managing these risks became a priority for senior management and board of
directors. At the same time, the definition of risk management became broader. Risk manage-
ment decisions became financial decisions that had to be evaluated based on their effect on a
firm or portfolio value, rather than on how well they cover certain risks. This change in defini-
tion applies particularly to large public corporations, due to the risk these bring to the overall
financial system.

These exposures to financial derivatives brought new challenges with regard to risk assess-
ment. Quantifying the risk exposures, given the complexity of these assets, was (and still
remains) quite complex and there were no generally accepted models to do so. The first and
most popular model to quantify market risks was the famous “Black & Scholes” developed by
Black and Scholes (1973) in which an explicit formula for pricing a derivative was proposed—in
this case, an equity derivative. The model was so revolutionary that the major finance journals
refused to publish it at first. It was finally published in the Journal of Political Economy in 1973.
An extension of this article was later published by Merton in the Bell Journal of Economics
and Management Science (Merton, 1973). The impact of the article in the financial industry
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1.1 Brief History 3

was significant and the risk coverage of derivatives grew quickly, expanding to many distinct
assets like interest rate swaps, currencies, etc.

As risk management started to grow as a discipline, regulation also began to get more
complex to catch up with new tools and techniques. It is not a stretch to say that financial
institutions have always been regulated one way or another given the risk they bring to the
financial system. Regulation was mostly on a country-by-country basis and very uneven, allow-
ing arbitrages. As financial institutions became more globalized, the need for more symmetric
regulation that could level the way institutions would be supervised and regulated increased
worldwide. The G10, the group of 10 most industrialized countries, started meetings in the
city of Basel in Switzerland under the auspices of the Bank for International Settlements (BIS).
The so-called Basel Committee on Banking Supervision or Basel Committee was established
by the central bank governors of the group of 10 countries at the end of 1974, and continues
to meet regularly four times a year. It has four main working groups, which also meet regularly.

The Basel Committee does not possess any formal supranational supervisory authority,
and its conclusions cannot, and were never intended to, have legal force. Rather, it formulates
broad supervisory standards and guidelines and recommends statements of best practice in
the expectation that individual authorities will take steps to implement them through detailed
arrangements, statutory or otherwise, which are best suited to their own national systems.
In this way, the Committee encourages convergence toward common approaches and com-
mon standards without attempting detailed standardization of member countries’ supervisory
techniques.

The Committee reports to the central bank governors and heads of supervision of its mem-
ber countries. It seeks their endorsement for its major initiatives. These decisions cover a very
wide range of financial issues. One important objective of the Committee’s work has been
to close gaps in international supervisory coverage in pursuit of two basic principles: that no
foreign banking establishment should escape supervision; and that supervision should be ade-
quate. To achieve this, the Committee has issued a long series of documents since 1975 that
guide regulators worldwide on best practices that can be found on the website:
www.bis.org/bcbs/publications.htm.

The first major outcome of these meetings was the Basel Accord, now called Basel I, signed
in 1988 (see BCBS, 1988). This first accord was limited to credit risk only and required each
bank to set aside a capital reserve of 8%, the so-called Cooke ratio, of the value of the securities
representing the credit risk in their portfolio. The accord also extended the definition of capital
to create reserves encompassing more than bank equity, which were namely:

• Tier 1 (core capital), consisting of common stock, holding in subsidiaries, and some
reserves disclosed to the regulatory body;

• Tier 2 (supplementary capital), made up of hybrid capital instruments, subordinated
debts with terms to maturity greater than 5 years, other securities, other reserves.

The Basel I Accord left behind one important risk component, which was market risk. In
the meantime, JP Morgan released publicly its market risk methodology called Risk Metrics
(JP Morgan, 1996), and the popularization of market risk measurement became widespread in
the early 1990s. Reacting to that, in 1996 the Basel Committee issued the market risk amend-
ment (BCBS, 1996), which included market risk in the regulatory framework. The acceptance
of more sophisticated models like Value at Risk (VaR) as regulatory capital was a significant
milestone in risk management. However, this initial rule had a number of limitations as it did
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4 CHAPTER 1 OpRisk in Perspective

not allow diversification, that is, the total VaR of the firm would be the sum of the VaR for all
assets without allowing for correlation between these risks.

As the global financial markets became increasingly interconnected and sophisticated as
well as financial products, like credit derivatives, it soon became clear to the Basel Committee
that a new regulatory framework was needed. In June 1999, the Committee issued a proposal
for a revised Capital Adequacy Framework. The proposed capital framework consisted of the
following three pillars:

• Pillar 1. Minimum capital requirements, which seek to refine the standardized rules set
forth in the 1988 Accord;

• Pillar 2. Supervisory review of an institution’s internal assessment process and capital ade-
quacy;

• Pillar 3. Market discipline focused on effective use of disclosure to strengthen market
discipline as a complement to supervisory efforts.

Following extensive interaction with banks, industry groups, and supervisory authorities that
are not members of the Committee, the revised framework (referred to as Basel II) BCBS (2004)
was issued on June 26, 2004; the comprehensive version was published as BCBS (2006). This
text serves as a basis for national rule-making and for banks to complete their preparations for
the new framework’s implementation.

With Basel II, there also came for the first time the inclusion of OpRisk into the regulatory
framework. The OpRisk situation was different from the one faced by market and credit risks.
For those risks, regulators were looking at the best practice in the industry and issuing regulation
mirroring these. The progress in OpRisk during the late 1990s and early 2000s was very slow.
Some very large global banks like Lehman Brothers did not have an OpRisk department until
2004, so the regulators were issuing rules without the benefit of seeing how these rules would
work in practice. This was a challenge for the industry.

In order to address these challenges, the Basel Committee allowed a few options for banks
to assess capital. The framework outlined and presented three methods for calculating OpRisk
capital charges in a continuum of increasing sophistication and risk sensitivity: (i) the Basic Indi-
cator Approach (BIA); (ii) the Standardized Approach (SA); and (iii) Advanced Measurement
Approaches (AMA). Internationally active banks and banks with significant OpRisk exposures
(e.g., specialized processing banks) are expected to use an approach that is more sophisticated
than the BIA and that is appropriate for the risk profile of the institution.

Many models have been suggested for modeling OpRisk under Basel II; for an overview,
see Chernobai et al. (2007, chapter 4), Allen et al. (2005), and Shevchenko (2011, Section 1.5).
Fundamentally there are two different approaches used to model OpRisk:

• The top–down approach; and
• The bottom–up approach.

The top–down approach quantifies OpRisk without attempting to identify the events
or causes of losses while the bottom–up approach quantifies OpRisk on a microlevel as it is
based on identified internal events. The top–down approach includes the Risk Indicator mod-
els that rely on a number of operational risk exposure indicators to track OpRisks and the
Scenario Analysis and Stress Testing Models that are estimated based on the what-if scenarios.
The bottom–up approaches include actuarial-type models (referred to as the Loss Distribution



�

�

“Cruz_Driver” — 2015/1/8 — 10:47 — page 5 — #5
�

�

�

�

�

�
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Approach) that model frequency and severity of OpRisk losses. In this book we provide a
detailed quantitative discussion on a range of models some of which are appropriate for top-
down modelling whilst others are directly applicable to bottom-up frameworks.

1.2 Risk-Based Capital Ratios for Banks

Until the late 1970s, banks in most countries were in general highly regulated and protected
entities. This protection was largely a result of the bitter memories of the Great Depression in
the US as well as the role that high (or hyper) inflation played in the political developments in
Europe in the 1930s, and banks arguably play a significant part in the spreading of inflation.
Due to these memories, the activities banks were allowed to undertake were tightly restricted by
national regulators and, in return, banks were mostly protected from competitive forces. This
cozy relationship was intended to ensure stability of the banking system, and it succeeded in
its goals throughout the reconstruction and growth phases, which followed World War II. This
agreement held well until the collapse of Bretton Woods1 (Eichengreen, 2008) in the 1970s.
The resulting strain in the banking system was enormous. Banks suddenly were faced with an
increasingly volatile environment, but at the same time had very inelastic pricing control over
their assets and liabilities, which were subject not just to government regulation but also to
protective cartel-like arrangements. The only solution seen by national authorities at this time
was to ease regulations on banks. As the banking sector was not used to competitive pressures,
the result of the deregulation was that banks started to take too much risk in search of large pay-
offs. Suddenly banks were overlending to Latin American countries (and other emerging mar-
kets); overpaying for expansion (e.g., buying competitors looking for geographic expansion),
etc. With the crisis in Latin America in the 1980s, these countries could not repay their debts
and banks were once again in trouble. Given that the problems were mostly cross-boundary
as the less regulated banks became more international, the only way to address this situation
was at the international level and the Basel Committee was consequently established under the
auspices of the BIS.

In 1988, the Basel Committee decided to introduce an internationally accepted capital
measurement system commonly referred to as Basel I, (BCBS, 1988). This framework was
replaced by a significantly more complex capital adequacy framework commonly known as
Basel II (BCBS, 2004) and, more recently, the Basel Committee issued the Basel III Accord
(BCBS, 2011, 2013), which will add more capital requirements to banks. Table 1.1 shows a
summary of key takeaways of the Basel Accords.

Basel I primarily focuses on credit risk and developed a system of risk-weighting of assets.
Assets of banks were classified and grouped in five categories according to credit risk, carrying
risk weights of 0% for the safest, most liquid assets (e.g., cash, bullion, home country debt
like Treasuries) to 100% (e.g., most corporate debt). Banks with an international presence were
required to at least hold capital equal to 8% of their risk-weighted assets (RWA). The concept
of RWA was kept in all Accords with changes on the weights and in the composition of assets by
category. An example of how risk-weighting works can be seen in Table 1.2. In this example, the
sum of the assets of this bank is $1015; however, applying the risk-weighting rule established
in Basel I, the RWA is actually $675.

1The Bretton Woods agreement was established in the summer of 1944 and put in place a system of exchange
and interest rate stability which ensured that banks could easily manage their exposures.
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6 CHAPTER 1 OpRisk in Perspective

table 1.1 Basel framework general summary

Accord Year Key points

Basel I 1988 Introduces minimal capital requirement for the banking book.
Introduces tier concept for capital requirement.
Incorporates trading book into the framework later on through the
Market Risk Amendment (MRA).

Basel II 2004 Allows usage of internal models and inputs in risk measurement.
Introduces operational risk.

Basel II/III 2010 Increases capital requirement for trading book, with significant increase
for correlation trading and securitizations.

Basel III 2010 Motivated by the great financial crisis of 2008, increases capital
requirements, introduces leverage constraints and minimum liquidity
and funding requirements.

table 1.2 Example of risk-weighted assets calculation under Basel I

Risk-weight (%) Asset Amount ($) RWA ($)

0 Cash
Treasury bills
Long-term treasury securities

10
50
100

0
0
0

20 Municipal bonds
Items in collection

20
20

4
4

50 Residential mortgages 300 150
100 AA+ rated loan

Commercial loans, AAA- rated
Commercial loans, BB- rated
Sovereign loans B- rated
Fixed assets

20
55
200
200
50

20
55
200
200
50

Not rated Reserve for loan losses (10) (10)

Total 1015 675

Since Basel I, a bank’s capital also started to be classified into Tier 1 and Tier 2. Tier 1
capital is considered the primary capital or “core capital”; Tier 2 capital is the supplementary
capital. The total capital that a bank holds is defined as the sum of Tier 1 and Tier 2 capitals.
Table 1.3 provides a more detailed view of the components of each tier of capital. The key
component of Tier 1 capital is the common shareholders equity. This item is so important that
a number of banks also report the so-called Tier 1 Common Equity in which only common
shareholder equity is considered as Tier 1. As shown in Table 1.3, the Basel Committee made
capital requirement much stricter in the latest Basel Accords by changing the definition of
some of the current items but also by sending a couple of items to Tier 2 (e.g., trust preferred
securities and remaining noncontrolling interest), making it more difficult for banks to comply
with these new capital rules.

Another important contribution from Basel I is the concept of capital ratios that remains
until today. Basically, a bank needs to assert its capital requirements based on the formula:

Capital ratio =
Eligible capital

RWA
. (1.1)
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table 1.3 Tiered capital definition under Basel II and Basel III

Tier Capital requirement under Basel II Basel III capital requirement

Tier 1 (+) Common shareholders equity
(+) Partial noncontrolling interest (NCI)
(−) Certain deferred tax assets (DTA)
(−) Goodwill and intangibles
(−) Debt valuation adjustments (DVA)
(−) Other deductions
= Tier 1 common
(+) Perpetual preferred stock
(+) Trust preferred securities
(+) Remaining NCI
= Tier 1 capital

(+) Common shareholders equity
(+) Partial noncontrolling interest
(NCI)∗

(−) Certain deferred tax assets (DTA)∗

(−) Goodwill and intangibles
(−) Debt valuation adjustments (DVA)
(−) Other deductions∗

= Tier 1 common
(+) Perpetual preferred stock
= Tier 1 capital

Tier 2 (+) Subordinated debt
(+) Allowance for loan loss reserves

(+) Trust preferred securities∗

(+) Remaining NCI∗

(+) Subordinated debt
(+) Allowance for loan loss reserves

Basel III changes are indicated by ∗.

table 1.4 Example of capital ratios in some large European banks
in 2012

UBS Credit Suisse Deutsche Bank

Tier 1 capital 40,982 43,547 50,483
Total capital 48,498 49,936 57,015

RWA total 192,505 224,296 333,849
RWA market risk 21,173 29,366 53,058
RWA credit risk 105,807 143,679 229,196
RWA OpRisk 53,277 45,125 51,595
Other risks 6,248 6,126 —

Tier 1 capital ratio 21.3% 19.4% 15.1%
Total capital ratio 25.2% 22.3% 17.1%

Source: Banks annual reports. Figures are in Swiss Francs (CHF) millions for UBS and
Credit Suisse and in Euros millions for Deutsche Bank.

Therefore, to find its Tier 1 capital ratio a bank would have to calculate its RWA based on
the current Basel rules and also retrieve the elements that compose Tier 1 capital from its balance
sheet. Dividing the Tier 1 capital by the RWA would provide the Tier 1 capital ratio. In order
to make this process very clear, we show examples on how to calculate each of the steps. Table
1.2 shows an example of RWA calculation using only credit risk-weightings; Table 1.3 provides
an overview of capital requirement definitions on the balance sheet; and Table 1.4 shows a
real-life example of capital ratios in a few Large European banks that are Basel II approved and,
therefore, have to show their capital breakdown.

Basel II discussions started in the late 1990s and ended with the publication of the second
Accord, or “Basel II” in 2004 (BCBS, 2004). Basel II was implemented in an era where banks
posted record profits and the global macroeconomic scenario did not show many clouds on
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table 1.5 New capital charges on Basel III

Capital conservation buffer Countercyclical capital buffer

2.5% added to the minimum ratios Up to 2.5% added to the minimum ratios
To be built up in good times and available in

period of stress
Inclusion in target capital ratios by end of

transition period (2018)
Restriction on distributions (dividends, share

buybacks, and bonuses) if the full buffer
requirement is not met

Declared by any country that is experiencing
overheated credit markets—preannouncement of
decision by up to 12 months

Can be relaxed when the market “cools down”
again—takes effect immediately with
announcement

Restriction on distributions (dividends, share
buybacks, and bonuses) if the buffer requirement
is not met

table 1.6 Minimum capital requirements

Type of capital
Before

Basel III(%) Basel III(%)

Capital
conservation
buffer (%)

Countercyclical
capital

buffer (%)
Total

Basel III(%)

Common Equity Tier 1 2 4.5 2.5 0–2.5 9.5
Tier 1 4 6 2.5 0–2.5 11
Total risk-based capital 8 8 2.5 0–2.5 13

Source: BCBS (2013).

the horizon. In this Accord, banks were allowed to use their own internal models to calcu-
late regulatory capital for market, credit, and also operational risk, which was introduced in
this Accord. The overall idea of Basel II was that banks would be able to reduce their capital
requirements by adopting internal models and following the strict qualification criteria.

In order to calculate the RWA in market and operational risks, where the risk-weighting
asset in the example of Table 1.2 would obviously not apply, banks would have to convert the
outcomes of their internal models, calculated at the 99.9% quantile, and divide this number by
8% (or multiply by 12.5). Reverse engineering these numbers from Table 1.4, i.e. calculating
operational risk capital as RWA OpRisk divided by 12.5, we can see that the operational risk
capital at UBS in 2012 was CHF 4264 million, Credit Suisse was CHF 3610 million, and
Deutsche Bank was €4127 million.

Unlike Basel I and Basel II, Basel III was motivated by the great banking crisis in 2008 and
this motivation made this 3-rd version of the Accord primarily focussed on addressing concerns
about a run on the bank risks (i.e., liquidity issues on customers withdrawing resources from a
bank due to lack of confidence in its financial health), consequently requiring differing levels
of reserves for different forms of bank deposits and other borrowings. Therefore, contrary to
what might be expected by its name, Basel III rules do not, for the most part, supersede the
guidelines established in Basel I and Basel II but work alongside them. The main changes in
the Basel III framework are shown in Table 1.5 and are mostly related to the creation of new
capital buffers to ensure banks are enough capitalized in the next crisis.

In addition to the minimum capital ratios already established in the previous Accords (see
Table 1.6), Basel III requires that all banking organizations maintain a “capital conservation
buffer” consisting of Tier 1 Common Equity capital in an amount equal to 2.5% of risk-
weighted assets in order to avoid restrictions on their ability to make capital distributions and to
make certain discretionary bonus payments to executive officers. Thus, the capital conservation
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1.3 The Basic Indicator and Standardized Approaches for OpRisk 9

buffer effectively increases the minimum Tier 1 common equity capital, Tier 1 capital, and total
capital requirements for US banking organizations to 7.0%, 8.5%, and 10.5%, respectively.
Banking organizations with capital levels that fall within the buffer will be forced to limit divi-
dends, share repurchases or redemptions (unless replaced within the same calendar quarter by
capital instruments of equal or higher quality), and make discretionary bonus payments. The
limits consist of a sliding scale, so that as the buffer decreases, so does the maximum payout
as a percentage of the banking organization’s net income over the past four quarters. For large
global banks, the capital buffer may be increased during periods of “excessive credit growth” by
an incremental “countercyclical capital buffer” of up to 2.5% of risk-weighted assets. In a change
from the proposed rules (i.e., presigning the Accord), large global banks would (after complet-
ing the “parallel run” process for migrating to the advanced approaches regime) be required
to use the lesser of their standardized and advanced approaches risk-based capital ratios as the
basis for calculating their capital conservation buffer (and any applicable countercyclical capital
buffer). This change will likely increase the capital buffer for at least some large global banks
compared to the proposed rules.

Basel III also imposes a Tier 1 minimum leverage ratio of 4.0% for all banking organi-
zations and an additional supplementary Tier 1 leverage ratio of 3.0% for large global banks
(BCBS, 2013). The 3.0% supplementary leverage ratio (which, consistent with Basel III sched-
ule, will take effect in January 2018 but be reported beginning in January 2015) incorporates in
the denominator certain off-balance sheet exposures that are not included in the standard lever-
age ratio. Despite significant criticism from the industry, Basel III continues to include in the
supplementary leverage ratio derivative exposures based on potential future exposure (without
collateral recognition) and 10% of unconditionally cancellable commitments.

1.3 The Basic Indicator and Standardized Approaches
for OpRisk

Under the Basel II framework, the simplest method that banks could use to calculate OpRisk
capital is the BIA. Banks using the BIA must hold capital for OpRisk equal to the average over
the previous 3 years of a fixed percentage (denoted α) of positive annual gross income. Figures
for any year in which annual gross income is negative or zero should be excluded from both
the numerator and denominator when calculating the average. The capital charge KBIA may be
expressed as follows:

KBIA = α
1
n

3∑
j=1

max {GI( j), 0} , n =

3∑
j=1

I{GI( j)>0}, (1.2)

where GI( j), j = 1, 2, 3 are the annual gross incomes over the last 3 years; I{GI( j)>0} is an
indicator function that equals 1 if condition in {.} is true and 0 otherwise; n is the number of
previous years in which income is positive (expected to be three); and α = 0.15 (as of 2013)
as established by the Committee (BCBS, 2006, pp. 144–145).

Another simple approach to calculate OpRisk capital under the Basel II framework is the
SA where, bank activities are divided into eight business lines: Corporate finance, Trading and
sales, Retail banking, Commercial banking, Payment and settlement, Agency services, Asset
management, and Retail brokerage. Within each business line, gross income is a broad indi-
cator that serves as a proxy for the scale of business operations and thus the likely scale of
OpRisk exposure within each of these business lines. The capital charge for each business line
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10 CHAPTER 1 OpRisk in Perspective

table 1.7 Coefficients βi for each
business line as determined by Basel II
in BCBS (2006, p. 147)

Business line βi

Corporate finance 0.18
Trading and sales 0.18
Retail banking 0.12
Commercial banking 0.15
Payment and settlements 0.18
Agency services 0.15
Asset management 0.12
Retail brokerage 0.12

is calculated by multiplying gross income by a factor (denoted β) assigned to that business line.
The value of β serves as a proxy for the industry-wide relationship between the OpRisk loss
experience for a given business line and the aggregate level of gross income for that business
line. It should be noted that in the SA gross income is measured for each business line, not the
whole institution, that is, in Corporate finance, the indicator is the gross income generated in
the Corporate finance business line.

The total capital charge is calculated as the 3-year average of the simple summation of
the regulatory capital charges across each of the business lines in each year. In any given year,
negative capital charges (resulting from negative gross income) in any business line may offset
positive capital charges in other business lines without limit. However, where the aggregate
capital charge across all business lines within a given year is negative, the input to the numerator
for that year will be zero. The total capital charge KTSA may be expressed as

KTSA =
1
3

3∑
j=1

max

(
8∑

i=1

βiGIi( j), 0

)
, (1.3)

where GIi( j) is the annual gross income of business line i in year j and βi a fixed coefficient, set
by the Committee, relating the level of required capital to the level of gross income for each of
the eight business lines. These details can be found in (BCBS, 2006, pp. 146–147); the values
of βi (as of 2013) are presented in Table 1.7.

1.4 The Advanced Measurement Approach

Under the Basel II AMA for OpRisk, banks are allowed to use their own internal models to
estimate capital. A bank intending to use the AMA should demonstrate the accuracy of the
internal models within the matrix of Basel II risk cells (eight business lines by seven event
types) relevant to the bank. The eight business lines are listed in Table 1.7 and the seven event
types are as follows:

• Internal fraud;
• External fraud;
• Employment practices and workplace safety;
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1.4 The Advanced Measurement Approach 11

• Clients, products, and business practices;
• Damage to physical assets;
• Business disruption and system failures;
• Execution, delivery, and process management.

As imagined, given the early stages of bank frameworks, the range of practice was quite
broad. In Europe, the methodological focus of most banks was on using scenario analysis while
in the US the focus was on internal and external loss data. Understanding the evolutionary
nature of OpRisk management as a developing risk management discipline, the Basel Commit-
tee provided significant flexibility to banks in the development of an OpRisk measurement and
management system. This flexibility was, and continues to be, a critical feature of the AMA.
However, substantial efforts are required by national authorities to ensure sufficient consis-
tency in the application of these features. The Basel II framework envisaged that, over time, the
OpRisk discipline will mature and converge toward a narrower band of effective risk manage-
ment and risk measurement practices. Understanding the current range of observed operational
risk management and measurement practices, both within and across geographic regions, con-
tributes significantly to the efforts to establish consistent supervisory expectations. Through the
analysis of existing practices, and the publication of papers reporting those practices, the Basel
Committee expects the maturation of OpRisk practices and supports supervisors in developing
more consistent regulatory expectations.

The initial Basel II proposal (BCBS, 2001, Annex 4) suggested three approaches for AMA:

• Internal Measurement Approach (IMA);
• Score Card Approach (SCA);
• Loss Distribution Approach (LDA).

The latest Basel II document (see BCBS, 2006) does not give any guidance for the AMA
approach and allows flexibility.

1.4.1 INTERNAL MEASUREMENT APPROACH

Under the IMA, OpRisk events are divided into business lines i = 1, 2, . . . and event types
j = 1, 2, . . .; an exposure indicator EIij is set for each business line/event type combination
(risk cell) to capture the scale of the bank’s activities in the risk cell; probability Pij that the
event will occur over the next year and average loss ALij are estimated using internal loss data.
Then, the capital charge KIMA is calculated as

KIMA =
∑

i,j

γijEIijPijALij, (1.4)

where γij is the conversion factor translating expected loss, EIijPijALij, for business line/event
type risk cell into a capital charge; see BCBS (2001, Annex 4).

1.4.2 SCORE CARD APPROACH

Under a scorecard based approach the bank determines an initial level of OpRisk capital at the
firm or business line level, and then attempts to modify the calculated amounts over time on
the basis of a qualitative ranking or scoring of each risks evolution.
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12 CHAPTER 1 OpRisk in Perspective

As stated in the Basel working paper on the regulatory treatment of OpRisk (BCBS 2001,
p. 35)

“These scorecards are intended to bring a forward-looking component to the capital calculations,
that is, to reflect improvements in the risk control environment that will reduce both the frequency
and severity of future operational risk losses. The scorecards may be based on actual measures of risk,
but more usually identify a number of indicators as proxies for particular risk types within business
units/lines. The scorecard will normally be completed by line personnel at regular intervals, often
annually, and subject to review by a central risk function”.

The SCA approach calculates the capital charge KSCA as

KSCA =
∑

i,j

ωijEIijRSij, (1.5)

where ωij is the amount of capital per unit of the indicator of exposure, EIij is the exposure
index from a set for each business line/event type combination (risk cell) and RSij is the risk
factor. Under the SCA, a bank assigns a value to each OpRisk event and compares the different
OpRisks according to the values. This method relies on experts’ assessment in the selection of
indicators and their weights (see, e.g., Anders and Sandstedt, 2003). There are a number of
references discussing in more detail the nature of scorecard based approaches, see for instance
Blunden (2003) and Alexander (2003) and the references therein for more details.

As noted in Alexander (2003), scorecards can be higly subjective and the following impor-
tant issues are still in the process of being better understood:

• The industry has still been unable to develop industry wide standards for the key risk
indicators (KRIs) that should be used for each risk type and underpin the development of
scorecard methods;

• They may be inherent biases and moral hazards that must be better understood, modelled
and managed before scorecard based methods can be considered reliable. To understand
this point, typically, given a set of risk indicators, frequency and severity scores are assigned
by a business manager or risk expert in the business that ‘owns’ the particular operational
risk. Hence, one requires a considered design of the management process in order to avoid
subjective biases or moral hazard from occurring in the scoring process;

• In addition to the subjectivity of the scores there is also a second problem that under an
AMA approach one should figure out a method to map scorecard data to a loss distribution
model. This involves the mapping of the scores subjectively to monetary loss amounts.

For these reasons we don’t elaborate further on scorecard based approaches. In fact we suggest
users of scorecard approaches to consider formulating them under a regression based frame-
work such as those developed in Item Response Theory (IRT), see discussions in Linden and
Hambleton (1997).

1.4.3 LOSS DISTRIBUTION APPROACH

The LDA approach is based on modelling annual frequency N and severity X1,X2, . . . of
OpRisk events for a risk cell. Then the annual loss for the j-th risk cell is calculated as aggrega-
tion of severities over a 1-year time horizon

Z ( j) = X ( j)
1 + X ( j)

2 + · · ·+ X ( j)
N ( j) (1.6)
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1.4 The Advanced Measurement Approach 13

and the total loss over all risk cells in a given year is obtained by the following sum over the
d risk cells

Z =

d∑
j=1

Z ( j).

Then, the regulatory capital is defined as the 0.999 VaR, which is the quantile of the distribution
for the next year’s annual loss Z :

VaRq[Z ] = inf{z ∈ R : Pr[Z > z] ≤ 1 − q} (1.7)

at the level q = 0.999. For economic capital, banks often use quantile levels in the range
q ∈ [0.9995, 0.9997] depending on a bank’s credit rating. The risk cells can be selected at the
actual loss generating process level. However, currently, many banks use the LDA for business
line/event type risk cells.

Remark 1.1 The LDA is considered to be the most comprehensive approach and is a focus
of this book. Hereafter, we consider the LDA model only.

1.4.4 REQUIREMENTS FOR AMA

The qualifying criteria for using the AMA are quite stringent and, in practice, it takes many
years of implementation and regulatory exams to validate the approach. The Basel II Accord
states that a bank must meet a number of qualitative standards before it is permitted to use an
AMA for OpRisk capital (BCBS, 2006, pp. 150–151). In brief, these are as follows:

• The bank must have an independent OpRisk management function responsible for codi-
fying firm-level policies and procedures concerning OpRisk management and controls; the
design and implementation of the firm’s OpRisk measurement methodology; the design
and implementation of a risk-reporting system for OpRisk; and developing strategies to
identify, measure, monitor, and control/mitigate OpRisk;

• The bank’s internal OpRisk measurement system must be closely integrated into the day-
to-day risk management processes. Its output must be an integral part of the process of
monitoring and controlling the OpRisk profile. The bank must have techniques for allo-
cating OpRisk capital to major business lines and for creating incentives to improve the
management of OpRisk throughout the firm;

• There must be regular reporting of OpRisk exposures and loss experience to business unit
management, senior management, and to the board of directors. The bank must have pro-
cedures for taking appropriate action according to the information within the management
reports;

• The bank’s OpRisk management system must be well documented;
• Internal and/or external auditors must perform regular reviews of the OpRisk management

processes and measurement systems;
• The validation of the OpRisk measurement system by external auditors and/or supervisory

authorities must include:
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14 CHAPTER 1 OpRisk in Perspective

˚ Verifying that the internal validation processes are operating in a satisfactory manner;

˚ Making sure that data flows and processes associated with the risk measurement system
are transparent and accessible.

In addition to these qualitative factors, Basel II also has quite stringent criteria on AMA
acceptance based on a series of quantitative standards (BCBS, 2006, pp. 151–152) as follows:

• Any internal OpRisk measurement system must be consistent with the OpRisk defined by
the Committee and the loss event types defined in BCBS (2006);

• The risk measure used for capital charge should correspond to the 99.9% confidence level
for a 1-year holding period, that is, VaR0.999 defined in (1.7). Supervisors will require
the bank to calculate its regulatory capital requirement VaR0.999 as the sum of expected
loss (EL) and unexpected loss (UL), unless the bank can demonstrate that it is adequately
capturing EL in its internal business practices. To calculate the minimum regulatory capital
as UL, the bank must be able to demonstrate to the satisfaction of its national supervisor
that it has measured and accounted for its EL exposure. For illustration, see Figure 1.1.
Hereafter, for simplicity, we consider the regulatory capital to be the sum of EL and UL,
which is the 99.9% VaR;

• A bank’s risk measurement system must be sufficiently “granular” to capture the major
drivers of OpRisk affecting the shape of the tail of the loss estimates;

• OpRisk capital charge measures for different risk cells must be added for purposes of cal-
culating the regulatory minimum capital requirement over all risk cells in a bank. How-
ever, the bank may be permitted to use internally determined correlations between risk
cells, provided it can demonstrate to the satisfaction of the national supervisor that its
systems for determining correlations are sound, implemented with integrity, and take
into account the uncertainty surrounding any such correlation estimates (particularly in

Expected loss

Value of the annual loss, z

Value - at - Risk,   VaR0.999

Pr [Z > VaR0.999] = 0.001

Unexpected loss

f (
z)

Catastrophic loss

figure 1.1 Illustration of the expected and unexpected losses in the capital requirements at the 99.9%
confidence level for a 1-year holding period; f (z) is the probability density function of the annual loss
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periods of stress). The bank must validate its correlation assumptions using appropriate
quantitative and qualitative techniques;

• OpRisk measurement system must be based on the use of internal data, relevant exter-
nal data, scenario analysis, and factors reflecting the business environment and internal
control systems (BEICF). A bank needs to have a credible, transparent, well-documented
and verifiable approach for weighting these fundamental elements in its overall OpRisk
measurement system. If the estimates of the 99.9% VaR based primarily on internal and
external loss event data are unreliable for business lines with a heavy-tailed loss distribu-
tion and a small number of observed losses, then scenario analysis and BEICF may play a
more dominant role in the risk measurement system. Conversely, OpRisk loss event data
may play a more dominant role in the risk measurement system for business lines where
estimates of the 99.9% VaR based primarily on such data are deemed reliable.

Given that these rules are quite stringent and were made without benchmarks, unlike mar-
ket and credit risks, the range of practice can vary significantly from bank to bank. Even banks
based in the same block in Midtown Manhattan, just to be very graphic, can have completely
different methodologies and frameworks to measure OpRisk. This is very different from market
and credit risks where the measurement frameworks are similar across the banks.

The Basel Committee performs surveys on the range of practices for AMA and then issues
reports to divulge the results. These reports describe industry practices for some key areas of
the governance, data, and modeling components of an AMA framework identifying emerging
effective practices as well as practices that are inconsistent with supervisory expectations. The
findings from the latest range of practices report (BCBS, 2009a) based on the 2008 Loss Data
Collection Exercise (BCBS, 2009b) include the following:

• The absence of definitions in the Basel II text for “gross loss” or “recoveries” and varying
loss data collection practices among AMA banks results in differences in the loss amounts
recorded for similar events. This practice may lead to potentially large differences in banks’
respective capital calculations;

• There was a broad range of practices in the use of loss amount as the AMA input. Most
of the 42 participating AMA banks (43%) used “gross loss after all recoveries” (except
insurance). “Gross loss before any recoveries” was used by 29%. Other loss amounts used
by participating banks include “net loss” (14%) and “other definition” (12%);

• Data collection thresholds vary widely across institutions and types of activity. A bank
should be aware of the impact that its choice of thresholds has on OpRisk capital
computations;

• There is a broad range of practices for when the loss amounts from legal events are used
as a direct input into the model quantifying operational capital, which raises questions of
transparency and industry consistency in how these OpRisk exposures are quantified for
capital purposes;

• There is considerable diversity across banks in the choice of granularity of their models
that may be driven as much by modeler’s preferences as by actual differences in OpRisk
profiles;

• While it is common for banks to use the Poisson distribution for estimating frequency,
there are significant differences in the way banks model severity, including the choice of
severity distribution; and
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16 CHAPTER 1 OpRisk in Perspective

• The combination and weighting of the four elements (internal data, external data, scenario
analysis, and BEICF) are significant issues for many banks, given the many possible com-
bination techniques. This is an area where the range of practices is particularly broad both
within and across jurisdictions.

1.5 General Remarks and Book Structure

Regulators are trying to close the methodology gap by holding meetings with the industry and
they are attempting to incentivize convergence among the different approaches through more
individualized guidance. Although some success might be credited to these efforts, there are
still considerable challenges and this is where our book Fundamental Aspects of Operational Risk
and Insurance Analytics: A Handbook of Operational Risk can add value to the industry.

We consider that one of the biggest challenges in OpRisk is to take this risk management
branch to the same level that market and credit risk management play. Those two risks are
managed proactively and risk managers usually have a say if deals or businesses are approved
based on the risk level. OpRisk is mostly kept out of these discussions at this stage and this is an
issue as quite a few financial institutions have OpRisk as their dominant exposure. We believe
that considerable effort in the industry would have to be put into data collection and modeling
improvements, and that is the focus of our work in this book.

Our book can be divided into two parts. The first part (Chapters 1–5) covers the basics,
the building blocks, of OpRisk management and measurement. In Chapter 2, there is a broad
coverage on the four data elements that need to be used in the OpRisk framework as well as
how a risk taxonomy process should be developed. Considerable focus is given to internal loss
data and key risk indicators as these would be fundamental in developing a risk-sensitive frame-
work similar to market and credit risks. Subsequently, Chapter 3 shows how OpRisk can be
inserted into a firm’s strategic decisions and Chapter 4 shows a model to stress-test OpRisk
under the US Comprehensive Capital Analysis and Review (CCAR) program. The basic con-
cepts of probability theory and the basic framework for modeling and measuring OpRisk and
how loss aggregation should work are considered in Chapter 5.

In the second part of the book (Chapters 6–18), we cover more special topics in OpRisk
measurement. For example, diverse methods to estimate frequency and severity models are
discussed. Another very popular issue in this industry is how to select severity models and this
is also comprehensively discussed in this part. One of the biggest challenges in OpRisk is that
data used in measurement can be very different, so combining them into a single measure is
not a trivial task. In this part of the book, we show a number of methods to do so. After the
core risk measurement work is done, there are still some issues to address that can potentially
mitigate the capital found and also on how to manage risks. We also discuss correlation and
dependency modeling as well as insurance and risk transfer tools and methods.

We hope this book can be the basis for a number of discussions in the industry. This book
can helps novices in the field to learn the building blocks of OpRisk and also suggest new
techniques and ideas for those who have been practicing or researching for a while.

Most OpRisk practitioners would say that their focus is always on the tail events as these
are the ones that can cause real damage and even force a financial institution into bankruptcy.
Realizing this and understanding these tail events and how to model these is a crucial part
of OpRisk. Comprehensive treatment of the modeling of heavy-tailed events requires a book-
length text and it is a subject covered in the more advanced companion book Advances in Heavy
Tailed Risk Modeling: A Handbook of Operational Risk, Peters and Shevchenko (2015).
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Chapter Two

OpRisk Data and Governance

2.1 Introduction

One of the first and most important phases in any analytical process, and this is certainly no
different when developing OpRisk models, is to cast the data into a form amenable to analy-
sis. This is the very first challenge that an analyst or quant faces when determined to model,
measure, and even manage OpRisk. At this stage, there is a need to establish how the infor-
mation available can be modeled to act as an input in the analytical process that would allow
proper risk assessment to be used in risk management and mitigation. In risk management, and
particularly in OpRisk, this activity is today quite regulated and the entire data process, from
collection to maintenance and use, has strict rules, which in a way reduces the variance in the
use of the data across the industry.

The OpRisk framework starts by having solid risk taxonomy so risks are properly classified.
Firms also need to perform a comprehensive risk mapping across their processes to make sure
that no risk is left out of the measurement process. This is a key process to be accomplished
and where a number of firms should be paying more attention.

In this chapter, we lay the ground for the basic building blocks of OpRisk management.
First we describe how risk taxonomy works, classifying loss events into the major risk categories.
Then we describe the four major data elements that should be used to measure and manage
OpRisk: internal loss data, external loss data, scenario analysis, and business and control envi-
ronment factors. When these risk mapping, taxonomy, and data building blocks are reasonably
structured, it becomes important to configure the organization of the OpRisk department and
a firm’s risk governance. Even a very efficient and well-developed OpRisk framework would fail
if the proper organization and policies are not in place.

2.2 OpRisk Taxonomy

The term “taxonomy” has become quite popular in the risk management industry. In most
conferences and industrial workshops, and most certainly among consultants, the term “risk
taxonomy” has become a regular mantra. So, what is risk taxonomy? Taxonomy is actually a
term borrowed from biology. One of the missions of the biologist is to discover new species
on remote places of the planet and it would make their work easier if they could classify a new

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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18 CHAPTER 2 OpRisk Data and Governance

species into a new group based on some characteristics. So taxonomy means the conception,
naming, and classifying organisms into groups. It is a common practice in biology to group
individuals into species, arranging species into larger groups, and giving those groups names,
thus producing a classification. For example, the fact that dolphins live in the sea and look
like a fish does not make them a fish as many of their characteristics made biologists classify
them as “mammals”. Taxonomy basically encompasses description, identification, nomencla-
ture, and classification. Therefore, taxonomy has become an interesting and a popular turn in
risk management industry as new risks are being encountered at regular intervals.

Before getting onboard the risk taxonomy bandwagon, a firm must perform a compre-
hensive risk mapping exercise. This means going through, in excruciating details, every major
process of the firm. For example, let us imagine the equity trading process. Analyzing this pro-
cess would mean going through the risks since the customer places an order until the transaction
gets fully settled with exchanges of payment and securities delivered. Those will be the basic
risks that unlikely would change, unless there is a change in the process. From this process, a
risk manager should also be able to point out where losses are coming from and develop mech-
anisms to collect them. The outcome of this exercise would be the building block of any risk
classification study.

It is interesting to note that even today firms are struggling with basic risk classification,
which is the base of the risk management pyramid, the very first building block of a robust
risk management framework. Mistakes made in the past years in classifying a risk will have
repercussions in the risk management and on the communication of risks, at a minimum, to
outside parties like regulators, and might compromise any good work done elsewhere in the
framework. There are roughly three ways that firms drive this risk taxonomy exercise: cause-
driven, impact-driven, and event-driven. In many firms, risk taxonomy is a mixture of these
three making it even more difficult to get it right. Let us discuss these three methods. In the
cause-driven method, the risk classification is based on the reasons that cause operational losses.
This usually follows the old OpRisk definition (which most firms use in their annual reports) in
which OpRisk is defined as a function of “people, systems, and external events”. Some risk types
in this classification would be, for example, “lack of skills in trade control” or “inappropriate
access control to systems”. Although there are some advantages in this type of classification,
as a “root cause” is pretty much embedded into the risk classification, challenges arise when
multiple causes exist or the cause is not immediately clear. If this cause-driven risk classification
is applied to a process in which operational losses have high frequency, it would be very difficult
for risk managers to classify correctly every single loss, and the attrition with the business and
within the department is likely to be high. Another way to perform this classification exercise
is through an impact-driven method. In this method, the classification is made according to
the financial impact of operational losses. Most firms that follow this type of classification do
not invest heavily in OpRisk management; they just use this type to retrieve data from their
systems. This is quite common in smaller firms. In this type of classification, it is quite difficult
to manage OpRisk as, although the exposures are known, it is difficult to understand what is
driving these losses.

The event-driven risk classification is probably the most common one used by large firms.
It classifies risk according to OpRisk events. This is the classification used by the Basel Com-
mittee. It is interesting to know that during the Basel II discussions, when this type of risk
taxonomy was presented, most of the industries were reluctant to accept it. A number of firms,
even today, follow their own classification initially and map to the Basel event-type category
later. What is interesting in this classification is that the definition is rather broad which should
make it easier to accept changes in the process. For example, under “Execution, Delivery, and
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Process Management” (EDPM), which is the level-1 event type, there is a category named
“Transaction Capture, Execution, and Maintenance” that can be an umbrella for a number of
event types. For example, if the equity trading process changes from a old-fashioned phone-
based to an online high-frequency trading, using this classification would be easy to define the
taxonomy of these risks.

Given how new risks emerge in OpRisk, and also the breadth of its scope, the concept and
the ideas behind risk taxonomy in OpRisk sound quite appealing. However, as this is a building
block of the OpRisk framework, firms need to be very careful. In the following sections, all seven
Basel II event types required for advanced method approach (AMA) are defined and discussed
in detail; detailed breakdown into event types at level 1, level 2, and activity groups is provided
in BCBS (2006, pp. 305–307).

2.2.1 EXECUTION, DELIVERY, AND PROCESS MANAGEMENT

EDPM loss event type is one of the most prominant in the OpRisk profile of firms or business
units with heavy transaction processing and execution businesses. It encompasses losses from
failed transaction processing, as well as problems with counterparties and vendors. Table 2.1
describes the Basel event-type breakdown for this risk.

Losses of this event type are quite frequent as these can be due to human errors, mis-
communications, and so on, which are very common in an environment where banks have to
process millions of transactions per day. A typical example of execution losses might help to
illustrate how frequent these losses can be.

table 2.1 Execution, Delivery & Process Management (EDPM) event-type defined as
losses from failed transaction processing or process management, from relations with trade
counterparties and vendors. Basel II event type classification as provided in BCBS (2006,
pp. 305–307)

Category (level 1) Categories (level 2) Activity examples

Execution,
Delivery &
Process
Management

Transaction Capture,
Execution and
Maintenance

Miscommunication; data entry, maintenance or
loading error; missed deadline or responsibility;
model/system misoperation; accounting
error/entity attribution error; other task
misperformance; delivery failure; collateral
management failure; reference data maintenance

Monitoring and
Reporting

Failed mandatory reporting obligation; inaccurate
external report (loss incurred)

Customer Intake and
Documentation

Client permissions/disclaimers missing; legal
documents missing/incomplete

Customer/Client
Account Management

Unapproved access given to accounts; incorrect
client records (loss incurred); negligent loss or
damage of client assets

Trade Counterparties Nonclient counterparty misperformance; misc.
nonclient counterparty disputes

Vendors and Suppliers Outsourcing; vendor disputes
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Consider the following deal: A foreign exchange (FX) trader bought USD 100,000,000
for €90,000,000 (i.e., USD 1 = €0.90) and then sold USD 100,000,000 for €90,050,000 (i.e.,
USD 1 = €0.9005) with a trading initial profit of €50,000. Both transactions were made almost
at the same time, and the trader was obviously very satisfied with a profit of €50,000. In his/her
excitement at the successful deal, however, there were some snags in the back-office with some
confusion on where to remit the payments of one leg of the deal, and the transaction was finally
settled 3 days later than it should have been.

In FX transactions trading tickets are usually larger to compensate for the low margins.
Similar situations as described earlier may lead to errors. The counterparties obviously would
have demanded a compensation as the settlement has been delayed for 3 days, and the bank
would also have paid a penalty, in the form of interest claims of €55,000. Therefore, any error
has the potential to be higher than a transactions eventual economic profit.

The overall scenario is alarming. There was a loss of €5000 on the aggregate due to opera-
tional errors (€50,000 transaction profit less €55,000 interest claims due for late payment). This
is the reality a trading environment faces on the day-to-day. The actions of traders are recog-
nized at the closing of the deal, and errors coming to light at a later time (e.g., mis-pricing, late
settlement) are not linked back to the underlying cause. The error goes to an “error account” or
the like and, in terms of OpRisk management, those who are responsible for the errors are never
identified; even worse is that the real profitability of individual transactions is rarely understood.
The cost side (and the OpRisks involved) is in general ignored.

Knowing where these errors occur is very important for OpRisk management. We will see
examples like that throughout the book.

Execution, Delivery and Process Management: Misunderstanding a Trading Order:
Large US Private Bank, August 2012

Despite the fact that there are currently many options to place orders, where techno-
logical devices such as e-mail, Internet, live chats are available, many purchase orders,
particularly in private banking, are still being placed by old-fashioned telephone meth-
ods. A very common mistake is the misunderstanding of the order, especially frequent
when the counterparty is a foreign-language speaker and the communication chain usu-
ally goes from client to banker to trader assistant to trader, and in any one of these links
there is potential for communication breakdowns to happen.

In a busy afternoon at the end of summer 2012, a client asked his private banker to
purchase “USD 100,000 of a particular share”. The private banker passed this order to
the trader, and at the end of the day the trader passed a bill to the private banker for several
million US dollars. The private banker was absolutely stunned to see that they had bought
a significant portion of this particular company. As a consequence of this transaction,
the share price of this company rose significantly which also generated questions from
authorities that suspected some type of pump-and-dump scheme. Considering it all, the
bank decided to keep the shares and sell it little by little. The operational loss in this
case was reflected in the value lost in returning the stocks to the market after the shares
returned to their average price.
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2.2.2 CLIENTS, PRODUCTS, AND BUSINESS PRACTICES

Loss events under Clients, Products and Business Practices (CPBP) risk type are usually the
largest, particularly in the US. These events encompass losses, for example, from disputes with
clients and counterparties, regulatory fines from improper business practices, or wrongful advi-
sory activities. Table 2.2 presents the Basel event-type breakdown and definition for this risk
type. This is a specific and an important risk type for firms with operations in the US where lit-
igation is very common. As seen in recent regulatory fines imposed on French banks and other
foreign banks operating in US jurisdiction, this loss type can also be significant to off-shore
entities.

Real OpRisk Events: SBC Warburg (Investment Bank), October 1996

The Securities and Futures Authority in the UK (the former City of London regulator
since superseded by the Financial Services Authority) released partial details in March
1997 of an investigation that had commenced in October 1996 into rogue trading in
a program trade in SBC Warburg. (A program trade is a transaction where one agent,
generally a fund, chooses another agent, generally a bank or a broker, to sell part of
its shares in the market in a determined day and hour determined by market prices.)
The program trading error that made SBC Warburg the subject of the investigation is
thought to have cost it no more than £5 million. Nevertheless, this program trade was
one of the largest ever to be awarded to SBC Warburg, and the SFA investigation has
clearly embarrassed it. The investigation relates to a mistake made during the execution
of a £300 million program trade for an investment trust which caused the price of a

table 2.2 CPBP event-type defined as losses arising from an unintentional or negligent
failure to meet a professional obligation to specific clients (including fiduciary and suitability
requirements) or from the nature or design of a product. Basel II event type classification as
provided in BCBS (2006, pp. 305–307)

Category (level 1) Category (level 2) Activity examples

Clients, Products,
and
Business Practices

Suitability,
Disclosure, and Fiduciary

Fiduciary breaches/guideline violations;
suitability/disclosure issues (e.g., KYC); retail
customer disclosure violations; breach of privacy;
aggressive sales; account churning; misuse of
confidential information; lender liability

Improper Business or
Market Practices

Antitrust; improper trade/market practices; market
manipulation; insider trading (on firm’s account);
unlicensed activity; money laundering

Product Flaws Product defects (e.g., unauthorised); model errors

Selection, Sponsorship,
and Exposure

Failure to investigate client per guidelines;
exceeding client exposure limits

Advisory Activities Disputes over performance of advisory activities
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number of French stocks to fall sharply. The investigation is being extended whether
this bank made a similar error when selling Spanish shares as part of the same program
deal.

The SFA investigation focused on a 30-min period on October 30, 1996. At some
time around mid-day, SBC Warburg traders learnt that the bank had been awarded three
contracts by Kleinwort Benson European Privatization Investment (Kepit) to execute a
series of share sales (the so-called program trade) on its behalf. Contracts for programme
trades are often awarded just before the deal takes place, and the Kepit deal was no dif-
ferent. It involved SBC Warburg taking the £300 million-worth of shares onto its books
just minutes later, at 12:30 pm, and paying Kepit the mid-market prices for each share at
that time. In the remaining minutes before the 12:30 pm deadline, SBC Warburg traders
sought to sell some of the same shares they were about to get from Kepit in order to reduce
the risk (this process is known as short sell, and it is accepted as a normal practice in a
program trade, as long as the price does not fall too much).

Elsewhere at SBC Warburg, a trader was running an arbitrage position on Kepit,
seeking to make money by exploiting differences between Kepit’s own share price and
the price of the shares the bank owned. SFA investigators were told that in the minutes
before the 12:30 pm deadline, the SBC Warburg trader running the arbitrage position
was seen on the trading floor making gestures with his hands for traders to get the price of
the shares down. Nevertheless, a mistake by one of the SBC Warburg’s Paris-based traders
attracted the attention of SFA. Instead of selling as much as he could before 12:30 pm,
SFA investigators have been told that the trader misunderstood his instructions and
instead attempted to sell at the strike time. The trader also failed to put a so-called down
limit on his proposed share sales, effectively turning it into an unlimited sell order.

In the tapes passed to the SFA (all conversations on the trading desk are recorded),
the London-based trader is heard talking with a colleague about how the price of the
French shares had fallen much further than they had planned. The trader complained that
a colleague had just told him, in hindsight after the share prices had collapsed, that they
should only have pushed the prices down by 1%. SBC admitted in March 1997 that its
short selling had contributed to adverse price movements and dismissed several employees
involved in the trade.

2.2.3 BUSINESS DISRUPTION AND SYSTEM FAILURES

Business Disruption and System Failures (BDSF) event type is one the most difficult to spot in
a large organization. A system crash, for example, would almost certainly bear some financial
loss for a firm, but these losses most likely would be classified as EDPM. An example might
help to clarify this point. Suppose that the funding system of a large bank crashes at 9:00 am.
Despite all efforts from IT, the system comes back online only by 4:00 pm when money markets
are already closed. When the system returns, the bank learns that it needs to fund an extra USD
20 billion on that day. As the markets are already closed, they need to make requests to their
counterparties to allow them special conditions; however, the rates in which they capture these
funds are higher than the daily average. This extra cost, although due to a system failure and,
therefore, should be classified as BDSF, would hardly be captured at all. Table 2.3 presents the
formal Basel definition and breakdown of this risk type.
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table 2.3 BDSF event risk type defined as losses arising from disruption of business or
system failures. Basel II event type classification as provided in BCBS (2006, pp. 305–307)

Category (level 1) Category (level 2) Activity examples

Business Disruption
and System Failures

Systems Hardware; software; telecommunications;
utility outage/disruptions

table 2.4 External fraud event risk type defined as losses due to acts of a type intended to
defraud, misappropriate property, or circumvent the law, by a third party. Basel II event type
classification as provided in BCBS (2006, pp. 305–307)

Category (level 1) Category (level 2) Activity examples

External fraud Theft and fraud Theft/robbery; forgery; check kiting

Systems security Hacking damage; theft of information
(w/monetary loss)

The difficulty to capture this event type is reflected in external databases where, aside
damage to physical assets, this risk type has least number of events.

2.2.4 EXTERNAL FRAUDS

External frauds are frauds committed or attempted by third parties or outsiders against the
firm. Examples would be system hacking and checque and credit card frauds. External fraud
is very common in retail businesses where financial firms deal with millions of clients. Frauds
attempted or committed by clients are a daily event in sectors such as retail banking, retail
brokerage, and credit card services; see Table 2.4 for Basel II definition and breakdown.

2.2.5 INTERNAL FRAUD

Internal frauds are frauds committed or attempted by a firm’s own employees. It is one of the
less frequent types of OpRisk loss. Given the sophisticated, controls that most institutions have
this would be unlikely. However, events such as traders mismarking positions, particularly in
assets that are hard to establish an accepted mark-to-market price are not uncommon. Recently
there were a number of large internal frauds in which billions of dollars were lost as traders of a
particular bank failed to mention their position. These are usually low-frequency/high-severity
events. Table 2.5 presents the formal Basel definition and breakdown of this risk type.

Real OpRisk Events: Model Inputs Fraud, NatWest, March 1997

One of the most famous case in derivatives mispricing was the one that happened at
NatWest in 1997. On February 28, 1997, a few days after the bank released its annual
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results, it announced a loss of approximately USD 150 million caused by a junior trader
who has already left the bank. The trader was said to be dealing in long-dated OTC
interest rate options, used by companies that borrow at a floating rate and purchase a
cap on the interest payments. The major problem in valuing these options is that they
are relatively illiquid. The trader calculated the price of the options by providing his own
estimates of volatility, which he apparently overestimated, creating fictitious profits that
built up in the books over time.

The volatility estimates resulted in the options being underpriced. The trader
attracted more clients, booking the requested premium, thereby increasing the appar-
ent profitability of his desk (and, by extension, his remuneration). The loss was realized
when the options were exercised.

table 2.5 Internal fraud event risk type defined as losses due to acts of a type intended to
defraud, misappropriate property or circumvent regulations, the law or company policy,
excluding diversity/discrimination events, which involves at least one internal party. Basel II
event type classification as provided in BCBS (2006, pp. 305–307)

Category (level 1) Category (level 2) Activity examples

Internal fraud

Unauthorised/Activity Transactions not reported (intentional);
transaction type unauthorised (w/monetary
loss); mismarking of position (intentional)

Theft and fraud

Fraud/credit fraud/worthless deposits; theft/
extortion/embezzlement/robbery;
misappropriation of assets, malicious
destruction of assets; forgery; check kiting;
smuggling; account take-over/impersonation/
etc.; tax noncompliance/evasion (wilful); bribes/
kickbacks; insider trading (not on firm’s
account)

2.2.6 EMPLOYMENT PRACTICES AND WORKPLACE SAFETY

Employment Practices and Workplace Safety (EPWS) type of risk is more prominent in the
Americas than Europe or Asia as either the labor laws are old-fashioned and/or there is more a
culture of litigation against the employers (Table 2.6). For example, some large banks in Brazil
would count employment litigation on the tens of thousand and it is one of the main OpRisks
for banks. In some lines of business like investment banking employment issues are also quite
important. As these line of business mostly provide advisory to large corporations and the key
personnel is highly compensated, litigation against some of these key employees and losing
them can cost millions of dollars.
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table 2.6 EPWS event risk type defined as losses arising from acts inconsistent with
employment, health or safety laws or agreements, from payment of personal injury claims, or
from diversity/discrimination events. Basel II event type classification as provided in BCBS
(2006, pp. 305–307)

Category (level 1) Category (level 2) Activity examples

Employment
Practices and
Workplace Safety

Employee relations Compensation, benefit, termination issues;
organised labor activity

Safe environment General liability (e.g., slip and fall.); employee
health and safety rules events; workers
compensation

Diversity and
discrimination

All discrimination types

2.2.7 DAMAGE TO PHYSICAL ASSETS

Damage to Physical Assets (DPA) is another OpRisk event type. The most common method
to assess the exposure to this risk is through scenario analysis using insurance information.
Very few firms actively collect losses on this risk type as these are usually either too small or
incredibly large. The formal Basel definition and breakdown of this risk type is presented in
Table 2.7.

table 2.7 DPA event risk type defined as losses arising from loss or damage to physical
assets from natural disaster or other events. Basel II event type classification as provided in
BCBS (2006, pp. 305–307)

Category (level 1) Category (level 2) Activity examples

Damage to
physical assets

Disasters and
other events

Natural disaster losses; human losses from external
sources (e.g., terrorism, vandalism)

2.3 The Elements of the OpRisk Framework

The four elements that should be used in any OpRisk framework are as follows:

• Internal loss data;
• Business environment and internal control factors;
• External loss data;
• Scenario analysis.

We provide a description of each of these elements in the following text.
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2.3.1 INTERNAL LOSS DATA

Operational loss means a gross monetary loss (excluding insurance or tax effects) resulting from
an operational loss event. An operational loss includes all expenses associated with an opera-
tional loss event except for opportunity costs, forgone revenue, and costs related to risk man-
agement and control enhancements implemented to prevent future operational losses.

Having a robust historical internal loss database is the basis of any OpRisk framework.
These losses need to be classified into the Basel categories (and internal if different than the
Basel) and mapped to a firm’s business units. Given their importance for the OpRisk framework,
the collection and maintenance of these data are heavily regulated. Basel II regulation says that
firms need to collect at least 5 years of data, (BCBS, 2006), but most decided not to discard
any loss even when these are older than this limit. Since losses are difficult to acquire and take
years to build up a reliable and informative loss database, consequently most firms even pay
to supplement internal losses (see the external loss database). Hence, it is clear that it would
not make sense to discard losses that took place in the own firm unless the business in which
this loss took place was sold. There are a number of issues that can come from internal data
modeling that are worth comments and are listed below.

Considerable challenges exist in collating a large volume of data, in different formats and
from different geographical locations, into a central repository, and ensuring that these data
feeds are secure and can be backed up and replicated in case of an accident.

2.3.2 SETTING A COLLECTION THRESHOLD AND POSSIBLE
IMPACTS

Most firms set a threshold for loss collection as allowed by Basel. However, this decision can
have significant impact in establishing the risk profile of a business unit. This is usually the case
in businesses that have heavy transaction execution like asset management or equities. See the
example in Table 2.8. If the OpRisk department had chosen USD 100,000 as the threshold,
usually under the argument that only tail events drive OpRisk capital, that firm would think
that its total loss in that year was USD 49 million. If the threshold choice was USD 20,000,
the total losses would be USD 53 million. However, most losses are due to compensating retail
clients whose orders are usually ranging from USD 1000 to USD 50,000. The sum of the
losses under USD 50,000 is about USD 20 million, which is almost equivalent to the losses

table 2.8 The impact of threshold choice: losses in a certain year for the asset
management division of a bank

Loss brackets (USD) Number of losses Total (USD) Accumulated total (USD)

> 5,000,000 3 23,750,325 23,750,325
1,000,000–5,000,000 7 13,775,000 37,525,325
500,000–1,000,000 10 8,250,781 45,776,106
100,000 –500,000 12 3,562,177 49,338,283
50,000 –100,000 22 1,723,490 51,061,773
20,000 –50,000 71 2,159,021 53,220,794
< 20,000 1520 17,500,235 70,721,029
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above USD 5 million. For this particular firm, setting the loss collection threshold in USD
100,000 would show total losses for the year as USD 49 million. However, if this firm had not
set a loss collection threshold they would observe that their actual losses were USD 71 million,
a very different risk profile.

A number of OpRisk managers pick their threshold thinking only in terms of OpRisk
capital. Disregarding these small losses in many cases can bias the risk profile of a business unit
and, of course, this will also have an impact on OpRisk capital.

2.3.3 COMPLETENESS OF DATABASE (UNDER-REPORTING
EVENTS)

In gathering data from disparate sources, we need to avoid an OpRisk in collecting the OpRisk
data collection. Such risks and subsequent losses may arise, for example, the employee respon-
sible for reporting losses does not send the loss information to the central database, whether
accidental or not. The Basel II document BCBS (2006) refers to this scenario with the possible
consequence being that an institution that could not prove that loss data is flowing with a high
degree of reliability to the central database(s) is likely to be disallowed to employ more advanced
techniques for assessing the levels of risk.

The development of filters that capture operational issues and calculate an eventual oper-
ational loss is one of the most expensive parts of the entire data collation process, but the
outcome can be decisive in making an OpRisk project successful and increasing confidence in
the completeness of the loss database.

This OpRisk filter will vary from bank to bank depending on their systems, but in all cases
it works like a conduit between systems, collecting every cancellation or alteration made to a
transaction or any differences between the attributes of a transaction in one system compared
to its attributes in another system. The transaction flow starts at the front-office system that
registers the transaction passing it to the accounting and clearing systems. Any discrepancy,
alteration, or cancellation must be extracted by the OpRisk filter. Also, abnormal inputs (e.g.,
a lower volatility in a derivative) can be flagged and investigated. The filter will calculate the
OpRisk loss event and several other impacts in the organization.

2.3.4 RECOVERIES AND NEAR MISSES

The Basel II rules (BCBS, 2006) in general do not allow for the use of recoveries to be considered
for capital calculation purposes. The issue again is that if firms are trying to estimate losses that
can happen once every thousand years, it would not make sense to start applying mitigating
factors to reduce the losses and eventually reducing also capital. For this reason, gross losses
should be considered for OpRisk calculation purposes.

The only exception is on rapidly recovered loss events but even this exception is not
accepted everywhere. Rapidly recovered loss events are OpRisk events that lead to losses recog-
nized in financial statements that are recovered over a short period. For instance, a large internal
loss is rapidly recovered when a bank transfers money to a wrong party but recovers all or part
of the loss soon thereafter. A bank may consider this to be a gross loss and a recovery. However,
when the recovery is made rapidly, the bank may consider that only the loss net of the rapid
recovery constitutes an actual loss. When the rapid recovery is full, the event is considered to
be a “near miss”.
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2.3.5 TIME PERIOD FOR RESOLUTION OF OPERATIONAL LOSSES

Some OpRisk events, usually some of the largest, will have a large time gap between the incep-
tion of the event and the final closure, due to the complexity of these cases. As an example,
most litigation cases that came up from the financial crisis in 2007/2008 were only settled by
2012/2013. These legal cases have their own life cycle and start with a discovery phase in which
lawyers and investigators would argue if the other party has a proper case to actually take the
action to court or not. At this stage, it is difficult to even come up with an estimate for eventual
losses. Even when a case is accepted by the judge it might be several years until lawyers and
risk managers are able to estimate properly the losses. Firms can set up reserves for these losses
(and these reserves should be included in the loss database), but they usually do that only for a
few weeks before the case is settled to avoid disclosure issues (i.e., the counterparty eventually
knows the amount reserved and uses this information in their favor). This creates an issue for
setting up OpRisk capital because firms would know that they are going to under go a large loss
and yet are unable to include it in the database; the inclusion of this settlement would cause
some volatility in the capital. The same would happen if a firm set a reserve of, for example,
USD 1 billion for a case, and then a few months later, if a judge decides to remove the loss in
favor of the firm. For this reason, firms need to have a clear procedure on how to handle those
large, long-duration losses.

2.3.6 ADDING COSTS TO LOSSES

As said earlier, an operational loss includes all expenses associated with an operational loss event
except for opportunity costs, forgone revenue, and costs related to risk management and control
enhancements implemented to prevent future operational losses. Most firms, for example, do
not have enough lawyers on payroll (or expertise) to deal with all the cases, particularly some of
the largest or those that demand some specific expertise and whose legal fees are quite expensive.
There are cases in which the firm wins in the end, maybe due to some external law firms, but the
cost can reach tens of millions of dollars. In such cases, though the firms wins a court victory,
there will be an operational loss.

2.3.7 PROVISIONING TREATMENT OF EXPECTED OPERATIONAL
LOSSES

Unlike credit risk, the calculated expected credit losses might be covered by general and/or spe-
cific provisions in the balance sheet. For OpRisk, due to its multidimensional nature, the treat-
ment of expected losses is more complex and restrictive. Recently, with the issuing of IAS37 by
the International Accounting Standards Board, Wittsiepe (2008), the rules have become clearer
as to what might be subject to provisions (or not). IAS37 establishes three specific applications
of these general requirements, namely:

• a provision should not be recognized for future operating losses;
• a provision should be recognized for an onerous contract — a contract in which the

unavoidable costs of meeting its obligations exceeds the expected economic benefits;
• a provision for restructuring costs should be recognized only when an enterprise has a

detailed formal plan for restructuring and has raised a valid expectation in those affected.
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These provisions should not include costs, such as retraining or relocating continuing staff,
marketing or investing in new systems and distribution networks; the restructuring does not
necessarily entail that.

IAS37 requires that provisions should be recognized in the balance sheet when, and only
when, an enterprise has a present obligation (legal or constructive) as a result of a past event. The
event must be likely to call upon the resources of the institution to settle the obligation, and,
more importantly, it must be possible to form a reliable estimate of the amount of the obligation.
Provisions should be measured in the balance sheet at the best estimate of the expenditure
required to settle the present obligation at the balance sheet date. Any future changes, like
changes in the law or technological changes, may be taken into account where there is sufficient
objective evidence that they will occur. IAS37 also indicates that the amount of the provision
should not be reduced by gains from the expected disposal of assets (even if the expected disposal
is closely linked to the event giving rise to the provision) nor by expected reimbursements
(arising from, for example, insurance contracts or indemnity clauses). When and if it is virtually
certain that reimbursement will be received should the enterprise settle the obligation, this
reimbursement should be recognized as a separate asset.

2.4 Business Environment and Internal Control
Environment Factors (BEICFs)

One can see OpRisk as a function of the control environment. If the control environment is fair
and under control, large operational losses are not likely to take place and OpRisk is considered
to be under control. Therefore, understanding the firm’s business processes, mapping the risks
on these processes, and assessing the control of these processes are the fundamental roles of an
OpRisk manager. A simple example is the equities trading process and is shown in Figure 2.1.

Firms need to be able to assess risk on the many steps of the settlement process and
report them regularly. There are a couple of tools that are commonly used by financial firms
to perform this task: Risk Control Self-Assessment and Business and Control Environment
programs.

2.4.1 RISK CONTROL SELF-ASSESSMENT (RCSA)

These are also knowns as Control Self-Assessment (CSA) in some firms. According to this
procedure, firms regularly ask experts about their views on the status of each business pro-
cess and subprocess. These reviews are usually done every 12 or 18 months and color rated
Red/Amber/Green (RAG) according to the perceived status. Some firms go beyond and try
to quantify these risks using subjective approaches or through a scorecard. For many firms,

Trade capture
Trade

matching and
confirmation

Custody and
control

Clear and Settle
trades

figure 2.1 Equity Settlement Process
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RCSA is the anchor of the OpRisk framework and most OpRisk activities are linked to this
procedure.

In a broad sense, the RCSA program requires the documentation and assessment of risks
embedded in a firm’s processes. Levels of risks are derived (usually from a frequency and severity
basis), and controls associated with these risks are identified. As risks are usually reported by
business units, these processes are aggregated to a certain business unit and rated/assessed.

In the RCSA program, managers first identify and assess inherent risks by making no
inferences about controls embedded in the process: controls are assumed to be absent. Under
this assumption, managers must carefully identify how risk manifests within the activities in
the processes. The following are the usual questions asked by risk managers in this phase:

• Risk scenarios. Where are the potential failure points in each of these processes?
• Exposure. How big a loss could happen to my operation if a failure happens?
• Correlation to other risks. Could a failure altogether change my organization’s perfor-

mance, either financially, its reputation, or affect any other area?

The answers point toward the specific inherent risks embedded within a business unit’s process,
which must be assessed to determine the likelihood the events could occur (frequency) and
severity. The results of this analysis provide a birds’ eye view of the inherent risk of a firm’s
business processes. Management can then use this assessment to prioritize and focus on the
most critical risks that must be proactively managed.

Once these inherent risks are understood, controls will be added in the RCSA framework.
The effectiveness of these controls are then assessed to understand how efficient these are to
mitigate risks. At this stage, the residual risk is also calculated, which is the risk that is left after
inherent risks are controlled. Put another way, residual risk is the probability of loss that remains
to systems that store, process, or transmit information after security measures or controls have
been implemented.

For a firm that has the RCSA program as the core of the OpRisk framework, all other
OpRisk initiatives under the firms OpRisk program are usually structured to feed the RCSA.
Risk metrics such as key risk indicators (KRIs), internal loss events, and external events would
contribute to the risk identification process ensuring the organization has considered all readily
available data and benchmark risk assessments.

Once the universe of controls and mitigation measures has been identified, the business
unit can partner with various control functions to conduct the control testing phase of the
RCSA. Control testing is critical to a mutual understanding of expectations and actions across
business units and between the front and back offices.

One significant challenge that arises due to combining RCSA data is interpreting what the
data actually means. For example, outputs from a RCSA program might lead a risk manager
to conclude that no immediate action is required if the risk exposures are controlled within
the tolerances acceptable to the firm. On the other hand, if the RCSA data indicates that the
control environment is weakening and threatening the success of a particular business goal, a
risk manager might decide to recommend a corrective action. However, weighting those risks
across the entire risk universe and naming the most important or “key” might not be an easy
and objective task.

There are a number of vendors that provide systems that help to collate these results. The
issue with these programs in general is that they make it harder to integrate with the other
data inputs that are numeric. Even if these RAG assessments can be converted to a number or
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rating, there is always a bias embedded that the person who does the assessment would have a
motivation to improve their ratings so as to reduce their capital.

2.4.2 KEY RISK INDICATORS

These indicators/factors are mostly quantitative and are used as a proxy for the quality of the
control environment of a business. For example, in order to report the quality of the processing
systems of an investment bank, we might design factors such as “system downtime” (measuring
the number of minutes that a system stayed offline), and “system slow time” (counting the
minutes that a system was overload and running slow). These KRIs can be extremely important
in OpRisk measurement as they can allow OpRisk models to behave very similarly to those in
market and credit risks.

Going back to the equity settlement example, instead of using RAG self-assessment, a
better way to assess the quality of these processes is to establish a few KRIs that provides an
accurate picture of the control environment as seen in Figure 2.2. As an example, on the trade
confirmation stage of the settlement process, if the number of unsigned confirmations older
than 30 days increases to over a certain percent of the total population, and the number of

Trade capture
and execution

•  Daily trade volume
•  Late booking trades

Trade 
matching and
confirmation

•  Unsigned confirmation > 30 days
•  Repudiated trades
•  Breaks

Custody and
control

•  Breaks
•  Disputed collateral calls

Clear and settle
trades

•  Fails
•  Breaks (agent cash, agent stock)

figure 2.2 Equity Settlement Process
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repudiated trades increases, one might say that this process is facing challenges that need to be
addressed.

The process of KRI collection deserves special attention. It is important that these data
are absolutely reliable, in order to display relationships between KRIs and losses. Automating
the collection straight from the firm’s operational systems might help to create a more realistic
reflection of the true profile of the infrastructure of a certain business. There are many stages
in establishing these links and of course there is a cost associated with the implementation of
the KRI program, but probably no other type of data will be more powerful than KRIs for
managing and measuring operational risk. It is much easier to explain OpRisk as a function of
the control environment in which a firm exists than to say that OpRisk capital is moving up or
down because of past losses or changes in scenarios.

The first stage of the KRI collection process is trying to establish assumptions on the
OpRisk profile of a certain business. For example, we might assume that execution errors in
the equities division can be explained by the trade volume on the day, the number of securities
that failed to be received or delivered, the head count available on the trading desk and the
back office, and system downtime (measured by minutes offline). The decision to be made is:
at what organizational level should this relationship be measured? Equities division as a whole?
Should we break down equities division into cash equities, listed derivatives and OTC deriva-
tives, or along any other lines? Should we consider breaking it down along regional lines? All
these questions are fundamental for the success of the analysis. The quantitative incorporation
of KRI data into OpRisk modeling is discussed in Chapter 16.

If loss data and KRIs are collected at cost center level (the lowest possible level), it becomes
possible to perform this disaggregation. In general, the lower the level you model the causal
relationship, the better the chances that you will find higher level fits to the model. Put this
another way, it is easier to find strong causal relationships, if you model, for example, the US
cash equities department than modeling at the global equities division level, as the lower level
would better capture local nuances, idiosyncrasies, and trends.

The modeler might also consider using external factors such as equity indexes and interest
rates. It is common to find strong relationships between a stock market index and operational
losses, for example, higher volatility on stock markets is usually associated with high trading
volumes, which in turn is highly associated with execution losses in OpRisk. Table 2.9 presents

table 2.9 Examples of BEICFs used in few environments

Business environment Factor Description

Systems System downtime
System slow time
Software stability

Number of minutes a system is offline
Number of minutes a system is slow
Number of code lines changed in a program
or software in a certain period of time

Information Security Malware attacks
Hacking attempts

Number of malware attacks
Number of hacking attempts

People/Organization Employees
Employees experience

Number of employees
Average experience of employees

Execution/Processing Transactions
Failed transactions
Data quality
Breaks

Number of transactions processed
Number of transactions that failed to settle
Ratio of transactions with errors
Number of transactions breaks
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few examples of Business Environment and Internal Control Factors (BEICFs) used in few
environments.

2.5 External Databases

According to the Basel Accord, OpRisk modelers need to calculate regulatory capital at the
99.9% confidence level, which is equivalent to finding enough capital to protect against losses
in the worse year in a 1,000 year period. One way to try to overcome these challenges is through
using other firms’ loss experiences. This is common in insurance. For example, suppose that a
US insurer wants to expand to a new state, say New Jersey. This insurer does not have expe-
rience in New Jersey; New Jersey has different characteristics, for example it may have much
more cars per square foot than other states and hence the accident ratio is known to be higher.
How can this insurer price correctly its premium in New Jersey? The most used alternative
is to start with a local database of car accidents. This database is available, with consider-
able details, for insurance companies to acquire. Obviously, this database would never replace
the insurer’s own loss experience in their portfolio, but while this loss experience is not avail-
able, the best way to start the business is using this external database. As the insurer starts
building up their own loss experience, it can start weighting the importance of the external
database in their premium through credibility theory methods (which will be discussed later in
Chapter 15).

Similarly, banks and other financial firms might struggle to come up with reasonable mea-
sures for some types of risk because they were never exposed to large losses, but, despite that,
they understand that they are still under the risk that such a loss-would happen eventually.
These loss-gathering databases can be very useful in these cases.

There are basically three ways to get hold of these databases as seen in Table 2.10. The best
choice for a firm would depend significantly on how their framework is structured and how
the modeler expects to use these losses.

table 2.10 Methods to acquire external data and details

Type Details Pros Cons

Internally developed Firm gathers these losses
from news feeds and
magazines

Cheapest way It might not be
comprehensive enough
and miss losses in
many industries and
jurisdictions

Consortia The most popular is
ORX which has some
of the largest banks in
the industry

Loss reporting threshold
is €20,000

No details on the losses.
It can only be used for
measurement

Vendors There are a number of
vendors like IBM
OpVantage and SAS

More detailed analysis on
the loss. It can be used
for management or
scenarios

Loss threshold is usually
high (USD 1 million).
Loss details might not
be accurate as these
were taken from
newspapers
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2.6 Scenario Analysis

Another important tool in OpRisk management and measurement is scenario analysis. For
a significant number of firms, the scenario analysis program is the pillar of their framework.
These scenarios estimates are usually gathered through expert opinions, where these experts
(or a group of experts) communicate their estimates on how losses can happen on an extreme
situation. These experts are commonly guided by information gathered from external data or
KRIs and internal loss trends, see for instance discussions on scenario analysis for OpRisk in
Rippel and Teplỳ (2008), Alderweireld et al. (2006) and Hoffman (2002).

Though there are different approaches to run a scenario workshop, only three approaches
are widiley used: structured workshops, surveys, or individualized discussions. A recent survey
in 2012 with the largest US financial firms (the results are not in public domain and reference
cannot be provided) shows that information from experts is obtained mainly through struc-
tured workshops (Figure 2.3). A comprehensive guide to performing and establishing appro-
priate statistical structures for surveys in such workshops is provided in detail in O’Hagan et al.
(2006).

Scenarios can be a useful tool in case of emerging risks where a loss experience would
not be available. Financial institutions understanding this challenge are creating many new
scenarios for these emerging risks every year. Figure 2.4 presents some other results of this
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table 2.11 Using scenario analysis outcome for measurement

Loss bracket (in USD thousand) Loss frequency Relative frequency

USD 5,000 7 6.9%
1,000–5,000 10 9.8
500–1,000 15 14.7
100–500 30 29.4
50–100 40 39.2
Total 102

survey about the number of new scenarios developed annually by financial firms showing that
most firms develop between 51 and 100 scenarios every year.

In order to make the outcomes of the scenario analysis workshops useful to the OpRisk
measurement and quantification efforts, the opinions need to be converted into numbers. There
are a few ways to do so, but the most frequent is through gathering estimates on the loss fre-
quencies on predefined severity brackets. These numbers are then converted to empirical dis-
tributions, see example in Table 2.11, that are aggregated with internal losses later.

After converting expert opinion into an empirical distribution, the question is how to
incorporate this into the OpRisk framework. There are a number of articles on the subject, for
example, see recent publications of Dutta and Babbel (2013), Ergashev (2012), and Shevchenko
(2011). It will be discussed in detail in Chapters 14 and 15.
Common Issues and Bias in Scenarios. Because scenarios are usually based on expert opin-
ion, they present a number of biases, see for example, a demonstration of such features in the
experiments designed by Lin and Bier (2008). This is one of the key limitations of this process
as these bias are very difficult to mitigate or avoid. Some of the biases are as follos:

• Presentation Bias. This arises when the order in which the information is provided can
skew or alter the assessment from the experts; see discussion in Hogarth and Einhorn
(1992);

• Availability bias. It is related to the over/underestimation of loss events due to respondents’
exposure or familiarity to a particular experience or risk. For example, if the expert has a 30
years career in FX trading and had never experimented or seen an individual loss of USD
1 billion or larger, he/she might be unable to accept the risk that such a loss would take
place;

• Anchoring bias. Anchoring occurs when participants restrict their estimates to being
within a range of a given value, which may come from their own experiences, a value they
have seen elsewhere (e.g., internally, in the media) or a value provided in the workshop;
see discussion in Wright and Anderson (1989);

• “Huddle” bias or anxiety bias. It involves the tendency of groups to avoid conflicts and
differences of opinion, either because individuals do not want to disrupt the smooth func-
tioning of the group through dissent, or because they are unwilling to disagree openly
with the more senior, expert, or powerful people in the room; see discussions in O’Hagan
(2005);

• Gaming. Conflicts of participants’ interests with the goals or consequences of the work-
shops can cause motivational biases or gaming. Participants may be unwilling to disclose



�

�

“Cruz_Driver” — 2015/1/8 — 8:51 — page 36 — #20
�

�

�

�

�

�

36 CHAPTER 2 OpRisk Data and Governance

information or engage meaningfully in the workshop or may seek to influence the
outcomes;

• Over/under confidence bias. This bias involves over/underestimation of risk due to the
available experience and/or literature on the risk being limited;

• Inexpert opinion. In many firms, scenario workshops do not attract the expert (or the
expert is not identified) and a more junior or someone with much less experience ends up
participating in the workshop and providing inaccurate estimates;

• Context bias. This bias arises when framing in a certain manner alters the response of
experts, that is, color their opinion; see discussion in Fischhoff et al. (1978).

A fundamental problem that scenario analysis programs face is the disparity of under-
standing and opinions on losses sizes and frequencies. To circumvent some of these problems,
application of the Delphi technique may be of help. The Delphi technique, as Linstone and
Turoff (1975) defined, “…may be characterized as a method for structuring a group communica-
tion process so that the process is effective in allowing a group of individuals, as a whole, to deal with
a complex problem”.

The Delphi concept is a spin off from defense research. “Project Delphi” is the name given
to an American Air Force project, started in the early 1950s, that made use of expert opinion
(see Dalkey and Helmer, 1963). The objective of the original study was to “obtain the most
reliable consensus of opinions within a group of experts” by a series of intensive questionnaires
interspersed with controlled opinion feedback.

Delphi has been tested and broadly used in several applications such as gathering current
and historical data not accurately known or available and examining the significance of events.
Usually, one or more of the following properties of the problem to be solved leads to the need
for employing Delphi.

• The problem does not lend itself to precise analytical techniques but can benefit from
subjective judgments on a collective basis;

• The individuals needed to contribute to the examination of a broad or complex problem
have no history of adequate communication and may represent diverse backgrounds in
respect of experience or expertise;

• Time and cost make frequent group meetings infeasible; and
• More individuals are needed than can effectively interact in a face-to-face exchange.

Therefore, for Delphi to work, it necessary that a group of experts in each business get
together in order to estimate OpRisk occurrences at a given confidence level. Consider an exam-
ple: bank in order to assess transaction execution risk in the fixed income desk decided to get
three different perspectives: from the front desk (traders), from the finance, and from the oper-
ations. Each one of these areas has a different perspective on what risks would be and how many
losses would happen. As the estimates from each of the three areas were very different, a separate
scenario workshop was performed in each department and the participants were elicited to esti-
mate extreme losses. At the end, a final number was agreed by the three areas and all recognized
that tremendous education took place as traders, for example, did not have the perspective of
losses due to settlement failures. Delphi technique (Dalkey and Helmer, 1963) has a number
of stages:
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1. In the first step, the subject under discussion should be explored with as many individuals
contributing additional information;

2. Given the information from step 1, a feedback and a description of the issues are provided
to the group;

3. (Optional) Bring out the possible differences found in step 2 and evaluate them; and
4. A final evaluation occurs when all the previously gathered information has been initially

analyzed and the evaluations have been fed back to the respondents for consideration.

Finally, we would like to mention that ideas from works on expert elicitation processes
were implemented in a freely available toolkit known as the Sheffield Elicitation Framework
(SHELF)1, which is covered under copyright when it comes to commercial usage; see details on
the associated website. In agreement with the standard industrial practice of structured work-
shops, the SHELF framework is developed to be performed with a group elicitation in mind
and comprises a framework for eliciting beliefs of one or more experts as a group; SHELF will
be discussed further in Chapter 14.

2.7 OpRisk Profile in Different Financial Sectors

After deciding the form of the operational loss data model and the types of losses that need
to be reported, it is useful to split the financial institution into different business lines, given
that the OpRisk profile is generally very diverse across different businesses within a financial
institution. While an asset management unit is more inclined to have legal/liability problems
(although still having a few transaction processing problems, in general, asset managers hold
their positions longer than treasury), the investment bank arm is more inclined to operational
errors in processing transaction. A large investment bank might process over a million transac-
tions a day.

A typical list of business units includes Corporate Finance, Trading and Sales, Retail Banking,
Commercial Banking, Payment and Settlement, Agency Services, Asset Management, and Retail
Brokerage. These are business units at level 1 as suggested in Basel II. Detailed breakdown into
level 2 business units and activity groups can be found in BCBS (2006, pp. 302). Also it can
be appropriate to add extra business unit Insurance. Most of these business units are discussed
in the following sections.

2.7.1 TRADING AND SALES

It should not come as a surprise that trading and sales OpRisk profile is dominated by “EDPM”
or just “Execution”. This can be clearly seen Table 2.12, where both frequency and severity
execution losses dominate. The business model in trading is quite simple; traders perform trades
on behalf of either their own firms or clients, and these trades get settled by exchanging the
securities against some form of payments. However, as the products are diverse and complex
and settlements deadlines and procedures vary significantly it is not surprising that executing

1SHELF is available at http://www.tonyohagan.co.uk/shelf/
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table 2.12 Trading and Sales OpRisk Profile

Event type Frequency (%) Severity (%)

Internal Fraud 1.0 11.0
External Fraud 1.0 0.3
Employment Practices and Workplace safety 3.1 2.3
Clients, Products, and Business Practices 12.7 29.0
Damage to Physical Assets 0.4 0.2
Business Disruption and System Failures 5.0 1.8
Execution, Delivery & Process Management 76.7 55.3

Source: Results from the 2008 Loss Data Collection Exercise for Operational Risk, see BCBS (2009b).

table 2.13 Corporate Finance OpRisk Profile

Event type Frequency (%) Severity (%)

Internal Fraud 1.6 0.24
External Fraud 5.4 0.12
Employment Practices and Workplace safety 10.1 0.59
Clients, Products, and Business Practices 47.1 93.67
Damage to Physical Assets 1.1 0.004
Business Disruption and System Failures 2.2 0.02
Execution, Delivery & Process Management 32.5 5.36

Source: Results from the 2008 Loss Data Collection Exercise for Operational Risk, see BCBS (2009b).

these transactions is the major OpRisk of this business and, for many trading shops, the major
overall risk that they are exposed to.

2.7.2 CORPORATE FINANCE

This business is where financial firms many times behave similar to consulting firms by provid-
ing advise to corporations in possible mergers and acquisitions, doing an IPO or even assessing
strategic alternatives. The differences to consulting firms are due to the fact that corporate
finance in banks constantly offers financing options, so deals are made. Therefore, it is expected
that most of the losses fall under the umbrella of “litigation” or disputes with clients for arguably
poor advice when, for example, IPOs go wrong; see Table 2.13.

2.7.3 RETAIL BANKING

The OpRisk profile of retail banks is not too dissimilar to that of retail brokerage; see Table
2.14. On the frequency side, most losses are due to external frauds that are daily events for
these firms. Execution comes in a far second. However, when looking at severity, the largest
risk exposure is due to litigation once again.
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table 2.14 Retail Banking OpRisk Profile

Event type Frequency (%) Severity (%)

Internal Fraud 5.4 6.3
External Fraud 40.3 19.4
Employment Practices and Workplace safety 17.6 9.8
Clients, Products, and Business Practices 13.1 40.4
Damage to Physical Assets 1.4 1.1
Business Disruption and System Failures 1.6 1.5
Execution, Delivery & Process Management 20.6 21.4

Source: Results from the 2008 Loss Data Collection Exercise for Operational Risk, see BCBS (2009b).

2.7.4 INSURANCE

For those not familiar with this industry, this sector can be actually divided into three types given
the significant differences: life insurance, health insurance, and property/casualty or “P&C”
insurance (or general insurance as known in Europe). To put very simply, life insurers basi-
cally charge a premium from individuals in exchange to providing a sum of money when they
die. Life insurers also offer retirement and income-protection products. Health insurers pro-
vide medical and hospital coverage. P&C insurers offer coverage against damage to properties
caused by fire, natural disasters, theft, etc. They also offer protection against liabilities (e.g.,
directors being sued and professional errors). The actuarial calculation used in the P&C insur-
ance is very similar to the one used in OpRisk capital calculation. Most of operational risk
capital techniques, are derived from P&C actuarial techniques, and there are many articles in
the Journal of OpRisk that were written by P&C actuaries; also Chapters 17 and 18 discuss
modeling insurance in detail.

Regarding the sector’s overall current financial situation, similar to most of the financial
sectors, the effects of the financial crisis still lingers. Life insurers started to feel the consequential
effects from the long low-interest rate environment, which affects their profitability and com-
pany valuations and also, as consumers struggle, declining sales and revenue. If interest rates
continue to stay low, and it appears likely that they will for at least another two years, then life
insurers’ financial pain will be broader and deeper. On the P&C side, the continuing prospects
for weak investment returns and low interest rates over an extended period compel carriers to
improve underwriting margins, requiring difficult decisions concerning pricing and operating
approaches. Organic growth continues to be a challenge, given the economic situation and the
competitive landscape. Individual insurers confront greater competition, driven by an abun-
dance of capital, uncertainty around the timing, and the scope of regulatory changes and the
continuing volatility caused by weather-related losses, highlighted recently by Hurricane Sandy
in 2012 (in the US, Hurricane Sandy affected 24 states with particularly severe damage in New
Jersey and New York). Health insurers in the US, given the advent of the Patient Protection
and Affordable Care Act (signed into law by US President Barack Obama on March 23, 2010,
and commonly referred to as “Obamacare”), are in much better shape than their counterparts
with a better perspective ahead of them.

Regarding risk regulation in this sector, there are significant differences between Europe
and the US. In Europe, a process similar to Basel II was developed by insurance regulators,
called Solvency 2. Two key themes have dominated regulatory discussions in the past year:
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supervisory focus on risk and capital management and concerted efforts to move toward a con-
sistent approach to cross-territory supervision of insurance groups. These initiatives underscore
the importance of embedding strong risk management principles throughout an enterprise and
moving beyond just “tick the box” compliance, similar to what Basel II has been influencing in
the banking industry.

In the US, the regulatory environment also has been changing as State insurance depart-
ments and rating agencies, in addition to National Association of Insurance Commissioners
(NAIC), are also influencing the direction of solvency regulation. While these varied initia-
tives place differing degrees of emphasis on capital requirements, reporting standards and risk
measures, a common theme, is their intensified focus on clearly articulating an insurer’s risk
profile. To prepare and address the regulatory pressures to enhance risk management, insurers
must significantly enhance their data management, reporting and analytical resources, and their
organizations’ ability to integrate risk data across disciplines. The US insurance industry is also
anticipating potential impacts of Dodd-Frank legislation, including in the systemically impor-
tant financial institution (SIFI) designation and the Federal Insurance Office’s (FIO) pending
report to Congress on the state of US insurance regulation, which in practice creates a national
insurance regulator.

Regarding OpRisk more specifically, insurers are still in the early stages of the development
of their OpRisk frameworks. This comes somehow as a surprise as insurers suffered several large
operational losses that were very public and reported in the media. Some of the examples over
the last decade2 are the USD 250 million loss that a large US insurer suffered a few years ago
for discrimination (i.e., allegedly pricing their policies differently according to race); a large
European reinsurer lost USD 3.5 billion for not having final contracts in place on the 9/11
terror attacks inflicting damages to clients; a large US auto insurer lost USD 1 billion for using
low-quality auto parts in vehicle repairs; a large US life insurer lost USD 2 billion for abusive
sales practices and illegal sales of securities and the list goes on and on.

Insurers face a number of OpRisks; some of these are mis-selling their products to clients.
A number of insurers worldwide got severe penalties for these sales practices. As with any retail
sector, insurers are exposed to bad faith claims (i.e., frauds by customers)—Hollywood has a
number of movies on these interesting stories. More recently, the issue of unclaimed property
has become a concern for insurers as public officials are now focusing much more on the issue
than they did in the past. Given these pressures, insurers have been more diligent to catch up
with banks in developing more robust OpRisk frameworks. However, they have a long road
ahead of them.

2.7.5 ASSET MANAGEMENT

The financial crisis brought to the global asset management industry challenges it has not seen
in decades as the industry was accustomed to high margins and substantial profits (particu-
larly in the years 2000–2007 due to the availability of excess liquidity). As the financial mar-
kets climbed regularly over the last 30 years, occasional dips notwithstanding, asset managers
became used to the steady increases in their assets under management (AUM) and easy profits.
However, in the wake of the biggest downturn since the Great Depression, a slow recovery has

2To preserve confidentiality, the company names are not mentioned.
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left many firms struggling. Even in 2012, most of the growth of the asset management came
from market appreciation and not due to increase in flow of resources from clients.

This new environment changed the asset management industry. During the precrisis
“golden years” of abundant liquidity, most asset managers were not overly worried about the
costs incurred in running their operations and did not pay close attention to the risks involved,
since the continuous growth in personal wealth steadily increased their AUM, covering for
these expenses. Errors and high operating costs were buried under the increased revenues from
a larger asset base and the profits that came from high returns in the world markets. Postcrisis,
the situation has changed dramatically. Large asset managers have seen their AUM go down by
30 or 40%, not only because of the drop in asset prices but also because clients are withdrawing
funds, either out of necessity to cover debts, because they fear that the stock markets will take
a long time to recover, or sometimes even out of concern for the financial well-being of some
asset managers. The crisis also showed historic regulatory failures, like the Bernie Madoff case,
in which he created a Ponzi scheme, that was discovered during the 2008 financial crisis, and
lost USD 6 billion from investors (this case is one of the largest OpRisk events in history). Many
investors close to retirement lost their pensions not only because of the market conditions but
also because of a lack of caution and risk management from pension fund managers.

This long-lasting dire economic environment forces asset managers to develop a much
more careful discipline around costs, risk management, and productivity. Each of these factors
has received widespread attention in the specialized media.

The industry has reacted quickly to this new reality. For example, a large independent
US asset manager has already put in place several measures to reduce costs, by sharing ser-
vices in its distribution and administration departments to reduce costs across geographical
areas. This same firm has also launched an initiative to reduce its NCE by 20% in 2009, with
the development of an inter-company committee to determine the expenses that have to be
eliminated.

A European-based global firm decided to reduce the number of products it offered and the
development efforts for a few products where it can build competitive advantage on a global
scale. This firm also decided to immediately implement a plan, which had been on the shelf
for many years, to streamline its operational platforms on a global basis. Currently, each geo-
graphical location (and sometimes within the same country) has its own platform with different
vendors and frameworks to process securities.

Asset managers are susceptible to all forms of risks, namely market, credit, and OpRisks.
However, due to the characteristics of their business (and perhaps helped by a historic disregard
for strong controls), OpRisk is typically the largest risk exposure an asset manager has. Market
and credit risk associated losses would usually have an indirect impact on the asset manager’s
revenue, as any loss to the client funds entails lower commissions. However, these losses are
usually held by the fund’s; clients not the asset manager as financial institution. These market
and credit risks losses would impact the quotas and NAVs, so the client would take a direct hit;
the asset manager would just have less fee revenue in these cases, an indirect impact. OpRisk
can be manifested in many different ways for an asset manager as, for example, in errors in
processing transactions or a system failure that can cause severe damage and impact the balance
sheet of the asset manager. Asset managers are also regularly sued for poor performance by
clients. Consistently failing to comply with local regulations, or with very basic business ethics,
can generate very large operational losses and subsequent reputational damage. A number of
examples are available in the media for large losses in each of these cases (Table 2.15).

Coming to realize the need to focus in OpRisk, asset managers have been setting up
OpRisk departments at a fast speed in the last few years. The higher focus from regulators
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table 2.15 Asset Management OpRisk Profile

Event type Frequency (%) Severity (%)

Internal Fraud 1.5 11.1
External Fraud 2.7 0.9
Employment Practices and Workplace safety 4.3 2.5
Clients, Products, and Business Practices 13.7 30.8
Damage to Physical Assets 0.3 0.2
Business Disruption and System Failures 3.3 1.5
Execution, Delivery & Process Management 74.2 52.8

Source: Results from the 2008 Loss Data Collection Exercise for Operational Risk, see BCBS (2009b).

on hedge funds also made these more sophisticated asset managers to set up better OpRisk
procedures around their operations. This new focus on control and risks would actually facil-
itate a more stabled growth, with less bumps, when the economic environment eventually
improves.

2.7.6 RETAIL BROKERAGE

For OpRisk practitioners, this sector is possibly the one of the most interesting. Although we
obviously need to consider that risk profiles would vary significantly between institutions given
their different business strategies, broker-dealers risk profile is usually dominated by OpRisk,
which accounts for at least 60–70% of the total risk capital in these firms. This OpRisk type
becomes clear when we review the sector.

Broker-dealers of these days can be roughly classified into online and brick-and-mortar
brokers. Although what separation then cannot be precisely defined, the customer focus of
these brokers is different. While online brokers tend to compete on the retail, offering the
convenience of trading from home or work and charging a reasonable fee for trades and usually
offering free online research tools and a few other services, brick-and-mortar brokers are mostly
a division of larger financial institution and tend to focus on a wealthier customer base that
would pay for high fees they charge, advice from financial advisors, etc.

Over the past decade, the industry had a dramatic transformation with the prolifera-
tion of sophisticated, high-speed trading technology that has changed the way broker-dealers
trade for their own accounts and as agent for their customers. In addition, customers of these
broker-dealers—particularly leading-edge institutions—have themselves begun using techno-
logical tools to place orders and to trade on markets with little or no substantive intermedi-
ation of their broker-dealers. This, in turn, has given rise to the increased use and reliance
on “direct market access” or “sponsored access” arrangements. Under these arrangements, the
broker-dealer allows its customers—whether an institution such as a hedge fund, mutual fund,
bank or insurance company, an individual, or another broker-dealer—to use the broker-dealer’s
market participant identifier (“MPID”) or other mechanism for the purposes of electronically
accessing the exchange. With “direct market access”, as commonly understood, the customer’s
orders first flow through the broker-dealer’s systems and then enters the markets, while with
“sponsored access”, the customer’s orders flow directly into the markets without passing through
the broker-dealer’s systems. In all cases, irrespectively, whether the broker-dealer is trading
for its own account, is trading for customers through more traditionally intermediated bro-
kerage arrangements, or is allowing customers direct market access or sponsored access, the
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broker-dealer with market access is legally responsible for all trading activities that occur under
its MPID. In some cases, the broker-dealer providing sponsored access may not utilize any
pretrade risk management controls (i.e., “unfiltered” or “naked” access), and thus could be
unaware of the trading activity occurring under its market identifier and has no mechanism to
control it.

Nowadays, order placement rates can exceed 1000 orders per second with the use of high-
speed, automated algorithms. If, for example, an algorithm such as this malfunctions and places
repetitive orders with an average size of 300 shares and an average price of USD 20, a two-
minute delay in the detection of the problem could result in the entry of, for example, 120,000
orders that values USD 720 million. In sponsored access arrangements, as well as other access
arrangements, appropriate pretrade risk controls could prevent this outcome from occurring
by blocking unintended orders from being routed to an exchange. Incidents involving algorith-
mic or other trading errors in connection with market access occur with some regularity. For
example, it was reported that, on September 30, 2008, trading in Google became extremely
volatile toward the end of the day, dropping 93% in value at one point, due to an influx of
erroneous orders onto an exchange from a single market participant. As a result, Nasdaq had to
cancel numerous trades, and adjust the closing price for Google and the closing value for the
Nasdaq 100 Index. In addition, it was reported that, in September 2009, Southwest Securities
announced a USD 6.3 million quarterly loss resulting from deficient market access controls
with respect to one of its correspondent brokers that vastly exceeded its credit limits. Despite
receiving intra-day alerts from the exchange, Southwest Securities’ controls proved insufficient
to allow it to respond in a timely manner, and trading by the correspondent continued for
the rest of the day, resulting in a significant loss. Another example that highlights the need
for appropriate controls in connection with market access occurred in December 2005, when
Mizuho Securities, one of Japan’s largest brokerage firms, sustained a significant loss due to an
erroneous manual order entry that resulted in a trade that, under the applicable exchange rules,
could not be canceled. Specifically, it was reported that a trader at Mizuho Securities intended
to enter a customer sale order for one share of a security at a price of 610,000 Yen, but the num-
bers were mistakenly transposed and an order to sell 610,000 shares of the security at a price
of 1 Yen was entered instead. A system-driven, pretrade control reasonably designed to reject
orders that are not reasonably related to the quoted price of the security would have prevented
this order from reaching the market.

As these examples show, broker-dealers are intensively exposed to OpRisk that usually
occupies the headlines of most of the newspapers and media. Brokers usually do not hold large
proprietary positions and lending, particularly after the 2008 crash, has been limited; therefore,
most exposure comes from potentially explosive system issues, execution errors, litigation with
retail customers, fraud committed by clients, etc. (Table 2.16)

2.8 Risk Organization and Governance

Developing a solid risk organization is a key part of the framework. Understanding the report-
ing lines and establishing the position of this organization on the firm would have probably
as much importance as having a good measurement system. Also having proper organizational
involvement in OpRisk issues where key stakeholders are regularly informed and oversee risk
is fundamental for success. Developing a framework in a silo that no one sees or cares is not a
desirable situation. The OpRisk manager needs to be integrated to the rest of the organization.
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table 2.16 Asset Management OpRisk Profile

Event type Frequency (%) Severity (%)

Internal Fraud 5.8 18.1
External Fraud 2.3 1.4
Employment Practices and Workplace safety 4.4 6.3
Clients, Products, and Business Practices 66.9 59.5
Damage to Physical Assets 0.1 0.1
Business Disruption and System Failures 0.5 0.2
Execution, Delivery & Process Management 20.0 14.4

Source: Results from the 2008 Loss Data Collection Exercise for Operational Risk, see BCBS (2009b).

In this section, we provide an overview of how risk is organized in financial firms, how policies
are structured, and the importance of a solid committee and governance structure. Sound inter-
nal governance forms the foundation of an effective OpRisk management framework. Although
internal governance issues related to the management of operational risk are not unlike, those
encountered in the management of credit or market risk OpRisk management challenges may
differ from those in other risk areas.

2.8.1 ORGANIZATION OF RISK DEPARTMENTS

One cannot downplay the role of an organization in any large business. Although many times
the focus is on the measurement models with its complex formulas, most of the times the success
of implementing an OpRisk framework lies in having the right organization. The organizational
design would usually hint at the strength and degree of development of an OpRisk framework
at a firm. In the following text, we show a few organizational designs and the beliefs that firms
need to have to make them work. Usually firms start with Design 1 and go to Design 4 presented
in Figure 2.5.

• Design 1—Central Risk Function as Coordinator. In this organizational design, risk
management role is more of a facilitator. Usually in this structure, risk management gathers
information and reports to the CEO or the Board. Sometimes risk management would add
some layer of analysis, but in most cases, the Central Risk group would be a small group.
One of the issues with this structure is that the regulators dislike the idea that risk managers
report to revenue generating businesses;

In order for this structure to be successful, one should believe that the Business Units
will be responsive to the Central Risk demands even without being part of their reporting
line and the control and incentives that such reporting includes (e.g., control over com-
pensation, etc.);

• Design 2—Matrix reporting—the “dotted lines”. In this organizational design, a sort
of evolution to the previous design, risk managers have a dotted line to the Central Risk
function; however, they are appointed by the Business Units and compensation decisions
are still taken by these. In order for this to be successful, the Business Units should have a
strong risk culture and collaborate very closely with the Central Risk function. This dotted
line structure works well when there is a culture of Business Unit independence and distrust
of the Central Risk function for some reason or event that happened in the past;
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Design 1

Design 2

Design 3

Design 4

CEO

Existing risk 
functions

Central risk Other corporate 
functions

Business units

CEO

Business risk 
managers

Central risk Other corporate 
functions

Business units

CEO

Central risk Other corporate
functions

Business units

Business risk 
managers

CEO

Central risk Other corporate 
functions

Business units

Business risk 
managers

figure 2.5 Organization of risk departments: designs 1–4
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• Design 3—Solid reporting lines to Central Risk Management. This organization struc-
ture is reasonably popular within large firms. Risk Managers still physically work in the
Business Units but report to the Central Risk function usually based in the headquarters.
The Central Risk function will be better positioned to prioritize risk management efforts
across different initiatives. This solid line reporting will also assist in the creation of a more
homogenous risk culture and consistent approach across the enterprise;

• Design 4—Strong Central Risk Management. Large firms have adopted this structure
lately, either by internal agreement or through regulatory pressure. In this structure, the
Corporate Chief Risk Officer is the key decision maker in risk management and fully
responsible for risk across the firm. Central Risk Management is responsible to monitor
and manage all the firm’s risks and report to senior management and Board. Such structure
makes much easier for the regulator to streamline supervision as they can focus to one
particular group instead of being scattered in many business units and geographical areas.

2.8.2 STRUCTURING A FIRM WIDE POLICY: EXAMPLE OF AN
OPRISK POLICY

Example of a policy is presented in Table 2.17. A policy defines a firm’s operational risk
management framework, which includes governance structure, roles and responsibilities, and

table 2.17 Example of an OpRisk policy

Content Description

Executive summary Defines the rationale and scope of the policy
Policy statements Provide a quick definition of the standards that will be used across the

policy
Risk taxonomy Categorize OpRisk in different risk types. It can follow the Basel

categories, but if it does not, it usually provides a mapping of internal
categories to the Basel-defined

Loss collection Defines what losses or incidents should be reported. Discusses concepts
of “near misses” and describes recoveries

Risk assessment Usually describes other programs used to supplement internal loss data
collection like scenario analysis or risk factor analysis

Risk measurement Describes the basic framework for measuring OpRisk, which types of
data are used, and how capital is calculated (overall view of the
building blocks not a detailed manual)

Validation Describes how the risk assessment and measurement are validated, how
frequent validation takes place, and which departments are
responsible for the validation

Policy assurance and testing Determines which department(s) in the firm, will be responsible for
assurance that the policy is being followed and the reports that assure
this firm-wide compliance

Governance Describes where this policy is situated, which committee approves it,
and how the OpRisk governance works

References Determine on which regulations, external standards, and/or other firm
policies this was based upon
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standards for OpRisk management and measurement. It also describes the OpRisk manage-
ment programs, which are the functional activities requiring guidelines for consistent firm wide
execution (e.g. loss capture program, risk control self-assessment, and scenario analysis).

2.8.3 GOVERNANCE

Common industry practice for sound OpRisk governance often relies on three lines
of defense:

• Business line management;
• An independent corporate OpRisk management function; and
• An independent review (usually internal audit).

Depending on the bank’s nature, size and complexity, and the risk profile of a bank’s activ-
ities, the degree of formality of how these three lines of defense are implemented will vary. In all
cases, however, a bank’s OpRisk governance function should be fully integrated into the bank’s
overall risk management governance structure and the regulators closely monitor this.

If OpRisk governance utilizes the three lines of defense model (i.e., the business is the
first line of defense, risk management is the second line, and internal audit being the third),
the structure and activities of the three lines often varies, depending on the bank’s portfolio of
products, activities, processes, and systems; the bank’s size; and its risk management approach.
Strong risk culture and good communications among the three lines of defense, are important
characteristics of good OpRisk governance.

The regulators also reinforce the role of the board of directors. In the US and UK it is
common that the regulators meet separately with financial firms board of directors regularly
to discuss their expectations regarding risk management. The board of directors should take
the lead in establishing a strong risk management culture. The board of directors and senior
management should establish a corporate culture that is guided by strong risk management and
that supports and provides appropriate standards and incentives for professional and responsible
behavior. In this regard, it is the responsibility of the board of directors to ensure that a strong
OpRisk management culture exists throughout the whole organization and this will be closely
monitored by regulators.
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Chapter Three

Using OpRisk Data for Business
Analysis

The financial crisis that started in 2008 made the financial industry face challenges it had not seen
in decades. The industry was accustomed to high margins and substantial profits (particularly
in the years 2000–2007, due to the availability of excess liquidity). However, in the wake of the
biggest downturn since the Great Depression, a slow recovery left many firms struggling. Even
in 2012/2013, the recovery seemed stalled, as the crisis still lingers to a certain extent, and the
high regulatory pressure on financial firms not to take risks is putting a cap on their profits; as
a result, most firms across the globe are going through severe cost-cutting programs.

This new economic environment is forcing financial firms to develop a much more careful
discipline around costs, risk management, and productivity. Each of these factors has received
widespread attention in the media. Productivity is a concept usually associated with manufac-
turing, but it can also play an important role in asset management.

In this chapter, we argue that, within the options available to them for returning to their
former profitability levels, financial firms will have to take a very careful look at their cost
structure and risk management frameworks. We analyze the cost structure of financial firms and
describe strategic/tactical options to reduce costs on an item-by-item basis. In the last section,
we describe how a well-tailored and well-implemented risk management program can impact
a financial firm bottom line and avoid extreme cost-cutting measures.

To illustrate the impact of the crisis on the financial bottom line in the entire financial
industry, we take the example of the asset management industry, which is interesting, as this
industry gauges quite well the temperature of the economy; for example, if customers are getting
wealthy, they would be investing more and this sector would be performing well. We analyze
the impact of the crisis on the 10 largest global asset managers’ profitability, measured in basis
points. The average profit (operating margin) for an asset manager fell from 38 points at the end
of 2007 to 34 at the end of 2008 and in 2011 this figure was at about 28 points. Most players
in the industry are also suffering from a substantial decrease in Assets Under Management
(AUM) either because of a decrease in asset value or because of client withdrawals. For this
reason, their financial bottom line is being severely impacted, and the most tactical way to
try to return to a higher level of profitability is via cost-cutting and by developing a robust
risk management framework. We examine these two options in detail in the next two main
sections.

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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3.1 Cost Reduction Programs in Financial Firms

Considering the long-term numb economic environment, a means by which a financial firm
may gain some measure of control is to consider cost cutting measures, as shown in Table 3.1,
to provide a means to return to their previous levels of profitability. Even if we assume that
the economic conditions in the near future will be no worse than those in 2008 and that their
revenues will remain at the same level, financial firms may have to cut their current costs by up
to 50% to return to their 2006 profitability levels, such is the extent of the current financial
crisis. This cost-cutting exercise would need to be accomplished in a much tougher regulatory
environment, with regulators keeping close tabs on financial firms to ensure that non-revenue-
generating back office functions like risk, legal, and compliance (usually some of the first to be
cut in tough times) remain in place. On the positive side, such cost optimization exercises were
long overdue. Most financial firms preferred not to face these issues while they were focusing
on an expansion of their funds; however, these new lean times are now forcing them to make
such adjustments. The industry has indeed been quick to react to this new reality. However,
as usual, the “lowest-hanging fruit” is a reduction of headcount. These cuts show companies
adapting to the new environment with lower margin products and less demand. While the
initial focus was this reduction in headcount, financial firms can optimize their operational

table 3.1 Economic crisis impact on the fundamentals of the financial industry

Factor Description Impact/reaction

Change in client behavior Client risk-averse behavior, preferring
simpler, transparent products

Development of new
products with lower
margins

Regulatory pressure Increasing regulation demands that
financial firms enhance transparency
through risk disclosure and maintain
capital requirements through balance
sheet management

Higher compliance costs

Change in industry structure Sharper differentiation based on chosen
business models, increase in the number
of independent firms, as well as larger
players, due to consolidation

Immediate strategic
decisions need to be taken
and, based on that, a new
focus for tactical decisions

Higher costs in developing
robust risk management

Risk management will enter a new
paradigm, shifting from client risk
reporting to protecting the institution
itself, requiring asset managers to
develop new tools and techniques

Higher focus on risk
management

Pressure on the financial
bottom line (revenue,
profits, and costs)

Fundamental shift in cost structure
(toward more variable costs and
“industrial” processes) necessary to
address profitability challenges; pressures
on revenue and profits due to threat
from substitute products; and margin
pressure from shifting product mix and
lower volumes

Cutting costs
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table 3.2 Examples of cost-cutting (in USD million) in noncompensation costs in three
major global asset managers

BlackRock Legg Mason Franklin Templeton

2007 AUM USD 1357 USD 999 USD 644
Revenues USD 4845 USD 4707 USD 4228
Non-compensation expenses (NCE) USD 1784 USD 1874 USD 923
NCE/revenues 37% 40% 22%
2008 AUM USD 1154 USD 711 USD 400
Revenues USD 5112 USD 3935 USD 3711
Non-compensation expenses (NCE) USD 1613 USD 1706 USD 849
NCE/revenues 32% 43% 23%
Delta variation NCE/revenues −5% 3% 1%
Decrease in AUM −USD 203 −USD 288 −USD 244
Variation in revenues 6% −16% −12%
Variation in NCE −USD 171 −USD 168 −USD 74

Source: Company websites.

platforms significantly in order to decrease costs. These platforms were mostly developed and
implemented when the industry was growing at double-digit rates per annum and companies
were scrambling to keep up with growth and geographical expansion. Cost containment was
not the highest priority in those good times; it was consistently of lesser importance than the
speed of development.

The cost structure in the financial industry can basically be broken down into two main
components, namely, compensation and noncompensation expenses (NCE). It is more dif-
ficult for firms to balance the cuts in direct compensation, since, as in any financial service
organization, rewarding portfolio managers and investment and quantitative research analysts
is key to having good performance and attracting new business. If cuts are too deep in these
areas, then firms run the risk of losing their key personnel to competitors who may offer higher
renumeration; therefore, they hesitate to make heavy cuts on the revenue-generating side.

Many firms made steep adjustments on the NCE side of their costs in view of the impact
that the recession is having on their businesses. A sample of three very large asset managers in
the US (see Table 3.2) shows how they have been reducing their NCE. BlackRock, for example,
in spite of an unusual increase in revenue from 2007 to 2008, reduced its NCE by USD 171
million, and its NCE/revenue ratio fell from 37% to 32% in 2008. Legg Mason reduced its
NCE in absolute value by USD 168 million (very close to BlackRock); however, as its revenue
declined 16% in 1 year, its NCE/revenue ratio actually increased to 43% in 2008. Franklin
Templeton also had the same problem; although it made a cut in its NCE, its revenue decrease
more than offset the NCE cut. This illustrates how deep the cost cuts have to be in order to
return to higher levels of profitability. Indeed one may also question the sustainability of such
high rates of returns for the financial industry as it continues to mature.

In order to design optimal cost reduction programs, we need to break the NCE down into
more detailed categories. The analysis of the cost breakdown of the largest 50 global, US, and
European asset managers as a percentage of their total costs in 2008 is shown in Figure 3.1.
Occupational expenses (real estate, rents, etc.) represent slightly more than a quarter of the
total NCE.

A branch network usually entails a significant real estate cost. A network of branches is
useful if the asset manager is focused on retail clients. A branch may be useful in attracting
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0% 5% 10% 15% 20% 25% 30%

Real estate and rents

IT expenses

Nontech temporary labor

Market data services

Advertising and marketing

Print

Travel and entertainment

Postage

Legal fees

Other fixed expenses

Other professional fees

figure 3.1 Breakdown of noncompensation expenses. Source: Fifty largest asset manager’s financial
statements from 2008

new clients by facilitating a first face-to-face contact. (Later on, an investor may communicate
with the asset manager through one of the other channels of communication.) If the asset man-
ager is focused on the institutional side, then an extensive network of branches is not necessary.
(An asset manager may be content with having a small number of offices only in big cities.) If
the asset manager has a large number of smaller individual investors, then a larger and more
extensive network of branches may be advantageous. When cutting these costs, a firm needs to
bear in mind the strategic consequences when it comes to attracting and retaining clients. The
second-largest expense would be in technology and telecommunications. Given their impor-
tance, most of the cost savings would have to come from these categories, but cost cutting in
these areas is never easy.

Personnel-related cuts are also important, but firms need to be careful to cut only in areas
that are directly related to the volume of business. Changes that were not made in previous years
because of accelerated growth, like delayering levels of hierarchy inside the firm, should now
be a priority, as this can cut headcount by up to 30%. In Table 3.3, we summarize a few cost
reduction activities by type of cost, considering the time they would take to be achieved and
the average savings they would produce. IT and real estate cost cuts, for example, are extremely
relevant, but would take longer to achieve results. Reducing these costs usually demands invest-
ment, as breaking or renegotiating leasing contracts, for example, commonly commands fees
and charges. The same applies to IT optimization, which needs to be implemented very care-
fully to avoid serious operational problems in the future.

The industry has been quick to react to this new reality. For example, a large indepen-
dent US asset manager has already put in place several measures to reduce costs, by sharing
services in its distribution and administration departments to reduce costs across geographies.
This same firm has also launched an initiative to reduce its NCE by 20% in 2009, with the
development of an intercompany committee to determine which expenses will have to be
eliminated.

A European-based global firm decided to reduce the amount of product offering and
the development efforts for a few products where it can build competitive advantage on a
global scale. This firm also decided to immediately implement a plan, which had been on
the shelf for many years, to streamline its operational platforms on a global basis. Currently,
each geographical location (and sometimes within the same country) has its own platform with
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table 3.3 Cost-cutting activities and average savings

Cost Possible cost-cutting activities (%) Average savings (%)* Timeline

IT Outsourcing programs
Re-evaluate IT and telecommunication
needs due to the new activity levels
Reassess redundancy
Server consolidation and right-size laptop

and PC ratios

10–20 1 year

Personnel – organization Cut layers of hierarchy
Push activities to lower cost personnel

(“empowering”)

5–10 3–6 months

Personnel – headcount Cut headcount across the board, adapting
to the new level of activity

10–30 Immediate

Products range Optimize the product range to better use
investment teams, portfolio managers,
and research

15–20 3–6 months

Real estate Close facilities and/or renegotiate leases
Increase use of outsourced resources that

do not demand real estate use
Use shared services
Consolidate functions

5–20 6–12 months

Marketing and
advertising

Consolidate marketing functions across
the firm

Shift spending to the most efficient
vehicles

Cut advertising spending
* Average savings, considering only their base cost

Source: Author’s work with asset managers.

table 3.4 Most common types of cost-cutting programs

Type Definition Situation

Cost blitz Companies start cutting
costs immediately in a
desperate fashion;

Sudden market changes that caught
companies unprepared;

Quick loss of profitability;
Category specific Focus on only one category

to cut costs–for example,
cutting IT costs seen as
the solution;

There is an obvious need for cost
reduction in this expense category
that market conditions aggravate;

Deep dive/transformation
programs

A more analytical and
holistic way to optimize
costs and spending;

As the economic environment keeps
deteriorating, companies see the
need for a more structural change in
their cost management.

different vendors and frameworks to process securities. Another US-based global firm followed
the same path, creating and developing global centers of excellence in an attempt to provide
their clients with the best possible service.

There are a few ways to perform such cost-cutting programs. Firms tend to go through all
of them in recessionary times. These types are shown in Table 3.4.
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When suddenly hit by a very serious crisis, as in September 2008 with the demise of
Lehman Brothers, a company may often go immediately on a “cost blitz”, which may result
in a major round of layoffs. As the current situation does not seem to improve, many firms now
also have to manage costs in specific categories, such as closing locations that are not profitable
and are only viable if experiencing accelerated growth. Some firms still focus all their efforts
on the IT category. As the current economic downturn seems to be lasting longer than ini-
tially expected, quite a few firms are now cutting their costs dramatically. These transformation
programs tend to be longer, but usually present long-lasting results.

On a positive note, these changes are coming at a good time, as the previous fast growth
meant that these firms did not use these resources in an optimal way. The crisis is therefore a
good opportunity to check all these costs, and, when growth returns, this may stimulate large
productivity increases.

3.2 Using OpRisk Data to Perform Business Analysis

As mentioned earlier in this chapter, financial firms are being pushed by regulators to dramati-
cally strengthen their risk management frameworks. This will certainly require not just invest-
ments, but also greater management time and attention. However, we show in this section
that better risk management, particularly OpRisk management, can also bring opportunities
to reduce costs.

Financial firms are susceptible to all forms of risks, namely, market, credit, and OpRisks.
Market risks are due to the daily fluctuation of asset prices, and credit risks are due to the
possibility that some counterparties with whom the funds do business might default and make
a financial asset worthless. Financial firms are particularly subject to OpRisk. In quite a few
sectors in the financial industry such as retail brokerage, retail banking, and asset management,
OpRisks are predominant. Errors in processing transactions or a system failure can cause severe
damage and impact the balance sheet of the financial firm. Consistently failing to comply with
local regulations, or with very basic business ethics, can generate very large operational losses
and subsequent reputational damage. Clients can also sue for poor performance. OpRisk can
be modeled in a few different ways. It particularly affects factors like people (human resources)
and IT systems. In what follows, we elaborate on these two risk factors and how good risk
management can translate into a positive impact on the bottom line.

3.2.1 THE RISK OF LOSING KEY TALENTS: OPRISK IN HUMAN
RESOURCES

As a service sector firm, any type of asset manager needs to hire top talent in order to provide
the best return and service for its clients. Human resource talent is needed for the following:

• General management (portfolio managers, etc.);
• Administrative personnel (operations settlements, accountants, etc.);
• Research (equity, bond and currency analysts, risk analysts, etc.);
• Technologists (e.g., IT specialists); and
• Sales force.
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As in many financial firms, asset managers have to ensure that they are able to attract and
retain, above all, portfolio managers with an established track record and a potential to bring
in clients and provide high returns to their funds. Such people are the face of the firm to the
outside world and are a basis for attracting clients. Compensation of such personnel is one of
the highest costs of any financial firm. Losing top talent is very costly and also increases the
susceptibility to OpRisk. There is a learning curve for apprentices and, during this period, the
probabilities of error are higher. Asset managers are, therefore, highly exposed to key personnel
risk. Particularly in the US, but also in other countries, funds are often named after their port-
folio managers. Typically, these portfolio managers develop such a track record and reputation
that clients want to invest with them. These funds linked to a name can hold many billions of
dollars in investments, and the asset manager may become very dependent on this particular
person. The risk of losing such a portfolio manager may represent a loss of revenue of many
millions per year in administration and performance fees.

In the front office, sales people need to follow procedures and local regulations to sell
pension and other types of funds. Several pension mis-selling cases have occurred in different
countries. Probably the most infamous case of pension mis-selling was the situation that arose
in Britain between 1988 and 1994, after British regulators decided to allow individuals to buy
pensions from private-sector providers. The regulators determined at that time that pension
investors should have the choice of who would provide their pension (not necessarily their
employer) and that they should be allowed to invest, in effect, in a retail pension fund. Many
who decided, or who were persuaded, to buy a retail fund should not have done so. High-
pressure tactics by commission-based salespeople led to tens of thousands of people purchasing
products that proved to be entirely unsuitable. High fees and charges and poor investment
returns combined to shrink the retirement savings of these investors. Many found themselves
locked in and unable to switch to more appropriate products without incurring very high exit
fees. The result was a nightmare for investors, pension providers, and the government. After
a long legal process, the funds were told to reimburse the investor for mis-selling these pen-
sions. Until 2008, an estimated GBP 11.5 billion (nearly USD 20 billion) had been paid in
compensation for mis-selling by certain asset managers who operated in this market.

The British experience serves to illustrate what can go wrong when, even with the best
intentions, a choice is given to people who are unprepared for it. It also shows how greedy
salespeople can exploit unsuspecting consumers, and how something that starts out as a good
idea can turn into a major financial liability to asset managers if not properly conducted.

OpRisk can also manifest itself in back office personnel. For example, risk managers, audi-
tors, and accountants play an important role, since they have to guard the firm against the likes
of rogue traders, accounting frauds, and Ponzi schemes (like the aforementioned Madoff case).
It is important that the reporting lines of the traders and risk managers are kept separate.

3.2.2 OPRISK IN SYSTEMS DEVELOPMENT AND TRANSACTION
PROCESSING

Scale plays an important role in asset management. The larger the portfolio, the lower is the
cost per transaction. However, the optimal size of a managed fund is often a balance of various
trade-offs. For example, while an overall larger scale for an asset manager is preferred because
of economies of scale, a small fund would be more agile to move a fund’s allocation in reaction
to market movements, and would probably be better able to outperform the competition. This
is the case with hedge funds. Another aspect that has an impact on the optimal size of a fund
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is the error rate (OpRisk), which is a function of the transaction frequency. It is to be expected
that the probability of error increases with an increasing frequency in the rate of transactions.
A larger fund, in order to meet its benchmarks, will have to take bigger bets. So, for each type
of fund there is an optimal size and an optimal focus. Historically, several funds that reached a
size deemed to be larger than optimal decided to close entry for new clients, such as Fidelity’s
Magellan.

Financial institutions in general, and asset managers in particular, have traditionally never
been as careful with costs as other industries have been. In several industries, like car manufac-
turing, error rates are extremely low and very well controlled by sophisticated quality control
departments, which are usually the most sophisticated areas within an organization except for
research (or product) development. On the other hand, in the financial services industry, the
most sophisticated departments are located either in the front office or on the revenue side.
Financial derivatives are priced taking only market opportunity costs (and rarely transaction
costs) into consideration; even if transaction costs are taken into account, the analysis is not
very deep. In the portfolio aggregation of these products, the final effects of processing are
never considered. In this section, we try to briefly depict how a more sophisticated cost analysis
can be developed for financial products based on a traditional microeconomic analysis.

Economic theory postulates that, for a firm to maximize its results, it is necessary that it
produces such a quantity that allows equilibrium between the variation of the total cost and
the variation of the total revenue. The total (or gross) revenue, Rgross, is simply the result of
multiplying the price, p, of a certain product by the quantity, K , negotiated, that is, Rgross =
p × K . In general, the price is a function of quantity, that is, p = p(K ), and the marginal
revenue, Rmg , corresponds to the variation of the total revenue with respect to the quantity
sold K . Assuming that the variation of the quantity and the gross revenue can be admitted
as infinitesimal (this works in theory, but is unlikely to be the case in business practice), the
marginal revenue can be determined by the first derivative of the gross revenue in relation to
the quantity sold:

Rmg =
∂Rgross

∂K
. (3.1)

In asset management, the increased number of transactions K (the production) will bring
an unexpected variable cost, which is an increase in operational error (human and system factors
would not perform the same when subject to a higher volume of transactions). The relationship
between the number of operational errors and the transaction volume can be estimated through
multifactor models. Denote the total cost of the production as Cgross, which is a function of K .
Then the marginal cost is defined as

Cmg =
∂Cgross

∂K
. (3.2)

The entire analysis of revenues, production, and costs based on the (micro)economic
theory is complex, and there is vast literature on the subject (see, e.g., Krugman and Wells
2012 and references therein). We will not delve into more detail in this section, but strongly
recommend understanding these relationships when developing any growth strategy. It is worth
noting that perhaps the most important conclusion from these considerations is that the firm’s
profit will be maximized when the marginal cost and the marginal revenue are the same, that is,
Cmg = Rmg (when the profit P(K ) = Rgross −Cgross is a concave function of K , this corresponds
to the standard condition of maximum ∂P(K )/∂K = 0). In what follows, we present a very
simple stylized example to illustrate this concept.
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EXAMPLE 3.1 Maximizing profit with respect to the number of trades

Suppose a fund trades a single product with a very tight margin at γ = 0.006% per
trade (one trade is A = USD 100,000). Therefore, the gross revenue for K trades
(e.g., per day) is

Rgross = A × K × γ. (3.3)

In general, the fund trader would only see the trades from the revenue side and
would be happy to see the revenue growth as the number of trades K increases. Using
(3.3), it is easy to see that, for example, the revenue grows from USD 1,200,000 to
USD 4,200,000 when the number of trades K increases from USD 200,000 to USD
700,000. This is a very general view, but revenue generators will not bother about
the costs incurred to achieve that revenue.

Let us now analyze the costs. We divide the costs into two components: pro-
cessing cost Cprocess and error cost Cerror . Assume that the processing cost per trade
is δ = USD 5, that is, the total processing cost is Cprocess = K δ. The error cost ε is
random, and assume that the expected value of the error cost is μ = E[ε] = USD
9.43. So it would cost USD 5 to process a trade and an additional USD 9.43 to
reprocess it in the case of the error on average.

Denote the number of failed trades as Kfailed and expected number of failed
trades as λ = E[Kfailed ]. Then the total error cost is εKfailed and expected error cost
is Cerror = E[εKfailed ] = μ× λ (assuming that ε and Kfailed are independent). Thus,
the total expected gross cost is Cgross = Cprocess + Cerror .

Assume a simple linear model for the expected error ratio λ/K with respect to
the number of trades K :

λ

K
= α+ β × K , (3.4)

where α = 0.0095 and β = 1.1× 10−7. For this model, one can easily see that the
error ratio is about 3.15% when the number of trades is K = 200, 000; and when
the number of trades grows to 700,000, the error ratio climbs to 8.65%!

The total expected profit from K trades is

P(K ) = Rgross − Cprocess − Cerror

= A × K × γ − K δ − μK (α+ βK ). (3.5)

It is easy to see that the maximum expected profit P(K ) is achieved at K =
K ∗; where ∂P(K )/∂K = 0, this gives a closed form of expression for the optimal
number of trades

K ∗ =
Aγ − δ − μα

2μβ
. (3.6)

The profit P(K ) as a function of K is shown in Figure 3.2.
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figure 3.2 The profit of the business as a function of the number of trades K ; for details, see
Example 3.1

It is also easy to see that the maximum condition ∂P(K )/∂K = 0 corresponds
to Cmg =Rmg ; see formulas (3.1) and (3.2). For the parameter values used in this
example, it is easy to calculate using (3.6) that the maximum profit USD 199,762
is achieved at K ∗ = 438, 838. If we trade more than K ∗, we have declining prof-
its. If the asset manager has any strategy of trading more than that, he/she will also
have to take the costs into consideration. This type of modeling also offers us con-
ditions to verify our capacity and see how an improvement in the process (system
improvement, training process, hiring employees, etc.) will benefit the organization
and increase productivity.

In this example, if the error rate (3.4) and expected error cost ε are reduced by
20% (i.e., α, β, and ε are multiplied by 0.8), due to OpRisk reduction (e.g., by
training employees and improving systems), the maximum profit USD 334,634 is
reached at K ∗ = 709, 975 trades. Therefore, the fact that we reduced the OpRisk
in a business by 20% increased profit by about 70% and increased our optimal
capacity by about 60%, achieving a dramatic productivity gain by managing the
OpRisk better.

There are several other factors that affect the costs and risks of transaction pro-
cessing. Transaction processing can be outsourced (however, usually not offshore,
but preferably to some firm relatively close by, so that any form of OpRisk does not
increase too much). Another important factor is manual versus automated trans-
action processing (e.g., society for world interbank financial telecommunication
(SWIFT)). Automated transaction processing clearly has a higher productivity than
manual transaction processing. However, automated transactions can only be done
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with regard to standard, plain vanilla transactions, not with regard to more compli-
cated esoteric transactions. Even though one may think that automated processing
is more reliable and less susceptible than manual processing to OpRisk, it is not
clear that this is actually the case (e.g., automated transactions are still subject to
typographical errors, which have often cost managed funds millions).

3.3 Conclusions

The financial and economic crisis has changed the financial industry landscape completely, and
this now presents many challenges for financial firms all over the world. Senior management
and boards at these companies are using the best possible tactics to return to higher levels of
profitability, in some cases even in order to survive. The easiest way to control this is through
cost reduction programs. Finding the optimal cost structure in the current environment without
losing clients for poor quality of service is key. These cost optimization programs in financial
firms were overdue. As they were concerned only with expansion in the last few years, there
are usually a number of legacy systems that need to be closed (duplicate processing, unneces-
sary office locations, etc.), which would make these firms leaner and more productive. Costs,
productivity, and OpRisk are strongly intertwined. For a firm to optimize its investments and
operations, all possible factors and trade-offs have to be taken into account. Such an optimiza-
tion process is an analytical task that needs to be carefully executed. However, asset managers
who survive this crisis will be much stronger when markets recover.
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Chapter Four

Stress-Testing OpRisk Capital and
the Comprehensive Capital
Analysis and Review (CCAR)

4.1 The Need for Stressing OpRisk Capital
Even Beyond 99.9%

Since the Lehman Brothers collapse that culminated in a financial crisis in 2008, banks across
the globe have been constantly demanded by regulators, investors, lawmakers, and the public
in general to prove their financial health and resilience of their balance sheet under stressed
financial conditions. In order to standardize and formalize this process, more formal tests were
established by the leading world regulators, which periodically require banks to stress-test their
capital base given certain scenarios. On both sides of the Atlantic, this process is similar to that
shown in Figure 4.1. It basically requires a firm to develop a set of scenarios or use scenarios
developed by the regulators. Regulators would then get the individual results from firms and
develop their own systemic stress test to verify if the financial industry can withstand negative
scenarios and where regulators need to enforce banks to avoid another situation like the one
in 2008.

These scenarios are expressed in stressed macroeconomic factors and financial indicators,
and regulators provide these figures on a quarterly basis for a period of 2 or 3 years ahead.
For example, in a certain quarter, regulators might establish that the S&P 500 would go down
30% and US unemployment would reach 12% (there are many other factors). Based on this
information, banks would then assess the impact of this economic scenario reflected in market
and credit losses in their portfolios and how their capital base would behave in this situation.
These tests are motivated from the government bailout days in which banks did not have enough
capital to cope with extremely negative scenarios and had to be helped by tax payers’ money.
The novelty is that banks are also required to analyze the impact of this scenario in OpRisk.
The relationship between these macroeconomic factors and indicators to market and credit
risks is straightforward, but what about OpRisk?

As OpRisk capital is already reported to regulators at 99.9% and considering that the
fitted distributions are usually heavy-tailed, it is a regular discussion in the OpRisk community

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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figure 4.1 Generic stress test framework

whether or not this large confidence interval is already sufficient to protect against large loss
events. Many think that OpRisk capital is large enough and it would be a pointless exercise to
estimate it even further down the tail. However, in practice, a number of issues with OpRisk
modeling can show the clear need for even deeper estimation in the tail stress of OpRisk events.
As an effect of the great financial crisis of 2008, most large financial firms were sued by clients
for many reasons, for example, because mortgages were irregularly granted or funds in large
asset management were unduly keeping mortgage-backed securities and, therefore, suffered
large financial losses in the post crisis. The settlement of these lawsuits is still taking place in
2014 and beyond, and they amount to multibillion dollar amounts. In addition to these large
settlements, banks also still continue to face the usual threat of internal frauds. It is understood
that banks allocate significant capital against internal frauds but these losses keep exceeding
their largest estimates. The same can be applied to business disruptions due to system crashes
or pretty much every OpRisk event type. Given that, many firms already have a process to stress-
test capital to even higher levels and a number of regulators, particularly the Federal Reserve
Bank (FED) in the US, developed a more rigorous process to stress-test OpRisk it seems that
the industry is responding with an increased level of caution already indirectly.

4.2 Comprehensive Capital Review and Analysis (CCAR)

Since the great financial crisis in 2008, the regulators in the financial industry have been duly
concerned in finding ways to assess the financial health of financial companies on a more regu-
lar basis and, more particularly, under stress conditions. In 2009, in the aftermath of the crisis,
the FED launched the so-called Supervisory Capital Assessment Program (SCAP) (see FED
2009) as an attempt to try and get a better assessment on how institutions would fare given
a number of adverse macroeconomic factors during a period of 2 years ahead. This exercise
was very extensive as it involved impacts in the pre-provision net revenue and expenses given
a set of scenarios for a number of key macroeconomic factors. However, the main focus was
on the impact on bank capital. As the FED noticed at the time, “capital reassures an insti-
tution’s depositors, creditors and counterparties – and the institution itself – that an event such
as an unexpected surge in losses or an unanticipated deterioration in earnings will not impair its
ability to engage in lending to creditworthy borrowers and protect the savings of its depositors”.
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Before embarking on a discussion on the recent stress testing of capital being performed in the
US, it is useful to observe (Schuermann, 2013, figure 1) relating to the arms race for capital
adequacy and its evolution under the Basel Accords. To understand the context of such stress
tests, it should be noted that during the 2007/2008 crisis period, banks the failed or came close
to failure requiring some form of bailout or assistance in the UK and US were all considered,
prior to the crisis, well capitalized by existing regulatory standards. In this initial SCAP, only
the 19 largest bank-holding companies (BHCs) were required to participate. Not just com-
mercial or investment banks were participants among these 19 but also a few large insurance
and credit card companies. The idea was that the largest financial institutions, deemed capa-
ble of impacting the financial system significantly in case they are in financial trouble, had
to perform this what-if test to give regulators some assurance. SCAP was a very stringent test
and all hypotheses and calculations performed by these institutions were thoroughly audited
by the FED and some of them actually failed the test, meaning that under the stress conditions
under SCAP, these institutions would not have the expected capital buffer to protect them. The
exercise focused not only on the amount of capital but also on the composition of capital held
by each of the 19 BHCs. The SCAP’s emphasis on what is termed “Tier 1 common capital”1

reflects the fact that common equity is the first element of the capital structure to absorb losses,
offering protection to more senior parts of the capital structure and lowering the risk of insol-
vency; for more details on bank capital definition, see BCBS (2011). All else equal, more Tier
1 common capital gives a BHC greater permanent loss absorption capacity and a greater ability
to conserve resources under stress by changing the amount and timing of dividends and other
distributions. This means that institutions would have to be preapproved by the regulators to
do any activity that might impact capital, for example, pay dividends, enter a shares buyback
program, issue shares, etc.

SCAP was initially designed to be a one-off test; however, it returned in the following year,
now named as Comprehensive Capital Analysis and Review (CCAR). It has been run on a
yearly basis since then, see for instance the discussion of the results in 2012 available in Federal
Reserve (2012) and the more recent summary of findings from such stress tests discussed in
Bernanke (2013). These stress tests had to be delivered to the FED around January 7 of the
following year so it became a new tradition for risk managers in the US to work extremely
long hours during the holidays. The slow period of holiday celebrations became a casualty
of the CCAR process as this time of the year became one of the most intense for US-based
risk managers. In 2011, the FED created a new program called “Capital Plan Review” that in
practice extended CCAR to another 11 institutions and this number is expected to grow in
the next few years. As a result of these stress testing exercises several academics have begun to
question the outcomes of the tests and to assess them, see for instance the study of Petrella and
Resti (2013) and Acharya et al. (2014) and the references therein. In addition to the stress tests
performed by the FED in the US, there were also a number of stress tests performed in Europe,
for instance in 2010 there were reported 91 banks undergoing stress testing in Europe which
covered 20 countries. The result of the tests in Europe were alarming with 7 major banks in
the set considered failing to meet the capital adequacy standards required under the prescribed
stress tests, requiring additional bailouts to stay solvent in excess of €3 billion. In addition,
subsequent to this stress testing, there were a number of European countries going into distress

1Tier 1 common capital is composed of common shareholders equity + partial noncontrolling interest − certain
deferred tax assets − goodwill and intangibles − debt valuation adjustments − other deductions. Tier 1 capital
is all of this plus perpetual preferred stocks, trust preferred securities, and remaining noncontrolling interest.
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with large scale bank bailouts occurring, such as in Ireland, even when banks that participated
in the stress test had passed the capital adequacy standards. This suggests that such exercises
need to be further expanded and capital adequacy further explored.

In the recent study of Petrella and Resti (2013) it was noted that since supervisory stress
tests can be used to assess the impact of an adverse macroeconomic scenario on the profitability
and capitalization of the largest banks in a given economy, then such results should be used to
reduce the perceived public opinion that there is an opaqueness in the way tax-payer money
may be being used to help support and bailout struggling financial companies. Consequently,
as noted in Petrella and Resti (2013) the EU regulators took unprecedented step in releasing
the results of the stress test exercises performed to the public in order to help investors dis-
tinguish between robust and under capitalized institutions. This involved releasing the results
of the 2011 EU region stress test which include around 3,400 data points for each of the 90
participating banks. It was noted in Petrella and Resti (2013) that the important features of the
data released included:

• Data on risk-weighted assets and own funds, which also included a breakdown of items
recognised as core Tier 1 capital, compulsory deductions, governmental support and other
mitigating measures fully committed by 30 April 2011;

• P&L figures which included: net interest income, trading income, impairments, other
income/losses and net profit after tax;

• Details on provisions, loss rates and coverage ratios for performing and non-performing
exposures. In addition this was separated by retail, corporate, bank and sovereign
portfolios;

• Credit exposures by geographic area, counterparty and default status;
• Sovereign exposures by geographic area, accounting treatment (e.g. trading book, fair

value option, available for sale, etc.), duration band. This included derivative exposures
at fair value.

Based on this stress testing data, academic works such as Petrella and Resti (2013) started
to study meaningful questions relating to the impact of such tests on perceived confidence and
stability of the financial sector in different regions. For instance they studied questions like:

• Did the stress tests produce relevant information for market participants (“irrelevance
hypothesis”)?

• If the test’s results triggered a market reaction, was this reaction caused by the release of
more granular historical data (“zoom hypothesis”); or

• By the resiliency indicators generated by the stress test exercise (“stress hypothesis”)?

The outcomes of testing these three hypotheses were that there was evidence obtained to reject
the irrelevance hypothesis since the market was shown to significantly react once the disclosure
of the results was performed by the EU regulators. In addition, it was shown that the abnormal
returns of tested banks could be strongly related to some stress test outputs released by the EU
regulators. Finally, with regard to the “zoom” and the “stress hypothesis” it was concluded that
these were supported by the analysis post the EU regulators release of information.



�

�

“Cruz_Driver” — 2015/1/12 — 11:36 — page 63 — #5
�

�

�

�

�

�

4.2 Comprehensive Capital Review and Analysis (CCAR) 63

CCAR is a comprehensive test not just for OpRisks but also for market, liquidity, and credit
risks. As part of the CCAR, the FED assesses institutions’ capital adequacy, internal capital
adequacy assessment processes, and their plans to make capital distributions, such as dividend
payments or stock repurchases. The CCAR includes a supervisory stress test to support the
FED’s analysis of the adequacy of the firms’ capital. Boards of directors of the institutions are
required each year to review and approve capital plans before submitting them to the FED.
The CCAR process is an intense exercise that involves many top-level executives in BHCs. The
general view seen from the industry regarding stress testing is that it possess some important
advantages when used as a quantitative tool to assess and determine aggregate capitalization. It
delivers a specific annual set of transparent scenarios that are readily understood by a range of
members of the financial institution and the executive board and covers not just financial losses
but also revenue and costs. Also, it provides regulators with a tool by which they may better
understand the country and industry wide risk known as systemic risk. Moreover, it allows for a
direct study of practical accounting measures of financial performance such as a lack of capital
fungibility.

Before going into specific details of the CCAR process it is worthwhile to first discuss the
main constituents of a stress test framework which include:

• defining a risk apetite for the given financial institution;
• given a particular risk appetite, there is a stage of process and governance to be per-

formed. This includes a clear mapping of the role and responsibilities of senior manage-
ment involved in the exercise;

• the scenario definitions are to be developed and considered/discussed with each busi-
ness/divisional stakeholder. This can include macro-economic assumptions to be consid-
ered, which should be done with historical relationships kept in mind. Then in addition
to potential macro-economic scenarios based on historical events, there should be an addi-
tional level of expert opinion incorporated to develop additional what-if and plausible
scenarios that could be faced in future not yet present in historical realized events;

• there is a stage of credit forecasting for loan losses, provisions and ending reserves. In
addition it should consider permanent impairments of investment securities;

• there is a stage of pre-provision net revenue forecasting to consider balance sheet dynamics,
net interest income forecasts and other aspects of income and expenses;

• all unaccounted for risks are then considered such as mark-to-market trading losses from
given scenarios, operational risk losses and liquidity impacts;

• finally, these items are combined into the final stage of capital assessment which involves
a forecasting of the capital position post the stress events.

Having discussed these high level stages, we now discuss in more detail the CCAR process.
However, we note at this stage that a set of stress tests is provided each year in the FED CCAR
guidelines along with generic templates for reporting of results. In the CCAR process, the
FED assesses a BHC’s pro forma post-stress capital ratios resulting from the combination of
stress performance measures (e.g., revenues, losses, and reserves from the supervisory severely
adverse scenario) and the BHC’s planned capital actions (e.g., planned dividends, issuance, and
repurchases as provided in the BHC baseline scenario) against each minimum regulatory capital
ratio and a 5 % Tier 1 common ratio as shown in Table 4.1.
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table 4.1 CCAR regulatory minimum ratios

Regulatory ratio Minimum level (%)

Tier 1 common ratio 6
Tier 1 leverage ratio 3 or 4
Tier 1 risk-based capital ratio 4
Total risk-based capital ratio 8

table 4.2 Types of scenarios in the CCAR process

Type of scenario Description

Bank-holding company (BHC) baseline A baseline scenario for OpRisk defined and built by the
own firm

Bank-holding company (BHC) stress A stress scenario for OpRisk defined and built by the own
firm

Supervisory baseline A baseline scenario provided by the Federal Reserve under
the capital plan rule

Supervisory severely adverse A severely adverse scenario provided by the Federal
Reserve under the capital plan rule

The types of scenarios in the CCAR process are presented in Table 4.2 and some elements
of process to project preprovision net revenue and capital are presented in Figure 4.2. The results
of a BHC’s analysis for each scenario should encompass all potential losses and other impacts
to net income that the BHC might experience under the scenarios described earlier. In all cases,
BHCs should substantiate that their results are consistent with the specified macroeconomic
and financial environment, and that the components of their results are internally consistent
within each scenario.

The BHC baseline scenario should reflect the BHC’s view of the expected path of econ-
omy over the planning horizon. A BHC may use the same baseline scenario as the Federal
Reserve baseline scenario if the BHC believes the Federal Reserve baseline scenario appropriately
represents their view of the most likely outlook for the risk factors salient to the BHC.

The BHC stress scenario should be based on a coherent, logical narrative of a severely
adverse economic and financial market environment and potential BHC-specific events. The
scenario narrative should detail key events and circumstances that occur in the scenario. BHCs
must provide the quarterly trajectories of key macroeconomic and financial variables for its
BHC baseline and BHC stress scenario.

A BHC’s stress scenario should describe a severely adverse hypothetical combination of
circumstances designed with the BHC’s particular vulnerabilities in mind. Specifically, and
as noted earlier, the BHC stress scenario should be designed to stress factors that affect all
of its material exposures and activities, capturing potential exposures from both on- and off-
balance sheet positions. In addition, a forward-looking analysis is also required in the BHC
stress scenario.

A BHC is required to perform an assessment of the expected uses and sources of capital
over the planning horizon assuming both expected and stressful conditions. This assessment
must contain the following elements:
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Preprovision 
Net Revenue 

(PPNR)

• Net interest income + non – interest income – non-interest expense
• PPNR include losses from operational risk events, mortgage losses, etc

Pretax Net 
income

• PPNR + other Revenue – Provisions–AFS/HTM securities losses – trading and 
  counterparty losses – other losses

Aftertax net 
income

• Pre-tax net income – taxes + extraordinary items net of taxes

Change in 
equity capital

• After-tax income – net distributions to common and pref shareholders and other
  net reductions to shareholders' equity

Change in  
regulatory 

capital

• Change in equity capital – deductions from regulatory capital + other additions to
  regulatory capital

figure 4.2 Process to project preprovision net revenue and capital

• Estimates of projected revenues, losses, reserves, and pro forma capital levels, including
any regulatory capital ratios (e.g., leverage, Tier 1 risk-based, and total risk-based capital
ratios) and any additional capital measures deemed relevant by the BHC, over the planning
horizon under expected conditions and under a range of stressed scenarios, including any
scenarios provided by the FED and at least one stress scenario developed by the BHC
appropriate to its business model and portfolios;

• A calculation of the Tier 1 common ratio over the planning horizon under expected con-
ditions and under a range of stressed scenarios and discussion of how the company will
maintain all minimum regulatory capital ratios and a Tier 1 common ratio above 5%
under expected conditions and the stressed scenarios required;

• A discussion of the results of the stress tests required by law or regulation, and an explana-
tion of how the capital plan takes these results into account;

• A description of all planned capital actions over the planning horizon.
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BHCs should demonstrate that their results are consistent with the macroeconomic and
financial environments specified in the scenarios being used, and that the various components
of their results are internally consistent. For instance, it might be inconsistent to project a
shrinking balance sheet while also projecting large increases in net income in a stress or base-
line environment, as this would certainly raise a red flag. BHCs should submit background
information on the methodologies supporting their estimates. This material should include a
discussion of key approaches and assumptions used to measure BHC-wide exposures and to
arrive at stress loss estimates, along with relevant background on positions or business lines that
could have a material influence on outcomes.

At the end of this process, the FED can object to a capital plan based on qualitative or
quantitative concerns, or both. The FED can make new capital plans from an institution at any
time to make improvements in the capital planning process, or if there is a change in condition
of an individual institution or in the economy that could potentially lead to a change in a firm’s
capital position. The outcome of the CCAR is public and by March the industry will know
how BHCs fared in the stress test.

It will be interesting to see the impact that the CCAR exercise has in the US financial
industry. This exercise has become so important that a number of firms now instead of per-
forming this only annually as required are doing it either semiannually or a few even every
quarter. As almost every firm uses the results of CCAR in Pillar 2 instead of Pillar 1, it turns
out that the outcome from CCAR tends to be larger and more important than the Basel num-
bers for US banks, reducing somehow the importance of Basel.

The Macroeconomic Factors and Financial Indicators Used in the Three Scenarios
The main characteristics of the scenarios for the CCAR 2013 are listed in Table 4.3. All scenarios
start in the fourth quarter of the current year (e.g., 2014:Q4) and extend through the fourth
quarter of 2016 (2016:Q4). The three scenarios are defined over 26 variables. In its description
of US economic conditions, each scenario includes the following:

• Six measures of economic activity and prices. Real and nominal gross domestic product
(GDP), the unemployment rate of the civilian noninstitutional population aged 16 and
over, real and nominal disposable personal income, and the Consumer Price Index (CPI);

• Four aggregate measures of asset prices or financial conditions. Indexes of house prices,
commercial property prices, and equity prices, and US stock market volatility;

• Four measures of interest rates. The rate on the 3-month Treasury bill; the yield on
the 10-year Treasury bond; the yield on a 10-year Better Business Bureau (BBB) corpo-
rate security; and the interest rate associated with a conforming, conventional, fixed-rate,
30-year mortgage.

For the international variables, each scenario includes three variables in four countries/
country blocks:

• The three variables for each country/country block are the annualized percent change
in real GDP, the annualized percent change in the CPI or local equivalent, and the US
dollar/foreign currency exchange rate;

• The four countries/country blocks included are the European area, the UK, developing
Asia, and Japan. The European area is defined as the 17 European Union member states
that have adopted the € as their common currency, and developing Asia is defined as
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the nominal GDP-weighted aggregate of China, India, Hong Kong Special Administrative
Region (SAR), and Taiwan.

Having discussed in some length the CCAR and stress testing exercises and scenarios with
associated assumptions performed in the US, we also briefly note some features of the EU
stress tests and associated assumptions. In 2011 the EU stress test performed by the European
Banking Authority was undertaken on 90 banks which covered in excess of 65% of the total
assets in the EU banking system. The stress testing simulation scenarios began witha baseline
based on real financial data at the financial close of 2010 and covered forecasted scenarios for
two years, 2011 and 2012. Overall, two core scenarios were considered which included: baseline
and adverse categories.

The baseline scenarios involved a consideration of a strengthening macroeconomic recov-
ery, where it was assumed that there would be a growth in GDP of 1.7% and 2% in the EU.
Alternatively, under the adverse stress scenarios it was assumed that the GDP would instead
reduce by 0.4% in 2011 and stay flat in 2012. In addition, it was furthermore assumed that
equity prices would drop by 15%; and short-term risk-free rates would increase by 1.40% and
long-term ones by 1.25%. Finally, it was assumed that credit spreads for sovereign debts in
Europe would also rise, with different increases in each country.

Under these assumptions, the 90 participating banks were requested to utilise their internal
capital estimation models, of which OpRisk is a core contributor, to generate values for balance-
sheet items and P&L results. There was also imposed a stringent methodology that must be
followed according to specifications developed by the European Banking Authority. Then each
countries national supervisory body studied each of the firm specific assumptions made and
these were cross checked with each countries national supervisors and the European Banking
Authority for a uniformity analysis, resulting in additional calibration as was deemed suitable
on a case by case basis. For further details see the account provided in Petrella and Resti (2013)
as well as a list of outcomes of such stress tests in the EU over the last few years.

4.3 OpRisk and Stress Tests

As OpRisk capital represents a significant chunk of the total capital in most firms, it is obvious
that it should be a key part of the stress test exercise. However, if for market and credit risks
there is a more apparent relationship between the macroeconomic factors and the key drivers
for these risks, this relationship is not clear for OpRisk. Therefore, most banks are heavily using
more subjective tools like scenario analysis as the key input in the stress exercise. That does not
mean that banks changed their scenario analysis program to deal with CCAR; in reality, new
adverse scenarios were added that were very specific to the CCAR questions. Almost every bank
developed a special “stress test scenario analysis” program to respond to the regulatory stress test
exercise; however, quite a few are moving to integrate the two scenario programs somehow.

In OpRisk, to find a consistent statistical relationship between these factors and indicators
and to incorporate them in a sound way into the framework is a significant challenge for a few
reasons. The most obvious one is the usual culprit in OpRisk, which is data issues. Although
significant progress is under way across the industry to improve the quality of operational loss
data, this is still a major challenge. Some of the major issues are as follows:

• Completeness. The completeness of internal and external data, while an objective for the
industry, is still elusive. Even when using external data to assess correlations, it can be
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questioned whether banks’ loss database in the OpRisk data Exchange Association (ORX)
consortia are actually fully comprehensive and, if so, whether they are reporting all losses
they suffered;

• Varying collecting thresholds. Several banks started with very high collection thresholds
and have been reducing these thresholds this so makes it difficult to find a long time series
of standard events;

• Natural scarcity. Operational losses are sparser and for some risk types losses would not
happen at daily or even weekly frequencies, while economic indicators are available daily.
The solution in this case is to aggregate losses monthly, quarterly, etc. However, as the
aggregation increases, quite a few spurious correlations would appear that would bear no
logical support. For example, West Texas Intermediate (WTI) crude oil prices would show
a 32% correlation with losses of Business Disruption and System Failures (BDSF) type
(aggregated quarterly, using ORX data);

• Dates. Operational losses would have many dates associated, for example, “occurrence
date” (when losses occur), “impact date” (when losses are realized), and “account date”
(when losses are booked to the general ledger). Changing the type of date used would
affect correlations.

Another issue is that, for several very important OpRisk types, the lag that exists between a
macroeconomic event and the losses can be of many years, way beyond the exercise proposed by
the regulators. This is a clear example of litigation losses (mostly under the risk type “Clients,
Products, and Business Practices”). For example, only in 2011, banks started to set reserves for
litigation originating from the mortgage crisis in the US that took place in 2007/2008. The
cycle for a litigation process can take anywhere from 3 to 6 years or even longer. Considering
the regulatory stress tests only span for a couple of years ahead, it is very difficult to find a
meaningful correlation between a certain macroeconomic scenario and litigation losses within
this time frame.

Given these constraints, modelers need to take quite a few cautionary measures. The first
one is to break down OpRisks into their Basel risk types. OpRisks are actually an amalgamation
of different risk types, and the impact of the macroeconomic factors can vary significantly
among them. For execution losses (the “Execution, Delivery, and Process Management” type),
a steep decline or volatility in the financial markets usually increase the trading volume, which
can increase the execution losses. Using ORX data, this relationship is not so apparent in daily
data, but starts to show up on a quarterly aggregation. Considering that execution risk would
represent about 20–40% of the total OpRisk, a volatile macroeconomic scenario can potentially
have some significance. However, there is no absolutely robust and conclusive correlation using
these data. An example of a strong correlation is when this correlation is maintained at any
aggregation level. For example, if we analyze the relationship between DJIA and S&P 500, we
will find a strong relationship on a daily basis and if we extend this to weekly, monthly, and
quarterly bases, the association will hold. If data from ORX were used against any of these
macroeconomic factors, this would never happen.

For some risk types, like Employment Practices and Workplace Safety (EPWS), a stress
scenario can actually lower the risk. Analyzing unemployment data against employment-related
losses in the US, it can be seen that higher unemployment levels reduce the risk, as most employ-
ees are more worried about securing their jobs and avoid litigation with employers.

Bearing in mind these difficulties, many banks prefer to use subjective modeling of these
correlations and relationships in the preparation of these scenarios. The danger of this method
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is that we can establish relationships, which although seem logical, might fail to actually be
proven with hard data and, therefore, have any connection with reality.

4.4 OpRisk in CCAR in Practice

It has long been the practice of economists and finance professionals to seek out relationships
between certain quantifiable factors that are thought to explain the behavior of some variable
under study. Regression analysis, the chosen approach to solving this type of problem, is a
statistical process for estimating the relationships among variables. It includes many techniques
for modeling and analyzing several variables, when the focus is on the relationship between a
dependent variable and one or more independent variables.

Regression models most frequently involve the following variables:

• The unknown parameters, denoted as β, which can be either scalar or vector;
• The independent (explanatory) variables, X ;
• The dependent (or response) variable, Y .

In what follows, we show an example of a study to find the relationship between OpRisk
and the macroeconomic factors and financial indicators given by the FED through the use
of trade volume (i.e., the count of how many trades are processed in a certain day) as the
independent variable and five macroeconomic variables, as supplied by the FED through
the CCAR process, as the independent variables. We then analyze the resulting model for
stresses in those variables, as prepared by CCAR, in order to test the behavior of trade count
under adverse conditions. The study has three steps:

• Find a relationship between a financial firm’s internal factor and the FED/Office of the
Comptroller of the Currency (OCC) macroeconomic factors;

• Find a relationship between operational losses and a financial institution’s internal factor;
• Project stress capital estimates.

We are actually using a “bridge” between the macroeconomic factors and losses because a
direct relationship might not be that strong or obvious.

The data used in this example belong to a medium-sized US bank and broker. Due to
confidentiality issues we cannot provide much detail about the data, but we can say that losses
happen many times every day and most losses would be on the risk event types “Execution,
Delivery, and Process Management”, and “Business Disruption and System Failures”.

For a brokerage, trade volume is the main driver of revenue. As such, it is important to assess
how this indicator would behave under economic stress from a revenue perspective. However,
large trade volumes also tend to put pressure on the processing platform and more operational
losses might happen. As finding a direct relationship between macroeconomic variables and
operational losses is complicated by the issues discussed in the previous section, it might be
easier to find these relationships with trade volumes, and then we can assess the relationship
between trade volume and losses.

In order to relate responses to linear combinations of predictor variables, we use the
Generalized Linear Models (GLMs). A detailed discussion on GLM modeling is provided in
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Chapter 16. The GLM approach has become popular given its ability to model more than
simply continuous dependent variables: for example, rates, proportions, binary, ordinal, and
counts are among the many different types of variables that can be incorporated into GLMs.
The canonical treatment of GLMs was defined by McCullagh and Nelder (1989). Overall, the
model works by considering a mean of the response variable Y to be a function of the indepen-
dent variables X as

μ = E[Y ] = g−1(Xβ), i.e., g(μ) = Xβ, (4.1)

where η = Xβ is the so-called linear predictor and g(·) is a link function. The distribution
of Y has to belong to the exponential family (that includes Normal, Poisson, Gamma, and
many others). For example, in the case of Normal distribution, the link function is identity,
g(μ) = μ; in the case of Poisson distribution, g(μ) = lnμ. There are efficient schemes to
estimate GLMs; for details and extensions, see Chapter 16.

After testing several variants of the GLM, we decided on the Normal distribution. Table 4.4
shows the results of the best fit (where β0 corresponds to the explanatory variable X0 = 1).
As can be seen in Table 4.4, the Normal model possesses the best combination of a lower
Akaike Information Criterion (AIC) and significant p-values as well as a stable R2; in spite
of the R2 not being the highest, the Normal probability plot of the residuals (Figure 4.3)

table 4.4 GLM candidates

Normal distribution
β Estimate StdErr tStat p-value
β0 −0.08992 0.034089 −2.63768 0.016224 AIC −197
β1 0.005348 0.001772 3.017435 0.007083 AICc −192
β2 0.005082 0.001439 3.530408 0.002236 BIC −189
β3 0.000336 9.70E−05 3.467959 0.002576
β4 0.000313 8.75E−05 3.573972 0.002025 R2 0.8064
β5 0.001329 0.000359 3.706702 0.001497 R2

adj 0.7554

Gamma distribution
β Estimate StdErr tStat p-value
β0 62.47991 10.20403 6.12306 6.9E−06 AIC −196
β1 −1.67135 0.53389 −3.1305 0.00550 AICc −192
β2 −1.80615 0.46723 −3.86561 0.00104 BIC −189
β3 −0.09896 0.02841 −3.48295 0.00249
β4 −0.08771 0.02444 −3.58894 0.00195 R2 0.8366
β5 −0.36049 0.09528 −3.78339 0.00125 R2

adj 0.7936

Inverse Gaussian distribution
β Estimate StdErr tStat p-value
β0 1876.013 363.2361 5.16472 5.5E−05 AIC −194
β1 −58.966 19.0674 −3.09253 0.005994 AICc −190
β2 −67.461 17.3470 −3.88895 0.000987 BIC −187
β3 −3.392 0.99980 −3.39266 0.003055
β4 −2.896 0.83323 −3.47673 0.002525 R2 0.8389
β5 −11.698 3.16406 −3.69722 0.001529 R2

adj 0.7965
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Normal probability plot of residuals
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figure 4.3 Model fit results

of the model also shows a reasonable fit. Model selection criteria, probability plots, and p-values
will be formally defined later in Chapter 8.

In this model, we regressed the quarterly average trade volume from the third quarter 2006
to the third quarter 2012 (the response variable) against the following macroeconomic variables
(the independent variables)—as supplied by regulators in the CCAR process:

• X1, US unemployment rate. Quarterly average of monthly data, Bureau of Labor
Statistics;

• X2, US 10-year Treasury yield. Quarterly average of the yield on 10-year US Treasury
bonds, constructed for the Federal Reserve Board (FRB)/US model by Federal Reserve
staff based on the Svensson smoothed term structure model;

• X3, US Commercial Real Estate Price Index. From flow of funds accounts of the US,
FRB; the series corresponds to the data for price indexes: Commercial Real Estate Price
Index divided by 1000;

• X4, US market Volatility Index (VIX). Chicago Board Options Exchange, converted to
quarterly by using the maximum value in any quarter;

• X5, developing Asia real GDP growth. Staff calculations based on Bank of Korea via
Haver; Chinese National Bureau of Statistics via CEIC; Indian Central Statistical Organi-
zation via CEIC; Census and Statistics Department of Hong Kong via CEIC; and Taiwan
Directorate-General of Budget, Accounting, and Statistics via CEIC.

One tool that can be used to assess the goodness of fit is the relative variable impact.
This is used to assess how much each variable in the model contributes to the formation
of the resulting response variable. The results are presented in Figure 4.4. In this case, we
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figure 4.4 Relative impact of the explanatory variables

see that the 10-year Treasury yield and the Commercial Real-Estate Price Index combined con-
tribute 49.8% (almost half ) to the variation in trade volume while the remaining three variables
account for 50.2% of the same variation. This calculation was done using the Garson relative
contribution method (see Garson, 1991).

As described in previous sections, CCAR defines three scenarios: supervisory base-
line, supervisory adverse, and supervisory severely adverse, where a predefined number of
macro-economic variables are stressed in adverse direction. With the fitted model we projected
the behavior of this bank/brokerage trade volume for each of these scenarios (Figure 4.5).

The economic rationale underlying the behavior of the trade volume for the three scenarios
is very straightforward. In the baseline case, trade volume grows at a similar rate to expected
economic growth. In the adverse case, trade volume grows at first (because market volatility will
cause overall activity to increase) but dips down as the effects of economic weakness are felt. In
the severely adverse case, trade volume experiences initial growth driven by increased volatility
and deteriorating market conditions but declines to near baseline level as the economy returns
to normal.

The last step of this analysis is to find a relationship between trade volume and operational
losses so we can estimate losses based on the estimated trade volume. In order to keep the con-
fidentiality of the data, we promised our data, provider to only state that a strong relationship
was found and that the R2 = 66%.

The main objective of this section was to provide a practical view on how models are used
by OpRisk analysts in determining the impact of operational losses in the pre provision net
revenue and, ultimately, in the capital ratios. Table 4.5 depicts how these models are used in
the exercise. The example in this section is quite simplistic and, in more realistic terms, a signif-
icantly higher number of models would be used for the determination of the final operational
losses impact. For example, a separate model might be developed for litigation risk using models
with multiyear temporal lags.
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figure 4.5 DARTs (daily average revenue trades) under different CCAR scenarios
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table 4.5 Assessing preprovision net revenue (PPNR) impact

PPNR Models (example) Description of model behavior in the example

Net interest income NA NA
Noninterest income Trade volume against a

number of CCAR
variables (e.g., VIX,
unemployment, etc.)

Revenue would grow for the broker as market
volatility grows as clients would sell and
buy—this is a relationship found by most
firms. As the environment settles, the
worsened economic environment would
lower the trade volume, impacting revenue

Noninterest expenses Establish how operational
losses are related to trade
volume growth

As the operational platform is constant in the
short term (i.e., no major improvements
happen), an increase in trade volume
would increase operational losses,
particular in transaction execution and
systems losses

Total impact Assess the net impact in
PPNR of these variables

4.5 Reverse Stress Test

Another popular type of stress test in the industry (and mandatory in the UK) is the so-called
“reverse stress test”. Reverse stress tests require a firm to assess scenarios and circumstances that
would render its business model unviable, thereby identifying potential business vulnerabilities.
Reverse stress-testing starts from an outcome of business failure and identifies circumstances in
which this might occur, for illustrative example see Table 4.6. This is different from general
stress and scenario testing, which tests for outcomes arising from changes in circumstances.

In 2009, the financial authority in the UK (then the FSA now the Prudential Regula-
tion Authority) issued the Policy Statement 09/20, which goes into details about the reverse
stress test.

Reverse stress-testing is primarily designed to be a risk management tool rather than a
highly analytical exercise. It should encourage financial institutions to explore more fully the
vulnerabilities and fault lines in their business model and inherent controls, including “tail
risks”. Based on the analysis of its reverse stress tests, senior management should determine
whether it should put in place any mitigating actions at the current time or whether it should put
in place triggers for future action should the scenario develop. It is separate but complementary
to other stress tests, starting from the outcome of business failure.

Undertaking reverse stress-testing and taking action on its results should also inform con-
tingency planning and enable financial institutions to make decisions that are consistent with
both business and capital planning, very similar to the CCAR process in the US but with a
more qualitative focus.

The objective is that financial institutions, based on these reverse stress tests, develop
mitigation and recovery strategies. This recovery strategy is about the management of a firm
taking actions that are aimed at preventing it from failing in circumstances in which it is fac-
ing severe stress as identified in the process. In order to avoid failure, the management may
need to eventually undertake extreme measures. A recovery plan is one of the outcomes of the
reverse stress test and details what options the management may pursue, what would need to
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table 4.6 Reverse engineering stress losses with 1 year horizon

Loss size Risk type Event Mitigation/ control

USD 4000 CPBP Litigation settlement on
mortgage financing

USD 1000 Internal Fraud Trades are not reported in
management system

Number of unconfirmed
trades over 90 days

Daily match of accounting
and desk exposures

USD 800 External Fraud Denial of service attack
overload systems and
force site to be off the air
for a day

Consultancy that monitor
and protects against these
attacks

Independent backup system
based in different geography

USD 500 EPWS Class action lawsuit
USD 300 EDPM Known deficiencies in

internal transactions
operations system can
significant delay
settlements causing steep
losses

Intra-day monitoring of
settlement failures

Budget allocated to system
upgrade

All amounts are in USD million.

happen for each action to be implemented, and the risks to implementing each action. In this
way, a recovery plan can build on existing stress and scenario testing requirements, and on
management actions that would be taken in response to these events.

In the resolution plan, firms will provide the information that would be necessary for the
authorities and central banks to undertake the resolution of the firm and identify the actions
that would need to be taken for the authorities to resolve a failing firm in an orderly manner.
In the US, a similar process was called “living will”. This is a separate process from the reverse
stress test which requires a firm to identify and assess the scenarios most likely to cause its
current business model to fail and, using these results, to put in place appropriate mitigating
action. However, the reverse stress test can be seen as the starting point for resolution plans, as
the point at which the risks identified in the reverse stress test crystallize may be the point at
which resolution plans are required.

4.6 Stressing OpRisk Multivariate
Models—Understanding the Relationship Among Internal
Control Factors and Their Impact on Operational Losses

One type of modeling that has become more popular recently, particularly in US banks influ-
enced by the CCAR process, is the multivariate model that relates operational losses to key con-
trol and business environment variables and also to external macroeconomic variables. These
models are a very powerful tool for risk management as they allow to spotting the factors that
are determinant to control losses and bring OpRisk to a similar level to market and credit
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table 4.7 Operational loss data and control environment factors

Date Losses No. losses Downtime No. employees Data quality (%) No. transactions

July 2 USD 234,412 10,004 3 22 94 250,096
July 3 USD 91,234 7,284 1 24 96 208,111
July 5 USD 2,734,009 17,792 10 19 88 345,611
July 6 USD 545 5,745 0 24 98 185,321
July 9 USD 115,912 9,745 1 24 97 249,876
July 10 USD 1,234 8,075 0 24 98 252,345
July 11 USD 91,233 9,287 1 24 98 250,987
July 12 USD 55,908 8,879 1 24 98 236,765
July 13 USD 12,002 9,079 0 24 98 238,911
July 16 USD 23,456 9,078 0 24 98 237,654
July 17 USD 1,787,634 13,514 8 21 89 293,778
July 18 USD 7,233,704 24,510 16 17 81 415,422
July 19 USD 2,891 8,054 0 24 97 250,912
July 22 USD 122 6,061 0 24 98 191,210
July 23 USD 0 5,360 0 24 99 172,901
July 24 USD 0 5,283 0 24 99 170,415
July 25 USD 200,786 8,387 1 24 95 221,876
July 26 USD 1,456 6,604 0 24 97 200,121
July 27 USD 918 5,934 0 24 98 191,435
July 30 USD 1,234,095 11,438 5 22 95 278,987
July 31 USD 17,654 7,287 0 24 96 238,908
Aug 1 USD 9,871 7,549 0 24 97 235,908
Aug 2 USD 1,095,033 10,988 3 22 97 268,001
Aug 3 USD 1,200 6,492 0 23 99 199,761

Downtime is system downtime in minutes.

risks. GLM and its extensions help to accomplish this task; this will be discussed in detail in
Chapter 16.

Here, for illustration, we consider a simple example using data from a retail bank (see
Table 4.7) and assume a simple multifactor model for operational daily losses in a particular
business or area inside the bank as follows:

Yt = β0 + β1X1,t + . . .+ βnXn,t + εt , (4.2)

where Yt represents the operational loss for a day t, (X1,t , . . . ,Xn,t) represent the control envi-
ronment factors, (β0, . . . , βn) are model parameters, and εt , t = 1, 2, . . . are independent
random variables from zero mean Normal distribution.

Picking the right variables makes this model work very well. Four variables showed
significance here: X1— systems downtime, X2— number of employees in a department,
X3— number of transactions, and X4— data quality (% of data moving from front to back
office correctly with no need of amendments). These data were provided by a custodian bank.
It may be mentioned that the individual losses are mostly very small or even zero. This bank
had developed a system to collect every single error even if no losses took place. This was really
important in the multivariate analysis.
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Running a multivariate regression with these data, we estimate

β0 = 3, 379, 940; β1 = 319, 294; β2 = −35, 455; β3 = 0.906; β4 = −2, 945, 102
(4.3)

with R2 = 91%. The averages of the explanatory variables from July 2 to August 3 are
2.08 minutes for system downtime; 23.08 for number of employees; 241, 055 for number of
daily transactions; and 95.83% for data quality. The high R2 found in this model is surprisingly
common within heavy transaction processing environments where the quality of processing is
very dependent on system availability, volume, and personnel. Note that the specific model
and specific choice of explanatory variables are for illustration only. More advanced analysis
should involve a comparison with other distribution types for daily losses (at least within a
GLM framework) and consider other possible explanatory variables and their transforms.

We can use this model to stress internal factors and see their impact on losses and OpRisk.
For example, we can assume an increase of 30% in the volume of transactions, 20% decrease
for the number of employees, etc. As an example, suppose that, in order to increase the prof-
itability of the products traded in the area, the bank decides to increase the daily volume by
30%. Executive management then asks OpRisk management to assess the operational impact
of this decision; however, this increase in transactions would not be followed by an increase in
headcount, as the bank wants to keep tabs on costs. The average daily number of transactions
during the period July 2 to August 3 was 241,055 and average daily loss was USD 622,721.
This 30% increase in the number of transactions will mean that the average number of trans-
actions will move to 313,371; then using (4.2) and (4.3) one can calculate that the average
daily loss will increase to USD 688,241. As no employees can be hired, we should find ways to
improve the system or the average data quality that was on average 95.83%. Using model (4.2)
with parameter estimates (4.3), it is easy to find that if an internal quality program is developed
and the quality of the input is increased to an average of 98.06%, then it will offset the impact
of the 30% growth in the number of transactions and there will be almost no change in the
average daily loss. Understanding the level of risk a bank faces given the increase in the number
of transactions is quite important and a number of financial institutions are performing this
analysis.

The model described is useful however, it is deterministic in explanatory variables. We
could let the explanatory variables X1,t , . . . ,X4,t be stochastic and perform a more informa-
tive stress test. For example, assuming that Xi,t , t = 1, 2, . . . are independent and identi-
cally distributed, we can calibrate the distributions for the explanatory variables as follows:
system downtime, X1,t ∼ Poisson(λ = 2.08); number of employees working per day,
X2,t ∼ Normal(μ = 23.08, σ = 1.81); number of transactions, X3,t ∼ LogNormal(μ =
12.37, σ = 0.208); and data quality, X4,t ∼ Beta(α = 20.65, β = 0.898); for definition
of distributions, see Appendix A. Then we could find the quantiles of the explanatory variables
that can be used in stress-testing. In addition, given the multifactor model (4.2) and know-
ing the distributions for each independent (explanatory) variable Xi, we could calculate the
unconditional distribution of daily losses and find its high quantiles.
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Chapter Five

Basic Probability Concepts in Loss
Distribution Approach

In risk management in general, modelers attempt to assess the uncertain risk exposures or threats
using past experiences and other information available. Probability theory seems to be the nat-
ural fit for these types of analyses. This chapter provides a description of basic concepts of the
probability theory used in this book and introduces relevant notation. There is a range of impor-
tant concepts that are required to be considered when developing OpRisk models in practical
settings. This chapter establishes what will be considered in future chapters as basic presumed
knowledge. It covers the following basic concepts:

• Loss Distributional Approach (LDA) modelling;
• Definitions of a probability distribution function and density functions in univariate and

multivariate settings, as well as discrete, continuous and mixed type random variables;
• Statements of the Law of Large Numbers and distributional convergence of scaled and

translated sums are briefly discussed;
• Then moments and quantile functions for random variables are discussed;
• Following this, the notion of frequency distributional models are discussed for the number

of losses in a given year;
• Then naturally, the notion of severity loss models is briefly discussed for the size of each

loss event in a given year;
• Next, the compound process is discussed with additional discussion on convolutions and

transform methods;
• Finally, a very brief overview of Extreme Value Theory is presented, for a more compre-

hensive coverage see the companion book (Peters and Shevchenko, 2015, chapter 2).

5.1 Loss Distribution Approach

OpRisks are modeled by random variables representing unknown size of the loss, time of
the loss occurrence, number of losses, etc. The value of a random variable is a result of a

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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80 CHAPTER 5 Basic Probability Concepts in Loss Distribution Approach

measurement (e.g., size of the loss). Specifically, under the Loss Distribution Approach, the
OpRisk loss over a 1-one year time horizon is modeled as

Z = X1 + · · ·+ XN ,

where the number of events per year (frequency) is a random variable N , and the sizes of the loss
(severity) when the events occur are X1,X2, . . . . It is common to assume that frequency and
severity are independent, and severities X1,X2, . . . are independent and identically distributed.
These assumptions will be made throughout unless stated otherwise in more advanced chapters
of this text. Hereafter, we use the following notation:

• Random variables are denoted by upper case symbols (capital letters) and their realizations
are denoted by lower case symbols, for example, random variable X and its realization x;

• Vectors are considered as column vectors and are written in bold, for example,
n-dimensional random vector X = (X1,X2, . . . ,Xn)

T , where superscript “T ” denotes
transposition;

• The realizations of random variables are real numbers, so that x = (x1, x2, . . . , xn)
T means

a point in the n-dimensional Euclidean space of real numbers Rn;
• Operators on random variables are written with square brackets, for example, the variance

of a random variable X is denoted as Var[X ].

Random variables representing frequency and severity are characterized by distribution func-
tions formally defined as follows.

Definition 5.1 (Univariate distribution function) The distribution function of a random vari-
able X , denoted as FX (x), is defined as the probability that X is less than or equal to a number x

FX (x) = Pr[X ≤ x].

The support of a random variable X with a distribution function FX (·) is a set of all points, where
FX (·) is strictly increasing. Often used notation for the survival function or tail distribution function
of a random variable X is defined as

F X (x) = 1 − FX (x) = Pr[X > x].

Frequently used notation, X ∼ FX (x), means a random variable X has a distribution function
FX (x). Often, for simplicity of notation, we may drop the subscript and write X ∼ F (·).

The distribution function has to satisfy the following conditions:

• F (x) is nondecreasing;
• F (x) → 1, as x → ∞;
• F (x) → 0 as x → −∞;
• F (x) is right continuous, that is, the limiting value of F (x) as x approaches x0 from the

right equals F (x0).

Most of the standard distributions used throughout the book are formally defined in
Appendix A.
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Random variables can be classified into different categories (continuous, discrete, or mixed )
according to a set of all possible outcomes (support). In particular, severities X1,X2, . . . (the
loss sizes) are typically modeled as continuous random variables and frequency N (number of
events per time interval) are typically modeled by a discrete random variable; the aggregate loss
Z = X1 + · · · + XN is typically a mixed random variable (e.g., if Pr[N = 0] > 0). Formal
definitions are as follows.

Definition 5.2 (Continuous random variable) A continuous random variable X has its support
on an interval, a union of intervals, or real line (half-line). The distribution function of a continuous
random variable can be written as

FX (x) =
x∫

−∞

fX (y)dy,

where fX (x) is called the continuous probability density function.

Definition 5.3 (Discrete random variable) A discrete random variable X has a finite or count-
able number of values x1, x2, . . . . The distribution function of a discrete random variable has jump
discontinuities at x1, x2, . . . and is constant between. The probability function (also called the prob-
ability mass function) of a discrete random variable is defined as

pX (xi) = Pr[X = xi], for i = 1, 2, . . .

pX (x) = 0, for x �= x1, x2, . . . .

Definition 5.4 (Mixed random variable) A mixed random variable X is a continuous random
variable with positive probability of occurrence on a countable set of exception points. Its distribution
function FX has jumps at these exception points and can be written as

FX (x) = wF (d)
X (x) + (1 − w)F (c)

X (x),

where 0 ≤ w ≤ 1, F (c)
X is a continuous distribution function, and F (d)

X (x) is a discrete distribution
function.

A mixed random variable is common in OpRisk for the loss aggregated over some period
of time. This is because typically there is a probability of nonoccurrence loss during a period of
time (giving finite probability mass at zero) while the loss amount is a continuous random vari-
able. In general, any distribution function can be represented as a mixture of discrete distribu-
tion function, continuous distribution function, and singular continuous distribution function
(a continuous distribution function with points of increase on a set of zero Lebesgue measure).
The last type of random variable will not be considered in this book. The case of mixed random
variables with discrete and continuous components covers all situations encountered in OpRisk
practice.

To unify notation for discrete and continuous densities, it may be convenient to write
the density functions using the Dirac δ-function (also called the impulse δ-function), which is



�

�

“Cruz_Driver1” — 2015/1/8 — 9:00 — page 82 — #4
�

�

�

�

�

�

82 CHAPTER 5 Basic Probability Concepts in Loss Distribution Approach

zero everywhere except from the origin, where it is infinite, and its integral over any arbitrary
interval containing the origin is equal to 1:

δ(x) = 0, if x �= 0; δ(0) = ∞,

ε∫
−ε

δ(x)dx = 1, for any ε > 0.

This implies that for any function g(x),

b∫
a

g(x)δ(x − x0)dx = g(x0), if a < x0 < b, (5.1)

and the integral is zero if (a, b) interval does not contain x0. This definition of δ function is
a heuristic definition but it is enough for the purposes of this book; the theory of the Dirac
δ-function can be found in many textbooks (see, e.g., Pugachev 1965, section 9).

Then, the density of discrete random variable can be written as

fX (x) =
∑
i≥1

pX (xi)δ(x − xi), (5.2)

and the density of a mixed random variable is

fX (x) = w
∑
i ≥1

pX (xi)δ(x − xi) + (1 − w) f (c)
X (x), (5.3)

where f (c)
X (x) is the continuous density function and pX (xi) is a probability mass function of a

discrete distribution.
Similarly, vectors of random numbers are characterized by multivariate distributions,

formally defined as follows.

Definition 5.5 (Multivariate distribution function) The multivariate distribution function
of a random vector X = (X1,X2, . . . ,Xn)

T is defined as

FX (x1, x2, . . . , xn) = Pr[X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn]

and the corresponding survival function is

F X (x1, x2, . . . , xn) = Pr[X > x].

Often we are interested in convergence of some sequences of random numbers. For exam-
ple, the well-known probability theorem Strong Law of Large Numbers is stated as follows.

Theorem 5.1 (Strong Law of Large Numbers) Given a sequence of independent and identically
distributed random variables X1,X2, . . . , which are integrable E[|X1|] < ∞,

X n =
1
n

n∑
i=1

Xi converges to E[X1], for n → ∞.
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The convergence stated is the so-called almost surely convergence. This means that the
probability of limn→∞ X n = E[X1] is 1, that is, there might be a sequence of random numbers
that will not satisfy this limit but the probability of that sequence is zero. Often it is written as

X n → E[X1], for n → ∞ almost surely

or

X n → E[X1], for n → ∞ a.s.

EXAMPLE 5.1 Distribution functions

Consider the following three functions:

(a)

F (x) = 0.05x, 0 ≤ x ≤ 20;

(b)

F (x) =

⎧⎨
⎩

0.05x, 0 ≤ x ≤ 5,
0.25, 5 < x < 10,
0.25 + 0.075(x − 10), 10 ≤ x ≤ 20;

(c)

F (x) =
{

0.025x, 0 ≤ x < 10;
0.05x, 10 ≤ x ≤ 20.

All these functions are distribution functions and are presented in
Figures 5.1a–c, and respectively. Case (a) corresponds to the so-called uniform
distribution where all possible values of X have the same chance to occur. Case (b)
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figure 5.1 Simple examples of distributions: (a) uniform distribution; (b) distribution with a
flat piece; (c) distribution with a jump. See Example 5.1 for details
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corresponds to the distribution with a flat piece. Note that there is no chance for X
to occur within a flat piece. Finally, Case (c) is a distribution with a jump; note here
that the function is right continuous at the point of the jump.

EXAMPLE 5.2 Empirical distribution

Often, modelers use parametric distribution functions to model severity and fre-
quency. However, it is also often convenient to use empirical distributions
constructed from observed data. For example, a modeler may use empirical distri-
bution to model severities below some large threshold and continuous distribution
for severities above the threshold.

Given independent identically distributed realizations x1, . . . , xn, empirical
distribution is defined as

F (x) =
1
n

n∑
i=1

I{xi≤x}. (5.4)

Consider a sample (0.5; 2; 1; 1.2; 0; 1.5; 1.8; 0.7; 1; 1.9). Then the ordered
sample is (0; 0.5; 0.7; 1; 1; 1.2; 1.5; 1.8; 1.9; 2). Using (5.4), it is easy to calculate
the empirical distribution of the sample, which is presented in Figure 5.2. Note that
point 1 is repeated in the sample and thus the jump at this point is 2/10, while for
all other points the jump is 1/10.

0

0.5

1

210
v

F
(x

)

figure 5.2 Empirical distribution. See Example 5.2 for details
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5.2 Quantiles and Moments

Quantiles and moments of distribution are important characteristics/measures of random vari-
ables. Throughout the book we use the following standard definition of a generalized inverse
function (also called quantile function) for a distribution function.

Definition 5.6 (Quantile function) Given a distribution function FX (x), the inverse function
F−1

X of FX is

F−1
X (α) = inf{x ∈ R : FX (x) ≥ α} = sup{x ∈ R : FX (x) < α},

where 0 < α < 1. It is also often denoted as F←
X (α).

Given a probability level α, F−1
X (α) is the α-th quantile of X (often, it is denoted as qα).

The inverse function is defined as the left continuous generalized inverse of the distribution
function. This is to handle cases when α corresponds to a flat piece in the distribution (in this
case, the quantile corresponds to the left end of the flat piece). In the case when α does not sit
on a flat piece, the quantile is the ordinary inverse of F (x). Figure 5.3 illustrates quantiles for
the standard and tricky cases such as distribution with flat pieces or jumps. Alternatively, the
inverse function can be defined as the right continuous generalized inverse

F−1+(α) = inf{x : F (x) > α} = sup{x : F (x) ≤ α}. (5.5)

That is, the quantile would be to the right end of the flat piece if α corresponds to this flat piece;
see Figure 5.3b for an example. We could also define the quantile as a convex combination of
left and right continuous generalized inverse distributions. In this book (and in most of the
literature), we consider the definition of quantile as F−1(α).

The expected value (mean) of a random variable X is denoted as E[X ]. A formal construc-
tion of the operator E[·] is somewhat involved but for the purposes of this book we will use the
following short definition.

0

1

α

(a)

F–1(α)

(b)

0

1

α

F–1(α)    F−1+(α)

(c)

0

1

F−1(α)

α

figure 5.3 Calculation of quantiles: (a) continuous distribution; (b) distribution with a flat piece; (c)
the case of probability atom in distribution function
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Definition 5.7 (Expected value)

• If X is a continuous random variable with the density function fX (x), then

E[X ] =

∞∫
−∞

xfX (x)dx. (5.6)

• If X is a discrete random variable with support x1, x2, . . . and probability mass function pX (x),
then

E[X ] =
∑
j≥1

xjpX (xj).

• In the case of a mixed random variable X (see Definition 5.4), the expected value is

E[X ] = w
∑
j≥1

xjpX (xj) + (1 − w)
∞∫

−∞

xf (c)
X (x)dx.

The expected value integral or sum may not converge to a finite value for some distribu-
tions. In this case, it is said that the mean does not exist.

The definition of the expected value (5.6) can also be used in the case of the discrete and
mixed random variables if their density functions are defined as (5.2) and (5.3), respectively.
This gives a unified notation for the expected value of the continuous, discrete, and mixed
random variables. Another way to introduce a unified notation is to use Riemann–Stieltjes
integral

E[X ] =

∞∫
−∞

xdFX (x). (5.7)

See Carter and Van Brunt (2000) for a good introduction to this topic.
The expected value is the first moment about the origin (also called the first raw moment).

There are two standard types of moments: the raw moments and central moments, defined as
follows.

Definition 5.8 (Moments)

• The k-th moment about the origin (raw moment) of a random variable X is the expected value
of X k, that is, E[X k];

• The k-th central moment of a random variable X is the expected value of
(X − E[X ])k, that is, E[(X − E[X ])k].

Typically, k is a nonnegative integer k = 0, 1, 2, . . . . The expected value may not exist for
some values of k; then it is said that the k-th moment does not exist. The first four moments
are most frequently used and the relevant characteristics are defined as follows:
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• Variance. The variance of a random variable X is the second central moment

Var[X ] = E[(X − E[X ])2] = E[X 2]− (E[X ])2. (5.8)

• Standard deviation. The standard deviation,

stdev[X ] =
√
Var[X ], (5.9)

is a measure of spread of the random variable around the mean. It is measured in the same
units as the mean (i.e., the same units as the values of the random variable).

• Variational coefficient. The variational coefficient (also called the coefficient of variation)
is a dimensionless quantity,

Vco[X ] =
stdev[X ]

E[X ]
, (5.10)

which measures the spread relative to the mean;
• Skewness. The skewness is a dimensionless quantity that measures an asymmetry of a

random variable X and is defined as

γ1 =
E[(X − E[X ])3]

(stdev[X ])3 . (5.11)

For symmetric distributions, the skewness is zero;
• Kurtosis. The kurtosis is a dimensionless quantity that measures the flatness of the distri-

bution (tail heaviness) relative to the Normal distribution. It is defined as

γ2 =
E[(X − E[X ])4]

(stdev[X ])4 − 3. (5.12)

For the Normal distribution, kurtosis is zero.

Again, for some distributions these characteristics may not exist. Moreover, central moments
can be expressed through the raw moments and vice versa. Detailed discussions, definitions,
and relationships for these quantities can be found in most undergraduate statistical texts.
To conclude this section, we define the covariance and the linear correlation coefficient that
measure the dependence between random variables.

Definition 5.9 (Covariance and linear correlation) The covariance of random variables X
and Y is defined as

Cov[X ,Y ] = E[(X − E[X ])(Y − E[Y ])] = E[XY ]− E[X ]E[Y ].

The linear correlation between X and Y is

ρ[X ,Y ] = Cov[X ,Y ]/
√

Var[X ]Var[Y ].

These quantities are popular measures of the dependence between X and Y . However, as
will be discussed later in the book, the linear correlation can be a bad indicator of dependence for
non-Gaussian random variables. Moreover, for some distributions these measures may not exist.
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5.3 Frequency Distributions

The most commonly used frequency distributions for the annual number of events N are
Poisson, Binomial, and Negative Binomial distributions. An interesting property (that is often
used as a criterion to select a frequency distribution) is that a Binomial’s variance is less than
its mean, it is therefore called under-dispersed; the variance of the Negative Binomial is larger
than its mean, it is therefore called over-dispersed; and the Poisson mean equals its variance. The
BCBS paper on the range of practices for OpRisk AMA BCBS (2009a) reports that among 42
AMA banks participating in the survey,1 93% use the Poisson distribution, 19% use the Neg-
ative Binomial, and 7% use other distributions to model frequency. We formally define these
distributions as follows.

• A Poisson distribution function is denoted as Poisson(λ). The random variable N has a
Poisson distribution N ∼ Poisson(λ) if its probability mass function is

p(k) = Pr[N = k] =
λk

k!
e−λ, λ > 0 (5.13)

for all k ∈ {0, 1, 2, . . .}. Expectation, variance, and variational coefficient of a random
variable N ∼ Poisson(λ) are

E[N ] = λ, Var[N ] = λ, Vco[N ] =
1√
λ
. (5.14)

• The Binomial distribution function is denoted as Binomial(n, p). The random variable
N has a Binomial distribution N ∼ Binomial(n, p) if its probability mass function is

p(k) = Pr[N = k] =

(
n
k

)
pk(1 − p)n−k, p ∈ (0, 1), n ∈ 1, 2, . . . (5.15)

for all k ∈ {0, 1, 2, . . . , n}. Expectation, variance, and variational coefficient of a random
variable N ∼ Binomial(n, p) are

E[N ] = np, Var[N ] = np(1 − p), Vco[N ] =

√
1 − p

np
. (5.16)

In a common interpretation, N is the number of successes in n independent trials, where
p is the probability of a success in each trial;

• A Negative Binomial distribution function is denoted as NegBinomial(r, p). The random
variable N has a Negative Binomial distribution N ∼ NegBinomial(r, p) if its probability
mass function is

p(k) = Pr[N = k] =

(
r + k − 1

k

)
pr(1 − p)k, p ∈ (0, 1), r ∈ (0,∞) (5.17)

1Note that banks participating in the survey were able to select more than one answer per question.
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for all k ∈ {0, 1, 2, . . .}. Here, the generalized binomial coefficient is

(
r + k − 1

k

)
=

Γ(k + r)
k!Γ(r)

, (5.18)

where Γ(r) is the Gamma function. Expectation, variance, and variational coefficient of a
random variable N ∼ NegBinomial(r, p) are

E[N ] =
r(1 − p)

p
, Var[N ] =

r(1 − p)
p2 , Vco[N ] =

1√
r(1 − p)

. (5.19)

If r is a positive integer, then in common interpretation, N is the number of failures
in a sequence of independent trials until r successes, where p is the probability of a success
in each trial.

There are many other discrete distribution types that can be found in many books; for
example, for OpRisk context, see Panjer (2006). It can be useful to consider zero-truncated
distributions: ptr(k) = p(k)/(1 − p(0)), k = 1, 2, . . ., where p(k) is a discrete distribution
defined with k = 0, 1, . . . such as Poisson or Binomial. These truncated distributions can be
used when zero value is impossible. Mixing and splicing methods can also be used to create
other distributions from simple distributions (e.g., for special handling of zero values); these
methods will be discussed in Section 5.4.3.

5.4 Severity Distributions

There are many standard parametric distributions that can be used for modelling severity.
Some of these are listed in Appendix A, and some nonstandard distributions are discussed in
Chapter 9. Many statistical books list two-, three-, and four- parameter continuous distribu-
tions; for a good review of possible distributions in the context of OpRisk, the reader is referred
to Panjer (2006). These standard distributions can be used to create more flexible distributions
via mixture and splicing methods discussed in Section 5.4.3.

The BCBS paper on the range of practices for OpRisk AMA BCBS (2009a) reports that
among 42 AMA banks participating in the survey2

• About 31% banks apply a single severity distribution to model body and tail, with the
LogNormal (33%) and Weibull (17%) most widely used;

• About 30% of banks use two distributions for body and tail: LogNormal (19%) and empir-
ical (26%) for modeling the body and LogNormal (14%) and generalized Pareto (31%)
for estimating the tail;

• Other distributions used for modeling severity include Gamma, g-and-h, generalized Beta,
mixture of LogNormals.

Most of these distributions are formally defined in this section and in Chapter 9.

2Note that banks participating in the survey were able to select more than one answer per question.
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5.4.1 SIMPLE PARAMETRIC DISTRIBUTIONS

Here, for illustration, we formally define few simple parametric distributions such as
LogNormal and Exponential; for many nonstandard distributions the reader is referred to
Chapter 9.

5.4.1.1 One-Parameter Distributions.

• Exponential distribution function is denoted as Exp(θ). The random variable X has an
Exponential distribution, denoted as X ∼ Exp(μ, σ), if its probability density function is

f (x) =
1
θ

e−x/θ, μ > 0 (5.20)

for x > 0. The corresponding distribution function is simply F (x)= 1− e−x/θ. All
moments can be calculated as E[X k] = θkΓ(k + 1) for k > − 1, that is, E[X k] = θkk!
for integer k. Here, Γ(k) is a standard Gamma function formally defined by (A.2) in
Appendix A. A very special feature of Exponential distribution is that the expected size
of the loss above a threshold does not depend on the threshold;

• One-parameter Pareto distribution function is denoted as Pareto(ξ, x0). The random
variable X has a Pareto distribution, denoted as X ∼ Pareto(ξ, x0), if its distribution func-
tion is

F (x) = 1 −
(

x
x0

)−ξ

, x ≥ x0, (5.21)

where x0 > 0 and ξ > 0. The support starts at x0, which is typically known and not consid-
ered as a parameter. Therefore the distribution is referred to as a single parameter Pareto.
The corresponding probability density function is

f (x) =
ξ

x0

(
x
x0

)−ξ−1

. (5.22)

This distribution is heavy-tailed and has only a finite number of moments that can be
calculated as E[X k] = ξxk

0/(ξ − k) for k < ξ.

5.4.1.2 Two-Parameter Distributions.

• LogNormal distribution function is denoted as LogNormal(μ, σ2). The random variable
X has a LogNormal distribution, denoted as X ∼ LogNormal(μ, σ2), if its probability
density function is,

f (x) =
1

x
√

2πσ2
exp

(
− (ln(x)− μ)2

2σ2

)
, σ2 > 0, μ ∈ R (5.23)

for x > 0. Expectation, variance, and variational coefficient are,

E[X ] = eμ+
1
2 σ

2
, Var[X ] = e2μ+σ2

(eσ
2 − 1), Vco[X ] =

√
eσ2 − 1. (5.24)
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LogNormal is formally a heavy-tailed distribution (it belongs to the so-called class of subex-
ponential distributions), but it is a very light heavy-tailed distribution with all moments
existing;

• Gamma distribution function is denoted as Gamma(α, β). The random variable X has a
gamma distribution, denoted as X ∼ Gamma(α, β), if its probability density function is

f (x) =
xα−1

Γ(α)βα
exp(−x/β), α > 0, β > 0 (5.25)

for x > 0. The Gamma distribution Gamma(α, β) is a light tail distribution. However, if
lnX ∼ Gamma(α, β), then X is from Log-Gamma distribution, which is a heavy-tailed
distribution with a Pareto-type power tail behavior. Expectation, variance, and variational
coefficient of a random variable X ∼ Gamma(α, β) are

E[X ] = αβ, Var[X ] = αβ2, Vco[X ] = 1/
√
α. (5.26)

• Pareto distribution (two-parameter) function is denoted as Pareto2(α, β). The random
variable X has a Pareto distribution, denoted as X ∼ Pareto2(α, β), if its distribution
function is

F (x) = 1 −
(

1 +
x
β

)−α

, x ≥ 0, (5.27)

where α> 0 and β > 0. The corresponding probability density function is

f (x) =
αβα

(x + β)α+1 . (5.28)

The moments of a random variable X ∼ Pareto2(α, β) are

E[X k] =
βkk!∏k

i=1(α− i)
; α > k.

Pareto distribution Pareto2(α, β) has a very heavy tail such that the k-th moment and
higher do not exist when the tail parameter α ≤ k;

• Weibull distribution function is denoted as Weibull(α, β). The random variable X has a
Weibull distribution, denoted as X ∼ Weibull(α, β), if its probability density function is,

f (x) =
α

βα
xα−1 exp(−(x/β)α), α > 0, β > 0 (5.29)

for x > 0. The corresponding distribution function is,

F (x) = 1 − exp (−(x/β)α) , α > 0, β > 0. (5.30)

Expectation and variance of a random variable X ∼ Weibull(α, β) are,

E[X ] = βΓ(1 + 1/α), Var[X ] = β2 (Γ(1 + 2/α)− (Γ(1 + 1/α))2) .
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5.4.1.3 Three-Parameter Distributions.

• Generalized Inverse Gaussian (GIG) distribution function is denoted as GIG(ω, φ, ν).
The random variable X has a GIG distribution, denoted as X ∼ GIG(ω, φ, ν), if its
probability density function is,

f (x) =
(ω/φ)(ν+1)/2

2Kν+1(2
√
ωφ)

xνe−xω−x−1φ, x > 0, (5.31)

where φ > 0, ω ≥ 0 if ν < −1; φ > 0, ω > 0 if ν = −1; φ ≥ 0, ω > 0 if ν > −1; and

Kν+1(z) =
1
2

∞∫
0

uνe−z(u+1/u)/2du.

Kν(z) is called a modified Bessel function of the third kind (see, e.g., Abramowitz and
Stegun 1965, p. 375). The moments of a random variable X ∼ GIG(ω, φ, ν) are not
available in a closed form through elementary functions but can be expressed in terms of
Bessel functions:

E[Xα] =

(
φ

ω

)α/2 Kν+1+α(2
√
ωφ)

Kν+1(2
√
ωφ)

, α ≥ 1, φ > 0, ω > 0.

• Burr distribution. The random variable X has a Burr distribution, denoted as X ∼
Burr(α, β, γ), if its distribution function is,

F (x) = 1 − uα, u =
1

1 + (x/β)γ
, x ≥ 0. (5.32)

The density and moments are expressed in closed form as,

f (x) =
αγ(x/β)γ

x(1 + (x/β)γ)α+1 ,

E[X k] =
βkΓ(1 + k/γ)Γ(α− k/γ)

Γ(α)
, −γ < k < αγ.

This distribution is also known as the Burr Type XII or Singh–Maddala distribution. It is
often used to model household income.

5.4.2 TRUNCATED DISTRIBUTIONS

It is often convenient to model data using a truncated version of the standard distributions.
For example, a standard distribution F (x) (such as LogNormal, Gamma, etc.) is defined as
x > 0 with a corresponding density function f (x). However, one may be interested in modeling
losses above some threshold L> 0 only. Then, one can consider a distribution truncated below
L formally defined as

F tr(x) =
F (x)− F (L)

1 − F (L)
Ix ≥ L (5.33)
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with a corresponding truncated density function

f tr(x) =
f (x)

1 − F (L)
Ix ≥ L. (5.34)

Note that this truncated density is a proper density function, that is,
∞∫
0

f tr(x)dx = 1. Similarly,

one can model losses below L using distribution truncated above L:

F tr(x) =
F (x)
F (L)

Ix ≤ L, f tr(x) =
f (x)
F (L)

Ix ≤ L. (5.35)

If there is a need to model losses in a specific range [L,U ], one can use distribution F (x)
truncated below L and above U :

F tr(x) =
F (x)− F (L)
F (U )− F (L)

IL ≤ x ≤ U , f tr(x) =
f (x)

F (U )− F (L)
IL ≤ x ≤ U . (5.36)

For example, in OpRisk settings, the lower threshold L may correspond to the data collection
loss threshold and the upper threshold U may correspond to the high level separating body and
tail losses.

5.4.3 MIXTURE AND SPLICED DISTRIBUTIONS

It is common practice for actuarial scientist and risk managers to consider the class of flexible
distributional models known as mixture and spliced distributions. A mixture distribution is just
a weighted average of other distributions formally defined as follows.

Definition 5.10 (Mixture distribution) A random variable X has a mixture distribution if its
distribution function is given by

F (x) = w1F1(x) + · · ·+ wkFk(x),

where the weights wi > 0, w1 + · · · + wk = 1 and Fi(x) are proper distributions. The density of
the mixture is just

f (x) = w1f1(x) + · · ·+ wkfk(x).

The total number of parameters in the mixture distribution is the number of parame-
ters across all distributions Fi(x) plus k − 1 weights. The mixture approach allows to create
many possible distributions from simple known distributions. For example, for a risk cell, one
may consider a mixture of two different LogNormal distributions: LogNormal(μ1, σ

2
1) and

LogNormal(μ2, σ
2
2), both defined by (5.23) for x > 0, to model a situation when the losses are

generated by two different mechanisms. In this case, the total number of parameters is five.
Another closely related approach is splicing together pieces of different distributions (the

so-called spliced distribution).
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Definition 5.11 (Spliced distribution) A random variable X has a spliced distribution if its
density function is given by

fX (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w1f1(x), x0 ≤ x < x1,
w2f2(x), x1 ≤ x < x2,
...
wk−1fk−1(x), xk−2 ≤ x < xk−1,
wkfk(x), xk−1 ≤ x < xk,

(5.37)

where wi > 0 and fi(x) is a proper density function on (xi−1, xi) for i = 1, . . . , k, that
is,

∫ xi

xi−1
fi(x)dx = 1; also w1 + · · · + wk = 1. Typically, the motivation for splicing is to

model large losses in the tail using one distribution (e.g., Pareto) and small losses using another
distribution (e.g., LogNormal), because it is too restrictive to model both large and small losses
using one simple distribution (e.g., Pareto or LogNormal). For example, to model the tail and
body losses in a risk cell, one may consider a splicing of two truncated LogNormal distributions:
one truncated below level L and another truncated above L (where L is body/tail large threshold
level), that is,

f (x) = wfB(x) + (1 − w)fT (x), 0 < w < 1, (5.38)

where

fB(x) =
fLN (x;μB, σB)

FLN (L;μB, σB)
I0<x<L, fT (x) =

fLN (x;μT , σT )

1 − FLN (L;μT , σT )
Ix≥L.

Here, fLN (x;μ, σ) and FLN (x;μ, σ) are the density and distribution functions of
LogNormal(μ, σ2) defined in (5.23).

Typically, component densities in the mixture distribution are defined on the same interval
while splicing can be viewed as a mixture distribution with component densities defined on
nonoverlapping intervals.

5.5 Convolutions and Characteristic Functions

Often we need to calculate the distribution of the sum of independent random variables such
as the aggregate loss X1 + X2 + · · ·+ XN . It can be convenient to calculate these distributions
through convolution of corresponding distribution functions.

Definition 5.12 (Convolution) The convolution of two functions g(x) and h(x) is

g(x) ∗ h(x) =
∫

h(x − y)g(y)dy.

The density and distribution functions of the sum of two independent continuous random
variables Y1 ∼ F1(·) and Y2 ∼ F2(·), with the densities f1(·) and f2(·), respectively, can be
calculated via convolution as
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fY1+Y2(y) = f1(y) ∗ f2(y) =
∫

f2(y − y1)f1(y1)dy1 (5.39)

and

FY1+Y2(y) = F1(y) ∗ F2(y) =
∫

F2(y − y1)f1(y1)dy1 (5.40)

respectively.
This can be generalized to the sum of many independent random variables using n-fold

convolutions.

Definition 5.13 (n-fold convolution) Given distribution functions F1(·), . . . , Fn(·), the
n-fold convolution is

F (n)∗
n (x) = F (n−1)∗

n−1 (x) ∗ Fn(x),

calculated recursively as

F (k)∗
k (x) = F (k−1)∗

k−1 (x) ∗ Fk(x), k = 2, . . . , n

with F (1)∗
1 (x) = F1(x). In the case of the same function F (x) = F1(x) = · · · = Fn(x), we have

F (n)∗(x) = F (n−1)∗(x) ∗ F (x).

Using n-fold convolutions, it is easy to calculate the distribution of the sum of independent
random variables using the following well-known result.

Proposition 5.1 (Distribution of sum of independent random variables via convolution)
Given X1, . . . ,Xn are independent random variables with Xi ∼ Fi(·), the distribution of the sum
X = X1 + · · ·+ Xn is the n-fold convolution

Pr[X1 + · · ·+ Xn ≤ x] = F (n)∗
n (x).

In the case of independent identically distributed (i.i.d.) X1, . . . ,Xn, where Xi ∼ F (x),

Pr[X1 + · · ·+ Xn ≤ x] = F (n)∗(x). (5.41)

Thus, the distribution of the annual loss X1 + · · ·+XN , where X1, . . . ,XN are i.i.d. from
the severity distribution F (·) and annual frequency N is random with Pr[N = k] = pk, can
be calculated as

H(z) = Pr[Z ≤ z] =
∞∑

k=0

Pr[Z ≤ z|N = k]Pr[N = k]

=

∞∑
k=0

pkF (k)∗(z). (5.42)
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The k-fold convolution F (k)∗(z) is calculated recursively as

F (k)∗(z) =
z∫

0

F (k−1)∗(z − x)f (x)dx

with

F (0)∗(z) =

{
1, z ≥ 0,

0, z < 0.

Here the integration limits are 0 and z. This is because we consider nonnegative severities.
The obtained formula is analytic. However, closed-form solutions are rare. Panjer recursion
and FFT, discussed in Sections 11.4 and 11.6, are very efficient numerical methods to calculate
these convolutions.

Another powerful tool to calculate the distribution of the sum of independent random
variables is the method of characteristic functions. It is explained in many textbooks on prob-
ability theory. In particular, it is often used for calculating aggregate loss distributions. some
distributions are defined via characteristic functions and are not available in closed form (e.g.,
alpha stable distributions).

Definition 5.14 (Characteristic function) The characteristic function of the density f (x) is
defined as

ϕ(t) =
∞∫

−∞

f (x)eitxdx, (5.43)

where i =
√
−1 is a unit imaginary number.

If the characteristic function is known, then the original density function can be calculated
by inverse Fourier transform

f (x) =
1

2π

∞∫
−∞

ϕ(t) exp(−itx)dt. (5.44)

The corresponding analogy for discrete distributions is called the probability generating
function

Definition 5.15 (Probability generating function) The probability generating function of a
discrete distribution with probability mass function pk = Pr[N = k] is

ψ(s) =
∞∑

k=0

skpk. (5.45)
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Using a well-known property that the characteristic function of the sum of independent
random variables is just a product of their characteristic functions, the characteristic function
of the annual loss X1 + · · · + XN , denoted by χ(t), can be expressed through the probability
generating function of the frequency distribution and characteristic function of the severity
distribution as

χ(t) =
∞∑

k=0

(ϕ(t))k pk = ψ(ϕ(t)). (5.46)

Given the characteristic function, the density of the annual loss Z can be calculated via the
inverse Fourier transform; this will be discussed in detail in Chapter 11.

5.6 Extreme Value Theory

The topic of extreme value modeling is discussed in detail in companion book Advances in
Heavy Tail Risk Modeling: A Handbook of Operational Risk, Peters and Shevchenko (2015).
However, for completeness of this manuscript, we briefly discuss the main concepts of extreme
value theory (EVT).

There are two types of EVT models: traditional block maxima and threshold exceedances.
Block maxima EVT is focused on modeling the largest loss per time period of interest. This is
used in insurance and in many other fields. For example, it is used in the design of dams for
flood control where engineers are interested in quantification of the probability of the annual
maximum water level. It is certainly important for operational risk too. However, for capital
calculations, the primary focus is to quantify the impact of all losses per year. Modeling of all
large losses exceeding a threshold is dealt by EVT threshold exceedances. The key result of EVT is
that the largest losses or losses exceeding a large threshold can be approximated by the limiting
distribution—which is the same regardless of the underlying process. This allows for rational
extrapolation to losses beyond those historically observed and estimation of their probability.
However, as with any extrapolation method, EVT should be applied with caution.

Typically, to apply EVT (or any other extrapolation method) on a dataset, we assume that
there is a single physical process responsible for the observed data and any future losses exceeding
the observed levels. This is often the case in physical sciences (e.g., hydrology). However, in
assessing operational risk, some people may argue that extreme values are anomalous and are
not strongly related to the rest of the data. In addition, multiple processes might be responsible
for extreme events within a risk cell and these processes might be different from the processes
generating less severe losses. A good discussion on these issues can be found by Cope et al.
(2009) and Nešlehová et al. (2006).

If we assume that a single mechanism is responsible for the losses in dataset and extrapola-
tion can be done, then EVT is a very powerful tool. A detailed presentation of EVT is provided
by Embrechts et al. (1997), McNeil et al. (2005, chapter 7). In this chapter, we summarize
the main results relevant to operational risk. It is important to note that EVT is an asymptotic
theory. Whether the conditions validating the use of the asymptotic theory are satisfied is often
a difficult question to answer. The convergence of some parametric models to the EVT regime
is also very slow. For example, this is the case for the by LogNormal and g-and-h distribu-
tions studied Mignola and Ugoccioni (October 2005) and Degen et al. (2007), respectively. In
general, EVT should not preclude the use of other parametric distributions.
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5.6.1 EVT—BLOCK MAXIMA

Consider a sequence of n independent random variables X1, . . . ,Xn from a distribution F (x)
representing losses. Denote the maximum loss as

Mn = max(X1, . . . ,Xn).

Because each loss cannot exceed the maximum and due to independence between the losses,
the distribution of the maximum is

FMn(x) = Pr[Mn ≤ x] = Pr[X1 ≤ x, . . . ,Xn ≤ x]

=
n∏

i=1

Pr[Xi ≤ x] = (F (x))n. (5.47)

Given that F (x) < 1 or F (x) = 1, it is easy to see that if n → ∞, then the distribution
of maximum (5.47) converges to the degenerate distribution, which is either 0 or 1 (i.e., the
density concentrates on a single point), which is not very useful information. That is why the
study of the largest losses in the limit n → ∞ requires appropriate normalization. This is
somewhat similar to the central limit theory stating that the appropriately normalized sum

S̃n = (Sn − an)/bn,

where Sn = X1 + · · ·+Xn and X1, . . . ,Xn are independent and identically distributed random
variables with finite variance, converges to the standard Normal distribution as n → ∞. Here,
the normalized constants are

an = nE[X1], bn =
√

nVar[X1].

Similarly, the limiting result for the distribution of the normalized maximum
M̃n = (Mn − dn)/cn shows that for some sequences of cn > 0 and dn,

lim
n→∞

Pr[(Mn − dn)/cn ≤ x] = lim
n→∞

(F (cnx + dn))
n = H(x). (5.48)

If H(x) is a nondegenerate distribution, then F is said to be in the maximum domain of
attraction of H , which is denoted as F ∈ MDA(Hξ). Then the well-known Fisher–Trippet,
Gnedenko Theorem essentially says that H(x) must be the generalized extreme value (GEV)
distribution Hξ((x − μ)/σ), σ > 0, μ ∈ R with the standard form

Hξ(x) =

{
exp

(
−(1 + ξx)−1/ξ

)
, ξ �= 0,

exp(− exp(−x)), ξ = 0,
(5.49)



�

�

“Cruz_Driver1” — 2015/1/8 — 9:00 — page 99 — #21
�

�

�

�

�

�

5.6 Extreme Value Theory 99

where 1+ξx > 0. The standard GEV will often be referred to as GEV (ξ). If convergence takes
place, then it is always possible to choose normalizing sequences cn and dn so that the limit will
be in the standard form Hξ(x). The shape parameter ξ determines a type of distribution:

• ξ > 0 corresponds to a Fréchet distribution;
• ξ = 0 corresponds to a Gumbel distribution;
• ξ < 0 corresponds to a Weibull distribution.

The Weibull distribution (ξ < 0) has a bounded right tail (i.e., x ≤ −1/ξ), while Gumbel and
Fréchet have an unbounded right tail. In addition, the decay of the Fréchet tail is much slower
than the Gumbel tail.

5.6.2 EVT—RANDOM NUMBER OF LOSSES

As earlier mentioned, in OpRisk, the number of losses per time period is not fixed and is
modeled as a random variable N with pn = Pr[N = n]. This has some implications for the use
of the previously described EVT.

Distribution of maximum. If the frequency N is random, then, instead of (5.47), the distri-
bution of a maximum MN is calculated as

FMN (x) =
∞∑

n=0

Pr[MN ≤ x|N = n]Pr[N = n]

=
∞∑

n=0

(F (x))n
Pr[N = n] = ψN (F (x)), (5.50)

where

ψN (t) = E[tN ] =
∑

k

pktk,

is the probability generating function of the frequency distribution. Note that there is a finite
probability for zero maximum, that is, Pr[MN = 0] = ψN (F (0)). Typically, severity distri-
bution has F (0) = 0 and frequency distribution has a finite probability at zero; in this case,
Pr[MN = 0] = Pr[N = 0].

For example, if the annual number of losses N ∼ Poisson(λ), thenψ(t) = exp(−λ(1−t))
and thus the distribution of the maximum loss (per annum) is

FMN (x) = exp(−λ(1 − F (x)). (5.51)

The distribution of the maximum loss over m years is

(FMN (x))
m = exp(−mλ(1 − F (x)). (5.52)
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5.6.3 EVT—THRESHOLD EXCEEDANCES

While it is important to understand and measure maximum possible loss over a 1-year time
horizon, the primary focus in operational risk capital charge calculations is quantification of
overall impact of all losses. For this purpose, the method of EVT threshold exceedances is very
useful. Consider a random variable X , whose distribution is F (x) = Pr[X ≤ x]. Given a
threshold u, the exceedance of X over u is distributed from

Fu(y) = Pr[X − u ≤ y|X > u] =
F (y + u)− F (u)

1 − F (u)
. (5.53)

As the threshold u increases, the limiting distribution of Fu(·) is given by the Pickands–
Balkema-de Haan theorem (see McNeil et al. 2005, section 7.2). The theorem essentially states
that if and only if F (x) is the distribution for which the distribution of the maximum (5.48)
is GEV (ξ) given by (5.49), then, as u increases, the excess distribution Fu(·) converges to a
generalized Pareto distribution (GPD), GPD(ξ, β):

Gξ,β(y) =

{
1 − (1 + ξy/β)−1/ξ, ξ �= 0,

1 − exp(−y/β), ξ = 0.
(5.54)

Here, the shape parameter ξ is the same as the shape parameter of the GEV distribution Hξ.
More strictly, we can find a function β(u) such that

lim
u→a

sup
0≤y≤a−u

|Fu(y)− Gξ,β(u)(y)| = 0, (5.55)

where a ≤ ∞ is the right end point of F (x), ξ is the GPD shape parameter, and β > 0 is the
GPD scale parameter. The domain of GPD is

y ∈
{
[0,∞) , if ξ ≥ 0,

[0,−β/ξ] , if ξ < 0.
(5.56)

The properties of GPD depend on the value of the shape parameter ξ:

• The case ξ = 0 corresponds to an exponential distribution with the right tail unbounded;
• If ξ > 0, the GPD right tail is unbounded and the distribution is heavy-tailed, so that

some moments do not exist. In particular, if ξ ≥ 1/m, then the m-th and higher moments
do not exist. For example, for ξ ≥ 1/2, the variance and higher moments do not exist.
The analysis of operational risk data by Moscadelli (2004) reported even cases of ξ ≥ 1 for
some business lines, that is, infinite mean distributions; also see discussions by Nešlehová
et al. (2006);

• ξ < 0 leads to a bounded right tail, that is, x ∈ [0,−β/ξ]. It seems that this case is not
relevant to modeling operational risk as all reported results indicate a non-negative shape
parameter. One could think though of a risk control mechanism restricting the losses by
an upper level and then the case of ξ < 0 might be relevant.
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The density of GPD is

h(x; ξ, β) =

⎧⎪⎪⎨
⎪⎪⎩

1
β
(1 + ξx/β)−1−1/ξ, ξ �= 0,

1
β
exp(−x/β), ξ = 0,

(5.57)

where h(x = 0) = 1/β. Note some special cases of negative shape parameter: if ξ = −1/2,
then h(x) = 1

β (1 − 1
2 x/β) is a linear function; if ξ = −1, then h(x) = 1/β is constant; if

ξ < −1, then h(x) is infinity at the boundary of the domain −β/ξ. The latter case is certainly
not relevant to operational risk in practice and can be excluded during fitting procedures.

The GPD has a special stability property with respect to excesses. Specifically, if
X ∼ Gξ,β(x), x > 0, then the distribution of the conditional excesses X − L|X > L over
the threshold L is also the GPD with the same shape parameter ξ and changed scale parameter
from β to β + ξL:

Pr[X − L ≤ y|X > L] = Gξ,β+ξL(y), y > 0. (5.58)

This stability property implies that if ξ < 1, then the mean excess function is

e(L) = E[X − L|X > L] =
β + ξL
1 − ξ

. (5.59)

That is, the mean excess function is linear in L. This is often used as a diagnostic to check
that the data follow the GPD model. In particular, it is used in a graphical method (plotting
the mean excess of the data versus the threshold) to choose a threshold when the plot becomes
approximately “linear”.
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Chapter Six

Risk Measures and Capital
Allocation

OpRisk is a significant risk exposure to most firms and therefore requires effective risk manage-
ment. Thus, these risks should be modeled, measured, and capital should be held so that a bank
can withstand extreme losses. A risk measure is a single number quantifying an exposure to the
risk. In particular, risk managers and regulators are interested in assessing the probability that
extreme losses may occur and this can be represented through the quantile of the loss distribu-
tion (over a specified time horizon). This led to the regulatory requirement for risk capital to
be measured as a Value-at-Risk (VaR), which is just a quantile of the loss distribution at some
high confidence level (i.e., quantile of the loss distribution at the 0.999 confidence level over a
1-year horizon for OpRisk).

Since VaR had come into widespread use in the financial markets for quantifying market
risk, adacemics began to undertake theoretical studies of the properties of such a risk measure
and they began to notice that using VaR as a risk measure could sometimes have a poor out-
come. Specifically, the diversification principle may fail in some circumstances. The wisdom in
choosing the 0.999 VaR as a risk measure for capital is highly contested (see, e.g., Daniélsson
et al. 2001). Using economic reasoning, a list of axiomatic properties for a good (coherent) risk
measure was suggested in the seminal paper by Artzner et al. (1999). In particular, an alternative
risk measure known as expected shortfall (ES) is coherent and considered to be better suited for
risk management as it provides information not only about the probability of the default but
also about its severity; it can be viewed as an average of losses larger than or equal to the VaR.
However, the use of VaR for a capital has good justification from a regulator’s point of view
when considering minimization of the possible shortfall and cost of the capital. Moreover, it is
clear that ES is not so good a measure for OpRisk because some OpRisks exhibit such heavy
tails that even the mean (expected loss) may not exist; these are the so-called infinite mean dis-
tributions reported in the literature for OpRisk. In addition, ES can be too sensitive to the tail
index of heavy-tailed distributions while VaR is more stable.

A lot of research has been done in the area of risk measures. The choice of risk measure
is currently discussed in the literature; for example, Basel Committee on Banking Supervision
(BCBS, 2012) asks for a possible transition from VaR to ES as the underlying risk measure.
We know that in general VaR does not have diversification property, while ES does. How-
ever, Gneiting (2011) implies that, while VaR in general is statistically backtestable, ES is not.

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Furthermore, while VaR in general has certain robustness properties, ES does not, at least as
discussed by Cont et al. (2010). So, it is likely that VaR, despite all its shortcomings, will remain
in force.

In this chapter, we focus on VaR and ES, which are the most relevant risk measures for
OpRisk; their definitions, advantages, and drawbacks are considered throughout Section 6.2.

Typical risk models are parameterized, where the true value of the parameter is unknown
and should be estimated. It is expected that the uncertainty in parameters should increase
the capital. Accounting for parameter uncertainty in the risk measure is a subject of
Section 6.2.9.

A closely related problem is capital allocation. An overall bank capital should be allocated
to various levels within a bank. In particular, it is allocated to business line or business line/event
type (e.g. execution, delivery and process management event type in asset management busi-
ness line) level and is often required to be allocated below, that is, to the process level or general
manager level. The allocation mechanism should provide incentive to better manage OpRisk.
Also, it is desirable that the allocation procedure to different levels shares the same risk fac-
tors/drivers. It is a challenging and currently unresolved issue as these two objectives seem to
be in conflict. Optimal management of OpRisks considers risks and controls of typical events
rather than extreme events that are outside of a risk manager’s control. While a bank capital is
driven by the risk tail events and the corresponding risk tail measure, risk body events and mea-
sure are more meaningful to the business incentives. Moreover, the availability of data below the
business line/event type level is typically limited. In this book, we consider the allocation mech-
anisms to the risk cells (i.e., to the level where OpRisks are modeled, e.g. business line/event
type level). Similar to defining a coherent risk measure using a set of axioms, a coherent allo-
cation principle can be defined. It has been demonstrated (using different sets of axioms of
economic reasoning) that the capital allocations can be calculated as the gradient of the capital
with respect to risk exposures (the so-called the Euler’s principle). The subject of risk allocations
is considered in Section 6.3.

Before presenting an overview of the different classes of risk measures, we present some
motivation and background context of the Basel accords and how they have developed in terms
of requirements for capital estimation and risk measure quantification.

6.1 Development of Capital Accords Base I, II and III

In jurisdictions in which active regulation is applied to the banking sector, the modeling of
OpRisk has progressively taken a prominent place in financial quantitative measurement. This
has occurred as a result of Basel II and now Basel III regulatory requirements. There has been
a significant amount of research dedicated to understanding the features of Basel II (see, e.g.,
Daniélsson et al. 2001, Decamps et al. 2004, and Kashyap and Stein 2004). In addition, the
mathematical and statistical properties of the key risk processes that comprise OpRisk, especially
those that contribute significantly to the capital charge required to be held against OpRisk
losses, have also been carefully studied; see, for example, the book length discussions in Cruz
(2002), King (2001), and Shevchenko (2011).

In January 2001, the Basel Committee on Banking Supervision proposed the Basel II
Accord (BCBS, 2002, 2004, 2006), which replaced the 1988 Capital Accord. In 2013, the
Basel III Accord was due to start to be considered. Since the initiation of the Basel capi-
tal accords, the discipline of OpRisk and its quantification have grown in prominence in
the financial sector. Paralleling these developments have been similar regulatory requirements
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for the insurance industry which are referred to as Solvency 2. In both accords, the primary
component of such a regulation revolves around the quantitative modeling of capital.

Under the Basel II/Basel III structures, there is at the core the notion of three pillars,
which, by their very nature, emphasize the importance of assessing, modeling, and under-
standing OpRisk loss profiles. These three pillars are minimum capital requirements (refining
and enhancing risk-modeling frameworks), supervisory review of an institution’s capital ade-
quacy, and internal assessment processes and market discipline, which deals with disclosure of
information.

In the third update to the Basel Accords due for implementation in the period 2013–
2018, a global regulatory standard that draws together bank capital adequacy, stress-testing, and
market liquidity was developed. It is established as an international best practice for modeling
OpRisk by the members of the Basel Committee on Banking Supervision (see Gregoriou 2009
and discussions in Blundell-Wignall and Atkinson 2010).

The Basel III Accord naturally extends the work developed in both the Basel I and Basel II
accords, with the new accord arising primarily as a response to the identified issues associated
with financial regulation that arose during the recent global financial crisis in the late 2000s.
In this regard, the Basel III accord builds on Basel II by strengthening the bank capital require-
ments as well as introducing additional regulatory requirements on bank liquidity and leverage.
The quantification of capital requirements is principally concerned with an evaluation of the
risk associated with losses arising from a range of different loss processes in different lines of
business.

Banking regulation under Basel II and Basel III specifies that banks are required to hold
adequate capital against OpRisk losses. OpRisk is a relatively new category of risk that is addi-
tional to more well-established risk areas such as market and credit risks. As such, in its own
right, OpRisk attracts a capital charge, which is defined by Basel II (BCBS 2006, p. 144) as “the
risk of loss resulting from inadequate or failed internal processes, people and systems or from external
events. This definition includes legal risk, but excludes strategic and reputational risk”. OpRisk is
significant in many financial institutions, e.g. see Table 1.4 for examples of capital ratios in
some large European banks in 2012.

Before detailing the changes to capital requirements due to come into industry practice
under Basel III, it is prudent to recall the Basel definition of Tier 1 capital, which is the key
measure of a bank’s financial strength from the perspective of the regulatory authority. In partic-
ular, the capital accord in Basel II and III states that financial institutions must provide capital
above the minimum required amount, known as the floor capital. In addition, this capital as
specified in the regulation is comprised of three key components: Tier 1, Tier 2 and Tier 3.
Both Tier 1 and Tier 2, capital were first defined in the Basel I capital accord and remained
substantially the same in the replacement Basel II and Basel III accords.

Definition 6.1 (Tier 1 capital) The Tier 1 capital under regulation is comprised of the following
main components:

1. Paid-up share capital/common stock;
2. Disclosed reserves (or retained earnings).

It may also include nonredeemable noncumulative preferred stock.

The Basel Committee also noted the existence of banking strategies to develop instru-
ments in order to generate Tier 1 capital. As a consequence, these must be carefully regulated
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through the imposition of stringent conditions, with a limit to such instruments at a maximum
of 15% of total Tier 1 capital.

Definition 6.2 (Tier 2 capital) The Tier 2 capital under regulation is comprised of the following
main components:

1. Undisclosed reserves;
2. Asset revaluation reserves;
3. General provisions/general loan-loss reserves;
4. Hybrid (debt/equity) capital instruments;
5. Long-term subordinated debt.

In this regard, one may consider Tier 2 capital as representing the so-called, supplementary capital.

We note at this stage that as a consequence of different legal systems in each jurisdiction,
the accord has had to be sufficiently flexible to allow for some interpretation of specific capital
components within the context of each regulator’s jurisdiction. Depending on the particular
jurisdiction in question, the specific country’s banking regulator has some discretionary control
over how exactly differing financial instruments may count in a capital calculations.

Remark 6.1 The key reason that Basel III requires financial institutions to hold capital is that it
is aimed to provide protection against unexpected losses. This is different to mitigation of expected
losses, which are covered by provisions, reserves, and current year profits.

We note that modifications under the Basel III Accord relative to its predecessor refer to
limitations on risk-weighted capital (RWC) and the Tier 1 capital ratio, defined as follows.

Definition 6.3 (Risk-weighted assets (RWA)) These assets comprise the total of all assets held
by the bank weighted by credit risk according to a formula determined by either the jurisdiction’s
regulatory authority or in some cases the central bank. Most regulators and central banks adhere to
the definitions specified by the BCBS guidelines in setting formulae for asset risk weights. Liquid
assets such as cash and coins typically have zero risk weight, while certain loans have a risk weight
at 100% of their face value. As specified by the BCBS, the total RWA is not limited to credit risk.
It contains components for market risk (typically based on VAR) and OpRisk. The BCBS rules for
calculating the components of total RWA have also been updated as a result of the recent financial
crisis.

Definition 6.4 (Tier 1 capital ratio) The Tier 1 capital ratio is the ratio of a bank’s core equity
capital to its total RWA.

Next, we highlight the prominent extensions to the Basel II Accord, established in the
Basel III Accord. In particular, the Basel III Accord will require financial institutions to hold
for RWA, 4.5% of common equity, which is an increase from the previous 2% under Basel II
as well as 6% of Tier 1 capital, itself an increase by 2% relative to Basel II. In addition to these
changes to common equity and Tier 1 capital, Basel III also introduces a minimum leverage
ratio and two additional required liquidity ratio limits. Finally, of the significant changes, there
are also additional capital buffers introduced:
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1. A mandatory capital conservation buffer of 2.5%;
2. A discretionary countercyclical buffer, allowing national regulators to require up to another

2.5% of capital during periods of high credit growth.

Against the backdrop of these capital regulatory accord changes and extensions, there is
always the base fundamental requirement of risk analysts, actuaries, and quants, which involves
the quantitative modeling and reporting of such capital estimates. To quantify the OpRisk
capital charge under the current regulatory framework for banking supervision, referred to as
Basel II/Basel III, many banks adopt the Loss Distribution Approach (LDA). In this context, we
are working with frequency and severity and resulting compound processes. In this chapter, the
primary concern involves the development of quantification of risk utilizing different classes of
risk measures for LDA models. There are typically three main families of risk measure that are
considered for the calculation of OpRisk capital: VaR (LDA annual loss distribution quantile
function); ES (LDA annual loss distribution tail conditional expectation), and spectral risk
measures. These risk measures and their associated quantitative properties are covered in detail
in the remainder of this chapter.

6.2 Measures of Risk

In general, a risk is an event that may or may not occur (i.e., random event) and brings some
adverse consequences. It is natural to model OpRisk by a random variable that represents the
random amount of loss that a company may experience. It can be assumed that random variables
modeling OpRisk losses are non-negative (similar to insurance risk). In general, risk can be
defined as a random variable representing future worth, but in OpRisk we focus on losses, not
profits.

Given this definition of risk, measuring OpRisk means establishing a correspondence
between the random variable representing risk and a non-negative real number. This leads us
to the following definition of risk measure.

Definition 6.5 (Risk measure) A risk measure is a mapping of a random variable representing
risk to a real number. Henceforth, denote a general risk measure related to the risk X as ρ[X ].

That is, a risk measure (for OpRisk) is a functional that assigns a single non-negative
real number to a non-negative random variable representing risk. No single risk measure can
describe all aspects of risk. In this book, we consider risk measures used for setting capital
requirements, that is, we focus on measuring the upper tail of a loss distribution. Moreover, the
risk measure should describe not only the aspects of the overall risk but also the relative impor-
tance of risks within a collection. In particular, risk managers are interested in diversification
benefits if risks are merged into a collection. This is typically measured using the diversification
coefficient.

Definition 6.6 (Diversification coefficient) For a collection of risks X1, . . . ,Xn, the diversifi-
cation coefficient is defined as

D = 1 − ρ[X1 + · · ·+ Xn]

ρ[X1] + · · ·+ ρ[Xn]
. (6.1)
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This coefficient is positive if there are diversification benefits and is negative if diversifica-
tion fails.

The choice of a risk measure for capital quantification is not a trivial task. The current
Basel II requirement is to use VaR as a risk measure. However, VaR has some shortcomings,
and other risk measures such as ES are widely discussed in the literature. At the same time,
the use of VaR has a justification from the regulator’s point of view. In this section, we treat
the issue of risk measurement with a particular emphasis on VaR and ES risk measures, which
are the most relevant to operational risk.

6.2.1 COHERENT AND CONVEX RISK MEASURES

There are many different risk measures introduced in the literature and practice, and the choice
of a risk measure might be difficult. One approach to treat the issue of risk measurement is to
start with a list of properties that a risk measure should satisfy. Using economic reasoning, a list
of axiomatic properties for a good (coherent) risk measure was suggested in the seminal paper
by Artzner et al. (1999).

Definition 6.7 (A coherent risk measure) A coherent risk measure, ρ[X ], is defined to have the
following properties for any two random variables X and Y :

• Translation invariance: for any constant c, ρ[X + c] = ρ[X ] + c;
• Monotonicity: if X ≤ Y for all possible outcomes, then ρ[X ] ≤ ρ[Y ];
• Subadditivity: ρ[X + Y ] ≤ ρ[X ] + ρ[Y ];
• Positive homogeneity: for any positive constant c, ρ[cX ] = cρ[X ].

Note that in OpRisk we define loss to have a positive value while the original paper by Artzner
et al. (1999) works with the future value of a position (which is negative for losses). As a result,
there are changes in sign in some of the axioms (we also set interest rates to zero, i.e., no dis-
counting).

The topic of coherent risk measures has been widely discussed in the literature (see McNeil
et al. 2005). We list some arguments typically used to explain why the axioms are reasonable
requirements.

• Translation invariance. This axiom means that adding a fixed amount to a collection of
risks will change the capital requirement by the same amount. This is necessary to make
sense of ρ as a risk capital, that is, adding cash amount ρ[X ] to the risk X gives adjusted
loss X̃ = X − ρ[X ], whose capital is ρ[X̃ ] = ρ[X ] − ρ[X ] = 0 and thus the new risk
X̃ is acceptable without further capital requirement (note that loss is defined as a positive
value);

• Monotonicity. This is perhaps the most obvious axiom: risks that lead to smaller losses in
every state require less risk capital. However, some traditional risk measures such as those
based on standard deviation can fail this condition (see, e.g., Kalkbrener 2005). This has
unpleasant consequences for the capital allocation. For example, if potential losses X are
bounded by some level, then the contributory capital of X to the risk collection might
exceed this level (see Kalkbrener et al. 2004);
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• Subadditivity. This axiom is the most known because VaR fails to satisfy this condition
in some situations. The rationale behind this axiom is to allow diversification benefit. It is
easy to see that the diversification coefficient, as defined in (6.1), is positive for subadditive
risks and is negative if subadditivity (diversification) fails. Artzner et al. (1999) support this
by the statement that “a merger does not create extra risk”, that is, merging two risks X1
and X2 with stand-alone capitals ρ[X1] and ρ[X2] will create overall risk X = X1 + X2
with a capital ρ[X ] less than or equal to the sum of stand-alone capitals ρ[X1] + ρ[X2].
Of course, anyone with experience through a merger can question this statement. So, it
might be better to argue that breaking up will increase the capital requirement. If the risk
manager wants to restrict ρ[X1 +X2] by some level A, then he or she can just impose levels
A1 and A2 (A1 + A2 ≤ A) such that ρ[X1] ≤ A1 and ρ[X2] ≤ A2. Then subadditivity will
ensure that ρ[X ] ≤ A1 + A2 ≤ A. Note that if a non-subadditive risk measure is used for
regulatory capital, then a bank might have an incentive to legally break up into subsidiaries
to reduce the overall regulatory capital;

• Positive homogeneity. This axiom means that increasing a risk by a factor α should
increase the capital by the same factor. Note that the subadditivity axiom implies
that ρ[2X ]≤ ρ[X ] + ρ[X ]. Thus, positive homogeneity adds an extra condition that
ρ[2X ] = ρ[X ] + ρ[X ].

Artzner et al. (1999) demonstrated that any coherent risk measure (on a finite set of prob-
ability measures) can be written as the so-called scenario-based risk measure.

Definition 6.8 (Scenario-based risk measure) The scenario-based risk measure for a risky loss
random variable X is

ρ[X ] = sup{EQ [X ]|Q ∈ P}, (6.2)

where EQ [·] means that the expectation is calculated with respect to probability distribution Q, and
P is a nonempty set of probability measures (generalized scenarios).

It is straightforward to prove the coherence of this risk measure. The properties of monotonicity,
positive homogeneity, and translational invariance can be easily followed by the definition. The
subadditivity follows from

sup{EQ [X + Y ]|Q ∈ P} = sup{EQ [X ] + E
Q [Y ]|Q ∈ P}

≤ sup{EQ [X ]|Q ∈ P}+ sup{EQ [Y ]|Q ∈ P}. (6.3)

For a more technical proof that any coherent risk measure can be represented as (6.2), see
McNeil et al. (2005, section 6.1.4). The earlier defined risk measure is expectation with respect
to a worst case scenario because supremum is taken over different distributions Q in a set P.
For most of this book, we consider risk measures defined with respect to a single distribution.

It is important to note that the previously listed coherence axioms are accepted by many
researchers and practitioners. However, there is no set of desirable axioms universally accepted.
One can change a set of axioms and introduce other “coherent” risk measures. In particular,
the condition of positive homogeneity has been criticized due to potential liquidity and risk
concentration issues. One can argue that doubling the position will lead to a portfolio with
more than double risk. It has been suggested to have ρ[λX ] ≥ λρ[X ], λ > 0, to penalize for
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possible lack of liquidity. The condition ρ[λX ] > λρ[X ] cannot be satisfied for a subadditive
risk measure. As a result, another larger class of convex risk measures has been introduced by
Föllmer and Schied (2002), in whose work subadditivity and positive homogeneity axioms are
replaced by weaker property of convexity. It is formally defined as follows.

Definition 6.9 (Convex risk measure) A convex risk measure ρ[X ] is defined to have the follow-
ing properties for any two random variables X and Y :

• Monotonicity: if X ≤ Y for all possible outcomes, then ρ[X ] ≤ ρ[Y ];
• Translation invariance: for any constant c, ρ[X + c] = ρ[X ] + c;
• Convexity: ρ[λX + (1 − λ)Y ] ≤ λρ[X ] + (1 − λ)ρ[Y ], λ ∈ [0, 1].

That is, convex risk measure axioms are translation invariance, monotonicity, and convexity.

6.2.2 COMONOTONIC ADDITIVE RISK MEASURES

A desirable property for a risk measure is the so-called comonotonic additivity, which means
that diversification (6.1) is zero for risks that are perfectly (and positively) dependent. This is
formally defined as follows.

Definition 6.10 (Comonotonic additivity) The risk measure ρ[·] is comonotonic additive
if

ρ[X1 + · · ·+ Xn] = ρ[X1] + · · ·+ ρ[Xn], (6.4)

where X1, . . . ,Xn are comonotonic risks (i.e., perfectly positively dependent risks). The risks are called
comonotonic if there exist a random variable Z and nondecreasing functions h1, . . . , hn such that
Xi = hi(Z), i = 1, . . . , n. In particular, comonotonic risks can always be represented as

X1 = F−1
1 (U ), . . . ,Xn = F−1

n (U ),

where U is a random variable from the uniform (0,1) distribution and Fi(·) is the distribution
of Xi.

VaR and expected shortfall risk measures (formally defined later) are comonotonic additive.
It is important to note that the risk measure might fail subadditivity but still satisfy comonotonic
additivity (e.g., this is the case of VaR in some situations). For coherent risks, ρ[X1+· · ·+Xn] ≤
ρ[X1]+ · · ·+ρ[Xn], and thus ρ[X1]+ · · ·+ρ[Xn], is the worst possible case for ρ[X1+ · · ·+Xn].
A class of coherent risk measures with such a property is the so-called spectral risk measures (see
Acerbi 2002, Tasche 2002, and Kusuoka 2001). In fact in (Acerbi, 2002, theorem 7) they show
that the class of spectral risk measures can be identified as all the coherent measures which are
also law-invariant and comonotonic additive.

6.2.3 VALUE-AT-RISK

The concept of VaR as a quantile of a loss distribution has become a benchmark risk measure
and is adopted by Basel regulations for setting the capital requirement. It allows addressing the
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question of what loss we can experience over a time period (i.e., 1 year for OpRisk) with a given
probability and is formally defined as follows.

Definition 6.11 (Value-at-Risk) The VaR of a random variable X ∼ F (x) at the α-th proba-
bility level, VaRα[X ], is defined as the α-th quantile of the distribution of X :

VaRα[X ] = F−1(α) = inf{x : Pr[X > x] ≤ 1 − α} = inf{x : F (x) ≥ α}
= sup{x : F (x) < α}. (6.5)

That is, VaR is the minimum threshold exceeded by X with probability at most 1 − α.

The above VaR is defined as the left-continuous generalized inverse of the distribution
function. This is to handle cases when α corresponds to a flat piece in the distribution (in this
case, VaR corresponds to the left end of the flat piece). In the case when α does not sit on a
flat piece, VaR is the ordinary inverse of F (x). Figure 6.1 illustrates VaR for the standard and
tricky cases such as a distribution with flat pieces or jumps. Alternatively, VaR can be defined
as the right-continuous generalized inverse

F−1+(α) = inf{x : F (x) > α} = sup{x : F (x) ≤ α} (6.6)

that is, VaR would be the right end of the flat piece if α corresponds to this flat piece; see
Figure 6.1b as an example. We could also define VaR as a convex combination of left- and
right-continuous generalized inverse distributions. In this book (and in most of the literature),
we take the definition of VaR as F−1(α).

The VaR has the following obvious properties:

• VaRα[X ] ≤ max[X ] for any α ∈ (0, 1);
• VaR is monotonic: VaRα[X ] ≤ VaRα[Y ] if X ≤ Y ;

0

1

α

(a)

F−1(α)
0

1

α

(b)

F−1(α) F−1+(α)
0

1

α

(c)

F−1(α)

figure 6.1 Calculation of quantiles: (a) continuous distribution; (b) distribution with a flat piece; (c)
the case of probability atom in distribution function



�

�

“Cruz_Driver1” — 2015/1/8 — 14:40 — page 111 — #10
�

�

�

�

�

�

6.2 Measures of Risk 111

• VaR is translation invariant, VaRα[X + c] = VaRα[X ] + c;
• VaR is positive homogeneous VaRα[cX ] = c ×VaRα[X ].

The last two properties also follow from the following general relation.

Proposition 6.1 (VaR of transformed random variable) VaR of a random variable Y = g(X ),
where g(·) is a nondecreasing function of a random variable X , can be calculated as

VaRα[Y ] = g(VaRα[X ]).

Proof : Let F (x) be a distribution of X . Then the proof is straightforward from the probability
transform Pr[X ≤ F−1(α)] = Pr[g(X ) ≤ g(F−1(α))].

It is also easy to see that VaR is comonotonic additive, that is, there is no diversification for
perfectly dependent risks.

Proposition 6.2 (VaR comonotonic additivity) If risks X1,X2, . . . ,Xn are comonotonic, then

VaRα[X1 + · · ·+ Xn] = VaRα[X1] + · · ·+VaRα[Xn]. (6.7)

Proof : Comonotonic risks can always be represented as Xi = F−1
i (U ), where U is a random

variable from Uniform(0, 1) distribution FU (·) and Fi(·) is the distribution of Xi. Thus

VaRα[X1 + · · ·+ Xn] = VaRα[F−1
1 (U ) + · · ·+ F−1

n (U )] = VaRα[g(U )],

where g(x) = F−1
1 (x) + · · ·+ F−1

n (x). Given that g(x) is a nondecreasing function, we have

VaRα[g(U )] = g
(
F−1

U (α)
)
= g(α) = F−1

1 (α) + · · ·+ F−1
n (α),

which completes the proof.

Remark 6.2 (VaR is not a coherent measure) It is important to note that the case of perfectly
dependent risks is not necessarily an upper bound forVaRα[X1+· · ·+Xn] because subadditivity may
fail for VaR. In general, VaR possesses all the properties of a coherent risk measure in Definition 6.7
except subadditivity. For some cases, such as a multivariate Normal distribution, VaR is subadditive.
However, in general, the VaR of a sum of risks may be larger than the sum of VaRs of these risks.
For examples and discussions, see McNeil et al. (2005); also see Examples 6.1 and 6.2. This has
a direct implication for measuring OpRisk. In particular, VaR calculated for individual portfolios
(e.g., business lines) may not be summed to produce the upper bound for the VaR of the overall risk.

A formal Basel II regulatory requirement for OpRisk capital charge refers to a VaR and
it can be justified using the following logic. The regulator’s objective is to ensure that capital
requirement against loss X is large enough so that the shortfall measure E[max[X −ρ[X ], 0]] is
small enough. At the same time, the regulator should avoid requiring too much capital because
the capital has a cost for the bank. Thus, the regulatory capital ρ[X ] can be determined as the
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solution of the following minimization problem (balance between low residual risk and low
cost capital):

min
ρ

{E[max(X − ρ, 0)] + (1 − α)ρ}, 0 < α < 1. (6.8)

The following elegant result justifies the VaR-based regulatory capital.

Proposition 6.3 (VaR as an optimal capital requirement) If α ∈ (0, 1) does not correspond
to a flat part of the distribution of X , then

VaRα[X ] = argmin
ρ

{E[max(X − ρ, 0)] + (1 − α)ρ}

and the solution is unique. In general, including the case when α corresponds to a flat piece in the
distribution of X , VaRα[X ] is the lowest ρ which is a solution to

min
ρ

{E[max(X − ρ, 0)] + (1 − α)ρ}.

In the case when α corresponds to a flat piece, the minimum is achieved for any ρ that satisfies
F (ρ) = α, that is, the smallest ρ in this case corresponds to VaRα; otherwise, the minimum is
unique.

Proof : This result is taken from Dhaene et al. (2003) and an elegant proof based on geometrical
reasoning is presented by Denuit et al. (2005, p. 70).

This result supports the current Basel II regulatory choice of VaR. However, it is important to
note that here the VaR is not really used to measure risk but appears as an optimal requirement.
The risk controlled here is max(X − ρ, 0), which is measured by E[max(X − ρ, 0)].

VaR is certainly meaningful when the objective is to avoid the default event while the size
of the shortfall is not important. One can argue that for bank management and shareholders,
avoiding the default is the primary objective while the size of the shortfall in the event of default
is of secondary importance due to limited liability. If a bank has aggregate annual loss X and
provision (for this loss) A, then VaRα[X ] − A is the smallest additional capital required such
that the bank may default with a small probability at most (1 − α). For α = 0.999, this
means that a bank will have a capital sufficient (on average) to cover losses in 999 out of 1000
years.

As already mentioned, VaR is not a coherent risk measure in general. In particular, under
some circumstances, the VaR risk measure may fail a subadditivity property, that is, the diver-
sification

Dα = 1 − VaRα[X1 + · · ·+ Xn]

VaRα[X1] + · · ·+VaRα[Xn]
(6.9)

may appear to be negative (see Embrechts et al. 2009a,b). This may occur even for independent
risks when the risks are heavy-tailed. It was shown and discussed by Nešlehová et al. (2006)
that if independent risks are Pareto type, Xi ∼ Fi(x) = 1 − x−λi Ci(x), with the tail indexes
0 < λi < 1, then

VaRα[X1 + · · ·+ Xn] >
n∑

i=1

VaRα[Xi], (6.10)
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at least for sufficiently large α. Here, C(x) is a slowly varying function, that is, C(tx)/C(x) → 1
when x → ∞ for all t > 0. The case of 0 < λi ≤ 1 corresponds to infinite mean distribution,
that is, E[Xi] = ∞. There are many examples in the literature of subadditivity failure for
VaR; for illustration, we calculate two examples presented in Shevchenko (2011, examples 7.2
and 7.3).

EXAMPLE 6.1

Consider two independent risks

X ∼ Pareto(β, 1) and Y ∼ Pareto(β, 1),

where Pareto(β, a) is a distribution function F (x) = 1 − (x/a)−β . Using the
FFT numerical method, we calculate VaR0.999[X +Y ] and diversification D0.999 as
defined in (6.1). The results for D0.999 versus β that demonstrate negative diversi-
fication for β < 1 are presented in Figure 6.2.

Diversification at the 0.999 quantile
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figure 6.2 The diversification coefficient for X ∼ Pareto(β, 1) and Y ∼ Pareto(β, 1) versus
β; see Example 6.1 for details

EXAMPLE 6.2

In the case of VaR, the diversification might be present for some quantile levels and
might fail for other levels. In Example 6.1, the diversification is positive for β > 1.
For example, D0.999 ≈ 0.27 for β = 4; note that in this case mean, variance,
and skewness are finite. Results for Dα versusαwhen β = 4 are shown in Figure 6.3.
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Diversification versus quantile level
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figure 6.3 The diversification coefficient for X ∼ Pareto(4, 1) and Y ∼ Pareto(4, 1) versus
quantile level; see Example 6.2 for details

It is easy to see that for high-level quantiles the diversification coefficient is positive
but for lower quantiles it becomes negative.

6.2.4 EXPECTED SHORTFALL

A VaR at a specified probability level α does not provide any information about the fatness of
the distribution upper tail. Often the management and regulators are concerned not only with
the probability of default but also with its severity. Therefore, other risk measures are considered
such as ES (sometimes referred to as the tail VaR).

Definition 6.12 (Expected shortfall) The expected shortfall of a random variable X ∼ F (x) at
the α-th probability level ESα[X ] is

ESα[X ] =
1

1 − α

1∫
α

VaRp[X ]dp, (6.11)

which is the “arithmetic average” of the VaRs of X from α to 1.

In general, the following identity is valid

ESα[X ] = VaRα[X ] +
1

1 − α
E[max(X −VaRα[X ], 0)], (6.12)

because

E[max(X −VaRα[X ], 0)] =
1∫

0

max
(
VaRq[X ]−VaRα[X ], 0

)
dq

= (1 − α)ESα[X ]− (1 − α)VaRα[X ]. (6.13)
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Expected loss E[X] 

Value of the annual loss, x

Value-at-Risk, VaR0.999

Pr[X > VaR0.999]=0.001 

Expected shortfall, ES0.999

f(
x)

figure 6.4 Illustration of the 0.999 Value-at-Risk (VaR) and the 0.999 expected shortfall (ES) of the
annual loss X with the probability density f (x)

This identity shows that the ES is not less than VaR

ESα[X ] ≥ VaRα[X ]; (6.14)

for a simple illustration see Figure 6.4.
In the case of continuous distributions, it can be shown that ESα[X ] is just expected loss

given that the loss exceeds VaRα[X ].

Proposition 6.4 For a random variable X with a continuous distribution function F (x), we have

ESα[X ] = E[X |X ≥ VaRα[X ]] = E[X |X > VaRα[X ]],

which is the conditional expected loss given that the loss exceeds VaRα[X ].

Proof : Using Definition 6.12, the proof is trivial: simply change the integration variable to
x = F−1

X (p).

For a distribution function FX (x) discontinuous (i.e., with a jump) at theVaRα[X ] thresh-
old, we have more general relation expressions and

E[X |X ≥ VaRα[X ]] ≤ ESα[X ] ≤ E[X |X > VaRα[X ]], (6.15)

where the equality on the right side is achieved when α = αU = Pr[X ≤ VaRα[X ]]; the
equality on the left side is achieved when α = αL = Pr[X < VaRα[X ]]; and other cases
correspond to strict inequalities; for illustration, see Figure 6.5. This is proved in the following
proposition.

Proposition 6.5 For a random variable X the ES can be calculated as

ESα[X ] = E [X |X > VaRα[X ]]− αU − α

1 − α
E[X −VaRα[X ]|X > VaRα[X ]] (6.16)
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0

1

F−1(α)

α

αL

αU

figure 6.5 An example of distribution F(x) with a jump at VaRα[X ]

or

ESα[X ] = E[X |X ≥ VaRα[X ]] +
α− αL

1 − α
E[X −VaRα[X ]|X ≥ VaRα[X ]], (6.17)

where αL = Pr[X < VaRα[X ]] and αU = Pr[X ≤ VaRα[X ]].

Proof : For a distribution continuous at α, we have αL = αU = α and the above relations
simplify to the correct expression (given by Proposition 6.4)

ESα[X ] = E[X |X ≥ VaRα[X ]] = E [X |X > VaRα[X ]] .

If there is a jump in distribution at level α, then αL ≤ α ≤ αU (see Figure 6.5), and relation
(6.16) can be proved using simple calculus and splitting the probability atom at α as follows:

ESα[X ] =
1

1 − α

1∫
α

VaRp[X ]dp =
1

1 − α

αU∫
α

VaRp[X ]dp +
1

1 − α

1∫
αU

VaRp[X ]dp

=
αU − α

1 − α
VaRα[X ] +

1 − αU

1 − α
E[X |X > VaRα[X ]].

Also, the relation (6.17) can be proved by the following splitting:

ESα[X ] =
1

1 − α

1∫
α

VaRp[X ]dp =
1

1 − α

1∫
αL

VaRp[X ]dp − 1
1 − α

α∫
αL

VaRp[X ]dp

=
1 − αL

1 − α
E[X |X ≥ VaRα[X ]]− α− αL

1 − α
VaRα[X ].

Given that αL ≤ α ≤ αU , it is obvious from relations (6.16) and (6.17) that
E[X |X ≥ VaRα[X ]] ≤ ESα[X ] ≤ E[X |X > VaRα[X ]] is true (see Acerbi and Tasche
2002, proposition 3.2).
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This relation might look a bit complicated but is easy to understand from finite sample
estimators. Consider a sample of i.i.d. random variables X1, . . . ,XN and the corresponding
ordered sample X(1,N) ≤ · · · ≤ X(N ,N). Then, the VaR at level α can be estimated as X(k,N),
where k = 	Nα
 is the smallest integer larger or equal to Nα. Then, in general (i.e., the sample
can be from distribution with jumps and there might be repeated values in a sample), the ES
(6.11) can be calculated empirically according to results based on the following asymptotic limit
of the empirical process of the weighted order statistics:

ESα[X ] = lim
N→∞

∑N
i=k X(i,N)

N − k + 1
. (6.18)

At the same time, conditional tail expectation E[X |X ≥ VaRα[X ]] is calculated as a simple
average of losses larger than or equal to VaR which can also be empirically estimated and shown
to asymptotically satisfy the following relationship in the empirical process limit given by:

E[X |X ≥ VaRα[X ]] = lim
N→∞

∑N
i=1 XiI{Xi≥VaRα[X ]}∑N

i=1 I{Xi≥VaRα[X ]}
, (6.19)

which is clearly different from the ES estimator (6.18) if there are repeated samples at the level
α (i.e., there is a jump in distribution at VaRα[X ] as in Figure 6.5).

The relationship between ES and VaR (6.12) allows to reformulate Proposition 6.3 as
follows.

Proposition 6.6 (ES as the minimum of cost function) ES can be written as

ESα[X ] = min
ρ

{
1

1 − α
E[max(X − ρ, 0)] + ρ

}
,

where the smallest ρ solving the minimization problem is VaRα[X ].

Proof : This follows directly from Proposition 6.3 and identity (6.12); also see (Rockafellar
and Uryasev 2002, theorem 10).

Note that this function is valid for continuous and discrete distributions. Moreover the function
1

1−αE[max(X − ρ, 0)] + ρ is convex as a function of ρ.
ES is a coherent risk measure. It satisfies coherent risk measure axioms in Definition 6.7, that

is, subadditivity, monotonicity, translation invariance, and positive homogeneity. It is, comonotonic
additive.

• Translational invariance, positive homogeneity, and monotonicity follow from correspond-
ing properties of VaR and ES definition:

ESα[X + a] =
1

1 − α

1∫
α

VaRp[X + a]dp = a +
1

1 − α

1∫
α

VaRp[X ]dp

= a + ESα[X ], for any a ∈ R, (6.20)
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ESα[λX ] =
1

1 − α

1∫
α

VaRp[λX ]dp = λ
1

1 − α

1∫
α

VaRp[X ]dp

= λESα[X ], for any λ > 0 (6.21)

and if X ≤ Y , then

ESα[X ] =
1

1 − α

1∫
α

VaRp[X ]dp

≤ 1
1 − α

1∫
α

VaRp[Y ]dp = ESα[Y ]. (6.22)

• ES is comonotonic additive, that is, for comonotonic (perfectly positively dependent) risks
X1, . . . ,Xn, the ES of their sum X1 + · · ·+ Xn, is the sum of individual ESs

ESα[X1 + · · ·+ Xn] = ESα[X1] + · · ·+ ESα[Xn]. (6.23)

This follows from the comonotonic additivity property of VaR

ESα[X1 + · · ·+ Xn] =
1

1 − α

1∫
α

VaRp[X1 + · · ·+ Xn]dp

=
1

1 − α

1∫
α

n∑
i=1

VaRp[Xi]dp

= ESα[X1] + · · ·+ ESα[Xn]. (6.24)

ES is not just subadditive but also convex, and this is proved in the following proposition.

Proposition 6.7 ES is a subadditive and convex risk measure.

Proof : Using Proposition 6.6 with ρ = λVaRα[X ] + (1 − λ)VaRα[Y ], λ ∈ (0, 1), and
convexity of function max(x − a, 0), we obtain

ESα[λX + (1 − λ)Y ] = λVaRα[X ] + (1 − λ)VaRα[Y ]

+
1

1 − α
E[max(λX +(1−λ)Y −λVaRα[X ]− (1−λ)VaRα[Y ], 0)]

≤ λVaRα[X ] + (1 − λ)VaRα[Y ] +
1

1 − α
E[max(λX − λVaRα[X ], 0)]

+
1 − λ

1 − α
E[max(Y −VaRα[Y ], 0)]

= λESα[X ] + (1 − λ)ESα[Y ]. (6.25)

This proves the convexity and in the case λ = 1/2 (also using positive homogeneity) gives the
subadditivity

ESα[X + Y ] ≤ ESα[X ] + ESα[Y ].
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The fact that ES is subadditive and comonotonic additive implies that the case of perfectly
dependent risks is the worst-case scenario for ESα[X1 + · · ·+ Xn].

EXAMPLE 6.3 ES for LogNormal distribution.

Assume that loss X is from LogNormal density f (x;μ, σ), i.e., lnX is from Normal
distribution with mean μ and variance σ2. Then VaR is

qα := VaRα[X ] = exp(μ+ σΦ−1(α))

and ES is calculated as follows:

ESα =
1

1 − α

∞∫
qα

xf (x;μ, σ)dx =
1

1 − α

∞∫
(ln qα−μ)/σ

eμ+σyφ(y)dy

=
1

1 − α
eμ+

1
2σ

2
Φ(σ − Φ−1(α)). (6.26)

Here, Φ(·) and Φ−1(·) are the standard Normal distribution and its inverse, respec-
tively; φ(·) is the standard Normal density, and we used the closed form integral

∞∫
a

eγxφ(x)dx = e
1
2γ

2
Φ(γ − a). (6.27)

EXAMPLE 6.4 ES for exponential distribution.

Assume that loss X is from exponential distribution F (x) = 1 − exp(−λx), that
is, with the density f (x) = λ exp(−λx). Then VaR is

qα := VaRα[X ] = F−1(α) = − 1
λ
ln(1 − α)

and ES is calculated as

ESα[X ] =
1

1 − α

∞∫
qα

xλe−λxdx = VaRα[X ] +
1
λ
. (6.28)

Note that the difference between ES and VaR does not depend on α; this is because
the exponential distribution is memoryless.
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6.2.5 SPECTRAL RISK MEASURE

Having defined the class of ES risk measures and demonstrated several examples of LDA models
under this risk measure, we now observe that ES is a special subclass of a larger class of risk
measures known as the Spectral Risk Measures (SRM) as given in Definition 6.14.

It is important at this stage to make the following technical clarification on the use of the
notation, ES, Conditional VaR (CVaR), and Tail Conditional Expectation TCE (or CTE). As
stated, we treat the ES as defined by the following form:

ESα[X ] =
1

1 − α

1∫
α

VaRp[X ]dp. (6.29)

In addition, one often reads about the notions of CVaRα[X ] and TCEα[X ], which has the
following definitions:

CVaRα[X ] = TCEα[X ] = E
[
X |X ≥ F−1

X (α)
]
. (6.30)

In general, one will find that CVaR is not a coherent measure of risk in the most general context.
However, in the case of a strictly continuous loss distribution, one will have equivalence between
the CVaR and the ES measures, which will be coherent.

Furthermore, we note that in the case that α = 0, one can see that at level α = 0, ES0[X ]
can be extended to be understood as the worst-case loss scenario given by

ES0[X ] = ess. sup[X ], (6.31)

where ess. sup stands for the essential supremum defined in Definition 6.13 below.

Definition 6.13 (Essential Supremum and Essential Infimum) Consider a measurable func-
tion f : X �→ R, where X is a measure space with measure μ, the essential supremum is the smallest
number α such that the set {x : f (x) > α} has measure zero. If no such number exists, then the
essential supremum is ∞.

Remark 6.3 The essential supremum is the generalization to measurable functions of the maximum.
The main difference is that the values of a function on a set of measure zero do not affect the essential
supremum. The essential supremum of the absolute value of a function |f | is usually denoted ||f ||∞,
and this serves as the norm for L-∞-space.

Returning to discussion on risk measures, next we turn to the question of how one may
utilize the notion of the ES risk measure to extend to a wider class of risk measures. The answer
to this question was studied by Acerbi (2002).

To build new risk measures we first consider the result in Proposition 6.8 (see Acerbi 2002,
proposition 2.2).

Proposition 6.8 (Linear Combinations of Risk Measures) Consider the set of risk measures
{ρi}n

i=1, then any convex combination given by

ρ =
n∑

i=1

αiρi (6.32)
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for weights subject to the restrictions {αi}n
i=1 and

∑n
i=1 αi = 1 will produce a risk measure. In

addition, if ρα is a risk measure defined with respect to a parameter α ∈ [a, b], then for any measure
dμα on [a, b] with

∫ b
a dμ(α) = 1, ρ =

∫ b
a dμ(α)ρα is also a risk measure.

The observation of this result allows one to then define a general family of risk measures
based on considering the measure dμ(α) for α ∈ [0, 1]. As observed by Acerbi (2002), if the
measure dμ(α) is selected to satisfy some basic integrability conditions, then one may now
define a class of risk measures based on the ES risk measure as follows:

Mμ[X ] =

1∫
0

dμ(α)(1 − α)ESα[X ] =

1∫
0

dμ(α)
1∫

α

dpF−1
X (p). (6.33)

This will be a risk measure so long as the following condition is satisfied,

1∫
0

(1 − α)dμ(α) = 1. (6.34)

Then under the same integrability conditions, one may apply the Fubini–Tonelli theorem to
swap orders of integration in the definition of the class of risk measures such that one has

Mμ[X ] =

1∫
0

dpF−1
X (p)φ(p) ≡ Mφ[X ], (6.35)

in other words, parameterization in terms of a risk measure dμ(α) can be transformed into a
parameterization in terms of a function φ typically termed the “risk spectrum” given by φ(p) =∫ 1

p dμ(α) and normalization condition

1∫
0

φ(p)dp =

1∫
0

dμ(α)(1 − α) = 1. (6.36)

This realization led to the definition of the class of Spectral Risk Measures (SRM).

Definition 6.14 (Spectral Risk Measures) Consider an LDA model for an OpRisk single loss
process with annual loss random variable ZN ∼ FZN (z) with severity distribution Xi ∼ FX (x)
for all losses Xi and frequency distribution N ∼ FN (n). The SRM for a weight function
φ : [0, 1] �→ R is given by

SRMZN (φ) =

1∫
0

φ(s)VaRs [ZN ] ds (6.37)

with ∀t ∈ (1,∞) and function φ(1 − 1/t) ≤ Kt−1/β+1−ε for some K > 0 and ε > 0.
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Remark 6.4 Tong and Wu (2012) showed that if an individual has a Constant Absolute Risk
Aversion (CARA) utility function with coefficient of absolute risk aversion ξ, then the SRM should
be given according to

SRMφκ
(κ) =

1∫
κ

φκ(s)VaRs ds,

where the weighting function (risk spectrum or risk aversion function) φκ(s) is given by

φκ(s) = (1 − κ)−1φ

(
1 − 1 − s

1 − κ

)
I[κ,1](s)

with

φ(κ) =
ξe−ξ(1−κ)

1 − e−ξ
.

Note that if one considers φ(t) ≡ 1∀t ∈ [0, 1], then the SRM resumes to the ES.

Dowd and Blake (2006) explain that the following three properties are required to be
satisfied in order for a SRM to be coherent:

1. Non-negativity. The risk aversion function φκ(s) ≥ 0 for all κ, s ∈ [0, 1];
2. Normalization. The risk aversion function φκ(s) should be normalized as follows:

1∫
0

φ0(s)ds = 1. (6.38)

3. Increasing. The risk aversion function φκ(s) should be increasing such that for any
κ ∈ (0, 1), one has φκ (s1) ≤ φκ (s2) for all κ ≤ s1 ≤ s2 ≤ 1;

These should therefore act as a minimal set of requirements for risk managers to consider
when specifying their risk aversion function. The last condition simply implies that larger losses
should be no smaller than weights attached to smaller loss amounts. This last point, simple as
it may be, is the key to coherency of ES and SRM and also the reason why VaR fails to be a
coherent risk measure.

6.2.6 HIGHER-ORDER RISK MEASURES

As observed, the VaR is not a coherent risk measure since the convexity requirement reflects the
view that diversification should not increase risk. It has been observed that the VaR will not be
a coherent risk measure; consequently, alternatives to VaR have been suggested and investigated
such as ES and SRM.

Among the risk measures that satisfy the coherency properties, the notions of CVaR have
been already considered. There are also other measures such as Maximum Loss described by
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Pflug (2000), as well as other coherent risk measures that are based on one-sided moments such
as described by Fischer (2003) and the deviation d-based risk measures discussed by Rockafellar
et al. (2006).

Other notions that extend the idea of the Average VaR (AVaR or TCE), which in the
continuous loss distribution case corresponds to the coherent risk measure ES, have also been
considered such as the general higher-order moment representations by Krokhmal (2007).
Such higher moment risk measures were also considered in the dual representation under the
Kusuoka form by Dentcheva et al. (2010). The definition of the class of Higher Moment
Coherent Risk (HMCR) measures is given in Definition 6.15 (see Krokhmal 2007). Note that
throughout the remainder of this section, the loss distribution will be assumed continous such
that the AVaR will be equivalent to the ES.

Definition 6.15 (Higher Moment Coherent Risk Measures) Consider the probability space
(Ω,F , μ) with sample space Ω, sigma algebra F , and probability measure μ. Then consider the lin-
ear space χ of F -measurable function mappings, that is, loss random variables given by X : Ω �→ R

such as χ = Lp (Ω,F , P) for some p ∈ (1,∞). Then for some α ∈ (0, 1), consider the function

φ(X ) =
1

(1 − α)
||(X )+||p, (6.39)

where the p-norm is defined by ||X ||p = (E|X |p)1/p. Then the HMCRs are defined by

HMCRp,α(X ) = min
ν∈R

(
ν +

1
1 − α

||(X − ν)+||p
)
, p ≥ 1, α ∈ (0, 1). (6.40)

One may make the following remarks about the properties of the HMCR measures.

Remark 6.5 The HMCR measures satisfy the following properties:

• For p < q and loss random variable in the space X ∈ Lq, one has

HMCRp,α(X ) ≤ HMCRq,α(X ). (6.41)

• The HMCR measures are tail measures or risks, that are coherent measures of risk. They can
therefore be seen as generalizations of the convex but not positive homogeneous or translation
invariant risk measures considered by Bawa (1975) known as the Lower Partial Moments and
given by

LPMp(X ; t) = E
[
(X − t)+

]p
, p ≥ 1, t ∈ R. (6.42)

• The HMCR measures are also related to the Central One-Sided Moment (COSM)-based risk
measures considered by Fischer (2003) and defined by the class of coherent measures of semi-Lp
type given by

COSMp,β(X ) = E[X ] + β||(X − E[X ])+||p, p ≥ 1, β ≥ 0. (6.43)
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These COSM risk measures are central one-sided moment risk measures whereas the HMCR
measures are tail-based risk measures;

• An advantage of HMCR measures when compared to other coherent risk measures is that their
tail cutoff point is adjustable to the chosen level α ∈ (0, 1).

Krokhmal (2007) pays particular attention to the second-order HMCR case where p = 2,
which displays remarkably similar characteristics to the CVaR while at the same time measuring
the risk relative to the second-order moments of the loss distributon. Dentcheva et al. (2010)
consider a dual representation also known as the Kusuoka representation. This involves defining
the notion of a Kusuoka measure of risk given in Definition 6.16 (see Kusuoka 2001).

Definition 6.16 (Kusuoka risk measure) Consider the probability space (Ω,F , μ) with sam-
ple space Ω, sigma algebra F , and probability measure μ. Then consider the linear space χ of
F -measurable function mappings, that is, loss random variables given by X : Ω �→ R such as
χ = Lp (Ω,F , P) for some p ∈ [1,∞). Then a Kusuoka risk measure denoted by ρ(Z) is defined
for a convex set of measures M in the set P((0, 1]) of probability measures on (0, 1] such that for
all loss random variables Z one has

ρ(Z) = sup
m∈M

1∫
0

AVaRα(Z)m(dα), (6.44)

where AVaRα is the average VaR at level α.

Remark 6.6 It was shown by Kusuoka (2001) that the Kusuoka representable risk measures are
coherent when defined on L∞(Ω,F , P), and then by Dentcheva et al. (2010) showed that this
result could be extended to risk measures defined on spaces Lp. In addition, it was shown that the
HMCR class of risk measures has a Kusuoka representation.

The AVaR plays a central role in the description of every coherent risk measure via the
Kusuoka representation. AVaR is a coherent risk measure, hence it is preferred in stochastic
optimization. However, there are other coherent risk measures, generated from AVaR via the
Kusuoka representation. To further understand the role played by the AVaR, consider the loss
random variable X ∈ L1(Ω,F , P) and consider the tail of the severity distribution for this loss
random variable given by,

FX (ν) = Pr [X ≤ ν] , (6.45)

and,

F (k)
X (ν) =

∞∫
ν

F (k−1)
X (α)dα, k ≥ 2. (6.46)
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Then define the inverse F (−1)
X (α) = inf {ν : FX (ν) ≥ α} for α ∈ (0, 1) where the AVaR at a

level α is given by

AVaRα(X ) =
1

1 − α
F (−2)

X (α)

=
1

1 − α

1∫
α

VaRs[X ]ds,
(6.47)

where one can identify F (−2)
X (α) as the absolute Lorenz function. One can then use the result

of Kusuoka (2001) to obtain the following alternative extremal representation that generalizes
the AVaR. To see this, consider the AVaRα(X ) given by

AVaRα(X ) =
1

1 − α
sup
ν∈R

{
να− F (2)

X (ν)
}

= inf
ν∈R

{
1

1 − α
E
[
(ν − X )+

]
− ν

}
,

(6.48)

which can be generalized to the representation given by the HMCR measure according to

inf
ν∈R

{
1
α
||(ν − X )+||p − ν

}
, p > 1. (6.49)

Dentcheva et al. (2010) demonstrated that the resulting Kusuoka representation can then be
obtained by considering the risk measures defined with respect to the convex set of measures
M given by M = Mq with p−1 + q−1 = 1 such that

Mq =

⎧⎨
⎩μ ∈ P((0, 1]) :

1∫
0

∥∥∥∥∥∥
1∫

α

μ(ds)
ds

∥∥∥∥∥∥
q

dα ≤ cq

⎫⎬
⎭ . (6.50)

6.2.7 DISTORTION RISK MEASURES

Another popular class of risk measures used in insurance are the so-called distortion risk measures
introduced by Wang (1996). Distortion risk measures form an important class; they include
Value at Risk, Conditional Tail Expectation and Wang’s PH transform premium principle.
Before definition the distortion risk measure, we first need to introduce the definition of dis-
tortion function.

Definition 6.17 (Distortion function) A distortion function g(·) is a non-decreasing function
with g(0) = 0 and g(1) = 1 such that g : [0, 1] �→ [0, 1] .

One can then define the class of distortion risk measures based on the class of distortion
funtions as follows in Definition 6.18.
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Definition 6.18 (Distortion risk measure) For a non-negative random variable X from a dis-
tribution F (x), the distortion risk measure is defined as

ρ[X ] =

∞∫
0

g(F (x))dx,

where F (x) = 1 − F (x) and g(·) is a nondecreasing distortion function such that g(0) = 0 and
g(1) = 1.

Remark 6.7 The distortion risk measure can be interpreted as adjusting the true probability mea-
sure to give more weight to higher risk events. Hence, the distortion function g(F (x)) can be thought
of as a risk adjusted decumulative distribution function. Since X is a non-negative random variable,
ρ(X ) = Eg [X ] where the subscript indicates in this case the change of measure for the expectation.

The properties and several examples of viable distortion functions g(·) are provided in the
discussions in (Wirch, 2001).

This risk measure is positively homogeneous, translation invariant, monotonic, and comono-
tonic additive. It is also subadditive (i.e., coherent) if distortion function g(·) is concave.

Definition 6.19 A real-valued function g(x) defined on an interval I is called convex if

g(tx1 + (1 − t)x2) ≤ tg(x1) + (1 − t)g(x2)

for t ∈ [0, 1] and all x1, x2 ∈ I , that is, the graph of the function lies below the line segment joining
any two points of the graph. Similarly, the function g(x) is called concave if

g(tx1 + (1 − t)x2) ≥ tg(x1) + (1 − t)g(x2)

for t ∈ [0, 1] and all x1, x2 ∈ I , that is, the graph of the function lies above the line segment joining
any two points of the graph.

The well-known risk measures such as VaR and ES are the distortion risk measures for
specific choice of g(·). In particular, for a confidence level α ∈ (0, 1), VaR corresponds to

g(x) =
{

1, if x > 1 − α,
0, otherwise, (6.51)

which is not a concave function; and ES corresponds to a concave distortion function

g(x) = min

(
1,

x
1 − α

)
. (6.52)

For more details on distortion risk measures, see Denuit et al. (2005, sections 2.6.2 and 2.6.3).

6.2.8 ELICITABLE RISK MEASURES

Recently, the notion of an elicitable risk measure has been introduced by Bellini and Bignozzi
(2013) as an adaption to financial risk measures from the more general point estimator setting
developed by Gneiting (2011), Osband and Reichelstein (1985), and Lambert et al. (2008).
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To understand this class of risk measures one must first consider the notion of an elicitable
function, which was defined with respect to forecast point estimators under a decision theoretic
framework by Lambert et al. (2008). Therefore, to understand this class of risk measures we
present the general decision theoretic structure introduced before considering this structure for
financial risk measures. In particular, we will consider the formal definition of the decision
theory framework, the scoring function, the consistency of the scoring function, and then the
class of elicitable scoring functions. We start with the notion of a decision theoretic structure,
as discussed in detail by, for instance, Berger (1985).

Definition 6.20 (Classical decision theoretic structure) Consider the following components of
the decision theoretic structure:

• Space of outcomes of the random process known as the observation domain, O;
• A class of probability measures F defined on the observation domain;
• The action space A;
• A loss function that maps the cross space of actions and observations for a loss/reward given

generically by

L : O ×A �→ [0,∞). (6.53)

The loss function quantifies the consequence that would be incurred for each possible decision
for various possible values of the “state of nature” observed in the observation space of the loss
process.

Typically, an action in this context is the formation of an estimator, generically denoted
by θ̂(X ), which is a function of the random loss process. The loss process itself can be assumed
to involve a probability distribution X ∼ FX (x; θ) with true (unknown) state of nature, char-
acterized, for example, by parameter(s) θ. The loss function then helps one to decide upon the
appropriate choice of action that is, to make a decision regarding the estimator. The typical loss
functions include the following:

• Squared loss function: L(θ, θ̂ ) = (θ − θ̂ )2;

• Absolute error loss function: L(θ, θ̂ ) = ‖θ − θ̂‖;

• Lp loss function: L(θ, θ̂ ) = ‖θ − θ̂‖p;

• Binary loss function: L(θ, θ̂ ) = I[θ �= θ̂ ].

If one then considers, for a given loss function choice, a decision rule (action) with a small
“expected (long-term average) loss” obtained by using the estimator θ̂(X ) for different real-
izations of the loss process X , then this leads one naturally to the notion of a statistical risk
function in statistical decision theory given by

R
(
θ, θ̂

)
= Eθ

[
L
(
θ, θ̂

)]
. (6.54)

Using this general decision theoretic structure, Gneiting (2011) makes a particular choice
in which it is assumed that the observation and action spaces coincide, that is, O = A ∈ R;
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note that in the remainder of this section we assume these spaces to be the real line. Then one
can define a scoring function analogously to the notion of a loss function in a decision theoretic
setting.

Then the following assumptions are made about the scoring (loss) function S(x, y):

• [A1] The scoring function S(x, y) is positive S(x, y) ≥ 0 with equality when x = y;
• [A2] The scoring function S(x, y) is a continuous function in x;
• [A3] The partial derivative with respect to the first argument exists and is continuous

whenever x �= y.

In addition, it will be desirable to consider scoring (loss) functions that are homogeneous (scale
invariant) such that

S(cx, cy) = |c|bS(x, y), ∀x, y ∈ R, c ∈ R. (6.55)

From this general statistical decision theory setup, one may now consider a functional (i.e.,
a statistical function), which is, for instance, a set valued mapping, denoted T , from a class of
probability measures (distributions) F to a Euclidean space. From this notion, one may define
a consistent scoring function as given in Definition 6.21.

Definition 6.21 (Consistent scoring function) A scoring function S(x, y) is consistent for a
functional T relative to a class of measures (distributions) F if it satisfies the condition

EF [S(t,Y )] ≤ EF [S(x,Y )] (6.56)

for all probability distributions F ∈ F , all t ∈ T (F ), and all x ∈ R.

Note that strict consistency of a scoring function arises when the scoring function is consistent
and equality in Equation (6.56) implies that x ∈ T (F ).

One may now observe that the class of the scoring functions, that are consistent for a
certain functional T is identical to the class of the loss functions under which the functional is
an optimal point forecast.

From the notion of a consistent scoring function, one may now define the concept of an
elicitable function, as given in Definition 6.22.

Definition 6.22 (Elicitable function) A functional T is elicitable with respect to a class of
measures (probability distributions) F if there exists a scoring function (loss function) S which
is strictly consistent for the functional T relative to F . That is possibly a set valued functional
T : M1(R) �→ R, for the set of probability distributions on the real line, M1(R), is measur-
able if it satisfies

T (F ) = argmin
x

∫
S(x, y)dF (y), (6.57)

where the scoring function satisfies the conditions A1–A3 defined earlier.

Simple examples of elicitable functionals include the mean, which minimizes the quadratic
score (loss) function; the quantile interval, which is the set of minimizers of a piecewise linear
score function; and the expectiles, which minimize the asymmetric piecewise quadratic score.
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One may now define an important class of loss distribution functionals that are of direct
importance when considering risk measures, as studied by Thomson (1979) and Saerens
(2000); see Theorem 6.1.

Theorem 6.1 (Quantile elicitable risk measures) Consider the class of loss distributions F on
the interval I ⊆ R and the value α ∈ (0, 1). Then the following holds:

• The α-quantile function is elicitable relative to the class of loss distributions F ;
• If the scoring function S(x, y) satisfies conditions A1–A3 on domain I × I , then S is consistent

for the α-quantile relative to the class of compactly supported loss distributions on I if and only
if it has the form

S(x, y) = I(x ≥ y) (g(x)− g(y)) , (6.58)

for a nondecreasing function g on I.

Remark 6.8 (Elicitabilty and the relationship with backtesting risk measures) It was obs-
erved by Bellini and Bignozzi (2013) for the case of financial risk measures, that it is valuable
to consider the elicitability property as it provides a natural methodology to perform backtesting of
risk measures. Here, we define the notion of backtesting as the activity of periodically comparing
the forecasted risk measure with the realized value of the variable under interest, so as to assess the
accuracy of the forecasting methodology.

A typical example of backtesting involves the VaR measure in which the VaRα[X ] = qα(X )
where qα(X ) denotes the quantile of the loss distribution for a loss random variable X ∼ F .
Then given a model estimated VaR, the question becomes how one may test such an estimated
VaR using historical data. A typical approach to backtesting of an estimated VaR measure in
OpRisk is to consider counting the number of violations during a fixed time interval (in years
for OpRisk) and then comparing this to a theoretical model estimated quantity through a
formal binomial hypothesis test. Note that a positive count is recorded for each violation of the
historical empirical losses in given sets of periods when compared to the model VaR, that is, in
this case, a violation in a year or so period of interest occurs when the realized order statistic
for the quantile level α at which one calculates the model-based VaR falls below the model
estimate.

This concept of backtesting of the risk measure can be generalized to more complex risk
measures ρ(x) as long as they satisfy the condition that they are elicitable. Bellini and Bignozzi
(2013) observe that an important example of a coherent and backtestable risk measure is the
class of expectile risk measures, given in Definition 6.23.

Definition 6.23 (Expectiles) The κ-level expectile for a random variable Z, denoted by μκ, is a
parameter that minimizes the expectation given by

E

[
|κ− I [Z < μκ]| (Z − μκ)

2
]

(6.59)

for κ ∈ (0, 1).

Remark 6.9 Generally, the κ-level expectile μκ is neither the VaR nor the ES and does not have a
simple intuitive explanation.
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One can observe that μκ occurs at a quantile level of the annual loss Z , denoted by qκ and
typically one has κ < qκ; hence, one can also see that μκ also minimizes the expectation

E [(qκ − I [Z < μκ]) (Z − μκ)] . (6.60)

Newey and Powell (1987) then showed that there is a one-to-one relationship between the
expectiles and the ES risk measure. In the simple case that E[Z ] = 0, one would obtain the
relationship

ESα[Z ] =

(
1 +

κ

(1 − 2κ)qκ

)
μκ. (6.61)

Note: Typically, this will not be a case of interest in OpRisk settings, and more general expres-
sions may be obtained in the earlier mentioned reference. This relationship provides interesting
alternative statistical methods to perform estimation of ES for OpRisk settings based on quan-
tile regressions.

Definition 6.24 (Expectile risk measures) The expectiles can also be shown to correspond to a
class of coherent and elicitable risk measures that correspond to a scoring function given by

S(x, y) = αIy>x(x − y)2 + (1 − α)Iy<x(x − y)2. (6.62)

A second example of a nonstandard elicitable risk measure is the class of measures known
as the Λ-VaR as defined by Frittelli et al. (2014) and given in Definition 6.25.

Definition 6.25 (Λ-Value-at-Risk) The elicitableΛ-VaR measure is given by considering the con-
tinuous and strictly decreasing mapping Λ : R �→ (0, 1) satisfying the conditions that Λ(x) �→ 1−
for x → −∞ and Λ(x) �→ 0+ for x → ∞. Then one can define the functional T (F ) as the
Λ-VaR measure with respect to a class of loss distributions F ∈ F according to the definition

T (F ) = inf {m ∈ R : FX (m) ≥ λ(t)} . (6.63)

The corresponding scoring (loss) function for this tail functional (risk measure) is given by

S(x, y) = (x − y)+ − ϕ(x), (6.64)

with

ϕ(x) =
x∫

y

Λ(s)ds. (6.65)

6.2.9 RISK MEASURE ACCOUNTING FOR
PARAMETER UNCERTAINTY

Typical risk models are parameterized by a generic parameter vector θ, where the true value
of the parameter θ is unknown and should be estimated. It is expected that the uncertainty
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in parameters should increase the capital. A convenient way to deal with this problem is to
model parameter θ by a random variable vector Θ with its own distribution. Consider risk X
with conditional density f (x|Θ), where Θ is a random variable vector from π(θ). Then the
predictive density of X is

f (x) =
∫

f (x|θ)π(θ)dθ (6.66)

and we can calculate a capital using some risk measure ρ[X ] based on this distribution.
Denote a risk measure based on the conditional distribution F (x|θ) as ρ[X |Θ]. It is pos-

sible to get the following useful result for a risk measure that can be represented as a distortion
risk measure (see Definition 6.18)

ρ[X ] ≥ EΘ[ρ[X |Θ]] (6.67)

if the distortion function g(·) is concave. This can be proved using Jensen’s inequality1 as
follows:

ρ[X ] =

∞∫
0

g(F (y))dy =
∞∫

0

g
(∫

F (y|θ)π(θ)dθ
)

dy

≥
∫

π(θ)dθ
∞∫

0

g(F (y|θ))dy = EΘ[ρ[X |Θ]]. (6.68)

One can also consider risk measure ρ[X |Θ] as a function of a random variable vector Θ;
find the distribution of ρ[X |Θ]; and form a predictive interval [L,U ] to contain the true value
with a probability γ:

Pr[L ≤ ρ[X |Θ] ≤ U ] = γ, (6.69)

or form a one-sided predictive interval Pr[ρ[X |Θ] ≤ U ] = γ. Then it can be argued that
the conservative estimate of the capital accounting for parameter uncertainty should be based
on the upper bound of the constructed predictive interval. However, it might be difficult to
justify a particular choice of confidence γ. One should answer the question as to whether it is
conservative enough to use, for example, γ = 0.95 for estimation of 0.999 quantile.

Modeling parameterθ by a random variable vectorΘ corresponds to the Bayesian inference
approach. In this case, π(θ) would be a posterior distribution for given observed data. The
frequentist analogy is to replace parameterθ by its point estimator θ̂, which is treated as random.

Remark 6.10

• Note that VaR is a distorted risk measure with a function g(·) given by (6.51), which is neither
concave nor convex. ES is a distorted risk measure with g(·) given by (6.52), which is concave.
Thus, inequality (6.67) is guaranteed for ES. However, it is not true in general for VaR; see
Example 6.5;

1Jensen’s inequality for a random variable Z states that ϕ(E[Z ]) ≤ E[ϕ(Z)] if φ(·) is a convex function and
inequality is reversed if φ(·) is concave.
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• Assuming that the distribution parameter has some distribution itself is also known as mixing.
As a result, the unconditional distribution typically has a heavier tail than the conditional one;
see Example 6.5.

EXAMPLE 6.5 Exponential distribution with the Gamma distributed parameter

Assume that for a given parameter λ, loss X is from the exponential distribution
F (x|λ) = 1 − exp(−λx), that is, with the density f (x|λ) = λ exp(−λx). Also
assume that parameter λ is modeled by a random variable Λ from the Gamma dis-
tribution Gamma(α, 1/β) with the density denoted π(λ). Then the unconditional
density of loss X is

f (x) =
∞∫

0

f (x|λ)π(λ)dλ

=
βα

Γ(α)

∞∫
0

λe−λxλα−1e−λβ

=
βα

Γ(α)

∞∫
0

λαe−λ(x+β)dx

=
βα

Γ(α)

Γ(α+ 1)
(x + β)α+1

=
αβα

(x + β)α+1 , (6.70)

which is a density of Pareto distribution Pareto(α, β)

F (x) = 1 −
(

1 +
x
β

)−α

.

Thus,

VaRq[X ] = β

(
exp

(
− 1
α
ln(1 − q)

)
− 1

)
. (6.71)

The CVaR, VaRq[X |Λ], is just the inverse of the exponential distribution

VaRq[X |Λ] = − 1
λ
ln(1 − α)

Given thatΛ is from Gamma(α, 1/β), Qq(Λ) ≡ VaRq[X |Λ] is from inverse Gamma
distribution with the shape parameter α and scale parameter −β ln(1− q). Then it
is easy to find the quantiles of Qq(Λ) and other characteristics such as the mean:

E[Qq(Λ)] = −β ln(1 − q)
α− 1

, α > 1. (6.72)
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Comparing (6.72) and (6.71), it is easy to see that VaRq[X ] is not always larger
than E[VaRq[X |Λ]]. It depends on the shape α and quantile level q. It is easy to
find that

VaRq[X ] ≥ E[VaRq[X |Λ]] if q ∈ [qc(α), 1), (6.73)

where qc(α) = 1 − exp(αyc) and yc is a solution of h(y) = exp(−y) + yα/
(α− 1)− 1 = 0, y < 0. Conversely,

VaRq[X ] < E[VaRq[X |Λ]] if q ∈ (0, qc(α)). (6.74)

The function qc(α) is presented in Figure 6.6. One can see that for large α, only
small quantile levels will break the inequality (6.73). However, for α → 1, only
large quantiles qc → 1 will have loading for parameter uncertainty.
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figure 6.6 Critical quantile level qc versus shape parameter α; see Example 6.5 for details

6.3 Capital Allocation

Bank capital should be allocated to the various levels within a bank. The allocated capital can
be used by risk managers as a mechanism to provide incentives for better risk management.
Risk allocation is closely related to the choice of risk measure but in addition should account
for diversification in a risk collection. In this section, we treat the issue of risk allocation with
a focus on cases of VaR and ES risk measures.

Consider a collection of risks X1, . . . ,Xn. If the risk measure ρ[·] is chosen, then risk cap-
ital can be quantified for each risk ρi = ρ[Xi]. If these risks are combined into one business
(collections), then the total capital for the business is ρ[X1 + · · · + Xn], which is less than or
equal to ρ1 + · · ·+ ρn for coherent risk measures. After the total capital is measured by ρ[·], it
is important to answer the question as to how much a risk cell i contributes to the total capital.
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Calculation of the bank overall capital ρ[X ], where

X = X1 + · · ·+ Xn,

is the annual loss in a bank over the next year and should be followed by an important procedure
of allocation of the capital into risk cells in such a way that

ρ[X ] =
n∑
i

Πi. (6.75)

Here, Πi denotes the capital allocated to the i-th risk cell. To formalize this statement, define
the allocation principle as follows.

Definition 6.26 (Allocation principle) An allocation principle is a mapping of a collection of
risks Xi, i = 1, 2, . . . , n into unique allocations Πi = Πi[X1, . . . ,Xn], i = 1, . . . , n such that

n∑
i=1

Πi = ρ[X ].

Capital allocation Πi can be used for performance measurement providing incentives for
a business to improve its risk management practices. Naive choice Πi = ρ[Xi] is certainly not
appropriate because it disregards risk diversification. Moreover, the sum of ρ[Xi] adds up to ρ[X ]
only in the case of perfect positive dependence between risk cells. In this section, we present two
popular methods, the Euler principle and marginal contribution, to allocate the capital.

6.3.1 COHERENT CAPITAL ALLOCATION

Similar to defining a coherent risk measure using a set of axioms, a coherent allocation principle
can be defined. A set of axioms (argued to be necessary properties of a reasonable allocation
principle) are introduced by Denault (2001).

Definition 6.27 (Coherent allocation axioms set 1) An allocation principle is coherent if it
satisfies the following three properties:

• No undercut. For any subset M of {1, . . . , n}
∑
i∈M

Πi ≤ ρ

[∑
i∈M

Xi

]
.

• Symmetry. If for any subset M of {1, . . . , n} that excludes risks i and k,

ρ

⎡
⎣Xi +

∑
j∈M

Xj

⎤
⎦ = ρ

⎡
⎣Xk +

∑
j∈M

Xj

⎤
⎦ ,

then Πi = Πk. That is, if by joining a subset M, risks i and k make the same contribution to
the risk capital, then Πi = Πk;

• Riskless allocation. If Xi is riskless, that is, Xi = α, then Πi = ρ[α] = α.



�

�

“Cruz_Driver1” — 2015/1/8 — 14:40 — page 135 — #34
�

�

�

�

�

�

6.3 Capital Allocation 135

Remark 6.11

• While the risk measure of the i-th risk ρi = ρ[Xi] does not depend on other risks, the contribution
of this risk to the total risk ρ[X1 + · · · + Xn] is Πi = Πi[X1, . . . ,Xn], which depends on all
other risks;

• Often we are interested in non-negative allocation that satisfies Πi ≥ 0 for i = 1, . . . , n;
• Note that we define loss as a positive random variable, that is, cash amount corresponds to a

negative value.

The proposition is that the three axioms in Definition 6.27 are necessary conditions of the
fairness of allocation principle. These conditions can be justified as follows:

• No-undercut ensures that no risk can undercut the proposed allocation. An undercut is the
situation when a capital allocation to a risk is higher than the amount of capital this risk
would face if it were an entity separate from a collection of risks. If a risk joins the collection
of risks (or any subset of the collection), then the capital of the collection increases by no
more than the capital of this risk. In addition, the property ensures that the coalitions of
risks cannot create an undercut;

• Symmetry ensures that risk allocation depends only on its contribution to the risk within a
collection and nothing else;

• Riskless allocation means that riskless position should be allocated a capital exactly the same
as its risk measure. It also means that allocated capital decreases by the amount of increase
in a cash position.

A different set of axioms is considered by Kalkbrener (2005), who assumes that capital
allocation Πi depends on Xi and X only; we denote this allocation as ρ[Xi,X ] ≡ Πi.

Definition 6.28 (Coherent allocation axioms set 2)

• Linear aggregation. The risk capital of the portfolio (collection) of risks equals the sum of the
contributory risk capital of its individual risks, that is,

ρ[X ] = ρ[X1,X ] + · · ·+ ρ[Xn,X ].

• Diversification. The risk capital ρ[X ,Y ] of X considered as a subportfolio of Y does not exceed
the risk capital ρ[X ] of X considered as a stand-alone portfolio;

• Continuity. Small changes to the portfolio of risks only have a limited effect on the risk capital
of its subportfolios. More formally, the risk capital ρ[X ,Y + εX ] converges to ρ[X ,Y ] if ε
converges to 0.

Both sets of axioms lead to the same result that allocation should be done using Euler’s
principle if the utilized risk measure is coherent, which is the subject of the next section.
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6.3.2 EULER ALLOCATION

Typically, the allocated capital is calculated as

Πi =
∂ρ[X + hXi]

∂h

∣∣∣∣
h=0

, subject to ρ[X ] =
n∑

i=1

Πi; (6.76)

(see Litterman 1996, Tasche 1999, 2008, and McNeil et al. 2005, section 6.3). These are called
the Euler allocations and represent capital allocation per unit of exposure Xi. They are consistent
with axioms of coherent allocations; see Definition 6.27 and 6.28, for coherent risk measures.
However, only positive homogeneity and differentiability of the risk measure are required for
formula (6.76), which is based on the following well-known Euler theorem for homogeneous
functions.

Definition 6.29 (Homogeneous function) A function f (u) = f (u1, . . . , un), u ∈ R
n, is

called homogeneous of degree τ if for all λ > 0

f (λu1, . . . , λun) = λτ f (u1, . . . , un).

Homogeneous functions that are continuous and differentiable have several properties rel-
evant to risk modeling summarized later; for a proof, see Tasche (2002 later, 2008).

Theorem 6.2 (Euler’s theorem for homogeneous functions) If function f (u) is a continu-
ously differentiable function, then f (u) is homogeneous of degree τ if and only if it satisfies

τ f (u) =
n∑

i=1

ui
∂f (u)
∂ui

.

Proposition 6.9 Function f (u), which is homogeneous of degree 1, that is, f (λu) = λf (u), is
convex

f (tu + (1 − t)v) ≤ tf (u) + (1 − t)f (v), t ∈ [0, 1], u, v ∈ R
n

if and only if it is subadditive, that is,

f (u + v) ≤ f (u) + f (v).

In addition, a continuously differentiable homogeneous function of degree 1 is subadditive (and
convex) if and only if,

n∑
i=1

ui
∂f (u + v)

∂ui
≤ f (u).

Consider random variables X1, . . . ,Xn representing risks (losses) with the total loss X =
X1+· · ·+Xn. The capital for this risk collection is determined by risk measure ρ[X ]. Introducing
weight variables u = (u1, . . . , un), so that,

X (u) = u1X1 + · · ·+ unXn,
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that is, X = X (1, . . . , 1), we can consider the risk measure as a function of u,

fρ(u) = ρ[X (u)],

and determine the finally required risk measure as,

ρ[X ] = ρ[X (1, . . . , 1)].

It is obvious that the function fρ corresponding to risk measure ρ is homogeneous of degree
τ if ρ is homogeneous of degree τ ; the risk measure is homogeneous of degree τ if for all λ > 0,
ρ[λX ] = λτρ[X ]. This correspondence allows translating properties of homogeneous functions
(such as Euler theorem) to the homogeneous risk measures. In OpRisk, we are interested in the
case of homogeneous functions (homogeneous risk measures) of degree 1, which is the case for
risk measures such as VaR and ES. Now it is easy to prove the Euler allocation formula (6.76),
formally given by the following theorem.

Theorem 6.3 (Euler allocation principle) If risk measure ρ[·] is positive homogeneous of degree
1 (i.e., ρ[λX ] = λρ[X ], λ > 0) and differentiable, then

ρ[X ] =
n∑

i=1

ΠEuler
i , (6.77)

where

ΠEuler
i =

∂ρ[X + hXi]

∂h

∣∣∣∣
h=0

. (6.78)

Proof : Consider X (u) = u1X1 + · · ·+ unXn, where u ∈ R
J . Then risk measure ρ[X (u)] can

be considered as a function of u, fρ(u) = ρ[X (u)], which is a homogenous function of degree
1. Applying Euler’s theorem for homogeneous functions, Theorem 6.2 with u = (1, . . . , 1)
gives (6.78). It is also easy to prove this result directly. Consider fρ(λu) = ρ[λX (u)], λ > 0.
Then using the homogeneity property ρ[λX ] = λρ[X ],

dfρ(λu)
dλ

= ρ[X (u)].

On the other hand, using the standard rule of derivative calculus,

dfρ(λu)
dλ

=

n∑
i=1

∂fρ(λu)
∂(λui)

ui =

n∑
i=1

∂fρ(u)
∂ui

ui,

where the last equality follows from the homogeneity property. Thus,

ρ[X (1)] =
n∑

i=1

∂ρ[X1 + · · ·+ Xi + hXi]

∂h

∣∣∣∣
h=0

,

which completes the proof.
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Remark 6.12

• Note that for Euler allocations, it is only required that the risk measure be homogeneous of degree
1, which is the case for VaR and ES. Formally, subadditivity is not required for the Euler theorem
to hold. However, allocations will be coherent in a sense of Definition 6.27 or 6.28 if the risk
measure is coherent; this has been demonstrated by Denault (2001), who used game-theoretic
considerations, and also by Kalkbrener (2005);

• Tasche (1999) showed that Euler allocation is the only allocation principle compatible with the
return on risk-adjusted capital (RORAC; i.e., expected return divided by risk capital) measure
of performance in portfolio management.

Another property of homogeneous functions allows us to get a useful result. A contin-
uously differentiable homogeneous function of degree 1 is subadditive (and convex) if and
only if,

n∑
i=1

ui
∂f (u + v)

∂ui
≤ f (u),

(see Tasche 2002b, proposition 2.5). Substituting uk = 1, vk = 0 if k = i and uk = 0, vk = 1
if k �= i (for k = 1, . . . , n), we obtain

ΠEuler
i ≤ ρ[Xi]. (6.79)

Risk contributions calculated as Euler contributions will never exceed the stand-alone risk cap-
ital if the risk measure is positive homogeneous and subadditive. Often violations of subaddi-
tivity property are observed through violation of (6.79).

6.3.3 STANDARD DEVIATION

Standard deviation is a risk measure in classical portfolio theory. It is frequently used in finance;
however, it is not well suited for heavy-tailed distribution and nonsymmetric distributions in
OpRisk. Here, we consider this risk measure to illustrate the concept of risk allocation. Formally,
a capital based on standard deviation risk measure can be defined as

ρ[X ] = γ
√

Var[X ] + E[X ], (6.80)

where γ is a non-negative real number (that can be chosen to correspond to some confidence
level). The Euler capital allocation (6.78) in this case is

ΠEuler
i = γ

Cov[Xi,X ]√
Var[X ]

+ E[Xi]. (6.81)

If Var[X ] = 0, then ρEuler
i = E[Xi]. It is easy to see that these risk allocations depend not

only on the distribution of Xi but also on the dependence between the risk Xi and overall risk
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X = X1 + · · ·+Xn. Formula (6.81) can be easily proven by considering X (u) = u1X1 + · · ·+
unXn, calculating Var[X (u)] =

∑
ij uiujCov[Xi,Xj] and

∂
(
γ
√

Var[X (u)] + E[X (u)]
)

∂ui
= γ

Cov[Xi,X (u)]√
Var[X (u)]

+ E[Xi],

and setting u = (1, . . . , 1).
It is obvious that the standard deviation risk measure (6.80) is

• Translation invariant: ρ[X + a] = ρ[X ] + a;
• Positively homogeneous: ρ[λX ] = λρ[X ], λ > 0;
• Subadditive: ρ[X + Y ] ≤ ρ[X ] + ρ[Y ].

However, in general, it is not monotonic, that is, X ≤ Y ⇒ ρ[X ] ≤ ρ[Y ] is not valid in
general (see, e.g., Kalkbrener 2005). This has unpleasant consequences for the allocation. For
example, if potential losses X are bounded by some level, then contributory capital of X to the
portfolio Y might exceed this level (see Kalkbrener et al. 2004).

6.3.4 EXPECTED SHORTFALL

If there is no jump in the distribution of X at confidence levelα, that is,Pr[X = VaRα[X ]] = 0,
then Euler’s allocations (6.78) forESα[·] can be easily calculated, that is, the derivatives in (6.76)
are

ΠEuler
i =

∂ESα[X + hXi]

∂h

∣∣∣∣
h=0

= E[Xi|X ≥ VaRα[X ]]; (6.82)

(see McNeil et al. 2005, section 6.3). It is trivial to verify that,

n∑
i=1

E[Xi|X ≥ VaRα[X ]] = E[X |X ≥ VaRα[X ]] = ESα[X ].

In general, that is, if there are jumps in distribution of X at α level,

∂ESα[X + hXi]

∂h

∣∣∣∣
h=0

=
1

1 − α

(
E
[
XiIX≥VaRα[X ]

]
+ βXE

[
XiIX=VaRα[X ]

])
, (6.83)

where

βX =
Pr[X ≤ VaRα[X ]]− α

Pr[X = VaRα[X ]]
, if Pr[X = VaRα[X ]] > 0,

(see, e.g., Kalkbrener 2005). This expression is equivalent to (6.82) if Pr[X = VaRα[X ]] = 0.
Typically, the Euler allocations should be calculated numerically. Assume that the total cap-

ital is quantified using Monte Carlo methods and Pr[X = VaRα[X ]] = 0. That is, a sample of
independent and identically distributed annual losses x( j)

k , k = 1, . . . ,K is simulated for each
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risk cell i (here, the dependence between risk cells is allowed). Then, a sample x(1), . . . , x(K ),
where x(k) =

∑n
i=1 x(k)

i , can be calculated and VaRα[X ] is estimated in the usual way by sort-
ing the samples and taking a sample (after sorting) with the index 	nα
. Denote this estimate
by V̂aRα[X ]. Then the Euler allocations in the case of ES (6.82) are estimated via

E[Xi|X ≥ VaRα[X ]] ≈
∑K

k=1 x(k)
i I{x(k)≥V̂aRα[X ]}∑K

k=1 I{x(k)≥V̂aRα[X ]}
. (6.84)

For simplicity, in (6.84) we assumed that there are no repeated samples x(k) at V̂aRα[X ]. A
more general formula (6.83) can be estimated using Monte Carlo samples but it is not typically
required in OpRisk models.

6.3.5 VALUE-AT-RISK

Although the VaR is not subadditive and differentiable in general, the derivatives of VaRα[·]
to calculate risk allocations (6.76),

lim
h→0

VaRα[X + hXi]−VaRα[X ]

h

∣∣∣∣
h=0

(6.85)

may exist for some risk collections. Under some technical conditions, it can be calculated as,

∂VaRα[X + hXi]

∂h

∣∣∣∣
h=0

= E[Xi|X = VaRα[X ]] =: ΠEuler
i . (6.86)

For precise conditions when this is true, see Tasche (1999). Here we just note that it is easy to
verify that these contributions add up to the total risk,

J∑
j=1

E[Xi|X = VaRα[X ]] = E[X |X = VaRα[X ]] = VaRα[X ].

In the case of VaR, the Euler allocation can be difficult to estimate using the Monte Carlo
sample, because Pr[X = VaRα[X ]] = 0 in the case of continuous distributions. To handle this
problem, the condition X = VaRα[X ] can be replaced by |X −VaRα[X ]| < ε for some ε > 0
large enough to have Pr[|X − VaRα[X ]| < ε] > 0. However, this condition will be satisfied
by only a few Monte Carlo simulations and important sampling techniques are needed to get
an accurate estimation (see Glasserman 2005).

It can be somewhat easier to calculate the Euler allocations using the finite difference
approximation,

∂ρ[X + hXi]

∂h

∣∣∣∣
h=0

≈ ρ[X +ΔXi]− ρ[X ]

Δ
(6.87)

with some small suitable Δ �= 0. Note that the choice of Δ depends on the numerical accuracy
of the estimator for ρ[·] and curvature of the ρ[·] with respect to h. So, Δ should be neither
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very small nor too large. This is a typical problem with estimating derivatives via finite differ-
ence, and details can be found in many books on numerical recipes (see, e.g., Press et al. 2002,
section 5.7).

Another approach is to allocate VaR using ES,

ESβ(X )[X ] = VaRα[X ], (6.88)

if E[X ] ≤ VaRα[X ]. This technique was proposed in several papers (Overbeck 2000, Bluhm
et al. 2002; see also Kalkbrener 2005). That is, we calculateVaRα[X ] and then find a confidence
level β such that (6.88) is satisfied; then we allocate capital ESβ [X ] into risk cells using ES
allocations

Πi = E[Xi|X ≥ VaRβ [X ]]

or using ES allocations in (6.83) for the general case. Even if marginal distributions and depen-
dence are known, closed-form solutions are rarely available in OpRisk for VaR, ES, and their
allocations. However, all these quantities can easily be calculated using Monte Carlo by follow-
ing logical steps:

• Simulate all risks X1, . . . ,Xn and find corresponding X = X1+· · ·+Xn. For K simulations
we have x(k)

i , k = 1, . . . ,K , i = 1, . . . , n and x(k) = x(k)
1 + · · · + x(k)

n , k = 1, . . . ,K .
Sort sample x(k) in increasing order; for simplicity of notation, assume that x(k) denotes
the ordered sample and samples x(k)

1 , . . . , x(k)
n are reordered correspondingly;

• Using the ordered sample, estimate V̂aRα[X ] = x�αK �;

• Find the confidence level β̂ = kβ/K such that ÊSβ [X ] ≈ V̂aRα[X ]. This can be simply
achieved by calculating

ÊSβ [X ] =

∑K
k=kβ x(k)

K − kβ + 1
. (6.89)

for different values of β ≤ α, that is, for different values of kβ ≤ 	αK 
;
• Once β and the corresponding index kβ are found, the allocations E[Xi|X ≥ VaRβ [X ]]

are estimated as

∑K
k=kβ x(k)

i

K − kβ + 1
. (6.90)

Note that, here, x(k)
i is not originally simulated or ordered in increasing order sample; index

k here corresponds to the index in the ordered sample x(k).
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EXAMPLE 6.6 Allocation of VaR using ES for LogNormal distribution

Assume that overall loss X = X1 + · · ·+ Xn is from LogNormal density f (x;μ, σ),
that is, lnX is from Normal distribution with mean μ and variance σ2. Then

VaRα[X ] = exp(μ+ σΦ−1(α))

and ES is

ESα[X ] =
1

1 − α
eμ+

1
2σ

2
Φ(σ − Φ−1(α)), (6.91)

See Example 6.3 for details. To allocate VaRα[X ] via ES, the following equation
should be solved for β:

ESβ [X ] = VaRα[X ].

For example, assume that μ = 10, σ = 2, α = 0.999. Then numerical root finding
gives β ≈ 0.9961, where ESβ [X ] ≈ VaRα[X ] ≈ 10, 643, 550. This capital can
then be allocated to risk cells as E[Xi|X ≥ VaRβ [X ]], but this requires information
on individual risks and their dependence.

6.3.6 ALLOCATION BY MARGINAL CONTRIBUTIONS

Another popular way to allocate capital is based on marginal risk contribution

ρ
marg
i = ρ[X ]− ρ[X − Xi], (6.92)

which is the difference between total risk (across all risk cell) and total risk without risk cell i.
This can be viewed as some crude approximation of Euler allocation derivatives (6.87), but
of course the risk measure differentiability is not required to calculate marginal contribution.
The sum of marginal contributions may not add up to ρ[X ]. In particular, if the risk mea-
sure is subadditive, continuously differentiable, and homogeneous of degree 1, then it can be
shown that

ρ
marg
i ≤ ΠEuler

i ,

n∑
i=1

ρ
marg
i ≤ ρ[X ] (6.93)

(see Tasche 2008). One can define

Π
marg
i =

ρ
marg
i∑J

j=1 ρ
marg
j

ρ[X ], (6.94)

to ensure that allocated capitals add up to ρ[X ], that is, ρ[X ] = Π
marg
1 + · · ·+Π

marg
n .
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6.3.7 NUMERICAL EXAMPLE

To illustrate the allocation procedure using the previously described Euler allocation principle,
consider the following simple example.

Assume that there are four risk cells where the annual losses Xi are independent random
variables from the LogNormal distribution LogNormal(0, σ2

i ) with σ1 = 1.25, σ2 = 1.5,
σ3 = 1.75, and σ4 = 2, respectively. Results based on 4 × 106 Monte Carlo simulations are
given in Tables 6.1 and 6.2 for VaR and ES risk measures correspondingly.

Value-at-Risk results.
Monte Carlo estimate of the capital, measured as VaR of the total loss, is

Ĉ = V̂aR0.999

[∑
i

Xi

]
= 552.

In Table 6.1, we present VaRs of individual risk cells VaR0.999[Xi], i = 1, . . . , 4; and marginal
and Euler risk allocations Π

marg
i and ΠEuler

i , respectively. Marginal contributions ρ
marg
i and

normalized marginal contributions Πmarg
i are calculated using (6.92) and (6.94), respectively.

The standard errors of Monte Carlo estimates (due to finite number of simulations) for the
capital and individual VaRs are on the order of 1%. ΠEuler

i estimated using finite difference

table 6.1 Allocation of VaR capital C = VaR0.999[X1 + · · ·+ X4] ≈ 552 by marginal and
Euler contributions Πmarg

i and ΠEuler
i , respectively; here, Xi ∼ LogNormal(0, σ2

i )

i σi VaR0.999[Xi] ρ
marg
j Π

marg
i (%) Π̂Euler

i Π̃Euler
i (%)

1 1.25 48 2 0.5 1 0.2
2 1.5 102 8 2.2 6 1.1
3 1.75 226 60 16 106 18.9
4 2.0 480 303 81.3 448 79.8

Total 856 373 100 561 100

Estimated Πi are given in absolute terms and as a percentage of the total capital C . See Section 6.3.7 for details.

table 6.2 Allocation of ES capital C = ES0.999[X1 + · · ·+ X4] ≈ 1118 by marginal and
Euler contributions Πmarg

i and ΠEuler
i , respectively; here, Xi ∼ LogNormal(0, σ2

i )

i σi ES0.999[Xi] ρ
marg
i Π

marg
i (%) ΠEuler

i ΠEuler
i (%)

1 1.25 72 2 0.3 2 0.2
2 1.5 171 7 0.9 15 1.3
3 1.75 419 71 9.4 156 14.0
4 2 1036 675 89.4 945 84.5

Total 1698 755 100 1118 100

Estimated Πi are given in absolute terms and as a percentage of the total capital C . See Section 6.3.7 for details.
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approximation (6.87) with Δ = 0.02 is denoted as Π̂Euler . Due to finite difference approxima-
tion,

∑
i Π̂

Euler
i = 561 is slightly different from VaR0.999[

∑
i Xi] ≈ 552, so the final estimate

for capital allocations using Euler principle is

Π̃Euler
i =

Π̂Euler
i∑

j Π̂
Euler
j

VaR0.999

⎡
⎣∑

j

Xj

⎤
⎦ ,

which is presented in Table 6.1 as percentage of the total capital Ĉ . The total diversification

1 −
VaR0.999

[∑
i Xi
]∑

i VaR0.999[Xi]
(6.95)

is approximately 35%, which indicates that VaR is subadditive for given distributions and 0.999
quantile level. It is easy to observe that both marginal and Euler allocations are significantly less
than corresponding VaR0.999[Xi] as expected from (6.79) for subadditive risk measure. Due to
finite difference approximation and Monte Carlo errors, one can observe that inequality (6.93)
does not hold for the first and second risks whose contributions are very small but is satisfied
for the third and fourth risks where the errors are not material.

Finally, it is important to note that the relative importance of risk cells cannot be measured
by simple ratios

Πnaive
i =

VaR0.999[Xi]∑
j VaR0.999[Xj]

, i = 1, . . . , 4,

which are 6, 12, 26, and 56%, respectively. These are referred to as “naive” allocation and com-
pared with the Euler allocation in Figure 6.7. “Naive” allocations are quite different from Euler
allocations; at the same time the Euler allocations are more skewed in a sense that risk cells with
large losses get relatively larger allocation, that is, the relative difference between risks increases
when risks are considered as a collection (when compared to the “naive” allocations); this feature
(typical in practice) can be observed in Figure 6.7.

Expected shortfall results.
Monte Carlo estimate of the capital, measured as ES of the total loss, is

Ĉ = ÊS0.999

[∑
i

Xi

]
= 1118.

In Table 6.2, we present ES of individual risk cells ES0.999[Xi], i = 1, . . . , 4; and marginal
and Euler risk allocations Πmarg

i and ΠEuler
i , respectively. Marginal contributions ρmarg

i and nor-
malized marginal contributions Πmarg

i are calculated using (6.92) and (6.94), respectively. The
standard errors of Monte Carlo estimates (due to finite number of simulations) for the capital
and individual ESs are on the order of 1%. ΠEuler

i , i = 1, . . . , 4, were estimated using (6.82)
and thus their sum is exactly the same as ÊS0.999[

∑
i Xi] = 1118.

The total diversification

1 − ES0.999[
∑

i Xi]∑
i ES0.999[Xi]

(6.96)
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0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 1 2 3 4

Naive

Euler

Allocation of ES capital

0%

10%

20%

30%

40%

50%

60%

70%

80%

Naive

Euler

figure 6.7 Capital allocation weights via “Naive” and Euler allocations to four risk cells (1, 2, 3,
and 4) considered in numerical example in Section 6.3.7. Left figure—allocation of VaR capital, right
figure—allocation of ES capital

is approximately 34%, which conforms with subadditivity of ES. It is easy to observe that
both marginal and Euler allocations are significantly less than corresponding ES0.999[Xi] as
expected from (6.79) for subadditive risk measure. In addition, marginal allocations are less
than corresponding Euler allocations, which is consistent with the inequality (6.93). Finally,
it is important to note that the relative importance of risk cells cannot be measured by simple
allocation weights

Πnaive
i =

ES0.999[Xi]∑
i ES0.999[Xi]

, i = 1, . . . , 4,

which are 4, 10, 25, and 61%, respectively and referred to as “naive” allocation in Figure 6.7.
Similar to the results for VaR, “naive” allocations for ES can be quite different from Euler
allocationsΠEuler

i . At the same time, for Euler allocations, risk cells with large losses get relatively
larger allocation (when compared to the “naive” allocations); see Figure 6.7.
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Chapter Seven

Estimation of Frequency and
Severity Models

Estimation of the frequency and severity distributions is a challenging task for low-frequency/
high-severity losses, due to very limited data for these risks. The main tasks involved in fitting
the frequency and severity distributions using data are as follows:

• Finding the best point estimates for the distribution parameters;
• Quantification of the parameter uncertainties;
• Assessing the model quality (model error).

In general, these tasks can be accomplished by undertaking either a frequentist or a Bayesian
approach. In this chapter, we present key aspects of each of these approaches. In addition, we
note that such modeling paradigms can be performed in both parametric and non-parametric
modeling frameworks, but here we focus primarily on a parametric modeling approach, typ-
ically adopted in OpRisk. In the context of parameteric modelling we cover components of
estimation based on key statistical methods such as Maximum Likelihood Estimation (MLE),
Expectation Maximization (EM) algorithm, Bayesian posterior inference methods such as
Markov chain Monte Carlo (MCMC), Sequential Monte Carlo Samplers (SMC Samplers)
as well as estimation in the presence of truncations. For a comprehensive overview of the non-
parametric case, see a book-length review for Bayesian approaches Ghosh and Ramamoorthi
(2003); Hjort et al. (2010), and for frequentist approaches, Van der Vaart (2000).

7.1 Frequentist Estimation

Fitting distribution parameters using data via the frequentist approach is a classical problem
described in many textbooks. For the purposes of this book, we detail important components
of several methods that will be of practical use in OpRisk modelling. We note that, under the
frequentist approach, one says that the model parameters are fixed while their estimators have

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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associated uncertainties that typically converge to zero when a sample size increases. Several
popular methods to fit parameters (finding point estimators for the parameters) of the assumed
distribution include the following:

• Method of moments: finding the parameter estimators to match the observed moments;
• Matching certain quantiles of the empirical distribution;
• Maximum likelihood method: finding parameter values that maximize the joint density of

observed data;
• Estimating parameters by minimizing a certain distance between empirical and theoretical

distributions, for example, Anderson–Darling or other statistics.

A point estimator is a function of a data sample. Notationally, an estimator is a function of
the sample while an estimate is the realized value of an estimator for a realization of the data
sample. For example, given a vector of random variables X = (X1,X2, . . . ,XK )

T , the estimator
is a function of X while the estimate is a function of the realization x.

Given a sample X = (X1,X2, . . . ,XK )
T from a density f (x|θ), we try to find a point

estimator Θ̂ for a parameter θ. In most cases, different methods will lead to different point
estimators. One of the standard ways to evaluate an estimator is to calculate its mean squared
error.

Definition 7.1 (Mean squared error) The mean squared error (MSE) of an estimator Θ̂ for a
parameter θ is defined as

MSEΘ̂(θ) = E

[
(Θ̂− θ)2

]
.

Any increasing function of the discrepancy |Θ̂−θ| can be used as a measure of the accuracy
of the estimator but MSE is the most popular due to tractability and clear interpretation. In
particular, it can be written according to the following decomposition,

MSEΘ̂(θ) = Var[Θ̂] +
(
E[Θ̂]− θ

)2
, (7.1)

where the first term is due to the uncertainty (variability) of the estimator and the second term
is due to the bias. The latter is defined as follows.

Definition 7.2 (Bias of a point estimator) The bias of a point estimator Θ̂ for a para-
meter θ is

BiasΘ̂(θ) = E[Θ̂]− θ.

An estimator with zero bias, that is, E[Θ̂] = θ, is called unbiased . The MSE of an unbiased
estimator is reduced to MSEΘ̂(θ) = Var[Θ̂].
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EXAMPLE 7.1

Consider a sample of independent random variables N1,N2, . . . ,NM from a
Poisson(λ) distribution, with a mean given by E[Nm] = λ, and an estimator of this
population parameter based on M samples given by Λ̂ = 1

M
∑M

m=1 Nm (in this
case, it is a maximum likelihood estimator (MLE); see Section 7.1.1). Then

E[Λ̂] =
1
M

E

[
M∑

m=1

Nm

]
= λ.

Thus, the estimator Λ̂ is an unbiased estimator of λ.

It is important for the point estimator of a parameter to be a consistent estimator, that is,
converge to the “true” value of the parameter in probability as the sample size increases. For-
mally, a property of consistency is defined for a sequence of estimators as follows.

Definition 7.3 (Consistent estimator) For a sample X1,X2, . . . , a sequence of estimators

Θ̂n = Θ̂n(X1, . . . ,Xn), n = 1, 2, . . .

for the parameter θ is a consistent sequence of estimators if for every ε > 0

lim
n→∞

Pr[|Θ̂n − θ| < ε] = 1.

We note that consistency is related to bias since a consistent estimator has the property
that it is convergent and asymptotically unbiased, therefore it converges to the correct value
asymptotically as the sample size increases. However, a consistent estimator may have that the
individual estimators in the sequence (i.e. for finite sample sizes) in a consistent sequence may
be biased, so long as the bias converges to zero as the sample size increases. A more informative
estimation of the parameter (in comparison with the point estimator) is based on a confidence
interval specifying the range of possible values.

Definition 7.4 (Confidence interval) Given a data realization X = x, the 1 − α confidence
interval for a parameter θ is [L(x),U (x)] such that

Pr[L(X ) ≤ θ ≤ U (X )] ≥ 1 − α.

That is, the random interval [L,U ], where L = L(X ) and U = U (X ), contains the true value of
parameter θ with at least probability 1 − α.

Typically, it is difficult to construct a confidence interval exactly. However, often it can
be found approximately using Gaussian distribution approximation in the case of large data
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samples (see e.g., Section 7.1.1). Specifically, if a point estimator Θ̂ is distributed according to
a Normal(θ, σ2(θ)) distribution, then

Pr

[
−F−1

N (1 − α/2) ≤ Θ̂− θ

σ(θ)
≤ F−1

N (1 − α/2)

]
= 1 − α,

where F−1
N (·) is the inverse of the standard Normal distribution Normal(0, 1). Note that σ(θ)

depends on θ. For a given data realization, typically σ(θ) is replaced by σ(θ̂) to approximate a
confidence interval by

[
θ̂ − F−1

N (1 − α/2)σ(θ̂), θ̂ + F−1
N (1 − α/2)σ(θ̂)

]
. (7.2)

7.1.1 PARAMETERIC MAXIMUM LIKELIHOOD METHOD

The most popular approach to fit the parameters of the assumed distribution is the maximum
likelihood method. Given the model parameters θ = (θ1, θ2, . . . , θK )

T , assume that the joint
density of data X = (X1,X2, . . . ,Xn)

T is f (x|θ). Then the likelihood function is defined as the
joint density f (x|θ) considered as a function of parameter θ.

Definition 7.5 (Likelihood function) For a sample X = x from the joint density f (x|θ) with
the parameter vector θ, the likelihood function is a function of θ:

Lx(θ) = f (x|θ). (7.3)

The log likelihood function is �x = ln Lx(θ).

Often it is assumed that X1,X2, . . . ,Xn are independent with a common density f (x|θ);
then the likelihood function is Lx(θ) =

n∏
i=1

f (xi|θ).

The MLE Θ̂
MLE

= Θ̂(X ) of the parameters θ are formally defined as follows.

Definition 7.6 (Maximum likelihood estimator) For a sample X , Θ̂(X ) is the MLE, if for
each realization x, θ̂(x) is a value of parameter θ maximizing the likelihood function Lx(θ) or
equivalently maximizing the log likelihood function �x = ln Lx(θ).

An important property of MLEs is their convergence to the true value in probability as
the sample size increases, that is, MLEs are consistent estimators, under the weak regularity
conditions on the likelihood discussed later.

Theorem 7.1 For a sample X1,X2, . . . ,Xn of independent and identically distributed random
variables from f (x|θ) and corresponding MLE Θ̂n, under the suitable regularity conditions, as
the sample size n increases,

lim
n→∞

Pr[|Θ̂n − θ| ≥ ε] = 0, for every ε > 0. (7.4)
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The required regularity conditions are as follows:

• The parameter should be identifiable: θ �= θ̃ ⇒ f (x|θ) �= f (x|θ̃);
• The true parameter should be an interior point of the parameter space;
• The support of f (x|θ) should not depend on θ;
• f (x|θ) should be differentiable in θ.

Asymptotically, for large sample size, under stronger conditions (that further require f (x|θ)
to be differentiable three times with respect to θ and to have continuous and bounded third
derivatives), the MLEs are distributed according to a Normal distribution.

Theorem 7.2 Under the suitable regularity conditions, for a sample X1,X2, . . . ,Xn of independent
and identically distributed random variables from f (x|θ), θ = (θ1, θ2, . . . , θK )

T , and correspond-
ing MLE Θ̂n:

√
n(Θ̂n − θ) → Normal

(
0, [I (θ)]−1) , (7.5)

as the sample size n increases. Here, [I (θ)]−1 is the inverse matrix of the expected Fisher information
matrix for one observation I (θ), whose matrix elements are given by

I (θ)km = E

[
∂

∂θk
ln f (X1|θ)

∂

∂θm
ln f (X1|θ)

]

= −E

[
∂2

∂θk∂θm
ln f (X1|θ)

]
. (7.6)

That is, Θ̂
MLE

converges to θ as the sample size increases and asymptotically Θ̂
MLE

is Nor-
mally distributed with the mean θ and covariance matrix n−1I (θ)−1. For precise details on
regularity conditions and proofs, see Lehmann (1983, theorems 6.2.1 and 6.2.3); these can
also be found in many other books such as Van der Vaart (2000), Casella and Berger (2002,
p. 516), Stuart et al. (1999, chapter 18), Ferguson (1996, part 4), and Lehmann and Casella
(1998, section 6.3).

In practice, this asymptotic result is often used even for small samples and for the cases that
do not formally satisfy the regularity conditions. Note that the mean and covariances depend
on the unknown parameters θ and are usually estimated by replacing θ with θ̂

MLE
for a given

realization of data. Often in practice, the expected Fisher information matrix is approximated
by the observed information matrix

Î (θ̂)km = −1
n

n∑
i=1

∂2 ln f (xi|θ)
∂θk∂θm

∣∣∣∣
θ=θ̂

= −1
n

∂2 ln Lx(θ)

∂θk∂θm

∣∣∣∣
θ=θ̂

, (7.7)

for a given realization of data. This should converge to the expected information matrix by
the law of large numbers. It has been suggested by Efron and Hinkley (1978) that the use of
the observed information matrix leads to a better inference in comparison with the expected
information matrix.

Though very useful and widely used, these asymptotic approximations are usually not
accurate enough for small samples, that is, the distribution of parameter errors can be materially
different from Normal and MLEs may have significant bias. Moreover, as for any asymptotic
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results, a priori, one cannot decide on a sample size that is large enough to use the asymptotic
approximation.

To assess the quality of the fit, there are several popular goodness-of-fit tests including
Kolmogorov–Smirnov, Anderson–Darling, and Chi-square tests. In addition, the likelihood
ratio test and Akaike’s information criterion are often used to compare models; these are dis-
cussed in detail in Chapter 8.

Usually maximization of the likelihood (or minimization of some distances in other meth-
ods) must be done numerically. Popular numerical optimization algorithms include simplex
method, Newton methods, expectation maximization (EM) algorithm, and simulated anneal-
ing. It is worth mentioning that the last is attempting to find a global maximum while other
methods find a local maximum. Moreover, EM is usually more stable and robust than the stan-
dard deterministic methods such as simplex or Newton methods.

Again, detailed descriptions of the earlier-mentioned methodologies can be found in many
textbooks; for application in an OpRisk context, see Panjer (2006).

7.1.2 MAXIMUM LIKELIHOOD METHOD FOR TRUNCATED AND
CENSORED DATA

When performing maximum likelihood for OpRisk models, one has to be aware of potential
data truncations and censoring as defined generically below.

Definition 7.7 (Censored loss processes) A general definition of data censoring in OpRisk is
that loss data are censored when the number of observations that fall in a given set is known, but the
specific values of the observations are unknown; data are said to be censored from below when the set
comprises all numbers less than a specific value.

Definition 7.8 (Truncated loss processes) A general definition of data truncation in OpRisk is
that loss data are said to be truncated when observations that fall in a given set are excluded and the
number of such observations is also unknown; data are said to be truncated from below when the set
comprises all numbers less than a specific value.

This would result in two potential modifications to the MLE given as follows.

Proposition 7.1 (Data Lower Truncated Likelihood) Given a data-generating model
X ∼ FX (x;θ) for i.i.d. data with a lower truncation threshold of xL, the resulting truncated log
likelihood for n observations is given by

l (θ; x) = −n ln (1 − FX (xL;θ)) +
n∑

i=1

ln f (xi;θ) . (7.8)

Proposition 7.2 (Data Left Censored Likelihood) Given a data-generating model
X ∼ FX (x;θ) for i.i.d. data with a left censoring threshold of xc, the resulting left censored log
likelihood for n observations (nu uncensored and nc = n − nu censored) is given by

l (θ; x) = nc ln (FX (xc;θ))︸ ︷︷ ︸
censored

+

n∑
i=1

ln f (xi;θ)︸ ︷︷ ︸
uncensored

I [xi ∈ Xu] , (7.9)
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where Xu denotes the set of uncensored observed losses and Xc denotes the set of censored observed
losses.

Modeling truncated data will be considered in detail in Section 7.9.

7.1.3 EXPECTATION MAXIMIZATION AND PARAMETER
ESTIMATION

The EM algorithm is a general iterative method to estimate model parameters maximizing
the likelihood of observed data when some of the variables/data are hidden (missing or not
observed). Under the Bayesian framework, it can be used to estimate parameters maximizing the
posterior of the parameters given observed data, though such approaches will be discussed later.

For simplicity, here we consider maximization of the data likelihood; extension to pos-
terior maximization in a Bayesian framework is trivial. The algorithm is very convenient and
efficient when maximization of the likelihood is simplified for the case of complete data (i.e.,
if hidden variables are known) in comparison with the maximization of the observed data like-
lihood. Often it is used for cases with truly missing data such as data truncation, but it may
also be convenient to artificially introduce hidden variables if the resulting maximization of the
complete likelihood is simplified by the addition of such variables.

Each iteration of the algorithm consists of two steps: an expectation step (E-step), and a
maximization step (M-step). In the E-step, the hidden variables are estimated given the observed
data and the current estimate of the model parameters. This is achieved using the conditional
expectation, explaining the choice of terminology. In the M-step, the likelihood function is
maximized under the assumption that the missing data are known. The algorithm convergence
is guaranteed because the likelihood increases at each iteration.

Dempster et al. (1977) presented a proof of general results of the algorithm and intro-
duced the term EM algorithm. However, this idea was in use for many years. The reader is also
referred to a book by McLachlan and Krishnan (1997) devoted entirely to EM and applica-
tions. The algorithm is particularly suitable for situations with missing data (e.g., truncated
data or censored data). In OpRisk, it has been used by Bee (2005b) to fit a model accounting
for data truncation (typically data below some level are not reported in OpRisk). It is also often
used to fit mixture distributions; for a general approach to fitting mixtures, see McLachlan
and Krishnan (1997). Truncated mixtures are considered by Sansom and Thompson (1998).
McLachlan and Jones (1988) describe the EM algorithm for data grouped into intervals which
may also be truncated.

Maximizing of the log-likelihood function can be accomplished by other methods such as
gradient-based optimization algorithms or simplex-type algorithms. Often EM is preferred due
to its stability and convergence properties. However, it is important to note that in general EM
is guaranteed to converge to a local maximum (not global maximum), which is typical across
optimization algorithms. In such cases it may be wise to run the EM algorithm multiple times
from different starting points randomly selected in the parameter space, then keep the solution
maximizing the likelihood.

Consider observed data X , unobserved data (or factors) Y , and a parameter vector θ for a
chosen model with the density of the observed data f (X |θ) and joint density of observed and
unobserved data (complete dataset) f (X ,Y |θ). Denote the likelihood of complete data (X ,Y )
as LX ,Y (θ) = f (X ,Y |θ). Then the marginal likelihood of observed data LX (θ) = f (X |θ)
can be calculated from a complete likelihood as
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LX (θ) = f (X |θ) =
∫

f (X , y|θ)dy. (7.10)

The maximum likelihood method estimates parameters θ by maximizing the marginal like-
lihood LX (θ). Often, this is more difficult in comparison with maximizing LX ,Y (θ). Starting
with the initial guess for parameters θ0, the EM algorithm proceeds as follows. For parameter
estimates at iteration t, θt ,

• E-step: calculate condition expectation

Q(θ|θt) = E [ln f (X ,Y |θ)|X ,θt ] =

∫
ln f (X , y|θ)f (y|X ,θt)dy. (7.11)

• M-step: maximize Q(θ|θt) with respect to θ

θt+1 = argmax
θ

Q(θ|θt). (7.12)

The E- and M-steps are repeated until the change in Q(θt+1|θt) (or estimated parameters θt )
is less than a user prescribed accuracy or tolerance level. In the M-step, we choose θt as the
value of θ that maximizes Q(θ|θt). If this maximization is difficult, then it can be replaced
with finding θt that simply increases Q(θ|θt), that is, Q(θt+1|θt) ≥ Q(θt |θt); this is the
so-called Generalized Expectation Maximization (GEM) algorithm.

Remark 7.1 (EM for exponential family likelihoods) If the data are generated from the expo-
nential family distribution, the E-step and M-step are simplified. The E-step reduces to computing
the expectation of the complete-data sufficient statistics given the observed data. In the M-step, the
conditional expectations of the sufficient statistics computed in the E-step can be directly substituted
for the sufficient statistics that occur in the expressions obtained for the complete-data MLEs (i.e.,
explicit maximization of the expected log likelihood can be avoided).

As a general algorithm available for complex maximum likelihood computations, the EM
algorithm has several appealing properties relative to other iterative algorithms such as Newton–
Raphson. First, it is typically easily implemented because it relies on complete-data com-
putations: the E-step of each iteration only involves taking expectations over complete-data
conditional distributions. The M-step of each iteration only requires complete-data MLE,
for which simple closed-form expressions are already available. Second, it is numerically sta-
ble: each iteration is required to increase the log likelihood ln LX (θ) in each iteration, and if
ln LX (θ) is bounded, the sequence ln LX (θ

t) converges to a stationary value. If the sequence
converges, it does so to a local maximum or saddle point of the likelihood and to the unique
MLE if the likelihood is unimodal. A disadvantage of EM is that its rate of convergence can
be extremely slow if a lot of data are missing: Dempster et al. (1977) show that convergence
is linear with rate proportional to the fraction of information about θ in ln LX ,Y (θ) that is
observed.

In OpRisk settings, one would typically consider EM-type methods for estimation of
model parameters under a likelihood-based procedure when there is potential for data cen-
soring or truncation; see definitions by Klugman et al. (1998).
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EXAMPLE 7.2 OpRisk Application of EM for LDA Model Estimation

The estimation of a Loss Distribution Approach (LDA) model in OpRisk, com-
prised of estimation of the model parameters for the frequency and severity models
in principle, is straightforward statistical estimation. However, in practice for
OpRisk modeling, as noted in Bee (2005b), a major difficulty may arise from
the fact that loss data are usually left-censored or, more frequently, left-truncated;
according to whether data are truncated or censored, specific inferential procedures
are needed. Consider the model for the severity in which one considers losses
given by {Xi}n

i=1 with each of the i.i.d. losses, given by Xi ∼ LogNormal(μ, σ2)
with a total of nc and nu = n − nc censored and uncensored losses respec-
tively. Denote by x1:nc = (x1, x2, . . . , xnc) the unobserved censored losses and
y1:nu

= ( y1, y2, . . . , ynu) as the observed uncensored losses given by xi > xc for
all i ∈ {1, 2, . . . , n}. One can then define the complete data and observed
data likelihoods, for log-transformed data X̃i = lnXi ∼ Normal(μ, σ2) and
Ỹi = lnXi ∼ Normal(μ, σ2), as follows:

1. The complete log-transformed data likelihood is given by

L
(
θ; x̃1:nu , ỹ1:nc

)
=

nu∏
i=1

f (x̃i|θ)
nc∏

i=1

f ( ỹi|θ)

=

[
nu∏

i=1

1√
2πσ2

exp

(
−1

2

(
x̃i − μ

σ

)2
)]

×

⎡
⎣ nc∏

j=1

1√
2πσ2

exp

(
−1

2

(
ỹj − μ

σ

)2
)⎤
⎦ . (7.13)

2. The observed log-transformed data likelihood is given by

Lobs (θ; x̃1:nu) ∝ (F (x̃c;θ))
nc

nu∏
i=1

f (x̃i|θ)

∝ Φ

(
x̃c − μ

σ
;θ

)nc nu∏
i=1

[
1√

2πσ2
exp

(
−1

2

(
x̃i − μ

σ

)2
)]

.

(7.14)

To perform the inference in this case one can then utilize the EM algorithm with
the following two steps, which are updated at iteration τ :

1. E-Step. Take the conditional expectation (w.r.t. censored data) of the complete
data likelihood function conditional on the observed (uncensored data) and
model parameters at iteration τ given by θ̂

(τ)
producing
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E

[
L
(

x̃1:nu , Ỹ 1:nc ;θ
)∣∣∣ x̃1:nu ,θ

(τ)
]

=

[
nc∏

i=1

f (x̃i|θ)
]⎡
⎣ nc∏

j=1

E

[
f
(

Ỹi;θ
)∣∣∣ x̃1:nu ,θ

(τ)
]⎤⎦

=

[
nc∏

i=1

f (x̃i|θ)
]

nc∏
j=1

E

[
f
(

Ỹi;θ
)∣∣∣ x̃1:nu ,θ

(τ)
]
, (7.15)

where the distribution of the missing censored data is given by the right-
truncated Gaussian,

f (ỹi;θ) =
1

Φ
( xc−μ

σ

) 1√
2πσ

exp

[
−1

2

(
ỹi − μ

σ

)2
]
I [̃y ≤ c] . (7.16)

As detailed by Bee (2005b), the truncated conditional expectation
E

[
f (Ỹi;θ)

∣∣∣ x̃1:nu ,θ
(τ)
]

is simplified by the fact that the complete log-

transformed likelihood is linear in Ỹi and Ỹ 2
i , which produces a first and

second moment given by

E

[
Ỹi

∣∣∣ x̃1:nu ,θ
(τ)
]
= μ(τ) − σ(τ)α

(
xc − μ(τ)

σ(τ)

)

E

[
Ỹ 2

i

∣∣∣ x̃1:nu ,θ
(τ)
]
=
(
σ(τ)
)2 [

1 −
(

xc − μ(τ)

σ(τ)

)
α

(
xc − μ(τ)

σ(τ)

)

−
(
α

(
xc − μ(τ)

σ(τ)

))2]
+
[
E

[
Ỹi

∣∣∣ x̃1:nu ,θ
(τ)
]]2

with α
(

xc−μ(τ)

σ(τ)

)
= φ
(

xc−μ(τ)

σ(τ)

) [
Φ
(

xc−μ(τ)

σ(τ)

)]−1
.

2. M-Step. Then one takes the MLEs for the log-transformed likelihoods, which
are Gaussian and conditional upon the sufficient statistics estimated for the
missing (censored) data from the E-step giving

μ(τ) =
1
N

(
nu∑

i=1

xi + ncE

[
Ỹi

∣∣∣ x̃1:nu ,θ
(τ)
])

;

(
σ(τ)
)2

=
1
N

(
nu∑

i=1

x2
i + ncE

[
Ỹ 2

i

∣∣∣ x̃1:nu ,θ
(τ)
])

.

(7.17)

These two steps are then iterated progressively until convergence.
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The EM algorithm for the truncated Poisson–LogNormal LDA model is also developed
by Bee (2005b, section 3.3). We also note that the utilization of such EM steps in LDA model
parameter estimation has been explored, with regard to the impact on Value-at-Risk (VaR) and
Expected Shortfal (ES) estimations by Chernobai et al. (2006). Again these results are developed
for both the truncated and censored cases.

7.1.4 BOOTSTRAP FOR ESTIMATION OF PARAMETER ACCURACY

A popular method often used in practice to estimate parameter uncertainties is the so-called
bootstrap. This method is based on a simple idea: that we can learn about the characteristics
of a sample by taking resamples from the original sample with replacement and calculating
the parameter estimates for each resampled set to asses the parameter variability. The boot-
strap method was originally developed by Efron in the 1970s. For a good introduction to the
method we refer the reader to Efron and Tibshirani (1993). Often the bootstrap estimators are
reasonable and consistent. Two types of bootstrapping, nonparametric bootstrap and parametric
bootstrap, are commonly used in practice.

Nonparametric bootstrap. Suppose we have a sample of independent and identically dis-
tributed random variables X = (X1,X2, . . . ,XK )

T and there is an estimator Θ̂(X ). Then:

• Draw M independent samples

X (m) = (X (m)
1 ,X (m)

2 , . . . ,X (m)
K )T , m = 1, . . . ,M

with replacement from the original sample X . That is X (m)
k , k = 1, . . . ,K , m = 1, . . . ,M

are independent and identically distributed, and drawn from the empirical distribution of
the original sample X ;

• Calculate estimator Θ̂(m) = Θ̂(X (m)) for each resample m = 1, . . . ,M ;
• Calculate

V̂ar[Θ̂] =
1

M − 1

M∑
m=1

(
Θ̂(m) − μ

)2
, where μ =

1
M

M∑
m=1

Θ̂(m). (7.18)

Parametric bootstrap. Suppose we have a sample of independent and identically distributed
random variables X = (X1,X2, . . . ,XK )

T from f (x|θ) and we can calculate some estimator
Θ̂(X ) (e.g., MLE) for θ. Then:

• Draw M independent samples

X (m) = (X (m)
1 ,X (m)

2 , . . . ,X (m)
K )T , m = 1, . . . ,M ,

where X (m)
k , k = 1, . . . ,K , m = 1, . . . ,M are independent and identically distributed

from f (x|θ̂);
• Calculate estimator Θ̂(m) = Θ̂(X (m)) for each resample m = 1, . . . ,M ;

• Calculate V̂ar[Θ̂] = 1
M−1
∑M

m=1

(
Θ̂(m) − μ

)2
, where μ = 1

M
∑M

m=1 Θ̂
(m).
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The obtained V̂ar[Θ̂] is used as an estimator for Var[Θ̂]. Typically, for independent and
identically distributed samples, this estimator is consistent, that is,

V̂ar[Θ̂] → Var[Θ̂], as M → ∞ and K → ∞, (7.19)

though in more general situations it may not occur.

Remark 7.2 More accurate treatment of nonparametric bootstrap estimators involves an estimator
given by

V̂ar
∗
[Θ̂] =

1
N − 1

N∑
m=1

(
Θ̂(m) − μ

)2
, μ =

1
N

N∑
m=1

Θ̂(m),

where N = K K is the total number of nondistinct resamples. N is very large even for small
K , for example, for K = 10, N = 1010. Calculations of the variance estimators (7.18) with
M � N is considered an approximation for V̂ar

∗
variances. Then, convergence of bootstrap esti-

mators is considered in two steps: V̂ar[Θ̂] → Var∗[Θ̂] as M → ∞; and Var∗[Θ̂] → Var[Θ̂] as
K → ∞.

7.1.5 INDIRECT INFERENCE–BASED LIKELIHOOD ESTIMATION

In cases in which one considers statistical models for OpRisk data that may not produce a
tractable likelihood distribution or density form that can be written down analytically or per-
haps evaluated pointwise. Then in such cases, there are also numerous estimation procedures
available often based on simulation based methods. Under a likelihood-based inference, there
is the method known in econometrics as indirect inference (see, e.g., Gourieroux et al. 2006,
Gallant and Tauchen 1996, and the book-length coverage by Gourieroux and Monfort 1997).

At its most fundamental level, indirect inference is a technique of parameter estimation
for simulation models, that is, models for which one can generate data given (unknown)
parameters but not evaluate the density for the data-generating model. One would then like
to compare the simulated data with the observed data to decide on the model parameter
estimations.

To achieve this via indirect inference one introduces a new model, called the “auxiliary
model”, which is misspecified and typically not even generative, but is easily fit to the data
via, say, standard closed-form estimators for the MLE of the parameters of the auxiliary model.
This auxiliary model has its own parameter vector β, with estimator β̂. These parameters of the
auxiliary model describe aspects of the distributions of the observations. The idea of indirect
inference is then to simply try to match aspects of the estimated parameters on the observed
data x given by β̂(x) and the simulated data x∗ using parameters of the actual model θ given
by β̂(x∗). The indirect inference estimator is then obtained by the following algorithm.

Algorithm 7.1 (Indirect Inference–Based Estimation)

1. Initialize parameter vector of intractable model θ0 and simulate initial synthetic data from
intractable model X ∗ ∼ F (x;θ0);
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2. Develop an artificial simplified auxiliary model for which it is possible to make inference on
parameters of auxiliary model using observed data to obtain true data reference auxiliary model
parameter estimator β̂ (x);

3. Estimate auxiliary model parameters using synthetic simulated data β̂0(x
∗(θ0));

4. Estimate Mahlanobis distance or Euclidean distances between auxiliary parameter vectors by

D
(
β̂ (x) , β̂0(x

∗(θ0))
)
=

√(
β̂ (x)− β̂0(x∗(θ0))

)T
Σ−1
(
β̂ (x)− β̂0(x∗(θ0))

)
.

5. Set optimal parameter vector θ̂ = θ0 with distance Dmin = D
(
β̂ (x) , β̂0(x

∗(θ0))
)

;

6. Repeat until convergence or until you reach J total iterations; for iterations j = j + 1, carry out
the following steps:
a) Generate proposed parameter vector θj from a proposal mechanism, for instance a genetic

algorithm mutation stage, to perturb the parameters in the parameter space;
b) Given parameter vector θj , generate synthetic data from intractable model X ∗ ∼ F

(
x;θj
)
;

c) Calculate auxiliary model parameters from synthetic data β̂j
(
x∗ (θj

))
;

d) Calculate distance metric

D
(
β̂ (x) , β̂j

(
x∗ (θj

)))
=

√(
β̂ (x)− β̂j

(
x∗
(
θj
)))T

Σ−1
(
β̂ (x)− β̂j

(
x∗
(
θj
)))

.

e) If Dmin > D
(
β̂ (x) , β̂j

(
x∗ (θj

)))
, then update the optimal parameter estimate θ̂ = θj .

Several theoretical properties are known about the estimators obtained from such a data-
generative procedure (see discussions by Smith 2008 and Genton and Ronchetti 2003). Under
several assumptions (see Gourieroux and Monfort, 1997), it can be shown that the indirect
inference procedure produces a point estimator of the model parameters which is both con-
sistent and asymptotically Normal under standard regularity conditions. In addition, indirect
inference can be shown to be asymptotically efficient when the model is correctly specified for
the observed data.

As a consequence, it has recently been proposed as a viable method even to tackle problems
in which the likelihood is tractable but perhaps the model parameter estimation is non-robust to
model misspecification. For example, consider the observed i.i.d. observations X1,X2, . . . ,Xn
from a parametric model (family), M = {P(θ) : θ ∈ Θ} of probability measure P(θ), which
are indexed by the parameter set Θ ⊆ R

d . If the model is correctly specified for the given data,
that is, P = P (θ0) for a unique θ0 ∈ Θ, then the MLE is typically a desirable estimator for θ0
since it is asymptotically efficient under well-known regularity conditions (see Van der Vaart
2000).

However, as discussed by Nickl and Pötscher (2010), if the model class M is misspecified,
that is, we select an inappropriate parametric model family to consider modeling the observed
data, then we would like the estimated parameter θ0 to be robust to such misspecifications.
Such cases are considered in the review article of Huber (1972) and Daszykowski et al. (2007)
where they discuss how to obtain an estimator that is robust to model misspecifications of the
form discussed earlier. That is, for an estimator of θ0 that is robust to perturbations of P (θ0)
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in a metric D(·, ·), it would be advisable to utilize, instead, minimum distance estimators. For
example if P̃n is a suitable D-consistent estimator of P, then it is better to estimate θ by the
minimizer over Θ of

Qn (θ) := D
(

P̃n, P (θ)
)
. (7.20)

Beran and Millar (1987) showed that if the distance is selected specifically, such that D is the
Hellinger distance, and if P̃n is a kernel density estimator, then the resulting minimum-distance
estimator is both robust and simultaneously asymptotically efficient. Therefore, in such cases,
they will outperform the MLE in this sense.

Examples where indirect inference has been applied to parameter estimation in interesting
models for OpRisk include recent work on estimation ofα-stable model parameters (see Garcia
et al., 2011).

7.2 Bayesian Inference Approach

There is a broad literature covering Bayesian inference and its applications for the insurance
industry. For a good generic introduction to the Bayesian inference method, see Berger (1985)
and Robert (2001), and in OpRisk settings, see Peters and Sisson (2006); Shevchenko (2011).
This approach is well suited for OpRisk. It is sketched later to introduce notation and concepts
it will also be discussed in detail in Chapter 15.

Consider a random vector of data X = (X1,X2, . . . ,Xn)
T whose density, for a given

vector of parameters θ = (θ1, θ2, . . . , θK )
T , is fX |Θ(x|θ). In the Bayesian approach, both

data and parameters are considered to be random. A convenient interpretation is to think that
the parameter vector is a random vector with some distribution and the true value (which is
deterministic but unknown) of the parameter is a realization of this random vector. Then the
joint density of the data and parameters is

fX ,Θ(x,θ) = fX |Θ(x|θ)πΘ(θ) = πΘ|X (θ|x)fX (x), (7.21)

where

• πΘ(θ) is the density of parameters (a so-called prior density);
• πΘ|X (θ|x) is the density of parameters given data X = x (a so-called posterior density);
• fX ,Θ(x,θ) is the joint density of the data and parameters;
• fX |Θ(x|θ) is the density of the data given parameters Θ = θ. This is the same as

a likelihood function see (7.3) if considered as a function of θ for a given x, that is,
LX (θ) = fX |Θ(x|θ);

• fX (x) is the marginal density of X . If πΘ(θ) is continuous, then

fX (x) =
∫

fX |Θ(x|θ)πΘ(θ)dθ

and if πΘ(θ) is a discrete probability mass function, then the integration should be
replaced by a corresponding summation.

Remark 7.3 Typically, πΘ(θ) depends on a set of further parameters, the so-called hyper-
parameters, omitted here for simplicity of notation. The choice and estimation of the prior will
be discussed in detail in Chapter 15.
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Using (7.21), the well-known Bayes’s theorem, Bayes (1763) gives the following.

Theorem 7.3 (Bayes’s theorem) The posterior density can be calculated as

πΘ|X (θ|x) = fX |Θ(x|θ)πΘ(θ)/fX (x). (7.22)

Here, fX (x) plays the role of a normalization constant and the posterior can be viewed
as a combination of prior knowledge (contained in πΘ(θ)) with information from the data
(contained in fX |Θ(x|θ)).

Given that fX (x) is a normalization constant, the posterior is often written up to propor-
tionality according to

πΘ|X (θ|x) ∝ fX |Θ(x|θ)πΘ(θ), (7.23)

where “∝” means “is proportional to” with a constant of proportionality independent of the
parameter θ. Typically, in closed-form calculations, the right-hand side of the equation is cal-
culated as a function of θ and then the normalization constant is determined by integration
over θ.

Using the posterior πΘ|X (θ|x), one can easily construct a probability interval for Θ, which
is the analogue for confidence intervals (see Definition 7.4) under the frequentist approach.

Definition 7.9 (Credibility interval) Given a data realization X = x, if πΘ|X (θ|x) is the pos-
terior density of Θ and

Pr[a ≤ Θ ≤ b|X = x] =

b∫
a

πΘ|X (θ|x)dθ ≥ 1 − α,

then the interval [a, b] contains the true value of parameter θ with at least probability 1 − α. The
interval [a, b] is called a credibility interval (sometimes referred to as predictive interval or credible
interval) for parameter θ.

Remark 7.4

• The inequality in Definition 7.9 is to cover the case of discrete posterior distributions;
• Typically, one chooses the smallest possible interval [a, b]. One can also consider one-sided inter-

vals, for example, Pr[Θ ≤ b|X = x];
• Extension to the multivariate case, that is, parameter vector θ, is trivial;
• Though the Bayesian credibility interval looks similar to the frequentist confidence interval (see

Definition 7.4), these intervals are conceptually different. To determine a confidence (probabil-
ity to contain the true value), the bounds of the frequentist confidence interval are considered
to be random (functions of random data) while bounds of the Bayesian credibility interval are
functions of a data realization. For some special cases, the intervals are the same (for given data
realization) but in general they are different, especially in the case of strong prior information.

If the data X1,X2, . . . are conditionally (given Θ = θ) independent, then the posterior can
be calculated iteratively, that is, the posterior distribution calculated after k − 1 observations
can be treated as a prior distribution for the k-th observation. Thus, the loss history over many
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years is not required, making the model easier to understand and manage, and allowing experts
to adjust the priors at every step.
For simplicity of notation, the density and distribution subscripts indicating random vari-
ables will often be omitted, for example, πΘ(θ) will be written as π(θ).

7.2.1 CONJUGATE PRIOR DISTRIBUTIONS

Sometimes the posterior density can be calculated in closed form, which is very useful in practice
when Bayesian inference is applied. This is the case for the so-called conjugate prior distribu-
tions, where the prior and posterior distributions are of the same type.

Definition 7.10 (Conjugate prior) Let F denote a class of density functions f (x|θ), indexed
by θ. A class U of prior densities π(θ) is said to be a conjugate family for F and F −
U is called a conjugate pair, if the posterior density π(θ|x) = f (x|θ)π(θ)/f (x), where
f (x) =

∫
f (x|θ)π(θ)dθ is in the class U for all f ∈ F and π ∈ U .

Formally, if the family U contains all distribution functions, then it is conjugate to any
family F . However, to make a model useful in practice it is important that U should be as small
as possible while containing realistic distributions. In Chapter 15, we present F −U conjugate
pairs (Poisson–Gamma, LogNormal–Normal, Pareto–Gamma) that are useful and illustrative
examples of modeling frequencies and severities in OpRisk. Several other pairs (Binomial–Beta,
Gamma–Gamma, Exponential–Gamma) can be found, for example, in Bühlmann and Gisler
(2005). In all these cases, the prior and posterior distributions have the same type and the
posterior distribution parameters are easily calculated using the prior distribution parameters
and observations (or recursively).

In general, if the posterior cannot be found in closed form or is difficult to evaluate, one
can use Gaussian approximation, Markov chain Monte Carlo methods, or Sequential Monte
Carlo methods, discussed next.

7.2.2 GAUSSIAN APPROXIMATION FOR POSTERIOR
(LAPLACE TYPE)

For a given data realization X = x, denote the mode of the posterior π(θ|x) by θ̂. If the prior is
continuous at θ̂, then a Gaussian approximation for the posterior is obtained by a second-order
Taylor series expansion around θ̂:

lnπ(θ|x) ≈ lnπ(θ̂|x) + 1
2

∑
i,j

∂2 lnπ(θ|x)
∂θi∂θj

∣∣∣∣
θ=θ̂

(θi − θ̂i)(θj − θ̂j). (7.24)

Under this approximation, π(θ|x) is a multivariate Normal distribution with the mean θ̂ and
covariance matrix

Σ = I−1, (I )ij = −∂2 lnπ(θ|x)
∂θi∂θj

∣∣∣∣
θ=θ̂

. (7.25)
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Remark 7.5 In the case of improper constant priors, this approximation is comparable to the
Gaussian approximation for the MLEs (Equation 7.5). Note also that in the case of constant priors,
the mode of the posterior and the MLE are the same. This is also true if the prior is uniform within
a bounded region, provided that the MLE is within this region.

7.2.3 POSTERIOR POINT ESTIMATORS

Once the posterior density π(θ|x) is found, for given data X , one can define point estima-
tors of Θ. The mode and mean of the posterior are the most popular point estimators. These
Bayesian estimators are typically referred to as the Maximum a Posteriori (MAP) estimator and
the Minimum Mean Square Estimator (MMSE), formally defined as follows:

MAP : Θ̂MAP = argmax
θ

[π(θ | X )] , (7.26)

MMSE : Θ̂MMSE = E [Θ|X ] . (7.27)

The median of the posterior is also often used as a point estimator for Θ. Note also that if
the prior π(θ) is constant and the parameter range includes the MLE, then the MAP of the
posterior is the same as the MLE (see Remark 7.5).

More formally, the choice of point estimators is considered using a loss function l(θ, θ̂) that
measures the cost (loss) of a decision to use a particular point estimator Θ̂. For example:

• Quadratic loss. l(θ, θ̂) = (θ − θ̂)2;

• Absolute loss: l(θ, θ̂) = |θ − θ̂|;
• All or nothing loss: l(θ, θ̂) = 0 if θ = θ̂ and l(θ, θ̂) = 1 otherwise;

• Asymmetric loss function: e.g. l(θ, θ̂) = θ̂−θ if θ̂ > θ and l(θ, θ̂) = −2(θ̂−θ) otherwise.

Then the value of Θ̂ that minimizes E[l(Θ, Θ̂)|X ] is called a Bayesian point estimator
of Θ. Here, the expectation is calculated with respect to the posterior π(θ|X ). In particular:

• The posterior mean is a Bayesian point estimator in the case of a quadratic loss function;
• In the case of an absolute loss function, the Bayesian point estimator is the median of the

posterior;
• All or nothing loss function gives the mode of the posterior as the point estimator.

Remark 7.6 Θ̂ = Θ̂(X ) is a function of data X and thus it is referred to as estimator. For a given
data realization X = x, we get Θ̂ = θ̂, which is referred to as a point estimate.

In addition, one may be interested in reporting a marginal posterior confidence interval or
a measure of precision for the posterior point estimators defined for the i-th static parameter
with posterior distribution Θi ∼ F (Θi). To achieve this one would typically utilize credibility
intervals, see Definition 7.9.

Though the point estimators and interval estimators are useful, for quantification of
OpRisk annual loss distribution and capital we recommend the use of the whole posterior,
as discussed in the following chapters.
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7.2.4 RESTRICTED PARAMETERS

In practice, it is not unusual to restrict parameters. In this case, the posterior distribution will
be a truncated version of the posterior distribution in the unrestricted case. That is, if θ is
restricted to some range [θL,θH ], then the posterior distribution will have the same type as in
the unrestricted case but truncated outside this range.

For example, we choose the LogNormal distribution LogNormal(μ, σ2) to model the data
X = (X1, . . . ,Xn)

T and we choose a prior distribution for μ to be the Normal distribution
Normal(μ0, σ

2
0). This case will be considered in section 13.2.4. However, if we know that μ

cannot be negative, we restrict Normal(μ0, σ
2
0) to non-negative values only.

Another example is the Pareto–Gamma case, where the losses are modeled by Pareto(ξ, L)
and the prior distribution for the tail parameter ξ is Gamma(α, β) (see section 13.2.5). The
prior is formally defined for ξ > 0. However, if we do not want to allow infinite mean predicted
loss, then the parameter should be restricted to ξ > 1.

These cases can be easily handled by using the truncated versions of the prior–posterior
distributions. Assume that π(θ) is the prior whose corresponding posterior density is
π(θ|x) = f (x|θ)π(θ)/f (x), where θ is unrestricted. If the parameter is restricted to a ≤ θ ≤ b,
then we can consider the prior,

πtr(θ) =
π(θ)

Pr[a ≤ θ ≤ b]
I{a≤θ≤b}, Pr[a ≤ θ ≤ b] =

b∫
a

π(θ)dθ, (7.28)

for some a and b with Pr[a ≤ θ ≤ b] > 0. Pr[a ≤ θ ≤ b] plays the role of normalization and
thus the posterior density for this prior is simply

πtr(θ|x) = π(θ|x)
Pr[a ≤ θ ≤ b|x] I{a≤θ≤b}, Pr[a ≤ θ ≤ b|x] =

b∫
a

π(θ|x)dθ. (7.29)

Remark 7.7 It is obvious that if π(θ) is a conjugate prior, then πtr(θ) is a conjugate prior too.

7.2.5 NONINFORMATIVE PRIOR

Sometimes there is no prior knowledge about the model parameter θ, or we would like to
rely on data only and avoid an impact from any subjective information. In this case, we need
a noninformative prior (sometimes called vague prior) that attempts to represent a near-total
absence of prior knowledge. A natural noninformative prior is the uniform density

π(θ) ∝ const for all θ. (7.30)

If parameter θ is restricted to a finite set, then this π(θ) corresponds to a proper uniform distri-
bution. For example, the parameter p in a Binomial distribution Binomial(n, p) is restricted to
the interval [0, 1]. Then one can choose a noninformative constant prior, which is the uniform
distribution Uniform(0, 1).

However, if the parameter θ is not restricted, then a constant prior is not a proper density
(since

∫
f (θ)dθ = ∞). Such a prior is called an improper prior. For example, the parameter
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μ (mean) of the Normal distribution Normal(μ, σ2) is defined on (−∞,∞). Then, for any
constant c > 0, π(μ) = c is not a proper density because

∫
π(μ)dμ = ∞. It is not a problem

to use improper priors as long as the posterior is a proper distribution. Moreover, as noted in
previous sections, if the prior π(θ) is constant and the parameter range includes the MLE, then
the mode of the posterior is the same as the MLE (see Remark 7.5).

A constant prior is often used as a noninformative prior, though it can be criticized for a
lack of invariance under transformation. For example, if a constant prior is used for parameter
θ and the model is reparameterized in terms of θ̃ = exp(θ), then the prior density for θ̃ is
proportional to 1/θ̃. Thus, we cannot choose a constant prior for both θ and θ̃. In this case,
one typically argues that some chosen parameterization is the most intuitively reasonable and
absence of prior information corresponds to a constant prior in this parameterization. One can
propose noninformative priors through consideration of problem transformations. This has
been considered in many studies starting with Jeffreys (1961). For discussion on this topic, see
Berger (1985, section 3.3). Here, we just mention that for scale densities of the form θ−1f (x/θ),
the recommended noninformative prior for a scale parameter θ > 0 is given by,

π(θ) ∝ 1
θ
, (7.31)

which is an improper prior because
∫∞

0 π(θ)dθ = ∞.

7.3 Mean Square Error of Prediction

To illustrate the difference between the frequentist and Bayesian approaches, consider the so-
called (conditional) mean squared error of prediction (MSEP), which is often used for predic-
tion of uncertainty.

Consider a sample X1,X2, . . . ,Xn, . . . and assume that, given data,

X = (X1,X2, . . . ,Xn)
T ,

we are interested in prediction of a random variable R, which is some function of
Xn+1,Xn+2, . . . . Assume that R̂ is a predictor for R and an estimator for E[R|X ]. Then, the
conditional MSEP is defined by

MSEPR|X

(
R̂
)
= E

[(
R − R̂

)2
|X
]
. (7.32)

It allows for a good interpretation if decoupled into process variance and estimation error as

MSEPR|X

(
R̂
)
= Var[R|X ] +

(
E[R|X ]− R̂

)2

= Process variance + estimation error. (7.33)

It is clear that the estimator R̂ that minimizes conditional MSEP is R̂ = E[R|X ]. Assume
that the model is parameterized by the parameter vector θ = (θ1, . . . , θK )

T . Then under the
frequentist and Bayesian approaches we get the following estimators of MSEP.

Frequentist Approach. Unfortunately, in the frequentist approach, E[R|X ] is unknown and
the second term in (7.33) is often estimated by Var[R̂] (see Wüthrich and Merz (2008,
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section 6.4.3)). Under the frequentist approach, Var[R|X ] and E[R|X ] are functions of
parameter θ and can be denoted as Varθ[R|X ] and Eθ[R|X ], respectively. Typically, these are
estimated as V̂arθ[R|X ] = VarΘ̂[R|X ] and Êθ[R|X ] = EΘ̂[R|X ], where Θ̂ is a point esti-
mator of θ obtained by maximum likelihood or other methods. Also, typically, one chooses
R̂ = EΘ̂[R|X ], so that now R̂ is a function of Θ̂ that we denote as R̂(Θ̂). The parameter
uncertainty term Varθ[R̂] is usually estimated using the first-order Taylor expansion of R̂(Θ̂)
around θ

R̂(θ̂) ≈ R̂(θ) +
∑

i

∂R̂(θ̂)
∂θ̂i

∣∣∣∣∣
θ̂=θ

(θ̂i − θi)

leading to

Varθ[R̂(Θ̂)] ≈
∑

i,j

∂R̂
∂θ̂i

∣∣∣∣∣
θ̂=θ

∂R̂
∂θ̂j

∣∣∣∣∣
θ̂=θ

Cov[Θ̂i, Θ̂j].

Estimating θ by Θ̂ gives the final estimator

V̂arθ[R̂(Θ̂)] = VarΘ̂[R̂(Θ̂)].

Note that if the point estimators are unbiased, that is, E[Θ̂i − θi] = 0, then E[R̂(θ̂)] ≈ R̂(θ).
Finally, the estimator for conditional MSEP is

M̂SEPR|X

[
R̂
]
= V̂ar[R|X ] + V̂ar[R̂]

= Process variance + estimation error. (7.34)

These estimators are typically consistent and unbiased in the limit of a large sample size.

Bayesian Approach. Under the Bayesian inference approach, where the unknown parameters
θ are modeled as random variables Θ, Var [R|X ] can be decomposed as

Var
[

R|X
]
= E
[
Var [R|Θ,X ]|X

]
+ Var

[
E [R|Θ,X ]|X

]
(7.35)

= Average process variance + parameter estimation error,

which equals MSEPR|X

[
R̂
]

if we choose R̂ = E[R|X ]. Estimation of the terms involved
requires knowledge of the posterior distribution for Θ that can be obtained either analytically
or approximated accurately using Markov chain Monte Carlo methods discussed in the next
section.

We also note that under the Bayesian setting it is often of interest to consider the posterior
predictive distribution for K additional losses (or annual losses), as defined generically by

f (xn+1:n+K |x1:n) =

∫
f (xn+1:n+K |θ)π(θ|x1:n) dθ (7.36)

if x1:n and xn+1:n+K are independent given θ. If they are not independent then f (xn+1:n+K |θ)
should be replaced by f (xn+1:n+K |θ, x1:n).
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7.4 Standard Markov Chain Monte Carlo (MCMC)
Methods

There are typically three main reasons why OpRisk practitioners may utilize the following sets
of Monte Carlo procedures when undertaking estimation in OpRisk settings.

1. The first involves working with the posterior distribution for the parameters of an LDA
model structure to obtain point estimators, posterior credible intervals for the model
parameters, and estimation of functions with respect to the posterior, which is the condi-
tional distribution of the LDA model parameters given the observed loss data (as discussed
in previous sections);

2. The second involves estimation with respect to annual loss models for a risk or group
of risk processes, such as integrals with respect to the LDA model(s). This could include
quantities such as predictive distributions for losses in future years, distributions for capital
allocations, distributions for joint loss processes with dependence or insurance features, or
perhaps sensitivity analysis in derived LDA quantities to changes in model parameters;

3. The third area of interest involves the estimation of risk measures and capital under a
particular LDA model.

The first case arises when, for example, the posterior distribution is not known in closed
form (i.e., up to normalization) or perhaps one wants to integrate functions with respect to
the posterior to find point estimates or predictive interval summaries of the conditional distri-
bution. This is particularly important when one is outside of the class of conjugate Bayesian
models. Hence, often practitioners would resort to numerical estimation procedures via sam-
pling. However, when the posterior is not easily sampled from by simple exact methods such
as inversion and transformation, then estimation of quantities of interest empirically by direct
simulation in a basic Monte Carlo strategy is also problematic. In general, Markov chain Monte
Carlo methods (hereafter referred to as MCMC methods) and Sequential Monte Carlo (here-
after referred to as SMC) methods can be used in such settings where direct sampling and basic
Monte Carlo procedures will not be possible.

A range of standard as well as more advanced MCMC and SMC methods of relevance
are presented here, and fundamentally all approaches to be discussed aim to achieve the same
common goal of obtaining samples efficiently from the posterior distribution, which are as
close to independent as possible. The biggest difference between each approach to be discussed
relates to the accuracy that one can perform such inference given a computational budget such
as total samples, total simulation time, etc.

Typically, there will be a trade-off for practitioners related to the complexity of the sampling
algorithm they wish to consider versus the reduction in variance in estimated quantities of
interest. Therefore, we provide a range of methods one may consider suiting those interested
in very simple approaches with nonrestrictive simulation budgets through to those looking for
state-of-the-art sampling methods that will provide sample estimates accurately for constrained
computational budgets or make challenging goals such as rare event estimation possible in
reasonable computational budgets.

Given the different estimation goals discussed, there is no unique way to present the fol-
lowing sampling algorithms based on Markov chain and Importance Sampling methodologies.
Therefore, throughout the following sections, we will present the sampling problems in gen-
eral as generating a sequence of L samples Θ(1),Θ(2), . . . ,Θ(L), which will be understood
in the following algorithmic descriptions to be generic random vectors that will correspond
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to quantities of interest in the inference, which are not necessarily always static LDA model
parameters as will be demonstrated in the examples provided.

7.4.1 MOTIVATION FOR MARKOV CHAIN METHODS

In the following sections, we will generally detail examples for the most common situation
encountered in practice which involves obtaining samples from a posterior conditional dis-
tribution for the OpRisk model parameters, given observed loss data. However, we note with
some examples alternative situations that are also of interest and can be addressed by the Monte
Carlo methods presented; these include situations in which we may assume we know the model
parameters and our target is to sample the distribution of the annual loss, or joint distribution
of multiple risk annual losses to obtain estimates of tail functionals, such as would be required
in risk measure estimation for capital purposes.
Note: we make the following note on notation used throughout this book, regarding the dirac-
delta function. In general we will utilise a range of representations for this special function
including δ(x − x0), δx0 and δx0(x) which will be all variations on presenting the same dirac-
delta function. In addition, we will also utilise δx0(dx) to represent the dirac-delta measure.

First, consider the generic question of quantification of the probability of a particular event
or set of events that are measurable with respect to outcomes of the model, denoted by A ⊂ R

d

some measurable subset of the support of the posterior for the OpRisk model. Now consider
computation of quantities such as Pr[Θ ∈ A] =

∫
A π (Θ|x1:T ) dΘ.

Consider a sequence of samples (Θ(i))1≤i≤L of independent copies of the random vari-
able Θ. In this situation, the traditional Monte Carlo approximation of quantities such as
Pr[Θ ∈ A] (which is the most simple special case of the inference problems previously defined)
is given by the empirical measures with L samples

π̂ (Θ|x1:T ) =
1
L

∑
1≤i≤L

δΘ(i) −→ π (Θ|x1:T ) , L → ∞.

Under this most basic of Monte Carlo estimators, the convergence of the empirical measure is
understood as a weak convergence of empirical measures in the following sense for any bounded
and measurable test function ψ on R

d :

π̂(ψ) :=

∫
ψ(Θ) π̂ (dΘ|x1:T ) =

1
L

∑
1≤i≤L

ψ
(
Θ(i)
)

−→ π(ψ) :=

∫
ψ(Θ) π (dΘ|x1:T ) = Eπ(Θ|x1:T )(ψ(Θ)), L → ∞.

(7.37)

It is often highly informative for practitioners to consider the marginal behavior of sub-blocks of
the parameter vector Θ ∈ R

d . From the samples obtained under a basic Monte Carlo strategy,
we observe that through the use of indicator functions for cells in R

d , one can study visualiza-
tions for the shape of the posterior distribution marginally simply by plotting the histograms
of the samples Θ(i) in every dimension.

In the specific choice of test functions given by the indicator function on a set of events
A denoted ψ = IA, in the notational convention, the empirical measure of the poste-
rior π̂ (IA|x1:T ) and the true posterior measure π (IA|x1:T ) is denoted by π̂ (A|x1:T ) and
π (A|x1:T ). Hence, for indicator function ψ = IA, one has by the a.s. convergence of the
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empirical measure of the test function ψ, in Equation 7.37, the resulting empirical estimator is
an unbiased estimator given by,

E [π̂ (A|x1:T )] = π (A|x1:T ), (7.38)

and a variance in this estimator given by,

Var (π̂ (A|x1:T )) =
1
L
π (A|x1:T ) (1 − π (A|x1:T )). (7.39)

This assumes that these samples are attainable through techniques such as generic methods
based on the inverse transform exact sampling, or accept–reject Monte Carlo sampling methods;
(see Glasserman 2004, section 2.2).

Corollary 7.1 (The inverse transform) If U ∼ Uniform(0, 1), then the distribution of the ran-
dom variable X = F−1(U ) is F (x).

That is, to simulate X from the distribution F (x) using the inverse transform, generate
U ∼ Uniform(0, 1) and calculate X = F−1(U ).

Corollary 7.2 Simulating X from the density f (x) is equivalent to simulating (X ,U ) from the
uniform distribution on (x, u), where 0 ≤ u ≤ f (x).

This means that to simulate X from the density f (x), generate (X ,U ) from the uniform
distribution under the curve of f (x). The latter is typically done through the accept–reject
algorithm (sometimes called rejection sampling).

Corollary 7.3 (Accept–reject method) Assume that the density f (x) is bounded by M (i.e.,
f (x) ≤ M) and defined on the support a ≤ x ≤ b. Then, to simulate X with the density f (x)

• Draw X ∼ Uniform(a, b) and U ∼ Uniform(0,M);
• Accept the sample of X if U ≤ f (X ), otherwise repeat the previous steps.

If another density g(x) such that Mg(x) ≥ f (x) can be found for constant M, then to simulate X
with the density f (x)

• Draw X from g(x) and U ∼ Uniform(0,Mg(X ));
• Accept the sample of X if U ≤ f (X ), otherwise repeat the previous steps.

The inverse method cannot be used if the normalization constant is unknown, and the
accept–reject method cannot be used if you cannot easily find the bounds for the density or
one is working in high dimension where rejection probabilities may be high and will scale
nonlinearly with the dimension of the parameter space of the posterior. These difficulties are
often arise for posterior densities; therefore, unfortunately in practice, one cannot typically
easily generate i.i.d. samples from the target posterior distribution, due to the intractability
of the inverse of the distribution function (i.e., the quantile function is not known in closed
form). In such cases, which incidentally correspond to the majority of situations in practice,
one must resort to alternative statistical approaches to provide samples. There are numerous
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such examples, which include Importance Sampling (IS), MCMC, SMC, Sequential Monte
Carlo Samplers (SMC Samplers), Particle Markov chain Monte Carlo (PMCMC), and their
adaptive versions. Each of these classes of algorithms is significantly different in its attributes
and in the problems for which it is appropriate to utilize each one when making inference in
OpRisk modeling. It is the intention of the following sections to introduce practitioners to a
subset of the many possible choices that are selected as their performance is efficient and widely
applicable for the types of problems discussed in the context of OpRisk Bayesian modeling.
We begin with MCMC general properties, then present a special case of what is known as
an auxiliary variable sampler illustrated by the Slice sampler of Neal (2003). This is widely
applicable to many Bayesian inference problems and is now a standard package in statistical
software such as R and Matlab.

For a good introduction on estimation (sampling) of the posterior π(θ|x) numerically
using MCMC methods, see Robert and Casella (2004). MCMC has almost unlimited applica-
bility though its performance depends on the problem particulars. The idea of MCMC methods
is based on a simple observation that to obtain an acceptable approximation to some integrals
depending on a distribution of interest π(θ|x), it is enough to sample a sequence (Markov
chain) {θ(1),θ(2), . . . }, whose limiting density is the density of interest π(θ|x). This idea
appeared as early as the original Monte Carlo method but became very popular and practical
in the last few decades only when fast computing platforms became available.

A Markov chain is a sequence of random variables defined as follows.

Definition 7.11 (Markov chain) A sequence of random variables,

{Θ(0),Θ(1), . . . ,Θ(l), . . . },

is a first-order Markov chain if, for any l , the conditional distribution of Θ(l+1) given Θ(i),
i = 0, 1, . . . , l is the same as the conditional distribution of Θ(l+1) given Θ(l). A conditional
probability density of Θ(l+1) given Θ(l) is called transition kernel of the chain and is usually
denoted as K (Θ(l),Θ(l+1)).

Remark 7.8 The challenge is to construct a Markov chain sampling procedure that from any loca-
tion in the state space will produce samples (as close to uncorrelated and i.i.d. as possible) for a
given distribution of interest–either a posterior distribution for model parameters or, for example,
a distribution for the annual loss of a single risk process or multiple, dependent risk processes.

One way to achieve such goals is to utilize an MCMC approach. MCMC methods produce
an ergodic Markov chain with a stationary distribution (which is also a limiting distribution) that
is designed to match the distribution one wishes to obtain samples from. These chains are also
recurrent and irreducible (see details in Meyn et al. 2009 or Robert and Casella 2004). In simpler
terms, one would like to design MCMC samplers that have certain desirable properties related
to their mixing rates; crudely put, the ability of the Markov chain to explore the state space of
the target distribution from any initial starting point, and how quickly the chain reaches the
stationary regime, i.e. obtains samples from the desired distribution of interest. In addition,
it would be nice to be able to rely upon the convergence of MCMC sample estimators of
functionals on the state space as provided by some form of ergodic theorem. In addition to this,
it is often of interest to ascertain knowledge around the accuracy and rates of convergence such
as through the existence of the Central Limit Theorem (CLT) and knowledge of the asymptotic
variance (see discussions by Jones 2004 and the references therein).
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Theorem 7.4 (Strong Law of Large Numbers) Consider a sequence of non-negative random
variables Y1,Y2, . . . , which are i.i.d. with a mean E[Y1] = μ. Then the following convergence
in probability holds for all ε > 0:

lim
L→∞

Pr

[∣∣∣∣Y1 + Y2 + · · ·+ YL

L
− μ

∣∣∣∣ > ε

]
= 0. (7.40)

With this theorem in mind, consider the definition of the ergodic theorem for an MCMC
sampler. Ergodic theorems concern the limiting behavior of averages over time; therefore, an
ergodic theorem is basically a result describing the limiting behavior of a sequence such as

1
L

L−1∑
l=0

f
(

X (l)
)

(7.41)

as L → ∞. The formulation of the ergodic theorem considered in any given example will
depend on the class of functions f (e.g. integrable, L2, . . . continuous), and the notion of
convergence used (e.g., pointwise convergence, L2 convergence, …uniform convergence). In
the case of pointwise ergodic theorems, one would typically consider the Birkhoff Khinchin
theorem (see, e.g., Kornfeld et al. 1982); in the case of a mean ergodic theorem for Hilbert
spaces, one may consider Von Neumann’s mean ergodic theorem (see, e.g., Birkhoff 1931 and
Cohen 1940 and references therein). For a summary, see the book-length review of Krengel and
Brunel (1985).

For simplicity consider first a discrete state space and discrete time setting, and define the
proportion of time that the Markov chain spends in a state i before L is achieved, denoted by
Ti(L) and defined by the sum of indicator events

Ti(L) =
L−1∑
l=0

I

[
X (l) = i

]
. (7.42)

Then, if we normalize this sequence by the length of the chain L to get the proportion of time
spent in a state i, we can state one version of the ergodic theorem as follows, based on definitions
of irreducibility given by, for example, Meyn et al. (2009).

Theorem 7.5 (Ergodic Theorem: Discrete Time and Discrete State Space) Consider a tran-
sition matrix for a Markov chain, denoted by P, which is irreducible, and let π be any distribution
from which we wish to obtain samples. Furthermore, we assume that the Markov chain

(
X (L)
)

L≥0
that corresponds to this Markov(P, π) structure has for all ε > 0 the property

lim
L→∞

Pr

[∣∣∣∣Ti(L)
L

− 1
μi

∣∣∣∣ > ε

]
= 0, (7.43)

where μi = E [Ti] is the expected return time to state i. Then, if the chain is also positive recurrent,
one can state that for any bounded function defined on the state space X ∈ X given by f : X → R,
one has for all ε > 0 the following convergence in probability:

lim
n→∞

Pr

[∣∣∣∣∣1L
L−1∑
l=0

f
(

X (l)
)
−
∑
X

f
(

x(l)
)
π
(

x(l)
)∣∣∣∣∣ > ε

]
= 0, (7.44)

where π is the unique invariant distribution of the Markov chain.
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In OpRisk, we are typically interested in more general state space settings, such as contin-
uous supports. So we generalize the previous notions to consider a general Markov transition
kernel P(x, dy) on a general state space (X ,B(X )) with Borel sigma algebra B(X ) for an asso-
ciated discrete time Markov chain X =

(
X (l)
)

l≥0. Furthermore, we denote the l-step Markov
transition by P(l)(x, dy) and then for i ∈ L, x ∈ X , and a measurable set A, we can define
P(l)(x,A) = Pr

(
X (l+i) ∈ A|X (i) = x

)
. If we then consider the class of Borel functions given

by f : X → R, then the following operator notation is well defined: Pf (x) =
∫

f (y)P(x, dy)
and �f (x) = Pf (x) − f (x). Furthermore, if we assume the Markov chain X to be Harris
ergodic, that is, aperiodic, ψ-irreducible, and positive Harris recurrent (see Meyn et al. 2009)
with invariant distribution π on some general state space X , then these assumptions are suffi-
cient to show the strong convergence in total variation norm, given for every initial distribution
ν(·) on B(X ) as l → ∞, by

||P(l)(ν, ·)− π(·)||TV → 0, (7.45)

where we define P(l)(λ,A) =
∫
X P(l)(x,A)ν(dx) and ‖·‖TV denotes the Total variation norm

between probability measures, given in Definition 7.12.

Definition 7.12 (Total Variation Distance Norm) Consider two probability measures μ and ν.
Then the total variation distance between probability measures μ and ν can be defined by

‖μ− ν‖TV = sup {|μ(A)− ν(A)| : A ∈ Σ} (7.46)

and its values are non-trivial.

The meaning of this distance is that it measures the largest possible difference between
the probabilities that the two probability distributions can assign to the same event. In the
context of Markov chains, this will be the maximum difference between probabilities on all
Borel measurable events arising from the l-step Markov chain with initial distribution ν and
the target stationary distribution π.

In other words, a weaker version of this result tells us that if we consider a class of Borel
functions f that we use to define a sample average, from L samples,

f L = L−1
L−1∑
l=0

f
(

X (l)
)

and the target functional Eπ[f ] =
∫
X f (x)π(dx). Then, if we assume that Eπ [|f |] < ∞,

a generalization of the previous ergodic theorem will guarantee that our sample average will
converge f L → Eπ[f ] with probability 1 as L → ∞.

To extend these results by considering the rate at which these sample estimators, con-
structed by the Markov chain samples, will converge as well as the accuracy of such sam-
ple estimators, one needs to consider the existence of a Central Limit Theorem (CLT). The
CLT condition or result is important as it would state the following convergence in distri-
bution holds asymptotically in the length of the Markov chain (i.e. number of samples L),
according to

√
L
(

f L − Eπ[f ]
)

d→ Normal(0, σ2
f ) (7.47)
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as L → ∞ and where the asymptotic variance is given by

σ2
f := Varπ [f (X0)] + 2

∞∑
i=1

Covπ [f (X0) f (Xi)] < ∞. (7.48)

The existence of a CLT result is far from certain, however it is highly informative and crucial to
sensible implementation of MCMC methods, since knowledge of the behaviour of the sample
average, for function f , using MCMC samples, informs directly the performance of f L as an
estimator of Eπ[f ] and its accuracy in large samples through σ2

f . As noted, in developing a CLT
result, generally the first step is to verify its existence which is typically obtained through con-
sideration of discussions on minorization conditions for the Markov transition kernel. Briefly,
one can consider conditions on the Markov chain that would result in some form of bound on
the following total variation norm

‖P(l)(x, ·)− π(·)‖TV ≤ M(x)g(n) (7.49)

for some non-negative function M(x) and a non-negative decreasing function g(l) for l ∈ Z
+.

That is some bound on the maximum difference between probabilities assigned to all measur-
able events from the Markov chain after l iterations and the target stationary distribution π.
If this upper bound is in the form of a decreasing function of the length of the chain l then
one can utilise this convergence rate knowledge to verify the existance of a CLT result. Typi-
cally, one would consider cases such as geometric ergodicity of the Markov chain X in which
g(l) = tl for some t < 1, or uniform ergodicity in which M is bounded and g(l) = tl again for
some t < 1, or alternatively polynomial ergodicity on the order of m ≥ 0, where g(l) = l−m.
These minorization conditions can be translated to conditions on the Markov chain transition
kernel. For instance, a minorization condition will hold for a particular set A if there exists a
probability measure, say Q , taking support on the Borel sets B(X ) such that for some positive
integer l0 and a positive constant ε on has the lower bound

P(l)(x,A) ≥ εQ(A), ∀x ∈ A, A ∈ B(X ). (7.50)

From this minorization condition on the transition kernel of the Markov chain one typically
then formulates some form or drift condition to verify different forms of ergodicity mixing,
such as polynomial, uniform or geometric. The minorization conditions required of a Markov
chain to achieve these convergence results and the implications on the resulting sequence of
estimators with regard to the existence of a CLT are summarized in the tutorial article of Jones
(2004) and the references therein. In particular from the related drift conditions there are known
results relating to the existence of the CLT for a Markov chain, see (Jones, 2004, theorem 1).

Throughout the presentation of this section, we assume that one is utilizing MCMC meth-
ods to sample from a target distribution, which, for illustration purposes, is going to be the pos-
terior distribution of the model parameters for an LDA risk framework given observed losses
and the total number of losses over time. Of course, as already discussed, this can be more gen-
eral to also include cases in which we just wish to sample from complex distributions efficiently;
to highlight this fact, we will also provide several examples of such applications throughout the
following presentation.

For the purposes of this book, we make the following further general remark regarding the
types of Markov chain methods that will be discussed and developed in future sections of this
chapter.
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Remark 7.9

• We are interested in the case where the chain stationary distribution corresponds to, for exam-
ple, the posterior density π(θ|x) or perhaps, as a second example, the distribution of multiple
risk processes π(Z (1),Z (2), . . . ,Z (d)) for which we know the parameters and wish to obtain
samples from this multivariate intractable distribution subject to tail dependence features after
restriction to a joint tail event;

• The ergodic property means that the distribution of Θ(l) converges to a limiting distribution
π(θ|x) for almost any starting value of Θ(0). Therefore, for large l , Θ(l) is approximately
distributed from π(θ|x) regardless of the starting point. Of course, the problem is to decide what
is large l . This can formally be accomplished by running diagnostic tests on the stationarity of
the chain;

• A Markov chain is said to have a stationary distribution if there is a distribution π(θ|x) such
that if Θ(l) is distributed from π(θ|x), then Θ(l+1) is distributed from π(θ|x) too;

• A Markov chain is irreducible if it is guaranteed to visit any set A of the support of π(θ|x).
This property implies that the chain is recurrent, that is, that the average number of visits to
an arbitrary set A is infinite and even Harris recurrent. The latter means that the chain has
the same limiting behavior for every starting value rather than almost every starting value;

• Markov chains considered in MCMC algorithms are almost always homogeneous, that is, the
distribution of Θ(l0+1),Θ(l0+2), . . . ,Θ(l0+k) given Θ(l0) is the same as the distribution of
Θ(1),Θ(2), . . . ,Θ(k) given Θ(0) for any l0 ≥ 0 and k > 0. We detail a few special cases of
adaptive MCMC algorithms in which we do not make this assumption; for a general overview
of relevance to OpRisk, see Del Moral et al. (2013);

• Another important stability property is called reversibility, which means that the direction of
the chain does not matter. That is, the distribution of Θ(l+1) conditional on Θ(l+2) = θ is
the same as the distribution of Θ(l+1) conditional on Θ(l) = θ. The chain is reversible if the
transition kernel satisfies the detailed balance condition

K (θ,θ′)π(θ|x) = K (θ′,θ)π(θ′|x). (7.51)

The detailed balance condition is not necessary but sufficient condition for π(θ|x) to be sta-
tionary density associated with the transitional kernel K (· , ·), which usually can easily be
checked for MCMC algorithms.

Of course, the samples Θ(1),Θ(2), . . . are not independent. However, the independence
is not required if we have to calculate some functionals of π(θ|x), because the Ergodic theorem
implies that for large L, the average

1
L

L∑
l=1

g(Θ(l)) (7.52)

converges to E[g(Θ)|X = x] (if this expectation is finite), where expectation is calculated with
respect to π(θ|x).

In the following we illustrate a few example functionals that typically arise in practice for
OpRisk settings. Consider multiple risk processes denoted by Z (1),Z (1), . . . ,Z (d). Assume
that each risk process Z (i) satisfies marginally an LDA structure with frequency distribution
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N (i) ∼ FN (i)(n) and severity distribution for the j-th loss X (i)
j ∼ FX (i)

j
(x). Then assume

that the d risk processes are dependent upon each other and this dependence is modeled in
the following fashion where jointly the annual loss d -variate random vector has distribution(
Z (1), . . . ,Z (d)

)
∼ C (FZ(1)(z1), . . . , FZ(d)(zd )). Given this multivariate risk process model,

OpRisk practitioners may be interested in obtaining samples (e.g., by MCMC methods) from
the joint density given by

fZ(1),...,Z(d)(z1, . . . , zd ) = c (FZ(1)(z1), . . . , FZ(d)(zd ))

d∏
i=1

fZ(i)(zi), (7.53)

These L samples,
{(

Z (1), . . . ,Z (d)
)(l)
}

l=1:L
can then be utilized to estimate quantities such

as the following:

• Joint tail functionals. In this case for some measurable and bounded test function
ϕ:R+d �→ R one has the Monte Carlo estimator
∫
R+

· · ·
∫
R+

ϕ (z1, . . . , zd ) fZ(1),...,Z(d)(z1, . . . , zd )dz1 . . . dzd

≈ 1
L

L∑
l=1

ϕ

([
z(1), · · · , z(d)

](l)
)
. (7.54)

Examples of such functionals include marginal distributions, conditional distributions, tail
functionals such as quantiles, and tail expectations;

• Conditional constrained tail functionals: In many settings, one is interested in calcu-
lating for some measurable and bounded test function ϕ : R

+d �→ R a Monte Carlo
estimator of quantities such as∫
R+

. . .

∫
R+

ϕ(z1, . . . , zd )fZ(1),...,Z(d)|R(Z(1),...,Z(d))

(
z1, . . . , zd |R

(
Z (1), . . . ,Z (d)

))
dz1 . . . dzd

≈ 1
L

L∑
l=1

ϕ

([
z(1), . . . , z(d)

](l)
)
I

R
(
[z(1),...,z(d)]

(l)
) [(Z (1), . . . ,Z (d)

)]
,

(7.55)

subject to some constraints on the joint sequence of losses denoted generically by a con-
straint function R(Z (1), . . . ,Z (d)). Examples of constraints of interest in OpRisk settings
include choices such as the following:

˚ Example 1: to calculate marginal, joint, and groups of marginal tail functionals for the
joint loss distribution restricted to certain tail events of interest,

R
(

Z (1), . . . ,Z (d)
)
= IZ(1)>ρ1,...,Z(d)>ρd

[(
Z (1), . . . ,Z (d)

)]
. (7.56)

˚ Example 2: constraints on linear combinations of the marginal annual losses would allow
one to obtain estimators for functionals of jointly constrained risk processes under con-
straints such as
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R
(

Z (1), . . . ,Z (d)
)
=

d∑
i=1

Z (i) > ρT . (7.57)

There are several possibilities one may consider in this context, and in general this is
relevant for insurance settings as well as coherent capital allocation methods.

• Quantile function estimation. Given samples
{(

Z (1), . . . ,Z (d)
)(l)
}

l=1:L
from the

dependent joint risk process, one can transform these samples via a measurable and
bounded test function ϕ : R+d �→ R that corresponds to the new univariate samples{

W (j)
}

l=1:L with W (j) = ϕ
((

Z (1), . . . ,Z (d)
)(j)
)

having density denoted fW (w). Now

sorting these samples to obtain the order statistics
{

W(l,L)
}

l=1:L one can obtain an esti-
mator of the resulting quantile via

q̂α(W ) = W(l,L), with
l − 1

L
< α ≤ l

L
. (7.58)

This is of relevance for risk measure estimations and capital estimation of, for example, the
institutional capital, such as when one considers

ϕ
(

Z (1), . . . ,Z (d)
)
=

d∑
i=1

Z (i).

Note that in this case we can state two things about the accuracy of such a quantile estimator
(see discussions by Flegal et al. 2012) depending on whether the samples obtained are
independent or autocorrelated. In the case of independent samples, one has the following
convergence in distribution between the obtained sample estimated quantiles q̂α(W ) and
the target theoretical quantile qα(W ) at level α for the chosen constraint function ϕ,
asymptoticly according to:

√
L (q̂α(W )− qα(W )) → Normal

(
0,

α(1 − α)

[fW (qα(W ))]
2

)
, as L → ∞. (7.59)

If the samples are autocorrelated, as would typically be the case if the samples{(
Z (1), . . . ,Z (d)

)(l)
}L

l=1
, used to construct the constrained samples

{
W (l)
}L

l=1, were
obtained by a Markov chain procedure, then Flegal et al. (2012, theorem 1) state that
under polynomial mixing (of order 3) of the MCMC sampler, the following convergence
in distribution is satisfied in Theorem 7.6.

Theorem 7.6 If there exists an ε > 0 such that W is polynomially ergodic of order 2.5 + ε, and
if W has density satisfying that its derivative f ′

W is positive and bounded in the neighborhood of the
quantile qα(W ), then as L → ∞, one obtains the following convergence in distribution:

√
L (q̂α(W )− qα(W )) → Normal

(
0,

σ2 (qα(W ))

[fW (qα(W ))]
2

)
, as L → ∞. (7.60)
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with σ2(y) defined by

σ2(y) = Varf
(Z(1),...,Z(d))(

Z(1),...,Z(d))

(
I

[
W (0) < y

])

+ 2
∞∑

k=1

Covf
(Z(1),...,Z(d))(

Z(1),...,Z(d))

(
I

[
W (0) < y

]
, I
[
W (k) < y

])
.

(7.61)

Remark 7.10 Note that this variance expression is then approximated using the MCMC samples in
order to use this information to form confidence intervals for the resulting quantile estimator, which
will be of the form q̂α(W )± t∗

σ2(qα(W ))√
L

for some desired t distributed confidence interval at level
∗ with t-score t∗. See examples in Flegal et al. (2012).

Having defined the notions required to understand Markov chain methods at a rudimen-
tary level, we now summarize how we utilize these concepts to proceed with MCMC algo-
rithms (see further discussion by Roberts 1995). The MCMC approach constructs an ergodic
Markov chain

{
Θ(1), . . . ,Θ(L)

}
, taking values in R

d . This Markov chain is constructed to
have the property that it has a limiting, invariant distribution is the target distribution of interest
π (dΘ|x1:T ). This invariant distribution is the target distribution, that, in the cases considered
in this chapter, will correspond to the posterior for the OpRisk model. For the Markov chain
samples to be used as samples from the target distribution, it is necessary that there exist a
unique invariant distribution of the Markov chain corresponding to the posterior of interest
for the OpRisk model. A detailed review of the properties of more general state space Markov
chain theory can be found in, for example, Meyn et al. (2009) and Del Moral (2004).

To achieve this construction of a Markov chain with desired stationary distribution, the
majority of methods developed in the statistics literature have focused on the case in which the
Markov chain created satisfies the condition of reversibility, whereby the following holds:

π
(

dΘ(i)|x1:T

)
Q(Θ(i), dΘ(j)) = π

(
dΘ(j)|x1:T

)
Q(Θ(j), dΘ(i)), (7.62)

where Θ(i) and Θ(j) represent states of the Markov chain and Q(Θ(j), dΘ(i)) denotes the
Markov transition representing the probability of starting in state Θ(j) and transition to a
neighborhood of the state Θ(i).

Under this condition, there is a wide range of methods that one may utilize to construct
the desired Markov chain, which in a large number of instances involves the careful design of
the transition kernel Q(Θ(i), dΘ(j)). The transition kernel for the class of MCMC methods
of interest in this section is typically given by

Q
(
Θ(l), dΘ(l+1)

)
= q
(
Θ(l), dΘ(l+1)

)
α
(
Θ(l), dΘ(l+1)

)
+

[
1 −
∫

q
(
Θ(l), z

)
α
(
Θ(l), z

)
dz
]
I

[
Θ(l+1) = Θ(l)

]
,

(7.63)

where the design of transition density q
(
Θ(l), dΘ(l+1)

)
is of direct interest for reducing vari-

ance in Monte Carlo estimates. The first component

q
(
Θ(l), dΘ(l+1)

)
α
(
Θ(l), dΘ(l+1)

)
(7.64)



�

�

“Cruz_Driver” — 2015/1/12 — 10:50 — page 177 — #32
�

�

�

�

�

�

7.4 Standard Markov Chain Monte Carlo (MCMC) Methods 177

corresponds to the probability of starting in a state Θ(l) at iteration l of the Markov chain
and moving to some state Θ(l+1) with acceptance of such a proposed sampled move typically
denoted generically by acceptance probability α

(
Θ(l), dΘ(l+1)

)
. The remainder of the ker-

nel, that is, the second term, corresponds to rejecting such a proposed move and remaining in
the current state for the next iteration of the Markov chain.

Algorithms of this form are generally considered as special cases of the general framework
established by Metropolis et al. (1953) and extended by Hastings (1970). It is instructive to first
present the basic Metropolis–Hastings (MH) MCMC sampler and the univariate Gibbs sam-
pler prior to explaining how more recent advances in these methods can be utilized effectively
for OpRisk model inference.

7.4.2 METROPOLIS–HASTINGS ALGORITHM

The MH algorithm is almost a universal algorithm used to generate a Markov chain with a
stationary distribution π(θ|x). It has been developed by Metropolis et al. (1953) in mechanical
physics and generalized by Hastings (1970) in a statistical setting. It can be applied to a variety
of problems since it requires the knowledge of the distribution of interest up to a normaliz-
ing constant only, i.e. as is typically the case in practice, the normalizing constant does not
need to be known for the posterior for one to apply the following methods. Given a density
π(θ|x), known up to a normalization constant, and a conditional density q(θ∗|θ), the method
generates the chain {θ(1),θ(2), . . . } using the following algorithm.

Algorithm 7.2 (Metropolis–Hastings algorithm)

1. Initialize θ(l=0) with any value within a support of π(θ|x);
2. For l = 1, . . . , L

a) Set θ(l) = θ(l−1);
b) Generate a proposal θ∗ from q(θ∗|θ(l));
c) Accept a proposal with the acceptance probability

α(θ(l),θ∗) = min

{
1,

π(θ∗|x)q(θ(l)|θ∗)

π(θ(l)|x)q(θ∗|θ(l))

}
, (7.65)

that is, simulate U from the uniform distribution function Uniform(0, 1) and set
θ(l) = θ∗ if U < α(θ(l),θ∗). Note that the normalization constant of the posterior
does not contribute here.

3. Next l (i.e., do an increment, l = l + 1, and return to step 2).

Remark 7.11

• The density π(θ|x) is called the target or objective density;
• q(θ∗|θ) is called the proposal density and will be discussed shortly.
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For further discussions on this algorithm and tutorials on its properties and variants, see
examples by Chib and Greenberg (1995), Gilks et al. (1996), and Andrieu et al. (2003).

7.4.3 GIBBS SAMPLER

The Gibbs sampler is a technique for generating random variables from a distribution indirectly,
without having to calculate the density. The method takes its name from the Gibbs random
fields in image-processing models starting with the paper of Geman and Geman (1984). Its
roots can be traced back to the 1950s; see Robert and Casella (2004) for a brief summary of
the early history.

To illustrate the idea of the Gibbs sampler, consider the case of two random variables X and
Y that have a joint bivariate density π(x, y). Assume that simulation of X from π(x) cannot be
done directly but we can easily sample X from the conditional density π(x|y) and Y from the
conditional density π(y|x). Then, the Gibbs sampler generates samples as follows.

Algorithm 7.3 (Gibbs sampler, bivariate case)

1. Initialize y(l=0) with an arbitrary value within a support of Y ;
2. For l = 1, . . . , L

(a) Simulate x(l) from π
(
x|y(l−1)

)
;

(b) Simulate y(l) from π
(

y|x(l)
)
.

3. Next l (i.e., do an increment, l = l + 1, and return to step 2).

Under quite general conditions, π(x, y) is a stationary distribution of the chain
{(x(l), y(l)), l = 1, 2, . . .}; and the chain is ergodic with a limiting distribution π(x, y), that
is, the distribution of X (l) converges to π(x) and the distribution of Y (l) converges to π(y) for
large l .

Gibbs sampling can be thought of as a practical implementation of the fact that knowledge
of the conditional distributions is sufficient to determine a joint distribution (if it exists!).
The generalization of the Gibbs sampling to a multidimensional case is as follows.
Consider a random vector X with a joint density π(x). Denote full conditionals
πi(xi|x−i) = π(xi|x1, . . . , xi−1, xi+1, . . . , xN ). Then, do the following steps.

Algorithm 7.4 (Gibbs sampler, multivariate case)

1. Initialize x(l=0)
2 , . . . , x(l=0)

N with an arbitrary value;
2. For l = 1, . . . , L

1) Simulate x(l)
1 from π1

(
x1|x(l−1)

2 , . . . , x(l−1)
N

)
;

2) Simulate x(l)
2 from π2

(
x2|x(l)

1 , x(l−1)
3 , . . . , x(l−1)

N

)
;

...
N ) Simulate x(l)

N from πN

(
xN |x(l)

1 , . . . , x(l−1)
N−1

)
.

3. Next l .
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Again, under general conditions, the joint density π(x) is a stationary distribution of the
generated chain {x(l), l = 1, 2, . . . }; and the chain is ergodic, that is, π(x) is a limiting
distribution of the chain.

For detailed analysis of properties and justification of this algorithm, see analyses by Casella
and George (1992), Liu et al. (1995), Chan (1993) and Smith and Roberts (1993).

In many cases, such as in the univariate Gibb’s sampler framework, the full conditional
posterior distributions may not be sampled via inversion. To handle this complication, there
have been several developments in which adaptive rejection sampling has been utilized to
sample from each successive full conditional posterior distribution. Well-known examples of
these include Gilks and Wild (1992); Gilks et al. (1994, 1995), and Gelfand (2000). Another
approach to tackle this challenge in general is to adopt a mixed strategy in which one utilizes
combinations of Gibbs steps for some “blocks” of parameters and MH within Gibbs steps for
other parameter blocks.

7.4.4 RANDOM WALK METROPOLIS–HASTINGS WITHIN GIBBS

The Random Walk Metropolis–Hastings (RW-MH) within the Gibbs algorithm is easy to imple-
ment and often efficient if the likelihood function can be easily evaluated. It is referred to
as single-component Metropolis–Hastings by Gilks et al. (1996, section 1.4). The algorithm is
not well known among OpRisk practitioners and we would like to mention its main features;
see Peters and Sisson (2006); Shevchenko and Temnov (2009) for application in the context
of OpRisk and Peters et al. (2009a) for application in the context of a similar problem in
insurance.

The RW-MH within the Gibbs algorithm creates a reversible Markov chain with a station-
ary distribution corresponding to our target posterior distribution π. Denote by θ(l) the state of
the chain at iteration l . The algorithm proceeds by proposing to move the i-th parameter from
the current state θ(l−1)

i to a new proposed state θ∗i sampled from the MCMC proposal transi-
tion kernel denoted generically here by density f with distribution F . Typically, the parameters
are restricted by simple ranges, θi ∈ [ai, bi], and proposals are sampled from the Normal distri-
bution. Then, the logical steps of the algorithm are as follows.

Algorithm 7.5 (RW-MH within Gibbs)

1. Initialize θ(l=0)
i , i = 1, . . . , I by for example, using MLEs;

2. For l = 1, . . . , L
a) Set θ(l) = θ(l−1);
b) For i = 1, . . . , I .

i. Sample proposal θ∗i from the transition kernel, for example, from the truncated Normal
density

f tr(θ∗i |θ
(l)
i , σi) =

f (θ∗i |θ
(l)
i , σi)

F (bi|θ(l)
i , σi)− F (ai|θ(l)

i , σi)
, (7.66)

where f (x|μ, σ) and F (x|μ, σ) are the Normal density and its distribution with mean
μ and standard deviation σ;
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ii. Accept proposal with the acceptance probability

α(θ(l),θ∗) = min

{
1,

π(θ∗|x)f tr(θ
(l)
i |θ∗i , σi)

π(θ(l)|x)f tr(θ∗i |θ
(l)
i , σi)

}
, (7.67)

where θ∗ = (θ
(l)
1 , . . . , θ

(l)
i−1, θ

∗
i , θ

(l−1)
i+1 , . . .), that is, simulate U from Uniform(0, 1)

and set θ(l)
i = θ∗i if U < α(θ(l),θ∗). Note that the normalization constant of the

posterior does not contribute here.
c) Next i.

3. Next l .

This procedure builds a set of correlated samples from the target posterior distribution.
One of the most useful asymptotic properties is the convergence of ergodic averages constructed
using the Markov chain samples to the averages obtained under the posterior distribution. The
chain has to be run until it has sufficiently converged to the stationary distribution (the poste-
rior distribution) and then one obtains samples from the posterior distribution. General prop-
erties of this algorithm, including convergence results, can be found in Robert and Casella
(2004, sections 6–10). The RW-MH algorithm is simple in nature and easy to implement.
However, for a bad choice of the proposal distribution, in the case above the tuning of the
proposal f variance parameters, the algorithm gives a very slow convergence to the station-
ary distribution. There have been several recent studies regarding the optimal scaling of the
proposal distributions to ensure optimal convergence rates (see Bedard and Rosenthal, 2008).
The suggested asymptotic acceptance rate optimizing the efficiency of the process is 0.234.
Usually, it is recommended that the σi in (7.66) be chosen to ensure that the acceptance
probability is roughly close to 0.234. This requires some tuning of the σi prior to the final
simulations.

7.5 Standard MCMC Guidelines for Implementation

There are several numerical issues when implementing MCMC. For the majority of standard
MCMC algorithms, one must consider the following practical advice. In practice, an MCMC
run consists of three stages: tuning, burn-in, and sampling stages. It is also important to assess
the numerical errors of the obtained estimators due to finite number of MCMC iterations.

7.5.1 TUNING, BURN-IN, AND SAMPLING STAGES

Tuning. The use of MCMC samples can be very inefficient for an arbitrary chosen proposal
distribution. Typically, parameters of a chosen proposal distribution are adjusted to achieve
a reasonable acceptance rate for each component. There have been several studies regarding
the optimal scaling of proposal distributions to ensure optimal convergence rates. Gelman
et al. (1997), Bedard and Rosenthal (2008), and Roberts and Rosenthal (2001) were the first
authors to publish theoretical results for the optimal scaling problem in RW-MH algorithms
with Gaussian proposals. For the d -dimensional target distributions with independent and
identically distributed components, the asymptotic acceptance rate optimizing the efficiency of
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the process is 0.234 independent of the target density. Though for most problems the posterior
parameters are not independent Gaussian, it provides a practical guide.

There is no need to be very precise in this stage. In practice, the chains with acceptance
rate between 0.2 and 0.8 work well. Typically, turning is easy. In an ad hoc procedure, one can
initialize the proposal distribution parameters with the values corresponding to the proposal
with a very small variability, and start the chain. This will lead to a very high acceptance rate.
Then run the chain and gradually change the parameters toward the values that correspond to
the proposal with a large uncertainty. This will gradually decrease the acceptance rate. Continue
this procedure until the acceptance rate is within the 0.2–0.8 range. For example, for Gaussian
proposal choose a very small standard deviation parameter. Then increase the standard deviation
in small steps and measure the average acceptance rate over the completed iterations until the
rate is within the 0.2–0.8 range. One can apply a reverse procedure, that is, start with parameter
values corresponding to a very uncertain proposal resulting in a very low acceptance rate. Then
gradually change the parameters toward the values corresponding to the proposal with small
variability. Many other alternative ways can be used in this context.

Gaussian proposals are often useful with the covariance matrix given by (7.25), that is,
using Gaussian approximation for the posterior, or just MLE observed information matrix (7.7)
in the case of constant prior. An alternative approach is to utilize a new class of adaptive MCMC
algorithms recently proposed in the literature (see Atchadé and Rosenthal 2005 and Rosenthal
2007).

Burn-in stage. Subject to regularity conditions, the chain converges to the stationary target
distribution. The number of iterations required for the chain to converge should be discarded
and called burn-in iterations. Again, we do not need to identify this quantity precisely. Rough
approximations of the order of magnitude work well. Visual inspections of the chain trace plot
is the most commonly used method. If the chain is run long enough, then the impact of these
burn-in iterations on the final estimates is not significant. There are many formal convergence
diagnostics that can be used to determine the length of burn-in (for a review, see Cowles and
Carlin 1996).

Sampling stage. Consider the chain {θ(1),θ(2), . . . ,θ(L)} and the number of burn-in iter-
ations is Lb. Then, θ(Lb+1),θ(Lb+2), . . . ,θ(L) are considered as dependent samples from the
target distribution π(θ|x) and used for estimation purposes. For example, E[g(Θ)|X = x] is
estimated as

E[g(Θ)|X = x] =
∫

g(θ)π(θ|x)dθ ≈ 1
L − Lb

L∑
l=Lb+1

g(θ(l)). (7.68)

Typically, when we calculate the posterior characteristics using MCMC samples, we assume that
the samples are taken after burn-in and Lb is dropped in corresponding formulas to simplify
notation.

In addition to visual inspection of MCMC, checking that after the burn-in period the
samples are mixing well over the support of the posterior distribution, it is useful to moni-
tor the serial correlation of the MCMC samples. For a given chain sample θ(1)

i , . . . , θ
(L)
i , the

autocorrelation at lag k is estimated as

ÂCF[θi, k] =
1

(L − k)̂s2

L−k∑
l=1

(θ
(l)
i − μ̂)(θ

(l+k)
i − μ̂), (7.69)
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where μ̂ and ŝ2 are the mean and variance of a sample θ
(1)
i , . . . , θ

(L)
i . In well-mixed MCMC

samples, the autocorrelation falls to near zero quickly and stays near zero at larger lags. It is
useful to find a lag kmax where the autocorrelations seem to have “died out”, that is, fallen to
near zero (for some interesting discussion on this issue, see e.g., Kass et al. 1998). It is not
unusual to choose a kmax

i for each component such that the autocorrelation at lag kmax
i has

reduced to less than 0.01.

EXAMPLE 7.3

To illustrate the described stages, consider a dataset of the annual counts
n = (9, 12, 7, 9) simulated from Poisson(10). Then, we obtain the chain
λ(0), λ(1), . . . using the RW-MH algorithm with the Gaussian proposal distribu-
tion for the Poisson(λ) model and constant prior on a very wide range [0.1, 100].
Figure 7.1 shows the chains in the case of different starting values λ(0) and different
standard deviations σRW of the Gaussian proposal. One can see that after the
burn-in stage indicated by the vertical broken line, the chain looks stationary.
Figure 7.1a and b were obtained when σRW = ŝtdev[λ̂MLE] ≈ 1.521, leading to
the acceptance probability of approximately 0.7, while Figure 7.1c and d were
obtained when σRW = 0.4 and σRW = 30, leading to the acceptance probability
of about 0.91 and 0.10, respectively. The MLE was calculated in the usual way
as ŝtdev[λ̂MLE] = (

∑m
i=1 ni/m)1/2/

√
m, where m = 4. The impact of the value

of σRW is easy to see: the chains on Figures 7.1c and d are mixing slowly (moving
slowly around the support of the posterior) while the chains on Figure 7.1a and b
are mixing rapidly. Slow mixing means that much longer chain should be run to
get good estimates.

7.5.1.1 MCMC Convergence Diagnostics. In all cases of using MCMC algorithms
in practice, one has to decide on how many samples to draw from the Markov chain mechanism,
that is, how long a Markov chain to run in the burn-in and sampling phase. In principle,
this will dependent on a few different factors such as the precision in the estimated inferential
quantities that one wishes to achieve, since we have seen that the accuracy of Monte Carlo
estimates increases with the number of samples.

In addition, one must remember that when using MCMC samplers, if one initializes the
sampler from an arbitrary point in the parameter space, it will take a certain number of iter-
ations before the Markov chain reaches what can be considered the stationary regime, that
is, begins to sample from the true posterior target distribution (the reason for the burn-in
phase). Therefore, it is common in practice to do two things: the first is to discard the ini-
tial samples that may not have come from the stationary distribution (know as discarding
“burn-in”), and the second is to monitor the mixing (exploration of the Markov chain) around
the support of the posterior distribution. This helps to ensure that we are not using samples
that are too autocorrelated. Both these tasks require some version of monitoring, and generally
there have been statistical approaches developed to monitor these aspects as the Markov chain
progresses, which are known as convergence diagnostics (see the review by Mengersen et al.
1999).
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figure 7.1 MCMC chains of λ parameter of Poisson(λ) model in the case of different starting points
λ(0) and different standard deviations of the Gaussian proposal distribution: (a) starting point λ(0) = 30
and σRW = 1.521; (b) λ(0) = 1 and σRW = 1.521; (c) λ(0) = 30 and σRW = 0.4; (d) λ(0) = 30 and
σRW = 30. The burn-in stage is to the left of the vertical broken line. The dataset consisting of the annual
number of events (9, 12, 7, 9) over 4 years was simulated from Poisson(10)
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Hence, we stress that when using an MCMC algorithm, it is crucial to carefully monitor
the convergence diagnostics of the Markov chain. This is more important in general MCMC
contexts and approximate Bayesian computation settings due to the possibility of extended
rejections where the Markov chain can stick in a given state for long periods.

If the total chain has length L, the initial burn-in stage will correspond to the first Lb

samples and we define L̃ = L − Lb. Note that in this particular section, we will denote by
{Θ(l)}l=1:L̃ the Markov chain of the i-th parameter after burn-in; for simplicity of notation,
the parameter index i is dropped. The diagnostics we consider are given as follows.

• Geweke et al. (1991); Cowles and Carlin (1996) time series diagnostic;
1. Split the Markov chain samples into two subsequences,

{Θ(l)}l=1:L1 and {Θ(l)}l=L∗:L̃,

such that L∗ = L̃−L2+1, and with ratios L1/L̃ and L2/L̃ fixed such that (L1+L2)/L̃ <
1 for all L̃;

2. Evaluate μ̂L1 and μ̂L2 corresponding to the sample means of each subsequence;
3. Evaluate consistent spectral density estimates for each subsequence, at frequency 0,

denoted ŜDL1 and ŜDL2 . The spectral density estimator is the classical non-parametric
periodogram or power spectral density estimator; for details of the power spectral den-
sity, see Oppenheim et al. (1989);

4. Evaluate convergence diagnostic given by

ZL̃ =
μ̂L1 − μ̂L2

L−1
1 ŜDL1 + L−1

2 ŜDL2

.

According to the CLT, as L̃ → ∞ one has ZL̃ → Normal(0, 1) if the sequence
{Θ(l)}l=1:L̃ is stationary.

• Gelman and Rubin (1992), and Brooks and Gelman (1998), R-statistic diagnostic. This
approach to convergence analysis requires that one run multiple parallel independent
Markov chains each starting at randomly selected initial starting points (e.g., consider
running five chains). For comparison purposes, we split the total computational budget
of L̃ into L1 = L2 = · · · = L5 = L̃/5. The convergence diagnostic for parameter Θ is
calculated using the following steps:
1. Generate five independent Markov chain sequences, producing the chains for parameter

Θ denoted {Θ(l)
k }l=1:Lk for k ∈ {1, . . . , 5};

2. Calculate the sample means μ̂Lk for each sequence and the overall mean μ̂L̃;
3. Calculate the variance of the sequence means

1
4

5∑
k=1

(
μ̂Lk − μ̂L̃

)2
=: B/Lk.

4. Calculate the within-sequence variances ŝ2
Lk

for each sequence;

5. Calculate the average within-sequence variance, 1
5
∑5

k=1 ŝ2
Lk
=: W ;



�

�

“Cruz_Driver” — 2015/1/12 — 10:50 — page 185 — #40
�

�

�

�

�

�

7.5 Standard MCMC Guidelines for Implementation 185

6. Estimate the target posterior variance for parameter Θ by the weighted linear combi-
nation σ̂2

L̃
= Lk−1

Lk
W + 1

Lk
B. This estimate is unbiased for samples that are from the

stationary distribution. In the case in which not all subchains have reached stationarity,
this overestimates the posterior variance for a finite L̃ but asymptotically, L̃ → ∞, it
converges to the posterior variance;

7. Improve on the Gaussian estimate of the target posterior given by Normal(μ̂L̃, σ̂
2
L̃
)

by accounting for sampling variability in the estimates of the posterior mean
and variance. This can be achieved by making a Student-t approximation with
location μ̂L̃, scale

√
V̂ , and degrees of freedom df , each given respectively by:

V̂ = σ̂2
L̃
+ B/L̃ and df = 2(V̂ )2/V̂ar(V̂ ), where the variance is estimated as

V̂ar
(

V̂
)
=

1
5

(
L1 − 1

L1

)2

V̂ar
[̂
s2
Lk

]
+

(
6√
2L̃

)2

B2

+
12(L1 − 1)

25L1
Ĉov
(̂
s2
Lk
, μ̂L̃

)
− 24(L1 − 1)

25L1
μ̂L̃Ĉov

[̂
s2
Lk
, μ̂L̃

]
.

(7.70)

Note that the covariance terms are estimated empirically using the within-sequence
estimates of the mean and variance obtained for each sequence;

8. Calculate the convergence diagnostic R̂ = V̂ df /W (df − 2), where as L̃ → ∞ one
can prove that R̂ → 1. This convergence diagnostic monitors the scale factor by
which the current distribution for Θ may be reduced if simulations are continued for
L̃ → ∞.

7.5.2 NUMERICAL ERROR

Due to the finite number of iterations, MCMC estimates have numerical error that reduces as
the chain length increases. Consider the estimator

Ω̂ = Ê[g(Θ)|X = x] =
1
L

L∑
l=1

g(Θ(l)). (7.71)

If the samples Θ(1), . . . ,Θ(L) are independent and identically distributed then the standard
error of Ω̂ (due to the finite L) is estimated using

stdev[Ω̂] = stdev[g(Θ)|X = x]/
√

L,

where stdev[g(Θ)|X ] is estimated by the standard deviation of the sample g(Θ(l)),
l = 1, . . . , L. This formula is only approximate for MCMC samples due to serial correla-
tions between the samples. Of course, one can keep every kmax sample from the chain to get
approximately independent samples, but it is always a suboptimal approach (see MacEachern
and Berliner 1994).
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Effective sample size. If there is only one parameter θ, then one of the popular approaches is
to calculate effective sample size, Teff = T/τ , where τ is autocorrelation time

τ = 1 + 2
∞∑

k=1

ACF[θ, k]. (7.72)

To estimate τ , it is necessary to cut off the sum in (7.72) at a value of k = kmax, where the
autocorrelations seem to have fallen to near zero. Then the standard error of the Ω̂ (7.71) is
estimated using

stdev[Ω̂] =
stdev[g(Θ)]√

L/τ

(see Ripley 1987, and Neal 1993).

Batch sampling. Probably the most popular approach to estimating the numerical error of the
MCMC posterior averages is the so-called batch sampling (see Gilks et al. 1996, section 3.4.1).
Consider MCMC posterior samples Θ(1), . . . ,Θ(L) of Θ with the length L = K × N , and
an estimator Ω̂ =

∑L
l=1 g(Θ(l)) of E[g(Θ)]. If N is sufficiently large, the means

Ω̂j =
1
N

j×N∑
i=(j−1)N+1

g(Θ(i)), j = 1, . . . ,K (7.73)

are approximately independent and identically distributed. Then the overall estimator and its
variance are

Ω̂ =
1
K
(Ω̂1 + · · ·+ Ω̂K ),

Var[Ω̂] =
1

K 2 (Var[Ω̂1] + · · ·+ Var[Ω̂K ]) =
σ2

K
,

where σ2 = Var[Ω̂1] = · · · = Var[Ω̂K ]. In the limit of large K , by the CLT (we also assume
that σ2 is finite), the distribution of Ω̂ is Normal with the standard deviation σ/

√
K . The latter

is referred to as the standard error of Ω̂. Finally, σ2 can be estimated using sample variance

σ̂2 =
1

K − 1

K∑
j=1

(Ω̂j − Ω̂)2. (7.74)

Note that K is the number of quasi-independent bins, and N = L/K is the size of each bin or
batch. Typically, in practice K ≥ 20 and N ≥ 100kmax, where kmax = max(kmax

1 , kmax
2 , . . .)

is the maximum of the cutoff lags over components. In general, we would like to run the chain
until the numerical error is not significant. So, one can set N using kmax identified during
tuning and burning stages, for example, set N = 100kmax, then run the chain in batches until
the numerical error of the estimates is less than the desired accuracy.
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7.5.3 MCMC EXTENSIONS: REDUCING SAMPLE
AUTOCORRELATION

Sometimes, in the developed Bayesian models, there is a strong correlation between the model
parameters in the posterior. In extreme cases, this can cause slow rates of convergence in the
Markov chain to reach the ergodic regime, translating into longer Markov chain simulations.
In such a situation, several approaches can be tried to overcome this problem. The following
are suggestions that are widely used in practice.

• Hybrid Samplers. The first involves the use of a mixture transition kernel for the Markov
chain, where one combines local and global moves. Local moves are from Markov transi-
tion kernels that sample the next chain transition based on local information of the current
chain’s state, whereas global moves sample the next state of the Markov chain independently
of the current state location. Global moves can produce a wider exploration potential of
the state space, whereas local moves produce a local exploration with a higher chance of
acceptance of a proposed move. For example, one can perform local moves via a univariate
slice sampler and global moves via an independent MH sampler with adaptive learning
of its covariance structure. Such an approach is known as a hybrid sampler (see compar-
isons in Brewer et al. 1996); the slice sampler will be discussed later. Alternatively, for
the global move if determination of level sets in multiple dimensions is not problematic
for the model under consideration, then some of the multivariate slice sampler approaches
designed to account for correlation between parameters can be incorporated (see Neal 2003
for details);

• Transformations of Parameters (change of variable). Another approach to breaking cor-
relation between parameters in the posterior is via the transformation of the parameter
space. If the transformation is effective, this will reduce correlation between parameters of
the transformed target posterior. Sampling can then proceed in the transformed space, and
then samples can be transformed back to the original space. It is not always straightforward
to find such transformations;

• Change of Target Distribution (distortion of target). A third alternative is based on
simulated tempering, introduced by Marinari and Parisi (1992) and discussed extensively
by Geyer and Thompson (1995). In particular, a special version of simulated tempering,
first introduced by Neal (1996), can be utilized in which one considers a sequence of target
distributions {πl} constructed such that they correspond to the objective posterior in the
following way:

πl = (π (θ|x))γl (7.75)

with sequence {γl}. Then one can use the standard MCMC algorithms (e.g., slice sampler)
and replace π with πl . Running a Markov chain such that at each iteration l we target
the posterior πl and then only keeping samples from the Markov chain corresponding to
situations in which γl = 1 can result in significant improvement in exploration around
the posterior support. This can overcome slow mixing arising from a univariate sampling
regime. The intuition for this is that for values of γl << 1 the target posterior is almost
uniform over the space, resulting in large moves being possible around the support of the
posterior, then as γl returns to a value of 1, several iterations later, it will be in potentially
new unexplored regions of the posterior support.



�

�

“Cruz_Driver” — 2015/1/12 — 10:50 — page 188 — #43
�

�

�

�

�

�

188 CHAPTER 7 Estimation of Frequency and Severity Models

For example, one can utilize a sine function

γl = min

(
sin

(
2π
K

l
)
+ 1, 1

)

with large K (e.g., K = 1000), which has its amplitude truncated to ensure it ranges
between 0 and 1. That is, the function is truncated at γl = 1 for extended iteration periods
for our simulation index l to ensure the sampler spends significant time sampling from the
actual posterior distribution.

In the application of tempering, one must discard many simulated states of the Markov
chain, whenever γl �= 1. There is, however, a computational way to avoid discarding these
samples (see Gramacy et al., 2010);

• Adaptive Transition Kernels and Mixed Samplers. Finally, we note that there are several
alternatives to an MH within a Gibbs sampler such as a basic Gibbs sampler combined
with adaptive rejection sampling (ARS) (Gilks and Wild 1992). Note that ARS requires
distributions to be log-concave. Alternatively, an adaptive version of this known as the
adaptive Metropolis rejection sampler could be used (see Gilks et al. 1995).

Remark 7.12 Knowing which of theses strategies is most appropriate for a given application is a
combination of three factors: careful consideration of the properties of the target distribution to deter-
mine which approach may be possible to implement efficiently; consideration of the total computa-
tional budget and desired precision in the estimation target; and some trial of competing methods
prior to full simulation. It is still a challenge to definitively state that a particular MCMC approach
or sampling procedure will work universally for all problems in an efficient manner and so some trial
and error is required.

It is the intention of the following sections to provide more advanced techniques that
we recommend be adopted only if one has already tried the simple MCMC procedures dis-
cussed previously and found them to be inefficient for the given sampling challenge. Therefore,
these more advanced methods will provide a significant increase in sampler “performance” at
an increased cost of complexity of understanding and implementation.

7.6 Advanced MCMC Methods

In this section, we will survey a few examples of more recently developed MCMC methods
aimed at improving the performance of the fundamental approaches discussed in the section
presenting the standard MCMC algorithms. The first methods we present are a class of aux-
iliary variable MCMC methods in which we focus on the special case of the univariate Gibbs
sampler algorithm, with discussions and references to more recent advanced multivariate ver-
sions. Following this we present the framework of adaptive MCMC methods, illustrating the
properties briefly in order to explain to practitioners how such an approach can be imple-
mented. The adaptive strategies chosen to be presented will be based on nontrivial mod-
ifications to the standard algorithms to obtain the adaptive Metropolis algorithm and the
Reimann–Manifold Hamiltonian Monte Carlo algorithms. Then we introduce briefly the fam-
ily of sequential IS methods known in the statistics literature as SMC Samplers, which are
direct competitors to MCMC methods (see Del Moral et al. 2006, Peters et al. 2009 and
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Peters 2005). We discuss these briefly and then present particular detailed examples of such
algorithms are also presented in the companion book by Peters and Shevchenko (2015) under
the topic of rare-event simulation.

7.6.1 AUXILIARY VARIABLE MCMC METHODS: SLICE SAMPLING

In this section, we explain the general class of auxiliary variable methods that are available to
practitioners to improve the efficiency of MCMC algorithms in exploring complex posterior
supports. In general, there are different classes of such algorithms ranging from slice samplers by,
for example, Neal (2003) and for OpRisk, Peters et al. (2009); auxiliary variable techniques to
remove intractability in likelihood models such as by Godsill (2000), West (1987), and Peters
et al. (2011b); data augmentation schemes (Tanner and Wong, 1987) such as those used to
tackle complicated dependence structures by Peters et al. (2012b); and the general summary of
such methods by Higdon (1998).

7.6.2 GENERIC UNIVARIATE AUXILIARY VARIABLE GIBBS
SAMPLER: SLICE SAMPLER

In this section, we focus on settings in which the approach of auxiliary variables can be utilized to
improve sampling performance. Often, the full conditional distributions in Gibbs samplers do
not take standard explicit closed forms and typically the normalizing constants are not known in
closed form. Therefore, this will exclude straightforward simulation using the inversion method
(see Corollary 7.1) or basic rejection sampling (see Corollaries 7.2 and 7.3). In this case, for
sampling, one may adopt a Metropolis–Hastings within a Gibbs algorithm (described in Section
7.4.4). This typically requires tuning of the proposal for a given target distribution, which
becomes computationally expensive, especially for high-dimensional problems. To overcome
this problem one may use an adaptive Metropolis–Hastings within a Gibbs sampling algorithm
(see Atchadé and Rosenthal 2005 and Rosenthal 2009). An alternative approach, which is more
efficient in some cases, is known as a univariate slice sampler (see Neal 2003). The latter was
developed with the intention of providing a “black box” approach for sampling from a target
distribution, which may not have a simple form.

The slice sampling methodology we develop will be automatically tailored to the desired
target posterior. As such, it does not require pretuning and in many cases will be more efficient
than an MH within Gibbs sampler. The reason for this, pointed out by Neal (2003), is that an
MH within Gibbs has two potential problems. The first arises when an MH approach attempts
moves that are not well adapted to local properties of the density, resulting in slow mixing of the
Markov chain. Second, the small moves arising from the slow mixing typically lead to traversal
of a region of posterior support in the form of a Random Walk. Therefore, L2 steps are required
to traverse a distance that could be traversed in only L steps if moving consistently in the same
direction. A univariate slice sampler can adaptively change the scale of the moves proposed
avoiding problems that can arise with the MH sampler when the appropriate scale of proposed
moves varies over the support of the distribution.

We will utilize the notations Θ(−i) = (Θ1, . . . ,Θi−1,Θi+1, . . . ,Θd ) with θ ∈ R
d .

The intuition behind slice sampling arises from the fact that sampling from a univariate dis-
tribution, in this case given by say the i-th component full conditional of the posterior for the
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Bayesian model, given by π
(
Θi|Θ(−i), x1:T

)
, can always be achieved by sampling uniformly

from the region under the distribution π
(
Θi|Θ(−i), x1:T

)
.

The procedure in Algorithm 7.6 is repeated for each of the d elements of the posterior
parameter vector Θ to obtain the l-th sample from the univariate slice sampler. Then typically,
such a procedure is repeated L times to obtain sufficient draws for resulting estimation chal-
lenges. We note that in applying Algorithm 7.6 we actually discard the auxiliary variable sample
ul

j for each of the dimensions, j ∈ {1, 2, . . . , d}, just keeping the resulting correlated samples

Θ
(l)
j which when combined together in a vector

(
Θ

(l)
1 ,Θ

(l)
2 , . . . ,Θ

(l)
d

)
will make a draw Θ(l)

from π (Θ|x1:T ). Neal (2003) demonstrates that a Markov chain (U ,Θ) constructed in this
way will have stationary distribution defined by a uniform distribution under π (Θ|x1:T ) and
therefore discarding the vector of auxiliary variables U at each of the l iterations allows one to
obtain the marginal of Θ which will produce samples from the desired stationary distribution
π (Θ|x1:T ) .Additionally, Mira and Tierney (2003), and Mira et al. (2002) proved that the slice
sampler algorithm, assuming a bounded target distribution π (Θ|x1:T ) with bounded support
is uniformly ergodic.

Similar to a deterministic scan Gibbs sampler, the simplest way to apply the slice sampler
to a multivariate distribution is by considering each of the univariate full conditional distribu-
tions either in turn under a deterministic scan Gibbs sampler; or alternatively under a random
scan Gibbs sampler in which the dimension of Θ to be updated at the l-th iteration of the
slice sampler is randomly selected. Discussions that relate to the benefits provided by Random
Walk behavior suppression, as achieved by the slice sampler, are presented in the context of
nonreversible Markov chains in for instance Diaconis et al. (2000).

A single iteration of the slice sampler algorithm for a toy example is presented in
Figure 7.2. The intuition behind the slice sampling arises from the fact that sampling from
a univariate density π (θ) can always be achieved by sampling uniformly from the region
under the density π (θ), where, for instance, π(θ) could be a posterior distribution π (θ|x1:T )

u =𝜋(θ)

Al

θ(l – 1) θ(l) θ

u

u(l)

figure 7.2 Markov chain created for Θ and auxiliary random variable U ,(
u(1), θ(1)

)
, . . . ,

(
u(l−1), θ(l−1)

)
,
(
u(l), θ(l)

)
, . . . has a stationary distribution with the desired marginal

density π (θ)
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or any desired target distribution. The example we present is for a single univariate distribu-
tion; if one has a multivariate posterior, then the algorithm is applied iteratively via either a
random scan or a deterministic scan over each of the univariate full conditional distributions.
This is basically then a version of an auxiliary variable Gibbs sampler as discussed above with
the sampling stage at each iteration replaced with the two steps of Algorithm 7.6 below for
each full conditional target distribution. Again, we note that this algorithm only requires that
the target posterior distribution and univariate full conditional posterior distributions are only
required to be known up to a normalization constant. That is, the normalization constant is
not required to be known to apply this method.

Algorithm 7.6 (Univariate slice sampler)

1. Initialize θ(0) by any value within the support of π(θ);
2. For l = 1, 2, . . . , L

a) Sample a value u(l) ∼ Uniform
(
0, π
(
θ(l−1)

))
;

b) Sample a value θ(l) uniformly from the level set Al =
{
θ : π (θ) > u(l)

}
, that is,

θ(l) ∼ Uniform (Al) .

3. Next l .

As noted above, in general to apply this univariate procedure to a multivariate posterior distri-
bution, with Θ ∈ R

d , one would use at iteration l , of a deterministic scan Gibbs sampler, for
the i-th element, having updated i − 1 elements l times the full conditional posterior choice

π
(
θi|θ(l)

1 , 2θ(l)
2 , . . . , θ

(l)
i−1, θ

(l−1)
i+1 , . . . , θ

(l−1)
d , x1:T

)
. (7.76)

The sampling in Algorithm 7.6 above would then be applied for each i ∈ {1, 2, . . . , d} to
obtain the complete l-th sample of the Markov chain from π (θ|x1:T ).

There are many approaches that could be used in the determination of the level sets Al
for the density π(·) (see Neal 2003, section 4). For example, one can use a stepping out and a
shrinkage procedure (see Neal 2003, figure 1, p. 713).

The basic idea is that given a sampled vertical level u(l), the level sets Al can be found by
positioning an interval of width w randomly around θ(l−1). This interval is expanded in step
sizes of width w until both ends are outside the slice. Then a new state is obtained by sampling
uniformly from the interval until a point in the slice Al is obtained. Points that fail can be
used to shrink the interval. Developing such a procedure can be rather intricate in practice
to implement if the full conditional posterior distributions are multi-modal. Thankfully, there
are now efficient Slice Sampler packages available in standard softwares such as R, Matlab and
Python.

Additionally, it is important to note that we only need to know the target full conditional
posterior up to normalization (see Neal 2003, p. 710). To make more precise the intuitive
description of the slice sampler presented earlier, we briefly detail the argument made by Neal
on this point. Suppose we wish to sample a random vector Θ whose density π (θ) is propor-
tional to some function f (θ). This can be achieved by sampling uniformly from the (n + 1)-
dimensional region that lies under the plot of f (θ). This is formalized by introducing the
auxiliary random variable U and defining a joint distribution over Θ and U (which is uniform
over the region {(Θ,U ) : 0 < u < f (θ)} below the surface defined by f (θ)) given by
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π (θ,u) =

{
1/Z , if 0 < u < f (θ) ,

0, otherwise,
(7.77)

where Z =
∫

f (θ) dθ. Then the target marginal density for Θ is given by

π (θ) =

f (θ)∫
0

1
Z

du =
f (θ)

Z
(7.78)

as required.

Remark 7.13 We note that such an algorithm aims to improve the mixing of the Markov chain
around the support of the posterior through the use of the auxiliary variables, which means that the
joint Markov chain on the parameters and auxiliary variables has a stationary distribution that is
uniform in some domain for the volume under the posterior, such that the marginal distribution
obtained by discarding the Markov chain samples for the auxiliary variables are actually samples
from the true posterior. The challenge with the implementation of this algorithm is to obtain at
each slice the level sets (or an approximation of the level sets) of the posterior. This is typically done
numerically through a stepping in and stepping out routine, followed by a rejection sample. The
interested reader is referred to Neal (2003, section 4).

The simplest way to apply the slice sampler in a multivariate case is by applying the univari-
ate slice sampler for each fully conditional distribution within the Gibbs sampler; for example,
in the OpRisk context, see Peters et al. (2009).

Recently, several extensions have been developed for the slice sampler algorithm with a view
to generalizing it to multivariate block Gibbs samplers known as reflective slice samplers, hyper
rectangle slice samplers, and “crumbs” see the approaches presented by Tibbits et al. (2011),
Mira et al. (2002), Murray et al. (2010), Thompson and Neal (2010a), Thompson (2011),
Roberts and Rosenthal (2002), and Thompson and Neal (2010).

7.6.3 ADAPTIVE MCMC

As has now been demonstrated in the previous few sections, MCMC sampling has gained wide
recognition in all areas of modeling and statistical estimation as an essential tool for performing
inference in Bayesian models (see reviews and discussions by Gilks et al. 1996 and Brooks
1998). In this section, we discuss two recently developed classes of algorithms known as forms
of adaptive MCMC (see a review by Andrieu and Thoms 2008).

As discussed in the section on MH algorithms, standard MCMC algorithms that do not
incorporate adaptation often require a degree of “tuning” of the parameters controlling the
algorithms’ performance. This is typically performed by offline simulations to assess perfor-
mance of the mixing of the resulting Markov chain followed by numerical investigation of the
convergence rates to stationarity of the chain for different algorithmic settings of the proposal
distribution. For example, the variant of the MH algorithm, the RW-MH algorithm with the
widely used multivariate Gaussian proposal, has mixing performance that is controlled through
specification of the Markov chain proposal distributions covariance matrix. Tuning this matrix
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for optimal performance can be computationally expensive and inefficient (see detailed discus-
sions by Gilks et al. 1996, Brooks 1998, and Chib and Greenberg 1995). Optimal performance
of an MCMC algorithm is typically either specified by the convergence rate of the Markov chain
to stationarity or through the related quantity, the acceptance probability of the rejection step
in the MCMC algorithm. In this regard, theoretically optimal results have been derived for
several classes of statistical models, which now act as guides for more complicated sampling
problems (see discussions by Roberts and Rosenthal 2001).

The potential in OpRisk modeling to have high dimensionality in the posterior parame-
ter space provides a significant challenge for standard MCMC algorithms with respect to the
design of an efficient proposal mechanism for the Markov chain. Therefore, it is desirable to
automate this proposal construction for the MCMC sampler, avoiding computationally expen-
sive tuning processes. Hence, we develop an adaptive version of the RW-MH algorithm. The
incorporation of an adaptive proposal mechanism in an MCMC algorithm has been demon-
strated to improve the performance of the sampling algorithm relative to standard MCMC
approaches (see reviews of several examples of this improvement by Andrieu and Thoms
2008). The improvement is achieved by learning the structure of the Markov chain proposal
distribution online in an automated fashion, avoiding offline tuning of the MCMC proposal
mechanism.

There are several classes of adaptive MCMC algorithms and each class has several adapta-
tion strategies (Roberts and Rosenthal 2009, Atchadé and Rosenthal 2005, Andrieu and Thoms
2008). These approaches can be classified as either internal adaptation mechanisms, including
controlled MCMC methods, or external adaptation strategies (see discussion by Atchadé and
Rosenthal, 2005).

Remark 7.14 The distinguishing feature of adaptive MCMC algorithms, when compared to stan-
dard MCMC, is that the Markov chain is generated via a sequence of transition kernels. Adaptive
algorithms get their name from the fact that they utilize a combination of time or state inhomoge-
neous proposal kernels. Each proposal in the sequence is allowed to depend on the past history of the
Markov chain generated, resulting in many possible variants.

When using inhomogeneous Markov kernels, it is particularly important to ensure that the
generated Markov chain is ergodic, with the appropriate stationary distribution. Several recent
papers proposing theoretical conditions that must be satisfied to ensure ergodicity of adaptive
algorithms include Atchadé and Rosenthal (2005) and Haario et al. (2001, 2006). The papers
by Roberts and Rosenthal (2007), Łatuszyński et al. (2013), and Bai et al. (2009) consider
properties such as the ergodicity of the adaptive MCMC under conditions such as Diminishing
Adaptation and Bounded Convergence.

Designing an adaptation strategy that satisfies these conditions guarantees asymptotic con-
vergence of the law of the Markov chain samples to the target posterior and ensures that the
Weak Law of Large Numbers holds for bounded test functions of the parameter space (inter-
ested readers are referred to Roberts and Rosenthal 2009 for details).

Technical Notes Regarding Adaptive MCMC. The practitioner reading this section may wish
to skip the following technical notes relating to the validity of the adaptive MCMC algo-
rithm. Primarily the focus of this section involves discussing under what types of conditions one
way achieve a sensible notion of sample average from a Markov chain in which the transition
matrix is constantly changing, that is, “adapting”. However, if a practitioner wishes to adopt
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or try such methods with confidence that they are theoretically justified, they may go directly
past this section to the description of the algorithms.

In stating these conditions more precisely, we consider the distance between two probabil-
ity distributions generically denoted by ν and μ, that are formed from measures that we assume
admit a density with respect to, say, the Lebesgue measure. We can again recall this distance in
a slightly different form from where we denoted it by || · ||TV , where we define this distance
generically according to

d(μ, ν) = sup

{∣∣∣∣
∫

ϕdμ−
∫

ϕdν
∣∣∣∣ : ϕ ∈ D

}
(7.79)

for some test function ϕ in a class of functions denoted D, for example, the class of all bounded
and k-th order differentiable functions, etc. In the case of considering the Total Variation dis-
tance ‖μ− ν‖TV , we consider the space of Borel sets B and define the distance

d(μ, ν) = ||μ− ν||TV := sup
A∈B

|ν(A)− μ(A)| (7.80)

with the class of functions given by the indicators on the Borel sets D = {IA : A ∈ B}. This
distance in the case of two probability measures ν and μ will clearly be between 0 and 1 and
will provide a comparison of convergence between two probability measures, which will imply
weak convergence (convergence in distribution).

One can formally consider this distance and utilize it to develop a condition that will
succinctly state one of the required conditions for an adaptive Markov chain to satisfy ergodicity.
This condition is known as diminishing adaptation and is given as follows.

Diminishing Adaptation.

lim
n→∞

sup
Θ∈Rd

‖ QΓn+1(Θ,Θ′)− QΓn(Θ,Θ′) ‖TV = 0 in prob.,

whereΘ is the vector of parameters in the Bayesian model and the measures ν and μ are selected
to be the Markov transition kernel QΓn+1 at a random time denoted by index Γn+1 when the
n + 1-th update of the kernel (in the learning phase) was applied.

The second condition required for a transition kernel to satisfy ergodicity is known as
bounded convergence and is given as follows.

Bounded Convergence.

{Mε(Θ
(l),Γj)}∞j=0 is bounded in prob., ε > 0

with convergence time defined as Mε(θ, γ) = inf
{

l ≥ 1 :‖ Ql
γ(θ, ·)− P(·)‖TV ≤ ε

}
.

Creating an adaptive MCMC sampler with a proposal distribution that satisfies these tech-
nical conditions ensures the following:

• Asymptotic convergence:

lim
l→∞

‖ L(Θ(l))− π(·)‖TV = 0 in prob.,
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where π(·) is the target posterior distribution–intended stationary distribution of the
Markov chain and L(·) denotes the law of the random variable (distribution);

• Weak Law of Large Numbers (for all bounded functions g)

lim
L→∞

1
L

L∑
l=1

g(Θ(l)) = π(g) =
∫

g(θ)π(θ) dθ.

In the following, we discuss one particular illustrative choice of transition kernel that sat-
isfies these conditions and has been used successfully in several applications (see Andrieu and
Thoms 2008, Peters et al. 2010, Korostil et al. 2012, and Roberts and Rosenthal 2009). The
algorithm we present is one of many possibilities in this literature and is known as the adaptive
Metropolis algorithm. It involves utilizing an MCMC proposal distribution, parameterized by
parameter vector or matrix Ψ, and learning the appropriate values for Ψ recursively utilizing
the previous samples of the Markov chain that have been accepted under the MCMC accept–
reject mechanism. This is achieved online, adapting according to the support of the posterior
distribution, thereby allowing the Markov chain to discover and explore the regions of the
posterior distribution that have the most mass. Through this online adaptive learning mech-
anism, the Markov chain proposal distribution can significantly improve the acceptance rate
of the Markov chain, enabling efficient mixing and improving the exploration of the posterior
support by the Markov chain.

To provide practitioners with perhaps the simplest version of an adaptive MCMC algo-
rithm proposal that could be considered, we present the internal adaptation strategy based on
the adaptive Metropolis algorithm detailed by Roberts and Rosenthal (2009). This is a variant
of the approach proposed by Haario et al. (2001), which develops an RW-MH that estimates
the global covariance structure from the past samples.

Under an adaptive Metropolis algorithm, the proposal distribution is based on a Gaussian
mixture kernel detailed by Roberts and Rosenthal (2009). The proposal, q

(
Θ(j−1),Θ(j)

)
,

involves an adaptive Gaussian-mixture Metropolis proposal, one component of which has a
covariance structure that is adaptively learnt online as the algorithm explores the posterior dis-
tribution. For iteration j of the Markov chain the proposal is

qj

(
Θ(j−1), ·

)
= γNormal

(
Θ(∗);Θ(j−1),

(2.38)2

d
Σj

)

+ (1 − γ)Normal

(
Θ(∗);Θ(j−1),

(0.1)2

d
Id,d

)
. (7.81)

Here, Ψj = Σj is the current empirical estimate of the proposal parameters; in this case, the
posterior covariance between the parameters of Θ, estimated using samples from the Markov
chain up to time j − 1. Small positive constant γ is usually taken as equal to 0.05 (Roberts
and Rosenthal 2009). The theoretical motivation for the choices of scale factors 2.38, 0.1 and
dimension d are all provided by Roberts and Rosenthal (2009) and are based on optimality
conditions presented by Roberts and Rosenthal (2001).

We note that the update of the covariance matrix can be done recursively online via the fol-
lowing recursion (as detailed by Atchadé et al. 2011) and presented in the following algorithm.
In the following sequence of steps for the j-th iteration of the adaptive Metropolis algorithm,
we will update the state of the Markov chain from Θ(j−1) to parameter vector Θ(j) according
to the steps in Algorithm 7.7.
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Algorithm 7.7 (Adaptive Metropolis Algorithm)

1. Initialize the parameter vector θ(0) ∈ R
d and the covariance matrix of the proposal

Ψ(0) = Σ(0) = (0.1)2

d Id,d ;
2. For l = 1, . . . , L

a) If l > 1 then update the adaptive Metropolis proposal covariance matrix recursively using
previous samples from the Markov chain created via

μl+1 = μl +
1

l + 1

(
Θ(l−1) − μl

)
,

Σl+1 = Σl +
1

l + 1

((
Θ(l−1) − μl

)(
Θ(l−1) − μl

)T
− Σl

)
.

b) Sample a proposed vector of parameters θ(∗) ∼ q
(
θ(l−1), ·

)
from an adaptive MCMC

proposal
(

ql

(
Θ(l−1), ·

))
constructed using previous Markov chain samples{

Θ(0), . . . ,Θ(l−1)
}

as detailed by the mixture proposal in Equation (7.81);

c) Accept the proposed new Markov chain state comprised of θ(∗) with acceptance probability
given by

α
(
θ(l−1),θ∗

)
= min

⎛
⎝1,

π (θ∗|x1, . . . , xT ) q
(
θ(l−1),θ∗

)
π
(
θ(l−1)|x1, . . . , xT

)
q
(
θ∗,θ(l−1)

)
⎞
⎠ , (7.82)

where we evaluate this acceptance probability utilizing the expressions detailed previously. If
there is acceptance, then θ(l) = θ(∗), else one sets θ(l) = θ(l−1).

3. Next l .

7.6.4 RIEMANN–MANIFOLD HAMILTONIAN MONTE CARLO
SAMPLER (AUTOMATED LOCAL ADAPTION)

By this stage, we have clearly established the fact that the design of the proposal distribution
for the Markov chain that is created for an MCMC method with target posterior π (Θ|x1:T )
can directly effect the ability to make accurate inference. In addition, we have discovered that
the transition kernel for the class of MCMC methods of interest is typically given by

Q
(
Θ(l), dΘ(l+1)

)
= q
(
Θ(l), dΘ(l+1)

)
α
(
Θ(l), dΘ(l+1)

)
+

[
1 −
∫

q
(
Θ(l), z

)
α
(
Θ(l), z

)
dz
]
I

[
Θ(l+1) = Θ(l)

]
,

(7.83)

where the (adaptive) design of q
(
Θ(l), dΘ(l+1)

)
is of direct interest for reducing variance in

Monte Carlo estimates. In the following sections, we will primarily focus on how to adaptively
modify q

(
Θ(l), dΘ(l+1)

)
to improve the mixing of the resulting MCMC samplers.
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Next we present another more advanced class of algorithms known as Hamiltonian Monte
Carlo (HMC) methods. The extension to this class of algorithms we discuss is a recently intro-
duced class of MCMC samplers by Girolami and Calderhead (2011), which was developed to
help automate the design of the proposal distributions within the Markov kernel; in this case,
this will be achieved through the use of what is known as Riemann–Manifold Hamiltonian
Monte Carlo (RM-HMC; see a detailed tutorial overview by Neal 2010).

We first define the basic principles on which RM-HMC is discussed in detail by Duane
et al. (1987), Girolami and Calderhead (2011), and Neal (2010). The context of the RM-HMC
algorithm derives from the design of a Markov chain proposal obtained from a discretized
Langevin diffusion with two components: a stochastic discretized diffusion component and a
second component based on a discretized deterministic component constructed from gradient
information of the target density. This first class of algorithm was known as the Metropolis-
Adjusted Langevin Algorithm (MALA) method of Stramer and Tweedie (1999) and adaptive
versions by Marshall and Roberts (2012). Alternative approaches of a similar nature were also
developed and are generally known as Hybrid Monte Carlo (hybrid MC) proposals as they
also involve a combination of deterministic and stochastic components obtained from dis-
cretization of a physical stochastic process. Such hybrid MC algorithms typically produce an
ergodic Markov chain in which large traversals of the posterior support are accepted with high
probability.

7.6.4.1 Sampling the Posterior Density via Establishing Related Hamiltonian
Mechanics. This section provides basic details to aid the understanding of how one devel-
ops such an HMC proposal mechanism to efficiently explore the support of the target posterior
distribution. It is instructive to consider the following nonstandard formulation of a posterior
distribution, which we repose as the equations of motion under Hamiltonian mechanics. This
involves specification of a system of partial differential equations that can be solved to provide
the building blocks of the HMC algorithms. Consider the random vector of posterior param-
eters Θ ∈ R

d with Θ ∼ π (Θ|x1:T ) and an independent auxiliary random vector denoted by
Z ∈ R

d with Z ∼ Normal(0,Σ). Now consider construction of the negative log joint den-
sity given by the equivalent interpretation as a Hamiltonian H(Θ, z) of an energy-conserving
physical dynamic system described by

H(Θ, z) = − lnπ (Θ|x1:T ) +
1
2
ln(2π)d |Σ|+ 1

2
zTΣ−1z, (7.84)

with − lnπ (Θ|x1:T ) the accumulated potential energy at location Θ, the term 1
2 zTΣ−1z

representing the kinetic energy, and z the momentum and mass matrix Σ (see discussions by
Girolami and Calderhead, 2011) and Neal (2010). To understand why this interpretation may
be of relevance to the design of an MCMC sampler one needs to consider the score function
of the joint distribution of random vectors Θ and Z given by

∂H
∂z

= Σ−1z, −∂H
∂Θ

= ∇Θ lnπ (Θ|x1:T ) . (7.85)

This deterministic system of partial differential equations can be used to re-interpret, with
respect to the joint distribution of the two random vectors, a dynamical system with artificial
“time” unit τ given by
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dΘ
dτ

=
∂H
∂z

and
dz
dτ

= −∂H
∂Θ

.

By linking the joint distribution of random vectorsΘ and Z to a physical system evolution,
one may now construct from these artificial dynamics a dynamic proposal mechanism for a
Markov chain sampler (see Algorithm 7.8).

Remark 7.15 It should be noted that the numerical integrator should provide a dynamic solution,
which is interpreted as a transformation mapping from the parameter vector (Θ, z) to the newly
“proposed” parameter vector (Θ′, z′). If this mapping is time-reversible (in the artificial time τ )
and volume-preserving, then it can be utilized to design an MH Markov chain reject–accept sampler,
that is, it may used as a proposal mechanism in an MCMC sampler.

Fortunately, by constructing such a Hamiltonian dynamical system for utilization in the
proposal as an efficient and perhaps adaptive MCMC sampler, one automatically satisfies the
following important properties (see proofs by Neal 2010):

1. Reversible proposals. Hamiltonian mechanics preserve the reversibility of a Markov chain
constructed with a proposal that utilizes such a dynamic system to explore the support of
the posterior. In other words, one may define a mapping from the state of the system at
time τ1 given by (θ(τ1), z(τ1)) to a new state at time τ2 > τ1, denoted (θ(τ2), z(τ2)),
which is one-to-one and therefore invertible;

2. Invariance of the Hamiltonian system. Designing a proposal from a Hamiltonian system
of equations will create dynamics that are invariant within the Hamiltonian system. That
is, the dynamics preserve the structure of the Hamiltonian system;

3. Volume preservation (Liouville theorem). It is well known that a Hamiltonian system is
volume-preserving. The consequence of this is that using this dynamic system to construct
a proposal in MCMC will result in an acceptance probability that does not require a Jaco-
bian mass transform. This is a significant advantage of such a transformational proposal,
making evaluation of the proposal in the MCMC acceptance probability numerically eas-
ier and more numerically well behaved.

7.6.4.2 Sampling the Posterior via Discretization of the Hamiltonian
Mechanics. Utilising this Hamiltonian dynamic system for the MCMC proposal there-
fore requires a numerical solver for the two partial differential equations (PDEs) in order to
generate the proposal at each iteration of the HMC. Therefore, the challenge lies in finding
numerical integrators that are both time-reversible and volume-preserving. Fortunately, one
such explicit class of integrators is; the symplectic class, a particular example from this class is
the leapfrog integrator (see Duane et al. 1987). This was utilized to define an HMC solution,
where one iteration of the HMC algorithm therefore involves drawing randomly a realized vec-
tor z and then iterating the leapfrog integrator defined by deterministic recursions for step size
ε in Algorithm 7.8.

Hence, the generation of an MCMC proposal under the HMC system would proceed as
follows.
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Algorithm 7.8 (Hybrid Monte Carlo Algorithm Proposal)

1. Sample a realization of auxiliary random vector Z ∼ Normal(0,Σ);
2. Perform numerical integration to solve dΘ

dτ = ∂H
∂z and dz

dτ = − ∂H
∂Θ , using the sampled value

of the auxiliary variable, thus providing an evolution equation in the joint distribution space
for random vectors Θ and Z which are characterized as follows:
a) z(τ + ε/2) = z(τ) + ε∇Θ lnπ (Θ|x1:T )|Θ=Θ(τ) /2;

b) Θ(τ + ε) = Θ(τ) + εΣ−1z(τ + ε/2);
c) z(τ + ε) = z(τ + ε/2) + ε

2∇Θ lnπ (Θ|x1:T )
∣∣
Θ=Θ(τ+ε)

.

Iteration of this algorithm generates a sequence of random proposals of initial value for
Z followed by a deterministic trajectory solution for n steps of size ε via a leapfrog integration
iteration for the proposal. Taking the last point ΘT = Θ∗ as the proposal, one then accepts
this proposed point under the MCMC accept–reject mechanism with the following probability,
which involves the Hamiltonian energy functions:

α(z,Θ; z∗,Θ∗) = min (1,−H(z∗,Θ∗) + H(z,Θ)) . (7.86)

It was recently realized that one could further adapt this Hamiltonian proposal through
observing that the behavior of the simulated trajectory was directly affected by “tuning” the
matrix Σ; therefore, one could try to find a way to learn efficient choices for Σ to improve
the acceptance probability of a move by adapting Σ to local structure of the target distribution
posterior. Therefore, the MCMC proposal constructed in this fashion is then tuned via the
selection of the mass matrix Σ, the number of iteration steps n, and the step size ε. In gen-
eral, one may summarize this HMC algorithm according to the Langevin discretized diffusion
recursion

Θ(τ + ε) = Θ(τ) +
ε2

2
Σ−1 ε

2
∇Θ lnπ (Θ|x1:T )

∣∣∣
Θ=Θ(τ)︸ ︷︷ ︸

Preconditioned deterministic innovation

+ εΣ−2z(τ)︸ ︷︷ ︸
Stochastic innovation

. (7.87)

The adaptive MCMC development of this algorithm is discussed extensively by Girolami
and Calderhead (2011) and involves primarily the adaption of the mass matrix Σ. The other
algorithmic parameters to consider involve the number of steps n and the step size ε – these
may typically be effectively estimated from acceptance probabilities of the MCMC chain. The
following two key points were noted by Girolami and Calderhead (2011) to consider in order
to improve the performance of the HMC algorithm.

Remark 7.16 Stochastic transitions that account for local geometric structure of the target distribu-
tion when making proposals to different regions of the distributional support can improve the Markov
chain exploration and mixing. One way to achieve this is to replace the HMC global covariance
matrix proposal Σ (mixing matrix) with a position specific version.
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Remark 7.17 Under the HMC algorithm described, the deterministic component of the Langevin
proposal involves the gradient of the target distribution, which is preconditioned by the inverse global
mass matrix. It was noted that adapting this mass matrixΣ to local structure of the target distribution
would improve mixing performance. This can be achieved by exploiting a Riemannian structure of
the target distribution parameter space using a localized metric tensor.

To address these remarks the approach of Girolami and Calderhead (2011) was to develop
an RM-HMC algorithm. Here we briefly discuss this adaptive HMC algorithm and present
the details so that it may be utilized to make inference in model estimation.

In the RM-HMC setting, one considers locally adapting the generic Hamiltonian given
by − lnπ(Θ, z) = − lnπ(Θ)− lnπ(z) in the HMC setting. This is achieved by interpreting
the family of parameterized probability densities for d -dimensional random vector Θ given by
ln p(Θ) as defining a Riemannian manifold that has an associated metric tensor, which may,
for example, be selected to be the Fisher information matrix for the target distribution model
given by I(Θ) = E

[
∇Θ lnπ(Θ)∇Θ lnπ(Θ)T

]
.

Under this modified specification using the alternate metric tensor, say, the Fisher infor-
mation matrix I(Θ), one obtains a Hamiltonian equation given by

H(Θ, z) = − lnπ (Θ|x1:T ) +
1
2
ln(2π)d |I(Θ)|+ 1

2
zTI(Θ)−1z. (7.88)

Under this formulation, one can sample the auxiliary variable vectors in the RM-HMC scheme
for z given by a conditionally Gaussian distribution Z ∼ Normal(z; 0, I(Θ)). It is now clear
that such a modification through the Riemannian structure of the target distribution allows
one to utilize a locally adapted proposal; however, the consequence of this structure is that
the Hamiltonian is no longer separable. The consequence of this loss of separability is that
the symplectic integration procedure previously proposed for the standard HMC algorithm
will be required to be modified, as detailed by Girolami and Calderhead (2011) and shown
later.

Consider designing an RM-HMC algorithm to move from state (z0,Θ0), that is, some
previous RM-HMC state, to the proposed state (z∗,Θ∗). If one defines the metric tensor for
the local adaption of the covariance Σ in which Σ

(
Θj−1

)
= I(Θ) and the integration step

size is given by ε and total number of iterations by T , then the full symplectic integrator for
the RM-HMC algorithm is now adjusted to the following five steps:

z1 = z0 −
ε

2
∇Θ

(
− lnπ (Θ|x1:T ) +

1
2
ln(2π)d |I(Θ)|

)∣∣∣∣
Θ0

z2 = g
(
Θ0, z1,

ε

2

)
Θ∗ = Θ0 + εI(Θ)−1

z3 = g
(
Θ∗, z2,

ε

2

)
z∗ = z3 −

ε

2
∇Θ

(
− lnπ (Θ|x1:T ) +

1
2
ln(2π)d |I(Θ)|

)∣∣∣∣
Θ∗

with the vector valued function g defined as presented in the technical appendix by Girolami
and Calderhead (2011) for both the scalar and multivariate parameter Θ cases.
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This is then iteratively applied in Algorithm 7.8 with the new symplectic integration
scheme (five steps), and the final proposed state after T iterations of the proposal is accepted
with the MH-rejection scheme with acceptance probability again presented with the appropri-
ate exponential of the difference between the nonseparable Hamiltonian (see Equation (7.88))
at the old proposed state minus the Hamiltonian at the newly proposed Markov chain state
obtained from the symplectic integrator proposal.

7.7 Sequential Monte Carlo (SMC) Samplers and
Importance Sampling

SMC methods have emerged out of the fields of engineering, probability and statistics in recent
years. Variants of the methods sometimes appear under the names of particle filtering or inter-
acting particle systems (e.g., Ristic et al. 2004, Doucet et al. 2001, Del Moral 2004), and their
theoretical properties have been extensively studied by Crisan and Doucet (2002), Del Moral
(2004), Chopin (2004), and Künsch (2005). In the OpRisk context, such algorithms have been
developed for insurance and OpRisk applications (see Peters et al. 2009 and Del Moral et al.
2013).

The standard SMC algorithm involves finding a numerical solution to a set of filter-
ing recursions, such as filtering problems arising from nonlinear/non-Gaussian state space
models. Under this framework, the SMC algorithm samples from a (often naturally occur-
ring) sequence of distributions πt , indexed by t = 1, . . . ,T . Each distribution is defined
on the support Et = E × E × · · · × E for some generic space denoted E . This context
is not typically of interest to OpRisk settings; however, this class of algorithms was adapted
to tackle the same class of problems typically addressed by MCMC methods where one has
instead a sequence of distributions {πl}l≥1 each defined on fixed support E ; NOTE: not a
product space El = E × E · · · × E but a fixed space E . Del Moral et al. (2006), Peters
(2005), and Peters et al. (2009) generalize the SMC algorithm to the case where the tar-
get distributions πt are all defined on the same support E . This generalization, termed the
SMC sampler, adapts the SMC algorithm to the more popular setting in which the state space
E remains static, that is, the settings we have discussed earlier with regard to the MCMC
algorithms.

In short, the SMC sampler generates weighted samples (termed particles) from a sequence
of distributions πt , for t = 1, . . . ,T , where πT may be of particular interest. We refer to
πT as the target distribution such as a posterior distribution for model parameters in an LDA
model.

Procedurally, particles obtained from an arbitrary initial distribution π1, with a set of
corresponding initial weights, are sequentially propagated through each distribution πt in
the sequence via three processes, involving mutation (or move), correction (or importance
weighting), and selection (or resampling). The final weighted particles at distribution πT are
considered weighted samples from the target distribution π. The mechanism is similar to
sequential IS (resampling), see details by Liu 2008 and Doucet et al. 2001, with one of the
crucial differences being the framework under which the particles are allowed to move, result-
ing in differences in the calculation of the importance weights of the particles.

One of the major difficulties with SMC-type algorithms is particle depletion, in which the
weights of the majority of the particles gradually decrease to zero, while a few particle weights
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dominate the population. This severely increases the variability of Monte Carlo estimates of
expectations under π. In this chapter, we develop an algorithm that incorporates the partial
rejection control (PRC) strategy of Liu (1998) into the SMC sampler framework. A particular
motivation for this stems from the recent developments in “likelihood-free” (or approximate
Bayesian) computation to be discussed in Section 7.8, where an extremely high proportion
of mutated particles are expected to have very small, or exactly zero, posterior weights (see
discussions in this context by Peters et al. 2009).

In this chapter, we survey some basic developments in the SMC samplers and SMC sam-
plers PRC algorithm, in which the PRC mechanism is built directly into the mutation kernel
of the SMC sampler. This choice of algorithm allows a particle mutation to be rejected if the
resulting importance weight is below a certain threshold. This turns out to be very valuable
for a range of estimation and sampling problems in OpRisk. We also discuss implementation
issues arising from the inclusion of the PRC stage, including estimation for the resultant kernel
normalizing constant. The theoretical properties and justifications for this class of algorithms
is provided by Peters et al. (2009).

7.7.1 MOTIVATING OPRISK APPLICATIONS FOR SMC SAMPLERS

The context of the SMC sampler algorithm involves sampling from a sequence of distribu-
tions {πt(dθ)}T

t=1. This has many applications in practice for OpRisk modeling and includes
settings such as the following:

1. Tempering (on the data). In this case, the sequence of distributions is constructed as
πt(dθ) = π (dθ|x1:t); see discussions and motivation for this type of application by
Chopin (2002). Alternatively, versions of tempering one could also consider would involve
sequences of distributions given by πt(dθ) ∝ [π(dθ)]γt [π(dθ)]1−γt for some schedule
of increasing powers, γt ∈ [0, 1], with 0 ≤ γ0 ≤ γ1 ≤ · · · ≤ γL = 1;

2. Progressively constrained distributions and rare events. A second common application
for such a sequence of distributions would be to move from a simple and tractable posterior
distribution π0(dθ) to a distribution of interest (such as constrained or truncated distri-
bution) πT (dθ). This could be achieved through a progressive sequence of distributions;
see applications in rare-event simulations by Johansen (2009). In this context, one may
consider πt(dθ) = πt(dθ ∈ At) with a successively contracting sequence of sets
A0 ⊇ A1 ⊇ · · · ⊇ AT . Examples may include A0 = R

+ and An = [an,∞) with
a1 ≤ a2 ≤ · · · ≤ aT < ∞;

3. Stochastic optimization and parameter estimation. A third application of such
sequences of distributions would involve the notion of simulated annealing in which the
sequence of distributions is given by πt(dθ) ∝ [π(dθ)]γt for some sequence of increasing
powers {γt}T

t=0.

In the following three examples, we provide details of a few of the particular applications
that are of relevance and important to OpRisk settings where such sequences of distributions
can be used effectively in an OpRisk setting to simulate via SMC samplers algorithm key
quantities.
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EXAMPLE 7.4 Sampling Rare Events in Compound Processes Tails

Consider a single risk LDA model defined by the compound process Z =
∑N

n=1 Xn
with a random number of losses given by frequency distribution N ∼ FN and a
severity distribution Xn ∼ FX for each i.i.d. loss. In many settings in OpRisk, one is
interested in quantifying tail functionals, which would require being able to obtain
draws from the tail of the compound process given by Z |Z > A ∼ FZ |Z>A given
in terms of the frequency and severity models for some A > 0 by

π

(
z|

N∑
n=1

Xn > A

)
= fZ

(
z

∣∣∣∣∣
N∑

n=1

Xn > A

)

=

∑∞
n=1 Pr(N = n)f (n)∗

X (x)

1− (Pr(N = 0) +
∑∞

n=1 Pr(N = n)F (n)∗
X (A)

I

[
N∑

n=1

Xn > A

]
.

(7.89)

In general, it will be difficult to sample directly via standard Monte Carlo simulation
techniques from such a distribution when A is very large, such as A = VaR1−α[Z ]
for some smallα. Therefore, it is sensible and computationally more efficient to con-
sider constructing a sequence of such distributions, defined by a decreasing sequence
of levels {αt} that are progressively moving the focus of the samples obtained toward
the tails of the target distribution. One example of such a sequence involves the fol-
lowing choice:

πt

(
z

∣∣∣∣∣
N∑

n=1

Xn > VaR1−αt [Z ]

)

=

∑∞
n=1 Pr(N = n)f (n)∗

X (x)

1 − (Pr(N = 0) +
∑∞

n=1 Pr(N = n)F (n)∗
X (VaR1−αt [Z ])

× I

[
N∑

n=1

Xn > VaR1−αt [Z ]

]
.

(7.90)

Specific examples of this type of sequence construction are detailed extensively in
Peters and Shevchenko (2015).

Poisson–Inverse Gaussian LDA Model Tail Estimation. In Figure 7.3, we
show the sequence of such target distributions for a simple LDA model with
Poisson–Inverse Gaussian frequency and severity models. In such a framework,
we consider the losses in the risk process generated from shape-scale Inverse-
Gaussian severity models (with strictly positive support) and closed under convolu-
tion given by

Xi ∼ FX (x;μ, γ) = Φ

(√
γ

x

(
x
μ
− 1
))

+ exp

(
2γ
μ

)
Φ

(
−
√

γ

x

(
x
μ
+ 1
))

(7.91)
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figure 7.3 Plot of the sequence of truncated annual loss distributions for a Poisson(λ = 2)
and Inverse Gaussian(μ = 1, γ = 2) with a truncation of N ∈ {0, 1, 2 . . . , 20}. The sequence of
truncations correspond to αt ∈ {0, α1, α2, α3}, which produce quantile values of
qαt (Z) ∈ {0, 5, 10, 15}

with density

fX (x;μ, γ) =
[ γ

2πx3

] 1
2
exp

(
−γ(x − μ)2

2μ2x

)
. (7.92)

Then each target distribution is attainable in closed form using the fact that

Sn =

n∑
i=1

Xi ∼ F (n)∗
Sn

(x) = FX (x; nμ, n2γ), (7.93)

which allows one to specify uniquely the sequence of distributions according to

πt

(
z

∣∣∣∣∣
N∑

n=1

Xn > VaR1−αt [Z ]

)

=
1

g (VaR1−αt [Z ])

[ ∞∑
n=1

Pr(N = n)

{[
n2γ

2πz3

] 1
2

exp

(
−n2γ(z − nμ)2

2n2μ2z

)}]

× I

[
N∑

n=1

Xn > VaR1−αt [Z ]

]
(7.94)
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with the normalizing constant for a given truncation threshold given by

g (VaR1−αt [Z ])

= 1 − Pr[N = 0]−
∞∑

n=1

Pr[N = n]Φ

(√
n2γ

VaR1−αt [Z ]

(
VaR1−αt [Z ]

nμ
− 1
))

−
∞∑

n=1

Pr[N = n] exp
(

2n2γ

nμ

)
Φ

(
−
√

n2γ

VaR1−αt [Z ]

(
VaR1−αt [Z ]

nμ
+ 1
))

.

(7.95)

In practice, one would also place an upper bound on the total number of losses NT
that may occur in a given year for this risk process and then these Poisson-weighted
mixtures would have finite numbers of terms.

EXAMPLE 7.5 Multivariate Risk Process with Copula Dependence

Consider d risk processes each characterized by a compound process
Z (i) =

∑N (i)

n=1 X (i)
n for i∈{1, 2, . . . , d} with frequency distributions

{
F (i)

N
}d

i=1

and severity distributions
{

F (i)
X
}d

i=1. Furthermore, assume that one wishes to
model dependence between the risk process for the random vector of annual losses
Z =

(
Z (1),Z (2), . . . ,Z (d)

)
given by the multivariate copula model generically

denoted by the distribution function given three elements, the copula dependence
function, the marginal single risk process annual loss distributions, and the mapping
from the marginal annual loss positive random variables to the unit cube, as denoted
by C (U1,U2, . . . ,Ud ), {FZ(i)(zi)}d

i=1, and Gi(z), respectively. Note that we set
Ui = Gi

(
Z (i)
)

for each risk process i ∈ {1, 2, . . . , d} for mappings Gi, which are
monotonic and strictly increasing functions. That is, one can consider any Gi for
i ∈ {1, 2, . . . , d}, which is a nonunique transform selected to map the i-th marginal
risk process annual loss random variable from R

+ to [0, 1], that is Gi : R
+ �→ [0, 1],

s.t. Gi is a monotonically increasing function. Note that a natural choice for Gi(·)
is the annual loss distribution FZ(i)(·). The resulting joint distribution function is
then given by

Pr
(

Z (1) ≤ z1, . . . ,Z (d) ≤ zd

)
= C (G1 (z1) , . . . ,Gd (zd )) . (7.96)

Now if one differentiates this distribution to get the density, it produces in general
the result

π (z) = c (G1 (z1) , . . . ,Gd (zd ) ;Ψ)

d∏
j=1

fZ(j)

(
zj
) ∣∣∣∣∣dG−1

j (uj)

duj

∣∣∣∣∣ , (7.97)

where zj = G−1
j (uj). It is common practice to work with transformations that

avoid the need for the Jacobian terms mentioned earlier, which would correspond
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to mapping to the unit cube each marginal risk process annual loss random variable
by the marginal annual loss distribution, that is, Gi(z) = FZ(i)(z). In this case, one
would obtain for the density of the joint risk process the expression

π (z) = fZ (z)

= c (FZ(1) (z1) , . . . , FZ(d) (zd ) ;Ψ)
d∏

j=1

fZ(j) (z)

= c (FZ(1) (z1) , . . . , FZ(d) (zd ) ;Ψ)

d∏
j=1

[ ∞∑
n=1

Pr(N (j) = n) f (j)
X (n)∗(x)

]
.

(7.98)

Then, in general sampling, such a multivariate distribution is very challenging when
using standard Monte Carlo approaches. Here we demonstrate how to construct an
SMC sampler solution where one must decide upon a suitable sequence of interme-
diate distributions {πt}T

t=1, which are easier to sample, and such that the sequence
will progressively target the original distribution of interest πT (z) = π (z). Next
we provide a few examples one may consider for achieving this goal.

1. Annealing via power schedule: from independence to dependence
One of many possible examples of such a sequence could involve the following
annealing scheme, which would start from the case of completely independent
risks, for which it is trivial to generate Monte Carlo draws from the distribution
and progress through to the copula-coupled processes via the sequence

πt(z) = {c(G1(z1), . . . ,Gd (zd );Ψ)}γt

d∏
j=1

fZ(j)(zj) (7.99)

with {γt} some schedule starting with γ0 = 0 through to a maximum γT = 1;
2. Annealing via copula parameter schedule: from independence to depen-

dence
An alternative approach to constructing such a sequence of distributions would
be to consider the sequence defined by annealing on the copula parameter, as
opposed to the previous example where one anneals on the power of the copula
density, in which one defines the sequence by

πt(z) = {c(G1(z1), . . . ,Gd (zd );Ψt)}
d∏

j=1

fZ(j)(zj), (7.100)

where now one may define a sequence of tempered copula models index by
parameter vector sequence {Ψt}. For example, in the Archimedean copula
families, popular in practice, this could correspond to a sequence on a univari-
ate parameter ranging from independence through to the final value Ψ = ΨT .
In the case of, for example, the Student-t copula model, this could be based on
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figure 7.4 Top left subplot: target distribution π0 at a low temperature, where the
distribution is fairly flat and simple to sample. Top right subplot: target distribution πt1 at an
intermediate temperature, where the distribution is still fairly flat and simple to sample. Bottom left
subplot: target distribution πt2 at an intermediate temperature, where the distribution is
increasingly concentrated. Bottom right subplot: target distribution πT final distribution, which is
the target distribution. (For color detail please see color plate section.)

a sequence of Student-t copulas, which would have a progressively decreasing
degree of freedom parameters νt such that νt > νt−1 and νT = ν are the actual
model d.f. Details of different copula models can be found in Chapter 10–12.

In Figure 7.4, ignoring the marginals we show the sequence of such intermediate
distributions that are constructed to allow the SMC sampler to progress successively
through the case of independence to dependence for a mixture of Clayton and Gum-
bel copulas in a bivariate example, with two risk processes. The model considered is
given by

πT (z) = 0.4 c (G1 (z1) ,G2 (z2) ; 2)︸ ︷︷ ︸
Frank

+0.4 c (G1 (z1) ,G2 (z2) ;−3)︸ ︷︷ ︸
Frank

+ 0.2 c (G1 (z1) ,G2 (z2) ; 1.6)︸ ︷︷ ︸
Gumbel

.

In the next example, we consider a challenging multivariate set of annual losses under
constraints, making for a challenging rare event problem.
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EXAMPLE 7.6 Constrained Dependent Multivariate Risk Processes

Consider d risk processes, each characterized by a compound process
Z (i) =

∑N (i)

n=1 X (i)
n for i∈{1, 2, . . . , d} with frequency distributions

{
F (i)

N
}d

i=1

and severity distributions
{

F (i)
X
}d

i=1. Furthermore, assume that one wishes to
model dependence between the risk process for the random vector of annual losses
Z =(Z (1),Z (2), . . . ,Z (d)) given by the multivariate copula model generically
denoted by the density, this time subject to constraints. For example, one may be
interested in considering the constraints on each of the d risk processes written as a
joint restriction on the aggregate of the d annual losses according to

d∑
i=1

Z (i) ≥ VaR1−α

[
d∑

i=1

Z (i)

]
(7.101)

for some tail aggregate process events as characterized by α. Such constraints arise
naturally in OpRisk when considering capital allocations under a Euler principle
(see discussions and details in Chapter 6). In this case, one is interested in a joint
distribution given by

π (z) = fZ

(
z

∣∣∣∣∣
d∑

i=1

Z (i) ≥ VaR1−α

[
d∑

i=1

Z (i)

])

= c

(
G1 (z1) , . . . ,Gd (zd )

∣∣∣∣∣
d∑

i=1

Z (i) ≥ VaR1−α

[
d∑

i=1

Z (i)

]
;Ψ

)

×
d∏

j=1

fZ(j)

(
zj
) ∣∣∣∣∣dG−1

j (uj)

duj

∣∣∣∣∣ I
[

d∑
i=1

Z (i) ≥ VaR1−α

[
d∑

i=1

Z (i)

]]
,

(7.102)

where zj =G−1
j
(
uj
)
. In general, sampling such a distribution is very challenging

and cannot be efficiently done via standard Monte Carlo methods. Again we pro-
pose such a problem is ideal for SMC sampler solutions. As discussed already in
previous examples, to utilize this solution technique one must select a sequence of
intermediate distributions {πt}T

t=1 which are easier to sample such that the sequence
will progressively target the original distribution of interest πT (z) =π (z).

In this case, it is natural to consider the schedule given by a sequence of tail
quantiles 0≤α1 ≤ · · · ≤αt−1 ≤αt ≤ · · · ≤αT . If one considers how this con-
straint region looks in the bivariate risk process setting, using the models of Exam-
ple 7.4, which would produce risk processes with Poisson–Inverse Gaussian LDA
models, coupled with a bivariate Frank copula model, then the sequence of con-
straints given by (α1, α2, α3, α4) = (0.25, 0.5, 0.75, 0.95) would produce the fol-
lowing constrained distributions, where we show both the joint distribution and the
constrained copula dependence distributions. Note that depending on the mappings
G1
(
Z (1)
)

and G2
(
Z (2)
)

from the space of the annual losses
(
Z (1),Z (2)

)
in space

R
+ ×R

+ to [0, 1]× [0, 1] in the copula, the constraint region will take different
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shapes. For simplicity, we consider marginal annual loss processes with finite sup-
port for the maximum losses achieved in an interval [0,Zmax] and we take as G1
and G2 uniform distribution functions, each on the support [0,Zmax]. This means
the resulting density is given by defining the uniform distribution transform for
each i∈{1, 2} by Ui =Gi

(
Z (i)
)
= Z(i)

Zmax
and inverse transform function given by

Z (i) =G−1
i (Ui) =UiZmax, which results in density

π (z) = c

(
u1, u2

∣∣∣∣∣
2∑

i=1

Z (i) ≥ VaR1−α

[
2∑

i=1

Z (i)

]
;Ψ

)

× Z 2
max

2∏
j=1

fZ(j)

(
zj
)
I

[
d∑

i=1

Z (i) ≥ VaR1−α

[
d∑

i=1

Z (i)

]] (7.103)
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figure 7.5 Top left subplot: target distribution copula component under uniform
distribution function transformation for π0 at little truncation, where the distribution is fairly flat
and simple to sample. Top right subplot: target distribution copula component under uniform
distribution function transformation for πt1 at an intermediate truncation. Bottom left subplot:
target distribution copula component under uniform distribution function transformation for πt2 at
an intermediate truncation. Bottom right subplot: target distribution copula component under
uniform distribution function transformation for πT final distribution, which is the target
distribution. (For color detail please see color plate section.)
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The choice of mapping as performed by a Uniform distribution function results in
the constraint regions remaining linear as presented in Figures 7.5 and 7.6; however,
generally, one would chose alternative mappings with noncompact supports.
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figure 7.6 Top left subplot: target distribution π0 at little truncation, where the distribution
is fairly flat and simple to sample. Top right subplot: target distribution πt1 at an intermediate
truncation. Bottom left subplot: target distribution πt2 at an intermediate truncation. Bottom right
subplot: target distribution πT final distribution, which is the target distribution. (For color detail
please see color plate section.)

7.7.2 SMC SAMPLER METHODOLOGY AND COMPONENTS

To address such sampling challenges for a sequence of distributions {πt(dθ)}T
t=1, the aim

is to develop a large collection of N -weighted random samples at each time t denoted by{
W (i)

t ,Θ(i)
t

}N

i=1
such that W (i)

t > 0 and
∑N

i=1 W (i)
t = 1. These importance weights and sam-

ples, denoted by
{

W (i)
t ,Θ(i)

t

}N

i=1
, are known as particles (hence the name often given to such

algorithms as particle filters or interacting particle systems). For such approaches to be sensible
we would require that the empirical distributions constructed through these samples should
converge asymptotically (N →∞) to the target distribution πt for each time t. This means
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that for any πt integrable function, denoted, for example, by φ(θ) : E → R
′ one would have

the following convergence:

N∑
i=1

W (i)
t φ
(
θ(i)

t

)
a.s.→ Eπt

[
φ(Θ)

]
. (7.104)

The sequential nature of such algorithms arises from the fact that they iteratively construct
the sets of weighted particles recursively through a sequential IS framework (see many examples
of such algorithms in Doucet et al. 2000, Oh and Berger 1993, Givens and Raftery 1996, Gilks
and Berzuini 2002, Neal 2001 and the tutorial of Doucet and Johansen 2009).

In the SMC Samplers algorithm, a particular variant of SMC algorithms, a modification
of the SMC algorithm, is developed. Consider a generic sequence of distributions given by
πt(θ), t = 1, . . . ,T , with θ ∈ E , where the final distribution πT is the distribution of interest.
By introducing a sequence of backward kernels Lk, a new distribution

π̃t(θ1, . . . ,θt) = πt(θt)

t−1∏
k=1

Lk (θk+1,θk) (7.105)

may be defined for the path of a particle (θ1, . . . ,θt) ∈ Et through the sequence π1, . . . , πt .
The only restriction on the backward kernels is that the correct marginal distributions∫
π̃t(θ1, . . . ,θt)dθ1, . . . , dθt−1 =πt(θt) are available. Within this framework, one may then

work with the constructed sequence of distributions, π̃t , under the standard SMC algorithm.
In summary, the SMC Sampler algorithm involves three stages:

1. Mutation, whereby the particles are moved from θt−1 to θt via a mutation kernel
Mt(θt−1,θt);

2. Correction, where the particles are reweighted with respect to πt via the incremental impor-
tance weight (Eq. 7.106);

3. Selection, where according to some measure of particle diversity, commonly the effective
sample size, the weighted particles may be resampled in order to reduce the variability of
the importance weights.

In more detail, suppose that at time t − 1, the distribution π̃t−1 can be approximated
empirically by π̃N

t−1 using N -weighted particles. These particles are first propagated to the
next distribution π̃t using a mutation kernel Mt(θt−1,θt), and then assigned new weights
Wt = Wt−1wt (θ1, . . . θt), where Wt−1 is the weight of a particle at time t − 1 and wt is the
incremental importance weight given by

wt (θ1, . . . ,θt) =
π̃t (θ1, . . . ,θt)

π̃t−1 (θ1, . . . ,θt−1)Mt (θt−1,θt)
=

πt (θt) Lt−1 (θt ,θt−1)

πt−1 (θt−1)Mt (θt−1,θt)
.

(7.106)

The resulting particles are now weighted samples from π̃t . Consequently, from Eq. (7.106),
under the SMC Sampler framework, one may work directly with the marginal distributions
πt(θt) such that wt(θ1, . . . ,θt) = wt(θt−1,θt). While the choice of the backward kernels
Lt−1 is essentially arbitrary, their specification can strongly affect the performance of the algo-
rithm, as will be discussed in the following subsections.

The basic version of the SMC Sampler algorithm therefore proceeds explicitly as given in
Algorithm 7.9.
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Remark 7.18 In all cases in which we utilize the incremental importance sampling weight cor-
rection, the arguments in the expressions only need to be known up to normalization. That is, it is
perfectly acceptable to only be able to evaluate the sequence of target distributions {πt} up to nor-
malization constant. This is tue as long as the same normalization constant is present for all particles,
since the renormalization step will correct for this lack of knowledge in the importance weighting. In
practice, this is critical to the application of such methods.

Algorithm 7.9 (Sequential Monte Carlo Sampler)

1. Initialize the particle system;
a) Set n = 1;

b) For i = 1, . . . ,N , draw initial particles Θ(i)
1 ∼ p(θ);

c) Evaluate incremental importance weights
{

w1

(
Θ

(i)
1

)}
using Equation (7.106) and nor-

malize the weights to obtain
{

W (i)
1

}
.

Iterate the following steps through each distribution in sequence {πt}T
t=2.

2. Resampling
a) If the effective sampling size (ESS) = 1∑N

i=1

(
w(i)

t

)2 < Neff is less than a threshold Neff ,

then resample the particles via the empirical distribution of the weighted sample either by
multinomial or stratefied methods; see discussions on unbiased resampling schemes by Künsch
(2005) and Del Moral (2004).

3. Mutation and correction
a) Set t = t + 1, if t = T + 1, then stop;

b) For i = 1, . . . ,N draw samples from mutation kernel Θ(i)
t ∼ Mt

(
Θ

(i)
t−1

)
;

c) Evaluate incremental importance weights
{

w1

(
Θ

(i)
1

)}
using Equation (7.106) and

normalize the weights to obtain
{

W (i)
1

}
via

W (i)
t = W (i)

t−1
w(i)

t (Θt−1,Θt)∑N
j=1 W (i)

t−1w(i)
t (Θt−1,Θt)

. (7.107)

7.7.2.1 Choice of Mutation Kernel and Backward Kernel. There are many
choices for mutation kernel and backward kernel that could be considered when designing an
SMC Sampler algorithm. In this section, we survey a few possible choices and note an impor-
tant difference between the SMC Sampler and MCMC methods in the following remark.

Remark 7.19 In the MCMC methods presented previously, the proposal kernel was typically selected
to ensure the resulting Markov chain satisfied reversibility and detailed balance conditions, or in
the case of the adaptive proposals, some notion of eventual non-adaption (diminishing adaptation
and bounded convergence). Unlike the MCMC methods, in the case of the SMC Sampler algo-
rithms, the mutation kernel is significantly more flexible with regard to choice and with regard
to adaption strategies. It is clear that the optimal choice of mutation kernel would be the next
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distribution in the sequence Mt (θt−1,θt) = πt (θt), as this would minimize the variance of the
incremental weights, though clearly the context of the application of SMC Samplers is one in which
the target distribution cannot be sampled directly via inversion or rejection sampling methods, so this
choice is not practical.

Some examples of possible choices of the mutation kernel are given as follows:

1. Independent kernels. In this setting, one would select a mutation kernel given for all
t ∈ {1, 2, . . . ,T} by Mt (θt−1,θt) = Mt (θt);

2. Local Random Walks. In this setting, the kernel would be selected for all
t ∈ {1, 2, . . . ,T} to be of the form Mt (θt−1,θt), where the mutation from θt−1 to
θt follows a local Random Walk based around, say, a Gaussian smoothing kernel as given
by Givens and Raftery (1996);

3. Markov chain Monte Carlo Kernels. In this setting, the kernel would be selected for all
t ∈ {1, 2, . . . ,T} to be an MCMC kernel of invariant distribution πt . As noted by Del
Moral et al. (2006) and Peters (2005), this option is suitable if the Markov chain kernel
is mixing rapidly or if the sequence of distributions is such that πt−1 is close to πt , which
is often the case by design. Then the use of an MCMC kernel would result in running
for each stage, N inhomogeneous Markov chains. Then one must correct for the fact that
one is not targeting the correct distribution under these Markov chains, which is achieved
using IS: π̂N

t−1 =
∑N

i=1 W (i)
t−1δθ(i)

t−1
(θ) and running L iterations of the Markov chain for

each particle, where each of the N chains will target
∑N

i=1 W (i)
t−1
∏L

l=1 Ml

(
θ
(i)
l−1,θl

)
,

which is not in general πt , then with an IS correction, such an approach is accurate and
unbiased (i.e., targets the distribution of interest at time t given by πt ;

4. Gibbs Sampler kernels. If the sequence of target distributions {πt}t≥0 is such that its
support is multivariate, then it may also be possible to sample from the full conditional
distributions in the sequence of distributions. This approach allows one to undertake a
Gibbs step, which would involve a kernel for update of the k-th element given in the form

Mt (θt−1, dθt) = δθt−1,−k (dθt,−k)πt (θt,k|θt,−k) (7.108)

with θt,−k = (θt,1,θt,2, . . . ,θt,k−1,θt,k+1, . . . ,θt,J ), where there are J parameters in
the OpRisk model target posterior. If the full conditionals are not available, one could
approximate them accurately at each stage and then correct for the approximation error
through IS;

5. Mixture kernels. It is always possible to consider a mixture kernel choice given by

Mt (θt−1,θt) =

M∑
m=1

αt,m (θt−1)Mt,m (θt−1,θt) , (7.109)

with αt,m (θt−1) > 0 and
∑M

m=1 αt,m (θt−1) = 1. One special case of this type
of kernel would be an independent kernel constructed by a kernel density estimate of
Mt,m (θt−1,θt) = Mt (θt−1,θt) for all m and αt,m (θt−1) = W (i)

t−1 with M = N ;
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6. Partial Rejection Control kernels. In this case, one aims to construct a mutation kernel
in the SMC Sampler that guarantees all sampled particles have importance weights with
a “fitness” exceeding a user-specified threshold at each time t, denoted by ct such that
w(i)

t ≥ ct , ∀i ∈ {1, 2, . . . ,N}. To achieve this, one modifies any of the earlier mutation
kernels to take the form given by

M∗
t
(
θi

t−1,θt
)
= r(ct ,θ

(i)
t−1)

−1

⎡
⎣min

⎧⎨
⎩1,W (i)

t−1

wt

(
θ
(i)
t−1,θt

)
ct

⎫⎬
⎭Mt

(
θ
(i)
t−1,θt

)⎤⎦ .
(7.110)

The quantity r(ct ,θ
(i)
t−1) denotes the normalizing constant for particle θ(i)

t−1, given by

r(ct ,θ
(i)
t−1) =

∫
min

⎧⎨
⎩1,W (i)

t−1

wt

(
θ
(i)
t−1,θt

)
ct

⎫⎬
⎭Mt

(
θ
(i)
t−1,θt

)
dθt . (7.111)

Note that 0 < r(ct ,θt−1) ≤ 1 if (w.l.o.g.) the mutation kernel Mt is normalized, so that∫
Mt(θt−1,θt)dθt = 1, and if the PRC threshold 0 ≤ ct < ∞ is finite. The sequence of

PRC thresholds is then user-specified to ensure a certain particle “fitness” at each stage of
the SMC Sampler. We will detail more explicitly this example in a future section.

Proposition 7.3 (Optimal Backward Kernel) Given any of the possible mutation kernels
Mt (θt−1,θt), one can define the optimal backward kernel in the SMC Sampler as the one that
minimizes the variance of the incremental (unnormalized) IS weights, given by Peters (2005) and
Del Moral et al. (2006) by

Lopt
t−1 (θt ,θt−1) =

νt−1 (θt−1)Mt (θt−1,θt)

νt (θt)
, (7.112)

where one defines the sequence of integrated distributions on the path space by

νt (θt) =

∫
. . .

∫
π1 (θ1)

t∏
l=1

Ml (θl−1,θl) dθ1dθ2 · · · dθt . (7.113)

This optimal choice is difficult to utilize in practice as it involves knowledge of the ability to draw
from each of the distributions in the sequence.

This choice of optimal backward kernel is easily understood by interpreting it as the choice of
kernel in which one would perform IS on the space E rather than the product space Et . The
resulting incremental IS weight for the optimal choice of backward kernel is simply

wt (θ1:t) =
πt (θt)

νt (θt)
. (7.114)

In addition, we also note some examples of possible choices of the backward kernel given
along with the corresponding incremental IS weights.
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1. Mixture Backward kernel. Given a mixture mutation kernel in Equation (7.109), the
equivalent backward kernel is given by

Lt−1,m (θt ,θt−1) =

M∑
m=1

βt−1,m (θt) Lt−1,m (θt ,θt−1) (7.115)

with βt,m (θt) > 0 and
∑M

m=1 βt,m (θt) = 1. In this case, the incremental IS weight can
be written in the following form, with respect to an index auxiliary random variable for
the mixture It that was sampled:

wt (θt−1,θt , it) =
πt (θt)βt−1,it (θt) Lt−1,it (θt ,θt−1)

πt−1 (θt−1)αt,it (θt−1)Mt,it (θt−1,θt)
. (7.116)

2. Approximate Optimal Backward kernel. One of the best possible approximations to the
optimal backward kernel is to consider replacing νt (θt) with πt (θt), to get

Lopt
t−1 (θt ,θt−1) =

πt−1 (θt−1)Mt (θt−1,θt)∫
πt−1 (dθt−1)Mt (θt−1,θt)

, (7.117)

which would give an incremental importance weight of

wt (θt−1,θt) =
πt−1 (θt−1)∫

πt−1 (θt−1)Mt,it (θt−1,θt) dθt−1
. (7.118)

Note that if resampling has occurred at time t −1, then this kernel is already equivalent to
the optimal choice and therefore its particle approximation is already the optimal option.
In general, if using the optimal backward kernel, one would still need to typically be able
to approximate the univariate integrals, usually done via approximation using the particles
at time t − 1 as follows:∫

πt−1 (θt−1)Mt (θt−1,θt) dθt−1 ≈
N∑

i=1

W (i)
t−1Mt

(
θ
(i)
t−1,θt

)
. (7.119)

Note that this results in an O(N 2) algorithm, which is not ideal computationally;
3. MCMC Backward kernel. A generic approximation of the “approximate optimal back-

ward kernel” in Equation (7.117) is often selected as an MCMC kernel in which one uses
for the mutation kernel Mt an invariant MCMC kernel for target distribution πt and the
backward kernel given by

Lt−1 (θt−1,θt) =
πt (θt−1)Mt (θt−1,θt)

πt (θt)
. (7.120)

This choice is a good approximation whenever the sequence of distributions πt−1 and πt
is close for all t, since this choice simply correspond to the time-reversed Markov kernel
of the mutation kernel Mt . In addition, we note that you cannot adopt this choice for
examples such as the successive sequence of constrained distributions as in the rare-event
setting. When this backward kernel is utilized, one obtains an incremental importance
weight given by a very simple form

wt (θt−1,θt) =
πt−1 (θt)

πt−1 (θt−1)
. (7.121)
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7.7.3 INCORPORATING PARTIAL REJECTION CONTROL
INTO SMC SAMPLERS

It is well known that the performance of SMC methods is strongly dependent on the mutation
kernel. If Mt is poorly chosen, such that it does not place particles in regions of the support of πt
with high density, then many IS weights will be close to zero. This leads to sample degeneracy,
as a few well-located particles with large weights dominate the particle population, resulting in
large variance for estimates made using these samples.

Liu (2008) and Liu et al. (1998) introduced a method, known as PRC strategy, to overcome
particle degeneracy in a sequential IS setting. Under this mechanism, when the weight of a
particle at distribution πt falls below a finite threshold ct ≥ 0, the particle is probabilistically
discarded. It is replaced with a particle drawn from the previous distribution πt−1, which is
then mutated to πt . This new particle’s weight is then compared to the threshold, with this
process repeating until a particle is accepted. This concept was extended into an understanding
of the resulting mutation kernel and developed under an SMC Sampler framework by Peters
et al. (2009). This approach is termed partial rejection, as the replacement particle is drawn
from πt−1, not π1 (see Liu 2008).

As demonstrated by Peters et al. (2009), under the SMC sampler framework, one may
modify this approach and incorporate the partial rejection mechanism directly within the
mutation kernel. Hence, at time t − 1, the particle θt−1 is moved via the mutation kernel
Mt(θt−1,θt) and weighted according to (16.55). This particle is accepted with probability p,
determined by the particle’s weight and the weight threshold ct . If rejected, a new particle is
obtained via the mutation kernel Mt , until a particle is accepted.

For the sequence of distributions πt , t = 1, . . . ,T , the mutation and backward kernels
Mt and Lt−1, a sequence of weight thresholds ct , and PRC normalizing constants r(ct ,θt−1)
(defined later), the SMC sampler PRC algorithm is given in Algorithm 7.10.

Algorithm 7.10 (SMC Sampler PRC Algorithm)

1. Initialization:
Set t = 1.
For i = 1, . . . ,N , sample θ(i)

1 ∼ π1(θ), and set weights W (i)
1 = 1

N ;
2. Resample:

Normalize the weights
∑

i W (i)
t = 1. If [

∑
i(W

(i)
t )2]−1 < H resample N particles with

respect to W (i)
t and set W (i)

t = 1
N , i = 1, . . . ,N .

3. Mutation and correction:
Set t = t + 1 and i = 1:

(a) Sample θ(i)
t ∼ Mt(θ

(i)
t−1,θt) and set weight for θ(i)

t to

W (i)
t = W (i)

t−1
πt(θ

(i)
t )Lt−1(θ

(i)
t ,θ

(i)
t−1)

πt−1(θ
(i)
t−1)Mt(θ

(i)
t−1,θ

(i)
t )

.

(b) With probability 1 − p(i) = 1 −min{1,W (i)
t /ct}, reject θ(i)

t and go to (a).
(c) Otherwise, accept θ(i)

t and set W (i)
t = W (i)

t r(ct ,θ
(i)
t−1)/p(i).

(d) Increment i = i + 1. If i ≤ N , go to (a).
(e) If t < T , go to Resample.
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Remark 7.20 In the SMC Sampler PRC algorithm, we present the general framework in which
we consider adaptive resampling. The derivation of the resulting normalizing constant for the PRC
mechanism can be addressed under both adaptive and non-adaptive resampling schemes, which can
be found in Peters et al. (2009, section 2.3). However, as they discuss, it will be shown to be compu-
tationally convenient when estimating the normalizing constant under PRC to consider the special
case of H=N, thereby resampling at each iteration t.

Algorithm 7.10, without the mutation and correction steps (b) and (c), is equivalent
to the standard SMC Sampler algorithm. In the resample stage, the degeneracy of the par-
ticle approximation is quantified through the usual estimate of the effective sample size,
1 ≤ [

∑
i(W

(i)
t )2]−1 ≤ N (see Liu and Chen 1998). The addition of a rejection step at

each time t effectively modifies the mutation kernel Mt . We denote the resulting kernel by
M∗

t , to the choice presented in Equation (7.110). Thus, the SMC sampler PRC algorithm can
be considered as an SMC sampler algorithm with the mutation kernel M∗

t (θt−1,θt), and the
correction weight

Wt = Wt−1
πt (θt) Lt−1 (θt ,θt−1)

πt−1 (θt−1)M∗
t (θt−1,θt)

. (7.122)

Remark 7.21

• Estimation of the normalizing constant. As the normalizing constant r(ct ,θt−1) in the
weight calculation (7.122) in general depends on θt−1, it must be evaluated as it will not
disappear in the renormalization across all weights for each particle. Where no analytic solu-
tion can be found, approximating (7.111) may be achieved by, for example, quadrature meth-
ods if the sample space E is relatively low-dimensional or Monte Carlo methods if E is high-
dimensional;

• Exact kernel selection normalization. This is an alternative approach that restricts the
mutation and backward kernel choices admitting an exact solution for the normalizing con-
stant. Furthermore, this approach provides a computationally efficient approach to dealing
with the PRC normalizing constant. This involves selecting kernels Mt and Lt−1 such that
r(ct ,θt−1) = r(ct) will be constant for all particles θt−1. In this case, the value of r(ct)
may be absorbed into the proportionality constant of the weights, and safely ignored. Equa-
tion (7.111) suggests that this can be achieved if Mt(θt−1,θt), Wt−1, and w(θt−1,θt) are
independent of θt−1.

Specifying mutation kernels Mt such that Mt(θt−1,θt) = Mt(θt) amounts to choosing a
global kernel that is the same for all particles θt−1. The particle-dependent weight Wt−1 can be
set to 1/N for all particles following a resampling (or preselection) step; hence, setting H = N
will induce resampling at each iteration. Finally, consider for a moment the backward kernel of
the form

Lopt
t−1(θt ,θt−1) =

πt−1(θt−1)Mt(θt−1,θt)∫
πt−1(θt−1)Mt(θt−1,θt)dθt−1

. (7.123)
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Under the backward kernel (7.123), the incremental weight can be approximated by

wt(θt−1,θt) = πt(θt)/

∫
πt−1(θt−1)Mt(θt−1,θt)dθt−1

≈ πt(θt)/

N∑
i=1

W (i)
t−1Mt(θ

(i)
t−1,θt). (7.124)

Under a global mutation kernel Mt(θt), and following a resampling step, the incremental
weight under this backward kernel reduces to wt(θt−1,θt) = πt(θt)/Mt(θt), which is inde-
pendent of θt−1.

Remark 7.22 One such example of a global mutation kernel one may consider involves
Mt

({
θ
(i)
t−1

}
i=1:N

,θt

)
=
∑N

i=1 W (i)
t−1Mt(θ

(i)
t−1,θt). Thus, the weight calculation in (7.122)

becomes

Wt ∝ πt(θt)/

[
min

{
1,

w(θt−1,θt)

Nct

}
Mt(θt)

]

=

{
πt(θt)/Mt(θt), if min

{
1, w(θt−1,θt)

Nct

}
= 1,

Nct , otherwise.

It is instructive to consider the implications of this finding. Firstly, the resulting acceptance
probability for each particle will range over the interval (0, 1). To see this consider two illustra-
tive scenarios, the first involving the trivial case of simply setting the user-controlled threshold
to ct = 1/N , thereby ensuring that as N increases, the acceptance probability does not neces-
sarily decrease. This may not always be desirable since it reduces the threshold condition that
particles must satisfy for large particle systems. The second nontrivial setting is to consider the
incremental weight expression obtained in Equation (7.124). Under these choices for mutation
and backward kernel, and assuming resampling in the setting H = N , we obtain an expression
for the PRC probability of acceptance given by

min

{
1,

w (θt−1,θt)

Nct

}
= min

{
1,

πt(θt)

Nct
∑N

i=1(1/N )Mt(θ
(i)
t−1,θt)

}

= min

{
1,

πt(θt)

ct
∑N

i=1 Mt(θ
(i)
t−1,θt)

}
.

(7.125)

Note that under this setting, the SMC sampler PRC algorithm can be considered as a sequence
of IS strategies with partial rejection control.

Finally, we observe that there are several variants of the SMC Sampler algorithm available
in the context of interacting SMC Samplers: Annealed Importance Sampling and Population
Monte Carlo, Island models, and transdimensional SMC Samplers (see examples in Jasra et al.
2007, 2008, Neal 2001, and Cappé et al. 2004.)
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7.7.4 FINITE SAMPLE (NONASYMPTOTIC) ACCURACY FOR
PARTICLE INTEGRATION

In this section, we detail some properties of the class of SMC algorithms discussed earlier,
in particular, what is known about the accuracy of such methods. In addition, we also present
examples for estimators of quantiles of annual loss distributions from such approaches, of direct
interest to capital estimation. We begin by presenting some recent examples of concentration
inequalities for particle methods that are finite sample result (see discussion and references by
Del Moral et al. 2013).

The exponential concentration inequalities presented here are satisfied under some regu-
larity conditions on the particle weights and the mutation kernel Mn when defined on some
general state space En; see specific probabilistic details of these conditions by Del Moral (2004).

Using the concentration analysis of mean field particle models, the following exponential
estimate can be obtained (see discussion by Del Moral 2004) and references therein. Note in
the following when the N particle approximation to a distribution or density, such as π, is used
we will denote it by πN .

Theorem 7.7 (Finite Sample Exponential Concentration Inequality) For any x ≥ 0,
t ≥ 0, and any population size N ≥ 1, the probability of the event is

Pr

(∣∣πN
t (ϕ)− πt(ϕ)

∣∣ ≤ c1

N
(
1 + x +

√
x
)
+

c2√
N

√
x
)

≥ 1 − e−x, (7.126)

where one defines the N particle sample estimator as follows:

πN
t (ϕ) =

N∑
i=1

W (i)
t ϕ
(
θ(i)

t

)

and

πt(ϕ) =

∫
ϕ (θt)πt (θt) dθt . (7.127)

In the case of a stable SMC algorithm, that is, one that is insensitive to initial condi-
tions, such as those we discussed earlier, the constants c and (c1, c2) do not depend on the time
parameter. One can also bound the difference between the particle estimate of the target dis-
tribution and the true distribution as follows. Consider that for any θ = (θi)1≤i≤d and any
(−∞, x] =

∏d
i=1(−∞, θi] cells in Et = R

d , we let

Ft(x) = πt
(
I(−∞,x]

)
and F N

t (x) = πN
t
(
I(−∞,x]

)
.

Using these definitions of the empirical particle constructed distribution function and the target
distribution function at sequence number t in the sequence of distribution {π1, π2, . . . , πT },
we can state the following corollary for the distribution functions for sequence of densities πt
given previously.

Corollary 7.4 For any y ≥ 0, t ≥ 0, and any population size N ≥ 1, the probability of the
following event

√
N
∥∥F N

t − Ft
∥∥ ≤ c

√
d (y + 1)

is greater than 1 − e−y.
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This concentration inequality ensures that the particle repartition function F N
t converges

to Ft , almost surely for the uniform norm. We complete this section with an example of a
nonasymptotic estimate for a risk measure estimation via SMC Sampler output.

EXAMPLE 7.7 SMC Samplers Estimators for Risk Measures

Consider the single risk measure, where d = 1. Then let F←
t be the generalized

inverse on [0, 1] of the function Ft , which is the annual loss distribution for the
LDA model under consideration; that is, we have

F←
t (α) := inf {θ ∈ R : Ft(x) ≥ α}. (7.128)

Now let F←
t (α) = qt(α) be the quantile, of order α, and we denote by ζ

(i)
t the

order particle statistic associated with the particle system θi
t at time t; that is, we

have

ζ
(1)
t := θ

σ(1)
t ≤ ζ

(2)
t := θ

σ(2)
t ≤ · · · ≤ ζ

(N)
t := θ

σ(N)
t

for some random permutation σ. We also denote by qN
t (α) := ζ

1+�Nα�
t the α

particle quantile. By construction, we have

∣∣Ft
(
qN

t (α)
)
− Ft(qt(α))

∣∣ ≤ ∣∣Ft
(
qN

t (α)
)
− F N

t (qN
t (α))

∣∣+ ∣∣F N
t (qN

t (α))− α
∣∣

≤
∥∥F N

t − Ft
∥∥+ (1 + �Nα�

N
− α

)
≤
∥∥F N

t − Ft
∥∥+ 1/N . (7.129)

This clearly implies that qN
t (α) converges almost surely to qt(α), as N tends to ∞.

In addition, for any y ≥ 0, n ≥ 0, and any population size N ≥ 1, the probability
of the following event

√
N
∣∣Fn
(
qN

n (α)
)
− α
∣∣ ≤ c

√
d (y + 1) +

1√
N

is greater than 1 − e−y.

7.8 Approximate Bayesian Computation (ABC) Methods

Here we present a class of estimation methods that generalize the classes of applicable mod-
els for the posterior to those which have intractable likelihoods. That is, we generalize now
to classes of Monte Carlo algorithms that can tackle settings in which the posterior distribu-
tion may be constructed from a likelihood model for which the density of the observations
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(likelihood of the parameters) cannot be evaluated pointwise in closed form. This arises
surprisingly often in settings related to heavy-tailed models; see discussions in the context of
OpRisk Peters and Sisson (2006) or in financial modeling by Peters et al. (2010, 2011b).

The standard MCMC methods described previously assume that the likelihood of the
data for given model parameters can be easily evaluated. If this is not the case, but synthetic
data are easily simulated from the model for given parameters, then the so-called approximate
Bayesian computation (ABC) methods can be utilized to estimate the model. For example, this
is the case when the severity is modeled by the α-stable or g-and-h distributions that can easily
be simulated but the density is not available in closed form (see the discussion in the OpRisk
context by Peters and Sisson 2006, and Peters et al. 2010, 2008).

ABC methods are relatively recent developments in computational statistics (see Beaumont
et al. 2002 and Tavaré et al. 2003). For applications in the context of OpRisk and insurance,
see Peters and Sisson (2006) and Peters et al. (2010).

Consider the data X and denote the model parameters by θ. Then the posterior from which
we wish to draw samples is π(θ|x) ∝ f (x|θ)π(θ). The purpose of ABC is to sample from the
posterior π(θ|x) without evaluating the computationally intractable f (x|θ). The logical steps
of the simplest ABC algorithm are as follows.

Algorithm 7.11 (Rejection Sampling ABC)

1. Choose a small tolerance level ε;
2. For l = 1, 2, . . .

a) Draw θ∗ from the prior π(·);
b) Simulate a synthetic dataset x∗ from the model given parameters θ∗, that is, simulate from

f (·|θ∗);
c) Rejection condition: calculate a distance metric ρ(x, x∗) that measures a difference between

x and x∗. Accept the sample, that is, set θ(l) = θ∗ if ρ(x, x∗) ≤ ε; otherwise return to step
(a).

3. Next l .

It is easy to show that, if the support of the distributions on x is discrete and the rejection
condition ρ(x, x∗) ≤ ε is a simple condition of accepting the proposal only if x∗ = x, then the
obtained θ(1),θ(2), . . . are exact samples from π(θ|x). For more general cases, the obtained
samples θ(l) are from

πABC (θ|x, ε) ∝
∫

π(θ)π(x∗|θ)gε(x|x∗)dx∗, (7.130)

where a weighting function gε(x|x∗) is used. The previous rejection algorithm considers a
weight function such as the hard decision choice

gε(x|x∗) ∝
{

1, if ρ(x, x∗) ≤ ε,

0, otherwise.
(7.131)
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As ε → 0, for appropriate choices of distance ρ(·, ·),

πABC (θ|x, ε) → π(θ|x).

Of course, for a finite ε we obtain an approximation for π(θ|x).
To improve the computational efficiency, ρ(x, x∗) is often replaced by ρ(S(x), S(x∗)),

where S(x) is a summary statistic of the data sample. Other weighting functions can be used. In
general, the procedure is simple: given a realization of the model parameters, a synthetic dataset
x∗ is simulated and compared to the original dataset x. Then the summary statistic S(x∗) is
calculated for the simulated dataset x∗ and compared to the summary statistic of the observed
data S(x); and a distance ρ(S(x), S(x∗)) is calculated. Finally, a greater weight is given to the
parameter values producing S(x∗) close to S(x) according to the weighting function gε(x|x∗).
The obtained sample is from πABC (θ|x, ε), which converges to the target posterior π(θ|x) as
ε → 0, assuming that S(x) is a sufficient statistic1 and the weighting function converges to a
point mass on S(x). The tolerance ε is typically set as small as possible for a given computa-
tional budget. One can calculate the results for subsequently reduced values of ε until further
reduction does not make material difference for the model outputs. The described ABC can be
viewed as a general augmented model

π(θ, x, x∗) = π(x|x∗,θ)π(x∗|θ)π(θ),

where π(x|x∗,θ) is replaced by g(x|x∗).
To improve the performance of the ABC algorithm, it can be combined with MCMC,

producing the stationary distribution πABC (θ|x, ε). For example, the MCMC–ABC can be
implemented as follows.

Algorithm 7.12 (MCMC–ABC)

1. Initialize θ(l=0);
2. For l = 1, . . . , L

a) Draw proposal θ∗ from the proposal density q(·|θ(l−1));
b) Simulate a synthetic dataset x∗ from the model given parameters θ∗;
c) Accept the proposal with the acceptance probability

p(θ(l−1),θ∗) = min

{
1,

π(θ∗)q(θ(l−1)|θ∗)

π(θ(l−1))q(θ∗|θ(l−1))
I{ρ(S(x),S(x∗))≤ε}

}
,

that is, simulate U from the Uniform(0,1) and set θ(l) = θ∗ if U ≤ p(θ(l−1),θ∗)

otherwise set θ(l) = θ(l−1). Here, I{.} is a standard indicator function.
3. Next l .

Various summary statistics of the dataset x1, . . . , xN are used in practice. For example, the
statistic S(x) can be defined as the following vectors:

1A sufficient statistic is a function of the dataset x that summarizes all the available sample information about
θ; for a formal definition, see Berger (1985, section 1.7).
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• S = (μ̃, σ̃), where μ̃ and σ̃ are empirical mean and standard deviation of the dataset x,
respectively;

• S = (x1, . . . , xN ), that is, all data points in the dataset;
• S
(
q1(x), . . . , qp(x)

)
a vector of empirical quantities summarizing the empirical distribu-

tion function at a fixed set of probabilities.

Popular choices for the distance metrics, ρ(S, S∗), include the following:

• Euclidean distance: ρ(S, S∗) =
∑L

l=1(Sl − S∗
l )

2;

• L1-distance ρ(S, S∗) =
∑L

l=1 |Sl − S∗
l |.

We also note that there are efficient SMC Sampler versions of these ABC algorithms devel-
oped by Peters et al. (2009) and Del Moral et al. (2012).

7.9 OpRisk Estimation and Modeling for Truncated Data

Accurate modeling of the severity and frequency distributions is the key to estimating a cap-
ital charge. One of the challenges in modeling OpRisk is the lack of complete data—often a
bank’s internal data are not reported below a certain level (typically on the order of € 10,000).
These data are said to be left-truncated. Generally speaking, missing data increase uncertainty
in modeling. Sometimes, a threshold level is introduced to avoid difficulties with collection of
too many small losses. Industry data in external databases from vendors and consortia of banks
are available above some thresholds: Algo OpData provides publicly reported operational risk
losses above USD 1 million and ORX provides OpRisk losses above € 20,000 reported by ORX
members. The OpRisk data from Loss Data Collection Exercises (LDCE) over many institu-
tions are truncated too. For example, Moscadelli (2004) analyzed 2002 LDCE and Dutta and
Perry (2006) analyzed 2004 LDCE, where the data were mainly above € 10,000 and USD
10,000, respectively. Fitting data reported above a constant threshold is a well-known and stud-
ied problem. However, in practice, the losses are scaled for business and other factors before the
fitting and thus the threshold varies across the scaled data sample. Moreover, the actual thresh-
old might be unknown for some external databases and should be treated as stochastic (see,
e.g., Baud et al. 2003 by De Fontnouvelle et al. 2006).

The reporting level may also change when a bank changes its reporting policy. In this
section, we consider the cases of constant, time-varying, unknown, and stochastic thresholds.
We also discuss the approaches to fit these models and the impact of ignoring data truncation
on the estimation of the 0.999 quantile of the annual loss distribution.

Often, modeling of missing data is done assuming a parametric distribution for losses
below and above the threshold. Then fitting is accomplished using losses reported above the
threshold via the maximum likelihood method (see, e.g., Frachot et al. 2004b) or the EM
algorithm (see, e.g., Bee 2005b). In practice, often the missing data are ignored completely.
This may lead to a significant underestimation or overestimation of the capital. The impact
of data truncation in OpRisk was discussed in the literature (see Baud et al. 2003, Chernobai
et al. 2006, Mignola and Ugoccioni 2006, Luo et al. 2007, and Ergashev et al. 2012). Typically,
the case of a constant threshold is discussed in research studies, though in practice, a threshold
level varies across observations (see Shevchenko and Temnov 2009). One of the reasons for a
varying threshold appearing in OpRisk loss data is that the losses are scaled for inflation and
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other factors before fitting to reflect changes in risk over time. The reporting level may also
change from time to time within a bank when the reporting policy is changed. The problem
with multiple thresholds also appears when the different companies report losses into the same
database using different threshold levels (see Baud et al. 2003).

Of course, for risks with heavy-tailed severities, the impact of the data threshold should not
be important in a limit of high quantiles. However, it should be quantified first before making
such a conclusion and to justify a chosen reporting level. For light-tailed risks too the impact
can be significant.

In this section, we consider the case of a single risk cell and use the following notation and
assumptions.

Model Assumptions 7.1 Consider a single risk cell where

• The annual loss in a risk cell in year m is

Zm =

Nm∑
i=1

Xi(m). (7.132)

• Nm is the number of events (frequency) and Xi(m), i = 1, . . . ,Nm are the severities of the
events in year m;

• If convenient, we may index severities Xi(m) and their event times Ti(m), i = 1, . . . ,Nm,
m = 1, 2, . . . (ordered in time) as Xj and Tj, j = 1, 2, . . . , respectively, where
T1 < T2 < · · ·;

• The severities of the events Xj, j = 1, 2, . . . , occurring at times Tj, j = 1, 2, . . . , respectively
are modeled as independent and identically distributed random variables from a continuous
distribution F (x|β), 0 < x < ∞, whose density is denoted as f (x|β). Here, β are the severity
distribution parameters;

• Nm, m = 1, 2, . . . are independent and identically distributed random variables from a discrete
frequency distribution with probability mass function p(n|λ) = Pr[Nm = n], where λ is a
frequency parameter (or a vector of parameters);

• The severities Xi(m) and frequencies Nm of the events are independent;
• γ = (λ,β) is a vector of frequency and severity distribution parameters.

7.9.1 CONSTANT THRESHOLD - POISSON PROCESS

If we assume that loss events follow a homogeneous Poisson process with the intensity parame-
ter λ, then N1,N2, . . . are independent and identically distributed random variables from the
Poisson distribution, Poisson(λ), with

Pr[Nm = n] = p(n|λ) = λn

n!
exp(−λ), λ > 0, n = 0, 1, . . . (7.133)

and the event interarrival times δTj = Tj−Tj−1, j = 1, 2, · · · (where T0 < T1 < T2 < · · · are
the event times and T0 = t0 is the start of the observation period) are independent exponentially
distributed random variables with the density and distribution functions

g(τ |λ) = λ exp(−λτ) and G(τ |λ) = 1 − exp(−λτ), (7.134)

respectively.
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If the losses, originating from severity f (x|β) and frequency p(n|λ) densities, are recorded
above a known reporting level (truncation level) L, then the density of the losses above L is
left-truncated density,

fL(x|β) =
f (x|β)

1 − F (L|β) ; L ≤ x < ∞. (7.135)

The events of the losses above L follow the Poisson process with the intensity,

θ(γ, L) = λ(1 − F (L|β)), (7.136)

the so-called thinned Poisson process, and the annual number of events above the threshold is
distributed from Poisson(θ).

The series of the annual counts or event times can be used for estimating frequency distri-
bution. These cases are considered separately here.

Proposition 7.4 (Likelihood for Annual Counts and Truncated Severities) For independent
losses from Poisson process with intensity λ and severity density f (x|β), consider a corresponding ran-
dom vector Y of the events recorded above the threshold L over a period of T years consisting of the
annual frequencies Ñm, m = 1, . . . ,T and severities X̃j, j = 1, . . . , J , J = Ñ1+ . . .+ÑT . Then,
for given model parameters γ, the joint density of Y at Ñm = ñm and X̃j = x̃j can be written as

h(y|γ) =
J∏

j=1

fL(x̃j|β)
T∏

m=1

p(ñm|θ(γ, L)). (7.137)

That is, the log likelihood function for this model is �y(γ) = ln h(y|γ).

Proof : The proof is obvious because severities and frequencies are independent.

From (7.137), the MLEs for model parameters γ̂ can be found as a solution of

∂�Y (γ)

∂λ
= (1 − F (L|β))

T∑
m=1

∂

∂θ
lnp(Ñm|θ(γ, L)) = 0, (7.138)

∂�Y (γ)

∂β
=

J∑
j=1

∂

∂β
ln fL(X̃j|β)

− λ
∂F (L|β)]

∂β

T∑
m=1

∂

∂θ
lnp(Ñm|θ(γ, L)) = 0. (7.139)

It is easy to see that the MLEs β̂ for the severity parameters can be found marginally (indepen-
dently from frequency) by maximizing

J∑
j=1

ln fL(X̃j|β) (7.140)



�

�

“Cruz_Driver” — 2015/1/12 — 10:50 — page 226 — #81
�

�

�

�

�

�

226 CHAPTER 7 Estimation of Frequency and Severity Models

and then Equation (7.138) gives the MLE for the intensity

λ̂ =
1

1 − F (L|β̂)
× 1

T

T∑
m=1

Ñm. (7.141)

Proposition 7.5 (Likelihood for Event Times and Truncated Severities) For independent
losses from Poisson process with intensity λ and severity density f (x|β), consider the data Y of
the events above a constant threshold over the time period [t0, tE ] consisting of the event interarrival
times δT̃j = T̃j − T̃j−1, j = 1, . . . , J (where T̃j, j = 1, 2, . . . are the event times and T̃0 = t0)

and the severities X̃j, j = 1, . . . , J . Then the joint density (for given γ) of Y at δT̃j = τ̃j and
X̃j = x̃j is

h(y|γ) = (1 − G(tE − t̃J |θ(γ, L)))
J∏

j=1

fL(x̃j|β)g(τ̃j|θ(γ, L))

= λJ exp(−θ(γ, L)(tE − t0))

J∏
j=1

f (x̃j|β). (7.142)

Here, 1 − G(tE − t̃J |θ(γ, L)) is the probability that no event will occur within (̃tJ , tE ]. The log
likelihood function for this model is �y(γ) = ln h(y|γ).

Proof : The proof is obvious using the distribution of interarrival time (7.134) and the fact
that severities and frequencies are independent, severities are independent.

From (7.142), the MLEs γ̂ can be found as a solution of

∂�Y (γ)

∂λ
=

J
λ
− (1 − F (L|β))(tE − t0) = 0,

∂�Y (γ)

∂β
= λ(tE − t0)

∂F (L|β)
∂β

+

J∑
j=1

∂

∂β
ln f (X̃j|β) = 0.

(7.143)

This gives the MLE for the intensity parameter

λ̂ =
J[

1 − F (L|β̂)
]
(tE − t0)

, (7.144)

which is equivalent to (7.141) if the start and end of the observation period correspond to
the beginning and end of the first and last years, respectively. Substituting λ̂ into the second
equation in (7.143), it is easy to see that the severity MLEs β̂ can be obtained by maximizing

J∑
j=1

ln fL(X̃j|β).

Remark 7.23

• If the start and end of the observation period correspond to the beginning and end of the first
and last years, respectively, then the inferences based on the likelihoods (7.142) and (7.137)
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are equivalent. This is because the likelihoods, in this case, are different by a factor that does not
depend on the model parameters;

• The MLE errors are typically estimated using asymptotic Gaussian approximation via the inverse
of the Fisher information matrix (see Section 7.1.1). The latter is often estimated by the observed
information matrix. That is,

Cov[γ̂i, γ̂j] ≈ (Î
−1

)ij, (Î )ij = −∂2�y(γ)

∂γi∂γj

∣∣∣∣
γ=γ̂

. (7.145)

Whether the sample size is large enough to use this asymptotic approximation is a difficult
question that should be addressed in a practical solution. Also, the regularity conditions required
for this approximation are mild but difficult to prove.

Detailed illustrative examples of fitting truncated data in the case of constant threshold
using maximum likelihood and Bayesian MCMC methods are given by Shevchenko (2011,
examples 5.1 and 5.2, pp. 184–188).

7.9.2 NEGATIVE BINOMIAL AND BINOMIAL FREQUENCIES

Negative Binomial and Binomial are other distributions often used to model frequencies. The
mean of a Binomial is less than the variance; the mean of the Negative Binomial is larger than
its variance; and Poisson mean equals its variance. This property is often used as a criterion to
choose a frequency distribution, and is known as under and over dispersion of the counting
distribution (frequency distribution).

Another convenient property of these distributions is that their type is preserved in the
case of loss truncation as given by the following proposition.

Proposition 7.6 (Frequency of Truncated Losses) Consider independent losses X1,X2, . . . ,
XN with a common distribution F (x) over some time period. Assume that the losses are independent
of the loss frequency N . Denote the frequency of the losses above the reporting level L as NL. Then

(a) If N ∼ Poisson(λ), NL ∼ Poisson(λ(1 − F (L));
(b) If N ∼NegBinomial(r, p), where the parameter p= 1/(1+ q), then NL ∼NegBinomial

(r, p̃) with p̃ = 1/(1 + q̃), where q̃ = q(1 − F (L));
(c) If N ∼ Binomial(n, p), then NL ∼ Binomial(n, p̃), where p̃ = p(1 − F (L)).

Proof : The proof is trivial using a more general result given by Equation (7.150) derived
later.

In general, the relation between the distributions of N and NL can be calculated as
follows. Assume that the probability function for the number of events N is known to be
pn = Pr[N = n] and its probability-generating function is

ψN (t) = E[tN ] =
∑

k

pktk. (7.146)
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Consider a compound sum S = M1 + · · ·+ MN , where N is a discrete random variable with
probability-generating function ψN (t), and Mi are independent discrete random variables with
probability-generating function ψM (t). Utilizing the fact that the probability-generating func-
tion of the sum of independent random variables is the product of the individual probability-
generating functions, the probability-generating function of S can be found as

ψS(t) =
∑

k

Pr[S = k]tk

=
∑

k

∑
n

Pr[M1 + · · ·+ Mn = k|N = n]Pr[N = n]tk

=
∑

n

Pr[N = n](ψM (t))n

= ψN (ψM (t)). (7.147)

The number of events above the threshold can be written as

NL = I1 + · · ·+ IN ,

where Ij are independent and identically distributed indicator random variables

Ij =

{
1, Pr[Ij = 1] = 1 − F (d), if Xj > u,
0, Pr[Ij = 0] = F (d), if Xj ≤ u, (7.148)

with probability-generating function

ψI (t) = F (L) + t(1 − F (L)) = 1 + (1 − F (L))(t − 1).

The probability-generating function of the number of events above the threshold L can then
be calculated as

ψNL(t) = ψN (ψI (t)). (7.149)

Moreover, if the distribution of N is parameterized by some θ and its probability-generating
function has a special form ψN (t; θ) = g(θ(t − 1)), that is, t and θ appear in ψN (t; θ) as
θ(t − 1) only, then

ψNL(t; θ) = g(θ(1 − F (L))(t − 1)) = ψN (t; θ(1 − F (L))). (7.150)

That is, both N and NL have the same distribution type with different parameter θ. Specifically,
if N is distributed from P(·|θ), then NL is distributed from P(·|θ̃), where θ̃ = θ(1 − F (L)).
It can be checked directly that this relationship holds for Poisson, Binomial, and Negative
Binomial. This property of Poisson distribution has already been used in Section 7.9.1. For
more details and examples, see Panjer (2006, sections 5.7 and 7.8.2).

7.9.3 IGNORING DATA TRUNCATION

Often, the data below a reported level are simply ignored in the analysis, arguing that the high
quantiles are mainly determined by the low-frequency/heavy-tailed severity risks. However,
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even if the impact is small, often it should be estimated to justify the reporting level. There are
several ways to ignore truncation discussed here.

Assume that the true model is based on the annual number of events N and severities
Xj coming from distributions P(·|λ) and F (·|β), respectively. Here, P(·|λ) can be different
from Poisson and λ denotes all frequency parameters. The density of the distribution F (·|β) is
f (·|β). If it is further assumed that severities are independent and identically distributed, and
independent of frequency. Then the frequency Ñ and losses X̃j above the threshold L are from
P̃(·|θ) and

FL(x|β) =
F (x|β)− F (L|β)

1 − F (L|β) , x ≥ L,

respectively. Note that θ is a function of λ, β, and L (see Section 7.9.2). The corresponding
truncated severity density is

fL(x|β) =
f (x|β)

1 − F (L|β) , x ≥ L.

Denote the data above the threshold as Ỹ . Then fitting of the correct model proceeds as
follows.

“True model”. Using the frequency P̃(·|θ) and severity FL(x|β) distributions of the truncated
data Ỹ , fit the model parameters λ and β, using the likelihood of the observed data Ỹ via the
MLE or Bayesian inference methods as described in Section 7.9.1. Then calculate the annual
loss as

Z (0) =

N∑
i=1

Xi, N ∼ P(·|λ), Xi
i.i.d.∼ F (·|β). (7.151)

Of course, it is assumed that data below the threshold are generated from the same process
as for data above. To simplify the fitting procedure or to avoid making the assumptions about
data below the level, several approaches are popular in practice. In particular “naive model”,
“shifted model”, and “truncated model” are defined.

“Naive model”. Using truncated data Ỹ , fit frequency distribution P̃(·|θ) and severity F (·|βU )
assuming that there is no truncation. Then calculate the annual loss as

Z (U) =
N∑

i=1

Xi, N ∼ P̃(·|θ), Xi
i.i.d.∼ F (·|βU ). (7.152)

“Shifted model”. Using truncated data Ỹ , fit frequency P̃(·|θ) and severity
F (S)

L (x) = F (x − L|β). Then calculate the annual loss as

Z (S) =
N∑

i=1

Xi, N ∼ P̃(·|θ), Xi
i.i.d.∼ F (S)

L (·|βS). (7.153)
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“Truncated model”. Using truncated data Ỹ , fit frequency P̃(·|θ) and severity FL(x|β). Then
calculate the annual loss as

Z (T ) =

N∑
i=1

Xi, N ∼ P̃(·|θ), Xi
i.i.d.∼ FL(·|β). (7.154)

Denote the 0.999 quantiles of the annual losses under the “true”, “naive”, “shifted” and
“truncated” models as Q(0), Q(U), Q(S), and Q(T ), respectively. The bias introduced into the
0.999 quantile of the annual loss distribution from use of the wrong model can be quantified
by the relative difference

δ(�) ≡ Q(�) − Q(0)

Q(0) , (�) = “U , ” “T ”, “S”. (7.155)

Calculation of the annual loss quantile using the incorrect model (wrong frequency and severity
distributions) will induce a bias. One may think that the bias is not significant and use one of
the mentioned methods.

Each of the “naive model”, “shifted model”, and “truncated model” is biased for finite
truncation, that is, their quantile estimates will never converge to the true value as the data
sample size increases.

The difference (bias) between Q(0) and Q(S), and between Q(0) and Q(U) was studied
by Luo et al. (2007) and Ergashev et al. (2012). The difference between Q(T ) and Q(0) was
studied by Mignola and Ugoccioni (2006). The “naive model” was analyzed by Chernobai et al.
(2006) and Frachot et al. (2004b).

Example for Poisson—LogNormal case. To demonstrate the impact of ignoring data trunca-
tion consider N and Xi modeled by the Poisson(λ) and LogNormal(μ, σ2) with the probability
mass p(·|λ) and the density f (x|μ, σ), 0 < x < ∞, respectively. The density of a left-truncated
LogNormal distribution is

fL(x|μ, σ) =
f (x|μ, σ)

1 − F (L|μ, σ) , L ≤ x < ∞ (7.156)

Assuming that losses originating from f (x|μ, σ) and p(k|λ) are recorded above known
reporting level L, the data above L are counts from Poisson(θ), θ = λ(1 − F (L|μ, σ)), and
losses from fL(x|μ, σ). Then the following models are calculated.

• “True model” is obtained by using λ, μ, and σ in (7.151);
• “Shifted model”. Suppose that the shifted LogNormal density

f (S)
L (x|μs, σs) =

1
(x − L)

√
2πσ2

s
exp

(
− (ln(x − L)− μs)

2

2σ2
s

)
, (7.157)

where L ≤ x < ∞, is fitted to the truncated data using the method of maximum likeli-
hood. In the limit of large sample size, the parameters of this distribution μS and σS can be
determined using the first two moments, that is, expressed in terms of the true parameters
μ and σ as follows:
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μS =

∞∫
L

ln(x − L)f (T )
L (x|μ, σ)dx, (7.158)

σ2
S =

∞∫
L

[ln(x − L)]2 f (T )
L (x|μ, σ)dx − μ2

S . (7.159)

These integrals can be efficiently calculated using Gaussian quadrature or just using stan-
dard adaptive integration routines available from most of software packages e.g. In this
model, the frequency is modeled by Poisson(θ), that is, the losses below L are ignored.
Finally, θ, μS , and σS are used in (7.153);

• “Naive model”. This model is based on the untruncated LogNormal with density
f (x|μU , σU ) defined by (2) and fitted to data above the threshold L using the method
of maximum likelihood. Similar to the “shifted model”, in the limit of large sample size,
parameters μU and σU can be determined via the true parameters μ and σ as follows (see
Chernobai et al. 2006):

μU =

∞∫
L

ln(x)f (T )
L (x|μ, σ)dx, (7.160)

σ2
U =

∞∫
L

(ln x)2f (T )
L (x|μ, σ)dx − μ2

U . (7.161)

Unlike the “shifted model”, these integrals can be evaluated in closed form. The fre-
quency under the “naive model” is modeled by Poisson(θ), that is, the losses below the
threshold, are ignored when the intensity of loss events is estimated. Finally, θ, μU , and
σU are used in (7.152);

• “Truncated model” is obtained by using θ, μ, and σ in (7.154).

Figure 7.7 shows the relative bias in the 0.999 annual loss quantile (7.155) versus a fraction
of truncated points Ψ = F (L|μ, σ)× 100%, for the cases of light- and heavy-tailed severities.
In this example, the parameter values are chosen the same as some cases considered in Luo et al.
(2007). In particular, we show the results for (θ = 10, σ = 1) and (θ = 10, σ = 2). The latter
corresponds to the heavier-tailed severity. Here, the calculated bias is due to the model error
only, that is, the bias corresponds to the limiting case of a very large data sample. Also note
that the actual value of the scale parameter μ is not relevant because only relative quantities
are calculated. “Naive model” and “shifted model” are easy to fit but induced bias can be very
large. Typically, “naive model” leads to a significant underestimation of the capital, even for
a heavy-tailed severity; “shifted model” is better than “naive model” but worse than “truncated
model”; the bias from “truncated model” is less for heavier-tailed severities.

The biases introduced by the “naive” and “shifted” models, studied in this example, are
the biases in the limit of large sample size. The parameters fitted using real data are estimates
that have statistical fitting errors due to finite sample size. The true parameters are not known.
The impact of parameter uncertainty on quantile estimates can be taken into account using a
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Truncation bias in the 0.999 quantile of Poisson(10) −LogNormal (μ= 3, σ= 1)
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figure 7.7 Relative bias in the 0.999 quantile of the annual loss versus percentage of truncated
points for several models ignoring truncation in the case of light-tailed severities from
LogNormal(μ = 3, σ = 1) (top figure) and heavy-tailed severities from LogNormal(μ = 3, σ = 2)
(bottom figure). The annual counts above the truncation level are from Poisson(10)

Bayesian framework. The problem with the use of the simplified models that ignore data trun-
cation, such as “naive” and “shifted” models, is not just the introduced bias but underestimation
of extra capital required to cover parameter uncertainty. Typically, these simplified models lead
to smaller fitting errors. It is not difficult to find a realistic example where the “shifted model”
overestimating the quantile leads to underestimation when the parameter uncertainty is taken
into account; for an example, see Luo et al. (2007, section 6, table 1). “Naive model” typi-
cally underestimates the capital even if the parameter uncertainty is taken into account This
is because the “shifted” and “naive” models lead to smaller fitting errors in comparison to the
“unbiased model”. Of course, as the number of observations increases, the impact of parameter
uncertainty diminishes. However, for modest fitting errors 5–10% (often, in modeling OpRisk
data, the errors are larger) the impact of parameter uncertainty is significant.

7.9.4 THRESHOLD VARYING IN TIME

Often, in practice, a modeler should handle a reporting threshold varying in time. This might
be due to scaling losses by some factors (inflation, business factors, etc.) that scales the reporting
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threshold too or changes in reporting policy in time. As a result, the losses in the fitted sample
will have different threshold levels. Consider the following model assumptions.

Model Assumptions 7.2

• In the absence of a threshold, the events follow a homogeneous Poisson process with the intensity λ
and the severities Xj are independent with a common distribution F (·|β); denote γ = (λ,β);

• The losses are reported above the known time-dependent level L(t). Denote the severities and
arrival times of the reported losses as X̃j and T̃j, j = 1, . . . , J , respectively, and t0 is the start of
the observation period.

Under these assumptions, the events above L(t) follow a nonhomogeneous Poisson process
with the intensity given by,

θ(γ, L(t)) = λ(1 − F (L(t)|β)). (7.162)

Furthermore, denote by Λ(t, h) the following integral

Λ(t, h) =
t+h∫
t

θ(γ, L(x))dx. (7.163)

Then, given that (j − 1)-th event occurred at t̃j−1, the interarrival time for the j-th event
δT̃j = T̃j − T̃j−1 is distributed from

Gj(τ |γ) = 1 − exp(−Λ(tj−1, τ)) (7.164)

with the density

gj(τ |γ) = θ(γ, L(tj−1 + τ)) exp(−Λ(tj−1, τ)). (7.165)

The implied number of events in year m is Poisson(Λ(sm, 1))-distributed, where sm is the time
of the beginning of year m, and the number of events over the nonoverlapping periods are
independent.

Proposition 7.7 (Likelihood for Event Times and Truncated Severities) Under Model
Assumptions 7.2, for given parameters γ, the joint density of the data Y of the events above L(t)
over the time period [t0, tE ], consisting of the interarrival times δT̃j = T̃j − T̃j−1 and severities X̃j,
j = 1, . . . , J above L(t), can be written as

h(y|γ) = (1 − GJ (tE − t̃J |γ))
J∏

j=1

fL(̃tj)(x̃j|β)gj(τ̃j|γ)

= λJ exp(−Λ(t0, tE − t0))

J∏
j=1

f (x̃j|β). (7.166)
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Here, explicitly,

Λ(t0, tE − t0) = λ

tE∫
t0

[1 − F (L(x)|β)]dx.

Then, the likelihood function for the model is �y(γ) = ln h(y|γ).

Proof : This follows from independence between frequencies and severities, independence
between severities, distribution of interarrival times (7.164), and its density (7.165).

The MLEs for model parameters γ can be found by solving the maximum likelihood
equations

∂�y(γ)

∂λ
=

J
λ
−

T∫
t0

[1 − F (L(x)|β)]dx = 0, (7.167)

∂�y(γ)

∂β
= − ∂

∂β
Λ(t0,T − t0) +

J∑
j=1

∂

∂β
ln f (x̃j|β) = 0. (7.168)

The first equation gives

λ̂ =
J

T∫
t0
[1 − F (L(x)|β̂)]dx

, (7.169)

which can be substituted into (7.166) and maximization will be required with respect to β only.
The likelihood contains integral over the severity distribution. If integration is not possible in
closed form, then it can be calculated numerically (which can be done efficiently using standard
routines available in many numerical packages). For convenience, one can assume that a thresh-
old is constant between the reported events L(t) = L(tj), t̃j−1 < t ≤ t̃j and L(t) = L(tE) for
t̃j < t ≤ tE , so that

tE∫
t0

[1 − F (L(x)|β)]dx = [1 − F (L(tE)|β)](tE − t̃J )

+

J∑
j=1

[1 − F (L(̃tj)|β)]τj. (7.170)

Of course, this assumption is reasonable if the intensity of the events is not small. Typically,
scaling is done on the annual basis and one can assume a piece-wise constant threshold per
annum and the integral is replaced by a simple summation.

Proposition 7.8 (Likelihood for Annual Counts and Truncated Severities) Under Model
Assumptions 7.2, the joint density of data Y of the events above the reporting threshold L(t) consist-
ing of the annual counts Ñm, m = 1, . . . ,T and severities X̃j, j = 1, . . . , J (J = Ñ1 + . . .+ ÑT )
can be written as
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h(y|γ) =
J∏

j=1

fL(tj)(x̃j|β)
T∏

m=1

p(ñm|Λ(sm, 1)), (7.171)

where p(·|Λ(sm, 1)) is probability mass function of Poisson(Λ(sm, 1)). Then, the likelihood function
for the model is �y(γ) = ln h(y|γ).

Proof : This follows from independence between frequencies and severities, independence
between severities, and intensity of nonhomogenous Poisson process (7.162).

Usually, in practice, scaling is done on an annual basis. Thus, we can consider the case of
a piece-wise constant threshold per annum such that for year m:

L(t) = Lm, θm = θ(γ, L(t)) = λ(1 − F (Lm|β)), sm ≤ t < sm + 1,

where sm is the time of the beginning of year m. The joint density in this case is

h(y|γ) =
J∏

j=1

fL(̃tj)(x̃j|β)
T∏

m=1

p(ñm|θm)) (7.172)

and equations to find MLEs using the likelihood function �y(γ) = ln h(y|γ) are

∂�y(γ)

∂λ
=

T∑
m=1

[1 − F (Lm|β)]
∂

∂θm
lnp(ñm|θm) = 0, (7.173)

∂�y(γ)

∂β
=

J∑
j=1

∂

∂β
ln fL(̃tj)(x̃j|β)

− λ

T∑
m=1

∂F (Lm|β)]
∂β

∂

∂θm
lnp(ñm|θm) = 0. (7.174)

The first equation gives

λ̂ =

∑T
m=1 ñm∑T

m=1 (1 − F (Lm|β̂))
. (7.175)

The MLEs of the severity parameters should be estimated jointly with the intensity. Given
that the intensity MLE can be expressed in terms of the severity parameter MLEs via the given
equation, one can substitute (7.175) into the likelihood function (7.172) and find severity
parameter MLEs by maximizing the obtained likelihood profile.

Often the MLEs for severity parameters calculated marginally (i.e., by simply maximizing∑
ln fL(tj)(x̃j|β)) do not differ materially from the results of the joint estimation if the vari-

ability of the threshold is not extremely fast. In addition, marginal estimation does not allow
for quantification of the covariances between frequency and severity parameters required to
account for parameter uncertainty. For an illustrative example of fitting truncated data with
time-varying threshold using maximum likelihood and Bayesian MCMC methods, the reader
is referred to Shevchenko (2011, example 5.4, pp. 199–200).
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7.9.5 UNKNOWN AND STOCHASTIC TRUNCATION LEVEL

One of the most significant problems in fitting OpRisk models using publicly available data
is handling the issue that not all losses are reported above the threshold (typical threshold for
external databases of public data is USD 1 million). Moreover, the truncation level for differ-
ent losses is unknown. It is expected that there will be a positive relationship between the loss
amount and the probability of its reporting. In this case, the dataset is a biased sample con-
taining a disproportionate number of very large losses. One can say that an operational loss is
publicly reported only if it exceeds some unobserved truncation point. This can be modeled as
an unknown deterministic truncation level or stochastic truncation level.

Unknown deterministic truncation level. Baud et al. (2002) consider the case of unknown
deterministic truncation level L. In this case, it is considered as an additional parameter to
be estimated along with the parameters characterizing the loss distribution. The log likelihood
function is identical to the one given in the previous sections for known truncation level, except
that it is now an explicit function of both severity distribution parameters and L. Now the
maximum likelihood approach corresponds to maximization of the likelihood with respect to
distribution parameters and L. Furthermore, it can be immediately observed that the MLE
for L is just the smallest observed loss in the fitted dataset. In practice, Baud et al. (2002)
suggest the following procedure to account for possible contamination with untruncated or
badly recorded data.

• Estimate severity parameters θ̂ for each L ranging from 0 to ∞;

• Plot θ̂ as a function of L;
• Truncation level estimator L̂ is eventually calculated as the threshold beyond which θ̂

remains approximately flat as a function of L.

As a result, the loss parameters are eventually estimated with fewer data than available,
that is, losses above the highest threshold. In order to avoid this loss of information, one can
consider modeling truncation level as a stochastic variable.

Stochastic truncation level. Stochastic truncation problem was reviewed in many papers (see,
e.g., Amemiya 1984, Maddala 1983). Application of this technique to operational loss data is
considered by De Fontnouvelle et al. (2006) and Baud et al. (2002). Note that here we refer
to a threshold level as a known reporting level in the database while the truncation level is
unknown.

Let X and Y be random variables with joint density h(x, y) and marginal densities f (x)
and g(y), respectively. Denote corresponding distribution functions as F (x) and G(y). Here,
X is randomly truncated if it is observed only when it exceeds the unobserved truncation level
Y . If X and Y are statistically independent, then the joint density h(x, y) is the product of
the marginal densities f (x) and g(y). The joint density of X and Y , conditional on X being
observed, can be written as

h(x, y|x > y) =
f (x)g(y)
Pr[X > Y ]

=
f (x)g(y)∫∞

−∞
∫ x
−∞ f (x)g(y)dydx

=
f (x)g(y)∫∞

−∞ f (x)G(x)dx
. (7.176)
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The marginal density of X , conditional on X > Y , is obtained by integrating out the unob-
served variable y

f (x|x > y) =
f (x)G(x)∫∞

−∞ f (x)G(x)dx
. (7.177)

Thus, the likelihood of the observed data x1, . . . , xn can be written as

LX |X>Y (θ) =

n∏
i=1

f (xi)G(xi)∫∞
−∞ f (x)G(x)dx

. (7.178)

Here, θ are parameters of severity and truncation level distributions that can be estimated using
maximum likelihood or Bayesian MCMC methods. Of course, in practice, we fit data above
some known threshold (e.g., USD 1 million); then one can consider the above formulas for
the loss exceedances above the threshold or log of the loss minus log of the threshold. This
approach was used by De Fontnouvelle et al. (2006) to fit SAS OpRisk Global Data and Fitch
Risk/OpVantage OpVar Loss Database.

There are many factors that affect whether a loss is publicly reported or not. It may depend
on the type of loss, the business line, legal proceedings related to the loss, executives and
reporters deciding whether to report the loss or not, etc. Thus, one can argue that the trunca-
tion level should be normally distributed. However, De Fontnouvelle et al. (2006) found that
assumption of Normal distribution often leads to nonconvergence of the numerical optimiza-
tion of the maximum likelihood and recommend using a logistic distribution (for truncation
level of log losses)

G(x) =
1

1 + exp(−(x − τ)/β)
. (7.179)

Here, the location parameter τ corresponds to the amount with a 50% chance of being reported
and a scale parameter β regulates the increase (decrease) of the probability of reporting as the
loss amount increases (decreases).
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Chapter Eight

Model Selection and
Goodness-of-Fit Testing for
Frequency and Severity Models

In this chapter, we present details on statistical approaches to performing model selection.
We separate the sections first into diagnostic tools that may be adopted to make quantitative
assessments for model selection purposes. This includes analysis of the presence of heavy-tailed
features of the data. Then the focus of the next few sections is on individual risk process model
selections under a Loss Distribution Approach (LDA) structure, for the severity model and
the frequency models. This can be achieved under a number of different frameworks such as
information criteria, frequentist hypothesis testing, and Bayesian model selection approaches.
A particular focus in these sections involves the suitable modifications to classical hypothesis
tests that should be considered when performing model selection on heavy-tailed models, for
instance, for the severity distribution. This is important to consider as it can have a substantial
impact on the choice of the model and therefore on the capital. The last sections of this chapter
involve the model selection of dependence features between multiple risks, such as model selec-
tion for the copula distribution, which may be used to link multiple risk processes as discussed
in detail in Chapters 10–12.

8.1 Qualitative Model Diagnostic Tools

In general, it is often practical to utilize a range of model diagnostic tools to make qualitative
judgments on the suitability of a particular choice of severity or frequency model. In this regard,
there are a range of possible tools one can consider, each providing different interpretations as
to the suitability of a particular aspect of the fitted model. In this section, we discuss the popular
Quantile–Quantile plot (Q–Q plot) and analog Probability–Probability plots (P–P plot) as well
as diagnostics for heavy-tailed behavior such as Mean Excess (ME) plots and Hill plots.

A Q–Q plot is a graphical method of comparing two probability distributions by plot-
ting their quantiles against each other. One first selects a set of intervals for the quantiles

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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to be plotted and then a point (x, y) on the plot corresponds to one of the quantiles of the
second distribution (y-coordinate) plotted against the same quantile of the first distribution
(x-coordinate). Typically, one considers the empirical quantiles from a sample to be plotted on
the y-axis versus the hypothesized model quantiles on the x-axis.

The main step in constructing a Q–Q plot is calculating or estimating the quantiles to
be plotted. In the case in which the distribution function(s) for one or both of the axes is
based on a theoretical distribution that is continuous, all quantiles are uniquely defined and
can be obtained by inverting the distribution function. If there is an atom in the support of the
distribution function, that is, a discontinuity in the distribution for one or both of the axes,
and a theoretical probability distribution is considered, then one should take care to observe
that the definition used for the quantile at such points may utilise an interpolated quantile.

Typically, the Q–Q plot is based on data, such as losses, for which there can be multiple
choices for quantile estimators. The approach adopted with regard to forming Q–Q plots when
quantiles must be estimated or interpolated is called selection of “plotting positions”, which
literally means selecting which quantile levels to plot.

Remark 8.1 (Properties of Q–Q plots) The following is worth noting when considering the
interpretation of a Q–Q plot. The points plotted are always nondecreasing when viewed from left
to right. In the case in which the two distributions compared are identical, the resulting Q–Q plot
would follow the 45◦ line y = x. However, if there is a mismatch between the Q–Q plot curve
and the line y = x, then this provides qualitative evidence of features of the data that are not in
agreement with the proposed parametric model.

Examples of such qualitative analysis are provided as follows:

1. If the overall trend in the Q–Q plot tends to be flatter (gradient less than 1) than the
line y = x, then this implies that the hypothesized distribution plotted on the x-axis will
be more dispersed than the distribution plotted on the vertical axis, which relates to the
population distribution from which the sample was obtained;

2. If the overall trend of the Q–Q plot tends to be steeper (gradient greater than 1) than the
line y = x, then this implies that the population distribution plotted on the vertical axis
is more dispersed than the hypothesized distribution plotted on the horizontal axis;

3. If the Q–Q plot is curved, arched, or S-shaped, then this can indicate that relative to the
hypothesized parametric distribution the population distribution from which the sample is
obtained has different skew characteristics. It can also indicate that one of the distributions
has heavier tails than the other.

An example is provided in Figure 8.1 where we consider a sample of n = 100 losses from
a distribution F (unknown population distribution) and we compare this to the hypothesized
severity model we are considering to use as a model. In these examples, we will consider a
LogNormal model for the hypothesized model and simulate data from three different cases.
The first is the ideal case where we simulate the data also from a LogNormal with the same
parameters, the second is the case where the data come from a Weibull, and the third is the case
where the data come from an exponential distribution.

Similar in concept, one can also plot what are known as P–P plots, in which a comparison
between the empirical cumulative distribution function of a data set of size n samples, denoted
by F̂n, is compared with a specified theoretical cumulative distribution function F . We note
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figure 8.1 In each plot, the x-axis corresponds to quantiles from a LogNormal(μ = 1, σ = 2) model.
Left subplot: generated data are from a LogNormal(μ = 1, σ = 2) model. Middle subplot: generated data
are from a Weibull(α = 1, β = 2) model. Right subplot: generated data are from an Exp(μ = 1) model

some basic differences in the way that P–P plots and Q–Q plots are constructed. A Q–Q plot
doesn’t require information on the location or scale parameters of F to be known. The reason
for this is that a linear relationship in the plotted Q–Q points indicates that the specified family
describes the data distribution. However, the location and scale parameters do not affect the fact
that this linear relationship will be present as they only affect the slope and intercept. However,
when constructing a P–P plot one must be careful as it requires the location and scale parameters
of F to be specified in order to evaluate the distribution at the ordered values. This is important
since, on a P–P plot, changes in location or scale do not necessarily preserve linearity. Hence,
one is advised to utilize the Q–Q plot when the intention is to assess the suitability of a family
of parametric models from which the data may have been drawn.

The advantage of a P–P plot, when it is appropriate to utilize one, is that they are discrim-
inating in regions of high probability density. To understand this point, we note that in these
regions the empirical and theoretical cumulative distributions are changing more rapidly than
where there is low probability; see further discussions on these plots by Wilk and Gnanadesikan
(1968).

8.2 Tail Diagnostics

In many cases in which one is fitting a heavy-tailed severity model to data, one may be interested
in diagnostic tools to assess the suitability of such a model feature. There are several qualitative
plots that are available for such analysis such as the Mean Excess (ME) plot and the Hill plot,
see Kratz and Resnick (1996).
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When considering heavy-tailed features under a parametric model, it is often natural to
consider the distribution of exceedances above a threshold such as under a Peaks Over Thresh-
old (POT) estimation framework. The choice of threshold for which to consider the Gener-
alized Pareto Distribution (GPD) is a challenging quantity to assess. Selecting the threshold
and assessing the appropriateness of a heavy-tailed GPD model for data is often aided by an
ME plot analysis. In the special case of a GPD model GPD(ξ, β), the ME function takes a
closed-form expression in terms of the extreme value index (EVI) parameter ξ, which for a level
u threshold is given by

M(u) = E [X − u|X > u] =
β

1 − ξ
+

ξ

1 − ξ
u, (8.1)

which clearly indicates that the sample estimated ME should form a linear relationship if the
GPD heavy-tailed model is suitable to describe the tail behavior of the data. In fact, any heavy-
tailed subexponential model (though it may not have a parametric form for the ME function)
will produce an upward-sloping ME plot, where as light-tailed or exponentially tailed models
will produce a downward or decreasing ME plot; see discussion and references by Ghosh and
Resnick (2010) for details.

As mentioned, for plotting the ME plot we consider the sample ME function defined by
Equation (8.2), which represents the sum of excesses over a threshold u divided by the number
of data points that exceed the threshold u. It approximates the ME function describing the
expected exceedance amount for a particular threshold u given an exceedance occurred. If the
empirical ME function estimate has a positive slope for large thresholds u, then this indicates
that the observed data are consistent with a GPD with a positive tail index parameter (Beirlant
et al. 2004, chapter 1). The sample ME is then given by

en(u) =
∑n

i=1(Xi − u)I{Xi>u}∑n
i=1 I{Xi>u}

(8.2)

which estimates the conditional expectation e(u) = E [(X − u)|X > u].
We note that the ME plot is only one of a large set of widely used tools for extreme

value model selection. Other diagnostic tools include the Hill plot, the Pickands plot, and
the moment estimator plot, see discussion by Ghosh and Resnick (2010).

In addition, when performing qualitative assessments of the tail thickness of the data-
generating distribution, it is common to consider the Hill plot. The Hill plot represents the
estimated inverse tail index as a function of the upper-order statistics k. In other words, it
considers the order statistics of the data set of length n given by

{
X(i,n)

}n
i=1 and takes the m

upper-order statistics to obtain the Hill estimator of the extreme value tail index given by

Hm,n =

(
1
m

m∑
i=1

ln
X(i,n)

X(m+1,n)

)−1

, 1 ≤ m ≤ n. (8.3)

The Hill plot is then the plot of points {(k,Hk,n) : 1 ≤ k ≤ n}. This plot provides feedback on
the suitability of the selected threshold utilized in the estimation of the Extreme Value Theory
(EVT) models, in particular the POT’s method, see Beirlant et al. (2004) for details. For further
detailed discussions on the suitability of such a plot to certain model assumptions, see discussion
by Ghosh and Resnick (2010, section 4).
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8.3 Information Criterion for Model Selection

In this section, we provide background on alternative popular model selection and penalization
approaches developed in the statistical literature, which include the frequentist Akaike Informa-
tion Criterion (AIC) and small sample results of AICc. We also present the Bayesian equivalent
quantities given by the Bayesian Information Criterion (BIC) and the Deviance Information
Criterion (DIC). Hence, we discuss methods of model comparison based on ideas of informa-
tion theory, model complexity and accuracy or bias, and variance trade-off. However, these are
not measures of absolute suitability of a model choice as would be obtained from goodness-of-
fit (GOF) testing under a formal hypothesis test. In other words, if all the candidate models
for the severity fit poorly, these criteria will not give any warning of this possibility. We there-
fore also comment on the importance of estimation of both the tail properties of a heavy-tailed
severity model in an LDA framework, as well as the assessment of the suitability of the model
more generally—these are related but not equivalent concepts.

8.3.1 AKAIKE INFORMATION CRITERION FOR LDA MODEL
SELECTION

The AIC is a measure of the relative GOF of OpRisk LDA model components such as the
severity or frequency distribution under consideration. One can interpret this criterion as pro-
viding an entropy-based trade-off between bias and variance in an OpRisk model construction.
To understand the connection to the concept of entropy we observe that the AIC is based on
the Kullback–Leibler (KL) divergence given in Definition 8.1.

Definition 8.1 (Kullback–Leibler divergence) The Kullback–Leibler divergence, in this case
for two densities f and g, is given by the following two components:

KL ( f || g ) = −
∫

f (x) ln g(x)dx︸ ︷︷ ︸
Cross Entropy �(f ||g)

+

∫
f (x) ln f (x)dx︸ ︷︷ ︸

Entropy

(8.4)

If one now considers f (x;θ) and g(x;ψ) to be the likelihoods of two competing models
and notes that the integrals are taken with respect to the observed losses, then the cross entropy
term represents the expected negative log-likelihood of data coming from f under g. Now,
since we don’t know the true model generating process of the losses, we assume we have a set
of possible candidates and we rank them by their AIC score given in Definition 8.2.

Definition 8.2 (Akaike Information Criterion for severity models in OpRisk) Consider a
given model for severity loss random variable X ∼ FX (x;θ) parameterized by (k × 1) dimen-
sional vector θ. Given observed losses one obtains the value of the maximum likelihood estimation
(MLE) of the severity model parameters Θ̂

MLE
(x), which is a function of the observed data. Then

the AIC is given by

AIC(Θ̂
MLE

(x)) = −2l(θ̂
MLE

; x)︸ ︷︷ ︸
Maximum of Likelihood

+ 2k︸︷︷︸
Model Complexity Penalty

(8.5)



�

�

“Cruz_Driver” — 2015/1/12 — 10:53 — page 243 — #6
�

�

�

�

�

�

8.3 Information Criterion for Model Selection 243

Given several possible candidate severity models for an OpRisk LDA model, the preferred
model is the one with the minimum AIC value.

Remark 8.2 (Cautionary comments on application of AIC) The following general issues are
required to be considered for the application of AIC:

1. AIC is asymptotic; it requires conventional large-sample properties;
2. The maximum number of parameters in the severity model should not exceed 2kn, where n is

the number of observations. This is because larger values will weaken the bias correction;
3. There are cases when AIC decreases monotonically, that is, there is no solution. In most of these

cases, the culprit is poor selection of model class;
4. If an AIC score difference between two severity models has a magnitude of between 1 to 2 or

more, then the difference is significant;
5. In some cases, AIC has been shown to be inconsistent.

In general, in OpRisk settings where the sample sizes are low, it may be better to consider
the small sample AIC with a different bias correction given in Definition 8.3 (see discussions in
Burnham and Anderson 2002). In this text of model selection, they advise to utilize AICc, rather
than AIC, when the number of losses n is small or the number of severity model parameters
k is large. Note further that the AICc will converge to AIC as the sample size grows and for
small sample sizes we see that the bias is reduced by keeping AIC with a greater penalty for extra
parameters.

Definition 8.3 (Small-sample Akaike Information Criterion AICc) The correction to AIC
for small sample sizes, known as the AICc is given by

AICc
(
Θ̂

MLE
(x)

)
= AIC

(
Θ̂

MLE
(x)

)
+

2k(k + 1)
n − k − 1

, (8.6)

where n denotes the sample size and k the number of parameters in the severity model.

8.3.1.1 Understanding How the AIC Criterion is Obtained. To understand how
the AIC criterion is obtained, we consider a hypothetical true data-generating (losses) severity
model denoted by h (x|θ∗) with true parameters θ∗. Furthermore, consider a class of models
Mk = {f (x|θk) |θk ∈ Ω(k)}, where each member of this class is a data-generating density
that is parameterized by a k-dimensional parameter vector (risk profile) θk. For each model in
this class of models, denote the log-likelihood at the MLE by l

(
θ̂

MLE
k

)
. Then one may define

the expected log likelihood, with respect to the true model parameters θ∗, for a given model in
class Mk by

Eθ∗ [ln f (X |θk)] =

∫
h (x|θ∗) ln f (x|θk) dx, (8.7)

where this expectation is interpreted as that taken with respect to the hypothetical true data-
generating distribution h (x|θ∗). In addition, one may define this expectation at a particular
point corresponding to the expected maximized log-likelihood given by
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Eθ∗

[
ln f

(
X |θ̂MLE

k

)]
=

∫
h (x|θ∗) ln f

(
x|θ̂MLE

k

)
dx, (8.8)

where the point estimator of the MLE θ̂
MLE
k is clearly dependent on one fixed realization of

the observations. The use of Eθ∗

[
ln f

(
X |θ̂MLE

k

)]
to estimate Eθ∗ [ln f (X |θk)] is critical to

the derivation of the AIC. That is, the AIC is derived by making an estimate of the expected
log-likelihood using the maximized log-likelihood function. However, since the MLE will
depend on one realization of the data X , it will produce a biased estimator of the mean expected
log-likelihood w.r.t. to the loss data and this bias is asymptotically given by k, the number of
parameters in the model, see Akaike (1981).

To proceed with the understanding of how the AIC is obtained, we consider improving
the estimator of the expected maximum log-likelihood. This will be achieved by considering
the mean expected maximum log-likelihood, where the single realization of observation vector
X is observed and then averaging over the MLE estimator from i.i.d. observation vectors Y ,
each assumed to come from the same hypothetical true distribution as the observed losses X ,
thus producing the following expectations to be considered:

EY |θ∗EX |θ∗
[
ln f

(
X |θMLE

k (Y )
)]

. (8.9)

In the work of Akaike, it was postulated that as the mean expected maximum log-likelihood
increases, the model provides an improving fit. It can also be shown that the estimator of this
mean expected log-likelihood is estimated by the maximum likelihood function, with a bias,
and that the bias can be obtained easily as the number of free parameters in the model.

Another way of seeing this is to note that one can show that the AIC score relates to the
cross entropy between the unknown “true” data-generating model h with true parameters θ∗

and a model under consideration f , where we denote the cross entropy by �(h ‖ f ), which is
given in the following way for an (n×1) vector of observed losses x according to the following
expectation,

Eθ∗

[
Θ̂

MLE
(x)

]
= Eθ∗

[
�

(
θ∗||Θ̂MLE

(x)
)]

+ on(1). (8.10)

This shows that the AIC score, given for model Mk by

AIC
(
Θ̂

MLE
(x)

)
= − ln f

(
x|θ̂MLE

k

)
+ k, (8.11)

is an asymptotically unbiased estimator of the cross-entropy risk and can only be accurately
applied in the large sample size setting, something that is not often available in OpRisk mod-
eling. One way to show this property of the AIC score estimator is by taking the case in which
the true model Mk∗ is nested in the class of models considered and there are two sources of
error in the model selection:

1. Discrepancy from approximation. This is the main source of error when underfitting where
the number of parameters in the fitted model Mk is such that k < k∗;

2. Discrepancy from estimation. This is the main source of error when overfitting where the
number of parameters in the fitted model Mk is such that k ≥ k∗.
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To complete this derivation, one shows that under particular regularity conditions discussed
in Akaike (1981) the mean of the AIC score with respect to the true data-generating model is
given by the mean cross entropy �

(
θ∗||Θ̂MLE

(x)
)

up to the first order. In other words, one
must show that

Eθ∗

[
ln f

(
X |θ̂MLE

k

)
+ k

]
= Eθ∗

[
�

(
θ∗||Θ̂MLE

(x)
)]

+ on(1)

= � (θ∗||Θ0] +
1
2

[
Θ̂

MLE
(x)−Θ0

]T
J (Θ0)

[
Θ̂

MLE
(x)−Θ0

]
+ on(1)

= Eθ∗

[
ln f

(
X |θ̂MLE

k

)]
+

1
2

[
Θ̂

MLE
(x)−Θ0

]T
H

(
Θ̂

MLE
(x)

) [
Θ̂

MLE
(x)−Θ0

]
+

1
2

[
Θ̂

MLE
(x)−Θ0

]T
J (Θ0)

[
Θ̂

MLE
(x)−Θ0

]
+ on(1),

(8.12)

where the matrices J and H are given at location θ0 by,

J (Θ0) =

[
∂2� (θ∗||Θ]

∂θ∂θ′

∣∣∣∣
θ=θ0

]

H
(
Θ̂

MLE
(x)

)
=

[
∂2 ln f (X |θ)

∂θ∂θ′

∣∣∣∣
θ=θ̂

MLE
k

] (8.13)

Then one notes that under the same regularity conditions utilised to obtain this expansion, the
following holds

1
2
Eθ∗

[[
Θ̂

MLE
(x)−Θ0

]T
J (Θ0)

[
Θ̂

MLE
(x)−Θ0

]]
=

k
2
+ on(1)

1
2
Eθ∗

[[
Θ̂

MLE
(x)−Θ0

]T
H

(
Θ̂

MLE
(x)

) [
Θ̂

MLE
(x)−Θ0

]]
=

k
2
+ on(1).

(8.14)

After substitution of these results one obtains the required result for the AIC criterion
expression.

8.3.2 DEVIANCE INFORMATION CRITERION

There are also a number of other information crtiria, some of which are particular relevant for
Baysian modelling. One such example, commonly used in practice, is the Deviance Information
Criterion (DIC). For a dataset X = x generated by the model with the posterior density π(θ|x),
define the deviance by

D(θ) = −2 lnπ(x|θ) + C , (8.15)

where the constant C is common to all candidate models. Then the DIC is calculated as

DIC = 2E[D(Θ)|X = x]− D(E[Θ|X = x])

= E[D(Θ)|X = x] +
(
E[D(Θ)|X = x]− D(E[Θ|X = x])

)
, (8.16)
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where

• E[·|X = x] is the expectation with respect to the posterior density of Θ;
• The expectation E[D(Θ)|X = x] is a measure of how well the model fits the data; the

smaller this is, the better the fit;
• The difference E[D(Θ)|X = x] − D(E[Θ|X = x]) can be regarded as the effective

number of parameters. The larger this difference, the easier it is for the model to fit the data.

The DIC criterion favors the model with a better fit but at the same time penalizes the
model with more parameters. Under this setting the model with the smallest DIC value is the
preferred model.

DIC is a Bayesian alternative to BIC (Schwarz’s criterion Schwarz 1978) and AIC (Akaike,
1983). For more details on these criteria, see, for example, Robert (2001, chapter 7).

8.4 Goodness-of-Fit Testing for Model Choice
(How to Account for Heavy Tails!)

It is also natural under a frequentist modeling perspective to consider performing a Goodness
of Fit (GOF) hypothesis test. This is a formal hypothesis testing procedure for assessing the
statistical significance of whether the observed loss process was likely to have been generated
from the statistical model considered. Measures of GOF typically summarize the discrepancy
between observed loss values and the loss values expected under the model in question. In
this section, we will consider several possible tests, such as the Kolmogorov–Smirnov, test, the
Chi-squared test, and heavy-tailed tests of particular relevance to OpRisk when considering the
appropriateness of particular tail properties of the severity model.

Stated more formally, one can say that a GOF test for a set of n i.i.d. random vari-
ables X1, . . . ,Xn with an unspecified distribution function GX (x) aims to inform a decision
between whether the samples follow a null distribution FX (x;θ), where θ contains possibly
unknown model parameters, or an alternative. This can be stated according to the two following
hypotheses:

H0 : GX (x) = FX (x;θ).
H1 : GX (x) �= FX (x;θ).

To be more precise, we will first recall some basic inference definitions. Generally, when per-
forming such inferential procedures, one should distinguish between simple hypotheses and
compound hypotheses as detailed below:

• Simple hypothesis. A hypothesis that completely specifies the probability distribution;

˚ Example 1. The parameter of this Binomial distribution is p = 0.6;

˚ Example 2. The distribution is a Normal one of average μ = 4 and standard deviation
σ = 1.

• Compound hypothesis. A hypothesis that does not completely specify the distribution.
Note. In this case the alternative hypothesis cannot be directional; it must measure devia-
tions in all directions;
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˚ Example 1. The parameter p of this Binomial distribution is greater than 0.1;

˚ Example 2. These two distributions have the same mean and common standard deviation
of σ = 1.

In addition, we need to consider how we handle Type I and Type II errors that specify the
possible mistakes we can make in our decision.

Definition 8.4 (Type I and Type II errors) A Type I error occurs when the null hypothesis H0
is rejected though it should have been accepted, and a Type II error occurs when the alternative
hypothesis H1 is rejected though it should have been accepted. Note that this is equivalent in logic to
the case in which the null hypothesis H0 is accepted though it should have been rejected.

We also note that a hypothesis test will partition the space of observations into two regions
denoted by R and A. These can then be considered to help define the attributes of a given test
according to the characteristics that define a given testing procedure, known as the significance
of the test and the power of the test. These characteristics are directly related to the decision
errors of Type I and II, which are specified formally according to the following definition.

Definition 8.5 (Power and significance of hypothesis test) The significance of a hypothesis
test refers to the Type I errors and is defined by

S = 1 − α = 1 − Pr (x ∈ R|H0) = 1 −
∫
R

Pr (x|H0) dx. (8.17)

The power of a hypothesis test refers to the Type II errors and is defined by

P = 1 − β = 1 − Pr (x ∈ A|H1) = 1 −
∫
A

Pr (x|H1) dx. (8.18)

To select a test and study its properties one will typically encounter a trade-off between
α and β. It is therefore standard practice to set a priori the significance to a fixed value
(α = 0.01; 0.05; . . .) and then to find the most powerful test, where β is as small as pos-
sible. In general, the results will correspond to the class of testing procedures referred to as the
Neyman Pearson tests, which apply to the setting of a simple null hypothesis against a simple
alternative hypothesis.

8.4.1 CONVERGENCE RESULTS OF THE EMPIRICAL PROCESS FOR
GOF TESTING

In characterizing the decision rule for the hypothesis test, one can either specify the decision
boundary (critical values) for a given acceptable level of precision or significance level α, or
one can specify the probability of events exceeding these critical values for any given value α
(a p-value). Both specifications are equivalent and require knowledge of the distribution of the
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statistic used to make the decision in the test under the assumption that the null hypothesis
is correct.

In the context of GOF testing, typically the distribution for the statistic is based on a func-
tional or transformation that maps an empirical process and its limiting (large sample) asymp-
totic process to a random vector or random variable; this random vector/variable is known as
the test statistic. It is typically obtained conditional on the assumption that the nominal claim
is correct. We will see that while evaluation of the statistic in practice requires the knowledge of
the model, the actual distribution of this statistic turns out to be model-free (distribution-free)
and can be evaluated, stated, or tabulated once for any desired model.

The distribution of this test statistic in a distribution-free GOF test is based entirely on the
limiting process of the empirical process under study. For example, if the statistic were the
maximal vertical distance between the empirical distribution and the null distribution over
the support of the null distribution (KS test), then we are talking about a p-value for such a
test using this statistic which is obtained by first understanding the limiting behavior of the
empirical distribution process as the sample size increases. This understanding of the limiting
behavior of the empirical process can then be used to study functionals of the empirical and
limiting process and in particular the tail events of the distributions of such functions (which
are then random variables/vectors) in order to obtain well-defined p-values. With these p-values
one can then probabilistically characterize events under the null hypothesis, using the given
statistic that would lead one to decide against the nominal claim, based on the evidence from
the observation of the process.

Therefore, it will also be beneficial to observe the following results that are based on
comparisons between properties of the empirical distribution function and a hypothesized
distribution function which regularly arise in the context of GOF testing. We first detail
two fundamental results of relevance to these tests: the Glivenko–Cantelli theorem (Cantelli
1933) and the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (see Dvoretzky et al. 1956 and
Birnbaum and McCarty 1958).

Definition 8.6 (Empirical distribution function) Given a continuous distribution, let
X1,X2, . . . ,Xn be a sequence of i.i.d. random variables from this distribution with observed real-
izations x1, x2, x3, . . . , xn. Then the empirical distribution function denoted by F̂nis defined accord-
ing to

F̂n(x) =
1
n

n∑
i=1

I [xi ≤ x] . (8.19)

In Figure 8.2, we present an example of the empirical distribution function for a small
sample size generated from an example of a Gamma distribution. As expected for each location
in which there is a Dirac mass, there will be a jump in probability of 1/n. Throughout this
chapter we will study different functions of this basic quantity in the context of hypothesis
testing.

One can also bound the probability of all measurable events for a given distribution func-
tion F , from which n i.i.d. samples are assumed to be drawn, the accuracy of the sample esti-
mated empirical distribution function probabilities and the true distribution via the results in
Theorems 8.1 and 8.2
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figure 8.2 Example of an empirical distribution function given by F̂n with n = 6

Theorem 8.1 (Glivenko–Cantelli theorem) Given a sample size n of i.i.d. real-valued sample
realizations of random variables X1,X2, . . . ,Xn with distribution F , the following uniform conver-
gence holds. For every fixed x, F̂n(x) is a sequence that converge to F (x) almost surely by the strong
law of large numbers, that is, F̂n converges to F pointwise. In addition, this convergence is uniform,

||F̂n − F ||∞ = sup
x∈R

|F̂n(x)− F (x)| → 0, almost surely. (8.20)

One can strengthen this result of uniform convergence with information on the rate via
the following inequality of Dvoretzky-Keifer-Wolfowitz (DKW).

Theorem 8.2 (Dvoretzky–Keifer–Wolfowitz inequality) Given a sample size n of i.i.d. real-
valued sample realizations of random variables X1,X2, . . . ,Xn with distribution F , the following
inequality holds

Pr

(
sup
x∈R

(
F̂n(x)− F (x)

)
> ε

)
≤ exp(−2nε2) (8.21)

for every ε ≥
√

1
2n ln 2.
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Remark 8.3 Therefore, the DKW inequality predicts how close an empirically determined distri-
bution function will be to the distribution function from which the empirical samples are drawn.
We will also see that the DKW inequality can inform the tail of the KS test statistic under the null
hypothesis.

8.4.1.1 Convergence of the empirical distribution function for simple
hypotheses. We first start by assuming a parametric family of models in which the parame-
ters of the population distribution are fixed and known; they do not require estimation. This is
in agreement with a hypothesis test in which the hypotheses are stated in a simple form. Then it
is directly relevant to understand further the convergence of the empirical distribution function
to the true population distribution function pointwise, as this will be utilized in the GOF tests.
We therefore consider the following additional results that are discussed by Chicheportiche
and Bouchaud (2012), Mason and Schuenemeyer (1983), and the right censored analysis by
Fleming et al. (1980). Start by defining the Bernoulli random variables Yi(x) = I [Xi ≤ x] and
denoting u = F (x) and ν = F (y); we note the following properties of the mean and covariance
of these random variables

E [Yi(x)] = F (x),

E
[
Yi(x)Yj(x′)

]
=

{
F (min(x, x′)), i = j,
F (x)F (x′), i �= j,

(8.22)

as discussed by Chicheportiche and Bouchaud (2012).
Now we consider constructing sample estimators for the centered sample mean, Y , of

the random vector of Bernoulli random variables Y = [Y1(x), . . . ,Yn(x)], given by Equation
(8.23). This sample estimator is a measure of the difference between the true distribution and
the empirical distribution at a point x, which as we will see shortly, is used to construct a GOF
test statistic and is defined by one of the following representations:

Y (x) =
1
n

n∑
k=1

Yk(x)− F (x) (8.23)

for any x in the support of F (x), or equivalently for any u ∈ [0, 1] by

Y (u) =
1
n

n∑
k=1

Yk
(
F−1(u)

)
− u. (8.24)

In addition, one can show the covariance between the sample means of two quantile levels as
given in Equation (8.25):

Cov
(
Y (u),Y (v)

)
=

1
n
(min {u, v} − uv) [1 + DN (u, v)] , (8.25)

for u = F (x), v = F (x′) and where one defines

DN (u, v) =
1
n

n∑
j,k �=j

Cov
(
Yj(x),Yk(x′)

)
− uv

min {u, v} − uv
, (8.26)

which quantifies the departure from independence in which case one would have
Cov

(
Yj(x),Yk(x′)

)
= uv and DN (u, v) = 0.
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Now, given the manner in which the random variable Y (u) is constructed for a given
quantile level u, one can state the asymptotic behavior of an appropriately scaled version of this
random variable, as detailed in Theorem 8.3

Theorem 8.3 (Convergence of the empirical distribution function process) According to
the Lindeberg–Lévy Central limit theorem, given a sample size n of i.i.d. real-valued random vari-
ables X1,X2, . . . ,Xn with distribution F , the following convergence in distribution holds as n → ∞:

√
n
(
Y (u)− y(u)

) d→ Normal
(
0, σ2(u, ν)

)
(8.27)

with covariance function

σ(u, ν) = min(u, ν)− uν. (8.28)

One can think about this covariance function (kernel) as characterizing the Brownian motion
y(u), which satisfies y(0) = y(1) = 0 and therefore forms what is known as a Brownian bridge.

An example of such Brownian bridge sample paths are constructed to illustrate the concept
in Figure 8.3. As expected, each realization of the bridge trajectory involves a smooth continous
function with variability as a function of the distance and tied down points at u = 0 and u = 1.
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fY(u2)
(y)
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figure 8.3 Example of realizations of a Brownian bridge formed from the random emprical process
convergence of

√
n
(
Y (u)− y(u)

)
as the number of samples n → ∞
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Remark 8.4 The key insight of this result realized by Kolmogorov when forming the GOF test that
takes his name was that this limiting process and the resulting law of any functional of the limiting
process y is not explicitly a function of the data-generating distribution F . This is precisely what
makes it possible to design “universal” GOF tests.

8.4.1.2 Convergence of the empirical distribution function for compound
hypotheses. In the case of the compound hypothesis setting, in which the population dis-
tribution contains a set of unknown parameters, one must consider carefully the convergence of
the empirical distribution function to the population distribution under the additional compo-
nent of estimation of the population parameters and the effect this may have. This exact prob-
lem was studied by Durbin (1973). Consider the setting involving i.i.d. observations X1, . . . ,Xn
from a continuous distribution function F (x;θ) in which θ = [θ1,θ2] is p-dimensional.
Assume that under the null one has a statement about 0 < q ≤ p of the parameters θ1 given
by H0 : θ1 = θH0 and the remaining p − q parameters, denoted by sub-vector of parameters
θ2, are unknown and must be estimated from the sample data according to an estimator with
n samples denoted by θ̂2,n. For convenience, we refer to the null hypothesis values for vector
of parameters θ1 by the notation θ1,0 and analgous notation holds for θ2.

In this case, one can show that the sample process is not going to display the same
weak convergence to a tied down Brownian motion discussed earlier for the simple hypoth-
esis setting. Instead, we can make certain assumptions about the properties of the estimator
θ̂n =

[
θ1,0, θ̂2,n

]
to obtain a weak convergence of the empirical distribution function for

a sample of size n with estimated parameters F̂n

(
x;θ1, θ̂2,n

)
to the population distribution

F (x;θ1,θ2).
Durbin (1973) considered the analogous estimated sample process to that defined earlier

in terms of the Bernoulli random variables, where now the difference in Y (u) will be studied
in terms of the estimated sample process Z(u) =

√
n
(
Y (u) − y(u; θ̂2,n)

)
. In terms of the

alternative hypothesis, the author assumes that it can be defined according to a sequence of
alternative hypothesis with the special form

Hn : θ1 = θ1,0 +
√

nγ (8.29)

for a given vector γ and sample size n. Then, with this structure, one can show the weak con-
vergence of the empirical distribution function to the population distribution under specific
conditions on the decomposition and regularity of the estimator θ̂2,n (see details in Durbin
1973, p. 281, assumptions 1 and 2). More precisely, it can be shown that Y (u) converges
to a Gaussian process with a modified mean and covariance, as stated in Theorem 8.4. It is
assumed that the estimator for the unknown parameters after appropriate scaling and transla-
tion by the true unknown parameters will satisfy the following structural form of decomposition
given by,

√
n
(
θ̂2,n − θ2,0

)
=

1√
n

n∑
i=1

l(xi,θn) + Aγ + ε1,n (8.30)

where assumptions on the random function l(xi,θn) and other terms are specified in detail by
the conditions presented by Durbin (1973).
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Theorem 8.4 (Convergence of the empirical distribution function for a compound
hypothesis) Assume that θ̂2,n satisfies conditions (A1) and (A2) (Durbin 1973, p. 281, assump-
tions 1 and 2); then under the sequence of alternative hypothesis {Hn}, Z(u) converges weakly to a
Gaussian process, where the convergence is understood to be in the space of right continuous functions
with left limits on [0, 1]. The resulting mean and covariance functions of the Gaussian process are
given by

E [Z(u)] = γT (
g1(u)− AT g2(u)

)
Cov [Z(u),Z(ν)] = min(u, ν)− uν − h(u)T g2(ν)− h(ν)T g2(u) + g2(u)

T Lg2(ν)︸ ︷︷ ︸
modification to covariance function

(8.31)

where one defines the vector-valued functions

g1(u) =
∂F (x,θ)
∂θ1

∣∣∣∣
x=x(u,θ)

and g2(u) =
∂F (x,θ)
∂θ2

∣∣∣∣
x=x(u,θ)

(8.32)

and

h(u) = h (u,θH0) with h (u,θ) =

x(u,0)∫
−∞

l(x,θ)dF (x;θ) (8.33)

and the finite non-negative definite matrix sequence L (θn) = E
[

l(x,θn)l(x,θn)
T
∣∣θ = θn

]
converges to the resulting matrix L, i.e. L (θn) → L (θ0) = L as n → ∞.

Often in the case of heavy-tailed models we may also be interested in hypothesis testing on
nominal claims relating to the characteristic function and therefore we will be concerned with
convergence of the empirical characteristic function (ECF).

8.4.1.3 Convergence of the ECF for simple and compound hypotheses. It will
also be beneficial to observe the following results which are based on comparisons between
properties of the ECF (Definition 8.7) as detailed by Parzen (1962) and a hypothesized distri-
bution characteristic function, which regularly arises in the context of GOF testing in the work
of for example Heathcote (1972), Press (1972), and Koutrouvelis and Kellermeier (1981).

Definition 8.7 (Empirical characteristic function) Given a continuous distribution, let X1,
X2, . . . ,Xn be a sequence of i.i.d. random variables from this distribution with observed realiza-
tions x1, x2, . . . , xn. Then the ECF φ̂ is defined according to

φ̂X ,n(t) =
1
n

n∑
j=1

exp
(
itXj

)
. (8.34)

To illustrate the ECF, consider Example 8.1.
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EXAMPLE 8.1 Understanding the Empirical Characteristic Function

Consider a continuous distribution F that is LogNormal and let X1,X2, . . . ,Xn be a
sequence of i.i.d. random variables from this distribution with observed realizations
x1, x2, x3, . . . , xn. Then the ECF φ̂ can be thought of as taking the realization of each
random sample and considering it as orbiting the unit circle in the complex plane,
that is, the transformation of the i-th sample via the mapping exp (itXi)will produce
a set of points on the unit disk in the complex plane (as depicted in red circles, see
Figure 8.4). These points are then averaged to get an estimated reconstruction of the
characteristic function as depicted in the dashed black line for the estimate and the
solid black line for the true characteristic function.

Basically, we can consider the ECF as the expected orbit or mean of the ran-
dom variable orbits. For large sample sizes, the ECF converges to the distribution
characteristic function as formalized in the figure.

  0.2

  0.4

  0.6

  0.8

1

30

210

60

240

90

270

120

300

150

330

180 0

figure 8.4 Red circles depict the project’s observation realizations x1, x2, x3, . . . , xn on the
unit disk in the complex plane for a severity model LogNormal(μ = 1, σ = 2). In the dashed black
line we see the ECF estimated for the model from the data and the solid black line demonstrates the
true characteristic function. (see insert for color representation of the figure.)
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Theorem 8.5 (Convergence in probability of empirical characteristic function) Given a
sample size n of i.i.d. real-valued sample realizations of random variables X1,X2, . . . ,Xn with dis-
tribution F , the following convergence in probability applies according to the Strong Law of Large
Numbers for any fixed T < ∞:

Pr

(
lim

n→∞
sup
|t|≤T

∣∣∣φ̂X ,n(t)− φX (t)
∣∣∣ = 0

)
= 1 a.s. (8.35)

Other results related to the convergence of the ECF to the population characteristic func-
tion are discussed in detail by Feuerverger and Mureika (1977). As was done with the empirical
distribution function, one can also consider the definition of a stochastic process representation
of the ECF, given in Definition 8.8.

Definition 8.8 (Empirical characteristic function process) Given a continuous distribution,
let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables from this distribution with observed
realizations x1, x2, x3, . . . , xn. Then the stochastic process given by

Rn(t) =
√

n
(
φ̂X ,n(t)− φX (t)

)
(8.36)

is a random complex process in t with the following mean and covariance function characteristics:

E [Rn(t)] = 0,
E [Rn(t1)Rn(t2)] = φX (t1 + t2)− φX (t1)φX (t2).

(8.37)

One can then consider the convergence of the appropriately scaled and translated ECF
process and one can state the following weak convergence result in Theorem 8.6.

Theorem 8.6 (Weak convergence of the ECF process) Consider a continuous distribution
and let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables from this distribution; then the
stochastic process given by

Rn(t) =
√

n
(
φ̂X ,n(t)− φX (t)

)
(8.38)

is a random complex process in t, which converges weakly to a process R(t) in every finite interval,
where R(t) is a zero mean complex valued Gaussian process satisfying the symmetry condition that
R(t) = R(−t) with covariance structure of the real and imaginary components as follows:

Cov [Re [Rn(t1)]Re [Rn(t2)]] =
1
2
[Re [φX (t1 + t2)] +Re [φX (t1 − t2)]]

−Re [φX (t1)]Re [φX (t2)] ,

Cov [Re [Rn(t1)] Im[Rn(t2)]] =
1
2
[Im[φX (t1 + t2)] + Im[φX (t1 − t2)]]

−Re [φX (t1)] Im[φX (t2)] ,

Cov [Im[Rn(t1)] Im[Rn(t2)]] =
1
2
[−Re [φX (t1 + t2)] +Re [φX (t1 − t2)]]

− Im[φX (t1)] Im[φX (t2)] .

(8.39)
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Remark 8.5 (ECF central limit theorem) It will also be useful to note the following result that
will specify the conditions required for the complex valued ECF to converge weakly to a Gaussian
process (see discussion by Feigin and Heathcote 1976). The real component of the ECF process

Re {Rn(t)} =
1
n

(
Re

{
φ̂X ,n(t)

}
−Re {φX (t)}

)

=
1
n

(
n∑

i=1

cos (tXi)− E [cos(tX )]

)

=
1
n
(Un(t)− u(t)) (8.40)

will converge in distribution to a zero mean Gaussian random variable for any t that satisfies

1 + u(2t)− 2u2(t) > 0. (8.41)

The imaginary component of the ECF process

Im {Rn(t)} =
1
n

(
Im

{
φ̂X ,n(t)

}
− Im {φX (t)}

)

=
1
n

(
n∑

i=1

sin (tXi)− E [sin(tX )]

)

=
1
n
(Vn(t)− v(t)) (8.42)

will converge in distribution to a zero mean Gaussian random variable for any t that satisfies

1 + v(2t)− 2v2(t) > 0. (8.43)

In general, it is possible to work with multiple t values to obtain convergence to a multivariate
Gaussian for the real and imaginary components. It is also common in practice to work with one
value of t that may be selected in order to maximize the power of the resulting test.

Again, as was the case in the empirical distribution function process for a compound
hypothesis, the behavior of the ECF process when parameters of the model are estimated is
studied by Koutrouvelis and Kellermeier (1981).

We are now in a position to state some general results for generic GOF tests and their
properties, which are based on the empirical process convergence results considered in this
section just completed.

8.4.2 OVERVIEW OF GENERIC GOF TESTS—OMNIBUS
DISTRIBUTIONAL TESTS

In this section, we briefly mention the notion of generic GOF tests, which include approaches
based on P–P plots, χ2 tests, empirical distribution function, and ECF tests. In all cases of
formal inference, we consider the following generic steps appropriate to formally set out the
test and its outcomes.



�

�

“Cruz_Driver” — 2015/1/12 — 10:53 — page 257 — #20
�

�

�

�

�

�

8.4 Goodness-of-Fit Testing for Model Choice (How to Account for Heavy Tails!) 257

Generic Structure of a Hypothesis Test Procedure

1. Set up suitable notation for the random variables and distributions being tested;
2. Make a statement of the null and alternative hypotheses in terms of population

distribution/parameters;
3. State the test statistic and its observed value as well as the distribution of the test statistic;
4. State a formal mathematical expression for the p-value;
5. State the range of values within which the p-value falls (and a statement of how these are

obtained);
6. State the conclusion of the test in plain language (relevant to the experimental context).

With this generic framework, we can now state some well-known examples of hypothesis
tests and their properties.

• P–P plots. As discussed earlier, in addition to plotting P–P plots as a qualitative diagnostic
tool, one can also perform a hypothesis test on the relevance of a regression relationship
formed by regressing the percentiles of the data against the percentiles under the null
hypothesis;

• Pearson’s χ2 GOF test. In this type of universal test, the observations are binned into a
partition of the observed random variables’ support. Then theχ2 test statistics compare the
observed counts from the realized data sample with those one would expect to see under
the null hypothesis distributions’ support on the given partition. These comparisons are
then summed over all partitions to obtain the observed value of the test statistic (denoted
d ), which under the null hypothesis will have asymptotically a χ2 distribution. This allows
for the calculation of a p-value ( p = Pr (D ≥ d |H0)) in order to make a decision at a
given level of significance.
If the data are divided into k bins, then the test statistic under the null is defined as

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei
, (8.44)

where Oi is the observed frequency for bin i obtained from the counts on the empirical
loss data and Ei is the expected frequency for bin i using the null hypothesis claim on the
distribution for data generation. The expected frequency is calculated by

Ei = n (F (Xu(i))− F (Xl(i))) , (8.45)

where Xu(i) and Xl(i) are the upper and lower limits, respectively, of the i-th partition (bin).
This test statistic follows, approximately, a chi-square distribution with (k − p) degrees of
freedom, where k is the number of nonempty cells and p is the number of estimated param-
eters (including location and scale parameters and shape parameters) for the distribution
+1. For example, for a two-parameter LogNormal distribution, p = 3. Then under the
null, this statistic will produce a p-value given by

p = Pr
(
χ2 ≥ c|H0

)
= 1 − F (c; n − p − 1), (8.46)
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where F (c; n − p − 1) is a χ2 distribution with n − p − 1 degrees of freedom and a
distribution given by

F (c; n − p − 1) =
γ
(

n−p−1
2 , c

2

)
Γ
(

n−p−1
2

) (8.47)

with the lower incomplete Gamma function γ (x, y) =
∫ y

0 tx−1 exp(−t)dt.

Note 1. This test is sensitive to the choice of bins and there is no optimal choice for the
bin width as it will be distribution-specific.

Note 2. The asymptotic chi-square distributional approximation under the null is valid
when the expected frequency is sufficiently large. Hence, it should not be applied for small
samples, and if some of the counts are less than 5, you may need to combine some bins in
the tails.

Note 3. If one is considering a compound hypothesis where parameters of the model under
the null must be estimated, there is a well-established correction for the χ2 p-values due to
the fact that the resulting test statistic is no longer asymptotically χ2 (see Snedecor 1989,
Chernoff and Lehmann 1954 and LeCam et al. 1983). More precisely, when estimating the
parameters for the test, it is possible to utilize an MLE (or equivalent) estimator based on
either the cell frequencies or the original observations. If the observations are utilized in the
estimation of the parameters, then the resulting test statistic constructed would be a func-
tion of the parameter estimates χ2

(
θ̂n

)
, which under the null is no longer asymptotically

χ2 distributed. In particular, when the test statistic is evaluated by using the MLE proce-
dure and it does not coincide with a minimum chi-squared estimation, then the resulting
asymptotic distribution of the test statistic can be shown to lie somewhere between a chi-
squared distribution with n − p − 1 and n − 1 degrees of freedom (see Chernoff and
Lehmann 1954, p. 580, theorem 1).

Note 4. Pearson’s χ2 GOF test is the best known of several chi-squared tests (Yates, likeli-
hood ratio, portmanteau test in time series, etc.)

Note 5. The chi-square GOF test can be applied to discrete distributions such as the
Binomial and the Poisson. The KS and Anderson–Darling (AD) tests are restricted to
continuous distributions.

Note 6. The disadvantage is that you must evaluate the distribution function and there
will also be a loss of information from the grouping of observations;

• Empirical distribution function GOF tests. In this type of universal test, one measures
the distance between the empirical distribution and the null distribution. In a general
sense, one can consider measuring a limit distance between distributions under a norm ‖·‖
over the space of continuous bridges. Examples include norm-2 on the limiting bridge
process,

|y|2 =

1∫
0

y(u)2du, (8.48)
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or the norm-sup on the limiting bridge process,

|y|∞ = sup
u∈[0,1]

|y(u)|. (8.49)

These general ideas translate in practice into the evaluation of the quadratic measures
(Cramer-von-Mises (CVM) family) and (AD) tests given for a null hypothesis of distri-
bution F given according to the test statistic given by

Q =

∞∫
−∞

w(x)
(

F̂ (x)− F (x;θ)
)2

dF (x;θ), (8.50)

for some weight function such as the quadratic Cramer-von-Mises statistic when w(x)= 1
or the AD statistic when w(x) = F (x;θ) (1 − F (x;θ))−1. There is also the vertical max-
imum distance measure given by the supremum norm for example, KS test and their
weighted versions:

D = sup
x

∣∣∣F̂ (x)− F (x;θ)
∣∣∣ . (8.51)

• Empirical characteristic function GOF tests. In this type of universal test, one mea-
sures the distance between the empirical characteristic function, given for an i.i.d.
sample X1, . . . ,Xn by

φ̂X ,n(t) =
1
n

n∑
j=1

exp
(
itXj

)
, (8.52)

and the null characteristic function, given by

φX (t) =
∞∫

−∞

exp (itX ) dFX (x). (8.53)

Typically, one still utilizes distance-based measures such as

sup
t

∣∣∣φ̂X ,n(t)− φX (t)
∣∣∣ . (8.54)

In addition to GOF tests based on the characteristic function for the distributional form,
there are also interesting tests for general attributes of the distribution under the null that
utilize the characteristic function and ECF. For example, one can utilize the fact that a
characteristic function is real if and only if the corresponding distribution function is sym-
metric about the origin; Feuerverger and Mureika (1977) suggest that such a result could
consider testing for symmetry through the consideration of a statistic such as

∞∫
−∞

(
Im

[
φ̂X ,n(t)

])2
dF (t). (8.55)

Other tests based on the characteristic function have been discussed by Feuerverger and
Mureika (1977), who note that for testing the symmetry of a distribution function about
the origin, it suffices to test if the characteristic function is real. In addition, other tests that
have been proposed based on the ECF have included the work of Heathcote (1972) and
Feigin and Heathcote (1976), who studied the case of simply hypothesis testing for the null
specification that H0 : φX (t) = φX0(t), under a test statistic that could be constructed
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from the real or imaginary component at a single value of t, which was specifically selected.
This test was generalized by Koutrouvelis (1980) to multiple points t1, . . . , tm under a
test statistic constructed on these points, which comprised of measuring the Mahlanobis
distance between the vector of the ECF evaluated at the points after it had been suitably
translated and scaled by the null hypothesis mean and covariance functions evaluated at
these points for the null characteristic function. The points must be selected to ensure that
the inverse covariance function at these points is not singular.

8.4.3 KOLMOGOROV–SMIRNOV GOODNESS-OF-FIT TEST AND
WEIGHTED VARIANTS: TESTING IN THE PRESENCE OF
HEAVY TAILS

There are many situations where OpRisk practitioners need to assess the adequacy of assump-
tions or hypotheses regarding the distribution from which their observed losses may have been
sampled. This would typically be in the form of addressing a question such as the following
“What is an appropriate model for the observed losses in a given business unit and risk event type?”

To address such questions one may adopt a hypothesis-testing procedure based on a KS
test, which is a formal inference procedure for verifying that a sample comes from a population
with some known distribution (one-sample test) or alternatively for considering whether two
populations have the same distribution (two-sample test). We will proceed below under the
setting in which the simple hypothesis is assumed.

Remark 8.6 (Relevance of heavy-tailed GOF testing to OpRisk severity models) When
assessing the tail behavior of the loss process severity model in an LDA structure, the assessment
of the heavy-tailed behavior under a particular model is often the focus, see detailed discussion in
our companion book Peters and Shevchenko (2015). However, the point of the following section is
to make clear that the analysis of the tail index (heaviness or fatness) of the right severity tail under
a parametric model assumption is not the complete analysis. In particular, the presence of heavy tails
does not tell you that the correct model has been considered; instead, one should also consider a formal
inferential procedure to assess this question regarding the appropriate model structure.

We present in detail the standard GOF testing for general LDA severity models, then we
explain why in OpRisk settings one should consider nonstandard modifications to the basic
statistical GOF tests, in particular, how such modifications allow one to correctly account for
the right tail behavior appropriately when informing a decision of a nominal claim via a p-value.
The tail-weighted variants are particularly important for testing model hypotheses regarding the
right tail of a heavy-tailed severity model.

The one-sample KS test is defined for observed loss realizations x1, x2, . . . , xn of a set of
continuous i.i.d. random loss variables X1,X2, . . . ,Xn, for which it is hypothesized that their
sampling distribution function is F . The test is performed according to the following stages in
Algorithm 8.1 that are based on the results in Theorem 8.7.

Theorem 8.7 (Kolmogorov–Smirnov’s approximation of null distribution) Consider a
null hypothesis for the data-generating distribution F0, which one assumes is a continuous distri-
bution. Let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables with distribution F0. Then the
following holds:



�

�

“Cruz_Driver” — 2015/1/12 — 10:53 — page 261 — #24
�

�

�

�

�

�

8.4 Goodness-of-Fit Testing for Model Choice (How to Account for Heavy Tails!) 261

1. The test statistic is evaluated as,

Dn = sup
x∈R

∣∣∣F̂n(x)− F0(x)
∣∣∣ (8.56)

and it depends only on the sample size n, and second the maximum will always occur at one of
the sample points in the unweighted test;

2. If n → ∞, the distribution
√

nDn is asymptotically Kolmogorov’s distribution given by

Q(x) = 1 − 2
∞∑

k=1

(−1)k−1 exp(−2k2x2), (8.57)

where this defines the following probability limit

lim
n→∞

Pr
(√

nDn ≤ x
)
= Q(x). (8.58)

Remark 8.7 The Kolmogorov distribution can be shown to be formally the distribution of the
random variable

K =
∑

t∈[0,1]

|B(t)|, (8.59)

where B(t) is the Brownian bridge (see Kolmogorov 1933, Smirnov 1948, Anderson and Darling
1952; and Massey 1951).

The KS GOF hypothesis test then proceeds as further detailed.

Algorithm 8.1 (Kolmogorov–Smirnov One-Sample Test)

1. Step 1. Set up suitable notation for the random variables and distributions being tested and
make a statement of the null and alternative hypotheses in terms of population distribu-
tion/parameters. Determine hypothesis for GOF testing where null claims loss data are from
a hypothesized distribution F0(x)

H0 : F (x) = F0(x), ∀x (8.60)

versus an alternative claim that the observed losses are not realizations from F0

HA : F (x) �= F0(x), ∀x. (8.61)

2. Step 2. State the test statistic and its observed value and when possible state the distribution of
the test statistic or its approximation. Under the null hypothesis calculate the KS test statistic
given by

Dn = sup
x∈R

∣∣∣F̂n(x)− F0(x)
∣∣∣

= max
1≤i≤n

(
F0(Xi)−

i − 1
n

,
i
n
− F0(Xi)

)
,

(8.62)
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where F̂ is the empirical cumulative distribution defined according to

F̂n(x) =
1
n

n∑
i=1

I [xi ≤ x] , (8.63)

and the supremum occurs at one of the observed values xi to the left of xi. This procedure will
produce an observed realization of the test statistic based on the observed data samples {xi}n

i=1
under the null hypothesis, denoted by dn.

3. Step 3. State a formal mathematical expression for the p-value. Determine the p-value for the
test under the null hypothesis given by considering

p-value = Pr [|Dn| ≥ dn|H0] .

To obtain the p-value one first needs to obtain an approximation of the distribution of the
test statistic under the null. This can be done in two cases, depending on the size of the
sample:
Small-sample p-value evaluation. If the sample size n is small, one can perform eval-
uation of the p-value for making a decision on the test via the following simple simula-
tion procedure, where {Xi}n

i=1 are the samples from the experiment and j = 1, . . . , J
is the index of the simulated test statistic realizations

{
d ( j )

n

}
obtained by the following

procedures:

• Simulate a set of samples
{

U ( j )
i

}n

i=1
with Ui ∼ Uniform(0, 1) that is, distribution

F (u) = u;

• Construct the empirical distribution function F̂ ( j ) using the samples
{

U ( j )
i

}n

i=1
;

• Evaluate for each set of samples
{

U ( j )
i

}n

i=1
the maximum distance between the distribu-

tion F (u) = u and the empirical distribution function for the generated sample F̂ ( j ) in
the verticle direction, to get d ( j )

n . Repeat many times j ∈ {1, 2, . . . , J} to get an estimate
of the distribution for the test statistic under the null Dn, that is, the null distribution of
the test statistic Dn is then approximated by the samples

{
d ( j )

n

}
known by simulation.

Given the empirical estimator for the distribution of the test statistic under the null F̂Dn(x), use
this to evaluate the p-value.
Large-sample p-value evaluation. If the sample size n is large, one can perform evaluation
of the p-value for making a decision on the test via the asymptotic result for the KS distribu-
tion function. If n → ∞, the distribution

√
nDn is asymptotically Kolmogorov’s distribution

given by

Q(x) = 1 − 2
∞∑

k=1

(−1)k−1 exp(−2k2x2), (8.64)

where this defines the following probability limit

lim
n→∞

Pr
(√

nDn ≤ x
)
= Q(x). (8.65)
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4. Step 4. State the range of values within which the p-value falls (and a statement of how these are
obtained. If the p-value is significantly lower than a given level of testing significance, typically
5%, then one has sufficient evidence from the observed loss data to reject the claim of the null
hypothesis in favor of the alternative;

5. Step 5. State the conclusion of the test in plain language (relevant to the experimental context).

Remark 8.8 When applying the standard KS GOF test specified earlier, it is well known that these
tests will overweight the quantiles around the median and downweight the quantiles in the tails. In
the case of a heavy-tailed model, this is not ideal, as in such cases, it is precisely the null assumption
on the tail decay of the statistical model that is of most interest for testing and practical features of
the use of the model.

EXAMPLE 8.2 Kolmogorov–Smirnov Test and Heavy-Tailed Severity Model

Consider a GPD for the severity model with tail index (shape) parameter k = 1,
scale parameter σ = 1, and threshold (location) parameter θ = 0. This is a
heavy-tailed loss model in the sense that the mean is not finite when K ≥ 1
under this GPD model specification. We simulate loss data realizations {Xi}n

i=1
for sample sizes of n = 10, 20, 50, 100. Then we evaluate the test statistic for a
standard KS test in the following three cases:

• CASE 1. Nominal claimed distribution F0 is the GPD with exact parameters
GPD(k = 1, σ = 1, θ = 0)—that is, no model or parameter misspecification;

• CASE 2. Nominal claimed distribution F0 is the exponential distribution with
parameter GPD(k = 0, σ = 1, θ = 0)—that is, (in this special cases) there is a
parameter misspecification producing a light-tailed nominal claim when really
the data are from a heavy-tailed population distribution;

• CASE 3. Nominal claimed distribution F0 is the LogNormal distribution with
parameters LogNormal(μ = 0, σ = 1)—that is, model and parameter misspec-
ification.

Using these nominal claim models, the test statistics distribution under each sam-
ple size is simulated via Monte Carlo and plotted in Figure 8.5. In Tables 8.1, 8.2
and 8.3, we also show the quantile (critical values) for the distribution of the KS
test statistic for each case as a function of sample size. The results of this analy-
sis demonstrate that as the sample size increases, one should expect the maximum
absolute distance between the empirical distribution function and the null hypoth-
esis (verticle direction) to reduce if in fact the nominal claim is correct. In Case 1,
the true distribution that generated the sample loss data was used for the nom-
inal claim and therefore, as expected, the distribution of the test statistic, as the
sample size increases, produces critical values at each level of significance closer to
zero, making it less and less likely that the nominal claim will be rejected by the
test. In Case 2, the nominal claim involves the correct distribution; however, the



�

�

“Cruz_Driver” — 2015/1/12 — 10:53 — page 264 — #27
�

�

�

�

�

�

264 CHAPTER 8 Model Selection and Goodness-of-Fit Testing

parameters are estimated incorrectly and, importantly, this results in the nominal
claim for the GPD severity distribution resembling an exponential distribution that
is much more lightly tailed than the true data-generating distribution. In this case,
there is still a strong chance that one would reject the nominal claim even for a
large sample size, as expected especially when the tails are so poorly matched by the
nominal claim. The same occurs for the case when the nominal claim is the wrong
distributional family, but the tails are still subexponential as occurs in Case 3 with
the LogNormal example. It is clear from the reported critical values in the table that
the misspecification of the tails can have a big effect on the performance of this test,
as shown with the LogNormal example, where it is hard to distinguish this model
from the true model that was used in Case 3.

n= 20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

n= 10

n= 50
n= 100

figure 8.5 In each subplot, the distribution of the KS test statistic is displayed under the
assumption that the null hypothesis is correct for data sizes n = 10, 20, 50, 100. The top subplot
shows the distribution of the KS test statistic under CASE 1. The middle subplot shows the
distribution of the KS test statistic under CASE 2. The bottom subplot shows the distribution of
the KS test statistic under CASE 3

To overcome these problems in the supremum norm context, one can develop the weighted
KS GOF test as given in Proposition 8.1. One, then, still measures the largest verticle distance
between the empirical distribution function and the distribution; however, weights are now
attributed to each deviation as a function of the quantile level.
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table 8.1 Assessing the heavy tailed feature of loss data
under a GOF test based on KS. True population loss model is
GPD(k= 1,σ = 1,θ = 0). Nominal claim is GPD with correct
population parameters, test is performed at a number of sample
sizes n and a range of significance levels 1−α

Case 1: H0 : GPD(k = 1, σ = 1, θ = 0)

1 − α n = 10 n = 20 n = 50 n = 100

80% 0.2444 0.1913 0.1590 0.1422
90% 0.2854 0.2094 0.1687 0.1470
95% 0.3327 0.2345 0.1750 0.1517
97.5% 0.3745 0.2710 0.1810 0.1542
99% 0.4017 0.2947 0.2037 0.1606
99.5% 0.4392 0.3198 0.2294 0.1668

table 8.2 Assessing the heavy tailed feature of loss data
under a GOF test based on KS. True population loss model is
GPD(k= 1,σ = 1,θ = 0). Nominal claim is Exponential with
incorrect population parameters, test is performed at a number
of sample sizes n and a range of significance levels 1−α.
Nominal claim is light tailed, true population distribution is
heavy tailed

Case 2: H0 : GPD(k = 0, σ = 1, θ = 0) = Exp(σ = 1)

1 − α n = 10 n = 20 n = 50 n = 100

80% 0.3683 0.3268 0.2783 0.2551
90% 0.4339 0.3756 0.3077 0.2821
95% 0.4840 0.4153 0.3297 0.2980
97.5% 0.5310 0.4559 0.3536 0.3125
99% 0.5806 0.4844 0.3760 0.3306
99.5% 0.5981 0.5080 0.4069 0.3350

table 8.3 Assessing the heavy tailed feature of loss data
under a GOF test based on KS. True population loss model is
GPD(k= 1,σ = 1,θ = 0). Nominal claim is LogNormal and
the test is performed at a number of sample sizes n and a range
of significance levels 1−α. Nominal claim is heavy-tailed but
misspecified relative to the true population distribution which is
also heavy-tailed

Case 3: H0 : LogNormal(μ = 0, σ = 1)

1 − α n = 10 n = 20 n = 50 n = 100

80% 0.3024 0.2376 0.1953 0.1720
90% 0.3575 0.2817 0.2127 0.1872
95% 0.4127 0.3195 0.2314 0.1989
97.5% 0.4623 0.3588 0.2558 0.2132
99% 0.5119 0.3880 0.2766 0.2276
99.5% 0.5399 0.4175 0.3114 0.2393
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Proposition 8.1 (Weighted supremum norm tests) Consider a null hypothesis for the data-
generating distribution F0, which one assumes is a continuous distribution. Let X1,X2, . . . ,Xn be
a sequence of i.i.d. random variables with distribution F0 (null distribution). The resulting test
statistic then takes the form

D̃n = sup
x∈R

∣∣∣w(F0(x))
(

F̂n(x)− F0(x)
)∣∣∣ (8.66)

for some weight function w(u). Now, the weighted fluctuation analysis for this statistic can be studied
under the null to find the tail distribution to obtain the p-values. As n → ∞, the distribution

√
nD̃n

should be considered; this is nontrivial and involves studying the behavior of the Brownian bridge
for quantile levels u ∈ [0, 1] given by

ỹ(u) =
√

w(u)y(u) (8.67)

such that y(0) = y(1) = 0.

The distribution of the limiting fluctuation process has been studied for different weight
functions in different regimes for the number of samples obtained. For example, one could
focus attention on the left or right or both tails using indicator functions on tail regions
with weights such as w(u; a) = I [u ≥ a] for the right tail and w(u; b) = I [u ≤ b] for
the left tail. It should be noted that in OpRisk settings it will typically be the case that one
would only be interested in the right tail behavior and the suitability of a fitted model in this
region.

Another popular choice for the weight function, studied by Noé and Vandewiele (1968),
Niederhausen (1981), Borokov and Sycheva (1968), and Chicheportiche and Bouchaud
(2012), involves w(u) = 1/Var (y(u)). This choice is made in order to allocate equal
weight to all quantile levels. Noé and Vandewiele (1968) studied the supremum norm over
the interval [0, 1] and derived the distribution for the test statistic under one-and two-
sided simple hypotheses, which were then studied and numerically tabulated Niederhausen
(1981, example 4) via a basis expansion using Sheffer polynomials. They noted that this
case was studied by Borokov and Sycheva (1968), who obtained an exact distribution for
finite samples as well as the asymptotic distribution for the case of a test statistic defined in
Equation (8.68):

D̃n = sup
a≤F0(x)≤b

(
F̂n(x)− F0(x)

)
√

F0(x) (1 − F0(x))
. (8.68)

In the case of the GOF tests we typically consider, we do not wish to differentiate our
analysis between positive and negative vertical deviations between the empirical distribution
function and the null distribution, and for this reason we are interested in the distribution for
maximum absolute deviations. In this case, the tractability of the results obtained by Borokov
and Sycheva (1968) disappears. To address this Chicheportiche and Bouchaud (2012) obtained
an interesting result for a large-sample analysis for this variance-weighted KS test as detailed
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in Proposition 8.2. Then the general result for any finite sample size is obtained recursively
according to Niederhausen (1981).

Proposition 8.2 (Kolmogorov–Smirnov’s variance–weighted test for the tails) Consider a
null hypothesis for the data-generating distribution F0, which one assumes is a continuous distri-
bution. Let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables with distribution F0. Then
one may characterize the distribution for the law of the weighted supremum of a Brownian bridge
given by,

D(a, b) = sup
u∈[a,b]

|̃y(u)| = sup
u∈[a,b]

∣∣∣√w(u; a, b)y(u)
∣∣∣ (8.69)

such that y(0) = y(1) = 0 with probability 1 and the weight applied to interval a ∈]0, 1[ and
b ∈ [a, 1[ given by

w(u; a, b) =

{
1

u(1−u) , a ≤ u ≤ b,
0, otherwise

(8.70)

according to a large-sample asymptotic result (see Chicheportiche and Bouchaud 2012,
equation 13), which considers

Pr [D(a, b) ≤ d |a = ln n, b = 1 − ln n] = Ã(d)nθ0(d) (8.71)

with the expressions for Ã(d) and θ0(d) provided explicitly in general by Chicheportiche and
Bouchaud (2012), and the right and left tail asymptotic behavior that one cares about for the
two-sided test given by

θ0(d)
d→∞→ → 0, θ0(d)

d→0→ → π2

4d2 − 1
2
,

Ã(d) d→∞→ 1, Ã(d) d→0→ 16
π2

√
2π

d .
(8.72)

Remark 8.9 Note that the critical value for this test, that is, the decision boundary for a level
of significance α = 5%, will produce a value d∗(n), which is a function of the sample size n.
Thankfully, the critical values of the test have been tabluted by Chicheportiche and Bouchaud (2012)
as follows:

Sample size n 103 104 105 106

Critical value d∗(n) 3.439 3.529 3.597 3.651

It should be noted that in general in OpRisk settings one would not be in the setting of large n sample
size as earlier; therefore, it would be advisable to evaluate the law of Pr[D(a, b) ≤ d |a = 1, b = 0]
exactly for small n. Niederhausen (1981, section 2) demonstrates how to calculate the null distri-
bution of the weighted KS test for any sample size. This is achieved by utilizing the well-known
generalized representation of this problem as a class of bivariate Renyi statistics, which, under suitable
choices of parameters, can be molded into the modified variance-weighted KS test discussed earlier.
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Then the evaluation of the tail probability for the p-values of this test is specified as a special member
of a more general distribution given by the family of Renyi distributions. Given this Reyni family of
distributions, one can write the probability of a particular tail event according to a system of differen-
tial equations (see discussion by Steinbrecher and Shaw 2008). However, in this particular context,
the resulting boundary conditions are challenging to work with and typically one adopts a piecewise
solution, which is presented with regard to a Sheffer polynomial recursive solution approach to obtain
the p-value as specified by Niederhausen (1981, section 2, example 4 and table 1).

The tail-weighted KS GOF hypothesis test then proceeds as further detailed.

Algorithm 8.2 (Tail-Weighted Kolmogorov–Smirnov One-Sample Test)

1. Step 1. Set up suitable notation for the random variables and distributions being tested and
make a statement of the null and alternative hypotheses in terms of population distribu-
tion/parameters. Determine hypothesis for GOF testing where null claims loss data are from
a hypothesised distribution F0(x)

H0 : F (x) = F0(x), ∀x (8.73)

versus an alternative claim that the observed losses are not realizations from F0

HA : F (x) �= F0(x), ∀x. (8.74)

2. Step 2. State the test statistic and its observed value and when possible state the distribution of
the test statistic or its approximation. Under the null hypothesis calculate the tail-weighted KS
test statistic given by

Dn = sup
a≤F0(x)≤b

(
F̂n(x)− F0(x)

)
√

F0(x) (1 − F0(x))
(8.75)

with the weight applied to interval a ∈]0, 1[ and b ∈ [a, 1[ and where F̂n is the empirical
cumulative distribution defined according to

F̂n(x) =
1
n

n∑
i=1

I [xi ≤ x] , (8.76)

and the supremum occurs at one of the observed values xi to the left of xi. This procedure will
produce an observed realization of the test statistic based on the observed data samples {xi}n

i=1
under the null hypothesis, denoted by dn;
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3. Step 3. State a formal mathematical expression for the p-value. Determine the p-value for the
test under the null hypothesis given by considering

p-value = Pr [|Dn| ≥ dn|H0] .

To obtain the p-value one first needs to obtain an approximation of the distribution of the test
statistic under the null. In this case, one can either use the large-sample results for the critical
values, as a function of sample size for testing at α = 5% significance given in the remark
before Equation (8.9) or perform a simulation estimation.
Small-sample p-value evaluation. If the sample size n is small, one can perform an evaluation
of the p-value for making a decision on the test via the following simple simulation procedure,
where {Xi}n

i=1 are the samples from the experiment and j = 1, . . . , J is the index of the
simulated test statistic realizations

{
d ( j )

n

}
obtained by the following procedures:

• Simulate a set of samples
{

U ( j )
i

}n

i=1
with Ui ∼ Uniform(0, 1) that is, distribution

F (u) = u;

• Transform the samples
{

U ( j )
i

}n

i=1
to samples from the Null distribution

X ( j )
i = F−1

0

(
U ( j )

i

)
;

• Construct the empirical distribution function F̂ ( j ) using the samples
{

X ( j )
i

}n

i=1
;

• Evaluate the realized test statistic

d ( j )
n = sup

a≤F0(x)≤b

(
F̂ ( j )

n (x)− F0(x)
)

√
F0(x) (1 − F0(x))

(8.77)

for each set of samples
{

U ( j )
i

}n

i=1
to get d ( j )

n . Repeat many times j ∈ {1, 2, . . . , J} to
get an estimate of the distribution for the test statistic under the null Dn, that is, the null
distribution of the test statistic Dn is then approximated by the samples

{
d ( j )

n

}
known by

simulation.

Given the empirical estimator for the distribution of the test statistic under the null, F̂Dn(x),
use this to evaluate the p-value.

4. Step 4. State the range of values within which the p-value falls (and a statement of how these are
obtained. If the p-value is significantly lower than a given level of testing significance, typically
5%, then one has sufficient evidence from the observed loss data to reject the claim of the null
hypothesis in favor of the alternative.

5. Step 5. State the conclusion of the test in plain language (relevant to the experimental
context).

In the following example, we show the resulting estimated empirical distributions for the
distribution of a KS and tail-weighted KS test statistic as a function of sample size.
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EXAMPLE 8.3 Standard versus Tail-Weighted Kolmogorov–Smirnov Tests

Consider a GPD for the severity model with tail index (shape) parameter k = 1,
scale parameter σ = 1, and threshold (location) parameter θ = 0. This is a
heavy-tailed loss model in the sense that the mean is not finite when K ≥ 1 under
this GPD model specification. We simulate loss data realizations {Xi}n

i=1 for sample
sizes of n = 10, 20, 50, 100. Then we evaluate the test statistic for a standard KS
test and the tail-weighted KS test in the case that the nominal claimed distribution
F0 is the GPD with exact parameters GPD(k = 1, σ = 1, θ = 0)—that is, no
model or parameter misspecification. Using these nominal claim models, the test
statistics distribution under each sample size is simulated via Monte Carlo and
ploted in Figure 8.6.

It is clear from the results in the bottom subplot that when one accounts more
for the tails of the distribution in deciding whether to reject the nominal claim or
not (as with the tail-weighted KS test), one requires a larger number of samples to
be able to reject the nominal claim as would be the case when the tails are not taken
into account. This will be particularly the case for the heavy-tailed loss models. In
Table 8.4, we also show the quantile (critical values) for the distribution of the KS
test statistic as a function of sample size.

n= 10

n= 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

n= 20
n= 50

figure 8.6 In each subplot, the distribution of the KS test statistic is displayed under the
assumption that the null hypothesis is correct for data sizes n = 10, 20, 50, 100. The top subplot
shows the distribution of the standard KS test statistic. The bottom subplot shows the distribution
of the tail-weighted KS test statistic
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table 8.4 Assessing the heavy tailed feature of loss data
under a GOF test based on KS. True population loss model is
GPD(k= 1,σ =1,θ =0). Nominal claim is GPD with correct
population parameters, test is performed at a number of sample
sizes n and a range of significance levels 1−α. The top table
presents the results from a standard KS test, the bottom table
presents the results from a weighted KS test, with equal
contribution from all quantiles in the distribution

H0 : GPD(k = 1, σ = 1, θ = 0)

1 − α n = 10 n = 20 n = 50 n = 100

80% 0.2444 0.1913 0.1590 0.1422
90% 0.2854 0.2094 0.1687 0.1470
95% 0.3327 0.2345 0.1750 0.1517
97.5% 0.3745 0.2710 0.1810 0.1542
99% 0.4017 0.2947 0.2037 0.1606
99.5% 0.4392 0.3198 0.2294 0.1668

H0 : GPD(k = 1, σ = 1, θ = 0)

1 − α n = 10 n = 20 n = 50 n = 100

80% 0.8465 0.6821 0.5723 0.5029
90% 0.9097 0.7391 0.6101 0.5302
95% 1.0410 0.7922 0.6390 0.5488
97.5% 1.3434 0.8446 0.6662 0.5657
99% 1.7852 0.9097 0.6872 0.5843
99.5% 1.9195 1.0100 0.7066 0.6021

8.4.4 CRAMER-VON-MISES GOODNESS-OF-FIT TESTS AND
WEIGHTED VARIANTS: TESTING IN THE PRESENCE OF
HEAVY TAILS

The one-sample Cramer-von-Mises (CvM) tests are defined for observed loss realizations
x1, x2, . . . , xn of a set of continuous i.i.d. random loss variables X1,X2, . . . ,Xn, for which it
is hypothesized that their sampling distribution function is F . To test this hypothesis one can
consider the weighted 2-norm distributional test statistic given by,

Q =

∞∫
−∞

w(x)
(

F̂n(x)− F (x;θ)
)2

dF (x;θ) (8.78)

for some weight function such as the quadratic CvM statistic when w(x) = 1 or the Anderson–
Darling (AD) statistic when w(x) = F (x;θ) (1 − F (x;θ))−1. In this section, we present both
the AD test and its tail-weighted variant, as well as the CvM test and its right tail-weighted
variant.
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8.4.4.1 Weighted Anderson–Darling Goodness-of-Fit Tests for Heavy Tails.
In the case of the AD form of the CvM test statistic Q , the test is performed according to the
following stages in Algorithm 8.3. As it turns out two of the more important results one can
derive for the asymptotic expansions of the right tail of the AD test statistic, under the nominal
claim, are based on a result derived by Zolotarev (1961); we provide this result in Theorem 8.8.

Theorem 8.8 (Distribution of positively weighted quadratic Gaussian infinite sums)
Consider Z1,Z2, . . . as i.i.d. random variables with Zi ∼ Normal(0, 1). Then the limiting distri-
bution of the positively weighted quadratic sequence given by

Yn =

n∑
j=1

λjZ 2
j ∼ Fn, (8.79)

with λi ≥ 0 for all i ∈ {1, 2, . . . , n} and decreasing λ1 > λ2 > · · · > λn for all n, satisfies
Fn → F as n → ∞ with the distribution right tail given explicitly by the product

1 − F (x) =

[ ∞∏
i=2

(
1 − λi

λ1

)− 1
2

/Γ(1/2)

](
x

2λ1

)− 1
2

exp

(
− x

2λ1

)
[1 + ε(x)] . (8.80)

See details in Zolotarev (1961).

In Figure 8.7, the distribution for the random sum

Yn =

n∑
j=1

λjZ 2
j ∼ Fn (8.81)

is displayed as a function of sample size n with two different weight functions for {λi}n
i=1 given

by the following:

• Case 1: weight function λj =
1

j( j+1) , top subplot;

• Case 2: weight function λj =
1
j , bottom subplot.

It is clear that the weight function also has a strong influence on the asymptotic convergence rate
as a function of the number of summand terms. This is clearly the reason why in the literature
it is typically preferred to utilize a weight function such as Case 1, as the convergence even for
small sample size to the asymptotic distribution is more rapid. In practice, it should be pointed
out that there will be a direct relationship between the λi weights and the weight function w(x)
chosen in the GOF citerion. This small illustration shows that in general one can expect a large
influence on the rate of convergence, and therefore the suitability of asymptotic results for the
distribution of the test statistic under the null claim, for different choices of weight function.
In other words, one should carefully consider the sample size before applying the asymptotic
results for the tail of the distribution of the test statistic under the nominal claim. In cases where
it is suspected that such an asymptotic may not be utilized accurately, a closed-form expression
for the finite sample test statistic distribution under the null will be noted and in other cases,
it is also possible to adopt other approximations such as the saddle point. If all these cases fail,
then one can resort to numerical procedures to reconstruct the distribution of the test statistic
numerically.

One can then utilize this result to obtain the asymptotic behavior of the distribution of
the AD test.
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figure 8.7 Distribution of the test statistic as a function of the number of random variables {λi}n
i=1

for n ∈ {2, 10, 20, 30, 50, 100}. Top subplot is for weight function Case 1 and the bottom subplot is for
weight function Case 2. (see insert for color representation of the figure.)

Proposition 8.3 (Characterizing the Anderson–Darling null distribution) Consider a null
hypothesis for the data-generating distribution F0, which one assumes is a continous distribution. Let
X1,X2, . . . ,Xn be a sequence of i.i.d. random variables with distribution F0. Then the following
holds:

1. Test statistic. The test statistic is given by

Qn = n
∞∫

−∞

(
F̂n(x)− F (x)

)2

F (x) (1 − F (x))
dF (x)

= −n −
n∑

i=1

2i − 1
n

(
ln

(
F
(
X(i,n)

))
+ ln

(
1 − F

(
X(n+1−i,n)

)))
,

(8.82)

which is constructed using the order statistics X(1,n) ≤ X(2,n) ≤ · · · ≤ X(n,n) and can be
shown to be strictly contained in the interval Q ∈ [0, 8] assymptotically for large samples n
(see Lewis 1961);



�

�

“Cruz_Driver” — 2015/1/12 — 10:53 — page 274 — #37
�

�

�

�

�

�

274 CHAPTER 8 Model Selection and Goodness-of-Fit Testing

2. Characteristic function. The characteristic function of the AD test statistic Q for large samples
n → ∞ is given by

φ(t) =

⎡
⎣ −2πit

cos
(

π
2
√

1+8it

)
⎤
⎦

1
2

, (8.83)

which one can then observe is equivalent to the characteristic function of an infinite weighted
sum of independent chi-squared random variables with positive weights

λi =
1

j( j + 1)
. (8.84)

This means one can use the result of Zolotarev (1986) given in Theorem 8.8 to obtain the tail
distribution of the AD test statistic;

3. Large-sample asymptotic tail expansion. An asymptotic expansion of the large-sample right
tail of the AD test statistic under the null is attainable in closed form. If the sampe size
n → ∞, then the upper right tail of the distribution

√
nQn is asymptotically approximated as

x → ∞ by

Pr (Q > x) =

[ ∞∏
i=2

(
1 − λi

λ1

)− 1
2

/Γ(1/2)

](
x

2λ1

)− 1
2

exp

(
− x

2λ1

)
[1 + ε(x)] ,

(8.85)

where λi =
1

i(i+1) and ε(x) → 0 (see Sinclair and Spurr 1988);

4. Cumulant-generating function. The cummulant-generating function of the distribution for
Q can be obtained in closed form according to

κ(t) = −1
2

∞∑
j=1

ln
(
1 − 2λj t

)
. (8.86)

5. Saddle point approximation. One can then obtain a saddle point approximation of the
distribution for the AD test statistic via the derivatives of the cummulants when they exist and
are analytic, which are given by

d
dt
κ(t) =

∞∑
j=1

λj(
1 − 2λj t

) ,
d2

dt2 κ(t) =
∞∑

j=1

[
λj(

1 − 2λj t
)
]2

,

(8.87)

giving a saddle point approximation for the right tail at location x according to

Pr (Q > x) = 1 − Φ(ŵ) + φ (ŵ)
[
û−1 − ŵ−1] (8.88)
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with t̂ the unique and existing solution to the inverse problem d
dt k(t) = x and

ŵ =
√

2 [̂tx − κ (̂t)]sgn(̂t)

û = t̂
{

d2

dt2 κ(̂t)
} 1

2

.
(8.89)

See details in Giles (2001), Daniels (1954), and Lugannani and Rice (1980).

These details are then sufficient to perform the AD GOF hypothesis test, which is sum-
marized in the following algorithm.

Algorithm 8.3 (Anderson–Darling One-Sample Test)

• Step 1. Set up suitable notation for the random variables and distributions being tested and
make a statement of the null and alternative hypotheses in terms of population distribu-
tion/parameters. Determine hypothesis for GOF testing where null claims loss data are from
a hypothesized distribution F0(x)

H0 : F (x) = F0(x), ∀x (8.90)

versus an alternative claim that the observed losses are not realizations from F0

HA : F (x) �= F0(x), ∀x. (8.91)

• Step 2. State the test statistic and its observed value and when possible state the distribution of
the test statistic or its approximation. Under the null hypothesis calculate the AD test statistic
given by

Qn = n
∞∫

−∞

(
F̂n(x)− F (x)

)2

F (x) (1 − F (x))
dF (x)

= −n −
n∑

i=1

2i − 1
n

(
ln

(
F
(
X(i,n)

))
+ ln

(
1 − F

(
X(n+1−i,n)

)))
,

(8.92)

which is constructed using the order statistics X(1,n) ≤ X(2,n) ≤ · · · ≤ X(n,n) and F̂n is the
empirical cumulative distribution defined according to

F̂n(x) =
1
n

n∑
i=1

I [xi ≤ x] . (8.93)

This procedure will produce an observed realization of the test statistic based on the observed
data samples {xi}n

i=1 under the null hypothesis, denoted by dn;
• Step 3. State a formal mathematical expression for the p-value. Determine the p-value for the

test under the null hypothesis given by considering

p-value = Pr [|Qn| ≥ qn|H0] .
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To obtain the p-value one first needs to obtain an approximation of the distribution of the test
statistic under the null. This can be done in two cases, depending on the size of the sample:
Small-sample p-value evaluation. If the sample size n is small, one can perform evaluation
of the p-value for making a decision on the test via the following simple simulation procedure,
where {Xi}n

i=1 are the samples from the experiment and j = 1, . . . , J is the index of the
simulated test statistic realizations

{
q( j )

n

}
obtained by the following procedures:

˚ Simulate a set of samples
{

U ( j )
i

}n

i=1
with Ui ∼ Uniform(0, 1), that is, distribution

F (u) = u;

˚ Transform the samples
{

U ( j )
i

}n

i=1
to samples from the null distribution

X ( j )
i = F−1

0

(
U ( j )

i

)
;

˚ Evaluate for each set of samples
{

X ( j )
i

}n

i=1
the test statistic

q( j )
n = −n −

n∑
i=1

2i − 1
n

(
ln

(
F
(

X ( j )
(i,n)

))
+ ln

(
1 − F

(
X ( j )
(n+1−i,n)

)))
. (8.94)

Repeat many times j ∈ {1, 2, . . . , J} to get an estimate of the distribution for the test statistic
under the null Qn, that is, the null distribution of the test statistic Qn is then approximated
by the samples

{
q( j )

n

}
known by simulation.

Given the empirical estimator for the distribution of the test statistic under the null, F̂Qn(x),
use this to evaluate the p-value.
Large-sample p-value evaluation. If the sample size n is large, one can perform evaluation
of the p-value for making a decision on the test via the asymptotic expansion of the large-sample
right tail of the AD test statistic under the null; whereas, if the sample size n → ∞, then the
upper right tail of the distribution

√
nQn is asymptotically approximated as x → ∞ by

Pr (Q > x) =

[ ∞∏
i=2

1
Γ(1/2)

(
1 − λi

λ1

)− 1
2
](

x
2λ1

)− 1
2

exp

(
− x

2λ1

)
[1 + ε(x)] ,

(8.95)

where λi =
1

i(i+1) and ε(x) → 0;

• Step 4. State the range of values within which the p-value falls (and a statement of how these are
obtained. If the p-value is significantly lower than a given level of testing significance, typically
5%, then one has sufficient evidence from the observed loss data to reject the claim of the null
hypothesis in favor of the alternative;

• Step 5. State the conclusion of the test in plain language (relevant to the experimental context).

In the following example, a small case study illustrating the properties of the standard AD
test is illustrated for a few simple distribution models in OpRisk.



�

�

“Cruz_Driver” — 2015/1/12 — 10:53 — page 277 — #40
�

�

�

�

�

�

8.4 Goodness-of-Fit Testing for Model Choice (How to Account for Heavy Tails!) 277

EXAMPLE 8.4 Anderson–Darling GOF Test Example

A sample of J = 1000 random numbers for a Normal, double exponential, Cauchy,
and LogNormal distribution was considered. In each case, the AD test was utilized
to see if the data had come from a model with exponential tail decay, in this simple
example a Gaussian distribution. In this case, the nominal and alternative claims
were given by the following:

• H0: the data are Gaussian distributed;
• HA: the data are not Gaussian distributed.

In the case of the Gaussian sample, the estimated test statistic is given by
q500 = 0.2576; in the case of the double exponential sample, the estimated test
statistic is given by q500 = 5.8492; in the case of the Cauchy sample, the estimated
test statistic is given by q500 = 288.7863; in the case of the Cauchy sample, the
estimated test statistic is given by q500 = 83.3935. In this case, when looking at
the GOF test, at a significance level of α = 0.05, the resulting critical value for the
test under the null is given by 0.75 so that the nominal claim is rejected if the test
statistic exceeds this critical value.

There have also been versions of the AD test developed to tackle situations in which the
tails of the distribution of the observed sample are also given more importance. For example,
Sinclair et al. (1990) developed a modification to the AD test statistic to obtain two test statistics
for testing suitablity of the null claim about the upper or the lower tails. We will focus here on
the upper tail test, which is of most relevance for OpRisk settings (see Proposition 8.4). In par-
ticular, such a test will be directly of interest for those wishing to assess the validity of a nominal
claim relating to the presence of a particular tail behavior believed to be present in the data.

Proposition 8.4 (Upper tail modified Anderson–Darling test for heavy tails) Consider a
null hypothesis for the data-generating distribution F0, which one assumes is a continous distri-
bution. Let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables with distribution F0. Then the
following holds:

1. Upper tail modified test statistic. The modified AD test statistic given below will give heavier
weight to the upper tail compared to the classical AD test statistic. The evaluation of the statistic
for n samples involves

Q̃n = n
∞∫

−∞

(
F̂ (x)− F (x)

)2

(1 − F (x))
dF (x)

=
n
2
− 2

n∑
i=1

F
(
X(i,n)

)
−

n∑
i=1

[
2 − 2i − 1

n

]
ln

(
1 − F

(
X(i,n)

))
,

(8.96)

which is constructed using the order statistics X(1,n) ≤ X(2,n) ≤ · · · ≤ X(n,n) (see Sinclair
et al. 1990, equation 2.5);
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2. Modified characteristic function. The characteristic function of this modified AD test statis-
tic Q̃ for large samples n → ∞ is given by

φ(t) =

[ √
2it

J1
(
2
√

2it
)
] 1

2

, (8.97)

which, as noted by Sinclair et al. (1990), can be written in terms of an infinite number of eigen
values λi, where each is obtained as a real solution to J1

(
2
√
λ
)
= 0 for λ �= 0, that is, the

roots of the Bessel function. These eigenvalues are denoted by Abramowitz and Stegun (1965,
section 9.5, p. 370) according to j1,1 < j1,2 < · · · < j1,i < . . . giving eigenvalues

λi =
j2
1,i

4
. (8.98)

Using these eigenvalues one can re-express the characteristic function of the modified test statistic
according to the equivalent form of an infinite weighted sum of independent χ-squared random
variables with one degree of freedom according to

φ(t) =
∞∏

j=1

[
1 − 2it

λj

]− 1
2

, (8.99)

where the weights are given by the inverse of the eigen values λ−1
i ;

3. Large-sample asymptotic tail expansion. The distribution of the large sample n → ∞ as
Q̃n → Q̃ is given by Sinclair et al. (1990) and MacNeill (1974) according to

Pr (Q > x) =

[ ∞∏
i=1

1
Γ( 1

2 )

(
1 − λi

λ1

)− 1
2
](

x
2λ1

)− 1
2

exp

(
− x

2λ1

)
[1 + ε(x)] ,

(8.100)

with ε(x) → 0 as x → ∞.

Remark 8.10 It is interesting to note that the asymptotic result for the distribution tail for the
upper tail modified AD test takes the same basic structural form as the same expression obtained
for the standard AD GOF test distribution with no modification to the right tail. Of course, the
key component that differentiates the two cases and changes the resulting p-values accordingly is the
different expressions for the resulting eigenvalues λi used in the representation of the characteristic
function.

These details are then sufficient to perform the AD GOF hypothesis test, which is sum-
marized in the following algorithm.

Algorithm 8.4 (Tail-weighted Anderson–Darling One-Sample Test)

• Step 1. Set up suitable notation for the random variables and distributions being tested
and make a statement of the null and alternative hypotheses in terms of population
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distribution/parameters. Determine hypothesis for GOF testing where null claims loss data are
from a hypothesized distribution F0(x)

H0 : F (x) = F0(x), ∀x (8.101)

versus an alternative claim that the observed losses are not realizations from F0

HA : F (x) �= F0(x), ∀x. (8.102)

• Step 2. State the test statistic and its observed value and when possible state the distribution of
the test statistic or its approximation. Under the null hypothesis calculate the tail-weighted AD
test statistic given for n samples involving

Q̃n =
n
2
− 2

n∑
i=1

F
(
X(i,n)

)
−

n∑
i=1

[
2 − 2i − 1

n

]
ln

(
1 − F

(
X(i,n)

))
(8.103)

which is constructed using the order statistics X(1,n) ≤ X(2,n) ≤ · · · ≤ X(n,n). This procedure
will produce an observed realization of the test statistic based on the observed data samples
{xi}n

i=1 under the null hypothesis, denoted by qn;
• Step 3. State a formal mathematical expression for the p-value. Determine the p-value for the

test under the null hypothesis given by considering

p-value = Pr [|Qn| ≥ qn|H0] .

To obtain the p-value one first needs to obtain an approximation of the distribution of the test
statistic under the null. This can be done in two cases, depending on the size of the sample:
Small-sample p-value evaluation. If the sample size n is small, one can perform evaluation
of the p-value for making a decision on the test via the following simple simulation procedure,
where {Xi}n

i=1 are the samples from the experiment and j = 1, . . . , J is the index of the
simulated test statistic realizations

{
q( j )

n

}
obtained by the following procedures:

˚ Simulate a set of samples
{

U ( j )
i

}n

i=1
with Ui ∼ Uniform(0, 1), that is, distribution

F (u) = u;

˚ Transform the samples
{

U ( j )
i

}n

i=1
to samples from the null distribution

X ( j )
i = F−1

0

(
U ( j )

i

)
;

˚ Evaluate for each set of samples
{

X ( j )
i

}n

i=1
the test statistic

q( j )
n =

n
2
− 2

n∑
i=1

F
(

X ( j )
(i,n)

)
−

n∑
i=1

[
2 − 2i − 1

n

]
ln

(
1 − F

(
X ( j )
(i,n)

))
. (8.104)

Repeat many times j ∈ {1, 2, . . . , J} to get an estimate of the distribution for the test statistic
under the null Qn that is, the null distribution of the test statistic Qn is then approximated by
the samples

{
q( j )

n

}
known by simulation.
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Given the empirical estimator for the distribution of the test statistic under the null, F̂Qn(x),
use this to evaluate the p-value.
Large-sample p-value evaluation. If the sample size n is large, one can perform evaluation
of the p-value for making a decision on the test via the asymptotic expansion of the large-sample
right tail of the AD test statistic under the null; whereas, if the sample size n → ∞, then the
upper right tail of the distribution

√
nQn is asymptotically approximated as x → ∞ by

Pr (Q > x) =

[ ∞∏
i=2

1
Γ(1/2)

(
1 − λi

λ1

)− 1
2
](

x
2λ1

)− 1
2

exp

(
− x

2λ1

)
[1 + ε(x)] ,

(8.105)

with ε(x) → 0 as x → ∞;
• Step 4. State the range of values within which the p-value falls (and a statement of how these are

obtained. If the p-value is significantly lower than a given level of testing significance, typically
5%, then one has sufficient evidence from the observed loss data to reject the claim of the null
hypothesis in favor of the alternative;

• Step 5. State the conclusion of the test in plain language (relevant to the experimental context).

8.4.4.2 Weighted Cramer-von-Mises Goodness-of-Fit Tests for Heavy Tails.
An alternative test one may consider is the CvM test (see details in Csorgo and Faraway 1996
and Brown 1982). The test statistic considered in the CvM test is given in Proposition 8.5 and
is based on the CvM family of test statistics given by,

Q = n
∞∫

−∞

w(x)
(

F̂ (x)− F̂ (x;θ)
)2

dF (x;θ), (8.106)

where w(x) = 1.

Proposition 8.5 (Characterizing the Cramer-von-Mises null distribution) Consider a null
hypothesis for the data-generating distribution F0, which one assumes is a continous distribution. Let
X1,X2, . . . ,Xn be a sequence of i.i.d. random variables with distribution F0. Then the following
holds

1. Test statistic. The test statistic is given by

Qn = n
∞∫

−∞

[
F̂ (x)− F (x)

]2
dF (x)

= nω2 =
1

12n
+

n∑
i=1

[
2i − 1

2n
− F

(
X(i,n)

)]2

,

(8.107)

which is constructed using the order statistics X(1,n) ≤ X(2,n) ≤ · · · ≤ X(n,n) and can be
shown to be strictly contained in the interval Q ∈ [ 1

12n ,
n
3 ] (see Csorgo and Faraway 1996);
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2. Characteristic function. The characteristic function of the AD test statistic Q for large samples
n → ∞ is given by

φ(t) =

[
(−2πit)

1
2

sinh (−2it)
1
2

] 1
2

(8.108)

(see discussions by Mises 1947 and Smirnov 1936);
3. Large-sample distribution. If the sampe size n → ∞, then the distribution

√
nQn is asymp-

totically given by inversion of the characteristic function, as first performed by Smirnov (1936)
and detailed by Csorgo and Faraway (1996, equation 1.3) to produce, for x ≥ 0,

Pr (Q ≤ x) =
1

π
3
2 x 1

2

∞∑
k=0

Γ
(
k + 1

2

)
k!

(4k + 1)
1
2 exp

(
− (4k + 1)2

16x

)
K 1

4

(
4k + 1

2x 1
2

)
(8.109)

for Kν(x), the modified Bessel function of the third kind. Evaluation of finite sample approxi-
mations of this distribution has been studied by Götze (1979) and summarized by Csorgo and
Faraway (1996);

4. The result by Prokhorov (1968, theorem 1) is utilized by Csorgo and Faraway (1996) to
illustrate that one may obtain a bound for the right tail of the finite sample distribution for
Qn ∼ FQn(x) given for any sample size n ≥ 1 by

sup {1 − FQn(x)} ≤ C exp (−Kx) (8.110)

with x ≥ 8
π2 , C = 1 + 1

π
√

2
exp

( 5
12

)
, and K = 3

32 exp (−2). Knott (1974) and later
Csorgo and Faraway (1996) showed that one can evaluate the distribution for the small-sample
n distribution of the CvM statistic in a bounded range according to

FQn(x) =
n!π

n
2

Γ
( n

2 + 1
) (

x − 1
12n

) n
2

(8.111)

for x ∈
[ 1

12n ,
n+3
12n2

]
.

These details are then sufficient to perform the CvM GOF hypothesis test, which is summarized
in the following algorithm.

Algorithm 8.5 (Tail-Weighted Cramers-Von-Mise-One-Sample Test)

• Step 1. Set up suitable notation for the random variables and distributions being tested and
make a statement of the null and alternative hypotheses in terms of population distribu-
tion/parameters. Determine hypothesis for GOF testing where null claims loss data are from
a hypothesized distribution F0(x)

H0 : F (x) = F0(x), ∀x (8.112)
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versus an alternative claim that the observed losses are not realizations from F0

HA : F (x) �= F0(x), ∀x. (8.113)

• Step 2. State the test statistic and its observed value and when possible state the distribution
of the test statistic or its approximation. Under the null hypothesis calculate the tail-weighted
CvM test statistic given for n samples involving

Qn = nω2 =
1

12n
+

n∑
i=1

[
2i − 1

2n
− F

(
X(i,n)

)]2

, (8.114)

which is constructed using the order statistics X(1,n) ≤ X(2,n) ≤ · · · ≤ X(n,n). This procedure
will produce an observed realization of the test statistic based on the observed data samples
{xi}n

i=1 under the null hypothesis, denoted by qn;
• Step 3. State a formal mathematical expression for the p-value. Determine the p-value for the

test under the null hypothesis given by considering

p-value = Pr [|Qn| ≥ qn|H0] .

To obtain the p-value one first needs to obtain an approximation of the distribution of the test
statistic under the null. This can be done in two cases, depending on the size of the sample:
Small-sample p-value evaluation. If the sample size n is small, one can perform evaluation of
the p-value for making a decision on the test via either first using the following simple simulation
procedure, where {Xi}n

i=1 are the samples from the experiment and j = 1, . . . , J is the index
of the simulated test statistic realizations

{
q( j )

n

}
obtained by the following procedures:

˚ Simulate a set of samples
{

U ( j )
i

}n

i=1
with Ui ∼ Uniform(0, 1) that is, distribution

F (u) = u;

˚ Transform the samples
{

U ( j )
i

}n

i=1
to samples from the null distribution

X ( j )
i = F−1

0

(
U ( j )

i

)
;

˚ Evaluate for each set of samples
{

X ( j )
i

}n

i=1
the test statistic

q( j )
n =

n
2
− 2

n∑
i=1

F
(

X ( j )
(i,n)

)
−

n∑
i=1

[
2 − 2i − 1

n

]
ln

(
1 − F

(
X ( j )
(i,n)

))
. (8.115)

Repeat many times j ∈ {1, 2, . . . , J} to get an estimate of the distribution for the test statistic
under the null Qn that is, the null distribution of the test statistic Qn is then approximated by
the samples

{
q( j )

n

}
known by simulation.

Alternatively, if the smaple size is appropriate for the quantile of the test statistic distribution to
fall in the interval for

[ 1
12n ,

n+3
12n2

]
at the desired level of significance, then the p-value can be

obtained using the representation

FQn(x) =
n!π

n
2

Γ
( n

2 + 1
) (

x − 1
12n

) n
2

. (8.116)
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Given the empirical estimator for the distribution of the test statistic under the null, F̂Qn(x),
use this to evaluate the p-value.
Large-sample p-value evaluation. If the sample size n is large, one can perform evalua-
tion of the p-value for making a decision on the test via the asymptotic expansion of the large-
sample right tail of the tail-weighted CvM test statistic under the null; whereas if the sample size
n → ∞, then the upper right tail of the distribution

√
nQn is asymptotically approximated as

x → ∞ by

Pr (Q ≤ x) =
1

π
3
2 x 1

2

∞∑
k=0

Γ
(
k + 1

2

)
k!

(4k + 1)
1
2 exp

(
− (4k + 1)2

16x

)
K 1

4

(
4k + 1

2x 1
2

)
(8.117)

for Kν(x), the modified Bessel function of the third kind;
• Step 4. State the range of values within which the p-value falls (and a statement of how these are

obtained. If the p-value is significantly lower than a given level of testing significance, typically
5%, then one has sufficient evidence from the observed loss data to reject the claim of the null
hypothesis in favor of the alternative;

• Step 5. State the conclusion of the test in plain language (relevant to the experimental context).

We finish this section on model selection for components of an LDA model structure in a
single risk by discussing briefly how one may undertake Bayesian model selection.

8.5 Bayesian Model Selection

Consider a model M with parameter vector θ. The model likelihood with data x can be found
by integrating out the parameter θ

π(x|M) =

∫
π(x|θ,M)π(θ|M)dθ, (8.118)

where π(θ|M) is the prior density of θ in the model indexed by M . Given a set of K competing
models (M1, . . . ,MK ) with parameters θ[1], . . . ,θ[K ] respectively, the Bayesian alternative to
traditional hypothesis testing is to evaluate and compare the posterior probability ratio between
the models. Assuming we have some prior knowledge about the model probability π(Mi), we
can compute the posterior probabilities for all models using the model likelihoods

π(Mi|x) =
π(x|Mi) π(Mi)∑K

k=1 π(x|Mk) π(Mk)
. (8.119)

Consider two competing models M1 and M2, parameterized by θ[1] and θ[2], respectively.
The choice between the two models can be based on the posterior model probability ratio,
given by

π(M1|x)
π(M2|x)

=
π(x|M1) π(M1)

π(y|M2) π(M2)
=

π(M1)

π(M2)
B12, (8.120)
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where B12 = π(x|M1)/π(x|M2) is the Bayes factor, the ratio of the posterior odds of model
M1 to that of model M2. As shown by Lavin and Scherrish (1999), an accurate interpretation
of the Bayes factor is that the ratio B12 captures the change of the odds in favor of model M1 as
we move from the prior to the posterior. Jeffreys (1961) recommended a scale of evidence for
interpreting the Bayes factor, which was later modified by Wasserman (1997). A Bayes factor
B12 > 10 is considered strong evidence in favor of M1. Kass and Raftery (1995) give a detailed
review of the Bayes factor.

Typically, the integral (8.118) required by the Bayes factor is not analytically tractable, and
sampling-based methods must be used to obtain estimates of the model likelihoods. There are
quite a few methods in the literature for direct computation of the Bayes factor or indirect con-
struction of the Bayesian model selection criterion, both based on Markov chain Monto Carlo
(MCMC) outputs. The popular methods are direct estimation of the model likelihood, thus
the Bayes factor; indirect calculation of an asymptotic approximation as the model selection
criterion; and direct computation of the posterior model probabilities, as discussed later. Pop-
ular model selection criteria, based on simplifying approximations, include DIC and Bayesian
information criterion BIC; see, e.g., Robert (2001, chapter 7).

In general, given a set of possible models (M1, . . . ,MK ), the model uncertainty can be
incorporated in the Bayesian framework by considering the joint posterior for the model and the
model parameters π(Mk,θ[k]|x), where θ[k] is a vector of parameters for model k. Subsequently,
calculated posterior model probabilities π(Mk|x) can be used to select an optimal model as the
model with the largest probability or average over possible models according to the full joint
posterior.

Accurate estimation of the required posterior distributions usually involves the develop-
ment of a Reversible Jump MCMC framework. This type of Markov chain sampler is com-
plicated to develop and analyze. It goes beyond the scope of this book but interested readers
can find details in Green (1995). In the case of a small number of models, Congdon (2006)
suggests running a standard MCMC (e.g., Random Walk Metropolis Hastings (RW-MH))
for each model separately and using the obtained MCMC samples to estimate π(Mk|x).
Peters et al. (2009a) adopted this method for modeling claims-reserving problem in the insur-
ance literature with an appropriate modification. They used the following modified version
for the special case of nested models and utilized the Markov chain results for each model,
in the case of equiprobable nested models, and calculated the posterior model probabilities
π(Mi|x) as

π(Mi|x) =
1
L

L∑
l=1

f
(

x|Mi,θ
(l)
[i]

)
∑K

j=1 f
(

x|Mj,θ
(l)
[j]

) , (8.121)

where θ(l)
[i] is the MCMC posterior sample at Markov chain step l for model Mi, f (x|Mi,θ

(l)
[i] )

is the joint density of the data x given the parameter vector θ(l)
[i] for model Mi, and L is the total

number of MCMC steps after the burn-in period.

8.5.1 RECIPROCAL IMPORTANCE SAMPLING ESTIMATOR

Given MCMC samples θ(l), l = 1, . . . , L from the posterior distribution obtained through
MCMC, Gelfand and Dey (1994) proposed the reciprocal importance sampling estimator (RISE)
to approximate the model likelihood
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p̂RI (x) =

[
1
L

L∑
l=1

h(θ(l))

π(x|θ(l)) π(θ(l))

]−1

, (8.122)

where h plays the role of an importance sampling density roughly matching the posterior.
Gelfand and Dey (1994) suggested the multivariate Normal or t distribution density with mean
and covariance fitted to the posterior sample.

The RISE estimator can be regarded as a generalization of the harmonic mean estimator
suggested by Newton and Raftery (1994). The latter is obtained from the RISE estimator by
setting h = 1. However, we strongly advise against such choices since it is known that the har-
monic mean estimator will produce an estimator with infinite variance as discussed by Wolpert
and Schmidler (2012). Other estimators include the bridge sampling proposed by Meng and
Wong (1996), and Chib’s candidate estimator by Chib (1995). In addition, there are also alterna-
tive approaches recently proposed that are efficient to implement in convex likelihood models
such as the nested sampling framework of Skilling (2006).

In a recent comparison study by Miazhynskaia and Dorffner (2006), these estimators were
employed as competing methods for Bayesian model selection on GARCH-type models, along
with the reversible jump MCMC. It was demonstrated that the RISE estimator (either with
Normal or t importance sampling density), the bridge sampling method, and Chib’s algorithm
gave statistically equal performance in model selection. Also, the performance more or less
matched the much more involved reversible jump MCMC; however, it should be clearly noted
that the relative computational costs and efficiency in general between each of these approaches
will differ depending on the complexity of the model selection task. For this reason, we also
present the details of the simplest form of the Chib estimator for model evidence (see Carlin
and Chib 1995).

8.5.2 CHIB ESTIMATOR FOR MODEL EVIDENCE

The version of the Chib estimator that we propose for practitioners to utilize for the estimation
of the Bayes factors is still based on sample output from the posterior model, typically from
Markov chain samples. An important statistical property of this estimator from Chib is that it
satisfies a standard Gaussian Central Limit Theorem and has finite variance. Therefore, we can
estimate not only the model evidence but also, for a given set of simulations, we can report a
measure of uncertainty in our model selections through an assessment of the accuracy of our
evidence estimation.

In the following, we provide a brief description of the simplest form of the Chib estimator,
the single block estimator. Under this approach, one proceeds to evaluate the evidence for the
i-th model, denoted by ln p̂ (x|Mi), according to the log decomposition as a function of the
posterior with generic vector of parameters θ and data x as follows:

ln p̂ (x|Mi) = ln p (x|θ∗,Mi) + ln p (θ∗|Mi)− ln p̂ (θ∗|x,Mi) , (8.123)

where θ∗ represents a point estimator for the parameters obtained from the MCMC output,
such as the posterior mean (minimum mean square error (MMSE)) or the posterior mode
(maximum a posteriori (MAP)) estimators. Here the estimator of p̂ (θ∗|x,Mi) obtained via
Chib’s approach is given for J samples from the proposal

{
θ( j ) : θ( j ) ∼ q (θ,θ∗|x)

}
j=1:J

and M samples from the MCMC output (i.e., correlated draws from the posterior) by
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p̂ (θ∗|x,Mi) =

1
M

∑M
m=1 α

(
θ(m),θ∗|x

)
q
(
θ(m),θ∗|x

)
1
J
∑J

j=1 α
(
θ∗,θ( j )|x

) . (8.124)

Here, the function α
(
θ,θ′|x

)
represents the standard Metropolis–Hastings acceptance prob-

ability given by

α
(
θ∗,θ( j )|x

)
= min

{
1,

p
(
x|θ′) p

(
θ′) q

(
θ′,θ

)
p (x|θ) p (θ) q

(
θ,θ′)

}
. (8.125)

The proposal often considered is a multivariate student-t distribution for q
(
θ,θ′) given for

location parameter vector θ ∈ R
p and covariance matrix Σ ∈ SP+(p), where SP+ is the space

of symmetric and positive definite matrices in R
p, for parameter θ′ ∈ R

p by a probability
density of

q
(
θ,θ′) = Γ

(
(n+p)

2

)
Γ
( n

2

)
np/2πp/2|Σ|1/2

[
1 + 1

n

(
θ′ − θ

)T
Σ−1

(
θ′ − θ

)](n+p)/2 , (8.126)

where one could estimate the covariance of the proposal, Σ, from the empirical sample covari-
ance obtained from the samples out of the MCMC output for the Mi-th model according to

Σ̂ =
1

M − 1

M∑
m=1

(
θ(m) − θ̄

)(
θ(m) − θ̄

)T
, (8.127)

where θ̄ is the empirical mean of the parameters for the model.

8.6 SMC Sampler Estimators of Model Evidence

Del Moral et al. (2012) note that one can also utilize specially developed evidence estimators in
the sequential Monto Carlo (SMC) samplers output, based on bridge sampling estimators of
Gelman and Meng (1998) as follows. The particle estimate of target distribution evidence for πt

and πt−1 for each time step is given by using
{

W (i)
t ,Θ(i)

t

}N

i=1
to approximate the normalizing

constant ratios (model evidence that is denoted here as Zn)

Zt

Zt−1
=

∫
πt (θt) dθt∫

πt−1 (θt−1) dθt−1
(8.128)

using the particle estimator given by

Ẑt

Zt−1
=

N∑
i=1

W (i)
t−1wt

(
Θ

(i)
t−1,Θ

(i)
t

)
. (8.129)
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Then one notes that to estimate the ratio Zt/Z1 one forms a product estimate based on
these local ratio SMC sampler approximations; see discussions in Chapter 7 for SMC sam-
pler algorithms.

8.7 Multiple Risk Dependence Structure Model Selection:
Copula Choice

In this section, we discuss how to perform model selection for the dependence structure link-
ing multiple risk processes, with a particular emphasis on copula model representations. For
a model choice of copula using frequentist GOF testing, see Klugman and Parsa (1999) and
Panjer (2006, section 14.5). One can also use the AIC to choose a copula. However, formally,
it does not hold for copulas fitted using data marginally transformed into [0, 1]d ; a proper
correction, referred to as copula information criterion, has been derived by Grønneberg and
Hjort (2008). Under the Bayesian approach, model choice can be made using Bayesian cri-
teria presented in Section 8.5; for a case study of t-copula choice, see Luo and Shevchenko
(2012).

To proceed, in this section we first discuss how to perform model selection purely on
the dependence component of the model that is used to combine or relate multiple risk
processes LDA models. The detailed presentation of such model structures is presented in
Chapters 10–12. The generic parametric copula model considered in this section will be
denoted by distribution C . In this section, the presentation of such model selection approaches
will assume that one has already made inference on the appropriate models for the marginal
(each individual loss processes) LDA structures. On this point, it is important to observe the
following fact: if one truly wants to test the hypothesis given by

H0 : C ∈ C0 (8.130)

that is, that the dependence structure between the risk processes is well represented by a partic-
ular parameteric multivariate distribution in the copula family C0, then the option of modeling
the marginal LDA models by parameteric families first is no longer strictly viable. To under-
stand why this is the case, one must realize that such a procedure would actually correspond to
a different much more restricted null hypothesis, corresponding to H0 ∩ H ′

0 where H ′
0 relates

to the assumption of the structure of the marginal models, producing a hypothesis for the full
parameteric model of the multiple risk processes and not just their dependence features.

Hence, this indicates that when testing purely for the dependence structure between multi-
ple risk process LDA models, one should consider the marginal distributions, such as the annual
losses between d risk processes FZ1 (z1), FZ2 (z2) , . . ., FZd (zd ) or the equivalent quantitites for
the d severity of frequency models, as infinite dimensional nuisance parameters (i.e., nuisance
functions). Having recognized this fact, one needs to also utilize the property of all copula distri-
butions, that they are multivariate distributions for d risk processes on support [0, 1]d , which
are invariant to strictly increasing transformations of their components. The implications of
this for the perspective of hypothesis testing and model selection is that one may instead make
inference on the evidence against H0 based on the maximally invariant statistics with respect
to these types of transformations, that is, one may work directly on the ranks or order statis-
tics. This leads one to the notion of pseudo observations for copula GOF hypothesis testing as
detailed in Definition 8.9.
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Definition 8.9 (Pseudo observations for copula GOF testing) Consider the d-dimensional
multivariate loss data {Z i}n

i=1 for n loses from the d risk processes, with Z i =
(

Z (1)
i , . . . ,Z (d)

i

)
.

Convert the individual loss data into pseudo observations based on scaled ranks by considering new
data {U i}n

i=1 with the j-th component of the i-th random vector observation given by

U ( j )
i =

R( j )
i

n + 1
=

n
n + 1

F̂Z( j )

(
Z ( j )

i

)
, (8.131)

where U i ∈ [0, 1]d for all i ∈ {1, 2, . . . , n} and R( j )
i is the rank of the j-th component of vector

Z i among the samples, that is, the rank of Z ( j )
i among

{
Z ( j )

1 , . . . ,Z ( j )
n

}
. This transformation

of each margin through the normalized ranks is known as the empirical marginal transformation.
Therefore, these pseudo observations can then be interpreted as draws from the underlying copula C
acting as the dependence structure between the multiple risk processes.

Remark 8.11 The pseudo observations discussed earlier are not mutually independent of each other
and therefore the components are only approximately uniform on [0, 1] in each margin. They will
only be exactly uniform if the exact model is considered. If a model selection or hypothesis-testing
procedure is developed which ignores these features, it will suffer from a lack of power and may fail
to hold its nominal level.

EXAMPLE 8.5 Pseudo Data for GOF Dependence Structure Analysis

The aim of this example is to illustrate that one can recover samples that closely
resemble the true samples from the copula density for a multivariate distribution,
via the pseudo data in practical applications in OpRisk. Consider a multivariate
loss model for Z i =

(
Z (1)

i ,Z (2)
i , . . . ,Z (d)

i

)
with the following density:

fZ (z1, . . . , zd ) = cρ (FZ1 (z1) , . . . , FZd (zd ))

d∏
i=1

fZi (zi) , (8.132)

where we consider each marginal loss process FZi (zi) to be given by annual loss
density from the compound sum LDA model

Zi =

N∑
j=1

Xj (8.133)

with N ∼ Poisson(λi) and i.i.d. losses for risk process i given by
Xj ∼ InverseGaussian (μi, γi). Then the marginal for the i-th loss process is a
Poisson-weighted mixture of inverse Gamma distributions given by

fZi(z) =
∞∑

n=1

exp (−λi)
λn

i

n!

{[
n2γi

2πz3

] 1
2

exp

(
−n2γi (z − nμi)

2

2n2μ2
i z

)}
. (8.134)
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Consider the case with d = 2, λ1 = λ2 = 3, μ1 = 2, μ2 = 1, and γ1 = 1, γ2 = 2.
Furthermore, assume the annual losses are jointly dependent with a Frank copula
dependence structure for the density cρ (FZ1 (z1) , . . . , FZd (zd )) with dependence
parameter ρ = −1 and density given by

c (u1, u2) =
ρ [1 − exp(−ρ)] exp (−ρ (u1 + u2))

([1 − exp(−ρ)]− (1 − exp (−ρu1)) (1 − exp (−ρu2)))
2 .

(8.135)

Under this model it is assumed that a total of 100 samples have been obtained and
the true copula density contour plots are drawn, followed by the true joint density
of (Z1,Z2). The pseudo data are then plotted over the top of the copula contours;
see Figure 8.8. Clearly, the pseudo data display behavior consistent with the Frank
copula model from which they are approximately drawn. It should also be noted
that the accuracy of this pseudo data transformation by the rank will diminish (i.e.,
how representative the pseudo data are of the true copula) and be affected by the
sample size available.

Having briefly explained the need to be cautious when performing specialized GOF tests
specifically for the copula dependence structures and the definition of pseudo data that may
be used to undertake such testing procedures, we next provide a brief summary of the various
approaches that have been adopted in the literature for undertaking such testing (see detailed
discussions in Berg 2009). Before proceeding with the overview of these different testing pro-
cedures, we need to introduce a few additional basic concepts. The first is the transformation
of a random vector known as Rosenblatt’s probability integral transformation, as detailed in
Definition 8.10 (see Bickel and Rosenblatt 1973).

Definition 8.10 (Rosenblatt’s probability integral transformation) Rosenblatt’s probability
integral transformation (PIT) of a copula distribution C is a mapping T : (0, 1)d �→ (0, 1)d

such that every vector u = (u1, u2, . . . , ud ) ∈ (0, 1)d is assigned to a new vector under the map-
pint T (u1, u2, . . . , ud ) = (e1, e2, . . . , ed ) such that the following holds:

e1 = u1

ei =
∂i−1C (u1, . . . , ui, 1, . . . , 1)

∂u1 . . . ∂ui−1

/
∂i−1C (u1, . . . , ui−1, 1, . . . , 1)

∂u1 . . . ∂ui−1
, ∀i ∈ {2, . . . , d} .

(8.136)

Under this transformation, the original random vector U is distributed from a copula C that is,
U ∼ C if and only if the resulting transformed random vector E is distributed from a uniform
distribution E ∼ [0, 1]d , that is, the resulting copula of E is the independence copula with uniform
marginals.

Remark 8.12 Under the application of Rosenblatt’s transformation of a random vector with depen-
dence features given by copula distribution C, one may transform a hypothesis test from the nominal
claim that



�

�

“Cruz_Driver” — 2015/1/12 — 10:53 — page 290 — #53
�

�

�

�

�

�

290 CHAPTER 8 Model Selection and Goodness-of-Fit Testing

5 10 15

2

4

6

8

10

12

14

0

200

400

600

800

1000

1200

1400

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

figure 8.8 Top subplot: this plot shows the true copula contours used in this model, that is, a Frank
copula, and the points correspond to the pseudo data obtained by transformation through the empirical
marginals (i.e., using the marginal scaled ranks). Bottom subplot: this plot shows the contours of the joint
loss process density for

(
Z(1),Z(2)

)
. (see insert for color representation of the figure.)
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H0 : U ∼ C ∈ C0 (8.137)

to an equivalent omnibus claim that

H∗
0 : T (U ) ∼ U [0, 1]d (8.138)

for some parameter vector ρ that parameterizes the copula C.

In the following examples, the required Rosenblatt PIT is provided for several examples. In
each case, one makes use of the multivariate Faa Di Bruno composite derivative expressions to
obtain simple closed-form expressions for the PIT transforms for Archimedean families. This
first involves recognizing that the Archimedean copula family has a particular distribution form
given by a composite function comprised of ψ(·) and linear combinations of its inverse ψ−1(·):

C(u1, . . . , un) = ψ

(
n∑

i=1

ψ−1 (ui)

)
(8.139)

See detailed discussions in Chapters 10–12 on dependence modeling. It should then be noted
that to find the evaluation of the distribution given by C(u1, u2, . . . , un−k, 1, 1, . . . , 1), one
obtains

C(u1, u2, . . . , un−k, 1, 1, . . . , 1) = ψ

(
n−k∑
i=1

ψ−1 (ui)

)
, (8.140)

since ψ−1 (1) = 0 in order for ψ to be a well-defined generator for the Archimedean family;
see details in Chapters 10–12. Hence, this means that taking the derivatives for the terms ei
under Rosenblatt’s PIT for the Archimedean family of copula models will result in terms, for
∀i ∈ {2, . . . , d}, given by the ratio of the integrated density in dimension i with respect to
argument ui and the density in dimension i − 1 according to

ei =
∂i−1C (u1, . . . , ui, 1, . . . , 1)

∂u1 . . . ∂ui−1

/
∂i−1C (u1, . . . , ui−1, 1, . . . , 1)

∂u1 . . . ∂ui−1

=

∫ ui

0 c (u1, . . . , s) ds
c (u1, . . . , ui−1)

=

[∏i−1
j=1(ψ

−1)′(uj)
] ∫ ui

0 ψi{ψ−1 (s) +
∑i−1

i=1 ψ
−1 (ui)}(ψ−1)′(s)ds

ψ(d){
∑

i = 1i−1ψ−1 (ui)}
∏i−1

j=1(ψ
−1)′(uj)

×
∫ ui

0 ψi{ψ−1 (s) +
∑i−1

i=1 ψ
−1 (ui)}(ψ−1)′(s)ds

ψ(i−1){
∑i−1

i=1 ψ
−1 (ui)}

.

(8.141)

One can then utilize closed-form expressions for the derivatives of these generators for any
dimension; see details in Chapter 10. We present examples for the bivariate setting in a few
popular models in the Archimedean family.
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EXAMPLE 8.6 Rosenblatt’s Probability Integral Transform Clayton Copula

Consider the Clayton copula given by distribution and density

CC (u1, . . . , un) =

(
1 − n +

n∑
i=1

u−ρC

i

)−1/ρC

, (8.142)

cC (u1, . . . , un) =

(
1 − n +

n∑
i=1

(ui)
−ρC

)−n− 1
ρC n∏

i=1

(
(ui)

−ρC−1((i − 1)ρC + 1
))

,

(8.143)

where ρC ∈ [0,∞) is the dependence parameter. Hence, given a random vector
U = (U1,U2) distributed from this copula model, one can obtain the Rosenblatt
PIT as for the bivariate case:

e1 = u1,

e2 =

∂
∂u1

[(
−1 +

∑2
i=1 u−ρC

i

)−1/ρC]
∂
∂u1

[u1]

= u−ρC−1
1

(
−1 +

2∑
i=1

u−ρC

i

)−1/ρC−1

.

EXAMPLE 8.7 Rosenblatt’s Probability Integral Transform Gumbel Copula

Consider the Gumbel copula given by distribution

CG(u1, . . . , ud ) = exp

⎛
⎝−

[
d∑

i=1

(
− ln(ui)

)ρG

] 1
ρG

⎞
⎠ , (8.144)

where ρG ∈ [1,∞) is the dependence parameter. In the bivariate case, the explicit
expression for the Gumbel copula density is given by

c (u1, u2) =
∂2

∂u1∂u2
C (u1, u2)

= C (u1, u2) u−1
1 u−1

2

[
2∑

i=1

(− ln ui)
ρ

]2( 1
ρ−1)

(ln u1 ln u2)
ρ−1

×

⎡
⎣1 + (ρ− 1)

[
2∑

i=1

(− ln ui)
ρ

]− 1
ρ

⎤
⎦ .



�

�

“Cruz_Driver” — 2015/1/12 — 10:53 — page 293 — #56
�

�

�

�

�

�

8.7 Multiple Risk Dependence Structure Model Selection: Copula Choice 293

Hence, given a random vector U = (U1,U2) distributed from this copula model,
one can obtain the Rosenblatt PIT as for the bivariate case:

e1 = u1

e2 =

∂
∂u1

[
exp

(
−

[∑2
i=1

(
− ln(ui)

)ρG
] 1

ρG
)]

∂
∂u1

[u1]

=
∂

∂u1

⎡
⎣exp

⎛
⎝−

[
2∑

i=1

(
− ln(ui)

)ρG

] 1
ρG

⎞
⎠
⎤
⎦

=
1
ui

(
− ln(ui)

)ρG−1
[

2∑
i=1

(
− ln(ui)

)ρG

] 1
ρG −1

× exp

⎛
⎝−

[
2∑

i=1

(
− ln(ui)

)ρG

] 1
ρG

⎞
⎠ .

(8.145)

8.7.1 APPROACHES TO GOODNESS-OF-FIT TESTING FOR
DEPENDENCE STRUCTURES

The following are popular approaches that have been proposed to perform copula dependence
GOF testing and model selection.

• Rosenblatt’s transformation test. The Rosenblatt transformation has been proposed for
copula GOF testing by several authors including Genest et al. (2006), Dobrić and Schmid
(2007), Berg and Bakken (2005), and Berg (2009). In this case, the pseudo observations
{U i}n

i=1 given in Definition 8.9 are transformed through Rosenblatt’s transformation T (·)
to obtain new observations {E i}n

i=1 with each E i = T (U i) and the null hypothesis being
tested is then transformed to become

H∗
0 : T (U ) ∼ U [0, 1]d . (8.146)

The resulting test statistic under this new nominal claim can then be considered under two
different sets of assumptions. The simplest would be to assume that the pseudo observa-
tions are mutually independent and uniformly distributed on (0, 1)d if U i ∼ C ∈ C0. Of
course, as noted by several authors (see discussion by Genest et al. 2009b), the approximate
uniformity of the transformed observations {E i}n

i=1 on the space (0, 1)d allows one to
utilize the following transform on each marginal component followed by the convolution
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of the approximately i.i.d. components to make up a GOF test as follows: first, construct
new aggregate univariate random variables given by

χi =
d∑

j=1

{
Φ−1

(
E( j )

i

)}2
, ∀i ∈ {1, 2, . . . , n} . (8.147)

Next, consider the distribution of the set {χi}n
i=1 and in particular the empirical distribu-

tion function

F̂n(x) =
1
n

n∑
i=1

Iχi≤x, x ≥ 0. (8.148)

If the assumption of uniformity of the sample {E i}n
i=1 were valid, then one can construct

the empirical process convergence to a Brownian bridge, as discussed previously by con-
sidering the process as n → ∞ given by

√
n
(

F̂n(x)− F (x)
)
, (8.149)

which would then allow one (if the copula parameter was assumed to be known—not a
compound test) to perform, for instance, an AD test to test the nominal claim

H0 : U ∼ C ∈ C0 (8.150)

using the test statisic given by

An = −n − 1
n

n∑
i=1

(2i − 1) ln
[
F
(
χ(i,n)

)]
+ ln

[
1 − F

(
χ(n+1−i,n)

)]
(8.151)

with χ(i,n) the i-th order statistic where χ(1,n) ≤ · · · ≤ χ(n,n). As noted by Breymann
et al. (2003) and Dobrić and Schmid (2007), the assumption underpinning this asymp-
totic convergence may not apply in many settings and, consequently, the test statistic and
p-value must be adjusted or calculated numerically via a bootstrap procedure as discussed
by Genest et al. (2009b, appendix C);

• Rosenblatt’s weighted transformation test. Malevergne et al. (2003) and Berg (2009)
considered the pseudo data samples {ui}n

i=1 and applied the Rosenblatt transformation to
obtain samples {ei}n

i=1, which under the nominal claim copula Cρ̂n
, will produce samples

that are from the independence copula. They note that when the pseudo data are obtained
from the rank data, this assumption on uniformity is not strictly achieved. The Rosenblatt
transformed data are then transformed further to produce a univariate sample given by the
weighted transformation

χ̃i(Γ) =

n∑
j=1

Γ
(

e( j )
i ;ψ

)
, (8.152)

where Γ(·;ψ) is a weighting function parameterized by parameter vector ψ. This func-
tion can be used to focus testing on different regions of the unit cube such as particular
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quadrants of interest or the tails of the dependence copula tails in different regions of the
unit hyper cube. Examples of such weighting functions include the following:

Γ1

(
e( j )
i ;ψ

)
=

∣∣∣e( j )
i − 0.5

∣∣∣ ;
Γ2

(
e( j )
i ;ψ

)
= Φ−1

(
e( j )
i

)2
.

(8.153)

In the case of weighting function Γ1(·), the resulting dimension-reduced data χ̃i (Γ1) will
be a χ2

d distribution for all data samples i ∈ {1, 2, . . . , n}. If the dimension-reduced
data are obtained with the second weighting function χ̃i (Γ2), then one does not have a
simple closed-form distribution for these random variables and hence a double bootstrap
procedure is required.

In general, for any choice of weighting function Γ(·;ψ), the resulting random
variables {χ̃i(Γ)}n

i=1, are each distributed under the null according to the distribution
F [χ̃i(Γ)], producing the process

S1(w) = Pr (F [χ̃1(Γ)] ≤ w) , w ∈ [0, 1]. (8.154)

Under the null, Berg (2009) showed that one can empirically estimate the process S1(w)
using the sample estimate

Ŝ1(w) =
1

n + 1

n∑
i=1

I [F [χ̃1i(Γ)] ≤ w] . (8.155)

Then using this emprical process estimator, one can obtain an estimate of the resulting
CvM test statistic

T1 = n
1∫

0

(
Ŝ1(w)− S1(w)

)2
dS1(w), (8.156)

which is empirically evaluated using the statistic

T̂1 =
n
3
+

n
n + 1

n∑
j=1

Ŝ1

(
j

n + 1

)2

− n
(n + 1)2

n∑
i=1

(2j + 1)Ŝ1

(
j

n + 1

)
. (8.157)

• Empirical Copula Distribution Functions. As discussed by Genest et al. (2009b), two
copula GOF tests based on emprical copula distribution functions are summarized from
those developed by Fermanian et al. (2004) and Tsukahara (2005). The first test devel-
oped involves the approximation of the copula distribution using the pseudo data and the
d -variate empirical distribution function given by

Ĉn (u) =
1
n

n∑
i=1

I(
U (1)

i ≤u1,U
(2)
i ≤u2,...,U

(d)
i ≤ud

) (8.158)

for u = (u1, u2, . . . , ud ) ∈ [0, 1]d , which is known as the emprical copula, though tech-
nically it is not strictly a copula distribution (see discussions by Deheuvels 1979). Under
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conditions discussed by Fermanian et al. (2004) and Tsukahara (2005), the empirical cop-
ula distribution will converge as n → ∞ such that Ĉn → C as a consistent estimator
whether the nominal claim holds or not. One may therefore test the hypothesis

H0 : U ∼ C ∈ C0 (8.159)

using a distance-based measure comparing the empirical copula Ĉn and an estimate Cρ̂n

obtained under the nominal claim. To develop such a hypothesis test, Genest and Rémillard
(2008) considered rank-based versions of the CvM and KS tests with statistics given by
considering the process Cn =

√
n
(

Ĉn − Cρ̂n

)
, which produces a CvM statistic

Sn =

∫
[0,1]d

Cn(u)2dĈn(u) (8.160)

or a KS statistic

Tn = sup
u∈[0,1]d

|Cn(u)| . (8.161)

As discussed by Genest and Rémillard (2008), one can be sure that under particular reg-
ularity conditions on the parameteric copula family C0 and the sequence of parameter
estimators {ρ̂n} as n → ∞, the tests based on Sn and Tn are consistent in that they will
reject the nominal claim if the true copula for the data is not in the nominal class. The
evaluation of the empirical test statistic for the CvM test was shown by Berg (2009) to be
estimated by

Ŝn =

n∑
i=1

[
Ĉn (ui)− Cρ̂n

(ui)
]2

. (8.162)

It is generally not possible to find the asymptotic distribution of the test statistics to find
the tabulation of the p-values for the decision rule on these tests since the distribution will
depend heavily on the nominal claims class of copula distributions C0. The p-values for
these test statistics can be obtained via a bootstrap procedure (see discussions in Genest
et al. 2009b, appendix A);

• Empirical Copula Distribution and Rosenblatt’s Transformation. This idea basically
follows equivalently the idea proposed in the empirical copula process test, except that there
are two transformations applied to the data: the first is that the data are transformed under
a rank-based transform to obtain the pseudo data, and the second is to apply Rosenblatt’s
transformation. The empirical copula process considered then should be compared to the
resulting independence copula as the nominal claim, rather than a particular copula model
family;

• Kendall’s Tau Transformation Tests. Under Kendall’s tau transformation testing approach
to inference on the copula linking d risk processes, the approach considered by Genest et al.
(2006) involves the transformation of the data Z via a transformation

Z �→ V = C (U1,U2, . . . ,Ud ) (8.163)
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with Ui = FZ(i)

(
Z (i)

)
. This transform relates to Kendall’s tau since the expectation of V is

the affine transformation of the multivariate version of Kendall’s coefficient of concordance
as discussed in Chapter 10 and by Barbe et al. (1996). As discussed by Berg (2009), the
resulting empirical process for the case of Kendall’s tau tests is to consider the pseudo data
{U i}n

i=1 to construct the process

K (w) = Pr (C (U1,U2, . . . ,Ud ) ≤ w) , w ∈ [0, 1]. (8.164)

Then the nominal claim is that K (w) = Kρ̂n(w), which is copula-specific (see details in
Chapter 10). The resulting empirical estimate is given by

K̂n(w) =
1

n + 1

n∑
i=1

I

[
Ĉn (ui) ≤ w

]
(8.165)

and the resulting CvM test statistic is given by

Sn = n
1∫

0

(
K̂n(w)− Kρ̂n(w)

)2
dK̂n(w), (8.166)

which can be evaluated empirically by the following expression:

Ŝn =
n∑

i=1

(
K̂n

(
j

n + 1

)
− Kρ̂n

(
j

n + 1

))2

. (8.167)

There are also a number of other tests available based on Spearman’s rho, Shih’s test, and
other alternatives; see detailed discussions and references in Berg (2009) and Genest et al.
(2009b).

We finish this section by discussing how one would calculate the p-values in a double
bootstrap procedure, which will be required for most tests that do not admit a distributional
form under the nominal claim for the test statistic that is noncopula family–specific. There
are several approaches one may adopt; we provide briefly the details of the standard example
detailed by Genest et al. (2009b, appendix A).

8.7.2 DOUBLE PARAMETERIC BOOTSTRAP FOR COPULA GOF

The following procedure allows one to calculate the p-value of tests based on, for instance, the
CvM test statistic via a double bootstrap procedure. This is particularly useful in cases where
one may not be able to calculate the copula distribution in closed form, but generation of data
from this model is trivial and efficient.

Algorithm 8.6 (Double Parameteric Bootstrap for Copula GOF)

• Step 1. Compute the emprical copula according to the expression to obtain the approximation of
the copula distribution using the pseudo data and the d-variate empirical distribution function
given by
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Ĉn (u) =
1
n

n∑
i=1

I(
U (1)

i ≤u1,U
(2)
i ≤u2,...,U

(d)
i ≤ud

) (8.168)

for u = (u1, u2, . . . , ud ) ∈ [0, 1]d , which is known as the empirical copula. Then make an
estimation of the copula parameter ρ̂n using the pseudo data;

• Step 2. If the copula family under the nominal claim can be evaluated in closed form, then
evaluate the test statistic Sn given by

Sn =

∫
[0,1]d

Cn(u)2dĈn(u) (8.169)

via the empirical approximation

Ŝn =
n∑

i=1

[
Ĉn (ui)− Cρ̂n

(ui)
]2

. (8.170)

• Step 3. If the copula family under the nominal claim cannot be evaluated pointwise in closed
form, then perform the following steps:
1. Generate random sample {U ∗

i }
m
i=1 as i.i.d. draws from the distribution Cρ̂n

;
2. Evaluate the empirical copula to approximate Cρ̂n

using the estimator

Ĉ∗
ρ̂n
(u) =

1
m

m∑
i=1

I [U ∗
i ≤ u] . (8.171)

3. Approximate the test statistic using the two empirically estimated copula distributions via
the original pseudo data {U i}n

i=1,

Ŝn =

n∑
i=1

[
Ĉn (U i)− Ĉ∗

ρ̂n
(U i)

]2
. (8.172)

• Step 4. Then perform a large number of repetitions (J ) of the following steps for j ∈ {1, . . . , J}:

1. Generate random sample
{

V ∗
i,j

}n

i=1
as i.i.d. draws from the distribution Cρ̂n

and evaluate

their ranks given by
{

R∗
i,j

}n

i=1
;

2. Compute the pseudo data using the ranks to obtain
{

Ũ
∗
i,j

}n

i=1
where each sampel is

obtained by

Ũ
∗
i,j =

1
n + 1

R∗
i,j. (8.173)

3. Evaluate the empirical copula given by

Ĉ∗
n,j(u) =

1
n

n∑
i=1

I

[
Ũ

∗
i,j ≤ u

]
(8.174)
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and evaluate the resulting copula parameter estimate ρ̂∗
n,j using the pseudo data samples{

Ũ
∗
i,j

}n

i=1
;

• Step 5. If the nominal claim copula distribution admits a parametric form that can be evaluated
pointwise, then evaluate the test statistic for each j ∈ {1, 2, . . . , J} according to

Ŝ∗
n,j =

n∑
i=1

[
Ĉ∗

n,j

(
Ũ

∗
i,j

)
− Cρ̂∗

n,j

(
Ũ

∗
i,j

)]2
. (8.175)

• Step 6. If the nominal claim copula is not available in closed parameteric form to be evaluated
pointwise, then proceed as follows for j ∈ {1, 2, . . . , J}:

˚ Generate random sample
{

V ∗∗
i,j

}n

i=1
as i.i.d. draws from the distribution Cρ̂n

;

˚ Evaluate the empirical copula given by

Ĉ∗∗
n,j (u) =

1
n

n∑
i=1

I

[
Ṽ

∗∗
i,j ≤ u

]
. (8.176)

˚ Evaluate the approximation of the test statistic according to

Ŝ∗
n,j =

n∑
i=1

[
Ĉ∗

n,j

(
Ũ

∗
i,j

)
− Ĉ∗∗

n,j (Ũ
∗
i,j)

]2
. (8.177)

• Step 7. Evaluate the p-value for the CvM test using the empirical estimator given by

p =
1
J

J∑
j=1

I

[
Ŝ∗

n,j > Ŝn

]
. (8.178)
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Chapter Nine

Flexible Parametric Severity
Models: Basics

9.1 Motivation for Flexible Parametric Severity
Loss Models

In Chapter 5, we provided a description of standard loss distribution models. In the case
of severity models, this has included LogNormal, Gamma, Weibull, Pareto, and Generalized
Pareto models. In the case of frequency-based models, the families of Poisson, Binomial, and
Negative Binomial have been considered. In this chapter, we provide a more flexible set of mod-
els that should be considered by OpRisk practitioners, especially in the modeling of heavy-tailed
loss processes.

In the following subsections, we will first introduce important members of the general
family of heavy-tailed loss models for the severity distribution; some of these will also be mem-
bers of the subexponential family of models or models with different properties of tail variation
as well as flexible skew and kurtosis characteristics. It is typical when modeling such severity
distributions to consider families of models that have members which take positive support
and are typically unimodal and left skewed. The models presented in the following sections
introduce several families of parametric statistical models that are of direct interest in the areas
of OpRisk and insurance modeling. The focus will be on severity models under a Loss Distri-
bution Approach (LDA) structure and the properties of the considered parametric families that
make them amenable to heavy-tailed modeling in OpRisk.

The intention of this section will be to define the key properties of each of these subclasses
of models and explain how they are of relevance to modeling OpRisk loss processes. We will
then consider properties of subexponential family members when incorporated into compound
process models in an LDA framework, illustrating in the process how such models can be
successfully incorporated into OpRisk models.

In particular, we will provide detailed discussions on several important families of severity
models for capturing features of heavy-tailed loss processes. The models covered will include
important basic model choices that have been proposed in OpRisk modeling scenarios in prac-
tice as well as in academic literature:

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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• Generalized hyperbolic (GIG);
• Normal inverse-Gaussian (NIG);
• Generalized inverse Gaussian (GIG);
• Inverse Gaussian (IG) and the related family of Halphen severity models; and
• Elongation transform quantile function g-and-h severity distribution models.

This chapter will aim to make such models accessible and better understood by practition-
ers so they may consider application of such models in practice. For a detailed discussion on
the properties of heavy-tailed models and additional results relating to their characterization,
estimation, and modeling properties, we refer the interested reader to the advanced coverage in
the companion book Peters and Shevchenko (2015).

9.2 Context of Flexible Heavy-Tailed Loss Models in
OpRisk and Insurance LDA Models

In this section, we will seek to first provide the motivation for such families of models based on
empirical studies on OpRisk banking losses, we will characterize each family of models as well as
present relevant and useful modeling properties of these models. Then we will discuss parameter
estimation under each model as well as properties that may be of relevance for each model
when it comes to incorporation of these models into compound process LDA frameworks.
In several cases, we will provide examples that illustrate how one may incorporate such models
into LDA OpRisk modeling settings. The resulting features of the loss process will be examined
analytically and numerically in the process.

Before entering into the detail of such models, we find it important to understand the
motivation and justifications for considering such models in an OpRisk modeling framework.
A bank adopting an Advanced Measurement Approach (AMA) must develop a comprehen-
sive internal risk quantification system. This approach is the most flexible from a quantitative
perspective, as banks may use a variety of methods and models, which they believe are most
suitable for their operating environment and culture, provided they can convince the local reg-
ulator (BCBS, 2006, pp. 150–152). The key quantitative criterion is that a bank’s models must
sufficiently account for potentially high-impact rare events. As discussed previously, the idea of
the LDA involves modeling the severity and frequency distributions over a predetermined time
horizon, typically annual, as specified in, for instance, the Australian regulators documents, the
prudential standard APS115 (see APRA 2008).

The fitting of frequency and severity distributions, as opposed to simply fitting a sin-
gle parametric annual loss distribution, involves making the mathematical choice of work-
ing with compound distributions. This would seem to complicate the matter, since it is
well known that, for most situations, analytical expressions for the distribution of a com-
pound random variable are not attainable. However, as demonstrated in this section, there
are particular model choices that can overcome this complication as they have severity dis-
tributions which will produce loss processes closed under convolution. These models include
members of the Generalized Hypergometric family of severity models and also the α-Stable
family of severity models; see detailed discussions on such models in Peters and Shevchenko
(2015).
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Typically, the reason for modeling severity and frequency distributions separately and then
constructing a compound process is because some factors affect the frequency, while others may
affect only the severity, see discussions in Panjer (2006). Some of the key points relating to why
this is important in most practical settings are provided here in brief:

1. The expected number of operational losses will change as the company grows. Typically,
growth needs to be accounted for in forecasting the number of OpRisk losses in future
years, based on previous years;

2. Economic inflationary effects can be directly factored into the size of losses through scaling
of the severity distribution;

3. Insurance and the impacts of altering policy limits and excesses are more easily understood
by directly altering severity distributions;

4. Changing recording thresholds for loss events and the impact this will have on the number
of losses required to be recorded is more transparent.

This can easily be understood when modeling is performed for frequency and severity sep-
arately. Alternative modeling approaches that also consider utilization of some of the heavy-
tailed distributions discussed in this chapter have been proposed under a semi-linear credibility
theory and Extreme Value Theory (EVT)-based framework, see discussions Lu et al. (2012).
However, the most popular choices for frequency distributions in practical settings are Poisson,
Binomial, and Negative Binomial. The typical choices of severity distribution include exponen-
tial, Weibull, LogNormal, Generalized Pareto, and the g-and-h family of distributions (Dutta
and Perry 2006, Peters and Sisson 2006) and recently the α-Stable family (Peters et al. 2010).

Remark 9.1 From the perspective of capital calculation, the most important processes to model
accurately are those that have relatively infrequent losses. However, when these losses do occur, they
are distributed as a very heavy-tailed severity distribution such as members of the subexponential
family. Therefore, the intention of the following sections is to present families of models suitable for
such severity distribution modeling, as well as their properties and estimators for the parameters that
specify these models.

The importance of the focus on particular heavy-tailed processes is highlighted in numer-
ous reviews on OpRisk modeling. For instance, it was reported by Gagan (2008) that the total
loss associated with OpRisk has reached as high as USD 96 billion in the US during the finan-
cial crisis in 2008. There have also been numerous OpRisk loss events that have been high-
lighted in the media to support such enormous aggregate figures. Some of the lesser reported
cases have recently come to light with the paper of Lu et al. (2012), who paint similar pic-
tures in Chinese banking sectors as have been observed in US and European markets. For
example, they state that typical examples of large OpRisk loss events in recent years in the Chi-
nese banking sector include the Guangdong branch of the Industrial and Commercial Bank
of China (ICBC), which in 2003 lost 740 million yuan; the Jinzhou branch of the Bank of
Communications in 2004, which lost 22.1 million yuan; the Heilongjiang branch of the Bank
of China (BOC) in 2005, which lost 100 million yuan; the Guangdong branch of BOC in
2006, which lost 400 million yuan; and the Qilu Bank in 2010, which lost 100 million yuan.
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These single loss events are significant and indicate the importance of models for loss processes
which will capture such extreme loss events adequately when undertaking capital estimation.

9.3 Empirical Analysis Justifying Heavy-Tailed Loss
Models in OpRisk

In this section, we summarize some of the key findings in an instrumental paper on empirical
features of OpRisk data in US banking institutions from the Federal Reserve Bank of Boston
(see Dutta and Perry 2006). In addition, we discuss and compare these findings with those of
the Chinese banking system recently reported by Lu et al. (2012).

The first study of US banking institutions considered the 2004 Loss Data Collection Exer-
cise (LDCE) survey data and narrowed down the number of suitable candidate data sets from all
institutions surveyed to just seven institutions for which it was deemed that sufficient numbers
of reported losses were acquired. The somewhat heuristic selection criterion that the authors
utilized was that a total of at least 1000 reported total losses was required, and in addition each
institution was required to have consistent and coherent risk profiles relative to each other, which
would cover a range of business types and risk types as well as asset sizes for the institutions.

The second study on the Chinese banking sector utilized less reliable data sources as they
adopted the approach of Feng et al. (2012), who collected loss data of Chinese commercial
banks through the national media, covering 1990–2010. In the process of collecting data for
banks, which include the four major state-owned commercial banks (SOCBs), nine joint-stock
commercial banks (JSCBs), 35 city commercial banks (CCBs), 74 urban and rural credit coop-
eratives (URCCs), and 13 China Postal Savings (CPS) subsidiaries. The authors also note that
the highest single OpRisk loss amount is up to 7.4 billion yuan, whereas the lowest amount is
50,000 yuan. In addition, losses measured in foreign currency were converted back via the real
exchange rate when the loss occurred to convert it to the equivalent amount in yuan. Details
of the incidence bank, incidence bank location, type of OpRisk loss, amount of loss, incident
time and time span, and the sources of OpRisk events were noted.

Starting with the first study, the work of Dutta and Perry (2006), we note that in this
paper the authors explored a number of key statistical questions relating to the modelling of
OpRisk data in practical banking settings. As noted by Dutta and Perry (2006), a key concern
for banks and financial institutions, when designing an LDA model, is the choice of model to
use for modeling the severity (dollar value) of operational losses. In addition, a key concern for
regulatory authorities is the question of whether institutions using different severity-modeling
techniques can arrive at very different (and inconsistent) estimates of their exposure. They find,
not surprisingly, that using different models for the same institution can result in materially dif-
ferent capital estimates. However, on the more promising side for LDA modeling in OpRisk,
they find that there are some models that yield consistent and plausible results for different
institutions even when their data differ in some core characteristics related to collection pro-
cesses. This suggests that OpRisk data display some regularity across institutions which can be
modeled. In this analysis, the authors note that they were careful to consider both the modeling
of aggregate data at the enterprise level, which would group losses from different business lines
and risk types, as well as modeling the attributes of the individual business line and risk types
under the recommended business lines of Basel II/Basel III.

Data were collected from seven institutions, with each institution selected as it had at
least 1000 loss events in total, and these data were part of the 2004 LDCE. Using these data,
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the authors performed a detailed statistical study of attributes of the data and flexible dis-
tributional models that could be considered for OpRisk models. Based on these seven data
sources, over a range of different business units and risk types, they found that to fit all of the
various data sets one would need to use a model that is flexible enough in its structure. Dutta
and Perry (2006) considered modeling via several different means: parametric distributions,
Extreme Value Theory (EVT) models, and nonparametric empirical models. In this chapter,
we focus on the parametric models.

Dutta and Perry (2006) focused on models considered by financial institutions in Quan-
titative Impact Study 4 (QIS-4) submissions; these included one-two-, and four-parameter
models. The one- and two-parameter distributions for the severity models included exponen-
tial, gamma, Generalized Pareto, loglogistic, truncated LogNormal, and Weibull. The four-
parameter distributions included models such as the Generalized Beta Distribution of Second
Kind (GB2) and the g-and-h distribution. These models were also considered Peters and Sisson
(2006) for modeling severity models in OpRisk under a Bayesian framework. In this chapter,
we consider these models as well as generalizations of these families of severity models.

Dutta and Perry (2006) discusss the importance of fitting distributions that are flexible
but appropriate for the accurate modeling of OpRisk data, focus on the following five simple
attributes in deciding upon a suitable statistical model for the severity distribution:

1. Good fit. Statistically, how well does the model fit the data?
2. Realistic. If a model fits well in a statistical sense, does it generate a loss distribution with

a realistic capital estimate?
3. Well-specified. Are the characteristics of the fitted data similar to the loss data and logically

consistent?
4. Flexible. How well is the model able to reasonably accommodate a wide variety of empirical

loss data?
5. Simple. Is the model easy to apply in practice, and is it easy to generate random numbers

for the purposes of loss simulation?

Their criterion was to regard any technique that is rejected as a poor statistical fit for the majority
of institutions to be inferior for modeling OpRisk. The reason for this consideration was related
to their desire to investigate the ability to find aspects of uniformity or universality in the
OpRisk loss process that they studied. They concluded from the analysis undertaken that such
an approach would suggest that OpRisk can be modeled and there is regularity in the loss data
across institutions. While this approach combined elements of expert judgment and statistical
hypothesis testing, it was partially heuristic and not the most formal statistical approach to
address such problems. However, it does represent a plausible attempt given the limited data
sources and resources, as well as the competing constraints mentioned in the measurement
criterion they considered.

We note that an alternative purely statistical approach to such model selection processes
was proposed for OpRisk modeling in the work of Peters and Sisson (2006), whose approach to
model selection was to consider a Bayesian model selection based on Bayesian methodology of
the Bayes Factor and information criterion for penalized model selection such as the Bayesian
Information Criterion.

In both approaches, it is generally acknowledged that accurate selection of an appropriate
severity model is paramount to appropriate modeling of the loss processes and therefore to the
accurate estimation of capital.
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Returning to the findings from the seven sources of OpRisk data studied by Dutta and
Perry (2006), they found that the Exponential, Gamma, and Weibull distributions are rejected
as good fits to the loss data for virtually all institutions at the enterprise, business line, and
event-type levels. This was decided based on formal one-sample statistical goodness-of-fit tests
for these models.

When considering the g-and-h distribution, they did not perform the standard hypothesis
test for the goodness-of-fit, opting instead for a comparison of Quantile–Quantile (Q–Q) plots
and diagnostics based on the five criteria posed earlier. In all situations, they found that the
g-and-h distribution fit as well as other distributions on the Q–Q plot. The next most preferred
distributions were the GB2, loglogistic, truncated LogNormal, and Generalized Pareto models,
indicating the importance of considering flexible severity loss models. In addition, they noted
that the EVT models fitted under a Peaks Over Threshold (POT) framework were also generally
suitable fits for the tails, consistent with the discussions and findings for OpRisk data in the
Chinese banking sector reported by Lu et al. (2012).

Having motivated the need for flexible families of loss distribution in OpRisk, in the fol-
lowing sections we present, several different families of severity distributional models along
with a description of their features. This will allow practitioners and researchers to gain a deeper
understanding of the flexible classes of models that are available from statistics to utilize in their
LDA modeling exercises and more importantly the features and properties of such models that
make them appropriate for OpRisk settings.

In general, when considering models for severity distributions in OpRisk, it is useful to
recognize that distributional families typically fall into two broad classes of models: those with
general forms for the density or distribution functions; and those that are defined by a family
of transformations of a base distribution, and hence by their quantile function.

9.4 Quantile Function Heavy-Tailed Severity Models

In this section, we discuss a popular distributional family for severity models in OpRisk which
can only be specified via the transformation of another standard random variable such as a
Gaussian. Examples of OpRisk severity models defined through their quantile functions include
the Johnson family with base distribution given by Gaussian or logisitic and the Tukey family
with base distribution Gaussian or logistic. The concept of constructing skew and heavy-tailed
distributions through the use of a transformation of a Gaussian random variable was originally
proposed in the work of Tukey (1977a) and is therefore aptly named the family of Tukey dis-
tributions. This family of distributions was then extended by Hoaglin (1985) and Jorge and
Boris (1984). Within this family of distributions, two particular subfamilies have received the
most attention in the literature; these correspond to the g-and-h and the g-and-k distribu-
tions. The first of these families has been studied in a few contexts in OpRisk (see Dutta and
Perry 2006, Peters and Sisson 2006, Degen et al. 2007, and Jiménez and Arunachalam 2011,
and the references therein for applications).

Before presenting details of the g-and-h and the g-and-k distributions, we first discuss
the general family of Tukey distributions. Basically, Tukey suggested several nonlinear trans-
formations of a standard Gaussian random variable, denoted here by W ∼ Normal(0, 1) so
as not to be confused with the annual loss that we denote throughout by Z . The g-and-h
transformations involve a skewness transformation g and a kurtosis transformation h. If one
replaces the kurtosis transformation of the type h with the type k, one obtains the g-and-k
family of distributions discussed by Rayner and MacGillivray (2002). If the h transformation
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is replaced by the j transformation, one obtains the g-and-j transformations of Fischer and
Klein (2004).

We begin with the generic specification of the Tukey transformation given in Defini-
tion 9.1. These types of transformations were labelled elongation transformations, where the
notion of elongation was noted to be closely related to tail properties such as heavy-tailedness
(see discussions by Hoaglin 1985). In considering such a class of elongation transformations
to obtain a distribution, one is comparing the tail strength of the new distribution with that
of the base distribution (such as a Gaussian or logistic). In this regard, one can think of tail
strength or heavy-tailedness as an absolute concept, whereas the notion of elongation strength
is a relative concept. In the following, we will first consider relative elongation compared to a
base distribution for a generic random variable W . It should be clear that such a measure of
relative tail behavior is independent of location and scale. Other properties, that such an elon-
gation transform T (·), should satisfy are that it should preserve symmetry T (w)=T (−w),
and the base distribution should not be significantly transformed in the center, such that
T (w)=w+O(w2) for w around the mode. Then, to increase the tails of the resulting distri-
bution relative to the base, it is important to assume that T is strictly monotonically increasing
transform that is convex, that is, one has the transform satisfying for positive w > 0 that
T ′(w) > 0 and T ′′(w) > 0. One such transformation family satisfying these properties
includes the Tukey transformations.

Definition 9.1 (Tukey transformations) Consider a Gaussian random variable
W ∼Normal(0, 1) and a transformation T (w) given by

X = W T (W )θ, (9.1)

for a parameter θ ∈ R.

Typically, in the OpRisk setting, it will be desirable when working with such severity
models to enforce a constraint that the tails of the resulting distribution after transformation
are heavier than the Gaussian distribution. In this case, one should consider a transformation
T (w), which is positive, symmetric, and strictly monotonically increasing for positive values
of W ≥ 0. In addition, it will be desirable to obtain this property of heavy tails relative to
the Gaussian to also consider setting the parameter θ ≥ 0. As discussed, a series of kurtosis
transformations were proposed in the literature. The Tukey h, k, and j transforms are provided
in Definition 9.2.

Definition 9.2 (Tukey’s kurtosis transformations, h, k and j types)
The h-type of transformation, denoted by Th(w), is given by

Th(w) = exp
(
w2) . (9.2)

The k-type of transformation, denoted by Tk(w), is given by

Tk(w) = 1 + w2. (9.3)

The j-type of transformation, denoted by Tj(w), is given by

Tj(w) =
1
2
[exp(w) + exp(−w)] . (9.4)
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EXAMPLE 9.1 Shape of Tukey Base Elongation Transforms for Kurtosis: h, j, k

In Figure 9.1, we plot the simple base transforms for the h, j and k Tukey elongation
transforms.

0 0.5 1 1.5 2 2.5 3 3.5 4

107

106

105

104

103

102

101

100

Tukey h−transform
Tukey k−transform
Tukey j−transform

figure 9.1 Base transforms for the Tukey elongation kurtosis transforms

These plots demonstrate that the base j and k transforms have a similar effect
on the tails of the base distribution, which is distinct in the kurtosis introduced by
the h transform.

To nest all these transformations within one class of transformations, the work of Fischer
(2010) proposed a power series representation denoted by the subscript a given in Equation
(9.5). This suggestion, though it nested the other families of distributions, is not practical for
use as it involves the requirement of estimating a very large (infinite) number of parameters ai
to obtain the data-generating mechanism:

Ta(w) =
∞∑

i=0

aiw2i. (9.5)

As a consequence, this nesting structure was replaced with the general transformation given by
Fischer (2010) which took the form given in Equation (9.6):

Thjk(w;α, β, γ) =
(

1 +
(w2 + γ)

α − γα

β

)β

, α > 0, β ≥ 1, γ > 0. (9.6)

Then it is clear that the original h, k, and j transformations are recovered with
Th(w) = Thjk(w; 1,∞, γ), Tk(w) = Thjk(w; 1, 1, γ), and Tj(w) ≈ Thjk(w; 0.5,∞, 0.5).
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EXAMPLE 9.2 Tukey Elongation Transform Density Shapes

Consider the Tukey elongation transform of a base reference random variable
W ∼ Normal(0, 1) given by the generic transform super class of Fischer (2010)
according to

Thjk(w;α, β, γ) =
(

1 +
(w2 + γ)

α − γα

β

)β

, α > 0, β ≥ 1, γ > 0. (9.7)

The plots in Figures 9.2–9.4 show the distributions of this general transform relative
to the base Gaussian distribution without truncation, scaling, or translation param-
eters — purely the elongation transform effects. In the first set of plots (Figure 9.2),
we consider the effect of the parameter α in the generalized transform.

In the second set of plots (Figure 9.3), we consider the effect of the parameter
β in the generalized transform.
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figure 9.2 Top left subplot: The density of the Thjk transform with base standard Gaussian
distribution and parameters α ∈ {0.05, 0.1, 0.5, 1}, β = 0.1, and γ = 0.1. Top right subplot: The
distribution function of the Thjk transform with base standard Gaussian distribution and
parameters α ∈ {0.05, 0.1, 0.5, 1}, β = 0.1, and γ = 0.1. Bottom left subplot: The density of the
Thjk transform with base standard Gaussian distribution and parameters α ∈ {0.05, 0.1, 0.5, 1},
β = 0.001, and γ = 0.001. Bottom right subplot: The distribution of the Thjk transform with base
standard Gaussian distribution and parameters α ∈ {0.05, 0.1, 0.5, 1}, β = 0.001, and
γ = 0.001
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figure 9.3 Top subplot: The density of the Thjk transform with base standard Gaussian
distribution and parameters α = 0.05, β ∈ {0.01, 0.1, 1, 2}, and γ= 0.001. Bottom subplot: The
distribution of the Thjk transform with base standard Gaussian distribution and parameters
α = 0.05, β ∈ {0.01, 0.1, 1, 2}, and γ = 0.001

In the third set of plots (Figure 9.4), we consider the effect of the parameter γ
in the generalized transform.

These examples simply demonstrate the flexible distributional shapes that can be obtained
with the basic elongation transform given by the generalized transform of Fischer (2010) for
different sets of parameter values. In terms of practical severity models, we will now continue
to parameterize these transforms to provide sufficient parameters that may make these models
suitable for OpRisk loss modeling, leading to, for example, the g-and-h distribution family.

Under the Thjk superclass of transformations, one can state the following basic prop-
erties. Assuming that W ∼ Normal(0, 1) will produce the severity random variable
X = K (W ) = WThjk(W )θ, the severity density fX (·) and quantile functions QX (·), for loss
random variable X , are given by

fX (x) =
1

Q ′
X
(
Q−1

X (x)
)

=
φ (K −1(x))
K ′ (K −1(x))

, inf {x : x ∈ S} < x < sup {x : x ∈ S} (9.8)

QX (α) = K (QW (α)) , α ∈ [0, 1],
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figure 9.4 Top left subplot: The density of the Thjk transform with base standard Gaussian
distribution and parameters α = 0.1, β = 0.1, and γ ∈ {0.01, 0.1, 1}. Top right subplot: The distribution
function of the Thjk transform with base standard Gaussian distribution and parameters α = 0.1, β = 0.1,
and γ ∈ {0.01, 0.1, 1}. Bottom left subplot: The density of the Thjk transform with base standard Gaussian
distribution and parameters α = 1, β = 1, and γ = 1. Bottom right subplot: The distribution of the Thjk

transform with base standard Gaussian distribution and parameters α = 1, β = 1, and γ = 1

with S the appropriate support of the random variable X and

K ′(w) = Thjk(w)θ−1
(

Thjk(w) + θwT ′
hjk(w)

)
.

Other generalizations to the Tukey family include those of Rayner and MacGillivray (2002),
who propose the generalized forms for the quantile functions of the g-and-h and g-and-k fam-
ilies of distributions given in Equations (9.9) and (9.10). The generalized g-and-h and g-and-k
families have b > 0 and c is a constant to ensure proper distributions are obtained.

QX (α; a, b, g, h) = a + bQW (α)

(
1 + c

1 − exp (−gQW (α))

1 + exp (−gQW (α))

)
exp

(
1
2

hQW (α)2
)

(9.9)

QX (α; a, b, g, k) = a + bQW (α)

(
1 + c

1 − exp (−gQW (α))

1 + exp (−gQW (α))

)(
1 + QW (α)2)k

. (9.10)

Next, we explain the properties of specific subfamilies of distributions, showing how these
results are derived for the basic g-and-h family.
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9.4.1 G-AND-H SEVERITY MODEL FAMILY IN OPRISK

The family of g-and-h distributions was first studied by Tukey (1977b) and then considered in
a number of works such as those by Hoaglin (1985), Azzalini (1985), and Fischer et al. (2007).
The multivariate versions of this model have been discussed by Field and Genton (2006).

The advantage of the g-and-h family for modeling severity in an OpRisk LDA framework
is the fact that it provides a very flexible range of skew, kurtosis, and heavy-tailed features while
also being specified as a rather simple transformation of standard Gaussian random variates,
making simulation of the annual loss under such a model efficient and simple. It is important
to note that the support of the g-and-h density incudes the entire real line, as such, one must
be cautious in OpRisk settings to manage the treatment of the parameter settings to restrict the
probability of negative values as much as possible. This can be achieved either by truncation or
by restriction of the parameter values. In some subfamily members, the g-and-h family auto-
matically takes a positive support such as the Double h–h subfamily. In addition, it has been
shown that the g-and-h distribution can approximate most members of the Personian family
of distributions up to a desired level of accuracy.

9.4.1.1 g-and-h, g, h, and h–h Family Transformations. The g-and-h family can
be considered as composed of three transformations that can produce subfamilies of non-
Gaussian distributions for severity based on the g-distributions, the h-distributions, and the
g-and-h distributional families. The basic specifications in which g and h components are
treated as constants are given in Definitions 9.3, 9.4, and 9.5 in terms of transformations of
Gaussian random variables.

Definition 9.3 (g-and-h Distributional family) Let W ∼Normal(0, 1) be a standard Gaus-
sian random variable. Then the loss random variable X has severity distribution given by the g-and-h
distribution with parameters a, b, g, h ∈ R, denoted X ∼ GH(a, b, g, h), if X is given by (for
g �= 0)

X = Tg,h (W ; a, b, g, h) := a + b
exp (gW )− 1

g
exp

(
hW 2

2

)
. (9.11)

The parameters a and b are linear transformations whereas the parameters g and h can
be significantly extended to polynomials as discussed later, and play an important role in the
skewness and kurtosis properties of the g-and-h family.

Remark 9.2 In general, one may consider the constants g and h to be more flexibly selected as
polynomials, which would include higher orders of W 2. These polynomials could take the form, for
example, of any integers p and q :

g(w) := α0 + α1w + · · ·+ αpw p,

h(w) := β0 + β1w + · · ·+ βqwq.
(9.12)

The addition of these polynomial terms can provide additional degrees of freedom to improve the
ability to fit data. These have been shown to be significant when modeling certain types of OpRisk
data, as demonstrated by Dutta and Perry (2006) and Peters and Sisson (2006).
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EXAMPLE 9.3 g-and-h Elongation Transform Density Shapes (Base Gaussian
Distribution)

Consider the g-and-h elongation transform of a base reference random variable
W ∼ Normal(0, 1) given by

X = Tg,h (W ; a, b, g, h) := a + b
exp (gW )− 1

g
exp

(
hW 2

2

)
. (9.13)

The plots in Figure 9.5 show the distributions of this general transform relative to the
base Gaussian distribution without truncation, scaling, or translation parameters —
purely the elongation transform effects. In the first set of plots (Figure 9.5), we con-
sider the effect of the parameters g and h in the generalized transform.
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figure 9.5 Top subplot: This plot shows the effect of the skewness parameter g on the
elongation transformed severity distribution versus the base Gaussian distribution with
g ∈ {0.1, 0.5, 0.75, 1}. In this case, the other parameters were set to a = 3, b= 1, and h = 0.001.
Bottom subplot: This plot shows the effect of the kurtosis parameter h on the elongation
transformed severity distribution versus the base Gaussian distribution with h ∈ {0.01, 1, 5}. In
this case, the other parameters were set to a = 0, b= 1, and g = 1

In the second example (Figure 9.6), we demonstrate the effect of changing the base distri-
bution to a LogNormal density model instead of the Gaussian distribution.
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EXAMPLE 9.4 g-and-h Elongation Transform Density Shapes: Base Gaussian
versus Logistic Distribution

Consider the g-and-h elongation transform of one of two base reference random
variables W ∼ Normal(0, 1) or W ∼ LogNormal(0, 1) given by

X = Tg,h(W ; a, b, g, h) := a + b
exp (gW )− 1

g
exp

(
hW 2

2

)
. (9.14)

The plot in Figure 9.6 shows the distributions of this general transform rela-
tive to the base Gaussian distribution without truncation, scaling, or translation
parameters — purely the elongation transform effects. In the first set of plots, we
consider the effect of the parameter g and h in the generalized transform.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

0 2 4 6 8 10
0

0.2

0.4

0.6

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

figure 9.6 Top left subplot: This plot shows the effect of the skewness parameter g on the
elongation transformed severity distribution versus the base Gaussian distribution with
g ∈ {0.1, 0.5, 0.75, 1}. In this case, the other parameters were set to a = 3, b = 1, and
h = 0.001. Top right subplot: This plot shows the effect of the kurtosis parameter h on the
elongation transformed severity distribution versus the base Gaussian distribution with
h ∈ {0.01, 1, 5}. In this case, the other parameters were set to a = 0, b = 1, and g = 1. Bottom
left subplot: This plot shows the effect of the skewness parameter g on the elongation
transformed severity distribution versus the base LogNormal(0,1) distribution with
g ∈ {0.1, 0.5, 0.75, 1}. In this case, the other parameters were set to a = 3, b = 1, and
h = 0.001. Bottom right subplot: This plot shows the effect of the kurtosis parameter h on the
elongation transformed severity distribution versus the base LogNormal(0,1) distribution with
h ∈ {0.01, 1, 5}. In this case, the other parameters were set to a = 0, b = 1, and g = 1
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Remark 9.3 Dutta and Perry (2006) recommended that a reasonable range of parameter values
for the parameters g and h was to restrict them to be g, h > 0 and in particular the enterprise level
modeling they performed involved the ranges g ∈ [1.79, 2.30] and h ∈ [0.10, 0.35].

Within this family of g-and-h distributions, one can also define the subfamilies of distribu-
tions given by the g and the h families. Again, we present these models in their simplest form,
with constant g or h, though in practice one may include polynomials in W for such models.

Definition 9.4 (g Distributional Family) Let W ∼ Normal(0, 1) be a standard Gaussian ran-
dom variable. Then the loss random variable X has severity distribution given by the g distribution
with parameters a, b, g ∈ R, denoted X ∼ G(a, b, g), if X is given by (for g �= 0)

X = Tg (W ; a, b, g) := a + b
exp (gW )− 1

g
. (9.15)

Remark 9.4 Note that the g-distribution subfamily corresponds (in the case that g is a constant) to
a scaled LogNormal distribution.

Definition 9.5 (h Distributional Family) Let W ∼Normal(0, 1) be a standard Gaussian ran-
dom variable. Then the loss random variable X has severity distribution given by the h distribution
with parameters a, b, h ∈ R, denoted X ∼ H(a, b, h), if X is given by

X = Th (W ; a, b, h) := a + bW exp

(
hW 2

2

)
. (9.16)

In addition, one may obtain an asymmetric class of h–h distributions studied by
Morgenthaler and Tukey (2000, section 2.2), Headrick and Pant (2012a and 2012b). The
asymmetric h–h distribution transformation is given in Definition 9.6.

Definition 9.6 (Double h–h Distributional Family) Let W ∼ Normal(0, 1) be a standard
Gaussian random variable. Then the loss random variable X has severity distribution given by the
unit h–h distribution with parameters hl , hr ∈ R, denoted X ∼ HH(hl , hr), if X is given by

X = Th,h (W ; hl , hr) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W exp

(
1
2

hl W 2
)
, W ≤ 0,

W exp

(
1
2

hrW 2
)
, W ≥ 0,

(9.17)

for hr ≥ 0 and hl ≥ 0.

In addition to these families of Tukey transformations discussed, there have been modi-
fied g-and-h families developed based on L-moments. The L-moment Tukey transformation
families developed by Headrick and Pant (2012b) are based on transformation of a random
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variable which involves a logistic distribution that is, the distribution of random variable W is
changed from the standard Gaussian to the following form W ∼ F (w;μ, s), which has density,
distribution, and quantile functions

f (w) =
exp (−(w − μ)/s)

s (1 + exp (−(w − μ)/s))2 ,

F (w) =
1

1 + exp (−(w − μ)/s)
,

QW (α) = μ+ s ln
(

α

1 − α

)
, α ∈ [0, 1],

(9.18)

for all w ∈ R, μ ∈ R, and s ∈ R
+. The motivation for modifying the distribution transformed

under the Tukey structure was related to the fact that inference on the parameters was to be
performed with L-moments and L-correlation. The four classes of modified Tukey quantile
function transformations are then given in Definition 9.7

Definition 9.7 (L-Moment Tukey Transforms) Let W ∼ Logistic(μ = 0, s = 1) be a stan-
dard logistic distributed random variable. Then the loss random variable X has severity distribution
given by the L-moment Tukey family as follows:

1. The γ−κ Tukey family transformation is given by

X = Tγ,κ(W ) = γ−1 (exp(γW )− 1) exp(κ|W |). (9.19)

This is the analog of the g-and-h Tukey transform for the logistic distribution case for γ �= 0
and κ ≥ 0;

2. The κL−κR Tukey family transformation is given by

X = TκL,κR (W ) =

{
W exp (κL|W |) , W ≤ 0

W exp (κR|W |) , W ≥ 0.
(9.20)

This is the analog of the double h–h Tukey transform for the logistic distribution case for κL ≥ 0,
κR ≥ 0, and κL �= κR.

Algorithm 9.1 (Simulating Losses from a g-and-h Severity Model)

1. Draw a standard Gaussian random variate: Zi ∼ Normal(0, 1);
2. Given p, q, and coefficients {αi}p

i=0 and {βi}q
i=0, evaluate the polynomials

g (Wi) = α0 + α1Wi + · · ·+ αpW p
i

h (Wi) = β0 + β1Wi + · · ·+ βqW q
i .

(9.21)

3. Then, given parameters a, b and polynomials g (Wi) and h (Wi), evaluate transformation

Xi = a + b
exp (g (Wi)Wi)− 1

g (Wi)
exp

(
h (Wi)W 2

i

2

)
.
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9.4.1.2 g-and-h, g, h, and h–h Family Distribution, Density, and Statistical
Properties. Next we discuss properties of the g-and-h family and in particular different
ways that people have sought to evaluate and present the distribution and density functions for
the g-and-h family. In general, it will be informative for this section to remind the reader of the
following basic property.

Proposition 9.1 If X is a continuous random variable distributed according to distribution
X ∼ F (x), which is monotonically increasing on support Supp {F (x)} = {x : 0 < F (x) < 1},
then, in this general case, one can show that the quantile function QX (α) = F−1(α) for α ∈ [0, 1]
determines the relationship between the random variable X and any other continuous random vari-
able with monotonically increasing distribution, say W ∼ G(w). The relationship is then specified
through the transformation

X d
= F−1 (G(W )) . (9.22)

When the random variable of W is standard Gaussian as utilized in the g-and-h family,
one can show that for any continously differentiable transformation X = T (W ), X will have
a density given in Equation (9.23) with respect to the standard Gaussian density φ(·). In this
case, one can also observe that when the transform T (·) increases rapidly, the resulting density
is heavy-tailed. For instance, a linear growth in the function T (·) results in tail behavior for the
distribution of random variable X being equivalent to a Gaussian:

fX (x) =
φ (T−1(x))
T ′ (T−1(x))

. (9.23)

As observed previously, the Tukey family has a transformation T (·) given in Definition 9.1:

X = T (W ) = W
(

h
2

W 2
)
. (9.24)

Note: The original Tukey h-type transformation had θ = 1 and an addition scaling of 1
2 as

indicated earlier. This transformation has the property that its derivative

d
dw

T (w) =
(
1 + hw2) exp(1

2
hw2

)
≥ 1 (9.25)

for all h ≥ 0.
In addition, in the following discussions, it will be useful to recall the following properties

of the g-and-h family of distributions (see discussions in Dutta and Babbel 2002):

1. The g-and-h transformation can be shown to be strictly monotonically increasing in its
argument, that is, for all w1 ≤ w2 one has Tgh(w1) ≤ Tgh(w2);

2. If a= 0, then the g-and-h transformation satisfies the condition T−g,h(W )= −
Tg,h(−W ).

Degen et al. (2007) observed that one can specify the distribution function of the g-and-h
distribution as given in Definition 9.8 via a composite function. Note that the scale parameters
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a and b can be dropped without loss of generality. The particular representation developed
by these authors was convenient to allow one to obtain a closed-form representation of the
Value-at-Risk for such a random variable.

Definition 9.8 (g-and-h Distribution Function (constant g and h with h > 0)) Consider
the g-and-h distributed random variable X ∼ GH(a = 0, b = 1, g, h) with constant param-
eters g and h > 0. The distribution function can be specified according to the following composite
function:

FX (x; g, h) = Φ
(
k−1(x)

)
, (9.26)

where Φ(·) is the standard Gaussian distribution and the function k(x) is specified by

k(x) =
exp (gx)− 1

g
exp

(
hx2

2

)
. (9.27)

In this parametrization, the parameter g will control the skew of the distribution both in
terms of the sign and the magnitude, while the parameter h will control heaviness of the tails
and is related directly to the kurtosis. This will be discussed further when the regular variation
properties of this model are explored. Under the restricted parametrization for the distribution
given in Definition 9.8, one can obtain the quantile function given in Definition 9.9.

Definition 9.9 (g-and-h Quantile Function (constant g and h with h > 0)) Consider the
g-and-h distributed random variable X ∼ GH(a = 0, b = 1, g, h) with constant parameters
g and h > 0. The quantile function for a level α ∈ [0, 1] can be specified according to the following
representation:

QX (α) := qX (α; g, h) = F−1
X (α; g, h) = k

(
Φ−1(α)

)
, (9.28)

where Φ(·) is the standard Gaussian distribution and the function k(x) is specified by

k(x) =
exp (gx)− 1

g
exp

(
hx2

2

)
. (9.29)

Headrick et al. (2008) approach the problem of specification of the distribution and den-
sity for generic parameterizations of the g-and-h family from an analytic geometry perspec-
tive; this can be seen to be an analogous representation of the approach discussed earlier by
Degen et al. (2007). In fact, the representations they obtained were equivalent with equivalent
parameter restrictions. We briefly mention these results here as they allow for an alternative
perspective on how one obtains the results in Definitions 9.8 and 9.9. To proceed with the
representation developed by Headrick et al. (2008), one needs to define φ(w) = fW (w) and
Φ(w) = FW (w), respectively, to be the curves that characterize the standard Gaussian density
and distribution. Then consider that w is actually comprised of two components (a vector) with
an additional auxiliary variable such that w = (x, y) will produce the following mappings of
the curves fW (w) and FW (w) according to the following relationships:



�

�

“Cruz_Driver” — 2015/1/12 — 11:10 — page 318 — #19
�

�

�

�

�

�

318 CHAPTER 9 Flexible Parametric Severity Models: Basics

fW (w) : w → R
2 := fW (w, fW (w)) ,

FW (w) : w → R
2 := FW (w, FW (w)) .

(9.30)

Given these mappings, one may then define analytically the form of the quantile function for
the g-and-h distribution according to the expression given in Equation (9.1), which we reiterate
below to present the quantile function notation QX (w) of the g-and-h loss random variable
given by

q(w; g, h) =
exp (gw)− 1

g
exp

(
hw2

2

)
. (9.31)

Here, q(w; g, h) is a strictly increasing monotonic function in w with the parameter restrictions
g �= 0 and h > 0. Using these definitions Headrick et al. (2008) then provide a specification
for the density and distribution functions for the g-and-h family as detailed in Definition 9.10.

Definition 9.10 (g-and-h Distribution and Density Functions) Consider the g-and-h dis-
tributed random variable X ∼ GH(a = 0, b = 1, g, h) with constant parameters g and h > 0.
The density and distribution functions associated to the quantile function q(w; g, h) can be specified
according to the following composite functions based on the auxiliary variable w = (x, y):

f ◦ q : q(w; g, h) → R
2 := fq(W ;g,h)(w) = fq(W ;g,h)

(
q(w; g, h),

fW (w)
q′(w; g, h)

)
,

F ◦ q : q(w; g, h) → R
2 := Fq(W ;g,h)(w) = Fq(W ;g,h) (q(w; g, h), FW (w)) ,

(9.32)

where q′(z; g, h) denotes the derivative of the quantile function given by

q′(z; g, h) :=
d
dz

[
exp (gz)− 1

g
exp

(
hz2

2

)]

= exp

(
gz +

hz2

2

)
+

h
g

z exp
(

hz2

2

)
(exp(gz)− 1) .

(9.33)

One advantage of the specification of the distribution and density functions with regard
to a particular quantile function is that the statistical properties of these distributions can now
be easily studied. For instance, the mode and moments of the distribution can be characterized.
The result in Proposition 9.2 provides the mode for the g-and-h distribution in Definition 9.10.

Proposition 9.2 (Mode and Median of the g-and-h Density) Consider the g-and-h distributed
random variable X ∼ GH(a = 0, b = 1, g, h) with constant parameters g and h > 0. The mode
of the density is located at the value w̃ = Mode [W ], which produces a maximum value of the density
at fq(W ;g,h)(w̃) and can be found as the solution to the following equation when w = w̃, which is
selected to satisfy

d
dw

[
fW (w)

q′(w; g, h)

]
= 0. (9.34)
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The median of the g-and-h distributed random variable is then given by w0.5 = Median [W ] and
will correspond to the median being the limit of limw→0 q(w; g, h) = 0. Therefore, one sees that
in the general g-and-h distribution the median of the data set will be the parameter a.

These can be found numerically and for the mode the solution obtained will be guaranteed
to be a globally optimal solution (see discussion by Headrick et al. 2008). It may also be noted
that in the case of the h-type and double h-type Tukey distributions, the median and mode are
at the origin (for a = 0).

In addition, one may now express the moments of the g-and-h distributed random variable
according to the results in Proposition 9.3. It was noted by Dutta and Babbel (2002) that since
the g-distribution is a horizontally shifted LogNormal distribution, then the moments of the
g-distribution take the same form as those of a LogNormal model with appropriate adjustment
for the translation. The h-distributional family is symmetric (except the double h–h family);
consequently, all odd-order moments for the h-subfamily are zero.

Proposition 9.3 (Moments of the g-and-h Density) Consider the g-and-h distributed random
variable X ∼ GH(a = 0, b = 1, g, h) with constant parameters g and h > 0. The r-th inte-
ger moment of the distribution in Equation (9.32) is given with respect to the standard Normal
distribution and the r-th power of the quantile function q(w) by

E [X r ] = E [q(W ; g, h)r ] =

∞∫
−∞

q(w; g, h)r fW (w)dw, (9.35)

which will exist if h ∈
[
0, 1

r

)
. One can also observe more generally that under the g-and-h transform

the following identity holds with regard to powers of the standard Gaussian, W ∼ Normal(0, 1),
such that

X n = Tg,h(W ; a, b, g, h)n

=
(
a + bTg,h(W ; a = 0, b = 1, g, h)

)n

=
n∑

i=0

n!
(n − i)!i!

an−ibiTg,h(W ; a = 0, b = 1, g, h)i,

(9.36)

which will produce moments given by

E [X n] = E
[(

a + bTg,h(W ; a = 0, b = 1, g, h)
)n]

=

n∑
i=0

n!
(n − i)!i!

an−ibi
E
[
Tg,h(W ; a = 0, b = 1, g, h)i] . (9.37)

Furthermore, it was shown by Dutta and Babbel (2002) that when it exists one can obtain the
general expression

E
[
Tg,h(W ; a = 0, b = 1, g, h)i] =

∑i
r=0(−1)r i!

(i−r)!r! exp
(

(i−r)2g2

2(1−ih)

)
√

(1 − ih)gi
, (9.38)
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which would produce the following four moments in closed form:

E [X ] = E [q(W ; g, h)] =
[
exp

(
g2

2 − 2h

)
− 1

] [
g
√

1 − h
]−1

E
[
X 2] = E

[
q(W ; g, h)2] = [

1 − 2 exp
(

g2

2 − 4h

)
+ exp

(
2g2

1 − 2h

)] [
g2
√

1 − 2h
]−1

E
[
X 3] = E

[
q(W ; g, h)3] = [

3 exp
(

g2

2 − 6h

)
+ exp

(
9g2

2 − 6h

)

− 3 exp
(

2g2

1 − 3h

)
− 1

] [
g3
√

1 − 3h
]−1

E
[
X 4] = E

[
q(W ; g, h)4] = s(g, h) exp

(
8g2

1 − 4h

)[
g4
√

1 − 4h
]−1

.

with the function s(g, h) being given by

s(g, h)=
(

1+ 6 exp
(

6g2

4h − 1

)
+ exp

(
8g2

4h − 1

)
− 4 exp

(
7g2

8h − 2

)
− 4 exp

(
15g2

8h − 2

))
.

Remark 9.5 These results allow one to perform model estimation via moment matching of model
moments to empirical moments of the loss data.

As a consequence, one can easily then find the skew, kurtosis, and coefficient of vari-
ations for the g-and-h distribution as well as the subfamilies for the g-distributions and
h-distributions. Note that one can also develop variations of the g-and-h distribution density
and distribution functions will which avoid the restrictions specified in Definitions 9.8 and
9.10. In addition, there are numerous authors who have studied the generalized properties of
quantile-based functionals of asymmetry and kurtosis (see examples in Definition 9.11; also
see Balanda and MacGillivray 1988, 1990, Rayner and MacGillivray 2002, and Balanda and
MacGillivray 1988).

Definition 9.11 (Generalized Skewness and Kurtosis Functionals in OpRisk) In consider-
ing the generalizations of the skewness and kurtosis for transformation-based quantile function sever-
ity models, one can utilize the generalized specifications given for the skewness functional, for a given
distribution FX (x) with respect to its quantile function QX (x) by

γF =
QX (α) + QX (1 − α)− 2QX

( 1
2

)
QX (α)− QX (1 − α)

, α ∈ (0, 1). (9.39)

In addition, there is the spread functional given by

SF = QX (α)− QX (1 − α), α ∈ (0, 1). (9.40)

Such measures were discussed by Balanda and MacGillivray (1990) and it can be shown
that |γF (α)| ≤ 1. In the case of the g-and-h family of severity models, one would obtain the
forms given in Definition 9.12.
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Definition 9.12 (Generalized Skewness and Kurtosis for g-and-h Family) Consider the g-
and-h distributed random varaible X ∼ GH(a = 0, b = 1, g, h) with constant parameters g
and h > 0 and a quantile function for a level α ∈ [0, 1] given by

QX (α; g, h) = F−1
X (α; g, h) = k

(
Φ−1(α)

)
, (9.41)

where Φ(·) is the standard Gaussian distribution and the function k(x) is specified by

k(x) =
exp (gx)− 1

g
exp

(
hx2

2

)
. (9.42)

Then the generalized skewness and kurtosis are given by

SF = QX (α)− QX (1 − α)

=
exp (gΦ−1(α))− 1

g
exp

(
1
2

hΦ−1(α)2
)

− exp (gΦ−1(1 − α))− 1
g

exp

(
1
2

hΦ−1(1 − α)2
)
,

γF =
QX (α) + QX (1 − α)− 2QX

( 1
2

)
QX (α)− QX (1 − α)

=

exp(gΦ−1(α))−1
g exp

( 1
2 hΦ−1(α)2

)
SF

+

exp(gΦ−1(1−α))−1
g exp

( 1
2 hΦ−1(1 − α)2

)
SF

− 2
exp(gΦ−1(0.5))−1

g exp
( 1

2 hΦ−1(0.5)2
)

SF
.

9.4.2 TAIL PROPERTIES OF THE G-AND-H, G, H, AND H–H
SEVERITY IN OPRISK

In terms of the tail behavior of the g-and-h family of distributions, the properties of such sever-
ity models have been studied by numerous authors such as Morgenthaler and Tukey (2000)
and Degen et al. (2007). In particular, the tail property (index of regular variation) for the
g-and-h family of distributions was first studied for the h-distribution by Morgenthaler and
Tukey (2000) and later for the g-and-h distribution by Degen et al. (2007) (see Proposition
9.4). In addition, the second-order regular variation properties of the g-and-h family of distri-
butions was studied by Degen et al. (2007). In order to study the properties of regular variation
of the g-and-h family of loss distribution models it is first important to recall some basic defi-
nitions. First, we note that a postive measurable function f (·) is regularly varying if it satisfies
the conditions in Definition 9.13, see discussion in Karatzas and Shreve (1991).

Definition 9.13 (Regularly Varying Function) A positive measurable function f (·) is regularly
varying (at infinity) with an index α ∈ R if it satisfies:

• It is defined on some neighbourhood [x0,∞) of infinity; and
• It satisfies the following limiting relationship
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lim
x→∞

f (λx)
f (x)

= λα, ∀λ > 0. (9.43)

We note that when α = 0, then the function f (·) is said to be slowly varying (at infinity).
From this definition one can show that a random variable has a regularly varying distribution
if it satisfies the condition in Definition 9.14, see further discussion in detail in Peters and
Shevchenko (2015).

Definition 9.14 (Regularly Varying Random Variable) A loss random variable X with distri-
bution FX (x) taking positive support is said to be regularly varying with index α ≥ 0 if the right
tail distribution F X (x) = 1 − FX (x) is regularly varying with index −α.

The following important features can be noted about regularly varying distributions as
shown in Theorem 9.1, see detailed discussion in Bingham et al. (1989).

Theorem 9.1 (Properties of Regularly Varying Distributions) Given a loss distribution FX (x)
satisfying FX (x) < 1 for all x ≥ 0, the following conditions on FX (x) can be used to verify that it
is regularly varying such that FX (x) ∈ RVα:

• If FX (x) is absolutely continuous with density fX (x) such that for some α > 0 one has the
limit

lim
x→∞

xfX (x)
F X (x)

= α. (9.44)

Then fX (x) is regularly varying with index −(1 + α) and consequently F X (x) is regularly
varying with index −α;

• If the density fX (x) for loss distribution FX (x) is assumed to be regularly varying with index
−(1 + α) for some α > 0. Then the following limit,

lim
x→∞

xfX (x)
F X (x)

= α, (9.45)

will also be satisfied if F X (x) is regularly varying with index −α for some α > 0 and the
density fX (x) will be ultimately monotone.

Many additional properties are described for such heavy tailed distribution and density
functions. Here we will utilise the above stated conditions to assess the regular variation prop-
erties of the right tail of the g-and-h family of loss models. In particular we will see if a single
distributional parameter characterizes the heavy tailed feature as captured by the notion of
regular variation index, or if the relationship is more complex.
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Proposition 9.4 (Index of Regular Variation of g-and-h Distribution) Consider the random
variable W ∼ Normal(0, 1) and a loss random variable X , which has severity distribution given
by the g-and-h distribution with parameters a, b, g, h ∈ R, denoted X ∼ GH(a, b, g, h), with
h > 0 and density (distribution) f (x) (and F (x)) . Then the index of regular variation is obtained
by considering the following limit

lim
x→∞

xf (x)
F (x)

= lim
x→∞

φ(u) (exp(gu)− 1)
(1 − Φ(u)) (g exp(gu) + hu(exp(gu)− 1))

=
1
h

(9.46)

for u = k−1(x) where the function k(x) is given by

k(x) =
exp (gx)− 1

g
exp

(
hx2

2

)
. (9.47)

Hence, one can state that F ∈ RV− 1
h
.

The asymptotic tail behavior of the h-family of Tukey distributions was studied by
Morgenthaler and Tukey (2000 proposition 1) and is given in Proposition 9.5.

Proposition 9.5 (h-Type Tail Behaviour) Consider the h-type transformation, where
W ∼ Normal(0, 1) is a standard Gaussian random variable and the loss random variable
X has severity distribution given by the h-distribution with parameters a, b, h ∈ R, denoted
X ∼ H(a, b, h) according to

X = Th (W ; a, b, h) := a + bW exp

(
hW 2

2

)
. (9.48)

Then the asymptotic tail index of the h-type distribution is then given by 1/h. This is equivalent to
the g-and-h family for g �= 0.

This shows that the h-type family has a Pareto heavy-tailed property, hence the restriction
that moments will only exist on the order of less than 1/h. The g-family of distributions can be
shown to be subexponential in the tail behavior but not regularly varying. It was shown Degen
et al. (2007, theorem 2.2) that one can obtain an explicit form for the function of slow variation
in the g-and-h family as detailed in Theorem 9.2.

Theorem 9.2 (Slow Variation Representation of g-and-h Severity Models) Consider the
random variable W ∼ Normal(0, 1) and a loss random variable X , which has severity distribution
given by the g-and-h distribution with parameters a, b, g, h ∈ R, denoted X ∼ GH(a, b, g, h),
with g > 0 and h > 0 and density (distribution) f (x) (and F (x)) . Then F (x) = x−1/hL(x) for
some slowly varying function L(x) given as x → ∞ by

L(x) =
h√

2πg1/h

[
exp

(
g
h

√
g2 + 2h ln(gx)− g2

h

)
− 1

]1/h

√
g2 + 2h ln(gx)− g

(
1 + O

(
1
ln x

))
. (9.49)

From this explicit Karamata representation developed by Degen et al. (2007), it was also
shown that one can obtain the second-order regular variation properites of the g-and-h family.
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The implications of these findings are that the g-and-h distribution, under the parame-
ter restrictions g > 0 and h > 0, belongs to the domain of attraction of an Extreme Value
Distribution, such that X ∼ GH(a, b, g, h) with distribution F satisfying F ∈ MDA (Hγ)
where γ = h > 0. As a consequence, by the Pickands–Balkema–de Haan Theorem, dis-
cussed in detail in companion book Peters and Shevchenko (2015), one can state that there
exists an Extreme Value Index (EVI) constant γ and a positive measurable function β(·)
such that the following result between the excess distribution of the g-and-h (denoted by
Fu(x) = Pr (X − u ≤ x|X > u) and the generalized Pareto distribution (GPD) is satisfied
in the tails

lim
u↑∞

sup
x∈(0,∞)

∣∣Fu(x)− Gγ,β(u)(x)
∣∣ = 0. (9.50)

For discussion on the rate of convergence in the tails, see Raoult and Worms (2003) and the
application of this theorem to the g-and-h case by Degen et al. (2007 lemma 3.1) where it is
shown that the order of covergence is given by O (A exp (V −1(u))) for functions

V (x) := F−1
(exp(−x)) ,

A(x) :=
V ′′(ln x)
V ′(ln x)

− γ.
(9.51)

Hence, the conclusion from this analysis regarding the tail convergence of the excess distribution
of the g-and-h family toward the GPD Gγ,β(u)(x) is given explicitly by

ln L(x)
ln x

∼
√

2
g

h 3
2

1√
ln(x)

= O

(
1√

ln (k−1(x))

)
, x → ∞. (9.52)

Remark 9.6 The implications of this slow rate of convergence are that when data for severities
are obatained from a loss process, if a goodness-of-fit test suggests that one may not reject the null
hypothesis that these data came from a g-and-h distribution (under a composite test as described in
Chapter 8), then one should avoid performing estimation of the extreme quantiles, such as those used
to measure the capital via the Value-at-Risk, via methods based on Peaks Over Threshold (POT) or
Extreme Value Theory (EVT) based penultimate approximations.

9.4.3 PARAMETER ESTIMATION FOR THE G-AND-H SEVERITY
IN OPRISK

There have been many proposed methods for performing parameter estimation in the g-and-h
family of distributions. In this section, we survey a few of the possibilities. Dutta and Babbel
(2002) suggest a method of parameter estimation for constant g and h parameters based on
percentile matching. This involves recognizing the relationships between data percentiles and
the g-and-h parameters given in Proposition 9.6.

Proposition 9.6 (g-and-h Distribution Percentile Matching Estimation) Consider a g-and-
h distributed random variable X ∼ GH(a, b, g, h) and a sample of n loss data points with order
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statistics
{

X(i,n)
}n

i=1 that will be used to fit the g-and-h distribution. Then the location parameter
is given by the following percentile:

â = Median {X1,X2, . . . ,Xn} = X(
 n
2�,n). (9.53)

Then the value of the g parameter is given by the following estimator (based on the p-th percentile
given by p = i

n for one or more i ∈ {1, 2, . . . , n}) given by

gp = − 1
Wp

ln

(
X1−p − X0.5

X0.5 − Xp

)
(9.54)

with Wp = inf{w : Φ(w)> p} the p-th percentile of a standard Normal and Xp = inf{x :
F (x)> p} denotes the p-th percentile of the sample loss data. It would then be suggested to take
a robust estimate of a set of gp, for a range of percentiles taken from p ∈ {pL, . . . , pU} and then to
form the median

ĝ = Median {ĝL, . . . , ĝU} . (9.55)

Then, given ĝ, one can estimate the h parameter and the b parameters using the relationship

hp =
2

W 2
p
ln

(
1
b

g
(
Xp − X1−p

)
exp

(
gWp

)
− exp

(
−gWp

)
)
. (9.56)

From this, the estimates of ĝ and â would then allow one to select a range of percentiles taken from

p ∈ {pL, . . . , pU} and then regress Yp = ln

(
g(Xp−X1−p)

exp(gWp)−exp(−gWp)

)
against the quadrative of the

corresponding percentiles of standard Gaussian with scaling given by
W 2

p

2 , the resulting intercept of
the regression would be an estimate of ln(b) and the resulting gradient would be an estimate of h.
Given a selection of k percentile levels in [pL, pU ], the resulting estimators would each be given by

ĥ =

∑k
p=1

(
W 2

p

2 − 1
2k
∑k

j=1 W 2
j

)(
Yp − 1

k
∑k

j=1 Yk

)
∑k

p=1

(
W 2

p

2 − 1
k
∑k

j=1
W 2

j

2

)2

b̂ =
1
k

k∑
j=1

Yk − ĥ
1
2k

k∑
j=1

W 2
j .

(9.57)

In addition, one could perform moment-based matching to estimate the parameters. In
this regard, there have been two approaches proposed: one which utilizes the expressions derived
earlier for the first four moments that define a system of four nonlinear equations that are solved
numerically via root search (see Mahbubul et al. 2008 for the discussion on the solutions for g
and h) and the other (Jiménez and Arunachalam, 2011, section 2.2.2) for the simple moment-
based estimators for location and scale parameters a and b.

Remark 9.7 Note, this simple matching moment-based approach is not particularly recommended
as in cases in OpRisk, where these models are of major interest, one is typically not only interested
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in light-tailed models for the severity but instead the heavy-tailed high kurtosis severity models are con-
sidered. In such cases, it may be that the population moments may not even be finite, though the
sample moments will always be finite. The consequence of this is that no matter how many data are
utilised to estimate the parameters, they will always be biased, or perhaps not well defined under
the system of moment conditions.

The more robust alternative to simple moment matching, especially when the tails of the
empirical distribution of the data suggest heavy-tailed features, such as in situations where
parameter estimates of h will be large positive values, then it will be numerically more robust to
consider an L-moments based approach such as those proposed by Headrick and Pant (2012b).
In the advanced text Peters and Shevchenko (2015), we detail extensively the properties of
L-moment estimators for EVT models; we therefore defer the reader to this section for details
on the estimators we present in Proposition 9.7. Before presenting these results, we briefly recall
the definition of the sample L-moments (see Greenwood et al. 1979).

Definition 9.15 (Sample L-Moments) Consider a sample of n observed losses denoted by random
variables {Xi}n

i=1 with associated order statistics in increasing order
{

X(i,n)
}n

i=1. Then the first four
sample L-moments from the data are given by

l1 = m0,

l2 = 2m1 − m0,

l3 = 6m2 − 6m1 + m0,

l4 = 20m3 − 30m2 + 12m1 − m0,

(9.58)

with the sample probability moments mi’s given by

m0 =
1
n

n∑
j=1

X( j,n),

mi =
1
n

n∑
j=i+1

( j − 1)( j − 2) . . . ( j − i)
(n − 1)(n − 2) . . . (n − i)

X( j,n).

(9.59)

Next we will define the population L-moments in terms of the parameters of the
L-moment γ − κ Tukey family as well as the asymmetric L-moment κL − κR Tukey fam-
ily, which can be matched to the sample-estimated L-moments and then utilized as a system of
nonlinear equations to be solve numerically via root search for the resulting L-moment param-
eter estimates.

Proposition 9.7 (L-Moment Estimators for the L-Moment γ−κ Tukey Family) Consi-
der a γ-and-κ distributed random variable X ∼ F (γ, κ) and a sample of n loss data points with
order statistics

{
X(i,n)

}n
i=1 that will be used to fit the γ-and-κ distribution. Then under the restric-

tions that γ + κ < 1, κ < 1, and 1 + γ > κ, which allow the first two L-moments to be
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finite, one obtains the following two equations for the population’s first two L-moments λ1 and λ2
given by:

λ1 =
(−γ − κ)h1 + (γ − κ)h2 + (−γ + κ)h3 + 2κh4 + (γ + κ)h5 − 2κh6

2γ

λ2 =
2γ − (γ + κ)2h1 + (γ − κ)2 (h1 − h3) + (γ + κ)2h5

2γ
,

(9.60)

where h1, h2, . . . , h6 are defined with respect to the Harmonic number functions with the following
arguments according to

h1 = H
[

1
2
(−1 − γ − κ)

]
, h2 = H

[
1
2
(−1 + γ − κ)

]

h3 = H
[

1
2
(γ − κ)

]
, h4 = H

[
1
2
(−1 − κ)

]

h5 = H
[
−1

2
(γ + κ)

]
, h6 = H

[
−1

2
κ

]
,

(9.61)

with the harmonic number functions defined for any x > 0 by

H [x] := x
∞∑

k=1

1
k(x + k)

. (9.62)

One can then estimate sample L-moments that can be matched to the population moments to solve
numerically for the parameters.

Remark 9.8 As noted by Headrick and Pant (2012b, p. 9), expressions are also developed for the
population L-skewness τ3 and L-kurtosis τ4 should one wish to utilize these for L-moment matching
parameter estimation.

Analogously, the solutions for the first two population L-moments for the class of κL−κR
Tukey transformations were detailed by Headrick and Pant (2012b) and can be used to perform
parameter estimation, as detailed in Proposition 9.8.

Proposition 9.8 (L-Moment Estimators for the L-Moment κL −κR Tukey Family) Consi-
der the asymmetric κL-and-κR distributed random variable X ∼ F (κL, κR) and a sample of n loss
data points with order statistics

{
X(i,n

}n
i=1 that will be used to fit theκL-and-κR distribution. Then

under the restrictions that κL < 1 and κR < 1, which allow the first two L-moments to be finite,
one obtains the following two equations for the population’s first two L-moments λ1 and λ2 given by

λ1 =
1
4
[2p5 − 2p6 − 2p7 + 2p8 − κLp9 + κLp10 + κRp11 − κRp12]

λ2 =
1
4
[4 + κL (−4p5 + 4p6 + κL (p9 − p10)) + 4 + κR (−4p7 + 4p8 + κR (p11 − p12))] ,

(9.63)
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where p5, p6, . . . , p12 are defined with respect to the polygamma functions with the following argu-
ments according to

p5 = P
[

0,
1
2
− κL

2

]
, p6 = P

[
0, 1 − κL

2

]
, p7 = P

[
0,

1
2
− κR

2

]

p8 = P
[
0, 1 − κR

2

]
, p9 = P

[
1,

1
2
− κL

2

]
, p10 = P

[
1, 1 − κL

2

]

p11 = P
[

1,
1
2
− κR

2

]
, p12 = P

[
1, 1 − κR

2

]
,

(9.64)

with the polygamma functions defined by

P[m, x] := (−1)m+1m!
∞∑

k=0

1
(x + k)m+1 . (9.65)

One can then estimate sample L-moments that can be matched to the population L-moments to solve
numerically for the parameters.

There are also approaches based on numerical maximum likelihood applied to the
estimation of parameters in the g-and-h family of models (see discussions by Rayner and
MacGillivray 2002).

Often in practice, the amount of observed data may not be large, however there may be
reasonable expert opinion available. As such, it is often beneficial to adopt a Bayesian estimation
framework, as detailed in the next section.

9.4.4 BAYESIAN MODELS FOR THE G-AND-H SEVERITY IN OPRISK

In this section, we consider two different approaches to constructing Bayesian models for the
g-and-h family of severity models. This is particularly important if one wishes to develop an
LDA modeling structure that would calibrate such models using a combination of expert opin-
ions as well as collected loss data, as required by Basel II/Basel III standards. The two frameworks
we develop can be considered approximations in that the posterior distribution obtained will
be approximate up to any desired level of precision, as specified by the modeler. In particular,
we first consider an approach based on the work of Peters and Sisson (2006), which utilizes
an Approximate Bayesian Computation (ABC) formulation, which was the first application
of such statistical techniques in finance and risk; then we consider a specially designed conju-
gate Bayesian formulation based on Askey orthogonal polynomials (see detailed discussion in
Chapter 17).

9.4.4.1 Approximate Bayesian Computation and the g-and-h Severity Model.
The basic concept of ABC methods is covered in Chapter 7. Here we briefly review the concept
of ABC methods that is growing in popularity in statistics (see Peters and Sisson 2006, Peters
et al. 2012a, Beaumont et al. 2009, Csillery et al. 2010, Del Moral et al. 2012, and Sisson
et al. 2010 and the references therein). In particular, we describe the basic Markov chain Monte
Carlo (MCMC) sampling methodology first developed by Peters and Sisson (2006) for the
g-and-h distribution. In this work, it was recognized that one could exploit the efficiency of
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simulation from the g-and-h distribution, which only required simulation of a single standard
Gaussian random variate for each observation in order to apply ABC methods.

Consider the parameters of the severity model, upon which one wishes to build a Bayesian
model, given in the case of the g-and-h model by vector

Θ =
{

a, b, α0, α1, . . . , αp, β0, β1, . . . , βq
}
∈ Ω,

where it is assumed we condition upon a choice of p and q for the dimension of the g(z) and
h(z) polynomials, which can be selected by a desired model selection criterion such as Bayesian
Information Criterion (BIC), Bayes Factors, or Deviance Information Criterion (DIC). Then,
we will denote the prior distribution generically for these severity model parameters by the
joint density π

(
a, b, α0, . . . , αp, β0, β1, . . . , βq

)
. These priors can be elicited in a number of

methods a priori; see discussions on the different approaches for instance in O’Hagan (1998).
Given the prior distribution, essentially, the ABC methods first reduce the observed loss

data in a year, denoted by the n losses given by x = x1:n, to a low-dimensional vector of sum-
mary statistics denoted by tx = T (x) ∈ T , where dim (Θ) ≤ dim (tx) << n. Then, the true
posterior π(θ|x) is replaced with a new posterior given by π(θ|tx), which would theoretically
match exactly the true posterior in two cases if tx = x or if tx is sufficient for θ, otherwise it
is an approximation π(θ|tx) ≈ π(θ|x). The new target posterior, still assumed to be compu-
tationally intractable (with regard to evaluation of the density pointwise), is embedded within
an augmented model from which a Monte Carlo sampling scheme is viable, such as MCMC
or Sequential Monte Carlo (SMC) (see the Estimation section Chapter 7).

The secret to all ABC methods is the replacement of the evaluation of the intractable
likelihood model with the simulation of auxiliary data given a set of model parameters Θ.
Hence, the auxilairy data will be denoted by vector X ∗ = X ∗

1:n and the i-th sam-
ple is obtained by X ∗

i = x∗i through simulation in the case of the g-and-h model by
Xi ∼ GH

(
a, b, α0, α1, . . . , αp, β0, β1, . . . , βq

)
using the algorithm specified in the previous

subsection. The auxiliary data are then also summarized by the summary statistic tx∗ ∈ T for
the given simulated realization.

Specifically, under the ABC method, one then expresses the joint posterior of the model
parameters Θ and auxiliary data X ∗ conditional upon the observed data X according to the
kernel-based representation given in Equation (9.66):

π (θ,X ∗| x) ∝ Kh (tx∗ − tx) f (X |θ)π(θ), (9.66)

where X ∗ ∼ f (X |θ) and f (·|θ) is in this case the g-and-h model. Then under this ABC
posterior framework, the marginal posterior distribution as given by

πM (θ| x) = cM

∫
Kh (tx∗ − tx) f (X |θ)π(θ)dX ∗, (9.67)

where c−1
M =

∫
Ω

∫
Kh (tx∗ − tx) f (X |θ)π(θ)dX ∗dθ, normalizes the posterior such that it is a

well-defined density (see discussions by Reeves and Pettitt 2005 and Peters and Hübner 2009).
The function Kh (tx∗ − tx) is a standard kernel function with scale parameter h ≥ 0,

which weights the intractable posterior with high density in regions in which tx∗ ≈ tx where
the auxiliary and observed data sets are similar. Therefore, πM (θ| x) ≈ π (θ| x) forms an
approximation of the intractable posterior through standard smoothing arguments (see Marin
et al. 2012). As h → 0, so that Kh (tx∗ − tx) becomes a point mass at the origin (i.e., tx∗ = tx)
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and is zero elsewhere, if tx is sufficient for θ, then the intractable posterior marginal is recovered
exactly where πM (θ| x) = π (θ| x). Note typically setting h too small is computationally
impractical; see disucssions in the context of g-and-h models in this regard by Peters and Sisson
(2006). There has been a reasonable amount of discussion on the different possible choices one
may adopt in practice (see Peters et al. 2009) and discussions therein.

Typically in practice, it is common to consider a generlization of this scheme in which
the joint posterior distribution in Equation (9.66) is augmented with more than one auxiliary
summary vector, by considering for S ≥ 1 the auxiliary posterior

π
(
θ,X ∗,1:S

∣∣∣ x
)
∝ K̃h

(
t1:S
x∗ , tx

)
f
(

X 1:S |θ
)
π(θ), (9.68)

where t1:S
x∗ =

(
t1
x∗ , t2

x∗ , . . . , tS
x∗
)

and for all i ∈ {1, 2, . . . , S} one has i.i.d. data sets generated
from the g-and-h intractable likelihood X ∗,i ∼ f (X |θ). By construction, the auxiliary data
are conditionally independent given θ, which gives

f
(

X ∗,1:S |θ
)
=

S∏
s=1

f (X ∗,s|θ) . (9.69)

In addition, as discussed by Del Moral et al. (2012), one may select the kernel K̃h
(
t1:S
x∗ , tx

)
according to

K̃h
(
t1:S
x∗ , tx

)
=

1
S

S∑
s=1

Kh (ts
x∗ − tx) , (9.70)

which will result in a joint posterior given by

πM

(
θ,X ∗,1:S

∣∣∣ x
)
= cM

[
1
S

S∑
s=1

Kh (ts
x∗ − tx)

][
S∏

s=1

f (xs|θ)
]
π(θ), (9.71)

with the normalizing constant cM > 0. In this case, by construction one again obtains the
appropriate marginal target distribution∫

πM

(
θ,X ∗,1:S

∣∣∣ x
)

dX ∗,1:S = π (θ|x) . (9.72)

Working with such posterior ABC distributions, one needs to typically obtain samples via
a Monte Carlo sampling strategy. In this regard, there are two approaches one may adopt to
sample from the target posterior:

1. The first involves treating the summary quantities (statistics) for the auxiliary data, t1:S
x∗ , as

parameters in an augmented statespace model. This approach therefore involves sampling
directly on the augmented model, say πM

(
θ,X ∗,1:S

∣∣∣ x
)

, by obtaining joint samples on

the product space
(
θ,X ∗,1:S

)
∈ Θ × X S . Then one a posteriori marginalizes over the

samples X ∗,1:S by simply discarding these realizations from the sampler output;
2. The second approach involves sampling the lower-dimensional ABC posterior given

by πM (θ| x). Within the Monte Carlo sampler this would involve approximation
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of the Monte Carlo integral, by draws at each iteration of sample for θ, using
X ∗,1,X ∗,2, . . . ,X ∗,S ∼ f (x|θ) to obtain

πM (θ| x) ∝ π(θ)

∫
X

K̃h (tx∗ , tx) f (X |θ) dX

≈ 1
S
π (θ)

S∑
s=1

K̃h (ts
x∗ , tx) := π̂M (θ|x)

(9.73)

in lieu of posterior evaluation of πM (θ| x).

To proceed with the design of a Monte Carlo sampling strategy to obtain samples from the
posterior πM (θ|x) ≈ π(θ|x), which is based upon a simple MCMC approach, there are sev-
eral more advanced strategies available; see, for instance, the SMC samplers–Partial Rejection
Control method proposed by Peters et al. (2012a). An in complete list of such approaches are
provided here:

1. Marginal versus augmented auxiliary ABC posterior: Sisson et al. (2010), Sisson and
Fan (2011);

2. Rejection, MCMC: Beaumont et al. (2002), Marjoram et al. (2003);
3. SMC samplers PRC: Peters et al. (2012a);
4. SMC samplers: Sisson et al. (2007).

The ABC–MCMC algorithm for the g-and-h family then proceeds as follows given the order
of the g and h polynomials p, q.

Algorithm 9.2 (ABC–MCMC for the Bayesian Posterior g-and-h Severity Model)

1. Initialize the g-and-h model parameters (Markov chain sate):

θ(0) =
[
α
(0)
1:p , β

(0)
1:p , a(0), b(0)

]

and draw synthetic data realizations and evaluate summary statistics

t1
x∗ , t2

x∗ , . . . , tS
x∗ ∼ f (t|θ(0)).

This involves for the j-th summary vector tj
x∗ drawing n samples from the g-and-h model accord-

ing to the following step:
a) Draw a standard Gaussian random variate: Zi ∼ Normal(0, 1);

b) Given p, q. and coefficients
{
α
(0)
i

}p

i=0
and

{
β
(0)
i

}q

i=0
, evaluate the polynomials

g (Wi) = α
(0)
0 + α

(0)
1 Wi + . . .+ α

(0)
p W p

i

h (Wi) = β
(0)
0 + β

(0)
1 Wi + . . .+ β(0)

q W q
i .

(9.74)
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c) Then given parameters a(0), b(0), and polynomials g (Wi) and h (Wi), evaluate
transformation

X ( j)
i = a(0) + b(0) exp (g (Wi)Wi)− 1

g (Wi)
exp

(
h (Wi)W 2

i

2

)
.

d) Then given synthetic data samples
{

X ( j)
i

}n

i=1
evaluate the summary statistic tj

x∗ .

2. For iterations k ≥ 1 perform one update on the ABC–MCMC algorithm as follows:
a) Generate a proposal vector of parameters for the new state of the Markov chain

θ ∼ q
(
θ(k),θ

)
using an MCMC proposal for the g-and-h parameters such as a local

random walk or a mixture of local and global proposals for q
(
θ(k),θ

)
;

b) Draw synthetic data realizations independently from the model with the proposed parameters
θ such that

t1
x∗ , t2

x∗ , . . . , tS
x∗ ∼ f (t|θ).

This involves for the j-th summary vector tj
x∗ drawing n samples from the g-and-h model

according to the following steps:
i. Draw a standard Gaussian random variate: Zi ∼ Normal(0, 1);

ii. Given p, q, and coefficients {αi}p
i=0 and {βi}q

i=0, evaluate the polynomials

g (Wi) = α0 + α1Wi + . . .+ αpW p
i

h (Wi) = β0 + β1Wi + . . .+ βqW q
i .

(9.75)

iii. Then given parameters a, b. and polynomials g (Wi) and h (Wi) evaluate transformation

X ( j)
i = a + b

exp (g (Wi)Wi)− 1
g (Wi)

exp

(
h (Wi)W 2

i

2

)
.

iv. Then given synthetic data samples
{

X ( j)
i

}n

i=1
evaluate the summary statistic tj

x∗ .

c) With probability

min

⎧⎨
⎩1,

1
S
∑

s Kh (ts
x∗ − tx)π(θ)q

(
θ,θ(k)

)
1
S
∑

s Kh (ts
x∗ − tx)π

(
θ(k)

)
q
(
θ(k),θ

)
⎫⎬
⎭

accept the proposed state and set θ(k+1) = θ and keep track of the new sampled values
{ts

x∗}
S
s=1. Otherwise set θ(k+1) = θ(k).

d) Increment k = k + 1.
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Remark 9.9 The typical summary statistic one may consider involves a summary of the empirical
distribution function

F̂n(x) =
1
n

n∑
i=1

Ix≤xi (9.76)

such as a set of sample quantiles {q̂i}p
i=1 with q̂i = x(i,n). In addition, one typically has a wide

choice of kernel choice such as soft and hard decision kernels (see discussions by Peters et al. 2010).

9.5 Generalized Beta Family of Heavy-Tailed
Severity Models

McDonald and Xu (1995) present a general representation of the families of the Generalized
Beta form, which nests both the Generalized Beta of the first and second kinds (GB1 and GB2).
This is a five-parameter family of models, which is also related to the Exponential Generalized
Beta family. The standard Beta distributions of the first and second kinds are some of the
most widely utilized distributions in statistical applications as they include nested subfamilies
of models such as the power distirbutions, uniform distribution, gamma, Lomax, F, Chi-square,
and exponential distributions (see discussions by Johnson et al. 1970). Generalizations such as
the Generalized-F distribution, the Feller-Pareto, Generalized Beta Prime, and Transformed
Beta distributions have been proposed by various authors. They are all members of the GB2
family of models to be presented next. First, we present the global family of the five-parameter
Generalized Beta distributions of McDonald and Xu (1995) given in Definition 9.16

Definition 9.16 (Generalized Beta Distribution Severity Models) A loss random variable X
has a Generalized Beta distribution X ∼ GB(x; a, b, c, p, q) if the density is given by

fX (x; a, b, c, p, q) =
|a|xap−1

(
1 − (1 − c)

( x
b

)a)q−1

bapB(p, q)
(
1 + c

( x
b

)a)p+q , 0 < xa <
ba

1 − c
, (9.77)

with c ∈ [0, 1], a �= 0, and b, p, q > 0 and where B(p, q) is the Beta function.

Remark 9.10 One can obtain the GB1 family by setting c = 0 and the GB2 family by setting
c = 1.

Next, we present the GB2 subfamily as these have been shown to be particulary relevant
to OpRisk modeling scenarios.

9.5.1 GENERALIZED BETA FAMILY TYPE II SEVERITY MODELS
IN OPRISK

In this section, we introduce a family of severity models known as the GB2 family that has been
utilized in OpRisk settings successfully (see discussions by Dutta and Perry 2006 and Peters and
Sisson 2006). The GB2 family, like the previously discussed quantile transformation models,
will also allow for a wide range of flexible skew and kurtosis distributions. In the case of the GB2
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family, it admits a parametric specification for its distribution and density functions. There is a
detailed account of this family, with some emphasis on financial and actuarial modeling in the
works of Bookstabber and McDonald (1987), McDonald (1996), McDonald and Xu (1995),
Cummins et al. (1990), and the book-length review by Gupta and Nadarajah (2004). It is also
worth noting that a restricted form of the GB2 family was also studied for a > 0 where it was
termed the generalized F distribution (see Kalbfleisch and Prentice 2011).

The density and distribution for the four-parameter GB2 family is given in Definition
9.17 and automatically has the required support for a loss distribution, with positive support.
The GB2 family is parameterized by four parameters:

1. a is the location parameter that also determines the rate at which the tails approach the
x-axis; hence, large values of a imply a strong peakedness for the GB2 model density
function;

2. b is the scale parameter and it affects the height of the density;
3. q determines the kurtosis of the distribution and the product aq directly affects the

kurtosis;
4. p when combined with q affects the skewness of the distribution.

One can obtain expressions for the GB2 family distribution and density functions as
solutions to the differential equation given by

d ln fX (x)
dx

=
ap − 1 − (aq + 1)

( x
b

)a

x
(
1 +

( x
b

)a) , (9.78)

where the solution will produce the closed-form distributional form given in Definition 9.17.
The differential equation representation is interesting to consider since it demonstrates any
possible relationships between the GB2 and other distributional families also specified in such
an integro-differential form. As a result of this differential equation representation, it can be
seen that the GB2 family is neither contained in nor contains other well-known distributional
families such as the Pearsonian family (Pearson 1894, 1895). It therefore warrants consideration
as a unique positively supported class of a heavy-tailed flexible skew–kurtosis model for OpRisk.

Definition 9.17 (Generalized Beta Family of the Second Kind (GB2) Severity Models) A
severity random variable X ∼ GB2(x; a, b, p, q) if its distribution is given by

X ∼ FX (x; a, b, p, q) =
z(x)p

pB(p, q) 2F1 [p, 1 − q, 1 + p; z(x)] , x > 0 (9.79)

where 2F1[a, b, c; x] is a hypergeometric function given with respect to Pochhammer notation (x)n by

2F1[a, b, c; x] =
∞∑

n=0

(a)n(b)nx2

(b)nn!
(9.80)

and

z(x) :=
( x

b

)a(
1 +

( x
b

)a) . (9.81)
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The density of the GB2 model is also closed form and given by

fX (x; a, b, p, q) =
|a|xap−1

bapB(p, q)
[
1 +

( x
b

)a]p+q , x > 0
(9.82)

where B(p, q) is the Beta function.

In Example 9.5, there are plots of the GB2 distribution displayed for a range of different
parameter settings.

EXAMPLE 9.5 GB2 Severity Model Density Shapes

In the Figure 9.7 plots, the GB2 severity density is plotted for a range of parameter
values to illustrate the skewness and kurtosis properties this model offers, the
location and scale parameters are set to a = 0 and b = 1, and for the shape,
skewness and kurtosis parameters p and q are considered.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1

2

3

4

q= 0.1

q= 0.5

q= 1

q= 10

p= 0.1

p= 0.5

p= 1

p= 10

figure 9.7 Top subplot: the top subplot shows the effect of the parameter
p ∈ {0.1, 0.5, 1, 10}, showing the skewness that results from decreasing the value of p. Bottom
subplot: the bottom subplot shows the effect of the parameter q ∈ {0.1, 0.5, 1, 10}, showing the
kurtosis that results from decreasing the parameter q
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The tail properties of the GB2 model’s density function are given in Proposition 9.9, where
the regular variation feature will therefore also limit the existence of moments for certain param-
eter ranges.

Proposition 9.9 (Regular Variation of the GB2 Density Function) If a loss random variable
has GB2 distribution X ∼ GB2(x; a, b, p, q), then the right tail of the GB2 density function is
regularly varying at infinity with index −aq − 1.

The mode of the GB2 model is given by the closed-form location specified in
Proposition 9.10.

Proposition 9.10 (Mode of GB2 Severity Model) If a loss random variable has GB2 distribu-
tion X ∼ GB2(x; a, b, p, q), then the mode is given by the expression

Mode[X ] =

⎧⎪⎨
⎪⎩

b
(

ap − 1
aq + 1

) 1
a

, ap > 1,

0, otherwise.
(9.83)

The moments of the GB2 model are given in Proposition 9.11 (see Bookstabber and
McDonald 1987). It is clear that as a → ∞ the variance will decrease to zero and the mean of
the distribution will tend toward b, which will therefore asymptotically become the location of
a dirac mass, where the distribution will collapse in the limit.

Proposition 9.11 (Moments of the GB2 Family of Severity Models) If a loss random vari-
able has GB2 distribution X ∼ GB2(x; a, b, p, q), then the integer moments E [X r ] exist if
−ap < r < aq for all r ∈ J

+. The first moment (mean) is given by

E [X ] = b
B
(

p + 1
a , q − 1

a

)
B(p, q)

. (9.84)

The moment-generating function of the GB2 family is given by

MX (t) =
∞∑

k=0

B
(
p + k

a , q − k
a

)
B(p, q)

tkbk

k!
, (9.85)

so in general the r-th integer moment when it exists is given by

E [X r ] = br B
(

p + r
a , q − r

a

)
B( p, q)

. (9.86)

9.5.2 SUB FAMILIES OF THE GENERALIZED BETA FAMILY TYPE II
SEVERITY MODELS

The GB2 family has a wide range of skew–kurtosis subfamilies, which are also well-known
distributions; for example, a first layer of nested distributions (in the sense that one of the four
parameters in the GB2 family is constrained) includes the following families:
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1. Log-t distribution family when a → 0;
2. Generalized Gamma distribution family when q → ∞;
3. Beta distribution of the second kind if a = 1;
4. Singh–Maddala or Burr type XII distributions if p = 1;
5. Dagum or Burr type III distributions if q = 1.

When one constrains two parameters or more, one can also obtain the following nested distri-
butional families:

1. Log-Cauchy severity models are obtained when a → 0 and q = 1
2 ;

2. LogNormal severity models are obtained when a → 0 and q → ∞ simultaneously;
3. Weibull severity models are obtained when p = 1 and q → ∞;
4. Gamma severity models are obtained when a = 1 and q → ∞;
5. Lomax severity models are obtained when p = 1 and a = 1;
6. Exponential distribution with a = 1, p = 1, and q → ∞;
7. Generalized Log-Logistic with a = 1, b = 1, p = 1, and q = 1.

It may also be noted that the GB2 model has some nested family members that also overlap with
the Pearson family, such as when one sets a = 1 to recover the subfamily of Beta distributions
of the second kind.

It is also useful to know how to simulate from any member of the GB2 family, as this is
critical for many applications in OpRisk when using the GB2 as a severity distribution model;
this can be achieved as follows.

Algorithm 9.3 (Simulating Losses from a GB2 Severity Model.)

1. Draw a standard Gamma random variate: Y1 ∼ Gamma(p, 1);
2. Draw a standard Gamma random variate: Y2 ∼ Gamma(q, 1);
3. Construct the GB2 distributed random variable X ∼ GB2(x; a, b, p, q) according to the trans-

formation

X = b
(

Y1

Y2

) 1
a

. (9.87)

9.5.3 MIXTURE REPRESENTATIONS OF THE GENERALIZED BETA
FAMILY TYPE II SEVERITY MODELS

It is also worth noting that the GB2 family can be represented as characterizing a large family
of mixed-type distributions. A mixed-type distribution is formally defined in Definition 9.18.

Definition 9.18 (Mixed-Type Distributions) A mixed distribution is one that is generated from
two distinct distributions, the first known as the structural distribution and the second known
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as a mixing density. Consider a severity random variable X ∼ FX (x; θ1, φ) parameterized by θ1
and φ and with a density that satisfies the relationship

fX (x; θ1, φ) = f (x; θ1, θ2)�θ2 g (θ2;φ)

:=

∫
f (x; θ1, θ2)︸ ︷︷ ︸

Structural distribution

g (θ2;φ)︸ ︷︷ ︸
Mixing density

d θ2, (9.88)

where we denote the mixing integral operator by �θ2 with respect to argument θ2.

In the case of the GB2 family of models, one can show the following mixed-type distribu-
tional properties given in Proposition 9.12. This will result in many more flexible families of
distributions, some of which are nested in the GB2 family.

Proposition 9.12 (Mixed-Type GB2 Severity Models) If X ∼ GB2(a, b, p, q), then the den-
sity function satisfies the following mixing property:

fX (x; a, b, p, q) = fX (x; a, θ, p, q)�θ fX (θ; a, b, θ2, θ3) . (9.89)

The resulting density takes the form

fX (x; a, b, p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|a|
( x

b

)aθ2−1
B (q + θ2, p + θ3)

bB(p, q)B (θ2, θ3)
, 0 < x ≤ b.

|a|
(

b
x

)aθ3+1

B (q + θ2, p + θ3)

bB(p, q)B (θ2, θ3)
, x > b.

(9.90)

Remark 9.11 One can show that the GB2 family is itself a mixture class, since the mixture between
the Generalized Gamma distribution as a base distribution when mixed with an Inverse Generalized
Gamma distribution as a mixing distribution will produce a GB2 distribution. In addition, one can
also show that the GB2 family can be used to characterize generalized LogNormal–Gamma mixtures.

The following is a list of popular mixture representations of members in the GB2 family
of severity distributions:

1. GB2 comes from a mixture between Generalized Gamma as structural distribution and
Inverse Generalized Gamma as mixing distribution:

GB2(x; a, b, p, q) = GG(x; a, θ, p)�θ IGG(θ; a, b, q).

2. Beta distribution of the second kind B2 comes from a mixture between Gamma as struc-
tural distribution and Inverse Gamma as mixing distribution:

B2(x; b, p, q) = Gamma(x; θ, p)�θ IGamma(θ; b, q).

3. GB2 (p = 1 Singh–Maddala distribution) comes from a mixture between Weibull as
structural distribution and Inverse Generalized Gamma as mixing distribution:

GB2(x; a, b, p = 1, q) = SM(x; a, b, q) = Weibull(x; a, θ)�θ IGG(θ; a, b, q).
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4. GB2 (q = 1 Dagum distribution) comes from a mixture between Generalized Gamma as
structural distribution and Inverse Weibull as mixing distribution:

GB2(x; a, b, p, q = 1) = Dagum(x; a, b, p) = GG(x; a, θ, p)�θ IWeib(θ; a, b).

5. GB2 (p = 1, a = 1, Lomax distribution) comes from a mixture between Exponential as
structural distribution and Inverse Gamma as mixing distribution:

GB2(x; a, b, p = 1, q) = Lomax(x; b, q) = Exp(x; θ)�θ IGamma(θ; b, p).

Other useful properties one can observe about the GB2 model family that have been used
to great effect in certain applications of the GB2 family are the following:

1. Closure under multiplication of two independent GB2-distributed random variables (see
Proposition 9.13);

2. Closure under inversion (see Proposition 9.14 and Venter 1983).

Proposition 9.13 (GB2 Closure Under Multiplication) Given two i.i.d. random variables
Xi ∼ GB2(a, b, p, q) for i ∈ {1, 2}, one has the product random variable Y =

∏2
i=1 Xi with

density given by

fY (y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|a|
( y

b2

)ap
B(p + q, p + q)

yB(p, q)2 , 0 < y < b2,

|a|
( y

b2

)−aq
B(p + q, p + q)

yB(p, q)2 , y ≥ b2.

(9.91)

Then to get closure under multiplication of the GB2 family, one needs to impose some additional
parameter restrictions such as would occur for the LogNormal model. In general, one also has the
property that if X ∼ GB2(a, b, p, q), then X r ∼ GB2

( a
r , br , p, q

)
.

Proposition 9.14 (GB2 Closure Under Inversion) Given a loss random variable X ∼GB2
(a, b, p, q), one observes that the inverse loss random variable Y = 1/X has a distribution given by
Y ∼ GB2

(
a, 1

b , q, p
)
.

9.5.4 ESTIMATION IN THE GENERALIZED BETA FAMILY TYPE II
SEVERITY MODELS

The estimation of the GB2 model parameters proceeds typically via maxiumum likelihood
estimation (MLE) or method of moments (see Chapter 7). Venter (1983) provides the system
of equations for the likelihood estimation with n-samples from a severity model with GB2
distribution (see Proposition 9.15).

Proposition 9.15 (Maximum Likelihood Estimation GB2 Severity Model Parameters)
Given a severity model with i.i.d. losses distributed as Xi ∼ GB2(a, b, p, q), one has the following
system of nonlinear equations for the parameters when performing MLE:
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n
a
+ p

n∑
i=1

ln
(xi

b

)
= (p + q)

n∑
i=1

ln
(xi

b

)[( b
xi

)a

+ 1
]−1

,

np = (p + q)
n∑

i=1

[(
b
xi

)a

+ 1
]−1

,

nψ(p + q) + a
n∑

i=1

ln
(xi

b

)
= nψ(p) +

n∑
i=1

ln
[(xi

b

)a
+ 1

]
,

nψ(p + q) = nψ(q) +
n∑

i=1

ln
[(xi

b

)a
+ 1

]
,

(9.92)

whereψ(·) is the digamma function. This system is solved by first solving the first two linear equations
in p and q in terms of a and b followed by a Newton method for the second two equations for solving
for a and b. Note that the Fisher Information matrix for the confidence intervals of such MLE
estimates is also known in closed form (see Brazauskas 2002).

9.6 Generalized Hyperbolic Families of Heavy-Tailed
Severity Models

The family of distributions known as the Generalized Hyperbolic (GH) class was studied exten-
sively by Barndorff-Nielsen (1977, 1978a) and the book-length review by Barndorff-Nielsen
and Blaesild (1981). Since their introduction these models have found many applications where
initially they were very influential only in areas of physics and biology. Then, more recently,
they have become influential models in areas of financial mathematics; in this context, notable
examples include the works of Eberlein and Keller (1995), Cont (2001), Eberlein (2001), and
the thesis of Prause (1999). The widespread interest in the GH family of models has pri-
marily arisen due to their flexibility for skew–kurtosis characteristics as well as the tractabil-
ity and closed-form expressions for the density, characteristic function, cummulants, and
Levy measure.

In this section, we will first discuss some basic properties of the GH family before pre-
senting more details on two relevant subfamilies for the context of OpRisk given by the GIG
family and the NIG family. These two families are particularly interesting for OpRisk set-
tings as they display the property of closure under convolution, making specification of the
annual loss process in an LDA model comprising these models for the severity model partic-
ularly tractable as they admit closed-form representations for the annual loss distribution and
density.

A loss random variable X has a severity distributional model that is from the GH family
if its distribution satisfies the following definition for the distribution in Definition 9.19 (see
Barndorff-Nielsen and Stelzer 2005). The parameters of the GH family have the following
influence on the properties of the resulting distribution:

1. α is the shape parameter;
2. β is the skewness parameter;
3. μ is the location parameter;
4. δ is the scale parameter;
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5. The special parameter ν characterizes which subclass the model represents and in particular
the tail properties of the resulting subfamily.

The density is then given by the following expression in Definition 9.19 in terms of param-
eters α, β, γ, and δ. It is also common practice to consider an alternative parameterization in
the scale invariant form where one uses instead the reparametrization involving

ρ =
β

α
, χ = ρη,

η =
(

1 + δ
√

α2 − β2
) 1

2
,

(9.93)

where χ is the skewness-type measure (assymmetry) and η is the kurtosis-type measure (steep-
ness), which satisfy 0< |χ|<η< 1. We will see later that for particular cases of the model
parameter ν such as in the NIG family these parameters are known as steepness and assymme-
try and can be used to characterize all distributional members by what is known as the “shape
triangles”, which are the analog of the classical skewness and kurtosis plots for the GH members.

Definition 9.19 (Generalized Hyperbolic Severity Models) A loss random variable X has a
GH distribution X ∼ GH(x; ν, α, β, μ, δ) if it has a density given by

fX (x) =
γνα

1
2 −ν

√
2πδKν (γ)

(
1 +

(x − μ)2

δ2

) ν
2 −

1
4

Kν− 1
2

(
α

√
1 +

(x − μ)2

δ2

)
eβ(x−μ), x ∈ R

with parameters ν ∈ R, 0 ≤ |β| ≤ α, μ ∈ R, and δ ∈ R
+. In addition, one defines

γ =
√
α2 − β2, α = δα, β = δβ, γ = δγ

with Kν (·) the modified Bessel function of the third kind.

The cummulant-generating function of the GH family of severity models is also known
in closed form as specified in Proposition 9.16, which allows one to utilize a result from
Barndorff-Nielsen (1978b, corollary 7.1) to obtain expressions for the mean and variance in
closed from, as detailed in Proposition 9.17.

Proposition 9.16 (Cummulant-Generating Function GH Severity Models) A loss random
variable X with a GH distribution X ∼ GH(x; ν, α, β, μ, δ) has a cummulant-generating func-
tion given by

ln (E [exp(tX )]) =
ν

2
ln

(
γ

α2 − (β + t)2

)
+ ln

⎛
⎝Kν

(
δ
√

α2 − (β + t)2
)

Kν

(
δ
√

α2 − β2
)

⎞
⎠+ tμ.

(9.94)

Consequently, using this result one may show that the mean and variance of a loss random
variable with GH severity are given as follows, as well as the integer centralized moments.

Proposition 9.17 (Mean and Variance of GH Severity Models) A loss random variable X
with a GH distribution X ∼ GH(x; ν, α, β, μ, δ) has a mean and variance given by the
following expressions
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E [X ] = μ+ β
δKν+1 (γ)

γKν (γ)

Var [X ] = δ2

(
Kν+1 (γ)

γKν (γ)
+

β2

γ2

(
Kν+2 (γ)

Kν (γ)
−
(

Kν+1 (γ)

Kν (γ)

)2
))

.

(9.95)

In addition, the integer centralized and absolute centralized moments are given by the series expansion
(see Barndorff-Nielsen and Stelzer 2005, theorem 2):

E [(X − μ)r ] =
2� r

2�γνδ2� r
2�βrmod2

√
πKν (γ)α

ν+� r
2�

∞∑
k=0

2kβ
2k
Γ
(
k +

⌈ r
2

⌉
+ 1

2

)
αk(2k + (rmod2))!

Kν+k+� r
2� (α) ,

E [|X − μ|r ] = 2 r
2 γνδr

√
πKν (γ)α

ν+ r
2

∞∑
k=0

2kβ
2k
Γ
(
k + r

2 + 1
2

)
αk(2k)!

Kν+k+ r
2
(α) .

(9.96)

The GH family of severity models also has the translation and scale invariance closure
properties given in Proposition 9.18.

Proposition 9.18 (Scale and Translation Properties of GH Severity Models) Given a loss
random variable X with a GH distribution X ∼ GH(x; ν, α, β, μ, δ), the scaled and translated
random variable is also distributed according to a GH distribution as given by

aX + b ∼ GH
(

x; ν,
α

|a| ,
β

a
, δ|a|, aμ+ b

)
. (9.97)

9.6.1 TAIL PROPERTIES AND INFINITE DIVISIBILITY OF THE
GENERALIZED HYPERBOLIC SEVERITY MODELS

To understand the asymptotic tail behavior of the GH family of severity models, it is important
to first consider the tail behavior of the modified Bessel function of the third kind Kν (·) given
in Proposition 9.19 (see Gil et al. 2002, p. 401, and for details on evaluation, see Lozier and
Olver 1994).

Proposition 9.19 (Tail Behavior of Modified Bessel Function of the Third Kind) Consider
the modified Bessel function of the third kind given by Kν (x), which can be represented asymptoti-
cally according to the series expansion

Kν(x) ∼
( π

2x

) 1
2
exp(−x)

∞∑
k=0

(ν, k)
(2x)k (9.98)

with (ν, k) representing the Hankel symbol given by

(ν, k) =
1
πk!

(−1)k cos(νπ)Γ

(
1
2
+ ν + k

)
Γ

(
1
2
− ν + k

)
, x → ∞, (9.99)

and the special case of ν = 1, which simplifies the asymptotic behavior as |x| → ∞ to be given by

K1(x) ∼
π

2x
exp(−x). (9.100)
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The GH family of severity models exhibits a range of tail behaviors that are characterized
as semiheavy in nature. In general, the following asymptotic expression can be shown for the
tails of the GH family given in Proposition 9.20, (see Barndorff-Nielsen and Stelzer 2005).

Proposition 9.20 (Tail Behavior of the Generalized Hyperbolic Severity Models)
A loss random variable X with a GH distribution X ∼ GH(x; ν, α, β, μ, δ) has a tail behavior
characterized by the expression

fX (x; ν, α, β, μ = 0, δ) ∼ C |x|ν−1 exp [(β − α)x] , x → ∞, (9.101)

for some constant C.

In the following example, we consider the special case when ν = − 1
2 , which produces the

result shown in Proposition 9.21.

Proposition 9.21 (Tail Behavior of the Normal Inverse Gamma Models: (GH with
ν= − 1

2 )) A loss random variable X with a GH distribution X ∼ GH(x; ν = − 1
2 , α, β, μ, δ)

has a tail behavior characterized by the expression

fX
(

x; ν = −1
2
, α, β, μ = 0, δ

)
∼ |x|− 3

2 exp (βx − α|x|) , |x| → ∞. (9.102)

In the case that α − |β| << 1, this asymptotic tail behavior has the same form as a Cauchy
distribution tail decay

fX
(

x; ν = −1
2
, α, β, μ = 0, δ

)
∼ |x|−2. (9.103)

In addition to having semiheavy tails, the GH family of severity models is also impor-
tant for modeling in OpRisk as it displays properties of infinite divisibility as characterized in
Proposition 9.22, though it is not closed under convolution in general.

Proposition 9.22 (Infinite Divisibility of GH Severity Models) A loss random variable X
with a GH distribution X ∼ GH(x; ν, α, β, μ, δ) is infinitely divisible, meaning that it can
be represented such that for every positive integer n, there exist n i.i.d. random variables with sum

Sn =

n∑
i=1

Yi, such that X d
= Sn. (9.104)

Again in the case in which ν = − 1
2 , one obtains the subfamily of NIG which is not only

infinitely divisible but, under appropriate parameter restrictions, is also closed under convolu-
tions as shown in Proposition 9.23.

Proposition 9.23 (Closure Under Convolution of GH Severity Model with ν = − 1
2 )

Given two i.i.d. loss random variables X1 ∼GH
(
x; ν = − 1

2 , α, β, μ1, δ1
)

and
X2 ∼GH

(
x; ν = − 1

2 , α, β, μ2, δ2
)
, the sum of the two random variables

X = X1 + X2 ∼ GH
(

x; ν = −1
2
, α, β, μ1 + μ2, δ1 + δ2

)
.
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9.6.2 SUBFAMILIES OF THE GENERALIZED HYPERBOLIC
SEVERITY MODELS

As noted by Barndorff-Nielsen and Stelzer (2005), the GH family of models contains several
well-known subclasses of parametric severity models given by different values of ν such as in
the following cases:

1. ν = 1 one obtains the subfamily of hyperbolic distributions (see Example 9.6);
2. ν = − 1

2 one obtains the subfamily of NIG distributions;
3. Other distributional subfamilies include Gaussian, Exponential, Laplace, Variance-

Gamma and Student-t.

EXAMPLE 9.6 Examples of Flexible Hyperbolic Distributions (GH with ν = 1)

In the Figure 9.8 plots and we explore the density shapes for the case of the subfamily
of GH distributions given by the hyperbolic distributions where ν = 1.
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figure 9.8 Top subplot: parameters used in this subplot study the effect of the shape
parameter ranges α = [0.5, 1, 2, 5], skewness parameter β = 0, location parameters μ = 5, and
scale parameter δ = 10. Bottom subplot: parameters used in this subplot study the effect of the
skewness parameter ranges β = [0.1, 0.25, 0.5, 0.75], shape parameter α = 1, location parameters
μ = 5, and scale parameter δ = 10
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One of the representations of the GH family of models that is particularly useful, especially
from the perspective of simulating draws from the GH family, is the Normal variance–mean
mixture representation presented in Proposition 9.24 (see Barndorff-Nielsen and Stelzer 2005).

Proposition 9.24 (Variance–Mean Mixture Representation of GH Family) Consider inde-
pendent random variables X ∼ GH(ν, α, β, μ, δ), the GIG distributed random variable
V ∼ GIG(ν, δ, γ) such that γ =

√
α2 − β2 and the standard Normal distributed random vari-

able ε ∼ Normal(0, 1), which produces the following distributional equality

X d
= μ+ βV +

√
V ε. (9.105)

The representation of the Variance–Mean mixture of the GH family results in the following
general algorithm for simulation from any of the GH severity models. In some subfamilies such
as the NIG case, there are even simpler samplers available, as discussed later.

Algorithm 9.4 (Simulating Losses from a GH Severity Model)

1. Draw a GIG random variate V ∼ GIG(ν, δ, γ), where γ =
√
α2 − β2. This is achieved as

follows via a rejection envelope method (see Atkinson 1982):
a) Choose the envelope distribution function g(v) to sample via inversion from, for example

V = g−1(U ) for U1 ∼ Uniform(0, 1). In the GIG distribution case, the envelope function
and its domain [0,∞) is partitioned as follows:

g(v) =

{
k1d1(v), x ∈ [0, t]
k2d2(v), x ∈ (t,∞)

(9.106)

Where we select t as the mode of the GIG distribution given by

t = m(ν, δ, γ) =

⎧⎪⎨
⎪⎩

ν − 1 +
√
(1 − ν)2 + γδ

γ
, γ > 0

γ

2(1 − ν)
, γ = 0,

(9.107)

and the envelope functions are given by simple functions to sample from

d1(v) = exp(sv), d2(v) = exp(−pv), (9.108)

where s and p are selected numerically to maximize the objective function expression given by

(
exp(st)− 1

s

)
m(ν, δ, γ+ 2s)ν−1 exp

(
−1

2
[δm(ν, δ, γ+ 2s)−1 + γm(ν, δ, γ+ 2s)]

)

+

(
exp(−pt)

p

)
m(ν, δ, γ − 2p)ν−1

exp

(
−1

2
[
δm(ν, δ, γ − 2p)−1 + γm(ν, δ, γ − 2p)

])
.
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b) Now denote the target distribution (GIG density) by f (v) = ce(v) and define the function
hi(v) = e(v)

di(v) with maximum in each partition of the domain given by Si = sup hi(v).
One can then accept the generated value according to the following condition, after sampling
a second independent uniform variate U2 ∼ Uniform(0, 1)

U2 ≤ hi(V )

Si
. (9.109)

Repeat until one can accept a draw V .
2. Draw a standard Normal random variate: ε ∼ Normal(0, 1);
3. Construct the GH distributed random variable X ∼ GH(x; ν, α, β, μ, δ) according to the

transformation

X = μ+ βV +
√

V ε. (9.110)

Next we present a special subfamily of the GH class of severity models known as the NIG
severity distribution.

9.6.3 NORMAL INVERSE GAUSSIAN FAMILY OF HEAVY-TAILED
SEVERITY MODELS

The NIG distribution was recently introduced in the financial literature to capture non-
Gaussian residuals observed in the financial time series by Barndorff-Nielsen (1997) and
Barndorff-Nielsen and Shephard (2001). The NIG model takes its name from the fact that it
represents a normal variance–mean mixture that occurs as the marginal distribution for a ran-
dom variable X when considering a pair of random variables (X ,Z), where Z is distributed
as an IG Z ∼ InverseGaussian(δ,

√
α2 − β2), and X conditional on Z is (X |Z = z) ∼

Normal (μ+ βz, z). The resulting density function for the NIG model is given in
Definition 9.20.

Definition 9.20 (Normal Inverse Gaussian (NIG) — Scale Invariant) A random variable
X ∼ NIG (α, β, μ, δ) is characterized by the density function

fX (x;α, β, μ, δ) =
αδ

π

exp [p(x)]
q(x)

K1 [αq(x)] , (9.111)

where K1[·] is a modified Bessel function of the second kind with index 1 (see Olver 1960), with

p(y) = δ
√
α2 − β2 + β (y − μ)

and

q(y) =
(
(y − μ)2 + δ2)1/2

.

As with the GH family, for the NIG subfamily under this parametrization, the parameters
have the constraints μ ∈ R, δ > 0, 0 ≤ |β| ≤ α. The parameter α is inversely related to
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the heaviness of the tails, where a small α corresponds to heavier tails. The skewness is directly
controlled by the parameter β, where negative (positive) values of β result in a left (right) skew
and β = 0 is the symmetric model. The translation (or location) of the distribution is given by
the parameter μ and the scale of the distribution is given by the parameter δ.

An alternative parametrization proposed by Eriksson et al. (2009), which is scale-invariant
and may be considered in further studies, is obtained by setting α = δα and β = δβ, which is
defined in Definition 9.21.

Definition 9.21 (Normal Inverse Gaussian (NIG) — scale invariant) A random variable
X ∼ NIG

(
α, β, μ, δ

)
is characterized by the density function

fNIG(x;α, β, μ, δ) =
αK1

[
α
δ

√
δ2 + (x − μ)2

]
π
√
δ2 + (x − μ)2

exp

(√
α2 − β

2
+

β

δ
(x − μ)

)
(9.112)

When considering the NIG severity model subfamily of the GH distributions, it is more
convenient to simulate the severity losses via the following algorithm.

Algorithm 9.5 (Simulating Losses from a Normal Inverse Gaussian Severity Model)

1. Draw an IG random variate: Z ∼ InverseGaussian(δ,
√

α2 − β2). This is achieved as follows
via a transformation and rejection stage:
a) Draw a standard Normal random variate: V ∼ Normal(0, 1);
b) Evaluate Y = V 2 ;
c) Evaluate D = δ + δ2Y

2
√

α2−β2
− δ

2
√

α2−β2
;

d) Sample a uniform random variate U ∼ Uniform(0, 1) and perform rejection stage where

one accepts Z = D if U < δ
δ+D , otherwise set Z =

√
α2−β2

D .
2. Draw a conditional Normal random variate X ∼ Normal(μ+ βZ ,Z) .

In addition, the NIG has the following features that relate it to other distributions:

1. If one restricts β = 0 and μ is arbitrary, the NIG model asymptotically approaches the
popular Gaussian model X ∼ Normal

(
μ, δ

α

)
as α → ∞ or δ → ∞;

2. If one restricts α = β = 0 with μ and δ as arbitrary, the NIG model approaches the
Cauchy distribution;

3. The NIG model can also approximate the skewness and kurtosis of the LogNormal, Stu-
dent’s t, and Gamma distributions, among others (see Hosack et al. 2012 and Hanssen
and Oigard 2001).

To better understand the flexible features of the NIG model, it is convenient to consider
the steepness–asymmetry specification. The shape of the NIG distribution can be conveniently
summarized with a graphical representation called the NIG shape triangle (Barndorff-Nielsen
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and Shephard 2001). This plot uses indices of steepness and asymmetry, which are analogous
to kurtosis and skewness, given by

Steepness =
(

1 + δ
√
α2 − β2

)−1/2
,

Asymmetry =
β

α
× Steepness,

with 0< Steepness< 1 and −1<Asymmetry< 1. Distributions with Asymmetry= 0
are symmetric, and the Gaussian and Cauchy distributions occur as limiting cases for
(Asymmetry, Steepness) near (0,0) and (0,1), respectively. Figure 9.9 provides a graphical
representation of NIG probability example density functions.

The expressions for the mean, variance, skewness, and kurtosis for the NIG model are
given conveniently in terms of the model parameters in the following closed, form expressions
in Proposition 9.25.

Proposition 9.25 (Moments of NIG Severity Models) A loss random variable X ∼NIG
(α, β, μ, δ) is characterized sufficiently by the first four moments

E(X ) = μ+
δ
(

β
α

)
(

1 −
(

β
α

)2
)1/2 ,

Var(X ) =
δ

α

(
1 −

(
β
α

)2
)3/2 ,

Skew(X ) =
3
(

β
α

)

(δα)1/2

(
1 −

(
β
α

)2
)1/4 ,

Kurt(X ) = 3
4
(

β
α

)2
+ 1

δα

(
1 −

(
β
α

)2
)1/2 .

(9.113)

In general, the moment-generating function is given by the expression

E [exp(tX )] = exp
(
δ
√
α2 − β2 − δ

√
α2 − (β + t)2 + μt

)
. (9.114)

One may then solve these equations numerically to perform parameter estimation via
matching of the population moments and the sample estimated moments.

9.6.3.1 Parameter Estimation for Normal Inverse Gaussian Severity
Models. In this section, we consider the approach to parameter estimation based on
Method of Moments (MOM) and a variant of this approach, which ensures the strict
ε-positivity of the support of the resulting NIG severity distribution. Other approaches, which
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figure 9.9 NIG triangle characterizing the flexibility of the skewness and kurtosis properties of the
NIG family of models

are numerically slower to implement but provide accurate results, include maximum likelihood
(see Chapter 7).

Under the MOM approach, if the parameters are unconstrained, then one may achieve
any of the possible skew and kurtosis characteristics of the NIG family to be obtained, with
the computational constraint that no closed-form solution for the parameter estimates can be
obtained from algebraic manipulation of the system of equations produced by matching distri-
bution expressions for moments with empirical sample moments. Hence, for the unconstrained
case, one must resort to numerical root-finding solutions in four parameters and care should be
taken with the numerical procedures adopted. Alternatively, one may restrict to a subfamily of
the NIG distributions, through constraining of the existence of the first four cummulants, as
detailed by Eriksson et al. (2004). These expressions for the parameters of the NIG distribution
in terms of its mean, variance, skewness, and excess kurtosis under these constraints are then
achieved as shown in Proposition 9.26.

Proposition 9.26 (Closed-Form Parameter Estimation for NIG Severity Models via
MOM) Consider that i.i.d. distributed loss random variables Xi ∼ NIG(α, β, μ, δ) with sam-
ple mean, sample variance, sample skewness, and sample excess kurtosis, denoted by M̂, V̂ , Ŝ ,
and K̂, respectively, can be utilized to estimate the model parameters with a constraint imposed.
Assume that the following constraint applies to the kurtosis 3K̂ > 5 and the skewness Ŝ2 > 0,
then the method of moment estimators for the parameters are given in closed form under these
constraints by

α̂ = 3ρ̂1/2(ρ̂− 1)−1V̂−1/2|Ŝ|−1,

β̂ = 3(ρ̂− 1)−1V̂−1/2Ŝ−1,

μ̂ = M̂ − 3ρ̂−1V̂1/2Ŝ−1,

δ̂ = 3ρ̂−1(ρ̂− 1)1/2V̂1/2|Ŝ|−1,

(9.115)

where ρ̂ = 3K̂Ŝ−2 − 4 > 1.
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In the case where one wishes to ensure ε-strict positivity of support when estimating the
model parameters, one may wish to select β = α− |ε| for ε ∈ n.e.(0) where ε is a small value
in the neighborhood of the origin. In this case, one has the estimating equations for the MOM
yield of the closed-from expressions given in Proposition 9.27.

Proposition 9.27 (Parameter Estimation of NIG Model with ε-Positive Support) Consi-
der that i.i.d. distributed loss random variables Xi ∼NIG(α, β, μ, δ) with sample mean, sample
variance, sample skewness, and sample excess kurtosis, denoted by M̂, V̂ , Ŝ , and K̂, respectively, can
be utilized to estimate the model parameters with a constraint imposed. In this case, the constraint
is selected to ensure the estimated model has ε-positive support where β = α − |ε| for ε ∈ n.e.(0)
where ε is a small value in the neighborhood of the origin. The parameters are estimated via the
following closed- form expressions:

α̂ =
ε(

1 −
√

S2

3K−4S2

) ,
β̂ = α̂− ε,

δ̂ =
9 (α̂− ε)

2

α̂2S2
√

2α̂ε− ε2
,

μ̂ = E −
δ̂
(
α̂−ε
α̂

)
√

1 −
(
α̂−ε
α̂

)2
.

(9.116)

Next, we briefly discuss the related class of GIG distributions, where it was first formed as
part of a family of distributions known as the Halphen family. The GIG submembers of this
family (Halphen Type A distribution) were shown to be instrumental in constructing the GH
family and the NIG family.

9.7 Halphen Family of Flexible Severity Models: GIG
and Hyperbolic

The history of the Halphen family of distributions is very interesting as pointed out by the
series of two expository papers by Perreault et al. (1999a,b) and an article by Seshadri (2004).
The Halphen severity distribution is an interesting family of distributions that was first pro-
posed by a French statistician, Etienne Halphen. His publication of this work was complicated
by the fact that his country was in a war period and he had an early death. Consequently, the
official record of his work first appeared in his papers (Halphen 1941, 1953) on harmonic
distributions, which were renamed in the 1970s as the hyperbola distribution family (subfam-
ily of the GH) in the pioneering works of Rukhin (1974) and Barndorff-Nielsen and Hal-
green (1977), who seem to have rediscovered this family independently of Halphen’s original
works. In fact, as pointed out by Perreault et al. (1999a), it was George Morlat, Halphen’s col-
league, who eventually published some of Halphen’s work (Morlat 1951). This work would
have remained hidden as it was written in lesser-known journals to the statistical community
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and was published in French, except for the exposition developed on this family by Perreault
et al. (1999a), which itself was not written for a wide statistical audience as it was published in
a hydrological engineering journal. This made sense as the primary motivation for Halphen for
this work was originally related to the modeling of river flows. Since this early work there have
only been a few applications of this family of models (under the name of Halphen family; see
Guillot 1964 and Cam 1949); however, there have been many more under the name of GIG
and GH distributions.

In this section, we will provide a brief introduction to the family of positive supported
Halphen Type A, Type B, and Type IB distributions for the modeling of OpRisk severity mod-
els in an LDA structure. These families will be shown to contain several important subfamilies
such as the GIG, GH, Inverese Gamma, Gamma, and Normal distributions. The family of
Halphen distributions has recently become popular in the hydrological literature for model-
ing flows, but remains, however, largely under utilized in the statistics literature even though
it provides comparative performance to other models of extreme events such as the General-
ized Extreme Value (GEV) models discussed in Peters and Shevchenko (2015); also see dis-
cussions by El Adlouni et al. (2009). We start with a general characterization of this family of
distributions.

One can characterize the Halphen family according to the differential equation in Propo-
sition 9.28, where four generic parameters q, a0, a1, and a2 are specified. When considering
each subfamily of the Halphen distributions, the reparametrization in terms of parameters is as
follows:

• m > 0 is a scale parameter;
• ν is a shape parameter with a range of admissible parameter values that will depend on the

subfamily (Type A, ν ∈ R; Type B, ν > 0; and Type IB, ν > 0);
• α is a shape parameter with a range of admissible parameter values that will depend on the

subfamily (Type A, α > 0; Type B, α ∈ R and Type IB, α ∈ R).

The specification of the family via this o.d.e. representation is particularly useful as it allows
one to show the mode and antimode behaviors of each of the subfamilies of distributions (see
discussions in Perreault et al. 1999a).

Proposition 9.28 (Halphen Family of Severity Models) A loss random variable
X ∼ Halphen (q, a0, a1, a2) is characterized generically by the ordinary differential equation

1
f (x)

df (x)
dx

=
a0 + a1x + a2x2

xq , (9.117)

which gives rise to the following three subfamilies of distributions known as Type A, Type B, and
Type IB:

• Type A subfamily. Set the parameters to q = 2, a0 = αm, a1 = ν − 1, and a2 = −α/m;
• Type B subfamily. Set the parameters to q = 1, a0 = 2ν − 1, a1 = α/m, and

a2 = −2/m2;
• Type IB subfamily. Set the parameters to q = 3, a0 = 2m2, a1 = −αm, and

a2 = −(2ν + 1).
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With this specification one can show the following model flexibility of each of the sub-
families of the Halphen distribution with regard to modes and antimodes simply by find-
ing the roots of the equation a0 + a1x + a2x2 (see Proposition 9.29 and details by Perreault
et al. 1999a).

Proposition 9.29 (Halphen Severity Model Mode and AntiModes) One can classify each
subfamily of the Halphen distributions via the existence of no mode, one mode or a mode and anti-
mode relationship. It can be shown that under this representation, the mode and antimode properties
of the distribution are obtained by equating df/dx = 0, which shows that such modes and antimodes
are simply solutions to the quadratic equation a0 + a1x + a2x2 = 0 given by

Mode(X ) = − a1

2a2
±

√(
a1

2a2

)2

− a0

a2
. (9.118)

As a result, the types of Halphen distribution can be characterized according to the existence of no
real solutions (no mode), one real solution (one mode), and two real solutions (mode and antimode)
subfamilies, labeled Type I, Type II, and Type III, respectively.

• Type I. No modes with conditions a0
a2

≥ 0 and a1
2a2

≥ 0;

• Type II. A mode and an antimode with conditions a0
a2

> 0,
(

a1
2a2

)2
> a0

a2
and a1

2a2
< 0;

• Type III. One mode with conditions a0
a2

< 0; or a0
a2

= 0 and a1
2a2

< 0.

Before presenting details of each of the subfamilies of models in the Halphen class, we first
detail some general properties of the tail behavior of the Halphen Type A, Type B, and Type IB
distributions. As discussed by Perreault et al. (1999a), the Halphen family has the tail properties
specified in Proposition 9.30.

Proposition 9.30 (Halphen Family Distributional Tail Properties) Consider a loss random
variable X ∼ Halphen (q, a0, a1, a2), then the following tail behaviors are possible in each
subfamily.

1. Type A subfamily. Set the parameters to q = 2, a0 = αm, a1 = ν−1, and a2 = −α/m and
the tail properties of the Halphen Type A, Gumbel, and Gamma distributions are characterized
by the return period with quantiles x proportional to the log of the return period such that
x ∝ lnT ;

2. Type B subfamily. Set the parameters to q = 1, a0 = 2ν−1, a1 = α/m, and a2 = −2/m2

and the tail properties of the Halphen Type B and Gaussian distributions are characterized by
the return period with quantiles x proportional to the squareroot of the log of the return period
such that x ∝

√
lnT ;

3. Type IB subfamily. Set the parameters to q = 3, a0 = 2m2, a1 = −αm, and a2 =
−(2ν + 1) and the tail properties of the Halphen Type IB distributions are characterized by
the return period with quantiles x proportional to the power of the return period such that
x ∝ T

1
2ν .

In these properties T (x) denotes the return periods given by T (x) = F−1
(x).
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At this stage, it will be relevant to introduce a special function introduced by Halphen
(1955) that plays an equivalent role in normalization for the Type B and Type IB distributions
as the modified Bessel function of the second kind (third kind) in the Type A (Generalized
Inverse Gaussian) subfamily (see Proposition 9.31).

Proposition 9.31 (Exponential Factorial Function) The exponential factorial function efν(α)
is given by the integral equation

efν(α) = 2
∞∫

0

x2ν−1 exp
[
−x2 + αx

]
dx, ν > 0 (9.119)

or by the series expansion

efν(α) =
∞∑

r=0

αr

r!
Γ
(
ν +

r
2

)
. (9.120)

The exponential factorial function is plotted in Example 9.7 for a few parameter settings.

EXAMPLE 9.7 Features of the Exponential Factorial Function

In this example, we plot the value of the log of the exponential factorial function as
a function of ν and α for a range of parameter settings (Figure 9.10).
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figure 9.10 Log of the exponential factorial function for a range of parameters ν and α
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To conclude this general discussion on the Halphen family of distributions, we discuss
some basic sampling procedures for drawing loss random variates from a Halphen family dis-
tribution as discussed in detail by El Adlouni and Bobée (2007), where an acceptance–rejection
method is proposed for each of the Type A, Type B, and Type IB subfamilies.

Algorithm 9.6 (Simulating Losses from a Halphen Type A Severity Model)

1. Construct the instrumental distribution for aceptance–rejection sampling given by a Gamma
density

g(x;λ, δ) =
δλ

Γ(λ)
xλ−1 exp(−δx) (9.121)

with scale δ > 0 and shape λ > 0, where if X ∼ HalphenA (m, ν, α), one selects the shape
and scale of the instrumental distribution by

λ =
E[X ]2

2Var(X )
=

K 2
ν (2α)

Kν(2α)Kν+2(2α)− K 2
ν+1(2α)

δ =
λ

E[X ]
=

λKν(2α)
mKν+1(2α)

.

(9.122)

2. Numerically find the maximum point M such that the following inequality with the Halphen
Type A density f (x) and the instrumental Gamma density g(x) satisfy f (x) ≤ Mg(x) where
one should select M as the minimum value such that Mg(x) is an envelope for f (x) over its
entire support;

3. Draw a Gamma random variate: X ∼ Gamma(λ, δ);
4. Draw a Uniform random variate: U ∼ Uniform(0, 1);

5. Accept Draw X if U ≤ f (X ;m,ν,α)
Mg(X ;λ,δ) , otherwise repeat.

In the same manner, one can also design an acceptance–rejection algorithm for sampling
loss random variates from the Halphen Type B and Type IB distributions as follows. The only
real difference compared to the Type A samplers is in the specification of the shape and scale
parameters that will ensure the dominance of the instrumental distribution to act as an envelope
function of the support of the Type B and Type IB distributions.

Algorithm 9.7 (Simulating Losses from a Halphen Type B Severity Model)

1. Construct the Instrumental distribution for acceptance–rejection sampling given by a Gamma
density

g(x;λ, δ) =
δλ

Γ(λ)
xλ−1 exp(−δx) (9.123)

with scale δ > 0 and shape λ > 0, where if X ∼ HalphenA (m, ν, α), one selects the shape
and scale of the instrumental distribution by one of the two following specifications:
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If ν ≤ 1,

λ =
1
5

ef 2
ν− 1

2
(α)

[
efν(α)efν−1(α)− ef 2

ν− 1
2
(α)

]−1

δ =

√
λef 2

ν (α)

5m2

[
efν(α)efν−1(α)− ef 2

ν− 1
2
(α)

]− 1
2
.

(9.124)

If ν ≤ 1,

λ =
1
2

ef 2
ν− 1

2
(α)

[
efν(α)efν−1(α)− ef 2

ν− 1
2
(α)

]−1

δ =

√
λef 2

ν (α)

2m2

[
efν(α)efν−1(α)− ef 2

ν− 1
2
(α)

]− 1
2
.

(9.125)

2. Numerically find the maximum point M such that the following inequality with the Halphen
Type A density f (x) and the instrumental Gamma density g(x) satisfy f (x) ≤ Mg(x) where
one should select M as the minimum value such that Mg(x) is an envelope for f (x) over its
entire support;

3. Draw a Gamma random variate: X ∼ Gamma(λ, δ);
4. Draw a Uniform random variate: U ∼ Uniform(0, 1);

5. Accept draw X if U ≤ f (X ;m,ν,α)
Mg(X ;λ,δ) , otherwise repeat.

To obtain samples from the Halphen Type IB distribution one simply uses the fact that
if X ∼ HalphenB(x;m, α, ν), then 1/X ∼ HalphenIB

(
x; 1

m , α, ν
)
. Next we present some

properties of the there subfamilies classified by Type A, Type B, and Type IB. Before present-
ing this, we note that several authors have developed parameter estimation procedures for the
Halphen family including Maximum Likelihood, MOM, and mixed methods (see discussions
by Chebana et al. 2008 and Perreault et al. 1999b).

9.7.1 HALPHEN TYPE A: GENERALIZED INVERSE GAUSSIAN
FAMILY OF FLEXIBLE SEVERITY MODELS

Here we discuss the important subfamily of the Halphen system given by the Halphen Type
A distributions. As discussed by Morlat (1951) and Perreault et al. (1999a), the original spec-
ification of a (reparameterized) form of the GIG distribution better known in statistics from
the work of Good (1953) was actually developed almost a decade earlier by Halphen (1941).
The reparameterized form of the Halphen Type A family (relative to the typically used GIG
parameterization in modern statistics) is shown in Proposition 9.32.

Proposition 9.32 (Halphen Type A (GIG) Severity Models) A loss random variable X has a
Halphen Type A distribution X ∼ HalphenA(x;m, ν, α) if it has a density given by

f (x;m, ν, α) =
1

2mνKν(2α)
xν−1 exp

[
−α

( x
m

+
m
x

)]
, x > 0 (9.126)

for m > 0, α > 0, and ν ∈ R.
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In the following example, the shape of the Halphen Type A severity distribution is plotted
for a range of shape and scale parameters to demonstrate how each parameter changes the
characteristics of the severity model.

EXAMPLE 9.8 Examples of Flexible Halphen Severity Distributions (Type A)

In the plots shown in Figure 9.11 plots, we explore the density shapes for the case
of the subfamily of Halphen Type A distributions (GIG subfamily) given by a range
of scale parameters m and shape parameters ν and α.
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figure 9.11 Halphen Type A distributions (GIG subfamily). Top subplot: parameters used
in this subplot study the effect of the scale parameter ranges m = [0.5, 1, 2, 3] with shape
parameters set to ν = 1 and α = 1. Middle subplot: parameters used in this subplot study the effect
of the shape parameter ranges ν = [1, 2, 3, 4] with shape parameter set to α = 1 and scale
parameter m = 0.5. Bottom subplot: parameters used in this subplot study the effect of the shape
parameter ranges α = [1, 2, 3, 4] with shape parameter set to ν = 1 and scale parameter m = 0.5

It is trivial to see that if one considers the reparametrization in terms of parameters ν, δ,
and γ, which are typically used in specifying the GIG family of severity distributions, then the
setting
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1. ν parameter unchanged;

2. α =
√
δγ
2 ;

3. m = γ√
δγ

;

will reproduce the typical parametrization of the GIG family shown in works such as that of
Good (1953). In the remainder of this section, we will present some properties of the GIG
family when parameterized under the Halphen Type A structure or the more familiar structure
of the GIG family, making explicit the distinction by persisting with the two sets of parameters,
and making explicit which is used in each discussion.

As previously demonstrated, the GIG subfamily of the Halphen family also plays an impor-
tant role in simulation of losses from a GH severity distribution model. However, in this section,
we will also study the properties of the GIG family of models that are useful for OpRisk mod-
eling in their own right. The GIG family is a subfamily of the GH models with strictly positive
support with many usefull properties for OpRisk LDA structures. The family of GIG models
is parametrized by ν ∈ R, γ ∈ R

+, and δ ∈ R
+ such that γ + δ > 0 and has density given in

Definition 9.22 (see details by Jørgensen 1982). There are a few special subfamilies nested in
the GIG model that include the (δ = 0) case, which produces the Gamma distribution family,
the (γ = 0), which yields the Inverse Gamma family, and the (ν = − 1

2 ) giving the Inverse
Gaussian family.

Definition 9.22 (Generalized Inverse Gaussian Severity Model Density) A loss random vari-
able X has a GIG distribution X ∼ GIG(x; ν, δ, γ) if it has a density given by

fX (x) =
(
γ
δ

) ν
2

2Kν

(√
δγ
)xν−1 exp

(
−1

2
(
δx−1 + γx

))
, x > 0 (9.127)

with domain of variation of the parameters divided into three cases depending on the value of ν as
follows:

1. δ > 0 and γ ≥ 0, if ν < 0;
2. δ > 0 and γ > 0, if ν = 0;
3. δ ≥ 0 and γ > 0, if ν > 0.

In the form of the Halphen Type A distribution, it can be shown, based on the conditions
in Proposition 9.29, that the Halphen Type A and therefore also the reparameterized GIG
family of models are unimodal (see Proposition 9.33).

Proposition 9.33 (Mode of Halphen Type A (GIG) Severity Models) A loss random variable
X with a Halphen Type A distribution X ∼HalphenA(x;m, ν, α) has a single mode at location

Mode[X ] = m

⎡
⎣ν − 1

2α
+

√(
ν − 1

2α

)2

+ 1

⎤
⎦ . (9.128)

In the parametrization of the GIG distribution X ∼ GIG(x; ν, δ, γ), the mode is located at

Mode[X ] =
γ√
δγ

⎡
⎣ν − 1√

δγ
+

√(
ν − 1√

δγ

)2

+ 1

⎤
⎦ . (9.129)
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In addition, as was originally the intention of Halphen in developing this family, the
Halphen Type A family of distributions may be written in exponential family form with suffi-
cient statistics for each of the parameters given in Proposition 9.34. Note that this result is just
a reparametrized version of the well-known result for the exponential family representation of
the GIG family.

Proposition 9.34 (Exponential Family Representation of Halphen Type A) A loss random
variable X with a Halphen Type A distribution X ∼ HalphenA(x;m, ν, α) belongs to a three-
parameter exponential family presented in the following form:

f (x;m, ν, α) = exp

(
(ν − 1) ln x − α

m
x − αm

1
x
− ln [2mνKν(2α)]

)
, (9.130)

which results in the following sufficient statistics from a sample of n i.i.d. losses {Xi}n
i=1 from the

Halphen Type A distribution

T1 (X1:n) =

n∑
i=1

lnXi = n lnG,

T2 (X1:n) =
n∑

i=1

Xi = nA,

T3 (X1:n) =

n∑
i=1

X−1
i = nH−1,

(9.131)

for the arithmetic mean A, the geometric mean G, and the harmonic mean H.

It is clear that one could then perform estimation of the parameters if it were possible to
obtain the population means (arithmetic, geometric, and harmonic) in terms of the parameters.
Fortunately, this is possible as illustrated by Perreault et al. (1999a) who show that one may
obtain the results given in Proposition 9.35.

Proposition 9.35 (Arithmetic, Geometric, and Harmonic Population Moments Halphen
Type A) A loss random variable X with a Halphen Type A distribution X ∼HalphenA(x;m, ν, α)
has the following closed-form expressions for the Arithmetic (A), the Geometric (G), and Harmonic
(H) means:

A = E[X ] = m
Kν+1(2α)
Kν(2α)

H = E

[
1
X

]
=

1
m

Kν−1(2α)
Kν(2α)

.

(9.132)

Note that the Geometric mean is given by the moment of order quasi-zero (see Kendall et al. 1994),
hence it is given, for i.i.d. random variables {Xi}n

i=1, by the limit

G := lim
r→0

[
1
n

n∑
i=1

X r
i

] 1
r

. (9.133)

The log of G is given by

lnG = E[lnX ] = lnm + K −1
ν (2α)

∂Kν(2α)
∂ν

. (9.134)
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In terms of the GIG parameterization of the Halphen Type A family, the moments of the
GIG family can be characterized by the moment-generating function given in Proposition 9.36.

Proposition 9.36 (Moment-Generating Function Generalized Inverse Gaussian Family)
A loss random variable X with a GIG distribution X ∼ GIG(x; ν, δ, γ) has a moment-generating
function given by

E [exp(tX )] =

(
γ

γ − 2t

) ν
2 Kν

(√
δ(γ − 2t)

)
Kν

(√
δγ
) . (9.135)

If one then differentiates the Moment Generating Function (MGF) and evaluates it at the
origin, the following moment results are obtained in Proposition 9.37.

Proposition 9.37 (Moments of Generalized Inverse Gaussian Severity Models) A loss ran-
dom variable X with a GIG distribution X ∼ GIG(x; ν, δ, γ) has integer moments r ∈ J

+ given
in closed form by

E [X r ] =

(
δ

γ

) r
2 Kν+r

(√
δγ
)

Kν

(√
δγ
) , (9.136)

which gives a mean and variance according to the expressions

E[X ] =

√
δKν+1

(√
γδ
)

√
γKν

(√
γδ
)

Var[X ] =
δ

γ

⎡
⎣Kν+2

(√
γδ
)

Kν

(√
γδ
) −

(
Kν+1

(√
γδ
)

Kν

(√
γδ
)
)2

⎤
⎦ .

(9.137)

The log moment is given by evaluating the following expression at r = 0:

E [lnX ] =
dE [X r ]

dr
. (9.138)

With regard to the tail properties of the GIG family of distributions, these were considered
by Embrechts (1983). In this work, the case ν < 0 was considered and it was shown that all GIG
distributions under this restriction satisfy an asymptotic convolution property, which allowed
Embrechts (1983) to show particular tail properties of the distribution such as those presented
in Proposition 9.38 (see Embrechts 1983, theorem 1).

Proposition 9.38 (Subexponential Tail Behavior of Generalized Inverse Gaussian) Con-
sider a loss random variable X with a GIG distribution X ∼ GIG(x; ν, δ, γ) with parameter
restrictions ν < 0, δ > 0, and γ ≥ 0; then the distribution function FX (x) is a member of the
subexponential family of distributions with FX (x) ∈ S

(
δ
2

)
such that the following limiting tail

behavior is satisfied for n ≥ 2

lim
x→∞

F (n)∗
X (x)
F X (x)

= n
[

f
(
−δ

2

)]n−1

, (9.139)
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where F (n)∗ is the n-fold convolution and the function f
(
− δ

2

)
represents the Laplace–Stieltjes trans-

form of distribution F that satisfies

lim
x→∞

F (2)∗
X (x)
F X (x)

= 2f
(
−δ

2

)
< ∞. (9.140)

9.7.1.1 Subfamilies of the Halphen Type A (Generalized Inverse Gaussian)
Severity Models. The GIG family of severity models also contains as a special subfamily
the IG (Wald) severity models with parameter settings ν = − 1

2 , γ = λ
μ , and δ = λ giving the

IG family with parameters λ and μ. The IG severity models are also members of the exponen-
tial family (see discussions by Johnson et al. 1970). The resulting distribution and density are
provided in Definition 9.23.

Definition 9.23 (Inverse Gaussian Severity Model Distribution and Density) Consider a
loss random variable with IG severity model X ∼ InverseGaussian(λ, μ), then the density function is
given by

fX (x;λ, μ) =
[

λ

2πx3

] 1
2

exp

(
−λ(x − μ)2

2μ2x

)
, x > 0, (9.141)

for λ > 0 and μ > 0 and the distribution function by

FX (x;λ, μ) = Φ

(√
λ

x

(
x
μ
− 1

))
+ exp

(
2λ
μ

)
Φ

(
−
√

λ

x

(
x
μ
+ 1

))
, (9.142)

where Φ(·) is the standard Normal distribution function.

One of the key features for risk and insurance modeling of the IG subfamily is the fact that
it is a unimodal severity distribution with positive support which also has the property of closure
under convolution as shown in Proposition 9.39 (see discussions by Folks and Chhikara 1978).

Proposition 9.39 (Closure Under Convolution of the Inverse Gaussian Severity Model)
Given n i.i.d. loss random variables Xi ∼ InverseGaussian (x;μ, λ), the sum of these loss random
variables is also Inverse Gaussian distributed as follows:

Sn =
n∑

i=1

Xi ∼ InverseGaussian (μ, nλ) . (9.143)

One other useful property of the IG subfamily of severity models is the closure under
scaling property given by Propositions 9.40 and 9.41 (see Folks and Chhikara 1978).

Proposition 9.40 (Closure Under Scaling of IG Severity Models) Given a loss random vari-
able X ∼ InverseGaussian (x;μ, λ), the scaled loss random variable is also IG-distributed as follows:

kX ∼ InverseGaussian (kμ, kλ) (9.144)

for some constant k > 0.
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Proposition 9.41 (Moments and Negative Moments of IG Severity Models) Givenaloss ran-
dom variable X ∼ InverseGaussian(x;μ, λ), the integer moments and negative moments are related
as follows:

E
[
X−r] = 1

μ2r+1 E
[
X r+1] (9.145)

for any r ∈ J
+ and where the moment-generating function is given by

E [exp(tX )] = exp

(
λ

μ

)[
1 −

√
1 − 2μ2t

λ

]
(9.146)

this gives the following mean and variance:

E [X ] = μE [X ] =
μ3

λ
. (9.147)

9.7.2 HALPHEN TYPE B AND IB FAMILIES OF FLEXIBLE
SEVERITY MODELS

In this section, we propose the use of the Halphen Type B and Type IB families of distribution
as a flexible choice of severity models for OpRisk loss processes. As detailed previously, the Type
B Halphen family of severity models has a very special feature — that it can display a mode
and antimode relationship (members of the Type B family may also be classified into Type I,
Type II, or Type III with respect to the mode). The density of the Halphen Type B family is
characterized as shown in Definition 9.24.

Definition 9.24 (Halphen Type B Severity Models) A loss random variable X has a Halphen
Type B distribution X ∼ HalphenB(x;m, ν, α) if it has a density given by

f (x;m, α, ν) =
1

m2νefν(α)
x2ν−1 exp

(
−
( x

m

)2
+ α

x
m

)
(9.148)

with m representing the shape, and the first and second scale parameters given by α and ν and x > 0,
m > 0, α ∈ R, ν > 0, and efν(α) is the exponential factorial function given by either the integral,
series, or special function representations:

efν(α) = 2
∞∫

0

x2ν−1 exp
(
−x2 + αx

)
dx, ν > 0

= Γ(ν) +
α

1!
Γ

(
ν +

1
2

)
+

α2

2!
Γ (ν + 1) + · · ·+ αr

r!
Γ
(
ν +

r
2

)
+ · · ·

= Γ(ν)M
(
ν,

1
2
,
α2

4

)
+ αΓ

(
ν +

1
2

)
M
(
ν +

1
2
,

3
2
,
α2

4

)
, (9.149)

where the confluent hypergeometric function M(a, b, z) is given by Abramowitz and Stegun (1965)
as follows:

M(a, b, z) =
Γ(b)

Γ(b − a)Γ(a)

1∫
0

ezt ta−1(1 − t)b−a−1 dt. (9.150)
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The density of the Halphen Type IB family is characterized by the fact that if X ∼
HalphenB(x;m, α, ν) then 1/X ∼ HalphenIB

(
x; 1

m , α, ν
)
. In Example 9.9, we demonstrate

the flexible features of these families of distributions.
In the following example, the shape of the Halphen Type B severity distribution is plotted

for a range of shape and scale parameters to demonstrate how each parameter changes the
characteristics of the severity model.

EXAMPLE 9.9 Examples of Flexible Halphen Severity Distributions (Type B)

In the plots shown in Figure 9.12, we explore the density shapes for the case of the
subfamily of Halphen Type B distributions given by a range of scale parameters m
and shape parameters ν and α.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3
0
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1

1.5
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ν= 4

α= 1
α= 2
α= 3
α= 4

figure 9.12 Halphen Type B distributions. Top subplot: parameters used in this subplot
study the effect of the scale parameter ranges m = [0.5, 1, 2, 3] with shape parameters set to ν = 1
and α = 1. Middle subplot: parameters used in this subplot study the effect of the shape parameter
ranges ν = [1, 2, 3, 4] with shape parameter set to α = 1 and scale parameter m = 0.5. Bottom
subplot: parameters used in this subplot study the effect of the shape parameter ranges
α = [1, 2, 3, 4] with shape parameter set to ν = 1 and scale parameter m = 0.5
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We now focus on features of the Halphen Type B family. The Type B family has the
following mode and antimode features:

• No mode if α ≤ 0 and ν ≤ 0.5;
• Two modes (i.e., mode and antimode) if α < 0, ν < 0.5, and

(
−α

4

)2
< 0.5−ν and they

are located at

Mode(X ) = m

[
α

4
+

√(α
4

)2
+ ν − 0.5

]
,

Antimode(X ) = m

[
α

4
−
√(α

4

)2
+ ν − 0.5

]
.

(9.151)

• One mode if either ν > 0.5 or if ν = 0.5 and α > 0, then the mode is located at

Mode(X ) = m

[
α

4
+

√(α
4

)2
+ ν − 0.5

]
. (9.152)

In addition, as was the case for the Type A Halphen family, the Type B and Type IB
Halphen families also have the feature that the distributions may be written in exponential
family form with sufficient statistics for each of the parameters given in Proposition 9.42 (see
Perreault et al. 1999a).

Proposition 9.42 (Exponential Family Representation of Halphen Type B Severity
Models) A loss random variable X with a Halphen Type B distribution X ∼HalphenB(x;m, ν, α)
belongs to a three-parameter exponential family presented in the following form:

f (x;m, ν, α) = exp

(
(2ν − 1) ln x − 1

m2 x2 − α

m
x + ln

[
2

m2ν efν(α)
])

, (9.153)

which results in the following sufficient statistics from a sample of n i.i.d. losses {Xi}n
i=1 from the

Halphen Type A distribution

T1 (X1:n) =
n∑

i=1

lnXi = n lnG,

T2 (X1:n) =
n∑

i=1

X 2
i = nQ,

T3 (X1:n) =

n∑
i=1

Xi = nA,

(9.154)

for the arithmetic mean A, the geometric mean G, and the quadratic mean Q.

It is clear that one could then perform estimation of the parameters if it were possible to
obtain the population means (arithmetic, geometric, and quadratic) in terms of the parameters.
Fortunately, this is possible as illustrated by Perreault et al. (1999a) who show that one may
obtain the following results in Proposition 9.43.
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Proposition 9.43 (Arithmetic, Geometric, and Harmonic Population Moments Halphen
Type B) A loss random variable X with a Halphen Type B distribution X ∼HalphenB(x;m, ν, α)
has the following closed-form expressions for the Arithmetic (A), the Geometric (G), and Quadratic
(Q) means:

A = E[X ] = m
efν+ 1

2
(α)

efν(α)
,

Q = E
[
X 2] = m2 efν+1(α)

efν(α)
.

(9.155)

Note that the Geometric mean is given by the moment of order quasi-zero (see Kendall et al. 1994),
hence it is given, for i.i.d. random variables {Xi}n

i=1, by the limit

G := lim
r→0

[
1
n

n∑
i=1

X r
i

] 1
r

. (9.156)

The log of G is given by

lnG = E[lnX ] = lnm + 2ef −1
ν (α)

∂efν(α)
∂ν

. (9.157)

The estimation of these models has also been performed by other methods such as the
Generalized MOM approach specified in Proposition 9.44 (see Perreault et al. 1999b).

Proposition 9.44 (Generalized Method of Moments Parameter Estimation Halphen
Type B) Given a loss random variable X with a Halphen Type B distribution
X ∼HalphenB(x;m, ν, α) and a sample of loss data {Xi}n

i=1, the parameters can be estimated
via the Generalized MOM by first estimating ν, substituting the estimate ν̂ to find m, and finally
estimating α through substitution of the estimates ν̂ and m̂ according to the following equations:

ν̂ =
1
2

E[X ]E [X−1]
(
E [X 3]E[X ]− E [X 2]

2
)
− Var[X ]E[X ]2

(1 − E[X ]E [X−1])
(
E [X 2]

2 − E [X 3]E[X ]
)
− Var[X ]2

,

m̂ =

√
2Var[X ]

2ν (1 − E[X ]E [X−1])
+ E[X ]E [X−1],

α̂ =
m (2ν (E[X ]− E [X 2]E [X−1]) + E [X 2]E [X−1])

Var[X ]
.

(9.158)
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Chapter Ten

Dependence Concepts

10.1 Introduction to Concepts in Dependence for
OpRisk and Insurance

This chapter is the first component of three chapters (Chapters 10–12) covering dependence
modelling in OpRisk frameworks. These three chapters jointly cover a detailed account of
the fundamental concepts that OpRisk practitioners should consider when developing depen-
dence models for LDA OpRisk loss processes. In particular we first present an overview of
dependence modelling approaches for LDA models which includes discussion on:

• Which components of the LDA model can dependence be added, such as between severi-
ties, between frequencies or between annual losses. This can be done explicitly via a para-
metric model such as a copula specification or via common shock frameworks, both of
which are discussed in detail in the following chapters;

• A case study that provides an understanding of the basic impacts that dependence has
in multiple risk LDA models. For instance, adding dependence between frequencies can
induce dependence between annual losses etc. We provide some theoretical bounds on
impacts of dependence for simple Poisson-LogNormal LDA models.

Having performed this case study, next we develop a mathematical description of the various
notions of dependence that have been developed in the statistics literature, these include:

• Parametric model based Copula dependence;
• Multivariate Upper Negative (positive) Dependence, Lower Negative (positive) Depen-

dence and Negative (positive) Dependence;
• Multivariate Negative and Positive Quadrant Dependence

Key concepts for determining if a parameter of a multivariate distribution (copula) is directly a
dependence parameter;

• Multivariate Association, Comonotonicity and Stochastic Ordering
Associated to key concepts such as increasing positive dependence used in analysis of mixing of
Markov chains, time series etc;

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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• Regression Dependence: Positive and Negative;
• Extreme Dependence, Tail Dependence and Intermediate Tail Dependence

Crucial to the study of joint extreme dependence.

Having developed a clear understanding of the different notions of dependence, we then
introduce the concept of concordance, and present detailed discussion on different measures
of dependence that aim to capture the dependence concepts mentioned above. This includes,
linear and non-linear measures of dependence as well as measures suitable explicitly for heavy
tailed loss processes.

Then in Chapter 11 we consider the statistical modelling of dependence in OpRisk, it is
dedicated to considerations involving a careful detailed discussion on many families of para-
metric copula that are of direct relevance to OpRisk practitioners - explaining the specification
and features of the models, the estimation of the parameters in such models via Inference Func-
tions for the Margins (IFM), and the sampling from such models in an LDA framework. The
copula models include:

• Gaussian copula;
• student-T copula; skew student-T copula; grouped student-T copula and generalised

student-T copula;
• Archimedean copulas: Frank, Clayton, Gumbel, Joe; Mixture Archimedean copula;

Heirarchical Archimedean copulas; Nested Archimedean copulas; Outer and Inner power
transformed Archimedean copula;

• Levy copula; Max-stable models and Self-Chaining copula;
• Common factor models and factor copulas.

Finally, in Chapter 12 different LDA models for OpRisk settings are developed completely
with a range of different copula models. In addition, it is demonstrated how to perform combin-
ing of different sources of information under an LDA framework which includes dependence
structures of different forms.

10.2 Dependence Modeling Within and Between LDA
Model Structures

The aim of this chapter is to address the issue of dependence modelling within and between
many OpRisks and to consider the effect of such dependence modelling on the aggregated total
loss distribution. The LDA model discussed throughout this book so far has focused on the case
of a single risk. This chapter considers modeling of dependence between the risks. Recall, that
in this text, the LDA for a bank’s total loss in year t is calculated as

Zt =

J∑
j=1

Z (j)
t , (10.1)
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where Z (j)
t is the annual loss in the j-th risk cell (business line/event type) modeled as a com-

pound random variable,

Z (j)
t =

N (j)
t∑

s=1

X (j)
s (t) . (10.2)

Here,

• t = 1, 2, . . . ,T ,T + 1 is discrete time (in annual units) with T + 1 corresponding to the
next year. For simplicity of notation in this chapter, this subscript is often dropped;

• The superscript j is used to identify the risk cell. Formally for OpRisk, J = 56 (eight
business lines times seven event types), but this may differ depending on the financial
institution and type of problem;

• The annual number of events N (j)
t is a random variable distributed according to a fre-

quency distribution Pj(·|λ(j)
t ), typically Poisson, which also depends on parameter(s) λ(j)

t
that can be time dependent;

• The severities, in year t, are represented by random variables X (j)
s (t), s ≥ 1, distributed

according to a severity distribution Fj(·|ψ(j)
t ) with parameter(s) ψ(j)

t ;
• The index j on the distributions Pj(·) and Fj(·) reflects the fact that distribution type can

be different for different risks. For simplicity of notation, often we shall omit this j if the
parameter index is presented, that is, using P(·|λ(j)

t ) and F (·|ψ(j)
t );

• The variables λ(j)
t and ψ

(j)
t generically represent distribution (model) parameters of the

j-th risk that we refer to hereafter as the risk profiles;

• Typically, it is assumed that given λ
(j)
t and ψ

(j)
t , the frequency and severities of the j-th risk

are independent, and the severities within the j-th risk are also independent.

Modeling dependence between different risk cells and factors is an important challenge in
OpRisk management. If initially one thinks of such dependence structures in terms of corre-
lation, then in this case the difficulties associated with such dependence modeling approaches
are well known and, hence, regulators typically take a conservative approach when considering
correlation in risk models. For example, the Basel II OpRisk regulatory requirement for the
Advanced Measurement Approach, BCBS (BCBS, 2006, p. 152), states as follows1:

Risk measures for different OpRisk estimates must be added for purposes of calculating the
regulatory minimum capital requirement. However, the bank may be permitted to use inter-
nally determined correlations in OpRisk losses across individual OpRisk estimates, provided
it can demonstrate to the satisfaction of the national supervisor that its systems for determin-
ing correlations are sound, implemented with integrity, and take into account the uncertainty
surrounding any such correlation estimates (particularly in periods of stress). The bank must
validate its correlation assumptions using appropriate quantitative and qualitative techniques.

1The original text is available free of charge on the BIS website www.BIS.org/bcbs/publ.htm.
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The current risk measure specified by regulatory authorities is value-at-risk (VaR) at the
0.999 level for a 1-year holding period. In this case, simple summation over VaRs corresponds to
an assumption of perfect dependence between risks. This can be very conservative as it ignores
any diversification effects. If the latter are allowed in the model, it is expected that the capital
may reduce, providing a strong incentive to model dependence in the banking industry. At
the same time, limited data do not allow for reliable estimates of correlations and there are
attempts to estimate these using expert opinions. In such a setting, a transparent dependence
model is very important from the perspective of model interpretation, understanding of model
sensitivity, and with the aim of minimizing possible model risk. In this chapter, we will discuss
how to formulate such dependence models and how to study and understand their features in
the context of OpRisk.

Remark 10.1 One should note at this stage that VaR is not a coherent risk measure; see definition
6.7 in section 6.2.1. This means that, in principle, dependence modeling could also increase VaR;
see Embrechts et al. (2009a,b). This issue will be discussed in section 12.8.

The pitfalls with the use of linear correlation as a measure of dependence and its limita-
tions are now widely known, and consequently the use of more general dependence modeling
concepts based around parametric models known as copula functions has become more promi-
nent. Copula models are especially being increasingly used to model dependence structures in
financial risk management. This was not the case until the publication of the highly influential
paper by Embrechts et al. (2002), which was first available as a RiskLab (ETH Zurich) report in
early 1999. These will be discussed throughout this chapter. A textbook reference for modeling
dependence between financial risks is McNeil et al. (2005), which also contains an extensive
bibliography on this subject.

10.2.1 WHERE CAN ONE INTRODUCE DEPENDENCE BETWEEN
LDA MODEL STRUCTURES?

Before we proceed to discuss copula modeling structures, we will first observe that there is first
an important modeling question to be addressed that is not just what types of dependence
features should I consider in my model, but between which components of the risk models
should I consider modeling the dependence structure and what effect might this have on my
overall institutional risk model.

Conceptually, under model (10.2), the dependence between the annual losses Z (j)
t and

Z (i)
t , i �= j, can be introduced in several ways:

• Modeling dependence between frequencies N (j)
t and N (i)

t directly through copula meth-
ods; see Frachot et al. (2004a), Bee (2005a), and Aue and Klakbrener (2006). Here, we
note that the use of copula methods, in the case of discrete random variables, needs to be
done with care;

• Common shocks; see Lindskog and McNeil (2003) and Powojowski et al. (2002). The
approach of common shocks is proposed as a method to model events affecting many cells
at the same time. Formally, this leads to a dependence between frequencies of the risks
if superimposed with cell internal events. Dependence between severities occurring at the
same time is considered in Lindskog and McNeil (2003);
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• Modeling dependence between the k-th severities or between k-th event times of different
risks; see Chavez-Demoulin et al. (2006) (e.g., first, second, etc. losses/event times of the
j-th risk are correlated to the first, second, etc., losses/event times of the i-th risk, respec-
tively). This can be difficult to interpret especially when one considers high-frequency
versus low-frequency risks;

• Modeling dependence between annual losses directly via copula methods; see Giacometti
et al. (2008) and Embrechts and Puccetti (2008). However, this may create irreconcilable
problems with modeling insurance for OpRisk that directly involves event times. Addi-
tionally, it will be problematic to quantify these correlations using historical data, and the
LDA model (10.2) will lose its structure. One can, however, consider dependence between
losses aggregated over shorter periods such as monthly or quarterly; we will discuss such
contexts in this chapter with regard to self-chaining copula structures;

• Using the multivariate compound Poisson model based on Lévy copulas as suggested in
Böcker and Klüppelberg (2008, 2009);

• Using structural models with common (systematic) factors that can lead to the dependence
between severities and frequencies of different risks and within risk; see section 12.5;

• Modeling dependence between severities and frequencies from different risks and within
risk using dependence between risk profiles, as considered in Peters et al. (2009);

• In the general case, when no information about the dependence structure is available,
Embrechts and Puccetti (2006) work out bounds for aggregated operational risk capital;
see also Embrechts et al. (2009a).

In the remainder of the chapter, we detail and describe the main concepts, approaches,
and issues behind some of these approaches. The choice of appropriate dependence structures
is crucial and determines the amount of diversification—it is still an open challenging problem.

Remark 10.2 (Dependence on Macroeconomic Factors) It is important to note that there is
empirical evidence, as reported in Allen and Bali (2004), that some OpRisks are dependent on
macroeconomic variables such as GDP, unemployment, equity indices, interest rates, foreign exchange
rates, regulatory environment variables, and others. For example, some OpRisks typically increase
during economic downturns, high unemployment, and low interest rates. This will be discussed
further in section 12.5.

10.2.2 UNDERSTANDING BASIC IMPACTS OF DEPENDENCE
MODELING BETWEEN LDA COMPONENTS IN MULTIPLE RISKS

When modeling dependence between different aspects of OpRisk LDA structures and multiple
risks as discussed earlier, a natural question that arises involves understanding the amount of
“induced” correlation or dependence present in the annual losses. The answer to this question
in OpRisk models has been given in numerous papers such as Frachot et al. (2004b) and Peters
et al. (2009). In some cases, it is clear what the resulting dependence may be, such as when
dependence is introduced across the annual losses; however, in most cases described earlier, this
induced dependence and behavior or influence on capital calculation on an institutional level
is not transparent and must be studied carefully.

To motivate an understanding from a practical perspective of the impact that dependence
can have on the annual loss between two LDA risk processes, we consider a class of models in
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which one can obtain closed form results and bounds. The example considered involves two
risk processes each with an LDA structure with a frequency, which is Poisson, and the severity
distribution, which is LogNormal, as given by the following model definition.

Definition 10.1 (Multiple Risk Model: Poisson–LogNormal LDAs) Consider two risk pro-
cesses with the following LDA structures.

1. Consider two loss processes for annual losses given by
{

Z (1)
t

}T

t=1
and

{
Z (2)

t

}T

t=1
for T years,

which are given by the compound process in year t according to

Z (·)
t =

N (·)
t∑

i=1

X (·)
i (t). (10.3)

a) Assume for each given loss process
{

Z (·)
t

}
t=1:T

there is independence between the number
of events and the severities;

b) Assume for each given loss process
{

Z (·)
t

}
t=1:T

the severities are independent and identically
distributed loss random variables.

2. Assume that the severity distribution is such that X (j)
i (t) ∼ F (j)

X (x) with LogNormal severity
model given by

F (j)
X (x;μ(j), σ(j)) =

1
2
+

1
2

erf
[
ln x − μ(j)
√

2σ(j)

]
(10.4)

with log scale σ( j) > 0 and shape μ( j) ∈ R;

3. Assume that the frequency distribution is marginally given by N (j)
t ∼ F (j)

N (n) with Poisson
frequency model given by

F (j)
N (n;λ(j)) =

(
λ(j)

)n

n!
exp

(
−λ(j)

)
. (10.5)

If one were to consider a relaxation of the model assumptions given earlier with regard to
the independence of the severity loss random variables, then the first result we note is stud-
ied in Asmussen and Rojas-Nandayapa (2008) where they consider the single risk setting and
assume that there is a dependence structure between the individual loss amounts such that if
(Y1,Y2, . . . ,Yn) have a joint n-dimensional Gaussian distribution with a general covariance
structure (that does not include perfect negative or positive dependence between any pair of
losses), where the individual loss amounts are then given by marginal LogNormal distribution
Xi ∼ Exp (Yi) such that Xi ∼ LogNormal (μi, σ

2
i ), then the partial sum of n such losses given by

Sn = X1 + · · ·+ Xn, (10.6)

can be shown to have an asymptotic behavior as n → ∞ in which the tail of the aggregate
loss distribution Pr [Sn > x] can be shown to have the same asymptotic tail behavior as the
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independent case, where asymptotically in x → ∞ one can show that the partial sum will have
the property that it is asymptotically equivalent (ie. equivalent in the tails of the distribution as
the loss x → ∞) to the distribution of the tail of the maximum loss, given by the order statistic
X(n,n) (i.e. n-th largest loss out of n losses) according to the relationship,

Pr [Sn > x] ∼ mnF X(n,n) (x;μm, σm) , (10.7)

where μm = max {μ1, . . . , μn} and σm = max {σ1, . . . , σn} and
mn = �{k : μk = μm, σk = σm} and � is used to denote the number of elements in a set
or its cardinality.

Remark 10.3 Of course, the result could also be applied to multiple loss processes in the case that
each individual loss processes annual loss was modeled by a LogNormal model.

If we now go back to consider the severity loss random variables as being independent
and instead consider dependence on the number of losses over time, then the second result
we present was studied in Frachot et al. (2004b) and involves incorporation of dependence
between the frequency distributions of the two risk cells. This can be achieved in two ways,
either on the actual annual counts of losses or on the intensity in the loss process frequency
distributions as studied in Peters et al. (2009). In this case, we consider the setting in which
dependence is introduced between the counts of losses between the two risk processes, which
can be shown to induce a closed form result for the dependence between the annual loss that is
directly a function of the linear correlation considered between the frequency counts as shown
in Proposition 10.1.

Proposition 10.1 (Multiple Risk-Induced Correlation in Annual Loss) Consider the two
risk processes specified by LDA models with Poisson frequency and LogNormal severity as detailed in
model Definition 10.1. If the correlation between the annual counts of each risk process is considered,
as measured by corr

(
N (1)

t ,N (2)
t

)
, then the induced correlation between the annual loss random

variables for the Poisson–LogNormal LDA models is given by

corr
(

Z (1)
t ,Z (2)

t

)
= corr

(
N (1)

t ,N (2)
t

)
exp

(
−1

2

(
σ(1)

)2
− 1

2

(
σ(2)

)2
)
. (10.8)

Furthermore, one may construct such a correlation between the frequencies in numerous ways such
as considering three independent Poisson random variables Y , Y1, and Y2 with intensity parameters
λ, λ(1) − λ, and λ(2) − λ, which are used to construct the annual loss frequency random variables
N (i) = Y + Yi for i ∈ {1, 2} and the resulting correlation between the frequency counts given by

corr
(

N (1)
t ,N (2)

t

)
=

λ√
λ(1)λ(2)

≤ R =

√
min

(
λ(1), λ(2)

)
max

(
λ(1), λ(2)

) . (10.9)

Remark 10.4 In fact in Brunel (2013), it is demonstrated that if the frequency distribution is
assumed to be of mixed type, where the intensity of each Poisson frequency model is stochastic such that

λ(i) = μ+ σGi, (10.10)
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for uncorrelated standard Gaussian random variables Gi, then one can obtain the bound on the
correlation on the frequency counts given by the expression

corr
(

N (1)
t ,N (2)

t

)
≤ R = exp

(
−σ

2
|G1 − G2|

)
(10.11)

and R ∼ FR with FR a truncated LogNormal distribution. This case was studied further in a
dynamic Cox process setting with an autoregressive component in Peters et al. (2009).

Other than these simple model structures, to understand the impact that dependence will
have, one must be more precise on the form of dependence and generally this will result in a
need to study such features numerically, as is discussed toward the end of this chapter.

To generalize the discussion beyond simple considerations of dependence through cor-
relation measures, the next few sections will introduce more general concepts of dependence
modeling followed by models to represent these dependence concepts parametrically, either
within a single risk process or between multiple risk processes.

10.3 General Notions of Dependence

In this section, we first discuss the concepts of dependence. Then, we proceed to introduce
parametric models as well as measures of the strength of these notions of dependence. In the
statistics literature, there have been many notions of dependence that have been discussed,
including (but not exhaustive)

• multivariate upper negative dependence, lower negative dependence and negative depen-
dence;

• multivariate association;
• multivariate negative and positive quadrant dependence;
• commonotonicity and stochastic ordering;
• negative regression dependence;
• parametric copula dependence.

Before detailing each of these different notions of dependence, we first present a brief intro-
duction to the notion of a copula which is used throughout this chapter. Since, it is ubiquitous
in modelling dependence, and appears numerous times throughout the following sections, it
will be beneficial to readers to see a brief introduction here to copulas, before a more com-
prehensive discussion of the properties and theoretical derivation of the copula is presented in
Section 10.4 where Sklar’s theorem is formally presented.

One can consider copulas to be synonymous with a model based characterization of depen-
dence. Indeed, Fisher (1997) observed that “Copulas [are] of interest to statisticians for two main
reasons:

1. as a way of studying scale-free measures of dependence;
2. as a starting point for constructing families of multivariate distributions, sometimes with a view

to simulation”.
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• Copula theory can be traced back to Hoeffding’s work on standardised distributions on
the square [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ].

• Following this work, the term copula was first coined as a mathematical concept in Abel
Sklar’s theorem, covered in detail in Section 10.4, which showed that one-dimensional
distributions can be joined by a copula function to form multivariate distributions.

In general one can consider that a d -dimensional copula is a multivariate distribution C
with uniform [0, 1] margins such that C : [0, 1]d → [0, 1] and C satisfies:

• C (u1, . . . , ud ) = 0 whenever ui = 0 for at least one i ∈ {1, . . . , d};
• C (u1, . . . , ud ) = ui if ui = 1 for all j = 1, . . . , d and j �= i;
• C is quasi-monotone on its support [0, 1]d i.e. for every hyperrectangle

B =
∏d

i=1[xi, yi] ⊆ [0, 1]d the C-volume of B is non-negative.

To understand this last condition on volumes, note that it requires that for every a and b in
[0, 1]d , such that for each ai < bi for all i ∈ {1, 2, . . . , n} the condition on the volume for
copula C is satisfied: VC ([a, b]) ≥ 0. NOTE: The volume of an d -box is given by

VC ([a, b]) =
∑

sgn(v)C(v)

= �b1
a1
�b2

a2
· · ·�bd

ad
C(v)

(10.12)

where the sum is taken over all vertices v of the d -box [a, b] and sgn(v) = 1 if vk = ak for
an even number of k’s of sgn(v) = −1 if vk = ak for an odd number of k’s. In addition one
defines the notation

�bk
ak

C(u) = C (u1, u2, . . . , uk−1, bk, uk+1, . . . , ud )− C (u1, u2, . . . , uk−1, ak, uk+1, . . . , ud ) .

(10.13)

Hence, one can now consider the definition of a copula informally as follows. Consider
random vector X ∈ R

d with continuous distribution F . Then to every X one can associate a
d -copula C : [0, 1]d �→ [0, 1], defined by

F (x1, . . . , xd ) = C (F1 (x1) , . . . , Fd (xd )) , (10.14)

where Fi is the marginal distribution of Xi. It will also be useful to consider the notion of a
survival copula, which is informally defined as follows

Pr [X1 > x1,X2 > x2] = F (x1, x2)

= 1 − FX1(x1)− FX2(x2) + F (X1,X2)

= F X1(x1) + F X2(x2)− 1 + C (FX1(x1), FX2(x2))

= F X1(x1) + F X2(x2)− 1 + C
(
1 − F X1(x1), 1 − F X2(x2)

)
(10.15)

Hence, one can define for instance in d = 2 the mapping C̃ : [0, 1]2 �→ [0, 1] by

C̃(1 − u, 1 − u) = 1 − 2u − C(u, u) (10.16)

to be the survival copula of C i.e. F (x1, x2) = C̃(F X1(x1), F X2(x2)).
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There are many different parametric families of copula models that are discussed in
future sections of this chapter, below we present some important base copula models that act
as bounds for all other families of copula model and are therefore instructive to present at
this stage.

Definition 10.2 (Frechet-Hoffding Copula Bounds) The Frechet-Hoffding Upper Bound
copula is given by

Md (u1, . . . , ud ) = min {u1, . . . , ud} .

The Frechet-Hoffding Lower Bound copula is given by

W d (u1, . . . , ud ) = max

{
1 − d +

d∑
i=1

ui, 0

}
.

One has the following bounds on all copulas

W d (u1, . . . , ud ) ≤ C (F1 (x1) , . . . , Fd (xd )) ≤ Md (u1, . . . , ud ) .

We can also note the following properties of such copula model bounds.

• Probability Mass Md is distributed uniformly along the line segment u1 = . . . = ud
running from (0, . . . , 0) to (1, . . . , 1) in [0, 1]d ;

• For all d -copula distributions C ≤ Md and Md can be thought of as a state of ‘maximal
concordance’.

Note: the notion of concordance will be formally defined shortly in this subsection. In addition
it is worthwhile to observe the following remark regarding the Frechet-Hoffding Lower Bound
copula.

Remark 10.5 Consider the Frechet-Hoffding Lower Bound copula W d in d-dimensions. Then
for d ≥ 3 the function W d is not strictly a copula, this can be seen by calculating
W d ([1/2, 1]× [1/2, 1]× · · · × [1/2, 1]) which may not produce VC ([a, b]) ≥ 0. Recall the
definition of a Volume of a d-box:

VC ([a, b]) =
∑

sgn(v)C(v) = �b1
a1
�b2

a2
· · ·�bd

ad
C(v),

where the sum is taken over all vertices v of the n-box [a, b] and sgn(v) = 1 if vk = ak for an even
number of k’s of sgn(v) = −1 if vk = ak for an odd number of k’s and we used

�bk
ak

C(u) = C (u1, u2, . . . , uk−1, bk, uk+1, . . . , ud )− C (u1, u2, . . . , uk−1, ak, uk+1, . . . , ud ) .
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Applying this to the copula W d for the d-box [1/2, 1]d produces

W d
(
[1/2, 1]d

)
= max {1 + 1 + . . .+ 1 − d + 1, 0}

− d max {1/2 + 1 + . . .+ 1 − d + 1, 0}
+ Cn

2 max {1/2 + 1/2 + 1 + . . .+ 1 − d + 1, 0}
· · ·
+max {1/2 + . . .+ 1/2 − d + 1, 0}
= 1 − d/2 + 0 + . . .+ 0.

Hence, for d ≥ 3 the function W d is not strictly a copula.

One may then ask the question, so how is W d the best possible lower bound on copulas? The
answer to this question is that it should be understood in the following sense, W d is best possible
lower bound, where Nelsen (1999) showed that for any d ≥ 3 and any u ∈ [0, 1]d , there is a
d -copula C , which depends on u, such that

C(u) = W d (u). (10.17)

One last special copula also valuable is the Independence Copula.

Definition 10.3 (Independence Copula) The independence copula is given by

Πd (u1, . . . , ud ) = u1u2 · · · ud .

Having informally defined the basic idea of a copula distribution, we also present a few key
properties, that often come in useful in practice, when working with copulas in OpRisk settings.
These properties discussed pertain to the invariance properties of such dependence models to
certain types of transformation of the underlying random vector.

Proposition 10.2 (Copula Invariance to Strictly Increasing Transformations)
If X1, . . . ,Xd are continuous random variables with copula CX1,...,Xd . Then if T1(X1), . . . ,
Td (Xd ) are strictly increasing on Ran(X1), . . . ,Ran(Xd ), then CT1(X1),...,Td (Xd ) =CX1,...,Xd .
Copula CX1,...,Xd is invariant under strictly increasing transforms.

Proof : The proof of this invariance is sketched as follows.

• Consider marginal distributions F1, . . . , Fd for continuous r.v.’s X1, . . . ,Xd and joint cop-
ula CX1,...,Xd ;

• Let G1, . . . ,Gd be the distributions of T1(X1), . . . ,Td (Xd ) respectively with joint copula
CT1(X1),...,Td (Xd );

• Ti(·) is strictly increasing for each i, hence

Gi(x) = Pr (Ti(Xi) ≤ x) = Pr
(
Xi ≤ T−1

i (x)
)
= Fi

(
T−1

i (x)
)

(10.18)

for any x ∈ Ran(Xi).
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Hence, one may now show that

CT1(X1),...,Td (Xd ) (G1(x1), . . . ,Gd (xd ))

= Pr (T1(X1) ≤ x1, . . . ,Td (Xd ) ≤ xd )

= Pr
(
X1 ≤ T−1

1 (x1), . . . ,Xd ≤ T−1
d (xd )

)
= CX1,...,Xd

(
F1(T−1

1 (x1)), . . . , Fd (T−1
d (xd ))

)
= CX1,...,Xd (G1(x1), . . . ,Gd (xd ))

(10.19)

Since X1, . . . ,Xd are continous, RanG1 = . . . = RanGd = [0, 1]. Hence it follows that
CT1(X1),...,Td (Xd ) = CX1,...,Xd on [0, 1]d .

One can also state some useful analogous properties related to copula invariance to strictly
monotone transformations, as detailed briefly in Proposition 10.3.

Proposition 10.3 (Copula Invariance to Strictly Monotone Transformations) If X1 and X2
are continuous random variables with copula CX1,X2 . Then if T1(X1) and T2(X2) are strictly
monotone on Ran(X1) and Ran(X2), then:

• If T1(·) is strictly increasing and T2(·) strictly decreasing, then

CT1(X1),T2(X2)(u, v) = u − CX1,X2(u, 1 − v).

• If T1(·) is strictly decreasing and T2(·) strictly increasing, then

CT1(X1),T2(X2)(u, v) = v − CX1,X2(1 − u, v).

• If T1(·) and T2(·) are strictly decreasing, then

CT1(X1),T2(X2)(u, v) = u + v − 1 + CX1,X2(1 − u, 1 − v).

Having detailed a very brief preliminary discussion on some key aspects of the concept of a
copula, we now proceed to discuss different notions of dependence. The dependence concepts
discussed include:

• Stochastic Ordering and Properties Implied by a Stochastic Order;
• Multivariate Negative and Positive Dependence: Upper Negative and Lower Negative

Dependence;
• Multivariate Negative and Positive Association;
• Quadrant Dependence: Pairwise Negative and Posative Quandrant Dependence;
• Lower and Upper Orthant Dependence;
• Tail Increasing and Tail Decreasing, Tail Increase/Decrease in Sequence;
• Stochastic Increase and Stochastic Decrease;
• Regression Dependence: Bivariate and Multivariate;
• Comonotonicity;
• Multivariate Total Positivity of Order 2, see Nelsen (1999).
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We start with the concept of negative dependence first proposed in Block et al. (1982) and
then studied further in Ghosh (1981), with the specification taken as given in Definition 10.4

Definition 10.4 (Multivariate Negative Dependence in LDA Single Risk Models)
Consider a sequence of loss random variables in an OpRisk loss model {Xi}i≥1. The sequence can be
called lower or upper negatively dependent as follows:

• Lower Negative Dependence (LND). A sequence of loss random variables have LND if for
each n ≥ 1 and all X1,X2, . . . ,Xn one has

Pr [X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn] ≤
n∏

i=1

Pr [Xi < xi] . (10.20)

• Upper Negative Dependence (UND). A sequence of loss random variables have UND if for
each n ≥ 1 and all X1,X2, . . . ,Xn one has

Pr [X1 > x1,X2 > x2, . . . ,Xn > xn] ≤
n∏

i=1

Pr [Xi > xi] . (10.21)

• Negative Dependence (ND). A sequence of loss random variables have negative dependence
if for each n ≥ 1 and all X1,X2, . . . ,Xn it is both LND and UND.

The concept of UND is clearly directly relevant to OpRisk modeling as it involves explicitly
the concept of a lower bound on the joint probability of a large loss occurring in all the n risk
processes given by the product of the probability that such an event happens in each loss process
marginally. The difference between such probabilities is then the influence of the dependence
structure introduced—this will be explored in more detail when we build models for such
events.

In addition, if one considers a simple example in which each of the n loss processes has
the same risk model marginally, that is, Xi ∼ F for all i ∈ {1, 2, . . . , n} and furthermore
the thresholds x1 = x2 = · · · = xn = x. Then, in the independence case clearly the
lower bound decays with x → ∞ as F X (x)n, which can rapidly go to zero. However, in the
UND case, this probability of joint exceedance F X1, ... , Xn(x, . . . , x) will still decay to zero as
x → ∞ but clearly the rate that this occurs will depend on the type of upper negative depen-
dence that is present, that is, on the model used to capture the notion of UND. In the fol-
lowing sections, different parametric copulas will be considered that will demonstrate UND
structure.

Remark 10.6 (LND and UND Versus Negative Association) The notion of lower and upper
negative dependence is a weaker notion of dependence than the more familiar idea of negative asso-
ciation.

To make precise this remark, we recall in Definition 10.5 the concept of negative associa-
tion of random variables; see, for instance, Joag-Dev and Proschan (1983).
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Definition 10.5 (Multivariate Negative Association in LDA Single Risk Models)
Consider a sequence of loss random variables in an OpRisk loss model {X1, . . . ,Xn}. The sequence
is called negatively associated (NA) if for every pair of disjoint subsets A1,A2 of {1, . . . , n} then
one has

Cov
[
f1 (Xi; i ∈ A1) , f2

(
Xj; j ∈ A2

)]
≤ 0 (10.22)

whenever f1 and f2 are increasing functions.

That is, one can consider negative association as the situation in which the values of one
variable tend to increase as the other variable increases.

Remark 10.7 Several practically important multivariate distributions possess the property of being
negatively associated such as multinomial, multivariate hypergeometric, Dirichlet and Dirichlet com-
pound multinomial distributions.

The following properties of negatively associated random sequences of loss random vari-
ables given in Proposition 10.4 are also useful to recall; see Joag-Dev and Proschan (1983).

Proposition 10.4 (Properties of Negatively Associated Loss Random Variables) Consider a
sequence of loss random variables in an OpRisk loss model {Xi}i≥1 that satisfy that they are negatively
associated, then the following properties apply

• A subset of two or more negatively associated random variable losses is negatively associated;
• A set of independent random variable losses is negatively associated;
• Increasing functions defined on disjoint subsets of a set of negatively associated random variable

losses are negatively associated;
• Unions of independent sets of negatively associated random variable losses are negatively

associated.

Another notion of dependence that is of significance in the following sets of results relates
to the notion of pairwise quadrant dependence given by Definition 10.6; see Lehmann (1966)
and the associated pairwise positive quadrant dependence (PPQD). This is simply a less restric-
tive notion of negative or positive dependence as discussed previously.

Definition 10.6 (Pairwise Negative Quadrant Dependence) A pair of loss random variables
Xi and Xj are said to be pairwise negative quadrant dependent (PNQD) if for all x, y ∈ R one has

Pr
[
Xi ≤ x,Xj ≤ y

]
≤ Pr [Xi ≤ x]Pr

[
Xj ≤ y

]
. (10.23)

Definition 10.7 (Pairwise Positive Quadrant Dependence) A pair of loss random variables Xi
and Xj are said to pairwise positive quadrant dependence (PPQD) if for all x, y ∈ R one has

Pr
[
Xi ≤ x,Xj ≤ y

]
≥ Pr [Xi ≤ x]Pr

[
Xj ≤ y

]
. (10.24)
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One can also observe that if Xi and Xj are PQD then one has the following property for
the copula between these two loss random variables,

C
(
FXi(x), FXj(y)

)
≥ FXi(x)FXj(y) (10.25)

for all
(
FXi(x), FXj (y)

)
in the unit square.

Remark 10.8 Intuitively, X and Y are PQD if the probability that they are simultaneously small
(or simultaneously large) is at least as great as it would be were they independent.

One can also observe the following features of loss random variables which display a PQD
relationship:

• Like independence, quadrant dependence (positive or negative) is a property of the copula
of continuous random variables, and consequently is invariant under strictly increasing
transformations of the random variables;

• If X and Y are PQD, then the graph of the copula of X and Y given by C lies on or above
the graph of the independence copula Π ie. C(u, v) ≥ uv for all (u, v) ∈ [0, 1]2;

• Many examples of copula model families exist that satisfy quadrant dependence. Examples
include: many totally ordered one-parameter families of copulas have subfamilies of PQD
copulas and NQD copulas.

˚ Example: the Mardia family, the Farlie-Gumbel-Morgenstein FGM family, the Ali-
Mikhail-Haq AMH family, or the Frank Archimedean family satisfy that they are PQD
for copula parameter ρ ≥ 0 and NQD for ρ ≤ 0 with ρ = 0 giving C = Π.

We also observe that the notion of PQD(X ,Y ) can be rewritten conditionally. To see this
consider the following representations:

Pr [X ≤ x,Y ≤ y] ≥ Pr [X ≤ x]Pr [Y ≤ y] , or as
Pr [X ≤ x|Y ≤ y] ≥ Pr [X ≤ x] , or as
Pr [X ≤ x|Y ≤ y] ≥ Pr [X ≤ x|Y ≤ ∞]

(10.26)

One can now also observe that a stronger condition than Quadrant dependence is to
require that for each x ∈ R, the conditional distribution function Pr [X ≤ x|Y ≤ y] is a non-
increasing function of y.

Remark 10.9 This stronger condition leads to the notion of Tail Decreasing and Tail Increasing,
Esary et al. (1972).

In addition to these notions of pairwise quadrant dependence, one may also consider the
concepts such as positive lower orthant dependence, left tail decreasing in sequence, and mul-
tivariate left tail decreasing as discussed in (Hua and Joe, 2011, definition 4) and given below
in Definitions 10.8, 10.10 and 10.11. Note that, analogous definitions for positive upper



�

�

“Cruz_Driver1” — 2015/1/8 — 13:07 — page 380 — #16
�

�

�

�

�

�

380 CHAPTER 10 Dependence Concepts

orthant dependence, right tail increasing in sequence, and multivariate right tail increasing
can be defined.

Definition 10.8 (Positive Lower Orthant Dependence) A random vector is said to have the
dependence structure in its distribution known as positive lower orthant dependence (PLOD) if its
distribution satisfies

Pr [X1 ≤ x1, . . . ,Xd ≤ xd ] ≥
d∏

i=1

Pr [Xi ≤ xi] . (10.27)

Clearly, the situation of PLOD dependence is opposite in the inequality sign compared to
LND, defined earlier.

In addition, one can also say the following about orthant dependent loss random variables.
Consider two d -copulas C1 and C2 then the following relationship between orthant dependen-
cies and concordance holds:

• C1 is more Positive Lower Orthant Dependent than C2 if for all u ∈ [0, 1]d one has
C1(u) ≥ C2(u);

• C1 is more Positive Upper Orthant Dependent than C2 if for all u ∈ [0, 1]d one has
C1(u) ≥ C2(u);

• C1 is more Positive Orthant Dependent than C2, or C1 is more concordant than C2 if
for all u ∈ [0, 1]d , both C1(u) ≥ C2(u) and C1(u) ≥ C2(u) holds.

Having defined the notion of orthant dependence, it is now natural to start to consider
the concept of Tail Increase and Tail Decrease given in the following definition.

Definition 10.9 (Tail Increasing and Tail Decreasing Loss Random Variables) In the case
of two random variables X and Y one can define the following:

• Y is left tail decreasing in X ie. LTD(Y |X ) if Pr [Y ≤ y|X ≤ x] is a non-increasing
function of x for all y;

• X is left tail decreasing in Y ie. LTD(X |Y ) if Pr [X ≤ x|Y ≤ y] is a non-increasing
function of y for all x;

• Y is right tail increasing in X ie. RTI(Y |X ) if Pr [Y > y|X > x] is a non-decreasing
function of x for all y;

• X is right tail increasing in Y ie. RTI(X |Y ) if Pr [X > x|Y > y] is a non-decreasing
function of y for all x.

To see the relationship between the notions of dependence already presented and the concept
of tail monotonicity, we note that these four tail monotonicity conditions each implies pos-
itive quadrant dependence. Analogously, negative dependence properties, known as left tail
increasing and right tail decreasing, are defined by exchanging the words “nonincreasing” and
“nondecreasing”, see discussions in detail in Kimeldorf et al. (1989).
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From these notions of Tail Increase and Tail Decrease one can also define the analogous
concept for sequences as follows.

Definition 10.10 (Left Tail Decreasing in Sequence) A random vector is said to have the
dependence structure in its distribution known as left tail decreasing in sequence (LTDS) if its dis-
tribution satisfies

Pr [Xi ≤ xi|X1 ≤ x1, . . . ,Xi−1 ≤ xi−1] < Pr [Xi−1 ≤ xi−1|X1 ≤ x1, . . . ,Xi−2 ≤ xi−2]
(10.28)

for all i ∈ {1, 2, . . . , d}.

Definition 10.11 (Multivariate Left Tail Decreasing) A random vector is said to have the
dependence structure in its distribution known as multivariate left tail decreasing if its distribution
satisfies that the random vector (Xi1 , . . . ,Xid ) is LTDS for all possible permutations (i1, . . . , id )
of (1, . . . , d).

In addition, the notion of Tail Increase and Tail Decrease can be captured directly in terms
of properties of the parametrization of the precedence structure through a copula model as
follows.

Proposition 10.5 (Copula Conditions for Tail Increase or Decrease) Consider loss r.v.’s X
and Y with copula C then:

• LTD(Y |X ) holds iff for any v ∈ [0, 1] one has that C(u, v)/u is nonincreasing in u, or
equivalently one has that

∂C(u, v)
∂u

≤ C(u, v)
u

, almost all u; (10.29)

• LTD(X |Y ) holds iff for any u ∈ [0, 1] one has that C(u, v)/v is nonincreasing in v, or
equivalently one has that

∂C(u, v)
∂v

≤ C(u, v)
v

, almost all v; (10.30)

• RTI(Y |X ) holds iff for any v ∈ [0, 1] one has that [1 − u − v + C(u, v)] /(1− u) is nonin-
creasing in u, or equivalently one has that

∂C(u, v)
∂u

≥ [v − C(u, v)]
1 − u

, almost all u; (10.31)

• RTI(X |Y ) holds iff for any u ∈ [0, 1] one has that [1 − u − v + C(u, v)] /(1− v) is nonin-
creasing in v, or equivalently one has that

∂C(u, v)
∂v

≤ [u − C(u, v)]
1 − v

, almost all v; (10.32)
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Yet another notion one may consider for modeling dependence structures that is discussed
later is known as regression dependence. The influence that regression dependence has on com-
pound process tail asymptotics was considered in Ko and Tang (2008, assumption 2.1). In this
study, they considered the bivariate setting and the general assumption on dependence given in
Definition 10.15, which is known as regression dependence. Such a dependence assumption is
based upon setting up a conditional probability in a ratio, such that if one of the variables were
independent, then the ratio should collapse to one since it would appear both in the numerator
and the denominator. This general dependence representation allows one to capture limited
positive as well as negative dependence features, in particular limited positive and negative
quadrant dependence. To present this concept of regression dependence for the bivariate and
multivariate settings, it is first instructive to recall the notion of comonotonicity and stochastic
order. The notion of stochastic order involves the quantification of ‘one random variable being
“bigger” than another’.

Definition 10.12 (Stochastic Ordering Notations) The most basic definition of stochastic
ordering (partial ordering) that allows one to compare two random variables X1 and X2 involves
a statement on the tails of their distribution (also denoted as equivalently their distribution) given
by X1 
 X2 (also denoted as X1 ≤st X2) if and only if

F X1(x) ≤ F X2(x), ∀x ∈ R. (10.33)

Of course, it is equally valid to state that X1 ≤st X2 if FX1 ≤ FX2 ; this statement when applicable can
also be extended to the density function. To be precise, the following are all equivalent definitions:

• X1 ≤st X2 ⇔ FX1(x) ≥ FX2(x), ∀x ∈ R;
• X1 ≤st X2 ⇔ Pr [X1 ≥ x] ≤ Pr [X2 ≥ x] , ∀x ∈ R;
• X1 ≤st X2 ⇔ EX1 [f (x)] ≥ EX2 [f (x)], for all increasing (nondecreasing) functions f .

This concept of stochastic ordering is considered partial ordering since it can be shown to be reflexive,
transitive, and antisymmetric. The following properties of stochastic ordering apply:

• If X1 ≤st X2 and a function g(·) is nondecreasing, then g (X1) ≤st g (X2);
• Consider random vectors (X1, . . . ,Xn) and (Y1, . . . ,Yn) such that for all i ∈ {1, 2, . . . , n}

one has Xi ≤st Yi then for any function g : R
n �→ R, which is nondecreasing one has

g (X1, . . . ,Xn) ≤st g (Y1, . . . ,Yn). Note: this is useful in OpRisk since it applies for the
choice of interest in insurance and risk given by loss aggregation g (X1, . . . ,Xn) =

∑n
i=1 Xi;

• Reflexive: FXi ≤st FXi ;
• Transitive: FXi ≤st FXj and FXj ≤st FXk then FXi ≤st FXk ;
• Antisymmetric: FXi ≤st FXj and FXj ≤st FXi would imply that FXi = FXj which is another

statement of stochastic equivalence that is, that Xi ∼ FXi and Xj ∼ FXj then Xi =st Xj when
FXi ∼ FXj .

We observe the following remark about a stochastic order.
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Remark 10.10 We note that a stochastic order can be considered an antisymmetric preorder since
it is a binary relation that is reflexive and transitive. It is not a complete ordering since there exist
random variables (distributions) which cannot be ordered through this ordering.

Definition 10.13 (Comonotonicity) The notion of comonotonicity involves the perfect positive
dependence between the components of a random vector. This means that they can be represented
as increasing functions of a single random variable. In general, one can define a random vector
(X1, . . . ,Xn) as comonotonic if its multivariate distribution satisfies

Pr [X1 ≤ x1, . . . ,Xn ≤ xn] = min
i∈{1, ... ,n}

Pr [Xi ≤ xi] . (10.34)

Remark 10.11 (Comonotonicity and Stochastically Decreasing) The concept of stochastic
ordering with regard to stochastically decreasing variables involves a dependence relation imposed
that excludes any extremely positive dependence structures such as those arising from comonotonic
(nondecreasing support) loss random variables.

Having briefly discussed stochastic ordering and monotonicity, one can now proceed to
also define the notion of regression dependence or Stochastic Increase/Decrease. It is based upon
setting up a conditional probability in a ratio, such that if one of the variables were independent,
then the ratio should collapse to unity. In this way, regression dependence captures limited
positive and negative dependence features, in particular quadrant dependence and is defined as
follows, see details in Shaked (1977).

Definition 10.14 (Stochastic Increase and Decrease Dependence) Consider loss random vari-
ables X and Y , then:

• Postive Dependence: Y is Stochastically Increasing in X , SI(Y |X ) if Pr [Y > y|X = x] is
non-decreasing function of x for all y;

• Postive Dependence: X is Stochastically Increasing in Y , SI(X |Y ) if Pr [X > x|Y = y] is
non-decreasing function of y for all x;

• Negative Dependence: Y is Stochastically Decreasing in X , SD(Y |X ) if Pr [Y > y|X = x]
is non-increasing function of x for all y;

• Negative Dependence: X is Stochastically Decreasing in Y , SD(X |Y ) if Pr [X > x|Y = y]
is non-decreasing function of y for all x.

One may now proceed to define the notion of regression dependence, in particular nega-
tive regression dependence between two loss random variables, by the expression presented
in Definition 10.15. In general, this can be seen as another way to express Stochastic Increase
or Decrease.

Definition 10.15 (Negative Regression Dependence: Bivariate) Consider two loss random
variables X1 and X2 in which X2 is stochastically decreasing in X1 denoted as SD (X2|X1). Then,
define the dependence relationship for variables with index (i, j) ∈ {(1, 2), (2, 1)} by
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lim
x→∞

Pr
[
Xj > x − y|Xi = y

]
Pr
[
Xj > x − y

] = O(1), (10.35)

which will hold uniformly for all y ∈ [x0, x] for some large x0 > 0 such that

lim sup
x→∞

x−x0∫
x0

Pr
[
Xj > x − y|Xi = y

]
Pr
[
Xj > x − y

] dy < ∞. (10.36)

In this setting, the following relationship will hold, for all x0 ≥ 0, such that FX1(x0) > 0, uniformly
for all y > x0 according to

Pr [X2 > x − y|X1 = y] ≤ F X2(x − y)
FX1(x0)

. (10.37)

Definition 10.16 (Negative Regression Dependence: Multivariate) Consider n loss random
variables with marginal distributions Xi ∼ FXi and a joint dependence that is the analog of the
bivariate negative regression dependence for n ≥ 2 that is captured by the following relationship on
the conditional distributions of the partial sums:

Pr
[∑j−1

s=1 Xs > x − y|Xj = y
]

Pr
[∑j−1

s=1 Xs > x − y
] = O(1), (10.38)

which will hold uniformly for all y ∈ [x0, x] that should exist for some large x0 > 0 such that this
order of asymptotic convergence is satisfied for all j ∈ {2, . . . , n}.

Analogously to negative regression dependence, one may also define positive regression
dependence as follows, and detailed in Kimeldorf et al. (1989).

Definition 10.17 (Positive Regression Dependence) The loss random variable X1 is positive
regression dependent on loss random variable X2 if it holds that X1 is Stochastically Increasing
in loss random variable X2, such that Pr (X1 > x|X2 = y) is a non-decreasing function of x
for all y.

One can also link the notion of Statistic Increase/Decrease to copula properties as detailed
in Proposition 10.6 below.

Proposition 10.6 (Copula Specification of Stochastic Increase and Decrease Dependence)
Consider continuous loss random variables X and Y with copula C, then:

• Y is Stochastically Increasing in X , SI(Y |X ) iff for any v ∈ [0, 1] one has that ∂C(u,v)
∂u is

non-increasing in u, i.e. C(u, v) is a concave function of u;

• X is Stochastically Increasing in Y , SI(X |Y ) iff for any u ∈ [0, 1] one has that ∂C(u,v)
∂v is

non-increasing in v, i.e. C(u, v) is a concave function of v;
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We can also observe the following properties:

• If SI(Y |X ), then one as LTD(Y |X ) and RTI(Y |X );
• If SI(X |Y ), then one as LTD(X |Y ) and RTI(X |Y );

Note that Geluk and Tang (2009) considered a related approach to specification of the
dependence in the severity loss random variables under two assumptions, (A1) and (A2), given
later. They consider these dependence relationships to be their analogs of the proposed Negative
Regression Dependence given in Definition 10.16. They show that such a relationship can be
satisfied by a family of copula models such as the Farlie–Gumbel–Morgenstern (FGM) distri-
bution that is characterized in the following section after recalling the notion of a copula model.
The two dependence specifications they developed involved for n-losses the conditions:

(A1) limxi∧xj→∞ Pr
[
|Xi| > xi|Xj > xj

]
= 0, ∀i, j ∈ {1, 2, . . . , n} , i �= j;

(A2) ∃x0, c > 0 s.t. Pr
[
|Xi| > xi|Xj = xj

]
≤ cF Xi(xi), ∀i, j ∈ {1, . . . , n}, i �= j, xj > x0.

The next notion of dependence between loss random variables to be discussed is one which
implies the majority of the other dependence relationships discussed above and involves the
concept of Bivariate Total Positivity of Order 2, given in the following definition.

Definition 10.18 (Bivariate Total Positivity Order 2) Tow loss random variables (X1,X2)
have total positive dependence of order 2 if their joint distirbution F (x, y) satisfies that :

det
[

F (x, y) F (x, y′)
F (x′, y) F (x′y′)

]
≥ 0

whenever x ≤ x′ and y ≤ y′.

One can then generalize this notion of Total Positivity of Order 2 to the multivariate
d -dimensional setting as follows.

Definition 10.19 (Multivariate Total Positivity Order 2) Random vector (X1, . . . ,Xd ) with
density f has total positivity dependence of order 2 (MTP2) if:

f (x ∨ y) f (x ∧ y) ≥ f (x)f (y) (10.39)

for all x, y ∈ R
d , see Nelson (1992).

One can show the following properties of MTP2 loss random vectors:

• If a random vectors density is MTP2 then so are all of its marginal densities of order 2 and
higher;

• If the above inequality expression has its inequality sign reversed, then the density f is said
to be multivariate reverse rule of order 2 (MRR2) which is a weak negative dependence
concept. Unlike MTP2, the property of MRR2 is not closed under marginalization!
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One can also develop the following properties of MTP2 random vectors based on power
transforms of the loss random variables distributions. First, we recall some basic properties of
loss distributions under power transformation.

Proposition 10.7 (Powers of Univaraite Distributions) Consider a univariate distribution F
and tail F , if γ > 0 then Fγ and Fγ are distributions (tail functions).

In the general multivariate setting, one also has the following results.

Proposition 10.8 (Powers of Multivaraite Distributions, Max-ID and Min-ID) Consider a
random vector X ∈ R

d with multivariate distribution F and tail F .

• If γ > d − 1 then Fγ ( Fγ) are distributions (tail functions);
• If Fγ is a distribution for γ > 0 then F is max-infinitely divisible (max-id);
• If Fγ is a tail function for γ > 0 then F is min-infinitely divisible (min-id).

Now, we may make the following links between MTP2 and power transforms of the
distribution of the loss random vector.

• If random vector X ∈ R
d has a distribution F which is max-id then for all m ∈ N one has

F 1/m is a distribution;

˚ If
(
X m

i1 , . . . ,X m
id

)
, i = 1, . . . , d are i.i.d. with distribution F 1/m, then

X d
=
(
max

i
X m

i1 , . . . ,max
i

X m
id

)
(10.40)

where max is over all indices 1, . . . , d .
• In bivariate case: F is max-id iff F is TP2;
• In bivariate case: F is min-id iff F is TP2.

The sixth concept of dependence between a random vector of risk processes that one may
wish to consider involves the idea of upper and lower orthant tail dependence, as discussed,
for example, in Li (2009). This notion of dependence is used to describe relative deviations of
upper or lower orthant tail probabilities of say a loss random vector, from orthant probabili-
ties comprising a subset of the random vectors components. As such it represents a notion of
dependence in extreme values that the joint loss process (sub-)vectors may take. This notion
of dependence can be thought of in several ways: by defining what will be known as the tail
dependence coefficients that are limiting extreme upper and lower tail dependencies or by defin-
ing intermediate behaviors known as tail functions or intermediate tail dependencies. The tail
dependence coefficients by their limiting definition become asymptotically independent of the
marginal loss process model behavior and only dependent on the joint extreme dependence fea-
tures of the loss random vector, whereas the intermediate tail dependence components retain
the influence of the marginal loss process as well as the intermediate tail dependence. Formal
definitions of these notions will be provided in the following sections.

The seventh approach involves the specification of a particular parametric form of depen-
dence via, for instance, a copula model specification that was briefly introduced above and
will be discussed in detail in the following sections. We simply note here the comments of
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Fisher (1997), where it was observed that “Copulas [are] of interest to statisticians for two main rea-
sons:

1. as a way of studying scale-free measures of dependence;
2. as a starting point for constructing families of bivariate distributions, sometimes with a view to

simulation”.

In addition to parametric models for dependence between random variables, there are
notions of dependence between Lévy measures for compound processes tail measures that are
known generically as Lévy copulae, also discussed in detail later.

10.4 Dependence Measures

Having discussed briefly different concepts of dependence, before embarking on discussions
regarding parametric copula models that aim to capture these notions of dependence paramet-
rically, we first discuss the different approaches that have been adopted to measure and quantify
these notions of dependence. Measuring the dependence between random variables has long
been of interest to statisticians and practitioners alike. A history of the development of depen-
dency measures can be found in Mari and Kotz (2001). It is important to note that, in general,
the dependence structure between two random variables can only be captured in full by their
joint probability distribution, and thus any scalar quantity extracted from this structure must
be viewed as a representation of some feature of the dependence. Scarsini (1984) gives the
following intuitive definition of dependence:

Dependence is a matter of association between X and Y along any measurable function, i.e.
the more X and Y tend to cluster around the graph of a function, either y = f (x) or x = g(y),
the more they are dependent.

The choice of dependence measure is influenced by the type of dependence one seeks to
study, such as lower left quadrant, upper right quadrant, etc. However, in nontrivial multivariate
distributions, it is not possible to capture all of the possible combinations of dependence pat-
terns within a single dependence measure. In what follows, we discuss a few standard measures
of dependence that are utilized widely in practice.

Before presenting basic measures of dependence that are widely used, it will be instruc-
tive to first provide a general overview of the concept of concordance measures. This will be
presented first under a general axiomatic framework, then re-expressed under a copula based
framework. Then several examples of concordance measurs satisfying different aspects of the
axioms proposed will be discussed. Before proceeding, we require some basic definitions of
relevance to be presented. The first of these is the notion of permutation and symmetry.

• Symmetries: a symmetry of [0, 1]d is a one-to-one, onto map φ : [0, 1]d �→ [0, 1]d of
form φ(x1, . . . , xd ) = (u1, . . . , ud ) where for each i one has ui = xki or 1− xki and where
(k1, . . . , kd ) is a permutation of (1, . . . , n);

• Permutation: the map φ is a permutation if for each i one has ui = xki ;
• Reflection: the map φ is a reflection if for each i one has ui = xi or ui = 1 − xi.
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˚ Elementary reflections: an elementary reflection of the i-th component, denoted σi is
given by

σi(x1, . . . , xd ) = (x1, . . . , xi−1, 1 − xi, xi+1, . . . , xd )

• Symmetry Length: the length of a symmetry is denoted by |φ| and corresponds to the
number elementary reflections required to obtain it.

Having made these basic specifications of symmetry, permutation and reflection, we can now
discuss the measurement or quantification of dependence between loss random variables. Mea-
suring the dependence between random variables has long been of interest to statisticians and
practitioners. Indeed, Scarsini (1984) provides the following intuitive definition of dependence
which aligns with the notions of dependence previously discussed:

“Dependence is a matter of association between X and Y along any measurable function, i.e.
the more X and Y tend to cluster around the graph of a function, either y = f (x) or x = g(y),
the more they are dependent”.

The choice of dependence measure is influenced by the type of dependence one seeks to
study, such as lower left quadrant, upper right quadrant etc. This leads one to consideration of
the general notion of concordance between loss random variables.

Definition 10.20 (Concordance Between Loss Random Variables) Informally, a pair of ran-
dom variables are concordant if ‘large’ values of one tend to be associated with ‘large’ values of the
other and ‘small’ values of one with ‘small’ values of the other. Analogous definitions of discordance
are available in reverse directions.

There are numerous ways of mathematically trying to quantify this statement, so con-
sequently, many measures of concordance are available. Scarsini (1984) proposed a set of
axioms for general concordance measures, which will be denoted here by κ, which are given in
Proposition 10.9

Proposition 10.9 (Multivariate Concordance Measures) A general concordance measures κ is
a function attaching to all d-tuples of continuous r.v.’s (X1,X2, . . . ,Xd ) defined on a common
probability space, when d ≥ 2, a real number κ (X1,X2, . . . ,Xd ) satisfying:

• Normalization: κ (X1,X2, . . . ,Xd ) = 1 if each Xi is a.s. an increasing function of every other
Xj and κ (X1,X2, . . . ,Xd ) = 0 if X1, . . . ,Xd are independent;

• Monotonicity: If X1, . . . ,Xd is less concordent than Y1, . . . ,Yd then
κ (X1,X2, . . . ,Xd ) < κ (Y1,Y2, . . . ,Yd );

• Continuity: If Fk is the joint distribution of (Xk1, . . . ,Xkd ) and F the distribution of
(X1, . . . ,Xd ) and one has convergence in the sequence Fk → F as k → ∞, then
κ (Xk1, . . . ,Xkd ) → κ (X1, . . . ,Xd );

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , n) then
κ (Xi1 , . . . ,Xid ) = κ (X1, . . . ,Xn);

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . ,Xn);
• Reflection Symmetry:

∑
ε1,...,εd=±1 κ (ε1X1, . . . , εd Xd ) = 0 where the sum is over 2d vec-

tors of the form (ε1X1, . . . , εd Xd ) with εi ∈ {−1, 1};
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• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of continous r.v.’s
(X1, . . . ,Xd ) satisfies

rd−1κ (X2, . . . ,Xd ) = κ (X1, . . . ,Xd ) + κ (−X1,X2, . . . ,Xd )

These general axioms for concordance measures were also recently re-specified in terms of
copula models by Taylor (2007) in the following axioms for general concordance measures κ
via copula C as detailed in Proposition 10.10

Proposition 10.10 (Multivariate Concordance Measures via Copula) Consider a sequence
of maps κd : Cop(d) �→ R and a sequence of numbers {rd}, such that if A,B,C and Cm are
d-copulas and n ≥ 2 then:

• Normalization:κ
(
Md

)
= 1 and κ

(
Πd
)
= 0;

• Monotonicity: If A <st B and A ≤st B then κd (A) ≤ κd (B);
• Continuity: If Cm → C, then κd (Cm) → κd (C) as m → ∞;
• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , d) then
κ (C(ui1 , . . . , uid )) = κ (c(u1, . . . , ud ));

• Duality: κd (c(1 − u1, . . . , 1 − ud ) = κd (c(u1, . . . , ud ));
• Reflection Symmetry:

∑
Ψ∈Rd

κd
(
CΨ

)
= 0, where Ψ is a reflection, Ψ ∈ Rd is an element

of the subgroup of reflections in the group of symmetries under composition S([0, 1]d );
• Transition:

rnκd (C) = κn+1 (E) + κn+1 (E(1 − u1, u2, . . . , ud ))

whenever E is an (d + 1)-copula s.t. C(u1, . . . , ud ) = E(1, u1, . . . , ud ).

One can also state the following theorem regarding the properties of concordance measures
that satisfy these axioms, see details in Taylor (2007).

Theorem 10.1 (Properties of Concordance Measures Satisfying Proposition 10.10)
Consider the d-copula that is permutation symmetric ie. Cζ = C for all permuations ζ of [0, 1]d .
Then for all measures of concordance κ and for all symmetries Ψ and ζ of [0, 1]d one has

κd (CΨ) = κd (Cζ) (10.41)

whenever |Ψ| = |ζ| or |Ψ|+ |ζ| = d

Recall: symmetry length | · | corresponds to the number elementary reflections required to
obtain it.

Corollary 10.1 For all d ≥ 2 and for all symmetries Ψ and ζ of [0, 1]d such that |Ψ| = |ζ| or
|Ψ|+ |ζ| = d one has

κd (MΨ) = κd (Mζ). (10.42)

where M is the d-Frechet-Hoffding Upper Bound copula under permutation.
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We now present several examples of concordance measure that are widely used in practice
and are of relevance in many settings in OpRisk modelling.

10.4.1 LINEAR CORRELATION

Arguably the most widely known and utilized concordance measure of dependence, Pearson’s
product moment correlation coefficient, was developed by Karl Pearson, see Pearson (1896),
building on Sir Francis Galton’s approach using the median and semi-interquartile range, see
Galton (1889). Pearson’s correlation coefficient is a measure of how well the two random vari-
ables can be described by a linear function and is defined as detailed in Definition 10.21.
Pearson’s correlation coefficient, otherwise sometimes known as Pearson’s product moment cor-
relation coefficient, detailed below, is an extension of the median and semi-interquartile range
discussed by Galton in 1889. It acts as a measure of how well the two random variables can be
described by a linear function.

Definition 10.21 (Pearson’s Correlation Coefficient) Consider two random variables X and
Y with finite second moments E [X 2] < ∞ and E [Y 2] < ∞, then the definition of Pearson’s
correlation coefficient is given by the ratio of the covariance to the variation of each random variable
according to

ρ :=
Cov[X ,Y ]√
Var[X ]Var[Y ]

. (10.43)

Hence, we see that the correlation coefficient is what is known as a linear correlation that
is a measure of linear dependence between random variables. The notion of linear correlation
arises from the fact that such a measure of dependence is invariant under strictly increasing
linear transformations

ρ[αi + βiXi, αj + βjxj] = ρ[Xi,Xj], βi, βj > 0. (10.44)

Hence, perfect linear dependence gives ρ = +1 or ρ = −1.

Remark 10.12 A weakness of linear correlation is its noninvariance under nonlinear monotonic
transformations of the random variables.

The problems with using the linear correlation coefficient as a measure of dependence
between OpRisks can be summarised as follows:

• It is defined if variances of Xi and Xj are finite. As has already been discussed, some OpRisks
are modeled by heavy-tailed distributions with infinite variance and even cases of infinite
mean are possible in some loss processes to do with disasters, such as losses resulting from
say natural disasters;

• It is not invariant under strictly increasing nonlinear transformations T (·) and T̃ (·). In
general, ρ[T (Xi), T̃ Xj)] �= ρ[Xi,Xj];

• Independence between random variables implies that linear correlation is zero. How-
ever, in general, zero linear correlation does not imply independence. For example, if
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X ∼ Normal(0, 1) and Y = X 2, then ρ[X ,Y ] = 0 while it is obvious that there is
as strong dependence between X and Y . Zero linear correlation and independence are
equivalent only in the case of a multivariate Normal distribution as a joint distribution for
random variables;

• The linear correlation is bounded to the region [ρmin, ρmax], where −1 ≤ ρmin ≤
ρmax ≤ 1. For example, if X ∼ LogNormal(0, 1) and Y ∼ LogNormal(0, σ2), then
the minimum and maximum bounds for correlation are plotted in Figure 10.1a as func-
tions of σ; for more details, see McNeil et al. (2005, example 5.26). Figure 10.1b presents
the correlation bounds for the case of X ∼ Pareto(2.1, 1) and Y ∼ Pareto(β, 1), where
Pareto(β, a) = 1 − (x/a)−β ; for more details, see Nešlehová et al. (2006, example 3.1).

As noted earlier, such a pairwise measure of dependence is no longer valid when the sec-
ond moment of the loss random variables is not finite, as will be the case in heavy-tailed loss

Linear correlation between LogNormal  rvs
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figure 10.1 Upper figure: the minimum and maximum possible linear correlation between
the random variables X ∼ LogNormal(0, 1) and Y ∼ LogNormal(0, σ2). Bottom figure: the minimum
and maximum possible linear correlation between the random variables X ∼ Pareto(2.1, 1) and
Y ∼ Pareto(β, 1)



�

�

“Cruz_Driver1” — 2015/1/8 — 13:07 — page 392 — #28
�

�

�

�

�

�

392 CHAPTER 10 Dependence Concepts

process models. Instead, it is common to move to notions of co-difference and co-variation (see
Definition 10.22, see Kokoszka and Taqqu (1994) and Nowicka-Zagrajek and Wyłomańska
(2008)). In particular, we will illustrate the definition of these measures of the important class
of heavy-tailed models known as alpha-stable models; see extensive discussions in the advanced
companion to this book.

Definition 10.22 (Co-Difference and Co-Variation) Consider two loss random variables X1
and X2 that are jointly from a heavy-tailed model that is symmetric α-Stable (SαS) with a tail
index α ∈ (1, 2) such that the second moments E [X1] and E [X1] are not finite. Then, the
co-variation and co-difference are defined by

1. Co-Difference. The co-difference between two loss random variables that are jointly SαS dis-
tributed is given by

CD (X1,X2) = lnE [exp (iX1 − iX2)]− lnE [exp (iX1)]− lnE [exp (−iX2)] .
(10.45)

2. Co-Variation. The co-variation between two loss random variables that are jointly SαS dis-
tributed is given by

CV (X1,X2) =

∫
S2

s1sα−1
2 Γ(d s), (10.46)

where S2 is the unit 2-sphere defined by

S
2 =

{
x ∈ R

3 : ||x|| = r
}
, (10.47)

which is a two-dimensional manifold in three-dimensional Euclidean space, that is, the
2-sphere is the two-dimensional surface of a (three-dimensional) ball in three-dimensional space

Remark 10.13 It is worth observing that in contrast to the co-difference, the covariation is not
symmetric in its arguments. In addition, in the case in which the tail exponent α = 2, then one has
recovered a joint distribution for the losses in which the second moment is finite and then one can
show the following relationship between co-difference, co-variation, and covariance:

Cov (X1,X2) = 2CV (X1,X2) = CD (X1,X2) . (10.48)

We note the following properties of Covariation and Codifference measures of
concordance.

Proposition 10.11 (Properties of Covariation and Codifference) The Codifference and
Covariation satisfy the following properties:

• In contrast to the co-difference, the covariation is not symmetric in its arguments;
• If α > 1 then the covariation induces a norm on the linear sub-space of jointly SαS random

variables

||X ||α = [CV (X1,X2)]
1/α
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• The codifference can be written

CD (X1,X2) = ||X1||αα + ||X2||αα − ||X1 − X2||αα

10.4.2 RANK CORRELATION MEASURES

Following from the notions of pairwise dependence based explicitly on the loss random vari-
ables, one can also define notions of correlation and dependence based on the rank of loss ran-
dom variables. Rank correlation measures the relationship between the rankings of variables,
that is, after assigning the labels “first”, “second”, “third”, etc., to different observations of a
particular variable. The coefficient lies in the interval [1, 1], where +1 indicates the agreement
between the two rankings is perfect, that is, the same; −1 indicates the disagreement between
the two rankings is perfect, that is, one ranking is the reverse of the other; 0 indicates the rank-
ings are completely independent. Due to this scale invariance, rank correlations thus provide
an approach for fitting copulae to data.

One of the most popular choices for measuring the rank correlation is known as Spear-
man’s rho. Charles Spearman introduced the nonparametric measure of dependence, Spear-
man’s rank correlation coefficient, in Spearman (1904). This measure assesses how well the
dependence between two random variables can be described by a monotonic function. As such
it is equivalent to the Pearson’s correlation coefficient between the ranked variables as detailed
in Definition 10.23.

Definition 10.23 (Spearman’s Rank Correlation Coefficient) Consider two sets of order
statistics for two loss processes

{
X(i,n)

}n
i=1 and

{
Y(i,n)

}n
i=1. Then, the Spearman’s rank correlation

is given by

ρ :=

∑n
i=1 (xi − x̄)(yi − ȳ)√∑
i (xi − x̄)2

∑
i(yi − ȳ)2

, (10.49)

where xi, yi are the ranks and x̄ = 1
n
∑n

i=1 xi and ȳ = 1
n
∑n

i=1 yi.

Spearman’s rank correlation is often referred to as Spearman’s rho and can be seen from
its definition to be a simple scalar measure of dependence that depends on the copula of
two random variables but not on their marginal distributions. An equivalent way to consider
understanding Spearman’s rank correlation for two random variables X1 and X2 with marginal
distributions F1(x1) and F2(x2) is to consider its representation given by

ρS [X1,X2] = ρ[F1(X1), F2(X2)]. (10.50)

Here we see that Spearman’s rank correlation is simply the linear correlation of the proba-
bility transformed random variables. For multivariate case (X1, . . . ,Xd ), Spearman’s rho matrix
is defined by the matrix coefficients ρS [Xi,Xj] = ρ[Fi(Xi), Fj(Xj)]. The main properties can be
summarized as follows:

• The range for possible values of ρS [X1,X2] is [−1, 1];
• For independent random variables, ρS [X1,X2] = 0. However, zero Spearman’s rank corre-

lation does not necessarily imply independence;



�

�

“Cruz_Driver1” — 2015/1/8 — 13:07 — page 394 — #30
�

�

�

�

�

�

394 CHAPTER 10 Dependence Concepts

• ρS [X1,X2] = 1 if X1 and X2 are comonotonic (perfect positive dependence); and
ρS [X1,X2] = −1 if X1 and X2 are countermonotonic (perfect negative dependence). Note
that this is not the case for the linear correlation coefficient ρ[X1,X2];

• In the case of bivariate Gaussian copula with correlation parameter ρ, the following relation
is true:

ρS [X1,X2] =
6
π
arcsin

(
1
2
ρ

)
≈ ρ; (10.51)

see McNeil et al. (2005, theorem 5.36). This relationship between Spearman’s rank correla-
tion and the Gaussian copula correlation parameter is often used to calibrate the Gaussian
copula. The error in approximating the right-hand side of the aforementioned equation
by ρ itself is very small:∣∣∣∣ 6

π
arcsin

(
1
2
ρ

)
− ρ

∣∣∣∣ ≤ (π − 3)|ρ|/π ≤ 0.0181.

One can also express Spearman’s Rank correlation via a copula specification, see Definition
10.24.

Definition 10.24 (Spearman’s Rank Correlation via Copula) The bivariate Spearman’s
Rank Correlation can be expressed explicitly via the bivaraite copula C according to

ρ = 12
∫
[0,1]

∫
[0,1]

u1u2dC (u1, u2)− 3. (10.52)

In addition, a general multivariate extension of Spearman’s Rank Correlation is developed
for d -dimensional loss random vectors and given below, see details in Nelsen (2002).

Definition 10.25 (Multivariate Generalized Spearman’s Rho via Copula) Consider the
d-copula given by C and the permuted copula Cσ, then the generalized Spearman’s Rho concor-
dance measure of dependence is given according to

ρd (C) = αd

(∫
[0,1]d

(C + Cσ) dΠd − 1
2d−1

)
(10.53)

where one has αd = (d+1)2d−1

2d−(d+1) and Πd is the d-Independence Copula.

Another widely utilized rank correlation measure was developed by Maurice Kendall and
is known as Kendall’s τ rank correlation coefficient as detailed in Definition 10.26; see Kendall
(1938). It should also be noted that Gustav Fechner proposed a similar measure in the context
of time series in 1897; see Kruskal (1958).

Definition 10.26 (Kendall’s Tau) Let (X1,Y1) and (X2,Y2) be two independent pairs of ran-
dom variables from a joint distribution function F , then Kendall’s rank correlation is given by

τ := Pr [(X1 − X2) (Y1 − Y2) > 0]− Pr [(X1 − X2) (Y1 − Y2) < 0] . (10.54)
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Again, one may also define Kendall’s tau rank correlation for random variables X1 and X2
according to the following equivalent form:

ρτ [X1,X2] = Pr[(X1 − X̃1)(X2 − X̃2) > 0]− Pr[(X1 − X̃1)(X2 − X̃2) < 0]

= E[sign((X1 − X̃1)(X2 − X̃2))], (10.55)

where (X̃1, X̃2) and (X1,X2) are independent random vectors from the same distribution. It
can also be written as

ρτ [Xi,Xj] = Cov[sign(Xi − X̃i)sign(Xj − X̃j)]. (10.56)

Similar to Spearman’s rank correlation, Kendall’s tau rank correlation is a simple scalar measure
of dependence that depends on the copula of two random variables but not on their marginal
distributions.

• The range for possible values of ρτ [X1,X2] is [−1, 1];
• For independent random variables ρτ [X1,X2] = 0, although zero Kendall’s tau does not

necessarily imply independence;
• ρτ [X1,X2] = 1 if X1 and X2 are comonotonic (perfect positive dependence); and
ρτ [X1,X2] = −1 if X1 and X2 are countermonotonic (perfect negative dependence);

• In the case of the bivariate Gaussian copula with correlation parameter ρ, the following
relation is true:

ρτ [X1,X2] =
2
π
arcsin (ρ) ≈ ρ; (10.57)

see McNeil et al. (2005, theorem 5.36). This relationship is also true for a general class
of normal variance mixture distributions such as t-copula (it is often used to calibrate
t-copula). Strictly speaking, it is true for the bivariate case only. That is, for the multi-
variate case (X1, . . . ,Xd ), if Kendall’s tau rank correlation is found for all pairs ρτ [Xi,Xj],
then the correlation matrix coefficients ρij calculated using (10.57) may not form a posi-
tive definite matrix. If this is the case, then the eigenvalue method can be used to adjust
the correlation coefficients so that the matrix is well defined; see McNeil et al. (2005,
example 5.54 and algorithm 5.5). The remaining degrees-of-freedom parameter ν in the
t-copula is estimated, for example, by the maximum likelihood method.

Given data (Y = y1, . . . , yN ), which can be ranked, the estimation of Kendall’s tau can
be performed using the estimator

τ̂ = 1 − 2S(π, σ)
N (N − 1)/2

, (10.58)

where π and σ denote two distinct orderings of the data Y and S(π, σ) denotes the minimum
number of adjacent transpositions needed to bring π to σ. This shows that Kendall’s τ is based
on the number of transpositions, that is, interchanges of consecutive elements, necessary to
rearrange π into σ.

Remark 10.14 (Spearman’s Rho versus Kendall’s Tau) Spearman’s ρ and Kendall’s τ share a
lot of common properties; however, Spearman’s ρ is a measure of average quadrant dependence,
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while Kendall’s τ is a measure of average likelihood ratio dependence, see discussions in Fredricks
and Nelsen (2007). Hence, this means that Kendall’s τ will penalizes rank displacements by the
distance of the displacement, where as Spearman’s ρ will penalize by the square of the distance. It is
also worth noting the observation of Newson (2002) that confidence intervals for Spearman’s ρ are
typically less reliable and less interpretable than confidence intervals for Kendall’s τ -parameters.

One can also relate Kendall’s tau measure of concordance to a copula specification. Con-
sider the concordance function κ quantifying the difference in probabilities of concordance
and discordance for bi-variate loss random vectors (X1,Y1) and (X2,Y2) which are specified as
follows:

• Assume X1 and X2 have common continuous marginal FX ;
• Assume Y1 and Y2 have common continuous marginal FY ;
• Assume (X1,Y1) and (X2,Y2) have different copula C1 and C2 respectively.

Then in Nelsen (2002), it was proposed to consider an alternative copula specified concor-
dance function κ for the equivalent Kendall’s tau measuring the probability of concordance
and discordance given by

κ = Pr [(X1 − X2)(Y1 − Y2) > 0]− Pr [(X1 − X2)(Y1 − Y2) < 0]

= 4
∫ 1

0

∫ 1

0
C2(u, v)dC1(u, v)− 1.

(10.59)

One can show in under this concordance-discordance measure the results:

• κ(C1,C2) ∈ [−1, 1];
• κ(C ,Πd ) ∈ [−1/3, 1/3];
• κ(C ,Md ) ∈ [0, 1];
• κ(C ,W d ) ∈ [−1, 0].

Recall: Md - Frechet-Hoffding Upper-Bound; W d - Frechet-Hoffding Lower-Bound; and Πd -
independence copula.

We finish this section by briefly also mentioning a third correlation measure that is related
to medial correlation known as Blomqvist’s β given in Definition 10.27; see Blomqvist (1950).
For generalizations of Blomqvist’s beta to higher dimensions, see discussions in Nelsen (2002),
Joe (1990), and Dolati and Úbeda-Flores (2006).

Definition 10.27 (Blomqvist’s Beta) Consider two random variables X1 and X2, then
Blomqvist’s beta is given by

ρβ [X1,X2] := Pr [(X1 − med (X1)) (X2 − med (X2)) > 0]
− Pr [(X1 − med (X1)) (X2 − med (X2)) < 0] , (10.60)

where med (Xi) is the median of random variable Xi.

One can also make the following comments regarding the properties of Blomqvist’s Beta
measure of concordance:
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• The empirical version ρ̂β of Blomqvist’s beta is a suitably scaled version of the proportion
of points whose components are either both smaller, or both larger, than their respective
sample medians;

• The computation of ρ̂β involves only O(n) operations, as opposed to O(n2) for the empir-
ical versions of Kendall’s tau and Spearman’s rho.

In addition, Blomqvist’s Beta can also be specified with regard to a copula as follows.

Definition 10.28 (Blomqvist’s Beta via Copula) The bivariate Blomqvist’s Beta can be expre-
ssed explicitly via the bivaraite copula C according to

β = 4C
(

1
2
,

1
2

)
− 1. (10.61)

Remark 10.15 Recently in Genest et al. (2013) they proposed the inversion of this copula based
representation of Blomqvist’s Beta to perform explicit parameter estimation for several copula models.

As with the other popular measures of concordance specified above, there is also a gener-
alization of Blomqvist’s Beta to multivariate settings, see discussions in Nelsen (2002).

Definition 10.29 (Generalized Blomqvist’s Beta via Copula) Consider an d-copula C, then
the generalized Blomqvist’s Beta is given by

βd (C) = αd

(
C(

1
2
, . . . ,

1
2
)− 1

2d

)
, (10.62)

where αd = 2d

2d−1−1

To complete the basic specification of concordance measures widely used in practice, we
finish with a brief discussion on the notion of intermediate directional dependence in the
3-dimensional context, see details in Nelsen (2002). We will denote such dependence mea-
sures as rho-directional dependence.

Definition 10.30 (3-Copula ρ-Directional Dependence) Consider a loss random vector
X = (X1,X2,X3) with X ∈ R

3 and associated 3-dimensional copula CX . Then for any direc-
tion (α1, α2, α3) characterised by the vector components αi ∈ {−1, 1} for i ∈ {1, 2, 3}, one has
the ρ-directional dependence given by

ρ
(α1,α2,α3)
X1,X2,X3

=
α1α2ρX1,Xx + α2α3ρX2,X3 + α3α1ρX3,X1

3

+ α1α2α3
ρ+X1,X2,X3

− ρ−X1,X2,X3

2

(10.63)
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with pairwise Spearman’s rho and

ρ+X1,X2,X3
(CX ) = 8

∫
[0,1]3

CX (u, v,w)dudvdw − 1,

ρ−X1,X2,X3
(CX ) = 8

∫
[0,1]3

CX (u, v,w)dudvdw − 1.
(10.64)

Remark 10.16 The eight vectors which characterize directions (α1, α2, α3) where αi ∈ {−1, 1}
for i ∈ {1, 2, 3} in [0, 1]3 allow one to utilise the ρ-directional dependence to measure directional
dependence in different quadrants.

To better understand the notion of rho-directional dependence we note that for example,
if ρ(−1,−1,1)

X or ρ(1,1,−1)
X are positive, then there will be positive dependence in the direction of

(−1,−1, 1) or (1, 1,−1), hence one would expect large (small) values of X1 and X2 to occur
with small (large) values of X3, ie. ρX1,X2 > 0 with ρX1,X3 < 0 and ρX2,X3 < 0.

10.5 Tail Dependence Parameters, Functions, and Tail
Order Functions

We begin this section with a discussion on tail dependence coefficients, introducing this concept
and how to interpret the properties of models with this feature. Then we move to relaxing this
definition to nonasymptotic cases by considering the case of tail dependence functions and
the related tail order functions. The concept of tail dependence parameters, tail dependence
functions, or tail order functions each play a crucial role in both copula modeling as well as
extreme value theory.

10.5.1 TAIL DEPENDENCE COEFFICIENTS

Tail dependence provides one approach to quantification of the dependence in extremes of a
multivariate distribution. Traditionally this notion of dependence was considered from a pair-
wise construction due to tractability of expressions for the pairwise construction when applied
to copula models. However, there is no reason to restrict this notion to just pairwise analysis and
later we consider first the pairwise definition and then the generalized definition for d -variate
random vectors.

The importance of thinking about tail dependence was succinctly summarized in the
questions posed in Charpentier (2003) as detailed later:

1. If one considers data that are is taken from a multivariate distribution anywhere in its
support, then through the measures of dependence just discussed and dependence con-
cepts previously detailed in this chapter, it is possible to obtain all the overall dependence
structure between say two loss random variables X (1) and X (2).

However, it is interesting to question whether dependence properties still hold if focusing
only on extremes of the distribution in any particular quadrant?
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For instance, if the correlation between X (1) and X (2) is positive, is it reasonable to assume that
the correlation between extreme values of X (1) and extreme values of X (2) will still be positive
or even present at all?

2. Another way to think of this is to consider the case in which X (1) and X (2) may exhibit
a positive dependence. Then in what types of models and under what conditions can one
assume that the same dependence property will hold for X (1) and X (2) given X (1) is higher
than a given threshold and X (2) is also higher than a given threshold?

To understand the quantification of dependence in such cases, that is, cases in which each
marginal loss random variable is considered in an extreme region of support of the distribution
(which may happen in a number of different ways) one can start to define the notion of tail
dependence. The notion of bivariate tail dependence coefficient is defined as the conditional
probability that a random variable exceeds a certain threshold given that the other random
variable in the joint distribution has exceeded this threshold as detailed formally in Definition
10.31. Note that the notion of copula distributions will be discussed in detail in the following
sections; we simply provide an introduction to the notation used for such copula distributions
for random vector X ∈ R

d , which take support on [0, 1]d where the multivariate distribution
of random vector X is given by copula and marginal distributions according to

Pr [X1 < x1, . . . ,Xd < xd ] = C (FX1 (x1) , . . . , FXd (xd )) . (10.65)

Clearly, the copula is obtained after transforming each of the marginal components of random
vector X ∈ R

d to the unit cube via marginal transformations Ui = FXi (Xi).

Definition 10.31 (Bivariate Tail Dependence Coefficient) Consider two random variables
X1 and X2 with distributions Fi, i = 1, 2 and a distribution describing their dependence on the
unit cube known as a copula C. We define the coefficient of upper tail dependence by

λu := lim
u↑1

Pr
[
X2 > F−1

2 (u) |X1 > F−1
1 (u)

]
= lim

u↑1

1 − 2u + C(u, u)
1 − u

(10.66)

and similarly we define the coefficient of lower tail dependence by

λl := lim
u↓0

Pr
[
X2 ≤ F−1

2 (u) |X1 ≤ F−1
1 (u)

]
= lim

u↓0

C(u, u)
u

. (10.67)

Note that C̃(1 − u, 1 − u) = 1 − 2u − C(u, u) is known as the survival copula of C .
The aforementioned relationships show that the upper tail dependence coefficients of copula C
is also equal to the lower tail dependence coefficient of the survival copula of C . Analogously,
the lower tail dependence coefficient of copula C is equivalent to the upper tail dependence
coefficient of the survival copula.

Remark 10.17 Similar to rank correlations, the tail dependence coefficient is a simple scalar mea-
sure of dependence that depends on the copula of two random variables but not on their marginal
distributions.
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Both λu and λl belong to the range [0, 1], provided that the aforementioned limits exist.
Essentially, these coefficients are measures of the dependence in the tails of bivariate distribu-
tion. For OpRisk purposes, the upper tail dependence (a chance that X1 is very large if X2 is
very large) is of primary importance.

As shown in Definition 10.31, when the marginal loss distributions F1(·)and F2(·) are
continuous, then the tail dependence coefficients can be expressed in terms of the unique copula
C(u1, u2) between loss random variables X1 and X2. Therefore, it will not come as a surprise,
when different copula parametric models are discussed later, that the tail dependence will be
directly a function of the copula parameter. This will allow one to obtain a relationship between
the parameters in the parametric density that will represent the joint dependence of the loss
random variables and the extreme strength of this dependence.

Given the definition of pairwise tail dependence, one can state the following properties of
such a quantification of dependence; see Proposition 10.12.

Proposition 10.12 (Properties of Tail Dependence Coefficient) Consider two loss random
variables with marginal loss distributions Xi ∼ FXi and a joint dependence modeled by the
copula C, then defining the constant

c = lim
x→∞

F X2(x)
F X1(x)

(10.68)

one can show the following features of upper tail dependence:

1. The following bounds apply to the upper tail dependence

cλu ≤ λ̂ ≤ min(c, λu) (10.69)

with

λ̂ = lim
x→∞

1 − FX1(x)− FX2(x) + C (FX1(x), FX2(x))
1 − FX1(x)

. (10.70)

2. The following relationship between the maximum of a sum of two random variables and the
tail dependence holds

Pr [max {X1,X2} > x] ∼
(

1 + c − λ̂
)

F X1(x) (10.71)

and the tail result given by

lim
x→∞

Pr [X1 > x|max {X1,X2} > x] =
1

1 + c − λ̂
. (10.72)

3. The following worst, case bounds can be obtained:

F X1(x) << Pr [X1 + X2 > x] << (1 + c)F X1

( x
2

)
. (10.73)
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4. Considering the identically distributed losses Xi ∼ FX (x) with a copula distribution
C(u1, u2) = C (FX (x), FX (y)), one can obtain the following upper and lower bounds:

λu ≤ lim inf
x→∞

Pr [c1X1 + c2X2 > x]

Pr
[
X1 > x

c1+c2

] ,

lim sup
x→∞

Pr [c1X1 + c2X2 > x]

Pr
[
X1 > x

c1+c2

] ≤ 2 − λu,

(10.74)

for constants c1 and c2 satisfying y = c1x/(c1 + c2).
5. The tail dependence coefficients are invariant to strictly increasing transformations of the

margins.

One can also relate the notion of upper tail dependence to negative regression dependence
as follows.

Remark 10.18 (Upper Tail Dependence and Negative Regression Dependence) One can
show that if loss random variables satisfy the definition of negative regression dependence, then they
will always have upper tail dependence of zero as measured by the tail dependence measure

λu = lim
u↑1

Pr [U2 > u|U1 > u] (10.75)

for marginally uniform U1 = FX1(x) and U2 = FX2(x).

One can also show the following properties of the concordance measures known as tail
dependence or extremal dependence:

• Tail dependence provides one approach to quantification of the dependence in extremes
of a multivariate distribution;

• The notion of bivariate tail dependence coefficient is defined as the conditional probability
that a random variable exceeds a certain threshold given that the other random variable in
the joint distribution has exceeded this threshold;

• The tail dependence coefficients are invariant to strictly increasing transformations of the
margins;

• If a random vector satisfies the definition of negative regression dependence then it will
always have upper tail dependence of zero.

Remark 10.19 Similar to rank correlations, the tail dependence coefficient is a simple scalar mea-
sure of dependence that depends on the copula not the marginals.

There have also been developments that have made extensions of the notion of tail dependence
to arbitrary d -variate cases for d > 2 as recently studied in a number of papers; see, for instance,
De Luca and Rivieccio (2012). Under the specification provided in Definition 10.32, one may
quantify the tail dependence present between subvector partitions of the multivariate random
vector with regard to joint tail dependence behaviors; see discussions in Li (2009).
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Definition 10.32 (Multivariate Tail Dependence) Let X =(X1, . . . ,Xd )
T be a d-dimensional

random vector with marginal distribution functions F1, . . . , Fd and copula C.

1. One may define the coefficient of multivariate upper tail dependence (upper orthant depen-
dence) by

λ1, ... ,h|h+1, ... ,d
u

= lim
ν→1−

Pr
(
X1 > F−1(ν), . . . ,Xh > F−1(ν)|Xh+1 > F−1(ν), . . . ,Xd > F−1(ν)

)
= lim

ν→1−

Cn(1 − ν, . . . , 1 − ν)

Cn−h(1 − ν, . . . , 1 − ν)
,

where C is the survival copula of C;
2. One may define the coefficient of multivariate lower tail dependence (lower orthant

dependence) by

λ
1, ... ,h|h+1, ... ,d
l

= lim
ν→0+

Pr
(
X1 < F−1(ν), . . . ,Xh < F−1(ν)|Xh+1 < F−1(ν), . . . ,Xd < F−1(ν)

)
= lim

ν→0+

Cn(ν, . . . , ν)

Cn−h(ν, . . . , ν)
.

Here, h is the number of variables conditioned on (from the d variables considered).

It is important to observe that the tail dependence coefficients of a copula C represent the
conditional tail probabilities that components of Uis will go to extreme values at the same rate
and hence they can only describe components of the extreme dependence that is independent
of the marginal distributions. To address this property, we will discuss the properties of tail
dependence functions and tail order.

10.5.1.1 Estimation of Tail Dependence Coefficients. In Frahm et al. (2005), they
discuss the estimation of the tail dependence coefficient in a number of different scenarios rang-
ing from complete lack of knowledge of the copula density family in which case the estimation
is nonparametric, through to the fully parametric cases.

Assume that the marginal distributions {FXi (·; θi)}i∈{1,...,d} are known and furthermore
that the joint distribution FX (·;φ) admits a tail dependence that is nonzero in either the upper
or lower coefficient and generically can be written as λu = fu(φ) or λl = fl(φ), respectively,
for some known function fu(·) or fl(·). Then MLE estimation of the φ̂ will produce an MLE
estimator for the tail dependence coefficient λ̂u = fu(φ̂) or λ̂l = fl(φ̂). If the standard regu-
larity conditions on the MLE are satisfied, see Chapter 7, then the MLE estimator of the tail
dependence coefficients will inherit the asymptotic (in the sample size) consistency and nor-
mality properties of the MLE estimator for the model parameter vector φ. Of course, there
will be bias present in the estimated tail dependence coefficients if there is missspecification of
either the marginal or the joint distribution copula.

If one relaxes these assumptions to only assume that the copula distribution family C(·;φ)
is from a particular known parametric model class, however, the marginals distributions are
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unknown. Then the estimation of the tail dependence coefficient can proceed by first trans-
forming the data to the unit cube via the empirical distribution functions; see discussions on
pseudo data in Chapter 8. Then the copula distribution can be estimated on the unit cube via
the pseudo data via MLE to get the copula parameter estimate φ̂, where the consistency and
asymptotic normality of such a copula parameter estimator has been studied in Genest et al.
(1995) and Shih and Louis (1995). Then if there is a known functional mapping between the
copula parameter vector and the tail dependence coefficient that is sufficiently smooth, then
asymptotic consistency and normality will be inherited by the estimator of the tail dependence
coefficient.

Finally, one may also consider the completely nonparametric setting in which no presumed
knowledge of the copula distribution parametric family or the marginal distribution parametric
families is assumed, that is, one has the following empirical copula and empirical marginal
distribution functions given n random vectors of loss data {X i}i∈{1,2, ... ,n},

F̂n (X ) = Ĉn

(
F̂1,n (x1) , . . . , F̂d,n (xd )

)
, (10.76)

where the empirical copula is given by

Ĉn (u1, . . . , ud ) =
1
n

n∑
i=1

I

(
R1i

n
≤ u, . . . ,

Rdi

n
≤ u

)
, (10.77)

where Rji is the rank of the variable in its marginal dimension that makes up the pseudo data.
In the case of a bivariate distribution, the nonparametric estimation of the tail dependence

coefficients can be performed under one of following estimators that have been proposed in the
literature:

• Nonparametric Estimation of Upper Tail Dependence (Estimator 1):

λ̂(1)
u = 2 −

ln Ĉn
( n−k

n , n−k
n

)
ln
( n−k

n

) , k ∈ {0, 1, 2, . . . , n} . (10.78)

This estimator is the nonparametric estimator counterpart of an alternative tail dependence
coefficient given in Definition 10.33;

• Nonparametric Estimation of Upper Tail Dependence (Estimator 2):

λ̂(2)
u = 2 −

1 − Ĉn
( n−k

n , n−k
n

)
1 −

( n−k
n

) , k ∈ {0, 1, 2, . . . , n} . (10.79)

This estimator is the nonparametric estimator for the upper tail dependence studied in Joe
et al. (1992);

• Nonparametric Estimation of Upper Tail Dependence (Estimator 3):

λ̂(3)
u = 2 − 2 exp

⎡
⎣1

n

n∑
i=1

ln

⎛
⎝

√
ln 1

U1,i
ln 1

U2,i

ln
(

1
max{U1,i,U2,i}2

)
⎞
⎠
⎤
⎦ . (10.80)
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This estimator is the nonparametric estimator for the upper tail dependence based on
extreme value theory results and EVT copula as studied in Capéraà et al. (1997).

One can define analogously the lower tail dependence estimators.
We conclude this section with a basic description of asymptotic independence to round of

the discussion of extreme dependence and independence. Basically, this case corresponds to the
situation in which the extremes of the distributions are asymptotically independent and one
would consequently find the tail dependence coefficient to be zero.

When performing modeling, one must be careful not to impose tail dependence in situa-
tions where it may not be suitable to incorporate (this will be tackled by model selection) since
it will tend to overestimate the chance of extremal joint events. This statement, when looking
at the definitions of upper and lower tail dependence coefficients, is equivalent to saying do not
arbitrarily impose copula models for dependence with specified copula parameters, as this will
artificially inflate the chance of tail dependence when the limits exist.

Coles et al. (1999) consider this concept in the context of multivariate EVT (also see
detailed discussion in Peters and Shevchenko, 2015), where they discuss the fact that applying
extreme value models based on nonzero tail dependence to cases in which actually no extreme
dependence is justified will result in an overestimation of probabilities of extreme joint events.
Examining this class of distributions at finite levels, that is, nonasymptotic levels, allows for a
more useful measure of extremal dependence that is specified in Definition 10.33, see Coles
et al. (1999).

Definition 10.33 (χ̄ - Measure of Extremal Dependence) A modified measure of extreme
dependence is given by the following quantity:

χ̄ :=
2 lnPr(U > u)

lnPr(U > u,V > v)
− 1 =

2 ln(1 − u)
ln C̄(u, u)

− 1, (10.81)

where −1 < χ̄(u) ≤ 1 for all 0 ≤ u ≤ 1.

This measure of dependence is particular useful for multivariate EVT-based models for
which it was first developed. The reason for its utility is that χ̄ increases with dependence
strength and equals unity for asymptotically dependent variables. In addition, in the case of a
multivariate Gaussian model, the dependence measure χ̄ is equal to the correlation, providing
a benchmark for interpretation in general models of dependence. Coles et al. (1999) thus argue
that using this new measure in addition to the tail dependence measure gives a more complete
summary of extremal dependence. Since this modified proposal for studying tail dependence,
there have been a number of new works on tail functions and intermediate tail dependence that
we briefly highlight in the following sections.

10.5.1.2 Tail Dependence and Heavy Tailedness in Elliptical Families. In this
section, we draw attention to recent studies, see Schmidt (2002), on the relationship between
tail dependence and heavy tailedness of marginal distributions, specifically in the family of
elliptically contoured distributions. Elliptically contoured multivariate distributions are char-
acterized by Definition 10.35.

Definition 10.34 (Spherically Contoured Distributions) A random vector X ∈ R
d in

d-dimensions is said to have spherical contours in its quantile function if it satisfies the equality
in distribution
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X d
= AX (10.82)

for every orthogonal matrix A ∈ R
d×d . Analogously, any random vector with spherical quantile

level sets will have a representation given by

X d
= Rd U (10.83)

with random variable Rd ≥ 0 such that Rd ∼ FRd and independent of the random vector U , which
is uniformly distributed on the sphere in R

d .

From the definition of the class of spherical distributions, one may construct a definition
of elliptically contoured quantile function distributions.

Definition 10.35 (Elliptically Contoured Distributions) Consider a random vector X ∈ R
d

in d-dimensions with parameters in the distribution function given by μ ∈ R
d and Σ ∈ R

d×d .
Then the random vector is said to have an elliptical distribution function if it satisfies the equality
in distribution

X d
= μ+ AT Y d

= μ+ Rd AT U (10.84)

for a k-dimensional (k ≤ d) spherically distributed random vector Y , matrix A ∈ R
k×d satisfying

AT A = Σ and rank(Σ) = k, random variable Rd ≥ 0 independent of the random vector U ,
which is uniformly distributed on the sphere in R

d .

Under the constraint of each marginal distribution having to jointly satisfy the expression
in Equation 10.84, one can show some interesting connections between the heavy-tailedness
of the marginal distributions and the existence or strength of the tail-dependence coeffi-
cient. These relationships are captured by the result in Theorem 10.2; see Schmidt (2002,
theorem 5.2).

Theorem 10.2 (Elliptical Family Tail Dependence and Marginal Heavy-Tailedness)
Consider an elliptically distributed random vector X ∈ R

d in d-dimensions (d ≥ 2) with param-
eters in the distribution function given by μ ∈ R

d and Σ ∈ R
d×d . Then the following results hold

if the random vector X has a tail-dependent bivariate margin:

• The tail distribution function of the random variable Rd given by F Rd must satisfy the
O-regular variation condition for any t ≥ 1 given by

0 < lim inf
r→∞

F Rd (rt)
F Rd (r)

≤ lim inf
r→∞

F Rd (rt)
F Rd (r)

< ∞. (10.85)

• The tail distribution function of each marginal of the k-dimensional random vector Y each
denoted by F Yi for i ∈ {1, 2, . . . , k} must also be O-regularly varying and therefore satisfy the
condition for any t ≥ 1 given by

0 < lim inf
y→∞

F Yi(yt)
F Yi(y)

≤ lim inf
y→∞

F Yi(yt)
F Yi(y)

< ∞. (10.86)

for all tail distribution marginals of random vector Y .
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Conversely, if F Rd is regularly varying and therefore satisfies the condition that

lim
r→∞

F Rd (rt)
F Rd (r)

= tα (10.87)

for any t ≥ 0 and a value of α ∈ R, then all bivariate marginal distributions of random vector X
will be tail dependent.

This result is significant for OpRisk since it demonstrates the direct relationship between
marginal heavy-tailed distributions and the existence of tail dependence in the family of spher-
ical and elliptical distributions. The results of this Theorem 10.2 were applied for several pos-
sible families of loss distributions, which will have a multivariate elliptical distributions with a
summary given by

• If X ∈ R
d has a multivariate spherically contoured Pearson type VII distribution (such as

the multivariate Cauchy distribution), then all bivariate margins of the random vector X
will have tail dependence coefficients that are nonzero;

• If X ∈ R
d has a multivariate elliptically contoured logistic distribution, then all bivariate

marginal distributions are tail independent;
• If X ∈ R

d has a multivariate elliptically contoured generalized hyperbolic distribution,
then all bivariate marginal distributions are tail independent.

One can estimate the tail dependence for the elliptical family of distributions as discussed
in Frahm et al. (2005) via the Pickand’s dependence function given in Definition 10.36 which
plays an important role in extreme value copulas as will be defined later.

Definition 10.36 (Pickand’s Dependence Function) The Pickand’s dependence function is
a function A : [0, 1] �→ [0.5, 1], which is convex such that it satisfies that
max (t, 1 − t) ≤ A(t)≤ 1 for every t ∈ [0, 1].

Given an elliptical bivariate distribution (X1,X2)
d
= μ + R2Λ [U1,U2] with R2 indepen-

dent of U . Then if the tail distribution of the Euclidean norm D = || (X1,X2) ||2 given by F D
is regularly varying with F D ∈ RVα and α > 0, then on can show that the tail dependence
coefficient can be estimated via the expression linking the tail regularity to the tail dependence
coefficient via the Student-t distribution and the correlation ρ in Equation 10.88; see discussion
in Frahm et al. (2005),

A
(

1
2

)
= tα+1

(√
α+ 1

√
1 − ρ

1 + ρ

)
. (10.88)

Having seen the relationship between the heavy-tailed properties of the marginal distribu-
tions and the existence of tailed dependence in the special case of elliptical distributions, we next
consider more general notions of intermediate tail dependence. In particular, we will note some
recent results regarding the role played by the heavy tailedness of the marginal distributions in
more general settings.
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10.5.2 TAIL DEPENDENCE FUNCTIONS AND ORDERS

The study of tail dependence functions and tail orders can aid in the selection of an appropriate
parametric model for OpRisk loss distributions. An early definition of tail dependence func-
tions was provided in Klüppelberg et al. (2008), where they define the tail dependence function
given in Definition 10.37.

Definition 10.37 (Tail Dependence Function of a Multivariate Distribution) Consider a
loss random variable X ∈ R

d for d ≥ 2, then the tail dependence function is given by

λ (x1, x2, . . . , xd ) = lim
t→0

1
t
Pr
[

F X1(X1) ≤ tx1, . . . , F Xd (Xd ) ≤ txd
]
. (10.89)

Joe et al. (2010) studied properties of tail dependence functions and conditional tail
dependence functions, which they defined via the joint distribution on the unit d-dimensional
hyper-cube known as a copula, for a multivariate loss distribution. Note that detailed discus-
sions on copulas are provided in the following sections. The definition adapted in Joe et al.
(2010) for the upper and lower tail dependence functions differs to that provided in Defini-
tion 10.37 via the fact that each marginal can go to the limit at different rates according to the
functions:

• Lower tail dependence function. The tail dependence function for the copula distribution
C (u1, . . . , ud ) is given by

λl (t;C) = lim
u↓0

C (ut1, . . . , utd )

u
, ∀t = (t1, . . . , td ) ∈ R

d
+. (10.90)

• Upper tail dependence function. The tail dependence function for the copula distribution
C (u1, . . . , ud ) is given by

λu (t;C) = lim
u↓0

C (ut1, . . . , utd )

u
, ∀t = (t1, . . . , td ) ∈ R

d
+, (10.91)

with survival copula distribution C (u1, . . . , ud ) = C (1 − u1, . . . , 1 − ud ).

The existence of such limits in the definition of the tail dependence functions can be
linked to existence of multivariate regular variation on the copula distribution tails. Recall the
definition of regular variation given in Definition 10.38.

Definition 10.38 (Regular Variation) A measurable function f : R+ → R+ is regularly vary-
ing at ∞ with index α that is, f ∈ RVα if for any a > 0 one has

lim
x→∞

f (xa)
f (x)

= aα. (10.92)

Any function that is regularly varying of order α = 0 is said to be slowly varying and will be denoted
by l(x) ∈ RV0. Then any regularly varying function can be written according to the decomposition

f (x) = xαl(x). (10.93)
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Joe et al. (2010) show the following properties of the tail dependence function for the
lower tail dependence, with analogous results for the upper tail dependence achieved through
the link between these expressions and the survival copula.

• A tail dependence function λl(t;C) satisfies the properties that λl(at;C) = aλl(t;C) for
any a ≥ 0;

• A tail dependence function satisfies that λl(t;C) = 0 for all t ≥ 0 if and only if
λl(k;C) = 0 for some positive k;

• Setting t in λl(t;C) to one returns the lower tail dependence coefficient, λl(1;C) = λl .

Having defined the notion of tail dependence functions, one can also consider the idea
of tail orders that will also be linked to the regular variation of the tails of the copula distri-
bution. In Hua and Joe (2011), they defined the concept of tail order functions as given in
Definition 10.39.

Definition 10.39 (Tail Order Parameters) If a d-dimensional copula distribution C can be
written according to a slowly varying function decomposition given by the asymptotic representa-
tion as u ↓ 0 according to

C(u, u, . . . , u) ∼ uκl (C)l(u), u → 0+, (10.94)

then the power κl(C) for copula C is denoted the lower tail order. The upper tail order is analogously
defined according to

C(1 − u, . . . , 1 − u) ∼ uκu(C)l(u), u → 0+ (10.95)

with κu(C) the upper tail order for copula C.

Remark 10.20 Assuming that the slowly varying function l(u) is nonzero that is,
lims→0+ l(s) = h ∈ (0,∞), then with κl(C) = 1 (κu(C) = 1) one obtains the standard
definitions of lower (and upper) tail dependence coefficients.

In Hua and Joe (2011), they also define the notion of a tail order function for the upper
and lower tail orders according to Definition 10.40.

Definition 10.40 (Tail Order Functions) Consider a d-dimensional copula C such that

C(u, u, . . . , u) ∼ uκl (C)l(u), u → 0+, (10.96)

for some slowly varying function l(u) ∈ RV0. Then the lower tail order function is given by

λo
l (t;C , κl (C)) = lim

u→0+

C (ut1, ut2, . . . , utd )

uκl (C)l(u)
, (10.97)

Analogously, the upper tail order function is then given by

λo
u
(
t;C , κu(C)

)
= lim

u→0+

C (ut1, ut2, . . . , utd )

uκu(C)l(u)
, (10.98)

where C is the survival copula.
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Note that these definitions of tail order functions are directly related to the case of tail
dependence functions specified in Definitions 10.90 and 10.91. It is clear that the tail depen-
dence function and tail order functions will be asymptotically directly related to each other
since the regular variation decomposition in numerator and denominator that arises will cancel
each other eventually. Put another way, one can see that given the slowly varying function is
nonzero (i.e., the copula is regularly varying in the tails) such that lims→0+ l(s) = h ∈ (0,∞),
then one can obtain the direct link between the tail dependence functions and the tail order
functions as λl (t;C) = hλo

l (t;C , 1).

Remark 10.21 (Copula Reflection Asymmetry and Tail Order Coefficients) The definition
of upper and lower tail dependence functions and tail order functions aids in the understanding of
the attributes of particular dependence features obtained from a copula distribution C. For instance,
one can utilize the tail orders to assess the degree of reflection symmetry or asymmetry in the tails of
the copula. Consider the copula C (u1, . . . , ud ) and the reflected copula of (1 − U1, . . . , 1 − Ud )
given by CR (u1, . . . , ud ). One can consider reflection symmetry as the case in which CR ≡ C. If
there are inequalities, such that C(u, u, . . . , u) ≥ CR(1− u, . . . , 1− u) for all u ∈ (0, u0) with
u0 ∈ (0, 0.5], then the copula has greater mass in the lower tail and the reflection asymmetry indi-
cates skewness toward the lower tail and vice versa if the inequality is the other direction. In practice,
it is difficult to compare these copula densities, hence the tail orders κl(C) and κu(C) provide an
alternative way to assess reflection asymmetry.

• Upper Tail Skewness. If κl(C) > κu(C), then the copula C has upper tail skewness and the
smaller the magnitude of κl(C) the slower the convergence to zero in the tails;

• Lower Tail Skewness. If κl(C) < κu(C), then the copula C has lower tail skewness and the
smaller the magnitude of κu(C) the slower the convergence to zero in the tails.

Hua and Joe (2011, proposition 2) also relate the lower tail order κl(C) and upper tail
order κu(C) coefficients for a copula C to the existence of dependence features such as PLOD,
LTDS, and MLTD discussed in the previous section, as detailed in Proposition 10.13.

Proposition 10.13 (Tail Order Coefficients and PLOD, LTDS, and MLTD) Consider a
copula distribution function C (u1, u2, . . . , ud ) that has lower tail order κl(C) ≥ 1, then one
can show the following properties related to positive lower orthant dependence (PLOD), lower tail
decreasing in sequence (LTDS), and multivariate left tail decreasing (MLTD) as a function of the
tail order coefficients magnitude:

• A d-dimensional copula C will be PLOD eventually if κl(C) ≤ d;
• Under regularity conditions on the copula C, the marginal copula distributions will preserve

the order of the tail orders such that marginals will have smaller tail orders. Consider sets S1 ⊂
S2 ⊆ [0, 1]d such that the size of S1 satisfies |S1| = k ≥ 2 and |S2| = p ∈ [k, d ], then one
has that

κl (C (s11, . . . , s1k, uk+1, . . . , ud ))− κl
(
C
(
s21, . . . , s2p, up+1, . . . , ud

))
≥ 0.

(10.99)

If κl(C) = 1, then for any S ⊂ [0, 1]d with |S| = k ≥ 2 one has
κl(C(s1, . . . , sk, . . . , ud ) = 1;
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One can also show that if the copula C satisfies that it is MLTD, then

κl (C (s11, . . . , s1k, uk+1, . . . , ud ))− κl
(
C
(
s21, . . . , s2p, up+1, . . . , ud

))
≤ |S2| − |S1|.

• Analogous results also hold for the case of upper tail order coefficients κu(C) and the
corresponding notions of positive upper orthant dependence and multivariate right tail
increasing.

Having discussed briefly the quantification of dependence through different criteria, we
now move to models that can be constructed parametrically to capture such notions of depen-
dence and will allow OpRisk practitioners to incorporate these features into their multirisk
LDA structures.

10.5.3 A LINK BETWEEN ORTHANT EXTREME DEPENDENCE AND
SPECTRAL MEASURES: TAIL DEPENDENCE

In this section, we finish the chapter with a brief description of some interesting links between
the notion of tail dependence and the characterization of multivariate dependence in heavy
tailed loss distributions as specified by the spectral measure. In particular we will consider basic
links between orthant extreme dependence and the location of mass and quantity of mass on
the unit sphere when the spectral measure characterizing a loss random vector is presented in
polar co-ordinates.

As an illustration, we will consider the bivariate example for the upper tail dependence:

λu = lim
u↑1

Pr
(
X1 > F−1

X1
(u)|X2 > F−1

X2
(u)
)

= lim
u↑1

1 − 2u + C(u, u)
1 − u

.
(10.100)

Now, observe that for a set A in the d -unit sphere A ⊂ Sd one can define the cone generated
by A to be

Cone(A) =
{

x ∈ R
d : ||x|| > 0,

x
||x|| ∈ A

}
= {ra : r > 0, a ∈ A} . (10.101)

Next, of relevance to the examples discussed in this section, we observe that if one selects
the set A to be the upper right quadrant mapped out by the angle [0, π/2] that makes the cone
Cone(A) correspond to an arc on the top right quadrant.

We now consider a particular class of heavy tailed loss process considered in detail in Peters
and Shevchenko (2015) corresponding to the class of infinitely divisible multivariate α-stable
loss random vectors. This involves considering the class of random vectors X ∈ R

d which have
an infinitely divisible law. Such loss random vectors allow us to make the following represen-
tation of their joint characteristic function, according the Levy-Khintchine formula as given in
the followin definition.

Definition 10.41 (Levy-Khintchine Formula of Characteristic Function for Infinitely
Divisible Loss Random Variables) A probabilty law μ of a real-valued random vector is
inifinitely divisible with characteristic exponent Ψ, given by
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∫
Rd

exp (i < θ, x >)μ(dx) = exp (−Ψ(θ)) , for θ ∈ R
d (10.102)

iff there exists a triple (a,Σ,W (dx)), where a ∈ R
d , Σ ∈ SPD(Rd ) and W (dx) is a measure

concentrated on R
d \ {0} satisfying

∫
Rd (1 ∧ ||x||2)W (dx) < ∞, s.t.

Ψ(θ) = i < a,θ > +
1
2
θΣθT +

∫
Rd

(
1 − ei<θ,x> + i < θ, x > I||x||<1

)
W (dx) (10.103)

We note the following additional remarks regarding this representation of the characteristic
function of the multivariate loss random vector:

• Measure W (dx) is known as the Levy measure and it is unique;
• Spectral measure can be shown to be directly linked to aspects of dependence of the random

vector.

Next, we observe that one can map between the spectral measure W (dx) defined on R
d

and the spectral measure in polar co-ordinates on unit hyper-sphereΓ(d s) on Sd as shown in the
pure-jump process setting of Tempered Stable models, see detailed discussions in for instance
Rosiński (2007). Then in polar co-ordinates, it was proven in Araujo and Evarist (1980) that
there is a link between spectral measure and extreme regional (quadrant etc.) types of depen-
dence as shown in the following Proposition 10.14

Proposition 10.14 (Spectral Measure to Quadrant Extreme Dependence) Consider a set
A ⊂ Sd , and define the cone generated by A to be

Cone(A) =
{

x ∈ R
d : ||x|| > 0,

x
||x|| ∈ A

}
= {ra : r > 0, a ∈ A} , (10.104)

then

lim
r→∞

Pr (X ∈ Cone(A), ||X || > r)
Pr (||X || > r)

=
Γ(A)
Γ(Sd )

. (10.105)

To further interpret this relationship we note that the mass that the spectral measure, in
polar co-ordinates, Γ(·) assigns to A determines the tail behavior of X in the direction of A.
From the perspective of risk management and insurance, a special case of this relationship has
been studied, see for instance in Embrechts et al. (2009b), where they considered this type of
result from Araujo and Evarist (1980) in elliptical families under context of multivariate regular
variation. We recall the basic definition of multivariate regular variation of a function below.

Definition 10.42 (Multivariate Regular Variation) A random vector X = (X1, . . . ,Xd ) is
multivariate regularly varying with index −β < 0 if there exists
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• a probability measure μ;
• a measurable function b : (0,∞) �→ (0,∞) with limt→∞ b(t) = ∞; and
• a scalar q = q(b)

such that for all r > 0

lim
t→∞

tPr
(
||X || > rb(t),

X
||X || ∈ B

)
= qr−βμ(B) (10.106)

for any Borel set B ⊂
{
(x1, . . . , xd ) ∈ R

d | ||x|| = 1
}

. Then X is said to be MRVd (−β).

Remark 10.22 It can then be shown Barbe et al. (2006) and Resnick et al. (2004) that for X ∈
MRVd (−β) for β > 0 one has

q (β, || · ||) = lim
x→∞

Pr (||X || > x)
Pr(X1 > x)

> 0. (10.107)

This will have implications for extremal quadrant/orthant dependence.

Embrechts et al. (2009b) linked this result to the quantiles as detailed in the next
Lemma 10.1

Lemma 10.1 (Multivariate Regular Variation Expressed Via Quantiles) Consider a loss ran-
dom vector X such that X = (X1, . . . ,Xd ) ∈ MRVd (−β) with β > 0 and identically distributed
marginals. Then for a measurable function ϕ : Rd �→ R,

lim
x→∞

Pr (ϕ(X ) > x)
Pr (X1 > x)

= qϕ ∈ (0,∞) (10.108)

which implies that for quantile functions Q at level α one has

lim
α↑1

Qα (ϕ(X ))

Qα(X1)
= qϕ. (10.109)

In addition, Resnick et al. (2004) made connections between Multivariate Regular Varia-
tion and spectral measure of a random vector as follows:

• Consider the random d-vector X ∈ R
d
+ which has a distribution which satisfies

X ∈ MVR(−β) with β > 0.
• Define the positive part of unit d-sphere with respect to an arbitrary norm ||·|| : Rd �→ R+

according to

Sd−1
+,||·|| =

{
x ∈ R

d
+| ||x|| = 1

}
. (10.110)

• Define the Radon measure (i.e. finite for all compact sub-sets) by μβ(B) for all
B ⊂ [0,∞]d \ {0} relatively compact with μβ(∂B) = 0.
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Then one can show the following relationship between such a measure and the limiting
behaviour of a MRV random vector:

lim
t→∞

tPr
(

X
b(t)

∈ B
)

= μβ(B). (10.111)

To further relate

lim
t→∞

tPr
(

X
b(t)

∈ B
)

= μβ(B), (10.112)

to the spectral measure in the case of r.v. which satisfies X ∈ MVR(−β), first choose the sets
B according to:

B =

{
x ∈ [0,∞]d | ||x|| > r,

x
||x|| ∈ G

}

for r > 0 and a Borel set G ∈ Sd−1
+,||·||. Then by the definition of MVR one has the constant q

(depending on β and norm || · ||) given by:

q(β, || · ||)r−βμ(G) = νβ

{
x ∈ [0,∞]d | ||x|| > r,

x
||x|| ∈ G

}
. (10.113)

Then setting β = 1 and r = 1 one can express the spectral measure as

Γ||·||(G) = μ1

{
x ∈ [0,∞]d | ||x|| > 1,

x
||x|| ∈ G

}
(10.114)

which gives according to Barbe et al. (2006) the constant function

q(β, || · ||) = μ1

{
x ∈ [0,∞]d | ||x1/β || > 1

}
. (10.115)

With these relationships one has the following theorem from Barbe et al. (2006).

Theorem 10.3 (Multivariate Regular Variation and Spectral Measure Representation) Let
the Rd

+ valued random vector X with i.i.d. marginals satisfy X ∈ MVR(−β) with β > 0, then

q(β, || · ||) = lim
x→∞

Pr (||X || > x)
Pr(X1 > x)

=

∫
Sd−1
+,||·||

||x 1
β ||βΓ||·||(dx). (10.116)

Remark 10.23 Note that the existence of such limits in the definition of the tail dependence func-
tions can be linked to existence of multivariate regular variation on the copula distribution tails.
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Chapter Eleven

Dependence Models

In this chapter we build upon the notions of dependence modelling in OpRisk described in
Chapter 10 by presenting a variety of parametric models that practitioners may consider for
construction of LDA dependence frameworks. We discuss specifically many families of para-
metric copula that are of direct relevance to OpRisk practitioners - explaining the specification
and features of the models, the estimation of the parameters in such models via Inference Func-
tions for the Margins (IFM), and the sampling from such models in an LDA framework. The
copula models include:

• Gaussian copula;
• Student-T copula; skew Student-T copula; grouped Student-T copula and generalised

Student-T copula;
• Archimedean copulas: Frank, Clayton, Gumbel, Joe; Mixture Archimedean copula;

Heirarchical Archimedean copulas; Nested Archimedean copulas; Outer and Inner power
transformed Archimedean copula;

• Levy copula; Max-stable models and Self-Chaining copula;
• Common factor models and factor copulas.

We then conclude this chapter with several examples of LDA models with dependence incorpo-
rated, including between frequency and severity models as well as common factor formulations.
These act as small illustrative case studies for practitioners to see a complete development of
such models that can be utilized and extended for practical application.

11.1 Introduction to Parametric Dependence Modeling
Through a Copula

The extensive interest in copula modeling can largely be attributed to the flexibility they
offer to modeling a wide range of practical applications, particularly in financial mathematics,
risk and insurance; see discussions in Genest et al. (2009a). The origins of copula theory
can be traced back to Hoeffding’s work on standardized distributions on the square

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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[
− 1

2 ,
1
2

]
×
[
− 1

2 ,
1
2

]
, which was undertaken in Hoeffding (1994a, b). Following from this

work, the term copula was first coined as a mathematical concept in Abel Sklar’s theorem,
see Sklar (1959), which proposed that one-dimensional distribution functions may be joined
together by a copula function to form multivariate distribution functions. Several recently writ-
ten discussions on the properties and origins of copula modeling have been developed; see,
for instance, the monograph of Nelsen (1999), and the work of Schweizer (1991) and Sklar
(1996).

It is reasonable to argue that the explosion of interest in copula modeling, beginning in
the 1980s, was in most part due to advances in quantitative risk management methodology in
the financial and insurance world. The creation of more complex derivative products and new
guidelines on regulation (see discussion in McNeil et al. 2005, chapter 1) contributed heavily
to the need for risk management developments.

To understand the formal definition of a copula distribution, see Definition 11.1 and
then we present the representation result in Theorem 11.1, see Sklar (1959). Sklar’s theorem
highlights one of the key attractions for practitioners for the use of copula models that involves
the separation of a multivariate distribution into its marginal distributions and the dependence
structure between the margins.

Definition 11.1 (Copula Distribution) A d-dimensional copula is a multivariate cumulative
distribution function C with uniform [0, 1] margins such that C : [0, 1]d → [0, 1] and the distri-
bution C satisfies the following:

• C (u1, . . . , ud ) = 0 whenever ui = 0 for at least one i ∈ {1, . . . , d};
• C (u1, . . . , ud ) = ui if uj = 1 for all j = 1, . . . , d and j �= i;

• C is quasi-monotone on its support [0, 1]d .

The definition of a n-dimensional copula distribution, denoted generically by
C (u1, u2, . . . , un), was given as any distribution taking support on the unit d -hypercube that
satisfies the following two conditions; see Roger (2006, definition 2.10.6):

1. For every vector u = (u1, u2, . . . , un) ∈ [0, 1]n, one can show that C(u) = 0 if at least
one coordinate of u is 0;

2. In addition for every a and b in [0, 1]n, such that a ≤ b such that for each ai < bi for
all i ∈ {1, 2, . . . , n} the following condition on the volume for copula C is satisfied,
VC ([a, b]) ≥ 0. In this notation, the volume of an n-box is given by

VC ([a, b]) =
∑

sgn(v)C(v)

= �b1
a1
�b2

a2
· · ·�bn

an
C(v),

(11.1)

where the sum is taken over all vertices v of the n-box [a, b] and sgn(v) = 1 if vk = ak for
an even number of ks of sgn(v) = −1 if vk = ak for an odd number of ks. In addition,
one defines the notation

�bk
ak

C(u) = C (u1, u2, · · · , uk−1, bk, uk+1, . . . , un)

− C (u1, u2, . . . , uk−1, ak, uk+1, . . . , un) . (11.2)
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Sklar’s Theorem (11.3) provides the foundation to the study of copulae by proving that
any multivariate distribution with continuous margins has a unique copula representation.

Theorem 11.1 (Sklar’s Theorem) Consider a d-dimensional distribution H with marginals
F1, . . . , Fd . There exists a copula C, such that

H(x1, . . . , xd ) = C(F1(x1), . . . , Fd (xd )) (11.3)

for all xi ∈ (−∞,∞), i ∈ 1, . . . , d. Furthermore, if Fi is continuous for all i = 1, . . . , d, then
C is unique; otherwise, C is uniquely determined only on RanF1 × · · · × RanFd , where RanFi
denotes the range of the distribution Fi.

It is also interesting to consider the alternative statement of Sklar’s theorem introduced
in McNeil and Nešlehová (2009) with regard to survival functions of a multivariate distribu-
tion. To present this representation, we first provide Definition 11.2 for survival functions, see
McNeil and Nešlehová (2009, lemma 1).

Definition 11.2 (Multivariate Survival Functions) A survival function H of a probability dis-
tribution H is a mapping H : Rd 	→ [0, 1] if and only if it satisfies

• H (−∞, . . . ,−∞) = 1 and H(x) = 0 if xi = ∞ for at least one index i ∈ {1, 2, . . . , d};
• H is a right continuous function such that for all x ∈ R

d one has

∀ε > 0, ∃δ > 0, ∀y ≥ x ||y − x||1 < δ ⇒ |H(y)− H(x)| < ε. (11.4)

• H(−x) is quasi-monotone on R
d .

One can then re-express Sklar’s theorem in terms of survival functions of a multivariate
distribution according to the following result in Theorem 11.2; see discussion in McNeil and
Nešlehová (2009, theorem 2.1).

Theorem 11.2 (Sklar’s Theorem Expressed via Survival Function) Considering a d-dimen-
sional survival function H with marginal distribution survival functions F Xi for i ∈ {1, 2, . . . , d},
then there exists a copula C, called the survival copula of H such that

H (x) = C
(
F X1 (x1), . . . , F Xd (xd )

)
, ∀x ∈ R

d , (11.5)

or conversely one has

C (u) = H
(

F−1
X1

(u1) , . . . , F−1
Xd

(ud )
)
, ∀u ∈ D, (11.6)

with D =
{

u ∈ [0, 1]d : u ∈ ranF X1 × . . .× ranF Xd

}
. The survival copula C is uniquely deter-

mined on the support D. Conversely, given a copula C and marginal survival functions F Xi for
i ∈ {1, 2, . . . , d}, then the multivariate survival function H is uniquely given by Equation 11.5.

Considering Sklar’s theorem, it is readily apparent that copula models provide a mecha-
nism to model the marginal behavior of each loss process (severity, frequency, annual loss, or
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even second-order characteristics such as intensity function) and then separately to focus on
developing hypotheses regarding the possible dependence structures between these values.

The modeling of dependence through this flexible copula framework has exploded in
recent years, fuelled in part by the flexibility such a bottom up modeling framework provides as
well as significant progress in simulation and estimation of such models in complex settings; see
excellent book-length reviews in Nelsen (1997), Joe (1997), Cherubini et al. (2004), Denuit
et al. (2005), and the recent addition on vine copulae Dorota (2010) and the tutorial intro-
ductions in Meucci (2011), Genest and Favre (2007), Schmidt (2006), Bouyé et al. (2000),
Embrechts et al. (2003), Frees and Valdez (1998). It is therefore not the intention of this chap-
ter to review all these topics, instead we focus on key components of this literature of relevance
directly to OpRisk practitioners.

The motivation for copula modeling is pervasive in risk management, and many papers
have been written espousing the attributes of such a modeling approach. In addition there have
been several healthy skeptical articles highlighting areas where copula modeling needs a stronger
foundation or exploration to explain some existing deficiencies in such modeling perspectives.
We will discuss these later; first, we note the work of Embrechts et al. (2002) in which the
authors argue for copula approaches over linear correlation for the modeling of dependency for
risk management. In particular, the authors point out the pitfalls of using linear correlation in
the non-Gaussian world of finance and insurance. Hence, beyond elliptical multivariate models
we have the following fallacies:

• Fallacy 1. Marginal distributions and correlation determine the joint distribution;
• Fallacy 2. Given marginal distributions F1 and F2 for X and Y , all linear correlations

between -1 and 1 can be attained through suitable specification of the joint distribution;
• Fallacy 3. The worst case VaR (quantile) for a linear portfolio X +Y occurs when ρ(X ,Y )

is maximal, that is, X and Y are comonotonic.

As noted earlier, growth of copula literature continues for a range of different dis-
ciplines, such as hydrology—Genest and Favre (2007), climate research—Schoelzel et al.
(2008), ecology—Hossack et al. (2014) and neuroscience—Onken et al. (2009) to name
but a few. There has also been some healthy scepticism of the copula framework. The
most notable is Mikosch (2006a), who cited a concern that copulae were being viewed as
the solution to all problems in stochastic dependence modeling, whereas in his view “cop-
ulas do not contribute to a better understanding of multivariate extremes”. There were
numerous responses from leaders in the copula field to Mikosch’s attack, such as Genest
and Rémillard (2006); Embrechts (2006); Joe (2006); de Vries and Zhou (2006); Lindner
(2006); Peng (2006) and Segers (2006)—leading to a rejoinder by Mikosch, see Mikosch
(2006b). Embrechts (2009) sums up the responses best in his personal review of copulae
shortly after:

Copulas form a most useful concept for a lot of applied modeling, they do not yield, however,
a panacea for the construction of useful and well-understood multivariate dfs, and much less
for multivariate stochastic processes. But none of the copula experts makes these claims.

Without entering into this debate, we simply highlight some of the pros and cons of copula
modeling that one should be aware of when embarking on the application of such models in
practical OpRisk settings
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Modeling with a Copula Pros:

• Separating out the modeling of the marginals and the dependence structure allows for more
flexibility in the complete multivariate model;

• The dependence structure as summarized by a copula is invariant under increasing and
continuous transformations of the marginals;

• The tail characteristics within the dependence structure can be explicitly modeled using
well-known and interpretable parametric models, for example, Archimedean copulae;

• High-dimensional copulae can be reduced to the composition of lower-dimensional build-
ing block copulae, for example, pair-copula constructions, to create extremely flexible mod-
els of complex dependence structures.

Modeling with a Copula Cons:

• Which copula to choose? Sometimes it is not easy to say which parametric copula fits a
dataset best since some copulae may provide a better fit near the center and others near the
tails. However, by focusing on models with suitable characteristics for the application at
hand and using goodness-of-fit tests and model selection criteria, for example, AIC, BIC,
or CIC, one can overcome this issue;

• As with any statistical model, ignorance on the behalf of practitioners can lead to dangerous
oversimplification and reliance on inappropriate models.

Thus, when applying these models in practice it is of the utmost importance to carefully
consider the assumptions one is making. The key focus in this research is on combining suit-
able marginal models, that is, with the capacity to mode skewness and tail-heaviness flexibly,
with a model of the dependence structure that captures the upper and lower multivariate tail
characteristics asymmetrically.

Theorem 11.3 (Negative Regression Dependence via a Copula: Bivariate Case) Consider
two loss random variables X1 and X2 with marginal loss distributions Xi ∼ FXi and a copula
dependence given by the copula distribution C. The joint distribution of the loss random variables
FX1,X2(x1, x2) will satisfy that X1 and X2 have negative regression dependence if one rewrites the
definition in one of two ways in terms of the copula distribution:

1. If the first derivative of the copula distribution exists, then one can express the conditions on
the copula to satisfy negative regression dependence by considering for u1 = FX1(y) and u2 =
FX2(x − y) the relationship

1 − ∂2

∂u1∂u2
C (u1, u2)

F X2(x − y)
= O(1). (11.7)

This holds uniformly for all y ∈ [x0, x] for some large x0 > 0;
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2. The alternative way of expressing the conditions on a copula distribution to satisfy negative
regression dependence involves the copula density when it exists given by the mixed second-order
partial derivatives:

c (u1, u2) =
∂2

∂u1∂u2
C (u1, u2) , (11.8)

which when the copula density exists and it is uniformly bounded by a constant M > 0 for
all (u1, u2) ∈ [c, 1] × [c, 1] then the expression of the copula density conditions required for
negative regression dependence according to the relationship can be given by

∫∞
x−y c (FX1(y), FX2(z)) dFX2(z)

F X2(x − y)
≤ M . (11.9)

We complete this section on basic introduction to the notion of a copula model by
discussing the stochastic ordering of copula models on the unit hyper-cube as detailed in
Definition 11.3; see Nelsen (1999, p. 34).

Definition 11.3 (Copula Stochastic Orderings) A copula distribution C1 is said to be smaller
that another copula distribution C2 written in stochastic ordering C1 ≺ C2 (or C2 is larger than
C1 with C2 � C1) if the following holds

∀ (u1, u2, . . . , un, . . . , uN ) ∈ [0, 1]N , C1 (u1, . . . , un, . . . , uN ) ≤ C2 (u1, . . . , un, . . . , uN ) .
(11.10)

It is precisely this stochastic ordering that gives rise to the general notion of concordance,
which has already been partially introduced in the section on measures of dependence where
definitions for dependence measures such as rank correlations were introduced. More formally,
the notion of concordance as discussed in Scarsini (1984) and Joe (1990). The notion of con-
cordance the simple bivariate case involves considering two random variables X1 and X2 that are
concordant if large values of X1 occur when large values of X2 occur and vice versa. In Scarsini
(1984) and then extended in Joe (1990), the general definition of concordance is provided in
multivariate settings, as detailed in Definition 11.3.

Remark 11.1 A multivariate concordance ordering is defined by the ordering of the multivariate
distribution functions and the corresponding survival functions.

Using these multivariate notions of concordance, Joe (1990) provides several interest-
ing extensions to multivariate measures of dependence such as multivariate extensions to
Spearman’s rho, Kendall’s tau, and Blomqvist’s beta.

In defining the stochastic ordering of copulas, it is often useful to note two important mem-
bers of the copula distributions on the unit cube; these are known as the Frechet bounds copulae
and they often have their distributions denoted by C− and C+ for the lower and upper bound
copula, respectively. The Frechet bound copulae distributions are detailed in Definition 11.4;
see discussion in Bouyé et al. (2000).
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Definition 11.4 (Copula Frechet Bound Distributions) The lower copula Frechet bound dis-
tribution is given by

C− (u1, . . . , un, . . . , uN ) = max

(
N∑

n=1

un − N + 1, 0

)
(11.11)

and the upper copula Frechet bound distribution is given by

C+ (u1, . . . , un, . . . , uN ) = min (u1, u2, . . . , un, . . . , uN ) . (11.12)

Then one can show that all copula models satisfy the following stochastic ordering with respect to the
Frechet bound copulae,

C− ≺ C ≺ C+. (11.13)

Note that clearly C− is no longer strictly a copula for N > 2.

Another useful generic property of copula models is the invariance of such models to
strictly increasing transformations as detailed in Proposition 11.1.

Proposition 11.1 (Copula Distribution Invariance) The copula distribution of a random vec-
tor (X1,X2, . . . ,Xd ) is invariant under strictly increasing transformations such that

CX1,...,Xd = Ch1(X1),...,hd (Xd ), if ∂xhi (Xi) > 0. (11.14)

We finish this section by mentioning the notion of concordance that will lead to the generic
copula representation of the dependence measures such as rank correlations being expressed
with respect to a copula distribution. The notion of a measure of concordance is presented in
Definition 11.5; see Nelsen (1999).

Definition 11.5 (Measures of Concordance and Copulae) A measure of concordance, denoted
κ (X1,X2), between to random variables X1 and X2 with a copula dependence distribution C,
satisfies the following conditions:

1. The concordance measure between two random variables X1 and X2 given by κ (X1,X2) must
be defined for every pair of continuous random variables X1 and X2;

2. The concordance measure

−1 = κ (X ,−X ) ≤ κC (X1,X2) ≤ κ (X ,X ) = 1, (11.15)

where C is the copula between random variables X1 and X2;
3. The concordance measure between two random variables X1 and X2 given by κ (X1,X2) must

satisfy the following symmetry condition:

κ (X1,X2) = κ (X2,X1) . (11.16)
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4. If the two random variables X1 and X2 are independent and follow an independence (product
copula) specification, then the measure of their concordance given by κ (X1,X2) must satisfy
that

κ (X1,X2) = 0, if X1⊥X2. (11.17)

5. The concordance measure between two random variables X1 and X2 given by κ (X1,X2) must
satisfy the following sign conditions:

κ (−X1,X2) = κ (X1,−X2) = −κ (X1,X2) . (11.18)

6. The ordering of concordance between two random variables X1 and X2 under two different
copulae distributions C1 and C2 such that κC1 (X1,X2) ≤ κC1 (X1,X2) implies the stochastic
order of the two copulae distributions such that C1 ≺ C2.

There are several excellent discussions and multivariate extensions of the notion of concor-
dance that may be found in Nelsen (2002), Joe (1990), and Dolati and Úbeda-Flores (2006).

Using the notion of measures of concordance, one can observe that the rank measures
given by Kendall’s tau, Spearman’s rho, and Blomqvist’s beta discussed previously satisfy these
conditions and can be given with respect to a copula distribution for two random variables X1
and X2 by

τ = 4
∫

[0,1]

∫
[0,1]

C (u1, u2) dC (u1, u2)− 1,

ρ = 12
∫

[0,1]

∫
[0,1]

u1u2dC (u1, u2)− 3,

β = 4C
(

1
2
,

1
2

)
− 1.

(11.19)

See Schweizer and Wolff (1981).
As mentioned one may generalize these measures of association to higher dimensions;

next we consider what was termed a directional measure of association ρ-coefficient in Nelsen
and Úbeda-Flores (2012). Considering a three-dimensional random vector X = (X1,X2,X3),
then one may define the 3-copula ρ-directional dependence by the following result in
Definition 11.6.

Definition 11.6 (3-Copula ρ-Directional Dependence) Consider a random vector
X = (X1,X2,X3) with X ∈ R

3 and associated three-dimensional copula CX . Then for any direc-
tion (α1, α2, α3) characterized by the vectors αi ∈ {−1, 1} for i ∈ {1, 2, 3}, one has the ρ-
directional dependence given by

ρ
(α1,α2,α3)
X1,X2,X3

=
α1α2ρX1,Xx + α2α3ρX2,X3 + α3α1ρX3,X1

3
+ α1α2α3

ρ+X1,X2,X3
− ρ−X1,X2,X3

2
(11.20)
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with pairwise Spearman’s rho and

ρ+X1,X2,X3
(CX ) = 8

∫
[0,1]3

CX (u, v,w)dudvdw − 1,

ρ−X1,X2,X3
(CX ) = 8

∫
[0,1]3

CX (u, v,w)dudvdw − 1.
(11.21)

Remark 11.2 The eight vectors that characterize directions (α1, α2, α3) where αi ∈ {−1, 1} for
i ∈ {1, 2, 3} in [0, 1]3 allow one to utilize the ρ-directional dependence to measure directional
dependence in different quadrants. For instance, if ρ(−1,−1,1)

X or ρ(1,1,−1)
X are positive, then there

will be positive dependence in the direction of (−1,−1, 1) or (1, 1,−1), hence one would expect
large (small) values of X1 and X2 to occur with small (large) values of X3, that is, ρX1,X2 > 0 with
ρX1,X3 < 0 and ρX2,X3 < 0.

11.2 Copula Model Families for OpRisk

There is a vast collection of different parametric copulae in the literature, each with associ-
ated dependence features. The monograph Nelsen (1999) provides a detailed mathematical
background of many important copulae, including a well-explained introduction to the basis
copula function building blocks for many families of copulae. In addition, there are many
useful papers reviewing the different families of copulae available to the practitioner, such as
(Bouyé et al., 2000; Schmidt, 2006; Trivedi and Zimmer, 2007; Durante and Sempi, 2010).
Hence, in this chapter, we will only focus on a small fraction of copula models that have been
found to be useful for OpRisk practitioners in practice and have well studied and convenient
properties.

In the case of multivariate distributions that may contain some marginals with discrete
support, Genest and Neslehova (2007) discuss the issues associated with modeling via copulas
under such situations. The main consequence will be evident directly from Sklar’s Theorem
(11.3), from which it is readily apparent that the copula representation of a multivariate dis-
tribution will no longer be guaranteed to be unique when the marginal distributions are not
continuous.

As was noted in the introduction to copula functions, they have become popular and
flexible tools in modeling multivariate dependence among risks. In general, a copula is a
d -dimensional multivariate distribution on [0, 1]d with uniform marginal distributions. Given
a copula function C(u1, . . . , ud ), the joint distribution of random variables Y1, . . . ,Yd with
marginal distributions F1( y1), . . . , Fd ( yd ) can be constructed as

F ( y1, . . . , yd ) = C(F1( y1), . . . , Fd ( yd )). (11.22)

The well-known theorem due to Sklar, published in 1959, says that one can always find a
unique copula C(·) for a joint distribution with given continuous marginals. Note that in the
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case of discrete distributions this copula may not be unique. Given (11.22), the joint density
can be written as

f (y1, . . . , yd ) = c(F1(y1), . . . , Fd (yd ))

d∏
i=1

fi(yi), (11.23)

where c(·) is a copula density and f1(y1), . . . , fd (yd ) are marginal densities. The copula density
c(F1(y1), . . . , Fd (yd )) is given by

c (u1, u2, . . . , un, . . . , ud ) =
∂C (u1, u2, . . . , un, . . . , ud )

∂u1∂u2 · · · ∂un · · · ∂ud
. (11.24)

As a short note, it will often be useful when evaluating the copula density to recall the
univariate and multivariate chain rule differentiations for composite functions known as Faà
di Bruno’s Formula; see Faa di Bruno (1857) and discussions in, for example, Constantine and
Savits (1996) and Roman (1980). Before stating Faà di Bruno’s Formula for differentiation of
multivariate composite functions via a generalized chain rule, it will be convenient notationally
to present such results with respect to Bell polynomials.

Definition 11.7 (Bell Polynomial) The Bell polynomial with arguments n and k is given by

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

j1!j2! · · · jn−k+1!

(x1

1!

)j1 (x2

2!

)j2
· · ·
(

xn−k+1

(n − k + 1)!

)jn−k+1

,

(11.25)

where the sum is taken over all sequences j1, j2, jn−k+1 of non-negative integers such that
j1 + j2 + · · · = k and j1 + 2j2 + 3j3 + · · · = n.

These polynomials are then utilized to simplify the expressions for the differentiation of
composite functions in Faà di Bruno’s formula as detailed next; see Riordan (1946) and Mihoubi
(2008) for details.

Definition 11.8 (Univariate Faà di Bruno’s Formula Composite Functions) If f and g are
functions with a sufficient number of derivatives, then

dn

dxn f ( g(x)) =
n∑

k=0

f (k)( g(x))Bn,k

(
g ′(x), g ′′(x), . . . , gn−k+1(x)

)
, (11.26)

where Bn,k are the Bell polynomials, defined earlier.

The multivariate Faà di Bruno’s Formula is difficult and involved; in the following, we
show an example of the bivariate result that is of relevance to this chapter in the form given
in Definition 11.9 and then the general result; see detailed discussions in Leipnik and Pearce
(2007).
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Definition 11.9 (Bivariate Faà di Bruno’s Formula Composite Functions) Consider the
first-order multivariate chain rule for G(z) = F (u(z)) with scalar function F ,
u(z) = (u1(z), . . . , uM (z)) and z = (z1, . . . , zN ). Then one has

∂G
∂zk

=
M∑

j=1

∂F (u)
∂uj

∂uj(z)
∂zk

= (Du)(Dzu)·k (11.27)

where (Dzu)·k is the k-th column of the (M × N ) first derivative matrix Dzu. Now we can gen-
eralize this higher-order derivatives by supposing F (u1, u2) has continuous derivatives up to order
(p+1, p+1) and ui (z1, z2) for i ∈ {1, 2} have continuous derivatives up to order (p1 + 1, p2 + 1)
on appropriate domains. Then define the sets

A(p) = ({0, 1, . . . , p1} × {0, 1, . . . , p2}) /∈ ({0} × {0}) ,
C(p) = {(m,m′) ∈ A(p, p) : m + m′ ≤ p} ,

(11.28)

and define the function

Bφ (ui(z)) =
∏

n∈A(p)

{
1

φ(n)!

(
Dn

z ui(z)
n1!n2!

)φ(n)
}
, i ∈ {1, 2} , (11.29)

where φ : A(p) 	→ {0, 1, 2, . . . ,m}. Then, one has the bivariate composite function chain rule if
G (z1, z2) = F (u1 (z1, z2) , u2 (z1, z2)) given by

∂pG(z)
∂zp1

1 ∂zp2
2

= p1!p2!
∑

m∈C(p)

Dm
u F

∑
(φ,φ′)∈V (m)

Bφ (u1(z)Bφ′ (u2(z) (11.30)

with

V (m,m′) = {(φ, φ′) : φ ∈ T (m), φ′ ∈ T (m′), τi(φ, φ
′) = pi for i ∈ {1, 2}} , (11.31)

with T (m) defined with respect to the family of maps U (m) with regard to φ such that

T (m) =

⎧⎨
⎩φ ∈ U (m) :

∑
n∈A(p)

φ(n) = m

⎫⎬
⎭ (11.32)

and finally τi(φ, φ
′) given by

τi(φ, φ
′) =

∑
n∈A(p)

ni [φ(n) + φ′(n)] , i ∈ {1, 2} . (11.33)

As in Leipnik and Pearce (2007), one can then extend this notation to the general mul-
tivariate setting to obtain the chain rule for general multivariate composite functions using
notation extensions:
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• Define m = (m1, . . . ,mM ), φ = (φ1, . . . , φM ), p = (p1, . . . , pN ) with
∑N

i=1 = p;
• Define the sets

A(p) = ({0, . . . , p1} × · · · × {0, . . . , pN}) /∈ ({0} × . . .× {0}) ,

C(p) =

{
m ∈ A(p, . . . , p) :

M∑
l=1

ml ≤ p

}
.

(11.34)

• Define φi mapping as

φi : A(p) 	→ {0, 1, . . . ,mi} . (11.35)

• Define V (m) as the set of mappings given by

V (m) =

{
φ

∣∣∣∣∣
{∑

n∈A(p) φi(n) = mi, i ∈ {1, . . . ,M}∑
n∈A(p) nl

∑M
j=1 φj(n) = pl , l ∈ {1, . . . ,N}

}}
. (11.36)

The multivariate Faà di Bruno’s formula is then given according to Definition 11.10; see
Leipnik and Pearce (2007, theorem 4.2).

Definition 11.10 (Multivariate Faà di Bruno’s Formula Composite Functions) Consider a
function F (u), which is in the class C (p+1) and ui(z) for i ∈ (1, 2, . . . ,M) each have continuous
derivatives to order (p1 + 1, . . . , pN + 1) on appropriate domains. Then one may define

Bφi (ui(z)) =
∏

n∈A(p)

⎧⎨
⎩ 1

φi(n)!

(
Dn

z ui(z)∏M
l=1 nl !

)φi(n)
⎫⎬
⎭ , i ∈ {1, 2, . . . ,M} (11.37)

and if G(z) = F (u(z)) and p �= 0 then one has the mixed derivatives given by

∂pG(z)
∂zp1

1 . . . ∂zpN
N

=

⎛
⎝ N∏

j=1

pj!

⎞
⎠ ∑

c∈C(p)

Dm
u F

∑
φ∈V (m)

M∏
l=1

Bφl (ul(z)) . (11.38)

Remark 11.3 Using these composite function chain rules, one can obtain density representations
for most copula families when they exist.

Returning back to general copula distribution families, we note that there are many dif-
ferent copulas discussed in the literature and these can be found in many textbooks; for exam-
ple, see McNeil et al. (2005, section 5). Next, for illustration of the concept and notation,
we give definitions for the Gaussian, Clayton, Gumbel, and t copulas (Clayton and Gumbel
copulas belong to a so-called family of the Archimedean copulas). An important difference
between these three copulas is that they each display different tail dependence properties. The
Gaussian copula has no upper and lower tail dependence, the Clayton copula will produce
greater lower tail dependence as ρ increases, whereas the Gumbel copula will produce greater
upper tail dependence as ρ increases.
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For a general description of copulas and their properties in the context of financial risk
modeling, see McNeil et al. (2005, chapter 5) and Panjer (2006, chapter 8); multivariate
extreme value copulas are described in McNeil et al. (2005, sections 7.5 and 7.6). Before pro-
ceeding to definitions for different parametric copula models, we make the following observa-
tion regarding simulation from copula models. This will be required for practitioners to work
with copula models in OpRisk settings, where Monte Carlo simulation is required for simu-
lation of bank capital. In general any copula distribution can be simulated via the following
procedure in Algorithm 11.1. In general we note that this is not the optimal approach to simu-
late from many families of copula models, we will provide more specialized methods when we
present each particular parametric copula model.

• Consider general d -copula C , let the k-dim marginals of C be given by

Ck(u1, . . . , uk) = C(u1, . . . , uk, 1, . . . , 1), k = 2, . . . , d − 1, (11.39)

with C1(u1) = u1 and Cd (u1, . . . , ud ) = C(u1, . . . , ud );
• Let U1, . . . ,Ud have joint distribution C . Then the conditional distribution of Uk given

U1, . . . ,Uk−1 is given by

Ck (uk|u1, . . . , uk−1) = Pr (Uk ≤ uk|U1 = u1, . . . ,Uk−1 = uk−1)

=
∂k−1Ck(u1, . . . , uk)

∂u1 . . . ∂uk−1

/
∂k−1Ck−1(u1, . . . , uk−1)

∂u1 . . . ∂uk−1
.

Algorithm 11.1 (General Copula Simulation Method)

Step 1 Simulate a random variate u1 from Uniform(0, 1);
Step 2 Simulate a random variate u2 from C2(·|u1);

...
Step d Simulate a random variate ud from Cd (·|u1, . . . , ud−1).

We begin the discussion by introducing families of elliptical copulae. In general, elliptical
copulae arise naturally from their respective elliptical distributions following Sklar’s theorem.
Although elliptical copulae have no closed form, they have the property that the dependence
structure is fully described by the correlation. This family of distributions was discussed previ-
ously in the section on tail dependence, where the relationship between the regular variation of
the tails of the elliptical distribution marginals was related to the extremal dependence. In this
section, we discuss the works of Fang et al. (2002), where they provide an alternative represen-
tation of the family of elliptical distributions as detailed in Definition 11.11 that they refer to
as the meta-elliptical family.

Definition 11.11 (Elliptical Distribution) The density function of an elliptical distributions (if
it exists) is given by

f (x) = |Σ|− 1
2 g
[
(x − μ)TΣ−1(x − μ)

]
x ∈ R

n, (11.40)
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where Σ (dispersion) is a symmetric positive semidefinite matrix, μ ∈ R
n (location) and g (den-

sity generator) is a [0,∞) → [0,∞) function. Note the scale function (density generator) g(·)
is uniquely determined by the distribution of the random variable R in the elliptical distribution
representation

X d
= μ+ RAU . (11.41)

where R ≥ 0 is a positive valued random variable, A is a d × d constant matrix such that the
covariance of random vector X is given by AAT = Σ, and U is uniformly distributed on the unit
sphere in R

d .

Note that in general if one considers setting μ = 0 and the correlation matrix correspond-
ing to Σ given by R with (i, j)-th element ρij ∈ (−1, 1) for i �= j and ρii = 1. Then one can
write the marginal density and distributions of the elliptical family of distributions according
to the following integral representations:

qg (xi) =
π

(d−1)
2

Γ
( d−1

2

)
∞∫

x2

(
y − x2) (d−1)

2 −1 g( y)dy,

Qg (xi) =
1
2
+

π
(d−1)

2

Γ
( d−1

2

)
x∫

0

∞∫
x2

(
y − x2) (d−1)

2 −1 g( y)dy.

(11.42)

In Fang et al. (2002), they then utilize this elliptical family construction to define the
meta-elliptical densities as given in Definition 11.12.

Definition 11.12 (Meta-Elliptical Distributions) Consider a random vector
X = (X1, . . . ,Xd ) such that each marginal random variable Xi has continuous density fXi and dis-
tribution FXi . Furthermore, assume an elliptically distributed random vector Z with characteristics
μZ = 0, correlation matrix R, and density generator function g(·) that satisfies the relationship

Zi = Q−1
g (FXi (xi)) , ∀i ∈ {1, 2, . . . , d} . (11.43)

Then the resulting distribution is given by

fX (x1, . . . , xd ) = φ
(

Q−1
g (FX1 (x1)) , . . . ,Q−1

g (FXd (xd ))
) d∏

i=1

fXi (xi) , (11.44)

where the function φ(·) is what Fang et al. (2002) defined as a density weighting function, otherwise
known as a copula. In this case a prelude to a Gaussian copula is given by

φ (z1, . . . , zd ) = |R|− 1
2

g
(
zTΣ−1z

)
∏d

i=1 qg (zi)
. (11.45)

Some examples of density generator functions g(·) in the bivariate case include the
following:
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• Symmetric Kotz-type distributions:

g (x1, x2) =
srN/s (x2

1 + s2
2 − 2ρx1x2)

N−1

πΓ (N/s) (1 − ρ2)
N− 1

2
exp

(
−r

x2
1 + x2

2 − 2ρx1x2

1 − ρ2

)
(11.46)

with parameters r > 0, s > 0, and N > 0;
• Symmetric bivariate Pearson type VII distributions:

g (x1, x2) =
N − 1

πm
√

1 − ρ2

(
1 +

1
m (1 − ρ2)

(
x2

1 + x2
2 − 2ρx1x2

))−N

(11.47)

with parameters N > 1 and m > 0.

In the family of elliptical copulae, two important subfamilies involve the Gaussian copula
and the Students-t copula as detailed next.

11.2.1 GAUSSIAN COPULA

The d -dimensional Gaussian copula is obtained by transformation of the multivariate Normal
distribution

C (u1, . . . , ud ) = FΣ
N
(
F−1

N (u1), . . . , F−1
N (ud )

)
(11.48)

and its density is

c (u1, . . . , ud ) =
f Σ
N
(
F−1

N (u1), . . . , F−1
N (ud )

)
∏d

i=1 fN
(
F−1

N (ui)
) . (11.49)

Here, FN (·) and fN (·) are the standard Normal distribution and its density, respectively; f Σ
N (·)

and FΣ
N (·) are the standard multivariate Normal density and distribution, respectively, with

zero means, unit variances, and correlation matrix Σ.
Simulation of the random variates from a Gaussian copula is very simple and can be done

as follows.

Algorithm 11.2 (Simulation from Gaussian Copula)

1. Simulate d-variate (x1, . . . , xd )
T from the standard multivariate normal distribution

Normal (0,Σ) with zero means, unit variances, and correlation matrix Σ;
2. Calculate u1 = FN (x1), . . . , ud = FN (xd ). Obtained (u1, . . . , ud )

T is a d-variate from a
Gaussian copula.

11.2.1.1 Fitting a Gaussian Copula. In order to fit a Gaussian copula to a set of n
samples of d -variate data {(X1,i, . . . ,Xd,i)}i∈{1, ... ,n}, one can perform such parameter esti-
mation of the Gaussian copula via a method-of-moments procedure based on rank correlation
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estimates. One could calculate the standard marginal pairwise standard linear correlation coeffi-
cients for the pseudo observations, where ρS

(
Xi,Xj

)
= ρ
(
FXi(Xi), FXj (Xj)

)
using the empirical

estimates of the marginal distributions F̂i,n to obtain pseudo data{(
F̂i,n (Xi,k) , F̂j,n (Xi,k)

)}
k∈{1, ... ,n}

.

Alternative estimators that can be used are the rank correlations such as the pairwise empir-
ical estimators for the rank correlations:

ρ̂S =
12

n (n2 − 1)

n∑
k=1

(
rank

(
Xk,i −

1
2
(n + 1)

))(
rank

(
Xk,j −

1
2
(n + 1)

))

ρ̂K =
2!(n − 2)!

n!

∑
1≤k≤l≤n

sgn
((

X(k,i) − X(l,i)
) (

X(k,j) − X(l,j)
))

,

(11.50)

where, for instance, one would then obtain the pairwise linear correlations by the transforma-
tion for Spearman’s rho

ρS
(
Xi,Xj

)
=

6
π

arcsin
1
2
ρij, (11.51)

or for Kendall’s tau by

ρK
(
Xi,Xj

)
=

2
π

arcsinρij. (11.52)

Then one must ensure that the resulting pairwise correlations obtained from transformation of
the rank correlations actually produce a valid correlation matrix. This is typically achieved by
a type of matrix regularization as detailed in Algorithm 11.3

Algorithm 11.3 (Method of Moments Fitting Gaussian Copula)

• Estimate the rank correlation, either ρS
(
Xi,Xj

)
or ρK

(
Xi,Xj

)
, for each marginal pair of vari-

ables. Then transform to the linear correlation measure;
• Construct the estimated sample pseudo correlation matrix R̂∗ with (i, j)-th element given by,

for instance, using Kendall’s tau, r̂ ∗
ij = sin

(
π
2 ρ̂K

(
Xi,Xj

))
;

• The pseudo correlation matrix R̂∗ must be made positive definite with unit diagonal entries
and off-diagonal entries in the range [−1, 1]. To achieve this, complete the following steps:

˚ Evaluate the spectral decomposition R̂∗ = EΛET whereΛ is a diagonal matrix of eigenvalues
and E is an orthogonal matrix whose columns are eigenvectors of R̂∗;

˚ Replace any negative eigenvalues inΛ by a small value δ > 0 to obtain the regularized matrix
EΛ̃ET , which then is turned into a regularized correlation matrix R̂ given by application of
the correlation matrix transform T

[
EΛ̃ET

]
with T given by

T [Σ] = (�(Σ))
−1

Σ(�(Σ))
−1 (11.53)

with �(Σ) := diag
(√

σ11, . . . ,
√
σdd
)
;
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11.2.1.2 Multivariate Dispersion Models: MDM and Gaussian Copulas. In
treating the multivariate versions of these distribution models, one can adopt one of two main
approaches. Before presenting these approaches, we recall briefly that a loss random variable
Xi has a dispersion model severity generically denoted by Xi ∼ DM(μ, σ2) with respect to
position μ and dispersion σ2 if it has a density given by

fX
(
x;μ, σ2) = a

(
x;σ2) exp(− 1

2σ2 d(x;μ)
)

(11.54)

for unit deviance function d(x;μ) ≥ 0. We note that an exponential dispersion family model
is achieved when the deviance function takes the linear form

d(x;μ) = xd1(μ) + d2(x) + d3(μ) (11.55)

for suitable functions d1, d2, and d3. In addition, we recall that one can show that continuous
distributions such as Gaussian, Exponential, Gamma, and Inverse-Gaussian are members of
this family of models. In addition, the discrete support members include Poisson, Negative
Binomial, and Binomial distributions.

In developing a multivariate version of this severity model, such as would be suitable for
modeling joint dependence between multiple losses in different risk cells, or even a single risk
cell in which the losses in a given year were considered dependent, there are two approaches
proposed in the literature. The first is due to Jørgensen and Lauritzen (2000), where they con-
sider a multivariate extension to the dispersion model, though it has the undesirable property
that the marginal severity models are no longer closed in the class of dispersion models.

The second approach rectifies this and is due to the work of Xue-Kun Song (2000). In this
case, a Gaussian copula is utilized to combine with the marginal dispersion models for each
individual loss to obtain a multivariate dispersion model given by

fX1,X2,...,Xd (x;μ,σ
2,ρ) =

1
|ρ| 1

2
exp

(
−1

2
ζT (ρ−1 − I

)
ζ

) d∏
i=1

fXi

(
xi;μi, σ

2
i
)

(11.56)

with μ = (μ1, . . . , μd )
T , σ2 =

(
σ2

1 , . . . , σ
2
d

)T , ζ = (ζ1, . . . , ζd )
T and each element of ζ

given by

ζi = Φ−1 (F i
(
xi;μi, σ

2
i
))

. (11.57)

As noted in Bouyé et al. (2000), in this instance, the model preserves the feature that the uni-
variate margins remain as dispersion models.

11.2.2 T -COPULA

In practice, one of the most popular copula in modeling multivariate financial data is perhaps
the t-copula, implied by the multivariate t-distribution; see Embrechts et al. (2002), Fang et al.
(2002), and Demarta and McNeil (2005). This is due to its simplicity in terms of simulation
and calibration, combined with its ability to model tail dependence, which is often observed in
financial returns data.
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Student’s t-copula retains much of the simplicity of the Gaussian copula, such as in sim-
ulation and calibration, but also allows for the modeling of tail dependence between variables.
The behavior of the model at the four corners of the unit cube is quite different from that of the
Gaussian copula, while toward the center they are more similar in nature. Although T-copula
and Gaussian copula distributions may share the same correlation matrix, in such cases, the
extreme events are much more likely under the t-copula. This copula has often been referred
to as the “desert island copula” by Dr. Paul Embrechts due to its excellent fit to multivariate
financial return data. However, its simplest specification does not allow for asymmetry in the
tails, that is, differing upper and lower tail dependence in a portfolio of loss processes. This can
be rectified with grouped and generalized grouped Students-t copula models.

The t-copulas are most easily described and understood by a stochastic representation, as
discussed next. We introduce notation and definitions as follows:

• Z = (Z1, . . . ,Zn)
′ is a random vector from the standard n-variate Normal distribution

FΣ
N (z) with zero mean vector, unit variances, and correlation matrix Σ;

• U = (U1,U2, . . . ,Un)
′ is defined on [0, 1]n domain;

• V is a random variable from the Uniform(0, 1) distribution independent of Z ;

• W = G−1
ν (V ), where Gν(·) is the distribution function of

√
ν/S with S distributed from

the Chi-square distribution with ν degrees of freedom, that is, random variables W and Z
are independent;

• tν(·) is the standard univariate t-distribution and t−1
ν (·) is its inverse.

Then we have the following representations:

Standard t-copula. The random vector

X = W × Z , (11.58)

is distributed from a multivariate t-distribution and random vector

U = (tν(X1), . . . , tν(Xn))
T (11.59)

is distributed from the standard t-copula.

Skew t-copula The standard t-copula is sometimes criticized for its restriction relating to tail
symmetry. To resolve this issue several different parameterizations of skew t-copula have been
developed, see discussions in Demarta and McNeil (2005) and Allen and Satchell (2013) and
the detailed references therein. To specify the skew t-copula it will be beneficial to first recall
the definition of the generalized multivariate Hyperbolic distribution and its sub-family the
multivariate skew-t distribution. The reason for this is that the skew t-copula is the implicitly
defined copula that produces the multivariate dependence in this family of distributions, when
the marginals are also in this family.

Definition 11.13 (Generalized Multivariate Hyperbolic Distribution) A d-dimensional
random vector X is distributed according to a multivariate hyperbolic distribution if it has den-
sity given by



�

�

“Cruz_Driver” — 2015/1/8 — 12:13 — page 432 — #19
�

�

�

�

�

�

432 CHAPTER 11 Dependence Models

fX (x) = c
Kλ−d/2

(√(
χ+ (x −μ)T Σ−1 (x −μ)

)
(ψ + γTΣ−1γ)

)
exp

(
(x −μ)T Σ−1γ

)
[√(

χ+ (x −μ)T Σ−1 (x −μ)
)
(ψ + γTΣ−1γ)

]d/2−λ
,

(11.60)

where Kν(·) is the modified Bessel function of the second kind and c is a normalizing constant
given by

c =
(√

χψ
)−λ (

ψ + γTΣ−1γ
)d/2−λ

ψλ

(2π)d/2|Σ|1/2Kλ

(√
χψ
) , (11.61)

where μ is the d-dimensional location vector, Σ is a d × d positive definite symmetric covariance
matrix, γ is a d-dimensional skewness vector and χ and ψ are constants.

From this family of distributions one can obtain the following sub-families:

• If λ = (d + 1)/2 one obtains the hyperbolic family of distributions;
• If λ = −1/2 then one obtains the Normal Inverse Gaussian distribution family; and
• If one selects λ = −ν/2 for some degree of freedom parameter, then one obtains the GH

skewed-t distribution. Then, if one in addition selects γ = 0, one recovers the family of
multivariate skew-t distributions.

One may also define analogously the univariate skew t-distribution according to the dis-
tribution for random variable X , which is distributed according to a multivariate hyperbolic
distribution if it has density given by

fX (x) = c
K(ν+1)/2

(√(
ν + (x−μ)2

σ2

)
γ2

σ2

)
exp
(
(x − μ) γ

σ2

)
[√(

ν + (x−μ)2

σ2

)
γ2

σ2

]−(ν+1)/2 [
1 + (x−μ)2

νσ2

](ν+1)/2
. (11.62)

Then if one considers the multivariate skew-t density with marginal distributions given by the
marginal skew-t density, the ratio of the multivariate skew-t distribution over the product of the
marginal skew-t densities, is according to Sklar’s theorem, the implicitly defined skew t-copula
density.

In addition, it will be useful for simulation and estimation purposes to also observe that
under this specification of the multivariate skew-t distribution, one can obtain the following
location-scale mixture representation for a skew-t distributed d-dimensional random vector
according to

X d
= μ+ γW +

√
W AZ , (11.63)

where W is a random variable with W ∼ InvGamma (ν/2, ν/2) independently distributed
from random vector Z which has distribution Z ∼ Normal(0,Σ).
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One can simulate from the skew-t copula then by the following algorithmic procedure:

Algorithm 11.4 (Simulation from Skew-t-copula)

1. Given covariane matrix Σ, sample a normal d-dimensional random vector
Z ∼ Normal(0,Σ);

2. Given degrees of freedom parameter ν, sample a realization of the Inverse-Gamma random
variable W ∼ InvGamma(ν/2, ν/2);

3. Given parmeter vectors μ and γ and matrix A, create a new random vector

X = μ+ γW +
√

W AZ ; (11.64)

4. Evaluate for each marginal element of the d-dimensional random vector X , for i ∈
{1, 2, . . . , d}, the transformed random variable Ui = F (Xi). This is achieved by solving the
integral below, numerically for each marginal,typically under a univariate Guass-Quadrature
rule,

Ui = F (Xi) =

∫ Xi

−∞
c

K(ν+1)/2

(√(
ν + (s−μ)2

σ2

)
γ2

σ2

)
exp
(
(s − μ) γ

σ2

)
[√(

ν + (s−μ)2

σ2

)
γ2

σ2

]−(ν+1)/2 [
1 + (s−μ)2

νσ2

](ν+1)/2
ds. (11.65)

Grouped t-copula. The standard t-copula is sometimes criticized due to the restriction of
having only one parameter for the degrees of freedom ν, which may limit its ability to model
tail dependence in multivariate cases. To overcome this problem, Daul et al. (2003) proposed
the use of the grouped t-copula, where risks are grouped into classes and each class has its own
t-copula with a specific degrees-of-freedom parameter. Specifically, partition {1, 2, . . . , n} into
m nonoverlapping subgroups of sizes n1, . . . , nm. Then the copula of the distribution of the
random vector

X = (W1Z1, . . . ,W1Zn1 ,W2Zn1+1, . . . ,W2Zn1+n2 , . . . ,WmZn)
T
, (11.66)

where Wk = G−1
νk

(V ), k = 1, . . . ,m, is the grouped t-copula. That is,

U = (tν1(X1), . . . , tν1(Xn1), tν2(Xn1+1), . . . , tν2(Xn1+n2), . . . , tνm(Xn))
T

is a random vector from the grouped t-copula. Here, the copula for each group is a standard
t-copula with its own degrees-of-freedom parameter.
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Generalized t-Copula with Multiple Degrees-of-Freedom Parameters. It is not always obvi-
ous how the risk factors should be divided into sub-groups. An adequate choice of grouping
configurations requires substantial additional effort if there is no natural grouping, for example,
by sector or class of asset. The described grouped t-copula can be generalized so that each group
will have only one member; see Luo and Shevchenko (2010). The generalized t-copula has the
advantages of a grouped t-copula with flexible modeling of multivariate dependencies. At the
same time, it overcomes the difficulties with a priori choice of groups. Specifically, the copula
of the random vector

X = (W1Z1, W2Z2, . . . ,WnZn)
T (11.67)

is said to have a t-copula with multiple degrees-of-freedom parameters, which we denote as
t̃ν -copula, that is,

U = (tν1(X1), tν2(X2), . . . , tνn(Xn))
T (11.68)

is a random vector distributed according to this copula. Note that all Wi are perfectly
dependent.

Given the stochastic representation, simulation of the t̃ν -copula is straightforward. In
the case of a standard t-copula ν1 = · · ·= νn = ν; and in the case of grouped t-copula, the
corresponding subsets have the same degrees-of-freedom parameter. Note that the standard
t-copula, and grouped t-copula are special cases of t̃ν -copula.

From the stochastic representation (11.67), it is easy to show that the t̃ν -copula distribution
has the following explicit integral expression:

CΣ
ν (u) =

∫ 1

0
FΣ

N (z1(u1, s), . . . , zn(un, s))ds (11.69)

and its density is

cΣν (u) =
∂nCΣ

ν (u)
∂u1 . . . ∂un

(11.70)

=
1

n∏
k=1

fνk(xk)

1∫
0

f Σ
N (z1(u1, s), . . . , zn(un, s))

n∏
k=1

(wk(s))
−1ds.

Here,

• zk(uk, s) = t−1
νk

(uk)/wk(s), k = 1, 2, . . . , n;
• wk(s) = G−1

νk
(s);

• f Σ
N (z1, . . . , zn) = exp(− 1

2 zTΣ
−1z)/

(
(2π)n/2(detΣ)1/2

)
is the standard multivariate

Normal density;
• xk = t−1

νk
(uk), k = 1, 2, . . . , n;

• fν(x) = (1 + x2/ν)
−(ν+1)/2 Γ((ν+1)/2)

Γ(ν/2)
√
νπ

is the univariate t density.
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The multivariate density (11.70) involves a one-dimensional integration that should be
done numerically. This makes the calculation of the copula density more demanding computa-
tionally in comparison with the standard t-copula. However, it is still practical, because fast and
accurate algorithms are available for the one-dimensional numerical integration. If all degrees-
of-freedom parameters are equal (i.e., ν1 = · · · = νn = ν), then it is easy to show that the
copula defined by (11.69) becomes the standard t-copula; see Luo and Shevchenko (2010) for
a proof.

For the Gaussian and Students-t-copula models, one can find detailed discussions on tail
dependence in McNeil et al. (2005, section 5.2.3). Here, we just mention that the tail depen-
dence coefficient can be very useful for comparing different copulas. In particular:

• For the bivariate Gaussian copula, defined by (11.48): λl = λu = 0, if the correlation
coefficient of the copula ρ < 1;

• For the bivariate t-copula, defined by stochastic representation (11.58) and (11.59):

λl = λu = 2tν+1

(
−

√
(ν + 1)(1 − ρ)

1 + ρ

)
, (11.71)

which is positive if ρ > −1. Here, ρ is a correlation coefficient parameter of the t-copula
and ν is a copula degrees-of-freedom parameter.

Before presenting a detailed account of one of the most widely used families of copula
models, the Archimedean family, we first briefly introduce the Farlie-Gumbel-Morgenstern
(FGM) copula family. This is also relatively widely used for OpRisk settings and was discussed
in Geluk and Tang (2009), where it is was shown that the notion of negative regression depen-
dence, discussed earler, in the multivariate setting was satisfied by the family of FGM copula
models presented in Definition 11.14; see Johnson et al. (2002).

Definition 11.14 (Farlie–Gumbel–Morgenstern Copula Models) Consider a loss process
with n loss random variables with marginal distributions Xi ∼ FXi(x) and a joint distribution
given by a copula C. The joint dependence will be in the family of FGM copulas with parame-
ters
{

ai,j
}n

i,j=1, which satisfy constraints provided in Johnson et al. (2002) and have a distribution
given by

FX1,X2, ... ,Xn (x1, x2, . . . , xn) =

n∏
i=1

F Xi(xi)

⎛
⎝1 +

∑
1≤i<j≤n

ai,jF Xi(xi)F Xj(xj)

⎞
⎠ . (11.72)

11.2.3 ARCHIMEDEAN COPULAS

Generally, Archimedean copulae are not derived from a well-known parametric multivariate
distribution; nevertheless, they can be stated explicitly in a simple form. Many Archimedean
copulae have been proposed in the literature, see Nelsen (1999), with many further copulae
available as extensions and combinations of these base copulae. Archimedean copulae are attrac-
tive to researchers and practitioners due to their directly interpretable tail dependence features
and parsimonious representations.
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Remark 11.4 It should be noted that throughout the literature there are multiple parameteriza-
tions and representations of Archimedean copula distribution families. In particular, one can find
representations of the general family of Archimedean copulas where the distribution is written with
one of two forms with respect to a composite of two functions (which are inverse of each other)

C(u1, . . . , un) = ψ

(
n∑

i=1

ψ−1 (ui)

)

or

C(u1, . . . , un) = ψ−1

(
n∑

i=1

ψ (ui)

)
.

One should always be careful to check the particular realization being utilized.

We begin this section with a basic definition of the bivariate Archimedean copula and
then this is generalized to the d -variate copula case. This is followed by a detailed account
of the required properties of the generator function of this family of parametric dependence
models.

The family of Archimedean copula models has the following useful properties (as detailed
in a simple bivariate setting) presented in Lemma 11.1.

Lemma 11.1 Let C be an Archimedean copula with generator ψ. Then according to Nelsen (1999,
lemma 4.1.2 and theorem 4.1.5), the following properties hold:

1. C is an Archimedean copula if it can be represented by

C(u, v) = ψ[−1] (ψ(u) + ψ(v)) ,

where ψ is the generator of this copula and is a continuous, strictly decreasing function from
[0, 1] to [0,∞] such that ψ(1) = 0 and ψ[−1] is the pseudo inverse of ψ;

2. C is symmetric, C(u, v) = C(v, u) ∀(u, v) ∈ [0, 1]× [0, 1];
3. C is associative, C(C(u, v),w) = C(u,C(v,w)) ∀(u, v,w) ∈ [0, 1]3;
4. If c > 0 is any constant, then cψ is a generator of C.

According to Denuit et al. (2005, definition 4.7.6), the extension of the Archimedean cop-
ula family to d -dimensions is achieved by considering the strictly monotone generator function
ψ such that ψ : (0, 1] → R

+ with ψ(1) = 0, then the resulting Archimedean copula can be
expressed as detailed next.

Definition 11.15 (d-Dimensional Archimedean Copula) A d-dimensional copula C is called
Archimedean if for some generator ψ it can be represented as

C(u) = ψ{ψ−1(u1) + · · ·+ ψ−1(ud )} = ψ{t(u)} ∀u ∈ [0, 1]d , (11.73)

where ψ−1 : [0, 1] → [0,∞] is the inverse generator with ψ−1(0) = inf {t : ψ(t) = 0}.
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Note the shorthand notation t(u) = ψ−1(u1) + · · ·+ ψ−1(ud ) that will be used occasionally
in the remainder of this section.

As we will see later, it is necessary to have formulae for computing the copula densities
as this will be useful in many settings such as performing parameter estimation or calculating
tail dependence or performing Rosenblatt’s probability integral transforms for goodness-of-fit
testing. For instance, if one seeks to fit these models using a maximum likelihood approach or
a Bayesian approach, both of which require the model likelihood. Equation (11.74) provides
such a formula in a generic form for each member of the family of Archimedean copulae. In
this regard, one can show the following result regarding existence of a copula density function
for an Archimedean family given in Proposition 11.2; see McNeil and Nešlehová (2009).

Proposition 11.2 (Existence of an Archimedean Copula Density) A d-dimensional Archi-
medean copula with generator given by ψ will admit a density function if and only if the (d −1)-th
derivative ψ(d−1) exists and is absolutely continuous on (0,∞). The density is then given by

c(u) =
ψ(d) (ψ−1 (u1) + . . .+ ψ−1 (ud ))

ψ(1) (ψ−1 (u1))ψ(1) (ψ−1 (u2)) · · ·ψ(1) (ψ−1 (ud ))
(11.74)

for almost all u ∈ (0, 1)d .

This section first introduces families of exchangeable Archimedean copulae models. To
understand this notion, we first recall the definition of exchangeable random variables and
sequences in Definition 11.16.

Definition 11.16 (Exchangeable Random Vectors and Sequences) An exchangeable sequence
of random variables is a finite or infinite sequence X1,X2,X3, · · · of random variables such that for
any finite permutation π(·) of subsets of the indices 1, 2, 3, . . ., then the resulting joint probability
distribution of the permuted sequence Xπ(1),Xπ(2),Xπ(3), . . . is the same as the joint probability
distribution of the original sequence.

The first introduction to Archimedean copulas presented later in terms of generator func-
tions will be clearly seen to be representative of exchangeable multivariate random vectors. This
is clearly reflected in the representation of a d -dimensional Archimedean copula model that has
been shown to be given by

C (u1, . . . , ud ) = ψ
(
ψ−1 (u1) + · · ·+ ψ−1 (ud )

)
, (11.75)

where ψ is a decreasing function known as the generator for the given copula; see Frees and
Valdez (1998). It is clear that such an expression is exchangeable as one could easily swap the
order of any subset of variables without a change in the resulting distribution mass.

11.2.3.1 Properties of Archimedean Copulae Generators. It was shown in the
Ph.D. thesis of Ling (1964) that the generator ψ will produce a bivariate copula distribution if
and only if it is a convex function. Then in Kimberling (1974) it was shown that in order for
the generator ψ to generate any Archimedean copula distribution in any dimension d then it
must be a completely monotone function; see Theorem 11.4.
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Theorem 11.4 (Completely Monotone Generators and Existence of Archimedean
Copulae) If a generator ψ that is a mapping ψ : [0,∞] 	→ [0, 1] is continuous and strictly
decreasing such that ψ(0) = 1 and ψ(∞) = 0, that is, ψ ∈ C∞ (0,∞) and one has that
(−1)kψ(k)(x) ≥ 1 for k = 1, . . . then this class of generators can create Archimedean copulae
models in any dimension. This class of completely monotone generators for Archimedean copula in
any dimension are denoted by ψ∞.

Note that it is useful to note the following relevant properties of completely monotone
functions in Lemma 11.2 see, for instance, discussion in Hofert (2008).

Lemma 11.2 (Properties of Completely Monotone Functions) A completely monotone func-
tion satisfies the following properties:

• Closure under multiplication and positive affine transformations (i.e., linear additive combi-
nations with positive coefficients);

• If a function f is a Laplace–Stieltjes transform, then the function f α is completely monotone
for any power α ∈ (0,∞) if and only if the derivative (− ln f )′ is completely monotone;

• If a function f is completely monotone and a second function g is non-negative with its first
derivative g ′ completely monotone, then the composite function f ◦ g is a completely monotone
function;

• If a function f is non-negative and its derivative f ′ is completely monotone, then the reciprocal
of the function f given by 1/f is a completely monotone function;

• If a function f is continuous on [0,∞], satisfying dk

dxk f (x) ≥ 0 for any integer k ∈ J and
x ∈ (0,∞) and a function g is completely monotone, then the composite function f ◦ g is a
completely monotone function.

The requirement for complete monotonicity is only required to create copula of any
dimension, so this was then further relaxed for d -variate Archimedean copula in further studies
to include only the positivity of derivatives for k = 1, 2, . . . , d for a d -variate Archimedean
copula; see discussion in McNeil and Nešlehová (2009), where it was shown that one only
requires the necessary and sufficient conditions on the generator function to be a d -monotone
function as given in Definition 11.17 in order to create Archimedean copulae models up to
dimension d .

Definition 11.17 (D-Monotone Functions) A real function g(·) is d-monotone in a range
(a, b) for a, b ∈ R and d ≥ 2 if it is differentiable on this range up to order d − 2 and the
derivatives satisfy the condition that

(−1)kg(k)(x) ≥ 0, k = 0, 1, . . . , d − 2 (11.76)

for any x ∈ (a, b) and (−1)d−2g(d−2) is nonincreasing and convex in (a, b).

One can then conclude that a function ψ is said to generate an Archimedean copula if it
satisfies the following properties.
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Definition 11.18 (Archimedean Generator) An Archimedean generator is a continuous,
decreasing function ψ : [0,∞] → [0, 1] that satisfies the following conditions:

1. ψ : [0,∞) 	→ [0, 1] with ψ(0) = 1 and limt→∞ ψ(t) = 0;
2. ψ is a continuous function;
3. ψ−1 is given by ψ−1(t) = inf {u : ψ(u) ≤ t};
4. ψ is strictly decreasing on [0, inf {t : ψ(t) = 0}] = [0, ψ−1(0)].

McNeil and Nešlehová (2009) discuss the class of generators, denoted byψ∞, which repre-
sent all the generators for Archimedean copulae models that produce valid copula distributions
in any dimension, that is, those that are completely monotone functions. In this context, they
note two representations of such generators: the first based on Bernstein–Widder theorem and
the Laplace transform; and the second based on the Williamson d -transform. We discuss these
two representations in the following subsections.

11.2.4 ARCHIMEDEAN COPULA GENERATORS AND THE LAPLACE
TRANSFORM OF A NON-NEGATIVE RANDOM VARIABLE

In understanding the first representation for the completely monotone generator, it will be
instructive to first recall the theorem of Bernstein–Widder; see, for instance, a proof in Pollard
(1944) or Feller (1966). This theorem links a completely monotone function to a Laplace
transform representation.

Theorem 11.5 (Bernstein–Widder Theorem) Consider a real function f (x) such that it
satisfies

f (0) = f (0+), (−1)kf (k)(x) ≥ 0, x ∈ (0,∞), ∀k = 0, 1, . . . . (11.77)

Then the function f (x) admits the following representation as a Laplace transform

f (x) =
∞∫

0

exp(−xt)dα(t) (11.78)

for x ≥ 0 and α(t) an increasing and bounded function.

For an Archimedean generator ψ, one can then use this result to link the existence of
distributions in all dimensions to the range of complete monotonicity of the generator, see
Proposition 11.3.

Proposition 11.3 (Complete Monotonicity and Generator Support) A generator ψ for an
Archimedean copula belongs to the class of generators ψ∞ if and only if it is completely monotone on
[0,∞).

Remark 11.5 One can see from the combination of Theorem 11.5 and Proposition 11.3 that a
generator ψ of an Archimedean copula is completely monotone only when it is formed from the
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Laplace transform of a non-negative random variable Z. It can then be shown that the resulting
Archimedean copula for such a generator ψ ⊂ ψ∞ in d-dimensions is given by the survival copula
coming from the survival function, which is expressed via the generator of the l1-norm according to

H (x1, x2, . . . , xd ) = ψ (||max (x, 0) ||1)
= E [exp (−||max (x, 0) ||1Z)]

= E

[
exp

(
−Z

d∑
i=1

max (xi, 0)

)]
, (11.79)

which correspond to a survival function of a random vector X = 1
Z E with E a vector of i.i.d.

exponential random variables that are independent of Z ; see discussion in McNeil and Nešlehová
(2009).

One important result of this representation is the ability to simulate exactly Archimedean
copula random variates, as discussed in Marshall and Olkin (1988) and shown in
Algorithm 11.5.

Algorithm 11.5 (Simulation from Archimedean Copula via Laplace Transform)

1. Sample a random variable V ∼ F where the distribution F is given by the inverse Laplace
transform of the generator ψ such that F = L−1 [ψ];

2. Sample d i.i.d. draws from a uniform distribution Ui ∼ Uniform(0, 1) for i ∈ {1, 2, . . . , d};
3. Construct via transformation the d-variate random vector U = (U1, . . . ,Ud ), which is

drawn from the Archimedean copula characterized by generator ψ given by

Xi = ψ

(
− 1

V
ln (Ui)

)
, i ∈ {1, 2, . . . , d} . (11.80)

The following results in Table 11.1 from Hofert (2008, table 1) demonstrate examples
of popular Archimedean copula models for which closed form distributions of such inverse
Laplace transforms of the generator are known.

As noted in Hofert (2008), it is then a trivial consequence to obtain other Archimedean
copula model simulation schemes based on, for instance, those presented in Table 11.1 via
exponential tilting results presented in Theorem 11.6.

Theorem 11.6 (Exponential Tilting of Generator Inverse Laplace Transforms) Consider
an Archimedean copula generator ψ in the family of completely monotone Archimedean genera-
tors ψ ∈ ψ∞ with a known distribution for the inverse Laplace transform given by F = L−1 [ψ].
Then, define a new generator ψ̃(x) in terms of ψ(x) according to

ψ̃(x) =
ψ(x + h; ρ)
ψ(h; ρ)

, ∀x ∈ [0,∞]. (11.81)

Then the following holds:

• ψ̃(x) is completely monotone on x ∈ [0,∞] and ψ̃(0) = 1;
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table 11.1 Generators and inverse Laplace transforms for several copulas from
Archimedean family

Archimedean Family ρ Range Generator ψ(x; ρ) Distribution of L−1[ψ]

Ali–Mikhail–Haq [0, 1) ψ(x) = 1−ρ
exp(x)−ρ

yk = (1 − ρ)ρk−1, k ∈ J

Clayton (0,∞) ψ(x) = (1 + x)−1/ρ Γ(1/ρ, 1)
Frank (0,∞) ψ(x) = − 1

ρ
ln
(
e−x(e−ρ − 1) + 1

)
yk =

(1−e−ρ)k

kρ , k ∈ J

Gumbel [1,∞) ψ(x) = exp
(
−x1/ρ

)
S 1

ρ

(
1, cos

(
π
2ρ

)ρ
, 0; S1

)
Joe [1,∞) ψ(x) = 1 −

(
1 − e−x) 1

ρ yk = (−1)k+1 (1/ρ)!
k!(1/ρ−k)! , k ∈ J.

Note: Sα(β, γ, δ; S1) is the univariate α-stable distribution with S1 parametrization of Nolan.

• The distribution of the inverse Laplace transform for the new generator F̃ = L−1
[
ψ̃(x)

]
is

given in terms of the distribution F by

F̃ (x) =
1

ψ(h)

⎛
⎝F (0) +

x∫
0

exp(−hu)dF (u)

⎞
⎠ , x ∈ [0,∞). (11.82)

• If the distribution F admits a density f , the F̃ admits the exponential tilted density
given by

f̃ (x) =
1

ψ(h)
exp(−hx)f (x), x ∈ [0,∞). (11.83)

11.2.5 ARCHIMEDEAN COPULA GENERATORS, L1-NORM
SYMMETRIC DISTRIBUTIONS AND THE WILLIAMSON
TRANSFORM

The second representation developed in McNeil and Nešlehová (2009) utilizes the fact that the
random vector discussed in the previous subsection given by X = 1

Z E can be re-represented
by utilizing the fact that if one transforms the vector of i.i.d. exponential random variables
according to

Sd =
E

||E ||1
, (11.84)

then Sd will be distributed according to a Uniform distribution on the d -dimensional simplex
given by the space Sd

Sd =
{

x ∈ R
d
+ : ||x||1 = 1

}
. (11.85)

In addition, since Sd and Z are independent, then one can write the random vector
X = RSd with random variable R given by R = 1

Z ||E||1. The implications of this result
for the transformed distribution indicates that the random vector X admits a representation in
terms of a mixture of Uniform distributions on simplices.
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The significance of this result is that although only completely monotone Archimedean
generators will admit representations as survival copulas of random vectors following a par-
ticular frailty model, it is clear from the aforementioned result that even only d -monotone
Archimedean generators will produce representations as survival copulae of random vectors
with l1-norm symmetric distributions. As observed in McNeil and Nešlehová (2009), in the
case of completely monotone generators of Archimedean copulae one could form a link between
the Laplace transform of a particular frailty model and the generator via the Bernstein–Widder
theorem. In the case of the d -monotone (not completely monotone) generator functions, one
can form an analogous link between d -variate Archimedean copulas and the l1-norm symmet-
ric distributions via a special class of Mellin–Stieltjes integral transforms known as Williamson
transforms; see Definition 11.19 and Williamson (1956) and McNeil and Nešlehová (2009,
proposition 3.1).

Definition 11.19 (Williamson d -Transforms) The Williamson transform of a positive random
variable X with distribution F is a real function on [0,∞) given for any integer d ≥ 2 by

f (x) = Wd [FX (x)] =
∫

(x,∞)

(
1 − x

t

)d−1
dF (t) =

{
E

[(
1 − x

X

)d−1
+

]
, if x > 0

1 − F (0), if x = 0.

(11.86)

The Williamson d-transform Wd will consist of real functions f on [0,∞) that are d-monotone
on [0,∞) and satisfy boundary conditions that limx→∞ f (x) = 0 and f (0) = p for p ∈ [0, 1].
Furthermore, any non-negative random variable’s distribution function can be uniquely defined by
its Williamson d-transform f = Wd [FX (x)] such that FX (x) = W−1

d [f (x)] with the inverse
given by

FX (x) = W−1
d [f (x)] = 1 −

d−2∑
k=0

(−1)kxkf (k)(x)
k!

− (−1)d−1xd−1f (d−1)
+ (x)

(d − 1)!
. (11.87)

Remark 11.6 It was therefore observed in McNeil and Nešlehová (2009) that the d-monotone
Archimedean copula generators ψ will consist of Williamson d-Transforms of distribution functions
F from non-negative loss random variables that satisfy F (0) = 0.

In addition, in Williamson (1956), the result in Proposition 11.4 completes the link
between l1-norm symmetric distributions and Archimedean copulas; see McNeil and Nešlehová
(2009).

Proposition 11.4 (l1-Norm Symmetric Distributions and Williamson d-Transforms)
Consider the d-dimensional random vector X with representation as a l1-norm symmetric distri-
bution X d

= RSd with radial distribution FR. Then one has the following relationship between the
multivariate survival function of X and the Williamson d-transform:

• H(x) is given by

H(x) = Wd [FR (||max (x, 0) ||1)] + FR(0)I [x < 0] , x ∈ R
d . (11.88)
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If in addition FR(0) = 0, then X has an Archimedean survival copula with generator given
by ψ = Wd [FR(r)];

• The density X exists if and only if R has a density, which is given with regard to the density of
R denoted fR(r) by

h (||x||1) = Γ(d)||x||1−d fR (||x||1) . (11.89)

• If Pr [X = 0] = 0, then one has that R d
= ||X ||1 and Sd

d
= X /||X ||1.

An important result of this Simplectic representation is the ability to simulate exactly
Archimedean copula random variates, as discussed in McNeil and Nešlehová (2009) and shown
in Algorithm 11.6.

Algorithm 11.6 (Simulation from Archimedean Copula via Williamson d-Transform)

1. Sample a random variable R ∼ FR where the distribution FR is given by the inverse Williamson
d-transform of the generator ψ such that FR = W−1

d [ψ], which is given by

FR(x) = W−1
d [f (x)] = 1 −

d−2∑
k=0

(−1)kxkψ(k)(x)
k!

− (−1)d−1xd−1ψ
(d−1)
+ (x)

(d − 1)!
. (11.90)

2. Sample independently of R the random vector Sd given by transformation of d i.i.d. exponential
random variates with Ei ∼ Exp(1) such that

Sd
d
=

(
E1∑d
i=1 Ei

, . . . ,
Ed∑d
i=1 Ei

)
. (11.91)

3. Construct via transformation the d-variate random vector U = (U1, . . . ,Ud ), which is
drawn from the Archimedean copula characterized by generator ψ given by

Ui = ψ

(
R

Ei∑d
i=1 Ei

)
, i ∈ {1, 2, . . . , d} . (11.92)

Having presented two general representations of Archimedean copula distribution gen-
erators and how to simulate from such representations, we now utilize these specifications of
the Archimedean generator to formally introduce the definition of an Archimedean copula
distributions first under one-parameter subfamilies, then two-parameter cases with inner and
outer-power transforms, followed by generalized forms. Before looking more closely at a few
subfamilies of Archimedean families, we note the following result about the level sets (quantile
function) of an Archimedean copula with regard to the generator; see McNeil and Nešlehová
(2009) and Genest and Mackay (1986).

Definition 11.20 (Level Sets of Archimedean Copulae) The level sets of a d-variate
Archimedean copula C are given by the set L(s) =

{
u ∈ [0, 1]d : C(u) = s

}
for s ∈ [0, 1],

which are characterized by
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L(s) =

⎧⎨
⎩
{

u ∈ [0, 1]d :
∑d

i=1 ψ
−1 (ui) = ψ−1(s)

}
, if s ∈ (0, 1],{

u ∈ [0, 1]d :
∑d

i=1 ψ
−1 (ui) = ψ−1(0)

}
, if s = 1.

(11.93)

11.2.5.1 One-Parameter Archimedean Members. Next, we provide some explicit
distribution and density representations for some widely utilized subfamilies of Archimedean
copulae families; see Lemma 11.3 for the one parameter versions of the Archimedean copulae.

Lemma 11.3 From the results in Nelsen (1999, section 4.3, table 4.1), the distribution and density
functions of the Clayton, Gumbel, and Frank copulae subfamilies are given by:

1. Clayton Copula. The distribution and density are given respectively as

CC (u1, . . . , un) =

(
1 − n +

n∑
i=1

u−ρC

i

)−1/ρC

, (11.94)

cC (u1, . . . , un) =

(
1 − n +

n∑
i=1

(ui)
−ρC

)−n− 1
ρC n∏

i=1

(
(ui)

−ρC−1((i − 1)ρC + 1
))

,

(11.95)

where ρC ∈ [0,∞) is the dependence parameter. The generator and inverse generator for the
Clayton copula are given by

ψC (t) =
(
t−ρ − 1

)
; ψ−1

C (s) = (1 + s)−
1
ρ . (11.96)

The Clayton copula does not have upper tail dependence. Its lower tail dependence is
λL = 2−1/ρC

;
2. Gumbel Copula. The distribution function is given by

CG(u1, . . . , ud ) = exp

⎛
⎝−

[
d∑

i=1

(
− ln(ui)

)ρG

] 1
ρG
⎞
⎠ , (11.97)

where ρG ∈ [1,∞) is the dependence parameter. The generator and inverse generator for the
Gumbel copula are given by

ψG (t) = (− ln t)ρ ; ψ−1
G (s) = exp

(
−s

1
ρ

)
. (11.98)

The Gumbel copula does not have lower tail dependence. The upper tail dependence of the
Gumbel copula is λU = 2−21/ρG

. In the bivariate case, the explicit expression for the Gumbel
copula density is given by
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c (u1, u2) =
∂2

∂u1∂u2
C (u1, u2)

= C (u1, u2) u−1
1 u−1

2

[
2∑

i=1

(− ln ui)
ρ

]2( 1
ρ−1)

(ln u1 ln u2)
ρ−1

×

⎡
⎣1 + (ρ− 1)

[
2∑

i=1

(− ln ui)
ρ

]− 1
ρ

⎤
⎦ .

3. Frank Copula. The distribution function is given by

CF (u1, . . . , un) =
1
ρ
ln

(
1 +

∏n
i=1(e

ρF ui − 1)
(eρF − 1)n−1

)
, (11.99)

where ρF ∈ R/{0} is the dependence parameter. The Frank copula does not have upper or
lower tail dependence. In the bivariate case, one can represent the copula density for the Frank
distribution as follows:

c (u1, u2) =
∂2

∂u1∂u2
C (u1, u2)

=
ρ [1 − exp(−ρ)] exp (−ρ (u1 + u2))

([1 − exp(−ρ)]− (1 − exp (−ρu1)) (1 − exp (−ρu2)))
2 .

In general, it will be of practical use to be able to evaluate the copula density pointwise and
it has already been demonstrated that this will in general require up to d -th order derivatives
for a d -variate Archimedean copula of mixed types. Hence, one may combine the following
derivative results for the different Archimedean copula models discussed and their generators
with the formula for composite differentiation in Definition 11.8 (Table 10.2).

table 11.2 Archimedean copula generator functions, inverse generator functions, and
generator function d -th derivatives

Family ψ ψ−1 (−1)dψ(d)

Clayton (1 + t)−1/ρ (s−ρ − 1) Γ(d+1/ρ)
Γ(1/ρ) (1 + t)−(d+1/ρ)

Frank − 1
ρ
ln
[
1 − e−t(1 − e−ρ)

]
− ln e−sρ−1

e−ρ−1
1
ρ

Li−(d−1){(1 − e−ρ)e−t}
Gumbel exp

(
−t1/ρ

)
(− ln s)ρ ψρ(t)

td PG
d,1/ρ

(
t1/ρ
)

The densities for the one-parameter copulae in this table can be calculated using Equation (11.74). For details of the
results contained in this table, see Hofert et al. (2012).
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We note the following definitions are utilized:

aG
dk

(
1
ρ

)
=

d !
k!

k∑
i=1

(
k
i

)(
i/ρ
d

)
(−1)d−i , k ∈ {1, . . . , d} ,

Lis(z) =
∞∑

k=1

zk

ks ,

PG
d, 1

ρ

(
t

1
ρ

)
=

d∑
k=1

aG
dk

(
1
ρ

)(
t

1
ρ

)k
.

(11.100)

Hence, using these closed from results combined with the knowledge of composite func-
tion differentiation via Fa di Bruno, one can then work out the required multivariate densi-
ties for implementation of likelihood and Bayesian estimation methods using the definition
given by

c (u1, u2, . . . , un, . . . , ud ) =
∂C (u1, u2, . . . , un, . . . , ud )

∂u1∂u2 · · · ∂un · · · ∂ud

=
ψ(d) (ψ−1 (u1) + · · ·+ ψ−1 (ud ))

ψ(1) (ψ−1 (u1))ψ(1) (ψ−1 (u2)) · · ·ψ(1) (ψ−1 (ud ))
.

(11.101)

Remark 11.7 It is also worth noting that in the case of the bivariate Clayton copula model one can
show that this subfamily is comprehensive in its coverage in the sense that its dependence properties
can range from the Frechet–Hoeffding lower bound of perfect negative dependence through to the
Frechet–Hoeffding upper bound corresponding to perfect positive dependence.

It is also worth noting that occasionally an alternative parametrization of the multivariate
Clayton copula is presented according to the distribution

Cθ {u1, u2, . . . , ud ) = max
{

u1−θ
1 + u1−θ

2 + · · ·+ u1−θ
d − d + 1, 0

} 1
1−θ (11.102)

with θ ∈ [0,∞)\ {1}. In addition, in the case that θ ∈ [0, 1), one must have the condition on
the dimension given by d ≤ �(1 − θ)−1� + 1 to ensure that the resulting function is a valid
distribution; see discussions in Nelsen (1999).

11.2.5.2 Two-Parameter Archimedean Members via Outer or Inner Power
Transforms. In addition to the commonly utilized one-parameter versions of the
Archimedean copula families described earlier it is also worthwhile noting that practitioners can
gain additional flexibility in these simple copula families through addition of a second param-
eter. This second parameter can be incorporated through what is known as an outer-power or
an inner-power transform; see Feller (1966).
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Definition 11.21 (Outer-Power Copula Transform) The copula family generated by
ψ̃(x) = ψ

(
x

1
β

)
is called an outer-power family, where β ∈ [1,∞) and ψ ∈ Ψ∞ (the class of

completely monotone Archimedean generators).

The proof of this follows from Feller (2008), that is, the composition of a completely
monotone function with a non-negative function that has a completely monotone derivative is
again completely monotone. Such copula model transforms were also studied in Nelsen (1997),
where they are referred to as a beta family associated with the inverse generator ψ−1.

As has been noted earlier, in performing the estimation of these transformed copula models
via likelihood-based inference, it will be of great benefit to be capable of performing evaluation
pointwise of the copula densities. In the case of the outer-power transformed models, this will
require the utilization of a specific multivariate chain rule result widely known as the Faà di
Bruno’s formula; see Faa di Bruno (1857) and discussions in, for example, Constantine and
Savits (1996) and Roman (1980). To understand how such a result is required, consider the
following remark.

Remark 11.8 The generator derivatives for the outer-power transforms can be calculated using the
base generator derivatives and the following multidimensional extension to the chain rule for the
outer-power versions. The densities for the outer-power copulae in Table 11.2 can thus be calculated
using Equation (11.74).

Hence, one may combine the following derivative results (presented in Table 11.3) for
the different Archimedean copula models discussed and their generators with the formula for
composite differentiation in Definition 11.8. Using these closed from results combined with
the knowledge of composite function differentiation via Fa di Bruno one can then work out
the required multivariate densities for implementation of likelihood and Bayesian estimation
methods.

Next we briefly introduce the alternative mechanism for adding additional flexibility
through the inner-power transform.

Definition 11.22 (Inner-power copula) The copula family generated by ψ̃(x) = ψ
1
α (x) is

called an inner power family, where α ∈ (0,∞) and ψ ∈ Ψ∞ (the class of completely mono-
tone Archimedean generators).

Inner power transforms produce a family of generators associated with the base gener-
ator, for example, the Clayton generator is the inner power transform of the base generator
ψ(x) = (1 + x)−1. The lower tail dependence of the transformed copula is λ1/α

L , while the
upper tail dependence remains unchanged. Inner-power copula model transforms were also
studied in Nelsen (1997), where they are referred to as an alpha family associated with the
inverse generator ψ−1.

We conclude this brief introduction to Archimedean copula families by mentioning one
additional family the Ali–Mikhail–Haq copula. In particular, in the context of modeling depen-
dence compound process with unaffected compound process first-and second-order tail asymp-
totics, a particular member of the Archimedean family will be of interest, the Ali-Mikhail-Haq
(AMH) copula model. The AMH copula is detailed in Definition 11.23; see Kumar (2010).
Note that we have seen this copula mentioned previously when introducing the generators and
Laplace transform representations of the generator of Archimedean copulae models.
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Definition 11.23 (Ali-Mikhail-Haq Copula Models) The AMH copula distribution in the
bivariate case is given by

C (u1, u2) =
u1u2

1 − ρ(1 − u1)(1 − u2)
(11.103)

for copula parameter ρ ∈ [−1, 1]. The AMH copula parameter ρ has the following relationship to
Kendall’s τ and Spearman’s ρ rank correlations

τ =
3ρ− 2

3ρ
− 2(1 − ρ)2 ln(1 − ρ)

3ρ2 ,

ρ =
12(1 + ρ)di ln(1 − ρ)− 24(1 − ρ) ln(1 − ρ)

ρ2 − 3(ρ+ 12)
ρ

(11.104)

with di ln(x) =
∫ x

1
ln t
1−t dt.

11.2.5.3 Truncation Invariant Archimedean Members. The focus of this section
is to discuss in which settings and under what conditions can a copula distribution be truncation
invariant, that is the truncation of the marginal random variables will not affect the dependence
structure between the random variables. It should be noted that in this section we consider cases
in which the variables are all truncated, perhaps by different amounts. The truncation invari-
ance to special values of the random vectors has also been studied such as diagonal-invariance
and curve-invariance; see Charpentier and Segers (2007). Here we focus on the class of trun-
cation, invariant copula for complete truncation, which is interesting as such models will not
alter the measure of dependence such as Kendall’s tau or Spearman’s rho.

We start this section based on the bivariate discussion on survival copula functions in Oakes
(2005). Consider two loss random variables X1 and X2 with joint distribution FX1,X2 (x1, x2)
and joint survival function F X1,X2 . Define the marginal survival functions for each variable
respectively by F X1 (x1) = F X1,X2 (x1, 0) and F X2 (x2) = F X1,X2 (0, x2). Under the conditions
of Sklar’s theorem, one can show that there will be a unique copula denoted by CX1,X2 the links
the marginal survival functions to the joint as follows:

F X1,X2 (x1, x2) = C
(
F X1 (x1) , F X2 (x2)

)
. (11.105)

Now consider the conditional joint survival function of loss random variables X1,X2 as would
be of interest in joint tail conditional expectations and risk measures in OpRisk, given by
F X1,X2 (x1, x2|X1 > x,X2 > y), which is given by

F X1,X2 (x1, x2|X1 > x,X2 > y) =
F X1,X2 (x1, x2)

F X1,X2 (x, y)
, x1 > x, x2 > y. (11.106)

The marginal survival functions are then also easily obtained as

F X1,X2 (x1, y|X1 > x,X2 > y) =
F X1,X2 (x1, y)
F X1,X2 (x, y)

, x1 > x, x2 = y,

F X1,X2 (x, x2|X1 > x,X2 > y) =
F X1,X2 (x, x2)

F X1,X2 (x, y)
, x1 = x, x2 > y.

(11.107)
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Analogously one may also define a unique copula, denoted by C̃ , for the truncated joint survival
function given by

F X1,X2 (x1, x2|X1 > x,X2 > y) = C̃
(

F X1,X2 (x1, y)
F X1,X2 (x, y)

,
F X1,X2 (x, x2)

F X1,X2 (x, y)

)
. (11.108)

Now for the copula dependence structure to be invariant to truncation, this would imply that
one would have C = C̃ for all measurable events.

Remark 11.9 Having this property is beneficial for simulation and also estimation. For instance,
it would tell one that truncation of the individual loss random variables will not affect the mea-
sure or quantified levels of association that depend on the copula model, such as Kendall’s tau and
Spearman’s rho.

The characterization of such copula models was studied in Oakes (2005) where it was
shown that in the bivariate case the Clayton family of Archimedean copula will satisfy this
conditional invariance property.

In the context of multivariate survival functions, this property was also studied in Javid
(2009), where they extended such results to multivariate settings for d -dim with d > 2. In this
article, they demonstrate that products of algebraically independent Archimedean multivariate
Clayton copulas and standard uniform distributions are the only truncation invariant copu-
las. To generalize the aforementioned result, consider the multivariate extensions of the above
quantities that would produce a multivariate survival distribution and multivariate conditional
survival distributions given by

F X1,...,Xd (x1, . . . , xd )

= C
(
F X1 (x1) , . . . , F Xd (xd )

)
F X1,...,Xd (x1, . . . , xd | {X1 > y1, . . . ,Xd > yd})

= C̃
(

F X1,...,Xd (x1, y2, . . . , yd )

F X1,...,Xd (y1, y2, . . . , yd )
, . . . ,

F X1,...,Xd (y1, y2, . . . , xd )

F X1,...,Xd (y1, y2, . . . , yd )

)
.

(11.109)

In the d -variate case, the notion of truncation invariance in the copula structure would imply,
as discussed earlier in the trivariate case, that C̃ = C for all measurable sets. As discussed in
Javid (2009), the necessary condition for truncation invariance is given by considering for each
i ∈ {1, 2, . . . , d} the variable ai = F Xi (xi) and bi = F Xi (yi), where xi > yi, ai ≤ bi and one
has C = C̃ which implies the condition

C (a1, a2, . . . , ad )

C (b1, b2, . . . , bd )
= C

(
C (a1, b2, . . . , bd )

C (b1, b2, . . . , bd )
,

C (b1, a2, . . . , bd )

C (b1, b2, . . . , bd )
, . . . ,

C (b1, b2, . . . , ad )

C (b1, b2, . . . , bd )

)
.

(11.110)

For detailed examples in the general d -variate case of Archimedean copulae that will satisfy this
condition, see Javid (2009).

We provide a trivariate example that was studied in Sungur (1999) where they also discuss
the notion of truncation invariant dependence structure within the context of the Archimedean
copula family. They considered a slightly different structure, where one considers the con-
ditional probability for a trivariate random vector X = (X1,X2,X3), which is transformed
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through the marginals of each component to the unit cube [0, 1]3 that will produce a ran-
dom vector U = (U1,U2,U3) that is now uniquely characterized by the copula dependence
structure, generically denoted by C .

Now consider the conditional distribution of two of these components given the third is
constrained to some set, event, or region of the hypercube. For instance, this may yield the
example given by the following copula identity

Pr [U1 ≤ u1,U2 ≤ u2|U3 ≤ u3] =
C (u1, u2, u3)

u3
, (11.111)

corresponding to the joint distribution of (U1,U2) conditional on the restriction of the third
component where U3 is truncated to remove to the interval [u3, 1]. If one denotes the truncated
vector by notation Ũ , then one may consider under what conditions does the resulting copula
for the marginal random vector having removed U3 to produce U −3 = (U1,U2) correspond
to the copula for the truncated distribution Ũ −3 = (U1,U2) | {U3 ≤ u3}. This question was
addressed in Sungur (1999) and also in Oakes (2005) and relates directly to considering which
members of the Archimedean family of copulae will be truncation invariant. The first result that
was shown relates to the member of the Archimedean copula family in the three-dimensional
case known as the Cook and Johnson Copula as detailed in Definition 11.24; see details origi-
nally developed in the bivariate setting in Cook and Johnson (1981).

Definition 11.24 (Cook and Johnson Archimedean Copula (Three-Dimensional)) A ran-
dom vector U ∈ [0, 1]3 has a distribution in the Cook–Johnson subfamily of Archimedean copula
distribution functions if the distribution is given by

C (u1, u2, u3) =
(
u−ρ

1 + u−ρ
2 + uρ3 − 2

)− 1
ρ . (11.112)

with ρ > 0 and Archimedean generator given by

ψCJ (t) = ρ−1 (t−ρ − 1
)
. (11.113)

One can then show that this one-parameter Archimedean family of copula model satisfies
the conditions required to be truncation invariant. In general, one can state the conditions for
truncation invariance, for instance, in three dimensions according to the following result in
Theorem 11.7; see details in Sungur (1999).

Theorem 11.7 (Trivariate Truncation Invariant Copula Representation) Consider random
variables {Xi}3

i=1 that form a random vector X with a copula distribution CX1,X2,X3 . The depen-
dence structure of a random pair of components

(
Xj,Xk

)
over the right-sided marginal truncation

region TXi = {xi : xi > ai} given by CX̃j,X̃k

(
uj, uk

)
is independent of ai iff CX1,X2,X3 takes the

following form:

CX1,X2,X3 (u1, u2, u3) = CXj,Xk

(
CXj,Xi

(
uj, ui

)
ui

,
CXk,Xi (uk, ui)

ui

)
ui, i �= j �= k ∈ {1, 2, 3} .

(11.114)
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In addition, one can state the following general result for any d -variate Archimedean copula
to be truncation invariant as detailed in Theorem 11.8; see discussions in Sungur (1999).

Theorem 11.8 (d -Variate Truncation Invariant Archimedean Copulae Generators)
Consider a d-dimensional random vector X with an Archimedean copula given by

CX (u1, u2, . . . , ud ) = ψ[−1] (ψ (u1) + · · ·+ ψ (ud )) . (11.115)

The copula will be truncation dependence invariant iff its distribution takes either of the following
forms

cX (u1, u2, . . . , ud ) =

n∏
i=1

ui, (11.116)

or the form

CX (u1, u2, . . . , ud ) =

(
n∑

i=1

u−ρ
i − n + 1

)− 1
ρ

. (11.117)

The only two forms of Archimedean generator that will satisfy these forms are given by

ψ(x) = γ ln x or ψ(x) = δ (xγ − 1) (11.118)

for some parameters γ or δ that will ensure the generator is a valid generator for an Archimedean
copula.

11.2.6 HIERARCHICAL AND NESTED ARCHIMEDEAN COPULAE

The idea of nested Archimedean copula models is to try to relax the restrictive symmetry
enforced by working with an exchangeable Archimedean copula. Allowing for asymmetry, while
still working with exchangeable Archimedean copula families can be achieved through compo-
sition of different copulas known as “nesting” or in other cases as a “hierarchical” structure. It is
important to consider when composite Archimedean copulas will produce a valid density; this
was considered in McNeil (2008), see the result in Theorem 11.9.

Theorem 11.9 (Composite Archimedean Generators) Consider completely monotone Archi-
medean generators ψi ∈ ψ∞ for i ∈ {0, 1, . . . , d} such that the composite function formed
by ψ−1

k ◦ ψk+1 have completely monotone derivatives for any k ∈ {0, 1, . . . , d − 3}, then
C (u1, . . . , ud ;ψ0, ψ1, . . . , ψd−2) is a copula.

From this result, one can construct many types of copulae model using the standard
Archimedean copula generators. The class of hierarchical archimedean copula (HAC) mod-
els were considered in Savu and Trede (2006) and involve the joining of two or more stan-
dard bivariate or higher-dimensional Archimedean copulas by another Archimedean copula
in such a manner that the resulting dependence structure is well defined and interpretable.
Effectively, the approach involves developing multilevel hierarchical Archimedean copulae
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families. An example of such as structure was developed in Joe (1997) to produce a fully nested
d -dimensional copula that no longer has d -exchangeability but can be reduced to have partial
exchangeability that allows for greater flexibility in the dependence structures that can be cap-
tured. The fully nested d -variate Archimedean copula case involves considering d−1 generators
and constructing component wise the composite copula given by

C (u1, u2, . . . , ud ) = ψ−1
d−1

(
ψd−1 ◦ ψ−1

d−2

[
. . .
(
ψ2 ◦ ψ−1

1 [ψ1 (u1) + ψ2 (u2)] + ψ2 (u3)
)

+ · · ·+ ψd−2 (ud−1)] + ψd−1 (ud )
)
. (11.119)

In this structure, one achieves d(d −1)/2 distinct bivariate margins and d −1 copulas with the
corresponding parameters, the required conditions on the generators and composite functions
of the generators, and inverse generators obtained in Joe (1997).

The second approach that has been proposed involves a mixture of exchangeable and fully
nested copulas, which is known as a partially nested model. As discussed in Savu and Trede
(2006), such a family of copula models is defined for any dimension d ≥ 4 where the four-
dimensional case involves

C (u1, u2, . . . , u4) = ψ−1 (ψ ◦ ψ−1
12 [ψ12 (u1) + ψ12 (u2)] + ψ ◦ ψ−1

34 [ψ34 (u3) + ψ34 (u4)]
)

(11.120)

with generators ψ, ψ12, and ψ34; see discussions in Savu and Trede (2006). In this case, the
random variables U1 and U2 are exchangeable, as are U3 and U4. The remaining pairs are not
exchangeable in this construction.

The most general approach to HAC copulas developed in Savu and Trede (2006) involves
the developing of a multivariate tree–based copula structure for a d -variate copula with a
framework of L levels indexed by l ∈ {0, 1, 2, . . . , L}. Each of the levels involves nl distinct
components:

• Level l = 0. One has at the lowest base level components u1, . . . , ud ;
• Level l = 1. One has n1 standard multivariate Archimedean copulae that group the vari-

ables u1, . . . , ud into copulae C1,j for j ∈ {1, 2, . . . , n1} given by

C1,j
(
u1,j
)
= ψ−1

1,j

⎛
⎝∑

u1,j

ψ1,j
(
u1,j
)⎞⎠ (11.121)

with ψ1,j the generator for copula C1,j and u1,j the associated subset of variables from
u1, . . . , ud that are grouped. Note that the copulae C1, 1, . . . ,C1,n1 may be different
Archimedean families such as Frank, Gumbel, or Clayton, etc.;

• Level l ∈ {2, . . . , L − 1}. One has nl generalized Archimedean copulas comprising the
aggregation of the copulas from l − 1. The multivariate Archimedean copulae that group
the l − 1 copulae grouped by Cl,j for j ∈ {1, 2, . . . , nl} are given by

Cl,j
(
C l−1,j

)
= ψ−1

l,j

⎛
⎝∑

C l,j

ψl,j
(
C l,j
)⎞⎠ (11.122)
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with ψl,j the generator for copula Cl,j and C 1,j the associated subset of all copulas from
level l − 1 combined in copula Cl,j;

• Level l = L. There is just one copula linking the remaining copula groups given by CL,1.

The technical conditions that will guarantee this structure produces a valid hierarchical copula
structure can be obtained in Savu and Trede (2006, section 3).

In practice, one would typically work with partial nesting in an Archimedean copula model
such as given by the model

C (u1, . . . , ud ) = C (C (u1,1, . . . , u1,d1 ;ψ1) , . . . ,C (us,1, . . . , us,ds ;ψs) ;ψ0)

= ψ0

⎛
⎝ s∑

i=1

ψ−1
0

⎛
⎝ψi

⎛
⎝ di∑

j=1

ψ−1
i
(
ui,j
)⎞⎠
⎞
⎠
⎞
⎠ (11.123)

with d =
∑s

i=1 di.
One can simulate from a nested Archimedean copula model via an algorithm originally

developed in McNeil (2008); see Algorithm 11.7. This can of course be trivially modified to
sample from partially nested Archimedean copula models.

Algorithm 11.7 (Sampling from Nested Archimedean Copula Models)

1. Sample V0 ∼ F0 = L−1 [ψ0];
2. Sample (X2, . . . ,Xd ) from C (u2, . . . , ud ;ψ0,1 (·;V0) , . . . , ψ0,d−2 (·;V0));
3. Sample X1 ∼ Uniform(0, 1);

4. Return (U1, . . . ,Ud ) where Ui = ψ0

(
− 1

V0
ln (Xi)

)
for i ∈ {1, 2, . . . , d}.

11.2.7 MIXTURES OF ARCHIMEDEAN COPULAE

In this section, we observe the fact that in practice it is often highly beneficial to consider
constructing mixture models for the copula dependence as detailed in Lemma 11.4. Such models
allow for asymmetric features in the tail dependence as well as flexible models with additional
degrees of freedom when modeling higher-dimensional multivariate random vectors. That is,
the advantage of this approach is that one may consider asymmetric dependence relationships in
the upper tails and the lower tails in the multivariate model. In addition, one can perform a type
of model selection purely by incorporating into the estimation the mixture weights associated
with each dependence hypothesis. That is, the data can be utilized to decide the strength of each
dependence feature as interpreted directly through the estimated mixture weight attributed to
the feature encoded in the particular mixture component from the Archimedean family.

Lemma 11.4 Consider copula distributional members Ci (u1, u2, . . . , un) ∈ An, where An

defines the space of all possible n-variate distributional members of the Archimedean family
of copula models, specified in Lemma 11.3. Any finite mixture distribution constructed from
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such copula components that admit tractable density functions ci (u1, u2, . . . , un), denoted by
c̃ (u1, u2, . . . , un) =

∑m
i=1 wici (u1, u2, . . . , un), such that

∑m
i=1 wi = 1, is also the density

of a copula distribution.

The proof of Lemma 11.4 is provided next.

Proof : The proof of Lemma 11.4 requires one to demonstrate that the resulting distribution
function

C̃ (u1, u2, . . . , un) =

∫
[0,u1]×[0,u2]×···×[0,un]

c̃ (x1, x2, . . . , xn) dx1:n

=
∑
i=1m

wi

∫
[0,u1]×[0,u2]×···×[0,un]

ci (x1, x2, . . . , xn) dx1:n

=
∑
i=1m

wiCi (u1, u2, . . . , un)

satisfies the two conditions of a n-variate copula distribution given in (Definition 2.10.6) of
Nelsen (1999). The first of these conditions requires that for every u = (u1, u2, . . . , un) ∈
[0, 1]n, one can show that C̃ (u) = 0 if at least one coordinate of u is 0. Clearly since we
have shown that C̃ (u) =

∑
i=1m wiCi (u) and given each member Ci (u1, u2, . . . , un) ∈ An

is defined to be in the family of Archimedean copulas each of which therefore satisfies this
condition for all such points u, then it is trivial to see that the probability weighted sum of
such points also satisfies this first condition. Secondly, one must show that for every a and b
in [0, 1]n, such that a ≤ b (i.e., ai < bi ∀i ∈ {1, 2, . . . , n}) the following condition on the
volume for copula C̃ is satisfied, VC̃ ([a, b]) ≥ 0. As in Nelsen (1999), we adopt the notation
for the n-box, [a, b], representing [a1, b1] × [a2, b2] × · · · × [an, bn] and we define the n-box

volume for copula distribution C̃ by (Definition 2.10.1, p. 43) of Nelsen (1999) giving

VC̃ ([a, b]) =
∑

sgn(c)C̃ (c)

= �b1
a1
�b2

a2
· · ·�bn

an
C̃ (c) ,

where the domain DomC̃ of the mixture copula C̃ satisfies [a, b] ⊆ DomC̃ . In addition, we
note that this sum is understood to be taken over all vertices c of n-box [a, b] and sgn(c) = 1
if ck = ak for an even number of ks or sgn(c) = −1 if ck = ak for an odd number of ks.
Equivalently, we consider

�bk
ak

C̃ (t) = C̃ (t1, t2, . . . , tk−1, bk, tk+1, . . . , tn)− C̃ (t1, t2, . . . , tk−1, ak, tk+1, . . . , tn) .

(11.124)

In the case of the mixture copula, we can expand the volume of the n-box [a, b] as follows:

VC̃ ([a, b]) =
∑

sgn(c)C̃ (c) =
m∑

i=1

∑
wisgn(c)Ci (c) =

m∑
i=1

∑
wiVCi([a, b]).

Hence, we see that since each component Ci (u1, u2, . . . , un) is a member of the set
of Archimedean copula distributions An, therefore for each component we have that
VCi([a, b])≥ 0 for all i ∈ {1, 2, . . . ,m}.
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Remark 11.10 We note that the tail dependence of a mixture copula can be obtained as the
linear weighted combination of the tail dependence of each component in the mixture weighted
by the appropriate mixture weight, as discussed in, for example, Nelsen (1999) and Peters et al.
(2012b).

11.2.8 MULTIVARIATE ARCHIMEDEAN COPULA
TAIL DEPENDENCE

We conclude this section on discussion on the Archimedean copula family by making explicit
expressions for the general multivariate tail dependence measure introduced earlier. In the case
of the Archimedean copula families discussed, one may obtain several useful closed form expres-
sions for quantification of this tail dependence measure with respect to the copula parameter.

The explicit generalized multivariate expressions for Archimedean copulae, Equations
(11.125) and (11.126), were derived in De Luca and Rivieccio (2012) and are presented in
Definition 11.25 for the upper tail dependence and in Definition 11.26 for the corresponding
lower tail dependence.

Definition 11.25 (Generalized Archimedean Upper Tail Dependence)
Let X = (X1, . . . ,Xd )

T be a d-dimensional random vector with marginal distribution functions
F1, . . . , Fd . The coefficient of upper tail dependence is defined as

λ1,...,h|h+1,...,d
u = lim

ν→1−
P
(
X1 > F−1(ν), . . . ,Xh > F−1(ν)|Xh+1 > F−1(ν), . . .,Xd > F−1(ν)

)

= lim
t→0+

∑d
i=1

(( d
d−i

)
i(−1)i [(ψ−1)′(it)

])
∑d−h

i=1

(( d−h
d−h−i

)
i(−1)i [(ψ−1)′(it)]

) ,
(11.125)

where (ψ−1)′ is the derivative of the inverse generator. Here, h is the number of variables conditioned
on (from the d considered).

Definition 11.26 (Generalized Archimedean Lower Tail Dependence)
Let X = (X1, . . . ,Xd )

T be a d-dimensional random vector with marginal distribution functions
F1, . . . , Fd . The coefficient of lower tail dependence is defined as

λ
1,...,h|h+1,...,d
l = lim

ν→0+
P
(
X1 < F−1(ν), . . . ,Xh < F−1(ν)|Xh+1 < F−1(ν), . . . ,Xd < F−1(ν)

)
= lim

t→∞

d
d − h

(ψ−1)′(dt)
(ψ−1)′((d − h)t)

, (11.126)

where (ψ−1)′ is the derivative of the inverse generator. Here, h is the number of variables conditioned
on (from the d considered).
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table 11.4 Kendall’s tau and tail dependence coefficients

Family τ λL λU

Clayton ρ
ρ+2 2− 1

ρ 0

Frank 1 + 4D1(ρ)−1
ρ

0 0
Gumbel (ρ−1)

ρ
0 2 − 2

1
ρ

The exact nonlinear transformations between the copula parameter ρ and Kendall’s rank
correlation τ for the Clayton, Frank, and Gumbel copulae can be seen in Table 11.4.

Remark 11.11 In defining the mapping for the Frank copula between the copula parameter and
the upper tail dependence, one utilizes the Debye function of order one given by

D1 =
1
ρ

ρ∫
0

t
exp(t)− 1

dt. (11.127)

Next we also briefly mention the known closed from results for the tail dependence of the
AMH copula family. The lower and upper tail dependence of the AMH copula family is given
in Kumar (2010) according to the result in Proposition 11.5.

Proposition 11.5 (Upper and Lower Tail Dependence for AMH Copula) Considering the
bivariate copula distribution in the AMH family with parameter ρ ∈ [−1, 1], then the upper
and lower tail dependence are given by

λl = lim
u↓0

C(u, u)
u

=

{
0.5, if ρ = 1,
0, if ρ < 1,

λu = lim
u↑1

1 − 2u + C(u, u)
1 − u

= 0.

(11.128)

This result shows that under an AMH copula two loss random variables will be asymp-
totically dependent only if the copula parameter is on the boundary ρ = 1, otherwise they
are asymptotically independent. Clearly, this shows that in practice one must be careful to
undertake estimation of such parameters with care as we will see later that one value may admit
an asymptotic compound process expansion, whereas others will not.

11.3 Copula Parameter Estimation in Two Stages:
Inference for the Margins

The inference function for margins (IFM) technique introduced in Joe (2005) provides a com-
putationally faster method for estimating parameters than full-maximum likelihood, that is,
simultaneously maximizing all model parameters and produces in many cases a more stable
likelihood estimation procedure. An alternative approach to copula model parameter estima-
tion that is popular in the literature is known as the maximum partial likelihood estimator
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(MPLE) detailed in Genest et al. (1995). We begin this section with a brief description of the
MPLE and then introduce the IFM methodology.

There are two considerations to be made when applying these methodology. The first is
what assumptions are suitable for the marginal distributions, and the second is what is the
suitable class of copula dependence models. In terms of the marginal distributions, one has
really two choices:

• Parameteric Marginal Models. To utilize particular parameteric families of marginal dis-
tributions, where each possible parameter model is characterized by model index Mj for J
total model classes under consideration with j = {1, 2, . . . , J} and for each marginal ran-
dom variable (loss process) one has parameter vector for the j-th model given by θi

(
Mj
)
,

which produces the set of marginal models under consideration for the case of d -loss pro-
cesses given by

{
FXi

(
xi;θi

(
Mj
)
,Mj

)}d
i=1 .

• Nonparametric Marginal Models (Empirical Distribution Function). One may alter-
natively choose to utilize a nonparametric marginal model for some or all of the loss pro-
cesses in which case one would assume that for the i-th marginal loss process the following
empirical distribution function approximation is considered:

F̂Xi (xi) =
1
ni

ni∑
j=1

I
[
Xi,j ≤ xi

]
. (11.129)

This is only sensible if sufficient loss data ni is available to make an accurate representation.

11.3.1 MPLE: COPULA PARAMETER ESTIMATION

In the MPLE estimation procedure, the copula parameters are estimated based on marginal
distributions obtained from the emprical distribution functions of each individual loss process
where for the i-th marginal loss process the following empirical distribution function approxi-
mation is considered for a given data realization:

F̂Xi (xi) =
1
ni

ni∑
j=1

I
[
Xi,j ≤ xi

]
. (11.130)

The resulting likelihood estimation for the generic copula parameter ρ is achieved by maximiz-
ing the log likelihood given by

l(ρ) =
n∑

i=1

ln
[
cρ
(

F̂X1 (x1,i) , . . . , F̂Xd (xd,i)
)]

. (11.131)

Note that in practice it is wise to rescale each of the marginals by n/(n+ 1) to avoid numerical
problems if the i-th value ui in the copula approaches the boundaries 0 or 1 causing the copula
density to grow unboundedly large. Note that this can be rewritten in terms of ranks or pseudo
data samples. The properties of the estimator for the parameter ρ that maximizes this pseudo
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data likelihood have been shown in Genest et al. (1995) under mild regularity conditions on
the copula family considered to be a unique solution with the MPLE estimator also satisfying
asymptotic normality.

11.3.2 INFERENCE FUNCTIONS FOR MARGINS (IFM): COPULA
PARAMETER ESTIMATION

Here, we consider the likelihood-based estimation in two stages via inference on the margins,
which is studied with regard to the asymptotic relative efficiency of the two-stage estimation
procedure compared with maximum likelihood estimation in Joe (2005) and in Hafner and
Manner (2010). It can be shown that the IFM estimator is consistent under weak regularity
conditions. However, it is not fully efficient for the copula parameters. Nevertheless, it is widely
used for its ease of implementation and efficiency in large data settings. For details on what can
go wrong in the estimation of the copula parameter when the marginals are poorly selected in
the two-stage IFM procedure, refer to Kim et al. (2007).

11.3.2.1 Stage 1: Fitting the Marginal Distributions via MLE. In the first stage,
one has to fit the marginal distributions and select the most appropriate marginal model for
each individual loss process. For instance, in the case of a LogNormal model, this is achieved
trivially since we may utilize the well-known analytic expressions for the MLE estimates:

μ̂ =
1
N

∑
j

ln
(
xj
)
,

σ̂ =

√
1
N

∑
j

(
ln xj
)2 − μ̂2.

(11.132)

If one is considering a log generalized Gamma distribution (l.g.g.d.), the estimation for the three
model parameters can be significantly more challenging due to the fact that a wide range of
model parameters, especially for k, can produce similar resulting density shapes; see discussions
in Lawless (1980). To overcome this complication and to make the estimation efficient, it is
proposed to utilize a combination of profile likelihood methods over a grid of values for k and
perform profile likelihood based MLE estimation for each value of k, then for the other two
parameters b and u. The differentiation of the profile likelihood for a given value of k produces
the system of two equations given by

exp(μ̃) =

[
1
n

n∑
i=1

exp

(
yi

σ̃
√

k

)]σ̃√k

,

∑n
i=1 yi exp

(
yi

σ̃
√

k

)
∑n

i=1 exp
(

yi

σ̃
√

k

) − y − σ̃√
k
= 0,

(11.133)

with n the number of observations, yi = ln xi and the parameter transformations σ̃= b√
k

and
μ̃ = u+b ln k. The second equation is solved directly via a simple root search for the estimation
of σ̃ and then substitution into the first equation provides the estimation of μ̃. Note that, for
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each value of k we select in the grid, we get the pair of parameter estimates μ̃ and σ̃, which
can then be plugged back into the profile likelihood to make it purely a function of k, with the
estimator for k then selected as the one with the maximum likelihood score.

11.3.2.2 Stage 2: Fitting the Mixture Copula via MLE. In the second stage of
the esitmation, one aims to estimate the copula model parameters, given the fixed marginal

distributions
{

FXi

(
xi; θ̂ (Mi)

)}d

i=1
, where Mi represents the model selected for the i-th loss

process. The resulting log-likelihood that will be optimized in general for the copula parameter,
generically denoted by ρ, is given by

l(ρ) =
n∑

i=1

ln
[
cρ
(

FX1

(
x1,i; θ̂ (M1)

)
, . . . , FXd

(
xd,i; θ̂ (Md )

))]
. (11.134)

To illustrate this, we consider the following mixture copula model given by components
of the Archimedean families of Clayton, Frank, and Gumbel (C-F-G) models with the copulae
parameters (ρClayton, ρFrank, ρGumbel ) and the copulae mixture parameter weights

(λClayton, λFrank, λGumbel).

These parameters will be estimated in the second stage of the IFM procedure by using maximum
likelihood on the data after conditioning on the selected marginal distribution models and their
corresponding estimated parameters obtained in stage 1. These models are utilized to transform
the data using the distribution function with the MLE parameters (μ̂ and σ̂) if the LogNormal
model is used or (k̂, û, and b̂) if the l.g.g.d. is considered.

Therefore, in this second stage of MLE estimation, one aims to estimate either the one-
parameter mixture of C-F-G components with parameters

θ = (ρClayton, ρFrank, ρGumbel , λClayton, λFrank, λGumbel)

or, for instance, the two-parameter mixture of outer-power transformed mixture components
OC-OF-OG components with parameters

θ = (ρClayton, ρFrank, ρGumbel , λClayton, λFrank, λGumbel , βClayton, βFrank, βGumbel ).

This can be achieved in each case by the conditional maximum likelihood procedure. To achieve
this, we need to maximize the log likelihood expressions for the mixture copula models, which
in this framework are given generically by the following function for which we need to find
the mode,

l(θ) =
n∑

i=1

ln cC−F−G(F1(Xi,1; μ̂1, σ̂1), . . . , Fd (Xi,d ; μ̂d , σ̂d )) +

n∑
i=1

d∑
j=1

ln fj(Xi,j; μ̂j, σ̂j)

(11.135)

with respect to the parameter vector θ.
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For example in the case of the Clayton–Frank–Gumbel mixture copula, we need to maxi-
mize on the log-scale the following expression.

l(θ) =
n∑

i=1

ln
[
λC
(
cC
ρC

(F1 (Xi,1; μ̂1, σ̂1) . . . , Fd (Xi,d ; μ̂d , σ̂d ))
)

+ λF
(
cF
ρF

(F1 (Xi,1; μ̂1, σ̂1) . . . , Fd (Xi,d ; μ̂d , σ̂d ))
)

+ λG
(
cG
ρG

(F1 (Xi,1; μ̂1, σ̂1) . . . , Fd (Xi,d ; μ̂d , σ̂d ))
) ]

.

(11.136)

This optimization is achieved via a gradient descent iterative algorithm that can be quite robust
given the likelihood surfaces considered in these models, even when real data are utilized, see
discussion in Ames et al. (2013). In some cases, for the mixture copula models, it would also
be suitable to utilize an EM-based estimation algorithm as discussed in Chapter 7.
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Chapter Twelve

Examples of LDA Dependence
Models

In this third chapter on dependence modelling in OpRisk, we utilise the theory and models
developed in the previous two chapters to construct a range of OpRisk LDA models that are
directly applicable to practitioners. These include:

• Multiple risk LDA compound Poisson processes and Levy copulas;
• Multiple risk LDA models with dependence between frequencies via copula;
• Multipel risk LDA models with dependence between event times via copula;
• Multiple risk LDA models with dependence between severities via copula;
• Multiple risk LDA models with common shock process dependence features and self

chaining copula models;
• Multiple risk LDA models with dependence between annual (aggregate) losses via copula;

and
• Multiple risk LDA models with dependence in the risk profiles of the LDA model fre-

quency and severity parameters.

We then conclude the chapter with a complete model of multiple risk LDA models with
multiple data sources combined and dependence structures incorporated. We demonstrate the
properties of such a model and show how to make inference with this model under a Bayesian
formulation with MCMC samplers via a Slice sampler. A numerical example is developed and
the predictive posterior distribution specified.

12.1 Multiple Risk LDA Compound Poisson Processes
and Lévy Copula

Characterizing multivariate Lévy processes has been an active topic in recent years for financial
mathematics, risk, and insurance. In general, there are three well-known methods to construct
a multidimensional Lévy process:

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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1. Subordination of multidimensional Brownian motion;
2. Linear transformation of independent Lévy processes;
3. Multi-dimensional Lévy measure constructions.

As noted in the thesis of Chen (2008), the first approach, though widely studied, tends to
have a feature that is not really desirable for OpRisk modeling settings. The problem associ-
ated with construction of a multivariate Lévy process via subordination of a multidimensional
Brownian motion is that under such a construction the heavy tail behaviors of the joint process
are restricted to be highly similar in all marginals. For instance, the widely considered marginal
Lévy process given by a variance Gamma family, when constructed into a multivariate Lévy
process in this fashion, will produce a joint process in which kurtosis are almost identical in
all marginal processes. This restrictive feature makes the flexibility of the model insufficient
to capture the diversity in attributes of a range of OpRisk LDA risk processes in different risk
types and business structures. This effect is not surprising since under such a construction, one
imposes the property that all marginal processes will share the same subordinator that is the
source of all heavy-tail behavior.

The second approach mentioned based on linear transformation of independent Lévy pro-
cesses for each risk process LDA model will produces Lévy processes with dependence. This
approach is effectively what will be discussed in a section on common factor–based models that
induce dependence between the individual risk Lévy processes for each risk process. The key
to this approach is to construct the marginal processes according to a idiosyncratic process plus
some common process. The dependence comes from the common process while the idiosyn-
cratic process makes it possible to match some pre-specified marginals. One drawback of such
an approach, apart from the fact that it is not always trivial to figure out the joint dependence
induced in the multivariate Lévy process, is that the separation of marginal models and depen-
dence structure that copulas offer is lost. That is to say, under such an approach, one cannot
separate the dependence part from the marginals. If the dependence is changed by changing
the common process, then consequently the entire marginal process is also changed.

In this section, we focus on the third of these approaches that aligns with the approach
adopted in Böcker and Klüppelberg (2008, 2009) to model dependence in frequency and sever-
ity between different risks at the same time using a new concept of Lévy copulas; see in Cont
and Tankov (2004, sections 5.4–5.7). It is assumed that each risk follows to a univariate com-
pound Poisson process (that belongs to a class of Lévy processes). Then, the idea is to introduce
the dependence between risks in such a way that any conjunction of different risks constitutes a
univariate compound Poisson process. It is achieved using the multivariate compound Poisson
processes based on Lévy copulas. Note that if dependence between frequencies or annual losses
is introduced via copula as in (12.16) or (12.34), then the conjunction of risks does not follow
to a univariate compound Poisson.

More specifically, in this section, we consider the d risk processes each under an LDA
structure given generically by the notation for the i-th risk process in year t according to

Z (i)
t =

N (i)
t∑

n=1

X (i)
n (t). (12.1)

Then we are interested in the aggregate of the risk processes for the bank or business unit level
total annual loss given by
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Z (T )
t =

d∑
i=1

Z (i)
t . (12.2)

We note that when the individual loss process are compound Poisson processes each with
Poisson intensity function λ(i) > 0 then the resulting total aggregate loss process is again
a compound Poisson process if the loss processes are considered independent. These results
are somewhat elementary and have been discussed elsewhere in the book, so in this section
the study of the influence of dependence on elements of this model structure is considered.
In particular, the question of what dependence structure will be preserving of the compound
Poisson model structure is considered. In particular, the LDA models for each risk process
will be restricted to being Lévy processes such that they form for d risk processes a multivari-
ate d -dimensional Lévy process. In general at a time t, the d -variate vector of annual losses
Z t =

(
Z (1)

t , . . . ,Z (d)
t

)
for a multivariate Lévy process is uniquely defined by the law of Z t

at a fixed time t. Hence, one could define a copula between each marginal component, but it
would be highly beneficial to do so in such manner so as to preserve the Lévy process struc-
ture of the random vector and its marginals. This turns out to be not so simple; one cannot
just apply any copula to the random vector if the preservation of the Lévy process structure is
the goal. So the question naturally arises how does one formulate such a class of dependence
structures?

In Kallsen and Tankov (2006), they note that if one considers a bivariate setting and con-
siders two infinitely divisible measures ν and μ, then even in this simple general setting it is
highly nontrivial to characterize the class of copulas that will preserve the property of infinite
divisibility, some notable exceptions being the Gaussian and α-stable laws.

Instead, the idea of Kallsen and Tankov (2006) is to develop a notion of copula dependence
(not strictly a copula in the sense presented earlier) that will instead be based directly on the
Lévy triplet representation of the multivariate Lévy processes; see detailed discussions in Peters
and Shevchenko (2015). In particular, they note that considering the drift, volatility, and Lévy
measure in the triplet (γ, a, ν) of the process one can utilize this characterization of the process
in a time-independent manner (rather than the finite dimensional distributions specification
that may be time dependent) to capture the dependence structure of the d -dimensional Lévy
process. In fact, this is not a new concept and has been utilized previously in the literature
on stable processes; see discussions in Samorodnitsky and Taqqu (1997). In this context, they
observe that the location parameter in the triplet γ is not required in the considerations of
the dependence structure of the multivariate Lévy process. Furthermore, they observe that the
dependence structure of the Brownian motion component of the Lévy process is characterized
completly by the covariance matrix arising from the volatility component of the triplet a. Hence,
the remaining aspect of the multi-variate Lévy process, the Lévy spectral measure ν, must hold
the required properties that are sought, namely, the valid properties of the dependence structure
between the marginal Lévy processes to ensure the resulting multivariate process is still a Lévy
process with Lévy process marginals.

If one observes that the continous component and jump components of a Lévy process are
stochastically independent, then the remaining component of the triplet, the Lévy measure ν,
must charcterize the dependence in the jump component of the Lévy process.

In particular, we consider the model structures proposed in Cont and Tankov (2004),
Kallsen and Tankov (2006), Barndorff-Nielsen and Lindner (2004), and specifically in the
context of OpRisk the multivariate models proposed in Böcker and Klüppelberg (2010). In
each of these studies, the authors consider the family of Lévy processes.
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For brevity, we recall that a Lévy measure ν on the space Rn is a measure with no atom at
the origin and statisfies the condition

∫
Rn

(
|x|2 ∧ 1

)
ν(dx) < ∞ (12.3)

with Euclidean norm |x|2 = x2
1 + · · · + x2

n . Furthermore, it will be convenient to also denote
the marginal Lévy measures ν1, . . . , νn that are each one-dimensional Lévy measures.

A positive Lévy measure that will be the focus of this section on Lévy copulae is a measure
with strictly positive support given by the product space Rn = [0,∞)

m. To formally introduce
a Lévy measure on this space one must first introduce the image measure of ν, which will be
denoted by χ and corresponds to the following mapping for Borel sets B in [0,∞]n given by

χ(B) := (Qν) (B) = ν
(
Q−1(B)

)
, (12.4)

where the function Q is a bijection mapping given by

Q := Qn : [0,∞]
n �→ [0,∞]

n
, (x1, . . . , xn) �→

(
x−1

1 , . . . , x−1
n
)
; (12.5)

see detailed discussion in Barndorff-Nielsen and Lindner (2004).
Note that since ν is a Lévy measure, one has that the measure χ is also finte on any closed

rectangles in [0,∞]n that do not contain the point (∞, . . . ,∞). From these two measures,
one can define a volume function with respect to the Lévy measure ν according to

Fν : [0,∞]n �→ [0,∞] (12.6)

and given explicitly with respect to the image measure of ν given by χ according to the function

F (x1, . . . , xn) :=

{
χ ([0, x1]× · · · × [0, xn]) , (x1, . . . , xn) �= (∞, . . . ,∞)

∞, (x1, . . . , xn) = (∞, . . . ,∞).
(12.7)

It should also be noted that for each marginal Lévy measure νi one can associate the image
measure χi := Qiνi that allows one to define the volume function Fi for νi, which is given for
all xi ∈ [0,∞] by

Fi (xi) = F (∞,∞, . . . ,∞, xi,∞, . . . ,∞) . (12.8)

Given these components, one may now formally define the Lévy copula as given in
Definition 12.1; see details in Kallsen and Tankov (2006) and Barndorff-Nielsen and Lind-
ner (2004).

Definition 12.1 (Lévy Copula) Consider a positive n-dimensional Lévy measure ν with
marginal one-dimensional Lévy measures {νi}n

i=1 and a volume function F with marginal volume
functions {Fi}n

i=1. Then there exists a positive Lévy copula C̃ such that

F (x1, . . . , xn) = C̃ (F1 (x1) , F2 (x2) , . . . , Fn (xn)) , ∀x1, . . . , xn ∈ [0,∞]. (12.9)



�

�

“Cruz_Driver1” — 2015/1/8 — 13:08 — page 466 — #5
�

�

�

�

�

�

466 CHAPTER 12 Examples of LDA Dependence Models

The Lévy copula C̃ is then uniquely determined on RanF1 × · · · × RanFn. Conversely, if one has
copula C̃ that is a positive Lévy copula and {Fi}n

i=1 are volume functions of the one-dimensional
positive Lévy measures {νi}n

i=1, then Equation (12.9) defines a positvie measure ν with volume
function F and marginal Lévy measures {νi}n

i=1.

Remark 12.1 It is clear that this definition of a Lévy copula is the Lévy measure analog of Sklar’s
theorem for standard copula distributions for continous marginals. In the aforementioned definition
one can consider the Lévy copula as a transformation of special Lévy measures.

We note that this is not the only way to consider caracterizing the Lévy copula. In Böcker
and Klüppelberg (2010), they adopt a different approach to presenting the definition of a Lévy
copula by first considering the restriction of the aggregate compound process Z (T )

t as defined
previously to be a Lévy process and therefore represented by a Lévy–Khinchine characteristic
function representation according to

E [exp (i 〈θ,Z t〉)] = exp

⎧⎪⎨
⎪⎩t
∫
R

d
+

(exp(i 〈θ, x〉 − 1) ν(dx)

⎫⎪⎬
⎪⎭ , θ ∈ R

d , (12.10)

with ν a measure on R
d
+ = [0,∞)d , which is the positive Lévy measure of Z t with

〈θ,Z t〉 =
d∑

i=1

θiZ
(i)
t , (12.11)

where Z t =
(

Z (1)
t , . . . ,Z (d)

t

)
.

Remark 12.2 The Lévy measure ν is clearly independent of time and can be utilized to capture
the dependence between components of the Poisson compound processes (Lévy processes) characterized
by the vector of annual losses Z t =

(
Z (1)

t , . . . ,Z (d)
t

)
. The Lévy copula for this Lévy measure

effectively models the dependence between the jumps that occur between the different Lévy processes.

In Böcker and Klüppelberg (2010), the Lévy copula is represented through specification
of the Tail measure as detailed in Definition 12.2.

Definition 12.2 (Tail Measure) Consider the multivariate d-dimensional Lévy process Z that is
restricted to have a positive spectrum in R

d with Lévy measure ν. The tail integral of the Lévy
measure is defined to be the mapping ν : [0,∞]d �→ [0,∞]d , which satisfies for z = (z1, . . . , zd )
the following properties:

1. The tail measure is given by ν = ν ([z1,∞)× · · · × [zd ,∞)) with z ∈ [0,∞)
d with ν(0)

given by the finite limit for Poisson processes according to

ν(0) = lim
z1↓0,··· ,zd↓0

ν ([z1,∞)× . . .× [zd ,∞)) . (12.12)

2. The tail measure ν is zero if one of its arguments is ∞;
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3. The i-th marginal tail measure is defined as follows:

ν (0, . . . , zi, . . . , 0) = ν i (zi) (12.13)

for z ∈ R
d
+ with ν i (zi) = νi ([zi,∞)) the tail integral of component zi.

Using the tail integral one may now define the Lévy measure in terms of the tail integral as
detailed in Definition 12.3, which is equivalent to that provided in Definition 12.1, see Böcker
and Klüppelberg (2010).

Definition 12.3 (Lévy Copula via Tail Measure) A d-dimensional Lévy copula of a spectrally
positive Lévy process is a measure defining function C̃ : [0,∞]d �→ [0,∞] such that for all
z1, . . . , zd ∈ [0,∞] it satisfies the following tail measure condition:

ν (z1, . . . , zd ) = C̃ (ν1 (z1) , . . . , νd (zd )) . (12.14)

If the marginal tail integrals {ν i}d
i=1 are continous, then the Lévy copula C is unique, otherwise

it is unique on the range Ranν1 × · · · × Ranνd . Conversely, if C̃ is a Lévy copula and {ν i}d
i=1

are marginal tail integrals of spectrally positive Lévy processes, then Equation (12.14) defins the tail
integral of a d-dimensional spectrally positive Lévy Process.

Here, we would like to mention that in the case of a compound Poisson process, Lévy
measure is the expected number of losses per unit of time with a loss amount in a pre-specified
interval,

ν j(x) = λjPr[Xj > x].

Then the multivariate Lévy measure can be constructed from the marginal measures and a Lévy
copula C̃ as

ν(x1, . . . , xd ) = C̃(ν1(x1), . . . , νd (xd )). (12.15)

This is somewhat similar to (11.22) in a sense that the dependence structure between
different risks can be separated from the marginal processes. However, it is quite a different
concept. In particular, a Lévy copula for processes with positive jumps is [0,∞)d → [0,∞)
mapping while a standard copula (11.22) is [0, 1]d → [0, 1] mapping. Also, a Lévy copula
controls dependence between frequencies and dependence between severities (from different
risks) at the same time.

The interpretation of this model is that dependence between different risks is due to the
loss of events occurring at the same time. An important implication of this approach is that
a bank’s total loss can be modeled as a compound Poisson process with some intensity and
independent severities. If this common severity distribution is subexponential, then a closed-
form approximation (13.75) can be used to estimate the VaR of the total annual loss.

We conclude this section on discussion of Lévy copula by describing recent results related
to pair copula constructions of multivariate Lévy copula models. As discussed previously for
distributional copula models, a challenge faced by building such models involves finding flex-
ible but still applicable models for higher dimensions. To overcome this problem, the concept
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of pair copula constructions has been developed in distributional copula models such as was
described for the Student t copula constructions. In the context of nondistributional copula
constructions, there has been a few works looking at pairwise constructions and tree-based
couplings of pairwise Lévy copula models; see, for instance, Grothe and Nicklas (2013) for
details of such copula constructions in the context of Lévy processes.

12.2 Multiple Risk LDA: Dependence Between
Frequencies via Copula

The most popular approach in practice is to consider a dependence between the annual counts
of different risks via a copula. Assuming a J -dimensional copula C(·) and the marginal distri-
butions Pj(·) for the annual counts N (1)

t , . . . ,N ( J)
t leads to a model

N (1)
t = P−1

1 (U (1)
t ), . . . ,N ( J)

t = P−1
J (U ( J)

t ), (12.16)

where U (1)
t , . . . ,U ( J)

t are Uniform(0, 1) random variables from a copula C(·) and P−1
j (·)

is the inverse marginal distribution of the counts in the j-th risk. Here, t is discrete time
(typically in annual units but shorter steps might be needed to calibrate the model). Usually,
the counts are assumed to be independent between different t steps.

The approach allows us to model both positive and negative dependence between counts.
As reported in the literature, the implied dependence between annual losses even for a perfect
dependence between counts is relatively small and as a result the impact on capital is small too.
Some theoretical reasons for the observation that frequency dependence has only little impact
on the OpRisk capital charge are given in Böcker and Klüppelberg (2008).

As an example, in Figure 12.1, we plot Spearman’s rank correlation between the annual
losses of two risks, Z (1) and Z (2), induced by the Gaussian copula dependence between
frequencies. Marginally, the frequencies N (1) and N (2) are from the Poisson(λ= 5) and
Poisson(λ= 10) distributions, respectively, and the severities are from LogNormal(μ= 1, σ= 2)
distributions for both risks.

12.3 Multiple Risk LDA: Dependence Between the k-th
Event Times/Losses

Theoretically, one can introduce dependence between the k-th severities or between the k-th
event interarrival times or between the k-th event times of different risks. For example, first,
second, etc. losses of the j-th risk are correlated to the first, second, etc. losses of the i-th risk,
respectively while the severities within each risk are independent. The actual dependence can be
done via a copula similar to (12.16); for an accurate description, we refer to Chavez-Demoulin
et al. (2006). Here, we would like to note that a physical interpretation of such models can
be difficult. Also, an example of dependence between annual losses induced by dependence
between the k-th interarrival times is presented in Figure 12.1.

We begin this section with discussion on common shock processes that induces indirect
dependence and then we present a more explicit parameteric dependence model via the notion
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figure 12.1 Spearman’s rank correlation between the annual losses ρS [Z(1),Z(2)] vs. the Gaussian
copula parameter ρ: (�)—copula between counts N (1) and N (2); (•)—copula between inter-arrival times
of two Poisson processes. Marginally, the frequencies are from Poisson(5) and Poisson(10), respectively, and
the severities are from LogNormal(μ = 1, σ = 2) for both risks

of dependence through self-chaining copula models for interarrival times of losses in multiple
loss processes.

12.3.1 COMMON SHOCK PROCESSES

Modeling OpRisk events affecting many risk cells can be done using common shock process
models; see Johnson et al. (1997, section 37). In particular, consider J risks with the event
counts

N ( j )
t = N (C)

t + Ñ ( j )
t ,

where Ñ ( j )
t , j = 1, . . . , J and N (C)

t are generated by independent Poisson processes with the
intensities λ̃j and λC , respectively. Then, N ( j )

t , j = 1, . . . , J are Poisson distributed marginally
with the intensities

λj = λ̃j + λC

and are dependent via the common events N (C)
t . The linear correlation and covariance between

risk counts are

ρ[N (i)
t ,N ( j )

t ] = λC/
√

λiλj

and

Cov[N (i)
t ,N ( j )

t ] = λC ,

respectively.
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Only a positive dependence between counts can be modeled using this approach. Note
that the covariance for any pair of risks is the same though the correlations are different. More
flexible dependence can be achieved by allowing a common shock process to contribute to the
k-th risk process with some probability pk; then

Cov[N (i)
t ,N ( j )

t ] = λC pipj.

This method can be generalized to many common shock processes; see Lindskog and
McNeil (2003) and Powojowski et al. (2002). It is also reasonable to consider the dependence
between the severities in different risk cells that occurred due to the same common shock event.

12.3.2 MAX-STABLE AND SELF-CHAINING COPULA MODELS

In this section, we consider the setting in which one has Poisson processes for multiple risk
processes in LDA structures; however, there is an interest in not just modeling the distribution of
the number of counts, but instead to model the distribution of the arrival times explicitly. Such
settings arise typically in OpRisk models when considering applications or particular insurance
policies; see discussion in Chapter 17.

In particular, it may be of interest to study the relationship between dependence and the
possibility to sample final multivariate survival in a long time-interval as a sequence of iterations
of local multivariate survivals along a partition of the total time interval. This challenge was
addressed in Brigo and Chourdakis (2012), where it was shown that indeed it is possible to
achieve this goal under a form of multivariate lack of memory. This modified definition of
memorylessness for multivariate settings can then be linked to properties of the survival times
copula. The authors denote such a structure as the “self-chaining-copula”.

To be more precise about the model formulation, consider modeling the loss times for two
loss processes in a year, where the i-th loss event for risk j occurs at random time τ ( j )

i ∼ F ( j ).
Now consider splitting the analysis into two possibilities, either a single period (i.e., a year
interval or time) versus multiple period (i.e., monthly in the year) analysis. In general one may
consider N periods of duration T given by [0,T ), [T , 2T ) . . . , [(N −1)T ,NT ] such that the
final period is of duration NT . Furthermore, consider memoryless marginal event times for
each j where the τ

( j )
i are i.i.d. for all i and exponentially distributed satisfying the standard

marginal definitions of memorylessness given by

Pr
[
τ
( j )
i > T |τ ( j )

i > S
]
= Pr

[
τ
( j )
i > T − S

]
. (12.17)

In Brigo and Chourdakis (2012), the challenge is stated in the following way:

Is it possible to iterate a simulation of the joint survival of arrival times always in the same way
in all sub-intervals [0,T ), [T , 2T ), . . . , [(N − 1)T ,NT ] and also in the same way as one
simulates joint survival of arrival times in a single sampling run [0,NT ] ?

To proceed with the specification of a family of self-chaining copula models, it is impor-
tant to present the modified definition of memorylessness termed the common periods lack of
memory (CPLM). In the bivariate case, this is given in Definition 12.4; see discussions in Brigo
and Chourdakis (2012).
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Definition 12.4 (Common Periods Lack of Memory) Consider two loss processes, where for a
given year one has interarrival times for the i-th loss in the j-th processes at times of loss events given
by random variable τ ( j )

i with distribution τ
( j )
i ∼ F ( j ). Assume that individual loss process event

times are memoryless and exponentially distributed such that

Pr
[
τ
(i)
j > T |τ (i)

j > S
]
= Pr

[
τ
( j )
j > T − S

]
, (12.18)

for any j and any 0 ≤ S ≤ T . The bivariate lack of memory property in common periods considered
involves how to draw i.i.d. random vectors τ i =

(
τ
(1)
i , τ

(2)
i

)
such that

Pr
[
τ
(1)
i ≥ kT , τ

(2)
i ≥ kT |τ (1)

i ≥ hT , τ
(2)
i ≥ hT

]
= Pr
[
τ
(1)
i ≥ (k − h)T , τ

(2)
i ≥ (k − h)T

]
(12.19)

with k > h integers.

As noted in Brigo and Chourdakis (2012), this is not a standard definition of memorless-
ness in bivariate cases, the standard definition would involve

Pr
[
τ
(1)
i ≥ lT , τ

(2)
i ≥mT |τ (1)

i ≥ nT , τ
(2)
i ≥ pT

]
= Pr
[
τ
(1)
i ≥ (l − n)T , τ

(2)
i ≥ (m − p)T

]
(12.20)

with max(n, p) ≤ max(l ,m). For the purposes of consideration in this chapter, it is not
suitable to consider such an assumption since it would imply independence within the random
vector τ i.

12.3.2.1 Multivariate Exponential Distributions. In the statistics literature, there
are two common definitions of the multivariate exponential distributions that admit exponen-
tial marginal distributions while the joint distribution satisfies the CPLM definition earlier.

In the bivariate case, one of the widely used choices is known as the Marshall–Olkin dis-
tribution given in Marshall and Olkin (1967). One possible drawback of this model is that
there is a nonzero probability of the event τ (1)

i = τ
(2)
i , which is generally undesirable. Others

who have studied generalized multivariate exponential distributions that remove this property
include the three choices of model proposed in Gumbel (1960) and the characterizations of
this family of models and its generalized forms in Nair and Nair (1988), and Paulson (1973),
and Lu and Bhattacharyya (1991).

The third choice of models was selected for its flexibility in Brigo and Chourdakis (2012)
and is characterized in Definition 12.5 by the joint survival function.

Definition 12.5 (Gumbel’s Joint Survival Function of Multivariate Exponentials)
Consider marginal exponential distributions with positive intensities λ( j ) for j ∈ {1, 2} and a
joint distribution with dependence parameter denoted by θ ∈ [1,∞) with a joint survival function
given by

F
(
τ
(1)
i > t1, τ

(2)
i > t2

)
= exp

(
−
((

λ(1)t1

)θ
+
(
λ(2)t2

)θ) 1
θ

)
. (12.21)
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This choice of multivariate exponential distribution satisfies that both marginal distribu-
tions are exponential and the joint distribution satisfies the condition of CPLM. In addition,
one can show that the rank correlation measure of Kendall is given for this model by

τK = 1 − 1
θ
, (12.22)

with θ = 1 producing independence and θ → ∞ producing a comonotonic case.
If one now considers the general d -variate cases, one can reexpress the multivariate joint

distribution of d -loss process characterizing the random vector τ i =
(
τ
(1)
i , . . . , τ

(d)
1

)
with

marginal exponential distributions
{

F (i)
}d

i=1 by a joint distribution written in terms of a cop-
ula, which would be required to still produce the required exponential marginal distributions
as well as the joint property of CPLM.

As has been discussed throughout this chapter, the representation can be related to a copula
model in the general d -variate case in which if one considers d -loss process and aims to sim-
ulate τ i =

(
τ
(1)
i , . . . , τ

(d)
1

)
with marginal exponential distributions

{
F (i)
}d

i=1 and a joint
distribution characterized by the following survival times copula:

Pr
[
τ
(1)
i ≥ t1, . . . , τ

(d)
i ≥ td

]
= Pr

[
F (1)
(
τ
(1)
i

)
≤ F (1)

(t1) , . . . , F (d)
(
τ
(d)
i

)
≤ F (d)

(td )
]

= Pr
[
U (1)

i ≤ F (1)
(t1) , . . . ,U (d)

i ≤ F (d)
(td )
]

= C (u1, . . . , ud ) . (12.23)

In Brigo and Chourdakis (2012), it was discussed that if the copula C is to satisfy the
CPLM condition so that one can perform simulation of N intervals of duration T that is con-
sistent with the simualtion over a single interval [0,NT ], then this would require the condition
that the joint copula in Equation (12.23) should satisfy the condition

(
C
(

u
1
N
1 , . . . , u

1
N
d

))N
= C (u1, . . . , ud ) , ui ∈ [0, 1],N ∈ J, (12.24)

such a copula that satisfies this condition was termed a “self-chaining copula”.
It is intersting to observe that such a condition is also used to define the class of max-

stable copula models that are obtained by considering a random vector X = (X1, . . . ,Xd )

with copula C . Then consider k i.i.d. copies of this random vector {Xi,1, . . . ,Xi,d}k
i=1 and the

marginal maxima, given for the j-th marginal component by the order statistic

M(k,k),j = max
{

X1,j,X2,j, . . . ,Xk,j
}
. (12.25)

Then the resulting copula for the vector of maxima is given by

C(u) = CM(k,k),1,M(k,k),2, ... ,M(k,k),d (u1, . . . , ud ) = C
(

uk
1, . . . , uk

d

) 1
k
. (12.26)
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Then it is said that the orginal copula C is max-stable if and only if it satisfies this condition,
that is, C(u) = C

(
uk

1, . . . , uk
d

) 1
k . This is equivalent to the notion of self-chaining considered

in Brigo and Chourdakis (2012).
At this stage, it will also be useful to define the directly related concept of extreme value

copula models; see discussions in, for instance, Pickands (1981) and the review in Gudendorf
and Segers (2010). Extreme value copulas arise as possible limits of component-wise maxima
of independent, identically distributed samples, and are defined in Definition 12.6.

Definition 12.6 (Bivariate Extreme Value Copula) A copula C is an extreme value copula if
and only if there exists a real-valued function A on the interval [0, 1] such that the copula is defined by

C(u, v) = exp

(
ln(uv)A

(
ln(v)
ln(uv)

))
, u ∈ [0, 1], v ∈ [0, 1], (12.27)

where function A is the Pickand’s dependence function formalized in Definition 10.36 above.

Remark 12.3 The Pickand’s dependence function A can be interpreted in terms of exponential
distributions by considering the pair (U ,V ) with joint distribution given by the extreme value
copula C. Consider random variables under transformation

D = − lnU ,

E = − lnV
(12.28)

and define for t ∈ [0, 1] the function

ζ(t) = min

{
D

1 − t
,

E
t

}
(12.29)

with ζ(0) = D and ζ(1) = E. One can then show that for x ≥ 0 one has that ζ(t) follows an
exponential distribution with distribution

Pr [ζ(t) ≤ x] = 1 − exp (−A(t)x) . (12.30)

It was then shown in Brigo and Chourdakis (2012) that two classes of copula that satisfy
this self-chaining property corespond to the Gumbel–Hougaard copula and the Marshal–Olkin
copula. In general, they show the following conditions that self-chaining copula models must
satisfy; see Definition 12.7.

Definition 12.7 (Characterization of Bivariate Self-Chaining Copula Models)
Self-chaining copulas that satisfy the condition that

(
C
(

u
1
N
1 , u

1
N
d

))N
= C (u1, ud ) , ui ∈ [0, 1],N ∈ J, (12.31)
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in the bivariate case where d = 2 are characterized as the solution to the partial differential equation
given by

∂

∂u
C(u, v)u ln(u) +

∂

∂v
C(u, v)v ln(v) = C(u, v) lnC(u, v), (12.32)

which also satisfy the conditions for a copula distribution given by Definition 11.1:

• C (u1, u2) = 0 whenever ui = 0 for at least one i ∈ {1, 2};
• C (u1, u2) = ui if ui = 1 for all j = 1, . . . , d and j �= i;
• C is quasi-monotone on its support [0, 1]2.

In general, one can also show the result in Theorem 12.1 for self-chaining Archimedean
copula models; see Brigo and Chourdakis (2012, theorem 7.3).

Theorem 12.1 (Self-Chaining Archimedean Copula Models) The self-chaining Archimedean
copula models correspond to those for which the generator ψ produces a frailty distribution
satisfying:

• Infinite divisibility;
• Strictly semistable, that is, its measure satisfies

μ(x)a = μ(bz) (12.33)

with a > 0, a �= 1 and b > 0.

12.4 Multiple Risk LDA: Dependence Between
Aggregated Losses via Copula

Dependence between aggregated losses can be introduced in a manner similar to (12.16). In
this approach, one can model the aggregated losses as

Z (1)
t = F−1

1 (U (1)
t ), . . . ,Z ( J)

t = F−1
J (U ( J)

t ), (12.34)

where U (1)
t , . . . ,U ( J)

t are Uniform(0, 1) random variables from a copula C(·) and F−1
j (·) is

the inverse marginal distribution of the aggregated loss of the j-th risk.
Note that the marginal distribution Fj(·) should be calculated using the frequency and

severity distributions. Typically, the data are available over several years only and a short time
step t (e.g., quarterly) is needed to calibrate the model.

This approach is probably the most flexible in terms of the range of achievable depen-
dencies between risks, for example, perfect positive dependence between the annual losses is
achievable. However, it may create difficulties with incorporation of insurance into the over-
all model. This is because an insurance policy may apply to several risks with the cover limit
applied to the aggregated loss recovery; see Chapter 17. One can overcome this problem with
an approximate solution described in the following example.
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EXAMPLE 12.1 Simulation of Multivariate Compound Processes with Annual
Copula Dependence

In the aforementioned descriptions we noted that the modeling of dependence
between annual losses directly via copula methods theoretically can create irrec-
oncilable problems with modeling insurance for OpRisk that directly involves
event times. That is, for any “adjustments” that must be made on an event basis,
the modeling of dependence through a copula distribution on the annual loss
can be challenging. In this example, we will demonstrate an approximate Monte
Carlo procedure that will allow one to overcome this challenge. Consider a
bivariate annual loss process

{
Z (i)

t

}
t≥0,i∈{1,2}

such that the joint distribution

FZ t

(
z(1)

t , z(2)
t

)
is characterized uniquely by its copula dependence distribution

C(u) and its marginals FZ(i)
t

according to the relationship

FZ t

(
z(1)

t , z(2)
t

)
= C
(

FZ(1)
t

(
z(1)

t

)
, FZ(2)

t

(
z(2)

t

))
, (12.35)

where the copula distribution will be explored in extensive details later. Each
marginal distribution is assumed comprising an LDA model that involves a com-
pound process distribution FZ(i)

t
for the compound process

Z (i)
t =

N (i)
t∑

n=0

X (i)
n (t) (12.36)

with frequency distribution model N (i)
t ∼ FN (i) and severity distribution model

X (i)
n (t) ∼ FX (i) . Then, in order to work with such a model where dependence is

between the annual losses, while still making adjustments to the marginal distribu-
tions, for example, under an insurance mitigation policy one can adopt the following
approximation procedure for each annual year t ∈ {1, 2, . . . ,T}:

1. For each marginal loss process i ∈ {1, 2}, simulate J Monte Carlo draws from
the compound process

Z (i)
t =

N (i)
t∑

n=0

X (i)
n (t) (12.37)

via simulation for each j ∈ {1, 2, . . . , J} the following steps:

• Draw a random variable for the number of losses from the frequency
models N (i,j)

t ∼ FN (i) and the corresponding event times in the year{
τ
(i,j)
s (t)

}
s∈
{

1,2, ... ,N (i,j)
t

} that match the desired frequency model. Store

these times for each j Monte Carlo draw;
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• Draw a vector of loss random variables from the severity model

X (i)(t) =
[
X (i,j)

1 (t), . . . ,X (i,j)

N (i,j)
t

(t)
]

as i.i.d. draws from the severity distribution model X (i)
n (t) ∼ FX (i) . Store

these loss random variates for each j Monte Carlo draw;
• Evaluate the j-th realization of the compound process random sum

Z (i,j)
t =

N (i,j)
t∑

n=0

X (i,j)
n (t). (12.38)

2. Using the J Monte Carlo draws for each marginal loss process{
Z (i,j)

t

}
j∈{1,2,...,J}

, i ∈ {1, 2} construct emiprical distribution functions for

each marginal annual loss process

F̂Z(i)
t ,J (z) =

1
J

J∑
j=1

I

[
Z (i,j)

t ≤ z
]

(12.39)

and the empirical quantile function by ordering the annual loss random vari-
ables 0 ≤ Z i,(1,J)

t < Z i,(2,J)
t ≤ · · · ≤ Z i,( J ,J)

t to obtain

Q̂Z(i),J (α) = inf
{

j : Z i,( j,J)
t ≤ α

}
. (12.40)

3. Simulate a random vector on [0, 1]2 with uniform marginals and joint distri-
bution given by the copula model U ∼ C ;

4. Draw a copula-dependent annual loss random variable from each marginal by
using the empirical quantile function

Z (i)
t = Q̂Z(i),J (Ui) (12.41)

and record the index of the order statistic that corresponds to the Ui, denoted
by k(i);

5. To apply insurance or any event-based adjustment to the annual loss process,
take the draw for index k(i) given by

{
τ (i,k(i))

s (t)
}

s∈
{

1,2, ... ,N (i,k(i))
t

} and

X (i)(t) =
[
X (i,k(i))

1 (t), . . . ,X (i,k(i))
N (i,k(i))

t
(t)
]

and make the appropriate insurance required adjustments to the severities.
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12.5 Multiple Risk LDA: Structural Model with
Common Factors

Common (systematic) factors are useful for identifying dependent risks and for reducing the
number of required correlation coefficients that must be estimated; for example, see McNeil
et al. (2005, section 3.4). Structural models with common factors to model dependence are
widely used in credit risk; see industry examples in McNeil et al. (2005, section 8.3.3). For
OpRisk, these models are qualitatively discussed in Marshall (2001, sections 5.3 and 7.4), and
there are unpublished examples of practical implementation. As an example, assume a Gaussian
copula for the annual counts of different risks and consider one common (systematic) factor
Ωt affecting the counts as follows:

Y ( j )
t = ρjΩt +

√
1 − ρ2

j W ( j )
t , j = 1, . . . , J ;

N (1)
t = P−1

1

(
FN (Y

( j )
t )
)
, . . . ,N ( J)

t = P−1
J

(
FN (Y

( J)
t )
)
. (12.42)

Here, W (1)
t , . . . ,W ( J)

t and Ωt are independent random variables from the standard Normal
distribution. All random variables are independent between different time steps t. GivenΩt , the
counts are independent; unconditionally, the risk profiles are dependent if the corresponding
ρj are nonzero. In this example, one should identify J correlation parameters ρj only instead of
J( J − 1)/2 parameters of the full correlation matrix.

Extension of this approach to many factors Ωt,k, k = 1, . . . ,K is easy:

Y ( j )
t =

K∑
k=1

ρjkΩt,k +

√√√√1 −
K∑

k=1

ρjkρjmCov[Ωt,kΩt,m]W
( j )

t , (12.43)

where (Ωt,1, . . . ,Ωt,K )
T is from the standard multivariate Normal distribution with zero

means, unit variances, and some correlation matrix.
This approach can also be extended to introduce a dependence between both severities and

frequencies. For example, in the case of one factor, one can structure the model as follows:

Y ( j )
t = ρjΩt +

√
1 − ρ2

j W ( j )
t , j = 1, . . . , J ;

N ( j )
t = P−1

j

(
FN (Y

( j )
t )
)
, j = 1, . . . , J ;

R( j )
s (t) = ρ̃jΩt +

√
1 − ρ̃2

j V ( j )
s (t), s = 1, . . . ,N ( j )

t , j = 1, . . . , J ;

X ( j )
s (t) = F−1

j

(
FN (R( j )

s (t))
)
, s = 1, . . . ,N ( j )

t , j = 1, . . . , J .

Here W ( j )
t , V ( j )

s (t), s = 1, . . . ,N ( j )
t , j = 1, . . . , J and Ωt are independent random variables

from the standard Normal distribution. Again, the logic is that there is a factor affecting severi-
ties and frequencies within a year such that conditional on this factor, severities, and frequencies
are independent. The factor is changing stochastically from year to year so that unconditionally
there is dependence between frequencies and severities. Also note that in such setup there is a
dependence between severities within a risk category.
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Often, common factors are unobservable and practitioners use generic intuitive definitions
such as changes in political, legal, and regulatory environments, economy, technology, system
security, system automation, etc. Several external and internal factors are typically considered
so that some of the factors affect frequencies only (e.g., system automation), some factors affect
severities only (e.g., changes in legal environment), and some factors affect both the frequencies
and the severities (e.g., system security).

It is possible to derive a full joint distribution for all data (frequencies and severities) given
model parameters; however, in general, it will not have a closed form because the latent vari-
ables (factors) should be integrated out. Thus, standard methods cannot be used to maximize
corresponding likelihood function and one should use more technically involved methods, for
example, a slice sampler used in Peters et al. (2009).

The common factor models are supported by empirical evidence, reported in Allen and Bali
(2004), that some OpRisks are dependent on macroeconomic variables such as GDP, unem-
ployment, equity indices, interest rates, foreign exchange rates, and regulatory environment
variables.

12.6 Multiple Risk LDA: Stochastic and Dependent
Risk Profiles

Consider the LDA for risk cells j = 1, . . . , J :

Zj(t) =
Nj(t)∑
s=1

X (s)
j (t), t = 1, 2, . . . , (12.44)

where Nj(t) ∼ P(·|λ( j )
t ) and X (s)

j (t) ∼ F (·|ψ( j )
t ). It is realistic to consider that the

risk profiles λt = (λ
(1)
t , . . . , λ

( J)
t ) and ψt = (ψ

(1)
t , . . . , ψ

( J)
t ) are not constant but

changing in time stochastically due to changing risk factors (e.g., changes in business envi-
ronment, politics, regulations). That is, we may model risk profiles λt =

(
λ
(1)
t , . . . , λ

( J)
t

)
and ψt =

(
ψ
(1)
t , . . . , ψ

( J)
t

)
by random variables Λt =

(
Λ
(1)
t , . . . ,Λ

( J)
t

)
and

Ψt =
(
Ψ

(1)
t , . . . ,Ψ

( J)
t

)
, respectively.

Now consider a sequence (Λ1,Ψ1) , . . . , (ΛT+1,ΨT+1). It is naive to assume that risk
profiles of all risks are independent. Intuitively these are dependent, for example, due to changes
in politics, regulations, law, economy, and technology (sometimes called drivers or external risk
factors) that jointly impact on many risk cells. One can model this by assuming some copula
C(·) and marginal distributions for the risk profiles Λt and Ψt (as developed in Peters et al.,
2009) that gives the following joint distribution of the risk profiles

F (λt ,ψt) = C
(

G1(λ
(1)
t ), . . . ,GJ (λ

( J)
t ),H1(ψ

(1)
t ), . . . ,HJ (ψ

( J)
t )
)
,

where Gj(·) and Hj(·) are the marginal distributions of λ( j )
t and ψ

( j )
t , respectively.

Dependence between the risk profiles will induce a dependence between the annual losses.
This general model can be used to model the dependencies between the annual counts; between
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the severities of different risks; between the severities within a risk; and between the frequen-
cies and severities. The likelihood of data (counts and severities) can be derived but involves
a multidimensional integral with respect to latent variables (risk profiles). Advanced MCMC
methods (such as the slice sampler method described in Section 7.6.1 and used in Peters et al.,
2009) can be used to fit the model.

Stochastic modeling of risk profiles may appeal to intuition. For example, consider the
annual number of events for the j-th risk modeled as random variables from the Poisson distri-
bution Poisson

(
Λ
( j )
t = λ

( j )
t

)
. Conditional on Λ

( j )
t , the expected number of events per year is

Λ
( j )
t . The latter is not only different for different banks and different risks but also changes from

year to year for a risk in the same bank. In general, the evolution of Λ( j )
t , can be modeled as

having deterministic (trend, seasonality) and stochastic components. In actuarial mathematics,
this is called a mixed Poisson model.

Remark 12.4 The use of common (systematic) factors is useful to identify dependent risks and to
reduce the number of required correlation coefficients that must be estimated. For example, assuming
a Gaussian copula between risk profiles, consider one common factor Ωt affecting all risk profiles as
follows:

Y (i)
t = ρiΩt +

√
1 − ρ2

i W (i)
t , i = 1, . . . , 2J ;

Λ
( j )
t = G−1(FN (Y

( j )
t )), Ψ

( j )
t = H−1(FN (Y

( j+J)
t )), j = 1, . . . , J ,

where W (1)
t , . . . ,W (2J)

t and Ωt are independent random variables from the standard Normal
distribution and all random variables are independent between different time steps t. Given Ωt , all
risk profiles are independent but unconditionally the risk profiles are dependent if the corresponding
ρi are nonzero. One can consider many factors: some factors affect frequency risk profiles, some factors
affect severity risk profiles, and some factors affect both frequency and severity risk profiles.

As an example, consider the following possible model setup for stochastic and dependent
risk profiles, proposed in Peters et al. (2009).

Model Assumptions 12.1 Consider J risks each with a general model (10.2) for the annual loss in
year t, Z ( j )

t , and each modeled by severity X ( j )
s (t) and frequency N ( j )

t . The frequency and severity
risk profiles are modeled by random vectors

Λt = (Λ
(1)
t , . . . ,Λ

( J)
t ) and Ψt = (Ψ

(1)
t , . . . ,Ψ

( J)
t )

respectively and parameterized by risk characteristics

θΛ = (θ
(1)
Λ , . . . , θ

( J)
Λ ) and θΨ = (θ

(1)
Ψ , . . . , θ

( J)
Ψ )

correspondingly. Additionally, the dependence between risk profiles is parameterized by θρ. Assume
that, given θ = (θΛ,θΨ,θρ):
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1. The random vectors(
Ψ1,Λ1,N ( j )

1 ,X ( j )
s (1) ; j = 1, . . . , J , s ≥ 1

)
...(
ΨT+1,ΛT+1,N ( j )

T+1,X ( j )
s (T + 1) ; j = 1, . . . , J , s ≥ 1

)
are independent. That is, between different years the risk profiles for frequencies and severities
as well as the number of losses and actual losses are independent;

2. The vectors (Ψ1,Λ1)
T
, . . . , (ΨT+1,ΛT+1)

T are independent and identically dis-
tributed from a joint distribution with marginal distributions Λ

( j )
t ∼G

(
·|θ( j )

Λ

)
,

Ψ
( j )
t ∼ H

(
·|θ( j )

Ψ

)
and 2J -dimensional copula C(·|θρ);

3. Given Λt = λt and Ψt = ψt , the compound random variables Z (1)
t , . . . ,Z ( J)

t are indepen-
dent with N ( j )

t and X ( j )
1 (t) ,X ( j )

2 (t) , . . . independent; frequencies N ( j )
t ∼ P

(
·|λ( j )

t

)
;

and independent severities X ( j )
s (t) ∼ F

(
·|ψ( j )

t

)
, s ≥ 1.

Calibration of the aforementioned model requires estimation of θ. It can be treated within
a Bayesian framework as a random variable Θ to incorporate expert opinions and external
data into the estimation procedure (in Section 12.7, we describe the estimation procedure for
frequencies). Also note that for simplicity of notation, we assumed one severity risk profile
Ψ

( j )
t and one frequency risk profile Λ( j )

t per risk—extension is trivial if more risk profiles are
required.

In general, a copula can be introduced between all risk profiles. For illustration, consider
the bivariate case (J = 2). That is, we assume that the model assumptions 12.1 are fulfilled for
the aggregated losses

Z (1)
t =

N (1)
t∑

s=1

X (1)
s (t) and Z (2)

t =

N (2)
t∑

s=1

X (2)
s (t) . (12.45)

As marginals, for j = 1, 2, we choose

• N ( j )
t ∼ Poisson(λ( j )

t ) and X ( j )
s (t) ∼ LogNormal(μj(t), σ2

j (t));

• λ(1)
t ∼ Gamma(2.5, 2), λ(2)

t ∼ Gamma(5, 2), μj(t) ∼ Normal(1, 1), σj(t) = 2;

• The dependence between λ
(1)
t , λ(2)

t , μ1(t), and μ2(t) is a Gaussian copula.

The parameters in the marginal distributions correspond to θΛ and θΨ in model assumptions
12.1. Here, we assume the parameters are known a priori. In Section 12.7, we will demonstrate
the Bayesian inference model and associated methodology to perform an estimation of the
model parameters.

Given marginal and copula parameters (θΛ,θΨ,θρ), the simulation of the annual losses
for year t = T + 1, when risk profiles are dependent via a copula, can be accomplished using
the following procedure.
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Algorithm 12.1

1. Simulate 2J -variate u1, . . . , uJ , v1, . . . , vJ from a 2J dimensional copula C(·|θρ);

2. Calculate λ( j )
t = G−1

(
uj|θ( j )

Λ

)
and ψ

( j )
t = H−1

(
vj|θ( j )

Ψ

)
, j = 1, . . . , J ;

3. Sample n( j )
t from P

(
·|λ( j )

t

)
, j = 1, . . . , J ;

4. Sample independent x( j )
s (t), s = 1, . . . , n( j )

t , j = 1, . . . , J from F
(
·|ψ( j )

t

)
;

5. Calculate annual losses z( j )
t =

n( j )
t∑

s=1
x( j )

s (t) , j = 1, . . . , J ;

6. Repeat steps 1–5 K times to get K random samples of the annual losses z( j )
t .

Using the aforementioned simulation procedure, we can examine the strength of depen-
dence between the annual losses if there is a dependence between the risk profiles. Figure 12.2
shows the induced dependence between the annual losses Z (1)

t and Z (2)
t versus the copula

dependence parameter for three cases:

• Only λ
(1)
t and λ

(2)
t are dependent;

• Only μ1(t) and μ2(t) are dependent;

• The dependence between λ
(1)
t and λ

(2)
t is the same as between μ1(t) and μ2(t).

In all cases the dependence is the Gaussian copula (11.49) denoted as C(u1, u2|ρ) and param-
eterized by one parameter ρ, which controls the degree of dependence. In the case of the
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figure 12.2 Spearman’s rank correlation ρS [Z(1),Z(2)] between annual losses versus the Gaussian
copula parameter ρ: (�)—copula for the frequency profiles Λ(1)

t and Λ
(2)
t ; (•)—copula for the severity

profiles Ψ(1)
t and Ψ

(2)
t that correspond to μ1 and μ2 in the severity distribution, respectively; (�)—copula

for λ1 and λ2 and the same copula for Ψ(1)
t and Ψ

(2)
t
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Gaussian copula, ρ is a nondiagonal element of correlation matrix Σ in (11.49). The parameter
ρ corresponds to θρ in Model Assumptions 12.1.

In each of these examples, we vary the parameter of the copula model ρ from weak to strong
dependence. The annual losses are not Gaussian distributed and to measure the dependence
between the annual losses we use a nonlinear rank correlation measure, Spearman’s rank corre-
lation, ρS [Z

(1)
t ,Z (2)

t ]. The Spearman’s rank correlation between the annual losses was estimated
using 10, 000 simulated years for each value of ρ. These numerical experiments show that the
range of possible dependence between the annual losses of different risks induced by the depen-
dence between risk profiles is very wide and should be flexible enough to model dependence
in practice. Note that the degree of induced correlation can be further extended by working
with more flexible copula models at the expense of estimation of a larger number of model
parameters.

12.7 Multiple Risk LDA: Dependence and Combining
Different Data Sources

Basel II OpRisk models have to combine information from internal data, external data, and
expert opinions as discussed in Chapter 15. We should also note that experts in financial institu-
tions often attempt to specify not only frequency and severity distributions but also correlations
between risks.

Combining of expert opinions with internal and external data is a difficult problem and
complicated ad hoc procedures are used in practice. Some prominent risk professionals in indus-
try have argued that statistically consistent combining of these different data sources is one of
the most pertinent and challenging aspects of OpRisk modeling.

A Bayesian model to combine three data sources (internal data, external data, and expert
opinion) for the case of a single risk cell is presented in Lambrigger et al. (2007). Then Peters
et al. (2009) extended this to a multivariate case. The main idea was to utilize Bayesian infer-
ence to estimate the parameters of the model through the combination of expert opinions and
observed loss data (internal and external).

To illustrate the approach, consider modeling frequencies only. The estimation procedure
is presented for frequencies only. However, it is not difficult to extend the actual procedure to
include severities. Here we extend a single risk cell frequency model to the general multiple risk
cell setting. This will involve formulation of the multivariate posterior distribution.

Model Assumptions 12.2 (Multiple Risk Cell Frequency Model) Consider J risk cells.
Assume that every risk cell j has a fixed, deterministic volume V ( j ).

1. The risk characteristic ΘΛ = (Θ
(1)
Λ , . . . ,Θ

( J)
Λ ) has a J -dimensional prior density π(θΛ).

The copula parameters θρ are modeled by a random vector Θρ with the prior density π (θρ);
ΘΛ and Θρ are independent;

2. Given ΘΛ = θΛ and Θρ = θρ: the vectors (Λ1,N 1), . . . , (ΛT+1,N T+1) are inde-
pendent and identically distributed; and the intensities Λt = (Λ

(1)
t , . . . ,Λ

( J)
t ) have a

J -dimensional conditional density with marginal distributions

Λ
( j )
t ∼ G

(
·|θ( j )

Λ

)
= Gamma

(
α( j ), α( j )/θ

( j )
Λ

)
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and the copula c(·|θρ). Thus, the joint density of Λt is given by

π(λt |θΛ,θρ) = c
(

G(λ
(1)
t |θ(1)

Λ ), . . . ,G(λ
( J)
t |θ( J)

Λ )|θρ

) J∏
j=1

π(λ
( j )
t |θ( j )

Λ ), (12.46)

where π
(
·|θ( j )

Λ

)
denotes the marginal density;

3. Given ΘΛ = θΛ and Λt = λt , the frequencies are independent with

N ( j )
t ∼ Poisson(V ( j )λ

( j )
t ), j = 1, . . . , J .

4. There are expert opinions Δk = (Δ
(1)
k , . . . ,Δ

( J)
k ), k = 1, . . . ,K . Given ΘΛ = θΛ: Δk

and (Λt ,N t)
′ are independent for all k and t; and Δ

( j )
k are all independent with

Δ
( j )
k ∼ Gamma(ξ( j ), ξ( j )/θ

( j )
Λ ).

Prior Structure π (θΛ) and π (θρ) . In the following examples, a priori, the risk characteristics
Θ

( j )
Λ are independent gamma distributed: Θ( j )

Λ ∼ Gamma(a( j ), b( j )) with hyper-parameters
a( j ) > 0 and b( j ) > 0. This means that a priori the risk characteristics for the different
risk classes are independent. That is, if the company has a bad risk profile in risk class j, then
the risk profile in risk class i is not necessarily bad. Dependence is then modeled through the
dependence between the intensities Λ(1)

t , . . . ,Λ
( J)
t . If this is not appropriate then, of course,

this can easily be changed by assuming dependence within ΘΛ. In the following simulation
experiments, we consider cases when the copula is parameterized by a scalar θρ. Additionally, we
are interested in obtaining inferences on θρ implied by the data only so we use noninformative
constant prior on the range [−1, 1] in the case of Gaussian copula.

Posterior Density. The marginal posterior density of random vector (ΘΛ,Θρ) given data of
counts N 1:T = n1:T and expert opinions Δ1:K = δ1:K is

π (θΛ, θρ|n1:T , δ1:K ) =

T∏
t=1

∫
π (θΛ, θρ,λt |n1:T , δ1:K ) dλt

∝
T∏

t=1

⎛
⎝∫ J∏

j=1

exp
{
−V ( j )λ

( j )
t

} (V ( j )λ
( j )
t )n( j )

t

n( j )
t !

π(λt |θΛ, θρ) dλt

⎞
⎠

×
K∏

k=1

J∏
j=1

(
(ξ( j )/θ

( j )
Λ )ξ

( j )

Γ(ξ( j ))
(δ

( j )
k )ξ

( j )−1 exp
{
−δ

( j )
k ξ( j )/θ

( j )
Λ

})

×
J∏

j=1

(b( j ))a( j )

Γ(a( j ))
(θ

( j )
Λ )a( j )−1 exp

{
−b( j )θ

( j )
Λ

}
π (θρ) .

(12.47)

Here, for convenience, we use notation x1:M = {x1, x2, . . . , xM}. For example,

N 1:T =
{(

N (1)
1 , . . . ,N ( J)

1

)
,
(

N (1)
2 , . . . ,N ( J)

2

)
, . . . ,

(
N (1)

T , . . . ,N ( J)
T

)}
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are the annual number of losses for all risk profiles and years; and

Δ1:K =
{(

Δ
(1)
1 , . . . ,Δ

( J)
1

)
,
(
Δ

(1)
2 , . . . ,Δ

( J)
2

)
, . . . ,

(
Δ

(1)
K , . . . ,Δ

( J)
K

)}
are the expert opinions on mean frequency intensities for all experts and risk profiles.

12.7.1 BAYESIAN INFERENCE USING MCMC

Posterior (12.47) involves integration and sampling from this distribution is diffi-
cult. The common trick is to sample from the desired target posterior distribution
π(θΛ, θρ,λ1:T |n1:T , δ1:K ). Then marginally taken samples of ΘΛ and Θρ are samples from
π (θΛ, θρ|n1:T , δ1:K ), which can be used to make inferences for required quantities.

Sampling fromπ (θΛ, θρ,λ1:T |n1:T , δ1:K ) via closed-form inversion or rejection sampling
is still not an option. To accomplish this task, one can develop a specialized MCMC method.
One possible way is to use Gibbs sampling methodology. This requires the knowledge of full
conditional distributions that can be derived for this particular model, (see Peters et al., 2009,
appendix B), as

π(θ
(j)
Λ |θ(−j)

Λ ,λ1:T , n1:T , δ1:K , θρ) ∝ π(λ1:T |θ(−j)
Λ , θ

(j)
Λ , θρ)π(δ1:K |θ(−j)

Λ , θ
(j)
Λ )

×π(θ
(−j)
Λ |θ(j)

Λ )π(θ
(j)
Λ ), (12.48)

π(λ
(j)
t |θΛ,λ

(−t,−j)
1:T , n1:T , δ1:K , θρ) ∝ π(n1:T |λ(−t,−j)

1:T , λ
(j)
t )

×π(λ(−j)
t , λ

( j )
t |θΛ, θρ), (12.49)

π (θρ|θΛ,λ1:T , n1:T , δ1:K ) ∝ π(λ1:T |θΛ, θρ)π (θρ) . (12.50)

Here, λ(−i,−j)
1:T , θ(−j)

Λ and λ(−j)
t are the exclusion operators:

• λ(−2,−1)
1:T =

{(
λ
(1)
1 , . . . , λ

( J)
1

)
,
(
λ
(2)
2 , . . . , λ

( J)
2

)
, . . . ,

(
λ
(1)
T , . . . , λ

( J)
T

)}
are frequency intensities for all risk profiles and years, excluding risk profile 1 from year 2;

• θ(−j)
Λ =

{
θ
(1)
Λ , . . . , θ

( j−1)
Λ , θ

( j+1)
Λ , . . . , θ

( J)
Λ

}
; and similar for λ(−j)

t .

These full conditionals do not take standard explicit closed forms and typically the nor-
malizing constants are not known in closed form. Therefore, this will exclude straightforward
inversion or basic rejection sampling being used to sample from these distributions. One may
adopt a Metropolis–Hastings within Gibbs sampler to obtain samples; see Section 7.4.4. To
utilize such algorithm, it is important to select a suitable proposal distribution. Quite often in
high-dimensional problems such as ours, this requires tuning of the proposal for a given tar-
get distribution. Hence, one incurs a significant additional computational expense in tuning
the proposed distribution parameters offline so that mixing of the resulting Markov chain is
sufficient. An alternative not discussed here would include an adaptive Metropolis–Hastings
within Gibbs sampling algorithm; see Atchadé and Rosenthal (2005) and Rosenthal (2009).
Here, we take a different approach that utilizes the full conditional distributions, known as a
univariate slice sampler described in Section 7.6.1. Note that we only need to know the target
full conditional posterior up to normalization. This is important in this example since solving
the normalizing constant in this model is not possible analytically.
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Algorithm 12.2 (Slice sampling)

1. For l = 0, initialize the parameter vector (θΛ,0,λ1:T ,0, θρ,0) randomly or deterministically;
2. Repeat while l ≤ L

a) Set (θΛ,l ,λ1:T ,l , θρ,l) = (θΛ,l−1,λ1:T ,l−1, θρ,l−1);
b) Sample j uniformly from set {1, 2, . . . , J};

Sample new parameter value θ̃
( j )
Λ from the full conditional posterior distribution

π
(
θ
( j )
Λ |θ(−j )

Λ,l , λ1: T ,l , n1:T , δ1:K , θρ,l

)
.

Set θ( j )
Λ,l = θ̃

( j )
Λ .

c) Sample j uniformly from set {1, 2, . . . , J} and t uniformly from set {1, . . . ,T};
Sample new parameter value λ̃

( j )
t from the full conditional posterior distribution

π
(
λ
( j )
t |θΛ,l , λ

(−t,−j )
1:T ,l , n1:T , δ1:K , θρ,l

)
.

Set λ( j )
t,l = λ̃

( j )
t .

d) Sample new parameter value θ̃ρ from the full conditional posterior distribution
π
(
θρ|θΛ,l , λ1:T ,l , n1:T , δ1:K

)
.

Set θρ,l = θ̃ρ.
3. l = l + 1 and return to 2.

The sampling from the full conditional posteriors in stage 2 uses a univariate slice
sampler. For example, to sample the next iteration of the Markov chain from
π
(
θ
( j )
Λ |θ(−j )

Λ,l ,λ1:T ,l , n1:T , δ1:K , θρ

)
:

• Sample u from a uniform distribution

Uniform
(

0, π
(
θ
( j )
Λ,l |θ

(−j )
Λ,l , λ1:T ,l , n1:T , δ1:K , θρ

))
. (12.51)

• Sample θ̃( j )
Λ uniformly from the intervals (level set)

A =
{
θ
( j )
Λ : π

(
θ
( j )
Λ |θ(−j )

Λ,l , λ1:T ,l , n1:T , δ1:K , θρ

)
> u
}
. (12.52)

The level sets A are determined, for example, by a stepping out and a shrinkage procedure, the details
of which can be found in Neal (2003, figure 1, p. 713); see also Section 7.6.1.

12.7.2 NUMERICAL EXAMPLE

Consider the model with Model Assumptions 12.2 in the case of two risks with dependent
intensities and set risk cell volumes V (1) =V (2) = 1. Here, we estimate Θ

(1)
Λ ,Θ

(2)
Λ , and Θρ

jointly. We set the true values of Θ(1)
Λ and Θ

(2)
Λ to be θ(1)

true = 5 and θ
(2)
true = 10, respectively. Also,
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we assume a Gaussian copula with ρ= 0.9, that is, the true value of Θρ is 0.9. For the expert
opinions on the true parameters, assume opinion that underestimates risk profile 1, Δ(1)

1 = 2
and opinion that overestimates the risk profile 2, Δ(2)

1 = 13. The model parameters were set
as follows:

• ξ(1) = ξ(2) = 2, α(1) = 2, α(2) = 2 – parameters of the conditional distributions for the
intensities and expert opinions;

• a(1) = a(2) = 2, b(1) = 2.5, b(2) = 5 – parameters of the prior distribution for Θ(1)
Λ

and Θ
(2)
Λ .

Then, the simulation experiment steps are as follows:

1. Using the true values for the model parameters, simulate a dataset n1:T of the annual
number of events over T = 20 years;

2. Obtain correlated MCMC samples from the target posterior distribution after discard-
ing burnin samples, {θΛ,l ,λ1:T ,l , θρ,l} , l = 1, 001, . . . , 50, 000. Here, we use the slice
sampler Algorithm 12.2;

3. Estimate desired posterior quantities such as posterior mean of parameters of interest and
posterior standard deviations.

Further analysis can be done by repeating steps 1–3 for independent data realizations and then
analyzing average of the results; these can be found in Peters et al. (2009).

Results for this simulation experiment as a function of data size are given in Table 12.1.
That is, we study the accuracy of the parameter estimates as the number of observations
increases. A typical run with 5 years of data and 1 expert in the bivariate case for 50,000 sim-
ulations took approximately 50 s and for the case of 10 risk profiles it took approximately 43
min.1 The standard errors in the estimates (due to finite number of MCMC iterations) were
in the range 1–5% and are not presented in the table.

table 12.1 Posterior estimates for Θ(1)
Λ ,Θ

(2)
Λ and copula parameter Θρ

Year 1 2 5 10 15 20

E[Θ
(1)
Λ ] 2.83 4.49 3.31 4.88 4.36 5.07

stdev[Θ
(1)
Λ ] 1.74 2.02 1.38 1.29 1.10 1.09

E[Θ
(2)
Λ ] 10.23 10.85 8.72 8.91 8.58 9.94

stdev[Θ
(2)
Λ ] 3.92 3.52 2.95 2.12 2.04 1.85

E[Θρ] 0.21 0.47 0.61 0.66 0.70 0.74
stdev[Θρ] 0.54 0.39 0.30 0.24 0.19 0.15

In this case, a single data set is generated using Gaussian (ρ = 0.9) copula model as specified. Posterior standard
deviations are given in brackets next to estimate. Joint estimation was used.

1Computing time is quoted for a standard PC, Intel Core 2 with 2.40 GHz CPU and 2.39 GB of RAM.
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These results demonstrate that our model and estimation methodology is successfully able
to estimate jointly the risk profiles and the correlation parameter. It is also clear that with
few observations, for example, T ≤ 5, and a vague prior for the copula parameter, it will be
difficult to accurately estimate the copula parameter. This is largely due to the fact that the
posterior distribution in this case is diffuse. However, as the number of observations increases,
the accuracy of the estimate improves and the estimates are reasonable in the case of 15 or
20 years of data. Additionally, we could further improve the accuracy of this prediction if we
incorporated expert opinions into the prior specification of the copula parameter instead of
using a vague prior.

Other results presented in Peters et al. (2009) demonstrate that, as expected from cred-
ibility theory, the joint estimation is better than the marginal, that is, the posterior standard
deviations for Θ(1)

Λ and Θ
(2)
Λ are less when joint estimation is used. In addition, the rate of

convergence of the posterior mean for ΘΛ to the true value is faster under the joint esti-
mation and there is a strong correlation between Θ

(1)
Λ and Θ

(2)
Λ . Thus, the standard prac-

tice in the industry of performing marginal estimation of risk profiles may lead to incorrect
results.

Overall, this example demonstrates how the combination of all the relevant sources of
data can be achieved and that a sampling methodology has the ability to estimate jointly all the
model parameters, including the copula parameter. One can extend this methodology to more
sophisticated and flexible copula-based models with more than one parameter. This should
be relatively trivial since the methodology developed applies directly. However, the challenge
in the case of a more sophisticated copula model relates to finding a relevant choice of prior
distribution on the correlation structure.

12.7.3 PREDICTIVE DISTRIBUTION

Conceptually, quantification of the predictive distribution (accounting both for process and
parameter uncertainties) for a bank’s annual loss in the case of many risks is similar to the
case of single risk considered in Section 13.7. If correlation modeling cannot be done then, as
required by Basel II, the 0.999 quantile should be quantified for each risk cell as described in
Section 13.7; the total capital is just a sum of these quantiles. In this section, we assume that
the dependence model between risks is developed.

Consider the annual loss in a bank over the next year, ZT+1. Denote the density of the
annual loss, conditional on parameters θ, as f (zT+1|θ). Typically, practitioners will take point
estimates θ̂ of all model parameters; conditional on these point estimates construct the predic-
tive distribution f (zT+1|θ̂). Then, the latter is used to calculate risk measures such as the 0.999
quantile, Q0.999(θ̂). Typically, given observations, the MLEs θ̂ are used as the “best fit” point
estimators for θ.

However, the parameters θ are unknown and it is important to account for this uncer-
tainty when the capital charge is estimated (especially for risks with small datasets) as discussed
in Shevchenko (2008). If the Bayesian inference approach is taken, then the parameter θ is
modeled by random variable Θ and the predictive density (accounting for parameter uncer-
tainty) of ZT+1, given all data Y used in the estimation procedure, is

f (zT+1|y) =
∫

f (zT+1|θ)π(θ|y)dθ. (12.53)
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Here, π(θ|y) is the posterior density for Θ. Also, it is assumed that, given parameters Θ, ZT+1
and Y are independent. The 0.999 quantile of the predictive distribution

QP
q = F−1

ZT+1|Y (q) = inf{z ∈ R : Pr[ZT+1 > z|Y ] ≤ 1 − q}, (12.54)

where q = 0.999, can be used as a risk measure for capital calculations; also see formula (13.79).
Another approach under a Bayesian framework to account for parameter uncertainty is to

consider a quantile Qq(θ) of the conditional annual loss density f (·|θ):

Qq(Θ) = F−1
ZT+1|Θ(q) = inf{z ∈ R : Pr[ZT+1 > z|Θ] ≤ 1 − q}, (12.55)

where we are interested in q = 0.999. Then, given that Θ is distributed from π(θ|y), one can
find the distribution of Qq = Qq(Θ) and form a predictive interval to contain the true value of
Qq with some probability.2 Under this approach, one can argue that the conservative estimate of
the capital charge accounting for parameter uncertainty should be based on the upper bound
of the constructed interval. Note that specification of the confidence level is required and it
might be difficult to argue that the commonly used confidence level 0.95 is good enough for
estimation of the 0.999 quantile.

In OpRisk, it seems that the objective should be to estimate the full predictive distribution
(12.53) for the annual loss ZT+1 over next year conditional on all available information and
then estimate the capital charge as a quantile QP

0.999 of this distribution (12.54).
Consider all risk cells in the bank. Assume that multivariate model is specified. That is,

the frequency p(·|α) and severity f (·|β) densities for each cell are chosen and the dependence
structure between risks parameterized by some parameter vector ρ is specified. Also, suppose
that the posterior π(θ|y), θ = (α,β,ρ) is estimated. Then, the predictive distribution (12.53)
for the annual loss across all risk cells over next year can be calculated using the Monte Carlo
procedure with the following logical steps.

Algorithm 12.3 (Monte Carlo Predictive Distribution for Many Risks)

1. For k = 1, . . . ,K
a) Simulate all model parameters (including the dependence parameters) from their joint pos-

terior π(θ|y). If the posterior is not known in closed form, then this simulation can be
done using MCMC (see Section 7.4). For example, one can run MCMC for K iterations
beforehand and simply take the k-th iteration parameter values;

b) Given model parameters θ = (α,β,ρ), simulate the annual frequencies N ( j ) and severi-
ties X ( j )

s , s = 1, . . . ,N ( j ) for all risks j = 1, . . . , J with a chosen dependence structure.
Calculate the bank annual loss Zk = Z (1) + · · · + Z ( J), where Z ( j ) =

∑N ( j )

s=1 X ( j )
s is

the annual loss due to the j-th risk.
2. Next k

2This is similar to forming a confidence interval in the frequentist approach using the distribution of Q0.999(θ̂),
where θ̂ is treated as random.
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Remark 12.5 Obtained annual losses (total across all risks for next year) Z1, . . . ,ZK are sam-
ples from the predictive density (12.53). A full specification of the dependence model is required.
In general, sampling from the joint posterior of all model parameters can be accomplished via
MCMC; see Peters et al. (2009) and Dalla Valle (2009). The 0.999 quantile QP

0.999 and other
distribution characteristics can be estimated using the simulated samples in the usual way; see
Section 13.2.

Note that in the aforementioned Monte Carlo procedure the risk profile θ is simu-
lated from its posterior for each simulation. Thus, we model both the process uncertainty,
which comes from the fact that frequencies and severities are random variables, and the
parameter risk (parameter uncertainty), which comes from the fact that we do not know
the true values of θ. Using samples from the joint posterior distribution of the model
parameters, we can construct the predictive distribution by removing the parameter uncer-
tainty from the model considered, including the uncertainty arising from the dependence
parameters.

EXAMPLE 12.2

As an example, consider the Model Assumptions 12.1. Then the predictive density
for the annual loss ZT+1 is

π (zT+1|n1:T , δ1:K ) =

∫
π (zT+1|θΛ, θρ)π (θΛ, θρ|n1:T , δ1:T ) dθΛdθρ.

(12.56)

Here, we used the model assumptions that given ΘΛ and Θρ we have that ZT+1
is independent from the data (N1:T ,Δ1:K ). To obtain samples from this predictive
distribution, add simulation of (θΛ,θρ) from the posterior distribution (e.g., using
slice sampler methodology) as an extra step before step 1 in Algorithm 12.1. Specif-
ically, if one wants to simulate K annual losses from the predictive distribution,
then this would involve first running the slice sampler for K iterations after burnin.
Then, for each iteration k, one would use the state of the Markov chain (θΛ,k, θρ,k)
in the simulation Algorithm 12.1.

12.8 A Note on Negative Diversification and
Dependence Modeling

We conclude this chapter with a brief note on dependence modeling and VaR subadditivity
properties. As has already been discussed in Chapter 6, VaR is not a coherent risk measure;
see Artzner et al. (1999). In particular, under some circumstances, VaR measure may fail a
subadditivity property
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VaRq[Z ] ≤
J∑

j=1

VaRq[Z ( j )]; (12.57)

see Embrechts et al. (2009a,b). That is, dependence modeling could also increase VaR. Note
that if there is a perfect positive dependence between risks, that is, Z ( j ) = H−1

j (U ), j =

1, . . . , J , where U ∼ U(0, 1) and Hj(·) is a distribution of Z ( j ), then

VaRq[Z ] =

J∑
j=1

VaRq[Z ( j )]. (12.58)

That is, the failure of the subadditivity means that the VaR for the sum of risks is larger than
the VaR in the case of perfectly dependent risks. This is very counterintuitive given a typical
expectation of diversification benefits. In particular, the diversification

Dq = 1 −
VaRq[

∑
j Z ( j )]∑

j VaRq[Z ( j )]
(12.59)

is expected to be positive while the subadditivity failure corresponds to the negative diversi-
fication. The latter may occur even for independent risks when the risks are heavy tailed. It
was shown and discussed in Nešlehová et al. (2006) that if independent risks are Pareto type,
Z ( j ) ∼ Fj(x) = 1 − x−αj Cj(x), with the tail indexes 0 < αj < 1, then

VaRq[Z ] >

J∑
j=1

VaRq[Z ( j )], (12.60)

at least for sufficiently large q. The case of 0 < αj ≤ 1 corresponds to infinite mean distribu-
tion, that is, E[Z ( j )] = ∞.

Remark 12.6 To simplify notation, the index of discrete time (year) is dropped. Implicitly, in the
discussion of diversification issues, we refer to the next year.

EXAMPLE 12.3

Assume that we have two independent risks, X ∼ Pareto(β, 1) and Y ∼ Pareto(β, 1),
where Pareto(β, a) = 1 − (x/a)−β . Calculating the VaR0.999[X + Y ] using,
for example, FFT, we can easily find the diversification Dq as defined in (12.59).
Figure 12.3 shows the results for D0.999 versus β that demonstrate negative
diversification for β < 1.
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EXAMPLE 12.4

In the previous example, we found that the diversification is positive for β > 1.
In particular, D0.999 ≈ 0.27 when β = 4, that is mean, variance, and skewness are
finite. It is important to realize that diversification depends on the quantile level.
Figure 12.3 shows the results for Dq versus q in the case of β = 4. One can see that
diversification is positive for high level quantiles but may become zero and negative
for lower quantiles.

Diversification vs. quantile level

–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Quantile level

D
iv

er
si

fic
at

io
n

Diversification at the 0.999 quantile
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figure 12.3 Upper figure: the diversification for random variables X ∼ Pareto(β, 1) and
Y ∼ Pareto(β, 1) versus. β. Bottom figure: the diversification for random variables
X ∼ Pareto(4, 1) and Y ∼ Pareto(4, 1) versus. quantile level q
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Chapter Thirteen

Loss Aggregation

Estimation of the capital under the Loss Distribution Approach (LDA) requires calculation of
the distribution for the aggregate (compound) loss

Z = X1 + · · ·+ XN ,

where the frequency N is a discrete random variable. Closed-form solutions are not available
for the distributions typically used in OpRisk and numerical evaluation is required. This is one
of the classical problems in risk theory. Before the era of personal computers, it was calculated
using approximations such as that based on the asymptotic central limit theory or on ad hoc rea-
soning using, for example, shifted Gamma approximation. With modern computer processing
power, these distributions can be calculated virtually exactly using numerical algorithms. The
easiest to implement is the Monte Carlo method. However, because it is typically slow, Panjer
recursion and Fourier inversion techniques are also widely used. Both have a long history, but
their applications to computing very high quantiles of the compound distribution functions
with high frequencies and heavy tails are only recent developments and various pitfalls exist.
This chapter describes numerical algorithms that can be successfully used for this problem. In
particular, Monte Carlo, Panjer recursion, and Fourier transformation methods are presented.
Several closed-form approximations are also reviewed.

13.1 Analytic Solution

In general, there are two types of analytic solutions for calculating the compound distribution,
denoted hereafter in this chapter by H(z). These are based on convolutions and method of
characteristic functions. Typically, the analytic solutions do not have closed form, and numer-
ical methods (such as Monte Carlo, Panjer recursion, Fast Fourier Transform (FFT), or direct
integration) are required. These solutions and methods are described in the following sections.
To introduce required notation and definitions, consider the following model setup.

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Model Assumptions 13.1 The annual loss in a risk cell is modeled by a compound random
variable

Z =

N∑
i=1

Xi, (13.1)

where

• N is the number of events (frequency) over 1 year modeled as a discrete random variable with
probability mass function pk = Pr[N = k], k = 0, 1, . . . . Note that there is a finite
probability of no loss occurring over the considered time period if N = 0 is allowed, that is
Pr[Z = 0] = Pr[N = 0];

• Xi, i ≥ 1, are positive severities of the events (loss amounts) modeled as independent and
identically distributed random variables from a continuous distribution function F (x) with
x ≥ 0 and F (0) = 0. The corresponding density function is denoted as f (x);

• N and Xi are independent for all i, that is, the frequencies and severities are independent;
• The distribution and density functions of the annual loss Z are denoted as H(z) and h(z),

respectively;
• All model parameters (parameters of the frequency and severity distributions) are assumed to be

known. Of course, in reality, the model parameters are unknown and estimated using past data
over T years.

The methods described in this chapter can be used to calculate the distribution of com-
pound loss over any time period. For simplicity, only the most relevant case of a 1-year time
period is considered here. Extension to the case of other time periods is trivial.

13.1.1 ANALYTIC SOLUTION VIA CONVOLUTIONS

The density and distribution functions of the sum of independent random variables can be
calculated via convolution as described in Section 5.5. Thus, for given N = k, the distribution
of the sum X1 + · · ·+ Xk is just k-fold convolution F (k)∗(z) = Pr[X1 + · · ·+ Xn ≤ z] of the
severity distribution F (·), and the distribution of the annual loss (13.1) can be calculated as

H(z) = Pr[Z ≤ z] =
∞∑

k=0

Pr[Z ≤ z|N = k]Pr[N = k]

=
∞∑

k=0

pkF (k)∗(z). (13.2)

The k-fold convolution F (k)∗(z) is calculated recursively as

F (k)∗(z) =
∫ z

0
F (k−1)∗(z − x)f (x)dx

with

F (0)∗(z) =
{

1, z ≥ 0,
0, z < 0.
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In this method, the integration limits are 0 and z. This is because we consider non-negative
severities. The obtained formula is analytic. However, closed-form solutions are rare, an in
depth discussion on such models is provided in Peters and Shevchenko (2015), in addition a
special discussion on discrete distributions in this class of models is provided briefly at the end
of this chapter. Panjer recursion and FFT, discussed in Sections 13.3 and 13.5, are very efficient
numerical methods to calculate these convolutions.

13.1.2 ANALYTIC SOLUTION VIA CHARACTERISTIC FUNCTIONS

The characteristic function of the compound distribution can be easily calculated via the char-
acteristic function of the severity and the probability generating function of the frequency. For
definitions and results on characteristic functions, see Section 5.5. Then, the inverse transform
of the characteristic function can be used to calculate the actual compound distribution. Again,
typically, the inverse transform cannot be performed in closed form, and FFT or direct inte-
gration methods can be used to calculate the required integrals numerically. To introduce the
notation, define as follows:

• The characteristic function of the severity density f (x) is

ϕ(t) =
∞∫

−∞

f (x)eitxdx, (13.3)

where i =
√
−1 is a unit imaginary number;

• The probability-generating function of a frequency distribution with probability mass func-
tion pk = Pr[N = k] is

ψ(s) =
∞∑

k=0

skpk. (13.4)

The characteristic function of the sum of independent random variables is just a product
of their individual characteristic functions. Thus, for given N = k, the characteristic function
of X1 + · · · + Xk is just (ϕ(t))k. Then, the characteristic function of the compound loss Z in
model (13.1), denoted by χ(t), can be expressed through the probability-generating function
of the frequency distribution and characteristic function of the severity distribution as

χ(t) =
∞∑

k=0

(ϕ(t))k pk = ψ(ϕ(t)). (13.5)

Given the characteristic function, the density of the annual loss Z can be calculated via the
inverse Fourier transform as

h(z) =
1

2π

∞∫
−∞

χ(t) exp(−itz)dt, z ≥ 0. (13.6)
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In the case of non-negative severities, the density and distribution functions of the com-
pound loss can be calculated using the following lemma.

Lemma 13.1 For a non-negative random variable Z with a characteristic function χ(t), the den-
sity h(z) and distribution H(z) functions, z ≥ 0, are

h(z) =
2
π

∞∫
0

Re[χ(t)] cos(tz)dt, z ≥ 0; (13.7)

H(z) =
2
π

∞∫
0

Re[χ(t)]
sin(tz)

t
dt, z ≥ 0. (13.8)

Proof : The proof is simple and can be shown by defining a function h̃(z) such that h̃(z) = h(z)
if z ≥ 0 and h̃(z) = h(−z) if z < 0; for details, see Shevchenko (2011, lemma 3.1).

Changing variable x = t × z, the formula (13.8) can be rewritten as

H(z) =
2
π

∞∫
0

Re[χ(x/z)]
sin(x)

x
dx,

which is often a useful representation to study limiting properties. In particular, in the limit
z → 0, it gives

H(z → 0) =
2
π
Re[χ(∞)]

∞∫
0

sin(x)
x

dx = Re[χ(∞)]. (13.9)

This leads to a correct limit H(0) = Pr[N = 0], because the severity characteristic function
ϕ(∞) → 0 (in the case of continuous severity distribution function).

EXAMPLE 13.1 Poisson frequency

Assume that frequency N is distributed from Poisson(λ); then characteristic func-
tion of aggregate loss Z = X1 + · · ·+ XN is

χ(t) =
∞∑

k=0

(ϕ(t))k e−λλk

k!
= exp(λϕ(t)− λ). (13.10)

Substituting ϕ(∞) → 0, note that in the case of Poisson frequency, formula (13.9)
gives an obvious result H(0) = exp(−λ).
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EXAMPLE 13.2 Negative Binomial frequency

Assumethat frequencyN is fromNegativeBinomialdistributionNegBinomial(m, q);
then characteristic function of aggregate loss Z = X1 + · · ·+ XN is

χ(t) =
∞∑

k=0

(ϕ(t))k
(

k + m − 1
k

)
(1 − q)kqm

=

(
q

1 − (1 − q)ϕ(t)

)m

. (13.11)

Substituting ϕ(∞) → 0, note that in the case of Negative Binomial frequency,
formula (13.9) gives an obvious result H(0) = qm.

EXAMPLE 13.3 Binomial frequency

Assume that frequency N is from binomial distribution Binomial(n, q); then char-
acteristic function of aggregate loss Z = X1 + · · ·+ XN is

χ(t) =
∞∑

k=0

(ϕ(t))k
(

n
k

)
qk(1 − q)n−k

=
1

(1 + q(ϕ(t)− 1))n . (13.12)

Substituting ϕ(∞) → 0, note that in the case of Negative Binomial frequency,
formula (13.9) gives an obvious result H(0) = (1 − q)n.

13.1.3 MOMENTS OF COMPOUND DISTRIBUTION

In general, the compound distribution cannot be found in closed form. However, given that
characteristic function of the compound distribution can be expressed through the characteris-
tic functions of the severity and frequency via (13.5), the moments (if exist) of the compound
distribution can be calculated as

Mk = E[Z k] = (−i)k dkχ(t)
dtk

∣∣∣∣
t=0

, k = 1, 2, . . . . (13.13)

Similarly, the central moments can be found as

μk = E[(Z − E[Z ])k]

= (−i)k dkχ(t) exp(−itE[Z ])

dtk

∣∣∣∣
t=0

, k = 1, 2, . . . (13.14)
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and cumulants (or semi-invariants) can be calculated as

κk = (−i)k dk lnχ(t)
dtk

∣∣∣∣
t=0

. (13.15)

The moments can be calculated via the cumulants and vice versa. Here, χ(t) is character-
istic function of compound distribution given by (13.5). Then, one can derive the explicit
expressions for all moments of compound distribution via the moments of frequency and sever-
ity, noting that ϕ(0) = 1 and using the relations

dkψ(s)
dsk

∣∣∣∣
s=1

= E[N (N − 1) · · · (N − k + 1)], (13.16)

(−i)k dkϕ(t)
dtk

∣∣∣∣
t=0

= E[X k
1 ], (13.17)

that follow from the definitions of the probability-generating and characteristic functions (13.4)
and (13.3), respectively, though the expression is lengthy for high moments.

In application, typically only the first four moments are most often used with the following
relations:

μ2 = κ2 ≡ Var[Z ]; μ3 = κ3; μ4 = κ4 + 3κ2
2. (13.18)

Then, closely related distribution characteristics, skewness and kurtosis, are

Skewness =
μ3

(μ2)3/2 , (13.19)

Kurtosis =
μ4

(μ2)2 − 3. (13.20)

These formulas relating characteristic function and moments can be found in many textbooks
on probability theory.

Using the expression for characteristic function of the compound distribution (13.5) and
formulas (13.16), it is easy to find the explicit expressions for the first four moments of the
compound distribution (the calculus is simple but lengthy). Specifically, The first four moments
of the compound random variable Z = X1 + · · · + XN , where X1, . . . ,XN are independent
and identically distributed, and independent of N , are given by

E[Z ] = E[N ]E[X1], (13.21)

Var[Z ] = E[N ]Var[X1] + Var[N ]E[X1]
2, (13.22)

E[(Z − E[Z ])3] = E[N ]μX
3 + 3Var[N ]Var[X1]E[X1] + μN

3 E[X1]
3,

E[(Z − E[Z ])4] = E[N ]μX
4 + 4Var[N ]μX

3 E[X1] (13.23)

+ 3Var[X1]
2 (Var[N ] + E[N ](E[N ]− 1))

+ 6E[X1]
2
Var[X1]

(
μN

3 + E[N ]Var[N ]
)
+ μN

4 E[X1]
4. (13.24)
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Here, explicitly,

μX
3 = E[(X1 − E[X1])

3], μN
3 = E[(N − E[N ])3],

μX
4 = E[(X1 − E[X1])

4], μN
4 = E[(N − E[N ])4].

It is also assumed that the required moments of severity and frequency exist.
Many parametric distributions can be used as an approximation for a compound loss distri-

bution using moment matching; some examples are given in Section 13.6. Here, for illustration,
we calculate the moments of compound loss in the case of Poisson distributed frequencies in
two examples.

EXAMPLE 13.4 Moments of Compound Poisson

If frequencies are Poisson-distributed, N ∼ Poisson(λ), then

E[N ] = Var[N ] = E[(N − E[N ])3] = λ,

E[(N − E[N ])4] = λ(1 + 3λ),

and compound loss moments calculated using formulas (13.21–13.24) are

E[Z ] = λE[X1], Var[Z ] = λE[X 2
1 ],

E[(Z − E[Z ])3] = λE[X 3
1 ],

E[(Z − E[Z ])4] = λE[X 4
1 ] + 3λ2(E[X 2

1 ])
2. (13.25)

Moreover, if the severities are from LogNormal distribution,
X1 ∼ LogNormal(μ, σ2), then

E[X k
1 ] = exp(kμ+ k2σ2/2). (13.26)

EXAMPLE 13.5 Cumulants of Compound Poisson

Consider aggregate loss Z = X1+· · ·+XN , where N is from Poisson(λ); X1, . . . ,XN
are independent and identically distributed, and independent of N . The cumulants
of Z can be found using the definition of cumulants (13.15) and the characteristic
function for compound Poisson (13.10) as follows

κk = (−i)k dk lnχ(t)
dtk

∣∣∣∣
t=0

= λ(−i)k dkϕ(t)
dtk

∣∣∣∣
t=0

= λE[X k
1 ], k = 1, 2, . . . .
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13.1.4 VALUE-AT-RISK AND EXPECTED SHORTFALL

Once compound loss distribution is evaluated, the risk measures such as Value-at-Risk (VaR)
and expected shortfall (ES) can be calculated. Analytically, VaR of the compound loss is calcu-
lated as the inverse of the compound distribution

VaRα[Z ] = H−1(α). (13.27)
The ES of the compound loss, ESα[Z ], can be calculated using its definition (6.11) in
Section 6.2.4, that is,

ESα[Z ] =
1

1 − α

1∫
α

VaRp[Z ]dp. (13.28)

For numerical algorithms such as Panjer recursion or FFT it is often easier to calculate the
equivalent expression for ES

ESα[Z ] =
1

1 − α

⎛
⎝E[Z ]−

α∫
0

VaRp[Z ]dp

⎞
⎠ (13.29)

because, typically, the mean of compound distribution E[Z ] = E[N ]E[X1] is known in closed
form and the required integration is between 0 and α, instead of tail integration α to 1. Note
that ESα[Z ] is defined for a given quantile qα, that is, the quantile H−1(α) has to be computed
first (unless we calculate ES as a minimum of cost function using Proposition 6.6).

Assuming that there is no jump in distribution at the quantile qα = VaRα[Z ], the expres-
sion for ES can be rewritten as

ESα[Z ] = E[Z |Z ≥ qα] =
E[Z ]

1 − α
− 1

1 − α

qα∫
0

zh(z)dz. (13.30)

Using the expression for h(z) via its characteristic function χ(t) given by formula (13.7), it can
be rewritten as

ESα[Z ] =
1

1 − H(qα)

⎡
⎣E[Z ]− H(qα)qα +

2qα
π

∞∫
0

Re [χ(x/qα)]
1 − cos x

x2 dx

⎤
⎦; (13.31)

see also Shevchenko (2011, solution for exercise 3.1). This can be used to calculate ES via
direct integration of characteristic function as by Luo and Shevchenko (2009). Strictly speaking,
in formulas (13.30) and (13.31), we assumed that there is no jump in distribution at qα. If
required, the formula can be easily generalized using Proposition 6.5.

13.2 Monte Carlo Method

The easiest numerical method to calculate the compound loss distribution is the Monte Carlo
method with the following steps: (i) simulate the annual number of events N from the fre-
quency distribution; (ii) simulate independent severities X1, . . . ,XN from the severity distribu-
tion; (iii) calculate Z =

∑N
i=1 Xi. Repeat these steps K times to get Z1, . . . ,ZK independent
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samples of Z from a compound distribution H(·). All random numbers simulated here are
independent.

Obtained Z1, . . . ,ZK are samples from a compound distribution H(·). Now the distribu-
tion H(·) can be estimated by empirical distribution

Ĥ(z) =
1
n

K∑
k=1

I{Zk≤z}. (13.32)

Distribution characteristics can be estimated using the simulated samples in the usual way.
Here, we just mention the quantile and ES which are of primary importance for OpRisk.

13.2.1 QUANTILE ESTIMATE

Consider a sample of i.i.d. random variables Z1, . . . ,ZK and corresponding sample sorted into
the ascending order (the order statistics) Z(1,K ) ≤ · · · ≤ Z(K ,K ). Then a standard estimator of
the quantile qα = H−1(α) is

Q̂α = Ĥ−1(α) = Z(�Kα�,K ), (13.33)

where 	.
 denotes rounding upward, that is, 	Kα
 is the smallest integer larger than or equal to
Kα. Then, for a given realization of the sample Z = z, the quantile estimate is q̂α = z(�Kα�,K ).
It is important to estimate the numerical error (due to the finite number of simulations K ) in
the quantile estimator. Formally, it can be assessed using the following asymptotic result

h(qα)
√

K√
α(1 − α)

(
Q̂α − qα

)
→ Normal(0, 1), as K → ∞ (13.34)

(see, e.g., Stuart and Ord 1994, pp. 356–358 and Glasserman 2004, p. 490). This means that
the quantile estimator Q̂α converges to the true value qα as the sample size K increases and
asymptotically Q̂α is normally distributed with the mean qα and standard deviation

stdev[Q̂α] =

√
α(1 − α)

h(qα)
√

K
. (13.35)

Typically, the density h(qα) is not known and should be estimated itself, and thus the use of
the given formula is difficult. It is often easier to estimate the error of the quantile estimator
using a nonparametric statistic by forming a conservative confidence interval [Z(r,K ),Z(s,K )] to
contain the true quantile value qα with the probability at least γ:

Pr[Z(r,K ) ≤ qα ≤ Z(s,K )] ≥ γ, 1 ≤ r < s ≤ K . (13.36)

Indices r and s can be found by utilizing the fact that the true quantile qα is located between
Z(M ,K ) and Z(M+1,K ) for some M . The number of losses M not exceeding the quantile qα
has a Binomial distribution, Binomial(K , α), because it is the number of successes from K
independent and identical attempts with success probability α; denote this distribution as
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Pr[M ≤ m] = Binomial(m;K , α). Thus, the probability that the interval [Z(r,K ),Z(s,K )]
contains the true quantile is simply

Pr[r ≤ M ≤ s − 1] =
s−1∑
i=r

(
K
i

)
αi(1 − α)K−i

= Binomial(s − 1;K , α)− Binomial(r − 1;K , α). (13.37)

A common practice is to choose r and s that are symmetric around and closest to the index
	Kα
, and such that the probability (13.37) is not less than the desired confidence level γ.
The mean and variance of the Binomial distribution are Kα and Kα(1−α), respectively. For
large K , approximating the Binomial by the Normal distribution with this mean and variance
leads to a simple approximation for the conservative confidence interval bounds:

r = �l� , l = Kα− F−1
N ((1 + γ)/2)

√
Kα(1 − α),

s = 	u
 , u = Kα+ F−1
N ((1 + γ)/2)

√
Kα(1 − α),

(13.38)

where F−1
N (·) is the inverse of the standard Normal distribution. This formula works very well

for Kα(1 − α) ≥ 50.
A priori, the number of simulations required to achieve a specific accuracy is not known.

One of the approaches is to continue simulations until a desired numerical accuracy is achieved.
Typically, K ≥ 105 should be used to achieve a good numerical accuracy for the 0.999 quantile
but it can be much larger in the case of heavy-tailed distributions. If the number of simulations
to get acceptable accuracy is very large (e.g., K > 107), then you might not be able to store
the whole array of samples Z1, . . . ,ZK when implementing the algorithm, due to computer
memory limitations. However, if you need to calculate just the high quantiles, then you need
to save only K −	Kα
+1 largest samples to estimate the quantiles (13.33). This can be done by
using sorting on the fly algorithms, where you keep a specified number of largest samples as you
generate the new samples; see Press et al. (2002, section 8.5). Moments (mean, variance, etc.)
can also be easily calculated on the fly without saving all samples into the computer memory.

Note that formula (13.38) can be used for estimating the quantile numerical error if Monte
Carlo samples Z1, . . . ,ZK are independent and identically distributed. If the samples are cor-
related, for example, generated by Markov Chain Monte Carlo (MCMC), then (13.38) can
significantly underestimate the error. In this case, one can use batch sampling or effective sample
size methods described in Section 7.5.2.

EXAMPLE 13.6

Assume that K = 105 independent samples Zk were drawn from some distribution.
Suppose that we would like to construct a conservative confidence interval to
contain the 0.999 quantile with probability at least γ = 0.95. Then, sort the
samples in ascending order and using (13.38) calculate F−1

N ((1 + γ)/2) ≈ 1.96,
r = 99, 880 and s = 99, 920, and 	Kα
 = 99, 900. That is, our best point
estimate for the quantile is Z(�Kα�,K ) and [Z(r,K ),Z(s,K )] contains the true quantile
with probability at least 0.95.



�

�

“Cruz_Driver” — 2015/1/8 — 12:42 — page 502 — #11
�

�

�

�

�

�

502 CHAPTER 13 Loss Aggregation

Note that for these values of r and s, we get

Binomial(s − 1;K , α)− Binomial(r − 1;K , α) ≈ 0.955.

For this example, if we would use exact formula (13.37) instead
of approximation (13.38), we would get the same result because
Binomial(s − 1;K , α)− Binomial(r − 1;K , α) is less then 0.95 for
(r = 99, 881; s = 99, 920) or (r = 99, 880; s = 99, 919).

EXAMPLE 13.7

Assume that independent losses X1, . . . ,Xn are sampled (or observed) from the
density f (x). Then the quantile qα at confidence level α is estimated empirically
as Q̂α = X(�nα�,n), where X(1,n), . . . ,X(n,n) is the data sample X sorted into the
ascending order. The standard deviation of this empirical estimate can be estimated
using formula (13.35),

stdev[Q̂α] =

√
α(1 − α)

f (qα)
√

n
, (13.39)

where f (qα;μ, σ) is the density of LogNormal(μ, σ2). Thus, to calculate the quan-
tile within relative error ε = 2 × stdev[Q̂α]/qα, we need

n =
4α(1 − α)

ε2(f (qα)qα)2 (13.40)

observations. For example, if losses are from LogNormal distribution
LogNormal(μ = 0, σ = 2) and we try to estimate quantile at the level α = 0.999,
then, according to formula (13.40), we need n = 140, 986 samples to achieve
ε = 0.1 accuracy. In the case of n = 1000 data points, we get ε = 1.18 accuracy.

13.2.2 EXPECTED SHORTFALL ESTIMATE

Consider a sample of i.i.d. random variables Z1, . . . ,ZK from some distribution H(z) (with
finite mean) and corresponding ordered sample Z(1,K ) ≤ · · · ≤ Z(K ,K ). Then, in general (i.e.,
sample can be from distribution with jumps and there might be repeated values in a sample),
ES (6.11) can be estimated as

ÊSα =

∑K
i=k Z(i,K )

K − k + 1
→ ESα[Z ], as K → ∞, (13.41)

where k = 	Kα
 is the smallest integer larger than or equal to Kα, that is, Q̂α = Z(k,K ) is
the sample estimator of the quantile qα = H−1(α). Typically, in OpRisk, the distribution is
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continuous at the quantile qα, and ES can be calculated as the conditional tail expectation
ESα[Z ] = E[Z |Z ≥ qα]. In this case, it can be estimated as a simple average of losses larger
than or equal to qα.

ÊSα =

∑K
i=1 ZiIZi≥Q̂α∑K

i=1 IZi≥Q̂α

→ ESα[Z ], as K → ∞. (13.42)

The convergence follows from the strong law of large numbers applied to the numerator and
denominator and the convergence of the quantile estimator. If we assume that the quantile qα
is known, then in the limit K → ∞, the central limit theorem gives

√
K
σ

(ÊSα − ESα) → Normal(0, 1), (13.43)

where σ can be estimated as

σ̂2 = K
∑K

k=1(Zk − ÊSα)
21Zk≥qα(∑K

k=1 1Zk≥qα

)2 .

Then, the standard deviation of ÊSα is estimated by σ̂/
√

K (see Glasserman 2005). However, it
will underestimate the error in ES estimate because the quantile qα is not known and estimated
itself by q̂α. Approximation for asymptotic standard deviation of ES estimate can be found in
Yamai and Yoshiba (2002, appendix 1). In general, the standard deviation of the Monte Carlo
estimates can always be evaluated by simulating K samples many times; see the batch sampling
methoddescribed inSection7.5.2.Forheavy-taileddistributionsandhighquantiles, it is typically
observed that the error in quantile estimate is much smaller than the error in ES estimate.

13.3 Panjer Recursion

The calculation of compound distribution via the convolution (13.2) for some class of fre-
quency distributions can be reduced to a simple recursion introduced by Panjer (1981) and
referred to as Panjer recursion. Detailed treatment of Panjer recursion and its extensions can
be found in Sundt and Vernic (2009); for a good introduction in the context of OpRisk, see
Panjer (2006, sections 5 and 6). We present a basic Panjer recursion that is typically good
enough for OpRisk calculations.

Panjer recursion has been developed for the case of discrete severities. To use the method for
continuous severities, the continuous severity should be approximated by the discrete one. The
easiest approach is just to round all loss amounts to the nearest multiple of unit δ, for example,
round to the nearest USD 1000. To concentrate severity, whose continuous distribution is F (x),
on {0, δ, 2δ, . . .}, one can choose δ > 0 and use the central difference approximation

f0 = F (δ/2),
fn = F (nδ + δ/2)− F (nδ − δ/2), n = 1, 2, . . . .

(13.44)

Discretization can also be done via the forward and backward differences:

f U
n = F (nδ + δ)− F (nδ);

f L
n = F (nδ)− F (nδ − δ).

(13.45)
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These allow for calculation of the upper and lower bounds for the compound distribution. As
an example, Table 13.1 gives results of discretization for the LogNormal(μ = 0, σ = 2) in the
case of step δ = $1 USD.

In addition to these basic discretization methods, other slightly more sophisticated versions
of discretization methods have been developed. For instance, in Gerber (1982) an approach was
developed which involves a localization of the standard technique of moment matching which
produces a system of non-linear equations that can be solved using the Lagrange formula locally
for each set of grid points. Consider an interval (xδ, xδ + 2δ] and associate local masses to be
solved for at the left grid points denoted by {p0(xδ), p1(xδ), p2(xδ)} in which the following
system of equations must be solved for the zeroth, first and second local moments:

p0(xδ) + p1(xδ) + p2(xδ) =
∫ xδ+2δ

xδ
dF (x),

(xδ)p0(xδ) + (xδ + δ)p1(xδ) + (xδ + 2δ)p2(xδ) =
∫ xδ+2δ

xδ
xdF (x),

(xδ)2p0(xδ) + (xδ + δ)2p1(xδ) + (xδ + 2δ)2p2(xδ) =
∫ xδ+2δ

xδ
x2dF (x).

The solution to this system of equations for the masses {p0(xδ), p1(xδ), p2(xδ)} is obtained in
closed form according to

pj(xδ) =
∫ xδ+2δ

xδ

∏
i �=j

τ − xδ − iδ
(j − i)δ

dF (τ), ∀j ∈ {0, 1, 2}. (13.46)

The system of equations above can be evaluated in closed form in some cases, in other cases
one needs to use for instance a quadrature approximation. For instance, one could approximate
the integrals via the trapezoidal (trapezium rule) using the result

∫ x0+xδ

x0

f (x)dx

≈ f (x0)δx +
1
2

f ′(x0)δx2 +
1
6

f ′′(x0)δx3 + · · ·

=
1
2
(
f (x0) + f (x0 + δx)δx + O(δx3)

)
.

(13.47)

with the choices f (x) = fX (x), f (x) = xfX (x) and f (x) = x2fX (x) utilised.

table 13.1 Example of discretization of LogNormal(μ = 0, σ = 2) distribution using
central fn, backward f L

n , and forward f U
n differences with the step δ = 1

n fn f L
n f U

n

0 0.364455845 0 0.5
1 0.215872117 0.5 0.135544155
2 0.096248034 0.135544155 0.073058159
...

...
...

...
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Remark 13.1 Note, we did not explicitly call these probability masses since the solution can actually
produce negative results, which are clearly not usable for this discretisation method - making this
approach some times untenable, depending on the grid points and model. To obtain the final discretised
distribution simply add the masses at each grid point to get the discretised distribution approximation.
Once the sequence of n discretized values {pj}n

j=0 are obtained, they can be turned into values{
f̂ (j)
}n

j=1
by making sure they are all positive and normalized. Note, the final values of these

discretization methods may need to be enforced to be positive and normalized for some applications.

Another approach to discretization is known as Loyd’s algorithm, which was popularized
in the signal processing and engineering literature and named after Stuart Lloyd, see Lloyd
(1982). This algorithm is a form of Voronoi iteration or relaxation for finding evenly-spaced
sets of points in subsets of Euclidean spaces, and partitions of these subsets into well-shaped
and uniformly sized convex cells. In this regard it is closely related to the concept of k-means
clustering. It is well known that in one dimension Lloyd’s algorithm converges to a centroidal
Voronoi diagram. This algorithm is typically applied to settings where data is available and one
wants to ‘group’ or ‘cluster’ the data by partitioning the convex hull of the data. In the setting
we consider here the Lloyd algorithm is applied in a non-standard way, not to data, but instead
to the discretization of a known distribution function. In this case, the points are selected as
well as the mass at the discrete points to minimise a squared error criterion. Hence, to compute
the discretization of the approximate pdf of a severity model X , f̂X (z). We can achieve this by
using the Lloyd algorithm, which minimizes the mean-square error and in the process produces

a set of grid points {δi}N
i=1 for which we have probability masses

{
f̂i
}N

i=1
.

NOTE: under this discretization method the grid points are not required to be uniformly
spaced. This will have implications for utilisation of this method in calculating integrals which
should be considered. The algorithm is detailed by the following steps for N discrete grid points:

Algorithm 13.1 (Lloyd algorithm)

1. Initialization.
a) Choose the initial ‘quantisation’ levels ie. discretization steps δ(0)

i , i = 1, . . . ,N ;

b) Set the quantisation boundaries b(0)
i =

δ
(0)
i+1−δ

(0)
i

2 , i = 1, . . . ,N − 1;

c) Construct the initial density function: f̂X (x) =
∑N

i=1 f̂iδδ(0)
i
(x);

d) Set the initial distortion D(0) = ∞.
2. Update rule: While |D(k) − D(k−1)| > ε perform the following steps:

a) Quantizer levels: δ(k+1)
i =

∫ b(k)
i

b(k)
i−1

xf̂X (x)dx

∫ b(k)
i

b(k)
i−1

f̂X (x)dx
;

b) Quantizer boundaries: b(k+1)
i =

δ
(k+1)
i+1 −δ

(k+1)
i

2 ;

c) Distortion: D(k+1) =
∑N

i=1
∫ b(k+1)

i

b(k+1)
i−1

(x − δ
(k+1)
i )2 f̂X (x)dx;

d) Increment counter: k = k + 1.
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In addition, we observe that the final values of these discretization methods may need to
be normalized for some applications.

Given discrete severity fk = Pr[Xi = kδ] and discrete frequency pk = Pr[N = k], the
compound loss Z = X1 + · · ·+ XN is also discrete with some hk = Pr[Z = kδ]; k = 0, 1, . . .
that will be calculated by Panjer recursion. For simplicity, assume that f0 = 0. Then, the discrete
version of convolution (13.2) is

hn =

n∑
k=1

pkf (k)∗
n , n ≥ 1,

h0 = Pr[Z = 0] = Pr[N = 0] = p0,

(13.48)

where f (k)∗
n =

∑n
i=0 f (k−1)∗

n−i fi with f (0)∗
0 = 1 and f (0)∗

n = 0 if n ≥ 1.
Note that the condition f0 = Pr[X = 0] = 0 implies that f (k)∗

n = 0 for k > n and
thus the above summation is up to n only. If f0 > 0, then f (k)∗

n > 0 for all n and k; and the
upper limit in summation (13.48) should be replaced by infinity. The number of operations to
calculate h0, h1, . . . , hn using (13.48) explicitly is on the order of n3. If the maximum value for
which the compound distribution should be calculated is large, the number of computations
become prohibitive due to O(n3) operations. Fortunately, if the frequency N belongs to the
so-called Panjer classes, (13.48) is reduced to a simple recursion introduced by Panjer (1981)
and referred to as Panjer recursion.

Theorem 13.1 (Panjer recursion) If the frequency probability mass function pn, n = 0, 1, . . .
satisfies

pn =

(
a +

b
n

)
pn−1, for n ≥ 1 and a, b ∈ R, (13.49)

then it is said to be in Panjer class (a, b, 0) and the compound distribution (13.48) satisfies the
recursion

hn =
1

1 − af0

n∑
j=1

(
a +

bj
n

)
fjhn−j, n ≥ 1,

h0 =

∞∑
k=0

(f0)kpk.

(13.50)

The initial condition in (13.50) is simply a probability-generating function of N at f0, that
is, h0 = ψ(f0); see (13.4). If f0 = 0, then it simplifies to h0 = p0. The Panjer recursion requires
O(n2) operations to calculate h0, . . . , hn in comparison with asymptotic O(n3) of explicit con-
volution. If severity is restricted by a value of the largest possible loss m, then the upper limit
in the recursion (13.50) should be replaced by min(m, n).

It was shown by Sundt and Jewell (1981) that (13.49) is satisfied for the Poisson, Negative
Binomial, and Binomial distributions with the parameters (a, b), and starting values h0 are as
follows:

• Poisson frequency, Poisson(λ):

a = 0, b = λ, h0 = exp(λ(f0 − 1)). (13.51)
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• Negative Binomial frequency, NegBinomial(r, q):

a = 1 − q, b = (1 − q)(r − 1), h0 =

(
1 + (1 − f0)

1 − q
q

)−r

. (13.52)

• Binomial frequency, Binomial(m, q):

a = − q
1 − q

, b =
q(m + 1)

1 − q
, h0 = (1 + q(f0 − 1))m. (13.53)

Strong stability of Panjer recursion was established for the Poisson and Negative Binomial
cases (see Panjer and Wang 1993). The accumulated rounding error of the recursion increases
linearly in n with a slope not exceeding 1. Serious numerical problems may occur for the case of
Binomial distribution. Typically, instabilities in the recursion appear for significantly underdis-
persed frequencies of severities with a large negative skewness which are not typical in OpRisk.
The basic Panjer recursion can be implemented as follows.

Algorithm 13.2 (Panjer recursion)

1. Initialization: calculate f0 and h0, see (13.51–13.53), and set H0 = h0;
2. For n = 1, 2, . . .

a) Calculate fn. If severity distribution is continuous, then fn can be found using discretization
(13.44) or (13.45).

b) Calculate hn = 1
1−af0

∑n
j=1

(
a + bj

n

)
fjhn−j ;

c) Calculate Hn = Hn−1 + hn;
d) Interrupt the procedure at n = n̂ if Hn̂ is larger than or equal to the required quantile level

α, for example, α = 0.999. Then the estimate of the quantile qα is n̂ × δ.
3. Next n (i.e. do an increment n = n + 1 and return to step 2).

Given calculated H0,H1, . . . as Hn =
∑n

i=0 hi, the distribution function is just

Ĥ(x) = H
x/δ� (13.54)

and the quantile estimator is

q̂α = Ĥ−1(α) = n̂ × δ, n̂ = min{n : Hn ≥ α}. (13.55)

A formal calculation of ES by definition (13.28) involves summation over points above
the quantile. To avoid unnecessary calculations of distribution Hn for nδ above the quantile,
it is easier to calculate ES using a discretized version of (13.30). Then the ES for compound
distribution (13.54) is

ÊSα[Z ] =
E[Z ]

1 − α
− δ

1 − α

n̂∑
n=0

nhn + q̂α
Hn̂ − α

1 − α
. (13.56)
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Here, the summation is over the finite number of points (for distribution with non-negative
support, which is the case for OpRisk). We also assume that the mean E[Z ] = E[N ]E[X ] can
be found exactly, which is typically the case. The last term in (13.56) is typically small.

As an example, Table 13.2 presents results of Panjer recursion calculations of the
Poisson(100) − LogNormal(μ = 0, σ = 2) compound distributions using central difference
discretization with the step δ = 1. Of course, the accuracy of the result depends on the step
size as shown by the results for the 0.999 quantile and ES versus δ (see Table 13.3). It is, how-
ever, important to note that the error of the result is due to discretization only and there is no
truncation error (i.e. the severity is not truncated by some large value). Note also that the 0.999
quantile estimate is more accurate than the 0.999 shortfall estimate (for a given time δ).

The use of forward f U
n and backward f L

n severity discretizations will produce the upper
and lower bounds for the compound distribution. Thus, the lower and upper bounds for
a quantile are obtained with f U

n and f L
n , respectively (see examples in Shevchenko, 2011,

section 3.3.1).
If frequency is large, then underflow may occur in computations of (13.50). Underflow

occurs in the case when the numerical calculations produce a number outside the range of
representable numbers leading to zero. It is easy to see in the case of Poisson(λ) and f0 = 0
when h0 = exp(−λ). In this case, the underflow will occur for λ � 700 on a 32 bit computer
with double-precision calculations. Rescaling h0 by large factor γ to calculate the recursion
(and descaling the result) will not resolve the issue because overflow will occur for γh(n) (i.e.,
calculations will produce a number outside of the representative range leading to ∞). The
following identity helps to overcome this problem in the case of Poisson frequency:

H (m)∗(z;λ/m) = H(z;λ). (13.57)

That is, calculate the compound distribution H(z;λ/m) for some large m to avoid underflow.
Then preform m convolutions for the obtained distribution directly or via FFT (see Panjer and
Willmot 1986). Similar identity is available for Negative Binomial, NegBinomial(r, p):

H (m)∗(z; r/m) = H(z; r). (13.58)

In the case of Binomial, Binomial(M , p):

H (m)∗(z;m1) ∗ H(z;m2) = H(z;M), (13.59)

table 13.2 Example of Panjer recursion calculating the
Poisson(100)− LogNormal(μ = 0, σ = 2) compound distributions using central
difference discretization with the step δ = 1

n fn hn Hn

0 0.364455845 2.50419 × 10−28 2.50419 × 10−28

1 0.215872117 5.40586 × 10−27 5.65628 × 10−27

2 0.096248034 6.07589 × 10−26 6.64152 × 10−26

...
...

...
...

5847 2.81060 × 10−9 4.44337 × 10−7 0.998999329
5848 2.80907 × 10−9 4.44061 × 10−7 0.998999773
5849 2.80755 × 10−9 4.43785 × 10−7 0.999000217
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table 13.3 Convergence of Panjer recursion estimates q̂0.999 and ÊS0.999 of the 0.999
quantile and ES, respectively, for the Poisson(100)− LogNormal(μ = 0, σ = 2)
compound distributions using central difference discretization versus the step size δ

δ N q̂0.999 ÊS0.999

2 2, 921 5842 20, 131
1 5, 849 5849 13, 519
0.5 11, 703 5851.5 10, 831
0.25 23, 411 5852.75 9, 873
0.125 46, 824 5853 9, 575
0.0625 93, 649 5853.0625 9, 494

Here, N = q̂0.999/δ is the number of steps required.

where m1 = �M/m� and m2 = M − m1m. For numerical efficiency, one can choose
m = 2k so that instead of m convolutions of H(·) only k convolutions are required
H (2)∗,H (4)∗, . . . ,H (2k)∗, where each term is the convolution of the previous one with itself.

13.4 Panjer Extensions

The Panjer recursion formula (13.50) can be extended to a class of frequency distributions
(a, b, 1).

Definition 13.1 (Panjer class (a, b, 1)) The distribution is said to be in (a, b, 1) Panjer class if
it satisfies

pn =

(
a +

b
n

)
pn−1, for n ≥ 2 and a, b ∈ R. (13.60)

Theorem 13.2 (Extended Panjer recursion) For the frequency distributions in a class (a, b, 1):

hn =
(p1 − (a + b)p0)fn +

∑n
j=1 (a + bj/n) fjhn−j

1 − af0
, n ≥ 1,

h0 =

∞∑
k=0

(f0)kpk. (13.61)

The distributions of (a, b, 0) class are special cases of (a, b, 1) class. There are two types of
frequency distributions in (a, b, 1) class:

• Zero-truncated distributions, where p0 = 0: that is, zero-truncated Poisson, zero-truncated
Binomial, and zero-truncated Negative Binomial;

• Zero-modified distributions, where p0 > 0: the distributions of (a, b, 0) with modified
probability of zero. It can be viewed as a mixture of (a, b, 0) distribution and degenerate
distribution concentrated at zero.
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Finally, we would like to mention a generalization of Panjer recursion for the (a, b, l) class

pn =

(
a +

b
n

)
pn−1, for n ≥ l + 1. (13.62)

For initial values p0 = · · · = pl−1 = 0, and in the case of f0 = 0, it leads to the recursion

hn = pl f (l)∗
n +

n∑
j=1

(a + bj/n) fjhn−j, n ≥ l .

The distribution in this class is, for example, l − 1 truncated Poisson. For an overview of high-
order Panjer recursions, see Hess et al. (2002). Other types of recursions

pn =

k∑
j=1

(aj + bj/n)pn−1, n ≥ 1, (13.63)

are discussed by Sundt (1992). Application of the standard Panjer recursion in the case of
the generalized frequency distributions, such as the extended Negative Binomial, can lead to
numerical instabilities. Generalization of the Panjer recursion that leads to numerically stable
algorithms for these cases is presented by Gerhold et al. (2010). Discussion on a multivariate
version of Panjer recursion can be found by Sundt (1999) and bivariate cases are discussed by
Vernic (1999) and Hesselager (1996).

In the case of severities from a phase-type distribution (distribution with a rational
probability-generating function), the recursion (13.50) is reduced to O(n) operations (see Hipp
2006). Typically, the severity distributions are not phase-type distributions and approximation
is required. This is useful for modeling small losses but not suitable for heavy-tailed distribu-
tions because the phase-type distributions are light-tailed (see Bladt 2005) for a review.

The analog of Panjer recursion for the case of continuous severities is given by the following
integral equation.

Theorem 13.3 (Panjer recursion for continuous severities) For frequency distributions in
(a, b, 1) class and continuous severity distributions on positive real line,

h(z) = p1f (z) +
x∫

0

(a + by/z)f (y)h(z − y)dy. (13.64)

The proof is presented by Panjer and Willmot (1992, theorems 6.14.1 and 6.16.1). Note
that the integral equation (13.62) holds for (a, b, 0) class because it is a special case of (a, b, 1).
The integral equation (13.64) is a Volterra integral equation of the second type. There are
different methods to solve it described by Panjer and Willmot (1992). A method of solving this
equation using hybrid MCMC (minimum variance importance sampling via reversible jump
MCMC) is presented by Peters et al. (2007), this is discussed briefly in the advanced section at
the end of this chapter.
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13.5 Fast Fourier Transform

Another efficient method to calculate compound distributions via the inversion of the charac-
teristic function is FFT. The method originates from the signal-processing field. The existence
of the algorithm became generally known in the mid-1960s, but it was independently discov-
ered by many researchers much earlier. A detailed explanation of the method in application
to aggregate loss distribution can be found by Robertson (1992). Often, OpRisk practition-
ers in banking regard the method as difficult. However, in fact, it is a very simple algorithm
to implement, although to make it really efficient, especially for heavy-tailed distribution, some
improvements are required. We describe the essential steps and theory required for successful
implementation of the FFT for OpRisk. The basic FFT algorithm is very simple and its code is
short; see, for example, C code provided by Press et al. (2002, chapter 12).

FFT works with discrete severity (in the same way as Panjer recursion case), that is, con-
tinuous severity distributions should be discretized using central difference (13.44) or back-
ward/forward differences (13.45). The method is based on the discrete Fourier transformation
defined as follows.

Definition 13.2 (Discrete Fourier transformation) For a sequence f0, f1, . . . , fM−1, the fol-
lowing transformation

φk =
M−1∑
m=0

fm exp

(
2πi
M

mk
)
, k = 0, 1, . . . ,M − 1 (13.65)

is called the discrete Fourier transformation (DFT). Then the inverse transformation to recover the
original sequence fk from φk is

fk =
1
M

M−1∑
m=0

φm exp

(
−2πi

M
mk
)
, k = 0, 1, . . . ,M − 1. (13.66)

The number of operations to calculate M points of φm are on the order of M2, that is,
O(M2). If M is a power of 2, then DFT can be efficiently calculated via FFT algorithms with
the number of computations O(M log2 M). This is because the DFT of length M can be
represented as the sum of DFT over even points φe

k and DFT over odd points φe
k:

φk = φe
k + exp

(
2πi
M

k
)
φo

k,

φe
k =

M/2−1∑
m=0

f2m exp

(
2πi
M

mk
)
,

φo
k =

M/2−1∑
m=0

f2m+1 exp

(
2πi
M

mk
)
.

Subsequently, each of these two DFTs can be calculated as a sum of two DFTs of length M/4.
For example, φe

k is calculated as a sum of φee
k and φeo

k . This procedure is continued until the
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transforms of the length 1. The latter is simply an identity operation. Thus, every obtained
pattern of odd and even DFTs will be fm for some m, φeo···ooe

k = fm. The bit-reversal procedure
can be used to find m that corresponds to a specific pattern. That is, set e = 0 and o = 1,
then the reverse pattern of es and os is the value of m in binary. The code for FFT, where M is
integer power of 2, is short and simple. For example, see C code provided by Press et al. (2002,
chapter 12) with the following logical steps.

Algorithm 13.3 (Simple FFT)

1. Sort the data in a bit-reversed order. The obtained points are simply one-point transforms;
2. Combine the neighbor points into nonoverlapping pairs to get two-point transforms. Then com-

bine two-point transforms into four-point transforms and continue subsequently until the final
M point transform is obtained. Thus, there are log2 M iterations and each iteration involve is
on the order of M operations.

The inverse FFT transformation is calculated in the same way as FFT. The only differ-
ences are sign change and division by M (see (13.65) and (13.66)). Once the FFT algorithm is
available, then the compound distribution can be calculated via FFT as follows.

Algorithm 13.4 (Compound Distribution via FFT)

1. Discretize severity to obtain f0, f1, . . . , fM−1, where M = 2r with integer r, and M is the
truncation point in the aggregate distribution;

2. Using FFT, calculate the characteristic function of the severity ϕ0, . . . , ϕM−1;
3. Calculate the characteristic function of the compound distribution using (13.5), that is,

χm = ψ(ϕm), m = 0, 1, . . . ,M − 1;
4. Perform inverse FFT (which is the same as FFT except the change of sign under the expo-

nent and factor 1/M) applied to χ0, . . . , χM−1 to obtain the compound distribution
h0, h1, . . . , hM−1.

Once the compound distribution h0, h1, . . . , hM−1 is calculated, its quantile and ES can
be estimated using (13.55) and (13.56), respectively; that is, the same as for Panjer recursion.

If there is no truncation error in the severity discretization, that is,
∑M−1

m=0 fm = 1, then
FFT procedure calculates the compound distribution on m = 0, 1, . . . ,M . That is, the mass
of compound distribution beyond M is “wrapped” and appears in the range m = 0, . . . ,M −1
(the so-called aliasing error). This error is larger for heavy-tailed severities. To decrease the error
for compound distribution on 0, 1, . . . , n, one has to take M much larger than n. If the severity
distribution is bounded and M is larger than the bound, then one can put zero values for
points above the bound (the so-called padding by zeros). An example is given in Table 13.4,
where (Q(1)

0.999,ES
(1)
0.999) are the quantile and ES estimators, respectively, calculated via FFT

using the central difference discretization with the tail probability compressed into the last
point fM−1 = 1 − F (δ(M − 1) − δ/2); and (Q(2)

0.999,ES
(2)
0.999) are the estimators calculated

via FFT using the central difference discretization with the tail probability ignored, that is,
fM−1 = F (δ(M − 1) + δ/2) − F (δ(M − 1) − δ/2). These are compared with the Panjer
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table 13.4 Example of FFT calculating the 0.999 quantile and ES of the
Poisson(100)− LogNormal(μ = 0, σ = 2) compound distribution using central difference
discretization with the step δ = 0.5

r L = δ × 2r Q(1)
0.999 ES

(1)
0.999 Q(2)

0.999 ES
(2)
0.999

14 8, 192 5117 12, 831 5665.5 11, 291
15 16, 384 5703.5 11, 180 5834 10, 872
16 32, 768 5828 10, 886 5850 10, 834
17 65, 536 5848.5 10, 839 5851.5 10, 831
18 131, 072 5851.5 10, 832 5851.5 10, 831
19 262, 144 5851.5 10, 831 5851.5 10, 831

The exact Panjer recursion for this discretization step gives Q0.999 = 5851.5 and ES0.999 = 10, 831.

recursion exact results for this discretization. As one can see, the truncation should be large
enough to get accurate results for both estimators, although (Q(2)

0.999,ES
(2)
0.999) are a bit more

accurate than (Q(1)
0.999,ES

(1)
0.999).

Another way to reduce the error is to apply some transformation to increase the tail decay
(the so-called tilting). The exponential tilting technique for reducing aliasing error under the
context of calculating compound distribution was first investigated by Grubel and Hermesmeier
(1999). Many authors suggest the following tilting transformation:

f̃j = exp(−jθ)fj, j = 0, 1, . . . ,M − 1, (13.67)

where θ > 0. This transformation commutes with convolution in a sense that convolution
of two functions f (x) and g(x) equals the convolution of the transformed functions f̃ (x) =
f (x) exp(−θx) and g̃(x) = g(x) exp(−θx) multiplied by exp(θx), that is,

(f ∗ g)(x) = eθx(f̃ ∗ g̃)(x). (13.68)

This can easily be shown using the definition of convolution. Then calculation of the com-
pound distribution is performed using the transformed severity distribution as follows.

Algorithm 13.5 (Compound Distribution via FFT with Tilting)

1. Apply FFT to a set f̃0, . . . , f̃M−1 to obtain φ̃0, . . . , φ̃M−1;

2. Apply the inverse FFT to the set χ̃0, . . . , χ̃M−1 to obtain h̃0, h̃1, . . . , h̃M−1;

3. Untilt by calculating final compound distribution as hj = h̃j exp(θj).

This tilting procedure is very effective in reducing the aliasing error. The parameter θ
should be as large as possible but not producing under- or overflow that will occur for very
large θ. Embrechts and Frei (2009) reported that the choice Mθ ≈ 20 works well for stan-
dard double-precision (8 bytes) calculations. Evaluation of the probability-generating function
ψ(·) of the frequency distribution may lead to the problem of underflow in the case of large
frequencies that can be resolved using formulas (13.57–13.59).

To demonstrate the effectiveness of the tilting, an example is provided in Table
13.5, where (Q(2)

0.999,ES
(2)
0.999) are the quantile and ES estimators via FFT, respectively,
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table 13.5 Example of FFT calculating the 0.999 quantile of the
Poisson(100)− LogNormal(μ = 0, σ = 2) compound distribution using central difference
discretization with the step δ = 0.5

r L = δ × 2r Q(2)
0.999 ES(2)

0.999 Q(tilt)
0.999 ES(tilt)

0.999

14 8, 192 5665.5 11, 291 5851.5 10, 831
15 16, 384 5834 10, 872 5851.5 10, 831
16 32, 768 5850 10, 834 5851.5 10, 831
17 65, 536 5851.5 10, 831 5851.5 10, 831
18 131, 072 5851.5 10, 831 5851.5 10, 831
19 262, 144 5851.5 10, 831 5851.5 10, 831

The exact Panjer recursion for this discretisation step gives Q0.999 = 5851.5 and ES0.999 = 10, 831.

using the central difference discretization with the tail probability ignored, that is,
fM−1 = F (δ(M − 1) + δ/2) − F (δ(M − 1) − δ/2); and (Q(tilt)

0.999,ES
(tilt)
0.999) are the esti-

mators via FFT using the central difference discretization with tilting. The tilting, parameter θ
is chosen to be θ = 20/M . The results presented in Table 13.5 demonstrate the efficiency of
the tilting. If FFT is performed without tilting, then the truncation level for the severity should
exceed the quantile significantly. In this particular case, it should exceed by approximately a
factor of 10 to get the exact result for this discretization step. The latter is obtained by Panjer
recursion, which does not require discretization beyond the calculated quantile. The FFT and
Panjer recursion are approximately the same in terms of computing time required for quan-
tile estimate in this case. However, once the tilting is utilized, the cutoff level does not need
to exceed the quantile significantly to obtain the exact result—making FFT superior to Panjer
recursion. Moreover, in this case, the treatment of the severity tail by ignoring it or absorbing
into the last point fM−1 does not make any difference when tilting is applied.

For comparison of FFT and Panjer, see Embrechts and Frei (2009) and Bühlmann (1984a).
Comprehensive numerical examples comparing MC, Panjer recursion, and FFT are provided
by Shevchenko (2011, section 3.6).

13.6 Closed-Form Approximation

There are several well-known approximations for the compound loss distribution. These can
be used with different success depending on the quantity to be calculated and distribution
types. Even if the accuracy is not good, these approximations are certainly useful from the
methodological point of view in helping to understand the model properties. The quantile
estimate derived from these approximations can also be used successfully to set a cutoff level
for FFT algorithms that will subsequently determine the quantile more precisely.

Many parametric distributions can be used as an approximation for a compound loss distri-
bution by moment matching. This is because the moments of the compound loss can be calcu-
lated in closed form. In particular, the first four moments are given by formulas (13.21–13.24).
Of course these can only be used if the required moments exist, which is not the case for some
heavy-tailed risks with infinite moments. We describe Normal and translated Gamma approx-
imations. In addition, for heavy-tailed severities, we describe efficient closed-form approxima-
tion for the tail of compound distribution.
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Normal Approximation. If the severities X1,X2, . . . are independent and identically dis-
tributed with finite mean and variance, then at very high frequencies the central limit theory
is expected to provide a good approximation to the distribution of the annual loss Z . That is,
the compound distribution is approximated by the Normal distribution

H(z) ≈ Normal(E[Z ],Var[Z ]), (13.69)

where the mean and variance are given by formulas (13.21) and (13.22), respectively. This result
is asymptotic and a priori we do not know how well it will perform for specific distribution types
and distribution parameter values. Moreover, it cannot be used for the cases where variance or
mean are infinite.

EXAMPLE 13.8

If N is distributed from Poisson(λ) and X1, . . . ,XN are independent random vari-
ables from LogNormal(μ, σ2), then

E[Z ] = λ exp(μ+ 0.5σ2), Var[Z ] = λ exp(2μ+ 2σ2). (13.70)

Translated Gamma Approximation. Typically, in OpRisk the compound distribution is pos-
itively skewed. For example, in the case of Poisson distributed frequencies, the skewness of the
compound distribution (see (13.25)) is

E[(Z − E[Z ])3]

(Var[Z ])
3/2 =

λE[X 3]

(λE[X 2])
3/2 > 0, (13.71)

which approaches zero as λ increases but finite positive for finite λ > 0. To improve the
Normal approximation (13.69), the compound loss can be approximated by the shifted Gamma
distribution, which has a positive skewness (assuming that the first three moments of compound
distribution exist). In this case, Z is approximated as Y + a where a is a shift and Y is a
random variable from Gamma(α, β). Then the parameters are estimated by matching the mean,
variance, and skewness of the approximate distribution and the correct one:

a + αβ = E[Z ]; αβ2 = Var[Z ];
2√
α

= E[(Z − E[Z ])3]/ (Var[Z ])
3/2

. (13.72)

EXAMPLE 13.9

If frequencies are Poisson-distributed, N ∼ Poisson(λ), then

a + αβ = λE[X ]; αβ2 = λE[X 2];
2√
α

= λE[X 3]/
(
λE[X 2]

)3/2
. (13.73)
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VaR Closed-Form Approximation. If severities X1, . . . ,XN are independent and identically
distributed from the subexponential (heavy tail) distribution F (x), and frequency distribution
satisfies

∞∑
n=0

(1 + ε)n
Pr[N = n] < ∞

for some ε > 0, then the tail of the compound distribution H(z), of the compound loss
Z = X1 + · · ·+ XN , is related to the severity tail as

1 − H(z) ∼ E[N ](1 − F (z)), as z → ∞ (13.74)

(see Embrechts et al. 1997, theorem 1.3.9). This is also discussed in detail by Peters and
Shevchenko (2015). The validity of this asymptotic result was demonstrated for the cases when
N is distributed from Poisson, Binomial, or Negative Binomial. This approximation can be
used to calculate the quantiles of the annual loss as

VaRα[Z ] ≈ F−1
(

1 − 1 − α

E[N ]

)
, as α → 1. (13.75)

For application in the OpRisk context, see Böcker and Klüppelberg (2005). Under the
assumption that the severity has a finite mean, Böcker and Sprittulla (2006) derived a correction
reducing the approximation error of (13.75). This was further refined by Degen (2010) for
heavy-tailed finite mean severity as

VaRα[Z ] = F−1
(

1 − 1 − α

E[N ]

)
+ E[X ]

(
E[N ] +

Var[N ]

E[N ]
− 1
)
+ o(1), α → 1.

(13.76)

For heavy-tailed infinite mean severity and large α, Degen (2010) derives the following
approximation

VaRα[Z ] ≈ F−1
(

1 − 1 − α

E[N ]

)

− (1 − α)F−1
(

1 − 1 − α

E[N ]

)
cξ/E[N ]

1 − 1/ξ

(
E[N ] +

Var[N ]

E[N ]
− 1
)
, (13.77)

whereξ > 1isatail indexofseveritydistribution(i.e., limt→∞(1− F (tx))/(1− F (x)) = x−1/ξ)
and cξ = 1

2 (1− ξ)Γ2(1− 1/ξ)/Γ(1− 2/ξ)withΓ(·) denoting the standard Gamma function.

EXAMPLE 13.10

Consider a heavy-tailed Poisson(λ)–GPD(ξ, β) compound distribution. In this
case, (13.75) gives

VaRα[Z ] ≈ β

ξ

(
λ

1 − α

)ξ

, as α → 1. (13.78)

This implies a simple scaling, VaRα[Z ] ∝ λξ, with respect to the event intensity λ
for large α.
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EXAMPLE 13.11

To demonstrate the accuracy of the previous approximations, consider the com-
pound distribution Poisson(λ = 100)–LogNormal(μ = 0, σ = 2) with relatively
heavy-tailed severity. Calculating moments of the LogNormal distribution E[X m]
using (13.26) and substituting into (13.25) gives

E[Z ] ≈ 738.9056, Var[Z ] ≈ 298095.7987,

E[(Z − E[Z ])3]/(Var[Z ])3/2 ≈ 40.3428.

Approximating the compound distribution by the Normal distribution with this
mean and variance gives Normal approximation. Approximating the compound dis-
tribution by the translated Gamma distribution (13.72) with these mean, variance,
and skewness gives

α ≈ 0.002457, β ≈ 11013.2329, a ≈ 711.8385.

Figure 13.1 shows the Normal and translated Gamma approximations for the tail
of the compound distribution in comparison with the corrected heavy-tailed approx-
imation (13.76). It is easy to see that the corrected heavy-tailed asymptotic approxi-
mation (13.76) converges to the exact result for large quantile level α→ 1, while the
Normal and Gamma approximations perform badly. Comparison of the corrected
heavy-tailed approximation (13.76) with the one without correction (13.74) is shown
in Figure 13.2, demonstrating that correction significantly improves the results. All
the results are compared with the “exact” values obtained by FFT.
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figure 13.1 Different closed-form approximations for the tail of the
Poisson(100)− LogNormal(μ = 0, σ = 2) distribution. See Example 13.11 for details

The results for the case of not-so-heavy tail, when the severity distribu-
tion is LogNormal(0, 1), are shown in Figure 13.3 and 13.4. Here, the Gamma
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approximation outperforms Normal approximation and heavy-tailed approxima-
tions are very bad. However, note that the corrected heavy-tailed approximation
performs much better than the one without correction.
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figure 13.2 Heavy-tailed approximation and the corrected heavy-tailed approximation
given by formulas (13.75) and (13.76), respectively, for the tail of the
Poisson(100)− LogNormal(μ = 0, σ = 2) distribution. See Example 13.11 for details
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figure 13.3 Different approximations for the tail of the Poisson(100)− LogNormal(0, 1)
distribution. See Example 13.11 for details
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figure 13.4 Heavy-tailed approximation and the corrected heavy-tailed approximation
given by formulas (13.75) and (13.76), respectively, for the tail of the
Poisson(100)− LogNormal(0, 1) distribution. See Example 13.11 for details

The accuracy of the heavy-tailed approximation (13.74) improves for more
heavy-tailed distributions, such as GPD with infinite variance or even infinite mean.

13.7 Capital Charge Under Parameter Uncertainty

According to the Basel II requirements (BCBS 2006), the final bank capital should be calculated
as a sum of the risk measures in the risk cells if the bank’s model cannot account for correlations
between risks accurately. If this is the case, then one needs to calculate VaR for each risk cell
separately and sum VaRs over risk cells to estimate the total bank capital. It is equivalent to the
assumption of perfect dependence between risks. Modeling of dependence between risks and
aggregation issues were discussed in Chapter 10. In this section, we consider one risk cell, but
note that adding quantiles over the risk cells to find the quantile of the total loss distribution is
not necessarily conservative. In fact, it can underestimate the capital in the case of heavy-tailed
distribution as discussed in Chapter 10.

Under the LDA model, the annual loss in a risk cell over the next year T + 1 is mod-
eled as a random variable ZT+1 with some density f (zT+1|θ), where θ are model parameters.
Given data Y over past T years (frequencies and severities) generated from some distributions
parameterized by θ, the main task is to estimate the distribution of ZT+1. The maximum likeli-
hood estimation (MLE) θ̂

MLE
is often used as the “best fit” point estimate for θ. Then, a typical

industry practice is to estimate the annual loss distribution for the next year as f (zT+1|θ̂
MLE

)

and its 0.999 quantile, Q0.999(θ̂
MLE

), is used for the capital charge calculation.
However, the parameters θ are unknown and it is important to account for this uncertainty

when the capital charge is estimated, especially for risks with small datasets. The Bayesian infer-
ence approach is an elegant and convenient way to accomplish this task.
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13.7.1 PREDICTIVE DISTRIBUTIONS

Under the Bayesian approach, the unknown parameters are modeled by random variables Θ
and their posterior density π(θ|y) is calculated. Then, the predictive density of ZT+1, given
data Y = y, is defined as follows.

Definition 13.3 (Predictive density for annual loss) Suppose that

(a) Given Θ = θ, the conditional density of the annual loss ZT+1 is f (zT+1|θ);
(b) Given data Y = y, the posterior density of Θ is π(θ|y);
(c) Given Θ, ZT+1 and Y are independent.

Then the predictive density of ZT+1 is

f (zT+1|y) =
∫

f (zT+1|θ)π(θ|y)dθ. (13.79)

Remark 13.2

• The predictive distribution accounts for both process and parameter uncertainties;
• It is assumed that, given Θ, ZT+1 and Y are independent. If they are not independent, then

f (zT+1|θ) should be replaced by f (zT+1|θ, y);
• If a frequentist approach is taken to estimate the parameters, then θ should be replaced by the

point estimators θ̂ and the integration should be done with respect to the density of θ̂.

The ultimate goal in capital charge calculation is to estimate the 0.999 quantile of the
annual loss distribution. It is important to realize that there are two ways to define the required
quantile to account for parameter uncertainty.

Definition 13.4 (Quantile of the predictive density f (zT+1|y)) The quantile of a random
variable with the predictive density (13.79) is

QP
q = F−1

ZT+1|Y (q) = inf{z ∈ R : Pr[ZT+1 > z|Y ] ≤ 1 − q}, (13.80)

where q ∈ (0, 1) is a quantile level and F−1
ZT+1|Y (q) is the inverse of the distribution corresponding

to the density (13.79).

Then, QP
0.999 can be used as a risk measure for capital calculations. Here, “P” in the upper

script is used to emphasize that this is a quantile of the full predictive distribution.
Another approach under a Bayesian framework to account for parameter uncertainty is to

consider a quantile of the annual loss density f (zT+1|θ) conditional on parameter Θ = θ,
defined in a standard way as follows.
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Definition 13.5 (Quantile of the conditional density f (z|θ)) The quantile of a random
variable with the density f (z|θ) is

Qq(θ) = F−1
ZT+1|Θ(q) = inf{z ∈ R : Pr[ZT+1 > z|Θ = θ] ≤ 1 − q}, (13.81)

where q ∈ (0, 1) is a quantile level and F−1
ZT+1|Θ(q) is the inverse of the distribution corresponding

to the density f (zT+1|θ).

That is, the quantile Qq(θ) is a function of θ and thus Qq(Θ) is a random variable with
some distribution. Given that Θ is distributed with the density π(θ|y), one can find the pre-
dictive distribution of Qq(Θ) and its characteristics. In particular, the mean of this distribution
can be used as a point estimator:

Q̂q(Θ)
MMSE

=

∫
Qq(θ)π(θ|y)dθ. (13.82)

Other standard point estimators are the mode and median. A predictive interval [L,U ] can be
formed to contain the true value with a probability α:

Pr
[
L ≤ Qq(Θ) ≤ U

]
= α (13.83)

or one-sided predictive interval

Pr
[
Qq(Θ) ≤ U

]
= α. (13.84)

As before, for capital charge calculations, we are interested in q = 0.999. Then one can argue
that the conservative estimate of the capital charge accounting for parameter uncertainty should
be based on the upper bound of the constructed predictive interval.

Remark 13.3

• Specification of the confidence level α is required to form a conservative interval for Qq(Θ). It
might be difficult to justify a particular choice of α. For example, it might be difficult to argue
that the commonly used confidence level α = 0.95 is good enough for estimation of the 0.999
quantile;

• This is similar to forming a confidence interval in the frequentist approach using the distribution
of Q0.999(θ̂

MLE
), where θ̂

MLE
is treated as random.

In OpRisk, it seems that the objective should be to estimate the full predictive distribution
(13.79) for the annual loss ZT+1 over next year conditional on all available information. The
capital charge should then be estimated as a quantile of this distribution, that is, QP

0.999 given
by (13.80).

13.7.2 CALCULATION OF PREDICTIVE DISTRIBUTIONS

Consider a risk cell in the bank. Assume that the frequency p(·|α) and severity f (·|β) densities
for the cell are chosen. Suppose also that the posterior density π(θ|y), θ = (α,β) is estimated.
Then, the predictive annual loss distribution (13.79) in the cell can be calculated using the
Monte Carlo procedure with the following logical steps.
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Algorithm 13.6 (Full predictive loss distribution via Monte Carlo)

1. For k = 1, . . . ,K
a) For a given risk simulate the risk parameters θ = (α,β) from, the posterior π(θ|y). If the

posterior is not known in closed form then, this simulation can be done using MCMC (see
Section 7.4). For example, one can run MCMC for K iterations (after burn-in) beforehand
and simply take the k-th iteration parameter values;

b) Given θ = (α,β), simulate the annual number of events N from p(·|α) and severities
X (1), . . . ,X (N) from f (·|β), then calculate the annual loss Z (k) =

∑N
n=1 X (n).

2. Next k

Obtained annual losses Z (1), . . . ,Z (K ) are samples from the predictive density (13.79).
Extending this procedure to the case of many risks is easy but requires specification of the
dependence model; see Chapter 10. In this case, in general, all model parameters (including
the dependence parameters) should be simulated from their joint posterior in Step (a). Then,
given these parameters, Step (b) should simulate all risks with a chosen dependence structure.
In general, sampling from the joint posterior of all model parameters can be accomplished via
MCMC (see Peters et al. 2009 and Dalla Valle 2009). The 0.999 quantile QP

0.999 and other
distribution characteristics can be estimated using the simulated samples in the usual way; see
Section 13.2.

This procedure is easily adapted to calculate the predictive distribution of Q0.999(Θ). In
particular, in Step (b), one can calculate the quantile Q0.999(θ) of the conditional density
f (z|θ), using, for example, FFT. Then the obtained K samples of the quantile can be used
to estimate the distribution of Q0.999(Θ) implied by the posterior π(θ|y). To summarize, the
logical steps of Monte Carlo procedure are as follows.

Algorithm 13.7 (Posterior distribution of quantile via MC)

1. For k = 1, . . . ,K
a) For a given risk simulate the risk parameters θ = (α,β) from the posterior π(θ|y). If the

posterior is not known in closed form, then this simulation can be done using MCMC (see
Section 7.4). For example, one can run MCMC for K iterations beforehand and simply take
the k-th iteration parameter values;

b) Given θ = (α,β), calculate the quantile Q(k)
q (θ) of f (z|θ) using FFT or other methods.

2. Next k

Note that in these Monte Carlo procedures, the risk profile Θ is sampled from its poste-
rior for each simulation k = 1, . . . ,K . Thus, we model both the process uncertainty, which
comes from the fact that frequencies and severities are random variables, and the parameter risk
(parameter uncertainty), which comes from the fact that we do not know the true values of θ.

EXAMPLE 13.12

The parameter uncertainty is ignored by the estimator Q0.999(θ̂
MLE

) but is taken into
account by QP

0.999. The following illustrative example is taken from Shevchenko
(2008, section 8). Figure 13.5 presents results for the relative bias (averaged over
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100 realizations) E[QP
0.999 −Q0.999(θ̂

MLE
)]/Q(0)

0.999, where θ̂
MLE

is MLE, Q(0)
0.999 is the

quantile of f (·|θ0) and θ0 is the true value of the parameter. The frequencies and
severities are simulated from Poisson(λ0 = 10) and LogNormal(μ0 = 1, σ0 = 2),
respectively. Constant priors are also used for the parameters so that there are
closed-form expressions for the posterior; see Sections 15.2.3 and 15.2.4. In this
example, the bias induced by parameter uncertainty is large: it is approximately
10% after 40 years (i.e., approximately 400 data points) and converges to zero
as the number of losses increases. A similar analysis for a multivariate case was
performed by Dalla Valle (2009) with real data. For high-frequency/low-severity
risks, where a large amount of data is available, the impact is certainly expected to
be small. However, for low-frequency/high-severity risks, where the data are very
limited, the impact can be significant.
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figure 13.5 Comparison of the estimators of the 0.999 annual loss quantile versus number
of observation years. Losses were simulated from Poisson(10) and LogNormal(μ = 1, σ = 2).
Parameter uncertainty is ignored by Q0.999(θ̂

MLE
) (MLE) but taken into account by QP

0.999

(Bayesian). Relative bias E[QP
0.999 − Q0.999(θ̂

MLE
)]/Q(0)

0.999 is estimated as an average over 100
realizations

13.8 Special Advanced Topics on Loss Aggregation

The advanced topics discussed in the second half of this chapter include:

• Discretisation Errors and Extrapolation Methods;
• Classes of Discrete Distributions: Discrete Infinite Divisibility and Discrete Heavy Tails.

These classes of distributions naturally admit either analytic compound distributions or
efficient methods for evaluation of the loss aggregated distribution when used as the severity
distribution;
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• Recursions for Convolutions (Partial Sums) with Discretised Severity Distributions (Fixed
number of losses n);

• Alternatives to Panjer Recursions: Recursions for Compound Distributions with Discre-
tised Severity Distributions;

• Higher Order Recursions for Discretised Severity Distributions in Compound LDA
Models;

• Recursions for Discretised Severity Distributions in Compound Mixed Poisson LDA Mod-
els; and

• Continuous Versions of the Panjer Recursion.

A foreword on notation contained in this advanced section of the chapter, all distributions
and densities will be assumed to be continuous unless otherwise stated, at certain stages in the
presentation it will become important to discretise the severity distributions as was done initially
when working with the Panjer recursion above, at which point it will be made explicit when such
representations are utilised to avoid confusion. We note that when a continuous distribution is
discretised onto an equispaced grid of points in its support, given for some interval � ∈ R

+ by
0,�, 2�, . . ., this is equivalent to working on the space of integers, 0, 1, 2, . . ., the resulting
discretized distribution will be denoted by

{
f̂n
}

n∈N
, where f̂n = f (n�) and f̂n ≥ 0. Note, in

some instances it may also be required to impose a normalization condition on the discretized
distribution values where

∑∞
n=1 f̂n = 1.

In addition, we will adopt the convention from the actuarial literature, see a summary in
Sundt and Vernic (2009) in which P1 will denote the class of all univariate distributions on the
integers and P1l the class of all distributions f ∈ P1 satisfying the condition that f (x) = 0 for
all integers x < l and finally, the notation P1l which denotes the sub-class of distributions in
P1l with a positive mass at l . Analogously, these definitions will also carry through for functions,
that is densities are denoted by the class P and functions by the label F , for example densities
only known up to normalization. To clarify this point, we consider Fl for all integers l to be
the class of all functions on the integers and F1l as the set of functions f ∈ F1 which satisfy
f (x) = 0 for all integers x < l .

13.8.1 DISCRETISATION ERRORS AND EXTRAPOLATION
METHODS

This section is of relevance to the study of the approximation error incurred when one makes
an approximating discretization to the severity distribution in order to calculate an aggregate
distribution of some form, as was discussed in the section on Panjer recursions a the start of
this chapter.

In particular, Richardson extrapolation, also known as extrapolation to the limit or accel-
eration of convergence, can often be performed to reduce discretisation errors. This can be
particularly relevant when evaluating risk measures based on these discretised annual loss dis-
tributions. The approaches discussed in the two articles by Grubel and Hermesmeier (1999)
and Grübel and Hermesmeier (2000) consider how to increase the accuracy for a given
discretisation budget through methods that reduce aliasing error and incorporate extrapolation
procedures. In particular the method of Richardson extrapolation as developed in Richardson
(1911) is discussed. Richardson extrapolation is considered as a sequence acceleration proce-
dure which can improve the rate of convergence of sequences, such as those that may arise in
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recursive evaluation of convolution distributions on a discretisation grid. Examples of the wide
spread use of Richardson extrapolation include the method of Romberg integration Romberg
(1955) which combines Richardson extrapolation to speed up a trapezoidal integration rule for
definite integrals.

We first briefly recall how Richardson extrapolation works and then consider how it may
be utilised to improve the accuracy of recursions for compound process recursions. The generic
specification of Richardson Extrapolation if provided in Definition 13.6.

Definition 13.6 (Richardson Extrapolation) Consider approximating a generic density f , for
instance from a convolution, at a particular point x which cannot be evaluated directly. However,
one has an approximation that is a function of the discretisation effort denoted generically by h which
produces an approximation f̂h(x) for any h > 0 and relates to the true density f (x) according to

f̂h(x) = f (x) + Chα + o
(
hβ
)
. (13.85)

Richardson extrapolation then takes the approximations for different h values and combines them
in such a manner as to improve the rate of convergence and therefore the accuracy of the combined
approximation. Assuming that rate α is known but the constant C is intractable, then one can define
a new approximation with improved convergence rate of f̂h → f (x) by the following combined
approximation known as the Richardson extrapolation of f̂h(x) to give

f̃ (x; h, k) :=
kα f̂h(x)− f̂kh(x)

kα − 1
(13.86)

for some h and k. Where clever choices of h and k can significantly accelerate the convergence of the
new approximation.

The first proposal to utilise extrapolation methods to accelerate insurance based recursions
and evaluations was in the definite integration of a function with respect to a compound process,
such as would be required under a spectral risk measure, see discussion in Embrechts et al.
(1993). Then it was developed further in the context of compound processes and convolution
recursions in the work of Grubel and Hermesmeier (1999) which we discuss briefly below.

The application of Richardson extrapolation as applicable to the recursions in this chapter
will in general follow a four stage procedure, which is based on a given selected k, h and selected
α for the given approximation method according to Equation 13.90, as follows :

Algorithm 13.8 (Richardson extrapolation)

1. Discretise the severity distribution input to obtain both f̂X ,h(x) and f̂X ,kh(x) where the h will
correspond to the discretisation unit � as discussed in the methods previously mentioned;

2. Given the discretised severity distributions, these can then be considered as inputs to a generic
non-linear mapping Φ(·). The mapping corresponds in this chapter to one of the recursions
to be presented throughout this chapter that allows one to evaluate for instance, the density,
distribution, or tail of the n-fold convolutions of severity distributions or the evaluation of these
quantities for the compound process of an annual loss LDA model given by
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f̂Z ,h(x) = Φ
(

f̂X ,h(x)
)

(13.87)

for some mapping Φ(·) that represents the class of numerical recursion utilised for the evaluation
of the intractable density or distribution;

3. Evaluate the Richardson Extrapolation based on approximations f̂Z ,h(x) and f̂Z ,kh(x) given by
Equation 13.86 according to

f̃Z (z) :=
kα f̂Z ,h(z)− f̂Z ,kh(z)

kα − 1
. (13.88)

4. Evaluate required functionals based on the Richardson extrapolated result for density f̃Z (z) and
distribution F̃Z (z) based on the mapped discretised input severity distributions f̂Z ,h(z) and
f̂Z ,kh(z), to obtain functional approximations such as for example:

F Z (x) ≈
∫ x

0
dF̃Z (z) =

∫ x

0
f̃Z (z)dz

F (n)∗
X (x) ≈

∫ x

0
dF̃ (n)∗

X (z) =
∫ x

0
f̃ (n)∗
X (z)dz

SRMZ ,h(x) ≈
∫

ψ(z)dF̃Z (z).

(13.89)

For example, consider the case of the SRM that will be evaluated as the integral of the risk
aversion function ψ(x) with respect to the annual loss distribution that was discussed in Peters
and Shevchenko (2015, chapter 6). Then considering the generic representation

f̂h(x) = f (x) + Chα + o
(
hβ
)
. (13.90)

in this context the extrapolation to the limit relation of this type for the approximation of the
SRM would be given by considering an approximation integral expansion of the form

SRMZ ,h(α) :=

∫
ψ(x)dFZ ,h(x)

=

∫
ψ(x)dΦ(FX ,h(x))

=

∫
φ(x)dΦ(FX (x)) + ζ (Φ; FX , ψ) hα + o

(
hβ
)

(13.91)

as h ↓ 0 and β ≥ α > 0 and function ζ (Φ; FX , ψ) �= 0. Examples are provided for particular
instances of α and β rates in Embrechts et al. (1993) in the case of integration results.

In the case that one is primarily interested in just the discretisation density say from an n-
fold convolution of the severity f̂ (n)∗

X ,h then the key results are developed for Richardson extrapo-
lation methods in Grubel and Hermesmeier (1999). In particular if one considers that a density
exists for f̂ (n)∗

X for the measure ν(n)∗
X then one way of considering the convergence of f̂ (n)∗

X ,h to

f (n)∗
X as discretisation error is diminished (h ↓ 0) is to consider the approximation
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f̂X ,h(kh) =
1
h
νX ,h({kh}) + g(kh)hα + O

(
hβ
)
, (13.92)

which holds uniformly in integer discretisation steps k ∈ J
+ as h ↓ 0 for some function g(·)

which depends on the mapping φ(·) and measure input. This could be combined into
a Richardson extrapolation procedure as long as β >α. Details of particular examples of
function g and rates α and β are provided in detail in Grubel and Hermesmeier (1999,
section 3).

13.8.2 CLASSES OF DISCRETE DISTRIBUTIONS: DISCRETE
INFINITE DIVISIBILITY AND DISCRETE HEAVY TAILS

If one considers a discretized continuous or a discrete distribution
{

f̂n
}

n∈N

which satisfies the

constraint that f̂n ≥ 0 for all n ∈ N, which is normalized with
∑

n f̂n = 1, then it is first useful
to recall the following definition of a non-degenerate discrete distribution.

Definition 13.7 (Non Degenerate Discrete Distribution) A discrete distribution that is nor-
malized is called non degenerate if f̂n < 1 holds for all n ∈ N.

In addition, it will be useful to define the class of discrete distributions known as the
Panjer class.

Definition 13.8 (General Panjer Class of Discrete Distributions) A discrete distribution{
f̂n
}

n∈N

with parameters a, b ∈ R and order k ∈ N is in the Panjer class if f̂n = 0 for all

n ≤ k − 1 and the probabilities satisfy the recursion

f̂n+1 =

(
a +

b
n + 1

)
f̂n (13.93)

for all n ≥ k. Such a class of discrete distribution that satisfies this condition is known as a Panjer
class family with parameters a, b and order k.

There will be further discussion on these classes of discrete distributions in the follow-
ing sections. In this section we will also state a representation of such distributions accord-
ing to a differential equation in terms of its probability generating function, see discussion in
Hess et al. (2002). It will be useful to first define the probability generating function given in
Definition 13.9.

Definition 13.9 (Probability Generating Function) A random variable X with discrete prob-
ability mass distribution

{
f̂n
}

n∈N

is characterized by the probability generating function given by

mX (z) := E
[
zX ] = ∞∑

n=0

f̂nzn, (13.94)
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where given the p.g.f., denoted mX (z), one obtains the probabilities by differentiation and evaluation
at the origin according to

f̂n =
m(n)

X (0)
n!

, ∀n ∈ N. (13.95)

One can then show that the following representational equivalence for degenerate dis-
crete severity models given in Theorem 13.4 that represents the probability generating function
(p.g.f.) in terms of the solution to an ordinary differential equation (o.d.e.).

Theorem 13.4 (Panjer Class k and o.d.e. for p.g.f.) If a random variable X has discrete distri-
bution

{
f̂n
}

n∈N

that is non degenerate, then the following statements are equivalent:

1.
{

f̂n
}

n∈N

is in the Panjer a, b class of order k;

2. The p.g.f. satisfies the differential equation given by

(1 − az)m(n+1)
X (z) = ((n + 1)a + b)m(n)

X (z) (13.96)

for z ∈ [0, 1) and initial condition m(j)
X (0) = 0 for all j ≤ k − 1.

In addition to the Panjer class of distributions, it will sometimes be of relevance to consider
lower and upper truncated Poisson distributions and in particular convolutions of such random
variables when they are considered independent. The class of upper and lower truncated Poisson
n-fold convolution distributions was studied in Huang and Fung (1993) and is denoted as the
family of D-distributions. Several properties of this family of distributions are known such as
the expressions for integer moments, see Huang and Fung (1993).

Definition 13.10 (D-Distributions: n-Fold Convolutions of Upper and Lower Truncated
Poisson) Consider n independent counting random variables each i.i.d. from an upper and lower
truncated Poisson distribution such that

Ni ∼ Poisson(λi)I [Ni ∈ {nmin,i, nmax,i}] (13.97)

for some positive integers nmin and nmax satisfying 0 < nmin,i < nmax,i < ∞. Then the distribution
of the convolution given by

Nn =

n∑
k=1

Nk ∼ D − Distribution (n,L,Λ) (13.98)

where the D-Distribution is characterized by the discretely supported distribution given by

Pr (X = k) =
n∏

i=1

e (Ni,Mi;λi)
−1 D(x, n;LΛ) 1

x!
(13.99)
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with

x ∈
{

n∑
i=1

nmin,i,

n∑
i=1

nmin,i + 1, . . . ,
n∑

i=1

nmax,i

}
, (13.100)

and the D numbers given by

D(x, n;L,Λ) =
∑
y∈Y

(
x

y1, y2, . . . , yn

)
(13.101)

with

Y =

{
y : y = (y1, y2, . . . , yn), x =

n∑
i=1

yi

}

L =
{
(nmin,i, nmax,i) : nmin,i < nmax,i, nmin,i ∈ N

+, nmax,i ∈ N
+
}

Λ = {λi : λi > 0} .

(13.102)

and e(·) the incomplete exponential function with parameter λ given by

e(N ,M ;λ) =

⎧⎪⎨
⎪⎩
∑M

i=N
λi

i! , λ > 0, 0 ≤ N < M , N ,M ∈ N∑M
i=0

λi

i! , λ > 0,N = −1,−2,−3, . . . ,
0, otherwise.

(13.103)

It will also be useful in sections of this chapter to define the special class of discrete distri-
butions

{
f̂n
}

n∈N

which will have the property that they are infinitely divisible, as characterised
in Theorem 13.5, see discussions in Steutel and Van Harn (2003).

Theorem 13.5 (Characterizing the Infinitely Divisible Distributions) The following prop-
erties exist for members of the class of infinitely divisible distributions:

1. A distribution concentrated on a dirac mass is infinitely divisible;
2. The class of infinitely divisible distributions is closed under the operation of convolution;
3. The class of infinitely divisible distributions is closed under linear translations;
4. The class of infinitely divisible distributions is closed under constant scalings;
5. A mixed Poisson distribution is infinitely divisible if the mixing distribution is also infinitely

divisible;
6. A mixed Poisson distribution with infinitely divisible mixing distribution can be expressed as a

compound Poisson distribution with severity distribution in the class P11;
7. A compound distribution is infinitely divisible if its counting distribution (frequency distribu-

tion) is infinitely divisible and in the class of distributions P10;
8. An infinitely divisible distribution in the class P10 has a positive probability in zero;
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9. A non-degenerate distribution f in the class P10 is infinitely divisible if and only if it can be
expressed as a compound Poisson distribution with a severity distribution g which is in the
class P11.

Random variables which are distributed according to a discrete distribution which is
infinitely divisible have the advantage that when evaluating sums of such random variables
under an independence assumption will result in simple expressions for the form of the resulting
compound distribution. This is explored in the following sections through De Pril transforms
for such classes of random variable.

To determine if a discrete distribution is infinitely divisible one can utilise the necessary
and sufficient condition for a discrete distribution to be infinitely divisible given in Theorem
13.6, see Katti (1967).

Theorem 13.6 (Discrete Infinitely Divisible Distributions: Necessary and Sufficient Con-
ditions) Consider a discrete distribution

{
f̂i
}N

i=1 for i = 0, 1, 2, . . . with f̂0 �= 0 and f̂1 �= 0. Then
the necessary and sufficient condition for

{
f̂i
}N

i=1 to be infinitely divisible is that it must satisfy the
recursion given below, which must be strictly non-negative for all i ∈ N.

πi = i
f̂i
f̂0

−
i−1∑
j=1

πi−j
f̂j
f̂0

≥ 0. (13.104)

A corollary of this result discussed in Bondesson et al. (1996, corollary 2.6) is given below.

Corollary 13.1 If a discrete distribution f̂n on positive integers n is of the form f̂n = (n + 1)cn for
some sequence cn which is completely monotone, then the distribution is infinitely divisible.

To validate that a discrete distribution is in the class of infinitely divisible distributions it
was later shown in Warde and Katti (1971) that it is sufficient to ensure the following condition
provided in Theorem 13.7 holds.

Theorem 13.7 (Discrete Distribution Infinite Divisibility Sufficient Condition 1) A dis-
crete distribution

{
f̂n
}

n∈N
, with f̂0 �= 0, f̂1 �= 0 is infinitely divisible if the ratios f̂i

f̂i−1
for

i = 1, 2, . . . form a monotone increasing sequence.

A second alternative sufficient condition that can be considered for discrete distributions
with support on the non-negative integers, as given in Theorem 13.8, see Steutel (1973).

Theorem 13.8 (Discrete Distribution Infinite Divisibility Sufficient Condition 2) A dis-
crete distribution

{
f̂n
}

n∈N
on the non-negative integers, with f̂0 �= 0, is infinitely divisible if it

satisfies the recursion

f̂n+1 =

n∑
k=0

qkf̂n−k (13.105)

for qk ≥ 0 for all k = 1, 2, 3, . . ..
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Remark 13.4 Distributions that satisfy the above are also known to be of compound geometric
distribution form.

Yet a third sufficient condition can be stated for discrete infinitely distributed random
variables on the positive integers, given in Theorem 13.9, see discussion in Steutel (1973).

Theorem 13.9 (Discrete Distribution Infinite Divisibility Sufficient Condition 3) A dis-
crete distribution

{
f̂n
}

n∈N
on the non-negative integers with a distribution which is log-convex,

is infinitely divisible if it satisfies that

f̂n+1 f̂n−1 ≥ f̂ 2
n , (13.106)

for all n = 1, 2, . . ..

It is also worth noting that it was shown in Convolutions (Generalized Gamma) that the
class of discrete distributions satisfying Corollary 13.1 are comprised of the class of mixtures of
negative binomial distributions of order 2.

Having defined the notion of discrete infinite divisibility it is natural to consider the ques-
tion, are there any cases in which one can take a distribution which is infinitely divisible with
support (0,∞) and discretize it to a distribution which takes integer support and preserves the
infinite divisibility?

In Bondesson et al. (1996) they studied this type of question under a particular form of
discretization based on simple rounding by taking the integer component. That is consider a
random variable X decomposed as its integer component [X ] and remainder fractional part
{X} given by X = [X ] + {X}. In this setting they were able to state the following result in
Theorem 13.10. Before stating this result we will briefly recall the definition of a log-concave
density function for an OpRisk severity model, see Definition 13.11.

Definition 13.11 (Log-Concave Density Functions) A continuous loss random variable X has
a density fX (x) which is said to be log-concave if it can be expressed as follows

fX (x) = exp (φ(x)) , (13.107)

where φ(x) is a concave function.

Densities that are log-concave satisfy the conditions:

1. ln fX (λx + (1 − λ)y) ≥ λ ln fX (x) + (1 − λ)fX (y);
2. Analogously, fX (λx + (1 − λ)y) ≥ fX (x)λfX (y)1−λ;
3. fX

( 1
2 (x + y)

)
≥
√

fX (x)fX (y);
4. In Ibragimov (1956) it was shown that a density on R will be log-concave if and only

if when it is convolved with a unimodal density, the resulting convolved density is again
unimodal.

Theorem 13.10 (Continuous Infinite Divisibility to Discrete Infinite Divisibility) If a loss
random variable X with support on (0,∞) has a log-concave density then both X and
the integer supported random variable given by [X ] are characterized by infinitely divisible
distributions.
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In addition it was shown in Bondesson et al. (1996, theorem 3.3) that one can
characterize the classes of infinitely divisible severity distributions for which the integer
rounded discrete distributions will also be infinitely divisible as those satisfying the result in
Theorem 13.11.

Theorem 13.11 (Characterising Infinitely Divisible Distributions: Continuous and Dis-
crete) Consider a continuous loss random variable with a severity density that satisfies the represen-
tation given by

fX (x) = (x + a)h(x), (13.108)

where a ≥ 0 and h(x) is a completely monotone function. In this case the severity distribution is
infinitely divisible. In addition, [X ] the discretized loss random variable on the integers is infinitely
divisible for such a model when a ≥ 1.

In mentioning the class of discrete infinitely divisible distributions, one can then as what
types of models may be suitable to consider in this class for OpRisk modelling of severity. Before
proceeding to discuss such models of relevance to OpRisk settings, we first recall the defini-
tion of the discrete Sibuya distribution given in Definition 13.12, see discussion in Devroye
(1993).

Definition 13.12 (Discrete Sibuya Distribution) A random variable S is said to be distributed
according to a Sibuya distribution with parameter γ if it has a p.g.f. given by

mS(z) = 1 − (1 − z)γ (13.109)

for γ ∈ (0, 1]. In addition, it can therefore be shown that the discrete probability mass function is
given by

Pr (S = n) =

{
γ(1−γ)···(n−1−γ)

n! , n > 1,
γ, n = 1.

(13.110)

In turns out that there is a class of discrete severity distributions that form the analog
of the α-Stable severity model, for the discrete support case as given in Definition 13.13, see
discussion in Steutel and Van Harn (2003) and Christoph and Schreiber (1998a).

It is useful to recall that α-stable random variables, that are discussed in Peters and
Shevchenko (2015), satisfy the condition that for strictly stable random variables Xi ∈ R with
i = 0, 1, 2, . . . , n, one has the characterization given by

X1 + . . .+ Xn
d
= cnX0 + dn, (13.111)

for some sequence cn = n
1
α and (strict stability involves dn = 0). The tail index coefficient

α ∈ [0, 2] is the index of stability, dictating how heavy the tails of the distribution will be, with
light tails if α is close to 2 and heavy tailed as α decreases towards 0. In addition it is known
that α must satisfy the condition

X d
= kX1 + (1 − kα)

1
α X2, (13.112)
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for k ∈ (0, 1). It was shown in Christoph and Schreiber (1998a) that one can utilise this
condition to re-express the discrete version of the α-Stable family of severity models on the
integer support which is non-negative.

Definition 13.13 (Discrete Integer Values Stable Family of Severity Models: Class 1)
A discrete non-negative lattice loss random variable X is stable distributed with stability index γ ∈
(0, 1], the discrete analog of tail index α, if the p.g.f. is represented by

mX (z) = exp (−λ(1 − z)γ) , |z| ≤ 1, (13.113)

for some parameter λ > 0. The probability mass function of a discrete stable loss random variable
is given by

Pr (X = k) = (−1)ke−λ
k∑

m=0

m∑
j=0

m!(γj)!
(m − j)!j!(γj − k)!k!

(−1)j λ
m

m!
, k = 0, 1, 2, . . . .

(13.114)

It will also be useful to observe the following recursive evaluation available to probabilities
for such a distribution given in Lemma 13.2, see Christoph and Schreiber (1998a, theorem 2).

Lemma 13.2 (Recursions for Discrete Stable Probabilities) If X is a discrete stable severity
loss random variable with discrete stable model parameters γ ∈ (0, 1] and λ then the following
recursion holds for the probability evaluations

(k + 1)Pr (X = k + 1) = λ
k∑

m=0

Pr (X = k − m) (m + 1)(−1)m γ!

(γ − (m + 1))!(m + 1)!
(13.115)

for all k ∈ N
+ and with Pr (X = 0) = exp(−λ).

One can also make the following remarks regarding the discrete stable distribution.

Remark 13.5 The following properties of the discrete stable severity distribution are known:

• One can consider the standard characterization of the α-stable distribution given by Equation
13.112 being modified to obtain the discrete stable analog by replacing kX by the term k ◦ X
defined by the sum of i.i.d. random variables Zj satisfying the equality in distribution given by

k ◦ X d
=

X∑
j=0

Zj (13.116)

for k ∈ (0, 1) and Pr
(
Zj = 1

)
= 1−Pr

(
Zj = 0

)
= q, i.e. it admits a mixed Poisson form,

where the mixing distribution of the Poisson is known in the literature as a Sibuya distribution;
• If the discrete Stable random variable has a stability index parameter γ = 1, then it will

correspond to the Poisson distribution with intensity parameter λ;
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• If the discrete Stable random variable has a stability index parameter γ < 1 then the result-
ing random variable has a distribution which is infinitely divisible, discrete self-decomposable,
unimodal and normally attracted to a stable law;

• Since the discrete Stable distribution is in the domain of attraction of a strictly stable random
variable, then it also has the following fractional lower order moment properties

E [X r ] < ∞ (13.117)

for 0 ≤ r < γ < 1;
• The simulation of discrete stable random variables are studied in Devroye (1993). In this paper

it is shown that since the discrete stable distribution can be written as a compound Poisson
distribution, then random variable realizations can be drawn from the model

X =

Y∑
i=1

Zi (13.118)

with Y ∼ Poisson(λ) and i.i.d. discrete random variables Zi given by the Sibuya distribution
with p.g.f. given by

mZ (z) = 1 − (1 − z)γ . (13.119)

• Hence, one has the discrete stable distributed random variable X ∼ Sγ(λ) if it can be repre-
sented in law according to a mixed Poisson distribution

X ∼ Poisson
(
λ

1
γ S
)

(13.120)

with random variable

S ∼ Sibuya(γ, 1). (13.121)

A related family of discrete stable distributions are known as the discrete Linnik distribu-
tions first studied in Christoph and Schreiber (1998b), see Definition 13.14.

Definition 13.14 (Discrete Stable Laws: Class 2 - Linnik Family) A discrete severity random
variable X has a Linnik Law if it has a p.g.f. given by

mX (z) =
1

(1 + (1 − z)γ)β
, (13.122)

with β > 0 and γ ∈ (0, 1].

Remark 13.6 It can be shown that the discrete Linnik distributed severity random variable will
also admit a mixed Poisson distribution representation given by consideration a Gamma

X ∼ Poisson
(

G
1
γ S
)

(13.123)
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with random variable

S ∼ Sibuya(γ, 1), (13.124)

and independent Gamma random variable

G ∼ Gamma(β, 1). (13.125)

One can also demonstrate the following useful asymptotic tail behaviours of the discrete
stable distribution (class 1), given in Theorem 13.12, see Christoph and Schreiber (1998a,
theorem 3).

Theorem 13.12 (Tail Asymptotic of Discrete Stable Distributions) Consider a discrete Sta-
ble severity loss random variable X with parameters γ ∈ (0, 1) and λ. Then the following asymp-
totics hold as n → ∞

Pr (X = n) =
1
π

m∑
j=1

(−1)j+1

j!
λj sin(γjπ)B(γj + 1, n − γj) + O

(
n−γ(m+1)−1

)
, m < n,

(13.126)

with Beta function B(x, y) = Γ(x)Γ(y)
Γ(x+y) . In addition one can show that the right tail probability is

given by

Pr (X ≥ n) =
1
π

m∑
j=1

(−1)j+1

j!
λj sin(γjπ)B(γj, n − γj) + O

(
n−γ(m+1)

)
, m < n.

(13.127)

13.8.3 RECURSIONS FOR CONVOLUTIONS (PARTIAL SUMS) WITH
DISCRETISED SEVERITY DISTRIBUTIONS (FIXED n)

In the following sections we will discuss and explore recursions for partial sums and compound
processes. The three main classes of recursion considered are known as the Panjer, De Pril and
the method of Kornya’s approximation, see discussions and comparisons in Kuon et al. (1987).

Here we consider the recursive evaluation of an n-fold convolution FZn(x) in the case in
which the severity distribution has been discretised onto an equispaced grid (according to one
of the approaches presented previously), w.l.o.g. over integer values x = 1, 2, 3 . . .. In this
case it is proven in Sundt and Vernic (2009, theorem 2.8) that a recursion for the evaluation
of the discretised density arising from the n-fold convolution distribution F̂Zn(x) is achieved
according to the result in Theorem 13.13.

Consider a discrete density f̂ ∈ P10, then the evaluation of the n-fold convolution of such
a distribution f̂Zn(x) = f̂ (n)∗(x) is obtained according to the recursive relationship developed
in Theorem 13.13.

Theorem 13.13 (Discretised Severity Distribution n-Fold Convolution Recursions) The
n-fold convolution for the density f̂Zn(x) = f̂ (n)∗(x), with severity distribution satisfying the condi-
tion that f̂ (x) = 0, ∀x < 0, can be evaluated according to the following recursion
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f̂Zn(x) =
1

f̂ (0)

x∑
y=1

(
(n + 1)

y
x
− 1
)

f̂ (y)f̂Zn(x − y), ∀x ≥ 1, (13.128)

with initialization given by

f̂Zn(0) = f̂ (0)n. (13.129)

To understand the initialization stage in this recursion, consider the two fold convolution
between a distribution f̂ ∈ P10 and itself which is then given by

(
f̂ ∗ f̂

)
(z) =

∞∑
x=−∞

f̂ (x)f̂ (z − x), ∀z = 0, 1, 2, . . . . (13.130)

Since one has that f̂ (x) = 0 for x < 0 and f̂ (z − x) = 0 for x > z due to the membership of
this density in the class P10 then one gets the finite sum

(
f̂ ∗ f̂

)
(z) =

∞∑
x=0

f̂ (x)f̂ (z − x), ∀z = 0, 1, 2, . . . , (13.131)

and in particular at the origin one obtains

(
f̂ ∗ f̂

)
(0) = f̂ (0)2. (13.132)

When this is extrapolated to the n-fold convolution one obtains the condition, f̂Zn(0) = f̂ (0)n.
Next, to understand where the recursive relationship is derived from, we adopt the approach
in Sundt and Vernic (2009), where one considers the addition of an auxiliary random variable
Y with the density f̂ which is independent of the random variable Zn which has density f̂ (n)∗.
Then one can show via an argument of symmetry that the following expression holds for all
zn ∈ {1, 2, . . .} according to

zn∑
y=0

(
(n + 1)

y
zn

− 1
)

f̂ (y)f̂ (n)∗(zn − y) = 0, (13.133)

from which one can obtain a recursive expression for the solution for f̂Zn(x) = f̂ (n)∗(x) as
detailed in Theorem 13.13.

If there is a known upper bound on the severity distribution due to the application of
an insurance policy or due to the total liability that one may be exposed to for a given type
of OpRisk as discussed in Chapter 17, then in this case one can develop a recursion for the
truncated discretised severity distribution given in Theorem 13.14, see details in Sundt and
Vernic (2009, theorem 2.9).
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Theorem 13.14 (Discretised Truncated Severity n-Fold Convolution Recursions) The
n-fold convolution for the density f̂Zn(x) = f̂ (n)∗(x), with severity distribution f̂ ∈ P1 and fur-
thermore there exists a finite k such that k = max

{
x : f̂ (x) > 0

}
< ∞, then one can evaluate

the convolved distribution according to the following recursion

f̂Zn(x) =
1

f̂ (k)

nk−x∑
y=1

(
y(n + 1)
nk − x

− 1
)

f̂ (k − y)f̂Zn(x + y), ∀x ∈ {nk − 1, nk − 2, . . . , 0},

(13.134)

with initialization given at the maximum index k by

f̂Zn(k) = f̂ (k)n. (13.135)

In cases in which there exist a need to evaluate recursively a sequence of convolutions
corresponding to

{
f̂ (j)∗

}
1≤j≤n

for each j ∈ {1, 2 . . . , n} for a discrete density f̂ ∈ P10.

In this case the above convolution identities may be excessively computational compared to a
simple recursive evaluation in j = 1, 2, 3 . . . , n for all x ∈ {0, 1, 2, . . .} involving,

f̂ (j)∗(x) = f̂ ∗ f̂ (j−1)∗(x)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x∑
y=0

f̂ (y)f̂ (j−1)∗(x − y), ∀j ∈ {1, 3, 5, 7, . . .},

2
(x−1)/2∑

y=0

f̂ (j/2)∗(y)f̂ (j/2)∗(x − y) +
(

f̂ (j/2)∗(x/2)
)2

Ix even, ∀j ∈ {2, 4, 6, 8, . . .}.

(13.136)

However, one can improve on the efficiency of evaluation for a sequence of distribu-
tions

{
f̂ (j)∗

}
1≤j≤n

if additional information is known about the distributions in the convolu-

tion. For instance consider the result in Proposition 13.1, based on Sundt and Vernic (2009,
theorem 2.7).

Proposition 13.1 Consider a density f̂ ∈ P10 that satisfies, for some a and b, the recursive
relationship

f̂ (x) =
(

a +
b
n

)
f̂ (x − 1), ∀x ∈ {1, 2, . . .}. (13.137)

Then the convolution of f̂ with itself f̂ (2)∗ also satisfies this recursion in Equation 13.137 with a
unchanged and the new b̃ given by b̃ = a + 2b. As a consequence when extrapolated to the case of
evaluation of each distribution in the sequence

{
f̂ (j)∗

}
1≤j≤n

one gets the relationship

f̂ (j)∗(x) =
(

a +
(a + b)j − a

x

)
f̂ (j)∗(x − 1), ∀j, x ∈ {1, 2, . . .}. (13.138)
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Having defined these basic n-fold convolution identities for discretised severity models and
the sequential version for sequences of increasing n-fold convolutions, we next present a well
known family of transforms that further improve the efficiency of evaluation of convolutions
between discretised severity distributions. This leads naturally to the notion of the De Pril
Transforms for n-Fold convolutions (partial sums) with discretised severity distributions.

Therefore, in this advanced section we introduce the notion of a De Pril transform for a
distribution which can then be utilised to devise an efficient recursive relationship for the eval-
uation of an n-fold convolution. In De Pril (1986) and Karl-Heinz (1994) developed a range of
recursive identities were introduced relating to convolutions for partial sums, after discretiza-
tion of the severity model. It was then later recognised that these identities were highly efficient
methods for evaluation of the distribution of an n-fold convolution comprised of distributions
defined over the non-negative integers with a positive probability at the origin, and in Sundt
(2005), Sundt (1998) and Dhaene and Vandebroek (1995) one of the most important of the
recursions identified in De Pril’s early work was named in his honour as the De Pril transform.

In Definition 13.15 we provide the formal representation of the De Pril transform of a
discrete probability density on the non-negative integers with a positive probability mass in
zero, f̂ ∈ P10.

Definition 13.15 (De Pril Transform of a Density) The De Pril transform, denoted by ϕf , of
a discrete probability density on the non-negative integers with a positive probability mass in zero,
f̂ ∈ P10, is given by

ϕf (x) =
1

f̂ (0)

⎡
⎣xf̂ (x)−

x−1∑
y=1

ϕf (y)f̂ (x − y)

⎤
⎦ , ∀x ∈ {0, 1, 2, . . .}, (13.139)

with ϕf (0) = 0.

Remark 13.7 It can be observed that solving this recursion with respect to f̂ (x) produces

f̂ (x) =
1
x

x∑
y=1

ϕf (y)f̂ (x − y), ∀x ∈ {1, 2, . . .}, (13.140)

and conversely, one can obtain the expression for the De Pril transform in Equation 13.139 by
solving Equation 13.140 with respect to ϕf (x). Hence, given ϕf and the initial value f̂ (0), then
the distribution of f̂ can be evaluated recursively. Therefore, one can show using the property of
normalization of the probability density (mass) f̂ ,

∞∑
x=0

f̂ (x) = 1, (13.141)

that the De Pril transform ϕf is a unique representation of the distribution f̂ .

It is also the case that a distribution in the class P10 will be infinitely divisible if and only
if the De Pril transform of its density is non-negative.
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13.8.3.1 De Pril’s First Method. In this section we consider the partial sum given by

Zn =

n∑
i=1

Xj (13.142)

with each Xi independent with distributions Xi ∼ Fi(x) and density fj(x). After discretiza-
tion one has probability mass functions for each random variable given by

{
f̂i
}n

i=1. Typically
in OpRisk one would consider the case that all Xi loss random variables were i.i.d. If each
discretized probability mass function f̂j ∈ P10 then one can find the n-fold convolution

f̂Zn(x) = ∗n
j=0 f̂j =

(
f̂1 ∗ f̂2 ∗ · · · ∗ f̂n

)
(x), (13.143)

by using the De Pril transform as displayed below. That is, the real benefit of utilising the
De Pril transform in the context of efficiently evaluating the n-fold convolution of a set of
n different discretized severity distributions f̂j ∈ P10 for all j ∈ {1, 2, . . . , n}, given by
f̂ (n)∗(x) = ∗n

j=0 f̂j, is presented by the result in Theorem 13.15, see De Pril (1989). The
approach described below for evaluation of the n-fold convolution is known colloquially as
De Pril’s First Method which involves the steps:

Step 1: For each distribution f̂j evaluate the De Pril transform ϕfj(x) in Equation 13.140.
Note: this step can be simplified by noting that the De Pril transform of the n-fold con-
volution of a distribution in P10 is n times the De Pril transform of that distribution, see
Sundt and Vernic (2009, corollary 6.2).

Step 2: Find the De Pril transform ϕf (n)∗(x) of the convolved distribution f̂ (n)∗(x) =

∗n
j=0 f̂j by simply summing the n De Pril Transforms

Step 3: Find the evaluation of the n-fold convolved distribution f̂ (n)∗(x) by using the
recursion in Equation 13.140.

Theorem 13.15 (De Pril Transform of an n-Fold Convolution) The De Pril transform of the
convolution of a finite number of discrete densities f̂j ∈ P10 for j ∈ {1, 2, . . . , n} is given by
f̂ (n)∗(x) = ∗n

j=1 f̂j and can be evaluated exactly as the sum of the De Pril transforms of these discrete
densities, where

ϕf (n)∗(x) =
n∑

j=1

ϕfj(x) =
1
x

n∑
j=1

x∑
y=1

ϕfj(y)f̂j(x − y), ∀x ∈ {1, 2, . . .} , (13.144)

with ϕfj(0) = 0 for all j ∈ {1, 2, . . . , n}.

As a result of this theorem, one observes that the evaluation of the n-fold convolution can
be performed exactly through a linear combination of De Pril transforms.

Remark 13.8 Hence, it is clear that the evaluation of an n-fold convolution of discrete densities in
P10 can be performed by first obtaining the De Pril transform of each density and then finding the
De Pril transform of the convolution through summation. Then given the De Pril transform of the
convolution, one trivially obtains the evaluation of the n-fold density through
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f̂ (n)∗(x) =
1
x

x∑
y=1

ϕf (n)∗(y)f̂ (n)∗(x − y), ∀x ∈ {1, 2, . . .} , (13.145)

with initial value given by f̂ (n)∗(0) =
∏n

j=1 f̂j(0)

13.8.3.2 De Pril’s Second Method. Consider the case of evaluation of the n-fold con-
volution given by a set of severity distributions f̂j ∈ P10 for all j ∈ {1, 2, . . . , n} according
to f̂ (n)∗(x) = ∗n

j=0 f̂j. Under the second method of De Pril the idea is to bypass the utilisation
of the recursive evaluation for each distribution given by applying the recursion in Equation
13.139 and instead to utilise a closed form expression for evaluation of the De Pril transform
of each density given by ϕfj(x).

As described in Sundt and Vernic (2009) this involves the following steps for the De Pril
Second Method:

Step 1: For each distribution f̂j evaluate the De Pril transform ϕfj(x) in closed form, avoid-
ing the recursive evaluation.
Find the De Pril transform in closed form by representing each distribution f̂j in terms of a
compound Bernoulli representation. The compound Bernoulli for discretized distribution
f̂j will have a frequency πj and severity f̂j component.

• A frequency distribution given by a Bernoulli distribution with probability of success
πj = 1 − f̂j(0);

• A severity distribution ĥj ∈ P11 which is given by

ĥj(x) =
f̂j(x)
πj

for x = 1, 2, . . . (13.146)

Then calculate the De Pril transform via the new representation

ϕfj(x) = −x
x∑

n=1

1
n

(
πj

πj − 1

)n

ĥ(n)∗
j (x), x = 1, 2, . . . . (13.147)

Step 2: Find the De Pril transform ϕf (n)∗(x) of the convolved distribution f̂ (n)∗(x) =

∗n
j=0 f̂j by simply summing the n De Pril Transforms.

Step 3: Evaluate the density of the n-fold convolution using the result of Sundt and Vernic
(2009) to obtain the density given in closed form by

f̂ (n)∗(x) = −1
x

x∑
n=1

f̂ (n)∗(x − n)
M∑

j=1

(
πj

πj − 1

)n

, x = 1, 2, . . . . (13.148)

There are also many approximation based techniques for evaluation of the n-fold convo-
lution and a detailed account of these can be found in Sundt and Vernic (2009, chapter 7).

Next we explore some special sub-families of distributions that have been discussed in
previous chapters for their particular useful properties when utilised within an LDA model
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structure, these are the infinitely divisible distributional families. We discuss what special fea-
tures the De Pril transform will have when applied to convolutions involving this family of
distributions.

13.8.3.3 De Pril Transforms and Convolutions of Infinitely Divisible Distri-
butions. The De Pril transform is especially relevant in the context of infinitely divisible
distributions, see details in Sundt and Vernic (2009, chapter 4, theorem 4.1, theorem 4.2,
corollary 4.1 and theorem 4.5). There computationally efficient properties that can be devel-
oped for evaluation of the De Pril transform of such classes of distributions, as will be explored
in the next few results.

Based on the properties of the family of infinitely divisible distributions one can then study
the De Pril transform for such a class of distributions, including convolutions of such distribu-
tions. The first identity of interest is to recall the properties of compound Poisson distributions
discussed in Peters and Shevchenko (2015) in terms of convolutions of such distributions, see
Cont and Tankov (2004). This result can clearly be seen as an efficient recursive procedure for
the evaluation of aggregation of a number of independent single loss LDA risk processes in
financial hierarchical banking structure.

Proposition 13.2 (Convolutions of Compound Poisson Distributions: Multiple LDA
Risks) Consider m independent compound processes, given by annual loss random variables Z (j) =∑N (j)

n=0 X (j)
n ∼ FZ(j) , each representing a single risk process and given by severity distributions

X (j) ∼ fj and a Poisson frequency distribution N (j) ∼ Poisson
(
λj
)

for all j ∈ {1, 2, . . . ,m}.
If one considers the convolution of each of these compound Processes given by

ZT =
m∑

j=1

Z (j) ∼ FZT = ∗m
j=1FZ(j) , (13.149)

where F (m)∗ is a compound Poisson distribution with rate parameter in the frequency distribution
λT and severity distribution fT (x) given by

λT =

m∑
j=1

λj, and fT (x) =
1
λT

m∑
j=1

λj fj(x). (13.150)

Now utilising the properties of infinitely divisible distributions and their unique represen-
tation as compound Poisson distributions detailed in point 9 of Theorem 13.5 which states that
an infinitely divisible distribution in the class P10 can always be expressed as a compound Pois-
son distribution with severity distribution in the class P11. Hence, if one considers the m-fold
convolution of infinitely divisible discrete distributions f̂j ∈ P10 for all j ∈ {1, 2, . . . ,m} then
one can utilise this representation for each distribution and re-express the solution as the m-
fold convolution of compound Poisson distributions and utilise the results in Proposition 13.2.
Alternatively, there is a different approach one may adopt in addressing this problem utilising
the De Pril transform, given in Proposition 13.3.

Proposition 13.3 (De Pril Transform and Infinitely Divisible Severity Distributions)
Consider the m-fold convolution of discrete infinitely divisible distributions f̂j ∈ P10 for all
j ∈ {1, 2, . . . ,m}. One could evaluate the compound Poisson distribution representation of each
distribution
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f̂j(x) =
∞∑

n=0

λn
j

n!
exp(−λj)ĝj(x) (13.151)

which would involve determining for the Poisson frequency distribution, the λj and the severity dis-
tribution ĝj(x). Then application of Proposition 13.2 and Theorem 13.13 would produce a solution
involving evaluation first of the compound Poisson representation of each infinitely divisible distribu-
tion and then the m-fold infinitely divisible distribution with total intensity λT and severity f̂T (x)
according to

λT =

m∑
j=1

λj =

m∑
j=1

− ln gj(0),

f̂T (x) =
1
λT

m∑
j=1

λj f̂j(x)

=
1
λT

m∑
j=1

λj

⎡
⎣ 1

ĝj(0)

⎛
⎝ ĝj(x)

λj
− 1

x

x−1∑
y=1

yf̂j(y)ĝj(x − y)

⎞
⎠
⎤
⎦ , ∀x ∈ {1, 2, . . .}.

(13.152)

However, this computation can be performed in an alternative manner via the De Pril transform
which avoids the need to evaluate each λj and more importantly the recursions for evaluation of
f̂j(x). Instead knowledge of the De Pril transform of each distribution fj is utilised to evaluate the
De Pril transform of the m-fold convolution f̂ (m)∗(x) = ∗m

j=1 f̂j(x) directly as follows

ϕf (m)∗ =
m∑

j=1

ϕfj =
m∑

j=1

1
f̂j(0)

⎛
⎝xf̂j(x)−

x−1∑
y=1

ϕfj(y)f̂j(x − y)

⎞
⎠ , ∀x ∈ {1, 2, . . .}, (13.153)

and the resulting distribution is then the solution

f̂ (m)∗(x) =
1
x

x∑
y=1

ϕf (m)∗(x)(y)f̂
(m)∗(x − y), ∀x ∈ {1, 2, . . .}. (13.154)

EXAMPLE 13.13 De Pril Transform of a Poisson Distribution

Consider the Poisson distribution f̂ with parameter λ, then the De Pril transform
is given trivially by considering the Poisson distribution as a compound Poisson
distribution with a severity ĝ concentrated on unity, resulting in the expression

ϕf (y) = λI [y = 1] . (13.155)
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It is also often convenient in OpRisk LDA models to note the result in Theorem 13.16
which relates a mixed Poisson distribution to a compound distribution, which can be easily
evaluated using a De Pril transform.

Theorem 13.16 (Mixed Poisson Distributions) A mixed Poisson distribution that has a mixing
distribution in the class P10 can be re-expressed according to a compound distribution with the
mixing distribution making up the frequency distribution and a severity distribution given by a
Poisson distribution with unit rate.

There are several general extensions to such results provided in the actuarial literature, see
for example details of the Wilmot class of mixing distributions in Sundt and Vernic (2009,
chapter 3).

13.8.4 ALTERNATIVES TO PANJER RECURSIONS: RECURSIONS
FOR COMPOUND DISTRIBUTIONS WITH DISCRETISED SEVERITY
DISTRIBUTIONS

In some settings it may be advantageous both from a computational efficiency as well as numer-
ical accuracy or stability to consider alternative recursions or higher order recursions for com-
pound processes. There are numerous other recursions available for compound distribution
evaluation, some of the more useful variants are given below under assumptions on either the
frequency, the severity distribution or both.

An example of this is the recursion for a compound Poisson distribution with severity
distribution satisfying that f (0) = 0, then one obtains a recursion given in Theorem 13.17.

Theorem 13.17 (Recursions for Compound Poisson Distributions with Discretised Sever-
ity) Consider a compound Poisson distribution for a single risk LDA model in which the severity
distribution f (x) is discretised (w.l.o.g.) over the non-negative integers and satisfies f (0) = 0 then
the compound distribution given by

fZN (x) =
∞∑

n=1

λn

n!
exp (−λ) f (n)∗(x), (13.156)

is evaluated recursively according to

fZN (x) =
λ

x

x∑
y=1

yf (y)fZN (x − y), ∀x ∈ {1, 2, . . .}, (13.157)

with initialization

fZN (0) = exp(−λ). (13.158)

Additionally, in Sundt and Vernic (2009, section 3.3) an alternative class of recursions for
mixed Poisson compound distributions can be utilised if certain conditions are satisfied for the
discretised severity distribution. If the severity distribution f (x) after discretisation satisfies that
the first derivative of the power series representation of the probability mass function satisfies
the relation
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d
ds
E
[
sX ] = ∫ ∞

0
sxdF (x) =

∑r
y=1 η(y)s

y−1

1 −
∑r

y=1 χ(y)sy (13.159)

for some functions η and χ and r either a positive integer of infinity then the recursion in
Theorem 13.18 for the compound Poisson distribution evaluation holds.

Theorem 13.18 If the frequency distribution is a Poisson distribution with rate λ and the sever-
ity distribution f is discretised and takes values with positive probability only on the non-negative
integers (w.l.o.g.). Furthermore, assume that there exists function η and χ on {1, 2, . . . , r} and an
integer r either a positive integer of infinity that satisfies the that the first derivative of the power
series representation of the probability mass function satisfies the relation

d
ds
E
[
sX ] = ∫ ∞

0
sxdF (x) =

∑r
y=1 η(y)s

y−1

1 −
∑r

y=1 χ(y)sy , (13.160)

then the compound distribution is evaluated according to the recursion

fZN (x) =
r∑

y=1

(
λ

x
η(x) +

(
1 − y

x

)
χ(y)

)
fZN (x − y), ∀x ∈ {1, 2, . . .}. (13.161)

In addition, in cases in which the frequency distribution satisfies the recursive evaluation
given by

pn =

(
a +

b
n

)
pn−1, ∀n ∈ {l , l + 1, . . . , r}. (13.162)

then in this case the compound distribution can be evaluated recursively according to

fZN (x) = pl f (l)∗(x)−
(

a +
b

r + 1

)
prf (r+1)∗(x) +

x∑
y=1

(
a + b

y
x

)
f (y)fZN (x − y),

∀x ∈ {l , l + 1, . . .}. (13.163)

To complete this section of recursions for evaluation of the compound process we also
mention the framework developed and known as Waldmann’s recursion Waldmann (1996,
theorem 1) which provides an alternative recursion one can consider. The advantage of the
Waldmann recursion is that instead of working with the density of the compound process it
considers the distribution function which has the advantage that it is strictly monotone. The
recursion proceeds according to Theorem 13.19.

Theorem 13.19 (Waldmann’s Recursion for Compound Distributions with Discretised
Severity) Consider the compound process with discretised severity distribution given by FZN (x) for
all x ∈ N0. If the frequency distribution satisfies the condition that

pn =

(
a +

b
n

)
pn−1, ∀n ∈ {1, 2, 3 . . .}. (13.164)
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Then the distribution of the compound process can be evaluated recursively according to

xFZN (x) = r1(x) + r2(x), (13.165)

where FZN (0) = p0 and for all x ∈ N0 one has

r1(x) = r1(x − 1) + FZN (x − 1),

r2(x) = a
x−1∑
i=1

f (i)r2(x − i) + (a + b)
x∑

i=1

if (i)FZN (x − i),
(13.166)

with r1(0) = 0.

There are also approaches to stabilize and safe guard this recursive algorithm against under-
flows and overflows, see Waldmann (1996, section 3) for details.

13.8.5 HIGHER ORDER RECURSIONS FOR DISCRETISED
SEVERITY DISTRIBUTIONS IN COMPOUND LDA MODELS

The Panjer recursion was introduced for the evaluation of the compound process distribution
recursively when the frequency distribution had probabilities satisfying the recursive relation-
ship given by

pn =

(
a +

b
n

)
pn−1, (13.167)

for some distribution p ∈ P10. In this section recursions for compound distributions in which
the counting distribution satisfies a generalized higher order recursion given by the most general
representation

pn =

k∑
i=1

⎛
⎝ai +

l∨i−1∑
j=0

bi,j

n − j

⎞
⎠ pn−i, ∀n ∈ {l + 1, l + 2, . . .} (13.168)

are considered, where the order is denoted by the “lag” k. The results for the recursive evaluation
of a compound distribution of an annual loss random variable Z =

∑N
n=1 Xn with severity

density f ∈ P10 and frequency distribution p ∈ P10 that also satisfies the higher order recursion
in Equation 13.168 are given in Theorem 13.20 as derived in Sundt and Vernic (2009, chapter
5.1). Note, this results is the most general formulation that also incorporates cases in which
j = 0 for which the recursion for the probabilities in the frequency distribution satisfy the
simplified higher order recursion given by

pn =
k∑

i=1

(
ai +

bi

n

)
pn−i. (13.169)

Theorem 13.20 Consider the compound process LDA model with discretised severity distribution
f ∈ P10 and frequency distribution p ∈ P10 that satisfies the recursive evaluation of the probability
of Pr [N = n] = pn given as a linear combination of k terms corresponding to the probabilities
{Pr [N = n − 1] , . . . ,Pr [N = n − k]} according to,
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pn =

k∑
i=1

⎛
⎝ai +

l∨i−1∑
j=0

bi,j

n − j

⎞
⎠ pn−i, ∀n ∈ {l + 1, l + 2, . . .} (13.170)

Then the compound process LDA annual loss distribution fZ (x) is recursively evaluated according to

fZ (x) =
1

1 − τa(f (0))

⎛
⎝ l∑

n=1

(
pn −

k∑
i=1

aipn−i

)
f (n)∗(x)−

k∑
i=1

l∨i−1∑
j=0

l∑
n=j+1

bi,j

n − j
pn−if (n)∗(x)

+

k∑
i=1

x∑
y=1

aif (i)∗(y)fZ (x − y)

+
k∑

i=1

l∨i−1∑
j=0

bi,j

(
ci−j f (j)∗(x) +

1
i − j

x−1∑
y=0

f (j)∗(y)
x−y∑
z=1

z
x − y

f (i−j)∗(z)fZ (x − y − z)
)⎞⎠

for all x ∈ {1, 2, . . .}, τa(f (0)) denoting the probability generating function and coefficients

ci =

∞∑
n=1

1
n

pn−if (0)n, ∀i ∈ {1, 2, . . .} (13.171)

Clearly the evaluation of the coefficients ci proves an intractable quantity computationally
due to the infinite summation. However, as noted in Sundt and Vernic (2009), if one further
assumes that the severity distribution f is in the class P11 then the simplified result in Corollary
13.2 applies.

Corollary 13.2 Consider the compound process LDA model with discretised severity distribution
f ∈ P11 and frequency distribution p ∈ P10 that satisfies the recursive evaluation of the probability
of Pr [N = n] = pn given as a linear combination of k terms corresponding to the probabilities
{Pr [N = n − 1] , . . . ,Pr [N = n − k]} according to,

pn =

k∑
i=1

⎛
⎝ai +

l∨i−1∑
j=0

bi,j

n − j

⎞
⎠ pn−i, ∀n ∈ {l + 1, l + 2, . . .} (13.172)

Then the compound process LDA annual loss distribution fZ (x) is recursively evaluated according to

fZ (x) =
l∑

n=1

(
pn −

k∑
i=1

aipn−i

)
f (n)∗(x)−

k∑
i=1

l∨i−1∑
j=0

l∑
n=j+1

bi,j

n − j
pn−if (n)∗(x)

+

k∑
i=1

x∑
y=1

aif (i)∗(y)fZ (x − y)

+

k∑
i=1

l∨i−1∑
j=0

bi,j

i − j

x−1∑
y=j

f (j)∗(y)
x−y∑

z=i−j

z
x − y

f (i−j)∗(z)fZ (x − y − z) (13.173)

for all x ∈ {1, 2, . . .}.
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13.8.6 RECURSIONS FOR DISCRETISED SEVERITY
DISTRIBUTIONS IN COMPOUND MIXED POISSON LDA MODELS

In this section we consider generalizing the class of allowable frequency distributions to be
mixed types. In particular we briefly detail recursions for the evaluation of compound mixed
Poisson distributions, the Wilmot class of mixing distributions and a simplified recursion. Then
a recent generalization of the Panjer recursion due to Gerhold et al. (2010) will be considered
which can be shown to improve numerical stability of the Panjer recursion and extend the
application of the recursion to the class mixed type compound distributions.

In this section we consider the class of compound process distributions in which the fre-
quency distribution is of a mixed type, generically represented according to Definition 13.16.
Note, these distributions are also known as doubly stochastic processes and Cox processes and
have been utilised in numerous applications in the risk and insurance literature, see examples
in OpRisk in Peters et al. (2011) and in the Bayesian context in Peters et al. (2009).

Definition 13.16 (Mixed Poisson Type Frequency Distributions) Consider Λ as a positive
random variable with distribution U . Then define the frequency distribution for the number of
losses N annually in the single risk LDA model to be defined conditionally as follows

Pr [N = n|Λ = λ] =
λn

n!
exp (−λ) , and,

Pr [N = n] =
∫ ∞

0

λn

n!
exp (−λ) dU (λ) ∀n ∈ {0, 1, 2, . . .}.

(13.174)

We note that several examples will be provided for such frequency distributions in the
chapters on closed form LDA models and insurance models in Chapter 17. It is also worth
noting that the convolution between a finite number of mixed Poisson distributions is equiva-
lent to considering a mixed Poisson distribution in which the mixing distribution is obtained
by the convolution between the mixing distributions of these distributions.

Next we detail how to perform recursive evaluation of the mixed Poisson compound distri-
bution with severity distribution f and mixing distribution generically denoted by U given by

fZN (x) =
∞∑

n=0

Pr [N = n] f (n)∗(x)

=

∞∑
n=0

∫ ∞

0

λn

n!
exp (−λ) dU (λ)f (n)∗(x).

(13.175)

If one considers discretising the severity distribution f (x) to take support (w.l.o.g.) on the non-
negative integers, then a recursive evaluation of the mixed Poisson compound process, due to
Sundt and Jewell (1981, section 3.3) proceeds to evaluate fZN (x) for all x ∈ {0, 1, 2 . . .} as
detailed in Proposition 13.4.

To understand this recursion it is beneficial to first consider the basic recursion that one
obtains when considering specifically the evaluation of a Poisson compound distribution in a
single risk LDA model. As detailed in Sundt and Jewell (1981, theorem 2.2) one can efficiently
evaluate the compound Poisson distribution according to Theorem 13.17 presented previously.
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Given this recursion in the context of the mixed Poisson compound distributions this recursion
can be turned into an alternative recursion with respect to moments of the Laplace transform
of the mixing distribution. Consider the recursion

fZN (x) =
λ

x

x∑
y=1

yf (y)fZN (x − y), ∀x ∈ {1, 2, . . .}, (13.176)

and then multiply this by a power of the mixing random variable and its distribution, λidU (λ)
to obtain in the notation of Sundt and Jewell (1981) the recursion for the i-th integer moment

νi(x) =
∫ ∞

0
λifZN (x;λ)dU (λ)

=
1
x

x∑
y=1

yf (y)νi+1(x − y), ∀x ∈ {1, 2, . . .} and ∀i ∈ {0, 1, 2, . . .}. (13.177)

This second recursion for the values of νi(x) can then be utilised to evaluate mixed Poisson
Compound distribution as detailed in Proposition 13.4.

Proposition 13.4 (Recursive Evaluation of Mixed Poisson Compound Distributions)
Consider a mixed Poisson compound distribution for a single risk LDA model, with discretised sever-
ity density given by f (x) for x ∈ {0, 1, 2, . . .} and mixed frequency distribution in Definition
13.16. The evaluation of the compound process annual loss distribution at a point x according to

fZN (x) =
∞∑

n=0

∫ ∞

0

λn

n!
exp (−λ) dU (λ)f (n)∗(x), (13.178)

proceeds by evaluation of the initialization fZN (0) according to the Laplace transform of the mixing
distribution U evaluated at 1 − f (0) via

ν0 (0) = fZN (0) = L [U (1 − f (0))] =
∫ ∞

0
exp (−λ(1 − f (0))) dU (λ). (13.179)

Then for all values of y ∈ {1, 2, . . . , x} evaluate y-th derivative of the Laplace transform of the
mixing distribution at 1 − f (0) according to

νy(0) = (−1)y = L [λyU (1 − f (0))] =
∫ ∞

0
λy exp (−λ(1 − f (0))) dU (λ)

= (−1)y d y

dsy L [U (s)]|s=(1−f (0))

(13.180)

Then for all y ∈ {1, 2, . . . , x} and all z ∈ {1, 2, . . . , y} evaluate νy−z(z) via the recursion

νi(x) =
∫ ∞

0
λifZN (x;λ)dU (λ)

=
1
x

x∑
y=1

yf (y)νi+1(x − y), ∀x ∈ {1, 2, . . .} and ∀i ∈ {0, 1, 2, . . .}. (13.181)

Finally, the value of the mixed Poisson compound distribution of fZN (y) = ν0(y).
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Remark 13.9 The computational efficiency and storage requirements for the recursive evaluation
presented in Proposition 13.4 will become untenable as the value of x → ∞. Unfortunately, this
is precisely the situation in which one wishes to consider the utilization of this recursion in many
applications related to estimation of the tail of the compound distribution for a single risk LDA
model.

Corollary 13.3 If the severity distribution f is discretised and takes values with positive probability
only on the non-negative integers (w.l.o.g.). Furthermore, assume that there exists function η and χ
on {1, 2, . . . , r} and an integer r either a positive integer of infinity that satisfies the that the first
derivative of the power series representation of the probability mass function satisfies the relation

d
ds
E
[
sX ] = ∫ ∞

0
sxdF (x) =

∑r
y=1 η(y)s

y−1

1 −
∑r

y=1 χ(y)sy , (13.182)

then in the recursive evaluation of the mixed compound process, the stage that consider for all y ∈
{1, 2, . . . , x} and all z ∈ {1, 2, . . . , y} evaluate νy−z(z) the recursive evaluation of

νi(x) =
∫ ∞

0
λifZN (x;λ)dU (λ)

=
1
x

x∑
y=1

yf (y)νi+1(x − y), ∀x ∈ {1, 2, . . .} and ∀i ∈ {0, 1, 2, . . .} (13.183)

can be replaced with an alternative recursion involving

νi(x) =
r∑

y=1

(
η(y)

x
νi+1(x − y) +

(
1 − y

x

)
χ(y)νi(x − y)

)
,

∀x ∈ {1, 2, . . .} and ∀i ∈ {0, 1, 2, . . .} . (13.184)

It is well known that one can improve the efficiency of the recursion presented in Proposi-
tion 13.4 if additional restrictions on the mixing distribution are satisfied. The class of Wilmot
mixing distributions correspond to an important set of such mixing distributions that allow
for improved computational efficiency of the evaluation of mixed compound Poisson distribu-
tions, as defined in Definition 13.17, see numerous properties and details of this class in Sundt
and Vernic (2009, section 3.7).

Definition 13.17 (Wilmot Class of Mixing Distributions) Consider a continuous mixing
distribution U defined according to Definition 13.16. Furthermore, assume it takes a finite support
on the interval [λmin, λmax] with λmin ≥ 0 and λmax ≤ ∞. A mixing distribution U (λ) on
this support that admits a density u(λ) that satisfies the condition that on the log scale its derivative
can be represented according to

d
dλ

ln u(λ) =
∑k

i=0 η(i)λ
i∑k

i=0 χ(i)λi
, ∀λ ∈ [λmin, λmax], (13.185)

belongs to the Wilmot Class of mixing distributions for some functions η and χ.
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If one has a mixed type frequency distribution model satisfying membership of the Wilmot
class, then efficient recursions for the evaluation of the compound process with discretised
severity proceed as detailed in Theorem 13.21, see derivations in Sundt and Vernic (2009,
theorem 3.2).

Theorem 13.21 (Mixed Frequency Compound Recursion: Wilmot Class) Consider a Pois-
son mixed frequency distribution in which the random intensity Λ is a positive random variable
with distribution U . Then define the frequency distribution for the number of losses N annually in
the single risk LDA model to be defined conditionally as follows

Pr [N = n|Λ = λ] =
λn

n!
exp (−λ) , and,

Pr [N = n] =
∫ ∞

0

λn

n!
exp (−λ) dU (λ) ∀n ∈ {0, 1, 2, . . .}.

(13.186)

Furthermore assume the mixing distribution U is in the Wilmot class and satisfies that it takes
support on the interval [λmin, λmax] with 0 ≤ λmin < λmax ≤ ∞ and admits a differentiable
density u satisfying the condition for Wilmot class membership

d
dλ

ln u(λ) =
∑k

i=0 η(i)λ
i∑k

i=0 χ(i)λi
, ∀λ ∈ [λmin, λmax]. (13.187)

Then one has the following recursion for the annual loss distribution fZ given the discretised severity
distribution fX over the non-negative integers x ∈ {1, 2, . . .} according to

ρ(k)νk(x) =
x∑

y=1

fX (y)
k∑

i=0

χ(i)νi(x − y)−
k−1∑
i=0

ρ(i)νi(x) + wλmin(x)− wλmax (x) (13.188)

with χ(−1) = ν(−1) = χ(k + 1) = 0 and

ρ(i) = (1 − fX (0))χ(i)− ν(i)− (i + 1)χ(i + 1), i = −1, 0, 1, . . . , k

wλ(x) = fZ (x;λ)u(λ)
k∑

i=0

χ(i)λi, x = 0, 1, 2, . . . ;λ ∈ (λmin, λmax)

νi(x) :=
∫

λifZ (x;λ)dU (λ) =
1
x

x∑
y=1

yfX (y)νi+1(x − y).

(13.189)

Next we consider the cases of recursions for compound distributions in which the severity
distribution is not assumed to be discretised.

13.8.7 CONTINUOUS VERSIONS OF THE PANJER RECURSION

Although, in some settings, the discretisation of a continuous severity distribution might be
justifiable, this is not the preferred approach in most OpRisk models. However, the Panjer
recursion approach may also be applied in a continuous setting, leading to the recursion for the
density given by:

fZN (x) = p1fX (x) +
∫ x

0

(
a +

bτ
x

)
fX (τ)fZN (x − τ)dτ (13.190)
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where fX (x) is the severity density and a, b and p1 = Pr[N = 1] parameterize the frequency
distribution of the compound process. There are many approaches to evaluate this expression.
We focus primarily on Importance Sampling based approaches in this chapter. For alternative
numerical techniques to a Panjer recursion see works such as inversion transforms (fast Fourier
transforms) and series expansions (Bergstrom, 1953); see Shevchenko (2011) and Cruz (2002)
and references therein.

13.8.7.1 The Panjer Recursion via Volterra Integral Equations of the Second
Kind. One can now observe that the Panjer recursion specified in Equation 13.190 can be
recognized as a Volterra equation of the second kind, see discussions in Peters et al. (2007)
and references therein. In general the Volterra integral equation of the second kind takes
the form:

f (x) = g(x) +
∫ x

0
K (x, x1, f (x1)) dx1. (13.191)

Therefore one can observe that for the Panjer recursion if one selects a linear Volterra equation
in which,

K (x, x1, f (x1)) = k (x, x1) f (x1), (13.192)

this will produce

f (x) = g(x) +
∫ x

0
k (x, x1) f (x1) dx1, (13.193)

allowing one to make an association directly between the linear Volterra equation of the second
kind and the Panjer recursion. This involves making the following identifications:

x1 = x − τ,

g(x) = p1fX (x),

k (x, x1) =

(
a + b

x − x1

x

)
fX (x − x1),

f (x1) = fZN (x1).

(13.194)

Therefore, one can obtain the following recursive representation for this integral equation, first
working with the representation from the Volterra integral equation,

f (x) = g(x) +
∫ x

0
k (x, x1) f (x1) dx1

= g(x) +
∫ x

0
k (x, x1)

[
g(x) +

∫ x1

0
k (x1, x2) f (x2) dx2

]
dx1,

(13.195)

where g : [0, x] �→ R and k : [0, x] × [0, x] �→ R are known functions and f : [0, x] �→ R

is unknown. Now if one recognises that this equation is also expressed as according to the
expression

f (x) = g(x) +
∫ x

0
r (x, x1) g (x1) dx1, (13.196)
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where r is the resolvent kernel for the Volterra equation of the second kind which can therefore
be expressed according to a von Neumann series expansion, see Baker (2000). This produces

r (x, x1) =

∞∑
n=1

kn(x, x1) (13.197)

where one defines k0(x, x1) = 1 k1 (x, x1) = k (x, x1) and

kn(x, x1) =

∫ x

0
k(x, u)kn−1 (u, x1) du, n = 2, 3, 4, . . . , (13.198)

such that the von Neumann series expansion exists under the condition that

∞∑
n=0

∫ x

0
|kn(x0, xn| dxn < ∞. (13.199)

Therefore, if one applies this series expansion to Equation 13.193 one obtains for any point
x0 ∈ R

+,

f (x0) = g (x0) +
∞∑

n=1

∫ x0

0
· · ·
∫ xn−1

0
g (xn)

n∏
l=1

k (xl−1, xl ) dx1:n (13.200)

with notation x1:n denoting an n-tuple (x1, x2, . . . , xn). Now as in Peters et al. (2007) we define
the domains of integration according to the following notations where Dk (xk−1) = [0, xk−1] is
the conditional one-dimensional domains of integration and the domain of integration of the
n-th term in the summation as

D1:n (x0) = {(x1, . . . , xn) : x0 > x1 > · · · > xn} ,

with the convention that D1:0 (x0) = {∅}. Under this representation one may rewrite the series
expansion according to

f (x0) = g (x0) +
∞∑

n=1

∫
D1:n(x0)

g (xn)
n∏

l=1

k (xl−1, xl) dx1:n. (13.201)

Additionally, we define the domain D̂0:n (D0) = {(x0, x1, . . . , xn) : D0 � x0 > x1 > · · · > xn}
and D0 corresponds to the region of values over which one wishes to characterize the annual
loss distribution, for example an interval [xa, xb].

Clearly, one can now start to characterise the tail distribution of the compound process
under this framework according to the integral over the domain [x,∞) using the series repre-
sentation given by

F ZN (x) = Pr[ZN > x] =
∞∑

n=1

Pr[N = n]F Zn(x)

=

∫ ∞

x
g (τ) dτ +

∞∑
n=1

∫ ∞

x

∫
D1:n(τ)

g (xn)

n∏
l=1

k (xl−1, xl ) dx1:ndτ.
(13.202)
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In Peters et al. (2007) a set of importance sampling estimation methodologies were devel-
oped to approximation numerically the recursive integral representations developed. This
involved primarily importance sampling based methods on a path space. The choice of the
importance sampling distribution was selected in two settings, one for efficiency and one util-
ising a trans-dimensional Markov chain Monte Carlo proposal which was provably optimal in
minimising the variance of the importance sampling weights.

13.8.7.2 Importance Sampling Solutions to the Continuous Panjer Recursion.
To introduce the importance sampling estimation framework to estimate the compound pro-
cess distribution pointwise or over an interval it will be convenient to introduce the following
additional notation:

f0 (x0) = g (x0) ,

fn (x0:n) = g (xn)

n∏
l=1

k (xl−1, xl) ,
(13.203)

which then allows for a representation of the evaluation of the density either at a point x0 by

f (x0) = f0 (x0) +

∞∑
n=1

∫
D1:n(x0)

fn (x0:n) dx1:n, (13.204)

or on an interval D0 using the D̂0:n (D0).
Therefore one can frame this quantity of interest according to an expectation with respect

to some importance sampling distribution π according to:

f (x) =
f0(x)
π(0)

+

∞∑
n=1

∫
D1:n(x)

fn (x, x1:n)

π (n, x1:n)
π (n, x1:n) dx1:n

= E

[
fn (x, x1:n)

π (n, x1:n)

]
. (13.205)

As discussed there are then two estimation problems of interest, the estimation of f (x) pointwise
and the characterization of f (x) over some interval by obtaining samples from its restriction to
that interval.

The space upon which the importance sampling is performed is now a path-space since it
either corresponds to:

1. estimation of f (x) pointwise via an importance sampling space
⋃∞

n=0 {n} × D1:n(x), or
2. estimation of f (x) over an interval D0 via an importance sampling space⋃∞

n=0 {n} × D̂1:n ([xa, xb]).

As noted in Peters et al. (2007), when one is interested in estimating the function pointwise,
as f0(x) is known, it would be more efficient in the sense that variance would be reduced on
both a per sample basis and a per unit of computation basis to instead estimate f (x) − f0(x)
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by importance sampling on the smaller space
⋃∞

n=1 {n}×D1:n(x) and this approach introduces
no further complications.

It is critical to any importance sampling based procedure to ensure a suitable impor-
tance sampling distribution is selected. In this section we detail a simple Markov chain pro-
posal formulation and refer the interested reader to a trans-dimensional Markov chain proposal
developed to minimize the variance of the importance sampling weights in Peters et al. (2007,
section 3.2).

Consider a proposal distribution that is intuitive to understand and simple to simulate
from as detailed in Peters et al. (2007, section 3.1). The solution in this setting would involve
starting with a Markov chain from x (or with some initial distribution μ which covers the
region of interest if we wish to characterize f over some interval rather than at a point) and
a transition kernel for the Markov chain denoted by M(x, y) which is the probability density
for going from state x to state y. The initial distribution μ, when it is used, and transition
kernel M are selected such that μ(x) > 0 over the region of interest and M(x, y) > 0 if
k(x, y) �= 0, which is important to ensure the importance sampling scheme is well defined
over the domain of interest, avoiding bias in estimates. In addition, the space explored by M
is designed to have an absorbing cemetery state that we denote by d , where d /∈ [0,∞) and
M(x, d) = Pd for any x. Therefore, the proposal we consider for the importance sampler over
the path space in the case of considering a evaluation at a point x0 takes the following form
π (n, x1:n) = π(n)πn (x1:n) with

π(n) = Pr [X1:n ∈ D1:n (x0) ,Xn+1 = {d}] = (1 − Pd )
n Pd ,

πn (x1:n) =

∏n
k=1 M (xk−1, xk)

(1 − Pd )
n .

(13.206)

Note, the dependency of πn (x1:n) on the point x0 is not made explicit here but is understood
from the construction.

Now using this proposal one can develop an importance sampling based estimation. To
present this estimation we introduce the particle notation in which we represent the annual loss
distribution fZN (x) according to an empirical measure with P independent path samples, either
at a point x = x0 according to Equation 13.207

f̂ZN (x0) =
1
P

P∑
i=1

W
(

x0,X (i)
1:n(i)

)
, (13.207)

or over an interval D0 = [xa, xb] according to Equation 13.208

f̂ZN (x0) =
1
P

P∑
i=1

W
(

X (i)
0:n(i)

)
δ
(

x0 − X (i)
0

)
, (13.208)

where for the i-th particle (independent sample) we denote the path with n(i) stages, run until
absorption, by X (i)

0:n(i) , the importance weight for the path by W
(

X (i)
0:n(i)

)
and the dirac mass

δ
(

x0 − X (i)
0

)
located at X (i)

0 .
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The importance sampling approximation of the annual loss density fZN (x) is given by the
following steps:

• Generate P independent Markov chain paths
{

X (i)
0:n(i)+1

}P

i=1
until absorption

X (i)
n(i)+1 = d ;

• Evaluate the importance weights for each particle on the path space. If evaluation of the
annual loss density at a point is desired for a value x0 then the weight is given by:

W
(

X (i)
0:n(i)

)
=

⎧⎪⎪⎨
⎪⎪⎩

(∏n(i)

s=1
k
(

X (i)
s−1,X

(i)
s

)
M
(

X (i)
s−1,X

(i)
s

)
)

g
(

X (i)

n(i)

)
Pd

, if n(i) ≥ 1,

g
(

X (i)
0

)
μ
(

X (i)
0

)
Pd
, if n(i) = 0.

(13.209)

If X0 is being sampled from some distribution μ in order to characterize f over some
interval, then the importance weight function becomes

W
(

X (i)
0:n(i)

)
=

⎧⎪⎪⎨
⎪⎪⎩

1
μ
(

X (i)
0

)
(∏n(i)

n=1
k
(

X (i)
n−1,X

(i)
n

)
M
(

X (i)
n−1,X

(i)
n

)
)

g
(

X (i)

n(i)

)
Pd

, if n(i) ≥ 1,

g
(

X (i)
0

)
μ
(

X (i)
0

)
Pd
, if n(i) = 0.

(13.210)

Then the empirical measure,

f̂Z (x0) =
1
N

N∑
i=1

W1

(
X (i)

0:n(i)

)
δ
(

x0 − X (i)
0

)

forms an unbiased Monte Carlo approximation of the expectation of fZ (z) for any set D0 given
by E

[∫
D0

f̂ (x0)dx0

]
=
∫

D0
f (x0)dx0. Furthermore, detailed discussions on the optimal choice

with respect to minimizing the variance of the importance weights is developed in Peters et al.
(2007) and Doucet et al. (2010).
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Chapter Fourteen

Scenario Analysis

14.1 Introduction

The Basel II/Basel III Advanced Management Approach (AMA) includes the requirement for
an OpRisk system to have four key elements: internal data, external data, scenario analysis,
and factors reflecting the business environment and internal control systems (see BCBS, 2006,
p. 152). One of these key elements that is particularly subjective is scenario analysis. In the final
proposals, the Basel committee specified more detailed criteria for each of the four fundamental
elements, in particular for scenario analysis (BCBS, 2006, paragraph 675, p. 154):

“A bank must use scenario analysis of expert opinion in conjunction with external data to
evaluate its exposure to high-severity events. This approach draws on the knowledge of experi-
enced business managers and risk management experts to derive reasoned assessments of plau-
sible severe losses. For instance, these expert assessments could be expressed as parameters of
an assumed statistical loss distribution. In addition, scenario analysis should be used to assess
the impact of deviations from the correlation assumptions embedded in the bank’s OpRisk
measurement framework, in particular, to evaluate potential losses arising from multiple simul-
taneous OpRisk loss events. Over time, such assessments need to be validated and reassessed
through comparison to actual loss experience to ensure their reasonableness”.

Estimation of low-frequency/high-severity risks cannot be done using historically observed
losses from one bank only. Typically, in practice, there are insufficient data to estimate high
quantiles of the risk distribution. It is also clear that estimation based on historical losses is
backward-looking and has limited ability to predict future losses of constantly changing banking
environment. Hence, it is important to have scenario analysis/expert judgments incorporated
into the model. These judgments may provide valuable information for forecasting and decision
making, especially for risk cells lacking loss data. The use of a consistent and comprehensive
approach to scenario analysis would allow regulators to compare the use of scenario analysis
by banks across the industry and would also allow firms to allocate economic capital according
to rigorous scenario analysis of risks in its business lines. The underlying assumption is that
scenarios contain important information about severe but plausible future losses that have not
yet been seen in historical observations. The incorporation of scenario analysis should bring
that information to the quantification process and lead to a more accurate capital assessment
process. The overall result would be a more robust banking environment.

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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In 2003, a working group of internationally active banks identified the main steps in a
so-called scenario-based AMA (sbAMA) process for calculating OpRisk capital (see sbAMA
Working Group, 2003). The working group defined scenarios as “potential future events, whose
evaluation involves answering two fundamental questions: firstly, what is the potential frequency of
a particular scenario occurring and secondly, what is its potential loss severity?” There are several
stages of an sbAMA life cycle:

1. Scenario generation—identify plausible OpRisk scenarios;
2. Scenario assessment—analyze and prioritize potential scenarios;
3. Data quality—review assessment factors, loss data (internal/external);
4. Determination of parameter values—select and combine values in potential loss matrices;
5. Model output—estimate economic or regulatory capital for the quantile we are interested

in (e.g., 99.9% of Basel II) from the aggregated loss distribution values.

National banking regulators have been expanding the Basel II rules for local use in their
countries. For example, in late 2005, the Australian Prudential Regulatory Authority (APRA)
published detailed guidance (APRA, 2005) for Australian banks wishing to be accredited in the
use of AMA. This guidance covers all aspects of an AMA and, in particular, specifies slightly
more detailed requirement for scenario analysis:

“Scenario analysis must be incorporated into a bank’s OpRisk measurement system to evaluate
the bank’s exposure to high-severity loss events. The bank must collect scenarios that draw
upon the knowledge of experienced business managers and risk management experts to derive
reasoned assessments of plausible severe losses. The set of developed scenarios should be com-
prehensive and capture all material sources of OpRisk across all of a bank’s business activities
and geographic locations. A bank’s process for building a database of scenario-based events must
be robust and methodical and is required to be applied consistently across the bank. A bank’s
OpRisk management framework must include policies and procedures that identify how sce-
nario analysis will be incorporated into the OpRisk measurement system. Scenarios and their
use in OpRisk modelling must be independently reviewed and validated. Over time, scenarios
must be reassessed through comparison to actual loss experience to assess their reasonableness”.

The adaptation of Basel II by the US national supervisory authorities through domestic
rule-making procedures, The Final Rule (2007), also requires that large, internationally active
financial institutions incorporate scenario analysis into their OpRisk assessment and quantifi-
cation systems.

Unfortunately, these regulatory documents do not provide any specifics on how the finan-
cial institutions should incorporate scenario analysis into the risk framework and what types of
clients, products, processes, and models should be covered by scenario analysis in practice. So
far, limited success exists in meeting this requirement. A common feature of the current practice
is the absence of widely accepted and theoretically well-grounded approaches to incorporating
scenarios. As a result, practitioners often use many different ad hoc approaches.

A methodical approach to estimating risk in any scenario analysis exercise is extremely
important. Research shows that people (and business managers in particular) are not good at
producing accurate estimates of risk, especially of low-probability/high-impact events. This
matter is a subject of a relatively new discipline of Behavioral Finance, for which Kahneman
and Tversky won the Nobel Prize in Economics in 2002.

The Loss Distribution Approach (LDA) separately models the severity and the frequency
distributions of losses and finds the annual total loss distribution through the convolution
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of the two distributions. Thus expert opinions are used to estimate frequency and severity
distributions. However, published studies on the use of expert elicitation for OpRisk LDA
are scarce. Among the few that are available are Berkowitz (2000); Frachot et al. (2004b),
Alderweireld et al. (2006), Steinhoff and Baule (2006), Peters and Hübner (2009), and Dutta
and Babbel (2013).

Scenarios are hypothetical realizations of inherent risks in an institution. They can cer-
tainly be useful in making forward-looking adjustments to the frequency and severity of the
risk to account for the latest or expected future changes in the institution’s risk profile and busi-
ness environment that have not been reflected in historical losses yet. Scenario experts build
each scenario as a hypothetical realization of a specific risk under specific circumstances. Typi-
cally, each scenario is assigned with a duration (the number of years during which this scenario
happens only once on average) and severity (some institutions assign loss ranges with lower
and upper bounds, while other institutions assign just lower bounds or point estimates of the
anticipated loss amounts).

The main problem with scenarios is that no knowledge exists on true loss frequencies.
Experts can generate too many scenarios in certain loss regions and too few scenarios in some
other regions. As a result, scenario-implied frequencies of losses in different regions might not
necessarily follow true loss frequencies. One way of dealing with this challenge is to adjust
scenario frequencies by some multiplier to align them with historical loss frequencies. How-
ever, such an adjustment is questionable because it implies that true frequencies are those of
backward-looking historical losses, which might not necessarily be the case. Dutta and Babbel
(2013) propose the replacement of historical frequencies with scenario frequencies whenever
the former are lower than the latter. Although this assumption seems conservative, if too many
scenarios have been generated from the body relative to the tail of the severity distribution, then
this situation might lead to a reduction in capital. It is possible that if managers are responsible
for generating scenarios for their business lines, they might avoid generating large scenario losses
if it will negatively impact on their performance. Therefore, in this case, whether the reduction
in capital happens due to expert opinions or simply because of a disproportionate amount of
scenarios is not clear (see discussion in Ergashev, 2012).

If modelers simply pool scenario losses together with historical loss observations to calculate
the capital, then, as Dutta and Babbel (2013) rightly point out, it does not take into account
scenario frequencies. Alternatively, if modelers treat scenario losses as add-ons to capital, it may
lead to the rejection of capital numbers due to their unrealistically high values. In general, both
pooling and using scenarios as add-ons should be avoided.

Modelers may also simulate scenarios from their empirical distribution and add them to
the pool of historical losses to find the combined severity distribution and calculate scenario-
adjusted capital. Berkowitz (2000) proposed such an approach to incorporate scenarios for
measuring market risk. This approach is not directly applicable to OpRisk modeling mainly
because of the necessity to separately model the severity and frequency of losses. Dutta and
Babbel (2013) propose a similar simulation-based approach that takes into account the specifics
of modeling OpRisk.

Using scenario analysis, experts express opinions on potential losses and corresponding
probabilities in the business line/event type risk cells. Often these opinions/judgments take the
following forms:

• Opinions on a distribution family;
• Opinions on distribution parameters;
• Opinions on the number of losses with the amount to be within some ranges;
• Opinions on the quantiles of loss distribution and overall frequency;
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• Separate opinions on the frequency of the losses and quantiles of the severity;
• Opinions on how often the losses exceed some threshold level;
• Point estimates of anticipated loss amounts.

In this chapter,wepresent several approachesdiscussed in the literature.Someof theconcepts
and principles of scenario analysis have already been discussed in Section 2.6 briefly. The question
of combining scenario analysis with historical data will also be discussed in detail in Chapter 15.

14.2 Examples of Expert Judgments

As a result of scenario analysis workshops, the capital modeling team is provided with expert
judgments about frequency and severity of OpRisk for business lines and event types. In this
section, we present a few examples of such expert opinions/judgments.

EXAMPLE 14.1 Expert Opinions on Quantiles

Suppose that a bank has not experienced any losses due to fines for improper trade
practices, which is part of “clients, products, and business practices”, but that it
recognizes the potential to incur such losses in the future. An expert (or group
of experts) estimates that these losses may occur every 5 years in the “asset man-
agement” business line. This gives an estimate for the annual frequency (i.e., if
Poisson(λ) is selected to model annual frequency, then λ̂= 1/5. An expert also
estimates that if the loss occurs, then the probabilities (likelihood) of the loss
exceeding USD 10 million, USD 30 million, USD 50 million, and USD 120
million are 0.9, 0.5, 0.25, and 0.1, respectively, and the maximum possible loss is
USD 600 million. That is, a scenario-based severity distribution at points (0, 10,
30, 50, 120, 600) is (0, 0.1, 0.5, 0.75, 0.9, 1). It is presented in Figure 14.1 with
linear interpolation between specified distribution points.

Severity distribution
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figure 14.1 Scenario analysis example
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EXAMPLE 14.2 Expert Estimates in Severity Brackets

Assume that the outcomes of the scenario analysis workshop produce results on the
loss frequencies in predefined severity brackets in Table 14.1. Then we can estimate
the annual frequency of this risk to be 102 (the sum of all frequencies) and severity
distribution is easily calculated from relative frequencies (see Figure 14.2).

table 14.1 Using scenario analysis outcomes on the loss frequencies in predefined
severity brackets

Loss bracket (in USD thousands) Annual loss frequency Relative frequency(%)

>5000 7 6.9
1000–5000 10 9.8
500–1000 15 14.7
100–500 30 29.4
50–100 40 39.2
Total 102

Severity distribution
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figure 14.2 Severity distribution estimate from expert opinions on the loss frequencies in
pre-defined severity brackets

EXAMPLE 14.3 Opinions on How Often the Loss Exceeding Some Level May Occur

Many studies (e.g., Frachot et al., 2004b, Alderweireld et al., 2006, Steinhoff
and Baule, 2006, Peters and Hübner, 2009) suggest that questions on “how
often the loss exceeding some level may occur” are well understood by OpRisk
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experts. Here, experts express the opinion that a loss of amount L or higher is
expected to occur every d years. If there are M experts, then we have M opinions
(L1, d1), . . . , (LM , dM ). These opinions can be used to fit assumed frequency
and severity distributions. For example, assume that the frequency is modeled by
Poisson(λ) and severity is modeled by distribution F (x|θ). Then, the number of
losses exceeding level Li is distributed from Poisson(λ(1 − F (Li|θ))). That is, the
expected number of losses exceeding Li per year is

λ̃ = λ(1 − F (Li|θ)). (14.1)

This is typically interpreted as the loss exceeding Li occurs (on average) every 1/λ̃
years or the expected duration between losses exceeding Li is 1/λ̃. Then the param-
eters (λ,θ) can be estimated as

(λ̂, θ̂) = argmin
λ,θ

M∑
j=1

wj

(
dj −

1
λ(1 − F (Lj|θ))

)2

, (14.2)

where wj is the weight associated with the j-th opinion. The previous literature sug-
gests to use a weight wj equal to the inverse of the variance estimate of the duration
between events exceeding Lj, that is, wj = 1/dj. If the severity is assumed to be from
a two-parameter distribution, then one can fit all three model parameters (frequency
and severity) using three or more opinions. However, the previous method does
not allow for estimation of parameter uncertainty (prior distribution) if a Bayesian
approach is undertaken. For the latter, it is important that experts specify not just
the expected duration dj, but also the uncertainty of their estimates. This will be
discussed more in Section 14.3 and Chapter 15.

14.3 Pure Bayesian Approach (Estimating Prior)

If a Bayesian approach is taken to estimate frequency and severity distribution parameters,
which are denoted by random vector θ, then expert opinions can be used to estimate the prior
distributions for the parameters (so-called pure Bayesian approach), that is, distribution of the
parameters before observing data. These are combined with the likelihood of observed data
to find the posterior distributions of the parameters (distribution of the parameters after the
data are observed). This approach will be discussed in detail in Chapter 15. In the Bayesian
approach, both observations and parameters are considered to be random. Consider random
data X = (X1,X2, . . . ,Xn) whose joint density, for given parameters Θ = (Θ1,Θ2, . . . ,ΘK ),
is h(x|θ). Then the joint density is

h(x,θ) = h(x|θ)π(θ) = π(θ|x)h(x) ⇒ π(θ|x) = h(x|θ)π(θ)/h(x), (14.3)
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where

• π(θ) is the probability density of the parameters, random vectorΘ a so-called prior density
function. Typically, π(θ) depends on a set of further parameters that are called hyper-
parameters, omitted here for simplicity of notation;

• π(θ|x) is the density of parameters given data X , a so-called posterior density;
• h(x,θ) is the joint density of observed data and parameters;
• h(x|θ) is the density of observations for given parameters. This is the same as a likelihood

function if considered as a function of θ, that is, Lx(θ) = h(x|θ);
• h(x) is a marginal density of X that can be written as h(x) =

∫
h(x|θ)π(θ)dθ, otherwise

known as the model evidence.

In the context of OpRisk, one can follow the proceeding three logical steps:

• The prior distribution π(θ) should be estimated by scenario analysis (expert opinions with
reference to external data);

• Then the prior distribution should be weighted with the observed data using formula
(14.3) to get the posterior distribution π(θ|x);

• The predictive distribution of Xn+1 given the data X can be calculated using formula (15.6)
discussed in Chapter 15.

Berger (1985) lists several methods for estimating the prior:

• Histogram approach. Split the space of the parameter θ into intervals and specify the sub-
jective probability for each interval. From this, the smooth density of the prior distribution
can be determined;

• Relative likelihood approach. Compare the intuitive likelihoods of the different values of θ.
Again, the smooth density of prior distribution can be determined. It is difficult to apply
this method in the case of unbounded parameters;

• Distribution function determinations. Subjectively construct the distribution function for
the prior and sketch a smooth curve;

• Matching a given functional form. Find the prior distribution parameters assuming some
functional form for the prior distribution to match prior beliefs (on the moments, quan-
tiles, etc.) as close as possible.

Matching a given functional is a popular method. The use of a particular method is
determined by a specific problem and expert experience. Usually, if the expected values for
the quantiles (or mean) and their uncertainties are estimated by the expert, then it is possible
to fit the priors.

Often, expert opinions are specified for some quantities such as quantiles or other risk
characteristics rather than for the parameters directly. In this case, it might be better to assume
some priors for these quantities that will imply a prior for the parameters. In general, given
model parameters θ = (θ1, . . . , θn), assume that there are risk characteristics di = gi(θ),
i = 1, 2, . . . , n that are well understood by experts. These could be some quantiles, expected
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values, expected durations between losses exceeding high thresholds, etc. Now, if experts spec-
ify the joint prior π(d1, . . . , dn), then using a standard transformation method, the prior for
θ1, . . . , θn is

π(θ) = π(g1(θ), . . . , gn(θ))

∣∣∣∣∂ (g1(θ), . . . , gn(θ))

∂ (θ1, . . . , θn)

∣∣∣∣ , (14.4)

where |∂ (g1(θ), . . . , gn(θ)) /∂ (θ1, . . . , θn)| is the Jacobian determinant of the transforma-
tion. Essentially, the main difficulty in specifying a joint prior is due to a possible dependence
between the parameters. It is convenient to choose the characteristics (for specification of the
prior) such that independence can be assumed. For example, if the prior for the quantiles
q1, . . . , qn (corresponding to probability levels p1 < p2 < · · · < pn) is to be specified, then to
account for the ordering it might be better to consider the differences

d1 = q1, d2 = q2 − q1, . . . , dn = qn − qn−1.

Then, it is reasonable to assume independence between these differences and impose constraints
di > 0, i = 2, . . . , n. If experts specify the marginal priors π(d1), π(d2), . . . , π(dn) (e.g.,
Gamma priors), then the full joint prior is

π(d1, . . . , dn) = π(d1)× π(d2)× · · · × π(dn)

and the prior for parameters θ is calculated by transformation using (14.4). To specify the
i-th prior π(di), an expert may use the approaches listed earlier. For example, if π(di) is
Gamma(αi, βi), then the expert may provide the mean and variational coefficient for π(di)
(or median and 0.95 quantile), which should be enough to determine αi and βi.

Examples of expert estimates for the prior are presented in Section 15.2.3 (also see
Example 15.2) for estimation of the Poisson frequency and in Sections 15.2.4 and 15.2.5 for
estimating LogNormal and Pareto severities.

14.4 Expert Distribution and Scenario Elicitation:
Learning from Bayesian Methods

Other methods to perform scenario analysis and expert elicitation of loss distributional infor-
mation from experts include approaches adopted for prior elicitation in the Bayesian statistics
literature, such as Garthwaite et al. (2005), Jacobs (1995), Das et al. (2013), and the textbook
review by O’Hagan et al. (2006).

It is first of all important to realize that the study of expert elicitation is a widely covered
science, both in psychology and statistics. In early studies, it was shown by Seidenfeld et al.
(1989) that the perfect combination of expert opinion is basically impossible; however, one can
make good progress with approximations as we will discuss.

If one considers elicitation and scenario analysis as the process of formulating knowledge
and beliefs about one or more uncertain loss process quantities into a probability distribution
for those quantities, then the natural question that arises is how best to perform such a task and
how to judge its success. In this regard, one must distinguish between the quality of an expert’s
knowledge and the accuracy with which that knowledge is translated into probabilistic form.
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It is then clear that one can judge an elicitation as successful if the resulting distribution for
the loss process is derived accurately and reflects the true physical process. Before proceeding,
it is important to realize that there are many types of expert opinion, but the main focus of this
section will be on those opinions on scenarios that can be expressed as quantiles or probability
distributions.

The following key steps are generally agreed upon in the literature as key steps in any
expert ellicitation and scenario analysis exercise (see discussions in Kadane, 1980, Wolpert,
1989, Winkler, 1986 and Garthwaite et al., 2005).

• Select the experts and prepare training appropriate for the experts’ background. Identify
the appropriate aspects of the problem that will be required to be elicited and ensure the
training covers these aspects;

• Elicit a summary of each expert’s distribution on the decided relevant quantities and it
is generally agreed that one should not attempt to ask experts to estimate moments of a
distribution directly, with the exception of perhaps the mean. It is more widely accepted
that a more robust approach will be to elicit probabilities of events or quantiles of the
predictive distribution;

• Fit a probability distribution to each of the summaries from each expert. The type of
model fitted could be parametric or nonparametric (see different examples in Oakley and
O’Hagan, 2007 and Das et al., 2013);

• Perform feedback and make the elicitation an iterative approach where the adequacy of
each judgment of the expert is considered relative to the implications of the fitted model.

Ideas from works on expert elicitation processes were implemented in a freely available
toolkit known as the Sheffield Elicitation Framework (SHELF),1 which is covered under copy-
right when it comes to commercial usage (see details on the associated url). In agreement with
the standard industry practice of structured workshops, the SHELF framework is developed to
be performed with a group elicitation in mind and comprises a framework for eliciting beliefs of
one or more experts as a group. As noted by Das et al. (2013), there are three typical approaches
to group elicitation exercises:

1. Conduct the elicitation from each expert separately and merge the results through either
a linear combination that is, weighted average or a logarithmic opinion pool obtained by
a normalized weighted geometric mean;

2. Experts perform their elicitation separately and then discuss their opinions until a recon-
ciliation of some form is met;

3. Consider each expert as providing an opinion from a common population distribution;
see, for example, in the OpRisk setting, Peters et al. (2009). The expert opinions can then
be utilized to infer the location of the distribution via Bayes rule.

As noted by O’Hagan et al. (2006), the psychological literature suggests that people are
prone to certain heuristics and biases in how they respond to situations involving uncertainty.
As a result, some of the ways of asking questions about uncertain quantities are preferable
to others, and appear to be more reliable. It is therefore critical that significant consideration

1SHELF is available at http://www.tonyohagan.co.uk/shelf/.
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be given regarding appropriate experts, and the information that should be elicited to aid in
OpRisk quantification.

As a guide, the developers of the SHELF framework suggest that a group should ideally
not comprise more than about five experts to avoid lengthy eliciatation workshops that may
not achieve a concensus. As noted by these authors in the introduction notes to the SHELF
package:

“Elicitation is the process of capturing expert knowledge about one or more uncertain quantities
in the form of a probability distribution. It can be done informally, but when the expert judge-
ments are sufficiently important it is necessary to employ a formal procedure in the interests of
quality and defensibility”.

In this toolkit, one can find a set of documents that can be modified to help facilitate a
distributional eliciation which include the following:

• An overivew of the elicitation process;
• Pre-elicitation briefing notes;
• Elicitation record sheets; and
• Distribution fitting instructions and R-code or performing the fitting once eliciation data

are obtained from experts.

The approaches provided in this toolkit include methods for elicitation of scenario and
distributional data based on the following.

• Quantile methods. This elicitation exercise aims to obtain information about the follow-
ing quantities, which are then used to fit a set of plausible distributions that are discussed
and a feedback process is undertaken;
1. Plausible range. The range of values for a random unknown quantity such as an annual

loss for a particular risk type. It involves extracting expert opinion on the lower and
uper bounds, that is, range of the plausible losses [L,U ] where these are logical bounds
such that it is extremely unlikely that they lie outside this range;

2. Median loss. The value M that each expert expects has an equal probability of losses
below and above this mid value;

3. Lower and upper quantiles. These correspond to finding for each expert’s median, the
mid range between the lower and upper bounds such that equal probability of losses lies
on either side of the lower/upper quantile in the intervals [L,M ] or [M ,U ], respectively.

• Quantile and probability methods. This elicitation exercise aims to obtain information
about the following quantities, which are then used to fit a set of plausible distributions
that are discussed and a feedback process is undertaken;
1. Plausible range, median, upper and lower quantiles, which are used to fit plausible loss

distributions;
2. The probability component enters where the facilitator selects loss values X0,X1, and

X2 and then for each of the fitted model possibilities, and after discussion on reason-
ing about the differences in each expert’s fitted distribution, an assessment requiring
group consensus values for probabilities is undertaken to obtain L and U lower
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and upper bounds based on probabilities Pr (L < X < X1), Pr (X2 < X < U ), and
Pr (L < X < X0).

• Roulette methods. See Oakley et al. (2010);
• Roulette and probability-based methods;
• Tertile methods. Plausible range, median, upper and lower tertiles (thirds), which are used

to fit plausible loss distributions;
• Tertile and probability methods. Same idea as quantile and probability method except

tertiles are considered.

As noted by the authors of SHELF, any successful elicitation process will typically require
a facilitator who has expertise in the process of elicitation. It is then the role of the facilitator
to help guide the experts, in the case of OpRisk, the business managers from different busi-
ness units and quantitative experts, traders, database managers, etc., through the process. The
process generally follows these basic steps:

1. Identify the appropriate experts for a given risk type eliciation;
2. Obtain a suitable fixed date for the workshop and send around preliminary briefing mate-

rial. It is suggested in SHELF that “[b]riefing material may be short or may include sub-
stantial training documents (for instance, concerning probability and its use to represent
expert knowledge)”.
From experience, this will depend on the type of experts present and their background;

3. Experts should be provided with feedback lines to the facilitator post elicitation, should
things need updating or be partially resolved.

14.5 Building Models for Elicited Opinions: Hierarchical
Dirichlet Models

Ideas from works on expert elicitation processes were implemented in a freely available toolkit
known as SHELF,2 which is covered under copyright when it comes to commercial usage. In
agreement with the standard industry practice of structured workshops, SHELF is developed to
be performed with a group elicitation in mind and comprises a framework for eliciting beliefs of
one or more experts as a group. In these SHELF packages, simple distributions are fitted to the
data from exponential family models and other common two- and three- parameter shape and
scale density models. In general, one may wish to allow for a greater amount of flexibility. In
addition, one may wish to factor in particular attributes for each expert in a regression structure;
detailed discussion on this is provided in Chapter 16.

In the following, we detail a few basic examples of prior models for multiple experts
opinions that are elicited as a well as a collection of information on independent attributes
of each expert that may also provide additional strength to weight their opinions. To achieve
the modeling of sets of distributions from experts, one could do this purely on a parameter
space of a simplex, modeling the sets of elicited probabilities of each expert as i.i.d. draws
from, for example, a Dirichlet distribution. Alternatively, one could instead model, at a higher

2SHELF is available at http://www.tonyohagan.co.uk/shelf/.
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level, a distribution over distributions, that is, a distribution over possible expert opinion–
elicited distributions via what is known as a Dirichlet process (see examples in Neal, 2000 and
Shahbaba and Neal, 2009).

As a simple example, consider the stylized case in which it is assumed that each expert is
asked to produce through an elicitation process a set of k probabilities around scenarios and
events of relevance to the modeling goals, denoted here by Y j ∈ Sk−1 for the j-th expert for
probability simplex Sk−1 embedded in R

k. It will be assumed that each set of experts produces a
set of i.i.d. probability vectors from a population distribution given by a Dirichlet distribution
as detailed in Definition 14.1.

Definition 14.1 (Dirichlet distribution) A k-dimensional random vector Y of probabilities on
the k − 1 simplex follows a Dirichlet distribution if its density is given by

fY (y;α) = c(α)

k∏
i=1

yαi−1
i , (14.5)

with k ≥ 2, αi > 0, yi > 0, y1 + · · ·+ yk−1 < 1, yk = 1 − y1 − · · · − yk−1 and

c(α) =
Γ
(∑k

j=1 αj

)
∏k

j=1 Γ(αj)
. (14.6)

Using this model, one can assume n sets of elicited probability vectors from n experts that
forms a joint expert prior given in exponential family form

fY 1,...,Y n

(
y1, . . . , yn;α

)
= exp

⎛
⎝n ln c(α) +

k∑
j=1

αj

n∑
i=1

ln yij −
n∑

i=1

k∑
j=1

ln yij

⎞
⎠ n∏

i=1

ISk

(
yi

)
.

(14.7)

As noted by Das et al. (2013), one may then consider a hierarchical prior structure for the
population distribution of elicited expert opinions, where the prior on the hyperparameters α
can be made “conjugate” by selecting the form

f (α;θ) ∝ exp

⎛
⎝ k∑

j=1

αjθj + θk+1 ln c(α)

⎞
⎠ , (14.8)

where θ ∈ R
k+1.

The second modeling example one can consider, which incorporates into the prior dis-
tribution additional regression features related to the attributes of each expert, is given by a
Hierarchical Dirichlet regression model (see, for instance, Bishop and Nasrabadi 2006 or Das
et al. 2013, section 3.1).

The model assumes, as before, n experts, each producing an elicited random vector of
Y i ∈ Sk−1 of k probabilities characterizing the likelihood of events or scenarios that the expert
judges. Furthermore, assume that in the elicitation process, independent attributes (variables,
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factors, features) of each expert are recorded. Assume there are m attributes for each elicited
probability for each expert given by independent vector xij =

(
xij1, . . . , xijm

)
for the i-th expert

on the j-th elicited probability (event, scenario, etc.). Then the resulting extension to the pre-
viously specified Dirichlet model is given by the hierarchical Dirichlet regression prior model
with density

fY 1,...,Y n

(
y1, . . . , yn;β

)

=

n∏
i=1

exp

⎛
⎝ln

⎛
⎝Γ

(∑k
j=1 g

(
xT

ij βj

))
∏k

j=1 Γ
(

g
(

xT
ij βj

))
⎞
⎠+

k∑
j=1

g
(

xT
ij βj

)
ln yij −

k∑
j=1

ln yij

⎞
⎠ ISk [yi],

(14.9)

where g(·) is the so-called link function. Extensions to this model can be found in discussions
of Dey et al. (2000) and Das et al. (2013). For instance, we can consider the Dirichlet mixed
effect regression prior model given by the hierarchical structure

Y i ∼ Dirichlet
(

X T
i β + W i + εi

)
,

W i ∼ Normal (0,Σ) ,

εi ∼ Normal
(
0, τ−1I k−1

)
,

(14.10)

with hyperparameter priors given by

β ∼
m∏

i=1

k−1∏
j=1

Normal
(
βj; 0, λ−1),

λ ∼ Gamma (a0, b0),

Σ ∼ InverseWishart (k − 1,Σ0),

τ ∼ Gamma (c0, d0).

(14.11)

14.6 Worst-Case Scenario Framework

Benefits and drawbacks exist of assigning probability distributions to scenarios. If scenarios are
provided with their probability distributions, it is easier to incorporate them into the quantifi-
cation framework. The difficulty is that scenario experts generally have very limited knowledge
about probabilistic concepts. The task of assigning probability distributions around scenarios
requires a sophisticated process of eliciting expert opinion that brings additional subjectivity to
the process of incorporating scenarios. It can be argued that it is better to take a minimalistic
approach by eliciting a minimum amount of expert information in very simple terms that does
not require additional processing.

In this regard, a framework is proposed by Ergashev (2012) that links scenarios to historical
losses. This framework derives from the concept that the focus should be on worst-case scenarios
only, because only these scenarios contain valuable information about the tail behavior of oper-
ational losses. Following Ergashev (2012), we call a scenario a “once-in-an-M -year” scenario if
it has a duration of M years. Although each expert-generated scenario is important from the risk
management perspective, one may argue that from the risk quantification perspective the focus
should be on worst-case (“worst-in-a-certain-year”) scenarios only, to emphasize their duration.
The worst-in-an-M -year event (where M is a natural number) is a rare event that results in the
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largest loss the institution experiences once in every M years on average. The worst-in-an-M1-
year loss must be less than or equal to a worst-in-an-M2-year loss as long as M1 < M2. The
worst-in-a-certain-year events introduce a natural order to scenario losses and make possible
the comparison of these losses with the corresponding quantiles of the severity distribution in
the base model, where the base model is the one used to fit the historical OpRisk losses.

From the quantification perspective, the most efficient way of presenting scenarios is to
assume that a duration and a lower bound of the loss amount accompany each scenario. For
example, if a scenario comes with a range, one can choose the lower bound of that range as
the scenario’s lower bound for quantification purposes. If only the point estimates of scenario
losses are available, one can still conservatively use those point estimates as the lower bounds.
Importantly, this proposed framework can still be used in situations where the definition of
scenarios involves probability distributions, with the provision that each scenario distribution
possesses a unique and strictly positive lower bound.

Ergashev (2012) considers two seemingly different but equivalent definitions of the worst-
in-an-certain-year event.

Definition 14.2 For any natural number M the definition of the loss amount of the worst-in-an-
M-year event, V , is

Pr[max(X1, . . . ,XN ) > V ] =
1
M

, (14.12)

where X1, . . . ,XN are losses and N is the random variable representing the annual frequency of
losses.

Definition 14.3 For any natural number M, the definition of the loss amount of the worst-in-an-
M-year event, U , is

Pr

[
N∑

i=1

I{Xi>U} ≥ 1

]
=

1
M

, (14.13)

where X1, . . . ,XN are observed losses and N is the random variable representing annual frequency
of losses.

Ergashev (2012) shows that these two definitions are equivalent as follows. Suppose U is
such that Equation (14.13) is true. Then

Pr

[
N∑

i=1

I{Xi>U} ≥ 1

]
= 1 − Pr

[
N∑

i=1

I{Xi>U} = 0

]

= 1 − Pr[X1 < U , . . . ,XN < U ]

= 1 − Pr[max(X1, . . . ,XN ) ≤ U ]

= Pr[max(X1, . . . ,XN ) > U ]

and thus U = V .
The worst-in-a-certain-year loss severity depends on the annual loss frequency of the risk.

For two risks with the same severity distribution but different annual frequencies, if the annual
frequency of the first institution is greater than that of the second institution, then the worst-
in-a-certain-year loss of the first institution must be greater than that of the second institution.
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Formally, if we assume the losses X1,X2, . . . are independent and identically distributed from
F (·) and the annual frequency of the losses N is from Poisson(λ), then the distribution of the
maximum loss is

G(x) = Pr[max(X1, . . . ,XN ) ≤ x] = exp(−λ(1 − F (x)));

for a proof see, for example, Section 5.6.2. It follows that if M1 < M2, then the loss amount of
the worst-in-an-M1-year event is always less than or equal to that of the worst-in-an-M2-year
event.

The scenario in this framework comprises both duration M and lower bound L of
the unknown loss amount and the set of scenarios is denoted by S =(S1, . . . , Sk), where
Si = (Mi, Li). To integrate scenarios into the base model, we begin by first identifying the
set of worst-in-a certain-year scenarios, denoted by Sw = (Sw

1 , . . . , Sw
r ), from the set of all

scenarios S. This can be achieved by using a simple procedure described by Ergashev (2012,
section 4.2) with following the steps:

1. Find in S the scenario with the lower bound and denote it by Ŝ; remove Ŝ from S and
add it to Sw;

2. Throw away all scenarios in S with durations that are equal to or greater than the duration
of Ŝ (but which have smaller lower bounds);

3. Repeat steps 1 and 2 until S is empty.

We would then have a set of worst-in-a-certain-year scenarios Sw consisting of pairs of
lower bounds of maximum loss Li and associated frequencies Mi, so that Sw

i = (Mw
i , Lw

i ).
We do not know much about the distribution of Sw, denoted by GS(·), except that for the
unknown loss Vi of scenario Sw

i , Vi > Lw
i and GS(Vi) = 1 − 1/Mw

i . The relation between
severity distribution and scenario Sw = (Mw, Lw) is just

F−1
(

1 +
1
λ
ln

(
1 − 1

Mw

))
> Lw.

Then we try to incorporate this information into the base model (the one that uses internal
data) and say that a scenario Sw

i = (Mw
i , Lw

i ) is concordant with the base model if

G−1
S

(
1 − 1

Mw
i

)
> Lw

i .

Putting this in words, if the base model’s historical maximum loss distribution, at the
(1 − 1/Mw

i )-th quantile, is greater than Lw
i , then it agrees with the worst-in-a-certain-year

scenario projections of potential losses at that point. Concordant scenarios are uninformative
in the sense that no apparent reason exists for making any adjustments to the base model’s sever-
ity distribution at the corresponding quantiles (i.e., the internal losses–driven model is larger
than the scenarios losses). The goal of this framework is to identify where the base model is dis-
cordant with worst-in-a-certain-year scenario information and adjust the severity distribution
accordingly, as this represents a possible shift in the institution’s risk profile as well as its true
loss distribution (i.e., where scenarios are larger than historical losses). Ergashev (2012) presents
five approaches to adjust the base distribution using scenarios with inequality constraints
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F−1(qi) ≥ Lw
i , qi = 1 +

1
λ
ln

(
1 − 1

Mw
i

)
, i = 1, . . . , r. (14.14)

The first three approaches allow for the direct incorporation of scenario analysis into the
quantification framework through the derivation of a scenario-adjusted distribution function,
which is then used to calculate scenario-adjusted capital. The first one, the stochastic dominance
approach, shifts the distribution of the base model severity distribution of historical losses to the
right so that all the inequalities in (14.14) are satisfied, that is, at any quantile, the corresponding
loss amount is greater than or equal to the loss amount implied by the base model severity
distribution. Therefore, this approach should always result in higher scenario-adjusted capital
than the base model capital. With such an approach, the modelers are able to discard scenarios
that are not as heavy-tailed as the base model and also have an elegant way to adjust the base
model based on the risk profile defined by experts.

The other two approaches, the constraint estimation approach and the constrained Markov
chain Monte Carlo approach, incorporate the constraints (14.14) inside the estimation process.
The last two approaches incorporate the scenario information into the quantification frame-
work indirectly, because under these approaches there is no need to find a scenario-adjusted
distribution. Instead, the curve-fitting approach leads to a scenario-driven distribution as a
curve that is the closest to the set of points (qi, Lw

i ), i = 1, . . . , r under the scenario con-
straints (14.14). The fitted distribution curve is then used to calculate the scenario-driven cap-
ital, which can be considered as a benchmark for the base model’s capital number. Ideally, this
curve should make the inequalities (14.14) binding by turning them into equalities, although
this change might not always be possible. Under the minimum distance approach, it is assumed
that several competing severity distributions fit the base model reasonably well. Using the min-
imum distance approach allows to choose the severity distribution with the smallest deviation
from the scenario constraints (14.14). Detailed description of each approach can be found in
Ergashev (2012). All these approaches share a property of the built-in conservatism that makes
it difficult for the scenario-adjusted capital to fall below the capital implied by the base model
even when scenario experts substantially understate the severity of scenario losses.

14.7 Stress Test Scenario Analysis

Stress-testing has been part of the risk manager’s toolkit for decades. However, it has always been
in poor relation with analytical techniques to control risk. Recent renewed interested in stress-
testing has been motivated by the financial crisis of 2007/2009 that has shown the limitations
of the purely statistical techniques such as Value-at-Risk (VaR) that were supposed to provide
the cornerstones of the financial system; events of once-in-many-thousand-years rarity keep on
occurring with disconcerting regularity since the beginning of the crisis. The quote from the
article by Aragonés et al. (2001) points exactly to the problem: “[T]raditional stress testing is
done on a stand-alone basis, and the results of stress tests are evaluated side-by-side with the results of
traditional market risk (or VaR) models. This creates problems for risk managers, who then have to
choose which set of risk exposures to ‘believe’. Risk managers often don’t know whether to believe their
stress test results, because the stress tests exercises give them no idea of how likely or unlikely stress-test
scenarios might be”.

Stress-testing is the subject of many consultation papers by the Bank for International
Settlements (BIS) and other international bodies; one of the recent papers for example, BCBS
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(May 2009c). Nowadays, “risk” and “uncertainty” are often used interchangeably in the risk
management literature. However, these concepts are very different: the word “risk” refers to
situations where we know for sure the probabilities attached to future events and we know
exactly the possible future events while “uncertainty” refers to situations where there is no such
probabilistic knowledge but we still know what may hit us tomorrow.

Stress-testing is supposed to examine whether a financial institution would be able to with-
stand exceptional risk losses. Stress-testing should be used as a complementary approach to the
VaR-based LDA approach in order to ensure that a bank would be able to cover its losses even
if it faces more severe risk events. As stated by Jorion (2007): “Whenever the stress tests reveal
some weakness, management must take steps to manage the identified risks. One solution could be
to set aside enough capital to absorb potential large losses. Too often, however, this amount will be
cripplingly large, reducing the return on capital”. Some of the aspects of stress-testing with respect
to macroeconomic and financial institution factors have already been discussed in Chapter 4.
Here we present an example of scenario analysis for stress-testing.

The results of stress tests are often difficult to interpret because they give us no idea of
the probabilities of the events concerned, and in the absence of such information, we often
do not know what to do with them. Suppose, for instance, that stress-testing reveals that our
firm will become bankrupt under a particular scenario. Should we act on this information? If
the scenario is very likely, it would be very unwise not to act on it. However, if the scenario
is extremely unlikely, then it becomes almost irrelevant, because we would not usually expect
management to take expensive precautions against events that may be too improbable to worry
about. As pointed out by Berkowitz (2000), this absence of probabilities puts stress-testing in
a statistical purgatory. We have some loss numbers but often it is not clear whether we should
be concerned about them or not.

It is important to note that stress-testing methods are not comparable with each other.
Moreover, the applications of the same stress tests to different financial institutions are not
comparable with each other, because the results are always bound to the specific risk profile
of a financial institution. Adopting bad assumptions or using irrelevant scenarios would result
in irrelevant losses being considered. Since the stress tests often define events with a very low
probability of occurrence, the results become difficult to interpret and it is not clear what actions
should be taken by the management in order to mitigate the risks. Quite often, the results of
stress tests appear unacceptably large and they are just ignored and dismissed as irrelevant.
However, it is valuable to evaluate stress test results at different points in time to assess whether
the exposures to severe OpRisk losses have changed. The scenarios can be divided into two
groups based on the type of event they define. The first group uses historical events like the 9/11
terrorist attacks or the unauthorized trading in Société Généralé in 2007. The second group,
more widely used in practice, uses hypothetical scenarios. The scenarios are based on plausible
risk events that have not happened yet, but have a nonzero probability to occur. A scenario can
also be based on an analysis of a new product a bank is going to implement.

A typical scenario consists of the description of a complex state of the world that would
impose an extreme risk event on the financial institution and would include probabilities and
frequencies of occurrence of the particular state of the world, business activities impacted by
the event, maximum internal and external loss amounts generated by the occurrence of such an
event, and also possible mitigation techniques that may be available. Even though such a scenario
claims to be realistic, it is not possible to include all possible risk factors and features. However,
risk managers must try to define the scenarios, so that they correspond to reality as much as
possible; for a discussion of this topic, see Jorion (2007). The aim of using scenarios is to get an
overview of low-frequency events that might have severe impact on the financial institution.
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table 14.2 Historical scenarios (loss amounts in EUR thousands)

Scenario name Estimated loss

Unauthorized trading 112,000
Process management failure—software loss 7,300
External fraud—theft 21,180

Source: Taken from Rippel and Teplỳ (2008)

table 14.3 Hypothetical scenario details employee strike duration:
probability, distribution)

Probability (%) Duration Estimated Loss (€)

70 1 hour 138,515
25 1 day 3,750,446
4 2–4 days 9,056,450
1 5 days 20,890,382

Source: Taken from Rippel and Teplỳ (2008)

We present an example of a stress test scenario analysis by Rippel and Teplỳ (2008), where
the three historical scenarios are unauthorized trading, external fraud, and process management
failure (see Table 14.2). These scenarios are based on concrete historical events. The estimated
losses were quite high and were treated as the worst-case losses.

Rippel and Teplỳ (2008) also considered the hypothetical scenarios such as employee strike
that would hit all the regions. This type of scenario was selected due to evidence of similar
events. The frequency of the scenario assessment was estimated to be one per 40 years based on
historical data from other regions where the duration of the strike ranged from 1 day to 1 week.
It was assumed that the frequency of strikes would be quite low in the region of Central Europe.
Usually, the duration of such strikes is limited only to several hours. The other important feature
of a strike is its extent—a strike can range from one branch to a national strike. It was also
assumed that the employees from all regions would go on strike at the same time. Such a scenario
has a very low probability, but if it occurred, it would have significant negative impact on the
bank. The severity of this scenario depends on two factors: the extent and the duration of
the strike. The extent was set to the whole country. The duration was assumed to range from
1 hour to 5 business days, and the probability for each class was estimated according to the
assumptions stated earlier; these are presented in Table 14.3. A strike was assumed to cause
four types of losses: (i) the direct loss of revenue from branches was estimated based on the
list of bank branches and their revenues per day; (ii) the costs connected with expenses on
substitute employees who would be hired in order to maintain the bank’s critical operations;
(iii) the loss of clients (the most severe loss)—while a 1-hour strike is not considered to have
impact on customer satisfaction, in case of a whole, week strike, up to 5% of customers might
decide to move to competitors; (iv) the costs connected with commercial disputes (the losses
were estimated based on interest costs from nonrealized transactions and estimated amount
of dispute penalties). After taking into account all the assumed loss sources, the total loss was
computed. It is easy to find from Table 14.3 that the worst-case loss is € 20,890,382 and the
average loss of this scenario is € 1,605,733.
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The worst-case scenario is a strike that lasts 5 days. In this case, the loss amount reaches
€ 20 million, which is approximately 2% of the Basel income ratio. Such a strike is considered
to cause significant harm to a bank, especially by the loss of 5% customers. Such a scenario
would also have a very negative impact on the brand image and the credibility of the bank
would be damaged, resulting in counterparty risk.

In total, six tests were run. The aim was to analyze whether a bank would be able to handle
particular combinations of events defined in the combination of scenarios. The impact of such
joint scenarios was evaluated. It was found that even if all the scenarios were considered, the
estimated regulatory capital would not exceed 12% of the Basel income ratio, suggesting that
a bank would be able to handle the losses of such high magnitude.

14.8 Bow-Tie Diagram

There are well-developed techniques outside of the finance industry in safety-conscious indus-
tries, such as airline maintenance, mining, and defence, that may be applied to scenario analysis
in OpRisk. Specifically, concepts have been developed in safety management disciplines such
as the Bow-Tie Diagram—a graphical model with logical relationship between the causes and
consequences of an undesired event. The Bow-Tie technique has been used since the 1970s,
and has been incorporated into risk management plans of many companies. The paper by
McConnell and Davies (2006) proposes a structured approach based on the Bow-Tie concept
for scenario analysis for AMA in Basel II. It describes how such a concept may be used by
banks and regulators to satisfy the requirements of Basel II and to improve OpRisk manage-
ment across the industry. The Bow-Tie diagram is a diagrammatic representation of hazardous
events. The name Bow-Tie is due to its bow-tie appearance (for illustration, see Figure 14.3):
in the center of the diagram is an incident (undesirable event), to its left are possible causes,
and to its right are possible consequences (outcomes) of the incident. Between the causes and
the incident are possible preventative (proactive) controls and between the incident and conse-
quences are possible mitigative (reactive) controls. The Bow-Tie diagram is an effective way to
identify and communicate risks and required responses. The diagram displays the links between
potential causes, preventative controls, and mitigation controls. It is often used for what-if and
root-cause analyses where quantification is not possible or desirable.

In 2004, the US Federal Aviation Authority (FAA) mandated that its regulated entities
employ the Bow-Tie diagram as the main mechanism for safety analyses (see FAST, 2004).

Causes Outcomes

Fault tree Event tree
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roactive
controls

IncidentCauses

Causes

Outcomes

Outcomes

figure 14.3 Bow-Tie diagram



�

�

“Cruz_Driver1” — 2015/1/8 — 16:06 — page 575 — #20
�

�

�

�

�

�

14.8 Bow-Tie Diagram 575

This technique is also recommended by other bodies responsible for safety in air traffic con-
trol (EUROCONTROL, 2004) and safety management in hazardous industries (Work Cover,
2001).

Figure 14.3 illustrates the key components of a Bow-Tie diagram:

• Causes: Potential causes of an undesirable incident;
• Proactive controls: Actions taken to reduce the likelihood of an undesirable incident

occurring;
• Incident: An event that can cause undesirable outcomes;
• Reactive controls: Actions taken to reduce the impact of an undesirable incident;
• Outcomes: Potential results of an undesirable incident.

The left-hand side of the diagram is often called a Fault Tree, which is a detailed analysis of
the combination of causes (faults) that can possibly give rise to an undesirable incident, while
the right-hand side is often called an Event Tree, which is a detailed analysis of the outcomes
or consequences of an undesirable incident. In essence, the diagram attempts to answer the
two main questions: what is the potential frequency of a particular scenario occurring (i.e., left
side/Fault Tree) and what is its potential loss severity (i.e., right side/Event Tree)? In indus-
trial applications, Bow-Tie analyses are most often employed to identify and assess the poten-
tially disastrous impact of the failure of mechanical components, such as chemical containment
vessels or airframe components.

Of course, the Bow-Tie technique is not a panacea, it is merely a way of making risk man-
agement assumptions, analyses, and conclusions explicit. It has known weaknesses, including
the following:

• The quality of the final analysis will entirely depend on the quality of the analysis process
and the analysts and experts taking part;

• The technique does not help in uncovering underlying causes, but merely in making their
consequences explicit; therefore, an earlier analysis step (i.e., risk identification) is required;

• It is a semiquantitative methodology and hence requires an additional step of estimating
the impact of each outcome numerically as required by Basel II;

• It can be “gamed” by staff members who may have a different agenda, so it requires addi-
tional supporting information to be captured such as external data or other documented
factors that can suffice as evidence.

The Bow-Tie technique does not offer a new or different way of analyzing risk. The reason
for its increased use is that the diagrams that it creates greatly assist in the communication of
the hazard analysis process—particularly to nonspecialists. As an illustration, McConnell and
Davies (2006) consider an example of a System Security category of External Fraud event type,
presented in Figure 14.4.

Once the Bow-Tie diagram is constructed, quantitative analyses can be performed but it
requires knowledge about the system and availability of precise data such as probability and
interdependence of input events. Quantitative analysis of a Bow-Tie is still a major challenge.
The probabilities for the input events are often missing or hard to come by, which intro-
duces data uncertainty. Elicitation of experts’ knowledge for the missing data may provide an
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figure 14.4 Illustration of an example of a Bow-Tie diagram for System Security category of
External Fraud event type

alternative; however, such knowledge incorporates uncertainties and may undermine the cred-
ibility of risk analysis. Another major problem with Bow-Tie diagrams is that they remain
limited by their restriction to the graphical representation of different scenarios without any
consideration to the dynamic aspect of real systems. For recent papers tackling these problems,
see Ferdousa et al. (2013), Badreddine and Ben Amor (2010), and references therein.

The Bow-Tie approach assumes that causes and consequences are separated by hazards,
which is certainly convenient for modeling. However, Fault Tree components might also
interact with events in the Event Tree; this can be handled by Bayesian network methods
discussed next, where we also discuss risk quantification aspects.

14.9 Bayesian Networks

A purely probabilistic approach to risk management places all the emphasis on the association
among variables, rather than on the causal links among them. However, assigning links among
variables on a causal rather than associative basis is cognitively much easier and more “natural”.
A popular way to deal with complex processes via causal models is to build a Bayesian net, which
is the subject of this section. Bayesian nets enable reasoning under uncertainty and combine
the advantages of an intuitive visual representation with a sound mathematical basis in Bayesian
probability. With Bayesian nets, it is possible to articulate dependencies between different vari-
ables and to propagate consistently the impact of evidence (observations) on the probabilities
of uncertain outcomes. The underlying theory of Bayesian nets combines Bayesian probabil-
ity theory and uses conditional independence to represent dependencies between variables (see
Pearl, 1986, Spegelhalter and Cowell, 1992). Bayesian nets have proven useful in many areas
of application such as medical expert systems, diagnosis of failures, pattern matching, speech
recognition, and, more relevantly, for the OpRisk community, risk assessment of complex sys-
tems in high-stakes environments (see Neil et al., 2001, Ale et al., 2009, Fenton et al., 2004,
including financial institutions Alexander, 2003, Neil et al., 2005, Adusei-Poku, 2005, Cowell
et al., 2006, Rebonato, 2010).
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Sprinkler, S 
Pr[S = False] = 0.3

Pr[S = True] = 0.7

Rain, R 
Pr[R = False] = 0.9
Pr[R = True] = 0.1

Wet grass, W 
Pr[W = False|R = True, S = True] = 0.0
Pr[W = True|R = True, S = True] = 1.0 

Pr[W = False|R = True, S = False] = 0.0 
Pr[W = True|R = True, S = False] = 1.0 

Pr[W = False|R = False, S = True] = 0.5 
Pr[W = True|R = False,S = True] = 0.5 

Pr[W=False|R=False, S= False] = 1.0 
Pr[W=True|R= False, S= False] = 0.0 

figure 14.5 Wet grass example

14.9.1 DEFINITION AND EXAMPLES

Consider a popular simple example where garden grass observed in the morning is either wet
or dry, and if the grass is wet then it is due to either the sprinkler or rain. The probability that
the sprinkler is on is 0.3 and the probability of rain is 0.1. Denote the corresponding binary
variables as W , S, and R that can have only two possible values, True and False. The graph of
this example, with probabilities of the grass being wet conditional on the state of the sprinkler
and rain, is presented in Figure 14.5. In general, a graph is defined as follows.

Definition 14.4 (Graph) A graph is a set of points (called nodes or vertices) that represent random
variables connected by lines (called arcs or edges).

In our example, the variables W , S, and R are nodes and connection lines are arrows (directed
edge). The arrow between two nodes indicates a causal relationship between the nodes, for
example, the change in S causes a change in W , the change in R causes a change in W . The
node where the edge originates is called parent and the node to which the edge points is called
child. This example in Figure 14.5 is a directed acyclic graph.

Definition 14.5 (Directed acyclic graph) A directed acyclic graph is a graph formed by collection
of nodes (vertices) and directed edges where each edge connects one node to another one in such a way
that moving along edges in the edge direction it is impossible to return to a previous node. This means
that, starting from any node, we cannot go back to the same node following the arrows that connect
the other nodes.
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If there is no edge between some nodes, then these nodes are independent (e.g., R and S
are independent in our example). The joint density of W , S, and R can be written as

p(W , S,R) = p(W |S,R)p(S|R)p(R),

which can be simplified using independence of R and S as

p(W , S,R) = p(W |S,R)p(S)p(R),

which can be easily calculated using probabilities for R and S and conditional probabilities
for W presented in Figure 14.5. It is also a trivial exercise to find marginal (unconditional)
distributions for all variables, for example, for p(W ) we get Pr[W = True] = 0.235 and
Pr[W = False] = 0.765. We can also answer questions about probabilities given some infor-
mation. For example, if the grass is wet, then was it caused by rain or sprinkler? That is, we can
find Pr[R = True|W = True] and Pr[S = True|W = True] using Bayes theorem

Pr[R = True|W = True] =
Pr[R = True,W = True]

Pr[W = True]
.

We might need to add another variable C representing season as in Figure 14.6 and specify
conditional densities p(R|C) and p(S|C). Here, R and S are independent given its parent C .
Then, joint density of all variables can be written (using conditional independencies in the
structure) as

p(C ,W , S,R) = p(W |S,R)p(S|C)p(R|C)p(C).

Similar and other examples can be found by Pearl (2009). Of course, we could take a purely
associative approach, and build all the probability tables. If we are using a purely frequentist
approach, we just collect data and calculate all the conditional probabilities from our dataset.
However if we have to provide subjective probabilities, our cognitive aptitude in dealing with
some questions rather than others does make a big difference. Some of the assignments we
are requested to make invoke a causal link among variables, and others are linked by a sub-
tler associative (“diagnostic”) kind of relationship. It so happens that our mind works much
more effectively in a causal rather than in an associative mode. The associative link between

Sprinkler, S Rain, R 

Wet grass, W 

Season, C 

figure 14.6 Wet grass example with variable C representing season
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variables contained in a purely probabilistic description can make our interpretation difficult,
and this can be true even when we have plenty of relevant data. If understanding, rather than
just analyzing, the output of complicated analysis is our final goal, we can follow a causal model
such as in our simple wet grass example, where

• The season of the year affects the probability of rain and of the sprinkler being on or off
(but is not affected by either);

• The status of the sprinkler (on or off ) and whether it rained or not affects the probability
of the grass being wet (but sprinkler status and occurrence of rain are not caused by the
wetness of the grass).

If we have n events E1, . . . ,En, where each is a discrete random variable that can take
m values, then there will be mn joint events. In principle, the knowledge of joint distribution
allows to derive everything someone might want from a statistical perspective. However, it is just
unrealistic for risk managers to assign all required joint probabilities. Bayesian nets (or Bayesian
networks) are the tools that help experts to specify the required probabilities; causal links among
the variables in the network simplify the task.

Definition 14.6 (Bayesian networks) Bayesian nets (or networks) are directed, acyclical
graphs.

Each node (or vertex) in a Bayesian net is associated with a discrete random variable and
with a list of numbers called a conditional probability table. The examples we considered in
Figures 14.5 and 14.6 are simple Bayesian nets. Another general illustration is presented in
Figure 14.7; if an arrow points from node A to node B, node A is said to be the parent of node
B and B is the child of node A. The parents, parents of the parents, etc. are called ancestors; the
children, the children of children, etc. are called the descendants. A causal link between A and
B means that knowledge of A helps in the assessment of the probability of B happening. When
we find a causal link, it is easier for experts to assign conditional probabilities.

Formally defining, for Bayesian net with n random variables E = {E1, . . . ,En}, each
variable Ei with parents pa(Ei) has an associated conditional probability table p(Ei|pa(Ei)).
The overall joint density of E in the Bayesian net is the product of all conditional probabilities

p(E) =

n∏
i=1

p(Ei|pa(Ei)). (14.15)

A F G

B C

D E

figure 14.7 Bayesian net example: A causes B and C , F causes C , G causes C , B and C cause D and
C cause D and E
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The power of Bayesian nets comes from the fact that we can interpret the existence of an
arrow between two nodes as representing a causal link between the associated random variables.
Once all conditional probabilities are given, Bayesian nets provide a full graphical (and, via the
tables, numerical) representation of the joint distribution.

14.9.2 CONSTRUCTING AND SIMULATING A BAYESIAN NET

To build Bayesian nets, we must first identify the variables relevant to our application. Next,
we associate each variable to a node. In the following step, we draw arcs between the nodes. We
do so keeping in mind that whenever we draw an arc (a line) between two nodes, we mean that
there is a causal link between the two variables. Now, wherever we find a line, we put an arrow
at one end or the other. The causal link goes in the direction of the arrow: from the parent
to the child. Note that, in general, one does not consider causalities in which there may be a
feedback effect and thus the arrows typically go in one direction.

When we build Bayesian nets, we make the fundamental assumption that, conditional
on its parents, any variable is independent of all other variables apart from its descendants.
This also means that there is no path dependence in our net, see the example in Figure 14.7,
the probability of D happening does not depend on whether C was caused by A or F . This
condition of path independence is very closely linked to the Markov condition; a time-ordered
process, Xi, is a Markov process if

p(Xk|Xk−1,Xk−2, . . . ,Xk−n) = p(Xk|Xk−1).

The conditional independence simplifies finding the joint probability. For example, in the
case of the net in Figure 14.7, the joint probability

p(A,B,C ,D,E , F ,G) = p(A)p(F )p(G)p(B|A)p(C |F ,A,G)p(D|B,C)p(E |C).

In short, for a Bayesian net with at most m parents, we need at-most-m-conditioned probabil-
ities to build all the joint probabilities.

To perform inference/calculations using a Bayesian net, we need to specify prior distribu-
tions for each node, that is, unconditional distributions for the nodes without a parent (e.g.,
p(A), p(F ), and p(G) for nodes A, F , and G in Figure 14.7) and conditional distributions for
child nodes (e.g., p(B|A), p(C |A, F ,G), p(D|B,C), and p(E |C) in Figure 14.7). These distri-
butions can be determined by experts or from data using, for example, maximum likelihood
by taking the ratio of the event to the frequency of the parent. Then a simple sampling from a
Bayesian net can be done as follows.

Algorithm 14.1 (Logic sampling from a Bayesian Net)

1. Sample the unconditional nodes (e.g., A, F , and G are sampled from p(A), p(F ), and p(G)
in Figure 14.7);

2. Sample the child nodes using conditional probabilities at these nodes given sample of the parents
until all nodes are sampled (e.g., in Figure 14.7, B and C are sampled from p(B|A) and
p(C |A, F ,G); then D and E are sampled from p(D|B,C) and p(E |C)); this process will
produce one sample of the Bayesian net;

3. Repeat the above steps many times; obtained samples for each node can be used to estimate
marginal probabilities for the nodes.
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If we are given a specific information (evidence) about the state of some nodes, then we can
use this algorithm but will need to discard Bayesian net samples that have node values incon-
sistent with the evidence. Of course, this approach is not efficient and there are more efficient
algorithms (where no Bayesian net samples are rejected) that can be found in the literature. A
very good conceptual treatment of Bayesian nets in general can be found by Williamson (2005).
Pearl (2009) provides an excellent discussion of causality. For readers who want to delve much
more deeply and rigorously into Bayesian networks, Heckerman et al. (1995) provides a very
good and solid reference.

14.9.3 COMBINING EXPERT OPINION AND DATA IN
A BAYESIAN NET

It is possible to update the prior distributions specified by experts for the nodes in a Bayesian
net using information from the data utilizing a Bayesian approach, which has already been
discussed in Sections 7.2 and 14.3. Under this approach, if a model is parameterized by θ,
then θ is treated as random with prior density π(θ) and the estimate for θ, updated by the
vector of new data Y , is found from the posterior density π(θ|Y ), which is proportional
to the prior density times the likelihood of the data. For example, as presented by Yoon
(2003), assume that the node random variable Y can have values y1, . . . , ym with correspond-
ing probabilities (model parameters) q1, . . . , qm. The density of n independent samples with
n1 samples having value y1, n2 samples having value y2, etc. is described by the multinomial
density

p(n1, . . . , nm|q1, . . . , qm) =
n!∏m

i=1 ni!

m∏
i=1

qni
i . (14.16)

A convenient candidate for the prior density of q1, . . . , qm is the Dirichlet distribution
D(α1, . . . , αm) with the density

π(q1, . . . , qm) =
Γ(α)∏m

i=1 Γ(αi)

m∏
i=1

qαi−1
i , α =

∑
i

αi. (14.17)

In the case of binary nodes (two-parameter case), it is just Beta distribution. Using expert
opinions about expected value and range of qi, we can estimate α1, . . . , αm using statistics

E[qi] =
αi

α
and Var[qi] =

αi(α− αi)

α2(α+ 1)
. (14.18)

The convenience of Dirichlet distribution as the prior comes from the fact that the poste-
rior density π(q1, . . . , qm|n1, . . . , nm) can be found in closed form to be Dirichlet distribution
D(α1 + n1, . . . , αm + nm), that is, it is conjugate prior distribution discussed in Section 7.2.1,
with the density

π(q1, . . . , qm|n1, . . . , nm) ∝
m∏

i=1

qαi+ni−1
i . (14.19)
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14.9.4 BAYESIAN NET AND OPERATIONAL RISK

It is important in OpRisk management to be able to create quantitative risk models that pro-
vide a basis for fruitful discussions about specific risk processes. Detailed causal modeling at
a business process level can absorb organization-specific input, reveal the importance of risk
drivers (causal factors), identify the potential lack of controls/barriers, and quantify the overall
risk expected and unexpected losses. Such modeling tools have been applied in the safety criti-
cal industries for a long time; for example, Fault Trees (Haasl, 1965) and Event Trees (Nielsen,
1971). There are various shortcomings in their use related to time dynamics, subjective prob-
ability, and a large number of dependent parameters and multi-state variables rather than
binary-state variables.

To handle these challenges, many practitioners in the safety critical industry have adopted
Bayesian nets over the last decades. Numerous researchers have highlighted advantages of causal
modeling via Bayesian nets when compared to the traditional actuarial techniques. It is argued
that a major benefit of Bayesian nets is the structured and scientifically sound way of combining
statistical analysis with other information sources such as knowledge of business processes, near
misses, and expert opinions using Bayesian methods. Bayesian nets can enable risk practition-
ers to link the operational conditions of the bank, including control environment, directly to
the probability and severity of losses, that is, assess the quantitative effect of risk management
decisions.

Many OpRisk practitioners have a view that Bayesian net models are suitable as a tool for
risk management, but not as a tool for establishing economic and regulatory capitals. The main
challenges include the following:

• Illustration of wide applicability for the full complexity of OpRisk in banks (examples so
far have been applied only to simple parts of banking processes);

• Consideration of time dynamics for OpRisk events. Operational losses evolve through
series of sequential events in time (e.g., sequential checks performed by a set of controls
that may or may not be functional); this is possible to achieve under the Bayesian net
framework; see details of dynamic Bayesian nets by Neil et al. (2009);

• Implementation of continuous variables for loss severities (Bayesian nets use static dis-
cretization of continuous variables that limits the model accuracy for loss severities,
especially in the cases of heavy-tailed distributions).

The paper by Neil et al. (2009) addresses these problems presenting a hybrid dynamic
Bayesian network model. The model considered by Neil et al. (2009) is presented in Figure 14.8.
The first layer models the potential loss events, Et , and their evolution in time as they are
influenced by controls, Ct , embedded within the business process. This dynamic time-based
evolution of an event given the controls is modeled by p(Et |Et−1,Ct) with time periods t =
1, . . . ,T . The performance of each control, Ct , is modeled as a function of a set of operational
failure modes, Oj. These failure modes are in turn influenced by a set of causal factors, Fi. The
occurrence of a failure mode for a specific control OCt is dependent, through causal factors, on
the occurrence of a failure mode for a previous control in time OCt−s , which is modeled using a
special kind of causal factor called a dependency factor, Dk. A dependency factor, Dk, is a causal
factor conditioned on the occurrence of some operational failure mode specific for a control,
OCt−s , which in turn influences a failure mode of a secondary control, OCt , where s = 1, . . . , t.
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E0 E1 E2 E3

C0 C1 C2 C3

O1 O3 O4 O5O2

F2

D2

F4

D1

F6F3 F5

D3

F1

figure 14.8 Illustration of Bayesian Network

table 14.4 Logical conditional transition probabilities p(Et|Et−1,C t)

Et−1 = fail Et−1 = ok

Ct =fail Ct =ok Ct =fail Ct =ok
Et =fail 1 0 Et =fail 0 0
Et =ok 0 1 Et =ok 1 1

For this model setup, the operational failure mode is modeled as a function of causal fac-
tors, Fi, and dependency factors, Dk; the failures that have no dependency relationship with
other failure modes are modeled as a function of Fi only. The business process is then repre-
sented by a sequence of discrete time-dependent events such that we have a dynamic Bayesian
network as shown in Figure 14.8, which is a graph representation of the full joint distribution:

p(E ,C ,O,F ,D) =

T∏
t=1

t∏
s=1

∏
j

∏
i

∏
k

p(Et |Et−1,Ct)p(Ct |OCt ) (14.20)

× p(Oj|F Oj ,DOj)p(Dk|OCt−s)p(Fi)p(C0), (14.21)

where E , C , O, F , D are sets of loss events, controls, operational failure modes, causal factor
variables, and dependency factors.

Each of the state transitions p(Et |Et−1,Ct) is specified by a discrete node probability table
for the transition probability of the loss event from an undetected to a detected state, dependent
on the control state. If the control operates correctly at time t, the loss event Et−1 would transit
to a correct operating state at Et using the logical conditional transition probabilities given in
Table 14.4. For the given model specification, the marginal probability of occurrence for each
loss event can be written as
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p(E) =
∑

C,O,F ,D

T∏
t=1

t∏
s=1

∏
j

∏
i

∏
k

p(Et |Et−1,Ct)p(Ct |OCt ) (14.22)

× p(Oj|F Oj ,DOj)p(Dk|OCt−s)p(Fi)p(C0). (14.23)

The paper, Neil et al. (2009) presents the junction tree algorithm for performing the infer-
ence and describes extension to modeling severity and calculation of the total annual loss
distribution.

14.10 Discussion

Expert elicitation is certainly one of the challenges in operational risk because many managers
and employees may not have a sound knowledge of statistics and probability theory. This may
lead to misleading results and misunderstanding of the true loss process model. It is impor-
tant that questions answered by experts are simple and well understood by respondents. There
are psychological aspects involved. There is a vast literature on expert elicitation published by
statisticians, especially in areas such as security and ecology. For a good review, see O’Hagan
(2006). Scenarios come with their own biases, such as anchoring, confirmation, availability, and
overconfidence (see discussions in Section 2.6). For example, anchoring is a common human
tendency to rely too heavily, or “anchor”, on one trait or piece of information when making
decisions. Tversky and Kahneman (1974) introduced the concept that usually once the anchor
is set, a bias exists toward that value. For descriptions of the other biases, see Kahneman et al.
(1982).

Merging scenario analysis with historical data will be discussed more in Chapter 15. One
of the problems with the required merge is that scenarios are formulated for loss processes while
historical data are often collected in Basel II business line/event type risk cells that include many
processes; moreover, some processes may contribute to different risk cells.



�

�

“Cruz_Driver” — 2015/1/8 — 14:41 — page 585 — #1
�

�

�

�

�

�

Chapter Fifteen

Combining Different Data Sources

This chapter provides a detailed Overview of OpRisk methods to combine data sources, par-
ticularly aimed to aid practitioners in forming rigorous and statistically justified methods for
combining different data sources. We cover in this chapter:

• Linear Weighted Combining based on the minimum variance principle;
• Bayesian methods for the combining of two data sources with posterior and predictive

distributional models developed for frequency and severity models. Special topics include
different methods for prior development and hyper-parameter estimation;

• Bayesian methods for combining expert opinion with internal and external data;
• Combining data sources using Linear Bayes or Credibility Theory;
• Non-parametric Bayesian methods for combining of data sources;
• Combining data sources based on other generalized uncertainty methods such as

Dempster-Shafer theory and p-boxes.

It is hard to perform a robust estimation of low frequency/ high severity risks using data
from a single financial institution. As the number of these large events in a financial institution
would be minimal, any statistical analysis would present significant challenges. There is simply
not enough data to estimate high quantiles of the risk distribution. Other sources of information
that can be used to improve risk estimates and are required by the Basel II for OpRisk Advanced
Measurement Approaches (AMA) are internal data, relevant external data, scenario analysis, and
factors reflecting the business environment and internal control systems. Specifically, Basel II
AMA includes the following requirement1 (BCBS 2006, p. 152):

Any OpRisk measurement system must have certain key features to meet the supervisory sound-
ness standard set out in this section. These elements must include the use of internal data, rele-
vant external data, scenario analysis and factors reflecting the business environment and internal
control systems.

We discussed scenario analysis in Chapter 14 and fitting historically observed losses in
Chapter 7, also risk indicators/factors will be discussed in Chapter 16. Combining these dif-
ferent data sources for model estimation is certainly one of the main challenges in OpRisk.

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
1The original text is available free of charge on the BIS website www.BIS.org/bcbs/publ.htm.
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586 CHAPTER 15 Combining Different Data Sources

Conceptually, the following ways have been proposed to process different data sources of infor-
mation; (see e.g., Berger 1985, sections 4.11 and 4.12):

• Numerous ad hoc procedures;
• Parametric and nonparametric Bayesian methods;
• General nonprobabilistic ‘uncertainty’ based methods such as Dempster–Shafer theory.

Some of the ad hoc procedures will be presented shortly and Bayesian methods are the main
focus of this chapter. Finally, we present the basic concepts and methods of Dempster–Shafer
theory and closely related ideas of “probability boxes” (referred to as “p-boxes” ). Dempster–
Shafer theory is based on the so-called belief functions and Dempster’s rule for combining evi-
dence (see Dempster 1968 and Shafer 1976). It is often referred to as a generalization of the
Bayesian method. For a good summary on the methods for obtaining Dempster–Shafer struc-
tures and “p-boxes”, and aggregation methods handling a conflict between the objects from
different sources, see Ferson et al. (2003).

Often in practice, accounting for factors reflecting the business environment and internal
control systems is achieved via scaling of data. Then ad hoc procedures are used to combine
internal data, external data, and expert opinions. For example:

• Fit the severity distribution to the combined samples of internal and external data and fit
the frequency distribution using internal data only;

• Estimate the Poisson annual intensity for the frequency distribution as wλint +(1−w)λext ,
where the intensities λext and λint are implied by the external and internal data, respectively,
using expert specified weight w;

• Estimate the severity distribution as a mixture

w1FSA(x) + w2FI (x) + (1 − w1 − w2)FE(x),

where FSA(x), FI (x) and FE(x) are the distributions identified by scenario analysis, internal
data, and external data, respectively, using expert-specified weights w1 and w2.

Statistically sound and consistent methodologies to combine different data sources are the
main topics of this chapter discussed next.

15.1 Minimum Variance Principle

Probably the easiest to use and most flexible procedure to combine estimators obtained from
different data sources is the minimum variance principle. Under the minimum variance princi-
ple, the combined estimator is a linear combination of the individual estimators obtained from
internal data, external data, and expert opinion separately with the weights chosen to minimize
the variance of the combined estimator.

The rationale behind the principle is as follows. Consider two unbiased independent esti-
mators Θ̂(1) and Θ̂(2) for parameter θ, that is, E

[
Θ̂(k)

]
= θ and Var[Θ̂(k)] = σ2

k , k = 1, 2.
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Then the combined unbiased linear estimator and its variance are

Θ̂tot = w1Θ̂
(1) + w2Θ̂

(2), w1 + w2 = 1, (15.1)

Var[Θ̂tot ] = w2
1σ

2
1 + (1 − w1)

2σ2
2 . (15.2)

It is easy to find the weights minimizing Var[Θ̂tot ]:

w1 =
σ2

2

σ2
1 + σ2

2
and w2 =

σ2
1

σ2
1 + σ2

2
.

The weights behave as expected in practice. In particular, w1 → 1 if σ2
1/σ

2
2 → 0 (σ2

1/σ
2
2 is the

uncertainty of the estimator Θ̂(1) over the uncertainty of Θ̂(2)) and w1 → 0 if σ2
2/σ

2
1 → 0.

This method can easily be extended to combine three or more estimators using the following
theorem.

Theorem 15.1 (Minimum variance estimator) Assume that we have Θ̂(i), i = 1, 2, . . . ,K
unbiased and independent estimators of θ with variances σ2

i = Var[Θ(i)]. Then the linear estimator

Θ̂tot = w1Θ̂
(1) + · · ·+ wK Θ̂

(K )

is unbiased and has a minimum variance if

wi =
1/σ2

i∑K
k=1(1/σ

2
k )
.

In this case, w1 + · · ·+ wK = 1 and

Var[Θ̂tot ] =

(
K∑

k=1

1
σ2

k

)−1

.

Proof : The linear estimator θ̂tot = w1θ̂1 + · · · + wK θ̂K is unbiased, that is, E[θ̂tot ] = θ, if
w1 + · · ·+ wK = 1 because E[θ̂k] = θ. Minimization of the variance

Var[θ̂tot ] = w2
1σ

2
1 + · · ·+ w2

K σ
2
K

under the constraint w1 + · · ·+ wK is equivalent to unconstrained minimization of the

Ψ = Var[θ̂tot ]− λ(w1 + · · ·+ wK − 1),

which is a well-known method of Lagrange multipliers. Optimization of this method requires
solution of the following equations:

∂Ψ

∂wi
= 2wiσ

2
i − λ = 0, i = 1, . . . ,K ;

∂Ψ

∂λ
= −(w1 + · · ·+ wK − 1) = 0.
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This gives

1
2
λ =

(
K∑

k=1

(1/σ2
k )

)−1

, wi =
1/σ2

i∑K
k=1(1/σ

2
k )
. (15.3)

It is a simple exercise to extend this principle to the case of unbiased estimators with known
linear correlations. Heuristically, minimum variance principle can be applied to almost any
quantity, including a distribution parameter or distribution characteristic such as mean, vari-
ance, or quantile. The assumption that the estimators are unbiased estimators for θ is proba-
bly reasonable when combining estimators from different experts (or from expert and internal
data). However, it is certainly questionable if applied to combine estimators from the external
and internal data. The following sections focus on the Bayesian inference method that can be
used to combine these data sources in a consistent statistical framework.

EXAMPLE 15.1

Assume that there are two independent unbiased estimates of the expected annual
number of losses θ̂(1) = 10 and θ̂(2) = 15 with corresponding variances σ2

1 = 9
and σ2

2 = 4. For example, these could be expert opinions. Then, using Theorem
15.1, the combined unbiased estimate is

θ̂tot = w1θ̂
(1) + (1 − w1)θ̂

(2),

where w1 = σ2
2/(σ

2
1 + σ2

2) = 4/13, that is, θ̂tot ≈ 13.5 with the variance estimate
w2

1σ
2
1 + (1 − w1)

2σ2
2 ≈ 2.8.

15.2 Bayesian Method to Combine Two Data Sources

The Bayesian inference method can be used to combine different data sources in a consistent
statistical framework. The main concept of the Bayesian approach has already been introduced
in Section 7.2. Now we consider the approach in detail in the context of combining.

Consider random data X = (X1,X2, . . . ,Xn) whose joint density, for given parameters
Θ = (Θ1,Θ2, . . . ,ΘK ), is h(x|θ). In the Bayesian approach, both observations and parame-
ters are considered to be random. Then the joint density is

h(x,θ) = h(x|θ)π(θ) = π(θ|x)h(x), (15.4)

where

• π(θ) is the probability density of the parameters, a so-called prior density function. Typi-
cally, π(θ) depends on a set of further parameters that are called hyper-parameters, omitted
here for simplicity of notation;
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• π(θ|x) is the density of parameters given data X , a so-called posterior density;
• h(x,θ) is the joint density of observed data and parameters;
• h(x|θ) is the density of observations for given parameters. This is the same as a likelihood

function if considered as a function of θ, that is, Lx(θ) = h(x|θ);
• h(x) is a marginal density of X that can be written as

h(x) =
∫

h(x|θ)π(θ)dθ. (15.5)

For simplicity of notation, we consider continuous π(θ) only. If π(θ) is a discrete probability
function, then the integration in the given expression should be replaced by a corresponding
summation (see Definition 5.7).

Predictive distribution. The objective (in the context of OpRisk) is to estimate the pre-
dictive distribution (frequency and severity) of a future observation Xn+1 conditional on all
available information X = (X1,X2, . . . ,Xn). Assume that, conditionally, given Θ, Xn+1 and
X are independent, and Xn+1 has a density f (xn+1|θ). It is even common to assume that
X1,X2, . . . ,Xn,Xn+1 are all conditionally independent (given Θ) and identically distributed.
Then the conditional density of Xn+1, given data X = x, is

f (xn+1|x) =
∫

f (xn+1|θ)π(θ|x)dθ. (15.6)

If Xn+1 and X are not independent, then the predictive distribution should be written as

f (xn+1|x) =
∫

f (xn+1|θ, x)π(θ|x)dθ. (15.7)

Posterior distribution. Bayes’s theorem (see Theorem 7.3) says that the posterior density can
be calculated from (15.4) as

π(θ|x) = h(x|θ)π(θ)/h(x). (15.8)

Here, h(x) plays the role of a normalization constant. Thus, the posterior distribution can
be viewed as proportional to the product of a prior knowledge with a likelihood function for
observed data.
In the context of OpRisk, one considers the following three logical steps:

• The prior distribution π(θ) should be estimated by scenario analysis (expert opinions with
reference to external data);

• Then the prior distribution should be weighted with the observed data using formula
(15.8) to get the posterior distribution π(θ|x);

• Formula (15.6) is then used to calculate the predictive distribution of Xn+1 given the data
X = x.

Remark 15.1 Of course, the posterior density can be used to find parameter point estimators. Typ-
ically, these are the mean, mode, or median of the posterior (see Section 7.2.3). The use of the
posterior mean as the point parameter estimator is optimal in a sense that the mean squared error
of prediction is minimized. For more on this topic, see Section 7.3 or Bühlmann and Gisler (2005,
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section 2.3). However, in the case of OpRisk, it is more appealing to use the whole posterior to cal-
culate the predictive distribution (15.6).

If the data X1,X2, . . . ,Xn are conditionally (given Θ = θ) independent and Xk is dis-
tributed with a density fk(·|θ), then the joint density of the data for given θ can be written
as h(x|θ) =

∏n
i=1 fi(xi|θ). Denote the posterior density calculated after k observations as

πk(θ|x1, . . . , xk), then using (15.8), observe that

πk(θ|x1, . . . , xk) ∝ π(θ)
k∏

i=1

fi(xi|θ)

∝ πk−1(θ|x1, . . . , xk−1)fk(xk|θ). (15.9)

It is easy to see from Equation (15.9) that the updating procedure that calculates the pos-
teriors from priors can be done iteratively. Only the posterior distribution calculated after k−1
observations and the k-th observation are needed to calculate the posterior distribution after k
observations. Thus, the loss history over many years is not required, making the model easier
to understand and manage, and allowing experts to adjust the priors at every step. Formally,
the posterior distribution calculated after k − 1 observations can be treated as a prior distri-
bution for the k-th observation. In practice, initially, we start with the prior distribution π(θ)
identified by expert opinions and external data only. Then, the posterior distribution π(θ|x) is
calculated, using Equation (15.8), when actual data are observed. If there is a reason (e.g., the
new control policy introduced in a bank), then this posterior distribution can be adjusted by
an expert and treated as the prior distribution for subsequent observations. Examples will be
presented in the following sections.

Conjugate prior distributions. So-called conjugate distributions (see Definition 7.10) are
very useful in practice when Bayesian inference is applied. We present conjugate pairs
(Poisson–Gamma, LogNormal–Normal, Pareto–Gamma) that are good illustrative exam-
ples for modeling frequencies and severities in OpRisk. Several other pairs (Binomial–Beta,
Gamma–Gamma, Exponential–Gamma) can be found, for example, in Bühlmann and Gisler
(2005). In all these cases, the prior and posterior distributions have the same type and the pos-
terior distribution parameters are easily calculated using the prior distribution parameters and
observations (or recursively using Equation (15.9)).

15.2.1 ESTIMATING PRIOR: PURE BAYESIAN APPROACH

In general, the structural parameters of the prior distributions can be estimated subjectively
using expert opinions (pure Bayesian approach) or using data (empirical Bayesian approach). Pure
Bayesian approach has already been considered in Section 14.3. For convenience of readers, we
repeat main points. In a pure Bayesian approach, the prior distribution is specified subjectively
(i.e., in the context of OpRisk, using expert opinions). Berger (1985) lists several methods:

• Histogram approach. Split the space of the parameter θ into intervals and specify the sub-
jective probability for each interval. From this, the smooth density of the prior distribution
can be determined;
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• Relative likelihood approach. Compare the intuitive likelihoods of the different values of θ.
Again, the smooth density of prior distribution can be determined. It is difficult to apply
this method in the case of unbounded parameters;

• Distribution function determinations. Subjectively construct the distribution function for
the prior and sketch a smooth curve;

• Matching a given functional form. Find the prior distribution parameters assuming some
functional form for the prior distribution to match prior beliefs (on the moments, quan-
tiles, etc.) as closely as possible.

In this chapter, the method of matching a given functional form will be used often. The
use of a particular method is determined by a specific problem and expert experience. Usually,
if the expected values for the quantiles (or mean) and their uncertainties are estimated by the
expert, then it is possible to fit the priors.

Often, expert opinions are specified for some quantities such as quantiles or other risk
characteristics rather than for the parameters directly. In this case, it might be better to
assume some priors for these quantities that will imply a prior for the parameters. In general,
given model parameters θ=(θ1, . . . , θn), assume that there are risk characteristics di = gi(θ),
i= 1, 2, . . . , n that are well understood by experts. These could be some quantiles, expected
values, expected durations between losses exceeding high thresholds, etc. Now, if experts
specify the joint prior π(d1, . . . , dn), then using a transformation method, the prior for
θ1, . . . , θn is

π(θ) = π(g1(θ), . . . , gn(θ))

∣∣∣∣∂ (g1(θ), . . . , gn(θ))

∂ (θ1, . . . , θn)

∣∣∣∣ , (15.10)

where |∂ (g1(θ), . . . , gn(θ)) /∂ (θ1, . . . , θn)| is the Jacobian determinant of the transforma-
tion. Essentially, the main difficulty in specifying a joint prior is due to a possible dependence
between the parameters. It is convenient to choose the characteristics (for specification of the
prior) such that independence can be assumed. For example, if the prior for the quantiles
q1, . . . , qn (corresponding to probability levels p1 < p2 < · · · < pn) is to be specified, then to
account for the ordering it might be better to consider the differences

d1 = q1, d2 = q2 − q1, . . . , dn = qn − qn−1.

Then, it is reasonable to assume independence between these differences and impose constraints
di > 0, i = 2, . . . , n. If experts specify the marginal priors π(d1), π(d2), . . . , π(dn) (e.g.,
Gamma priors), then the full joint prior is

π(d1, . . . , dn) = π(d1)× π(d2)× · · · × π(dn),

and the prior for parameters θ is calculated by transformation using Equation (15.10). To
specify the i-th prior π(di), an expert may use the approaches listed earlier. For example, if
π(di) is Gamma(αi, βi), then the expert may provide the mean and variational coefficient for
π(di) (or median and 0.95 quantile), which should be enough to determine αi and βi.

A very appealing statistical experiment demonstrating the importance of subjective prior
information was given by Savage (1961):

1. A lady, who adds milk to her tea, claims to be able to tell whether the tea or milk was
poured into the cup first. In all 10 trials, her answer is correct;
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2. A music expert claims to be able to distinguish a page of Haydn’s score from a page of
Mozart’s score. In all 10 trials, he makes a correct determination;

3. A drunken friend says that he can predict the outcome of a coin flip. In all 10 trials, his
prediction is correct.

In all three cases, the unknown parameter to identify is the probability of the correct answer.
Classical statistical approach (based on hypothesis testing), ignoring our prior opinion, would
give a very strong evidence that all these claims are correct. We would not doubt this result
for situation 2. However, for situation 3, our prior opinion is that this prediction is impossible
and we would tend to ignore the empirical evidence. Different people may give different prior
opinions for situation 1. Anyway, in all these cases, prior information is certainly valuable.

15.2.2 ESTIMATING PRIOR: EMPIRICAL BAYESIAN APPROACH

Under the empirical Bayesian approach, the parameter θ is treated as a random sample from
the prior distribution. Then using collective data of similar risks, the parameters of the prior
are estimated using a marginal distribution of observations. Depending on the model setup,
the data can be collective industry data, collective data in the bank, etc.

To explain, consider K similar risks where each risk has its own risk profile Θ(i), i =

1, . . . ,K (see Figure 15.1). Given Θ(i) = θ(i), the risk data X (i)
1 ,X (i)

2 , . . . are generated from
the distribution F (x|θ(i)). The risks are different, having different risk profiles θ(i), but what
they have in common is that Θ(1), . . . ,Θ(K ) are distributed from the same density π(θ).
Then, one can find the unconditional distribution of the data X and fit the prior distribu-
tion using all data (across all similar risks). This could be done, for example, by the maximum

Risk 1

X1
(1), X2

(1),... ~ F(x |Θ(1)= θ(1)) X1
(K), X2

(K)... ~F(x |Θ(K)= θ(K))

Collective prior density π(θ)

...Θ(1) Θ(K)

Risk K

figure 15.1 Empirical Bayes approach – interpretation of the prior density π(θ). Here, Θ(i) is the
risk profile of the i-th risk. Given Θ(i) = θ(i), the risk data X (i)

1 ,X (i)
2 , . . . are generated from the

distribution F(x|θ(i)). The risks are different having different risk profiles θ(i), but Θ(1), . . . ,Θ(K ) are
distributed from the same common density π(θ)
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likelihood method or the method of moments or even empirically. This approach will be dis-
cussed in detail in Section 15.3.

15.2.3 POISSON FREQUENCY

Consider the annual number of events for a risk in one bank in year t modeled as a random
variable from the Poisson distribution Poisson (λ). The intensity parameter λ is not known and
the Bayesian approach models it as a random variable Λ. Then the following model for years
t = 1, 2, . . . ,T ,T + 1 (where T + 1 corresponds to the next year) can be considered.

Model Assumptions 15.1

• Suppose that, given Λ = λ, the data N1, . . . ,NT+1 are independent random variables from
the Poisson distribution, Poisson(λ):

Pr[Nt = n|Λ = λ] = e−λλ
n

n!
, λ ≥ 0. (15.11)

• The prior distribution for Λ is a Gamma distribution, Gamma(α, β), with a density

π(λ) =
(λ/β)α−1

Γ(α)β
exp(−λ/β), λ > 0, α > 0, β > 0. (15.12)

That is, λ plays the role of θ and N = (N1, . . . ,NT ) the role of X in (15.8).
Posterior. Given Λ = λ, under the Model Assumptions 15.1, N1, . . . ,NT are independent
and their joint density, at N = n, is given by

h(n|λ) =
T∏

i=1

e−λλ
ni

ni!
. (15.13)

Thus, using formula (15.8), the posterior density is

π(λ|n) ∝ (λ/β)α−1

Γ(α)β
exp(−λ/β)

T∏
i=1

e−λλ
ni

ni!
∝ λαT −1 exp(−λ/βT ), (15.14)

which is Gamma(αT , βT ), that is, the same as the prior distribution with updated parameters
αT and βT given by

α → αT = α+

T∑
i=1

ni, β → βT =
β

1 + β × T
. (15.15)

Improper constant prior. It is easy to see that, if the prior is constant (improper prior), that
is, π(λ|n) ∝ h(n|λ), then the posterior is Gamma(αT , βT ) with

αT = 1 +
T∑

i=1

ni, βT =
1
T
. (15.16)
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In this case, the mode of the posterior π(λ|n) is

λ̂MAP
T = (αT − 1)βT =

1
T

T∑
i=1

ni, (15.17)

which is the same as the maximum likelihood estimate (MLE) λ̂MLE
T of λ.

Predictive distribution. Given data, the conditional predictive distribution for NT+1 is Neg-
ative Binomial, NegBinomial(αT , 1/(1 + βT )):

Pr[NT+1 = m|N = n] =
∫

f (m|λ)π(λ|n)dλ

=

∫
e−λλ

m

m!

λαT −1

(βT )αT Γ(αT )
e−λ/βT dλ

=
(βT )

−αT

Γ(αT )m!

∫
e−(1+1/βT )λλαT +m−1dλ

=
Γ(αT + m)

Γ(αT )m!

(
1

1 + βT

)αT ( βT

1 + βT

)m

. (15.18)

It is assumed that given Λ = λ, NT+1 and N are independent. The expected num-
ber of events over the next year, given past observations, E[NT+1|N ], that is, mean of
NegBinomial(αT , 1/(1+βT )) (which is also a mean of the posterior distribution in this case),
allows for a good interpretation as follows:

E[NT+1|N = n] = E[λ|N = n]

= αTβT

= β
α+

∑T
i=1 ni

1 + βT
= wT λ̂

MLE
T + (1 − wT )λ0. (15.19)

Here:

• λ̂MLE
T = 1

T
∑T

i=1 ni is the estimate of λ using the observed counts only;
• λ0 = αβ is the estimate of λ using a prior distribution only (e.g., specified by expert);

• wT = Tβ
Tβ+1 is the credibility weight in [0,1) used to combine λ0 and λ̂MLE

T .

Remark 15.2

• As the number of observed years T increases, the credibility weight wT increases and vice versa.
That is, the more observations we have, the greater credibility weight we assign to the estimator
based on the observed counts, while the lesser credibility weight is attached to the expert opin-
ion estimate. In addition, the larger the volatility of the expert opinion (larger β), the greater
credibility weight is assigned to observations;

• Recursive calculation of the posterior distribution is very simple. That is, consider observed
annual counts n1, n2, . . . , nk, . . . , where nk is the number of events in the k-th year. Assume
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that the prior Gamma(α, β) is specified initially, then the posterior π(λ|n1, . . . , nk) after
the k-th year is a Gamma distribution, Gamma(αk, βk), with αk = α +

∑k
i=1 ni and

βk = β/(1 + β × k). Observe that

αk = αk−1 + nk, βk =
βk−1

1 + βk−1
. (15.20)

This leads to a very efficient recursive scheme, where the calculation of posterior distribution
parameters is based on the most recent observation and parameters of posterior distribution
calculated just before this observation.

Estimating prior. Suppose that the annual frequency of the OpRisk losses N is modeled by
the Poisson distribution, Poisson(Λ = λ), and the prior density π(λ) for Λ is Gamma(α, β).
Then, E[N |Λ] = Λ and E[Λ] = α × β. The expert may estimate the expected number of
events but cannot be certain of the estimate. One could say that the expert’s “best” estimate for
the expected number of events corresponds to E[E[N |Λ]] = E[Λ]. If the expert specifies E[Λ]
and an uncertainty that the “true” λ for next year is within the interval [a,b] with a probability
Pr[a ≤ Λ ≤ b] = p (it may be convenient to set p = 2/3), then the equations

E[Λ] = α× β,

Pr[a ≤ Λ ≤ b] = p =

b∫
a

π(λ|α, β)dλ = F (G)
α,β(b)− F (G)

α,β (a)
(15.21)

can be solved numerically to estimate the structural parameters α and β. Here, F (G)
α,β (·) is the

Gamma distribution, Gamma(α, β), that is,

F (G)
α,β (y) =

y∫
0

xα−1

Γ(α)βα
exp

(
− x
β

)
dx.

In the insurance industry, the uncertainty for the “true” λ is often measured in terms of the
coefficient of variation, Vco[Λ] =

√
Var[Λ]/E[Λ]. Given the expert estimates for E[Λ] = αβ

and Vco[Λ] = 1/
√
α, the structural parameters α and β are easily estimated.

EXAMPLE 15.2

If the expert specifies E[Λ] = 0.5 and Pr[0.25 ≤ Λ ≤ 0.75] = 2/3, then we can fit
a prior distribution Gamma(α ≈ 3.407, β ≈ 0.147) by solving (15.21). Assume
now that the bank experienced no losses over the first year (after the prior distri-
bution was estimated). Then, using formulas (15.20), the posterior distribution
parameters are α̂1 ≈ 3.407 + 0 = 3.407, β̂1 ≈ 0.147/(1 + 0.147) ≈ 0.128 and
the estimated arrival rate using the posterior distribution is λ̂1 = α̂1 × β̂1 ≈ 0.436.
If, during the next year, no losses are observed again, then the posterior
distribution parameters are α̂2 = α̂1 + 0≈ 3.407, β̂2 = β̂1/(1+ β̂1)≈ 0.113,
and λ̂2 = α̂2 × β̂2 ≈ 0.385. Subsequent observations will update the arrival rate
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estimator correspondingly using formulas (15.20). Thus, starting from the expert
specified prior, observations regularly update (refine) the posterior distribution.
The expert might reassess the posterior distribution at any point in time (the
posterior distribution can be treated as a prior distribution for the next period)
if new practices/policies are introduced in the bank that affect the frequency of
the loss. That is, if we have a new policy at time k, the expert may reassess the
parameters and replace α̂k and β̂k by α̂∗

k and β̂∗
k , respectively.

In Figure 15.2, we show the posterior best estimate for the arrival rate
λ̂k = α̂k × β̂k, k = 1, . . . , 15 (with the prior distribution as in the previous exam-
ple), when the annual number of events Nk, k = 1, . . . , 25 are simulated from
Poisson(λ = 0.6) and the realized samples for 25 years are

n1:25 = (0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 0, 2, 0, 1, 0, 0, 1, 0, 1, 1, 0).

In the same figure, we show the standard MLE of the arrival rate
λ̂MLE

k = 1
k
∑k

i=1 ni. After approximately 8 years, the estimators are very close
to each other. However, for a small number of observed years, the Bayesian estimate
is more accurate as it takes the prior information into account. Only after 12 years
do both estimators converge to the true value of 0.6 (this is because the bank was
very lucky to have no events during the first 4 years). Note that for this example we
assumed the prior distribution with a mean equal to 0.5, which is different from the
true arrival rate. Thus, this example shows that an initially incorrect prior estimator
is corrected by the observations as they become available. It is interesting to observe

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
Year

A
rr

iv
al

 r
at

e

Bayesian estimate

MLE

figure 15.2 The Bayesian and the standard maximum likelihood estimates of the arrival rate
versus the observation year. The Bayesian estimate is a mean of the posterior distribution when the
prior distribution is Gamma(α, β) with E[Λ] = 0.5; α ≈ 3.41 and β ≈ 0.15. The MLE is a simple
average over the number of observed events. The annual counts were sampled from the
Poisson(0.6). Error bars for Bayesian estimates correspond to the posterior standard deviation. See
Example 15.2 for details
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figure 15.3 The Bayesian and the standard maximum likelihood estimates of the arrival rate
versus the observation year. The Bayesian estimate is a mean of the posterior distribution when the
prior distribution is Gamma(α, β) with E[Λ] = 0.7 and Vco[Λ] = 0.5; α = 4 and β = 0.175.
The MLE is a simple average over the number of observed events. The annual counts were sampled
from the Poisson(0.6). Error bars for Bayesian estimates correspond to the posterior standard
deviation. See Example 15.2 for details

that, in year 14, the estimators become slightly different again. This is because the
bank was unlucky to experience event counts (1, 1, 2) in the years (12, 13, 14). As a
result, the MLE becomes higher than the true value, while the Bayesian estimate is
more stable (smooth) with respect to the unlucky years. If this example is repeated
with different sequences of random numbers, then one would observe quite different
MLEs (for small k) and more stable Bayesian estimates.

In Figure 15.3, we show the maximum likelihood and Bayesian posterior esti-
mates for the arrival rates if the prior is Gamma(α = 4, β = 0.175). The parameters
of the prior correspond to the situation when the expert specifies E[Λ] = αβ = 0.7
and Vco[Λ] = 1/

√
α = 0.5.

Finally, we note that in both cases, the standard deviation of the posterior dis-
tribution Gamma(αk, βk) is large for small k. It is indicated by the error bars in
Figures 15.2 and 15.3 and calculated as βk

√
αk.

15.2.4 THE LOGNORMAL SEVERITY

Assume that the loss severity for a risk in one bank is modeled as a random variable from a
LogNormal distribution, LogNormal(μ, σ2), whose density is

f (x|μ, σ) = 1
x
√

2πσ2
exp

(
− (ln x − μ)2

2σ2

)
. (15.22)
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This distribution often gives a good fit for OpRisk loss data. It also belongs to a class of heavy-
tailed distributions (i.e., the distribution tail 1− F (x) decays to 0 slower than any exponential
exp(−εx), ε > 0). The parameters μ and σ are not known and the Bayesian approach models
these as random variables Θμ and Θσ , respectively. We assume that the losses over the years
t = 1, 2, . . . ,T are observed and should be modeled for the next year T + 1. To simplify
notation, we denote the losses over the past T years as X1, . . . ,Xn and the future losses as
Xn+1, . . . . Then the model can be structured as follows. For simplicity, assume that σ is known
and μ is unknown. The case where both σ and μ are unknown will be treated later.

Model Assumptions 15.2

• Suppose that, given σ and Θμ = μ, the data X1, . . . ,Xn, . . . are independent random
variables from LogNormal(μ, σ2). That is, Yi = lnXi, i = 1, 2, . . . are distributed from
Normal(μ, σ2);

• Assume that parameter σ is known and the prior distribution for Θμ is Normal(μ0, σ
2
0). That

is, the prior density is

π(μ) =
1

σ0
√

2π
exp

(
− (μ− μ0)

2

2σ2
0

)
. (15.23)

Denote the losses over the past years as X = (X1, . . . ,Xn) and the corresponding log losses as
Y = (Y1, . . . ,Yn). Note that μ plays the role of θ in Equation (15.8).

Posterior. Under these assumptions, the joint density of the data over past years (conditional
on σ and Θμ = μ) at position Y = y is given by

h(y|μ, σ) =
n∏

i=1

1
σ
√

2π
exp

(
− (yi − μ)2

2σ2

)
. (15.24)

Then, using Equation (15.8), the posterior density can be written as

π(μ|y) ∝
exp

(
− (μ−μ0)

2

2σ2
0

)
σ0
√

2π

n∏
i=1

exp
(
− (yi−μ)2

2σ2

)
σ
√

2π

∝ exp

(
− (μ− μ0,n)

2

2σ2
0,n

)
, (15.25)

that corresponds to Normal(μ0,n, σ
2
0,n), i.e. the same as the prior distribution with updated

parameters

μ0 → μ0,n =

μ0 + ω
n∑

i=1
yi

1 + nω
, (15.26)

σ2
0 → σ2

0,n =
σ2

0

1 + nω
, where ω = σ2

0/σ
2. (15.27)
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The expected value of Yn+1 (given past observations), E[Yn+1|Y = y], allows for a good
interpretation, as follows:

E[Yn+1|Y = y] = μ0,n =

μ0 + ω
n∑

i=1
yi

1 + nω
= wnyn + (1 − wn)μ0, (15.28)

where

• yn = 1
n
∑n

i=1 yi is the estimate of μ using the observed losses only;
• μ0 is the estimate of μ using a prior distribution only (e.g., specified by expert);
• wn = n

n+σ2/σ2
0

is the credibility weight in [0,1) used to combine μ0 and yn.

Remark 15.3

• As the number of observations increases, the credibility weight w increases and vice versa. That
is, the more observations we have, the greater weight we assign to the estimator based on the
observed counts and the lesser weight is attached to the expert opinion estimate. Moreover, larger
uncertainty in the expert opinion σ2

0 leads to a higher credibility weight for observations and
larger volatility of observations σ2 leads to a higher credibility weight for expert opinions;

• The posterior distribution can be calculated recursively as follows. Consider the data
Y1,Y2, . . . ,Yk, . . .. Assume that the prior distribution, Normal(μ0, σ

2
0), is specified initially,

then the posterior density π(μ|y1, . . . , yk) after the k-th event is Normal(μ0,k, σ
2
0,k), with

μ0,k =

μ0 + ω
k∑

i=1
yi

1 + kω
, σ2

0,k =
σ2

0

1 + kω
,

where ω = σ2
0/σ

2. It is easy to show that

μ0,k =
μ0,k−1 + ωk−1yk

1 + ωk−1
, σ2

0,k =
σ2ωk−1

1 + ωk−1
, (15.29)

with ωk−1 = σ2
0,k−1/σ

2. That is, calculation of the posterior distribution parameters can be
based on the most recent observation and the parameters of the posterior distribution calculated
just before this observation.

Estimating prior. Suppose that X , the severity of operational losses, is modeled by the Log-
Normal distribution, LogNormal(μ, σ2), and Model Assumptions 15.2 are satisfied. Then, for
given Θμ (and σ is known), the expected loss is

Ω = E[X |Θμ] = exp(Θμ + 1
2σ

2), (15.30)

and the quantile at level q is

QX (q) = exp(Θμ + σzq), (15.31)
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where zq = Φ−1(q) is the inverse of the standard Normal distribution. That is, Ω and QX (q)
are functions of Θμ.

Consider the case when the prior distribution for Θμ is Normal(μ0, σ
2
0). In this case,

unconditionally, Ω is distributed from LogNormal(μ0 + 1
2σ

2, σ2
0) and the quantile QX (q) is

distributed from LogNormal(μ0 + σzq, σ
2
0). Then, the expert may specify “the best” estimate

of the expected loss E[Ω] and uncertainty, that is, the interval [a,b] such that the true expected
loss is within the interval with a probability p = Pr[a ≤ Ω ≤ b]. Then, the equations

p = Pr[a ≤ Ω ≤ b] = Φ

(
ln b − 1

2σ
2 − μ0

σ0

)
− Φ

(
ln a − 1

2σ
2 − μ0

σ0

)
,

E[Ω] = exp(μ0 +
1
2σ

2 + 1
2σ

2
0),

(15.32)

can be solved to find μ0, σ0. Here, Φ(·) is the standard Normal distribution.

EXAMPLE 15.3

For example, assume that σ = 2 and the expert estimates are E[Ω] = 10 and
p = Pr[8 ≤ Ω ≤ 12] = 2/3. Then, solving (15.32) gives μ0 ≈ 0.28 and
σ0 ≈ 0.21. Finally, using Equation (15.26) we can calculate the posterior
parameters μ0,k, σ0,k as observations Xk, k = 1, 2, . . . become available.

One can also try to fit parameters μ0 and σ0 using estimates for some quantile and uncer-
tainty by solving

p = Pr[a ≤ QX (q) ≤ b] = Φ

(
ln b − σzq − μ0

σ0

)
− Φ

(
ln a − σzq − μ0

σ0

)
,

E[Qq] = exp(μ0 + σzq +
1
2σ

2
0).

(15.33)

Remark 15.4 If the uncertainty for Ω or QX (q) in (15.32)–(15.33) is measured using the coeffi-
cient of variation Vco[X ] =

√
Var[X ]/E[X ], then μ0, σ0 are easily expressed in the closed form.

In the insurance industry, Vco is often provided by regulators.

The LogNormal(μ, σ2) Severity with Unknown μ and σ. Now, consider the case of both μ
and σ unknown and modeled by random variables Θμ and Θσ , respectively. Suppose that,
given Θμ = μ and Θσ = σ, the data X1, . . . ,Xn, . . . are independent random variables from
LogNormal(μ, σ2), that is, Yi = lnXi ∼ Normal(μ, σ2). Assume also that the prior distribu-
tion of Θ2

σ is the inverse Chi-squared distribution, InvChiSq(ν, β), and the prior distribution
of Θμ (given Θσ = σ) is Normal(θ, σ2/φ). Under these assumptions, the joint posterior den-
sity can be found in closed form. For details and proofs, see Shevchenko (2011, section 4.3.5).
The posterior has the same form as the joint prior distribution with parameters updated as

νn = ν + n,

βn = β + φθ2 + ny2 − (φθ + ny)2/(φ+ n),
θn = φθ + ny/(φ+ n),
φn = φ+ n,

(15.34)
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where y = 1
n
∑n

i=1 yi and y2 = 1
n
∑n

i=1 y2
i . It is easy to see that if the prior is constant (improper

prior), that is, π(μ, σ|y) ∝ h( y|μ, σ), then the posterior densities π(σ2|y) and π(μ|σ2, y)
correspond to the InvChiSq(νn, βn) and Normal(θn, σ

2
n/φn), respectively, with

νn = n − 3, βn = ny2 − n(y)2, θn = y, φn = n. (15.35)

In this case, the mode of the posterior density π(μ, σ|y) is

μ̂MAP = y, (σ̂2)MAP = y2 − (y)2, (15.36)

which are the same as MLEs of μ and σ2.

Estimating prior for both μ and σ. For given Θμ and Θσ , the loss quantile at the level q is

QX (q) = exp(Θμ +Θσzq), (15.37)

see (15.31). Thus, one can find Θσ via two quantiles Qq2 and Qq1 as

Θσ =
ln(QX (q2)/QX (q1))

zq2 − zq1

. (15.38)

Then, one can try to fit the prior distribution for Θσ using the expert opinions on

E[ln(QX (q2)/QX (q1))] and Pr[a ≤ QX (q2)/QX (q1) ≤ b],

or the opinions involving several pairs of quantiles. Given σ, the prior distribution for μ can
be estimated using Equation (15.32) or (15.33).

15.2.5 PARETO SEVERITY

Another important example of the severity distribution, which is very useful to fit heavy-tailed
losses, for a given threshold L > 0, is the Pareto distribution, Pareto(ξ, L), with a density

f (x|ξ) = ξ

L

( x
L

)−ξ−1
. (15.39)

It is defined for x ≥ L and ξ > 0. If ξ > 1, then the mean is Lξ/(ξ − 1); otherwise, the mean
does not exist. The tail parameter ξ is unknown and modeled by a random variable Θξ.

Model Assumptions 15.3

• Suppose that conditionally, given Θξ = ξ, the data X1, . . . ,Xn, . . . are independent random
variables from Pareto(ξ, L);

• The prior distribution for the tail parameter Θξ is Gamma(α, β), that is, the prior density is

π(ξ) ∝ ξα−1 exp(−ξ/β). (15.40)

Denote the losses over past years as X = (X1, . . . ,Xn).
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Posterior. Given X = x, under the previous assumptions, the posterior density (using (15.8))
is given by

π(ξ|x) = ξn exp

(
−(ξ + 1)

n∑
i=1

ln (xi/L)

)
ξα−1 exp (−ξ/β)

∝ ξαn−1 exp (−ξ/βn), (15.41)

which is Gamma(αn, βn), that is, the same as the prior distribution with updated parameters
(i.e., a conjugate model)

α → αn = α+ n, β−1 → β−1
n = β−1 +

n∑
i=1

ln (xi/L). (15.42)

The mean of the posterior distribution for Θξ allows for a good interpretation, as follows:

ξ̂ = E[Θξ|X = x] = αnβn

=
α+ n

β−1 +
n∑

i=1
ln (xi/L)

= wnξ̂
MLE
n + (1 − wn)ξ0, (15.43)

where

• ξ̂MLE
n = 1

n
∑n

i=1 ln (xi/L) is the MLE of ξ using the observed losses;
• ξ0 = αβ is the estimate of ξ using a prior distribution only (e.g., specified by expert);

• wn =
[∑n

i=1 ln (xi/L)
]
×
[∑n

i=1 ln (xi/L) + 1/β
]−1 is the weight in [0,1) combining

ξ0 and ξ̂MLE
n .

The posterior distribution can be easily calculated recursively. Consider the observed losses
x1, x2, . . . , xk, . . .. Assume that the prior, Gamma(α, β), is specified initially, then the posterior
π(ξ|x1, . . . , xk) after the k-th event is Gamma(αk, βk) with

αk = α+ k, β−1
k = β−1 +

k∑
i=1

ln(xi/L).

Thus, the parameters of the posterior can be calculated recursively as

αk = αk−1 + 1, β−1
k = β−1

k−1 + ln (xk/L) . (15.44)

Again, this leads to a very efficient recursive scheme, where the calculation of the posterior
distribution parameters is based on the most recent observation and parameters of the posterior
distribution calculated just before this observation.

Remark 15.5 It is important to note that the prior and posterior distributions of Θξ are Gamma
distributions formally defined for ξ > 0. Thus, there is a finite probability that Pr[Θξ ≤ 1] > 0,
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which leads to infinite means of predicted distributions, that is, E[Xi] = ∞ and E[Xn+1|X ] = ∞.
If we do not want to allow for infinite mean behavior, then ξ should be restricted to ξ > 1. See
Section 7.2.4 on how to deal with this.

Improper constant prior. It is easy to see that if the prior is constant (improper prior), that is,
π(ξ|x) ∝ h(x|ξ), then the posterior is Gamma(αn, βn) with

αn = n + 1, βn
−1 =

n∑
i=1

ln (xi/L). (15.45)

In this case, the mode of the posterior density π(ξ|x) is

ξ̂MAP =
n∑n

i=1 ln (xi/L)
, (15.46)

which is the same as MLE of ξ.

Estimating prior. Suppose that X , the severity of operational losses exceeding threshold L, is
modeled by the Pareto distribution, Pareto(ξ, L). Then, conditionally on Θξ = ξ, the expected
loss

E[X |Θξ = ξ] = μ(ξ) =
Lξ

ξ − 1
, if ξ > 1, (15.47)

and the quantile of the loss distribution at level q is

QX |Θξ=ξ(q) = fq(ξ) = L exp

(
− ln(1 − q)

ξ

)
, ξ > 0. (15.48)

The mean and quantile of the loss are functions of ξ and thus, unconditionally, are random
variables

μ(Θξ) and fq(Θξ),

respectively. If there is a reason to believe that, unconditionally, expected loss is finite, then the
tail parameter ξ should satisfy ξ ≥ B > 1. Now, assume that we choose the prior distribution
for Θξ to be Gamma(α, β) distribution truncated below B, that is, to have a density

π(ξ) =
ξα−1 exp(−ξ/β)

(1 − F (G)
α,β (B))Γ(α)βα

I{ξ≥B}, ξ ≥ B, α > 0, β > 0, (15.49)

where F (G)
α,β (·) is a Gamma distribution, Gamma(α, β). If the expert estimates E[Θξ] and the

uncertainty Pr[a ≤ Θξ ≤ b] = p, then the following two equations

E[Θξ] = αβ
1 − F (G)

α+1,β(B)

1 − F (G)
α,β (B)

,

Pr[a ≤ Θξ ≤ b] =
F (G)
α,β (b)− F (G)

α,β (a)

1 − F (G)
α,β(B)

(15.50)

can be solved to estimate the structural parameters: shape α and scale β.
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EXAMPLE 15.4

Assume that the lower bound for the tail parameter is B = 2 and the expert esti-
mates are E[Θξ] = 5, Pr[4 ≤ Θξ ≤ 6] = 2/3. Then we can fit α ≈ 23.086,
β ≈ 0.217 and can calculate the posterior distribution parameters αk, βk when
observations x1, x2, . . . become available, using (15.20). In Figure 15.4, we show
the subsequent posterior best estimates for the tail parameter

ξk = αkβk
1 − F (G)

α+1,β(B)

1 − F (G)
α,β(B)

, k = 1, 2, . . . , (15.51)

when the losses Xk are simulated from Pareto(4, 1). The actual simulated loss values
are

x1:15 = (1.089, 1.181, 1.145, 1.105, 1.007, 1.451, 1.187, 1.116,
1.753, 1.383, 2.167, 1.180, 1.334, 1.272, 1.123).

In the same figure, we show the standard MLE of the tail parameter

ξ̂MLE
k =

(
1
k

k∑
i=1

ln(xi/L)

)−1

.

It is easy to see that the Bayesian estimates are more stable while the MLEs are
quite volatile when the number of observations is small. As the number of obser-
vations increases, the two estimators become almost the same. As another example,
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figure 15.4 The Bayesian and the standard maximum likelihood estimates of the Pareto tail
parameter versus the number of observations. The losses were sampled from Pareto(4, 1). The prior
distribution is Gamma(23.1, 0.22), truncated below B = 2. See Example 15.4 for details. Error
bars correspond to 0.25 and 0.75 quantiles of the posterior distribution
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figure 15.5 The Bayesian and the standard maximum likelihood estimates of the Pareto tail
parameter versus the number of observations. The losses were sampled from Pareto(4, 1). The prior
distribution is Gamma(4, 1.125). See Example 15.4 for details. Error bars correspond to 0.25 and
0.75 quantiles of the posterior distribution

Figure 15.5 compares the Bayesian estimate and MLE when the Gamma prior is
specified by an expert who says that E[Θξ] = 4.5 and Vco[Θξ] = 0.5. This gives
the parameters of the prior α = 4 and β = 1.125.

If it is difficult to express opinions on ξ directly, the expert may try to estimate the
expected loss, quantile, or their uncertainties. It might be difficult numerically to fit α and β
if the expert specifies unconditional expected loss or expected quantile

E[μ(Θξ)] =

∞∫
B

μ(ξ)π(ξ)dξ,

E[fq(Θξ)] = L
∞∫

B

fq(ξ)π(ξ)dξ, (15.52)

respectively, as these are not easily expressed. Nevertheless, there is no problem in princi-
ple. Fitting opinions on uncertainties might be easier. For example, if the expert estimates
the interval [a, b] such that the true expected loss is within the interval with the probability
Pr[a ≤ μ(Θξ) ≤ b] = p, then it leads to the equation

Pr[a ≤ μ(Θξ) ≤ b] = p =

ã∫
b̃

π(ξ)dξ =
F (G)
α,β(ã)− F (G)

α,β (b̃)

1 − F (G)
α,β (B)

, (15.53)

where ã= a
a−L , b̃= b

b−L . Here, the interval bounds should satisfy L< a< b≤B × L/(B − 1).
The estimation of the interval [a, b], L< a< b, such that the true quantile is within the
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interval with the probability Pr[a ≤ fq(Θξ) ≤ b] = p, leads to the equation

Pr[a ≤ fq(Θξ) ≤ b] = L

C2∫
C1

π(ξ)dξ =
F (G)
α,β (C2)− F (G)

α,β (C1)

1 − F (G)
α,β (B)

, (15.54)

C1 = − ln(1 − q)
ln(b/L)

, C2 = − ln(1 − q)
ln(a/L)

,

where the interval bounds should satisfy

L < a < b ≤ L exp

(
− ln(1 − q)

B

)
.

Equations (15.53) and (15.54) or similar ones can be used to fit α and β. If the expert specifies
more than two quantities, then one can use, for example, a nonlinear least square procedure to
fit the structural parameters.

15.3 Estimation of the Prior Using Data

The prior distribution can be estimated using a marginal distribution of observations. The data
can be collective industry data, collective data in the bank, etc. This approach is referred to as
empirical Bayes (see Section 15.2.2 and Figure 15.1).

15.3.1 THE MAXIMUM LIKELIHOOD ESTIMATOR

Consider, for example, J similar risk cells with the data {X (j)
k , k = 1, 2, . . . , j = 1, . . . , J}.

This can be, for example, a specific business line/event-type risk cell in J banks. Denote the
data over past years as X (j) = (X (j)

1 , . . . ,X (j)
Kj

), that is, Kj is the number of observations in

bank j over past years. Assume that X (j)
1 , . . . ,X (j)

Kj
are conditionally independent and identically

distributed from the density f (·|θj), for given Θ(j) = θ(j). That is, the risk cells have different
risk profiles Θ(j). Assume now that the risks are similar, in a sense that Θ(1), . . . ,Θ(J) are
independent and identically distributed from the same density π(θ). That is, it is assumed that
the risk cells are the same a priori (before we have any observations) (see Figure 15.1). Then
the joint density of all observations can be written as

f (x(1), . . . , x(J)) =

J∏
j=1

∫ ⎡
⎣ Kj∏

k=1

f (x(j)
k |θ(j))

⎤
⎦π(θ(j))dθ(j). (15.55)

The parameters of π(θ) can be estimated using the maximum likelihood method by max-
imizing Equation (15.55). The distribution π(θ) is a prior distribution for the j-th cell. Using
internal data of the j-th risk cell, its posterior density is calculated from Equation (15.8) as

π(θ(j)|x(j)) =

Kj∏
k=1

f (x(j)
k |θ(j))π(θ(j)), (15.56)
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where π(θ) was fitted with MLE using Equation (15.55). The basic idea here is that the esti-
mates based on observations from all banks are better than those obtained using a smaller
number of observations available in the risk cell of a particular bank.

15.3.2 POISSON FREQUENCIES

It is not difficult to include a priori known differences (exposure indicators, expert opinions
on the differences, etc.) between the risk cells from the different banks. As an example, we
consider the case when the annual frequency of the events is modeled by the Poisson distri-
bution with the Gamma prior and estimate structural parameters using the industry data with
differences between the banks taken into account.

Model Assumptions 15.4 Consider J risk cell with the loss frequencies {Nj,k, k = 1, 2, . . . ,
j = 1, . . . , J}, where Nj,k is the annual number of events in the j-th risk cell in the k-th year.
Denote the data over past years in risk cell j as N j = (Nj,1, . . . ,Nj,Kj) and the data over past years
in all risk cells as N 1:J = (N 1, . . . ,N J ). Assume the following:

• Given Λj = λj , Nj,k are independent random variables from Poisson(λjVj,k), with probability
mass function denoted as f (·|λj). Here, Vj,k is the known constant (i.e., the gross income or the
volume or combination of several exposure indicators) and λj is a risk profile of the cell in the
j-th bank;

• Λ1, . . . ,ΛJ are independent and identically distributed from Gamma(α, β) with the density
denoted as π(·);

• Denote Nj =
∑Kj

k=1 Nj,k and Vj =
∑Kj

k=1 Vj,k.

Given Model Assumptions 15.4, the joint density of all data (over all J risk cells) can be writ-
ten as

f (n1:J ) =

J∏
j=1

∫ ⎡
⎣ Kj∏

k=1

f (nj,k|λj)

⎤
⎦π(λj)dλj

=

J∏
j=1

∫ ⎡
⎣ Kj∏

k=1

e−λjVj,k
(Vj,kλj)

nj,k

(nj,k)!

⎤
⎦ λα−1

j e−λj/β

Γ(α)βα
dλj

=

⎡
⎣ J∏

j=1

Kj∏
k=1

(Vj,k)
nj,k

(nj,k)!

⎤
⎦ J∏

j=1

Γ(α+ nj)

Γ(α)βα(Vj + 1/β)α+nj
. (15.57)

The parameters α and β can now be estimated using the maximum likelihood method by
maximizing

ln f (n1:J ) ∝
J∑

j=1

{
ln Γ(α+ nj)− ln Γ(α)− α lnβ − (α+ nj) ln

(
1
β
+ Vj

)}
(15.58)

over α and β. To avoid the use of numerical optimization required for maximizing Equation
(15.58), one could also use a method of moments (see Equations (15.62) and (15.63)). Once
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the prior distribution parameters α and β are estimated, then, using (15.8), the posterior dis-
tribution of λj for the j-th risk cell has a density

π(λj|nj) ∝
(λj/β)

α−1

Γ(α)β
e−λj/β

Kj∏
k=1

e−λjVj,k
(Vj,kλj)

nj,k

nj,k!

∝ λnj+α−1 exp

(
−λjVj −

λj

β

)
, (15.59)

which is Gamma(α̂, β̂) with

α̂ = α+

Kj∑
k=1

nj,k, β̂ = β

⎛
⎝1 + β

Kj∑
k=1

Vj,k

⎞
⎠

−1

. (15.60)

Assume that the exposure indicator of the cell in the j-th bank for the next year is
Vj,Kj+1 = V . Then, the predictive distribution for the annual number of events in the cell
(conditional on the past internal data) is Negative Binomial, NegBinomial(α̂, p̂ = 1/(1+V β̂)):

Pr[NKj+1 = n|N j = nj] =

∫
e−λV (V λ)n

n!
λα̂−1

Γ(α̂)β̂ α̂
e−λ/β̂dλ

=
Γ(n + α̂)

Γ(α̂)n!
(1 − p̂)n p̂ α̂. (15.61)

Remark 15.6 Observe that we have scaled the parameters for considering a priori differences. This
leads to a linear volume relation for the variance function. To obtain different functional relations, it
might be better to scale the actual observations. For example, given observations Xj,k, j = 1, . . . , J ,
k = 1, . . . ,Kj (these could be frequencies or severities), consider variables Yj,k = Xj,k/V j,k. Assume
that, for given Θj = θj , {Yj,k , k = 1, . . . ,Kj} are independent and identically distributed from
f (·|θj). Assume also that Θ1, . . . ,ΘJ are independent and identically distributed from π(·). Then
one can construct the likelihood of Yj,k using (15.55) to fit parameters of π(·) or try to use the method
of moments.

Estimating prior using method of moments. To avoid the use of numerical optimization
required for maximizing (15.58), one could also use a method of moments. For example, given
Model Assumptions 15.4, denote λ0 = E[Λj] = αβ, σ2

0 = Var[Λj] = αβ2. Then the
estimates λ̂0 and σ̂2

0 for λ0 and σ2
0, respectively, are

λ̂0 =
1
J

J∑
j=1

λ̂j, λ̂j =
1
Kj

Kj∑
k=1

nj,k

Vj,k
, j = 1, . . . , J , (15.62)

σ̂2
0 = max

⎡
⎣ 1

J − 1

J∑
j=1

(λ̂j − λ̂0)
2 − λ̂0

J

J∑
j=1

1
K 2

j

Kj∑
k=1

1
Vj,k

, 0

⎤
⎦ . (15.63)

These can easily be used to estimateα and β as α̂ = λ̂0/β̂ and β̂ = σ̂2
0/λ̂0 correspondingly. For

a proof, see, for example, Shevchenko (2011, proposition 4.1). Alternative unbiased moment
estimators can be found in Bühlmann and Gisler (2005, section 4.10).
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15.4 Combining Expert Opinions with External
and Internal Data

In the previous sections, we showed how to combine two data sources: expert opinions and
internal data; or external data and internal data. In order to estimate the risk capital of a bank
and to fulfill the Basel II requirements, risk managers have to take into account internal data,
relevant external data (industry data), and expert opinions. The aim of this section is to provide
an example of methodology to be used to combine these three sources of information. Here,
we follow the approach suggested by Lambrigger et al. (2007). As in the previous section, we
consider one risk cell only. In terms of methodology, we go through the following steps:

• In any risk cell, we model the loss frequency and the loss severity by parametric distri-
butions (e.g., Poisson for the frequency or Pareto, LogNormal, etc. for the severity). For
the considered bank, the unknown parameter vector θ (e.g., the Poisson parameter or the
Pareto tail index) of these distributions has to be quantified;

• A priori, before we have any company-specific information, only industry data are avail-
able. Hence, the best-prediction of our bank-specific parameter θ is given by the belief in
the available external knowledge such as the provided industry data. This unknown param-
eter of interest is modeled by a prior distribution (structural distribution) corresponding
to a random vector Θ. The parameters of the prior distribution (hyperparameters) are esti-
mated using data from the whole industry by, for example, MLE, as described in Section
15.3. If no industry data are available, the prior distribution could come from a “super
expert” that has an overview over all banks;

• The true bank-specific parameter θ0 is treated as a realization of Θ. The prior distribution
of a random vector Θ corresponds to the whole banking industry sector, whereas θ stands
for the unknown underlying parameter set of the bank being considered. Due to the vari-
ability among banks, it is natural to model θ by a probability distribution. Note that Θ is
random with known distribution, whereas θ0 is deterministic but unknown;

• As time passes, internal data

X = (X1, . . . ,XK )

as well as expert opinions

Δ = (Δ1, . . . ,ΔM )

about the underlying parameter θ become available. This affects our belief in the distri-
bution of Θ coming from external data only and adjusts the prediction of θ0. The more
information on X and Δ we have, the better we are able to predict θ0. That is, we replace
the prior density π(θ) by a conditional density of Θ given X and Δ.

In order to determine the posterior density π(θ|x, δ), consider the joint conditional den-
sity of observations and expert opinions (given the parameter vector θ):

h(x, δ|θ) = h1(x|θ)h2(δ|θ), (15.64)

where h1 and h2 are the conditional densities (given Θ = θ) of X and Δ, respectively. Thus,
X and Δ are assumed to be conditionally independent given Θ.
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Remark 15.7

• Notice that, in this way, we naturally combine external data information π(θ) with internal
data X and expert opinion Δ;

• In classical Bayesian inference (as it is used, for example, in actuarial science), one usually
combines only two sources of information as described in the previous sections. Here, we combine
three sources simultaneously using an appropriate structure, that is, Equation (15.64);

• Equation (15.64) is quite a reasonable assumption. Assume that the true bank-specific param-
eter is θ0. Then, (15.64) says that the experts in this bank estimate θ0 (by their opinion Δ)
independently of the internal observations. This makes sense if the experts specify their opinions
regardless of the data observed. Otherwise, we should work with the joint distribution h(x, δ|θ).

We further assume that observations as well as expert opinions are conditionally independent
and identically distributed, given Θ = θ, so that

h1(x|θ) =
K∏

k=1

f1(xk|θ), (15.65)

h2(δ|θ) =
M∏

m=1

f2(δm|θ), (15.66)

where f1 and f2 are the marginal densities of a single observation and a single expert opinion,
respectively. We have assumed that all expert opinions are identically distributed, but this can
be generalized easily to expert opinions having different distributions.

Here, the unconditional parameter density π(θ) is the prior density, whereas the condi-
tional parameter density π(θ|x, δ) is the posterior density. Let h(x, δ) denote the unconditional
joint density of the data X and expert opinionsΔ. Then, it follows from the Bayes theorem that

h(x, δ|θ)π(θ) = π(θ|x, δ)h(x, δ). (15.67)

Note that the unconditional density h(x, δ) does not depend onθ and thus the posterior density
is given by

π(θ|x, δ) ∝ π(θ)
K∏

k=1

f1(xk|θ)
M∏

m=1

f2(δm|θ). (15.68)

For the purposes of OpRisk, it should be used to estimate the predictive distribution of future
losses.

Hereafter, in this section, we assume that the parameters of the prior distribution are known
and we look at a single risk cell in one bank. Therefore, the index representing bank or risk cell
is not introduced.

15.4.1 CONJUGATE PRIOR EXTENSION

Equation (15.68) can be used in a general setup, but it is convenient to find some conjugate
prior distributions such that the prior and the posterior distribution have a similar type, or
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where at least the posterior distribution can be calculated analytically. This type of distribution
has been treated in Section 15.2 when two data sources have to be combined. For the case of
(15.68), the standard definition of the conjugate prior distribution, Definition 7.10, can be
extended as follows.

Definition 15.1 (Conjugate Prior Distribution) Let F denote the class of density functions
h(x, δ|θ), indexed by θ. A class U of prior densities π(θ) is said to be a conjugate family for
F if the posterior density π(θ|x, δ) ∝ π(θ)h(x, δ|θ) also belongs to the class U for all h ∈ F and
π ∈ U .

Again, in general, the posterior distribution cannot be calculated analytically but can be
estimated numerically – for instance, by the Markov chain Monte Carlo (MCMC) methods
described in Section 7.4.

15.4.2 MODELING FREQUENCY: POISSON MODEL

To model the loss frequency for OpRisk in a risk cell, consider the following model.

Model Assumptions 15.5 (Poisson–Gamma–Gamma) Assume that a risk cell in a bank has a
scaling factor V for the frequency in a specified risk cell (it can be the product of several economic
factors such as the gross income, the number of transactions, or the number of staff ).

(a) Let Λ ∼ Gamma(α0, β0) be a Gamma distributed random variable with shape parameter
α0 > 0 and scale parameter β0 > 0, which are estimated from (external) market data. That
is, the density of Gamma(α0, β0) plays the role of π(θ) in (15.68);

(b) Given Λ = λ, the annual frequencies, N1, . . . ,NT ,NT+1, where T + 1 refers to next
year, are assumed to be independent and identically distributed with Nt ∼ Poisson(V λ).
That is, f1(·|λ) in (15.68) corresponds to the probability mass function of a Poisson(V λ)
distribution;

(c) A financial company has M expert opinions Δm, 1 ≤ m ≤ M, about the intensity parameter
Λ. Given Λ = λ, Δm and Nt are independent for all t and m, and Δ1, . . . ,ΔM are indepen-
dent and identically distributed with Δm ∼ Gamma(ξ, λ/ξ), where ξ is a known parameter.
That is, f2(·|λ) corresponds to the density of a Gamma(ξ, λ/ξ) distribution.

Remark 15.8

• The parameters α0 and β0 in Model Assumptions 15.5 are hyperparameters (parameters for
distributions of the parameters) and can be estimated using the maximum likelihood method or
the method of moments (see, e.g., Section 15.3);

• In Model Assumptions 15.5, we assume

E[Δm|Λ] = Λ, 1 ≤ m ≤ M , (15.69)

that is, expert opinions are unbiased. A possible bias might only be recognized by the regulator,
as he alone has the overview of the whole market.
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Note that the coefficient of variation of the conditional expert opinion Δm|Λ is

Vco[Δm|Λ] = (Var[Δm|Λ)])1/2/E[Δm|Λ] = 1/
√

ξ,

and thus is independent of Λ. This means that ξ, which characterizes the uncertainty in the
expert opinions, is independent of the true bank-specific Λ. For simplicity, we have assumed
that all experts have the same conditional Vco and thus have the same credibility. Moreover,
this allows for the estimation of ξ as

ξ̂ = (μ̂/σ̂)2, (15.70)

where

μ̂ =
1
M

M∑
m=1

δm and σ̂2 =
1

M − 1

M∑
m=1

(δm − μ̂)2, M ≥ 2.

In a more general framework, the parameter ξ can be estimated, for example, by maximum
likelihood.

In the insurance practice, ξ is often specified by the regulator denoting a lower bound
for expert opinion uncertainty; for example, Swiss Solvency Test (see Swiss Financial Market
Supervisory Authority 2006, appendix 8.4). If the credibility differs among the experts, then
Vco[Δm|Λ] should be estimated for all m, 1 ≤ m ≤ M . Admittedly, this may often be a
challenging issue in practice.

Remark 15.9 This model can be extended to a model where one allows for more flexibility in
the expert opinions. For convenience, it is preferred that experts are conditionally independent and
identically distributed, given Λ. This has the advantage that there is only one parameter, ξ, that
needs to be estimated.

Using the notation from Section 15.4, the posterior density of Λ, given the losses up to
year K and the expert opinions of M experts, can be calculated. Denote the data over past years
as follows:

N = (N1, . . . ,NT ),

Δ = (Δ1, . . . ,ΔM ).

Denote also the arithmetic means by

N =
1
T

T∑
t=1

Nt , Δ =
1
M

M∑
m=1

Δm, etc. (15.71)

Then, the posterior density is given by the following theorem.

Theorem 15.2 Under Model Assumptions 15.5, given loss information N = n and expert opinion
Δ = δ, the posterior density of Λ is

π(λ|n, δ) = (ω/φ)(ν+1)/2

2Kν+1(2
√
ωφ)

λνe−λω−λ−1φ, (15.72)
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with

ν = α0 − 1 − Mξ + T n,

ω = VT +
1
β0

, (15.73)

φ = ξMδ,

and

Kν+1(z) =
1
2

∞∫
0

uνe−z(u+1/u)/2du. (15.74)

Here, Kν(z) is a modified Bessel function of the third kind (see, e.g., Abramowitz and Stegun
1965, p. 375).

Proof : Model Assumptions 15.5 applied to (15.68) yield

π(λ|n, δ) ∝ λα0−1e−λ/β0

T∏
t=1

e−Vλ (V λ)nt

nt !

M∏
m=1

(δm)
ξ−1

(λ/ξ)ξ
e−δmξ/λ

∝ λα0−1e−λ/β0

T∏
t=1

e−Vλλnt

M∏
m=1

(ξ/λ)ξe−δmξ/λ

∝ λα0−1−Mξ+T n exp

(
−λ

(
VT +

1
β0

)
− 1

λ
ξMδ

)
.

Remark 15.10

• A distribution with density (15.72) is known as the generalized inverse Gaussian (GIG) distri-
bution GIG(ω, φ, ν). This is a well-known distribution with many applications in finance and
risk management (see McNeil et al. 2005, pp. 75, 497). The GIG has been analyzed by many
authors; see a discussion by Jørgensen (1982). The GIG belongs to the popular class of subexpo-
nential (heavy-tailed) distributions; see Embrechts (1983) for a proof and Cruz et al. (2014) for
a detailed treatment of subexponential distributions. The GIG with ν ≤ 1 is a distribution of
the first hitting time for certain time-homogeneous processes (see, e.g., Jørgensen 1982, chapter
6). In particular, the (standard) inverse Gaussian (i.e., the GIG with ν = −3/2) is known
by financial practitioners as the distribution function determined by the first passage time of
a Brownian motion. The algorithm for generating realizations from a GIG can be found, for
example, in Lambrigger et al. (2007);

• In comparison with the classical Poisson–Gamma case of combining two sources of informa-
tion (considered in Section 15.2.3), where the posterior is a Gamma distribution, the posterior
π(λ|·) in (15.75) is more complicated. In the exponent, it involves both λ and 1/λ. Note that
expert opinions enter via the term 1/λ only;

• Observe that the classical exponential dispersion family with associated conjugates (Bühlmann
and Gisler, 2005, chapter 2.5) allows for a natural extension to GIG-like distributions. In this
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sense, the GIG distributions enlarge the classical Bayesian inference theory on the exponential
dispersion family.

For our purposes, it is interesting to observe how the posterior density transforms when
new data from a newly observed year arrive. Let νk, ωk, and φk denote the parameters for the
data (N1, . . . ,Nk) after k accounting years. Implementation of the update processes is then
given by the following equalities (assuming that expert opinions do not change).

Recursive calculation for parameters (as a function of sample size):

νk+1 = νk + nk+1,

ωk+1 = ωk + V , (15.75)
φk+1 = φk.

Obviously, the information update process has a very simple form and only the parameter
ν is affected by the new observation nk+1. The posterior density (15.75) does not change its
type every time new data arrive and, hence, is easily calculated.

The moments of a GIG are not available in a closed form through elementary functions
but can be expressed in terms of Bessel functions (see Appendix A.4.13). In particular, the
posterior expected number of losses is

E[Λ|N = n,Δ = δ] =

√
φ

ω

Kν+2(2
√
ωφ)

Kν+1(2
√
ωφ)

. (15.76)

The mode of a GIG has a simple expression (see Appendix A.4.13) that gives the posterior
mode

mode(Λ|N = n,Δ = δ) =
1

2ω
(ν +

√
ν2 + 4ωφ). (15.77)

It can be used as an alternative point estimator instead of the mean. In addition, the mode of
a GIG differs only slightly from the expected value for large |ν|.

We are clearly interested in robust prediction of the bank-specific Poisson parameter and
thus the Bayesian estimator (15.76) is a promising candidate within this OpRisk framework.
The examples below show that, in practice, (15.76) outperforms other classical estimators. To
interpret (15.76) in more detail, we make use of asymptotic properties. Using properties of
Bessel functions, it is easy to show that

Rν2(2ν) → ν as ν → ∞, (15.78)

where

Rν(z) =
Kν+1(z)
Kν(z)

(see Lambrigger et al. 2007, lemma B.1 in appendix B). Using this result, a full asymptotic
interpretation of the Bayesian estimator (15.76) can be found as follows.

Theorem 15.3 Under Model Assumptions 15.5, the following asymptotic relations hold:

(a) If T → ∞, then E[Λ|N ,Δ] → E[Nt |Λ = λ]/V = λ;
(b) If Vco[Δm|Λ] → 0, then E[Λ|N ,Δ] → Δm, m = 1, . . . ,M;
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(c) If M → ∞, then E[Λ|N ,Δ] → E[Δm|Λ = λ] = λ;
(d) If Vco[Δm|Λ] → ∞, m = 1, . . . ,M, then

E[Λ|N ,Δ] → 1
VTβ0 + 1

E[Λ] +
1
V

(
1 − 1

VTβ0 + 1

)
N .

(e) If E[Λ] = constant and Vco[Λ] → 0, then E[Λ|N ,Δ] → E[Λ].

Proof : The proof is given Lambrigger et al. (2007, appendix C). These asymptotic relations
should be understood in a probability sense, that is, true with probability 1 (the so-called P-
almost surely).

Remark 15.11 The GIG mode and mean are asymptotically the same for ν → ∞; also
4ωφ/ν2 → 0 for T → ∞, M → ∞, M → 0 or ξ → 0. Then, one can approximate the
posterior mode as

mode(Λ|N = n,Δ = δ) ≈ ν

2ω
1{ν≥0} +

φ

|ν| (15.79)

and obtain the results of Theorem 15.3 in an elementary manner avoiding Bessel functions.

Theorem 15.3 yields a natural interpretation of the posterior density (15.72) and its
expected value (15.76):

• As the number of observations increases, we give more weight to them and in the limit T →
∞ (case a), we completely believe in the observations Nk and neglect a priori information
and expert opinion;

• On the other hand, the more the coefficient of variation of the expert opinions decreases,
the more weight is given to them (case b);

• In Model Assumptions 15.5, we assume experts to be conditionally independent. In prac-
tice, however, even for Vco[Δm|Λ] → 0, the variance of Δ|Λ cannot be made arbitrarily
small when increasing the number of experts, as there is always a positive covariance term
due to positive dependence between experts. Since we predict random variables, we never
have “perfect diversification”, that is, in practical applications we would probably question
property c;

• Conversely, if experts become less credible in terms of having an increasing coefficient of
variation, our model behaves as if the experts do not exist (case d). The Bayes estimator
is then a weighted sum of prior and posterior information with appropriate credibility
weights. This is the classical credibility result obtained from Bayesian inference on the
exponential dispersion family with two sources of information (see 15.19);

• Of course, if the Vco of the prior distribution (i.e., of the whole banking industry) vanishes,
the external data are not affected by internal data and expert opinion (case e).

This interpretation shows that the model behaves as we would expect and require in prac-
tice. Thus, there are good reasons to believe that it provides an adequate model to combine
internal observations with relevant external data and expert opinions, as required by many risk
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managers. One can even go further and generalize the results from this section in a natural way
to a Poisson–Gamma–GIG model, that is, where the prior distribution is a GIG. Then, the
posterior distribution is again a GIG (see also Model Assumptions 15.5).

EXAMPLE 15.5

A simple example, taken from Lambrigger et al. (2007, example 3.7) illustrates
the described methodology combining three data sources. It also extends
Example 15.2, where two data sources are combined using the classical Bayesian
inference approach. Assume the following:

• External data (e.g., provided by external databases or regulator) estimate the
intensity of the loss frequency (i.e., the Poisson parameter Λ), which has a
prior Gamma distribution, Λ ∼ Gamma(α0, β0), as E[Λ] = α0β0 = 0.5
and Pr[0.25 ≤ Λ ≤ 0.75] = 2/3. Then, the parameters of the prior are
α0 ≈ 3.407 and β0 ≈ 0.147 (see Example 15.2);

• One expert gives an estimate of the intensity as δ = 0.7. For simplic-
ity, we consider in this example one expert only and, hence, the Vco is
not estimated using (15.70), but given a priori (e.g., by the regulator):
Vco[Δ|Λ] =

√
Var[Δ|Λ]/E[Δ|Λ] = 0.5, that is, ξ = 4;

• The observations of the annual number of losses n1, n2, . . . are sampled from
Poisson(0.6) and are the same as in the Example 15.2.

This means that a priori we have a frequency parameter distributed as
Gamma(α0, β0) with mean α0β0 = 0.5. The true value of the parameter λ for
this risk in a bank is 0.6, that is, it does worse than the average institution. How-
ever, our expert has an even worse opinion of his institution, namely δ = 0.7. Now,
we compare the following:

• The pure MLE

λ̂MLE
k =

1
k

k∑
i=1

ni,

• The Bayesian estimate Equation (15.19)

λ̂
(2)
k = E[Λ|N1 = n1, . . . ,Nk = nk], (15.80)

without expert opinion; and
• The Bayesian estimate derived in formula (15.76)

λ̂
(3)
k = E[Λ|N1 = n1, . . . ,Nk = nk,Δ = δ], (15.81)

which combines internal data and expert opinions with the prior.
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The results are plotted in Figure 15.6. The estimator λ̂(3)
k shows a much more sta-

ble behavior around the true value λ = 0.6, due to the use of the prior informa-
tion (market data) and the expert opinions. Given adequate expert opinions, λ̂(3)

k
clearly outperforms the other estimators, particularly if only a few data points are
available.

One could think that this is only the case when the experts’ estimates are appro-
priate. However, even if experts fairly under- (or over-)estimate the true parameter
λ, the method presented here performs better for our dataset than the other men-
tioned methods, when a few data points are available. Figure 15.7 displays the same
estimators, but where the expert’s opinion is δ = 0.4, which clearly underestimates
the true expected value 0.6.

In Figure 15.6, λ̂(3)
k gives better estimates when compared to λ

(2)
k . Observe also

that inFigure15.7, λ̂(3)
k givesmoreappropriateestimates thanλ(2)

k .Thoughtheexpert
is too optimistic, λ̂(3)

k manages to correct λ̂MLE
k (k ≤ 10), which is clearly too low.

This example yields a typical picture observed in numerical experiments that
demonstrates that the Bayes estimator (15.76) is often more suitable and stable than
MLEs based on internal data only. Note that in this example the prior distribution
as well as the expert opinion do not change over time. However, as soon as new
information is available or when new risk management tools are in place, the corre-
sponding parameters may be easily adjusted.
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figure 15.6 (◦) The Bayes estimate λ̂
(3)
k , k = 1, . . ., 15, combines the internal data

simulated from Poisson(0.6), external data giving E[Λ] = 0.5, and expert opinion δ = 0.7. It is
compared with the Bayes estimate λ̂

(2)
k (�), combines external data and internal data, and the

classical MLE, λ̂
MLE
k (•). See Example 15.5 for details
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figure 15.7 (◦) The Bayes estimate λ̂
(3)
k , k = 1, . . ., 15, combines the internal data

simulated from Poisson(0.6), external data giving E[Λ] = 0.5, and expert opinion δ = 0.4. It is
compared with the Bayes estimate λ̂

(2)
k (�), which combines external data and internal data, and

the classical MLE, λ̂
MLE
k (•). See Example 15.5 for details

Remark 15.12 (Modeling Frequency: Poisson with Stochastic Intensity) In this section, we
considered the situation where Λ is the same for all years t = 1, 2, . . . . However, in general, the
evolution of Λt can be modeled as having deterministic (trend, seasonality) and stochastic compo-
nents, that is, one may consider a sequence Λ1,Λ2, . . . ,ΛT ,ΛT+1, where T + 1 corresponds to
the next year. In actuarial mathematics, this is called a mixed Poisson model. That is, Λt is not only
different for different banks and different risks but also may change from year to year for a risk in the
same bank. A simple case, extending Model Assumptions 15.5 to the case when Λt is purely stochas-
tic and distributed according to a Gamma distribution, is considered by Peters et al. (2009) also see
Shevchenko (2011, section 4.5.3). The model setup with random intensities Λt can be utilized by the
modeler to introduce a dependence between different risk cells, by introducing dependence between
Λ
(1)
t , . . . ,Λ

(J)
t , where superscript refers to the risk cell (see, e.g., Peters et al. 2009).

15.4.3 LOGNORMAL MODEL FOR SEVERITIES

In general, one can use the methodology summarized by Equation (15.68) to develop a model
combining external data, internal data, and expert opinion for estimation of the severity. For
illustration purposes, this section considers the LogNormal severity model; the Pareto severity
model is developed in the next section.

Consider modeling severities X1, . . . ,XK , . . . using LogNormal(μ, σ2), where
X = (X1, . . . ,XK ) are the losses over past T years. Here, we take an approach considered
in Section 15.2.4, where μ is unknown and σ is known. The unknown μ is treated under the
Bayesian approach as a random variable Θμ. Then combining external data, internal data, and
expert opinions can be accomplished using the following model.
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Model Assumptions 15.6 (LogNormal–Normal–Normal) Let us assume the following severity
model for a risk cell in one bank:

(a) Let Θμ ∼ Normal(μ0, σ
2
0) be a normally distributed random variable with parameters

μ0, σ0, which are estimated from (external) market data, that is, π(θ) in (15.68) is the density
of Normal(μ0, σ

2
0);

(b) Given Θμ = μ, the losses X1,X2, . . . are conditionally independent with a common
LogNormal distribution:

Xk ∼ LogNormal(μ, σ2),

where σ is assumed to be known. That is, f1(·|μ) in (15.68) corresponds to the density of a
LogNormal(μ, σ2) distribution;

(c) The financial company has M experts with opinions Δm, 1 ≤ m ≤ M, about Θμ. Given
Θμ = μ, Δm and Xk are independent for all m and k, and Δ1, . . . ,ΔM are independent
with a common Normal distribution:

Δm ∼ Normal(μ, ξ2),

where ξ is a parameter estimated using expert opinion data. That is, f2(·|μ) corresponds to the
density of a Normal(μ, ξ2) distribution.

Remark 15.13

• For M ≥ 2, the parameter ξ can be estimated by the standard deviation of δm:

ξ̂ =

(
1

M − 1

M∑
m=1

(δm − δ)2

)1/2

. (15.82)

• The hyperparameters μ0 and σ0 are estimated from market data, for example, by MLE or by
the method of moments;

• In practice, one often uses an ad hoc estimate for σ, which is usually based on expert opinion
only. However, one could think of a Bayesian approach for σ, but then an analytical formula for
the posterior distribution in general does not exist and the posterior then needs to be calculated
numerically, for example, by MCMC methods.

Under Model Assumptions 15.6, the posterior density is given by

π(μ|x, δ) ∝ 1
σ0
√

2π
exp

(
− (μ− μ0)

2

2σ2
0

)

×
K∏

k=1

1
σ
√

2π
exp

(
− (ln xk − μ)2

2σ2

) M∏
m=1

1
ξ
√

2π
exp

(
− (δm − μ)2

2ξ2

)

∝ exp

[
−
(
(μ− μ0)

2

2σ2
0

+

K∑
k=1

(ln xk − μ)2

2σ2 +

M∑
m=1

(δm − μ)2

2ξ2

)]

∝ exp

[
− (μ− μ̂)2

2σ̂2

]
, (15.83)
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with

σ̂2 =

(
1
σ2

0
+

K
σ2 +

M
ξ2

)−1

,

and

μ̂ = σ̂2 ×
(
μ0

σ2
0
+

1
σ2

K∑
k=1

ln xk +
1
ξ2

M∑
m=1

δm

)
.

In summary, we derived the following theorem (also see Lambrigger et al. 2007).

Theorem 15.4 Under Model Assumptions 15.6, the posterior distribution of Θμ, given loss infor-
mation X = x and expert opinion Δ = δ, is a Normal distribution, Normal(μ̂, σ̂2), with

σ̂2 =

(
1
σ2

0
+

K
σ2 +

M
ξ2

)−1

and

μ̂ = E[Θμ|X = x,Δ = δ] = ω1μ0 + ω2ln x + ω3δ, (15.84)

where ln x = 1
K
∑K

k=1 ln xk and the credibility weights are

ω1 = σ̂2/σ2
0 , ω2 = σ̂2K /σ2, ω3 = σ̂2M/ξ2.

This theorem yields a natural interpretation of the considered model. The estimator μ̂ in
(15.84) weights the internal and external data as well as the expert opinion in an appropri-
ate manner. Observe that under Model Assumptions 15.6, the mean of the posterior distribu-
tion can be calculated explicitly. This is different from the frequency model in Section 15.4.2,
where asymptotic calculations (Theorem 15.3) were required for the interpretation of the terms.
However, interpretation of the terms is exactly the same as in Theorem 15.3. The more credible
the information, the higher is the credibility weight in Equation (15.84) – as expected from
an appropriate model for combining internal observations, relevant external data, and expert
opinions.

15.4.4 PARETO MODEL

Consider modeling severities X1, . . . ,XK , . . . using Pareto(γ, L) with a density

f (x) =
γ

L

( x
L

)−γ−1
, x ≥ L, ξ > 0, (15.85)

where X = (X1, . . . ,XK ) are the losses over past T years. Note that if ξ > 1, then the mean
is Lξ/(ξ − 1); otherwise, the mean does not exist. Here, we take an approach considered in
Section 15.2.5, where γ is unknown and the threshold L is known. The unknown γ is treated
under the Bayesian approach as a random variable Θγ . Then, combining external data, internal
data, and expert opinions can be accomplished using the following model.
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Model Assumptions 15.7 (Pareto–Gamma–Gamma) Let us assume the following severity
model for a risk cell in one bank:

(a) Let Θγ ∼ Gamma(α0, β0) be a Gamma-distributed random variable with parameters α0
and β0, which are estimated from (external) market data, that is, π(θ) in (15.68) is the density
of a Gamma(α0, β0) distribution;

(b) Given, Θγ = γ, the losses X1,X2, . . . in the risk cell are assumed to be conditionally indepen-
dent and Pareto-distributed:

Xk ∼ Pareto(γ, L),

where the threshold L ≥ 0 is assumed to be known and fixed. That is, f1(·|γ) in Equation
(15.68) corresponds to the density of a Pareto(γ, L) distribution;

(c) A financial company has M experts with opinions Δm, 1 ≤ m ≤ M, about the parameter
Θγ . Given Θγ = γ, Δm and Xk are independent for all m and k, and Δ1, . . . ,ΔM are
independent and identically distributed with

Δm∼Gamma(ξ, γ/ξ),

where ξ is a parameter estimated using expert opinion data (see 15.70). That is, f2(·|γ) corre-
sponds to the density of a Gamma(ξ, γ/ξ) distribution.

Theorem 15.5 Under Model Assumptions 15.7, given loss information X = x and expert opinion
Δ = δ, the posterior distribution of Θγ is GIG(ω, φ, ν) with the density

π(γ|x, δ) = (ω/φ)(ν+1)/2

2Kν+1(2
√
ωφ)

γνe−γω−γ−1φ, (15.86)

where

ν = α0 − 1 − Mξi + K ,

ω =
1
β0

+

K∑
k=1

ln
xk

L
, (15.87)

φ = ξMδ.

Proof : This is straightforward from the calculation of the posterior density

π(γ|x, δ) ∝ γα0−1e−γ/β0

K∏
k=1

γ

L

(xk

L

)−γ−1 M∏
m=1

(δm)
α−1

βα
e−δm/β

∝ γα0−1−Mξ+K exp

[
−γ

(
1
β0

+

K∑
k=1

ln
xk

L

)
− ξMδ

γ

]
. (15.88)

Hence, as in Theorem 15.2 for modeling Poisson frequencies, the posterior distribution is
a GIG with the convenient property that the term γ in the exponent in Equation (15.88) is only
affected by the internal observations, whereas the term 1/γ is driven by the expert opinions.
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Remark 15.14 It seems natural to generalize this result to the case of the GIG prior distribution.
In particular, changing the assumption (a) in Model Assumptions 15.7 to Θγ ∼ GIG(ω0, φ0, ν0),
with the parameters ν0, ω0, φ0, the posterior density π(γ|x, δ) is GIG(ω, φ, ν) with

ν = ν0 − Mξ + K ,

ω = ω0 +

K∑
k=1

ln(xk/L), (15.89)

φ = φ0 + ξMδ.

Note that for φ0 = 0, the prior GIG is a Gamma distribution and hence we are in the Pareto–
Gamma–Gamma situation of Model Assumptions 15.7.

The posterior mean (that can be used as a Bayesian point estimator for γ) can be calcu-
lated as

E[Θγ |X = x,Δ = δ] =

√
φ

ω

Kν+2(2
√
ωφ)

Kν+1(2
√
ωφ)

(15.90)

(see Appendix A.4.13). The MLE of the Pareto tail index γ is also easily calculated as

γ̂MLE =
K∑K

k=1 ln(xk/L)
. (15.91)

Then, completely analogous to Theorem 15.3, the following theorem gives a natural interpre-
tation of the Bayesian (posterior mean) estimator.

Theorem 15.6 Under Model Assumptions 15.7, the following asymptotic relations hold P-almost
surely:

(a) If K → ∞, then E[Θγ |X ,Δ] → E[Xk|Θγ = γ]/V = γ;
(b) If Vco[Δm|Δγ ] → 0, then E[Θγ |X ,Δ] → Δm, m = 1, . . . ,M;
(c) If M → ∞, then E[Θγ |X ,Δ] → E[Δm|Θγ = γ] = γ;
(d) If Vco[Δm|Θγ ] → ∞, m = 1, . . . ,M, then

E[Θγ |X ,Δ] → (1 − w)E[Θγ ] + wγ̂MLE,

where w = K β0/(γ̂
MLE + K β0);

(e) If E[Θγ ] = constant and Vco[Θγ ] → 0, then E[Θγ |X ,Δ] → E[Θγ ].

Remark 15.15

• Theorem 15.6 basically says that the higher the precision of a particular source of risk infor-
mation, the higher is its corresponding credibility weight. This means that we obtain the same
interpretations as for Theorem 15.3 and Equation (15.84);

• Observe that in Sections 15.4.2 and 15.4.3, we have applied Bayesian inference to the expected
values of the Poisson and the Normal distribution, respectively. However, Bayesian inference is
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much more general and, basically, can be applied to any reasonable parameter. In this section,
it is applied to the Pareto tail index;

• Observe that Model Assumptions 15.7 lead to an infinite mean model because the Pareto param-
eter Θγ can be less than 1 with positive probability. For finite mean models, the range of possible
γ has to be restricted to γ > 1. This does not impose difficulties (see Section 7.2.4).

The update process of (15.87) and (15.89) has again a simple linear form when new infor-
mation arrives. The posterior density (15.86) does not change its type every time a new obser-
vation arrives. In particular, only the parameter ω is affected by a new observation.

Recursive calculation for parameters (as a function of sample size):

νk+1 = νk + 1,
ωk+1 = ωk + ln(xk+1/L), (15.92)
φk+1 = φk.

The following example illustrates the simplicity and robustness of the posterior mean
estimator.

EXAMPLE 15.6

Assume that a bank would like to model its risk severity by a Pareto distribu-
tion with tail index Θγ . The regulator provides external prior data, saying that
Θγ ∼ Gamma(α0, β0) with α0 = 4 and β0 = 9/8, that is, E[Θγ ] = 4.5 and
Vco[Θγ ] = 0.5. The bank has one expert opinion δ with Vco[Δ|Θγ = γ] = 0.5,
that is, ξ = 4. We then observe the losses sampled from a Pareto(4, 1) distribution,
the same as in Example 15.4. In Figure 15.8 and Figure 15.9, the following
estimators are compared when expert opinion δ = 3 and δ = 5:

• The classical MLE

γ̂MLE
k =

k∑k
i=1 ln(xi/L)

. (15.93)

• The Bayesian posterior mean estimate Equation (15.43)

γ
(2)
k = E[Θγ |X1 = x1, . . . ,Xk = xk], (15.94)

which does not account for expert opinions;
• The Bayesian Posterior mean estimate, which includes expert opinion

γ̂
(3)
k = E[Θγ |X1 = x1, . . . ,Xk = xk,Δ = δ], (15.95)

given by Equation (15.90).

Figures 15.8 and 15.9 show the high volatility of the MLE for small numbers k.
It is very sensitive to newly arriving losses. The estimator γ̂(3)

k shows a much more
stable behavior around the true value α = 4, most notably when a few data points
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figure 15.8 (◦) The Bayes estimate γ̂(3)
k , k = 1, . . ., 15, combines the internal data

simulated from Pareto(4, 1), external data giving E[Θγ ] = 4.5, and expert opinion δ = 3. It is
compared with the Bayes estimate γ̂(2)

k (�), which combines external data and internal data, and
the classical MLE, γ̂MLE

k (•). See Example 15.6 for details
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figure 15.9 (◦) The Bayes estimate γ̂(3)
k , k = 1, . . ., 15, combines the internal data

simulated from Pareto(4, 1), external data giving E[Θγ ] = 4.5, and expert opinion δ = 5. It is
compared with the Bayes estimate γ̂(2)

k (�), which combines external data and internal data, and
the classical MLE, γ̂MLE

k (•). See Example 15.6 for details

are available. This example also shows that consideration of the relevant external
data and well-specified expert opinions stabilizes and smoothes the estimator in an
appropriate way.
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15.5 Combining Data Sources Using Credibility Theory

Quantification of the frequency and severity distributions of the low-frequency/high-severity
losses (that typically account for most of the OpRisk capital) is a challenging task. The data are
so limited that often full quantification of frequency, severity, and related prior distributions is
problematic. In this situation, methods of credibility theory are very useful as they require less
information. Credibility theory approach has been successfully used in the insurance industry
and actuarial sciences for many decades. It can be used to estimate frequency and severity distri-
butions of the low-frequency large losses in each risk cell by taking into account bank internal
data, expert opinions, and industry data. An excellent textbook on credibility theory is the one
by Bühlmann and Gisler (2005); also see Kaas et al. (2001, section 7.2).

Consider a model parameterized by θ that generates data X1, . . . ,Xn, . . .. In gen-
eral, we are interested in estimation of some function of θ (e.g., μ(θ)) given past data
X = (X1, . . . ,Xn). Under the Bayesian approach, θ is modeled by random variable Θ. Let
ˆμ(Θ) be some estimator of μ(Θ). Then the unconditional mean squared (MSEP) error of

prediction of an estimator ˆμ(Θ) is

MSEP = E[(μ(Θ)− ˆμ(Θ))2]

= E

[
E

[(
μ(Θ)− E[μ(Θ)|X ] + E[μ(Θ)|X ]− ˆμ(Θ)

)2
|X
]]

= E

[
(μ(Θ)− E[μ(Θ)|X ])

2
]
+ E

[(
E[μ(Θ)|X ]− ˆμ(Θ)

)2
]
.

It is easy to see that the posterior mean

ˆμ(Θ) = E[μ(Θ)|X ],

minimizes MSEP and thus is the best estimator with respect to the quadratic loss function; also
see Section 7.3.

In general, the posterior mean cannot be found in closed form. The prior and conditional
distributions should also be specified, which is certainly a problem in the case of small datasets.
The credibility theory initiated by Bühlmann (1970) considers estimators that are linear in
observations X1,X2, . . . and minimize a quadratic loss function. This allows for simple calcu-
lation of the estimators, referred to as credibility estimators or linear Bayes estimators.

The credibility estimators have already appeared in the previous sections. For example,
the estimator for the expected intensity of events (15.19), when frequencies are modeled by
Poisson(Λ = λ) and the prior for Λ is Gamma(α, β), is

Λ̂ = E[Λ|N1, . . . ,NT ] = wN + (1 − w)λ0,

where

• N = 1
T
∑T

t=1 Nt is the estimator of λ using the observed counts only;
• λ0 = αβ is the estimator of λ using a prior distribution only (e.g., specified by expert or

from external data);
• w = T

T+1/β is the credibility weight in [0,1) used to combine λ0 and N .
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The estimator Λ̂ is linear in data N1, . . . ,NT and minimizes the MSEP

E[(Λ̂− Λ)2].

Of course, the estimator Λ̂ was derived assuming a specific prior distribution. The credibility
theory avoids this assumption and requires the knowledge of the first and second moments
only. To demonstrate the idea, consider a simplistic credibility model.

Model Assumptions 15.8 (Simple Credibility Model) Consider the following credibility model
assumptions that will admit a linear Bayes estimator of the conditional mean μ(θ):

• Given Θ = θ, random variables X1,X2, . . . are independent and identically distributed with

μ(θ) = E[Xj|Θ = θ], σ2(θ) = Var[Xj|Θ = θ].

• Θ is a random variable with

μ0 = E[μ(Θ)], τ 2 = Var[μ(Θ)].

The aim of credibility estimators is to find an estimator ofμ(Θ) that is linear in X1, . . . ,Xn,
that is,

μ̂(Θ) = â0 + â1X1 + · · ·+ ânXn

and minimize quadratic loss function, that is,

(â0, . . . , ân) = min
a0,...,an

E
[
(μ(Θ)− a0 − a1X1 − · · · − anXn)

2] .
The invariance of the distribution of X1, . . . ,Xn under permutations of Xj gives
â1 = â2 = · · · = ân := b̂. Then, by solving the minimization problem for two parame-
ters a0 and b by setting corresponding partial derivatives with respect to a0 and b to zero, one
obtains

μ̂(Θ) = wX + (1 − w)μ0,

where

w =
n

n + σ2/τ 2 , X =
1
n

n∑
i=1

Xi.

For details of the proof and discussion, see Bühlmann and Gisler (2005, section 3.1).

15.5.1 BÜHLMANN–STRAUB MODEL

In OpRisk, we are interested in the Loss Distribution Approach (LDA) model for the annual
loss. That is, for a risk cell, the annual number of events N1,N2, . . . are modeled as random
variables from some discrete distribution P(·|λ) and the severities of the events X1,X2, . . .
are modeled as random variables from a continuous distribution F (·|θ). Under the Bayesian
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approach, λ and θ are distribution parameters that are not known and are modeled by random
variables Λ and Θ, respectively. Often, the credibility approach takes the empirical Bayes setup
(see Section 15.2.2). That is, it considers a group of risks, where Λ are different for different
risks but are drawn from the same distribution (the prior distribution) common across the risks
(and similar for Θ). In this framework, we do not consider risks individually but regard each
risk as embedded in a group of similar risks (collective). If a pure Bayesian setup is taken, then
the prior distribution is specified by the expert.

Usually, the credibility estimators are used to estimate the expected number of events or the
expected loss. However, in general, they can be applied to estimate any square integrable valued
random variable Z based on some known random vector Y . For example, the elements of Y
can be the MLEs, transformed data, quantiles, etc. In particular, the credibility estimators for
the severity and frequency distribution parameters can be calculated using the model developed
by Bühlmann and Straub (1970); see also Bühlmann and Gisler (2005, model assumptions 4.1
and theorems 4.2, 4.4).

Model Assumptions 15.9 (Bühlmann–Straub Model) Consider a portfolio of J risks modeled
by random variables Yj,k : k = 1, 2, . . . , j = 1, . . . , J . Assume that, for known weights wj,k, the
j-th risk is characterised by an individual risk profile θj , which is itself the realization of a random
variable Θj , and

• Given Θj , the data Yj,1,Yj,2, . . . are independent with

E[Yj,k|Θj] = μ(Θj), Var[Yj,k|Θj] = σ2(Θj)/wj,k (15.96)

for all j = 1, . . . , J ;
• The pairs (Θ1,Y1,k; k ≥ 1), …,(ΘJ ,YJ ,k; k ≥ 1) are independent;
• Θ1,…,ΘJ are independent and identically distributed with

μ0 = E[μ(Θj)], σ2 = E[σ2(Θj)], τ 2 = Var[μ(Θj)]

for all j.

Theorem 15.7 (Bühlmann–Straub Credibility Estimators) Under Model Assumptions 15.9,
given the available data Y j = (Yj,1, . . . ,Yj,Kj), j = 1, . . . , J , the inhomogeneous and homogeneous
credibility estimators of μ(Θj) are given as follows:

• The inhomogeneous credibility estimator is

̂
μ̂(Θj) = αjY j + (1 − αj)μ0. (15.97)

• The homogeneous credibility estimator is

̂
μ̂(Θj) = αjY j + (1 − αj)μ̂0. (15.98)
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Here:

μ̂0 =

J∑
j=1

αj

α0
Y j, Y j =

Kj∑
k=1

wj,k

w̃j
Yj,k, αj =

w̃j

w̃j + σ2/τ 2 ,

α0 =

J∑
j=1

αj, w̃j =

Kj∑
k=1

wj,k.

Remark 15.16

• Note that Kj may vary between the risks;
• Structural parameters μ0, σ2, and τ 2 can be determined using expert opinions (pure Bayes) or

using data of all risks (empirical Bayes);
• The difference between inhomogeneous and homogeneous credibility estimators is that the latter

estimates μ0 by μ̂0 using the data for all risks.

Using these credibility estimators, Bühlmann et al. (2007) suggested a “toy” model for
OpRisk, where the Pareto and Poisson distributions were used for modeling severity and fre-
quency, respectively. Although the model might be simple, it is a very good illustration of a con-
sistent credibility approach for estimating low-frequency/high-severity OpRisks. We illustrate
the use of the model in a simple case of J risks without considering a full hierarchical model.

15.5.2 MODELING FREQUENCY

Consider a collection of J similar risk cells (see Figure 15.10). Let Nj,k be the annual number of
events, with the event losses exceeding some high threshold L, in the j-th risk cell (j = 1, . . . , J)
in the k-th year. That is, the same threshold L is used across all risk cells in a collection (e.g.,
one can choose the threshold equal to the threshold in the database of external data).

Model Assumptions 15.10 (Poisson Frequency) Assume the following:

(a) Given Λj = λj , Nj,k are independent and distributed from Poisson(νjλj), that is,

Pr
[
Nj,k = n|Λj = λj

]
=

(
νjλj

)n

n!
exp

(
−νjλj

)
(15.99)

and moments

E[Nj,k|Λj] = νjΛj , Var[Nj,k|Λj] = νjΛj. (15.100)

The arrival rate parameter is defined as νjΛj , where νj are the known a priori constants and Λj
are the risk profiles of the bank cells. The constants νj are scaling factors, reflecting differences
in frequencies across the risks, discussed later;

(b) Assume that Λ1, . . . ,ΛJ are independent and identically distributed with

E[Λj] = λ0 and Var[Λj] = (ω0)
2,

and (Λ1,N1,k; k ≥ 1), . . . , (ΛJ ,NJ ,k; k ≥ 1) are independent;
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(c) The available data are {Nj,1, . . . ,Nj,Kj : j = 1, . . . , J}.

X1,1, X1,2,... ~ F(x|Θ1= θ1) Xj,1, Xj,2,... ~ F(x|Θj= θj)

N1,1, N1,2,... ~ P(n|Λ1= λ1) Nj,1, Nj,2,... ~ P(n|Λj= λj)

Collective prior with E [Λj]= λ0 and E [Θj]= θ0

...

Risk 1 

Λ1, Θ1, ΛJ, ΘJ

Risk J

figure 15.10 Example of the credibility model for OpRisk. Given Θj = θj and Λj = λj,
Xj,k ∼ Pareto(ajθj, Lj) and Nj,k ∼ Poisson(ν jλj) are the losses (above threshold Lj and their annual
frequencies in risk cells j = 1, . . ., J, respectively. The risk profiles Λj are drawn from common
distribution with E[Λj] = λ0,Var[Λj] = (ω0)2; risk profiles Θj are from common distribution with
E[Θj] = θ0, Var[Θj] = (τ 0)2. Scaling factors aj and ν j for the relative differences between the risks can
be specified using expert opinions or known factors

The Arrival Rate MLE Using Data in a Risk Cell
Under the first assumption in Model Assumptions 15.10, Nj,k, k = 1, . . . ,Kj in the j-th risk
cell are conditionally independent. Thus, given Λj = λj, the standard MLE of λj is

Λ̂j =
1
ν̃j

Kj∑
k=1

Nj,k, ν̃j = νjKj (15.101)

with

E[Λ̂j|Λj = λj] = λj,

Var[Λ̂j|Λj = λj] = λj/ ν̃j.

Again, a common situation in OpRisk is that only a few large losses are observed for some risk
cells, so the standard MLEs of parameters λj will not be reliable. The idea is to use data from
a collection of risks to improve the estimates of the arrival rate parameter.

The Arrival Rate Estimator Improved by Bank Data
Under the second assumption in Model Assumptions 15.10, Λ1,Λ2, . . . are independent and
identically distributed with E[Λj] = λ0 and Var[Λj] = (ω0)

2. Observe that the standardized
frequencies Fj,k = Nj,k/νj satisfy
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E[Fj,k|Λj] = Λj and Var[Fj,k|Λj] = Λj/νj. (15.102)

Thus, Fj,k satisfy the Bühlmann–Straub model (15.96)-(15.98) and the credibility estimator
for Λj is given by

ˆ̂
Λj = γjΛ̂j + (1 − γj)λ0, (15.103)

where

γj =
ν̃j

ν̃j + λ0/(ω0)2 . (15.104)

The structural parameters λ0 and ω0 can be estimated using all data from a collection
of J risks by solving two nonlinear equations (using, for example, an iterative procedure; see
Bühlmann and Gisler (2005, pp. 102–103):

(ω̂0)
2
= max

[
c ×

{
A − J λ̂0

ν0

}
, 0

]
, λ̂0 =

1
γ̃

∑
j

γjΛ̂j, (15.105)

where

ν0 =

J∑
j=1

ν̃j, A =
J

J − 1

J∑
j=1

ν̃j

ν0
(Λ̂j − F )2, γ̃ =

∑
j

γj,

F =
1
J

J∑
j=1

Λ̂j, c =
J

J − 1

⎧⎨
⎩

J∑
j=1

ν̃j

ν0

(
1 − ν̃j

ν0

)⎫⎬
⎭

−1

.

Here, the coefficients γj are given in Equation (15.104) with λ0 and ω0 replaced by λ̂0 and, ω̂0
respectively.

Remark 15.17

• Based on the cell data and all data in a collection of J risks, the best credibility estimator of the

arrival rate parameter in the j-th cell is νj
ˆ̂
Λj ;

• We assumed that the constants νj are known a priori. Note that these constants are defined up to
a constant factor, that is, the coefficients γj (and the final estimates of the arrival rate parameters)
will not change if all νj are changed by the same factor. Hence, only relative differences between
risks play a role. These constants have the interpretation of a priori differences and can be fixed
by the expert opinions on expected annual number of losses exceeding threshold L for each risk
cell. For example, the expert may estimate the expected annual number of events (exceeding
threshold Lj) denoted nj in the j-th cell as n̂j and estimate νj as n̂j/λ0. Only relative differences
play a role here; thus (without loss of generality), λ0 can be set equal to 1. For an example of
using expert opinions for quantification of frequency and severity distributions, see Alderweireld
et al. (2006) and Shevchenko and Wüthrich (2006).
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15.5.3 MODELING SEVERITY

Again, consider a collection of J similar risk cells (see Figure 15.10).

Model Assumptions 15.11 (Pareto Severity) Assume the following:

• Given, Θj = θj , the losses Xj,k, k ≥ 1 above threshold Lj in the j-th risk cell (j = 1, . . . , J)
are independent and Pareto-distributed, Pareto(ajθj, L), with the density

f (x) =
ajθj

L

( x
L

)−ajθj−1
(15.106)

respectively, for x ≥ L and ajθj > 0. It is assumed that the threshold L is known and is the same
across risk cells. Here aj are known a priori constants (differences) and θj are the risk profiles of
the cells in the bank. The constants aj are scaling factors, reflecting differences in severities across
the risks, which can be fixed by experts as discussed;

• Assume that Θ1, . . . ,ΘJ are independent and identically distributed with

E[Θj] = θ0 and Var[Θj] = (τ0)
2,

and (Θ1,X1,k; k ≥ 1), . . . , (ΘJ ,XJ , k; k ≥ 1) are independent. Here, θ0 is a risk profile of
the collection.

• The available data are denoted as {Xj,1, . . . ,Xj,K̃j
: j = 1, . . . , J}.

Remark 15.18

• Note that the number of available losses in the j-th risk cell, denoted as K̃j, is the number of
events over Kj years. The latter is the number of observed years for modeling annual frequencies
in the previous section;

• The results in this section are valid if thresholds are different for different risk cells, although in
the previous section for modeling frequencies we assumed the same threshold across risk cells;

• The Pareto distribution is often used in the insurance industry to model large claims and is a
good candidate for modeling large OpRisk losses. It is interesting to note that the conditional
distribution of the losses exceeding any higher level L̃ is also a Pareto distribution with parameters
ajθj and L̃.

The Tail Parameter MLE Using Data in a Risk Cell
Under the first assumption in Model Assumptions 15.11, the losses Xj,k, k ≥ 1 in the j-th risk
cell are conditionally (given Θj) independent and Pareto-distributed. Thus, MLE of θj is

Ψ̂j =

⎡
⎣ aj

K̃j

K̃j∑
k=1

ln

(
Xj,k

L

)⎤⎦
−1

. (15.107)

It is easy to show (see Rytgaard 1990) that an unbiased estimator of θj is

Θ̂j =
K̃j − 1

K̃j
Ψ̂j, (15.108)
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with

E[Θ̂j|Θj = θj] = θj, Var[Θ̂j|Θj = θj] =
(θj)

2

K̃j − 2
. (15.109)

A common situation in OpRisk is that only a few losses are observed for certain risk cells.
Thus, the standard MLE ajΘ̂j (based on the data in the j-th risk cell only) for the Pareto tail
parameters will not be reliable (this is easy to see from the variance in (15.109)). The idea is
to use the collective losses (from bank, industry, etc.) to improve the estimates of the Pareto
parameters in the risk cells.

The Tail Parameter Estimator Improved by Collective Data
The tail parameter estimator ajΘ̂j can be improved using all data in the collection of J risks
as follows. Under the second assumption in Model Assumptions 15.11, Θ1, . . . ,ΘJ are inde-
pendent and identically distributed random variables with E[Θj] = θ0 and Var[Θj] = (τ0)

2,
where θ0 is a risk profile for the whole collective. Observe that the unbiased estimators Θ̂j (see
15.109), satisfy the assumptions of the Bühlmann–Straub model (15.96)–(15.98) and thus the
credibility estimator is given by

ˆ̂
Θj = αjΘ̂j + (1 − αj)θ0, (15.110)

where

αj =
K̃j − 2

K̃j − 1 + (θ0/τ0)2
.

The structural parameters θ0 and (τ0)
2 can be estimated using data across all risk cells in

the bank by solving two nonlinear equations (using, for example, an iterative procedure; see
Bühlmann and Gisler, 2005, pp. 116–117):

(τ̂0)
2 =

1
J − 1

J∑
j=1

αj(Θ̂j − θ̂0)
2, θ̂0 =

1
W

J∑
j=1

αjΘ̂j, (15.111)

where W =
∑J

j=1 αj.
Here, the coefficients αj are given in (15.110), with θ0 and (τ0)

2 replaced by θ̂0 and (τ̂0)
2,

respectively. If the solution for (τ̂0)
2 is negative, then we set αj = 0 and

θ̂0 =
1

W

J∑
j=1

wjΘ̂j, wj = Kj − 2, W =

J∑
j=1

wj.

The best credibility estimate for the tail parameter in the j-th cell (based on the cell data
and all data in the collection) is aj

ˆ̂
Θj. We assume that constants aj are known a priori. Note

that these constants are defined up to a constant factor, that is, coefficients αj (and final esti-
mates of tail parameters) will not change if all aj, j = 1, . . . , J , are changed/scaled by the same
factor. Hence, only relative differences between risks play a role. These constants have the inter-
pretation of a priori differences and can be fixed by an expert using opinions on, for example,
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quantiles of losses exceeding Lj. For example, the expert may estimate the probability qj, that
the loss in the j-th cell will exceed level Hj, as q̂j and use relations

ajθj = − ln qj/ ln(Hj/Lj) and E[Θj] = θ0

to estimate aj as − ln q̂j/[θ0 ln(Hj/Lj)]. Only relative differences play a role, so here (without
loss of generality) θ0 can be set equal to 1. Experts may specify several quantiles, then aj can be
estimated using, for example, a least squared method. Ideally, the expert specifying constants aj
has a complete overview of all risk cells in the bank, as only relative differences between risks
are important. However, in practice, opinions from experts with special knowledge of business
specifics within a risk cell are required. Combining opinions from different experts is one of
the problems to be resolved by a practitioner.

15.5.4 NUMERICAL EXAMPLE

To illustrate the previous procedures, consider an example where losses (exceeding USD 1 mil-
lion) are observed across 10 risk cells as given in Table 15.1 and all risk cells are the same a
priori, a1 = · · · = a10 = 1. Using these losses, the MLEs for the tail parameters Θ̂j, presented
in Table 15.1, are calculated by (15.108). Then, using (15.110) and (15.111), we estimate the
structural parameters (τ̂0)

2 ≈ 1.116 and θ̂0 ≈ 3.157, and credibility coefficients αj ≈ 0.446
(the coefficients are the same because equal number of losses are observed in the cells).

table 15.1 Losses (in million USD) exceeding USD 1 million observed across 10 risk
cells, and corresponding maximum likelihood and credibility estimators for the Pareto tail
parameter in the risk cells

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10

Losses (in million USD) exceeding USD 1 million observed in risk cells

1.557 9.039 1.166 1.548 1.578 1.201 1.006 1.741 1.364 1.074
1.079 2.138 1.037 1.040 1.282 2.815 1.169 1.165 2.036 1.103
1.047 1.008 1.136 1.045 1.092 3.037 1.215 1.010 1.014 1.664
1.199 1.761 2.104 1.774 1.658 1.001 1.116 1.096 1.217 1.049
1.395 1.654 1.774 1.045 2.025 1.114 1.010 1.060 1.202 1.104
1.060 1.073 1.161 1.856 1.129 1.422 1.560 1.352 1.095 2.924
3.343 2.435 1.080 1.636 1.946 2.397 1.059 1.044 1.348 1.265
2.297 4.357 1.154 1.403 1.831 1.241 1.059 1.678 1.191 1.333
1.297 1.576 1.257 2.522 1.478 1.522 1.050 1.882 1.161 1.424
1.180 1.113 1.231 1.113 1.208 1.243 1.231 1.401 1.017 1.435

Maximum likelihood estimators (MLEs) Θ̂j, j = 1, . . . , 10

2.499 1.280 3.688 2.487 2.264 1.992 6.963 3.335 4.194 2.870

Credibility estimators ˆ̂
Θj, j = 1, . . . , 10 disregarding industry data

2.863 2.319 3.394 2.858 2.759 2.637 4.855 3.236 3.620 3.029
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The credibility estimators ˆ̂
Θj, shown in Table 15.1, are calculated using (15.110). In this

example, the MLEs are quite volatile as the number of observations is small. For example, cell
7 has no large losses and thus its MLE is high; cell 10 has one large loss and thus its MLE
is smaller. One could easily calculate cell MLEs versus the number of observations in a cell
and observe that MLEs are highly volatile for a small number of observations. One important
observation may lead to a substantial change in the MLE. The credibility estimators (based
on data in the bank) are smoother in comparison with MLEs. This is because a credibility
estimator is a weighted average, according to credibility theory, between a risk cell MLE and
the estimator of the structural parameter θ̂0 based on all data in the collection. The credibil-
ity weights αj are approximately 0.45, which means that a risk cell MLE (based on observa-
tions in a cell) Θ̂j and the a priori estimate θ̂0 ≈ 3.157 are weighted with 0.45, and 0.55,
respectively.

15.5.5 REMARKS AND INTERPRETATION

The credibility formulas (15.103) and (15.110) for the frequency and severity parameter esti-
mators, based on a cell and collective data, have a simple interpretation.

• As the number of observations in the j-th cell increases, the larger are the credibility weights
γj and αj that are assigned to the estimators Λ̂j and Θ̂j (based on the cell observations)
and the lesser are the weights that are assigned to the estimators θ̂0 and λ̂0 (based on all
observations in a collection of risks), respectively;

• Also, the larger the τ0 and ω0 (variance across risk cells in a collection), the larger are the
weights that are assigned to Θ̂j and Λ̂j correspondingly. For a detailed discussion on the
credibility parameters, refer to Bühlmann and Gisler (2005, section 4.4).

It is not difficult to consider a hierarchical model, where the collection of risks is part of
another larger collection. For example, one can consider the collection of similar risks in the
bank and then consider a collection of banks (i.e., the banking industry). This will further
improve the estimates of arrival rate νjλj and the tail parameter ajθj. This can be done using a
hierarchical credibility model (see Bühlmann and Gisler, 2005, chapter 6). In particular, one can
consider M banks with bank-specific parameters λ(m)

0 and θ
(m)
0 modeled by random variables

Λ
(m)
0 and Θ

(m)
0 , m = 1, . . . ,M , respectively. Then assume the following:

(a) Λ
(m)
0 are independent and identically distributed random variables with

E[Λ
(m)
0 ] = λcoll and Var[Λ

(m)
0 ] = ω2

coll .

(b) Θ
(m)
0 are independent and identically distributed random variables with

E[ϑ
(m)
0 ] = ϑcoll and Var[ϑ

(m)
0 ] = τ 2

coll .

The credibility weights and estimators in such a hierarchical model can be calculated as
described by Bühlmann et al. (2007).

The Capital Calculations. For the purposes of the regulatory capital calculations of OpRisk,
the annual loss distribution, in particular its 0.999 quantile (VaR) as a risk measure, should be
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quantified for each Basel II risk cell in the matrix of eight business lines times seven risk types
and for the whole bank. The credibility model presented here is for modeling low-frequency/
high-severity losses exceeding some large threshold L. Given the credibility estimates for the
model parameters, the annual loss distribution can be calculated as usual using methods listed
in Chapter 13; also see Bühlmann et al. (2007, section 5). Of course, modeling of the high-
frequency/low-severity losses (below threshold L) should be added to the model before the
final OpRisk capital charge is estimated. For a related actuarial literature on this topic, see
Sandström (2006) and Wüthrich (2006). That is, one can model the losses above threshold L
using credibility theory as described earlier, while the losses below the threshold are modeled
separately. Note that typically the low-frequency/high-severity losses give the largest contribu-
tion to the final capital charge. The number of high-frequency/low-impact losses recorded in
the bank internally is usually large enough to obtain reliable estimates by a standard fitting of
the frequency and severity distributions without the use of the external data.

The important assumption in calculating the credibility estimates is that the risk cells are
independent. While it is an important (and quite realistic) assumption of the proposed model
that the low-frequency/high-severity losses from different risk cells are independent, depen-
dence can be considered between the high-frequency/low-impact losses from different risk cells.
Accurate quantification of the dependencies between the risks is a difficult task; this is an open
field for future research. The dependence can be introduced using different methods (copula
methods, common shocks, etc.), which are discussed in Chapters 10, 11 and 12.

15.6 Nonparametric Bayesian Approach
via Dirichlet Process

Typically, under the Bayesian approach, we assume that there is an unknown distribution under-
lying observations x1, . . . , xn and this distribution is parametrized by θ. Then we place a prior
distribution on the parameter θ and try to infer the posterior of θ given observations x1, . . . , xn.
Under the nonparametric approach, we do not make an assumption that the underlying loss
process–generating distribution is parametric; we put a prior on the distribution directly and
find the posterior of the distribution given data that is a combination of the prior with the
empirical data distribution.

One of the most popular Bayesian nonparametric models is based on the Dirichlet process
introduced by Ferguson (1973). The Dirichlet process represents a probability distribution of
the probability distributions. It can be specified in terms of a base distribution H(x) and a
scalar concentration parameter α > 0 and denoted as DP(α,H). For example, assume that we
model severity distribution F (x), which is unknown and modeled as random at each point x
using DP(α,H). Then, the mean value of F (x) is the base distribution H(x) and variance of
F (x) is H(x)(1−H(x))/(α+1). That is, as the concentration parameter α increases, the true
distribution comes closer to the base distribution H(x). Each draw from the Dirichlet process
is a distribution function and for x1 < x2 < · · · < xk, the distribution of

F (x1), F (x2)− F (x1), . . . , 1 − F (xk),

is a k + 1 multivariate Dirichlet distribution

Dirichlet(αH(x1), α(H(x2)− H(x1)), . . . , α(1 − H(xk))),

formally defined as follows.
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Definition 15.2 (Dirichlet Distribution) A d-variate Dirichlet distribution is denoted as
Dirichlet(α1, α2, . . . , αd ), where αi > 0. The random vector (Q1,Q2, . . . ,Qd ) has a Dirichlet
distribution if its density function is

f (q1, q2, . . . , qd−1) =
Γ(α1 + · · ·+ αd )∏d

i=1 Γ(αi)

d∏
i=1

qαi−1
i , (15.112)

where qi > 0 and q1 + · · ·+ qd = 1.

There are several formal definitions of Dirichlet processes; for a detailed description
see Ghosh and Ramamoorthi (2003). For the purposes of this book, we just present a few
important results here that can be easily adopted for OpRisk. In particular, the i-th marginal
distribution of Dirichlet(α1, . . . , αd ) is Beta(αi, α0 − αi), where α0 = α1 + · · · + αd .
Thus, the marginal distribution of the Dirichlet process DP(α,H) is Beta distribution
F (x) ∼ Beta(αH(x), α(1 − H(x))), that is, explicitly it has the Beta density

Pr[F (x) ∈ dy] =
Γ(α)

Γ(αH(x))Γ(α(1 − H(x)))
yαH(x)(1 − y)α(1−H(x))−1dy, (15.113)

where Γ(·) is a Gamma function.
If the prior distribution for F (x) is DP(α,H), then after observing x1, . . . , xn, the poste-

rior for F (x) is

DP

(
α+ n,

α

α+ n
H(x) +

n
α+ n

1
n

n∑
i=1

Ixi≤x

)
. (15.114)

In other words, the Dirichlet process is a conjugate prior with respect to empirical sam-
ple distribution; in posterior, our unknown distribution F (x) will have updated concentration
parameter α+ n and updated base distribution

H̃(x) =
α

α+ n
H(x) +

n
α+ n

1
n

n∑
i=1

Ixi≤x, (15.115)

which is a weighted sum of the prior base distribution and empirical distribution with the
weights α/(α+ n) and n/(α+ n), respectively.

The modeler can choose H(x) as an expert opinion on distribution F (x), then the poste-
rior estimate of the distribution F (x) after observing data x1, . . . , xn will be given by H̃(x) in
(15.115).

Remark 15.19

• As new data are collected, the posterior distribution, converges to the empirical distribution,
which itself converges to the true distribution of F (x);

• The larger the value of α, the less impact new data will have on the posterior estimate of
F (x); if α = 0, the posterior distribution will simply be the empirical distribution of the
data;
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• The concentration parameter α can be interpreted as an“effective sample size” associated with
the prior estimate. In assigning the value of c, the modeler should attempt to quantify the level of
information contained in the scenario estimates, as measured by the equivalent amount of data
that would provide a similar level of confidence. The modeler can also estimate α from a likely
interval range of severities or frequencies (i.e., from the variance of the possible distribution).
Cope (2012) suggests that given the rarity of the scenarios considered, the assigned value of α
will likely be low, often less than 10 and possibly as low as 1.

EXAMPLE 15.7 Combining Scenario with Data Using a Dirichlet Process

Assume that an expert provides estimates in USD million for a risk severity as
follows. If loss occurs, then the probability to exceed 10, 30, 50, and 120 are 0.9,
0.5, 0.25, and 0.1, respectively, and the maximum possible loss is USD 600 million.
That is, probability distribution H(x) at points (0, 10, 30, 50, 120, 600) is (0,
0.1, 0.5, 0.75, 0.9, 1). This is presented in Figure 15.11 with linear interpolation
between specified distribution points.

If we choose the prior for the unknown severity distribution F (x) as
DP(α,H(x)) with concentration parameter α = 10, then expected value for
F (x) from the prior is H(x) and bounds for F (x) for each x can be calculated
from the marginal beta distribution (15.113). For example, the lower and upper
bounds in Figure 15.11 correspond to 0.1 and 0.9 quantiles of the Beta distribu-
tion Beta(αH(x), α(1 − H(x))), that is, will contain the true value of F (x) with
probability 0.8 for each x.

Severity scenario distribution
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figure 15.11 Dirichlet marginal bounds for scenario severity distribution; for details, see
Example 15.7
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Severity distribution
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figure 15.12 Combining scenario severity distribution with empirical distribution of the
observed data; for details, see Example 15.7

Now, assume that we observe the actual losses 20, 30, 50, 80, 120, 170, 220,
and 280 all in USD million. The posterior mean of F (x) combining scenario and
data is easily calculated using (15.115) and presented in Figure 15.12 along with the
empirical data and scenario distribution.

15.7 Combining Using Dempster–Shafer Structures
and p-Boxes

Often risk assessment includes situations where there is little information on which to evaluate
a probability or the information is nonspecific, ambiguous, or conflicting. In this case, one
can work with bounds on probability. For example, this idea has been developed by Walley
and Fine (1982) and Berleant (1993) and there are suggestions that the idea has its roots from
Boole (1854). Williamson and Downs (1990) introduced interval-type bounds on cumulative
distribution functions called “probability boxes” or “p-boxes”. They also described algorithms
to compute arithmetic operations (addition, subtraction, multiplication, and division) on pairs
of p-boxes.

The method of reasoning with uncertain information known as Dempster–Shafer the-
ory of evidence was suggested by Dempster (1967, 1968) and Shafer (1976). A special rule
to combine the evidence from different sources was formulated by Dempster (1968); it is
somewhat controversial and there are many modifications to the rule such as shown by Yager
(1986, 1987).
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For a good summary on the methods for obtaining Dempster–Shafer structures and “p-
boxes”, and aggregation methods handling a conflict between the objects from different sources,
see Ferson et al. (2003). The use of p-boxes and Dempster–Shafer structures in risk analy-
ses offers many significant advantages over a traditional probabilistic approach. Ferson et al.
(2003) list the following practical problems faced by analysts that can be resolved using these
methods:

• Imprecisely specified distributions;
• Poorly known or even unknown dependencies;
• Non-negligible measurement uncertainty;
• Nondetects or other censoring in measurements;
• Small sample size;
• Inconsistency in the quality of input data;
• Model uncertainty; and
• Nonstationarity (nonconstant distributions).

Walley (1991) emphasized that the use of imprecise probabilities does not require one to
assume the actual existence of any underlying distribution function. This approach could be
useful in risk analyses even when the underlying stochastic processes are nonstationary or could
never, even in principle, be identified to precise distribution functions. Oberkampf et al. (2001)
and Oberkampf (2005) demonstrated how the theory could be used to model uncertainty in
engineering applications of risk analysis stressing that the use of p-boxes and Dempster–Shafer
structures in risk analyses offers many significant advantages over a traditional probabilistic
approach.

These features are certainly attractive for OpRisk, especially for combining expert opinions,
and were applied for OpRisk by Sakalo and Delasey (2011). At the same time, some writers
consider these methods as unnecessary elaboration that can be handled within the Bayesian
paradigm through Bayesian robustness (Berger, 1985, section 4.7). It might also be difficult to
justify the application of Dempster’s rule (or its other versions) to combine statistical bounds
for empirical data distribution with exact bounds for expert opinions.

15.7.1 DEMPSTER–SHAFER STRUCTURES AND P-BOXES

A Dempster–Shafer structure on the real line is similar to a discrete distribution except that
the locations where the probability mass resides are sets of real values (focal elements) rather
than points. The correspondence of probability masses associated with the focal elements is
called the basic probability assignment. This is analogous to the probability mass function
for an ordinary discrete probability distribution. Unlike a discrete probability distribution
on the real line, where the mass is concentrated at distinct points, the focal elements of a
Dempster–Shafer structure may overlap one another, and this is the fundamental difference
that distinguishes Dempster–Shafer theory from traditional probability theories. Dempster–
Shafer theory has been widely studied in computer science and artificial intelligence, but
has never achieved complete acceptance among probabilists and traditional statisticians, even
though it can be rigorously interpreted as classical probability theory in a topologically coarser
space.
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Definition 15.3 (Dempster–Shafer Structure) A finite Dempster–Shafer structure on the real
line R is a probability assignment, which is a mapping

m : 2R → [0; 1],

where m(∅) = 0; m(ai) = pi for focal elements ai ⊆ R, i = 1, 2, . . . , n; and m(D) = 0 whenever
D 
= ai for all i, such that 0 < pi and p1 + · · ·+ pn = 1.

For convenience, we will assume that the focal elements ai are closed intervals [xi, yi]. Then
implementation of a Dempster–Shafer structure will require 3n numbers: one for each pi, and
xi and yi for each corresponding focal element.

Remark 15.20 Note that 2R denotes a power set. The power set of a set S is the set of all subsets of S
including the empty set ∅ and S itself. If S is a finite set with K elements, then the number of elements
in its power set is 2K . For example, if S is the set {x, y}, then the power set is {∅, x, y, {x, y}}.

The upper and lower probability bounds can be defined for a Dempster–Shafer structure.
These are called plausibility and belief functions defined as follows.

Definition 15.4 (Plausibility Function) The plausibility function corresponding to a Dempster–
Shafer structure m(A) is the sum of all masses associated with sets that overlap with or merely touch
the set b ⊆ R

Pls(b) =
∑

ai∩b �= ∅
m(ai),

which is the sum over i such that ai ∩ b 
= ∅.

Definition 15.5 (Belief Function) The belief function corresponding to a Dempster–Shafer
structure m(A) is the sum of all masses associated with sets that are subsets of b ⊆ R

Bel(b) =
∑
ai⊆b

m(ai),

which is the sum over i such that ai ⊆ b.

Obviously, Bel(b) ≤ Pls(b). Moreover, if one of the structures (either Dempster–Shafer struc-
ture, or Bel or Pls) is known, then the other two can be calculated. Considering sets of all real
numbers less than or equal to z, it is easy to get upper and lower bounds for a probability distri-
bution of a random real-valued quantity characterized by a finite Dempster–Shafer structure.

Consider a Dempster–Shafer structure with focal elements that are closed intervals [xi, yi].
We can specify it by listing the focal elements and their associated probability masses pi as
{([x1, y1], p1), ([x2, y2], p2), . . . , ([xn, yn], pn)}. Then the left bound (cumulative plausibility
function) is

F U (z) =
∑
xi ≤ z

pi (15.116)
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and the right bound (cumulative belief function) is

F L(z) =
∑
yi ≤ z

pi. (15.117)

These functions are nondecreasing and right continuous functions from real numbers onto
the interval [0, 1] and F L(z) ≤ F U (z), that is, proper distribution functions. They define the
so-called p-box [F L(z), F U (z)] that can be defined without any reference to Dempster–Shafer
structure.

Definition 15.6 (Probability Box or p-Box) p-box is a set of all probability distributions F (x)
such that F L ≤ F (x) ≤ F U (x), where F L(x) and F U (x) are nondecreasing functions from the
real line into [0, 1]. It is denoted as [F L, F U ].

That is, we say that [F L, F U ] is a p-box of a random variable X whose distribution F (x) is
unknown except that F L ≤ F (x) ≤ F U (x).

EXAMPLE 15.8

Consider the following Dempster–Shafer structure with three focal elements that
have the same probability 1/3:

Structure A =

⎧⎪⎨
⎪⎩
[x1 = 5, y1 = 20]; p1 = 1/3
[x2 = 10, y2 = 25]; p2 = 1/3
[x3 = 15, y3 = 30]; p3 = 1/3

Plausibility and belief functions are easily calculated using (15.116) and (15.117),
respectively and presented by structure A in Figure 15.13.

15.7.2 DEMPSTER’S RULE

The central method in the Dempster–Shafer theory is Dempster’s rule for combining evidence
(see Shafer 1976 and Dempster 1967). In some situations, this rule produces counterintuitive
results, and various alternative versions of the rule have been suggested, for example, by Yager
(1987). In this section, we briefly describe only the original Dempster’s rule, which is used to
combine evidence obtained from two or more independent sources for the same quantity in
question (e.g., expert opinions about a specific risk). A considerably more extensive review of
this literature is available by Sentz and Ferson (2002).

Definition 15.7 (Dempster’s Rule) The combination of two independent Dempster–Shafer
structures m1(A) and m2(B) with focal elements ai and bj, respectively, is another Dempster-Shafer
structure with probability assignment

m(∅) = 0; m(c) =
1

1 −
∑

ai∩bj = c

m1(ai)m2(bj) for c 
= ∅, (15.118)
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Dempster–Shafer structure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

(a)

5 10 15 20 25 30 35 40
z

P
ro

ba
bi

lit
y

Plausibility Belief

(b)

Plausibility Belief

Dempster–Shafer structure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40
z

P
ro

ba
bi

lit
y

(c)
Dempster–Shafer structure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40
z

P
ro

ba
bi

lit
y Plausibility Belief

figure 15.13 Plausibility and belief functions for Dempster–Shafer structures in Examples 15.8 and
15.9. Focal elements of the structure are indicated by arrows. Structure C is a result of combining structures
A and B via Dempster’s rule
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that is, the sum over all i and j such that intersection of ai and bj is equal to c, where

=
∑

ai∩bj = ∅
m1(ai)m2(bj) (15.119)

is the mass associated with the conflict present in the combined evidence.

EXAMPLE 15.9

Consider two independent Dempster–Shafer structures A and B with focal elements
ai and bj, respectively:

Structure A =

⎧⎪⎨
⎪⎩

[5, 20], 1
3

[10, 25], 1
3

[15, 30], 1
3

and Structure B =

⎧⎪⎨
⎪⎩

[10, 25], 1
3

[15, 30], 1
3

[22, 35], 1
3

The only combination of focal elements between these two structures that has no
intersection is a1 = [5, 20] with b3 = [22, 35]. Thus, the conflict of information in
(15.119) is = 1

3
1
3 = 1

9 . Intersections of other combinations are listed below with
probabilities calculated using Dempster rule (15.118):

Structure C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[10, 20], 1
8

[15, 20], 1
8

[10, 25], 1
8

[15, 25], 1
4

[22, 25], 1
8

[15, 30], 1
8

[22, 30], 1
8

Note that intersection c4 = [15, 25] is produced by two combinations: a2 with b2;
and a3 with b1. Thus, c4 has probability ( 1

3
1
3 + 1

3
1
3)/(1 − ) = 1/4 while all

other elements of structure C are produced by one combination and have prob-
ability 1

3
1
3/(1 − ) = 1

8 each. Plausibility and belief functions of all structures
are easily calculated using (15.116) and (15.117), respectively and are presented in
Figure 15.13 for all structures.

15.7.3 INTERSECTION METHOD

If the estimates to be aggregated represent claims that the quantity has to be within some limits,
then the intersection method is perhaps the most natural kind of aggregation. The idea is simply
to use the smallest region that all estimates agree. For example, if we know for sure that a true
value of the quantity a is within the interval x = [1, 3], and we also know from another source
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of evidence that a is also within the interval y = [2, 4], then we may conclude that a is certainly
within the interval x ∩ y = [2, 3].

The most general definition of intersection can be specified in terms of p-boxes. If there
are K p-boxes F1 = [F L

1 , F U
1 ], . . . , FK = [F L

K , F U
K ], then their intersection is a p-box [F L, F U ],

where

F U = min(F U
1 , . . . , F U

K ), F L = max(F L
1 , . . . , F L

K ) (15.120)

if F L(x) ≤ F U (x) for all x. This operation is used when the analyst is highly confident that
each of multiple p-boxes encloses the distribution of the quantity in question. This formulation
extends to Dempster–Shafer structures easily. The cumulative plausibility and belief functions
of such structures form p-boxes.

Despite its several desirable properties, the intersection has only limited application for
aggregation in OpRisk because it requires a very strong assumption that the individual estimates
are each absolutely correct. It is certainly not recommended for the cases where any of the experts
might be wrong. In practice, wrong opinions can be more typical than correct ones. For more
detailed discussion and examples, see Ferson et al. (2003).

15.7.4 ENVELOPE METHOD

In the previous section on aggregation via intersection, it is assumed that all the estimates to
be aggregated are completely reliable. If the analyst is only confident that at least one of the
estimates encloses the quantity, but does not know which estimate, the method of enveloping
can be used to aggregate the estimates into one reliable characterization. In general, when the
estimates to be aggregated represent claims about the true value of a quantity and these estimates
have uncertain reliability, enveloping is often an appropriate aggregation method. The idea is to
identify the region where any estimate might be possible as the aggregation result. In particular,
if one expert says that the value is 1 and another expert says that it is 2, we might decide to use
the interval [1, 2] as the aggregated estimate. If there are K p-boxes F1 = [F L

1 , F U
1 ], . . . , FK =

[F L
K , F U

K ], then their envelope is defined to be a p-box [F L, F U ] where

F U = max(F U
1 , . . . , F U

K ), F L = min(F L
1 , . . . , F L

K ). (15.121)

This operation is always defined. It is used when the analyst knows that at least one of mul-
tiple p-boxes describes the distribution of the quantity in question. This formulation extends
to Dempster–Shafer structures easily. The cumulative plausibility and belief functions of such
structures form p-boxes. The result of aggregating these p-boxes can then be translated back
into a Dempster–Shafer structure by canonical discretization. However, enveloping is sensitive
to claims of general ignorance. This means that if only one expert provides an inconclusive
opinion, it will determine the result of the aggregation. The overall result of enveloping will be
as broad as the broadest input. The naive approach to omit any inconclusive estimates before
calculating the envelope will not be sufficient in practice because any estimate that is not mean-
ingless but just very wide can swamp all other estimates. Again, for more detailed discussion,
the reader is referred to Ferson et al. (2003).
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15.7.5 BOUNDS FOR THE EMPIRICAL DATA DISTRIBUTION

P-boxes and Dempster–Shafer structures can be constructed for empirical data using distribu-
tion free bounds around an empirical distribution function (Kolmogorov 1933, 1941, Smith
1939). Similar to the confidence intervals around a single number, these are bounds on a statis-
tical distribution as a whole. As the number of samples increases, these confidence limits would
converge to the empirical distribution function. Given independent samples X1, . . .Xn from
unknown continuous distribution F (x), the empirical distribution of the data is

Fn(x) =
1
n

n∑
1

IXi≤x.

The lower and upper bounds (referred to as Kolmogorov–Smirnov (KS) bounds) for the distri-
bution F (x) can be calculated as

F L
n = max(0, Fn(x)− D(α, n)),

F U
n = min(1, Fn(x) + D(α, n)),

(15.122)

where D(α, n) is a critical value for the one-sample KS statistic Dn at the confidence level
100(1 − α)% and sample size n, that is,

Pr[Dn ≤ D(α, n)] = 1 − α,

where

Dn = sup
x

|Fn(x)− F (x)| .

The tabulated values for D(α, n) as well as a numerical approximations can be found in
Miller (1956). For example, for sample size n = 10 and α = 0.05 (i.e., 95% confidence level),
D(α, n) = 0.40925 and approximation for 0.01 < α < 0.2

D(α, n) ≈
√

ln(2/α)
2n

− 0.16693
n

− A(α)
n3/2 , (15.123)

where

A(α) = 0.09037
(
log10

2
α

)3/2

+ 0.01515
(
log10

α

2

)2
− 0.08467

α

2
− 0.11143.

Note that, typically, Kolmogorov–Smirnov (KS) statistics Dn is used for goodness-of-fit
testing to compare a sample with a reference probability distribution. The null hypothesis that
the sample is from F (x) is rejected at level α if Dn exceeds a critical value D(α, n).

Theoretically, the left tail of the KS upper limit extends to negative infinity. But, of course,
the smallest possible value might be limited by other considerations. For instance, there might
be a theoretical lower limit at zero. If so, we could use this fact to truncate the upper (left)
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bound at zero. The right tail of the lower limit likewise extends to positive infinity. Sometimes
it may be reasonable to select some value at which to truncate the largest value of a quantity too.

EXAMPLE 15.10

Assume that we have the following i.i.d. samples

(3.5, 4, 6, 8.1, 9.2, 12.3, 14.8, 16.9, 18, 20).

Also assume that the lower bound for the samples is zero and the upper bound is 30.
Then KS bounds at 80% confidence are calculated using (15.122) and presented in
Figure 15.14.

Kolmogorov–Smirnov bounds for empirical distribution
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figure 15.14 Kolmogorov–Smirnov bounds for empirical distribution; for details, see
Example 15.10

The KS bounds make no distributional assumptions, but they do require that the samples
are independent and identically distributed. In practice, an independence assumption is some-
times hard to justify. KS bounds are widely used in probability theory and risk analyses, for
instance, as a way to express the reliability of the results of a simulation.

Formally, the KS test is valid for continuous distribution functions. In the discrete case too,
KS bounds are conservative, that is, these bounds can be used in the case of discrete distributions
but may not represent best possible bounds.

The confidence value α should be chosen such that the analyst believes the p-box contains
the true distribution. The same hypothesis must also be assumed for the construction of the
p-box from expert estimates. However, note that a p-box defined by KS confidence limits is
fundamentally different from the sure bounds. The KS bounds are not certain bounds but
statistical ones. The associated statistical statement is that 95% (or whatever is specified by
α) of the time the true distribution will be within the bounds. It is not completely clear how
to combine the KS p-box with the expert specified p-box; the choices of the upper limit and
confidence level α for KS bounds can be problematic.
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15.8 General Remarks

This chapter described how the parameters of the frequency and severity distributions are esti-
mated using internal data, external data, and expert opinion. Then calculation of VaR (account-
ing for parameter uncertainty) for each risk cell can easily be done using a simulation approach
as described in Section 13.7. The approaches and issues related to modeling dependence and
aggregation over many risks are discussed in Chapters 10,11 and 12.

The main motivation for the use of the Bayesian approach is that, typically, the bank’s
internal data of the large losses in risk cells are so limited that the standard MLEs are not reli-
able. Overall, the use of the Bayesian inference method for the quantification of the frequency
and severity distributions of OpRisks is very promising. The method is based on specifying the
prior distributions for the parameters of the frequency and severity distributions using expert
opinions or industry data. Then, the prior distributions are weighted with the actual observa-
tions in the bank to estimate the posterior distributions of the model parameters. These are
used to estimate the annual loss distribution for the next accounting year. The estimation of
low-frequency risks using this method has several appealing features such as stable estimators,
simple calculations (in the case of conjugate priors), and the ability to take into account expert
opinions and industry data. The approach allows for combining all three data sources: internal
data, external data, and expert opinions required by Basel II.

If the data are very limited, it might be difficult to specify the prior distributions. Then one
can use a closely related credibility theory approach to estimate parameters of the frequency and
severity distributions for the low-frequency/high-severity risks, as described in Section 15.5.

The models presented in this chapter give illustrative examples that can be extended to
a full-scale application. The approach has a simple structure, which is beneficial for practical
use and can engage the bank risk managers, statisticians, and regulators in productive model
development and risk assessment.

Several general remarks on the described Bayesian method for OpRisk are worth
making:

• Validation of the models in the case of small datasets is problematic. Formally, justifica-
tion of the model assumptions (such as conditional independence between the losses or
common distribution for the risk profiles across the risks) can be based on the analysis of
the unconditional properties (e.g., unconditional means and covariances) of the losses and
should be addressed during model implementation;

• Presented examples have a simplistic dependence on time but can be extended to the case
of a more realistic time component;

• Adding extra levels to the considered hierarchical structure may be required to model the
actual risk cell structure in a bank;

• One of the features of the described method is that the variance of the posterior distribution
π(θ|·) will converge to zero for a large number of observations. This means that the true
value of the risk profile will be known exactly. However, there are many factors (political,
economical, legal, etc.) changing in time that might not allow for precise knowledge of
the risk profiles. One can model this by limiting the variance of the posterior distribution
by some lower levels (e.g., 5%). This has been done in many solvency approaches for the
insurance industry, for example, in the Swiss Solvency Test (see Swiss Financial Market
Supervisory Authority 2006, formulas (25) and (26));
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• For convenience, we have assumed that expert opinions are independent and identically
distributed. However, all formulas can easily be generalized to the case of expert opinions
modeled by different distributions;

• It would be ideal if the industry risk profiles (prior distributions for frequency and severity
parameters in risk cells) are calculated and provided by the regulators to ensure consistency
across the banks. Unfortunately, this may not be realistic at the moment. Banks might thus
estimate the industry risk profiles using industry data available through external databases
from vendors and consortia of banks. The data quality, reporting, and survival biases in
external databases are the issues that should be considered in practice.

Finally, in this book, we consider modeling OpRisk but the use of similar Bayesian models
is also useful in other areas (such as credit risk, insurance, environmental risk, and ecology)
where, mainly due to lack of internal observations, a combination of internal data, external
data, and expert opinions is required.
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Chapter Sixteen

Multifactor Modeling and
Regression for Loss Processes

In this chapter, we introduce several statistical approaches that may be developed to incorporate
Key Risk Indicators (KRIs) into a Loss Distribution Approach (LDA) model structure to add
information that will inform parameter estimation and capital measurement. In particular, we
demonstrate how one may introduce covariates that will allow one to model capital dynamically
and the changes that may occur in capital due to risk factors that may be internal to an orga-
nization or external such as macroeconomic and microeconomic factors. We start this chapter
with a basic introduction to Generalized Linear Models (GLMs), then introduce regularization
concepts and quantile regression. Following this background review, we explain how to use such
statistical models in practical OpRisk settings.

16.1 Generalized Linear Model Regressions and
the Exponential Family

In this section, we introduce to OpRisk modelling the widely utilized class of regression mod-
els known as the GLM structure (see Nelder and Wedderburn 1972) and its hierarchical ver-
sions Lee and Nelder (1996). Effectively, the GLM is a flexible generalization of ordinary linear
regression that allows for response variables that are distributed from a more general distribu-
tion than the standard linear model, which assumes normally distributed responses. Through-
out this chapter we will develop a general framework for the introduction of such regression
modelling to OpRisk contexts. The GLM generalizes linear regression by allowing the linear
model to be related to the response variable via a link function and by allowing the magnitude
of the variance of each measurement to be a function of its predicted mean value. Hence, such
a regression model framework provides a very flexible class of models that allow us to specify a
relationship between some variable of interest, the observations Yi, and a collection of poten-
tial explanatory variables given by the observed p covariates in the p-dimensional vectors xi.

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Hence, the n data points consist of pairs (Y1, x1), . . . , (Yn, xn), where Yi is the response for
the i-th case in the dataset and xi =

(
xi,1, . . . , xi,p

)T is the corresponding vector of explana-
tory variables, note the response may also be vector valued, though for convenience here we
treat the univariate case. When specifying GLM regression, one must consider two aspects:
the distribution for the response and the mean and variance relationships in terms of the
covariates.

16.1.1 BASIC COMPONENTS OF A GENERALIZED LINEAR MODEL
REGRESSION IN THE EXPONENTIAL FAMILY

There is a large literature on GLM modeling and such regression structures represent a widely
developed class of regression models (see discussions by McCullagh and Nelder 1989 and
Denison et al. 2002). In brief, the key components of a GLM specification involve the following:

• A GLM structure considers that given a covariate vector xi, the response Yi has some prob-
ability distribution with mean μi, such that g(μi) = xT

i β =
∑p

j=1 βjxi,j (= ηi, for
example) for some coefficient vector β = (β1, . . . , βp)

T and monotonic, differentiable
function g(·) (the link function). ηi is the linear predictor for Yi.;

• If the distributions of the responses are considered in the exponential family, then Yi has
density of the form

f ( yi; θi, φ) = exp

[
yiθi − b(θi)

φ
+ c( yi, φ)

]
, (16.1)

for some parameters θi and φ, and functions b(·) and c(·, ·). This family con-
tains many standard distributions. The mean is μi = ∂b/∂θ|θ=θi and the variance is
Vi =φ∂2b/∂θ2|θ=θi = φ∂μ/∂θ|θ=θi . φ is the dispersion parameter, and is the same
for all i.;

• If g(·) is the identity, and we specify a Normal distribution for Yi, we end up with a standard
linear regression model. If we write the Normal(μ, σ2) in “exponential family” form, we
find θ = μ and φ = σ2, so in this case, the dispersion parameter is just the variance
and the assumption of a common φ is just the usual assumption of constant variance,
homoskedascity in the standard linear regression model.

Remark 16.1 We note that the exponential family of GLM structures produces a family of models
that contains many standard distributions, allowing for continuous response distributions as well
as discrete response distributions such as the Normal, Exponential, Gamma, Chi-squared, Beta,
Dirichlet, Bernoulli, categorical, Poisson, Wishart, Inverse Wishart, and many others.

As some examples of the GLM regression model that will be of relevance to OpRisk mod-
elling we present first the Binomial, Logistic, Poisson and multinomial regression models as
simple examples. We will simply present the model structure and then show the generic frame-
work for parameter estimation under likelihood and Bayesian models in future sections of this
chapter.
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EXAMPLE 16.1 Binomial Regression and the GLM for OpRisk Settings

Assume that the observational data follows a Binomial distribution, that is the
random variables {Yi}i=1:n take values in the set {0, 1} and are distributed i.i.d.
conditional on the p-dimensional vectors of covariates {xi}i=1:n according to the
distribution

Yi ∼ Bernoulli (πi) , for π ∈ [0, 1], (16.2)

such that

Pr (Yi = yi| xi) = π
yi
i (1 − πi)

1−yi . (16.3)

It will also be useful to recall the relationship between the mean and variance of this
random variables response,

E [Yi| xi] = μi = πi,

Var [Yi| xi] = σ2
i = πi (1 − πi).

(16.4)

From these relationships we would like to develop the regression relationship, speci-
fied for instance through the relationship between the success probability πi and the
regressor xi. A standard approach to achieve this is to consider the logit or log-odds
link function which allows one to map the probabilities πi from the range (0, 1) to
the entire real line R according to the relationship

νi = logit (πi) = ln
πi

1 − πi
(16.5)

so that now νi can be written in terms of say a linear model such as

νi =

p∑
j=1

βjxi,j. (16.6)

EXAMPLE 16.2 Logistic Regression and the GLM for OpRisk Settings

Assume that one has k independent observations y1, . . . , yk and that the i-th obser-
vation is the number of successes in ni Bernoulli trials such that the random
variables {Yi}i=1:n take values in the set {0, 1, 2, . . . , ni} and are distributed i.i.d.
conditional on the p-dimensional vectors of covariates {xi}i=1:n according to the
distribution

Yi ∼ Binomial (ni, πi) , for πi ∈ [0, 1], (16.7)
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such that

Pr (Yi = yi| xi) = Cni
yi
π

yi
i (1 − πi)

ni−yi . (16.8)

It will also be useful to recall the relationship between the mean and variance of this
random variables response,

E [Yi| xi] = μi = niπi,

Var [Yi| xi] = σ2
i = niπi (1 − πi) .

(16.9)

From these relationships we would like to develop the regression relationship, speci-
fied for instance through the relationship between the success probability πi and the
regressor xi. A standard approach to achieve this is to consider the logit or log-odds
link function which allows one to map the probabilities πi from the range (0, 1) to
the entire real line R according to the relationship

νi = logit (πi) = ln
πi

1 − πi
(16.10)

so that now νi can be written in terms of say a linear model such as

νi =

p∑
j=1

βjxi,j. (16.11)

Next, if the observation data is counts then the appropriate regression structure may come
from a Poisson regression model as follows in Example 16.3.

EXAMPLE 16.3 Poisson Regression and the GLM for OpRisk Settings

Assume that one has independent observations y1, . . . , yn and that the i-th obser-
vation is a count of an event in a pre-specified time period, such that the random
variables {Yi}i=1:n take values in the set {0, 1, 2, . . .} and are distributed i.i.d.
conditional on the p-dimensional vectors of covariates {xi}i=1:n according to the
distribution

Yi ∼ Poisson (λi) , for λi ≥ 0, (16.12)

such that

Pr (Yi = yi| xi) =
λ

yi
i

yi!
exp (−λi). (16.13)
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It will also be useful to recall the relationship between the mean and variance of this
random variables response,

E [Yi| xi] = μi = λi,

Var [Yi| xi] = σ2
i = λi.

(16.14)

From these expressions we would like to develop the regression relationship, speci-
fied for instance through the relationship between the intensity λi and the regressor
xi. A standard approach to achieve this is to consider the class of log-linear models
where the link function allows one to map the intensity λi from the range R

+ to
the entire real line R according to the relationship

νi = ln (λi) (16.15)

so that now νi can be written in terms of say a linear model such as

νi =

p∑
j=1

βjxi,j. (16.16)

In some cases the response of a survey of business managers regarding their risk profiles
may be quantified initially according to a discrete score from say 1, 2, . . . , J , then one may
wish to understand relationships between such responses and other covariates related to the
risk process that formed the survey questions. In this case one requires the use of a multinomial
regression structure as specified in the following example.

EXAMPLE 16.4 Multinomial Regression and the GLM for OpRisk Settings

Assume that one has independent observations y1, . . . , yn and that the i-th obser-
vation is a discrete valued response from a set of possible responses according to
a discrete score such that the random variables {Yi}i=1:n take values in the set
{0, 1, 2, . . . , J} and are distributed i.i.d. conditional on the p-dimensional vectors
of covariates {xi}i=1:n according to the distribution

Yi ∼ Multinomial (πi,1, πi,2, . . . , πi,J ) , for πi,j ∈ [0, 1] (16.17)

with
∑J

i=1 πi,j = 1 such that

Pr (Yi = j| xi) = πi,j. (16.18)

If one now records the total number of responses from all participants as n, then
treating Yi = j as a random variable for the indicator of the i-th response in the
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j-th possible item response, then the
∑n

i=1 Yi = n and one has the multinomial
distribution with mass function for number of respondents ni given by

Pr (Yi,1 = yi,1,Yi,2 = yi,2, . . . ,Yi,J = yi,J ; xi) = Cni
yi,1,...,yi,J

J∏
j=1

π
yi,j
i,j . (16.19)

From these expressions we would like to develop the regression relationship, specified
for instancethroughtherelationshipbetweentheprobabilitiesπi,j andtheregressorxi.
A standard approach to achieve this is to consider the class of multinomial logit model
we assume that the log-odds of each response follow a linear model with

νi,j = ln

(
πi,j

πi,J

)
= αj +

p∑
s=1

xi,sβj,s. (16.20)

for j = 1, . . . , J − 1. This model is analogous to a logistic regression model, except
that the probability distribution of the response is multinomial instead of Binomial
and we have J − 1 equations instead of one.

16.1.2 BASIS FUNCTION REGRESSION

In some settings, it is also sensible to consider functions of the input independent variables in
the regression structure (the covariates) as this will give additional flexibility to the regression’s
explanatory power. These classes of models are typically called basis function regression models.
In such basis regression models, one has two components to consider when performing model
selection: selection of the most explanatory covariates in the regression and the most appropriate
choice of basis function model choice. Rather than discussing the many approaches to model
selection in regression modeling, we refer the reader to detailed discussions on such items in texts
such as Hastie et al. (2009) and Yuan and Lin (2006). Instead, we will discuss briefly approaches
that will produce parsimonious model structures through approaches based on regularization,
with a particular focus on the relevance to OpRisk based on Bayesian GLM regularization models.

Consider a general basis function regression structure in which we need to perform
model selection to assess the most suitable class of basis functions and we will jointly perform
regularization of the regression coefficients on the basis functions to remove bases (transformed
covariates) that are not explanatory of the variation in the response in a given model structure.

Consider for the k-th basis function model a function of the GLM regression mean
given by

g(μi) = Φk (xi)
T
β =

p∑
j=1

βjΦk
(
xi,j
)

(16.21)

(= ηi, for example) for some coefficient vector β=(β1 . . . βp)
T , a basis function regres-

sion design matrix Φk where each element contains the basis function applied to the covariate
corresponding to the i-th column Φk(xi,j) in which Φk : R �→ R, and the first column con-
taining the normalized basis function Φ(1) = 1 corresponding to the intercept. In specifying
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the function of the mean g(·) (known as the link function), we must ensure it is selected to be
strictly monotonic and differentiable, we saw a few examples above including for instance the
logit transform. Then one can say that after application of the link function to the basis function
linear model structure, the result, which we term ηi, forms the linear predictor for Yi.

Having presented basic details of the GLM structure, one needs to consider how to per-
form basic parameter estimation. This can follow two standard structures: the likelihood-based
estimation or a Bayesian model structure; we will first discuss Maximum Likelihood Estimation
(MLE) in the GLM structure.

16.2 Maximum Likelihood Estimation for Generalized
Linear Models

When fitting a GLM to data, the aim is to estimate the coefficient vector β and, if necessary, the
dispersion parameter φ. In the context of exponential families, β can be regarded as a function
of θ (and vice versa), since both are related to the mean of the distribution. The log likelihood
for β and φ in exponential family models is therefore given by

� (β, φ|y) =
n∑

i=1

[
yiθi − b(θi)

φ
+ c( yi, φ)

]
. (16.22)

Differentiating with respect to βj ( j = 1, . . . , p) and setting to zero the derivative yields
the p score equations

Uj =
∂�

∂βj
=

1
φ

n∑
i=1

∂

∂βj
[yiθi − b(θi)] = 0, ( j = 1, . . . , p). (16.23)

It can be shown that

Uj =

n∑
i=1

[
yi − μi

Vi

(
∂μi

∂ηi

)
xi,j

]
=

n∑
i=1

[
yi − μi

Vig ′ (μi)
xi,j

]
. (16.24)

where μi and Vi are defined as specified earlier.
The solution of the score equations (which, from Equation (16.23), clearly does not

depend on φ) yields the MLE of β. Assembling all p equations into vector form, we seek the
solution of

U (β) = 0, (16.25)

where U (β) =
(
U1, . . . ,Up

)T is the score vector of the log likelihood derivatives.

16.2.1 ITERATED WEIGHTED LEAST SQUARES MAXIMUM
LIKELIHOOD FOR GENERALISED LINEAR MODELS

However, the solution must be obtained numerically in all but the simplest cases. One possible
numerical approach used widely in practice is the Newton–Raphson algorithm, which may be



�

�

“Cruz_Driver” — 2015/1/12 — 11:18 — page 656 — #8
�

�

�

�

�

�

656 CHAPTER 16 Multifactor Modeling and Regression for Loss Processes

used to solve these equations. One must start with an initial guess at the solution, β(0), and
then successively calculate updates given by

β(t+1) = β(t) −
[
∂U

∂β

∣∣∣∣
β(t)

]−1

U
(
β(t)
)

(16.26)

until convergence is achieved. Note that the notation ∂U/∂β represents a p × p matrix of
second derivatives of the log likelihood with respect to β. This is actually Newton–Raphson in
p dimensions.

Conventionally, when fitting GLMs, one would typically replace the matrix of second
derivatives in Equation (16.26) by its expected value −I (β), where I (β) is the Fisher infor-
mation matrix. The resulting algorithm is called the method of scoring. The method of scoring
is a reliable alternative to Equation (16.26), so long as the initial value β(0) is chosen sensibly.
Moreover, if the link function g(·) is such that g(μi) = θi in the exponential family, it can be
shown that the scoring method is exactly the same as Equation (16.26). Such a link function is
called a canonical link.

The scoring algorithm is particularly convenient because the information matrix has an
alternative representation as the covariance matrix of the score vector. Together with Equation
(16.24), this can be used to show that the information matrix is given by the form

I (β) = XTWX, (16.27)

where X is an n × p matrix whose (i, j)-th entry is xi,j, and W is a diagonal n × n matrix with
elements wii = (∂μi/∂ηi)

2
/Vi = [g ′ (μi)]

−2
/Vi (which depend on β). The iterative scheme

for the scoring method is therefore transformed into the following updating steps:

β(t+1) = β(t) +
[
XTW(t)X

]−1
U
(
β(t)
)
. (16.28)

Multiplying both sides by XTW(t)X gives

XTW(t)Xβ(t+1) = XTW(t)Xβ(t) +U
(
β(t)
)
. (16.29)

Noting that Xβ(t) = η(t), the vector of linear predictors at iteration t, and that U
(
β(t)
)

can

itself be written as a vector product involving the matrix XTW(t) (from 16.24), the scoring
algorithm can finally be written in matrix form as
[
XTW(t)X

]
β(t+1) = XTW(t)z(t) ⇒ β(t+1) =

[
XTW(t)X

]−1
XTW(t)z(t), (16.30)

where z(t) is an n × 1 vector whose i-th element is given by

z(t)
i = η

(t)
i +

(
yi − μ

(t)
i

)(∂η

∂μ |μ(t)
i

)
= η

(t)
i +

(
yi − μ

(t)
i

)
g ′
(
μ
(t)
i

)
.

Equation (16.30) gives the solution of the weighted least-squares regression of z(t) upon X,
with weights contained in the diagonal elements of W(t). For this reason, z(t) is sometimes
called the adjusted dependent variate.
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The need for iteration arises because z and W both depend, in general, upon β. Expressed
in this form, the algorithm for fitting GLMs is referred to as iterative weighted least squares
(IWLS). A side effect of the algorithm is that for large samples, the covariance matrix of the
parameter estimates can be calculated easily from the information matrix (16.27); this enables
us to derive standard errors for the estimates. Hence, to summarize the steps involved in the
GLM coefficient estimation via an MLE procedure, perform the stages given in Algorithm 16.1.

Algorithm 16.1 (Maximum Likelihood for GLM Regression in Exponential Family)

1. Assemble your explanatory variables into an n × p matrix X ;

2. Choose a sensible starting value β(0);
3. Repeat the following stages:

a) For the current estimate of β, calculate the vector η of linear predictors, the vector μ of
means, and the vector V of variances. If the model involves an unknown dispersion param-
eter φ, set it to unity. Note the MLE of β is independent of φ;

b) Calculate the diagonal elements of W where the i-th element is [g ′ (μi)]
−2

/Vi;
c) Calculate the vector z, with the i-th element ηi + ( yi − μi) g ′ (μi);
d) Calculate the p × n matrix X T W by multiplying each row of X by the corresponding

diagonal element of W and then taking the transpose;

e) Calculate the p × p matrix X T W X , and invert it to obtain
[
XTWX

]−1. Also calculate
the p × 1 vectors X T W z and U = X T W (z − η);

f ) Note that U is the score vector, so one can set a tollerance for convergence and stop the
repeat when the score vector U is within this tollerance or zero. Otherwise, recalculate β as[
XTWX

]−1
XTWz and go back to the start of this loop.

4. Estimate the dispersion parameter via a method of moments procedure, to obtain φ̂;

5. Extract the diagonal elements of
[
XTWX

]−1, multiply by φ̂, and take the square roots, to
obtain standard errors for the parameter estimates.

16.2.2 MODEL SELECTION VIA THE DEVIANCE IN A
GLM REGRESSION

Note that there is an extensive section on model selection methodology in Chapter 8; here there
is a brief introduction to the use of the deviance information criterion particularly in the GLM
regression context. In GLM regression model selection, it is common to compare and perform
model selection based on either the likelihood ratio or via the deviance hypothesis tests. The
deviance for a model is the equivalent of the residual sum of squares in a linear model, and is
defined according to

D = 2φ [� (y; y)− � (μ; y)], (16.31)

where y is the vector of observed responses; μ is the corresponding vector of modeled means
and � (m; y) is the log likelihood for y when the mean vector is m.
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D is also sometimes called the residual deviance. If you have two models with deviances
D1 and D2, respectively, and model 2 is an extension of model 1 containing p extra parameters,
then a formal test of model 1 against model 2 can be carried out by comparing the quantity
(D1−D2)/p

D2/ν
to an Fp,ν distribution, where ν is the residual degrees of freedom for model 2 and

this distribution is characterized by the F-distribution according to

f (x; d1, d2) =

√
(d1 x)d1 dd2

2
(d1 x+d2)d1+d2

x B
(

d1
2 ,

d2
2

)

=
1

B
(

d1
2 ,

d2
2

) (d1

d2

) d1
2

x
d1
2 −1
(

1 +
d1

d2
x
)− d1+d2

2

(16.32)

for real x ≥ 0. Here B is the beta function. In many applications, the parameters d1 and d2 are
positive integers, but the distribution is well-defined for positive real values of these parameters.
One can also write the cumulative distribution function as a special function also,

F (x; d1, d2) = I d1x
d1x+d2

(
d1
2 ,

d2
2

)
, (16.33)

where I(·, ·) is the regularized incomplete beta function.
This is the exact equivalent of the F -test for comparing nested linear models and hence one

may construct an “analysis of deviance” table in the same way as we would construct an analysis
of variance (ANOVA) table for linear models. The need for an F -test arises from the unknown
dispersion parameter. If the dispersion parameter is known (as in the Poisson case, where we
know that φ = 1), an alternative is to base tests on the χ2 distribution for the likelihood ratio
statistic Λ = 2(�2 − �1) = φ−1 (D1 − D2), where �1 and �2 are the log likelihoods for the two
models and the χ2 density and distribution is given by

f (x; k) =

{
x(k/2−1)e−x/2

2k/2Γ( k
2 )

, x ≥ 0;

0, otherwise,
(16.34)

where Γ(k/2) denotes the Gamma function, which has closed form values for integer k. Its
cumulative distribution function is

F (x; k) =
γ( k

2 ,
x
2 )

Γ( k
2 )

= P
(

k
2
,

x
2

)
, (16.35)

where γ(s, t) is the lower incomplete Gamma function and P(s, t) is the regularized Gamma
function.

If D is the deviance for a model, φ−1D is sometimes called the scaled deviance.
The deviance for the Poisson regression model is given by considering the Poisson log

likelihood for data y with fitted values m given by

�(m; y) =
n∑

i=1

[yi lnmi − mi − ln yi!] . (16.36)

Substitute �(y; y) and �(μ; y) into Equation (16.31), to get an expression for D.
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16.3 Bayesian Generalized Linear Model Regressions
and Regularization Priors

For a detailed discussion on Bayesian modeling and methodology, see the discussion in the
section on estimation in Chapter 7. In a Bayesian GLM regression model, we still utilize an
exponential family likelihood model as described previously; however, we supplement this with
prior distributions for the unknown parameters in the model, typically the regression coef-
ficients and the dispersion parameter. These represent a widely developed class of regression
models (see discussions by McCullagh and Nelder 1989 and Denison et al. 2002). We will
discuss a particular class of Bayesian regression models, those subject to regularization prior
structures, which allows for the joint posterior parameter estimation as well as parsimonious
model selection through shrinking the nonexplanatory covariates to be insignificant.

Sparse regression analysis initially studied in the context of penalized least squares or like-
lihood has gained increasing popularity since the seminal paper on the least absolute shrinkage
and selection operator (LASSO) Tibshirani (1996). Since this work, many approaches under
both frequentist and Bayesian have been proposed to extend these sparsity-inducing regres-
sion frameworks. Most approaches consider modification to an L2 least-squares criterion via
addition of an Lq penalty on the coefficients that form the argument of the optimization.
The downside of this is a nonconvex optimization problem and a bias in the estimate for the
regression coefficients β ∈ R

p and the upside is an induced sparsity through shrinkage of
less consequential regressor coefficients to 0. Therefore, the idea is to incur a bias in estimated
coefficients so that a sparse solution will deliver other important attributes such as parsimony.
The coefficients of the regression are therefore estimated to minimize the following general
penalized criterion

argmin
β

n∑
i=1

⎛
⎝ yi −

p∑
j=1

βjxi,j

⎞
⎠

2

+ γν(β), (16.37)

for some form of sparsity-inducing penalty ν(β) and a regularization strength γ.
In a frequentist setting, the most common choice is the L1 regularization known as LASSO,

that is, a penalty term γ
∑p

i=1 |βi|, where the coefficients of the regression are estimated to
minimize the following penalized criterion

argmin
β

n∑
i=1

⎛
⎝ yi −

p∑
j=1

βjxi,j

⎞
⎠

2

+ γ

p∑
i=1

|βi|, (16.38)

where the penalty and strength of the penalty γ penalize large values of the parameters βi.
The constant γ is typically chosen via a cross-validation procedure and it controls the trade-off
between least-squares γ = 0 and more shrunken estimates of β, that is, it therefore trades off
bias and variance.

As the popularity of the LASSO penalization method grew, it was natural to explore
Bayesian regression alternatives and which classes of priors would induce such sparsity-
inducing constraints on the regression model structures. To proceed in this direction, we will
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first make the assumption that the likelihood is a simple multivariate Gaussian structure given
for responses and independent covariate pairs {(yn, xn) ; n = 1, . . . ,N} by the density

π ( yn|xn,β) =

(
1

2πσ2

) N
2

exp

(
− 1

2σ2

N∑
i=1

(f (xn,β)− yn)
2

)
, (16.39)

where f (xn,β) is the regression mean function.
One can then begin constructing for this linear Gaussian regression model structure dif-

ferent prior structures. The most widely used in practice is the Gaussian–Inverse Gamma prior
structure for the coefficients and error variance given in Definition 16.1.

Definition 16.1 (Gaussian–Inverse-Gamma Bayesian Regression Prior) Consider the prior
on the coefficients in a GLM regression, β, conditional on the observation noise variance σ2, given
by the multivariate Gaussian distribution

π
(
β|σ2) = 1

(2π)
p
2 |σ2Σ| 1

2
exp

(
− 2
σ2 β

TΣ−1β

)
(16.40)

with zero mean (for regularization) and hyper parameters in the p×p covariance matrixΣ. The joint
prior for coefficients and noise variance is then given, assuming i.i.d. observations and hetroskedascity
by the prior Generalized Inverse Gaussian (GIG) structure

π
(
β, σ2|Σ, a, b

)
=

ba

Γ(a)(2π)
p
2 |σ2Σ| 1

2
σ−a−1 exp

(
− 2
σ2 β

TΣ−1β − b
σ

)
. (16.41)

Remark 16.2 One can then adjust the amount of shrinkage induced on the Maximum
a Posteriori (MAP) estimator for the coefficients β̂

MAP
by varying the prior covariance

matrix Σ.

Note that one may adopt other choices of prior for σ2 such as uninformative priors. Pri-
ors such as the GIG will produce a conjugate model, whereas other priors may not and will
result in requirements for inference via Markov chain Monte Carlo (MCMC) methods etc.
(see Chapter 7).

Under this joint prior structure for β and σ2, one has to develop a Bayesian conjugate
model in which the joint posterior is given by combining the likelihood in Equation (16.39)
with a heirarichical prior such as the GIG, which produces the joint posterior given by

π
(
β, σ2|y,X

)
∝
(
σ2)− N+p

2−a−1 exp

(
− 1

2σ2

[
(y − Xβ)T (y − Xβ) + βTΣ−1βT + 2b

])
.

(16.42)

One may now observe that such a posterior structure admits certain conjugate structures, such
as the marginal posterior distribution of β given by the Student-t distribution with N + 2a
degrees of freedom and parameters for location and covariance
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μ̃ =
(
Σ−1 + X T X

)−1 (
X T X

)
β̂

Σ̃ =
2b + s2 + β̂

T (
Σ+ (X T X )−1

)−1
β̂

N + 2a

(
Σ−1 + (X T X )

)−1
(16.43)

with β̂ =
(

X T X
)−1

X T y and s2 = (y − Xβ)
T
(y − Xβ).

Remark 16.3 It is clear from this marginal posterior distribution that the hyperparameters Σ can
have a significant influence on posterior parameter estimates for β. Hence, it is common to include
a prior for these hyperparameters from one of the following choices:

• Ridge Regression. Here the prior for Σ is based on the assumption of a scaled identity matrix
Σ = cI ;

• Zellner’s g-Prior. Here the prior is set to the entropy prior given by Σ = g
(

X T X
)−1

.

Under a Bayesian modeling paradigm, in which the regression coefficients are treated as a
random vector, one may recover the LASSO estimates from the MAP point estimator of the
coefficients via a choice of prior on the coefficients given by the multivariate Laplace distribu-
tion given in Definition 16.2.

Definition 16.2 (Bayesian LASSO and Multivariate Laplace Prior) The multivariate Laplace
prior on the coefficients is given by

p(β;λ, σ) =
(

λ

2
√
σ2

)p

exp

(
−λ
∑p

i=1 |βi|√
σ2

)
, (16.44)

where this prior is parameterized with λ√
σ2 as suggested by Park and Casella (2008).

It will often be of direct use to also recognize the mixture representation of the univariate
Laplace distribution by an infinite mixture of Gaussians, as it is a special case of the Scaled
Mixture of Normals in the α-stable family (see discussion in Peters and Shevchenko 2015).
This infinite Gaussian mixture has the form given in Lemma 16.1.

Lemma 16.1 (Gaussian Infinite Scaled Mixture Representation for Laplace
Distributions) Consider the Laplace-distributed random varaible X ; then its density has the
following scale mixture of Gaussian representation,

fX (x;λ, σ) :=
λ

2
√
σ2

exp

(
− λ√

σ2
|x|
)

=

∞∫
0

1√
2πz

exp

(
− x2

2z

)
λ2

2σ2 exp

(
− λ2

2σ2

)
dz.

(16.45)

Unlike the garrotte or the ridge penalties (see discussions by Yuan and Lin 2007, Breiman
1995 and Hoerl and Kennard 1970), the Laplace prior will produce truly sparse solutions as
γ = λ√

σ2 increases.
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When the LASSO multivariate Laplace prior is combined with the inverse Gamma prior
for the observation variance, one obtains the joint posterior given by

π
(
β, σ2| y,X

)
∝
(
σ2
)− N+p

2−a−1
λp exp

(
− 1

2σ2

[
(y − Xβ)T (y − Xβ) + 2b

]
−

λ
∑p

j=1 |βj|√
σ2

)
.

(16.46)

One can then introduce the scale mixture of Gaussian representation and a correspond-
ing set of p auxiliary variables {τ 2

i }
p
i=1 to the posterior distribution to obtain the following

conjugate posterior distribution structure for the Bayesian LASSO framework:

β|σ2, τ 2
1 , . . . , τ

2
p , y,X ∼ Normal

((
D−1

τ + X T X
)−1

(X T X )β̂, σ2
(

D−1
τ + X T X

)−1
)

σ2|β, τ 2
1 , . . . , τ

2
p , y,X ∼ InverseGamma

(
N
2
+

p
2
+ a, b+

1
2

N∑
n=1

(f (xn,β)− yn)
2 +

λ

2
βT D−1

τ β

)

τ−2
j |β, σ2, y,X ∼ InverseGaussian

(√
λ2σ2

β2
j

, λ2

)

(16.47)

with Dτ = diag
(
τ 2

1 , . . . , τ
2
p

)
.

A limitation in this approach is the use of identical penalization on each regression coeffi-
cient. This can lead to unacceptable bias in the resulting estimates (Fan and Li 2001). For exam-
ple, the classical L1 regularization can lead to an overshrinkage of large regression coefficients
even in the presence of many zeros. This has resulted in sparsity-inducing non-convex penalties
that use different penalty coefficients on each regression coefficient, that is,

∑p
i=1 γi|βi| have

been proposed as have grouping regularization constraints; see adaptive and sequential estima-
tion approaches by Zou (2006), Zou and Li (2008), Candès et al. (2008), and Chartrand and
Yin (2008). Alternative, nonconvex approaches include the bridge regression framework, that
is, γ

∑p
i=1 |βi|q with q ∈ (0, 1), which leads to the Lq regularization problem (Polson et al.

2013). Compared to the previous nonconvex prior, the latter possesses the advantage of not
introducing additional variables that need to be tuned.

Therefore, in addition to the L1 penalty LASSO prior obtained from the Laplace distri-
bution, another regularization prior that has been popular in the Bayesian context involves the
Lq prior, especially when it is used in what is known as an elastic net prior structure (see, e.g.,
Bornn et al. 2010 and Nguyen et al. 2013), and Definition 16.3.

Definition 16.3 (Lq Prior) The multivariate Lq prior on the coefficients is given by

π(β;λ, σ) =

(
λ

σ2

) p
2

exp

(
−λ
∑p

i=1 |βi|q
σ2

)
, q ∈ (1, 2), (16.48)

where this prior is parameterized with λ
σ2 .
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When the Lq prior is combined with the multivariate Gaussian prior, one obtains the
Elastic Net prior given by

π
(
β;σ2, λ1, λ2

)
∝ exp

⎛
⎝− λ1√

σ2

p∑
j=1

|βj| −
λ2

2σ2 β
TΣ−1β

⎞
⎠ , (16.49)

which acts like a combination of L2 and Lq penalizations providing a compromise between the
Laplace and the Gaussian priors.

The resulting posterior full conditionals for the elastic net prior can be obtained as follows:

β|σ2, τ 2
1 , . . . , τ

2
p , y,X

∼ Normal
((

D−1
τ + X T X + λ2I

)−1
(X T X )β̂, σ2

(
D−1

τ + X T X + λ2I
)−1
)
,

σ2|β, τ 2
1 , . . . , τ

2
p , y,X

∼ InverseGamma

(
N
2

+
p
2
+ a, b +

1
2

N∑
n=1

(f (xn,β)− yn)
2
+

λ1

2
βT D−1

τ β +
λ2

2
βTβ

)
,

τ−2
j |β, σ2, y,X ∼ InverseGaussian

(√
λ2

1σ
2

β2
j

, λ2
1

)

(16.50)

To complete the discussion on regularization priors we also note the following classes of
priors deverloped by Nguyen et al. (2013). In their study, they consider the use of two other
forms of regularization priors: the exponential power distribution used in the Bayesian bridge
regression (see Polson et al., 2013) and the symetricα-stable distribution as an alternative family
of regularizing priors.

• Prior Class 1: Exponential Power Distribution: Bridge
The exponential power (EP) distribution with zero mean is defined as:

f (x; γ, q) =
q

2γΓ(1/q)
exp (−|x/γ|q) . (16.51)

• Prior Class 2: α-Stable Distribution
The symetricα-stable distribution was presented as a new class of prior distributions for the
regression coefficients. The α-stable distribution with characteristic exponent 0<α< 2,
dispersion parameter ζ > 0, location parameter μ, and skewness parameter β ∈ [−1; 1] is
only defined through its characteristic function:

lnφ(t) =

⎧⎨
⎩
iμt − ζα|t|α

[
1 − iβsgn(t) tan

(
απ
2

)]
, α 
= 1,

iμt − ζ|t|
[
1 + iβsgn(t) 2

π ln |t|
]
, α = 1.

(16.52)

In this section, we are particularly interested in a regularization prior with the symetric
α-stable (α) distribution (μ = 0, β = 0).
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To understand the behavior of these two different prior choices of Bayesian GLM regular-
ization we present a few comparisons of the influence of the prior with respect to the type of
penalty, that is, the shrinkage effect that each choice may impose. To achieve this we present
plots of the negative log densities (i.e., penalty function) for the α-stable distribution and the
exponential power distribution; (see Figure 16.1) for different values of q.

• For q = 2, these two distributions are equivalent to the Normal distribution, producing a
convex penalty (Ridge regression).;

• For q < 1, the penalty function from the exponential power distribution is nonconvex
whereas the one from the symmetric α-stable distribution is nonconvex when the charac-
teristic exponent of the distribution is 0 < q < 2. In particular, for q = 1, we can see the
greater kurtosis and heavier tails provided by the stable distribution. As mentioned previ-
ously, the relatively light tails of the exponential power distribution prior are unattractive
as they tend to shrink large values of the coefficients even when there is clear evidence from
the likelihood that they correspond to large values. This is an important motivation for the
class of α-stable priors we introduce in this chapter.
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figure 16.1 Comparison of the penalty term induced by the log prior of the regression coefficient to
be either the exponential power distribution or the α-stable distribution (γEP = 2γα = 1). Top left q = 2,
Top right q = 1.5, Bottom Left q = 1, Bottom Right q = 0.5. (For color detail, please see color plate
section.)
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Finally, we note that from a Bayesian perspective, the use of MAP estimates is not exploiting
the full posterior information; see Tibshirani (2011) and Park and Casella (2008), who explore
the of full posterior analysis of Laplace prior via MCMC or SMC samplers; see discussion in
Chapter 7.

Therefore, in the remainder of this section, we focus on the design of efficient algorithms
to fully explore the regression coefficient posterior distribution when nonconvex penalty func-
tions with the same penalty coefficient for each regression term are used. Polson et al. (2013)
propose an MCMC algorithm for the Bayesian Bridge regression problem. In previous Bayesian
approaches, they commonly assume that the possibly nonlinear basis function(s) required to
link the input variables (exploratory independent variables) to the observed response y is per-
fectly known. In general, this may not be the case and so we consider an efficient Bayesian
algorithm for the joint model selection of these basis functions as well as the regressor coeffi-
cients under a nonconvex penalized regression model. Finally, we also introduce a new class of
priors based on the α-stable family. We contrast their performance w.r.t. regularization against
Lq priors. In doing so, we will particularly consider two simple choices that OpRisk practitioners
may encounter in practice. The two choices considered from this GLM basis regression struc-
ture previously discussed under the exponential model family setting in a Bayesian regularized
regression framework will involve the Normal family and the Poisson family.

• Normal Regression Model
We consider the standard generalized linear basis regression model involving a link function
g(·) given by the identity, as well as specifying a Normal distribution for the responses Yi.
To achieve this in the “exponential family” form, we find θ = μ and φ = σ2. Here, the
dispersion parameter is just the variance and the assumption of a common φ is just the
usual assumption of constant variance (homoskedascity).;

• Poisson Regression Model
We consider a discrete response model for observations that correspond to counts which,
in any given time or space increment, are independent and distributed according to a Pois-
son distribution. Under the GLM structure our aim is to explain the observed counts with
regard to the intensity function constructed via a link function in terms of a linear basis
regression. To construct our Poisson regression model we consider the canonical link func-
tion in which g(·) is the logarithmic transformation of the linear basis function regression.
In the exponential family formulation specified, the Poisson distribution is obtained by
considering θ = lnλ, b(θ) = λ, a(φ) = 1, and c( y, φ) = − ln y! where we denote the
Poisson distribution intensity (mean) by λ.

16.3.1 BAYESIAN MODEL SELECTION FOR REGULARLIZED
GLM REGRESSION

In OpRisk settings, it will often be relevant to consider several families of non-nested regression
models, each specified by the choice of basis function transforming the covariates. In this con-
text, one will utilize regularization to remove nonexplanatory regressors and model selection
for the most suitable choice of basis. To achieve this one may perform Bayesian model selection
in which the aim is to approximate π(Mk|y) for each of the models k ∈ {1, 2, . . . ,K } which
corresponds to the posterior model probability by using Bayes’ theorem,

π(Mk|y) ∝ π(y|Mk)π(Mk), (16.53)
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where π(y|Mk) denotes the marginal likelihood under model Mk, also known as Bayes evi-
dence, and π(Mk) corresponds to the model prior. Moreover, one may also be interested in
estimating the parameters that define each model through the parameter posterior π(θ|y,Mk).
In the two examples considered in this study, the parameter is defined as

θ =

{{
β, σ2

y , γ
}
, Normal model,

{β, γ} , Poisson model.
(16.54)

In these models, the two distributions of interest, that is, the conditional parameter posterior
π(θ|y,Mk) and the associated marginal likelihood π(y|Mk), are intractable. Therefore, we
resort to an Importance Sampling (IS)-based Monte Carlo solution to jointly approximate these
two quantities. This is a challenge due to the high dimension of the parameter θ, so classical
IS methods will be inefficient and produce high variance estimators. Consequently, we utilize
a special class of algorithms known as “SMC samplers”.

16.4 Bayesian Estimation and Model Selection
via SMC Samplers

In this section, we briefly recall the SMC Samplers algorithm discussed in the estimation
Chapter 7 and we describe briefly this special class of SMC algorithms specifically designed to
work in settings in which the sequence of target distributions to be sampled from are all defined
on the same fixed support (see discussions by Del Moral et al. 2006, Peters 2005, Peters et al.
2009a). This is different from standard SMC algorithms for state space models (particle filter-
ing) in which the sequence of distributions evolves on a product space, and as a result requires
modification to the incremental importance sampling (IS) weight expressions.

In short, the SMC Sampler generates weighted samples (termed particles) from a sequence
of arbitrary distributions πt , for t = 1, . . . ,T , where πT may be of particular interest and
is referred as the target distribution. Procedurally, this involves mutation (or move), correc-
tion (or importance weighting), and selection (or resampling). The final weighted particles at
distribution πT are considered weighted samples from the target distribution π.

In more detail, suppose that at time t − 1, the distribution πt−1 can be approximated
empirically using N -weighted particles. These particles are first propagated to the next dis-
tribution πt using a mutation kernel Kt(θt−1;θt), and then assigned new weights wt =
wt−1Wt (θ1, . . . θt), where wt−1 is the weight of a particle at time t − 1 and Wt is the incre-
mental weight given by

Wt (θ1, . . . ,θt) =
πt (θt) Lt−1 (θt ;θt−1)

πt−1 (θt−1)Kt (θt−1;θt)
. (16.55)

There is a range of possible things to consider when designing an SMC Sampler algorithm:
the appropriate sequence of distributions, the choice of mutation kernel, and then the optimal
choice of backward mutation kernel Lt−1(·; ·) (for a given mutation kernel); see discussion on
the optimal choices for these components by Del Moral et al. (2006) and Peters (2005). In the
context of the modeling undertaken in this chapter, we will utilize the SMC Sampler algorithm
to also perform model selection for the basis function choices as detailed later.
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16.4.1 PROPOSED SMC SAMPLER SOLUTION

Consider the use of the SMC Sampler on the artificial sequence of distributions {πt(θ)}T
t=1

as follows:

πt(θ) ∝ π( y|θ,Mk)
φtπ(θ|Mk), (16.56)

where conditioned on a specific model, Mk, π(θ|Mk) is the prior of the model parameters
and φt is a nondecreasing temperature schedule with φ1 = 0 and φT = 1. We thus sample
initially from π1(θ) = π(θ|Mk) directly and introduce the effect of the likelihood gradu-
ally in order to obtain at this end (t = T ) an approximation of the conditional parameter
posterior π(θ|y,Mk). As shown by Del Moral et al. (2006), the marginal likelihood of inter-
est to make a decision regarding which basis function to use can be approximated with SMC
Samplers as

ZT = Z1

T∏
t=2

Zt

Zt−1
≈

T∏
t=1

⎛
⎝ Np∑

i=1

wi
t

⎞
⎠ , (16.57)

where Zt =
∫
π( y|θ,Mk)

φtπ(θ|Mk)dθ corresponds to the normalizing constant of the tar-
get distribution at iteration t. As a consequence, the following procedure is performed:

1. For each model Mk, k ∈ 1, . . . ,Kmax, approximate the conditional parameter posterior
distribution π(θ|y,Mk) as well as the marginal likelihood π(y|Mk).;

2. Approximate the model posterior π(Mk|y), which is the model posterior, via the approx-
imation of π(y|Mk); and model prior π(Mk).

Successively Random Walk Metropolis Hastings within Gibbs proposal kernels is used for the
mutation step of the algorithm Kt(.; .) by randomly partitioning the parameter vector θ into
B blocks. The SMC Sampler algorithm for model Mk proceeds according to the following
steps:

• Initialize particle system from the prior{
θi

1
}Np

i=1 ∼ π(θ|Mk) (16.58)

and set {w̃i
1}

Np
i=1 = 1/Np.;

• For the sequence t = 1, . . . ,T perform the following steps:

˚ Perform evaluation of the particle weights for each particle i = 1, . . . ,Np to evaluate the
un-normalized weights

wi
t = w̃i

t−1
πt(θ

i
t−1)

πt−1(θ
i
t−1)

= w̃i
t−1

π( y|θt−1,Mk)
φt

π( y|θt−1,Mk)φt−1
. (16.59)

˚ Renormalize the particle weights for each particle i = 1, . . . ,Np via

w̃i
t = wi

t

⎡
⎣ Np∑

j=1

wj
t

⎤
⎦
−1

. (16.60)
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• Perform the selection stage if effective sample size (ESS)< Np/2, which involves a resample
stage.;

• Peform mutation for each of the particles i = 1, . . . ,Np, which involves sampling.;

• θi
t ∼ Kt(θ

i
t−1; ·) where Kt(·; ·) is a πt(·) invariant Markov kernel.

The resulting weighted particle system
{
θi

t , w̃i
t |Mk

}Np

i=1 approximates.
πt(θ) ∝ π( y|θ,Mk)

φtπ(θ|Mk).

16.5 Illustrations of SMC Samplers Model Estimation
and Selection for Bayesian GLM Regressions

Here we present a few examples to illustrate the performance of the SMC sampler discussed
in the previous section to perform joint model selection and parameter estimation in the two
different GLMs of Gaussian and Poisson discussed previously. All results have been obtained
using the approach of Section 16.4 with the following settings: Np = 500 particles and T = 50
iterations have been used to approximate the sequence of distributions. A piece-wise linear
tempering schedule {φt} has been selected. The sequence increased uniformly from 0 to 7/50
for the first 10 time points, then from 7/50 to 20/50 for the next 20, and finally from 20/50
to 1 for the last 20 time points.

The different basis functions considered in this chaper are described in Table 16.1 with
equally spaced centers ci on some chosen bounded support of interest for the univariate input
variable x ∈ [−4; 12]. The following priors have been used: p(Mk) = 1/Kmax and an Inverse-
Gamma prior for both γ and σ2

y . Finally, in order to validate the proposed algorithm, the
results will be compared with the frequentist LASSO implemented using the coordinate descent
algorithm (Friedman et al. 2010) and for which the tuning parameter is obtained by a 10-fold
cross-validation procedure.

16.5.1 NORMAL REGRESSION MODEL

To illustrate the example for the Normal regression model, consider n = 40 observations under
model M2 (σ2

y = 2) with regression coefficients set to zero except β0 = 1, β3 =β15 =β24 = 5,

table 16.1 Description of the different basis functions used in the
numerical simulation section − ri = ||x − ci|| defines the L1-norm
between the input univariate variable and the i-th center of the current
basis − ρi is a scale factor

Model Expression Φi
k

M1 Linear x
M2 Gaussian exp(−(ρiri)

2)
M3 Inverse quadratic [1 + (ρiri)

2]−1

M4 Sigmoidal [1 + exp(−ri/ρi)]
−1

M5 B-spline See Lee (1982) Order=2

M6 Mollifier

{
exp
(
− 1

1−(ρi ri)2

)
if |ρiri| < 1

0 otherwise
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figure 16.2 Normal regression with EP prior (q = 1): true function in blue, observed responses in
green-filled circles, posterior mean from SMC under model M3 in red, and confidence region in gray
(5–95% percentiles). (For color detail, please see color plate section.)

β8 =β20 =− 5, and β5 =β17 = 3. For the basis functions (M2 to M6), we have 12 equally
spaced centers ci with 2 different scale parameters. As a consequence, the dimension of the param-
eter vector θ to estimate is 28 for M2 to M6 and 4 for M1. As shown in Figure 16.2, the SMC
Sampler is able to efficiently predict the unknown function even if only a few observations are
available. As opposed to frequentist LASSO, the proposed approach can give a confidence interval
on the predicted curve, which is of great interest in many applications. Table 16.2 clearly show
the ability of the proposed method to give an accurate estimate of the regression coefficients.
The mean squared error (MSE) on β is indeed divided by a factor of approximately 4.5 com-
pared to to the one obtained with the frequentist LASSO. We can also see that a slightly lower
MSE is given by the use of the proposed prior for regularization, that is, the symmetric stable
distribution. From Figure 16.3, we can see the shrinkage effect on the approximate marginal
posterior distribution on some coefficient which is 0 in reality. As expected, as q decreases, this
marginal posterior distribution is shrunk around 0, a bit more rapidly with the use of α. Finally,
from Figure 16.4, we study the model choice given by the proposed SMC Sampler. From these
results, we can see that the algorithm is able to give a good model with high probability. There is
some uncertainty with modelM5 owing to the similarity of the two models. Again, the posterior
model probability for the correct model is higher when the α is used as a prior for the regression
coefficient.

16.5.2 POISSON REGRESSION MODEL

In the second example, a Poisson regression model is considered. A total of n = 100 obser-
vations have been generated with M3. For the basis functions, 25 equally spaced centers ci
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table 16.2 Median of the mean squared error (MSE)
between true regression coefficients and the estimated
ones under the true model M3 based on 50 replications

EP α LASSO

q = 1 29.13 28.98 133.69
q = 0.8 29.37 29.06
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figure 16.3 Comparison of the shrinkage results obtained with the two different priors as q
decreases (blue: q = 1.5, red: q = 1, green: q = 0.8, black: q = 0.5). Top plot is EP prior and bottom plot is
a symmetric α-Stable prior. (For color detail, please see color plate section.)

have been used with the same scale parameter. Figure 16.5 shows the resulting mean pre-
dicted curve (and associated confidence interval) obtained by using the proposed SMC
Sampler under the true model. As in the previous case, the true curve is always within
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figure 16.4 Comparison of the approximation of the model posterior (blue: α, red: EP) (For color
detail, please see color plate section.)

the confidence region. Table 16.3 presents the mean squared prediction errors obtained
by the proposed approach by using the two different priors as well as the ones obtained
by the frequentist LASSO. The SMC Sampler with the α and q = 1 slightly outperforms
the others.

Hence, these examples illustrate that the proposed algorithm is efficient for model selec-
tion and parameter estimation in penalized regression models. Moreover, the proposed class
of priors based on α-stable family distribution represents an alternative to EP distribution
commonly used in Lq regularization. There is a detailed exploration of these ideas by Nguyen
et al. (2013).
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table 16.3 Median of the mean squared prediction error for the
proposed approach using the different priors as well as the LASSO estimate,
based on 50 replications. Best fitting results are in bold font

EP α LASSO

q = 1 q = 0.5 q = 1 q = 0.5

M1 17.4087 17.4370 17.2961 17.4117 17.3391
M2 2.7994 2.4939 2.3589 2.5132 3.4125
M3 2.6987 2.5305 2.4089 2.6344 2.5451
M4 3.0428 3.0087 2.9484 3.3708 3.3917
M5 3.3182 3.6683 3.2428 6.4821 4.3435
M6 3.0162 3.0104 2.9131 3.4356 3.1100
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figure 16.5 Poisson regression with α prior (q = 1): true function in blue, observed count responses
in green-filled circles, posterior mean from SMC under model M3 in red, and confidence region in gray
(5–95% percentiles). (For color detail, please see color plate section.)

16.6 Introduction to Quantile Regression Methods
for OpRisk

In this section, we briefly introduce the notion of percentile-based regression methods, which
will involve the estimation of quantiles via a quantile regression structure. Quantile regression is
a statistical technique intended to estimate, and conduct inference about, conditional quantile
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functions that can be suitably used to serve the purpose of establishing the sensitivity of capital
and risk measure estimations to different input covariates, which may be internal risk indica-
tors, external factors, and micro- and macroeconomic factors related to the current operating
environment of the bank.

Just as classical linear regression methods discussed earlier typically minimize sums of
squared residuals (perhaps with regularization constraints on the coefficients) enabling one to
estimate models for conditional mean functions, quantile regression methods offer a mecha-
nism for estimating models for the conditional median function and the full range of other
conditional quantile functions.

Such regression structures and models allow one to study the effect of explanatory variables
on the entire conditional distribution of the response variable and not only on its center. By
supplementing the estimation of conditional mean functions with techniques for estimating
an entire family of conditional quantile functions, quantile regression is capable of providing
a more complete statistical analysis of the stochastic relationships among random variables.

Quantile regression has been applied to a wide range of applications in economics and
finance. In quantitative investment, least square regression–based analysis is extensively used for
analyzing factor performance, assessing the relative attractiveness of different firms, and moni-
toring the risks in their portfolios. Engle and Manganelli (2004) consider the quantile regression
for the Value-at-Risk (VaR) model. They construct a conditional autoregressive Value-at-Risk
model (CAVaR), and employ quantile regression for the estimation. Recall that this is achiev-
able since VaR is defined as a quantile of the loss distribution of a portfolio within a given time
period and a confidence level. Accurate VaR estimation can help financial institutions main-
tain appropriate capital levels to cover the risk from the corresponding portfolio. In this section,
we consider both parametric and nonparametric quantile regressions, which, under a Bayesian
paradigm, may be estimation via MCMC strategies; see details of such sampling methods in
Chapter 7.

Initially, we present basic concepts of quantile regression models for loss modeling and
capital estimation. We begin with the classical introduction to quantile-based regression
and the associated loss function utilized in the parameter estimation in quantile regression
(Figure 16.6). There are many excellent introductions to quantile regression that the reader may
consult for more detailed discussions such as Koenker and Hallock (2001), Koenker (2001,
2005), Fitzenberger et al. (2002), Buchinsky (1998), Yu and Moyeed (2001), and Gilchrist
(2002).

u – 1

u

ρ u

figure 16.6 Quantile regression loss function
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16.6.1 NONPARAMETRIC QUANTILE REGRESSION MODELS

Let Yi > 0 be a set of observed losses and xi = (1, xi,1, . . . , xi,m) be a vector of covariates that
describe Yi. The quantile function for the log-transformed data Y ∗

i = lnYi ∈ � is

QY ∗(u|xi) = β0,u +

m∑
k=1

βk,u, xi,k, (16.61)

where u ∈ (0, 1) is the quantile level, βu = (β0,u, . . . , βk,u) are estimated by solving

min
β0,u,...,βm,u

n∑
i=1

ρu(εi) =

n∑
i=1

εi[u − I(εi < 0)], (16.62)

and εi = y∗i −β0,u −
∑m

k=1 βk,uxi,k. Koenker and Hallock (2001) provide an illustration of the
loss function ρu for quantile regression, which we consider later Koenker and Machado (1999)
and Yu and Moyeed (2001) show that parameters βk,u can be estimated via an asymmetric
Laplace distribution (ALD) with density given by

f ( y∗i |μi, σ
2
i , p) =

p(1 − p)
σi

exp

(
− ( y∗i − μi)

σi
[p − I( y∗i ≤ μi)]

)
, (16.63)

where the skew parameter 0 < p < 1 gives the quantile level u, σi > 0 is the scale parameter,
and −∞ < μi < ∞ is the location parameter. Since the pdf (16.63) contains the loss function
(16.62), it is clear that parameter estimates that maximize (16.63) will minimize (16.62).

Essentially, we assume Y ∗
i follows an ALD model family denoted by Y ∗

i ∼ AL(μi, σ
2
i , p).

Then

Y ∗
i = β0 +

m∑
k=1

βkxi,k + εiσi, (16.64)

where εi ∼ AL(0, 1, p) and one considers m-dimensional covariate vectors of covariates to
explain the location or mean given by xi and ν dimensional vectors of covariates si to explain
the scale or variance according to,

μi = β0 +

m∑
k=1

βkxi,k,

σ2
i = exp(α0 +

ν∑
k=1

αksi,k).

(16.65)

As a tool to estimate quantile regression, the ALD is a three-parameter distribution that has
established a direct link to the estimation of quantiles and quantile regression (see discussions
by Yu and Zhang 2005). The properties of the distribution are given in more detail in Chapter 9
and we also refer the interested reader to the work of Yu and Moyeed (2001), who apply the
ALD model for quantile regression.

We note that one may consider a generalization of the ALD to incorporate a dynamic
mean, variance, and shape parameter, which provides a direct link to investigating the effect of
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the covariates on quantiles. Using the ALD family provides a mechanism for Bayesian inference
of quantile regression models. The benefit of using a Bayesian procedure lies in the adoption
of available prior information and the provision of a complete predictive distribution for the
required capital and risk measures.

16.6.2 PARAMETRIC QUANTILE REGRESSION MODELS

Alternatively, under a parametric approach, we may assume Y ∗
i ∼ F ( y∗|θ), where F ( y∗|θ) is

the conditional cumulative distribution function and θ ∈ Θ is a vector of model parameters.
The quantile function for the conditional distribution of Y ∗

i given xi is

QY ∗(u|xi) ≡ inf
y∗

F ( y∗|θ) ≥ u = argmin
θ∈Θ

E [ρu(εi)], (16.66)

where the loss function is

ρu(ε) = ε (u − I[ε < 0]) , (16.67)

and εi = y∗i − β0,u −
∑m

k=1 βk,uxi,k and u is a quantile level between (0, 1). Then the quantile
function in (16.66) can be written according to a linear regression model, where for notational
convenience we drop the additional index of u for the quantile level, giving

QY ∗(u|xi) = β0 +
m∑

k=1

βkxi,k + Qε(u)σi, (16.68)

where Qε(u) = F−1
z (u) is the inverse distribution for the standardized variable Zi = Yi−μi

σi
and the quantile function for Yi is QY (u|xi) = exp(QY ∗(u|xi)).

Next we will provide three illustrative families of models that one may adopt in practice
for parametric quantile regression modeling: ALD, polynomial power Pareto model of Cai
(2010), and the Generalized Beta family of models; see discussions on aspects of these models
in Chapter 9.

16.6.2.1 Asymmetric Laplace Distribution. If one models the residuals εi by an
ALD family, the quantile function for the observed data Y ∗

i is given by (16.68), where F−1
z (u)

is the inverse distribution function

F−1
AL (u|μ, σ2, p) =

⎧⎨
⎩
μ+ σ

1−p ln(
u
p ), if 0 ≤ u ≤ p,

μ− σ
p ln( 1−u

1−p ), if p < u ≤ 1,
(16.69)
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with μ = 0 and σ2 = 1. The mean, variance, skewness γ, and kurtosis κ of the ALD family
are respectively given by

E(Y ) = μ+
σ(1 − 2p)
p(1 − p)

,

Var(Y ) =
σ2(1 − 2p + 2p2)

(1 − p)2p2 ,

γ =
2[(1 − p)3 − p3]

((1 − p)2 + p2)3/2 ,

κ =
9p4 + 6p2(1 − p)2 + 9(1 − p)4

(1 − 2p + 2p2)2 .

Note that the true shape parameter p of the ALD family and the estimated p gives an indication
of the magnitude and direction of skewness.

ALD(μi, σi, p) is skewed to left when p > 0.5 and skewed to right when p < 0.5, which
corresponds to the fact that most log-transformed loss data are skewed to the left and the risk
measure or captial estimation that quantile levels are typically significantly larger than, say,
50% (the median). Figure 16.7 show a variety of ALD densities, its skewness, and kurtosis,
respectively.

16.6.2.2 Polynomial Power Pareto Model. Cai (2010) presents a polynomial power
Pareto (PP) quantile function model and a Bayesian method for parameter estimation. This
model combines a power law model into a Pareto distribution for additional flexibility in the
tail behavior of the observed quantity, which enables one to model both the main body and the
tails of a distribution. In considering the PP model, the conditional quantile function of the
response (reserve in each cell) is comprised of two components:

• Component 1. A power distribution F1( y) = y
1
γ1 where y ∈ [0, 1] and γ1 > 0 with a

corresponding quantile function given by Q1 (u; γ1) = uγ1 for u ∈ [0, 1];

• Component 2. A Pareto distribution function F2( y) = 1− y−
1
γ2 where y ≥ 1 and γ2 > 0

with a corresponding quantile function given by Q2 (u; γ2) = (1 − u)−γ2 .

One may use the fact that the product of the two quantile functions will remain a strictly valid
quantile function producing the new quantile function family known as the polynomial power
Pareto model. The resulting structural form given by the inverse of the Pareto distribution with
an additional polynomial power term is

F−1
PP (u|γ1, γ2) = uγ1(1 − u)−γ2 . (16.70)

Hence, the quantile function is again given by (16.68), where Qε(u)= F−1
PP (u) and

QY (u) = exp(QY ∗(u)).
The pdf of PP distribution for Y ∗

i = lnYi is

fPP( y∗i |γ1, γ2) =
u1−γ1

i (1 − ui)
γ2+1

σi[γ2ui + γ1(1 − ui)]
,
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(a) ALD density with p < 0.5 (b) ALD density with p > 0.5 (c) ALD density with p = 0.75

figure 16.7 Top: Assymetric Laplace densities for a range of parameter values. Bottom: ALD
skewness and kurtosis
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figure 16.8 The pdf of power Pareto distribution

where y∗i = β0 +
m∑

k=1
βkxik + uγ1

i (1 − ui)
−γ2σi and the inverse distribution is

F−1
PP (u|γ1, γ2) = uγ1(1 − u)−γ2 .

Hence, the quantile function is again given by (16.68), where Qε(u)= F−1
PP (u) and

QY (u) = exp(QY ∗(u)).
To complete the specification of the polynomial power Pareto plots we demonstrate the

shape of the density that can be obtained for a range of different power parameters for the power
and Pareto components with a unit scale factor σ = 1. The plots in Figure 16.8 demonstrate
the flexible skew, kurtosis, and tail features that can be obtained from such a model by varying
the parameters γ1 and γ2.

When constructing the Bayesian model for this quantile regression model, one must take
care to ensure the posterior support is well defined; this is carefully explained as well as an
efficient MCMC sampling scheme in the paper by Cai (2010).

To complete the posterior distribution specification, that is, to define
π(β,σ, γ1, γ2|y1,1, . . . , yn,n), it suffices to consider the representation of two components: the
likelihood of the data for the regression structure (i.e., the density, not the quantile function),
and the prior specifications for the model parameters. We adopt the Bayesian model proposed
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by Cai (2010) with a support on the parameters of the quantile regression for which the pos-
terior is defined uniquely characterized by the three sets of parameter space constraints Ω1,Ω2,
and Ω3 given by

Ω1 =

{
(β0, . . . , βm) : β0 +

m∑
k=1

αkxi,k < yi, ∀i ∈ {1, 2, . . . ,N}
}

Ω2 =

{
(σ0, . . . , σν) : σ0 +

ν∑
k=1

σksi,k > ε > 0, ∀i ∈ {1, 2, . . . ,N}
}

Ω3 = (0,M ]× (0,∞), M ∈ R+.

Under these parameter space restrictions, the resulting posterior for the polynomial power
Pareto model can be shown to be well defined as a proper density (see Cai 2010, theorem 1).

16.6.2.3 Generalized Beta Distribution of the Second-Type Family. Loss data
often exhibit heavy-tailed behavior as has been discussed in numerous places throughout the
book. To incorporate this feature into a quantile regression one may adopt the family of gen-
eralized beta distributions of the second kind (GB2 models), which have several attractive fea-
tures for modeling heavy-tailed loss data. The GB2 model nests a number of important dis-
tributions as special cases. The GB2 distribution has four parameters, which allow it to be
expressed in various flexible densities. The density function is specified for a random variable
Yi ∼ GB2(a, bi, p, q) on positive support, that is, Yi ∈ R

+ with shape parameters a, p, q and
a density given by

fGB2( yi|a, bi, p, q) =
a
bi
( yi/bi)

ap−1

B(p, q)[1 + ( yi/bi)a]p+q , for yi > 0, (16.71)

where

bi =
μiB(p, q)

B(p + 1/a, q − 1/a)
(16.72)

and

E(Yi) = μi = exp

(
β0 +

m∑
k=1

βkxi,k

)
. (16.73)

GB2 distribution can also be written as a beta distribution

fB(zi|p, q) =
1

B(p, q)
zp−1

i (1 − zi)
p+q (16.74)

via the transformation zi =
( yi/bi)

a

1 + ( yi/bi)a . Hence, the distribution function of GB2 is given by

FGB2( yi|a, bi, p, q) =

zi∫
0

tp−1(1 − t)(q−1)

B(p, q)
dt =

B(zi|p, q)
B(p, q)

= FB(zi|p, q), (16.75)

where B(zi|p, q) is the incomplete beta function.
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Then the quantile function for the GB2 model is given by

QY (u) =
exp
(
β0 +

∑m
k=1 βkxi,k

)
B(p, q)

B(p + 1/a, q − 1/a)

(
F−1

B (u|p, q)
1 − F−1

B (u|p, q)

) 1
a

. (16.76)

When q = ∞, GB2 distribution becomes a Generalized Gamma (GG) distribution.

16.6.2.4 Two Special Cases of GB2. In this section, we consider a special subfamily of
the GB2 family discussed, the GG, introduced by Stacy (1962); see discussions in Chapter 9.
This distribution is a three-parameter distribution with density function given by

fGG( yi|a, bi, p) = lim
q→∞

a
bi
( yi/bi)

ap−1

B(p, q)[1 + ( yi/bi)a]p+q

=
a( yi/bi)

ap exp[−( yi/bi)
a]

yiΓ(p)
, for yi > 0, (16.77)

where

bi =
μiΓ(p)

Γ(p + 1/a)
(16.78)

and

E(Yi) = exp

(
β0 +

m∑
k=1

βkxik

)
=

biΓ(p + 1/a)
Γ(p)

. (16.79)

It is a special case of the GB2 distribution when b = q1/qβ and q → ∞ (Cummins et al. 1990
and McDonald 1984).

The distribution function is

FGG( yi|a, bi, p) =

zi∫
0

tp−1e−t

Γ(p)
dt =

γ1(zi|p)
Γ(p)

= FG(zi|1, p), (16.80)

where γ1(zi|p) is the lower incomplete Gamma function and zi = ( yi/bi)
a. Hence, the quantile

function is given by

QY (u) =
exp
(
β0 +

∑m
k=1 βkxi,k

)
Γ(p)

Γ(p + 1/a)
(
F−1

G (u|1, p)
)1/a

. (16.81)

Gamma is a special case of GG and GB2 when a = 1. Its density is well known and can
be expressed using Equation (16.71) by replacing a with 1.

The estimation of quantile regression models is straightforward using Bayesian method
with MCMC and Gibbs sampling algorithms; see discussions in Chapter 7.
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16.7 Factor Modeling for Industry Data

Most low-frequency/high-impact OpRisks have very limited datasets for calibration. As a result,
the uncertainty in distribution parameters can be very large. For example, De Fontnouvelle
et al. (2007) present results for several large international banks with a large variation in the
shape parameter of the Generalized Pareto Distribution (GPD) for each bank such that possible
capital may vary from about USD 200 million to USD 4300 million. To handle this issue Basel
II requires the use of external data to complement internal datasets. There are several possible
biases from the use of external data that should be handled, such as reporting bias (reporting
threshold can be different for different banks); control bias (data are collected from banks with
different control systems); and scale bias (data are collected from banks of different sizes). Here
we consider the scaling bias issue.

There were several attempts in the past to find a relationship between OpRisk severity
and bank size starting from Shih et al. (2000), who tested the relationship between bank size
indicators of revenue, assets, and number of employees with OpRisk severities. Their study
used the OpVar database and reported a strong nonlinear relationship with all variables (with
largest correlation to the revenue). They tested a simple model

lnX ( j )
i = β0 + β1 ln y( j ) + ε

j
i ,

where X ( j )
i is OpRisk losses in bank j, y( j ), is revenue of bank j, and ε

j
i are zero mean i.i.d.

random variables. The conclusion was that size accounts for only 5% of the variability in the
severity. However, their study ignored reporting bias in the OpVar database, which is too large
to be ignored as was shown by De Fontnouvelle et al. (2006). Another study by Na and et al.
(2006) considered scaling of aggregate losses with respect to factors such as macroeconomic,
geopolitical, cultural, business environment, and bank size. They found that mean and standard
deviation of aggregate losses scale similarly but also reported that the results are not convincing.
More recent papers by Dahen and Dionne (2010) considered regression

lnXi = β0 + β1 ln yi +
∑

j

αjBLij +
∑

k

γkETik + εi,

where yi is total assets in a bank where the loss Xi occured, BLij is a business line indicator, ETik
is an event-type indicator, and εi are i.i.d. Normal random variables (error term). The adjusted
R2 value of 29% was reported for overall fit to the data. The low value of R2 might indicate
that Normal distribution assumption for log losses is not appropriate; various previous studies
have found evidence that operational losses are (extremely) heavy-tailed.

Most of the studies focused on scaling of the mean of the log losses with respect to the size
of a bank. However, the mean of the log losses does not relate to any meaningful statistic of the
(raw) loss distribution. Hence, results are difficult to interpret in most circumstances. Second,
the OpRisk capital charge for a bank is determined by the 99.9th percentile of the loss distribu-
tion. The information provided by a scaling model fitted to the mean of the log losses provides
very little information on how the 99th percentile may scale (see discussion by Ganegoda and
Evans 2013). In general, the mean of a loss distribution provides very little information when
losses are heavy-tailed. The second issue that Rootzén and Klüppelberg (1999) raised is that
the mean may be quite unstable for losses that follow a heavy-tailed distribution. For example,
for a widely used Pareto model for heavy tailed-losses Pr[X > x] = 1− (x/x0)

−ξ, for x > x0, the
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mean is infinite for 0<ξ≤ 1 and finite for ξ > 1. When the mean is finite but ξ is close to 1,
a similar model can have very different means. To illustrate this, Ganegoda and Evans (2013)
consider two banks where OpRisk follows a Pareto distribution with x0 = 1 and ξ= 1.01 for
bank I and ξ= 1.001 for bank II. Both distributions are very similar with the loss level at
the 99.9th percentile being 933 for Bank I and 993 for Bank II (i.e., the capital amounts for
these banks should be very similar). However, the mean operational loss at Bank I is 101,
whereas the mean loss at Bank II is 1001, which is about 10 times larger. This motivates one
to seek scaling properties not only for the scale but also for the shape parameter of the severity.
Specifically, Ganegoda and Evans (2013) considered shape and scale parameters modeled via
explanatory variables using the recently introduced “generalized additive models for location
scale and shape” (GAMLSS) framework by Rigby and Stasinopoulos (2005). They considered
several distributional assumptions for severity and found that a log-gamma distribution pro-
vides the best fit. Their results suggest that the tail index of the operational loss distribution
and the size of a bank have a negative relationship. In other words, the tail of the operational
loss distribution in large banks is heavier than in small banks.

GAMLSS is a very general class of regression model that incorporates popular GLM,
Generalized Additive models (GAMs), Generalized Linear Mixed Models (GLMMs), and Gen-
eralized Additive Mixed Models (GAMMs) together. However, GAMLSS is more general than
these models, since it relaxes the assumption that the response variable belongs to the natu-
ral exponential family. It is a convenient framework to test various distributional assumptions
such as Gumbel, Weibull, and Student-t, in addition to the standard natural exponential family
distributions. The second advantage of the GAMLSS framework is that it does not limit the
modeling to the location of the distribution as in GLM and the other similar frameworks. The
standard GLM setup (similar to ordinary least squares (OLS)) cannot model distributional
parameters other than the location parameter explicitly.

In the GAMLSS framework, all distributional parameters can be explicitly modeled
using both fixed and random effects (see Rigby and Stasinopoulos, 2005). Furthermore, each
distributional parameter can be modeled as linear and/or nonlinear, parametric and/or smooth
nonparametric functions of explanatory variables and/or random effects.

Consider a random sample of independent observations (e.g., losses or log losses)
y = ( y1, y2, . . . , yn). Let f ( yi;θ) be the density function conditional on the parameter
vector θ. The parameter vector can have any number of distributional parameters θ =
(θ1, . . . , θK ) the each of which can be modeled by explanatory variables. Then the modeler
should define link functions gk(·), which specifies the relationship between the linear predictor
and the distributional parameters as

gk(θk) = β
(k)
1 X (k)

i,1 + β
(k)
2 X (k)

i,2 + · · ·+ β
(k)
J X (k)

i,J , (16.82)

where X (k)
i,j is the value of the j-th explanatory variable relating to observation yi in the k-th

distributional parameter. In matrix notation, it can be written as g(θk) = X (k)β(k) with X (k)

the design matrix of the k-th parameter. Parameters β(k) can be estimated using likelihood

n∏
i=1

ln f ( yi;β
(1), . . . ,β(K )) (16.83)

using the maximum likelihood method or Bayesian MCMC approach. For example, Ganegoda
and Evans (2013) carried out maximum likelihood parameter estimation for OpRisk losses
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in AlgoOpData using the software R package gamlss (see Stasinopoulos and Rigby 2007).
They found a good fit for log-Gamma distribution when log losses are modeled by Gamma
distribution Gamma(α, γ) with log link functions for shape α and scale γ parameters, that is,
gk(·) = ln(·) in (16.82).

16.8 Multifactor Modeling under EVT Approach

Under the EVT approach, the frequency Nt of loss exceedances Xi over large enough threshold
u follows a Poisson process with intensity λ and loss exceedances Xi follow GPD(ξ, θ), whose
distribution function is

Gξ,θ(x) =

{
1 − (1 + ξx/θ)−1/ξ, ξ 
= 0,
1 − exp(−x/θ), ξ = 0,

(16.84)

where x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −θ/ξ when ξ < 0.
In practice, the assumption of i.i.d. about the number of exceedances and severity is typi-

cally not appropriate. OpRisk losses might depend on covariates such as economic factors, busi-
ness lines, event types, and time. Consider the observed vectors zi = (ti, yi, xi), i = 1, . . . , n,
where 0 ≤ t1 ≤ · · · ≤ tn ≤ T are exceedance times, yi is observed vector of covariates
(explanatory variables) at time ti, and xi is observed loss exceedance over the threshold u. In the
study of OpRisk Willis dataset by Chavez-Demoulin et al. (2013), the model parameters λ,ξ,
and θ are considered to be functions of time and covariates as follows.

The Poisson intensity λ is modeled as

λ( y, t) = exp( yTβλ + hλ(t)), (16.85)

where βλ is a vector of parameters, hλ(t) is a general measurable function of time that does
not depend on specific parameters.

It is assumed that ξ > 0 and GPD parameters (ξ, θ) are replaced with (ξ, ν), where
ν = ln((1 + ξ)θ) to make parameters orthogonal with respect to the Fisher information
metric (which is important for convergence of the fitting procedure) that are modelled as

ξ( y, t) = yTβξ + hξ(t), (16.86)

ν( y, t) = yTβν + hν(t), (16.87)

where hξ(t) and hν(t) are general measurable functions of time that do not depend on specific
parameters. After estimating ξ( y, t) and ν( y, t), one can estimate θ using

θ( y, t) =
exp(ν( y, t))
1 + ξ( y, t)

.

The likelihood function of loss exceedances can be written as

LX (ξ, θ) =
n∏

i=1

1
β

(
1 + ξ

xi

θ

)−(1+1/ξ)
(16.88)
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and reparameterized likelihood is

L̃X (ξ, ν) = LX

(
ξ,

exp(ν)

1 + ξ

)
.

The model for Poisson process (16.85) is a standard GAM that can be estimated using
available functions, for example, in R-software package. However, to estimate all severity param-
eters (βξ, βν) and functions (hξ(t), hν(t)), Chavez-Demoulin et al. (2013) had to introduce
a special backfitting algorithm because the severity factor model (16.84) with (16.86,16.87)
does not lie directly within any standard GAM. The described methodology was applied by
Chavez-Demoulin et al. (2013) to a dataset of OpRisk losses provided by Willis; the consid-
ered covariates were business lines and event types. To fit smooth functions hξ(t), hν(t), the
penalized MLE method was utilized. Details of the fitting procedure including links to detailed
R implementation are provided by Chavez-Demoulin et al. (2013).
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Chapter Seventeen

Insurance and Risk Transfer:
Products and Modeling

In this chapter, we address the following components of OpRisk insurance modeling:

1. What is the incentive and motivation for undertaking risk transfer?
2. What types of insurance products can one consider in the OpRisk setting and how might

they apply to the LDA model structure?
3. What types of models can one develop for understanding analytically the impact of insur-

ance in OpRisk settings?
4. What impact does each of the different insurance policies have on capital estimation (risk

measures)?

In discussing these questions, we provide a detailed introduction to the basic properties of
insurance products, structuring, and modeling. We detail what types of losses are insurable in a
classical sense and then set the tone for the more advanced aspects in Chapter 18, which deals
with catastrophe bonds and bespoke insurance products. We discuss the important aspects of
insurance product structuring such as moral hazard and how this may influence OpRisk model-
ing and applications. After these basic definitions, the majority of this chapter deals with aspects
of single peril insurance product structures with deterministic and stochastic features, followed
by a detailed analysis of how one may construct quantitative LDA models incorporating such
insurance properties.

17.1 Motivation for Insurance and Risk Transfer
in OpRisk

The notion of risk transfer and insurance has been studied for a long period, and in particu-
lar there is a well-established economic model for the transfer of such risk; see an overview in
Gollier (2005). Under the standard economic framework for risk transfer, it is argued that com-
petition in insurance markets will result in a Pareto-efficient allocation of risk in the economy,

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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where the notion of Pareto optimality is provided in Definition 17.1. In addition, this eco-
nomic reasoning also concludes that all diversifiable risks in the economy are removed through
the mechanism of mutual risk-sharing arrangements that involves pooling and diversification
of risk in a deep insurance/reinsurance market. It also involves the conclusion that all risks are
insurable since any residual systematic risk will be attributed to agents with a competitive advan-
tage with regard to risk management, such as insurers. In practice, this is not the case since there
are still significant diversifiable risks that are borne by individuals that Gollier (2005) attributes
to an inefficient risk-sharing ex ante.

Definition 17.1 (Pareto Optimality) Pareto efficiency or Pareto optimality refers to an allocation
of assets or resources in which it is impossible to make any one better off without making at least one
individual worse off.

As detailed in Doherty (1997b), the 1980s and 1990s witnessed significant changes in the
insurance landscape, especially in the property-liability insurance market that they listed as

1. Withdrawal of commercial business into alternative risk management vehicles and
strategies;

2. Crises and coverage changes in liability insurance;
3. Integration of insurer asset and liability management;
4. Emergence of innovative reinsurance instruments such as financial reinsurance;
5. Experiments with radical regulation;
6. Corporate reorganization and reassembly, such as merger activity among brokers leading

to increased concentration;
7. The securitization of catastrophe risk through instruments such as exchange traded catas-

trophe options and future as well as OTC catastrophe bonds.

With regard to the establishment of the catastrophe insurance linked securities (ILS), it
was argued by Babbel and Santomero (1996) and Santomero and Babbel (1997) that this was
by no means coincidental. In this section, we are interested in how such growth in the ILS
markets can be beneficially utilized in the OpRisk context. Modeling the impact of insurance
mitigation for different risk cells and business units is an important challenge in the setting
of OpRisk (OpRisk) management yet to be fully understood and therefore adopted in prac-
tice. The slow uptake of insurance policies in OpRisk for capital mitigation can be partially
attributed to the limited understanding of their impact in complex multi-risk, multiperiod sce-
narios, under heavy-tailed losses and the fair premium to charge for such policies, as well as a
relatively conservative Basel II regulatory cap of 20% for capital reduction due to insurance.
Therefore, although OpRisk models are maturing, OpRisk insurance mitigation is still in its
infancy (Bazzarello et al. 2006, Brandts 2004, Peters et al. 2011a).

The Basel II OpRisk regulatory requirements for the advanced measurement approach
(BCBS, 2006, p. 148) state that “Under the AMA, a bank will be allowed to recognise the
risk mitigating impact of insurance in the measures of OpRisk used for regulatory minimum
capital requirements. The recognition of insurance mitigation will be limited to 20% of the
total OpRisk capital charge calculated under the AMA”. Therefore, from the perspective of
a financial institution, such as a bank, there is a strong incentive to understand the effect of
insurance mitigation on the OpRisk capital.
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From the insurer’s perspective, a quantitative understanding of the impact of insurance
in OpRisk extreme loss scenarios will allow for accurate pricing of insurance premiums and
an understanding of what aspects of OpRisk loss processes are actually insurable. In addition
by studying the risk transfer from bank to insurer, this will aid in modeling of the required
capital for an insurer under Solvency 2. As discussed in the initiatives developed by the Inter-
national Association of Insurance Supervisors (Kawai 2005, Linder and Ronkainen 2004), the
Solvency 2 framework was developed as a similar system to the Basel II three-pillar system. It
specifies the financial resources that a company must hold to be considered solvent. In Sand-
ström (2006), the IAIS guidance under Principle 8 discusses minimum capital in the following
non prescriptive manner: “A minimum level of capital has to be specified”, it is therefore a
quantitative challenge to decide how to model such capital. In the second phase of the EU
project Solvency 2, the commission introduced two distinct levels of solvency: these are mea-
sured according to an upper level, the solvency capital requirement (SCR), and lower level,
the minimum capital requirement (MCR); see Sandström (2006). For more discussion on the
relationship between the OpRisk banking sector claims process as viewed by an insurer and the
insurance mitigation as viewed by a bank or financial institution, see the study in Peters et al.
(2011a).

Thinking purely of the OpRisk and Basel II/Basel III context, we note that the Basel III
policy for application of insurance mitigation requires that a bank must have a detailed frame-
work for recognizing insurance. In addition, this framework must be made available to the
regulator to assess whenever insurance mitigation is applied as stated in Pillar III of the (BCBS,
2006, p. 155): “. . . risk mitigation calculations must reflect the bank’s insurance coverage in a
manner that is transparent in its relationship to, and consistent with, the actual likelihood and
impact of loss used in the bank’s overall determination of its OpRisk capital”.

Finally, as noted in Chernobai et al. (2007, p. 52), for a bank to consider applying insurance
mitigation to their risk processes and ultimately to their capital measure, they must already be
of a suitable credit worthiness as measured by the following requirements:

• The insurance company (whether it be self-insurance from an insurance branch of the bank
or external insurance) must hold a credit rating that is at least A-grade;

• The coverage from the insurance product must be in alignment with the LDA models and
resulting actual likelihood of loss events that are utilized by the bank in calculation of the
OpRisk capital.

To proceed with the understanding of the role of insurance and risk transfer in OpRisk, we
note that throughout this chapter we will work with application of insurance under the context
of an LDA model structure, involving an annual loss in a risk cell (business line/event type)
modeled as a compound random variable,

Z ( j )
t =

N ( j )
t∑

s=1

X ( j )
s (t) . (17.1)

Here, t = 1, 2, . . . ,T ,T +1 in our framework is discrete time (in annual units) with T +1 cor-
responding to the next year. The superscript j is used to identify the risk cell. The annual number
of events N ( j )

t is a random variable distributed according to a frequency counting distribution
P( j )(·), typically Poisson. The severities in year t are represented by random variables X ( j )

s (t),
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s ≥ 1, distributed according to a severity distribution F ( j )(·). Severities represent actual loss
amounts per event. The total bank’s loss in year t is calculated as

Zt =

J∑
j=1

Z ( j )
t , (17.2)

where formally for OpRisk under the Basel II requirements J = 56 (seven event types times
eight business lines). However, this may differ depending on the financial institution and type of
problem. In general throughout this section, we will drop the upper risk cell (business line/event
type) index unless explicitly required such as in multiple loss insurance products.

17.2 Fundamentals of Insurance Product Structures
for OpRisk

It is important to realize that the need for insurance in OpRisk settings becomes clearer when
one considers the different types of risk processes present in a large banking institution. In a
general classification, one can consider the risk exposures to be classified into two sources of
risk: those that are controllable and can be managed through improvement to weaknesses or
lack of compliance in internal controls, and those that are external and noncontrollable. It is
precisely in the context of noncontrollable risks that risk transfer can be a critical tool to help
manage exposures.

We start with a very basic definition of what insurance is and some basic components of
insurance.

Definition 17.2 (Insurance Policy) At a fundamental level, one can consider insurance to be
the fair transfer of risk associated with a loss process between two financial entities. The transfer of
risk is formalized in a legal insurance contract that is facilitated by the financial entity taking out
the insurance mitigation making a payment to the insurer offering the reduction in risk exposure.
The contract or insurance policy legally sets out the terms of the coverage with regard to the condi-
tions and circumstances under which the insured will be financially compensated in the event of a
loss. As a consequence, the insurance contract policy holder assumes a guaranteed and often known
proportionally small loss in the form of a premium payment corresponding to the cost of the con-
tract in return for the legal requirement for the insurer to indemnify the policy holder in the event
of a loss.

Under this definition, one can then interpret the notion of insurance as a risk management
process in which a financial institution may hedge against potential losses from a given risk
process or group of risk processes. Mehr et al. (1980) and Berliner (1982) discuss at a high level
the fundamental characteristics of what it means to be an insurable loss or risk processes, which
we review in Definition 17.3. Of course, this is intended to be a simple guide and is not to be
considered definitive; in addition, it provides the standard actuarial view on insurability. This
is not directly equivalent to the economists view as we note subsequently.

Definition 17.3 (Insurable Losses) Mehr et al. (1980) and Chernobai et al. (2007, chapter 3)
define insurable risks as those that should have the following common characteristics:
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1. The risks must satisfy the “Law of Large Numbers”. In other words, there should be a large
number of similar exposures;

2. The loss must take place at a known recorded time, place, and from a reportable cause, known
as a definite loss process;

3. The loss process must be considered subject to randomness. That is, the events that result in
the generation of a claim should be random or at a minimum outside the control of the policy
holder;

4. The loss amounts generated by a particular risk process must be commensurate with the charge
premium, and associated insurer business costs such as claim analysis, contract issuance and
processing. Therefore, risk processes that are to be insured must be sufficiently large;

5. The estimated premium associated with a loss process must be affordable. In other words, the
likelihood of an insured event causing a catastrophic loss so large that to insure it would result
in a premium charge so large that no one would purchase such a contract must be considered.
This is particularly important in high-consequence rare-event settings; see discussions in Peters
et al. (2011a), who consider this question in a general setting;

6. The probability of a loss should be able to be estimated for a given risk process. In addition, one
should be able to estimate some statistic characterizing the typical, average, median, etc., loss
amount;

7. The final requirement typically is that either the risk process has a very limited chance
of a catastrophic loss that would bankrupt the insurer and in addition the events that
occur to create a loss occur in a nonclustered fashion or the insurer will cap the total
exposure.

Gollier (2005) argues that there is also a need to consider the economic ramifications
for insurable risks. In particular, the adds to this definition of insurable risks the need to
consider the economic market for such risk transfers. In particular, Gollier (2005) discusses
uninsurable and partially insurable losses, where an uninsurable loss occurs when “‘…, given
the economic environment, no mutually advantageous risk transfer can be exploited by the con-
sumer and the supplier of insurance”. Gollier (2005) defines a partially uninsurable loss as one
that arises when the two parties to the risk transfer exchange can only partially benefit or
exploit the mutually advantageous components of the risk transfer; this has been studied in
numerous studies, such as Aase (1993), Arrow (1964), Arrow (1965), Borch (1962), and Raviv
(1979).

As noted in Gollier (2005), from the economist’s perspective, the basic model for risk
transfer involves a competitive insurance market in which the Law of Large Numbers is utilized
as part of the evaluation of the social surplus of the transfer of risk. However, unlike the actuarial
view presented earlier, the maximum potential loss and the probabilities associated with this
loss are not directly influential when it comes to assessing the size of risk transfers at market
equilibrium. In addition, the economic model adds factors related to the degree of risk aversion
of market participants “agents” and their degree of optimism when assessing the insurability of
risks in the economy. Classically these features are all captured by the economic model known as
the Arrow–Borch–Raviv model of perfect competition in insurance markets; see a good review
in Gollier (2005, section 2) and Ghossoub (2012).

Under the standard Arrow–Borch–Raviv model, the demand for insurance contracts
involves an optimal contract for a buyer taking the form of a deductible contract. This result
is obtained under the assumption (among others) that the insurer is a risk-neutral expected
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utility maximizer, and the buyer is a risk-averse expected utility maximizer. It is also assumed
that both parties to the risk transfer share the same probabilistic beliefs about the realizations
of the underlying insurable loss. In particular, the distribution function for losses is com-
mon knowledge and can depend on several factors such as prevention efforts by the agents;
in addition, the efforts associated with such prevention are assumed costless. Clearly in prac-
tice, there will be an asymmetry in the information available to the sponsors of the insurance
compared to the investors depending on the type of peril covered and the sophistication of the
investor. It is interesting to note that in the context of catastrophe bonds, some aspects of
the information asymmetry traditionally present are starting to dissipate with the emergence of
improved statistical modeling in some perils that are made available by specialized consulting
firms for a fee.

This feature of information asymmetry was noted in Ghossoub (2012), where he argues
that there is a heterogeneity of beliefs in the classical insurance model, and consequently con-
siders instead a setting where the investor and the insurer have preferences yielding different
subjective beliefs. The investor then demands an insurance contract that will maximize the (sub-
jective) expected utility of terminal wealth with respect to an associated subjective probability
measure. Alternatively, the insurer sets premiums on the basis of their subjective probability
measure. In this setting, they were able to show that under the condition they term vigilance (a
consistency requirement on the insurer’s subjective probability), then there exists an event for
which the investor assigns their subjective probability measure completely and the consequent
optimal insurance contract is a “generalized deductible contract”.

In addition, it is noted in Lakdawalla and Zanjani (2012) the “puzzling” nature of the
incompleteness of the catastrophe risk transfer. They claim that “the price of risk transfer seems
high, risk is not spread evenly among insurers …and reinsurance consumers do not purchase coverage
for high layers of risk” which is directly contradictory to the findings from the framework of
the Arrow–Borch–Raviv model. This is also documented in Froot (2001), and several plausible
explanations are offered relating to inefficiencies in the insurance market as causes. For instance,
in Froot (2001), it is argued that catastrophe bonds (a type of ILS) serve a well-defined eco-
nomic role in risk transfer markets, which is based on their full collateralization. This allows
them to avoid exposure to counterparty defaults, and Froot (2001) further notes that as fric-
tional costs in catastrophe bonds such as issuance cost, secondary market illiquidity decrease
relative to more traditional reinsurance, then there will be an increase in the utilization of
catastrophe bonds for risk transfer. This has already started to occur and can be beneficial
to OpRisk.

Returning to the notion of uninsurable risks, whether defined from an actuarial or an
economic perspective, we note that in OpRisk several risks are not directly insurable and this
can arise for many reasons. In cases in which a loss process is not directly insurable due to no
existing product structure for the type of peril considered, or it may be partially insurable and
then an insurer can still develop products for OpRisk through use of deductibles, exclusions,
conditions, attachment points, and total cover limits as defined below.

Definition 17.4 (Insurance Policy Deductibles) In an insurance policy, the deductible is the
amount of expenses that must be paid out of pocket before an insurer will pay any expenses.

Definition 17.5 (Insurance Policy Exclusions) An exclusion in an insurance policy is a con-
tractually legal exception in which an insurer will not cover a loss. In other words, exclusions remove
a portion of coverage from the insurance contract and they are typically stated through descriptions of
property, perils, hazards, or losses that may arise in the loss process being insured under specific causes
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that are deemed to be the aspects of the loss process that result in the loss process being noninsurable
and are therefore not covered by the policy.

Definition 17.6 (Insurance Policy Conditions) In an insurance policy, the conditions list a set
of rules of conduct and provisions as well as the duties and obligations required by the policy holder
in order for them to make a claim and therefore obtain coverage under the policy.

Definition 17.7 (Attachment Point) In an insurance policy, an attachment point corresponds to
the value at which excess insurance or reinsurance limits apply. If, for example, a captive’s retention is
USD x, then this is the “attachment point” at which excess reinsurance limits would apply. In other
words, it corresponds to the amount of money an insurer pays until the point at which supplemental
insurance (perhaps from another provider) begins to provide coverage.

Definition 17.8 (Insurance Policy Total Cover Limits) In an insurance policy, the insurer may
specify a total liability in the form of a total coverage limit that can be claimed by the policy holder
in the event of a catastrophic loss.

From a general perspective, one can consider the role of insurance within the three pillars
of Basel III OpRisk modeling as stylized by the representation in Figure 17.1.

Now we would like to make some comments on the role that insurance mitigation can
play in OpRisk and its context, while highlighting the need for risk managers to be vigilant
of an apparent side effect of loss coverage known as moral hazard. Here, we treat this issue
at a high level before discussing in some more detail in the section on catastrophe bonds and
reinsurance.

Identification of
risk processes

Reporting

Monitoring and
controls

Risk transfer
and insurance

Management and
mitigation of loss

Modelling and
quantification

figure 17.1 A picture depictsing a highly stylized view of the risk management process from Pilar I
to Pilar III under the Basel II/Basel III accord. It is intended to be a continuous review cycle in which
components of each stage are reinvestigated and revised over time under changing banking environments,
and importantly for this chapter it demonstrates where we perceive the insurance products playing a role
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When consideration is made as to whether the concept of insurance for OpRisk loss pro-
cesses will further stabilize the banking environment with respect to OpRisk loss exposures, it
is important to understand the component of moral hazard present as defined generically in
the OpRisk context in Definition 17.9.

Definition 17.9 (Moral Hazard in OpRisk Arising from Insurance) Traditionally, a moral
hazard describes a situation in which a bank becomes less risk averse under certain conditions that
transfer the cost borne by its risk taking to an outside party. Put simply it is a tendency to be more
willing to take a higher level of risk than usual under the knowledge that the potential costs of taking
such risk will be borne, in whole or in part, by others.

This could conceivably arise in the setting of losses covered by insurance in OpRisk settings.
However, this would of course have the opposite of the intended effect of the insurance policy
of stabilizing the business exposure and banking sector. In addition, this transfer of risk would
be counterproductive from the perspective of the Pilar III on risk reporting and refinement of
risk management practices. There can be two possible manifestations of moral hazard in the
OpRisk context, the exante moral hazard arising from increase risk taking due to transfer of risk
and the exposte moral hazard resulting from biased reporting that could arise due to the com-
plications involved with modeling and reporting the loss mitigations associated to insurance
deductions in OpRisk loss processes. It is therefore important for risk managers and regula-
tors to instill controls in the business process to reduce the possibilities of occurrence of such
moral hazards.

17.3 Single Peril Policy Products for OpRisk

In this section, we discuss different options that banks and financial institutions covered under
Basel II/Basel III have at their disposal to consider when evaluating the cost–benefit analysis of
different risk transfer decisions.

Traditionally there are many insurance products that could be utilized for coverage of
aspects of OpRisk loss processes. Therefore, in general in this chapter, we will not be specific
with particular types of insurance products that can be applied for particular risk processes in
OpRisk. We simply note that in general the following forms of insurance product can be consid-
ered as the components that would go into the construction of the generic insurance products
we describe later, which include the following nonexhaustive list (some of these groups will
overlap). We begin with a discussion on peril-specific products that are available for specific
categories of risk.

1. Casualty insurance. This class of products mainly involve liability coverage of an organi-
zation for negligent acts or omissions. In BCBS (2003), it is stated that to apply casualty
insurance the bank must be insurable and it refers to items 1, 2, 3 and 4 in Definition 17.3
of an insurable loss process;

2. Property insurance. This class of products mainly involves coverage for the wide class of
property related items, which are usually classified by either “real property” or “personal
property”, for items such as buildings; contents of buildings; money and securities; motor
vehicles and trailers; property in transit; ships and their cargo; and boilers and machinery.
The class of insurance products available for each of these aspects of property can include
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boiler insurance, builder risk insurance, earthquake insurance, fidelity bond insurance,
flood insurance, land lord insurance, terrorism insurance, and windstorm insurance;

3. Liability insurance. This class of products can include coverage of aspects such as public
liability, directors and officers liability, environmental liability, errors and omissions, and
professional liability insurance;

4. Umbrella liability insurance. Even if a bank holds a policy for General Liability Insur-
ance, it may face a claim, settlement, or judgment that exceeds the cover limit. In such
cases, an Umbrella Liability Insurance contract will cover the uncovered expenses from
the original liability insurance product;

5. Other specific categories such as business interruption insurance, collateral protection
insurance, legal expense insurance, and pollution insurance.

In general, there is no direct mapping between different risk processes under a Basel II/Basel
III risk and business unit framework (such as the 56 risk cells in the Basel accord). However,
there will be combinations of different policies that will be combined to mitigate a risk process.
It is precisely this combination of coverages that we will consider on aggregate to develop theory
for the modeling of OpRisk insurance products.

When thinking of specific types of insurance products that are directly applicable to
OpRisk loss processes, it is argued in Chernobai et al. (2007), Scott and Jackson (2002), and
Lewis and Lantsman (2005) in their studies on transfer of risk for rogue trading in OpRisk that
the OpRisk loss process classes are covered by the insurance products as shown in Table 17.1.

Next, we present some generic insurance product structures and the role they play on the
LDA loss process structure.

table 17.1 OpRisk processes and corresponding insurance products

OpRisk risk process Insurance product

Fraudulent and dishonest acts committed by
employees—e.g., rogue trading

Fidelity Bonds, which is a form of insurance (not a
bond), is also known as: in Australia—employee
dishonesty insurance coverage; and in
UK–fidelity guarantee insurance coverage

Natural disasters, fire, and theft Property insurance
Failed IT infrastructure protections to prevent

malicious and accidental IT crime
Electronic and computer crimes insurance

Losses from fraudulent activity by directors and
executives that may result, for example, from
alleged errors in judgment, breaches of duty, or
wrongful acts.

Director’s and officers’ liability coverage

Coverage for financial losses that include bankers’
professional indemnity, electronic & computer
crime, unauthorized trading, and credit card
exposures

Financial Institutions Crime Coverage (Swiss Re)

Losses arising from liabilities to third parties for
claims arising from employee negligence when
providing professional services such as
investment advice to clients

Personal indemnity insurance

Unauthorized financial transaction and trading
activities

Unauthorized trading insurance
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17.4 Generic Insurance Product Structures for OpRisk

In a financial institution, typically there are numerous insurance policies against different risk
types, some affecting single risks and some affecting several risk cells at once. These insurance
policies can be considered per risk type and per business unit; however, in OpRisk, all policies
must satisfy the Basel II regulatory requirements. In the following examples, we present several
possible generic insurance product structures and we detail how these may effect the OpRisk
LDA process. Later, we will then explain how one may construct a portfolio of available insur-
ance products to replicate these simple mitigation policies.

Therefore, in this section, we present different versions of insurance model specified by top
cover limits (TCL) under multiple risk modeling scenarios. These are selected to be fundamen-
tal insurance models that provide information about the building blocks for more advanced
policy structures. Building on these we also consider several advanced insurance policy struc-
tures, the first involving a Basel II haircut with a linearly increasing TCL over the duration of
the year (Bazzarello et al., 2006). The second policy involves a stochastic banding loss structure
for the TCL, which can be considered an extension of the model proposed in Bazzarello et al.
(2006), to a stochastic insurance structure. The third is a proportional deterministic or stochas-
tic annual policy. In particular, we will be able to show that under such policy types, several
interesting closed-form LDA models can be adopted that also incorporate the insurance policy
and, as a consequence, one can also solve for optimal purchase strategies for such products in
finite and infinite time horizons. A subset of the insurance policies we discuss in this chapter
may be found in detail in Peters et al. (2011a).

The following list presents a brief summary of the policies (and acronyms for these policy
structures) presented in detail later:

• Individual Loss Policy Uncapped (ILPU);
• Individual Loss Policy Capped (number of events) (ILPCn);
• Individual Loss Policy Capped (maximum total accumulated compensation) (ILPCa);
• Accumulated Loss Policy (ALP);
• Combined Loss Policy (two variants) (CLP1 and CLP2);
• Accumulated Loss Policy (with d risk exposures) (ALPd);
• Proportional Individual Loss Policy (PILP);
• Haircut Individual Loss Policy with Top Cover Limit (HILP-TCL);
• Haircut Individual Loss Policy (HILP);
• Stochastic Banding Policy (BILP).

17.4.1 GENERIC DETERMINISTIC POLICY STRUCTURES

Here, we consider the basic deterministic policy structures that can form the building blocks of
more complex policy structures and admit interpretable results and intuition for the impact of
such policies on the mitigation of the LDA loss process and the effect on capital risk measures.

We begin with individual loss processes, followed by a policy applicable to combined risk
processes, which may be used in practice to exploit knowledge of dependence properties of
particular risk processes in Basel II. For studies of the impact of dependence models in OpRisk,
see Peters et al. (2009). In addition, we assume without loss of generality a simple setting in
which deductible excess is zero. We start by defining the per event policy that we term the ILP
given in Definition 17.10.
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Definition 17.10 (Individual Loss Policy Uncapped (ILPU)) The ILPU provides a specified
maximum compensation, a TCL on a per event basis for a given year at a cost of purchase of C, though
there is no upper limit on the number of events the TCL is applied too. Therefore, one can write the
ILPU risk mitigated loss LDA model from the perspective of the banking institution according to the
loss process

Z (ILPU)
t = C +

Nt∑
s=1

max {Xs(t)− TCL, 0} . (17.3)

To understand this insurance product, we consider the very simple illustration given in
Example 17.1.

EXAMPLE 17.1 Application of the ILPU to a Single Risk LDA Model

Consider the ILPU policy for a single risk process in which we consider a year con-
sisting of five OpRisk losses of {6, 10, 8, 2, 5} in USD million. For each loss, the
insurer will provide compensation on the loss up to the value TCL, as illustrated in
Figure 17.2, where the solid lines represent the ILP policies TCL for this risk process.

As can be seen in losses 2 and 3, the value of the loss exceeds the TCL of USD
7 million, hence the insurer provides compensation of USD 7 million (highlighted
in gray) and the bank still incurs the loss above this value (highlighted in black).
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figure 17.2 Individual loss policy and the application of the top cover limit
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A variant of this policy involves the ILP policy in which a cap is imposed on the total claims
that can be covered by the policy, depending on the context of the claim process this may be on
a number of different factors such as total number of events covered or total amount of claims
covered. These two variants are detailed later and denoted by ILPCn, and ILPCa respectively.

Definition 17.11 (Individual Loss Policy Capped (ILPCn)) The ILPCn provides a specified
maximum compensation, a TCL on a per event basis for a given year at a cost of purchase of C, and
there is an upper limit on the number of events that the TCL is applied to that is denoted by nT .
Therefore, one can write the resulting ILPCn risk mitigated loss LDA model from the perspective of
the banking institution according to the loss process

Z (ILPCn)
t = C +

Nt∑
s=1

max {Xs(t)− TCL, 0} I [s ≤ nT ] +

Nt∑
s=1

Xs(t)I [s > nT ] , (17.4)

where I [·] is the indicator function.

Definition 17.12 (Individual Loss Policy Capped (ILPCa)) The ILPCa provides a specified
maximum compensation, a TCL on a per event basis for a given year at a cost of purchase of C,
and there is an upper limit on the total accumulated loss (AL) coverage applied denoted by AL, such
that the loss event that takes the accumulated claim above threshold coverage AL is also covered up
to TCL. Therefore, one can write the ILPCa risk mitigated loss LDA model from the perspective of
the banking institution according to the loss process

Z (ILPCa)
t = C +

Nt∑
s=1

max {Xs(t)− TCL, 0} I
[

s∑
k=1

max {Xk(t)− TCL, 0} ≤ AL

]

+

Nt∑
s=1

Xs(t)I

[
s∑

k=1

max {Xk(t)− TCL, 0} > AL

]
,

(17.5)

where I [·] is the indicator function.

A second type of generic policy one may adopt is the ALP given in Definition 17.13.

Definition 17.13 (Accumulated Loss Policy (ALP)) The ALP provides a specified maximum
compensation on losses experienced over a one-year insurance period at a cost of purchase of C. The
resulting risk mitigated loss can be expressed according to Equation (17.6). This formulation can
be simplified, though this representation is particularly useful when application of the policy on an
event by event basis that may be required in simulation studies and also if ACL is time dependent.

Z (ALP)
t = C +

Nt∑
s=1

Xs (t)× I

(
s−1∑
k=1

Xk (t) ≥ ACL

)

+

((
s∑

k=1

Xk (t)

)
− ACL

)
× I

(
0 < ACL −

s−1∑
k=1

Xk (t) < Xs (t)

)
,

(17.6)

with I (·) denoting the indicator function.
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To understand this insurance product, we consider the very simple illustration given in
Example 17.2.

EXAMPLE 17.2 Application of the ALP to a Single Risk LDA Model

As for the ILP model, for comparison purposes we also illustrate the application
of the ALP policy with the annual loss example presented in the ILP Definition
17.10 and ACL = USD 25 million. In this case, the insurer will provide complete
compensation of all losses over the year until the value of compensation reaches the
limit ACL, as depicted in Figure 17.3. In this setting, the insurer compensates the
bank for losses 1 to 3. However, the fourth loss brings the total claim value to USD
26 million, which will exceed the ACL cap of USD 25 million, hence the insurer
only compensates the bank for the first USD 1 million of the fourth loss and the
bank is exposed to the entirety of the fifth loss.

12
Application of accumulated loss policy (ALP) with ACL = $25M
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figure 17.3 Accumulated loss policy and the application of the accumulated cover limit

As a third generic policy type, one may adopt the CLP1 or CLP2 policies that are simple
variants of the ILPCa approach where the coverage of the loss event that results in an exceedance
above an accumulation threshold is only partially covered. This case is presented in Definitions
17.14 and 17.15.

Definition 17.14 (Combined Loss Policy (CLP1)) A CLP1 insurance contract provides a spec-
ified maximum compensation, TCL, on a per event basis up to a maximum per year loss, ACL at a
cost of purchase of C. The resulting risk mitigated loss process can be expressed as
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Z (CLP1)
t = C +

Nt∑
s=1

[
Xs (t)× I

(
s−1∑
k=1

min (Xk (t) ,TCL) ≥ ACL

)

+max (Xs (t)− TCL, 0)× I

(
s∑

k=1

min (Xk (t) ,TCL) ≤ ACL

)

+

(
Xs (t)−

(
ACL −

s−1∑
k=1

min (Xk (t) ,TCL)

))

× I

(
ACL −

s−1∑
k=1

min (Xk (t) ,TCL) < min (Xs (t) ,TCL)

)]
. (17.7)

To understand this insurance product, we consider a very simple illustration given in Exam-
ple 17.3.

EXAMPLE 17.3 Application of the CLP1 to a Single Risk LDA Model

Considering again the example in Section 17.10, we illustrate the application of
such a policy in Figure 17.4. Under the CLP1, the insurer will provide compensa-
tion on the loss up to the value TCL. However, once the total value of claims exceeds
the aggregate limit ACL, the insurer will not provide any further compensation.

As can be seen, the insurer only compensates the bank for the first USD 7
million of losses 2 and 3. In addition, the total value of claims is exceeded by the
fifth loss. Hence, the insurer will only compensate the first USD 3 million of the
fifth loss and the remaining exposure is incurred fully by the bank.
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figure 17.4 Combined loss policy and the application of the ILP and ACL
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Under the generic policy type specified by CLP2 in Definition 17.15, the consideration
of coverage is reversed compared to the CLP1 policy. The structure of policy CLP2, though
it is presented generically later, it has strong similarity with the structure of certain types of
catastrophe insurance products, as will be discussed later.

Definition 17.15 (Combined Loss Policy (CLP2)) A CLP2 insurance contract provides a spec-
ified maximum compensation, TCL, on a per event basis that only takes effect on the next loss once
a maximum per year loss ACL is reached, at a cost of purchase of C. The resulting risk mitigated loss
process can be expressed as

Z (CLP2)
t = C +

Nt∑
s=1

[
Xs (t)× I

(
s∑

k=1

Xk (t) ≤ ACL

)
(17.8)

+max {Xs(t)− TCL, 0} × I

(
s∑

k=1

Xk (t) > ACL

)]
.

To understand this insurance product, we consider a very simple illustration given in
Example 17.4.

EXAMPLE 17.4 Application of the CLP2 to a Single Risk LDA Model

Considering again the example in Section 17.10, we illustrate the application of
such a policy in Figure 17.5. Under the CLP2, the insurer will provide compensa-
tion on the loss up to the value TCL. This will only occur once the total value of
claims exceeds the aggregate limit ACL, before this aggregation (trigger level) the
insurer will not provide any compensation. If the ACL is set at USD 15 million,
then there will be no coverage for loss 1 and loss 2 under the policy CLP2. In
addition, with a TCL in this example given by USD 7 million, we see the remaining
losses after this trigger point of ACL will in this example be partially covered for
loss 3 and completely covered for losses 4 and 5.
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figure 17.5 Combined Loss Policy and the application of the ILP and ACL in CLP2
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One may also consider policies that are coupled or contingent on the behavior of d different
risk processes in a given year. To illustrate this, we consider a fourth example that one may adopt,
termed the ALPd given in Definition 17.16.

Definition 17.16 (Accumulated Loss Policy—d Risk Exposures (ALPd)) Consider the
multiple risk setting for a d-variate risk process, where a cap on compensation for accumulated losses
across d loss processes over the year is imposed, denoted ALPd at a cost of purchase of C. Under this
approach, the insurer will provide compensation to the bank with the ACL limit placed over claims
on the combined d risk exposures. As applied to the basic LDA model, a simplified risk mitigated
loss can be expressed for the j-th risk process according to

Z (ALPd)
t = C +max

⎡
⎣
⎛
⎝ d∑

j=1

N ( j )
t∑

s=1

X ( j )
s (t)

⎞
⎠− ACL, 0

⎤
⎦. (17.9)

17.4.2 GENERIC STOCHASTIC POLICY STRUCTURES:
ACCOUNTING FOR COVERAGE UNCERTAINTY

It is required in Basel II/Basel III specifications to take reasonable consideration of payment
uncertainties. These can arise from legal disputes regarding individual claims against partic-
ularly large loss events, uncertainty in default of insurers providing coverage in the fact of a
catastrophic loss event, or lengthy delays and claim run-offs for payment of total coverage which
factor in the fact that large claims will typically be payed in proportions over time, meaning
that coverage for any given year is uncertain. Hence, having defined these basic insurance prod-
uct structures, we note that Basel II/Basel III requires other insurance modeling conditions as
outlined in BCBS (2006, p. 155). Two of these being residual term of a policy and payment
uncertainty to be considered, which we model through stochastic policy structures.

All the policies discussed so far have a deterministic deduction applied either per loss or
aggregated over the annual loss for the year. To address the residual term aspect and the payment
uncertainty component, we consider three advanced insurance models. The first is based on a
random coverage per loss modeled as a proportion of the loss amount. This may arise in a simple
model for such payment uncertainties, which is factoring in litigation costs and legal challenges
for risk process known to have infrequent but high consequence losses. Claims arising from
such loss process would likely lead to challenge from an insurer and may result in proportional
coverage actually applying in a given year. The second follows guidelines proposed in Basel
II/Basel III relating to the insurance premium haircut and the third is based on a stochastic
banding structure. In particular, the third stochastic model extends the model of Bazzarello
et al. (2006), allowing one to capture the notion of payment uncertainty. This is a critical
aspect of both Basel II and Solvency 2 modeling; see BCBS (2006, p. 155).

In the following first example, we still consider deterministic policy specifications; however,
the amount deducted for a given loss is now a random variable as detailed under a PILP given
in Definition 17.17.

Definition 17.17 (Proportional Individual Loss Policy (PILP)) The PILP provides a speci-
fied maximum compensation, given by a proportional top cover limit (PTCL) on a per event basis
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for a given year at a cost of purchase of C. Therefore, one can write the PILP risk mitigated loss LDA
model from the perspective of the banking institution according to the loss process

Z (PILP)
t = C +

Nt∑
s=1

max

⎧⎨
⎩Xs(t)− θXs(t)︸ ︷︷ ︸

PTCL

, 0

⎫⎬
⎭ . (17.10)

for some policy specified θ ∈ [0, 1), which defines the PTCL of %x coverage.

To understand this insurance product, we consider a very simple illustration given in Exam-
ple 17.5.

EXAMPLE 17.5 Application of the PILP to a Single Risk LDA Model

Consider the PILP policy for a single risk process in which we consider a year con-
sisting of five OpRisk losses of {6, 10, 8, 2, 5} in USD million. For each loss, the
insurer will provide compensation on the loss given by the value PTCL, which in this
example is set at 40%, as illustrated in Figure 17.6, where the solid lines represents
the PILP policies PTCL for each loss event in the risk process. As can be seen in each
loss, the value of the compensation is at 40% of each individual loss (highlighted in
gray) and the bank still incurs the loss above this value (highlighted in black).
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figure 17.6 Individual Loss Policy and the application of the Top Cover Limit

If one wants to model explicitly the residual term of a policy, this can be considered through
a HILP product. Under the Basel II framework, it is clearly specified that “for policies with
a residual term of less than one year, the bank must make appropriate haircuts” (BCBS, 2006,
section 678, p. 155). Modeling the haircut complicates the LDA model since now one requires
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explicit knowledge of the arrival time process. In this section, we model the interarrival time
of losses in a year as exponentially distributed, such as would be relevant for a simple LDA
model with a Poisson frequency distribution assumption. Under this model, we consider the
simplest scenario in which a basic haircut is applied to the single risk LDA model as discussed
in Definition 17.18.

Definition 17.18 (Haircut Individual Loss Policy (HILP-TCL)) Under the HILP, insurance
is applied to the loss process; however, each compensation amount is specified by a proportion of the
TCL. In particular, the insurance mitigation follows a discounted time-sensitive factor, or haircut
factor. For simplicity, we consider a linear function increasing from 0% insurance mitigation at the
beginning of the year up to 100% of the TCL at the end of the year. We can therefore write the risk
mitigated loss process according to

Z (HILP)
t =

Nt∑
s=1

max (Xs (t)− α (t)TCL, 0). (17.11)

A second variant of the haircut coverage involves a time increasing deterministic function
for the proportion of coverage of a loss as detailed Definition 17.19.

Definition 17.19 (Haircut Individual Loss Policy (HILP)) Under the HILP, insurance is
applied to the loss process. However, each compensation amount is specified by a proportion of the
loss. In particular, the insurance mitigation follows a discounted time-sensitive factor, or haircut fac-
tor. For simplicity, we consider a linear function increasing from 0% insurance mitigation at the
beginning of the year up to 100% of the losses at the end of the year. We can therefore write the risk
mitigated loss process according to

Z (HILP)
t =

Nt∑
s=1

max (Xs (t)− α (t)Xs (t) , 0). (17.12)

To model insurer payment uncertainty for OpRisk, we consider a banding model. Payment
uncertainty, as discussed in Brandts (2004), generally arises as a result of disagreements between
a bank or financial institution and its insurer as to the true value of loss that will be realized. As
such, when modeling the resulting processes for both annual loss from the banking perspective
and claims from the insurer’s perspective, it is important to account for such uncertainty to
ensure appropriate capitalization and solvency.

As proposed in Bazzarello et al. (2006), a banded structure for payment uncertainty allows
for accounting for the fact that severe losses will typically attract more disagreement from insur-
ers and are more likely to be affected by payment delays on such claims on these losses. There-
fore, severe losses may be more realistically modeled as being discounted by larger values due
to their heightened likelihood of payment uncertainty arising from counter party disputes on
larger claims. Previously such models were deterministic, we extend these models to treat pay-
ment uncertainty as a stochastic process. To achieve this, we consider a stochastic banding struc-
ture across different levels of severity in which we can reflect higher probabilities of reductions
in total coverage of losses as severity of such losses increases.
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Definition 17.20 (Stochastic Banding Policy (BILP)) Under the BILP policy, at a cost of C,
the risk mitigated loss process can be expressed according to Equation (17.13):

Z (BILP)
t = C +

Nt∑
s=1

max (Xs (t)− CL (Xs (t)) , 0). (17.13)

We will segment the top level of cover for the policy as quantified by the TCL into D bands of equal
length L (possibly unequal length depending on the application). Under this segmentation, we can
define a function that identifies in which band X is located, denoted by the indicator function d(X )
for a given band and defined according to

d(X ) = min (D, �X/L�+ 1) . (17.14)

According to the definition of d(X ), we can now define CL(X ) as

CL(X ) = (d(X )− 1)L + δd(X ) min (L,X − (d(X )− 1)L), (17.15)

where δX ∼ Beta(α(X ), β(X )) is a random variable from Beta distribution with

α(X ) = I (d(X ) ≥ �(D + 1)/2	)

+ (�(D + 1)/2	 − d(X ))

[
2

(D − �(D + 1)/2	)

]
× I (d(X ) < �(D + 1)/2	) ,

β(X ) = I (d(X ) ≤ �(D + 1)/2�)

+ (d(X )− �(D + 1)/2�)
[

2
(D − �(D + 1)/2�)

]
× I (d(X ) > �(D + 1)/2�) .

However, in actual application of payment uncertainty to an observed claims processes, it is unlikely
that the bands of cover limit would have equal length. Therefore, to account for this, we will convert
the i-th band on the [0, 1] basic scale with length l = L

TCL to the i-th band on the [0, 1] log-scale
with length Bi via the transformation

Bi =
exp (il)− exp ((i − 1)l)

exp (1)− 1
, for i = 1, . . . ,D. (17.16)

Hence, the band identifying function in Equation (17.14), d(X ), can be redefined in the log-scale
case to b(X ), which identifies the log-band in which X is located

b(X ) = I (X ≤ B1TCL) +
D−1∑
i=2

⎡
⎣i I

⎛
⎝ i−1∑

j=1

Bi <
X

TCL
≤

i∑
j=1

Bi

⎞
⎠
⎤
⎦+ D I (X > BD−1TCL) .

(17.17)

From here, the calculation of CL(X ) is the same, where d(X ) is replaced by b(X ).

In the following, we illustrate the BILP policy coverage under two different banding struc-
ture assumptions.
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EXAMPLE 17.6 Understanding BILP Coverage

To illustrate the calculation of CL(X ) under the two different banding structures,
refer to Figure 17.7. As can be seen, this figure illustrates the application of the
3-banded insurance structure to the same loss of value USD 8 million. Under
the basic banded policy, L = 5 and hence the loss is categorized into the second
band. This means the insurer will provide complete compensation of the first band
USD 5 million, plus a proportion of the remaining loss USD 3 million (= USD
8 million − USD 5 million) as determined by δ2 ∼ Beta(1, 1). However, under
the log banded policy (Note: for simplicity the bandwidths have been selected as
integer values), the loss is categorized into the third band. As such, the insurer will
provide complete compensation for the first two bands USD 6 million (= USD 2
million − USD 4 million), plus a proportion of the remaining loss USD 2 million
(= USD 8 million − USD 6 million) as determined by δ3 ∼ Beta(1, 3).

16

Basic banded policy for payment
uncertainty using D = 3

Log banded policy for payment
uncertainty using D = 3

14
TCL

Band 2 cutoff

Band 1 cutoffS
ev

er
ity

 (
$M

)

12
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6

4
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0

16

14
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Band 2 cutoff
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TCL structure Loss severity TCL structure Loss severity

figure 17.7 Linear and logarithmic stochastic banding policies

It should also be mentioned that in the reinsurance industry the aforementioned banded
structure may look a little like the notion of layering as detailed in Definition 17.21.

Definition 17.21 (Reinsurance Layering) In the reinsurance industry, one often divides a large
risk into several layers. A layer in reinsurance is comparable to a tranche in catastrophe bond series.
Given a random loss variable X ∼ F (x), then a layer with limit h and attachment point a, denoted
by X(a,a+h], is defined according to

X(a,a+h] =

⎧⎪⎪⎨
⎪⎪⎩

0, if X < a,

X − a, if X ∈ (a, a + h],

h, if X ≥ a + h.

(17.18)
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Under a layer scheme, the expected loss in a given layer with attachment a and limit h is given by

E
[
X(a,a+h]

]
=

a+h∫
a

[1 − F (x)] dx. (17.19)

In the next section, we will illustrate how certain LDA model families that are of partic-
ular relevance to the context of insurance in OpRisk can be developed to obtain closed-form
expressions for the annual loss distribution under the insurance mitigation developed in the
ILPU, ILPCn, ILPCa, ALP, PILP, HLP and BILP policy types. This will involve development
of two families of models that have heavy-tailed severity distributions that are both closed under
convolution and also invariant to translation by the insurance mitigation on the loss process.

17.5 Closed-Form LDA Models with
Insurance Mitigations

In this section, we illustrate that under flexible families of LDA loss process models, one may
characterize the resulting insurance mitigated loss process distribution and density in closed
form. To develop closed-form LDA models under the setting of insurance mitigation, we will
utilize properties of particular families of severity models that are infinitely divisible. In partic-
ular, we will consider the following classes of severity family:

• Inverse Gaussian;
• α-stable—with strict positive support (perfect right skew β = 1);
• Large claim number approximations via geometric stable representations;
• Insured loss process Gamma and Beta basis series expansion representations.

In terms of the frequency distributions we consider, we will look at both Poisson, doubly
stochastic Poisson-Gamma and Poisson-generalized-hyper-geometric (Sichel) process models
in the definition of the following insurance mitigated processes.

In developing this section, we simply state without extensive detail the closed-form
LDA-Insured models. For the purpose of this section, it will be relevant to recall the following
basic definitions.

17.5.1 INSURANCE MITIGATION UNDER THE
POISSON-INVERSE-GAUSSIAN CLOSED-FORM LDA MODELS

If the severity model is taken to be the inverse-Gaussian family of models, then one has a
density and distribution function defined over a support (0,∞) given by Definition 17.22. It
is interesting to note that such models have been proposed for LDA loss models in the actuarial
literature in Ter Berg (1994) and Hadwiger (1942).
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Definition 17.22 (Inverse-Gaussian (Wald) Severity Model) If the severity model is given by
X ∼ InverseGaussian(μ, ψ) with x > 0 and mean μ > 0 and shape parameter ψ > 0, then one
has the following density and distribution functions:

fX (x;μ, ψ) =
[

ψ

2πx3

] 1
2

exp

(
−ψ(x − μ)2

2μ2x

)
,

FX (x;μ, ψ) = Φ

(√
ψ

x

(
x
μ
− 1

))
+ exp

(
2ψ
μ

)
Φ

(
−
√

ψ

x

(
x
μ
+ 1

))
,

(17.20)

with Φ(x) = 1√
2π

∫ x
−∞ exp

(
− 1

2 t2
)

dt the standard Normal distribution.

Under this class of severity model, we can obtain the following results for closed-form
expressions for the insured LDA risk process.

Theorem 17.1 (Poisson-Inverse-Gaussian LDA Under PILP Coverage) Consider the PILP
coverage characterized by the insurance mitigated loss process

Z (PILP)
t = C +

Nt∑
s=1

max

⎧⎨
⎩Xs(t)− θXs(t)︸ ︷︷ ︸

PTCL

, 0

⎫⎬
⎭ , (17.21)

for some policy specified θ ∈ [0, 1), which defines the (proportional TCL) PTCL or percentage of
each individual losses relative coverage. Then the distribution of the annual loss process Z represented
by a compound process model with LDA structure in which the frequency is Nt ∼ Poisson(λ) and the
severity model Xi(t) ∼ InverseGaussian(μ, ψ) can be re-expressed as the annual loss process of the
insured process Z (PILP)

t via mixture density comprising inverse-Gaussian components with Poisson
mixing weights for Nt > 0,

fZ PILP (z) =
∞∑

n=1

exp(−λ)
λn

n!

[
ψn

2πz3

] 1
2

exp

(
−ψn(z − μn)

2

2μ2
nz

)
, (17.22)

with

μn = (1 − θ)nμ,

ψn = (1 − θ)2n2ψ,

and fZ (0) = Pr [Nt = 0] = exp(−λ). The exact form of the annual loss cumulative distribution
function is also expressible in closed form,

Pr (Z < z) = FZ PILP (z)

=

∞∑
n=1

exp(−λ)
λn

n!

[
Φ

(√
ψn

z

(
z
μn

− 1
))

+ exp

(
2ψn

μn

)
Φ

(
−
√

ψn

z

(
z
μn

+ 1
))]

+ exp(−λ)× I [z = 0] .
(17.23)
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In addition, one can develop models in which the intensity of the number of losses per
year is treated as a random variable, in which case we are considering the insured process being
modeled by a doubly stochastic process as specified in Theorem 17.2.

Theorem 17.2 (Doubly Stochastic Poisson-Inverse-Gaussian LDA Under PILP Coverage)
Consider the PILP coverage characterized by the insurance mitigated loss process

Z (PILP)
t = C +

Nt∑
s=1

max

⎧⎨
⎩Xs(t)− θXs(t)︸ ︷︷ ︸

PTCL

, 0

⎫⎬
⎭ (17.24)

for some policy specified θ ∈ [0, 1), which defines the PTCL or percentage of each individual losses
relative coverage. Then the distribution of the annual loss process Z represented by a doubly stochastic
compound process model with LDA structure in which the frequency is Nt ∼ Poisson(Λ) and the
intensity of the number of loss events each year is a random variable with one of the following two
possible models.

• Gamma Intensity. Here, we assume that the intensity parameter for the mean number of losses
in a year is a random variable given by

Λ ∼ Γ (λ;α, β) =
βα

Γ(α)
exp(−βλ)λα−1, (17.25)

where α > 0 and β > 0, which results in the mixed Poisson model involving the probability
of the event {N = n} being given by

Pr [N = n] =
∞∫

0

exp(−λ)
λn

n!
βα

Γ(α)
exp(−βλ)λα−1dλ

=
(α+ n − 1)!
(α− 1)!n!

(
β

1 + β

)α( 1
1 + β

)n

,

(17.26)

see details in Peters et al. (2011, theorem 6). Here, Γ(α) is the gamma function;
• Generalised Inverse-Gaussian Intensity. In this case, we consider a generalized version of

the Sitchel model where we assume that the intensity parameter for the mean number of losses
in a year is a random variable given by

Λ ∼ GIG (λ;α, β, γ) =

(
2
√
(1 − β)

αβ

)γ
λγ−1[

2Kγ

(
α
√

(1 − β)
)]

× exp

(
−
[

1
β
− 1

]
λ− α2β

4λ

)
, (17.27)
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where γ ∈ R, α > 0 and β ∈ [0, 1], which results in the mixed Poisson model involving the
probability of the event {N = n} given by

Pr (N = n)

=

∞∫
0

exp(−λ)
λn

n!

(
2
√

(1 − β)

αβ

)γ
λγ−1[

2Kγ

(
α
√

(1 − β)
)]

× exp

(
−
[

1
β
− 1

]
λ− α2β

4λ

)
dλ

=
(1 − β)

γ
2

Kγ

(
α
√

(1 − β)
) (αβ)

n

2nn!
Kn+γ (α) . (17.28)

See details in Sichel (1982, equation 2.4).

For examples of such models in the doubly stochastic binomial, negative binomial processes, see the
details in Peters et al. (2011). If under the considered LDA model one utilizes a severity model
Xi(t) ∼ InverseGaussian(μ, ψ), the PILP insured annual loss process Z (PILP)

t can be expressed via
a mixture density comprising inverse-Gaussian components with weights specified by Pr[N = n]
under one of the models provided earlier, giving

fZ PILP (z) =
∞∑

n=1

Pr[N = n]
[

ψn

2πz3

] 1
2

exp

(
−ψn(z − μn)

2

2μ2
nz

)
, (17.29)

with

μn = (1 − θ)nμ,

ψn = (1 − θ)2n2ψ,

and fZ (0) = Pr [Nt = 0] = exp(−λ) for N = 0. The exact form of the annual loss cumulative
distribution function is also expressible in closed form,

Pr [Z < z] = FZ PILP (z)

=

∞∑
n=1

Pr[N = n]

[
Φ

(√
ψn

z

(
z
μn

− 1
))

+ exp

(
2ψn

μn

)
Φ

(
−
√

ψn

z

(
z
μn

+ 1
))]

+ exp(−λ)× I [z = 0] .
(17.30)

This presents a very generic and highly flexible class of risk processes with a simple and
easily interpretable insurance mitigation that admits closed-form representations, allowing for
efficient study and understanding of such models in practice. Furthermore, we note the follow-
ing features of the GIG-based model.

Remark 17.1 We note that in the case of the generalized Inverse Gaussian (GIG) mixing distribu-
tion for the number of losses in a year, we can characterize special subfamilies of the GIG model as
follows: if γ > 0 and α → 0, then the family reduces to the Pearson Type III (gamma) model; if
γ < 0 and β → 1, then the family reduces to the Pearson Type V family.
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In the case that one considers a haircut policy as specified under the HILP coverage, then
the following closed-form LDA models can be obtained as detailed in Theorem 17.3.

Theorem 17.3 (Poisson-Inverse-Gaussian LDA Under HILP Coverage) Consider the HILP
coverage characterized by the insurance mitigated loss process

Z (HILP)
t =

Nt∑
s=1

max (Xs (t)− α (t)Xs (t) , 0) (17.31)

for some functional form of the haircut specified according to α (t), which is an increasing percent-
age as a function of time t within the year of coverage. Then the distribution of the annual loss
process Z represented by a compound process model with LDA structure in which the frequency is
Nt ∼ Poisson(λ) and the severity model Xi(t) ∼ InverseGaussian(μ, ψ) can be re-expressed as the
annual loss process of the insured process Z (PILP)

t via mixture density comprising Inverse-Gaussian
components with Poisson mixing weights for Nt > 0,

fZ PILP (z) =
∞∑

n=1

exp(−λ)
λn

n!

[
ψn

2πz3

] 1
2

exp

(
−ψn(z − μn)

2

2μ2
nz

)
, (17.32)

with

μn = μ

n∑
i=1

[1 − α (ti)] ,

ψn = ψ

(
n∑

i=1

[1 − α (ti)]

)2

,

where {ti}n
i=1 are the times at which the n losses occurred during the year and

fZ (0) = Pr(Nt = 0) = exp(−λ) for N = 0. The exact form of the annual loss cumulative
distribution function is also expressible in closed form,

Pr (Z < z) = FZ PILP (z)

=

∞∑
n=1

exp(−λ)
λn

n!

[
Φ

(√
ψn

z

(
z
μn

− 1
))

+ exp

(
2ψn

μn

)
Φ

(
−
√

ψn

z

(
z
μn

+ 1
))]

+ exp(−λ)× I [z = 0] . (17.33)

17.5.1.1 Insurance Mitigation and the Coefficient of Variation. Before proceed-
ing, we recall the basic notion of the coefficient of variation for an LDA annual loss random
variable, provided in Definition 17.23.

Definition 17.23 (Coefficient of Variation for an LDA Model) In the simplest form, the coef-
ficient of variation of a loss process with a compound process LDA model Z =

∑N
i=1 Xi, denoted by

cv (Z) is defined according to the ratio given by
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cv (Z) =

√
Var [Z ]

E [Z ]
. (17.34)

This measure of variation is often considered as it may contain the desirable property that
it is independent of the unit in which the measurement has been taken, so it is a dimensionless
number. It is standard practice to consider this metric as a comparative measure of variability
when assessing data sets with different units or widely different means; in such cases, one should
use the coefficient of variation instead of the standard deviation.

EXAMPLE 17.7 Coefficient of Variation for Poisson-Inverse-Gaussian LDA Model

If one considers the LDA model comprising Poisson frequency model such that
Nt ∼ Poisson(λ) and the severity model utilized is an inverse-Gaussian model such
that Xi(t) ∼ InverseGaussian(μ, ψ) with a resulting annual loss given by

Zt =

Nt∑
s=1

Xs(t). (17.35)

Then one can find the coefficient of variation by first finding the first and second
moments of the LDA annual loss model according to

E [Zt ] = E [E [Zt |Nt = n]]
= E [NtX1(t)]
= λE [X1(t)]
= λμ,

Var [Zt ] = E [Var [Zt |Nt = n]] + Var [E [Zt |Nt = n]]

= λE
[
(X1(t))

2
]

= λ

(
μ3

ψ
+ μ2

)
,

(17.36)

which gives a coefficient of variation for the Poisson-inverse-Gaussian LDA model
according to

cv (Zt) =

√
μ+ ψ

λψ
. (17.37)

It is interesting to also consider the coefficient of variation in the case in which the LDA
model has insurance mitigation applied. In such cases, it was noted in Ter Berg (1994) and
detailed in Sterk (1979, chapter 5) that when one applies insurance to the loss process, the
insurance will naturally have a loss eliminating effect. This is somewhat obvious and is indeed
the sole reason for purchase of insurance policies in the first instance; however, what is perhaps
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not so obvious is the fact that if one considers the coefficient of variation of the LDA model
prior to application of insurance mitigation versus that of the insurance mitigated insurance
process, the coefficient of variation will increase as a result of insurance mitigation. One way
to understand why this is the case is that the insurance policy will reduce the total mean loss.
Then it is true that if one considers the coefficient of variation, when the mean value is close
to zero, the coefficient of variation will approach infinity and is therefore sensitive to small
changes in the mean. As the mean annual loss decreases, then one will naturally observe an
increased coefficient of variation. We can verify this is the case by developing an expression
for the Poisson-Inverse-Gaussian LDA model after considering insurance mitigation under the
PILP structure as detailed in Example 17.8.

EXAMPLE 17.8 Coefficient of Variation for Poisson-Inverse-Gaussian LDA Model
with PILP Insurance Mitigation

Consider the PILP coverage characterized by the insurance mitigated loss process

Z (PILP)
t = C +

Nt∑
s=1

max

⎧⎨
⎩Xs(t)− θXs(t)︸ ︷︷ ︸

PTCL

, 0

⎫⎬
⎭ (17.38)

for some policy specified θ ∈ [0, 1), which defines the (proportional TCL) PTCL
or percentage of each individual losses relative coverage. Then the distribution of
the annual loss process Z represented by a compound process model with LDA
structure in which the frequency is Nt ∼ Poisson(λ) and the severity model Xi(t) ∼
InverseGaussian(μ, ψ). The resulting coefficient of variation of the PILP insurance
mitigated process is then given by first finding the mean and variance of the resulting
insurance mitigated process given by

E

[
Z (PILP)

t

]
= E [E [Zt |Nt = n]]

=

∞∑
n=0

exp(−λ)
λn

n!
μn

= (1 − θ)μ

∞∑
n=1

exp(−λ)
λn

(n − 1)!

Var
[
Z (PILP)

t

]
= E [Var [Zt |Nt = n]] + Var [E [Zt |Nt = n]]

= E

[
μ3

Nt

ψNt

]
+ Var [μNt ]

= (1 − θ)
(μ)

3

ψ
E [Nt ] + (1 − θ)2 (μ)

2
Var [Nt ]

= λ(1 − θ) (μ)
2
[
μ

ψ
+ (1 − θ)

]
,

(17.39)
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where μn and ψn is notation used to denote the parameters of the Inverse Gaussian
of the partial sum with n losses, which produces an insurance mitigated coefficient
of variation given by

cv

(
Z (PILP)

t

)
=

√
λ(1 − θ)

[
μ
ψ + (1 − θ)

]
(1 − θ)

∑∞
n=1 exp(−λ) (λ)n

(n−1)!

. (17.40)

From this analysis we see that when we take the first-order approximation of the
coefficient of variation given by

cv

(
Z (PILP)

t

)
≈

√
λ(1 − θ)

[
μ
ψ + (1 − θ)

]
(1 − θ) exp(−λ) (λ)

,
(17.41)

noting that θ ∈ [0, 1], if θ << μ+ψ
ψ , then one has the approximate relationship

between the coefficient of variation for the insured process and the uninsured process
given by

cv

(
Z (PILP)

t

)
=

cv (Zt)√
1 − θ exp(−λ)

. (17.42)

This relationship shows that as θ → 1, that is, it approaches full insurance coverage
per loss under the PILP coverage, the coefficient of variation of the insured loss
process indeed is increasing.

17.5.2 INSURANCE MITIGATION AND POISSON-α-STABLE
CLOSED-FORM LDA MODELS

There are a number of different parameterizations that have been developed for the four-
parameter α-stable characteristic function; a detailed discussion is provided in Peters and
Shevchenko (2015). We first present some results in regard to two different series expansions for
the density and distribution function of the α-stable severity model under the B-type parame-
terisations of Zolotarev.

Definition 17.24 (Zolotarev’s B-Type Stable Parameterizations) A random variable X with
α-stable distribution, denoted by X ∼ Sα (x;βB, γB, δB;B), denotes the univariate four-parameter
stable distribution family under parameterizations B type of Zolotarev (1986, theorem C.3) with
characteristic function in the following form:

lnΦX (θ) = lnE [exp(iθX )] =

{
γB (iθδB − |θ|α exp (−i(π/2)βBK (α)sgnθ)) α �= 1

γB (iθδB − |θ|α (π/2 + iβB ln |θ|sgnθ)) α = 1
(17.43)
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with K (α) = α− 1+sgn(1−α) and stability index α ∈ (0 , 2], skewness βB ∈ [−1, 1], “rate”
γB > 0, and location δB ∈ R. Here, i =

√
−1 is a unit complex number.

Lemma 17.1 (α-Stable Severity Density and Distribution Representations) Consider the
standardized B-type α-stable random variable, standardized such that γ = 1 and δ = 0. Then the
density function can be evaluated pointwise according to the following series expansions (Zolotarev,
1986, equation 2.4.6, p. 89):

fX (x;α, β, 1, 0;B)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
π

∞∑
n=1

(−1)n−1 Γ( n
α+1)

Γ(n+1) sin
(

nπ 1+βK (α)
2α

)
xn−1, if α > 1, β ∈ [−1, 1], x ∈ R,

1
π

∞∑
n=1

(−1)n−1nbnxn−1, if α = 1, β ∈ (0, 1], x ∈ R,

1
π

∞∑
n=1

(−1)n−1 Γ(nα+1)
Γ(n+1) sin

(
nπα 1+βK (α)

2α

)
x−nα−1, if α < 1, β ∈ [−1, 1], x ∈ R

+,

(17.44)

where the coefficients bn are given by

bn =
1

Γ(n + 1)

∞∫
0

exp (−βu ln u) un−1 sin
[
(1 + β)u

π

2

]
du. (17.45)

In addition, the distribution function of an α-stable severity model can be evaluated pointwise
according to the convergent series expansion given by

FX (x;α, β, 1, 0;B)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1
πα

∞∑
n=1

(−1)n−1 Γ(nα+1)
nΓ(n+1) sin

(
nπα 1+βK (α)

2α

)
(x)−

n
α ,

if α < 1, β ∈ [−1, 1], x ∈ R,

1 + 1
2

(
1 + βK (α)

α

)
+ 1

π

∞∑
n=1

(−1)n−1 Γ( n
α+1)

nΓ(n+1) sin
(

nπ 1+βK (α)
2α

)
xn,

if α > 1, β ∈ [−1, 1], x ∈ R,

1 − 1
π b0 +

1
π

∞∑
n=1

(−1)n−1bnxn, if α = 1, β ∈ (0, 1], x ∈ R
+,

In all other cases, it suffices to utilize the duality principle of infinitely divisible stable distributions,
which has the consequence that

FX (−x;α, β, 1, 0;B) + FX (x;α,−β, 1, 0;B) = 1. (17.46)

In addition, it may be of interest in some cases to consider instead a special basic func-
tion expansion for the distribution and density of the α-stable severity density specifically
for the case of positive support of the losses, given in terms of Laguerre polynomials, see
Definition 17.25.
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Definition 17.25 (Laguerre Polynomials) The generalized Laguerre polynomials are defined as
the solutions to the second-order linear differential equation, for integers n according to

xy′′ + (α+ 1 − x)y′ + ny = 0.

The solutions form a sequence of polynomials L0, L1, . . . which are also an orthonormal sequence
given by several different representations. First, it will be useful to consider the case of the standard
Laguerre polynomials in which α = 0 and then the following recursive relationship for their defi-
nition is considered for x ∈ R and for all k ∈ N

+

L0(x) = 1,
L1(x) = 1 − x,

Lk+1(x) =
1

k + 1
((2k + 1 − x)Lk(x)− kLk−1(x)) .

(17.47)

Now the generalized Laguerre polynomials, for cases in which α �= 0, are given by

L(α)
n (x) =

x−α exp(x)
n!

dn

dxn

(
exp(−x)xn+α

)
=

n∑
i=0

(−1)i

(
n + α

n − i

)
xi

i!
,

or for x ∈ R according to the special functions known as the confluent hypergeometric functions or
Kummer’s functions by

L(α)
n (x) =

(
n + α

n

)
M(−n, α+ 1, x)

=
(−1)n

n!
U (−n, α+ 1, x),

(17.48)

where one defines

M(a, b, z) =
∞∑

n=0

(a)(n)zn

(b)(n)n!
,

U (a, b, z) =
Γ(1 − b)

Γ(a − b + 1)
M(a, b, z) +

Γ(b − 1)
Γ(a)

z1−bM(a − b + 1, 2 − b, z),

(17.49)

with Pochhammer symbols (a)(n) = a(a + 1)(a + 2) . . . (a + n − 1).

These generalized Laguerre polynomials can then be utilized to obtain a series expansion
for the α-stable severity density as follows.

Lemma 17.2 (α-Stable Strictly Positive Support Severity Density Representations) The
standardized perfectly skewed α-stable severity density Sα(x; 1, 1, 0;B) can be represented in the
heavy-tailed cases by the following Laguerre polynomial series expansion for x > 0; see Zolotarev
(1986, theorem 2.4.4)
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fX (x;α, 1, 1, 0;B) =

⎧⎪⎪⎨
⎪⎪⎩

x
1−α2

α exp(−x−α)
∞∑

n=0
k(s)

n (α) L(s)
n (x−α), ∀x > 0, 0 < α < 1

1
x
exp(−x)

∞∑
n=0

k(s)
n

(
1
α

)
L(s)

n (x), ∀x > 0, 1 < α < 2

(17.50)

with the coefficient functions defined by

k(s)
n (α) = α

(
Γ(n + 1)

Γ(n + 1 + s)

) 1
2 n∑

m=0

(−1)mΓ(1 + s + n)
Γ(m + 1)Γ(n − m + 1)Γ(1 + α(s + m))

(17.51)

and s is any fixed number greater than −1.

Furthermore, it is worth observing that one can “standardize” these loss random variables
according to the two following affine transformations, for the case of α = 1, by

2 (X − γBδB)

πγB
∼ S (1, βB, 1, 0; 0)

and in the second case when α �= 1 by

2 (X − γBδB)

cos
(
π
2 βBK (α)

)
γB

∼ S (α, βB, 1, 0; 0) ,

where K (α) = α− 1 + sgn(1 − α).
The support of a random variable X ∼ S (α, βB, γB, δB) as a function of the distribution

parameters is given by the results in Lemma 17.3.

Lemma 17.3 Denote the sample space SX or support of the distribution of a univariate random
variable X ∼ S (α, βB, γB, δB) as follows:

SX = Supp (S (α, βB, γB, δB)) =

⎧⎪⎪⎨
⎪⎪⎩
[γBδB,∞) , α < 1 and βB = 1,

(−∞, γBδB] , α < 1 and β = −1,

(−∞,∞) , otherwise.

(17.52)

Hence, we will consider setting β = 1 and restricting δB ≥ 0 to ensure the support of the
stable model is strictly positive.

17.5.2.1 Closed-Form Poisson-α-Stable LDA Models with Insurance Mitiga-
tion. Given this class of models, we can obtain the following analytic results for the insured
LDA model under the ILP structure detailed in Theorem 17.4.

Theorem 17.4 (Poisson-α-Stable LDA Under PILP Coverage) Consider the ILP coverage
characterized by the insurance mitigated loss process

Z (ILPU)
t = C +

Nt∑
s=1

max {Xs(t)− θXs(t), 0} , (17.53)
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for some policy specified θ ∈ [0, 1), which defines the PTCL of %x coverage. If each loss
Xi(t) ∼ FX (x;α, β, γ, δ;B), then one has the transformed loss following the distribution

Xs(t)(1 − θ) ∼ FX

(
x;α, β̃s, γ̃s, δ̃s;B

)
(17.54)

with transformed parameters

β̃s =

⎧⎨
⎩
sgn [(1 − θ)]βB, α = 1,

sgn [(1 − θ)] cot
(π

2
α
)
tan

(π
2
βBK (α)

)
, α �= 1,

γ̃s =

⎧⎨
⎩
|(1 − θ)| π

2
γB, α = 1,

|(1 − θ)| cos
(π

2
βBK (α)

)
γB, α �= 1,

δ̃s =

⎧⎨
⎩
(1 − θ)γBδB, α = 1,

(1 − θ)γBδB − 2
π
cot

(π
2
α
)
tan

(π
2
βBK (α)

)
(1 − θ) ln [(1 − θ)] , α �= 1.

Then the distribution of the annual loss process Z represented by a compound process model
with LDA structure in which the frequency is Nt ∼ Poisson(λ) and the severity model
Xi(t) ∼ FX (x;α, βB, γB, δB;B) can be re-expressed as the annual loss process of the insured pro-
cess Z (ILPU)

t via mixture density comprising α-stable components with Poisson mixing weights given
generically by

fZ ILPU (z) =
∞∑

n=0

exp(−λ)
λn

n!
Sn(z;α, β̃n, γ̃n, δ̃n;B), (17.55)

where the parameters for the partial sum mixture component parameters α, β̃(n), γ̃(n), δ̃(n) are
expressed with respect to the parameters α, β̃s , γ̃s , δ̃s as follows:

γ̃(n)α =

⎧⎪⎨
⎪⎩

n∑
i=1

∣∣∣π
2
γ̃i

∣∣∣ , α = 1,
n∑

i=1

∣∣∣cos(π
2 β̃iK (α)

)
γ̃i

∣∣∣α , α �= 1,

β̃(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑n
i=1 β̃i

∣∣∣π
2
γ̃i

∣∣∣
γ̃(n)α

, α = 1,∑n
i=1 cot

(π
2
α
)
tan

(π
2
β̃iK (α)

) ∣∣∣cos(π
2
β̃iK (α)

)
γ̃i

∣∣∣α
γ̃(n)α

, α �= 1,

δ̃(n) =

⎧⎪⎨
⎪⎩

n∑
i=1

δ̃iγ̃i −
2
π

n∑
i=1

cot
(π

2
α
)
sin
(π

2
β̃iK (α)

)
γ̃i, α = 1,

n∑
i=1

δ̃iγ̃i, α �= 1.

Note that the distribution and density functions for the PILP insured LDA model com-
prising the Poisson-α-stable model are then easily derived from these results for a desired Stable
series representation. An example of the Laguerre series expansion is provided next.
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EXAMPLE 17.9 Poisson-α-Stable PILP Laguerre Series Representation

In this example, we develop a mixture representation of the LDA Poisson-α-stable
(B parameterization) model after PILP insurance is applied via a strictly positively
support Laguerre series representation presented in Lemma 17.2. This is achieved
via the general result presented in Theorem 17.4 after considering the case in
which the severity model has a skewness parameter constraint involving considering
βB = 1, for any other αB ∈ [0, 2], γB > 0 and δB ∈ R. To obtain a closed-form
expression for the insurance mitigated loss process given by

fZPILP (z) =
∞∑

n=0

exp(−λ)
λn

n!
Sn(z;α, β̃n, γ̃n, δ̃n;B), (17.56)

where the parameters for the partial sum mixture component parameters α, β̃(n),
γ̃(n), δ̃(n) are given in Theorem 17.4 one first considers each partial sum given
N = n and performs standardization. The resulting standardized insurance miti-
gated annual loss (Z̃n) for N = n losses is given by considering the transformations

Z̃n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
(

Zn − γ̃B(n)δ̃B(n)
)

πγ̃B(n)
, α = 1,

2
(

Zn − γ̃B(n)δ̃B(n)
)

cos
(π

2
β̃B(n)K (α)

)
γ̃B(n)

, α �= 1.

(17.57)

Now, using the Laguerre polynomial basis series representation of the stable mixture
components, one obtains the density representation given for any s > −1 by

fZPILP (z)

=

⎧⎪⎪⎨
⎪⎪⎩

∞∑
n=1

exp(−λ)
λn

n!
z

1−α2

α exp(−z−α)
∞∑

r=0
k(s)

r (α) L(s)
r (x−α), ∀x > 0, 0 < α < 1,

∞∑
n=1

exp(−λ)
λn

n!
1
x
exp(−x)

∞∑
r=0

k(s)
r

(
1
α

)
L(s)

r (x), ∀x > 0, 1 < α < 2.

(17.58)

In the following, we also present a second simplified closed-form representation of the
LDA family of risk process for the PILP insurance mitigated Poisson-α-stable model. We cover
the representation from Nolan’s S1 parameterization to the Zolotarev B-Type parameterization.
If one considers setting α1 = αB = 0.5 and

β1 =

⎧⎨
⎩
βB, α = 1,

cot
(π

2
α
)
tan

(π
2
βBK (α)

)
, α �= 1,

(17.59)
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for the severity model, then one has the two parameter subfamily of models given by the
Poisson-Lévy family of LDA models as detailed in Peters et al. (2011). In this case accord-
ing to Samorodnitsky and Taqqu (1994, section 1.2, property 1.2.1) and Nolan (2015,
proposition 1.17), one has the severity model closed-form representation given in Lemma 17.4.

Lemma 17.4 (Lévy Severity Model (B-Parameterizations)) Given a severity model that is
1
2 -Stable (Lévy), such that X ∼ S(0.5, 1

2K (0.5) ,
√

2
2 γB, γBδB;B), this model specifies the subfamily

of α-stable models with positive real support x ∈ [γBδB,∞). The density and distribution functions
are analytic and given, respectively, for γBδB < x < ∞ by

fX (x) =

√ √
2

2 γB

2π
1

(x − γBδB)
3/2 exp

(
−

√
2

2 γB

2 (x − γBδB)

)
,

FX (x) = erfc

⎛
⎝
√ √

2
2 γB

2 (x − γBδB)

⎞
⎠ .

Under this result, we may state the following representation for the B-type parameterized
PILP insurance mitigated LDA model for the Poisson–Lévy family given in Example 17.10
(Figure 17.8).

EXAMPLE 17.10 PILP Insurance Mitigated Poisson–Lévy LDA Family

The distribution of the annual loss process Z PILP represented by a compound
process model with LDA structure in which the frequency is Nt ∼ Poisson(λ)
and the severity model Xi(t) ∼ S(0.5, 1

2K (0.5) ,
√

2
2 γB, γBδB;B), then the exact

density of the annual loss process can be expressed analytically as a mixture density
comprising α-stable components with Poisson mixing weights for Nt > 0,

fZ (z) =
∞∑

n=1

exp(−λ)
λn

n!

⎡
⎢⎣
√

γ̃n

2π
1(

z − δ̃n

)3/2 exp

⎛
⎝− γ̃n

2
(

z − δ̃n

)
⎞
⎠
⎤
⎥⎦

× I

[
γ̃nδ̃n < z < ∞

]
(17.60)

with

γ̃0.5
n = n

∣∣∣∣
√

2
2

γB

∣∣∣∣
0.5

, β̃n =
n
∣∣∣√2

2 γB

∣∣∣0.5
2K (0.5)γ̃n

0.5 , and δ̃n = nγBδB,

and fZ (0) = Pr [Nt = 0] = exp(−λ) for N = 0. The exact form of the annual
loss cumulative distribution function is also expressible in closed form:

Pr [Z < z] = FZ (z) =
∞∑

n=1

exp(−λ)
λn

n!
erfc

⎛
⎜⎝
√√√√ γ̃n

2
(

z − δ̃n

)
⎞
⎟⎠× I

[
δ̃n < z < ∞

]

+ exp(−λ)× I [z = 0] . (17.61)
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figure 17.8 (Top) Lévy severity model as a function of scale parameter, with location δ = 0.
(Bottom) Truncated sum annual loss distribution approximations

17.5.3 LARGE CLAIM NUMBER LOSS PROCESSES: GENERIC
CLOSED-FORM LDA MODELS WITH INSURANCE MITIGATION

The interest in geometric stable models lies in the fact that they act as exact asymptotic repre-
sentations to geometric compound sums of i.i.d. random variables. Under this class of models,
one may obtain closed-form results for any LDA model and any insurance policy asymptot-
ically in the limit of large mean number of annual losses. Therefore, the application of this
closed-form model is particularly of interest in risk process model settings in which one has
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high numbers of claims arriving each year. In OpRisk, this would typically arise in settings
such as credit card fraud. An alternative place where this may be of interest is in approximation
of an overall business unit or even financial institutions LDA model, which really comprises
many loss processes and many different insurance policies; this can also be a setting in which
we may adopt a geometric stable approximation for the overall grouped data loss process.

In these cases, we may obtain a closed-form expression (asymptotically) for the annual
loss distribution of the insured process. To proceed, we first present a basic characterization of
the geometric stable limiting model and then present the representations that are available for
closed-form expressions of the resulting insured annual loss density and distribution, as well as
tail asymptotics.

17.5.3.1 Characterizing Geometric Stable Approximations for Insured Loss
Processes. To describe the main results utilized in this section to perform approximations of
large sample loss processes (with insurance), it is beneficial to first recall the results developed in
Klebanov et al. (1985), which characterize what has become known as geometric infinite Divis-
ibility. We will then move to the notion of geometric stability and finish by showing the rela-
tionships between these two properties and important models that will satisfy both properties
that can be considered in practical applications in OpRisk LDA modeling. Though geometric
infinite divisibility is not strictly required for the approximations in this section to be applied,
it is useful to consider as several subclasses of well-studied models considered in the geometric
stable family are also geometrically infinitely divisible, which provides additional insight into
their representational properties when combining, that is, forming linear combinations of two
or more loss process approximations under this class.

The concept of geometric infinite divisibility originally arose from a problem proposed
by Zolotarev that was addressed by Klebanov and basically involved the characterization of all
random variables Y that satisfy the property that for any p ∈ (0, 1) there is a random variable
Xp such that the following holds in distribution

Y d
= Xp + εpY , (17.62)

with Y⊥Xp⊥εp and Pr
[
εp = 0

]
= p and Pr

[
εp = 1

]
= 1 − p.

While at first sight this may seem a little disjoint from the insurance modeling context
being studied in this chapter, in the following sections after defining formally the notion of
geometric infinite divisibility in Definition 17.26, it will be shown that one can utilize this
concept to aid in the specification of important families of geometrically stable families of
distributions that can be used to approximate the annual loss of LDA models with generic
insurance policies.

Definition 17.26 (Geometric Infinite Divisibility in OpRisk) A real-valued random vari-
able corresponding to the annual loss in an LDA model with insurance, denoted Z̃ , is geometrically
infinitely divisible (g.i.d.) iff for any p ∈ (0, 1) there exists a sequence of i.i.d., real-valued random
variables

{
X(i,p)

}
such that the following holds

Z̃ d
=

Np∑
i=1

X(i,p), (17.63)
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where Np ∼ Geometric(p) with mass function

Pr
[
Np = n

]
= p(1 − p)n−1, n = 1, 2, . . . . (17.64)

The class of g.i.d. distributions is denoted by F ∈Fgid . It is also equivalent to stating that
Z ∼ F ∈ Fgid iff its characteristic function Φ Z̃ (θ) produces a transformed characteristic func-
tion, denoted generically by Φ(θ), given by the transformation

Φ(θ) = exp

(
1 − 1

Φ Z̃ (θ)

)
, (17.65)

which under this transformation becomes infinitely divisible (in the standard sense) and therefore
satisfies under log transformation the canonical Kolmogorov representation

ln (Φ(θ)) = iδθ +

∫
(exp(iθu)− 1 − iθu)

1
u2 dK (u), (17.66)

for some nondecreasing measure K (u) such that K (−∞) = 0.

Remark 17.2 It is also worth noting that if Φ(θ) is an infinitely divisible characteristic function,
then so is |Φ(θ)|; see discussions in Kawata and Maejima (1977).

Next we discuss a related concept of geometric stability (which we need for the majority
of models we consider in this section). To explain the notion of geometric stability, it will be
informative to first recall the following basic properties of α-stable models that will help to
inform the properties of the geometric stable models to follow.

For a given number of annual losses n, in the case of the α-stable severity model, one has the
property that if X1,X2, . . . ,Xn are i.i.d. α-stable distributed random variables, then for suitably
selected constant functions an and bn one has that

Sn = an (X1 + X2 + · · ·+ Xn) + bn (17.67)

is also α-stable distributed.
Under the geometric stable limiting model, we can shift from the fixed number of losses

n to the setting of interest in OpRisk modeling, namely, the compound process setting where
the number of losses is also a random variable N . That is, we will obtain a single distribu-
tion approximation for the LDA compound process, rather than the mixture representations
obtained under the α-stable models. To consider specifically the domain of attraction of the
geometric stable distribution, we consider that we may approximate the frequency distribution
by a geometric frequency distribution with parameter p and we denote the resulting approx-
imation for the annual loss random variable by ZNp and the insured annual loss under this
framework by Z̃Np throughout the following section.

Under the geometric stability results, one may adopt a broader set of base LDA models
and insurance products while still obtaining classes of closed-form distributional results for the
compound process annual loss under an LDA modeling framework. In particular, once we have
that the average number of losses is large we may approximate any insured LDA model with
the following limiting result in Lemma 17.5 and Definition 17.27.
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Lemma 17.5 (Asymptotic Approximation of Compound Loss Distributions) An annual loss
distribution under an LDA model framework has a geometric stable limiting distribution for the
compound sum iff the number of elements in the sum Np is a random variable, which is geometri-
cally distributed with parameter p (frequency distribution approximation) and i.i.d. losses with any
severity distribution Xi ∼ FX such that one has that the compound annual loss

ZNp = aNp

(
X1 + X2 + · · ·+ XNp

)
+ bNp , (17.68)

which will have a limiting geometric stable distribution as p → 0 iff the appropriate normalizing
sequence aNp > 0 and bNp ∈ R exists.

Remark 17.3 Informally, this statement shows that a geometric stable random variable has the
property that for any p ∈ (0, 1) it can be represented as a sum of a random number (geometric
frequency distribution) of i.i.d. loss random variables.

The formal definition of the geometric stable model is given in Definition 17.27 according
to the representation of Kozubowski (1999). It should be noted that it is common to distin-
guish between geometric stability and strict geometric stability (as is also the case with α-Stable
models); see Klebanov et al. (1985).

Definition 17.27 (Geometric Stable LDA Model Distribution Limits) Consider an LDA
model with a sequence of i.i.d. loss random variables Xi ∼ FX (x) and the number of annual
losses being modeled by a geometric distribution, Np ∼ Geometric(p) with mean E

[
Np
]
= 1

p .
Then one has a geometric stable distribution asymptotically as p → 0 and E

[
Np
]
→ ∞ iff

the compound process for the resulting LDA model converges in distribution to the geometric stable
distribution,

ZNp = aNp

Np∑
i=1

Xi + bNp ∼ FZNp
(z) d→ GS (z;αGS , βGS , γGS , δGS) (17.69)

with tail index αGS ∈ [0, 2], skewness parameter βGS ∈ [−1, 1], scale parameter γGS > 0, and
location parameter δGS ∈ R where the log-characteristic function is given by

ΦZNp
(θ) = E

[
exp(iθZNp)

]
= [1 + γGS |θ|w (θ, αGS , βGS)− iδGSθ]

−1

=

⎧⎨
⎩
[1 + γGS |θ| (1 + iβGS(2π)sgn(θ) ln |θ|)− iδGSθ]

−1
, α = 1[

1 + γαGS
GS |θ|αGS

(
1 − iβGSsgn(θ) tan

(πα
2

))
− iδGSθ

]−1
, α �= 1.

(17.70)

The class of geometrically stable distributions is denoted by F ∈ Fgs. The subclass of strictly geo-
metrically Stable distributions will be denoted by F ∈ F∗

gs , which corresponds to the models with
parameters in which δGS = 0 and αGS �= 1 or βGS = 0 and αGS = 1.

Just like the case of the α-stable models, there are also several parameterizations of the
characteristic function of the geometric stable model that are available; here we also note the
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parameterizations of Kozubowski (2000b). Hence, in addition to the general geometric stable
model, one can also define the class of strictly geometrically stable models typically reparame-
terized as shown in Definition 17.28.

Definition 17.28 (Geometric Stable Parameterisations of Kozubowski (Strictly Stable
Laws)) A strictly geometric stable random variable can also have a characteristic function given
by the three-parameter representation

ΦZ (θ) =
[
1 + λGSK |θ|αGSK exp

(
−i

π

2
αGSK τGSK sgn(θ)

)]−1
, (17.71)

where the subscript on the parameters GSK denotes that we are considering the geometric stable
model under the parameterization of Kozubowski. In this case, the parameters have support for the
tail index αGSK ∈ (0, 2], the scale λGSK > 0, and the skewness |τGSK | ≤ min

(
1, 2

αGSK
− 1

)
.

In addition, we have the geometric stable characterization given in Theorem 17.5; see
Klebanov et al. (1985, theorem 4).

Theorem 17.5 A random variable for the annual loss Z is geometrically strictly stable iff for some
αGS ∈ (0, 2] and some p1 ∈ (0, 1) and p2 ∈ (0, 1) such that the quotient ln p1

ln p2
is irrational, and

the following equality in distribution holds:

Z d
= p

1
αGS
1

Np1∑
n=1

Xn
d
= p

1
αGS
2

Np2∑
n=1

Xn. (17.72)

In the context of this chapter and the closed-form expressions for the insured OpRisk loss
processes being derived in this section, the aforementioned asymptotic result is more interesting
if we consider the distribution of the insured severity model. Consider a generic severity model
in the LDA structure and apply a generic insurance policy, denoting the resulting insurance
mitigated loss severity model by X̃i ∼ F̃ (x). Then the aforementioned result also allows one
to characterize in closed form an approximation of the distribution for the annual loss of the
insurance mitigated loss process.

Remark 17.4 Having provided a formal definition of the notion of geometric infinite divisibility
and geometric stability, we note that in an OpRisk setting, any sets of LDA models (with insurance
mitigation or without) that satisfy these two conditions will not only result in the individual loss
process LDA models being uniquely characterized by an annual loss model from the geometric stable
family, but in addition the joint aggregation of these annual loss processes for the institution-wide
insured loss process will also be uniquely characterized by the family of geometric stable models.

There are well-known families of distributions and LDA compound processes that satisfy
that they are both geometrically infinitely Divisible as well as being geometrically stable. These
include the compound geometric-exponential distributions, the Mittag-Leffler distributions
(see Pillai and Jayakumar 1995), and the wider class of distributions constructed from Berstein
functions that satisfy these two conditions in Fujita (1993). In fact in Aly and Bouzar (2000), it
is stated that any positively supported random variable X ∈ R

+ is geometrically strictly stable
iff it is also necessarily geometrically infinitely divisible as stated in Lemma 17.6.
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Lemma 17.6 (Geometric Stability and Geometric Infinite Divisibility) Consider the real-
valued positively supported random variable Z ∈ R

+ with Laplace Stiegjtles transform
denoted ψZ (u). Then random variable Z ∼ F is geometrically strictly Stable (F ∈F∗

gs ) iff ψZ (u)
satisfies

ψZ (u) =
pψZ (u)

1 − qψZ (u)
(17.73)

for any p ∈ (0, 1). In addition, all annual loss random variables Z satisfying this condition of
geometric strict stability with only positive support are necessarily geometrically infinitely divisible
(F ∈ Fgid ) as well as being infinitely divisible (F ∈ Fid ).

One can further state the following properties that are equivalent in Proposition 17.1; see
discussion in Aly and Bouzar (2000, proposition 4.4).

Proposition 17.1 (Positive Geometrically Stable Random Variable Equivalencies) Consi-
der the real-valued positively supported annual loss random variable Z ∈ R

+, then the following
statements are equivalent:

1. Z ∼ F is g.i.d. with F ∈ Fgid ;
2. Z is g.i.d. and has a compound Poisson mixture representation denoted by Nλ(Z), which is

also g.i.d. for all Poisson intensities λ > 0;
3. Z is g.s. and has a compound Poisson mixture representation denoted by Nλ(Z), which is also

g.s. for all Poisson intensities λ > 0;
4. Z is compound exponential;
5. If the distribution of Z has an atom at the origin, then these are also equivalent to saying that

r.v. Z satisfies the stability equation Z d
= B(Z + S) for some Bernoulli random variable B

and some independent positive real-valued random variable S ∈ R
+.

To understand how to work with and study the features of such an asymptotic result as
geometric stability, we first present some details of the characterization of this family of models.
We note the following relationship between a geometric stable model and the α-Stable model
in Lemma 17.7; see Kozubowski (1994).

Lemma 17.7 (Geometric Stable and α-Stable Characteristic Functions) The geometric sta-
ble characteristic function is expressed in terms of the log of the α-stable characteristic function (ΦY )
under Zolotarev’s B-Type parameterizations according to the relationship

ΦZNp
(θ;αGS , βGS , γGS , δGS) = [1 − lnΦY (θ;αB, βB, γB, δB)]

−1

=
[
1 + γαGS

GS |θ|αGS ωαGS ,βGS (θ)− iδGSθ
]−1

,
(17.74)

where

ωαGS ,βGS (θ) =

⎧⎨
⎩

1 − iβGSsgn(θ) tan
(παGS

2

)
, αGS �= 1,

1 + iβGS
2
π
sgn(θ) ln |θ|, αGS = 1,

(17.75)
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and with the following subsequent relationships between the parameters

αGS = αB, βGS =

{
cot

(π
2
αB

)
tan

(π
2
βBK (αB)

)
, α �= 1,

βB, α = 1,

δGS = δBγB, γGS =

⎧⎨
⎩
cos

(π
2
βBK (αB)

)
γB, α �= 1,

π

2
γB, α = 1,

(17.76)

that produces the equivalence in distribution for ZNp ∼ GSαGS (βGS , γGS , δGS) and a B-Type
parameterized stable random variable according to X ∼ SαB (βB, γB, δB) according to

ZNp

d
=

⎧⎨
⎩
δGSW + W

1
αGS γGSX , αGS �= 1,

δGSW + W γGSX +
2
π

W ln (W γGS) , αGS = 1,
(17.77)

with W ∼ Exponential(1) and X⊥W .

Remark 17.5 Having specified explicitly the relationship between the characterization of the geo-
metric stable law and the α-stable law, one may utilize representations developed for stable to char-
acterize distributional properties.

17.5.3.2 Developing a Geometric Stable Approximation of an Insured LDA
Model. The results on asymptotic convergence of suitably scaled compound loss processes
to Geometric stable models mean that in practice one can fit the geometric stable model as
an approximation to any compound process with a large number claim numbers. This can be
achieved under many methods depending on what data are available. If the actual annual loss
amounts are obtained as a sample over several years, one may utilize parameter estimation for
the geometric stable model followed by a compound hypothesis test for the goodness of fit of
such an approximation model. Of course, in the context of this chapter, this would be done
for the insured annual loss amounts. Alternatively, one may have access to the LDA model
frequency and severity (fitted) models as well as a particular type of insurance policy, in which
case the approximation of the process by a geometric stable model could be undertaken in
a number of ways: moment matching, quantile matching either explicitly or alternatively via
simulation and estimation.

Remark 17.6 (Geometric Stable Approximations for Generic Insured LDA Models) The
most generic approach to this problem would involve taking the desired LDA model, simulating
many realizations of the annual losses from the LDA model, in the process also applying the required
insurance policy to the loss process. This will allow one to obtain a sample for the insured annual
loss amounts (of any desired size for a given computational budget), which could then be fitted to a
geometric stable model.

Assuming access to a set of i.i.d. realizations of the insured annual losses for T years (either

observed or simulated from an LDA model with insurance applied), denoted by
{

Z̃t

}T

t=1
, one

can perform fitting of the resulting geometric stable approximation. In Kozubowski (1999),
several approaches are presented to perform estimation of a geometric stable distributions
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parameters from a data sample. These approaches are based on the estimation literature in
the α-stable setting, modified for the context of the geometric stable case. We will consider one
such case that has been found to perform well and is efficient to implement in the α-stable set-
ting, based on a method of moments type estimation from the sample characteristic function.
This method is an adaption of the approach proposed in α-stable settings by Press (1972). We
summarize the required implementation steps (assuming that only the LDA model is known
for the loss process and the insurance policy specifications):

Performing a Geometric Stable Approximation of an Insured OpRisk Loss Process

1. Generate under the desired LDA model T years worth of loss counts {Nt}T
t=1;

2. For each year t, generate the losses {Xi(t)}Nt
i=1 for year t;

3. Apply the given insurance policy structure to the annual loss process to obtain transformed

annual losses
{

Z̃t

}T

t=1
;

4. Estimate the approximation for the annual loss via a geometric stable distribution function
Z̃t ∼ F Z̃t

(z;αGS , βGS , γGS , δGS) by estimation of the parameters as follows
a) Using the fact that the characteristic function of F ∈ Fgs satisfies

1
Φ(θ)

= 1 + γGS |θ|w (θ, αGS , βGS)− iδGSθ, (17.78)

therefore if one considers the real and imaginary parts separately a system of equations
can be obtained to solve for the parameters by substitution. In each case, it will of course
involve the estimation of the empirical characteristic function given for a value of θ and
the i.i.d. samples Z̃1, Z̃1, . . . , Z̃T by

Φ̂(θ) =
1
T

T∑
t=1

exp
(
iθZ̃t

)
(17.79)

such that Φ̂(θ) → Φ(θ) almost surely as T → ∞.
b) Real Components (Solving for αGS and γGS). First, considering the real component

given for any value of θ by

ν(θ) :=

∣∣∣∣Re

[
1

Φ(θ)

]
− 1

∣∣∣∣ = γGS |θ|αGS (17.80)

then by considering two distinct nonzero values of θ denoted by θ1 and θ2, one can
solve the system of equations to obtain

αGS = ln

[
ν (θ1)

ν (θ2)

]{
ln

[
θ1

θ2

]}−1

γGS = exp

⎛
⎝ ln |θ1| ln [ν (θ2)]− ln |θ2| ln [ν (θ1)]

ln
[
θ1
θ2

]
⎞
⎠ , if αGS �= 1.

(17.81)
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c) Imaginary Components (Solving forβGS and δGS) . Considering the imaginary com-
ponent given for any value of θ and parameters αGS and γGS by

η(θ) := −Im
[

1
Φ(θ)

]
= δGSθ + γGS |θ|αGS βGS tan

(παGS

2

)
sgn (θ) , if αGS �= 1.

(17.82)

Then by considering two distinct nonzero values of θ denoted by θ3 and θ4 one can
solve the system of equations to obtain

βGS =

η(θ3)
θ3

− η(θ4)
θ4

2γGS
π ln

∣∣∣ θ4
θ3

∣∣∣
δGS =

η (θ3)
ln|θ4|
θ3

− η (θ4)
ln|θ3|
θ4

ln
∣∣∣ θ4
θ3

∣∣∣ .

(17.83)

Note. One may obtain confidence intervals for the parameter estimates using the results
discussed in (Kozubowski, 1999, appendix 1);

5. Perform a goodness-of-fit compound hypothesis test to assess the approximation accuracy
of the geometric stable model assumption for a finite sample; see omnibus tests for such
an analysis in Chapter 8.

For the purpose of analysis of the geometric stable model approximation, both for para-
metric bootstrap estimations of the p-value in the GOF test and estimation of capital measures
under this model, it will be relevant to know how to simulate from such an approximation
model given the estimated parameters. To achieve this, we can utilize several approaches as
described in Kozubowski (2000a). For instance, given the ability to simulate α-stable random
variables, one could perform transformations to obtain draws from the geometric stable model.
However, as noted in Kozubowski (2000a) there is an alternative equivalent exact simulation
method for strictly geometric stable models that avoids the assumption one can draw from the
α-stable model equivalent.

In the case of the strictly geometric stable random variable Z ∼ FZ ∈ F∗
gs with parameters

αGSK , λGSK , and τGSK , one can perform simulation as follows:

Algorithm 17.1 (Simulating from a Strictly Geometric Stable Distribution)

1. Set p =
1+τGSK

2 ;
2. Generate an exponential random variable E ∼ Exp(1);
3. Generate a uniform random variable U ∼ Uniform(0, 1);
4. If U ≤ p

Then set ρ = αGSK p and set I = 1;
5. Else

Then set ρ = αGSK (1 − p) and set I = −1;
6. If ρ = 1

Then set W = 1;
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7. Else
Generate a uniform random variable V ∼ Uniform(0, 1) and set
W = sin(πρ) cot(πρV )− cos(πρ);

8. Set Z = IZ (λGSK W )
1

αGSK .

Alternatively, in the case of F ∼ Fgs with parameters αGS , βGS, γGS , and δGS one can
perform simulation as follows:

Algorithm 17.2 Simulating from a Geometric Stable Distribution (via an α-Stable
Model)

1. Generate a standard α-stable random variable S ∼ SαGS (βGS , 1, 0);
2. Generate a standard exponential random variable E ∼ Exp(1);
3. If αGS = 1

Then set Z = δGSE + γGSES + 2
πγGSβGSE ln (EγGS);

4. Else
Then set Z = δGSE + γGSE

1
αGS S.

17.5.3.3 Large Claim Number Insured LDA Model Approximations: Densi-
ties, Distributions, and Tails. A geometric stable distribution or geo-stable distribution
is a type of leptokurtic probability distribution. The geometric stable distribution may be sym-
metric or asymmetric. In general, one can develop a generic Geometric Stable distribution series
representation such as those proposed in Kozubowski (1999, section 3), where both symmetric
and skewed geometric stable series representations are presented. Representations of this form
are most of interest with regard to understanding the characterization of such a loss process,
though they add little in practical value with regard to evaluation of the annual loss distri-
bution. We briefly present these for general geometric stable models before presenting more
specific density and distribution representations.

The series of Kozubowski (1999, section 3) is based on the characterization of univariate
infinitely divisible random variables by a LePage series; see LePage et al. (1997). In Theorem
17.6, we state the relationship between the series representation of a symmetric α-stable ran-
dom variable and the equivalent form for the geometric stable random variable as well as the
nonsymmetric case for the geometric stable; see details in Kozubowski (1999, theorem 3.1).

Theorem 17.6 (Series Representations for Geo-Stable Laws for Insured LDA Models)
Consider the uninsured LDA model with frequency distribution Np ∼ Geometric(p) and severity
distribution Xi ∼ FXi(x) and the resulting generic insured distribution for each i.i.d. loss will be
denoted generically by X̃i ∼ F̃ (x) (the distribution of the transformed severity random variable
under a given insurance mitigation product). Now consider the compound process for the insured
annual loss given by

Z̃Np =

Np∑
i=1

X̃i. (17.84)
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In the asymptotic limit as limp→0, one can consider the suitably scaled annual compound pro-
cess random variable Z̃N0 , which can have a symmetric or asymmetric asymptotic distribution
limit:

1. Symmetric Geometric Stable Representation:
In the symmetric case Z̃N0 ∼ GSαGS (0, γGS , δGS), one has the representation given according
to a transformation of the α-stable LePage series representation,

lim
p→0

Z̃Np

d
= W

1
αGS

∞∑
i=1

DiΓ
− 1

αGS
i︸ ︷︷ ︸

Symmetric α-Stable

(17.85)

with random variable W ∼ Exp(1) such that for all i one has W⊥Γi⊥Di, a sequence of i.i.d.
random variables {Γi}, whereΓi are arrival times of a poisson point process with unity intensity
and an independent Rademacher sequence of random variables {Di} (an i.i.d. sequence of
random variables taking the values +1 and −1 with probabilities p0 and q0 respectively each);

2. Nonsymmetric Geometric Stable Representation:
To define the nonsymmetric case, we first define the following distribution function notations
for the severity of the insured process X̃i:

G+(x) = 1 − F̃Xi (x|Xi ≥ 0) = Pr [Xi ≥ x|Xi ≥ 0]

G−(x) = 1 − F̃−Xi (x| − Xi ≥ 0) = Pr [−Xi ≥ x| − Xi ≥ 0]
G(x) = Pr (|Xi| ≥ x) , p0 = Pr [Xi ≥ 0] , q0 = Pr [−Xi > 0] .

(17.86)

In the nonsymmetric case with ZNp is asymptotically geometric stable as
ZN0 ∼GSαGS (βGS , γGS , δGS), one has the series representation

lim
p→0

Z̃Np

d
=

N∗
p∑

i=1

DiG−1
Di

(
Γi

ΓN∗
p +1

)
(17.87)

with N ∗
p = G−1

p (U ) such that G−1
p (x) = inf

{
y : Pr

(
Np ≤ y

)
≥ x

}
and

U ∼ Uniform(0, 1) with the condition that for all i one has independence U⊥Di⊥Γi. In
addition, one has the limiting behavior for the geometric stable domain of attraction in the non
symmetric case, therefore producing the almost sure convergence to the following related series
representation for the nonsymmetric case:

lim
p→0

1
ap

⎡
⎣ N∗

p∑
i=1

DiG−1
Di

(
Γi

ΓN∗
p +1

)
− bp

⎤
⎦

a.s.
= W

1
αGS

∞∑
i=1

(
ZiΓ

− 1
αGS

i − Ci

)
+ f (W , αGS ,A,B, p0, q0) (17.88)
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with Zi = A Di+1
2 + B Di−1

2 in which A and B are given by

A = lim
n→∞

G−1
+

( 1
n

)
G−1

( 1
n

) , B = lim
n→∞

G−1
−
( 1

n

)
G−1

( 1
n

) (17.89)

and the function f is given by

f (W , αGS ,A,B, p0, q0) =

⎧⎨
⎩

αGS

αGS − 1
(p0A2 − q0B2)

(
W − W

1
αGS

)
, αGS �= 1,

(p0A2 − q0B2)W (lnW − 1), αGS = 1
(17.90)

and the series normalizing constants involve

ap = G−1(p),

bp = p0A
1∫

p

G−1
+ (X )dx − q0B

1∫
p

G−1
− (x)dx.

(17.91)

Remark 17.7 The aforementioned representations are instructive of the properties of the geometric
stable model approximation as well as being very general in that they relate the geometric stable
representation directly to the properties of the severity model density. In addition, they provide a
guide to simulation of random variables from the geometric stable process via simple transformations
of independent random variables.

However, in practice, it will be important to be able to evaluate the density pointwise.
In the following, we also provide representations that admit density and distribution function
representations of the geometric stable approximation for an insured LDA model, under appro-
priate scaling.

Before presenting representations of the distribution and density of the geometric stable
families, we can first characterize the family of geometrically infinitely divisible distributions.
This is important as a special subset of these distributions will also correspond to a subclass of
the geometric stable family that happen to admit a closed-form representation.

A general representation of the distributions in the class Fgid is provided by Fujita (1993),
which characterizes all random variables Z ∈R

+ such that Z ∼ F ∈Fgid via the class of Bern-
stein functions, given in Definition 17.29; see details in Berg and Forst (1975, definition 9.1).

Definition 17.29 (Bernstein Functions) A C∞-function f : (0,∞) �→ R is a Bernstein func-
tion if f (z) ≥ 0 for all z > 0 and it satisfies the derivative conditions for all n ∈ J

+

(−1)n dnf (z)
dzn ≤ 0, (17.92)

which results in f (z) having a first derivative that is a completely monotone function. This allows
the class of such functions f (z) to be characterized exactly by the representation

f (z) = a + bz +
∞∫

0

(1 − exp(−sz))μ(ds), z > 0 (17.93)
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for constants a > 0, b > 0 and positive measure μ(ds) on support (0,∞) that satisfies
∞∫

0

s
1 + s

μ(ds) < ∞. (17.94)

One can then utilize two constraints on the function f (z) proposed by Fujita (1993) given
by the left and right limiting values of the function to produce a unique representation of all
positively supported geometrically stable models, as detailed in Theorem 17.7.

Theorem 17.7 (Characterization the Geometrically Infinitely Divisible Loss Processes)
Any random variable Z ∈ R

+ with a distribution function satisfying Z ∼ F ∈ Fgid is uniquely
represented by the series

F (z) = −
∞∑

n=1

(−1)nW (n)∗([0, z]), z > 0, (17.95)

where W (dz) is a positive measure that satisfies for some Bernstein function f with the constraints
limz↓0 f (z) = 0 and limz→∞ f (z) = ∞ the relationship given by

1
f (z)

=

∞∫
0

exp(−sz)W (dz), z > 0. (17.96)

Remark 17.8 This is a general characterization of all positively supported geometrically infinitely
divisible distributions, though it only provides a representation and in general does not provide a
constructive manner to obtain a representation for a general distribution, via an approach to directly
solve for the measure W (dz) by finding the appropriate Bernstein function.

Now returning to the focus of geometrically stable distributions and densities, we can
define two important subfamilies: those that have distributions satisfying F ∈ Fgs and those
that have both F ∈ Fgs and F ∈ Fgid .

An important subfamily with F ∈ Fgs is generally referred to by an alternative name:
Linnik and generalized Linnik laws. A symmetric geometric stable distribution is also referred
to as a Linnik distribution (Kotz et al. 1995b, Klebanov et al. 1996, Kotz and Ostrovskii 1996
and Erdogan and Ostrovskii 1998). In the case of the Kozubowski parameterizations setting,
τGSK = 0 produces a symmetric distribution corresponding to the Linnik distribution. There
are also generalized versions of the geometric stable model Linnik class that are nonsymmetric
as presented in Erdogan (1999).

An important subfamily with F ∈ Fgs as well as F ∈ Fgid is generally referred to by the
alternative name of Mittag-Leffler laws; see discussion in Kozubowski (1999). This subclass of
models of the geometric stable family is known in the physics literature as the Mittag-Leffler
function distributions, developed by Pillai and Sandhya (1990). This subfamily admits a posi-
tive support and is directly based on the Mittag-Leffler function, given in Definition 17.30.
Under the parameterizations of Kozubowski, this subfamily is characterized by setting
αGSK ≤ 1 making it heavy tailed when αGSK << 1 and exponential when αGSK = 1 and
perfectly skewed through τGSK = 1.
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Definition 17.30 (Geometric Stable Subfamily: Mittage-Leffler Distributions) The annual
loss random variable Z ∈ R

+ has a Mittag-Leffler (geo-stable distribution) denoted by
Z ∼ ML (αGS) if it has a distribution FZ given by

FZ (z) =
∞∑

k=1

(−1)k−1zkαGSK

Γ (1 + kαGSK )
. (17.97)

This distribution has the property F ∈ F∗
gid and in addition F ∈ Fid .

More generally, there have also been several series expansions and integral representations
developed for the family of distributions F ∈ Fgs that we discuss later.

A second characterization of a generalized family of the distributions F ∈ F∗
gs was expressed

by a popular integral representation discussed in Erdogan and Ostrovskii (1998), Klebanov et al.
(1996), and the two part series of Kotz et al. (1995a,b). This is presented in Theorem 17.8; see
Erdogan (1999, theorem 1).

Theorem 17.8 (Generalized Nonsymmetric Linnik (Geo-Stable) Densities) Consider the
Kozubowski parameterizations of strictly stable models in which, without loss of generality, the scale
is set such that λGSK = 1. Then the density of an insured annual loss process with insurance mitiga-
tion can be approximately represented according to the density denoted by p (z;αGSK , τGSK ). This is
a two-parameter form that will admit several different representations given by the following three
cases:

1. if αGSK ∈ (0, 1), 0 ≤ τGSK ≤ π
2 or αGSK ∈ [1, 2), 0 ≤ τGSK ≤ π

αGSK
− π

2 then for z ∈ R

one has

p (z;αGSK , τGSK )

=
sin
(παGSK

2 + αGSK τGSK sgn(z)
)

π

∞∫
0

exp (−sgn(z)y) yαGSK dy∣∣∣1+ exp (iαGSK τGSK sgn(z)) yαGSK exp
(
iπαGSK

2

)∣∣∣2 ,
(17.98)

2. if αGSK ∈ [1, 2) and τGSK = π
αGSK

− π
2 then

p (z;αGSK , τGSK ) =

⎧⎪⎪⎨
⎪⎪⎩
− sin (παGSK )

π

∞∫
0

exp (yz) yαGSK dy
|1 − exp (iπαGSK ) yαGSK |2

, z < 0,

1
αGSK

exp (−z) , z > 0.
(17.99)

3. if τGSK ∈
(
− π

αGSK
, 0
)

, then one has

p (z;αGSK , τGSK ) = p (−z;αGSK ,−τGSK ) . (17.100)

Now, in special cases, one can even get closed-form series expansions with bounded
approximation error due to truncation of the series; see detailed results for a range of val-
ues of αGSK in Erdogan (1999, theorems 5, 6 and 7). In Theorem 17.9, we present one of
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these results of direct relevance to practitioners who may wish to work with such geometric
stable approximations.

Theorem 17.9 (Finite Series Characterization of Nonsymmetric Linnik Densities) Con-
sider the Kozubowski parameterizations of strictly stable models in which, without loss of generality,
the scale is set such that λGSK = 1. Then the density of an insured annual loss process with insurance
mitigation can be approximately represented according to the density denoted by p (z;αGSK , τGSK ).
If one considers the parameter ranges αGSK ∈ (0, 2) and |τGSK | < min

(
π
2 ,

π
αGSK

− π
2

)
, then the

following finite sum density approximation for the annual loss applies:

p (z;αGSK , τGSK )

=
1
π

N∑
n=1

(−1)n+1Γ (1 + αGSK n) sin
(παGSK n

2
+ nαGSK τGSK sgn(z)

)
|z|−1−αGSK n + RN ,αGSK

(z),

(17.101)

with remainder term bounded in absolute value as follows:

∣∣RN ,αGSK
(z)
∣∣ ≤ αGSK Γ (1 + αGSK (N + 1))

π
∣∣sin (παGSK

2 + αGSK τGSK sgn(z)
)∣∣ |z|−1−αGSK (N+1). (17.102)

We note that this model will be suitable for transformed loss processes under insurance
mitigation for any of the aforementioned policy types. Where it is recognized that as p → 0,
the number of independent (not necessarily identically distributed) losses will dominate the
number of modified insured losses in cases in which there are two distributions such as the
ILPCn and ILPCa insurance policies. In addition, this closed-form result will be suitable for
any choice of severity model in the LDA setup.

To conclude the discussion on the approximation of insured loss processes with large claim
numbers, it is interesting to note the following asymptotic result for the representation of the
tail of the geometric stable density as the annual loss amount gets large Z̃ → ∞ given in
Theorem 17.10; see details in Klebanov et al. (1996, section 3). Other results of this form for
the Linnik subfamily are provided in the two combined works of Kotz et al. (1995a,b).

Theorem 17.10 (Tail Asymptotics for Geometric Stable Densities) Consider the density of a
geometric stable random variable denoted by p (z;αGS , βGS , γGS , δGS), then the following tail
asymptotic representations apply:

p (z;αGS , βGS , γGS , δGS) ∼⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
π

∞∑
s=0

s∑
k=0

sin

(
παGS(1 + βGS)(s − k)

2

)
(−1)ks!

k!(s − k)!
δk

GSγ
s−k
GS Γ ((s − k)αGS + k + 1)

×z−(s−k)αGS−k−1, z → ∞,

1
π

∞∑
s=0

s∑
k=0

sin

(
παGS(1 − βGS)(s − k)

2

)
ks!

k!(s − k)!
δk

GSγ
s−k
GS Γ ((s − k)αGS + k + 1)

×z−(s−k)αGS−k−1, z → −∞.
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17.5.4 GENERIC CLOSED-FORM APPROXIMATIONS FOR INSURED
LDA MODELS

In this section, we consider classes of models for which we do not have elegant properties of clo-
sure under convolution either in the original LDA formulation or as a result of the application
of a particular insurance policy, which alters or removes the infinite divisibility for the resulting
insured process. In particular, we will demonstrate that for insured processes that have finite
d -th order moments, we can obtain a d -th order series representation for insured processes in
one of two cases, those with infinite support on the real line, and secondly, those with support
that is on a truncated domain of the real line due to the application of an insurance policy
(such as under an ILPU policy). In particular, the series expansions we will derive will have the
following important features:

• The density representation obtained will have a strictly positive support;
• The value of the density at all points in this support will be positive;
• The resulting finite truncated density representation will be normalized to 1 on this support

with known approximation accuracy.

This makes the representation developed a valid density representations up to a known order
of approximation. To achieve this, we will utilize a very important property of orthogonality of
the Laguerre polynomials with a Gamma kernel (density). We begin this section by discussing
the case in which the insured loss process denoted by annual loss random variable Z̃ takes
support on the whole positive real line, then detailing the results for bounded support cases. In
each case, the series expansions considered utilize properties of orthogonality between particular
kernel functions (probability density functions) that will act together with a polynomial basis to
form a series representation. In this regard, it will be relevant to recall some basic properties of
orthogonality between particular density functions and classes of polynomials; for many details
on these matters, the interested reader is referred to Jackson (1941) and Osilenker (1999). In
particular, it is of relevance to consider what are known as the Askey–Sheme of polynomials;
see Askey and Wilson (1985). This class presents a wide array of subfamilies of polynomial
bases that are orthogonal to a range of different density functions, making them directly useful
for series representations of stochastic processes such as loss process (such expansions are also
related to Wiener–Askey Chaos expansions).

In Theorem 17.11, we make explicit the notion of orthogonality as used throughout this
section see details in Xiu and Karniadakis (2002) and references therein.

Theorem 17.11 A polynomial class denoted generically by {Pn(x), n ∈ N} where Pn(x) is a poly-
nomial of exact degree n ∈ N = {0, 1, 2, . . .} is an orthogonal system with respect to a real positive
measure μ, on support Ω, if the following integral identity holds for some nonzero constants an and
a Dirac delta mass when m = n denoted by δn(m):∫

Ω

Pn(x)Pm(x)dμ(x) = a2
nδn(m), n,m ∈ N. (17.103)

If the measure μ(dx) admits a density denoted generically by w(x) (called the weighting function)
then the orthogonality condition holds if∫

Ω

Pn(x)Pm(x)w(x)dx = a2
nδn(m), n,m ∈ N. (17.104)
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In addition, it is often useful when performing evaluation of such polynomials in the Askey
scheme, to note that all orthogonal polynomials {Pn(x)} satisfy the recurrence relationship
given by

−xPn(x) = anPn+1(x)− (an + cn) Pn(x) + cnPn−1(x), n ≥ 1 (17.105)

with an, cn �= 0, cn
an−1

> 0 and the initial values P−1(x) = 0 and P0(x) = 1.

Remark 17.9 The Askey scheme of polynomials involves the hypergeometric orthogonal polynomials
that satisfy some type of differential or difference equation and provides the limit relations between
them. The orthogonal polynomials in the Askey scheme each have different weighting functions for
the orthogonality relationship developed, which leads to the following orthogonality relationships
between subfamilies of Askey scheme polynomials and density functions:

1. Hermite polynomials are associated with the Gaussian distribution;
2. Laguerre polynomials with the Gamma distribution;
3. Jacobi polynomials with the Beta distribution;
4. Charlier polynomials with the Poisson distribution;
5. Meixner polynomials with the Negative Binomial distribution;
6. Krawtchouk polynomials with the Binomial distribution;
7. Hahn polynomials with the Hypergeometric distribution.

The two examples of direct interest to this chapter involve the Laguerre polynomials and Gamma
distribution and the Jacobi polynomials with the Beta distribution. See further discussions in Xiu
and Karniadakis (2002).

The remainder of these closed-form results to be derived will consider the generic repre-
sentations of the insured loss process annual loss density and distribution can be approximated
via the following weighted polynomial approximations of order d given generically by

f̂ Z̃ ,d (z) =
d∑

k=0

akPk(x),

F̂ Z̃ ,d (z) =
d∑

k=0

AkPk(x),

(17.106)

where one can show that the optimal choice of coefficients is given for the k-th term by the
Fourier coefficients of the density f Z̃ (z) and distribution F Z̃ (z) with respect to the desired
polynomial basis given by

ak =

∫
f Z̃ (z)Pk(z)w(z)dz,

Ak =

∫
F Z̃ (z)Pk(z)w(z)dz.

(17.107)

The weight function can be defined over a finite support or the whole real line. In the context
of this chapter, two possible supports are of interest; the whole positive real line and an interval
[0,E ] for some E > 0.
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Remark 17.10 It is well known that these series representations correspond to Fourier series-type
expansions in different bases (compared to the classical cosine basis). It is therefore no surprise to find
that the selection of the coefficients follows a similar procedure. However, in this application, one
cannot evaluate easily the insured loss distribution; however, samples are available from the insured
LDA model either through observations or via simulation methods of the LDA model giving samples{

Z̃t

}T

t=1
, which can be used to estimate the coefficients âk and Âk. Typically one may wish to preserve

the property of unbiasedness in which E [âk] = ak and E [âk] = Ak and each coefficient âk → ak

Âk → Ak converges as T → ∞ with a known rate; see discussions in Kronmal and Tarter (1968).

Note that there are associated implications with the unbiasedness of each particular coeffi-
cient estimate, namely, the most trivial being that the resulting density and distribution function
estimators will be by definition biased since one will have

E

[
f Z̃ (z)− f̂ Z̃ ,d (z)

]
=

∞∑
k=d+1

akPk(x), (17.108)

which can only be zero when all ak are zero for k ∈ {d + 1, d + 2, . . .}. The bias will be small
if the ak and Ak decrease quickly as k increases, that is, the leading coefficients dominate.

It is also worth noting that much of the literature of Fourier series approximations to
distributions and densities has revolved around choice of the weighting function and focussing
functions, with the most popular criterion for selection of these choices of functions being the
mean integrated square error (M.I.S.E.) criterion; see discussions in Rosenblatt (1956), Parzen
(1962), and Whittle (1958). This is not the case in the applications considered here since the
support considered will be of a particular form that would lend itself to the choice of particular
polynomial and kernel weight choices.

Algorithm 17.3 Generic Approach to Series Approximation of Insured Annual Loss
Density

1. Given an LDA frequency model (fitted to data), simulate T total years of loss counts {Nt}T
t=1

from the frequency distribution;
2. Given an LDA severity model (fitted to data), simulate for each of the T total years of loss

amounts {Xi(t)}Nt
i=1 from the severity distribution;

3. Given a particular insurance policy, obtain the resulting insured loss amounts
{

Ẑt

}T

t=1
by

applying the insurance policy to the simulated loss amounts and aggregating the uninsured
amounts;

4. IF using a support Z̃ ∈ R
+

a) Transform the simulated annual loss data (via an invertible mapping ) to obtain equal mean

and variance such that T (Z̃)=βZ̃ with β selected to make E
[
T (Z̃)

]
=Var

(
T (Z̃)

)
;

b) Utilize the Gamma weight function (density) and the resulting orthogonal polynomial basis
given by Laguerre polynomials and fix the order of approximation d and the coefficient α
(Note: Selecting α > 1 weights the errors in the tails strongly and for α ≤ 1 the weight
function has little effect near the origin and strongly weights error for large z);
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c) Estimate using the simulated data the coefficients {ak}d
k=1 via

âk =
1
T

Γ(α)

k!Γ(α+ k)

T∑
t=1

Lα
k

(
T
(

Z̃t

))
(17.109)

5. ELSEIF using a support Z̃ ∈ [0,E ]
a) Transform the simulated annual loss data (via an invertible mapping) such that

T (Z̃) ∈ [−1, 1];
b) Utilize the standard Beta weight function (density) and the resulting orthogonal polynomial

basis given by Jacobi polynomials and fix the order of approximation d and the coefficients
α̃ = α− 1 and β̃ = β − 1;

c) Estimate using the simulated data the coefficients {ak}d
k=1 via

âk =
1
T

1
B(α̃+ 1, β̃ + 1)2α̃+β̃+1

T∑
t=1

Pα̃,β̃
k

(
T
(

Z̃t

))
(17.110)

Remark 17.11 The generic approaches given earlier can be applied in any setting for approximation
of the density and distribution functions. Note that in some cases it will be convenient to modify the
representation in order to obtain a series say in terms of linear combinations of a certain density such
as the example presented next with the gamma density.

17.5.4.1 Series Expansions for General LDA Insured Processes (Support R+).
In this case, we will demonstrate how to obtain closed-form expressions for the insured annual
loss process that we will denote by process Z̃ as a function of properties of the LDA model for
the uninsured LDA model annual loss denoted by Z . To proceed, we will first introduce an
important orthogonality property of the Laguerre polynomial with a gamma density kernel in
Theorem 17.12; see derivation in Osilenker (1999, p. 184).

Theorem 17.12 (Orthogonality of Laguerre Polynomials and Gamma Density Kernels)
Consider the Gamma density kernel given by

g(z;α, β = 1) =
zα−1

Γ(α)
exp(−z) (17.111)

with scale parameter β = 1 and shape parameter α such that the mean and variance are given by
E[Z ] = Var[Z ] = α, then the following orthogonality condition holds for generalized Laguerre
polynomials L(α)

n (x) such that

∞∫
0

zα−1

Γ(α)
exp(−z)L(α)

n (z)L(α)
m (z)dz =

⎧⎪⎨
⎪⎩

0, m �= n,
n!Γ(α+ n)

Γ(α)
, m = n.

(17.112)

Remark 17.12 Note that the orthogonality result utilizes the representation of the generalized
Lagurre polynomials according to the relationship

L(α)
n (x) = (−1)nx1−α exp(−x)

dn

dxn

(
xn+α−1 exp(−x)

)
. (17.113)
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The more standard representation of these polynomials is via the Rodrigues’ formula to obtain the
representation

L̃(α)
n (x) =

1
n!

x−α exp(−x)
dn

dxn

(
xn+α exp(−x)

)
. (17.114)

The reason for this slight change in notation is associated with the form of the Gamma density
parameterizations used and the resulting orthogonality result. To see the relationship between the
two, we note the following:

L(α)
n (x) = n!(−1)nL̃(α−1)

n (x). (17.115)

To illustrate the forms of the first few generalized Laguerre polynomials under the repre-
sentation adopted in this section, they are given by the following coefficient representations
with respect to shape parameter α:

L(α)
0 (x) = 1,

L(α)
1 (x) = x − α,

L(α)
2 (x) = x2 − 2(α+ 1)x + (α+ 1)α,

L(α)
3 (x) = x3 − 3(α+ 2)x2 + 3(α+ 2)(α+ 1)x − (α+ 2)(α+ 1)α,

L(α)
4 (x) = x4 − 4(α+ 3)x3 + 6(α+ 3)(α+ 2)x2 − 4(α+ 3)(α+ 2)(α+ 1)x

+ (α+ 3)(α+ 2)(α+ 1)α,

L(α)
5 (x) = x5 − 5(α+ 4)x4 + 10(α+ 4)(α+ 3)x3 − 10(α+ 4)(α+ 3)(α+ 2)x2

+ 5(α+ 4)(α+ 3)(α+ 2)(α+ 1)x − (α+ 4)(α+ 3)(α+ 2)(α+ 1)α.

We can now assume that the manner in which we obtain the series expansion for the annual
loss density and distribution of the insured loss process Z̃ is via a series expansion that will
exploit the orthogonality condition and utilize the Gamma basis functions to ensure that sup-
port is strictly positive, as shown in Theorem 17.13. This approach is based on the proposed
series expansions of Bowers and Newton (1966) and Smith (1992) which utilises directly the
orthogonality between the Gamma density kernel and the Laguerre polynomials to obtain an
efficient series representation.

Theorem 17.13 (Generic Series Representation of Insured Loss Process) Under an arbi-
trary specification of the severity and frequency distributions in the model for the LDA of the loss
process being modeled and for an arbitrary choice of insurance product, the resulting insured annual

loss Z̃ can be represented under a simple transformation T
(

Z̃
)
= ζZ̃ such that ζ is selected such

that E
[
T
(

Z̃
)]

= Var
(

T
(

Z̃
))

, up to d-th order by the Gamma density series

f̂T(Z̃),d (z) =
zα−1

Γ(α)
exp(−z)︸ ︷︷ ︸

Gamma density shape α

d∑
i = 0

aiL
(α)
i (z) (17.116)
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assuming the first d moments of the insured process Z̃ are finite, where

ai =
Γ(α)

i!Γ(α+ i)

∞∫
0

fT(Z̃)(z)L
(α)
i (z)dz. (17.117)

Remark 17.13 Note that in the aforementioned series representation, the series is expanded in
Laguerre polynomials; however, each polynomial term is multiplied by the Gamma density kernel.
Since this is a slightly different representation to the most familiar approach presented in Equation
(17.106), it will result in a slightly different representation of the optimal choice of coefficients.

It is always good practice to consider the accuracy of the series approximation, and per-
haps to consider the appropriate length of the series approximation (truncation point) that will
ensure a certain accuracy in the series approximation to the actual loss process density or distri-
bution being approximated. One way to perform such an analysis for the aforementioned series
approximation for a finite order of approximation is to adopt a similar analysis as is performed
when assessing the accuracy of a finite truncation in a Fourier series expansion. In particular,
the expansion of a function according to a finite truncated Fourier series can be represented
at any order by a trigonometric polynomial, which maximizes a certain integral; see Jackson
(1941). This can also be seen to be the case with the aforementioned series expansion and was
exploited in Bowers and Newton (1966) to study the accuracy and optimality of the finite order
series approximation given earlier; see details in Theorem 17.14. This theorem demonstrates
the optimality of the choice of form for the coefficients ai in the earlier representation; though
it does not provide the rate of convergence of the series representation; for these types of results,
the interested reader is referred to the study of Kronmal and Tarter (1968).

Theorem 17.14 (Optimality of the Generic Gamma-Laguerre Series Representation) The
accuracy of the series representation can be studied for a given shape parameter α in the Gamma
basis by consideration of the integral of the squared error between the exact annual loss density and
a series approximation given by

R = Γ(α)

∞∫
0

1
zα−1 exp(−z)

[
fT(Z̃)(z)− fT(Z̃),d (z)

]2
dz

= Γ(α)

∞∫
0

1
zα−1 exp(−z)

[
fT(Z̃)(z)−

zα−1

Γ(α)
exp(−z)

d∑
i=0

aiL
(α)
i (z)

]2

dz,

(17.118)

which if minimized, for a given α, with respect to ai coefficients via ∂R
∂ai

= 0 yields the relationship
(via orthogonality between the Laguerre and Gamma kernel),

ai =
Γ(α)

i!Γ(α+ i)

∞∫
0

fT(Z̃)(z)L
α
i (z)dz. (17.119)

It should be noted that this representation, while it normalizes to 1 when integrated over
the support [0,∞), may not be guaranteed to be strictly a density as it can have terms that
oscillate in the expansion and therefore can produce negative values of the density for some
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values of z ∈ [0,∞). This is also well known to happen in other areas of series expansions
for distributions and densities such as the Gramm-Charlier type A series expansion classes and
their variants. Therefore, we need to propose some additional constraints to ensure the resulting
series expansion is also a valid density with strictly positive density function values. First, we
note the following remark regarding the assumption of the existence of the moments of the loss
process.

Remark 17.14 The original uninsured LDA loss process model for Z need not have
E

[
(Z)

d
]
< ∞, it is required under this particular series representation to have that the result-

ing insured process does satisfy the condition E

[(
Z̃
)d
]
< ∞. In many insurance settings described

earlier, this is not an overly restrictive criterion to require and allows in many cases for subexponential
uninsured annual loss LDA models (even infinite mean LDA models) to still satisfy this condition
for the insured process.

In Bowers and Newton (1966), this type of series is utilized for an insurance setting and
they re-express conveniently the series representation for the fourth-order case in the following
manner for the density and distribution functions, respectively:

f̂T(Z̃),5(z) = γ(z;α, 1) (1 − A + B − C) + γ(z;α+ 1, 1)(3A − 4B + 5C)

+ γ(z;α+ 2, 1)(−3A + 6B − 10C) + γ(z;α+ 3, 1)(A − 4B + 10C)

+ γ(z;α+ 4, 1)(B − 5C) + γ(z;α+ 5, 1)C ,

(17.120)

F̂T(Z̃),5(z) = Γ(z;α, 1) (1 − A + B − C) + Γ(z;α+ 1, 1)(3A − 4B + 5C)

+ Γ(z;α+ 2, 1)(−3A + 6B − 10C) + Γ(z;α+ 3, 1)(A − 4B + 10C)

+ Γ(z;α+ 4, 1)(B − 5C) + Γ(z;α+ 5, 1)C ,

with γ(z;α, 1) the density of a Gamma random variable with shape α and unit scale,Γ(z;α, 1)
the distribution function and the coefficients given by

A =
μ3 − 2α

3!
, B =

μ4 − 12μ3 − 2α2 + 18α
4!

,

C =
μ5 − 20μ4 − (10α− 120)μ3 + 60α2 − 144α

5!
,

(17.121)

with μn the n-th moment about the mean of the annual loss T
(

Z̃
)

. Note that for convenience
(Bartlett, 1965, p. 451), the LDA moments about the mean, that is, central moments about

μ1 = E

[
T
(

Z̃
)]

= ζE
[
Z̃
]
= ζE

[
X̃
]
E [N ]

for μ2 to μ4 of the compound process are provided according to the expressions for the mean
of the insured severity model (r.v. X̃ ) and the mean of the frequency distribution as follows:

μ2 = E

[(
T
(

Z̃
)
− μ1

)2
]
= ζ2

E

[(
Z̃ − E

[
Z̃
])2
]
= ζ2

E

[
X̃ 2
]
E [N ] ,

μ3 = E

[(
T
(

Z̃
)
− μ1

)3
]
= ζ3

E

[
X̃ 3
]
E [N ] ,
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μ4 = E

[(
T
(

Z̃
)
− μ1

)4
]
= ζ4

(
E

[
X̃ 4
]
E [N ] + 3E

[
X̃ 2
]2

E [N ]
2
)
,

μ5 = E

[(
T
(

Z̃
)
− μ1

)5
]
= ζ5

(
E

[
X̃ 5
]
E [N ] + 10E

[
X̃ 2
]
E

[
X̃ 3
]
E [N ]

2
)
.

(17.122)

Although in the majority of examples considered in OpRisk the aforementioned series
expansion will be well behaved in the sense that the density will remain strictly positive in
evaluation and not oscillate over the range of the support typically utilized in practice, it is
still important to be certain this is the case for any give LDA model and insurance policy
combination. To achieve this one may adopt the approach considered in Jondeau and Rockinger
(1999) for the Gram-Charlier series. Next, a similar method as proposed in this work for the
Gamma series expansion will be developed in Theorem 17.15 for the case of a series expansion
of the insured loss process with respect to moments 1–4 (i.e., up to capturing the skew and
kurtosis of the insured loss process). The basic idea behind this approach is to obtain an analytic
functional representation of the domain of the skew and kurtosis of the resulting insured LDA
process annual loss distribution that will admit a guaranteed strictly positive density value.
Characterizing this via the compound process skewness and kurtosis is a natural and intuitive
method that can be interpretable in terms of the constraints on the family of LDA models that
will be imposed to enforce this condition of a strict density representation, which can then also
be directly mapped into suitable parameter ranges (domains) of the LDA model that will result
in such skew–kurtosis regions.

To summarize, we note that the fourth order series expansion approximation f̂T(Z̃),4(z)
has coefficients that are functions directly of the skew and kurtosis of the LDA model
being approximated; to see this we make an explicit representation of the coefficients a0,
a1, . . . , a4 next:

a0 =

∞∫
0

fT(Z̃)(z)dz = 1,

a1 =
1
α

∞∫
0

fT(Z̃)(z)(z − α)dz = 0,

a2 =
Γ(α)

2!Γ(α+ 2)

∞∫
0

fT(Z̃)(z)
[
z2 − 2(α+ 1)z + (α+ 1)α

]
dz = 0,

a3 =
Γ(α)

3!Γ(α+ 3)
(μ3 − 2α) ,

a4 =
Γ(α)

4!Γ(α+ 4)
(
μ4 − 12μ3 − 3α2 + 18α

)
.

(17.123)

This shows that the resulting fourth order approximation of the density (and distribution)
f̂T(Z̃),4(z)will be parameterized with respect to the LDA model by the excess skewness (denoted
by s) and excess kurtosis (denoted by k), which are functions of μ3 and μ4. Namely, one may
now write
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f̂T(Z̃),4(z) =
zα−1

Γ(α)
exp(−z)

4∑
i=0

aiL
(α)
i (z)

= γ(z;α, 1)
[

1 +
Γ(α)

3!Γ(α+ 3)
(μ3 − 2α) L(α)

3 (z)

+
Γ(α)

4!Γ(α+ 4)
(
μ4 − 12μ3 − 3α2 + 18α

)
L(α)

4 (z)
]

= γ(z;α, 1)
[

1 +
Γ(α)

3!Γ(α+ 3)

(
sμ

3
2
2 − 2α

)
L(α)

3 (z)

+
Γ(α)

4!Γ(α+ 4)

(
(k + 3)μ2

2 − 12sμ
3
2
2 − 3α2 + 18α

)
L(α)

4 (z)
]
.

(17.124)

Hence, we now wish to consider the regions (sets) of values of (s, k) that will produce strictly
valid densities since for some (s, k) pairs, the pdf f̂T(Z̃),4(z), can be negative for some values of
z while for other pairs of (s, k) the pdf approximation may be strictly positive but multimodal
(due to alternating signs in the series expansion).

In Theorem 17.15, the region D in the (s, k)-plane is identified that ensures the den-
sity approximation f̂T(Z̃),4(z) is positive definite. This will be characterized by considering the
following notions from analytic geometry, which are modifications developed for the afore-
mentioned class of series expansion, which are analogous to those proposed in Jondeau and
Rockinger (1999) for Gram-Charlier series expansions.

It will be sufficient to consider two conditions that will allow one to characterize the set D
of values for (s, k) that produce the “envelope” for the density approximation in which it will
remain positive. The aim will be to find an analytic expression for the curve characterizing the
boundary of D for the skewness and kurtosis as a function of z solved for the condition that
for all values of z the density approximation remains positive definite. This involves parametric
specification of the boundary where for a given value of z one has the density approximation
reaching zero. One can then find the subregion defined by f̂T(Z̃),4(z) = 0 for all values of z,
characterized with regard to the space of (s, k) values in D. In deriving the following expres-
sions, it will be convenient to recall the following result in Lemma 17.8 regarding derivatives
of generalized Laguerre polynomials.

Lemma 17.8 (Derivatives of Generalized Laguerre Polynomials) Consider the generalized
Laguerre polynomial representation of Rodrigues L̃α

n (x) given in a different representation by

L̃(α)
n (z) =

n∑
i=0

(−1)i Γ(n + α+ 1)
Γ(α+ i + 1)Γ(n − i + 1)

zi

Γ(i + 1)
. (17.125)

Then this will produce for the p-th derivative the expression

dp

dzp L̃(α)
n (z) = (−1)pL̃(α+p)

n−p (z). (17.126)
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Therefore, to obtain the derivative of the polynomial representation adopted in this section, we recall
the relationship

L(α)
n (x) = n!(−1)nL̃(α−1)

n (x), (17.127)

which gives the derivative

1
n!(−1)n

dp

dzp

[
L(α+1)

n (z)
]
=

1
(n − p)!(−1)n L(α+p+1)

n−p (z)

⇒ dp

dzp

[
L(α)

n (z)
]
=

n!
(n − p)!

L(α+p)
n−p (z).

(17.128)

We first state the two conditions that will characterize this envelope for a given value of z
according to the following:

The first condition states that the density must be non-negative.

Condition 1

f̂T(Z̃),4(z) ≥ 0

⇒ Γ(α)

3!Γ(α+ 3)

(
sμ3/2

2 − 2α
)

L(α)
3 (z)

+
Γ(α)

4!Γ(α+ 4)

(
(k + 3)μ2

2 − 12sμ3/2
2 − 3α2 + 18α

)
L(α)

4 (z) + 1 ≥ 0

⇒ sμ3/2
2 c1(z) + kμ2

2c2(z) + c3(z) ≥ 0.
(17.129)

The second condition specifies the points at which the maximum and minimum occur in
the oscillating tails, for a given pair (s, k).

Condition 2

d
dz

f̂T(Z̃),4(z) = 0

⇒ γ(z;α− 1, 1)− γ(z;α, 1) +
Γ(α)

3!Γ(α+ 3)

(
sμ3/2

2 − 2α
)

×
[
L(α)

3 (z) (γ(z;α− 2, 1)− γ(z;α, 1)) + 3L(α+1)
2 (z)γ(z;α, 1)

]

+

{
Γ(α)

4!Γ(α+ 4)

(
(k + 3)μ2

2 − 12sμ3/2
2 − 3α2 + 18α

)

×
[
L(α)

4 (z) (γ(z;α− 2, 1)− γ(z;α, 1)) + 4L(α+1)
3 (z)γ(z;α, 1)

]}
= 0

⇒ sμ3/2
2 c4(z) + kμ2

2c5(z) + c6(z) = 0
(17.130)



�

�

“Cruz_Driver1” — 2015/1/8 — 17:00 — page 744 — #60
�

�

�

�

�

�

744 CHAPTER 17 Insurance and Risk Transfer: Products and Modeling

with

c1(z) :=
Γ(α)

3!Γ(α+ 3)
L(α)

3 (z)− 12
Γ(α)

4!Γ(α+ 4)
L(α)

4 (z),

c2(z) :=
Γ(α)

4!Γ(α+ 4)
L(α)

4 (z),

c3(z) :=
Γ(α)

4!Γ(α+ 4)
(
3μ2

2 − 3α2 + 18α
)

L(α)
4 (z)− Γ(α)

3!Γ(α+ 3)
2αL(α)

3 (z) + 1,

c4(z) :=
[

Γ(α)

3!Γ(α+ 3)

(
L(α)

3 (z) (γ(z;α− 2, 1)− γ(z;α, 1)) + 3L(α+1)
2 (z)γ(z;α, 1)

)]

− 12
Γ(α)

4!Γ(α+ 4)

[
L(α)

4 (z) (γ(z;α− 2, 1)− γ(z;α, 1)) + 4L(α+1)
3 (z)γ(z;α, 1)

]
,

c5(z) :=
Γ(α)

4!Γ(α+ 4)

[
L(α)

4 (z) (γ(z;α− 2, 1)− γ(z;α, 1)) + 4L(α+1)
3 (z)γ(z;α, 1)

]
,

c6(z) := γ(z;α− 2, 1)− γ(z;α, 1)

− 2α
Γ(α)

3!Γ(α+ 3)
×
[
L(α)

3 (z) (γ(z;α− 2, 1)− γ(z;α, 1)) + 3L(α+1)
2 (z)γ(z;α, 1)

]

+
Γ(α)

4!Γ(α+ 4)
(
3μ2

2 − 3α2 + 18α
)

×
[
L(α)

4 (z) (γ(z;α− 2, 1)− γ(z;α, 1)) + 4L(α+1)
3 (z)γ(z;α, 1)

]
.

One now notes that these two conditions specify two linear equations with respect to (s, k),
which can be solved by substitution to find the curve in the (s, k) plane as a function of z that
guarantees strictly positive definite density representations for the approximation, as detailed
in Theorem 17.15.

Theorem 17.15 (Generic Strict Density Representation Fourth-Order Insured Loss
Processes) Under an arbitrary specification of the severity and frequency distributions in the model
for the LDA of the loss process being modeled and for an arbitrary choice of insurance product, the
resulting insured annual loss Z̃ can be represented under a simple transformation T

(
Z̃
)

= ζZ̃

such that ζ is selected such that E
[
T
(

Z̃
)]

= Var
(

T
(

Z̃
))

, up to d-th order by the Gamma
density series

f̂T(Z̃),d (z) =
zα−1

Γ(α)
exp(−z)︸ ︷︷ ︸

Gamma density shape α

4∑
i = 0

aiL
(α)
i (x) (17.131)

assuming the first four moments of the insured process Z̃ are finite, where

ai =
Γ(α)

i!Γ(α+ i)

∞∫
0

fT(Z̃)(z)L
(α)
i (z)dz. (17.132)

This will be a strictly positive definite density approximation with positive support iff the follow-
ing conditions for the skewness and kurtosis of the transformed annual loss T

(
Z̃
)

satisfy that the
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LDA models excess skewness and kurtosis are in the domain (s, k) ∈ D defined analytically by the
boundary curves given by

s(z) =
1

μ2
2c1(z)

[(
c6(z)−

c4(z)
c1(z)

c3(z)
)(

c5(z)−
c4(z)
c1(z)

c2(z)
)−1

c2(z)− c3(z)

]
,

k(z) =
(

c4(z)
c1(z)

c3(z)− c6(z)
)[

μ2
2

(
c5(z)−

c4(z)
c1(z)

c2(z)
)]−1

.

(17.133)

Remark 17.15 It may also be relevant in practice to note that one can also make such series expan-
sions robust through the utilization of truncated L-central moments in place of standard central
moments used earlier. These will be more robust in the sense that the resulting excess skewness and
kurtosis will not be as strongly affected by changes in the observed losses or parameter values estimated
for the underlying LDA model, each time the model is actually estimated and the series expansion
applied by estimation of the sample moments.

17.5.4.2 Series Expansions for General LDA Insured Processes (Truncated Sup-
port on [0, E ]). In the case of insured loss processes, it may also be possible that the insur-
ance mitigation has the effect of truncating the support of the annual loss random variable via
an upper bound on the total loss incurred on each loss event, as in the case of the ILPU policy
structure. In such cases, it will be relevant to perform a series expansion that should not only
satisfy that it takes a positive support, but now a support on an interval say [0,E ], where E bay
be, for example, a TCL for the policy.

To achieve this requirement, we discuss two possible approaches, the first is a simple exten-
sion to the aforementioned generic series representations based on a basis that is constructed
from a Beta kernel rather than a gamma kernel. We first recall the representation of the two-
parameter Beta distribution used as a kernel in this series expansion on finite support as shown
in Definition 17.31.

Definition 17.31 (Beta Density) A random variable X has a general Beta density with shape
and scale parameters α > 0 and β > 0 and with location and range parameters a and b ≥ a iff
the density has the form

fX (x) =
(x − a)α−1(b − x)β−1

B(α, β)(b − a)α+β−1 , a ≤ x ≤ b, (17.134)

with B(α, β) representing the Beta function given by

B(α, β) =
1∫

0

tα−1(1 − t)β−1dt. (17.135)

Typically in OpRisk settings one would be interested in setting a = 0 and for exam-
ple b = TCL. In the first approach discussed it will be shown how one may maintain the
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representation aforementioned with a further approximation to the orthogonality condition,
which is specified according to Lemma 17.10, where the choice a = 0 and b = 1 are used,
which would typically mean that one would transform the insured loss process Z̃ with sup-
port [0,E ] to the interval [0, 1] via an invertible transform, denoted by T (Z̃). Then the series
expansion would be performed on the transformed insured process and inference on capital
from the resulting representation can be mapped back to the original space via the invert-
ible mapping. The best linear invertible mapping to be considered is given by the result in
Lemma 17.9.

Lemma 17.9 Given a random variable X with support [a, b] distributed according to a general
Beta distribution X ∼ GB(x;α, β, a, b), the transformed random variable

T (X ) =
X − a
b − a

(17.136)

will result in T (X ) ∼ Beta(x;α, β) = GB(x;α, β, 0, 1).

One can then state the following result for the orthogonality conditions that will be of
interest in this section.

Lemma 17.10 (Approximate Asymptotic Orthogonality of Beta Kernel to Laguerre Poly-
nomials) The Laguerre polynomial basis is approximately asymptotically orthogonal to a Beta kernel
(weight function) since the following holds

∞∫
0

xα−1(1 − x)β−1

B(α, β)
L(α)

n (x)L(α)
m (x)dx ≈

⎧⎪⎨
⎪⎩

0, m �= n

β
n!Γ(α+ n)

Γ(α)
, m = n,

(17.137)

which uses the fact that limβ→∞ βB(α, β) → Γ(α, 1).

If one really takes β → ∞, it would be clear that this result would diverge to infin-
ity, hence the notion of the approximate asymptotic orthogonality. In other words in prac-
tice for a finite value of β one can utilize the approximate orthogonality condition to obtain
a series representation as presented earlier. Perhaps a more suitable approach would be to
undertake a series expansion with a different subfamily of the Askey scheme of polyno-
mials, namely, the truly orthogonal basis given by the Jacobi polynomials as detailed in
Definition 17.32.

Definition 17.32 Jacobi polynomials (hypergeometric polynomials) form a class of orthogonal poly-
nomials with respect to the weight

(1 − x)α(1 + x)β , (17.138)
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on the interval [−1, 1]. They are defined by hypergeometric function as follows:

P(α,β)
n (x) =

(α+ 1)n

n! 2F1

(
−n, 1 + α+ β + n;α+ 1;

1 − x
2

)

=
Γ(α+ n + 1)

Γ(α+ β + n + 1)

n∑
m = 0

Γ(α+ β + n + m + 1)
Γ(n − m + 1)Γ(α+ m + 1)m!

(
x − 1

2

)m

,

(17.139)

with (α+ 1)n representing the Pochhammer’s symbol (rising factorial).

This family of orthogonal polynomials also contains other well-known families of
polynomials, namely, the Gegenbauer, Legendre, Zernike, and Chebyshev polynomials. In
Theorem 17.16, we present the orthogonality result for the general beta density and the Jacobi
polynomials. This result makes use of the symmetry property of the Beta density in which
f (x;α, β) = f (1 − x;β, α).

Theorem 17.16 (Orthogonality of Jacobi Polynomials and Beta Density Kernels) Consi-
der the Beta density kernel on support [−1, 1] given by

g(x;α, β) =
(x + 1)α−1(1 − x)β−1

B(α, β)2α+β−1 . (17.140)

Then relabelling the variables α̃ = α − 1 and β̃ = β − 1, one has the following orthogonality
condition for Jacobi polynomials P(α̃,β̃)

n (x) such that

1
B(α̃+ 1, β̃ + 1)2α̃+β̃+1

1∫
−1

(1 − x)α̃ (1 + x)β̃ P(α̃,β̃)
n (x)P(α̃,β̃)

m (x)dx

=

⎧⎪⎨
⎪⎩

0, m �= n,

1
B(α̃+ 1, β̃ + 1)2α̃+β̃+1

2α̃+β̃+1

2n + α̃+ β̃ + 1
Γ(n + α̃+ 1)Γ(n + β̃ + 1)

Γ(n + α̃+ β̃ + 1)n!
, m = n.

(17.141)

Hence, again one may utilize the orthogonality results for the Beta polynomials to obtain
the representation of the d -th order series expansion given with respect to Beta density weight
function and Jacobi polynomials on a restricted support after transformation from [0,E ] to
[−1, 1] by the result in Theorem 17.17. In this case, we may present two different represen-
tations (which are directly related): the first is the standard Fourier series-type representation
with respect to Jacobi polynomials and the second representation is with respect to a liner com-
bination of Beta densities.

Theorem 17.17 (Generic Fourier Series Representation of Insured Loss Process
(Bounded Support)) Under an arbitrary specification of the severity and frequency distributions
in the model for the LDA of the loss process being modeled and for an arbitrary choice of insur-
ance product, the resulting insured annual loss Z̃ ∈ [0,E ] can be represented, under a simple
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transformation to the interval T
(

Z̃
)
∈ [−1, 1], up to d-th order by the Jacobi polynomial series

with Beta weights given by

f̂T(Z̃),d (z) =
d∑

i = 0

aiP
(α,β)
i (z), (17.142)

where

ai =

∞∫
0

fT(Z̃)(z)P
(α,β)
i (z)(z + 1)α−1(1 − z)β−1dz. (17.143)

In the case that we choose to expand the insured annual loss density in terms of Beta den-
sities, one can adopt the following representation. Note that this choice is optimal in the sense
that the coefficients are selected to minimize the integrated weighted squared error criterion
given in Theorem 17.18, which is the analog to the Gamma results derived previously.

Theorem 17.18 (Optimality of the Generic Beta–Jacobi Series Representation) The accu-
racy of the series representation can be studied for a given shape parameter α in the Gamma basis by
consideration of the integral of the squared error between the exact annual loss density and a series
approximation given by

R = B(α, β)2α+β−1

1∫
−1

1
(z + 1)α−1(1 − z)β−1

[
fT(Z̃)(z)− fT(Z̃),d (z)

]2
dz

= B(α, β)2α+β−1

1∫
−1

1
(z + 1)α−1(1 − z)β−1

×
[

fT(Z̃)(z)−
(z + 1)α−1(1 − z)β−1

B(α, β)2α+β−1

d∑
i = 0

aiP
(α,β)
i (z)

]2

dz

(17.144)

which if minimized, for a given α and β combination, with respect to ai coefficients via ∂R
∂ai

= 0
yields the relationship (via orthogonality between the Jacobi and Beta kernel),

ai =
B(α, β) [2i + α+ β − 1] Γ(i + α+ β − 1)i!

Γ(i + α)Γ(i + β)

1∫
−1

fT(Z̃)(z)P
α,β
i (z)dz. (17.145)

Theorem 17.19 (Generic Beta Density Series Representation of Insured Loss Process
(Bounded Support)) Under an arbitrary specification of the severity and frequency distribu-
tions in the model for the LDA of the loss process being modeled and for an arbitrary choice of
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insurance product, the resulting insured annual loss Z̃ ∈ [0,E ] can be represented, under a simple
transformation to the interval T

(
Z̃
)
∈ [−1, 1], up to d-th order by the beta density series

f̂T(Z̃),d (z) =
(z + 1)α−1(1 − z)β−1

B(α, β)2α+β−1︸ ︷︷ ︸
Beta density

d∑
i = 0

aiP
(α,β)
i (z), (17.146)

where

ai =
B(α, β) [2i + α+ β − 1] Γ(i + α+ β − 1)i!

Γ(i + α)Γ(i + β)

1∫
−1

fT(Z̃)(z)P
α,β

i (z)dz. (17.147)
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Chapter Eighteen

Insurance and Risk Transfer:
Pricing Insurance-Linked
Derivatives, Reinsurance, and
CAT Bonds for OpRisk

This chapter deals with more advanced aspects of OpRisk insurance mitigation and covers three
main topics: catastrophe bonds (CAT bonds) and insurance-linked derivatives for extreme loss
(low frequency, high consequence) risk transfer, insurance portfolio selection, and purchase
strategies for OpRisk insurance products (including optimal decision rules for when to purchase
insurance under a multiple stopping time framework).

In this chapter, we address the following components of OpRisk insurance modeling.

1. How does one manage the transfer of risk with regard to issues such as adverse selection,
moral hazard, counterparty risk and withdrawal, payment uncertainty (in amount and
time), and systemic risk?
We particularly address this question in reference to more advanced risk transfer mecha-
nisms such as insurance-linked derivatives like CAT bonds.

2. What are CAT bonds, how are they structured and priced, and how are they relevant to
OpRisk?

3. How can one optimize a coverage of Basel III allowable insurance mitigations using linear
portfolio of CAT bonds and insurance products via optimal portfolio theory based on
tail functional risk measures for generic OpRisk loss processes that do not have a direct
insurance product available?

4. What are the optimal multiple times to purchase or construct such insurance mitigation
portfolios given an LDA model structure under finite or infinite time horizons?

We begin this chapter with a detailed coverage of aspects of incorporating insurance-linked
derivatives into OpRisk risk transfer strategies, detailing the features and mechanisms available.

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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18.1 Insurance-Linked Securities and CAT Bonds for
OpRisk

The development of risk transfer products for OpRisk settings by insurers is a relatively new
and growing field in both academic research and industry, where new products are developed
with greater understanding of catastrophe and high-consequence low-frequency loss processes.
Early and influential work on catastrophe modeling was undertaken by Rene Thom and Sir
Christopher Zeemen; see, for instance, the widely acclaimed book Thom (1977); Thom and
Zeeman (1974), and the reviews in Zeeman (1977, 1979). As a result of this early work in
mathematics, the theory of catastrophes and chaos is well established; however, we would argue
that the statistical theory of risk processes and modeling of such stochastic processes is still a
burgeoning field that is highly relevant for study in structuring and issuing insurance prod-
ucts for such disasters. We observe that in many cases the approaches adopted to study these
catastrophic events in the applied mathematics literature are very different to the modeling and
estimation-based approaches adopted in statistics and actuarial research. In addition, the ques-
tion of how best to structure these products and price these products is still an active area of
research.

Remark 18.1 We note that the majority of products considered in this section are primarily of
interest in OpRisk for uncontrollable risk processes that are typically of low frequency and very high
consequence.

The focus of this section will be primarily on CAT bonds such as those mentioned in
Grossi and Kunreuther (2005) and Woo (1999). There are however multiple mechanisms and
products available to perform risk transfer for nature risks (generically natural disasters). The
types of products include insurance, insurance derivatives, CAT bonds, industry loss warranties
(contracts triggered by a given industry loss in a defined jurisdiction), sidecars, and captives; see
detailed discussions in Barrieu and Albertini (2010, chapter 1). The most prominent form of
insurance-linked security (ILS) is the CAT bond that was designed to facilitate the direct transfer
of catastrophe insurance risk from insurers, reinsurers, and financial institutions (known as
sponsors) to the investors in the capital markets. These capital markets have sufficient depth to
absorb such disasters should a CAT bond default.

Remark 18.2 Insurance-Linked Securities are unlike traditional corporate bonds or other fixed
income instruments in that they have a primary risk derived from one or more adverse insurance-
related events, often linked to a particular peril or group of perils directly driven by nature risk.
The primary risks in the majority of ILS arise from perils such as earthquakes, wind storms and
hurricanes, extreme mortality, terrorism, and other mixed policies (comprising several of these perils).
They are often specific to particular jurisdictions prone to such natural disasters.

Before proceeding, it is useful to recall what a captive is in Definition 18.1.

Definition 18.1 (Captive Insurers) The term captive was first coined by Frederic M. Reiss to
refer to the situation in which a policyholder owns the insurance company that wrote the insurance
policy (hence the name captive). There are several types of captive insurers.
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• Pure captives. These involve the captive insuring its own parent and affiliates (subsidiary com-
panies or financial institutions);

• Homogeneous captives. These involve the captive insuring only a single type of industry or for a
single type of peril;

• Heterogeneous captives. These involve captives that insure a group of diverse companies or mul-
tiple perils.

Given this wide range of products available, it is interesting to think about how the CAT
bond market can be beneficial to the transfer of risk in an OpRisk setting. In particular, there
seems to be three basic mechanisms available under this class of assets.

• Approach 1. The first is of relevance to larger financial institutions and involves the
issuance of CAT bonds to cover exposure to nature risk that would cover losses they would
be exposed to from perils arising from natural disasters: wind storms, hurricanes, tsunami,
wild fires, flooding, earthquake, mass loss of life, and terrorism.

• Approach 2. The second approach involves financial institutions who own their own
insurance arms often known as captives that provide their own insurance cover within the
financial corporation; these captives can also be involved with insurance linked securities,
reinsurance, and CAT bonds.

• Approach 3. The third approach is to construct multiple peril insurance portfolio in which
a financial institution purchases a combination of insurance products for certain perils
affecting particular lines of OpRisk exposures that are covered by reinsurers who are fully
funded through a CAT bond issuance, as well as perhaps shorting CAT bonds. In partic-
ular, short selling of a CAT bond (naked or covered) is a type of strategy in which one
obtains capital to cover potential OpRisk loss exposures to natural disasters such that if
the natural disaster occurs to trigger the bond default, then the actual asset need never be
delivered.

The third strategy mentioned earlier is possible if one believes there is sufficient depth
in the secondary CAT bond markets to provide volume for such strategies. One would argue
that this has not always been the case, but is significantly improved these days. As discussed
in Araya (2005), the development of the market for insurance-linked derivatives and espe-
cially CAT bonds has not been smooth. There are different opinions of what was the first
CAT bond issued, some say it was the “Act of God” bond completed by Nationwide Insur-
ance Co. of Columbus in Ohio in 1994, whereas others refer to the first incarnation of ILS
on the Chicago Board of Trade (CBOT) in 1992, which provided a market for catastrophe
insurance, options and futures (technically not bonds and not OTC). Since these early days
of catastrophe insurance, there has been a steady increase in market growth and a widening
of the pool of market participants in these ILS products from traditional reinsurers to spec-
ulators from the hedge fund industry. As some CAT bonds mature and new ones are issued,
the distribution of covered perils changes year on year; however, it was stated in Araya (2005)
that a significant share of the perils covered (outstanding CAT bond exposures) in any given
year are attributed to US hurricane and earthquake perils. Historically, the market for CAT
bonds has grown such that it was reported in Barrieu and Albertini (2010, chapter 2) that in
1998–2001 there were at least USD 1–2 billion issuances per year, then following the attack on
the World Trade Center issuances went up to over USD 2 billion per year from 200 to 2005,
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then from 2006 issuances jumped up to USD 4 billion per year following Hurricane Katrina
in New Orleans, with a record issuance of USD 7 billion in 2007. Following the GFC, there
has been a softening in the market, though the last year or two has seen a steady increase
again.

In Figure 18.1, an aggregate total issuance in millions of USD is provided for particular
types of CAT bonds grouped as earthquakes, wind storms and hurricane, extreme mortality,
medical benefits, mixed policies. It was stated in Barrieu and Albertini (2010, chapter 2) that
CAT bond risk principal in the capital markets in 2009 comprised around 8% globally of the
entire estimated property limits, which would rise to an even larger percent when other ILS
products were accounted for such as those related to sidecars.

The website http://www.artemis.bm/ provides a detailed list of CAT bond issuances glob-
ally, which includes details in the “Deal Directory” such as the issuer, cedent, risks/perils
covered by the CAT bond, the size of the bond and the data of issuance since 1996. In
Figure 18.2 a plot of time series for issuance sizes for the bonds in USD (converted 25/06/2013)
is provided from 1996 to 2013 for a range of risks/perils that include earthquakes; wind-
storms and hurricanes; extreme mortality; medical benefits; and mixed coverage of sev-
eral natural disasters/perils or specialty bonds (e.g., including bonds such as the Hoplon
Insurance Ltd. and MyLotto24 Lottery winnings bond, the Kortis Capital Ltd. and Swiss
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figure 18.1 CAT bond issuances (worldwide) in USD (data source: http://www.artemis.bm/. Note
for some currencies such as the German Deutsche Mark (DEM) it became obsolete with the € and so was
converted via 1 DEM = 0.511292 EUR)
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figure 18.2 Total CAT bond issuances (worldwide) in USD (data source: http://www.artemis.bm/.
Note for some currencies such as the German Deutsche Mark (DEM) it became obsolete with the € and so
was converted via 1 DEM = 0.511292 EUR)

Re longevity risk bond, the Kelvin Ltd. and Koch Energy Trading, Inc. temperature risk bond,
the Javelin Re Ltd. and Arrow Capital Re worldwide all risks bond and the multiperil bonds of
“Merna Reinsurance Ltd. and State Farm” and “Gamut Re Ltd. and Nephila Capital”).

As discussed in Loubergé et al. (1999), the first incarnation of CAT bonds were not
actual bonds—instead, they were futures and options on futures that were issued on the
CBOT in 1992 as CAT insurance options and futures and were developed around four
indices related to natural disasters. These were developed by the Insurance Services Office
(ISO) and constructed based on a pool of 30 insurers in the US. Each index covered a
different geographical region of the US and were updated only quarterly. The first line of
products were simple futures products and vanilla European options on the futures were
available. These products were then modified in 1995 to be based on indices produced by
Property Claims Services (PCS), which included up to 80% of the US CAT bond mar-
ket; see discussions in Schradin (1996). The resulting PCS options were exchange traded
and cash-based financial derivatives on an underlying that were the loss indices (standard-
ized in their objective, regional and temporal dimensions). The PCS indices were updated
daily instead of quarterly as was the case with the ISO indices. The PCS indices reflect the
dollar cumulative amounts of CAT claims greater than USD 5 million of insured property
damages in a specified US region and time; see discussion in Schradin (1996). Then fol-
lowing these early developments, the futures contracts available were discontinued and the
vanilla options were replaced with European call spreads in which a call is purchased along
with the simultaneous writing of a call at a higher strike price, creating the ability for market
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participants (typically insurers and reinsurers) to buy coverage with layers of aggregate excess
of loss reinsurance.

When discussing CAT options traded on the CBOT, it has been noted by several authors
that the market in the late 1990s and early 2000s was not deep enough or liquid enough to
attract widespread uptake of these products by investors. In general, several authors have posed
different arguments for this either based on the exposure to basis risk for the investors, the
different regulation standards, and also the lack of supply of such products. In general, it is
clear that CAT derivatives cannot involve arbitrage trading since the underlying index cannot
be replicated. In addition, speculative trading required to enhance liquidity and efficiency of
the market cannot easily take place since such traders have a limited information set about
the possibility of a trigger event. Hence, CAT spreads conceived as a useful hedging tool have
struggled to grow as a market. For background-specific details on the PCS CAT options on
the CBOT as they were originally developed, see Schradin (1996). Then in Aase (1999) an
equilibrium-based valuation model for CAT futures contracts and derivatives from such con-
tracts was developed, where the underlying delivery value was an insurance index. In Embrechts
and Meister (1997), a study of the pricing approaches for CAT futures in the context of incom-
plete markets and the impact this has on the pricing where the underlying index is based on
the ISO.

The index-linked catastrophic loss futures as well as the more liquid call option spreads
that superseded them on the CBOT were eventually delisted as a result of low trading volume.
In their place, new classes of assets based on over-the-counter (OTC) products are enjoying a
rapid and successful development. In the following sections, we focus instead on the pricing and
valuation of CAT bonds as they are currently developed. These alternative OTC issued CAT
bonds currently developed are significantly more successful products in terms of the liquidity
and uptake as was demonstrated in the previous issuance plots.

18.1.1 BACKGROUND ON INSURANCE-LINKED DERIVATIVES AND
CAT BONDS FOR EXTREME RISK TRANSFER

Cummins et al. (2002) pose the provocative question: “Can insurers pay for the big one?”.
Then in Peters et al. (2011a) a study is performed on a related question in the context of
OpRisk where they consider “Impact of insurance for OpRisk: is it worthwhile to insure or
be insured for severe losses?”. As a result of such studies of the capacity of reinsurance mar-
kets to bear the cost of catastrophic disasters such as earthquakes, hurricanes, floods, fires, etc.
and the resulting claims over multiple years arising from losses from such events could easily
reach into the USD 50–USD 100 billion for single events; see discussion in Lee and Yu (2007)
and Froot (2007). Such severe losses would stress the capacity of the insurance industry and
threaten the credit risk of many reinsurers. This would in turn impact on the capital miti-
gation offered under OpRisk settings through heightened payment uncertainties. As a result,
there have been a number of private and public policy proposals; see discussions in Loubergé
et al. (1999), where two alternatives to traditional reinsurance for such catastrophe coverage are
noted:

1. Mandatory public provision of coverage; versus
2. Nonmandatory use of government intervention.
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In the first case of mandatory public provision, it would rely upon the ability of the gov-
ernment to dissipate losses across the population of the country or state over time. This
type of approach is adopted, for instance, by the National Flood Insurance Program in the
US and in France under a surplus on all property-liability insurance contracts that goes
to a public fund for natural catastrophes; see discussion in Magnan (1995). In the case of
nonmandatory use of government intervention it is noted in Loubergé et al. (1999) and
Lewis and Murdock (1996) that one could utilize a combination of CAT bonds on the
Chicago Board of Trade (CBOT) with additional coverage in higher levels using contracts
supplied by a federal authority, though such an approach has not been implemented widely
in practice.

In the commercial sector, the CAT bond market is a relatively new market in terms of
insurance products (see issuances worldwide in Figure 18.1) and has been discussed in detail
in works such as Coval et al. (2009) and Lee and Yu (2007). However, as noted in Cox and
Pedersen (2000), there were specific examples of such products discussed in the early 1970s.
Goshay and Sandor (1973) and a product specifically targeting Japanese earthquakes was on the
market as early as the mid-1980s; see discussion in Ollard (1985). However, the mainstream
establishment of such products occurred in the mid-1990s when the CBOT introduced first
exchange-traded futures, then later options based on industry-wide loss indices. More recently,
the approach that is popular, and we will discuss, has involved privately placed CAT bonds
(CAT bonds), also sometimes known as “Act of God or insurance-linked bonds”, which have
been developed in a number of ways. In general, they all have the basic principle involved
that they were developed to ease the transfer of catastrophe-based insurance risk from insurers,
reinsurers, and sponsors to a much larger pool of market participants corresponding to the
capital market investors. A running history of such bonds is kept by ARTEMIS,1 and it was
noted in Zhu (2011) that the market for such CAT bonds (insurance-linked derivatives) is in
excess of USD 10 billion issuances.

Definition 18.2 (CAT Bond) A CAT bond is an ILS, which acts as a mechanism by which
catastrophe risk is transferred from one party known as the sponsor directly to investors in
the capital markets. Hence, one can consider CAT bonds as risk-linked securities that trans-
fer a specified set of “nature” risks (natural catastrophes or man-made events such as ter-
rorism) from a sponsor to investors in the capital markets in the form of “credit risk”.
It is also useful to think of a CAT bond as a reinsurance contract between the sponsor
(parties seeking protection) and a special purpose vehicle. The bond issuance can be understood
according to the following four basic participant groups:

1. Sponsor: government agency, insurer, reinsurer;
2. Issuer: structuring agent, investment bank, special purpose vehicle SPV;
3. Collateral: swap counterparty, bank with high credit rating;
4. Investors: insurers, institutional investors, hedge funds, reinsurers.

Typically, CAT bonds are issued by an insurance company (sponsor) via a structuring agent or special
purpose vehicle (SPV) (issuer) such as an investment bank, which then sells the bonds to capital

1http://www.artemis.bm/
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market to investors (investors) and proceeds of the sale are placed in a special account (collateral
account). The premium and the earnings from the account are collected and paid to the issuer. Three
typical cases arise:

• Case 1. Contract stipulates that the principle provided at issuance is secure, coupon payments
are subject to forfeit upon trigger;

• Case 2. Contract stipulates that the principle provided at issuance is fractionally secure (perhaps
depending on time to maturity) with portion of principle subject to forfeit upon a trigger, coupon
payments are subject to forfeit upon trigger;

• Case 3. Contract stipulates that the principle provided at issuance as well as coupon payments
are subject to forfeit upon trigger.

The issuer typically makes a floating rate coupon/dividend payment quarterly to investors to compen-
sate their risk. In the advent that there is no catastrophe during the life of the bond, it is most common
that the issuer will return the principle to the investors. If a catastrophe occurs before the maturity of
the bond, the issuer pays the sponsor according to the reinsurance contract policy specifications and
provides the remaining principle to investors.
Catastrophe Losses Covered. The losses covered under CAT bonds are typically characterized by a loss
exceedance curve of F (x) = 1 − F (x), where F (x) is the distribution of the loss amount from the
catastrophe that is obtained in one of two common ways:

• Utilize commercially available catastrophe modeling software (statistical models) with a com-
pany exposure data;

• Use parametric indicators based on peril-specific features (Richter scale thresholds in a given
geographic location, aggregate industry loss indexes, etc.) to design payout functions.

The loss exceedance curve contains two important components: the expected frequency of default, and
the recovery rate given default.

The following remarks further clarify the typical view that market participants take on the
CAT bond products.

Remark 18.3 Note that since the bond is issued directly by the structuring agent or SPV, it means
that the bond is not affected by the sponsor’s credit rating(s) and is also not considered a debt of the
sponsors. Typically these bonds are low rated and risky but provide multiple year coverage, with the
most widely used issuance periods offering 3-year maturity. However, in the event of a catastrophe
before the maturity of the bond, the remaining bond principal would be forgiven and the insurance
company would use this money to pay their claim-holders.

Hence, CAT bonds are typically structured as a floating rate bond in which the principal will be
forfeit when a prespecified trigger condition occurs. If triggered, the principal is paid to the sponsor.
The triggers are linked to major natural catastrophes and perils associated with the intended coverage
of the bond.

Therefore, in the market, the CAT bond appeals to sponsors and investors and providing a
general economic benefit. Sponsors benefit since an alternative flexible source of risk financing
is available to produce greater coverage capacity with a more stable price discovery mechanism
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figure 18.3 Picture depicting a highly stylized version of the flows between participants under a
standard reinsurance contract versus those typically undertaken under a CAT bond

driven by the larger depth and diversification benefits of the capital markets that such bonds
are sold into. Investors benefit due to additional diversity in their portfolios, with assets that
are uncorrelated largely with financial securities and their associated risk exposures, while also
obtaining attractive spreads and yields often offered by CAT bonds. An excellent overview of
the economic rational for the insurance and reinsurance markets such as CAT bonds and in
general ILS is provided in Gollier (2005).

To understand the difference between a traditional reinsurance contract and a CAT-bond,
we illustrate the relationships between each part involved in Figure 18.3; see discussions in
Härdle and Cabrera (2010).

Then in Figure 18.4 we plot the data for several key aspects of CAT bond issuances between
1997 and 2000 as detailed in the detailed analysis of CAT bond hedges in Cummins et al.
(2004). The data when presented in early 2000 were at a county level and originated from the
Florida Insurance Commissioner. It comprised insured residential property values for 255 of
the 264 insurers writing property coverage in Florida in 1998. The insurers in the sample were
representative of 93% of the total insured residential property values.

One immediately observes the following features from this plot, the spread premium of
CAT bonds (corresponding to the annual coupon rate above the one-year LIBOR) tends to be
significantly higher than the expected loss of the bond principle. This led to the observation
made by Zhu (2011) as summarized in Remark 18.4.
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figure 18.4 The plots contained are issuances from 1997 to 2000 based on Table 1.B in Cummins
et al. (2004). It depicts the spread premium corresponding to the annual coupon rate above the one-year
LIBOR; the probability of a trigger under the bond; (CE) the expected principle payment proportion to the
issuing insurer, conditional on a loss that triggers payment under the bond, expressed as a percentage of the
principle of the bond; the expected loss given by the probability of a loss times the expected principle
payment proportion to the issuing insurer; the premium to expected loss, which is the ratio of the spread
premium to the expected loss of principle of the bond

Remark 18.4 (CAT Bond Premium Puzzle) One typically considers catastrophe risk assets as
only a small amount of the total wealth in the economy and typically uncorrelated with the cap-
ital market; see Zhu (2011). If this is the case, then one ought to expect that CAT bond premiums
would be priced at close to the risk-free interest rate, where actuarial pricing would suggest that
the fair premium today would correspond to actuarial fair discounted losses that are covered by the
bond. However, in practice the data suggest that CAT bond spread is significantly above the expected
loss of the bond’s principle, which is in contradiction with arbitrage pricing (equilibrium) theory
for financial markets. In fact, it was reported in Cummins et al. (2004) that during the period
1997 to 2000, 32 of the CAT bonds issued in this period had an average spread yield of 9.09 times
the expected loss, which is a substantial spread premium relative to the expected principle loss. In
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addition, it can be observed that premium spreads are more pronounced for CAT bonds with lower
probabilities of trigger, which is also surprising and at odds with standard capital market theories.

Understanding the cause and behavior of this feature of CAT bonds related to the premium
puzzle is an ongoing theoretical concern in economics and financial mathematics.

In addition to these observed features and the properties specified relating to the process
undertaken if a forfeiture of the bond occurs, it is also important to consider what mechanism
is stipulated to quantify or result in such an event as forfeiture. Therefore, it is important to
understand how the trigger event for what will result in forfeiture of the principle will arise
(also known as debt forgiveness).

18.1.2 TRIGGERS FOR CAT BONDS AND THEIR IMPACT ON RISK
TRANSFER

Together, the sponsor and the structuring agent select the mechanism by which the bond will
pay out, or trigger. Following this, a quantitative modeling agent will typically assess the risk
associated with the product via a loss distribution for possible exposures in order to estimate the
amount of protection offered by the bond. Then jointly the modeling agent and the structuring
agent write the offering documentation specifying the terms of the investment product for the
market and investors, which is provided to the rating agency for a rating assessment.

The first CAT bond was rated by Moody’s Investors Service in 1997 and corresponded
to the Residential Re Limited issuance, since this first rating up to the period of 2005 it was
reported in Araya (2005, chapter 2.1) that USD 6.2 billion of rated securities are available in
the market, this number would have substantially grown since 2005 with the steady growth of
the market.

It should also be noted that a rating for a CAT bond differs to the typical rating based
on the default probability of the issuer going into bankruptcy, in a CAT bond the rating is
instead based on estimation of the probability of default due to a trigger and subsequent forfeit
of the principle. The probability of such triggers is then estimated using different catastrophe
modeling approaches both mathematical and statistical in nature. Primarily there are a few
companies that provide assessments of CAT bond structures and triggers settings and models to
the rating agencies, the dominant firms specializing in this field are Applied Insurance Research
(AIR), EQE International, and Risk Management Solutions. Typically these consulting firms
produce model analysis that provides a summary of their proprietary disaster models in the form
of an annual probability of loss exceedance that corresponds to the particular peril covered by
the CAT bond. As summarized in Araya (2005), the models developed to assess this probability
involve probabilistic descriptions of the natural disaster (hazard analysis), the performance of
the assets in the book of business (portfolio modelling and the vulnerability analysis), and the
resulting loss analysis involving the convolution of the two.

CAT bonds are typically sponsored by insurance and reinsurance companies, govern-
ments, and catastrophe-exposed corporations that have an influence on the rating attained.
CAT bonds are issued to protect against almost any peril for which an established catastro-
phe model has been developed. It may also be common to write reinsurance policies where
in this case they act as a cedant, which helps offer some level of protection to investors of the
CAT bond; see the Definition 18.3. Such relationships provide much needed leverage since
insurance companies are regulated so that they may not write policies in excess of a certain
percentage of their collateral. However, insurance companies do not have to hold collateral
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against policies that are reinsured. Most insurance companies employ some sort of reinsurance
program in order to more efficiently manage their operations. This can also be performed in
OpRisk settings by captives within a financial institution and sidecars.

Definition 18.3 (Cedent) A cedent is a party to an insurance contract who passes financial obli-
gation for certain potential losses to an insurer. As a result of bearing a particular risk of loss, the
cedent pays an insurance premium.

CAT bonds are classified according to the following features:

• The number of perils covered, where options typically include single-peril (one natural
disaster such as earthquake in one region of the world) and multiperil classifications that
involve multiple tranches (multiple natural disasters such as earthquake, windstorms, hur-
ricanes in multiple regions of the world). In the case of multiple tranches, each may vary
in payment terms, coupon rates and event credit ratings; see Barrieu and Albertini (2010,
chapters 2 and 4);

• The type of losses they cover (per event or aggregate losses), which is detailed in the offering
contract and documentation;

• The trigger mechanism (clause that results in a default of the CAT bond and subsequent
forfeiture of captial/coupons). These can be based on many features as detailed later and
can involve first-event or second/third events.

Though a vast array of natural and man-made disasters exist and can be covered by CAT
bonds, in general one may classify CAT bonds into one of four categories based on their trigger
types; see details in Araya (2005).

CAT Bond Trigger Classifications

1. Indemnity. This trigger involves an issuer’s actual losses in which the sponsor is indemni-
fied in the same manner as if they had simply purchased a reinsurance. Where the contracts
will state a layer in the CAT bond of x million excess over y million in losses. Then if the
total claims accumulated from a catastrophic event exceed y million, the bond is triggered.
Typically indemnity-based trigger CAT bonds also include provisions to extend the matu-
rity of the security in order to allow for development periods of the claim process in the
event of a natural disaster for the given peril(s) covered that result in a trigger;

2. Modelled Loss. This is an alternative to considering actual accumulated claims. In this
case, the CAT bonds have an associated exposure portfolio constructed that is linked to a
computer model (statistical model) for the given catastrophe. Then when an actual catas-
trophic event occurs, the observed/measured/estimated details of the event are utilized in
the simulation model to compare to the exposure database for the CAT model. Then the
CAT bond is triggered if the modeled losses under the event parameters exceed a specified
threshold;

3. Industry Loss Indexation. This is an alternative to considering actual accumulated claims;
instead, the trigger is based on an insurance industry-wide index for a given peril, where
the exceedance of a given peril results in the triggering of the CAT bond;

4. PerilBased(orParametric).This is analternative toconsideringactual accumulatedclaims;
instead, the trigger is “parameterized” by specification of physical properties/parameters
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of a given peril such as Richter scale recordings for an earthquake or wind speeds, etc.,
measured at multiple locations. Under a parametric trigger, losses to the CAT bond hold-
ers are triggered when parameters that define the peril covered exceed certain prespecified
thresholds. Often these parametric trigger thresholds are modeled to correlate well in mag-
nitude to actual losses (insurance claims) that may have been experienced historically from
such perils.

As discussed in Loubergé et al. (1999), when the trigger condition is a fixed proportion
of the losses, then a development period for the claims process must be incorporated into the
risk period in order to determine the exact total loss amount. The actual trigger amount can be
based on the insurer’s losses or on industry-wide losses as discussed earlier in the classifications.
To understand the effects of different trigger choices, we first define the notion of basis risk.

18.1.2.1 Triggers for CAT Bonds: Basis Risk versus Moral Hazard. It is discussed
in Doherty (1997a) among others that different choices for the construction of the triggers in
CAT bonds may result in different trade-offs between credit risk, basis risk, and moral hazard.

Definition 18.4 (Basis Risk) Basis risk involves the risk that offsetting investments in a hedging
strategy will not experience price changes in entirely opposite directions from each other. In other
words, when the two investments are not perfectly correlated in the hedging strategy, there is the
potential for additional risk of losses (or gains) from the hedged position; this is known as basis risk.
In the context of CAT bonds the basis risk is defined as the potential differences between actual losses
in the sponsor’s portfolio of assets in the event of a covered natural hazard and the losses predicted by
the catastrophe modeling analysis.

For instance, if the trigger is based purely on the individual insurers losses (an indemnity
trigger), then in this construction of a CAT bond there will be no basis risk present for the spon-
sor; however, there will be the possibility of a moral hazard for the investors due to inflation of
reported losses by the insurer. Conversely, if the trigger is based on an index of multiple insurers
losses or “industry losses”, then there is clearly the possibility of a basis risk. Furthermore, the
amount of exposure to such a basis risk would be a function of the strength of the dependence
between the industry losses and the firms losses, with weaker dependence relationships increas-
ing the basis risk. There is also another interesting strategy that is underutilized and could be
considered in the CAT bond asset class in future, as noted in Doherty (1997a) and summarized
in Remark 18.5.

Remark 18.5 If the trigger index for the CAT bond is allowed to be flexibly selected by the primary,
then they would be afforded the possibility to trade-off basis risk and moral hazard. To understand
this, consider the case in which the primary has the ability to select the indices upon which the trigger
is defined. Then if the primary can find an industry portfolio with a similar exposure profile to their
own, they may select this index. This would minimize the basis risk and the moral hazard risk will
be controlled as they will not have the ability to overquote claims.

Traditionally the class of trigger most favored by sponsors was the indemnity trigger as
these types of CAT bond were perceived to be similar in character to the ultimate net loss type
coverage offered in insurance industries and therefore they carry minimal basis risk. However,
the disadvantages of the indemnity trigger structures relative to other choices of trigger include
a less competitive risk spread premiums, disclosure requirements, perceived legal exposure to
payment uncertainty, and claims processing uncertainty, as well as the time and cost involved



�

�

“Cruz_Driver” — 2015/1/12 — 11:24 — page 763 — #14
�

�

�

�

�

�

18.1 Insurance-Linked Securities and CAT Bonds for OpRisk 763

in verification of claims by external auditors (often requested by the investors in the event of a
trigger and subsequent default). Hence, even though originally the indemnity triggers were most
popular, as the market for CAT bonds has grown, this class of trigger has reduced in popularity,
being replaced by the parametric trigger type. The primary reason for this is due to three main
developments: the acceptance by the sponsor of basis risk involved with such instruments; the
demand by investors for greater transparency of the claims reporting, processing, and payment
processes and trigger conditions offered by the less ambiguous parametric triggers provide this
transparency; and the reduction in payment uncertainty periods offered by parametric triggers,
where settlements tend to be more rapid, rather than extending the lifetime of the bond to cover
the claims development process.

18.1.3 RECENT TRENDS IN CAT BONDS

The following recent developments have occurred in CAT bond structuring.
1. Hybrid Triggers. Recently, there has been a move to constructing triggers that are based

on multiple events/losses. Examples include products such as Atlas Re’s first, second event
CAT bond and Atlas II’s first, third event bond to name a few. This is one example of what
are known in the industry of hybrid triggers that generally involve multiple trigger types
and offer features such as granular disaggregation of industry triggers in order to minimize
basis risk to sponsors;

2. Takedowns. There are also recent developments known as shelf-programmes that involve
a sponsor incorporating into the CAT bond contract the option to issue additional bonds
known as “takedowns”. This additional flexibility has the advantage that the issuance cost
to the sponsor is significantly reduced as well as allowing for long-term and short-term
planning scenarios to be accommodated;

3. Resets. CAT bonds have been issued that offer multiyear coverage. In such settings, under
a nonparametric bond class, the risk is estimated via analysis of exposures either based on
the sponsor or the industry, depending on the type of trigger specified. It has been recog-
nized that over longer time frames such as multiple year coverage the exposures faced at
issuance (and therefore used in the calculation of liability coverage, etc.) may have increased
significantly. This would expose the sponsor to a heightened basis risk over the duration
of the maturity of the CAT bond. Therefore, an approach to tackling this is known as a
reset, in which the CAT bond is allowed to be annually remodeled based on current expo-
sures. This is typically achieved by modifying the trigger conditions to ensure a constant
probability of loss corresponding to the level specified at issuance.

To complete the basic introduction to CAT bonds, it should be noted that these products
continue to develop and to round off this section we also note there is a different payout tim-
ing and a different loss verification process in CAT bonds compared with standard insurance
products; see details in Barrieu and Albertini (2010, chapter 4).

18.1.4 MANAGEMENT STRATEGIES FOR UTILIZATION OF
INSURANCE-LINKED DERIVATIVES AND CAT BONDS IN OPRISK

We start this section by highlighting the different approaches that have been proposed as
generic strategies for an insurer or a financial institution to provide coverage of some or all



�

�

“Cruz_Driver” — 2015/1/12 — 11:24 — page 764 — #15
�

�

�

�

�

�

764 CHAPTER 18 Insurance and Risk Transfer: Pricing

of the losses they may be exposed to with regard to natural disasters. Under Basel II/Basel III,
financial institutions are required to provide capital to cover losses from process that may
contain elements of catastrophic risks such as natural disasters (wind, storm, rain, floods,
earthquake, fire, riots, disease, etc.). Such loss processes can be rare and of a potentially high
consequence; therefore, it is particularly, important to consider the possibility of insurance mit-
igations for such loss processes.

Doherty (1997a) summarizes the different generic strategies that financial institutions
may consider in order to attempt to manage their exposure to catastrophe risk according to
four categories: asset hedges; liability hedges; post-loss equity re-capitalization; and leverage
management. In general, they note that catastrophe hedging instruments will inherently face
design choices, such as the trigger choices discussed earlier for CAT bonds that will ultimately
involve trade-off between aspects such as credit risk, basis risk, and moral hazard. In what
follows, we first briefly discuss some of the suggestions made in Doherty (1997a) and the
implications.

• Asset Hedge. This is defined to be an asset that hedges against risk in holding an alternative
asset. In the insurance setting, a reinsurance policy is a basic form of asset hedge. In OpRisk,
this may be relevant, for example, in the situation of a financial institution with both a
banking function and an insurance function often known as captives. When this insurance
function provides coverage for certain losses in insurance products utilized for OpRisk
coverage by the same financial institution, such a reinsurance contract could be obtained
as an asset hedge;

• Liability Hedge. Here, instead of taking an asset that will hedge against risk, it instead
involves a portfolio with a liability (opposite side of the balance sheet). The idea is that
when the asset being hedged against has a loss in value, the corresponding liability (which
if carefully selected to be correlated to the price behavior of the asset) should also see a
subsequent reduction in the liability offsetting the loss;

• PostLoss Equity ReCapitalization. The idea of this strategy is to recapitalize the bank
or portions of the bank after a significant loss has occurred that could threaten the
viability of the banking business and solvency. Recapitalization is a form of corporate
reorganization involving change in a company’s capital structure. There are several ways
that recapitalization may occur such as leveraged recapitalization (where the bank issues
bonds to raise money, and then buys back its own shares); leveraged buyout; or partial
or complete nationalization. The idea of such strategies is to generate a revenue stream
at times in which liquidity is most needed without further increase in leverage. This is
typically achieved by unlocking in some fashion the illiquid assets present in a bank.
Examples of two such approaches discussed in Doherty (1997a) include postloss equity
financing in which the price at which new equity is issued is reduced by the loss and
the second approach suggested involves the bank or insurer purchasing a put option
on its own stock that can be exercised should a catastrophic loss be realized of a given
magnitude;

• Leverage Management. This strategy is utilized to manage catastrophic losses ex-post.

As an example of a liability hedge, we note that one may develop a reverse convertible
approach; see Definition 18.5. In the case of CAT bonds, one can conceive of a reverse con-
vertible being used as a liability hedge in which it acts as an alternative mechanism to debt for-
feiture, where the debt is instead converted into another asset, in this equity. Hence, one may
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construct a conversion option into the debt, where the option is then exercised by the issuer
and not the bond holder; this is termed reverse convertible debt (RCD) in Doherty (1997a).

Definition 18.5 (Reverse Convertibles) A reverse convertible security involves a short-term note
that is linked to an underlying stock. Typically the security provides a constant income stream through
payment of a high coupon rate. Then at maturity the owner receives either 100% of the par value
if the stock value has stayed above a predetermined level; alternatively, they may be delivered a
predetermined number of shares of the underlying stock if the value of the stock price drops below a
prespecified trigger level.

An example of RCD could involve converting the bond into a fixed number of shares for
each bond. Hence, a fall in the share price will result in the option being in the money. A second
approach would be to base an RCD for the primary issuer on a trigger of a similar form to the
CAT bond.

All of the aforementioned strategies rely on the ability to answer the important question of
pricing such insurance-linked derivatives. The next section provides some insight and pointers
as to why this is not such a straightforward endeavor.

18.2 Basics of Valuation of ILS and CAT Bonds for
OpRisk

There is a rich literature on different mathematical approaches to developing the notion of a
fair value or price for financial instruments; an interesting technical review of such mechanism
of particular relevance to this section is provided by Platen and Heath (2006, chapters 9 and
14). In this chapter, the authors provide a means of studying in a common framework several
pricing mechanisms under a unified framework known as the benchmark approach, details of
which will be discussed in this section.

In the following sections, we provide a nontechnical review of basic and fundamental
aspects of relevance to valuation and pricing and we do so by considering differences and rela-
tionships between pricing (valuation) in the context of the following aspects: traded versus
nontraded assets or liabilities; complete versus incomplete markets, arbitrage versus nonarbi-
trage pricing; actuarial versus financial pricing; and real-world versus risk-neutral pricing. Each
of these concepts will be discussed in the next few sections in basic detail and relevant key
references will be provided.

To begin the discussion, we consider several ideal market assumptions in order to obtain
concise statements regarding fair value pricing that sometimes even produce closed-form expres-
sions for these prices. To begin we consider the notion of the Efficient Market Hypothesis; see
Malkiel and Fama (1970) and Definition 18.6.

Definition 18.6 (Efficient Market Hypothesis) Assumptions or hypotheses about market effi-
ciency are assertions regarding the degree to which stock prices reflect all available relevant informa-
tion. The efficient market hypothesis is a theory of investment that states as its core principle that it
is not possible for an investor to outperform the market because all available information is already
built into all stock prices. Therefore, stock market efficiency causes existing share prices to always
reflect all relevant information and, as a consequence of the EMH, stocks always trade at their fair
value.
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Under the EMH, it is possible to replicate the cash flows of an asset and the value of
the replicating assets provide a unique value for the asset. Due to the assumption of market
efficiency, one may assume that any other value would have been exploited by arbitrageurs
trading. Under these market conditions, one may start to think about arbitrage-free pricing
and valuation. In this context, one would typically perform valuation of a financial asset under
the actuarial framework via a “deflator” or “pricing kernel” f (t), which is given by

f (t) = Et

[
ξT

ξt
f (T )

]
, (18.1)

where the deflator ξt is concerned with achieving market-consistent valuations of assets and
liabilities. In addition to using deflators, the arbitrage-free market-consistent value can also be
obtained in the mathematical finance audience by considering the notion of risk-neutral pricing
according to a change of measure. These methods involve using probabilistic expectations of
discounted present values of future cash flows, but in a world where all investors are risk neutral.
Being risk neutral, these investors will be indifferent toward risk and hence they do not require
riskier assets to have a greater expected return than the risk-free return when making investment
decisions. Under these market conditions, all assets would provide an expected return that is
equal to the return from a risk-free benchmark, irrespective of the risks associated with the cash
flows. Hence, a risk-neutral valuation is achieved by calibrating a cash flow projection and an
asset valuation model. The underlying asset classes will have the same expected return equal
to the risk-free rate. Therefore, the present fair value would be given by a discounted expected
value

f (t) = EQ [exp(−r(T − t))f (T )] , (18.2)

where r is the risk-free interest rate and Q denotes the discounted expected present fair value is
taken under the risk neutral pricing measure generically denoted in this chapter by Q.

We will discuss how in the complete market setting the deflator and risk-neutral settings
can yield the same unique result in general; however if one moves to incomplete markets, this
starts to differ. Typically, in the context of risk of an insurance modeling, the incomplete market
framework arises naturally from the types of assets and liabilities under consideration. At the risk
of stereotyping, it is typically the perspective of actuarial valuation that risk-neutral valuations
are somewhat unrealistic since one could argue that in practice most investors require some
form of compensation for the risk they take on in a particular financial contract or investment
and they would otherwise not invest in more risky assets unless it had a higher expected return
to compensate for this additional risk.

Under actuarial valuation via deflator methods, one may project future cash flows under
realistic scenarios that incorporate volatile risky assets with expected returns exceeding the risk-
free rate. However, the final valuation result involves an enforced arbitrage free value that corre-
sponds to the risk-neutral valuation. For this to occur, the interest rate used to discount future
cash flows under the deflator method is constrained. In this fashion, the deflator method can
be considered as a class of stochastic discount factors that are coupled with a realistic scenario
generator to achieve the same valuation result as the market-consistent risk-neutral valuation
result.

Given this basic contextual background, we first begin with a high-level discussion of the
classical complete market setting, starting with a key celebrated result of the mathematical
finance investigations into pricing, the Black–Scholes option pricing formulation. Then we
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proceed to actuarial deflator methods and real-world pricing. In this regard, we consider a key
component of a complete market, that it is the notion of frictionless markets under the Black–
Scholes formulation. In the seminal paper on the pricing of options and corporate liabilities,
see Black and Scholes (1973), an arbitrage-free pricing formulation that depends on observable
quantities and did not require knowledge regarding investor’s preferences or beliefs about their
expected returns on the underlying stock. The conditions required for such a pricing framework
involved what Merton (1976) referred to as “ideal conditions” in the market for the underlying
stock and the option. Before presenting a brief overview of these conditions, it is useful to recall
Definition 18.7 for a frictionless market.

Definition 18.7 (Frictionless Market) A frictionless market is one in which all costs and
restraints associated with transactions are nonexistent, that is, there are no trading costs, transac-
tion costs, or differential taxes. This is a theoretical trading environment.

It should be noted that friction is a type of market incompleteness and that every complete
market is frictionless, but the converse does not hold. Now, one is in a position to consider the
ideal conditions referred to by Merton for the pricing framework of Black and Scholes to hold
included originally:

1. Frictionless markets;
2. Trading on the markets takes place continuously in time;
3. Borrowing and short selling are admitted without restriction and with full proceeds

available;
4. Borrowing rates equal to lending rates;
5. The short-term interest rate is known and constant through time;
6. The stock pays no dividends or other distributions during the life of the option;
7. The option is only exercised at expiry; and
8. The stock follows a “geometric” Brownian motion in time, giving a LogNormal distribution for

stock prices between time points.

This framework was relaxed and extended in works by Merton (1973) to allow for stochastic
interest rates and other features. However, still of direct importance to this pricing framework
were the assumptions that trading takes place continuously in time and the price dynamics
of the stock have a continuous sample path with probability one. It is precisely this continuity
condition in which over small time intervals only small price changes are admissible, which
implies a form of local Markov property that is contentious in the context of insurance-linked
derivatives. For example, if the asset price process follow a continuous time stochastic jump
process for example, a Lévy process, then with some nontrivial probability there exists the pos-
sibility that the asset price may change significantly even over short time periods. Therefore,
then the price process follows such a jump-type process one must rethink how to perform
valuation.

In this section, will first provide a high-level discussion on the approaches to pricing
such products. The valuation and study of the associated properties of such insurance-linked
derivatives such as CAT bonds is not such a straightforward problem. The reason for this
is that it involves some particular features of insurance-linked derivatives that distinguishes
such products from other more well-studied traded financial derivative assets. Insurance-linked
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derivatives are primarily established to transfer catastrophic “nature” risks. In general, such
risks have been proposed to be modeled by jump diffusions, Poisson processes, inhomogeneous
Poisson processes, and doubly stochastic Poisson (Cox) processes in a compound process frame-
work; see discussions in Embrechts and Meister (1997) and an interesting calibration example
for earthquakes in Härdle and Cabrera (2010).

As carefully detailed in Embrechts and Meister (1997), Lane (2000), Pelsser (2011), and
Wüthrich (2010), the pricing of insurance-linked derivatives such as CAT bonds requires the
framework of incomplete markets. There are multiple approaches that one may adopt when
developing a pricing framework for insurance-linked derivatives; several of these have been
considered in the literature for CAT bonds and this section aims to summarize the features
of each to provide a clear overview of each and the associated valuation models proposed in
the literature. Fortunately, this area is still a growing field and so reasonable coverage can be
expected in this endeavor.

We will first present a general discussion on the intricacies of such a valuation setting. Then
we will present two general cases the settings in which people have made idealized frameworks
to perform valuation based on assuming that a complete market framework can be approx-
imately considered and the insights gained from such approximation. This will be followed
by the more realistic framework of incomplete markets the implications of the fair valuation
and the introduction of risk aversion and utility to perform unique pricing in an arbitrage-
free setting. In both cases, we will present a range of complexity in the models that have
been proposed based on simplifications of the behavior of interest rates ranging from constant
interest rates, simple diffusion models for the interest rates, through to term structure–based
approaches.

When dealing with natural catastrophes, one may consider a model for their occurrence
and their severity under a standard actuarial framework involving a compound Poisson process
or a mixed jump-diffusion framework for the underlying risk index. As noted in Vaugirard
(2003), under such a model framework the pricing of insurance-linked derivatives involves
an incomplete market and so the well-known methodology of replicating portfolios does not
apply. Instead, it is noted that the five fundamental approaches one could consider involve
as follows.

1. Assume risk that is associated with jumps is inconsequential due to diversification—
Merton framework; see Merton (1976);

2. Construct a variance minimizing hedge strategy in such a way that it would allow one to
select a unique martingale measure from the many possible equivalent martingale measures
arising from the pricing based on a discontinuous process to obtain the valuation of the
CAT bond; see examples in Föllmer and Sondermann (1986), Föllmer and Schweizer
(1991), Sondermann (1991), and Colwell and Elliott (1993);

3. Specify additional information such as the utility function of the investors in the CAT
bond and determine the valuation based on the historical empirical price process measure;
see examples in Pliska (1997), Kallsen (2003), and Hugonnier et al. (2005);

4. Assume the pricing framework is approximately one in which the market is complete by
restricting the problem to one that does not allow for random jump amplitudes; see exam-
ples in Cox and Ross (1976);

5. Assume the pricing framework is approximately one in which the market is complete by
embedding the incomplete market into a complete market through the introduction of an
artificial asset; see examples in Shirakawa (1991).
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While talking about pricing approaches, one can note that it is common practice to deter-
mine the price of an asset through reference to the underlying economic value of the asset. This
leads one to the classes of “general equilibrium models” that aim to explain through economic
reasoning why the value of financial assets change as a result of changing economic forces or
factors. Examples of such approaches can be attributed to Merton (1976) through examples
of pricing under what is known as the Intertemporal Capital sset Pricing Model (ICAPM) or
the common insurance pricing framework of Bühlmann (1970) known as actuarial pricing.
An alternative approach to pricing that does not endeavor to explain the economic reasons for
price changes or to attribute such changes to particular changes in macro- or microeconomic
factors is known as the benchmark approach; see, for example, Long (1990) and the book-
length review of Platen and Heath (2006). Under a benchmark approach one is focused on a
pricing framework based on marking to market.

At this stage, it will be useful to recall the following informal Definition 18.8 for arbitrage
pricing theory of Ross (1976), Roll and Ross (1980), and Ross (1973).

Definition 18.8 (Arbitrage Pricing Theory) Under arbitrage pricing theory (APT), one adopts
a model in which an asset’s returns can be predicted using the relationship between that same asset
and many common risk factors. Put another way, the APT predicts a relationship between the
returns of a portfolio and the returns of a single asset via a linear combination of many independent
macroeconomic variables. Under an arbitrage opportunity, one has a trading strategy that is cost-
less at time t, has no negative value in times T > t, and a positive probability of strictly positive
values.

Hence, the assumption of no arbitrage means that it is impossible to develop a strategy or
portfolio that will guarantee a riskless sure profit in the market considered. Put another way, one
can consider a no-arbitrage condition as stating that there is no possible strategy that involves
making money with no initial investment and without any possibility of loss.

Remark 18.6 The APT is often considered an alternative to the capital asset pricing model since it
has more flexible requirements on assumptions. Under the CAPM formula, one requires the market’s
expected return; however, under the APT, the risky asset’s expected return and the risk premium of a
number of macroeconomic factors are required.

Returning to the notion of pricing risky assets, under the APT framework, one of the most
widely used methods in valuation involves the notion of risk-neutral pricing as defined next.

Definition 18.9 (Risk Neutral) Risk neutral refers explicitly to an indifference to risk. In terms of
investors, the risk-neutral investor is primarily concerned with their expected return on investment,
not so much about the level of risk they are taking on.

The modern day pricing approach replaces the classical framework that involved expecta-
tions of discounted quantities, known as the “the present value principle”, by the concept of
deflators, numeraires (which are basically inverse deflators), or the application of the present
value principle after a change of measure. One of the most popular pricing techniques involves
the risk-neutral pricing framework under APT as it allows one to develop a convenient fair
value pricing that involves a change of measure, accompanied by the change of reference
numeraire. Here, the term numeraire, taken from the French for money, coinage, or face
value, is used in economics to refer to a unit of account. For example, in general, a numeraire
could be applied to a single good, which becomes the base good or reference good. Using
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this numeraire good, all similar goods are then valued and priced against the base good. This
reference or numeraire good allows one to make comparisons between similar goods in order
to identify which goods are worth more than others. It is known that when the value process
of a numeraire portfolio is used as a discount process, the relative value processes of all other
portfolios with respect to it will be martingales or at least supermartingales; see discussions in
Long (1990) and Korn and Schäl (2009) and the references therein. For any equivalent martin-
gale measure obtained, one may work with respect to this measure under a consistent pricing
system, see Harrison and Kreps (1979). However, ensuring the existence of a unique equiva-
lent martingale measure or selection of such a measure from an infinite number of possibilities
(as will be discussed further after) for pricing ILS assets can be problematic, overly restrictive on
the desired price process models and arises primarily due to the price process models typically
adopted, which involve jumps.

Without changing the price process models (which typically admit jumps or discontinu-
ities), one can overcome this challenge using a benchmark approach. It is shown in Platen and
Heath (2006, chapter 9) exactly how the benchmark approach to valuation adopts as numeraire
the growth optimal portfolio (GOP), defined to be the portfolio that maximizes the expected
logarithmic utility from terminal wealth. The GOP was first proposed by Kelly (1956) and
Latane (1959) and later developed for applications by Breiman (1961), Christensen and Larsen
(2007), and Platen (2005). In Long (1990), it was shown how the GOP is the natural numeraire
portfolio when pricing contingent claims with the real-world probability measure used as the
pricing measure. An interesting discussion and development in the discrete time application
of the GOP to pricing is provided in Korn and Schäl (2009). However, unlike the standard
pricing frameworks that require the existence of an equivalent martingale measure, this is not
required when pricing under the benchmark approach. Hence, the main advantage that the
benchmark approach has over other more classical pricing methods is that as soon as there
is existence of a GOP, then one can perform pricing under a real-world measure. This there-
fore allows one to broaden the class of prices process models. In the pricing discussions given
later, a unique martingale measure Q is defined by the concept of the numeraire portfolio. The
particular choice of measure Q is then justified through a change of numeraire, which is in
place of the typical change of measure. Then one applies the important fact that uniqueness
in the pricing measure is obtained by the fact that the equivalent martingale measure after the
change of numeraire may be the original real-world probability measure so long as the appro-
priate numeraire is selected. Hence, instead of finding a change of measure to move from the
real-world process to a risk-neutral pricing measure, one instead seeks a numeraire change that
allows one to perform pricing under a martingale measure given by the real-world process. In
many general cases, one may obtain a required numeraire portfolio for such an endeavor via the
GOP. Note: The change of numeraire that results in the real-world process being a martingale
measure ensures that derivatives priced under this real-world measure represent the best forecast
of the future values.

Hence, in the following sections, we will consider the concept of real-world pricing under
the benchmark approach. As demonstrated by Platen and Heath (2006), it contains the stan-
dard actuarial pricing framework, the CAPM and ICAPM frameworks as special cases. In gen-
eral, the real-world pricing approach allows one to obtain prices for payoffs to be obtained via
conditional expectations under the real-world probability measure (i.e., the probability measure
that models the market as it evolves and as one observes it through empirical observations). In
the following section, we present the basic technical details for the real-world pricing frame-
work discussed; for a comprehensive presentation, see the book-length discussion in Platen and
Heath (2006).
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18.2.1 PROBABILISTIC PRICING FRAMEWORKS: COMPLETE AND
INCOMPLETE MARKETS, REAL-WORLD PRICING, BENCHMARK
APPROACH, AND ACTUARIAL VALUATION

There exist a wide range of different approaches, that areas of financial mathematics, economics,
and insurance have sought to explore, in order to justify the valuation of financial instruments.
This chapter does not aim to present any detailed level of presentation of these approaches;
instead, it will illustrate in the context of insurance-linked derivatives what has been achieved
under some of these different approaches when valuing CAT bonds. In addition, a selection of
influential works (which is by no means to be considered comprehensive) will be provided for
each of the topics touched upon.

As discussed earlier, in financial mathematics, one of the most traditional approaches of
pricing involves the assumption of a complete, efficient market hypothesis with the existence
of a real-world price process that admits (under a change of measure) a unique risk-neutral
pricing measure that is an equivalent martingale measure. This risk-neutral pricing measure
can be used to perform discounted expected value calculations. As discussed in the previous
section, this highly utilized framework will not typically apply in the context of insurance-
linked derivative pricing. The reason for the need to consider an alternative pricing framework
will be discussed in detail later. Fortunately, there are many other approaches one may adopt to
overcome this issue when pricing insurance-linked derivatives. Next, we primarily concentrate
on the benchmark approach and the actuarial pricing approach; see the book-length coverages
in Bühlmann (1970), Gerber (1990), and recently Wüthrich (2010), which is common in
insurance and accounting, providing another important example in this direction. To proceed,
it will be beneficial to define a few basic quantities that will be used later in the illustrations
and examples of pricing CAT bonds.

We remind the reader that when we refer to bonds we consider them as a security that estab-
lishes a creditor relationship between the purchaser (creditor) and the issuer (debtor). Under
this contractual relationship, the issuer is entitled to receive a certain amount of money in
return for the bond, and in return the issuer is then obliged to repay the principal at the end
of the lifetime of the bond (maturity). In general, bonds will make coupon or interest pay-
ments that are determined as part of the product structuring (hence the name, fixed income
securities).

Definition 18.10 (Money Market Account) A money market account is a fictitious bank
account whose balance grows at the random spot rate, denoted by rt , over time. Therefore, one dollar
deposited into a money market account at time 0 results in a bank balance at time t given by

Ct = exp

⎛
⎝ t∫

0

rudu

⎞
⎠ . (18.3)

Definition 18.11 (Zero-Coupon and Defaultable Bonds) A zero-coupon bond is a fictitious
financial security that pays one dollar (the face value or par value) at a fixed time T (the maturity
time). For t ∈ [0,T ] and rt ≥ 0, the price Bt of this pure discount bond fluctuates randomly
in [0, 1], but BT = 1 with certainty. Hence, a zero-coupon bond is simply a discounted bond
bought at a price lower than its face value, with the face value repaid at the time of maturity.
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A defaultable bond is a pure discount bond that promises to pay one dollar at its fixed expiry (matu-
rity) date; however, this payment is subject to a risk that may result in a default at some random time
τ ∈ [0,T ). If a default occurs, it pays a random recovery rate R ∈ [0, 1) at the default time τ .

We remind the reader that typically bonds have two main sources of risk that affect the
bonds investment value: credit risk (default) and interest rate risk (rate fluctuations). However,
for CAT bonds, the main source of risk for a default is not credit risk but instead what could
loosely be termed nature risk.

Definition 18.12 (Bond Yield) In general, a yield refers to the income return on an investment
and can be generically used to refer to the interest, dividends received from a security or other sources.
Typically it is expressed annually as a percentage based on the following components: investment cost;
current market value or face value. In the context of bonds, there are three yields:

1. Coupons (the bond interest rate fixed at issuance);
2. Current yield (the bond interest rate as a percentage of the current price of the bond); and
3. Yield to maturity (an estimate of what an investor will receive if the bond is held to its maturity

date)

In some special classes of bonds such as nontaxable municipal bonds, there will be also a fourth yield
corresponding to a tax-equivalent yield determined by the investor’s tax bracket.

If one considers how the price of a bond with fixed cash flows changes in price, the two
factors that drive the price in standard settings correspond to two sources:

1. A predictable riskless source corresponding to the passage of time (convergence
towards par); and

2. A change in the yield either through changes in the benchmark yield and/or changes in
the yield spread.

The yield–price relationship is inverse, and we would like to have a measure of how sensi-
tive the bond price is to yield changes. A first attempt, which does not really directly cap-
ture this desired feature, is the Macaulay duration, a later definition known as the modified
duration provides the required price sensitivity measure with respect to changes in yield. In
particular, it is popular to consider either a linear approximation, known as the modified dura-
tion that is a measure of the price sensitivity to yields, or for larger yield changes one may
consider a higher-order approximation such as the quadratic approximation known as the
convexity.

Definition 18.13 (Bond Duration) The duration of a financial asset consisting of fixed cash
flows, for example, a bond, is the weighted average of the times until those fixed cash flows are
received. When an asset is considered as a function of yield, duration also measures the price sen-
sitivity to yield, the rate of change of price with respect to yield or the percentage change in price
for a parallel shift in yields. Typically calculation of the duration involves the present value, the
yield, the coupon cash flow to investors, and the final maturity and call features. In all definitions of
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duration, the larger the duration, the greater the interest rate risk or reward for bond prices. There
are typically two commonly considered duration measures:

1. Frederick Macaulay (1938) proposed that duration be determined by the weighted average
specified according to

D =

∑T
j=1 (1 + r)−tj tjcj∑T
j=1 (1 + r)−tj cj

, (18.4)

where r is the periodic yield (for a single period), tj is the time until the j-th cashflow and cj is
the j-th periods cash flow. Hence, Macaulay duration is the name given to the weighted average
time until cash flows are received and is measured in years;

2. Modified duration: The name given to the price sensitivity and is the percentage change in price
for a unit change in yield given by

DM =
D

(1 + r)
= − 1

B(r)
∂B(r)
∂r

, (18.5)

where D is the Macaulay duration, r is the periodic yield, and B(r) represents the price of the
bond at yield r.

Remark 18.7 When yields are continuously compounded, then the Macaulay duration and the
modified duration will be equal in value. If, however, yields are periodically compounded (i.e.,
interest rates are compounded), then the Macaulay and the modified durations will differ. Though
Macaulay duration cannot be directly utilized to determine true price sensitivity to yield changes, it
can be used to show the following:

1. The duration of a zero coupon bond is equal to its time to maturity;
2. The duration of a coupon bearing bond is less than its time to maturity;
3. Given two bonds with the same coupon rate and yield, then the bond with the greater maturity

has a higher duration; and
4. Given two bonds that have the same yield and maturity, then the one with the lower coupon

rate has a higher duration.

Having defined these basic concepts relating to bonds and their properties, we now pro-
ceed to illustrate some examples of pricing CAT bonds by first establishing an appropriate
pricing framework for CAT bonds. Explaining why standard approaches to valuation need to
be reconsidered when valuing insurance-linked derivatives and special products such as CAT
bonds.

In particular, we will discuss the “no-arbitrage” pricing framework in the context of
insurance-linked derivatives. This has been studied in a number of papers such as the works
of Harrison and Kreps (1979), Harrison and Pliska (1981), Föllmer (1991), Delbaen and
Schachermayer (1994), and Embrechts and Meister (1997). We will recapitulate the discus-
sions provided from Embrechts and Meister (1997), which itself is a selection of ideas based
on the work of Föllmer (1991). We first consider the price process (Xt)0≤t≤T , which is asso-
ciated with a probability triple (Ω,F ,P), where Ω is the sample space of possible outcomes,
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F represents the sigma algebra, and P the relevant probability measure for the process. Fur-
thermore, assume a contingent claim cashflow H is an FT measurable random variable on the
probability space (Ω,F ,P). As a reminder, we note the definition of a measurable function.

Definition 18.14 (Measurable Function) A measurable function is a mapping that is “structure-
preserving” between two measurable spaces, in our case probability spaces. That is, the function
is measurable if the preimage of each measurable set is measurable. Given two measurable spaces
(Ω1,F1) and (Ω2,F2), in which Ω1 and Ω2 are sample spaces with their corresponding sigma
algebras F1 and F2. Then a function f : Ω1 �→ Ω2 is measurable if f −1(E) ∈ F1 for all
E ∈ F2.

Measurable functions have the following useful mathematical properties.

Remark 18.8 (Properties of Measurable Functions) The following properties preserve
measurability.

1. The sum of two measurable functions is a measurable function;
2. The product (or quotient if no division by 0) for two measurable functions is a measurable

function;
3. The composition of two measurable functions is a measurable function; and
4. The pointwise supremum, infimum, lim sup, and lim inf of a sequence of measurable functions

are each measurable.

In addition, it will be valuable to recall the definition of a predictable process, see Definition
18.15, as well as the definition of a martingale, see Definition 18.16.

Definition 18.15 (Predictable Process) A predictable process can be considered as a stochastic
process whose value is knowable at a prior time. The predictable processes form the smallest class that
is closed under taking limits of sequences and contains all adapted left-continuous processes. Formally,
a continuous time stochastic process (Xt)t≥0 on a filtered probability space

(
Ω,F , (Ft)t≥0 ,P

)
is

predictable if Xt is measurable with respect to the sigma algebra Ft− for any time t.

Definition 18.16 (Martingale) A martingale is a stochastic process (i.e., a sequence of random
variables) such that at a particular time in the realized sequence, the expectation of the next value
in the sequence is equal to the present observed value. This will be true even if knowledge of all prior
observed values is available at the current time. Formally, a stochastic process X : T × Ω �→ S is a
martingale with respect to a filtration Ft and probability measure P if the following hold:

• Xt is adapted;
• E |Xt | < +∞ for all time t; and
• E [Xt | Ft−1] = Xt−1 for all t ≥ 1.

Using these probabilistic definitions allows one to also define the notion of a complete
market as detailed next.
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Definition 18.17 (Complete Market) A complete market is one in which the complete set of
possible gambles on future states of the world can be constructed with existing assets without friction.
This is a situation in which every agent has the ability to exchange every good either directly or
indirectly with every other agent without transaction costs. Put another way one could state that
completeness means that the underlying price process (Xt)0≤t≤T is such that every contingent claim
may be replicated by a self-financing strategy. Formally, the market denoted by the probabilistic
construction

{(
Ω,F , (FT )0≤t≤T ,Q

)
, (Xt)0≤t≤T

}
is complete if for every contingent claim that

is square integrable H ∈ L2, then the probability space (Ω,FT ,Q) admits an Ito representation
with respect to the initial investment value at time t = 0 denoted H0 and a predictable process (ζt),
which is given by,

H = H0 +

T∫
0

ζsdXs, (18.6)

in terms of the process (Xt)0≤t≤T .

Now given these basic fundamental definitions, we reiterate the discussion that there is
a rich and well-developed literature on asset pricing in complete and arbitrage-free markets
that relies on these definitions. First, we will introduce a few key aspects of the standard pric-
ing theory before following the real-world pricing framework discussed earlier. We follow this
path as it is informative to consider the differences between the standard pricing approach of
APT combined with change of measure to a risk-neutral framework versus the real-world pric-
ing approach that can also be developed under an APT framework except now a change in
numeraire is applied in order to make the real-world process into the appropriate equivalent
martingale measure for pricing.

18.2.1.1 Basics of Arbitrage-Free Risk-Neutral Pricing. The basic probabilistic
definitions allow one to consider the context of working with pricing under a “risk-neutral
measure”, also known as an equivalent martingale measure that forms for traditional exchange-
traded assets the key process for pricing. To understand at a basic level how this risk-neutral
measure plays a role in pricing, we first discuss risk preferences and then proceed to the def-
inition of two key theorems known as the Fundamental Theorems of Asset Pricing I and II.
Together these two theorems link the role of the risk-neutral measure to the assumptions of
arbitrage-free and completeness to guarantee that the fair value of a financial derivative is given
by the discounted expected value of the future payoff under the unique risk-neutral measure.

So why one would like to consider a risk-neutral measure? To answer this question, one can
first postulate that the prices of assets depend on their risk and furthermore that investors will
expect a greater profit if they are exposed to more uncertainty or risk. Hence, if the price today
of a claim on a risky amount realized tomorrow differs from its expected value and furthermore
if one believes that investors in this asset are risk averse, then in order to make such risky a
investment, said investors, will need to be rewarded with a risk premium in order for them to
be willing to bear the risk associated with a potential loss.

Given these assumptions, then the pricing of an asset that involves the calculation of the
fair value today, via an expectation, should be adjusted according to the investor’s risk prefer-
ence. That is, one would first take the expected value today and then adjust for the investor’s
risk preference. If this were attempted, it would be very difficult to obtain a unique price
since the discounted rates would vary as a function of a given individuals risk preference.
The key results that arise from the fundamental theorems of asset pricing allow one to avoid
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such complications since they show that in a complete market with no arbitrage opportunities
there is an alternative way to perform this pricing.

Basically, instead of worrying about how to adjust for any given investor’s risk preferences,
one can instead perform the pricing by a single once of change of probability measure. This
measure change adjusts the probabilities of future outcomes in such a way that they incorporate
all investors’ risk premia. Then the present value fair price is obtained by taking the expecta-
tion under this new probability distribution, the risk-neutral measure. This approach, when
applicable, has the benefit that once the risk-neutral measure is obtained (if it exists) every asset
can be priced by simply taking its expected payoff. Whereas without this risk-neutral measure
in this context, if we had worked with the real-world measure, then pricing each asset would
require a different adjustment for their different levels of risk.

At this stage, it would be instructive to recall two key fundamental theorems of arbitrage
(critical to this standard pricing framework), which provide necessary and sufficient conditions
for a market to be considered arbitrage free and complete. In the simplest case of a discrete finite
state market, one can state the following two fundamental theorems of asset pricing. The first
fundamental theorem relates to the existence of an arbitrage-free market and crucially depends
on the existence of at least one risk-neutral probability measure, while the second fundamental
theorem relates to the completeness of a market that in turn can be shown to directly depend
on the uniqueness of a single risk-neutral pricing measure; see detailed discussions in Musiela
and Rutkowski (2005, section 2.6.6) and the references therein.

Theorem 18.1 (First Fundamental Theorem of Asset Pricing) A discrete market (finite state)
with a probability space (Ω,F ,P) is arbitrage free if and only if there exists at least one risk-neutral
probability measure Q that is equivalent to the original probability measure P, denoted P ∼ Q.

Theorem 18.2 (Second Fundamental Theorem of Asset Pricing) Given a market with base
components: a collection of S stocks and B risk-free bonds, denoted by (S,B), then such a market is
said to be complete if and only if there exists a unique risk-neutral measure that is equivalent to P
and has numeraire B.

The assertion of these two fundamental theorems of asset pricing then leads one to the
definition of the risk-neutral pricing measure, given in Definition 18.18.

Definition 18.18 (Unique Martingale Measure) A market will be arbitrage free and complete
(frictionless) iff there exists a unique probability measure under which the prices of all traded assets,
when divided by an appropriate numeraire, will be martingales.

Under the existence and uniqueness of a risk-neutral measure for pricing of an asset, it is
then standard to proceed as follows. Consider a maturity (future time) T that the derivative
on the asset price process (Xt)0≤t≤T pays an amount HT , which is a FT measurable random
variable. Assume that the discount factor from the current time (t = 0) to the maturity future
time T is denoted by P(0,T ). Then the fair value of the derivative today (t = 0) is given by

H0 = P(0,T )EP

[
dQ
dP

HT

]
= P(0,T )EQ [HT ] (18.7)

with dQ
dP the standard Radon–Nikodym derivative.
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Remark 18.9 We now see the direct link between the existence and uniqueness of the risk-neutral
pricing measure and the assumptions of an arbitrage-free and complete market (at least in the discrete
market case). These features are directly linked to the pricing of the contingent claim at t = 0 and
the representation of the change of measure from the real world to the risk-neutral pricing measure
to perform the valuation uniquely.

So far we have simply discussed the possibility of a fair pricing framework and the asso-
ciated requirements from an economic perspective on the market and prices of assets that will
ensure the existence and uniqueness of such a measure. We have not commented on how one
may construct or obtain such a pricing measure; for an in-depth technical analysis of the results
discussed later, it is best to refer to a comprehensive text such as Karatzas and Shreve (1991). In
the following discussion, we aim to provide a very basic introduction to the steps involved with
obtaining such a risk-neutral pricing measure. To proceed, we consider a general stochastic pro-
cess for the price of a traded asset given by stochastic diffusion process or stochastic differential
equation (s.d.e.)

dXt = μ (t,Xt) dt + σ (t,Xt) dWt , (18.8)

for some drift function μ (t,Xt), and volatility function σ (t,Xt), which is driven by Brow-
nian motion Wt with the properties that E [dWt ] = 0 and E

[
(dWt)

2
]
= dt. Note that the

Brownian motion temporal path is a continuous function in time that is nowhere differentiable.
It will be often important when undertaking pricing and valuation of assets or liabilities

to consider transforms of the price process Xt such as those generically represented previously
by payoffs of a derivative of the price process at some future time T , denoted by HT . More,
explicitly we may consider a generic transformed process Yt = f (t,Xt) and as what is the
resulting process for the new diffusion Yt ? To answer this question, under suitable technical
conditions, one may apply Ito’s Lemma in Theorem 18.3.

Theorem 18.3 (Ito’s Lemma) Consider the generic s.d.e. for the process Xt according to

dXt = μ(t,Xt) dt + σ(t,Xt) dWt , (18.9)

for some drift function μ(t,Xt), and volatility function σ(t,Xt), which is driven by Brownian
motion Wt. Then the new transformed process Yt = f (t,Xt) for a twice continuously differential
function f has s.d.e. given by

dYt =

[
∂

∂t
f (t,Xt) + μ (t,Xt)

∂

∂x
f (t,Xt) +

1
2
σ2 (t,Xt)

∂2

∂x2 f (t,Xt)

]
dt

+ σ (t,Xt)
∂

∂x
f (t,Xt) dWt . (18.10)

Returning to the previously defined notion of a martingale, one may note that a martin-
gale will be a stochastic process (s.d.e.) that stays on average at the same level and therefore
is a differential equation with the dt component or term that is zero. The significance of this
observation will be made more apparent in the following discussion on risk-neutral pricing and
Girsanov’s theorem.

Hence, given this price process for the financial asset, the expected value of a payoff for a
financial derivative, which is some functional of the price process (derived from the underlying
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asset) that is, made explicit by the function f (XT ) at some time T > t, is given with respect
to the value of the underlying asset at time t by the function v(t, x), which is the conditional
expectation

v(t, x) = E [YT |Yt = f (x)] = E [ f (XT )|Xt = x] . (18.11)

The form of the expected payoff v(t, x) is a solution to the Kolmogorov backward equation
(KBE) given by the partial differential equation

∂

∂t
v(t, x) + μ(t, x)

∂

∂x
v(t, x) +

1
2
σ2(t, x)

∂2

∂x2 v(t, x) = 0, (18.12)

for t < T and a boundary condition given by u(T , x) = f (x).
In addition to understanding how to derive the s.d.e., for a transform of another s.d.e., it

will also be important to understand how to obtain a new s.d.e. under a change of measure.
This is a natural point to discuss the fundamental result provided by Girsanov’s theorem, given
in Theorem 18.4. This result describes how the dynamics of stochastic processes change when
the original measure is changed to an equivalent probability measure. It is therefore at the core
of the change of measure required for pricing when one moves from a real-world price process
(physical process measure) to the risk-neutral pricing measure for the underlying asset price
or interest rate. That is, Girsanov’s theorem will be important as it enables the key result that
if Q is a measure absolutely continuous with respect to P then every P-semimartingale is a
Q-semimartingale.

Theorem 18.4 (Girsanov’s Theorem) For any stochastic process Gt (Girsanov kernel) that sat-
isfies the condition

∫ t
0 G2

s ds < ∞ with probability one and has the Radon–Nikodym derivative
representation given by,

Rt = exp

⎛
⎝ t∫

0

GsdWs −
1
2

t∫
0

G2
s ds

⎞
⎠ , (18.13)

where Wt is Brownian motion under a probability measure P. Then if one defines the probability
measure Q according to dQ = RtdP then under the probability measure Q with associated process
W̃t given by,

W̃t = Wt −
t∫

0

Rsds, (18.14)

is also a Brownian motion.

Now, utilizing Ito’s Lemma, one can show that the process Rt given earlier is a martingale
(with dt term set to zero) under probability measure Q, characterized by the s.d.e. dRt =
GtRtdWt . Hence, given some price process s.d.e., one can utilize the following basic steps to
find the risk-neutral s.d.e. representation by combining Ito’s Lemma with Girsanov’s theorem:

1. Consider a s.d.e. process for the price of an asset denoted by (Xt)t≥0 given by the generic
s.d.e.

dXt = μ (t,Xt) dt + σ (t,Xt) dWt , (18.15)
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driven by a Brownian motion (Wt)t≥0 which is defined with respect to a measure P

(real-world process measure). If one applies a change in probability measure to the process
(Xt)t≥0 to take it from being defined with respect to measure P (real-world measure) to
measure Q (risk-neutral pricing measure), then this implies a Radon–Nikodym derivative
Rt with respect to the process Xt (some times denoted dQ

dP ). Note, this change of measure
is associated to appropriate selection of a base unit (numeraire) asset that has a strictly
positive price process that when used to scale the price process of the asset of interest will
produce a corresponding price process that is a martingale under measure Q;

2. Apply Ito’s Lemma to the Radon–Nikodym derivative Rt to obtain its s.d.e. representation
and hence infer its Girsanov kernel Gt . Note, the process Rt will be a martingale with
respect to the new probability measure Q. In addition, one notes that the only choice for
the Girsanov kernel that will nullify the differential in time component dt, thereby turning
the process Xt into a martingale under measure Q is given by the functional form

Gt = −μ (t,Xt)

σ (t,Xt)
, (18.16)

which corresponds to the market price of risk;
3. Obtain the s.d.e. for the measure changed price process by substituting the new s.d.e.

process for the measure changed Brownian motion (with W̃t defined w.r.t. measure Q)
given by,

dWt = dW̃t + Gtdt, (18.17)

to obtain

dXt = [μ (t,Xt) + σ (t,Xt)Gt ] dt + σ (t,Xt) dW̃t . (18.18)

To further understand this process, there is a good discussion on this valuation in
Embrechts and Meister (1997), where the following stages are detailed along with a discus-
sion on the valuation under the risk-neutral measure based on the existence of a complete
arbitrage-free market. Returning to the generic notation for a derivative payoff or contingent
claim, denoted by Hand given the existence of an Ito decomposition of the contingent claim
H = H0 +

∫ T
0 ζsdXs one may construct a riskless portfolio replication of the claim H using the

premium H0. This elementary procedure follows the following stages.

Riskless Portfolio Construction for Replication of a Claim H using Premium H0.

• At a time t set up a portfolio holding an amount ζt in the risky asset (stock) Xt and hold
an amount νt =

(
H0 +

∫ t
0 ζsdXs

)
− ζtXt in the riskless asset (risk-free bond). At time t,

the value of the portfolio is given by v(t) = ζtXt + νt = H ;
• To calculate H0, the value of the contingent claim at time t = 0, we use the following facts

(by construction):

˚ The process (Xt) is a Q-martingale. Note it need not be a P-martingale;

˚ The process (ζt) is predictable such that the process denoted by (It)0≤t≤T and given by∫ t
0 ζsdXs is a Q-martingale;
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˚ The expectation of the process (It)0≤t≤T , w.r.t. the measure Q has the property that
EQ [It ] = EQ [I0] = 0.

• Then the expected value of the contingent claim w.r.t. the measure Q given by
EQ [H ] = H0 and given knowledge of H and measure Q one knows the fair present
value of the contingent claim H0.

It turns out that once one moves away from the previously described pricing in an ideal
market to more realistic settings, then it is not so straightforward to obtain results that will
guarantee the existence and uniqueness of the risk-neutral pricing measure.

Remark 18.10 In particular, the existence of a unique risk-neutral pricing measure will crucially
depend on the properties of the price process of the underlying asset (Xt)0≤t≤T . For example it is well
known that under certain established pricing frameworks such as the Cox–Ross–Rubenstein binomial
tree model, the Bachelier Brownian motion model or the Markovitz–Black–Scholes geometric Brow-
nian motion models one may prove the existence and uniqueness of a risk-neutral pricing measure.
Other processes for the price are not so straightforward or may not even admit a unique risk-neutral
pricing measure.

Hence, we conclude by noting that traditionally the “financial pricing” approach (or option
pricing) approach works under a change of measure in the equivalent martingale world of the
Q measure (via risk-adjusted probabilities), while we will discuss in the next section the actu-
arial and real-world pricing frameworks that operate traditionally in the real-world P measure
via objective probabilities and observed data consisting of projected losses and a likelihood of
such losses that are converted to an actuarial fair value. In practice, this means that traditionally
financial pricing has involved pricing say an option based on the minimal cost of setting up a
hedging portfolio, whereas actuarial pricing of an insurance contract involves actuarial present
value of costs and additional risk premiums for uncertainty associated with correlations, param-
eter estimation, and capital costs.

It should also be noted that under the actuarial deflator approach utilized when pricing
assets or liabilities that are not traded on the market, such is the case for many contingent claims
and long-dated cash flows considered in actuarial risk and insurance applications will also no
longer be unique since the market price of risk is “unknown”. Examples of such settings will be
discussed in more detail later with respect to OpRisk, but in general they may include longevity,
long-dated cashflows and wage inflation as well as certain types of reinsurance. This leads one
to the frameworks discussed earlier that will be based on real-world pricing.

18.2.1.2 Real-world Pricing: Benchmark and Actuarial Frameworks (Disper-
sion Measures and Deflators). ILS that are constructed to transfer catastrophic risk from
nature to the capital markets require a particular framework for valuation. In general, natural
catastrophes can be incorporated into models for the assets and liabilities of an insurer, rein-
surer, or a financial institution by considering a class of models involving jump-diffusion pro-
cesses for an underlying risk index. In this context, we noted previously that financial markets
are incomplete and as a consequence the methodology of replicating portfolios is not applica-
ble. In the paper by Gerber and Shiu (1994), they consider the family of dispersion measures
known as the Esscher transform, that they utilize for option pricing (as the deflator method-
ology equivalent of risk-neutral pricing in financial mathematics). Under the Esscher trans-
form, they are able to show that one may obtain an efficient technique for valuing derivative
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securities if the logarithms of the prices of the underlying security come from a particular class
that follows a stochastic processes with independent and stationary increments. Furthermore,
they show that popular processes in this class include the popular families of models given by
the Wiener process, the Poisson process, the Gamma process, and the inverse Gaussian process.
Therefore, under this family of dispersion measures, one may select the parameter of this trans-
form such that when it is applied to a security price process of the previously mention forms
this would produce an equivalent probability measure. This resulting equivalent probability
measure for the specially selected Esscher transform parameter (corresponding to the market
price of risk) will produce a martingale for the discounted price of any underlying security with
respect to the new transformed measure. Hence, in terms of valuation, one may calculate the
value of any derivative or contingent claim future cashflows as the expectation, with respect to
the equivalent martingale measure, of the discounted payoffs.

For the incomplete market case, particularly in the context of insurance, there is an excel-
lent article detailing the properties of pricing in incomplete settings such as under compound
Poisson processes, mixed and doubly stochastic compound Poisson processes, typically encoun-
tered in insurance applications; see Bühlmann et al. (1996). These processes posses a “jump”
structure that distinguishes them from the more standard diffusion processes utilized in pricing
in finance. The consequence of this manifests itself typically in two related outcomes: the first
is that the risk cannot be completely hedged, and secondly in the existence not of a unique
martingale measure but a potentially infinite number of such measures, naturally leading to the
question of which to select in the pricing?

Before discussing this point, we first note that the following conditions under which
there will be a martingale measure(s) for compound Poisson processes, mixed compound Pois-
son processes and doubly stochastic compound Poisson processes given in Theorem 18.5; see
Meister (1995, proposition 2.11) and Embrechts and Meister (1997, theorem 1 and theorem 2).

Theorem 18.5 Consider a mixed compound Poisson process on (Ω,F) under measures P and
Q and denoted by (Zt)t≥0. Furthermore, the compound Poisson process has severity loss processes
{Xn}Nt

n=1 with each Xn being i.i.d. and associated to measures PX1 and QX1 and the count process
(Nt)t≥0 is associated with measures PΛ and QΛ. Then the following are equivalent:

1. The measures PX1 and QX1 are equivalent PX1 ∼ QX1 for all s ≥ 0;
2. Conditional on the filtration Fs the measures P and Q are conditionally equivalent

Q|Fs ∼ P|Fs for all s ≥ 0;
3. There exists a function γ : R �→ R, which is measurable such that

EPX1
[exp (γ (X1))] = 1,

the Novikov condition is satisfied

EPX1

[
X 2

1 exp (γ (X1))
]
< ∞,

and the resulting Radon–Nikodym derivative of measure Q with respect to measure P condi-
tional on filtration Fs can be expressed as a function of γ as follows:

dQ
dP

∣∣∣∣
Fs

= exp

(
Ns∑

n=1

γ (Xn)

)
EQΛ

[
ΛNs exp (−Λs)

]
EPΛ

[ΛNs exp (−Λs)]
. (18.19)
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Furthermore, if one considers the process (Zt − pt)t≥0, it can be shown to be an Ft -Martingale
under the measure Q for all s ≥ 0 if and only if the following hold:

1. There exists λ > 0 and function β : R
+ �→ R, which is measurable, such that

EP [exp (β (X1))] = λ and EP [X 2
1 exp (β (X1))] < ∞ and

dQ
dP

∣∣∣∣
Fs

= exp

(
Ns∑

n=1

β (Xn)− λs

)(
EP

[
ΛNs exp (−Λs)

])−1
, (18.20)

2. p = EP [X1 exp (β (X1))].

A very flexible example model for such an insurance process that encompasses as special
cases several other models is the generalized inverse Gaussian mixed compound Poisson model
(also known in statistics as the compound Sichel process after the work in Sichel (1974)), treated
here as a continuous time process, see Example 18.1. This model family also then naturally con-
tains the mixed Poisson gamma models as a subfamily of processes; see discussion in the insur-
ance context in the book Panjer and Willmot (1992). There is a very detailed pricing framework
developed for processes of this type in the context of stop-loss catastrophe reinsurance contracts
in Dassios and Jang (2003), where they consider Cox processes (doubly stochastic Poisson pro-
cesses) with shot noise driving the stochastic intensity of the Poisson process for the model of
the claim arrival process. Following this work, Jaimungal and Wang (2006) considered the pric-
ing of the now delisted CBOT catastrophe options with stochastic interest rates and compound
Poisson losses.

EXAMPLE 18.1 Compound Sichel Process

Consider a mixed compound Poisson process on (Ω,F) under measures P and Q

and denoted by (Zt)t≥0. Furthermore, the compound Poisson process has severity
loss processes {Xn}Nt

n=1 with each Xn being i.i.d. and associated to measures PX1

and QX1 and the count process (Nt)t≥0 is associated with measures PΛ and QΛ.
Assume that one models the count process according to the following specifications
involving setting PΛ ∼ GIG(μ1, β1, λ1) and QΛ ∼ GIG(μ2, β2, λ2), where the
generalized inverse Gamma distribution is given by the density

f (x;μ, β, λ) =

(
μ
β

)λ
2

2Kλ

(√
μβ
)xλ−1 exp

(
−1

2

(
μx +

β

x

))
, (18.21)

where Kλ denotes the modified Bessel function of the third kind and the density has
a strictly positive support (x > 0) and parameter restrictions μ > 0, β > 0, λ ∈ R.
Note the GIG distribution family was first discovered by Etienne Halphen; see
discussion in Perreault et al. (1999a) and later popularized by Ole Barndorff-
Nielsen, where it became known as the generalized inverse Gaussian distribution,
see Barndorff-Nielsen et al. (1992). Furthermore, the following properties of the
model are known such as the existence of the moments given by the moment
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generating function having derivatives that are well defined at the origin, with the
MGF given by

MX (t) = E [exp(tX )] =

(
μ

μ− 2t

)λ
2 Kλ+2

(√
β(μ− 2t)

)
Kλ

(√
μβ
) . (18.22)

The resulting Radon–Nikodym derivative of measure Q with respect to measure P
when conditioned on the filtration Ft is then given for any t ≥ 0 by

dQ
dP

∣∣∣∣
Ft

= exp

(
Nt∑

n=1

γ (Xn)

)(
μ2

μ1

)Nt (1 + β1t
1 + β2t

) Nt
2

×
Kλ2+Nt

(
μ2β

−1
2

√
1 + 2β2t

)
Kλ1+Nt

(
μ1β

−1
1

√
1 + 2β1t

) (1 + 2β1t)
λ1
2

(1 + 2β2t)
λ2
2

Kλ1

(
μ1
β1

)
Kλ2

(
μ2
β2

) .
(18.23)

In addition, this process can still be characterized under the change of measure as a
mixed compound Poisson process.

Remark 18.11 It can be shown from Theorem 18.5 that in any case in which the compound
Poisson process (Zt)t≥0 has a jump size that is not constant, then the equivalent Martingale measure
for (Zt − pt)t≥0 cannot be unique.

It turns out that all is not lost, one can extend the framework of assumptions made about
the pricing model in order to restrict the possible martingale measures (premium principles)
to allow one to obtain a fair price. To proceed in this direction, it will be useful to recall the
notion of Pareto optimality, see Definition 18.19, which has incidently been widely studied
in insurance modelling, see examples in Borch (1960, 1962), Bühlmann (1980), Bühlmann
(1984a), Bühlmann and Jewell (1978), Gerber (1978), and the book-length review of Gollier
(1992). The reason such a notion from game theory and economics is being considered here
is that it provides a way of understanding the notion of a replicating portfolio in a complete
market setting. In addition, when in the setting of an incomplete market, one may adopt a
framework of utility theory to select a unique pricing measure.

Definition 18.19 (Pareto Optimality) Pareto efficiency or Pareto optimality refers to an alloca-
tion of assets or resources in which it is impossible to make any one better off without making at least
one individual worse off.

Remark 18.12 One can show that in a continuous market setting by using continuous trading in
a selected set of commodities one can span a continuum of states of the world, thereby allowing for
the ability to achieve Pareto optimal outcomes in portfolio replication and hedging.

In the case of incomplete markets, due to the price process admitting jumps, one can
turn to a well-known actuarial approach to fair pricing (selection of a risk-neutral pricing
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measure) with which to obtain the discounted present value, via the work of the Swedish actu-
ary Esscher (1932) and utilized in a more modern treatment in Gerber and Shiu (1996). It
will be useful at this stage to recall the definition of a discrete and continuous Esscher trans-
form given in Definition 18.20, also commonly known in statistics as an “exponential tilting”
and used widely in developing asymptotic series expansions for distributions and densities such
as the Edgeworth or saddle point types (discussed earlier); see Small (2010) and references
therein. The family of Esscher transformations includes the result presented in Theorem 18.5
and Example 18.1.

Definition 18.20 (Esscher Transform or Exponential Tilting) Consider a continuous ran-
dom variable X defined with respect to a probability measure P and a nonzero constant real number
h such that EP [exp(hX )] exists. One can then define the Esscher transform, denoted Eh[·], of the
original probability measure P for X in terms of an equivalent new probability measure Q ∼ P

(same null sets) with the following properties:

1. Eh1Eh2 [P] = Eh1+h2 [P];
2. E−1

h [P] = E−h[P].

If the measure P that characterizes random variable X admits a Radon–Nikodym derivative with
respect to a suitable measure ν given by a density fX (x), then we see that the Esscher transform of the
density, denoted by Eh [fX (x)], will be a new density given by

f (x; h) := Eh [fX (x)] =
exp(hx)fX (x)∫∞

−∞ exp(hx)fX (x)dx
. (18.24)

Next we discuss how this Esscher transform can be used to obtain a risk-neutral Esscher
pricing measure. Using this notion of an Esscher transformed (distorted) measure, we may
consider the continuous process setting. For t ≥ 0, consider a price process (e.g., an insurance
futures process, contingent claim, or alternatively a CAT bond price) denoted by process (Ft)t≥0

on a futures market characterized probabilistically by
(
Ω,F , (Ft)0≥t≥T ,P

)
. Assume that this

price process is derived from an underlying Lévy stochastic process (Xt)t≥0 with independent
and stationary increments and a moment generating function MX (t) that exists such that the
asset price at time t, given with regard to the process Xt and the initial price F0, is obtained by
the transformation

Ft = F0 exp (Xt) , (18.25)

where one assumes that Ft − rt can be positive or negative with r the risk free force of interest.
In this setting, the process

(
exp (hXt) (E [exp (hXt)])

−1
)

t≥0
is a positive martingale that

can be utilized to develop a change of measure. To see this, consider the original price process
measure P, then under the change of measure w.r.t. this martingale, the resulting measure Q is
the Esscher transform with parameter h, known in actuarial science as the “risk neutral Esscher
measure”. Then one can select a unique parameter h∗ such that the process (exp (−rt) Ft)t≥0
is a martingale.
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Remark 18.13 (Risk-Neutral Esscher Pricing Principle) Hence, the Esscher principle of pric-
ing allows one obtain a unique Martingale measure for the pricing of insurance futures that, for the
right continuous price process denoted (Ft)t≥0, can be used to perform the pricing under discounting
with regard to the new measure Q according to the expectation F0 = EQ [Ft | Ft ] for some unique
h = h∗ such that the risk-neutral Esscher measure is given by

dQ
dP

=
exp (hFt)

EP [exp (hFt)]
, (18.26)

and the process (Ft) is a Q-Martingale.

Remark 18.14 (Motivating the Need to Consider a Generalized Esscher Transform) It is
noted in Zhu (2011) that when pricing CAT bonds, perhaps the specification of the Esscher trans-
form with only a single parameter (degree of freedom), in defining the change of measure, is too
restrictive. They note that from an economic perspective the parameter h in the stochastic discount
factor, for the pricing under the standard Esscher risk-neutral measure is related to the risk-aversion
coefficient under the assumed subjective expected utility (EU) framework. In its earliest conception
this EU framework comprised a core set of five axioms of individual risk preferences; see Von Neu-
mann and Morgenstern (2007). However, it has been suggested in Zhu (2011) that the existence of a
CAT Bond Premium Puzzle may result in the need to change or generalize the measure change when
performing the risk-neutral pricing since subjective EU fails to explain such features. The justifica-
tion they offer for this is based on arguments made in Bantwal and Kunreuther (2000) and Froot
(2001) who each attempt an economic reasoning for the presence of a premium puzzle explained with
regard to individual risk preferences. They utilize analysis of behavioral economic factors that could
be invoked to explain this premium puzzle not accounted for under the standard expected utility
framework specification of risk preferences. These include ambiguity aversion, myopic loss aversion,
selection bias, and threshold behaviors to name a few. Therefore, the result of applying the standard
Esscher pricing measure change that is appropriate under an assumption of an ideal expected utility
framework may need to be relaxed for the pricing of CAT bonds.

As a consequence of the ideas presented in Remarks 18.4 and 18.14, it was proposed
in Zhu (2011) to consider pricing CAT bonds under a generalized Esscher transform to help
explain a more appropriate premium that will capture the features that are empirically observed
in CAT bond spreads: high spreads and when moving from large probability of trigger (CAT)
bonds to those with lower probabilities of trigger, the corresponding premium spreads increase.
One way to attempt to reconcile this puzzle and perform appropriate pricing under a modified
risk-neutral pricing measure, accounting for the agent behaviors such as ambiguity aversion,
is to utilize the generalized Esscher transform in Proposition 18.1. The difference between the
standard Esscher transform and that proposed for use in pricing CAT bonds in Zhu (2011)
is that their pricing kernel is a form of augmented Esscher transform that applies also to the
Poisson process (frequency distribution of losses in an LDA model structure) to represent the
ambiguity aversion of the agents.

Proposition 18.1 (Pricing CAT Bonds Under the Generalized Esscher Transform)
Consider the standard compound Poisson risk process, under real-world measure P, given by

Zt =

Nt∑
i=1

Xi(t) (18.27)
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with i.i.d. random losses Xi(t) ∼ FX (x) and Nt ∼ Poisson (λ). Then for the risk process
(Zt)t≥0 the generalized (augmented) Esscher transform of Zhu (2011) is given for the com-
pound process Zt at time t by the Radon–Nikodym derivative of measure Q with respect to
measure P by

dQ
dP

=
exp (hZt + gNt)

E [exp (hZt + gNt)]
. (18.28)

Therefore, the generalized Esscher transformed distribution FZt at time t is obtained by the distortion
transformation

FZ (z, t; g, h) := Eg,h [FZt ] = E

[
exp (hZt + gNt)

E [exp (hZt + gNt)]
I (Zt ≤ z)

]
, (18.29)

where FZ (z, t; g, h) is the generalised Esscher transformed distribution now with respect to mea-
sure Q. Furthermore, the resulting moment generating function is found to be

MZ (z, t; g, h) = exp

(
λMX (h) exp(g)

[
MX (h + z)

MX (h)
− 1
]

t
)

(18.30)

with MX the moment generating function of the loss random variable X .

Remark 18.15 Under this generalized Esscher transform, one preserves the loss process according to
a compound Poisson process with modified Poisson rate parameters given by λMX (h) exp(g) and
new loss amount random variables given by transformation MX (h+z)

MX (h) .

Remark 18.16 Under this generalized Esscher transform applied to a simple compound Poisson
process, one achieves a risk-neutral pricing that is able to capture ambiguity aversion in the agents
preferences. It can be shown that such a transform produces a stochastic discount factor that has the
form that it will provide an equilibrium economy in which the agents are averse to both risk and
uncertainty with respect to loss occurrence (due to the augmented transform applying to the frequency
of occurrence of losses).

Other alternative developments that generalize the Esscher transform dispersion measure
have also been proposed, for example, see the second-order Esscher transform developed in
Monfort and Pegoraro (2012) for discrete time pricing models. This two-parameter Esscher
transform is a exponential-quadratic version of a stochastic discounting factor (i.e., deflator),
which is based on the idea of a developing a second-order Laplace transform of the security
process being studied. The resulting discrete time Esscher transform introduced is argued to
be the analog of the continuous time Girsanov-type change of measure in which a diffusion
component in the real-world process, different from the risk-neutral one, implies mutually
singular real-world and risk-neutral probabilities. Next we briefly present the two-parameter
generalization in Definition 18.21. We present the univariate case as this is of relevance to the
models considered in this chapter; however, it is straightforward to consider this framework
also in multivariate settings.

Definition 18.21 (Second-Order Esscher Transform) Consider a random variable X charac-
terized by the probability measure P on supportR that admits a density f with respect to a measure ν.
The second-order Esscher transform of the density f is a new density given by
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f (x; θ1, θ2) = Eθ1,θ2 [f (x)] =
f (x) exp (θ1x + θ2x2)

L2 [f (x); θ1, θ2]
, (18.31)

where L2 [f (x); θ1, θ2] corresponds to the second-order Laplace transform defined by

L2 [f (x); θ1, θ2] =

∫
f (x) exp

(
θ1 + θ2x2) dν(x). (18.32)

The main difference between this extended Esscher transform family and the original for-
mulation is that this transform allows one to modify the first- and second-order moments of
the distribution being transformed (such as mean and covariance in the Gaussian case).

The Esscher transform pricing measure has also been extended to a randomized Esscher
transform given in Definition 18.22 as derived by Siu et al. (2001). This is particularly rele-
vant in the context of Bayesian risk analysis. In particular, the Randomized Esscher transform
has been utilized under a Bayesian framework for measuring coherently risk associated with
derivatives under the Gerber-Shiu pricing framework for complete and incomplete markets.
Importantly the random Esscher transform can be shown to preserve the property of coherency
of a given coherent risk measure for price processes that include Wiener, multiplicative bino-
mial, Poisson, gamma, and inverse gaussian.

In the case of ILS pricing in incomplete markets for any of these aforementioned price
processes this randomized Esscher transform also allows one to develop “Bayesian Esscher
scenarios”. These Bayesian Esscher scenario analysis is a generalization of the notion of financial
scenario analysis and stress testing with the important new feature that it allows for consistent
incorporation of historical data as well as subjective expert opinions on possible outcomes of, for
example, default on a CAT bonds; see details of this framework in Siu et al. (2001, section 2).

In order to define the random Esscher transform, consider the objective measure P for the
price process Xt at time t on a space (Ω,F). Furthermore, assume that this measure admits
a distribution F (x, t), which can be practically selected based on a given subset of historical
data and furthermore all agents in the economy agree on this reference distribution (they have
the same historical information on which they condition their knowledge of this distribution).
Then, define the set of Esscher parameters at some time t0 > 0 according to the λ distortion
parameter values that satisfy the conditions of membership of the following set

χ =

⎧⎨
⎩λ ∈ R :

∞∫
−∞

exp(λx)dF (x, t) < ∞

⎫⎬
⎭ . (18.33)

Using this particular set of Esscher parameters, one has a definition of the random Esscher
transform given later.

Definition 18.22 (Random Esscher Transform) Consider the random variable Λ ∈ χ for the
Esscher parameter corresponding to the market price of risk, which has an a priori distribution
based on beliefs or risk preferences from agents’ subjective views (Bayesian Esscher scenarios) denoted
for the i-th such risk preference by the prior πi(λ). Then the random Esscher measure QΛ that is
equivalent to measure P on (Ω,F), which is associated to the random Esscher market price of risk
Λ, can be defined by the family of Esscher measures {Qλ ∼ P : Λ = λ ∈ χ}. Then under any
member of this family, the random distribution of Xt under the new measure QΛ is given by the
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random Esscher transform

F (x, t; Λ) := EΛ [F (x, t)] = EP

[
exp(ΛXt)

EP [exp(ΛXt)]
I [Xt ≤ x]

]

=

∫ x
−∞ exp(Λy)dF (y, t)
EP [exp(ΛXt)]

.

(18.34)

The randomized Esscher transform can then be used for pricing under the following
two steps:

1. First performing a prior elicitation that involves collecting different sets of prior probabil-
ities assigned to a given set of generalized scenarios according to different subjective views
of agents risk preferences;

2. Utilize Bayes theorem to combine in a consistent mathematical manner the prior beliefs
and the observations of stock prices and market data.

Hence, the posterior will determine the probability weighting given to a particular com-
bination of market observations and subjective risk preferences.

Remark 18.17 (Random Esscher Transform Applications: Bayesian Pricing) A range of appli-
cations can be developed in pricing under this randomized distortion measure. The main applica-
tion discussed in Siu et al. (2001) is the development of a form of financial scenario analysis under
a Bayesian paradigm that will lead to a posterior pricing framework. This involves specification
of a Bayesian Esscher scenario, which is characterized with respect to the product probability space
(Ω× χ,F ⊗N , πi) where the sample space is the product space of Ω and the set of Esscher param-
eters χ; the sigma algebra (event space) is the tensor product of the sigma algebra that the price process
is defined with respect to F and a new sigma algebra, denoted N , which corresponds to the collection
of all measurable subsets of Esscher parameters χ; the product measure πi, for the i-th set of subjective
views (risk preferences) in the Esscher scenarios, is given for each D ∈ F and N ∈ N by the posterior
measure:

πi (D × N ) =

∫
N

Qλ(D)dπi(λ). (18.35)

Under this Bayesian Esscher scenario defined by (Ω× χ,F ⊗N , πi), Siu et al. (2001) show that
the following useful properties hold when considering pricing under such a framework:

1. The process {Xt}t≥0

∣∣∣ {Λ = λ} has stationary and independent increments if {Xt}t≥0 also has
these properties;

2. For each time t ≥ 0, the conditional distribution function of Xt conditional on {Λ = λ} is
given by

F (x, t;λ) = Qλ ({ω ∈ Ω;Xt(ω) ≤ x}) , (18.36)

which is the data generating distribution.
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In the remainder of this section, we also comment on some other well-known actuarial
pricing methods that involve some form of probability transformation or distortion. Those
most widely used include the variance loading, technique, the standard deviation loading, and
the previously presented Esscher transform. Before completing this introductory section on
real-world pricing and actuarial pricing, we also mention the approach proposed in the actuarial
community by Wang (2002), titled “A universal framework for pricing financial and insurance
risks”. The approach developed by Wang was derived from the work of Bühlmann (1984a) and
focuses on the transform given in Definition 18.24. In this procedure, Wang introduced a class
of transforms (in response partly to the Basel Accords) to find fair value pricing approaches
to all assets and liabilities irrespective of whether they were traded or not (as required in the
Basel Accords), where this transform was based on earlier works by Venter (1991) and Butsic
(1999).

This class of probability transform (or distortion measure) has been shown to recover an
equivalent pricing solution as the CAPM model (under an assumption of returns having a
Normal distribution) and the Black–Scholes economy (under the assumption of a LogNormal
distribution). The motivation for the development of this distortion measure comes from the
idea of Venter (1991), where it was argued that no-arbitrage pricing assumptions always imply
a distributional transformation. In the context of reinsurance with layering, one can explain
this notion well. Then one can understand this argument based on the following simplified
example; see details in Wang (2004).

Consider the loss X ∼ F (x) that is layerd and represented by X(a,a+h] with an attachment
point a and a limit h that is very close to the attachment point. In this case, the expected loss
to the layer is given by the approximation

E
[
X(a,a+h]

]
=

a+h∫
a

[1 − F (x)] dx

=

a+h∫
a

S(x)dx

≈ hS(a), as h ↓ a.

(18.37)

Then if one observes the price for a thin layer given by E∗ [X(a,a+h]
]
, then one can use this

observed price to make inference on the approximate price implied loss exceedance probability
given by

S∗(a) ≈ 1
h
E
∗ [X(a,a+h]

]
. (18.38)

In general, one would always expect that S∗(a) ≥ S(a) since the layer price will typically
contain a risk loading that is additional to E

[
X(a,a+h]

]
, which in turn implies that looking

at the observed market price one can see empirically a direct transform of the loss exceedance
curve from S(x) to S∗(x).

A more mathematical approach to verifying the relationship between the Wang transform
and alternative pricing mechanism now proceeds as follows. First, we note that in Platen and
Heath (2006) it was shown that the benchmark approach also can be shown to contain as
a special subclass the large family of pricing methods known as capital asset pricing model
(CAPM) and its variants. To understand the applicability of the approach of Wang and its
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relationship to benchmark approach and real-world pricing, we briefly mention some details
regarding CAPM.

It will be sufficient here to just consider the basic linear regression model version of the clas-
sical CAPM model in its original form that involves obtaining predictions regarding the equi-
librium expected returns on assets, under the assumption that all investors have a one-period
horizon and returns follow a multivariate Gaussian distribution that has sufficient statistics
given by the mean vector of returns and the covariance matrix (correlations and variances).
Under this simple CAPM model, one assumes the following linear model relationship:

E [Ri] = rf + βi
(
E [RM ]− rf

)
(18.39)

with Ri and RM the rates of return on asset i and a market portfolio (index, etc.), respectively,
rf is the risk-free rate of return (e.g., Libor), and the β-coefficient given for asset i represents
the sensitivity of the expected excess asset returns to the expected excess market returns. Under
the assumption that Ri and RM are distributed according to a Gaussian distribution, one can
then define the market price of risk for asset i according to the expression:

λi =
E [Ri]− rf

σi
= ρi,MλM (18.40)

which is also known as the Sharpe ratio (as detailed in Definition 18.27) and where ρi,M is the
linear correlation coefficient between returns on the asset and the index and λM is the market
price of risk of the index. The conclusions from this idealized model are that only systematic risk
will acquire an additional risk premium in an efficient market. However, when it comes to non-
Gaussian and incomplete markets, this model has major deficiencies that are well documented.

To proceed, it will be useful to recall the definition of comonotonicity of two measurable
functions given in Definition 18.23.

Definition 18.23 (Comonotonicity of Measurable Functions) Assume a sample space Ω and
a corresponding sigma algebra F , then consider a F -measurable family of functions (Xi)i∈I , which
will be comonotonic functions iff

[Xi(ω)− Xi(ω
′)]
[
Xj(ω)− Xj(ω

′)
]
≥ 0, ∀i, j ∈ I , ∀ω, ω′ ∈ Ω. (18.41)

In the following, we present briefly the basic principle behind the approach proposed by
Wang for actuarial valuation. This approach extends the CAPM to allow one to price all types of
assets and liabilities, with any type of distribution (process), traded or underwritten, in finance
and insurance markets. The key to this transform is the introduction of a parameter known as
the “market price of risk”, which is utilized to obtain a “risk-adjusted” fair valuation price. It is
assumed that the market price of risk is a continuously increasing function of duration. This
pricing method can be applied to any contingent claim or payoff so long as it is co-monotone
with its underlying assets or liabilities; see an excellent review of properties of comonotonicity
of functions in economic and risk applications in Chateauneuf et al. (1997).

Definition 18.24 (Wang Transform) Consider a financial asset or liability, with value denoted
by Xt , over time horizon [0,T ]. Assume Xt has distribution F (x), then the Wang transformation of
this distribution is given by the “risk-adjusted distribution”
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F∗(x) := Wλ [F (x)] = Φ
(
Φ−1 (F (x)) + λ

)
(18.42)

withΦ(·) representing the standard Gaussian distribution and λ representing the market price of risk
that indicates the associated amount of systematic risk. Under this transform, the expected value of
E
∗ [X ] under F∗(x) will correspond to the risk-adjusted actuarial fair value of the asset or liability

at time T , which can then be discounted to any time via the risk-free rate.

Then one may link the Wang transform back to the financial pricing framework of the
CAPM model if one assumes a competitive market in which the risk-adjusted return for all
assets in the portfolio are equal to the risk-free rate, then the market price of risk in the classical
CAPM model will be equivalent to the market price of risk defined in the Wang transform.

Remark 18.18 If the Wang transform is applied to a Normal or LogNormal distributed random
variable, then under the Wang transformation the distribution form is invariant, meaning that
the Normal and LogNormal distributions are retained for the transformed distribution function.
Furthermore, the Wang transform is the same as the Esscher transform in the case of a Gaussian
distribution.

To obtain the correlation in the CAPM model when the original price process (asset or
liability value distribution) is non-Gaussian means one must also modify the correlation coef-
ficient and this is trivially achieved by transforming marginally each random variable to a
Gaussian distribution via Ui = Φ−1 (F (x)) and taking the correlation between the transformed
random variables via the Pearson linear correlation coefficient.

Remark 18.19 It can be shown that the Wang transform and the Esscher transform are the only two
distortion measures that are able to recover the CAPM model and the Black–Scholes option pricing
formula.

Given an underlying risk X and a function h that maps this risk to a payoff Y = h(X ),
that is, a derivative or contingent payoff, then Wang provides two methods that, though they
involve different mathematical steps at each stage, will produce equivalent fair value prices; see
Wang (2002, p. 218).

1. First take the Wang transform F∗
Y (y;λ) = Wλ [FX (x)] of the underlying risk random

variable (processes) X with respect to its distribution. Then derive the distribution of the
risk-adjusted derivative or contingent payoff F∗

Y (y;λ) as a function of F∗
X (x) using change

of variable or probability transforms with the relationship Y ∗ = h (X ∗) to obtain

F∗
Y (y;λ) = Pr [Y ∗ ≤ y] = Pr [h (X ∗) ≤ y] = Pr

[
X ∗ ≤ h−1(y)

]
= F∗

X (h
−1(y)).

(18.43)

2. Alternatively, one can first derive the distribution of FY using the relationship Y = h(x),

FY (y) = Pr [Y ≤ y] = Pr [h (X ) ≤ y] = Pr
[
X ≤ h−1(y)

]
= FX (h−1(y)). (18.44)

Then apply the Wang transformation F∗
Y (y;λ) = Wλ [FY (y)].

This equivalence in relationship will hold if the transformation h is monotone.
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Remark 18.20 (Criticism of Wang Transform) The Wang transform has been criticised in the
literature since it fails to match heavy-tailed or fat-tailed features often observed in financial returns
series. In this regard, Wang (2002) also proposed a two-parameter version based on the Student’s t
distribution; however, this transform loses the nice theoretical properties present in the original Wang
transform as it is no longer consistent with Bühlmann’s economic premium principle and also fails
to reproduce the Black–Scholes and CAPM formulations.

As noted in Wang (2004) and Kijima and Muromachi (2008), the justification of the
Wang transform via the classical CAPM, while important from the perspective of understand-
ing the properties of pricing under the Wang transform distortion measure, it does not always
produce a distorted measure that fits well historical data in practical performance. This is not
such a surprise; the main reason for this is that the standard definition of the Wang transform
is equivalent to the two-moment CAPM. Under the setting of the CAPM family, there have
been significant enhancements to the classical formulation where in addition to risk premium
associated with volatility (second moments) it is common in practice to also consider risk pre-
miums associated to higher moments that also play a role in the required distortion measure; see
discussion in Kozik and Larson (2001). In this study, and they note that the rate of return dis-
tribution should take into account higher-order moments, associated to skewness and kurtosis,
especially in the context of catastrophe insurance products where some of the most extremely
skewed distributions occur. In addition to the need to account for risk associated with higher
moments, there is also risk associated to statistical estimation of models. From the statistical
perspective, this manifests itself typically in the form of model and parameter uncertainty that
also needs to be accounted for when performing pricing under such model frameworks. Empir-
ically, it was shown by Kozik and Larson (2001) that taking into account a third moment in
a modified CAPM framework can significantly improve the fits for empirical financial data. It
turns out that it is relatively straightforward to modify the Wang transform to also account for
such features as higher moments (heavy tails, skewness, and asymmetry), as well as parameter
uncertainty.

In Wang (2004), a modification to the standard Wang transform is proposed based on
accounting for parameter uncertainty in which the modified Wang transform takes the form
of a two-parameter transform based on a Student’s t transform given in Definition 18.25.

Definition 18.25 (Two-Parameter Wang Transform: Accounting for Parameter
Uncertainty) Consider a financial asset or liability, with value denoted by Xt , over time horizon
[0,T ]. Assume Xt has distribution F (x), which has possible features such as nontrivial parameter
uncertainty or significant skewness or kurtosis. Accounting for such features can be achieved partially
by the modified two-parameter Wang transformation of this distribution given by the “risk-adjusted
distribution”

F∗,(2)(x) := W(2)
λ,k [F (x)] = Q

(
Φ−1 (F (x)) + λ

)
(18.45)

with Q representing the Student’s t distribution with location parameter μ = 0 and degrees of
freedom parameter k, Φ(·) represents the standard Gaussian distribution and λ representing the
market price of risk which indicates the associated amount of systematic risk. Here, we utilize the
upper script (2) to denote the modification to account for the two-parameter Wang transform.

While this modification to the Wang transform is no longer consistent with the risk-
neutral arbitrage-free classical CAPM model, it has been shown to produce improved empirical
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fits for the distorted risk measure when compared with real-world prices for ILS such as CAT
bonds. The reason for this, as noted by Wang (2004), is that the Student’s t adjustment “cap-
tures two opposing forces that often distort investors’ rational behavior, namely greed and fear.
Although investors may fear unexpected large losses, they desire unexpected large gains. As
a result the tail probabilities are often inflated at both tails; and the magnitude of distortion
normally increases at the extreme tails”.

Other extensions that generalize the standard Wang transform have been developed in
Kijima and Muromachi (2008), which maintain the theoretical property of the Wang transform
with regard to its consistency with Bühlmann’s principle of premium calculation, making it an
interesting extension to consider in practice. This modified Wang transform, which we denote
as the generalised Wang transform, is given in Definition 18.26.

Definition 18.26 (Generalized Wang Transforms) Consider a financial asset or liability, with
value denoted by Xt , over time horizon [0,T ]. Assume Xt has distribution F (x), then the generalized
Wang transformation of this distribution is given by the “risk-adjusted distribution”

F∗(x) := GWλ,G,Y [F (x)] = EY
[
Φ
(
G−1 (F (x))

)
Y + λ

]
(18.46)

with Φ(·) representing the standard Gaussian distribution, λ representing the market price of risk,
which indicates the associated amount of systematic risk, Y is any positive valued random variable,
and G(x) is the distribution of the random variable corresponding to the ratio of U/Y , where U⊥Y
and U has a standard Gaussian distribution.

Note that this generalized Wang transform recovers the standard Wang transform when
the random variable Y is a Dirac mass on the event {Y = 1} almost surely. In addition, the fol-
lowing distributional bound was obtained by Kijima and Muromachi (2008), which relates the
standard Wang transform distorted distribution function and the Generalized Wang transform
distorted distribution; see Theorem 18.6.

Theorem 18.6 When λ ≥ 0, then for all x such that F (x) < 1
2 , the following inequality holds

Wλ[F (x)] ≥ GWλ,G,Y [F (x)] (18.47)

for all Y > 0 and G(x) is the distribution of the random variable corresponding to the ratio of
U/Y , where U⊥Y and U has a standard Gaussian distribution.

In the continuous time setting where one considers the change of measure for a diffusion
process, there have also been studies of the associated relationships and consistency of the Wang
transform and risk-neutral arbitrage-free pricing. Pelsser (2008, section 4) discuss the relation-
ship between the Wang transform and risk-neutral arbitrage-free pricing for the case in which
one considers a traded asset Xt with transition distribution F (t, x;T , y). Under the distortion
measure corresponding to the Wang transform, one obtains the new measure

F∗(t, x;T , y) = Φ
(
Φ−1 (F (t, x;T , y))− λ(t,T )

)
(18.48)

for some market price of risk deterministic function λ(t,T ), which they point out is the unique
solution to the integro differential equation that ensures the choice of λ(t,T ) is selected to
enforce the martingale condition EX∗ [XT |Xt = x] = x for all T , given ∀T > t by
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EX [XT |Xt = x] =
∞∫

−∞

XtdF (t, x;T ,XT )

=

∞∫
−∞

XtdΦ
(
Φ−1 (F (t, x;T ,XT ))− λ(t,T )

)
= EX∗ [XT |Xt = x]
= x

(18.49)

with initial condition λ(t, t) = 0. This insight then allowed Pelsser (2008) to identify the
conditions under which the Wang distortion measure would reproduce the required change of
measure for arbitrage-free risk-neutral pricing. After some stochastic calculus using the standard
theorems of Girsanov stated previously, they obtain the following result presented in Proposi-
tion 18.2.

Proposition 18.2 (Equivalence Between R-N Arbitrage-Free and Wang Distortion
Pricing) The Wang transform is equivalent to the risk-neutral arbitrage-free pricing (R-N AFP)
framework in a continuous price process setting iff the following conditions on the drift and volatil-
ity of the process are satisfied, with φ(·) and Φ(·) the standard Gaussian density and distributions
respectively, giving conditions:

∂

∂x

[
μ(t, x)

(
φ
(
Φ−1 (F (t, x;T , y))

))−1 ∂

∂x
F (t, x;T , y)

]
= 0 (18.50)

and

∂

∂x

[
σ(t, x)

(
φ
(
Φ−1 (F (t, x;T , y))

))−1 ∂

∂x
F (t, x;T , y)

]
= 0. (18.51)

We also note that there have been studies performed in Goovaerts and Laeven (2008) that
also consider the stochastic process generalization of the Esscher transform for pricing, termed
the Esscher–Girsanov distortion measures. This is the distortion measure analog of the change
of measure achieved by the Girsanov theorem.

To summarize, in the context of pricing CAT bonds (incomplete markets where risk-
neutral arbitrage-free methods are not directly applicable), the way to think about this form
of dispersion measure pricing is to consider the default risk for CAT bonds as directly trans-
ferrable to catastrophe insurance contracts, then the excess yield spreads over say the risk-free
rate for the CAT bond may be translated into a risk premium in dollars for an equivalent insur-
ance contract providing equivalent protection. This can then be utilized to obtain estimates of
the market price of risk to proceed with the pricing under the Wang transform.

18.2.2 RISK ASSESSMENT FOR REINSURANCE: ILS AND CAT
BONDS

Since CAT bonds are exposed to nature risk, just like corporate bonds that are exposed to credit
defaults, they naturally are required to offer investors a higher yield than standard risk-free rates
(LIBOR). For the market to be attractive to investors, the excess yields spread over the risk-free
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rate should be such that it provides sufficient compensation for the expected default rate as well
as a risk loading associated with uncertainty in default risk.

The measure of risk in investments in a traded or a nontraded asset is typically considered
through the specification and evaluation of a risk measure; see Chapter 6 for details. In Artzner
et al. (1997, 1999), four desirable and now well-established properties of risk measures were
developed that would characterize the so-called “coherent” classes of risk measures; the proper-
ties to be satisfied were invariance, positive homogeneity, monotonicity, and subadditivity. In
the context of insurance (non-traded assets) a similar characterization was developed in Wang
et al. (1997). Wang et al. (1997) assumed that individual insurers were operating in a com-
petitive market and were therefore price takers; they then developed four axioms that could be
used to describe the behavior of insurance prices. It is not the intention of this section to detail
these comprehensively for either of the frameworks of Artzner or Wangs; instead, the reader is
referred to Chapter 6, which has a detailed discussion on risk measures of relevance to OpRisk.
Instead, this section aims to succinctly provide some related discussion on risk measures for
distortion measures such as the Esscher and Wang transforms, not covered in other chapters,
while also making connections to popular mathematical finance measures of risk such as the
Sharpe ratio discussed in Sharpe (1998) and Sharpe and Sharpe (1970).

The ability to measure the riskiness of an ILS such as a CAT bond was considered in the
works of Wang (2004, 2002). In these works, a probability transform approach is adopted to
modify the standard Sharpe ratio. The standard definition of the Sharpe ratio, which measures
the risk adjusted performance in mutual funds, is given by Definition 18.27.

Definition 18.27 (Sharpe Ratio) The Sharpe ratio is a measure of how well the return of an asset
compensates an investor for risk taken. The Sharpe ratio is a deviation risk measure that measures
the excess return (or risk premium) per unit of deviation in an investment asset or a trading strategy,
typically referred to as risk, see Sharpe (1998). The Sharpe ratio is defined by the expression

S =
E [R − RI ]√
Var [R − RI ]

, (18.52)

where R is the asset return and RI is the return on a benchmark asset or index, such as the risk-free
rate or the S&P 500. The ex ante version uses the expected returns on these assets, while the ex-post
version uses the actual realized returns. When comparing two assets versus a common benchmark,
the one with a higher Sharpe ratio provides better return for the same risk (or, equivalently, the same
return for lower risk).

It can be shown that one can relate the Sharpe ratio measure of risk to the family of
distortion measures characterized by the Wang transform. In doing so, the market price of
risk obtained through the Wang transform can be directly interpreted as the ILS equiva-
lent of the Sharpe ratio for returns on traded market securities; this is summarized in the
Remark 18.2.

Remark 18.21 Consider a financial asset or liability, with value denoted by Xt , over time
horizon [0,T ] and Xt has distribution F (x), which is Gaussian. Then the Wang transform
F∗(x) := Wλ [F (x)] will produce a distorted distribution F∗(x), which is also Gaussian and
the parameter λ will correspond to exactly the Sharpe ratio. This is a direct consequence of the Wang
transforms equivalence with the CAPM model discussed previously, since in the classic CAPM where
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asset returns are assumed to follow multivariate Normal distributions, the market price of risk is the
Sharpe ratio, which represents the excess return per unit of volatility.

In the work of Wang, the standard definition of the Sharpe ratio, which works well for
elliptical distributions with finite first and second moment such as the Gaussian distribution or
under log-returns the LogNormal distribution, is modified to account for cases in which skew
and heavy tails are present. This is particularly important when assessing the riskiness of assets
such as CAT bond issues, where one cannot straightforwardly apply the standard Sharpe ratio
concept due to the fact that the asset return is skewed and with jumps. In such situations, one
would find that most of the probability mass will be centered at the atom corresponding to
a zero loss and there is a small probability of potentially large negative returns; these features
are taken into account in different ways under each of the different classes of Wang transform
measures of risk, obtained from the Wang transform distortion parameters in each case denoted
generically by λ. For instance, it turns out that the class of distortion measures corresponding
to the standard Wang transform can be utilized to extend the Sharpe ratio concept to credit
risks with skewed return distributions. This will then allow one to evaluate the risk-adjusted
performance of a CAT bond asset. This is also achieved by considering the market price of risk
associated with the two-parameter and generalized Wang transforms.

18.3 Applications of Pricing ILS and CAT Bonds

To begin this application section, we first present a basic probabilistic framework for the market
for say CAT bonds. Then we consider two classes of example, simple idealistic examples, which
illustrate features of pricing CAT bonds, followed by some more sophisticated examples that
reflect the real-world actuarial pricing principles discussed earlier.

18.3.1 PROBABILISTIC FRAMEWORK FOR CAT BOND MARKET

Next we establish the probabilistic framework for the CAT bond market, assets, and underlying
products; this is based on the framework developed in Cox and Pedersen (2000, section 5). We
separate the structure into both “financial market variables” and “catastrophic risk variables” as
detailed next:

• Financial Market Variables. Contained on a filtered probability space denoted(
Ω(1),F (1),P(1)

)
in which the sample space Ω(1) can be finite or infinite depending on

the application and encompasses all the sample paths (stochastic trajectories) that financial
variables can have in times t = 1, 2, . . . ,T ; F (1) represents the filtration that captures
how information in the financial market evolves that comprises an increasing sequence of
sets of events such that

{
F (1)

0 ⊆ F (1)
1 ⊆ · · · ⊆ F (1)

T

}
withF (1)

t denoting securities prices

or other investment information in the market at time t; and the probability measure P(1)

is defined over the sigma-algebra F (1)
T ;

• Catastrophic Risk Variables. Contained on a filtered probability space denoted(
Ω(2),F (2),P(2)

)
in which the sample space Ω(2) can be finite or infinite depending

on the application and encompasses all the sample paths (stochastic trajectories) that the
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actual “nature stochastic process” can take in terms of the catastrophe being covered by the
CAT bond (e.g., a spatial-temporal stochastic process for wind speeds); F (2) represents
the filtration that captures how information in the nature stochastic process evolves; and
the probability measure P

(2) is defined over the sigma-algebra F (2)
T and determines the

chance of particular catastrophic events (which will have particular models depending on
the application);

• Joint Model. The full model used for the pricing will then comprise tuples
(
ω(1), ω(2)

)
that include the state of the financial market and the nature catastrophic risk variables,
which therefore jointly form elements of a product space formulation in which the sample
space is given by Ω = Ω(1) × Ω(2);

• It will be assumed that the resulting measure on the product sample space Ω is given by
an assumption of independence for events in nature versus events that depend only on
economic risk variables and is therefore given byP

(
ω(1), ω(2)

)
= P

(1)
(
ω(1)
)
P
(2)
(
ω(2)
)
;

• It will be assumed that the resulting filtration adopted is the product space filtration given
at each time t by the product space Ft = F (1)

t ×F (2)
t ;

• As in Cox and Pedersen (2000), we consider the two new filtrations defined for all times
t = 1, 2, . . . ,T by

A(1)
t = F (1)

t ×
{
∅,Ω(2)

}
,

A(2)
t = F (2)

t ×
{
∅,Ω(1)

}
,

(18.53)

and note that any random variable or function on the joint probability space (Ω,F ,P)

that is measurable with respect to A(1)
t (resp. A(2)

t ) is dependent only on the financial risk
(resp. nature catastrophe risk) variables. Furthermore, it is simple to show these two filtra-
tions are by construction independent of each other, as was shown in Cox and Pedersen
(2000, lemma 5.1). As noted by these authors, one must be careful not to refer specifically
to measures P(1) or P(2) as being independent under P because strictly speaking neither
of these measures is defined on the space given by (Ω,F ,P). Hence, the need for these
additional filtrations to formalize this intuitive notion.

Having presented a general probabilistic framework in which to consider undertaking the
pricing of the CAT bonds, we proceed by presenting a range of approaches that researchers
have adopted to solve the pricing under different assumptions. To achieve this, we develop two
example frameworks proposed in the literature for pricing CAT bond products.

• Framework 1. This involves making a simplifying assumption of a complete market with
either deterministic or stochastic discounting interest rate;

• Framework 2. This involves working with an incomplete market hypothesis; again we can
consider deterministic or stochastic interest rate models.

Before proceeding, we also note the following useful property of CAT bonds that are not
present in corporate bonds when it comes to valuation.

Remark 18.22 (Value Additivity for CAT Bonds) In modeling a CAT bond, it should also be
noted that when a trigger occurs with subsequent loss of the coupon payments, these coupon payments
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will have no influence on the contingency of default. This is unlike a corporate bond in which the
coupon payments affect the solvency status of the indebted firm. As a consequence of this feature of
CAT bonds, it is noted in Vaugirard (2003) that an insurance coupon bond can be modeled by a
portfolio of zero-coupon bonds with weights in the portfolio designed to match the coupon payments.
This makes the valuation framework for such assets simpler to construct.

18.3.2 FRAMEWORK 1: ASSUMING COMPLETE MARKET
AND ARBITRAGE-FREE PRICING

We will start this section by using an illustration of a simple illustration of a single period
analysis in which catastrophe reinsurance is developed under a framework of a high-yield bond.
In Example 18.2, a model is developed to demonstrate a simple framework for securitization
under a CAT bond, though it is too simplistic in practice to utilize for a real-world pricing
scenario; several variations of it were used effectively by Cox and Pedersen (2000), Tilley (1995),
and Froot et al. (1995) to illustrate the interesting properties of catastrophe reinsurance in ideal
settings. The variation we present is from Cox and Pedersen (2000), which is detailed in toy
model 1 and toy model 2.

EXAMPLE 18.2 Toy Model 1 (Single Period): Securitized Catastrophe Reinsurance
as a High Yield Bond

In this example, we consider the development of a single period catastrophe rein-
surance product in terms of a high-yield bond. We make the following definitions
of the model parameters and assumptions:

1. In this model, a reinsurer will pay a fixed amount S at the end of the period if
a catastrophic event occurs as defined in the contract. Alternatively, if no event
occurs of the prescribed severity or intensity of the CAT bond contract, then
no payment is made. It is assumed that S is specified in the contract;

2. Denote by pr the probability that a catastrophic event occurs during the period
as estimated by the reinsurance markets assessment of the probability of a catas-
trophe;

3. Denote by pb the default probability of the junk bonds issued by the reinsurer
to raise capital to provide full funding in the event of a catastrophic event (in
order to make payment of claims against the CAT bond). The probability pb is
the assessment of the bond holders/bond market.
Note 1. In this toy model, one may assume for simplicity that the risk of default
on the junk bonds is synonymous with the risk of default of the CAT bond
due to a catastrophic event. Of course in practice this may not be the case, as
the issuer of the junk bonds faces other financial pressures from the markets
they participate in that are directly uncorrelated with nature risk. The bond
owners are exposed directly to credit risk of the reinsurer (though indirectly
one may assume that the primary source of this risk of default stems from the
risk associated with the catastrophic event).
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Note 2. This toy model assumes unrealistically that the reinsurer losses for a
single exposure (catastrophe covered by the CAT bond) are the primary source
of losses for the investors; however, in practice, this could be diversified across
a portfolio or exposures.
Note 3. Even if we assume the risk of defaults are the same for the junk bonds
and the CAT-bond, it is still expected to be the case that pr and pb are different
due to information asymmetries between each participating agent;

4. Denote by Br the fair value price of purchase of the reinsurance (CAT bond
value) from the perspective of the reinsurer offering the CAT bond; and denote
by Bb the implied price of the bond from the perspective of the bond market
who purchase the junk bonds issued by the reinsurer in order to provide full
funding for the payouts in the event of a catastrophe.
Note: These two CAT-bond purchase prices Br and Bb will generally differ due
to the different assessments of the probability of default;

5. Denote by r the single period effective default-free interest rate.

Reinsurance Market. The fair value of the reinsurance as determined by the rein-
surance market is then specified according to the following relationship between the
bond price and the probability of a catastrophe given by

Br =
1

1 + r
prS. (18.54)

It is noted in Cox and Pedersen (2000) that the capital that is set aside to cover
losses through the payout of S is derived in this context via full funding and not the
typical mechanism of reinsurance that involves diversification of a portfolio. There-
fore, to obtain the required full funding for the catastrophic payout, the reinsurer
borrows the required capital through a mechanism involving issuance of default-
able junk bonds that offer high returns with a commensurate risk of default. This
issuance raises an amount of capital in cash C given by the following expression that
ensures that suitable capital is available to cover any default on the CAT bond due
to insurance claims arising from this coverage,

(Br + C)(1 + r) = S. (18.55)

Bond Market. If during the single period there is no catastrophic event, the investors
get back their principle invested and a coupon payment for their risk exposure,
which is given by the difference between the amount paid for the bond and the
capital G = S − C . The price per unit of face value is determined by the bond
market as a discounted expected cashflow given by

1
1 + r

(
1 +

G
S

)
(1 − pb) , (18.56)

where G
S represents the coupon rate.
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Determining the Probability of Default of Capital Raising Junk Bonds and the
Implied Fair Value. If the bond is designed to sell at face value, then this means
that effectively investors pay a unit 1 to receive 1 + G

S at the end of the period if no
catastrophe occurs that implies the following relationship if no catastrophe occurs:

1 =
1

1 + r

(
1 +

G
S

)
(1 − pb) . (18.57)

This allows one to determine the probability of default of the junk bonds according
to the perspective of the bond market as given by

pb =
G
S − r

1 + G
S

. (18.58)

Then this implies a price for reinsurance from the perspective of the bond market
(capital raising junk bonds valuation) denoted by Bb given by

Bb =
1

1 + r
. (18.59)

Profitability of CAT Bond. This provides a lower bound for the price premium
that the reinsurer should charge Br in order to not make any total losses, that is, Br
is greater than some function of Bb. This will be satisfied in cases in which

pr ≥
G
S − r
1 + G

S

. (18.60)

Having illustrated through a single period toy model how the basic pricing and securitiza-
tion of a CAT bond can be achieved, it is worth noting some additional research that has been
performed on assessing the relationship between the risk associated with the default of the junk
bonds issued by the reinsurer and the default risk of the CAT bond.

We have seen in this toy model that one can think of the CAT bond when a trigger occurs
(catastrophic event) as similar in behavior to a defaultable corporate bond (some high-yield
bond). Although they may behave in a similar fashion, there is a fundamental difference in
the features of CAT bonds in that the default risk of the CAT bond is not correlated with
underlying financial market variables such as interest rates. This was empirically studied to test
the validity of this zero correlation claim in Canter et al. (1997) where it was shown that the
correlation coefficient between annual returns on the S&P500 index and the PCS index during
the period of 1994–1995 was statistically insignificant from zero. If one ignores the intricacies
of CAT bonds, then in Kielholz and Durrer (1997) it is argued that introducing such products
into a diversified portfolio will improve the performance by translating the efficient frontier
to the left. However, as discussed in Briys (1997) and Loubergé et al. (1999), this is not quiet
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the case since CAT bond-specific details can effect this result; for instance, they highlight the
following three features to be considered cautiously.

1. Forecasts of risk return on CAT bonds in diversified portfolios are based purely on in sam-
ple analysis and typically do not account for nonstationarity and time-varying parameter
and model uncertainty;

2. Optional features present in CAT bond contract specifications result in the analysis of such
products under a standard mean-variance portfolio theory framework cannot be directly
applied;

3. CAT bonds have been shown in Briys (1997) to have unconventional durations, where
the duration of a CAT bond consisting of fixed cash flows (coupons) corresponds to the
weighted average of the times until those fixed cash flows are received.

Next, by way of a second toy model, one may extend the framework presented in the first
toy model representation of a catastrophe reinsurance product pricing framework in terms of a
high-yield bond, by making a multiperiod analysis as presented in Example 18.3. This second
example is derived from the results of Cox and Pedersen (2000, section 3) as it provides a means
to analyze the following additional features.

1. Multiple periods in which coupons are paid at the end of each period in addition to the
principle payment at the maturity of the bond;

2. In the event of a default due to catastrophic events, one can incorporate fractional coupon
payments and fractional principle payments if the events occurred within the coupon
period. Some form of prorata payment can be applied as a function of how the interest
rate is modeled.

The following example again makes the simplifying assumption that one may price such
products in an arbitrage-free complete market under a unique risk-neutral measure denoted
by Q. In addition, we will consider the discrete time setting to help simplify the mathematics
and illustrate the main features.

EXAMPLE 18.3 Toy Model 2 (Multiple Period): Securitized Catastrophe Reinsur-
ance as a High-Yield Bond

In this example, we consider the development of a multiple period catastrophe rein-
surance product in terms of a high-yield bond. We make the following definitions
of the model parameters and assumptions:

1. Assume a face value for the multiperiod CAT bond of 1 and a schedule of
coupon payments {ck}T

k = 1 at the end of each period until maturity, which is
at the T -th period from issuance, at which time a payment of 1+ cT is made if
no catastrophe has occurred. It will be assumed for simplicity that the coupon
schedule and amounts are specified in the contract;

2. If a catastrophe occurs during the k-th coupon period, then the bond makes a
prorata payment for the coupon and the principle corresponding to fractional
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payment of f (1 + c) at the termination time due to catastrophe trigger and
subsequent default;

3. Assume that the market is complete and arbitrage free so that a unique risk-
neutral pricing measure Q can be obtained so that the fair value for the dis-
counted price of each coupon payment at the issuance date can be obtained;

4. Denote by {rk}T−1
k=1 the stochastic process corresponding to the one period

interest rates during the lifetime of the bond;
5. Denote by Pk the price of a riskless zero-coupon bond with face value of 1 dollar

and maturity at time k;
6. Assume that the risk-neutral pricing measure for the complete arbitrage-free

market is independent of the probability and timing of when a catastrophe
may occur in the interval [0,T ].

Discounted Expected Price at Issuance (t = 0). Under the assumption of a unique
risk-neutral pricing measure, one may calculate the fair value of the discounted
coupon payment schedule at the issuance time of the bond using the following
expectation, which we also rewrite in terms of a sequence of nondefaultable zero
coupon bonds {Pk}

B0 = EQ

⎡
⎣ T∑

k = 1

[
k−1∏
s = 0

(1 + r0)

]−1

ck

⎤
⎦

=

T∑
k = 1

ckPk,

(18.61)

where it is assumed here that there is no risk of default making the sequence
{ck}T

k=1 deterministic.

Default due to Catastrophe Event (t = τ ). Now we introduce uncertainty into
the coupon cash flow making the sequence {ck}T

k=1 stochastic due to the possibility
of a catastrophe that may trigger default. If a catastrophic event occurs that results
in a trigger of the default clause of the CAT bond, then one can define the following
cash flow stream to investors by the additional modification to the coupon payment
sequence given by one of the following two options.

Coupon and Principle at Risk (forgiven in default event):

ck =

{
cI [τ > k] + f (c + 1)I [τ = k] , k = 1, 2, . . . ,T − 1,

(c + 1)I [τ > T ] + f (c + 1)I [τ = T ] , k = T ,
(18.62)

where it is assumed each period has a fixed common coupon payment of c.
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Coupon at Risk (forgiven in default event):

ck =

{
cI [τ > k] + fcI [τ = k] , k = 1, 2, . . . ,T − 1,

1 + cI [τ > T ] + fcI [τ = T ] , k = T ,
(18.63)

where it is assumed each period has a fixed common coupon payment of c.

In this case, one may write the modified fair value under the risk-neutral pricing
framework according to the discounted expectation

B0 = c
T−1∑
k=1

PkQ (τ > k) + (c + 1)PTQ (τ > T ) + f (c + 1)
T∑

k=1

PkQ (τ = k) ,

(18.64)

where Q (τ > k) represents the probability (under the risk-neutral pricing measure)
that the catastrophe does not occur in the first k periods. The distribution of the
random variable τ will depend on how the CAT bond is constructed.

Coupon Rate to Recover Principle of CAT Bond. The coupon rate can now be
calculated to ensure the principle of the CAT bond is recovered as a function of the
default exposure according to

c =
1 − PTQ(τ > T )− f

∑T
k=1 PkQ(τ = k)∑T

k=1 PkQ(τ > k) + f
∑T

k=1 PkQ(τ = k)
. (18.65)

In the second example presented, it is clear that one would need to make some additional
assumptions or alternatively undertake some modeling or empirical analysis to assess the prob-
ability of a catastrophic event in the interval [0,T ]. With this distribution, one would need
to relate it back to the risk-neutral pricing measure, as specified in the introduction to this
pricing section where the probabilistic framework is developed for the financial risk and the
nature risk. Next, we will present another basic pricing example for the case of a parametric
trigger bond.

EXAMPLE 18.4 Parametric Trigger CAT Bond: Valuation

Consider a generic peril, based CAT bond issued for a period [0,T ], which has the
attributes that it will pay for the catastrophic event, I dollars at the next coupon
payment period, if the monitored parameters θ of the peril (e.g., seismic activity,
wind speeds, ocean heights, etc., at a set of k locations) exceed a specified threshold
L within the period of coverage, triggering the forfeit of capital in the bond. If the
catastrophic event does not occur and the trigger clause is not exercised, then a
payment of a fixed coupon ct dollars is paid out systematically at specified times
t ∈ {t1, t2, . . . , tJ} with 0< t1 < t2 < · · ·< tJ < T such that ti = iT/J . Denote
by τ the random time at which a catastrophe may occur in period [0,T ] with a
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probability of such an event in interval [ti−1, ti] denoted by p̃ti = Pr (τ ∈ [ti−1, ti]).
Furthermore, assume for instance that the probability of the trigger, denoted at
time τ by pt = Pr (θ1(t) > L, θ2(t) > L, . . . , θk(t) > L| τ = t) is defined by
the probability that the given parameters, at time t, at the k cites {θi(t)}k

i=1 that
characterize the peril, exceeds the threshold L at each specified monitoring cite
and is constant over time increment [ti−1, ti]. Assuming a constant interest rate r
compounded at a rate given on the interval times T/J , then in this simple case
one can obtain the minimum fair value of the total coupon payments {cti}

J
i = 1

(in dollars) made to investors and the minimum required total principle capital
V required to be raised from initial investment in the CAT bond issue that
corresponds to these coupons. These are obtained as functions of the probability of
a trigger in a given period and a given prespecified insurance coverage. To see this,
consider the trivial solutions to the system of equations created by evaluating each
possible event outcome.

• Catastrophe occurs in period [0, t1] and trigger is activated creating payout
of L from the principle, with no coupons paid,

V (1+ r) J = I(1+ r) J
Pr (θ1(τ)> L, . . . , θk(τ)> L| τ ∈ [0, t1])Pr (τ ∈ [0, t1])

⇒ V = Ipt1 p̃t1 .

• Catastrophe occurs in period [t1, t2] and trigger is activated creating payout
of L from the principle, with one coupon paid,

V (1 + r) J − ct1(1 + r) J−1 [1 − p̃t1Pr (θ1(τ) > L, . . . , θk(τ) > L| τ ∈ [0, t1])]

= I(1 + r) J−2
Pr (θ1(τ) > L, . . . , θk(τ) > L| τ ∈ [t1, t2]) p̃t2

⇒ ct1 =
(V (1 + r)2 − Ipt2 p̃t2)

(1 − pt2 p̃t2) (1 + r)
.

...

• Catastrophe occurs in period [tk−1, tk] and trigger is activated creating pay-
out of L from the principle, with k − 1 coupons paid,

V (1+ r) J −
k−1∑
i=1

cti(1+ r) J−i

× [1 − p̃tiPr (θ1(τ)> L, . . . , θk(τ)> L| τ ∈ [ti−1, ti])]

= I(1+r) J−k
Pr (θ1(τ) > L, . . . , θk(τ) > L| τ ∈ [tk−1, tk])Pr (τ ∈ [tk−1, tk])

⇒ ctk−1 =
V (1 + r) J −

∑k−2
i=1 cti(1+ r) J−i [1− pti p̃ti ] − I(1 + r) J−kptk p̃tk

(1 + r) J−k−1
[
1− ptk−1 p̃tk−1

] .

...
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• Catastrophe never occurs in any period in [0,T ] and so trigger is never acti-
vated and J coupons are therefore paid,

V (1 + r) J −
J∑

i=1

cti(1 + r) J−i

× [1 − p̃tiPr (θ1(τ) > L, . . . , θk(τ) > L| τ ∈ [ti−1, ti])] = 0

⇒ ctJ =
V (1 + r) J −

∑J−1
i=1 cti(1 + r) J−i [1 − pti p̃ti ][
1 − ptJ p̃tJ

] .

with the convention that t0 = 0. Note, though these assumptions are simplistic
in nature, they provide insight into the CAT bond parametric coupon values.

Of course, this illustrative example could be modified trivially to include cases where the
coupon payments are specified or the value of the initial principle is specified along with the
payout amount, etc. In addition, with the advent of new products such as multiple event (mul-
tiple trigger CAT bonds), one could also trivially solve these equations in an analogous fashion
for such contracts.

Increasingly, the CAT bond coverage is also being packaged into products that industries
can access for coverage such as the Example 18.5 we provide from ACE Insured TM the prod-
uct “ACE Catastrophe Management 2.5SM”. This is just a representative set of details of the
typical specifications of a contract offered for catastrophe risk to supplement other policies
they offer.

EXAMPLE 18.5

Under the ACE Insured TM2 product “ACE Catastrophe Management 2.5SM”
coverage is offered for managing threats to an insured reputation and other expenses
directly related to catastrophic events. The specified benefits they list that are of
relevance to OpRisk coverage include

• Coverage for costs associated with the disaster scene;
• Coverage for the impacted third-party funeral, psychological counseling, and

temporary living costs;
• Coverage for the costs of the employment of engineers, scientists, or other pro-

fessionals for the purposes of rescue or attempted rescue;
• Coverage for travel-related costs for directors, officers, and others to manage the

repercussions of the catastrophic event.
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The coverage is stated as “triggered when there is a catastrophic event resulting in
traumatic body injury or property damage that is likely to result in damages covered
by the lead excess policy”.

The amounts of coverage provided and eligibility for the purchase of such an
insurance product include

1. Specifically designed for clients who have a general liability attachment point
of USD 5 million or higher;

2. Provides expanded catastrophe management services coverage for a maximum
of 10% of a USD 25 million policy limit up to USD 2.5 million;

3. Requires a minimum of 10% coinsurance (insureds can select up to 50%);
4. Requires a minimum premium of USD 50,000.

There have also been pricing frameworks developed in the continuous time setting such
as the contingent claim analysis adopted by Loubergé et al. (1999), which is present in brief in
Example 18.6. In this framework, it is again assumed, under a simplification, that the market
is complete and that one may therefore obtain a risk-neutral pricing measure. The example
in Loubergé et al. (1999) is of interest here as it provides a simplified framework to perform
valuation and duration calculations of CAT bonds as detailed later. Though the assumption of
a complete market and the existence of a unique risk-neutral pricing measure in this setting is
unrealistic, it does provide a simple insight into an understanding of an idealized relationship
between the bond value and sensitivity as a function of the trigger in the contract (in this case,
an index-based trigger). In particular, when considering the sensitivity, it will be measured for a
bond by what is known as the duration and under (strong) simplifying assumptions; it will be
shown that the duration of a CAT bond is such that it will remain greater than the maturity for
the entire life of the bond. This is important to consider since typically the literature on CAT
bonds pays little attention to the evaluation of their duration, though an industry paper out
of the now defunct Lehmann Brothers firm by Briys (1997) pointed out that CAT bonds have
unconventional durations and this was further illustrated under strict simplifying assumptions
in Loubergé et al. (1999).

EXAMPLE 18.6 Index Triggered CAT Bonds: Valuation and Duration

Loubergé et al. (1999) consider the development of a simple contingent claim
model for CAT bond pricing in which the following assumptions are made.

1. Assume the model evolves according to a continuous time pricing framework;
2. Assume the interest rate is denoted by r and is constant over time;
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3. Assume that the bond is a zero-coupon bond that at issuance is characterized
by a face value V and maturity T . There are no coupon payments assumed in
this example to simplify the analysis;

4. Assume that the bond payoff is contingent on a trigger that is only evaluated at
maturity based on an accumulated index I(t) of claims resulting from natural
catastrophes occurring during the life of the bond.

Stochastic Process for Trigger Index
For simplicity, one may assume a stochastic process for the index, I(t) which is a
simple geometric Brownian motion

dI(t) = μI(t)dt + σI(t)dW . (18.66)

Fair Value at Issuance
Under this simple example, the final payoff is contingent upon the value of the index
at maturity I(T ) and a trigger threshold L producing one of two outcomes.

1. If I(T ) ≤ L, then the payoff is the face value V ;
2. Otherwise if the accumulated index triggers the bond I(T ) > L, then the pay-

off is treated as min (V0,V − (I(T )− L)), where V0 is a specified minimum
payoff based on the maturing face value V .

It can then be shown that under this simple model one can decompose the value at
maturity v(T ) according to a linear combination of three components:

1. A long position in a riskless zero-coupon bond;
2. A short position in a catastrophe call with strike L;
3. A long position in a catastrophe call with strike V + L − V0.

Where the decomposed value at maturity of the CAT bond is now expressed by the
following linear combination

v(T ) = V −max(0, I(T )− L) + max (0, I(T )− (L + V − V0)) . (18.67)

Note that decomposing the maturing value in terms of these simple option struc-
tures is beneficial as it allows one to apply, under the specified market assumptions,
a standard pricing framework based on Black–Scholes. Therefore, under the con-
stant interest rate assumption, the present value of the bond (fair value under a
risk-neutral pricing measure Q simply based on the index process I(t)) is given
by the expected discounted prices to the issuance time. Under the simple GBM



�

�

“Cruz_Driver” — 2015/1/12 — 11:24 — page 808 — #59
�

�

�

�

�

�

808 CHAPTER 18 Insurance and Risk Transfer: Pricing

model for the index process, the closed-form solution is based on the well-known
Black–Scholes formula:

v(0) = EQ [V exp(−rT )]− EQ [max(0, I(T )− L) exp(−rT )]

+ EQ [max (0, I(T )− (L + V − V0)) exp(−rT )]

= V exp(−rT )− CE(I(0), L,T )︸ ︷︷ ︸
European call option

+CE (I(0),V + L − V0,T )︸ ︷︷ ︸
European call option

= V exp(−rT ) + I(0)Φ (d1(I(0),T ))− L exp(−rT )Φ (d2(I(0),T ))

+ I(0)Φ (d3(I(0),T ))− (V + L − V0) exp(−rT )Φ (d4(I(0),T ))
(18.68)

with standard values

d1(x,T ) =
1

σ
√

T
ln

(
x

L exp(−rT )

)
+

σ
√

T
2

,

d2(x,T ) = d1(x,T )− σ
√

T ,

d3(x,T ) =
1

σ
√

T
ln

(
x

(V + L − V0) exp(−rT )

)
+

σ
√

T
2

,

d4(x,T ) = d3(x,T )− σ
√

T .

(18.69)

In addition, one can write the value of the CAT bond under this formulation using
the aforementioned expression where the final time T is replaced with the time to
maturity.

Modified Duration/Price Sensitivity of CAT Bond
Since we consider in this case the CAT bond is directly a function of the yield (i.e.,
the return you get on the bond), the sensitivity of the CAT bond price can also be
calculated according to the modified duration. The modified duration is a price
sensitivity measure that measures the percentage derivative of price with respect to
yield. Using the fact that we have a value for the bond at time t given (as given
earlier) by

v(t)=V exp(−r(T − t))−CE(I(t), L,T − t)+CE (I(t),V + L − V0,T − t) ,
(18.70)

then we get a duration given by

D(t) =
d ln(v(t))

dr
= − 1

v(t)
dv(t)

dr

= − 1
v(t)

d
dr

× [V exp(− r(T − t))−CE(I(t), L,T − t)+CE (I(t),V + L−V0,T − t)]
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= − 1
v(t)

d
dr

[ V exp(−r(T − t)) + I(t)Φ (d1(I(t),T − t))

− L exp(−r(T − t))Φ (d2(I(t),T − t)) + I(t)Φ (d3(I(t),T − t))
− (V + L − V0) exp(−r(T − t))Φ (d4(I(t),T − t))]

= − 1
v(t)

[−(T − t)V exp(−r(T − t))

+ (T − t)L exp(−r(T − t))Φ (d2(I(t),T − t))
+ (T − t) (V + L − V0) exp(−r(T − t))Φ (d4(I(t),T − t))]

= (T − t)
[

1 +
I(t)
v(t)

(Φ (d2(I(t),T − t))− Φ (d4(I(t),T − t)))
]
(18.71)

Outcome. This shows that the modified duration is strictly greater than 1, meaning
that the duration is greater than the time to maturity. Loubergé et al. (1999) find
under the simplifying assumptions made that the duration of the CAT bond at any
time t exceeds the time to maturity. This shows that such a bond has a greater exposure
to interest rate risk than a typical zero coupon bond.

Note, that Loubergé et al. (1999, p. 134) also present a similar analysis in the less restrictive
model assumptions in which they consider a stochastic interest rate model.

18.3.3 FRAMEWORK 2: ASSUMING INCOMPLETE
ARBITRAGE-FREE PRICING

In addition to these features of CAT bonds it is also well acknowledged in the literature that
CAT bond payments cannot be hedged, that is, there is no exact replicating portfolio com-
prising primitive assets or bonds that can perfectly reproduce the CAT bond payments; see
discussion in Cox and Pedersen (2000). Therefore, the simplified models presented previously
act purely as informative examples of how such CAT bond products behave under ideal stylized
conditions in which strong assumptions regarding the existence of a unique martingale mea-
sure for fair value pricing and a lack of arbitrage opportunities are assumed given. As discussed
previously, it is argued by Embrechts and Meister (1997) and Cox and Pedersen (2000) that the
appropriate framework required to price CAT bonds involves an incomplete markets approach.
We will discuss the pricing and valuation of CAT bonds in a few different settings under an
incomplete market hypothesis. We will highlight the key components of different approaches
that several authors have advocated in this regard.

We begin this section with a discrete time multiperiod example of valuation of CAT bonds
under the benchmark financial economics framework developed for CAT bond valuation in an
incomplete market setting by Cox and Pedersen (2000); see details in Platen (2006) and the
book-length presentation in Platen and Heath (2006). We work again with the examples of
Cox and Pedersen (2000) as they correspond to the framework developed and provide clear
and comprehensive approach to the pricing steps required for practitioners.
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EXAMPLE 18.7 Valuation of CAT Bonds in Incomplete Markets (Discrete Time,
Multiperiod Model)

The model and valuation for CAT bonds proposed in Cox and Pedersen (2000,
section 5) are summarized as follows.

1. Assume the market for the CAT bond is incomplete and the pricing of uncer-
tain cash flows is achieved via a technique known as the representative agent.
In this approach, one assumes a representative utility function and an aggregate
consumption process, then the agent utilizes this utility function to make deci-
sions regarding possible investments in cash flows from the assets in the market
that will be termed consumption streams (paths or trajectories in time);

2. The resulting generic “consumption streams” are assumed to be adapted pro-
cesses that are therefore only dependent on observable information and are
denoted by the process {ck}T

k = 0, where T denotes the CAT bond maturity
and k denotes the index for the discrete time units;

3. The total consumption available in the economy at any given time and state of
the world is defined by the “aggregate consumption process” that they denoted
by
{

C∗
k

}T
k = 0, and at time t = 0 this aggregate consumption of the economy

is known exactly, at all other times it is stochastic and unknown. In addition
it is assumed that the aggregate consumption is only dependent on financial
risk variables such that C∗

k (ω) = C∗
k

(
ω(1), ω(2)

)
= C∗

k

(
ω(1)
)

for all k ∈
{1, 2, . . . ,T} so that the process

{
C∗

k

}T
k = 0 is adapted to the filtration A(1);

4. The representative agent’s utility is assumed additively seperable and therefore
the price Vk(dk) at k = 0 of a generic future cash flow {dk}T

k = 1 is given by the
expectation

Vk(dk) = EP

[
T∑

k = 1

uk
(
C∗

k

)
u0 (C∗

0 )
dk

]
, (18.72)

where uk(·) are representative utility functions for the representative agent
and the generic cashflow is assumed to depend on both financial risk vari-
ables and catastrophe risk variables such that dk(ω) = dk

(
ω(1), ω(2)

)
for all

k ∈ {1, 2, . . . ,T};

5. Assume the one period interest rates, denoted by {rk}T
k=1, are defined

by the conditional expectations (see justification for this definition in
Cox and Pedersen (2000, p. 68))

1
1 + rk

:=
1

uk
(
C∗

k

)EP

[
uk+1

(
C∗

k+1
)∣∣Fk

]
. (18.73)

Under this assumption, they are able to remove the form of the utility func-
tion and the aggregate endowment process from the pricing framework by



�

�

“Cruz_Driver” — 2015/1/12 — 11:24 — page 811 — #62
�

�

�

�

�

�

18.3 Applications of Pricing ILS and CAT Bonds 811

associating the price relation to the valuation measure approach of arbitrage-
free pricing;

6. Define the change of measure from P to Q such that all resulting prices are dis-
counted expectations with respect to the previously defined one-period interest
rate process,

dQ
dP

∣∣∣∣
FT

(ω) := (1 + r0)

T−1∏
k = 1

(1 + rk(ω))
uT (C∗

T (ω))

u0 (C∗
0 )

(18.74)

which results in the valuation of the generic future cash flow under the new
“risk-neutral pricing” measure Q according to

Vk(dk) = EQ

[
T∑

k = 1

dk

k−1∏
s = 0

(1 + rs)
−1

]
. (18.75)

One can also obtain the marginalized cash flow over the nature risk (i.e., the
catastrophe risk variables) as given by

dk(ω
(1)) = EQ

[
dk

(
ω(1), ω(2)

)∣∣∣A(1)
k

]
, (18.76)

which allows one to obtain the valuation of the future cash-flows purely with
respect to financial risk variables according to

Vk(dk) = EQ

[
T∑

k=1

dk

k−1∏
s = 0

[1 + rs]
−1

]
. (18.77)

From this probabilistic pricing framework, one can then approximately evaluate a
CAT bonds values in settings in which the coupons (cash flows) depend exclusively
on the catastrophe risk variables (through the trigger) or they depend on both finan-
cial and catastrophe risk variables with a known functional dependence. Then in
either case one can basically in practice select an arbitrage-free interest rate model,
then for each interest rate state of the world, one calculates the bonds expected cash-
flows conditionally on the interest rate path. Finally, one may use Equation (18.77)
to evaluate the expected price of cashflows.

Other approaches have been adopted to performing pricing in the incomplete market set-
ting such as the model of Lee and Yu (2007), where the valuation of catastrophe reinsurance
with CAT bonds under a contingent claim model is undertaken. However, for simplicity as
was undertaken in the previously present model, these authors also assume the existence of a
risk-neutral process that they parameterize for use in pricing.
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EXAMPLE 18.8 Valuation of CAT Bonds in Incomplete Markets (Continuous Time
Model)

The model and valuation for CAT bonds proposed in Lee and Yu (2007) is sum-
marized as follows for the main features of interest. The model proposed by these
authors includes the specification of the asset dynamics value of a reinsurance
company according to a LogNormal diffusion that also incorporates explicitly the
effect of a stochastic interest rate to reflect the exposure that most reinsurers will
have to fixed income markets.

Asset Dynamics. The asset dynamics are then given by

dVt = μV Vtdt + φV Vtdrt + σV VtdWV ,t (18.78)

with (rt)t≥0 the diffusion process for the instantaneous interest rate rt ’s dynamics,
which are assumed to follow a square root diffusion of Cox et al. (1985) and dWV ,t
increments of a driving Brownian motion representing the credit risk associated
with the assets. Furthermore, they assume a parametric model for the risk-neutral
process for the interest rates.

Liability Dynamics (Noncatastrophe Insurance Lines). It is also assumed that the
liability dynamics follows the process

dLt = (rt + μL) Ltdt + φLLtdrt + σLLtdWL,t (18.79)

with Lt representing the present value of liabilities for the reinsurer not associated
with a catastrophe (i.e., claims arising from reinsurance coverage provided for other
insurance lines), φL is the instantaneous interest rate elasticity of the reinsurers
liabilities, μL is the risk premium of small short time shocks, and WL,t is a driving
Brownian motion representing small idiosyncratic shocks to the capital market
(day-to-day).

Catastrophe Liability Dynamics (Catastrophe Insurance Lines). The catastro-
phe loss dynamics are modeled according to a loss dynamic model given by the
compound Poisson process

Ct =

Nt∑
n = 1

cn(t), (18.80)

where Ct represents the covered catastrophe loss at time t. In addition, the
basis risk impact on the reinsurance valuation is taken into account through a
second compound process representing an index of catastrophe losses, given by
dynamics

Cindex,t =

Nt∑
n = 1

cindex,n(t) (18.81)
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with the process {Nt}t≥0 representing the counting process for the number of losses
and cn(t) is the loss amount for the n-th catastrophe loss event at time t. Lee and Yu
(2007) then proceed to present two scenarios, the case where a primary insurer has
no CAT bonds and then the case where they have purchased CAT bonds and the
calculation of the rate on line (ROL) is performed numerically. The ROL represents
the premium rate per dollar covered by the catastrophe reinsurance; see Lee and Yu
(2007, equation 13) for details.

In addition to the examples presented earlier, there have been several other interesting
models proposed, such as the approach adopted by Vaugirard (2003), which involves devel-
opment of an approach to the valuation of insurance-linked derivatives that can account for
interest rate dynamics and catastrophic events while taking into account a framework of non-
traded underlyings. In addition, this valuation framework is of interest as it involves the ability
to incorporate the existence of arbitrage prices for CAT bonds in an incomplete market with
nontraded underlying state variables for CAT bonds that are OTC traded.

EXAMPLE 18.9 Valuation of CAT Bonds in Incomplete Markets with Arbitrage
(Continuous Time Model Jump-Diffusion Process)

In this example, a brief highlight of the model and pricing approach proposed in
Vaugirard (2003) is provided. In particular, when developing this pricing approach
Vaugirard (2003) adopt Merton’s approach in Merton (1976), which assumes any
risk associated with jumps is diversifiable and can therefore be ignored. That is,
the β in the CAPM model for portfolios that only include the nonsystematic risk
is insignificant from zero with the sum given by the risk-free rate. In addition,
Vaugirard (2003) argues that Merton’s approach is well suited since it is directly
applicable to cases in which underlying state variables are noninvestment assets.
The key features of this model are as follows.

1. Consider a CAT bond modeled like a corporate bond with insurance-linked
risk instead of credit default risk. Assume the bond holder (investor or cedent)
stands to lose coupons and possibly a fraction of the principle if a trigger based
on a natural risk index at time t, denoted by It , exceeds a predefined threshold
K . If the index does not exceed K in the time interval [0,T ], then payment of
the face value F is made to the investor, otherwise the investor receives the face
value minus write down. Assume at time t = 0 that I0 < K ;

2. Define by T the risk exposure period and the bond maturity is T ′ > T to
allow for lags in the risk index assessment at maturity;

3. Define the stochastic process sources of randomness for the catastrophes
as follows: Brownian motion {Wt}t∈[0,T ]—noncatastrophic nature risk;
Poisson process with intensity λt denoted {Nt}t∈[0,T ]—occurrence of catas-
trophes; severity random variables (i.i.d.)

{
Uj
}

j≥0; and Brownian motion
{W2t}t∈[0,T ]—interest rate fluctuations;
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4. Assume that the risk attitude for investors is separated into two components:
nature risk and market risk.
Nature Risk. Assume that investors are neutral with regard to jump risk arising
from catastrophes (nature risk).
This assumption is argued to be reasonable based on the ability to diversify catas-
trophe risk from an investment due to the fact that nature risk is uncorrelated with
market risks. Which is in alignment with Merton’s stance that jump risk is not sys-
tematic.
Market Risk. Assume any additional variation in the risk index not attributed
to catastrophes can be replicated through existing exchange-traded securities.
In addition, it is assumed that variation in interest rates can also be replicated
through exchange traded assets.
Each component of this assumption is argued to be reasonable since domestic interest
rates can be replicated using risk-free bonds and noncatastrophe-related changes in
the risk index can be replicated by instruments such as energy and power derivatives,
weather derivatives and contingent claims on multiple commodities.

The model proposed involves the following features.

Interest Rate Model. Interest rates follow a simple mean reversion as in the Vasicek
model, see Vasicek (1977), given by

drt = a (b − rt) dt + σrdW2t . (18.82)

Risk Index Model. The model for the risk index process It is given by a Poisson
jump diffusion process with three components: the expected instantaneous index
change conditional on no catastrophe occurring; unanticipated instantaneous fluc-
tuations in the index not due to catastrophes; and instantaneous index changes
attributed to a catastrophic event. The resulting jump diffusion with these three
features is then given by

dIt = μt It−dt + σt It−dWt + JtdNt , (18.83)

with It− the index value just before t, μt the drift (that can be stochastic), σ the
volatility that is deterministic, Jt is the stochastic size of the jumps given by

Jt =
∑

n=1,+∞
UnI[τn−1,τn](t), (18.84)

where at time τj the jump in It of size �Iτj = It−Uj, with
(1 + Uj) ∼ LogNormal(μ, σ2). Vaugirard (2003, proposition 1) utilize Girsanov’s
theorem to find a risk-neutral pricing measure to evaluate the expected value of
the discounted contingent claim at time t under the jump diffusion and interest
rate diffusion models presented. Then Vaugirard (2003, proposition 2) develop
a generic expression for valuation of the pure discount CAT bond is provided in
terms of the first passage time of the loss index through the barrier (trigger level).
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To conclude we note that there have been also other noteworthy studies such as the model
proposed by Lee and Yu (2002) that prices default risky CAT bonds incorporating into the
model aspects of moral hazard and basis risk. There is also an interesting hybrid CAT bond
structure proposed in Barrieu and Loubergé (2009), which aims to improve market efficiency
for CAT bonds. In particular, it considers an alteration to the between the sponsor, the SPV,
and the investor such that depending on two events, a catastrophe and independently a market
crash, different payouts to the investor and to the sponsor are made. The aim being to develop
catastrophe risk transfer with protection against stock market declines, which it is argued will
result in increasing volume in the CAT bond markets.

18.4 Sidecars, Multiple Peril Baskets, and Umbrellas
for OpRisk

In this section, we discuss alternative insurance products for multiple perils that could also be
considered in the context of OpRisk, starting with a brief mention of the concept of a sidecar
given in Definition 18.28.

Definition 18.28 (Reinsurance Sidecars) A reinsurance sidecar is a financial structure created
to allow investors to take on the risk and return of a group of reinsurance or insurance policies (a
“book of business”) written by an insurer or reinsurer that in turn earn the risk and return that arises
from that business. The insurer or reinsurer will only cede the premiums associated with the book of
business for such a sidecar vehicle if the investors make sufficient investment in the vehicle so as to
ensure that claims can be met should they arise. In general, the investor liability is then limited to
this invested capital.

Hence, the notion of an insurance sidecar can be utilized in OpRisk as a product structure
for a given financial institution that may have exposure to multiple perils that need coverage
and they may wish, through the portfolio of a captive to that financial institution, to raise
additional capital for coverage of losses, should they arise from such exposures, through the
notion of a sidecar. Such a strategy could bring investor capital into the institution to help
mitigate against potential insurance losses in exchange for profits from a portion of the captives
insurance premiums and investments such as CAT bonds.

In the following section, we will consider a generalized framework, which will focus on
two settings in which the class of multiple peril basket insurance products will be of interest.
The first is in the case of a single risk process that has exposure to multiple perils and the second
is in the case of an insurance policy for multiple risk processes each exposed to one or more
perils. In addition, there is the situation that the perils with which a risk process or processes are
exposed may not all have direct relationships to existing insurance products currently available
on the market in the given jurisdiction of operation of the bank seeking insurance.

To address such situations, there has been the development of multiple risk or multiple
peril type insurance products that can be generically defined according to a following portfolio
products in Definition 18.31. These could be constructed in two basic approaches: the first
is internally within the bank seeking coverage on their risk process(s) with exposure to multi-
ple perils, via a portfolio of sufficiently highly rated insurers offering products for each of the
perils considered for the risk process. Alternatively, the second approach is to purchase one of
the specialized products available for OpRisk that are offered by large insurers. We note that
in this second case there can be strict eligibility requirements for purchase of the insurance
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product such as minimum thresholds on the total OpRisk capital of the bank. In addition, the
size of the required premium for such products can also make these products either prohibitive
or uneconomical for a large number of banking institutions. Hence, a larger portion of banks
seeking insurance for OpRisk may be in the first category.

In either of these cases, one can present a common framework and definition of insurance
coverage that is constructed from a multiple peril basket. To illustrate this, we consider the case
of an OpRisk loss process that is affected by multiple sources of peril, and where the single
risk processes under question has losses that do not have a direct insurance product available to
provide coverage for all exposures. To achieve this, we need to first define the notions of peril
and CAT bonds.

Definition 18.29 (Peril and Hazard in Insurance) Peril and hazard are related to the cause of
losses, where a peril can be defined as giving rise to losses, while a hazard is defined as influencing the
operation of the peril. Typically one would classify hazards according to physical or moral: a physical
hazard will relate to the physical characteristics of the risk, while a moral hazard will relate to the
attitude and conduct of people.

Particular examples of Perils and Hazards will be discussed further in the context of OpRisk
CAT bonds. Before proceeding with a formal definition of multiple peril baskets, we will discuss
first the notion of umbrella insurance.

18.4.1 UMBRELLA INSURANCE

In Definition 18.30, we define the notion of an umbrella insurance product.

Definition 18.30 (Umbrella Insurance) An umbrella insurance policy in its most basic form is
constructed to act in conjunction with an existing base insurance policy for a given loss process.
Typically, umbrella insurance is purchased as a liability insurance policy that acts as an additional
protection of assets and future income of insured party which is in addition to the primary policies
coverage. It is distinct from what is known as excess insurance, which only covers claims once all
underlying policies are exhausted, in that umbrella insurance is capable of what is known as the
“drop down” feature. This allows umbrella insurance policies to provide coverage for underlying pol-
icy gaps, meaning that in some cases the umbrella insurance contract may eventuate as the primary
insurance contract on a particular risk. The term umbrella refers to the more general coverage options
of this policy compared to peril-specific policies. In addition, such umbrella policies may in particular
cases provide coverage for claims that would otherwise have been excluded from primary policies.

There are several examples of commercial umbrella coverages that are of relevance to
OpRisk settings such as the product known as the “ACE Umbrella PlusSM”, which is offered
as a commercial umbrella liability insurance for US national accounts. The same complay also
offers a different product known as the “ACE USA Excess Casualty” which specializes in For-
tune 2000 US corporations and privately owned company equivalents. These policies include
aspects such as minimum attachment points, which may be individually evaluated on a per risk
basis, and aggregate coverage limits. Example details can include aspects such as general liabil-
ity of USD 1 million per occurrence and USD 2 million general aggregate and USD 2 million
products aggregate; employer’s liability: USD 1 million; general limits of USD 50 million per
occurrence or aggregate are available.
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18.4.2 OPRISK LOSS PROCESSES COMPRISED OF
MULTIPLE PERILS

In this section we consider the setting in which we have an OpRisk loss process structure that
has the individual LDA risk process models comprising losses that may arise from multiple
sources of peril, some of which may be directly insurable and others may not. The number
of such perils and the sources of exposures for a given risk process will of course depend on
the chosen mapping of the banks business unit structure to the Basel II/Basel III event types.
In such settings, under a standard LDA framework, one defines a risk process {Zt} for the
annual loss corresponding to the particular business unit in the chosen hierarchy mapping
and an official Basel II defined event type such as, for instance, internal fraud; external fraud;
employment practices and workplace safety; damage to physical assets; business disruption and
systems failures to name a few.

Remark 18.23 Hence, the focus of this section is on OpRisk loss processes that are subject to loss
events that can come from several sources of peril and are associated with multiple sources of hazards.

For such risk process {Zt}, there may be multiple sources of peril that result in the losses in
the year {Xi(t)}Nt

i = 1. For instance, consider d sources of peril that impact the given risk process
Zt in year t, then one may consider the actual process as comprising a random number of
Nt =

∑d
i = 1 Nt(i) total losses in the year t comprising of Nt(i) losses from the i-th peril. Then

each individual loss Xi(t) would be comprising a contribution attributed to Xi,j(t) arising from
the loss from the j-th peril in the given event such that Xi(t) =

∑d
j = 1 Xi,j(t). Note that for

any given loss event, the contribution from any one of the d perils may range from 0 to 100%.

Remark 18.24 Typically, when modeling such risk process in OpRisk under an LDA framework
we do not need to distinguish explicitly the source of the individual component losses from each of
the perils that contributed to the total loss in a given event. In other words, we would not decompose
each loss amount Xi(t) into components from each peril; instead, we would focus on modeling the
distribution for Xi(t). However, when insurance is considered where some of the d contributing
perils, there will be coverage from particular policies available to these portions of the loss events, say
for the j-th peril in the i-th event there would be some coverage for the loss amount Xi,j(t) depending
on the policy specifications.

Hence, when we wish to consider such features, we have a loss process in year t denoted
by annual loss Zt , which is modeled under an LDA framework in which each of the individual
loss events could be considered as arising wholly or in part from one of d different sources of
insurable perils that fall under the given risk process categorization in the OpRisk structure of
the institution. In this case we may wish to consider the decomposition of the standard LDA loss
process comprising Nt ∼ FN (n) and {Xi(t)}Nt

i = 1 with i.i.d. Xi(t) ∼ FX (x) into the following
model:

Zt =

Nt∑
i = 1

Xi(t) =
Nt∑

i = 1

d∑
j = 1

Xi,j(t), (18.85)

with the allowance that any given peril j the amount Xi,j(t) could be zero for the i-th loss event
such that there would be Nt(i) total random number of nonzero losses (could be comprised of
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portions of losses from larger losses) in the year for peril i. In this class of OpRisk process case,
one could aim to cover a portion of the aggregate loss in a given year either on a composite
level or on a per loss event level. In either case, a special insurance basket would need to be
constructed with components of relevance to coverage for each of d sources of peril represented
by the OpRisk loss process, some of which may not have a direct insurance product to cover
this form of loss.

To illustrate how this may arise, consider the classes of Basel II/Basel III event types such
as damage to physical assets that could be attributed from multiple perils in any particular
geographic region such as natural disasters — wind damage, storm damage, flooding, earth-
quake, fire, hurricane; and terrorism; vandalism. A second example to consider where a single
risk process in a given business unit and event type hierarchy may be exposed to multiple per-
ils is when one considers the event type given by business disruption & systems failures that
can have contributing perils coming from infrastructure failures; utility disruptions, software
failures, hardware failures, etc., some of which will be covered under particular policies and
others will not.

Therefore, for risk processes that are exposed to multiple perils, we define for OpRisk
the single risk process multiple peril basket insurance that is generically given as detailed in
Definition 18.31. In specification of this insurance structure, it will be assumed that there will
be an insurance policy, CAT bond, or umbrella coverage that can be purchased to provide some
amount of coverage for all perils that the loss process is exposed to and furthermore that the
amount of coverage one may purchase from the market is not bounded (of course, these are
simplifying assumptions in practice). In general, this may not be the case, but we assume this
for simplicity of notation and development later.

We will first define the insurance portfolio followed by specification of the analog of a
modern portfolio theory solution to portfolio selection that we adapt to the insurance setting.
In this regard, we will consider the adaption of the solution based on Markowitz’s approach
(see Markowitz 1959 and Rubinstein 2002).

Definition 18.31 (OpRisk Single Risk Process Multiple Peril Baskets) A multiple peril bas-
ket in its simplest form is defined as a linearly weighted portfolio of insurance contracts, umbrella
contracts, and CAT bonds combined to mitigate a predefined portion of each of the sources of peril
that contribute to a given risk process, thereby transferring the associated risk of the loss process up
to a prespecified coverage limit. Consider the following parameters that would be considered in the
definition of such a basket for covering the loss processes, with m combined insurance products and k
CAT bonds in order to cover m + k perils that the given loss process is exposed too:

1. Total Top Cover Limit (TCL). This would be comprising a combination of coverage from
several insurance products and CAT bonds constructed to cover several perils that may result
in losses under the particular OpRisk loss process. The total coverage that is purchased from
each product for each peril comprised m different insurance products defined by coverage limits{

ICLj
}m

j=1 and effective coverage from k different bonds (e.g., CAT bonds) defined by coverage{
BCLj

}k
j=1 such that the resulting TCL for the OpRisk loss process covered by the multiple peril

basket is given by

TCL =

m∑
j=1

ICLj +

m+k∑
j=m+1

BCLj. (18.86)
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2. Individual Peril Minimum Coverage Limits (MCLi). One may assume that a minimum
amount of coverage for the i-th peril is required, producing the set of constraints for the insurance
products given by ICLi ≥ MCLi and the bond products (CAT-bonds) given by constraints
BCLj ≥ MCLj;

3. Individual Peril Insurance Product Premium Pi. For the i-th peril, the required premium
for the insurance product to cover the losses attributed to this peril, for inclusion in the portfolio
is given by Pi. It is assumed that Pi is strictly increasing as the required amount of coverage ICLi
increases;

4. Individual Peril Bond Prices Bi. For the i-th peril the required bond price for inclusion in
the portfolio is given by Bi;

5. Individual peril Bond specifications θi. For the i-th peril the bond is specified by a vec-
tor of parameters θi comprising elements: maturity Ti, coupon dates subject to no-trigger
(default) {τ1, τ2, . . .} with coupon amounts {c1, c2, . . .}, type of trigger (to indicate default)
and required specifications of trigger event such as threshold, modeled probability of trigger pi,
and exposure coverage in the event of trigger given by BCLi.

Given this very general specification of the total coverage provided by a multiple peril
basket for a given loss process, it is also important to note the following practical aspects of the
coverage.

Remark 18.25

• Formally in an ideal setting the ICL for each policy and the BCL for each bond asset would
be deterministically fixed in the contract and then one would simply have the option of deter-
mining the total number of policies of a particular type, subject to attachment points, the total
umbrella coverage required, and the types of bond coverage that could be considered to provide
an overall total coverage for a particular OpRisk loss process. Then given a requirement for a
particular mitigation level, for example, 20% of the calculated capital for the risk process as
specified in OpRisk settings, one could deterministically optimize the number of policies and
bonds required such that the contribution from each came as close as possible to the required
overall TCL for the particular loss process while minimizing the total cost of the coverage.
This could ideally be solved by a deterministic search through the space of portfolio cost and
coverage to find the optimal combination that reproduces the TCL required for the given loss
process;

• In addition, we will assume for simplicity that ICL and BCL are continuous and unbounded
positive quantities, though in practice we may expect upper bounds on these quantities. In
practice, the ICL on each policy and BCL are typically subject to potentially substantial
payment uncertainties due to several factors: litigation and challenge of individual claims,
default of the insurer, and payment time uncertainties. This makes the effective coverages
inherently stochastic in practice and therefore it is perhaps prudent to consider these quanti-
ties as random variables (even though they are formally specified in a contract). It is there-
fore possible that the ICL (BCL) may effectively be less than the premium (purchase price
of the bond) in any given year. Hence, given coverage of ICL (BCL) in the contract, we
define the effective coverage for insurance policy (bond) i, at the end of the contract (yearly),
to be ĨCLi = ICLi − UPCi, where UPCi ∈ [0, ICLi] corresponds to a random vari-
able for the dollar amount at the end of the contract of all forms of unpaid or outstanding
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claims that were disputed. The analogous amount for bond products that default or fail to
make claim payments immediately at the time of trigger are denoted by effective coverage
B̃CLi.

To proceed with the optimal portfolio selection, which aims to address the question of how
much coverage should one purchase from each insurance product type in order to maximize
the expected total coverage “return” while minimizing the variance or some other measure of
“risk” associated with the coverage return. In Definition 18.32, we define what we mean by
return via the notion of a coverage on investment (COI).

Definition 18.32 (Coverage on Investment) We define the random variable corresponding to
the amount of effective annual insurance coverage (in dollars) for insurance policies by ĨCLi =

ICLi − UPCi and bonds by B̃CLi = BCLi − UPCi. Then the coverage on investment (COI) is
given by the ratio of the effective coverage per year to the dollar amount invested for the coverage of
ICLi (BCLi) from the insurance product (insurance policy or CAT bond) according to the random
variable Ri given by

Ri =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ĨCLi

Pi
, Insurance Policy i,

B̃CLi

Pi
, Bond (CAT bond i),

(18.87)

where ĨCLi or B̃CLi correspond to the coverage offered for the premium/bond price Pi paid on the
contract coverage of ICLi (BCLi). To distinguish the case of an insurance policy versus a bond, one
may adopt RI

i or RB
i , respectively.

We will now assume that for each insurance policy or CAT bond product we may model the
random variable Ri by a LogNormal distribution with Ri ∼ LogNormal (μi, σ

2
i ). Of course, in

practice, this model assumption can be tested and other families of distribution can be consid-
ered; however, the choice of an elliptic family (in this case on the log scale) makes the following
portfolio optimization conveniently a convex optimization programme.

One can now aim to perform portfolio selection to address the question:

Given a particular loss process exposed to m + k perils, what is the optimal amount
of coverage for each insurance policy and CAT bond to ensure the expected total effec-
tive coverage is maximized, whilst the risk (variance) in the total effective coverage is
minimized.

To address this question, we establish the following modern portfolio theory (MPT) portfolio
selection framework, the first approach will be based on the trade-off between the expected
total effective COI for the basket of insurance products versus the variance in the total effec-
tive COI. We will adopt a standard Markowitz portfolio selection framework here that will
be a convex optimization framework if we assume that the log total effective COI is a ran-
dom variable with a distribution function with is in the elliptic family and that each individual
log effective COIs are also distributed according to an elliptic family, perhaps with correla-
tion induced between the prices or the amounts of coverage that go into each policy in the
basket.
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Markowitz MPT for Insurance Basket Portfolio Selection

• Define the log total effective coverage on investment random variable according to the
linear combination of individual policy and bond returns (log COIs) as follows:

ln (RT ) =

m∑
i=1

wI
i ln
(
RI

i
)
+

m+k∑
i=m+1

wB
i ln
(
RB

i
)

(18.88)

with wI
i corresponding to the weighting of component asset insurance policy i that corre-

sponds to the proportion of insurance policy asset i in the portfolio insurance basket, and
wB

i corresponds to the equivalent proportion of bond asset i in the basket;
• Assume the insurance portfolio total effective coverage on investment “return” is the

proportion-weighted combination of the constituent insurance products effective cover-
age on investments “returns”;

• Assume the portfolio total effective coverage on investment has a “risk/uncertainty/
volatility”, which is a function of the correlations σij between the effective COI’s of the
component assets, for all asset pairs (i, j);

• Then one may define the expected total effective coverage:

E [ln (RT )] =

m∑
i=1

wI
i E
[
ln
(
RI

i
)]

+

m+k∑
i=m+1

wB
i E
[
ln
(
RB

i
)]

. (18.89)

• Then one may define the variance of the total effective coverage:

Var [ln (RT )] =

m∑
j=1

m∑
i=1

wI
i wI

j σ
I
i σ

I
j ρ

I
i,j +

k∑
j=1

k∑
i=1

wI
i wI

j σ
B
i σ

B
j ρ

B
i,j +

m∑
j

k∑
i

wI
i wB

j σ
I
i σ

B
j ρ

I ,B
i,j

(18.90)

with ρ.i,j = 1 if i = j;
• The portfolio selection can now be performed by considering a desired risk tolerance (asso-

ciate with how certain one would like to be about the total effective coverage) denoted by
q ∈ [0,∞), and the resulting efficient frontier is obtained by minimizing the objective
function

wTΣw − qRT w, (18.91)

where
1. w corresponds to the vector of insurance portfolio weights satisfying the constraint∑

i wi = 1. In the context of an insurance basket, it will be only possible that wI
i ≥ 0

though one may short the CAT bond assets so one may have wB
i ∈ R;

2. Σ represents the covariance matrix of effective coverages on investments for insurance
products and bonds in the basket portfolio;

3. q ≥ 0 is the risk tolerance that ranges between q = 0 for a portfolio with mini-
mal risk (i.e., minimum uncertainty regarding the total effective coverage on invest-
ment) through to q → ∞ for a progressively higher expected effective total coverage
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on investment with progressively higher unbounded uncertainty associated with the
expected coverage;

4. R is a vector of expected effective coverages on investment for each insurance product
of bond in the portfolio;

5. wTΣw represents the variance associated with the portfolios effective total coverage on
investment;

6. RT w represents the expected total effective coverage from the insurance portfolio.
Note that one could also incorporate constraints related to minimum ICLi or BCLi
amounts for a given product covering the i-th peril exposure as well as budget constraints.

Remark 18.26 Since this application of MPT is nonstandard, there are a few aspects of the afore-
mentioned problem to be considered:

1. One could factor into the MPT framework the practical reality that several insurance policies
and CAT bonds in the basket (portfolio) are not necessarily continuously divisible, i.e., there may
be fixed predefined ICLi amounts for a given policy in the possible products one may purchase;

2. The discrete nature of some insurance contract coverages and bond coverages could be incorpo-
rated in the optimization routine adopted;

3. The assets of the insurance portfolio may not be highly liquid, especially for some specialised
insurance products. Therefore opportunities for purchasing new insurance contracts may be
limited and may occur in limited windows of time. In addition, insurance contracts of some
CAT-bonds that have already been purchased may not be abandoned without a loss of a sunk
cost. Incorporating this feature would require additional constraint parameterizations in the
optimizations objective function and optimization solver.

We conclude this section with some indications of some of the more specialized products
available for consideration when constructing a basket of insurance products for a particular
loss process exposed to multiple perils. In terms of specialty products, a large reinsurance com-
pany that offers a number of products in the space of OpRisk loss processes to a global market
is Swiss Re. They have teams such as in the US the Excess and Surplus market Casualty group
that specializes in “U.S-domiciled surplus lines wholesale brokers with primary, umbrella and
follow-form excess capacity for difficult-to-place risks in the Excess and Surplus market”. This
group aims to seek coverage solutions for challenging risks not in the standard/admitted market.
The types of coverage limits offered are quoted as being of the range: USD 10 million limits
in umbrella and follow form excess; USD 5 million CGL limits for each occurrence; USD 5
million general aggregate limit; USD 5 million products/completed operations; and USD 5
million personal and advertising injury. There is also groups like the professional and manage-
ment liability team in Swiss Re for example that provide bespoke products for “protection for
organisations and their executives, as well as other professionals, against allegations of wrong-
doing, mismanagement, negligence, and other related exposures”. In addition, as discussed in
Van den Brink (2002), there are some specialty products that are available for OpRisk insur-
ance coverage offered by Swiss Re and known as the Financial Institutions OpRisk Insurance
(FIORI) that covers OpRisk causes such as liability, fidelity, and unauthorized activity, tech-
nology risk, asset protection, and external fraud. It is noted in Chernobai et al. (2007) that the
existence of such specialised products is limited in scope and market since the resulting pre-
mium one may be required to pay for such an insurance product can typically run into very
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significant costs, removing the actual gain from obtaining the insurance contract in terms of
capital mitigation in the first place.

18.5 Optimal Insurance Purchase Strategies for OpRisk
Insurance via Multiple Optimal Stopping Times

We begin this section with a brief overview of multiple optimal stopping time theory required
for the development of optimal purchase strategies for OpRisk settings.

Assume an agent sequentially observes a process given by
{

W (t)
}T

t=1, for a fixed T < +∞
and wants to choose k < T of these observations in order to maximize (or minimize) the
expected sum of these chosen observations. For k = 1, this problem is known in the literature
as the house selling problem (see Sofronov 2013 for an updated literature review) since one of
its interpretations is as follows. If the agent is willing to sell a house and assume that at most T
bids will be observed, he wants to choose the optimal time τ such that the house will be sold
for the highest possible value. The extension of this problem for k > 1 is known as the multiple
house selling problem, where the agent wants to sell k identical houses.

Formally, the mathematical framework for such a problem consists of a filtered probability
space

(
Ω,F , {Ft}t≥0,Pr

)
, where Ft = σ

(
W (t)

)
is the sigma-algebra generated by W (t).

Within this framework, where we assume the flow of information is given only by the observed
values of W , it is clear that any decision at time t should take into account only values of the
process W up to time t. It is also required that two actions cannot take place at the same time,
that is, we do not allow two stopping times to occur at the same discrete time instant. These
assumptions are precisely stated in the following definition, but for further details on the theory
of multiple optimal stopping rules we refer the reader to Nikolaev and Sofronov (2007) and
Sofronov (2013).

Definition 18.33 (Multiple Stopping Rules) A collection of integer-valued random variables
(τ1, . . . , τi) is called an i-multiple stopping rule if the following conditions hold:

1. {ω ∈ Ω : τ1(ω) = m1, . . . , τj(ω) = mj} ∈ Fmj , ∀mj > mj−1 > · · · > m1 ≥ 1,
j = 1, . . . , i;

2. 1 ≤ τ1 < τ2 < . . . < τi < +∞, a.s.

Given the mathematical definition of a stopping rule, the notion of optimality of these
rules can be made precise in Definitions 18.34, 18.35 and 18.36.

Definition 18.34 (Gain Function for a Multiple Stopping Rule) For a given multiple stop-
ping rule τ = (τ1, . . . , τk), the gain function utilized in this chapter takes the following additive
form:

g(τ ) = W (τ1) + · · ·+ W (τk).

Definition 18.35 (Value Function for Multiple Stopping Rule) Let Sm be the class of multi-
ple stopping rules τ = (τ1, . . . , τk) such that τ1 ≥ m a.s. The function

vm = sup
τ∈Sm

E[g(τ )],
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is defined as the m-value of the game and, in particular, if m = 1 then v1 is the value of
the game.

Definition 18.36 (Optimal Multiple Stopping Rule) A multiple stopping rule τ ∗ ∈ Sm is
called an optimal multiple stopping rule in Sm if E[W (τ ∗)] exists and E[W (τ ∗)] = vm.

The following result of Nikolaev and Sofronov (2007, theorem 3) provides the optimal
multiple stopping rule that maximizes the expectation of the sum of the observations.

Theorem 18.7 Let W (1),W (2), . . . ,W (T ) be a sequence of independent random variables
with known distribution functions F1, F2, . . . , FT , and the gain function g(τ ) =

∑k
j=1 W (τj).

Let vL,l be the value of a game where the agent is allowed to stop l times (l � k) and there are L
(L � T ) steps remaining. If there exist E[W (1)],E[W (2)], . . . ,E[W (T )], then the value of the
game is given by

v1,1 = E[W (T )],

vL,1 = E
[
max{W (T − L + 1), vL−1,1}

]
, 1 < L ≤ T ,

vL,l+1 = E
[
max{vL−1,l + W (T − L + 1), vL−1,l+1}

]
, l + 1 < L ≤ T ,

vl,l = E

[
vl−1,l−1 + W (T − l + 1)

]
.

If we put

τ∗
1 = min{m1 : 1 � m1 � T − k + 1,W (m1) � vT−m1,k − vT−m1,k−1};
τ∗

i = min{mi : τ
∗
i−1 <mi �T − k + i,W (mi)� vT−mi,k−i+1 − vT−mi,k−i}, i = 2, . . . , k − 1;

τ∗
k = min{mk : τ

∗
k−1 < mk � T ,W (mk) � vT−mk,1};

(18.92)

then τ ∗ = (τ∗1 , . . . , τ
∗
k ) is the optimal multiple stopping rule.

In the examples explored in this chapter, it will always be optimal to stop the process
exactly k times, but this may not be true, for example, if some reward is given to the product
holder for less than k years of claims of insurance. In the absence of such considerations, one
may proceed with assuming always k years of claims will be made. In Theorem 18.7, we can
see that the value function for L > l is artificial and v0,1, for example, has no interpretation
(Figure 18.5). On the other hand, v1,1 cannot be calculated using the general formula (it would
depend on v0,1). With one stop remaining and one step left, from the reasons given earlier, we
are obliged to stop, and, therefore, there is no maximization step when calculating v1,1, that is,
v1,1 = E[W (T − 1 + 1)]. The same argument is valid for l > 1 and, in this case,

vL,l = E

[
max{vL−1,l−1 + W (T − L + 1), vL−1,l}

]
, 1 ≤ l ≤ T

and, if we have l ≤ (T−1) steps left and also l stops, we must stop in all the steps remaining. So,

vl,l = E

[
vl−1,l−1 + W (T − l + 1)

]
.
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l = 1 l = 2 l = 3 l = 4

Left end point of the support of Wν0,1

ν1,1 ν1,2

ν2,1 ν2,2 ν2,3

ν3,1 ν3,2 ν3,3 ν3,4

ν4,1 ν4,2 ν4,3 ν4,4 ν4,5

ν5,1 ν5,2 ν5,3 ν5,4 ν5,5 ν5,6

ν6,1 ν6,2 ν6,3 ν6,4 ν6,5 ν6,6 ν6,7

ν7,1 ν7,2 ν7,3 ν7,4 ν7,5 ν7,6 ν7,7

ν8,1 ν8,2 ν8,3 ν8,4 ν8,5 ν8,6 ν8,7

νL,l+1= 0 (artificial value)

νL,l+1= [max{νL– 1,l+W(T – L+1),νL–1,l+1}]

νL,l+1= [ν l– 1,l– 1+ W (T – l+1)]

l = 5 l = 6 l = 7

L = 0

L = 1

L = 2

L = 3

L = 4

L = 5

L = 6

L = 7

L = 8

figure 18.5 Schematic representation of the value function iteration

From Theorem 18.7 and the assumption of independence of the annual losses, one can see
that to be able to calculate the optimal rule we only need to calculate (unconditional) expec-
tations like E[W ] and E[max{c1 + W , c2}], for different values of c1 and c2. In addition,
since 0 ≤ vL−1,l ≤ vL−1,l+1, one actually only needs to calculate E[max{c1 + W , c2}] for
0 ≤ c1 ≤ c2.

Having presented the basic results required for developing an multiple optimal stopping
time formulation, the insurance application may be developed. In this regard, the remaining
section is based on the work developed in Targino et al. (2013) for OpRisk insurance pur-
chase strategies. In that work an interesting general question is posed relating to how one may
construct insurance products satisfying the axioms and definitions earlier while allowing a suf-
ficiently general class of policies that may actually be suitable for a wider range of financial
institutions and banks than those specialized products currently on offer.

More specifically, this section explores aspects of an insurance product that provides its
owner several opportunities to decide which annual OpRisk loss(es) to insure. This product
can be thought of as a way to decrease the cost paid by its owner to the insurance company in a
similar way to what occurs with swing options in energy markets (see, e.g., Jaillet et al. (2004)
and Carmona and Touzi (2008)): instead of buying T yearly insurance policies over a period of
T years, the buyer can negotiate with the insurance company a contract that covers only k of the
T years (to be chosen by the owner). This type of structured product will result in a reduction
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in the cost of insurance or partial insurance for OpRisk losses and this aspect is highlighted in
Allen et al. (2009, p. 188), where they note that “even without considering the cost of major
catastrophes, insurance coverage is very expensive”. In addition, it may be interesting to explore
such structures if the flexibility they provide results in an increased uptake of such products
for OpRisk coverage, further reducing insurance premiums and resulting perhaps in greater
competition in the market for these products.

A focus on three basic generic “building block” policies (see Definitions 18.37 to 18.39)
that can be combined to create more complex types of protection. For these three basic policies,
a “moderate-tailed” model for annual risks is developed that leads to closed-form usage strategies
of the insurance product, answering the question: When is it optimal to ask the insurance
company to cover the annual losses?

Suppose the company holds an insurance product that lasts for T years and grants the
company the right to mitigate k of its T annual losses through utilization of its insurance
claims. To clarify consider a given year t ≤ T where the company will incur Nt losses adding
up to Zt =

∑Nt
n=1 Xn(t), assuming it has not yet utilized all its k insurance mitigations it then

has the choice to make an insurance claim or not. If it utilizes the insurance claim in this year,
the resulting annual loss will be denoted by Z̃t . Such a loss process model structure is standard
in OpRisk and insurance and is typically referred to as the loss distributional approach (LDA).

In this context, the company’s aim is to choose k distinct years out of the T in order to
minimize its expected operational loss over the time interval [0,T ], where it is worth noting
that if Z > Z̃ that is, if the insurance is actually mitigating the company’s losses, all its k
rights should be exercised. The question that then must be addressed is what is the optimal
decision rule, that is define the multiple optimal stopping times for making the k sets of insur-
ance claims.

Since these closed-form results rely upon the stochastic loss model considered, we also
provide a general framework applicable for any loss process. Therefore, in Section 18.5.4, we
discuss a method based on series expansions of unknown densities to calculate the optimal
rules when the combination of insurance policy and severity density does not lead to analyti-
cal results.

18.5.1 EXAMPLES OF BASIC INSURANCE POLICIES

In the remainder of this chapter, if a process
{

Zt
}T

t=1 is a sequence of i.i.d. random variables,
the time index will be dropped and one can denote a generic r.v. from this process by Z . For
the rest of the chapter, IA will denote the indicator function on the event A, that is, IA = 1 if
A is valid and zero otherwise.

Definition 18.37 (Individual Loss Policy (ILP)) This policy applies a constant haircut to the
loss process in year t in which individual losses experience a TCL as specified by

Z̃ =
N∑

n=1

max (Xn − TCL, 0) .

Definition 18.38 (Accumulated Loss Policy (ALP)) The ALP provides a specified maximum
compensation on losses experienced over a year. If this maximum compensation is denoted by ALP,
then the annual insured process is defined as
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Z̃ =

(
N∑

n=1

Xn − ALP

)
I{∑N

n=1 Xn>ALP}.

Definition 18.39 (Postattachment Point Coverage (PAP)) The attachment point is the insured’s
retention point after which the insurer starts compensating the company for accumulated losses at
point PAP

Z̃ =
N∑

n=1

Xn × I{∑n
k=1 Xk≤PAP}.

In the remainder of this section, an example LDA model that leads to closed-form solu-
tions for the annual loss distribution under each insurance policy is considered. In particular, a
Poisson frequency distribution and an inverese Gaussian severity model are considered. Follow-
ing the nomenclature in Franzetti (2011, table 3.3), the inverse Gaussian distribution possess
a “moderate tail”, which makes it a reasonable model for OpRisk losses for many risk process
types and is often used in practice. This family of distributions also has the advantage of being
closed under convolution, and this characteristic is essential if closed-form solutions for the
multiple optimal stopping problem are to be obtained.

For the model considered in this section, it will be useful to recall the following proper-
ties of the family of inverse Gaussian severity models. The inverse Gaussian distribution and
its relationship with the generalized inverse Gaussian distribution will be of direct us in the
remainder of this chapter, especially when evaluating the value function in closed form for the
optimal stopping rules; see additional details in Folks and Chhikara (1978), Jørgensen (1982),
and Tweedie (1957, section 2).

Consider a sequence of i.i.d. inverse Gaussian random variables X1, . . . ,Xn with distribu-
tion parameters μ, λ > 0, i.e.,

fX (x; μ, λ) =
(

λ

2π

)1/2

x−3/2 exp

{
−λ(x − μ)2

2μ2x

}
, x > 0.

In addition, denote G to be a generalized inverse Gaussian (GIG) r.v. with parametersα, β > 0,
p ∈ R, that is,

fG(x; α, β, p) =
(α/β)p/2

2Kp(
√
αβ)

x p−1 exp

{
−1

2
(αx + β/x)

}
, x > 0,

where Kp is a modified Bessel function of the third kind (sometimes called modified Bessel
function of the second kind), defined as

Kp(z) =
1
2

+∞∫
0

u p−1e−z(u+1/u)/2du.
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Lemma 18.1 (Closure Under Convolution for Inverse Gaussian Losses) The inverse Gau-
ssian family of random variables is closed under convolution and the distribution of its sum is
given by

Sn :=

n∑
l=1

Xl ∼ IG(nμ, n2λ). (18.93)

Lemma 18.2 (Embedding an Inverse Gaussian in a Generalized Inverse Gaussian) Any
inverse Gaussian random variable can be represented as a generalized inverse Gaussian, and for
the particular case of Lemma 18.1 the relationship is

fSn(x; nμ, n2λ) ≡ fG(x; λ/μ2, n2λ,−1/2). (18.94)

Lemma 18.3 Modified Bessel functions of the third kind are symmetric around zero in the param-
eter p. In particular, when p = 1/2,

K1/2

(
nλ
μ

)
K−1/2

(
nλ
μ

) = 1. (18.95)

Lemma 18.4 The density of an inverse Gaussian r.v. has the following property (which clearly holds
for any power of x, with the proper adjustment in the last parameter of the GIG in the RHS):

xfG(x; λ/μ2, n2λ,−1/2) ≡ nμ fG(x; λ/μ2, n2λ, 1/2). (18.96)

The symmetry in Lemma 18.3 can be seen through the following characterization of mod-
ified Bessel functions of the third kind

Kp(x) :=
+∞∫
0

exp {−x cosh(t)} cosh(pt)dt,

(see Watson (1922), p. 181) and the fact that cosh(−p) = cosh(p). The last result, Lemma
18.4, follows from Lemma 18.3 and a simple comparison of the densities.

Having defined a few basic examples of insurance policies as well as a loss process model
based on a Poisson-inverse-Gaussian LDA model structure, one now has to develop appropri-
ate objective functions for the definition of the multiple optimal stopping rule strategies to
maximize (minimize).

18.5.2 OBJECTIVE FUNCTIONS FOR RATIONAL AND
BOUNDEDLY RATIONAL INSUREES

One may consider two possible general populations for the potential insuree. The first group
are those that are perfectly rational, meaning that they will always act in an optimal fashion
when given the chance and, more importantly, are capable (i.e., have the resources) of figuring
out what is the optimal behavior. In this case, we will consider a global objective function to be
optimized.



�

�

“Cruz_Driver” — 2015/1/12 — 11:24 — page 829 — #80
�

�

�

�

�

�

18.5 Optimal Insurance Purchase Strategies 829

The second group represent boundedly rational insurees who act suboptimally. This group
represents firms who are incapable or lack the resources/knowledge to understand how to act
optimally when determining their optimal behaviors/actions and will be captured by local
behaviors. Hence, these two populations will be encoded in two objective functions: one that
is optimal (globally) and one that represents a suboptimal (local strategy) the boundedly ratio-
nal population would likely adopt. These behaviors can be made precise through the following
exercising strategies, for the first and second groups, respectively.

1. Global Risk Transfer Strategy. Minimizes the (expected) total loss over the period [0,T ];
2. Local Risk Transfer Strategy. Minimizes the (expected) sum of the losses at the insurance

times (i.e., stopping times).

These two different groups can be understood as, for example, large corporations, with
employees dedicated to fully understand the mathematical nuances of this kind of contract and
small companies, with limited access to information. The group with “bounded rationality”
may decide (heuristically, without the usage of any mathematical tool) to follow the so-called
local risk transfer strategy, which will produce smaller gain in the period [0,T ].

As studied in Targino et al. (2013), these two different objective functions can lead to
completely different exercising strategies, and therefore an insurance company who sells such a
contract should be aware of these different behaviours.

For the first loss function, the formal objective is to minimize

T∑
t=1

t /∈{τ1,...,τk}

Z(t) +
k∑

j=1

Z̃(τj) =

T∑
t=1

Z(t)−
T∑

t=1
t∈{τ1,...,τk}

{
Z(t)− Z̃(t)

}
.

Since
∑T

t=1 Z(t) does not depend on the choice of τ1, . . . , τk, this is, in fact, equivalent to
maximize

k∑
j=1

W (τj) =

k∑
j=1

{
Z(τj)− Z̃(τj)

}
,

where the process W is defined as W (t) = Z(t)− Z̃(t).
For the second objective function, the company aims to minimize the total loss not over

period [0,T ] but instead only at times at which the decisions are taken to apply insurance and
therefore claim against losses in the given year,

k∑
j=1

Z̃(τj)

and, in this case, the process W should be viewed as W (t) = −Z̃(t).

Remark 18.27 As noted by Targino et al. (2013), if the agent is trying to maximize the
first loss function (using W = Z − Z̃ ), then W is non-negative stochastic process, and
only one kind of expectation is required to be calculated, since if c1 = c2 = 0, then
E[max{c1 + W , c2}] = E[W ].
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Remark 18.28 If the agent is trying to minimize the expected gain of the sum of Z̃(t) random
variables (instead of maximizing it), one can rewrite the problem as follows. Define a process
W (t) = −Z̃(t) and note that minE[

∑k
j=1 Z̃(τj)] = maxE[

∑k
j=1 W (τj)]. Therefore, the

optimal stopping times that maximize the expected sum of the process W are the same that minimize
the expected sum of the process Z̃ .

Having defined the two different objective functions, one may now proceed to develop
the multiple optimal stopping rules in closed form for the three insurance policies and
the Poisson-inverse-Gaussian LDA model. That is, under the Poisson-inverse-Gaussian LDA
model, where Xn ∼ InverseGaussian(λ, μ) and N ∼ Poisson(λN ), the optimal times (years) to
exercise or make claims on the insurance policy for the accumulated loss policy (ALP) and
the post attachment point coverage policy (PAP) can be calculated analytically regardless of
where the global or local gain (objective) functions are considered. For the solution to the
individual loss policy (ILP), when using the gain function as the local objective function
given by the sum of the losses at the stopping times (insurance claim years) it was pro-
posed by Targino et al. (2013) to model the losses after the insurance policy is applied.
In the following sections, we consider the ALP and PAP policies to illustrate the concepts
developed.

18.5.3 CLOSED-FORM MULTIPLE OPTIMAL STOPPING RULES
FOR MULTIPLE INSURANCE PURCHASE DECISIONS

Since we assume the annual losses Z1, . . . ,ZT are identically distributed, we will denote by Z
a r.v. such that Z d

= Z1, where Z̃ is the insured process; Sn =
∑n

k=1 Xk is the partial sum
up to the n-th loss; pm = Pr[N = m] is the probability of observing m losses in 1 year. The
gain W will be defined as either −Z̃ , when the objective is to minimize the loss at the times
the company uses the insurance policy (local optimality), or Z − Z̃ , in case the function to be
minimized is the total loss over the time horizon [0,T ], that is, (global optimality).

18.5.3.1 Accumulated Loss Policy (ALP). In the case of the ALP insurance model
given in Definition 18.38, one can model the severity of the losses before applying the insurance
policy. Conditional upon the fact that

∑m
n=1 Xn > ALP, the annual loss after the application

of the insurance policy will be
∑m

n=1 Xn − ALP. With this in mind, one can then calculate the
distribution of the insured process, Z̃ , and also of the random variable Z − Z̃ .

Targino et al. (2013) prove that under the local risk transfer case one may obtain closed-
form results for the insured loss process, as detailed in Proposition 18.3.

Proposition 18.3 (Local Risk Transfer Case) The distribution and density of the insured process
are given, respectively, by

F Z̃ (z) =
+∞∑
m=1

FIG(z + ALP; mμ,m2λ)Cm + C0, (18.97)

f Z̃ (z) =
+∞∑
m=1

{
fIG(z + ALP; mμ,m2λ)Cm

}
I{z>0} + C0I{z=0}, (18.98)
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where the constants C0,C1,C2, . . . are defined as

C0 :=

+∞∑
m=1

FIG(ALP; mμ,m2λ)pm + p0

Cm := F IG(ALP; mμ,m2λ)pm, m = 1, 2, . . .

Targino et al. (2013) then demonstated that after calculating the distribution of Z̃ one
can also calculate expectations of the form E [max {c1 + W , c2}] with respect to the loss pro-
cess Z , and therefore one can consequently obtain the multiple optimal stopping rules under
the accumulated loss policy via direct application of Theorem 18.7.

Theorem 18.8 (Local Risk Transfer Case) Using the notation of Theorem 18.7 and defining
W (t) = −Z̃(t), for t = 1, . . . ,T , the multiple optimal stopping rule is given by the set of
equations in (18.92), where

v1,1 = −
+∞∑
m=1

Cm
(
mμF GIG(ALP; λ/μ2,m2λ, 1/2)−ALP × F GIG(ALP; λ/μ2,m2λ, −1/2)

)
,

vL,1 = −
+∞∑
m=1

Cm

[(
mμ
(

FGIG(vL−1,1 + ALP; λ/μ2,m2λ, 1/2)

− FGIG(ALP; λ/μ2,m2λ, 1/2)
)

+ ALP
(

FGIG(vL−1,1 + ALP; λ/μ2,m2λ,−1/2)− FGIG(ALP; λ/μ2,m2λ,−1/2)
))

+ vL−1,1F GIG(vL−1,1 + ALP; λ/μ2,m2λ,−1/2)

]
,

vL,l+1 = −
+∞∑
m=1

Cm

[(
mμ
(

FGIG(vL−1,l+1 − vL−1,l + ALP; λ/μ2,m2λ, 1/2)

− FGIG(ALP; λ/μ2,m2λ, 1/2)
)

− (vL−1,l − ALP)
(

FGIG(vL−1,l+1 − vL−1,l + ALP; λ/μ2,m2λ,−1/2)

− FGIG(ALP; λ/μ2,m2λ,−1/2)
))

+ vL−1,l+1F GIG(vL−1,l+1 − vL−1,l + ALP; λ/μ2,m2λ,−1/2)

]
− vL−1,l C0,

vl,l = vl−1,l−1 −
+∞∑
m=1

Cm

(
mμF GIG(ALP; λ/μ2,m2λ, 1/2)

− ALPF GIG(ALP; λ/μ2,m2λ,−1/2)
)
.
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Now, considering the global objective, it was then observed by Targino et al. (2013) that if
we assume the company wants to minimize its total loss over the period [0,T ] the gain achieved
through the accumulated loss policy (ALP) is given by

W = Z − Z̃

=

N∑
n=1

Xn −
(

N∑
n=1

Xn − ALP

)
I{∑N

n=1 Xn>ALP}

= ALPI{∑N
n=1 Xn>ALP} +

(
N∑

n=1

Xn

)
I{∑N

n=1 Xn>ALP}

= min

{
ALP,

N∑
n=1

Xn

}
.

For notational convenience, one may denote by Wm = min
{

ALP,
∑m

n=1 Xn
}

the annual gain
conditional on the fact that m losses were observed.

Targino et al. (2013) were able to again prove that under the global risk transfer case one
may obtain closed-form results for the insured loss process, as detailed in Proposition 18.4.

Proposition 18.4 (Global Risk Transfer Case: ALP) The distribution and density of the gain
process are given, respectively, by

FW (w) = I{w≥ALP} + FSm(w)I{w<ALP}, (18.99)

fW (w) =
N∑

m=1

{(
F Sm(ALP)I{w=ALP} + fSm(w)I{0<w<ALP}

)
pm

}
+ p0I{w=0}. (18.100)

As in the local case, again for the global case Targino et al. (2013) demonstrated that after
calculating the distribution of the gain, W , we can calculate expectations w.r.t. it and, therefore,
the multiple optimal stopping rule under the ALP is then obtained via direct application of
Theorem 18.7.

Theorem 18.9 (Global Risk Transfer Case: ALP) Defining W (t) = Z(t) − Z̃(t), for t =
1, . . . ,T , the multiple optimal stopping rule is given by (18.92), where

v1,1 =
+∞∑
m=1

pm

{
F Sm(ALP)ALP + mμFGIG(ALP; λ/μ2,m2λ, 1/2)

}
,

vL,1 =
+∞∑
m=1

pm

{
F Sm(ALP)max{ALP, vL−1,1}+ mμ

(
FGIG(ALP; λ/μ2,m2λ, 1/2)

− FGIG(vL−1,1; λ/μ2,m2λ, 1/2)
)
+ vL−1,1FSm(min{vL−1,1, ALP})

}
+ p0vL−1,1,

vL,l+1 =

+∞∑
m=1

pm

{
F Sm(ALP)max{vL−1,l + ALP, vL−1,l+1}

+ vL−1,l(FSm(ALP)− FSm(v
L−1,l+1 − vL−1,l)) + mμ

(
FGIG(ALP; λ/μ2,m2λ, 1/2)
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− FGIG(vL−1,l+1 − vL−1,l ; λ/μ2,m2λ, 1/2)
)

+ vL−1,l+1FSm(min{vL−1,l+1 − vL−1,l , ALP})
}
+ p0vL−1,l+1,

vl,l =

+∞∑
m=1

pm

{
F Sm(ALP)ALP + mμFGIG(ALP; λ/μ2,m2λ, 1/2)

}
.

18.5.3.2 Postattachment Point Coverage (PAP). As in the ALP case, for the post
attachment point coverage policy one can also model the intraannual losses before applying the
insurance policy, but to calculate the distribution and density of both the insured process Z̃
and the gain process Z − Z̃ it will be necessary to consider an additional conditioning step.
Since the insured loss is given by Definition 18.39, it will be convenient to define the first time
the aggregated loss process exceeds the threshold PAP, which can be formally defined as the
following stopping time

M∗
m = inf

{
n ≤ m :

n∑
k=1

Xk > PAP

}
(18.101)

and, M∗
m = +∞, if

∑n
k=1 Xk ≤ PAP.

Targino et al. (2013) prove that under the local risk transfer case one may obtain closed-
form results for the insured loss process, as detailed in Proposition 18.5.

Proposition 18.5 (Local Risk Transfer Case: PAP) The distribution and the density of the
insured process are given, respectively, by

F Z̃ (z) =
+∞∑
m=1

{
m∑

m∗=1

(
FIG(z; m∗μ, (m∗)2λ)Dm∗,m

)
+ FIG(z; mμ, m2λ)Dm

}
+ p0

f Z̃ (z) =
+∞∑
m=1

{
m∑

m∗=1

(
fIG(z; m∗μ, (m∗)2λ)Dm∗,m

)
+ fIG(z; mμ, m2λ)Dm

}
Iz>0 + p0Iz=0,

where

Dm∗,m = Pr [M∗
m = m∗] pm, m = 1, 2, . . . , m∗ = 1, . . . ,m,

Dm = FIG(PAP, mμ, m2λ)pm, m = 1, 2, . . .

Targino et al. (2013) then demonstated that after calculating the distribution of the insured
annual loss one can also calculate expectations required to obtain the multiple optimal stopping
rules under the PAP Policy via direct application of Theorem 18.7.

Theorem 18.10 (Local Risk Transfer Case: PAP) Defining W (t) = −Z̃(t), for t =
1, . . . ,T the multiple stopping rule is given by (18.92), where

v1,1 =−
+∞∑
m=1

m∑
m∗=1

m∗μDm∗,m +

+∞∑
m=1

mμDm,

vL,1 =

+∞∑
m=1

m∑
m∗=1

{
mμFGIG(vL−1,1; λ/μ2, (m∗)2λ, 1/2)

+ vL−1,1F IG(vL−1,1; m∗μ, (m∗)2λ)
}

Dm∗,m
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+

+∞∑
m=1

(
mμFGIG(vL−1,1; λ/μ2,m2λ, 1/2) + vL−1,1F IG(vL−1,1; mμ,m2λ)

)
Dm,

vl,l+1 =

+∞∑
m=1

m∑
m∗=1

{
vL−1,l FIG(vL−1,l+1 − vL−1,l ; m∗μ, (m∗)2λ)

+ mμFGIG(vL−1,l+1 − vL−1,l ; λ/μ2, (m∗)2λ, 1/2)

+ vL−1,l+1F IG(vL−1,l+1 − vL−1,l ; m∗μ, (m∗)2λ)

}
Dm∗,m

+

+∞∑
m=1

(
vL−1,l FIG(vL−1,l+1 − vL−1,l ; mμ,m2λ)

+ mμFGIG(vL−1,l+1 − vL−1,l ; λ/μ2,m2λ, 1/2)

+ vL−1,l+1F IG(vL−1,l+1 − vL−1,l ; mμ,m2λ)
)

Dm + vL−1,l p0,

vl,l = vl−1,l−1 −
+∞∑
m=1

m∑
m∗=1

m∗μDm∗,m +

+∞∑
m=1

mμDm.

In the case of the global objective, Targino et al. (2013) showed that the gain process in
the PAP–total loss case takes the following form:

W = Z − Z̃

=

N∑
n=1

Xn −
N∑

n=1

Xn × I{∑n
k=1 Xk≤PAP}

=

N∑
n=1

XnI{∑n
k=1 Xk>PAP}.

Targino et al. (2013) prove that the resulting annual loss distribution and density are then
given by Proposition 18.6.

Proposition 18.6 (Global Risk Transfer Case: PAP) The distribution and the density func-
tions of the insured process are given, respectively, by

FW (w) =
+∞∑
m=1

{
m∑

m∗=1

(
Pr

[
m∑

n=m∗

Xn ≤ w

]
Pr [M∗

m = m∗] pm

)}

+

+∞∑
m=1

{
Pr

[
m∑

k=1

Xk < PAP

]
pm

}
+ p0,

fW (w) =

(
+∞∑
m=1

{
m∑

m∗=1

(
fIG(w; (m − m∗ + 1)μ, (m − m∗ + 1)2λ)Pr [M∗

m = m∗] pm

)})
I{w>0}

+ Pr[W = 0]I{w=0},

where Pr[W = 0] =
∑+∞

m=1

{
Pr
[∑m

k=1 Xk < PAP
]

pm

}
+ p0.
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Targino et al. (2013) then demonstrated that after calculating the distribution of the
insured annual loss one can also calculate expectations required to obtain the multiple opti-
mal stopping rules under the global objective for the PAP policy via direct application of
Theorem 18.7.

Theorem 18.11 (Global Risk Transfer Case: PAP) Defining W (t) = Z(t) − Z̃(t), for t =
1, . . . ,T the multiple stopping rule is given by (18.92), where

v1,1 =

+∞∑
m=1

m∑
m∗=1

Pr [M∗
m = m∗] pm(m − m∗ + 1)μ,

vL,1 =

+∞∑
m=1

m∑
m∗=1

Pr
[
M∗

m = m∗] pm

{
F GIG(vL−1,1; λ/μ2, (m−m∗ + 1)2λ, 1/2)(m−m∗ + 1)μ,

+ vL−1,1FGIG(vL−1,1; λ/μ2, (m − m∗ + 1)2λ,−1/2)

}
+ vL−1,1

Pr[W = 0]

vl,l+1 =

+∞∑
m=1

m∑
m∗=1

Pr
[
M∗

m = m∗] pm

{
vL−1,l F GIG

(
vL−1,l+1 − vL−1,l ;

λ

μ2 , (m − m∗ + 1)2λ,−1
2

)

+ F GIG(vL−1,l+1 − vL−1,l ; λ/μ2, (m − m∗ + 1)2λ, 1/2)(m − m∗ + 1)μ

+ vL−1,l+1FGIG(vL−1,l+1 − vL−1,l ; λ/μ2, (m − m∗ + 1)2λ,−1/2)

}

+ vL−1,l+1
Pr[W = 0],

vl,l = vl−1,l−1 +
+∞∑
m=1

m∑
m∗=1

Pr [M∗
m = m∗] pm(m − m∗ + 1)μ.

In cases where the LDA model does not admit the required distribution and density for
the compound process, or the finite closed-form representations for the value function one can
still obtain approximations that are closed form as detailed in the following section. This builds
on the results developed in Chapter 17.

18.5.4 ASKI-POLYNOMIAL ORTHOGONAL
SERIES APPROXIMATIONS

When one is working with models in which analytical solutions cannot be found, one pos-
sible alternative is to create a series expansion of the density of the insured process Z̃ such
that all the expectations necessary in Theorem 18.7 can be analytically calculated. If one can
assume that the first n moments of the distribution of the insured process Z̃ are known,
then one can proceed with the following approximations based on a Gamma density basis
approximation.

If the n-th first moments of the insured process Z̃ can be calculated (either algebraically or
numerically) and the support of the insured random variable is [0,+∞), one can use a series
expansion of the density of Z̃ in a gamma basis. For notational convenience, define a new
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random variable U = bZ̃ , where b = E[Z̃ ]/Var[Z̃ ] and set a = E[Z̃ ]2/Var[Z̃ ]. Denoting by
fU the density of U the idea is to write fU as

fU (u) = g(u; a)
[
A0L(a)

0 (u) + A1L(a)
1 (u) + A2L(a)

2 (u) + . . .
]
. (18.102)

Since supp(U ) = supp(Z̃) = [0,+∞), we assume the kernel g(· ; a) also has positive
support. If g(u; a) = ua−1e−u/Γ(a) that is, a Gamma kernel with shape = a and scale = 1,
then the orthonormal polynomial basis (with respect to this kernel) is given by the Laguerre
polynomials defined as

L(a)
n (u) = (−1)nu1−ae−u dn

dun (u
n+a−1e−u). (18.103)

Remark 18.29 Note that the definition of the Laguerre polynomials on Equation (18.103) is
slightly different from the usual one, that is, the one based on Rodrigues’ formula

L̃(a)
n =

u−aex

n!
dn

dun

(
e−xxn+a

)
,

but it is easy to check that

L(a)
n (u) = n!(−1)nL̃(a−1)

n .

From the orthogonality condition (see, e.g., Jackson 1941, p. 184),

+∞∫
0

xa−1e−x

Γ(a)
L(a)

n (x)L(a)
m (x)dx =

⎧⎨
⎩

n!Γ(a + n)
Γ(a)

, n = m,

0, n �= m

and using the fact that fU can be written in the form of Equation (18.102) we find that

An =
Γ(a)

n!Γ(a + n)

+∞∫
0

fU (x)L(a)
n (x)dx. (18.104)

Then, using the characterization of An in (18.104) and the fact that E[U ] = Var[U ] = a
we can see that

A0 =

+∞∫
0

fU (x)L
(a)
0 (x)dx =

+∞∫
0

fU (x)dx = 1,

A1 =

+∞∫
1

fU (x)L
(a)
1 (x)dx =

+∞∫
0

fU (x)(z − a)dx = 0,

A2 =

+∞∫
1

fU (x)L
(a)
2 (x)dx =

+∞∫
0

fU (x)(z2 − 2(a + 1)z + (a + 1)a)dx = 0.
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Similar but lengthier calculations show that for μn = E [(U − E[U ])n], n = 3, 4,

A3 =
Γ(a)

3!Γ(a + 3)
(μ3 − 2a), (18.105)

A4 =
Γ(a)

4!Γ(a + 4)
(μ4 − 12μ3 − 3a2 + 18a). (18.106)

Therefore, matching the first four moments, the density of the original random variable Z̃ can
be approximated as

f Z̃ (z) = bfU (u) ≈ b
ua−1e−u

Γ(a)

[
1 + A3L(a)

3 (u) + A4L(a)
4 (u)

]
,

where u = bz, A3 and A4 are given, respectively, by (18.105) and (18.106) and the Laguerre
polynomials can be found in Table 18.1. For additional details on the Gamma expansion, we
refer the reader to Bowers and Newton (1966).

Remark 18.30 (Ensuring Positivity) Since this expansion does not ensure positivity of the density
at all points (it can be negative for particular choices of skewness and kurtosis), we will adopt the
approach discussed in Jondeau and Rockinger (2001) for the Gauss-Hermite Gramm-Charlier case
modified to the Gamma-Laguerre setting. To find the region on the (μ3, μ4)-plane where fU (u) is
positive for all u, we will first find the region where fU (u) = 0, that is,

ua−1e−u

Γ(a)
(
1 + A3L(a)

3 (u) + A4L(a)
4 (u)

)
= 0. (18.107)

For a fixed value u, we now want to find the set (μ3, μ4) as a function of u such that (18.107)
remains zero for small variations on u. This set is given by (μ3, μ4) such that

d
du

[
ua−1e−u

Γ(a)
(
1 + A3L(a)

3 (u) + A4L(a)
4 (u)

)]
= 0. (18.108)

We can then rewrite Equations (18.107) and (18.107) as the following system of algebraic
equations {

μ3B1(u) + μ4B2(u) + B3(u) = 0,
μ3B′

1(u) + μ4B′
2(u) + B′

3(u) = 0,

table 18.1 The first five Laguerre polynomials

L(a)
0 (u)= 1

L(a)
1 (u)= u − a

L(a)
2 (u)= u2 − 2(a + 1)u + (a + 1)a

L(a)
3 (u)= u3 − 3(a + 2)u2 + 3(a + 2)(a + 1)u − (a + 2)(a + 1)a

L(a)
4 (u)= u4 − 4(a+ 3)u3 + 6(a+ 3)(a+ 2)u2 − 4(a+ 3)(a+ 2)(a+ 1)u+(a+ 3)(a+ 2)(a+ 1)a.
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where

B1(u) =
ua−1e−u

Γ(a)

(
Γ(a)

3!Γ(a + 3)
L(a)

3 (u)− 12
Γ(a)

4!Γ(a + 4)
L(a)

4 (u)
)
;

B2(u) =
ua−1e−u

Γ(a)
Γ(a)

4!Γ(a + 4)
L(a)

4 (u);

B3(u) =
ua−1e−u

Γ(a)

(
1 − 2a

Γ(a)
3!Γ(a + 3)

L(a)
3 (u) +

(
−3a2 + 18a

) Γ(a)
4!Γ(a + 4)

L(a)
4 (u)

)
;

B′
1(u) =

(
(a − 1)u−1 − 1

)
B1(u)

+
ua−1e−u

Γ(a)

(
Γ(a)

3!Γ(a + 3)
dL(a)

3

du
(u)− 12

Γ(a)
4!Γ(a + 4)

dL(a)
4

du
(u)

)
;

B′
2(u) =

(
(a − 1)u−1 − 1

)
B2(u) +

ua−1e−u

Γ(a)

(
Γ(a)

4!Γ(a + 4)
dL(a)

4
du

(u)

)
;

B′
3(u) =

(
(a − 1)u−1 − 1

)
B3(u)

+
ua−1e−u

Γ(a)

(
−2a

Γ(a)
3!Γ(a + 3)

dL(a)
3

du
(u) +

(
−3a2 + 18a

) Γ(a)
4!Γ(a + 4)

dL(a)
4

du
(u)

)
;

dL(a)
3

du
(u) = 3u2 − 6(a + 2)u + 3(a + 2)(a + 1);

dL(a)
4

du
(u) = 4u3 − 12(a + 3)u2 + 12(a + 3)(a + 2)u − 4(a + 3)(a + 2)(a + 1).

Therefore, one can solve this system to show that the curve where the approximation will stay positive
for all u is given by

⎧⎨
⎩μ4(u) =

(
B′

1B3
B1

− B′
3

)(
B′

2 −
B′

1B2
B1

)−1

μ3(u) = − 1
B1
(μ4(u)B2 + B3)

for u ∈ [0,+∞). (18.109)

As an illustration, Figure 18.6 presents (on the left) the histogram of the loss process Z =∑N
n=1 Xn for X ∼ LogNormal(μ = 1, σ = 0.8) and N ∼ Poisson(λN = 2) and with a

solid grey line the Gamma approximation using the first four moments of Z . On the right it
is presented the graph of the region where the density is positive for all values of u, given by
Equation (18.109). The grey area was calculated numerically, for all combinations in a fine
grid on the plane (μ3, μ4) it was tested if the density became negative in some point z. Grey
points indicate the density is strictly positive. The solid point indicates the third and fourth
moments in the LogNormal example and since it lies inside the positivity are we can ensure
this approximation is strictly positive for all values of z.

If the the third and fourth moments of the chosen model lied outside the permitted area,
one could chose μ̂3 and μ̂4 as the estimates that minimize some constrained optimization prob-
lem, for instance, the maximum likelihood estimator using

fU (u;μ3, μ4) =
ua−1e−u

Γ(a)

[
1 + A3L(a)

3 (u) + A4L(a)
4 (u)

]
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18.5 Optimal Insurance Purchase Strategies 839

as the likelihood. The constrained region is clearly given by a segment of the curve in Equation
(18.109) and the endpoints can be found using a root-search method checking for which values
of u (the red curve in Figure 18.6) touch the grey area.

18.5.4.1 Series Approximations and the Value Function. Given the approxima-
tion of fU , and consequently of f Z̃ , one can easily calculate the optimal multiple stopping rule,
since E[Z̃ ] is assumed to be known and E[min{c1 + Z̃ , c2}] can be calculated as follows.

Lemma 18.5 If G ∼ Gamma(a, 1), i.e, fG(x) = xa−1e−x

Γ(a) , then, similarly to Lemma 18.4, the
following property holds

xfG(x; a, 1) ≡ afG(x; a + 1, 1). (18.110)

Using this notation, we can rewrite the approximation of Z̃ as

f Z̃ (z) ≈ fG(bz; a, 1)A∗
1 + fG(bz; a + 1, 1)A∗

2 + fG(bz; a + 2, 1)A∗
3

+ fG(bz; a + 3, 1)A∗
4 + fG(bz; a + 4, 1)A∗

5 ,

where

A∗
1 =

(
1 − Γ(a + 3)

Γ(a)
A3 +

Γ(a + 4)
Γ(a)

A4

)
b,

A∗
2 =

(
3
Γ(a + 3)
Γ(a)

A3 − 4
Γ(a + 4)
Γ(a)

A4

)
b,

A∗
3 =

(
−3

Γ(a + 3)
Γ(a)

A3 + 6
Γ(a + 4)
Γ(a)

A4

)
b,

A∗
4 =

(
Γ(a + 3)
Γ(a)

A3 − 4
Γ(a + 4)
Γ(a)

A4

)
b,

A∗
5 =

(
Γ(a + 4)
Γ(a)

A4

)
b.

Then, one can calculate the other main ingredient of Theorem 18.7 given by

E[min{c1 + Z̃ , c2}] =
+∞∫
0

min{c1 + z, c2}f Z̃ (z)dz

=

+∞∫
0

(
(c1 + z)I{c1+z<c2} + c2I{c1+z≥c2}

)
f Z̃ (z)dz

=

c2−c1∫
0

zf Z̃ (z)dz + c1

c2−c1∫
0

f Z̃ (z)dz + c2

+∞∫
c2−c1

f Z̃ (z)dz
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figure 18.6 Approximation using the first four moments for a LogNormal example
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= a
5∑

k=1

FG(b(c2 − c1); a + k, 1)A∗
k + c1

5∑
k=1

FG(b(c2 − c1); a − 1 + k, 1)A∗
k

+ c2

5∑
k=1

F G(b(c2 − c1); a − 1 + k, 1)A∗
k .

Targino et al. (2013) developed a wide range of examples to illustrate the optimal stop-
ping rules in different scenarios; the interested reader is referred to this paper for illustrations
and code.
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Appendix A

Miscellaneous Definitions and List
of Distributions

A.1 Indicator Function

The often used indicator symbol I{·} is defined as

I{·} =

{
1, if condition in {·} is true,
0, otherwise. (A.1)

In addition on occasion we will also utilise I[·].

A.2 Gamma Function

The standard gamma function Γ(α) is defined as

Γ(α) =

∞∫
0

tα−1e−tdt, α > 0. (A.2)

A.3 Discrete Distributions

A.3.1 POISSON DISTRIBUTION

A Poisson distribution function is denoted as Poisson(λ). The random variable N has a Poisson
distribution, denoted N ∼ Poisson(λ), if its probability mass function is

p(k) = Pr[N = k] =
λk

k!
e−λ, λ > 0 (A.3)

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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for all k ∈ {0, 1, 2, . . .}. Expectation, variance, and variational coefficient of a random variable
N ∼ Poisson(λ) are

E[N ] = λ, Var[N ] = λ, Vco[N ] =
1√
λ
. (A.4)

A.3.2 BINOMIAL DISTRIBUTION

The Binomial distribution function is denoted as Binomial(n, p). The random variable N has
a Binomial distribution, denoted N ∼ Binomial(n, p), if its probability mass function is

p(k) = Pr[N = k] =
(

n
k

)
pk(1 − p)n−k, p ∈ (0, 1), n ∈ 1, 2, . . . (A.5)

for all k ∈ {0, 1, 2, . . . , n}. Expectation, variance, and variational coefficient of a random
variable N ∼ Binomial(n, p) are

E[N ] = np, Var[N ] = np(1 − p), Vco[N ] =

√
1 − p

np
. (A.6)

Remark A.1 N is the number of successes in n independent trials, where p is the probability of a
success in each trial.

A.3.3 NEGATIVE BINOMIAL DISTRIBUTION

A Negative Binomial distribution function is denoted as NegBinomial(r, p). The random vari-
able N has a Negative Binomial distribution, denoted N ∼ NegBinomial(r, p), if its probability
mass function is

p(k) = Pr[N = k] =
(

r + k − 1
k

)
pr(1 − p)k, p ∈ (0, 1), r ∈ (0,∞) (A.7)

for all k ∈ {0, 1, 2, . . .}. Here, the generalized Binomial coefficient is

(
r + k − 1

k

)
=

Γ(k + r)
k!Γ(r)

, (A.8)

where Γ(r) is the Gamma function.
Expectation, variance, and variational coefficient of a random variable

N ∼ NegBinomial(r, p) are

E[N ] =
r(1 − p)

p
, Var[N ] =

r(1 − p)
p2 , Vco[N ] =

1√
r(1 − p)

. (A.9)

Remark A.2 If r is a positive integer, N is the number of failures in a sequence of independent
trials until r successes, where p is the probability of a success in each trial.
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844 Miscellaneous Definitions and List of Distributions

A.3.4 DOUBLY STOCHASTIC POISSON PROCESS (COX PROCESS)

Let (Ω, F ,P) be a probability space with information structure (filtration) given by
F = {Ft , t ∈ [0,T ]}. Let Nt be a point process adapted to F . Let λt be a non-negative process
adapted to F such that ∫ t

0
λsds < ∞, a.s. (A.10)

If for all 0 ≤ t1 ≤ t2 and u ∈ R one has

E

[
eiu(Nt2−Nt1)

∣∣∣Ft2

]
= exp

{(
eiu − 1

) ∫ t2

t1
λsds

}
, (A.11)

then Nt is called a Ft -doubly stochastic Poisson process with intensity λt where
Ft = σ {λs; s ≤ t}. One has the following probabilities

Pr [Nt2 − Nt1 = k|λs; t1 ≤ s ≤ t2] =
exp

(
−
∫ t2

t1
λsds

) [∫ t2
t1
λsds

]k

k!
(A.12)

and in addition one has for τk the length of time interval between the (k − 1)-th and the k-th
point the following distribution

Pr [τk > t|λs; tk ≤ s ≤ tk + t] = exp

(
−
∫ tk+t

tk
λsds

)
. (A.13)

A.4 Continuous Distributions

A.4.1 UNIFORM DISTRIBUTION

A uniform distribution function is denoted as Uniform(a, b). The random variable X has a
uniform distribution, denoted X ∼ Uniform(a, b), if its probability density function is

f (x) =
1

b − a
, a < b (A.14)

for x ∈ [a, b]. Expectation, variance, and variational coefficient of a random variable
X ∼ Uniform(a, b) are

E[X ] =
a + b

2
, Var[X ] =

(b − a)2

12
, Vco[X ] =

b − a√
3(a + b)

. (A.15)

A.4.2 NORMAL (GAUSSIAN) DISTRIBUTION

A Normal (Gaussian) distribution function is denoted as Normal(μ, σ2). The random variable
X has a Normal distribution, denoted X ∼ Normal(μ, σ2), if its probability density function is

f (x) =
1√

2πσ2
exp

(
− (x − μ)2

2σ2

)
, σ2 > 0, μ ∈ R (A.16)
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for all x ∈ R. The standard Normal distribution corresponds to Normal(0, 1) and is
denoted as Φ(·). Expectation, variance, and variational coefficient of a random variable
X ∼ Normal(μ, σ2) are

E[X ] = μ, Var[X ] = σ2, Vco[X ] = σ/μ. (A.17)

A.4.3 INVERSE GAUSSIAN DISTRIBUTION

An Inverse Gaussian distribution function is denoted as InverseGaussian(μ, γ). The random
variable X has an Inverse Gaussian distribution, denoted X ∼ InverseGaussian(μ, γ), if its
probability density function is

f (x) =
( γ

2πx3

) 1
2
exp

(
−γ(x − μ)2

2μ2x

)
, x > 0, (A.18)

where parameters μ > 0 and γ > 0. The corresponding distribution function is

F (x) = Φ

(√
γ

x

(
x
μ
− 1

))
+ exp

(
2γ
μ

)
Φ

(
−
√

γ

x

(
x
μ
+ 1

))
, (A.19)

where Φ(·) is the standard Normal distribution. Expectation and variance of
X ∼ InverseGaussian(μ, λ) are

E[X ] = μ, Var[X ] =
μ3

γ
.

If X1, . . . ,Xn are independent and Xi ∼ InverseGaussian(μwi, γw2
i ), then

Sn =
n∑

i=1

Xi ∼ InverseGaussian

⎛
⎝μ

n∑
i=1

wi, γ

(
n∑

i=1

wi

)2
⎞
⎠ . (A.20)

A.4.4 LOGNORMAL DISTRIBUTION

A LogNormal distribution function is denoted as LogNormal(μ, σ2). The random variable
X has a LogNormal distribution, denoted X ∼ LogNormal(μ, σ2), if its probability density
function is

f (x) =
1

x
√

2πσ2
exp

(
− (ln x − μ)2

2σ2

)
, σ2 > 0, μ ∈ R (A.21)

for x > 0. Expectation, variance, and variational coefficient of a random variable
X ∼ LogNormal(μ, σ2) are

E[X ] = eμ+
1
2 σ

2
, Var[X ] = e2μ+σ2

(eσ
2 − 1), Vco[X ] =

√
eσ2 − 1. (A.22)
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846 Miscellaneous Definitions and List of Distributions

A.4.5 STUDENT’S t DISTRIBUTION

A t distribution function is denoted as T (ν, μ, σ2). The random variable X has a t distribution,
denoted X ∼ T (ν, μ, σ2), if its probability density function is

f (x) =
Γ((ν + 1)/2)

Γ(ν/2)
1√
νπ

(
1 +

(x − μ)2

νσ2

)−(ν+1)/2

(A.23)

for σ2 > 0, μ ∈ R, ν = 1, 2, . . ., and all x ∈ R. Expectation, variance, and variational
coefficient of a random variable X ∼ T (ν, μ, σ2) are

E[X ] = μ if ν > 1,

Var[X ] = σ2 ν

ν − 2
if ν > 2, (A.24)

Vco[X ] =
σ

μ

√
ν

ν − 2
if ν > 2.

A.4.6 GAMMA DISTRIBUTION

A Gamma distribution function is denoted as Gamma(α, β). The random variable X has a
gamma distribution, denoted as X ∼ Gamma(α, β), if its probability density function is

f (x) =
xα−1

Γ(α)βα
exp(−x/β), α > 0, β > 0 (A.25)

for x > 0. Expectation, variance, and variational coefficient of a random variable
X ∼ Gamma(α, β) are

E[X ] = αβ, Var[X ] = αβ2, Vco[X ] = 1/
√
α. (A.26)

A.4.7 WEIBULL DISTRIBUTION

A Weibull distribution function is denoted as Weibull(α, β). The random variable X has a
Weibull distribution, denoted as X ∼ Weibull(α, β), if its probability density function is

f (x) =
α

βα
xα−1 exp(−(x/β)α), α > 0, β > 0 (A.27)

for x > 0. The corresponding distribution function is

F (x) = 1 − exp (−(x/β)α) , α > 0, β > 0. (A.28)

Expectation and variance of a random variable X ∼ Weibull(α, β) are

E[X ] = βΓ(1 + 1/α), Var[X ] = β2 (Γ(1 + 2/α)− (Γ(1 + 1/α))2) .
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A.4.8 INVERSE CHI-SQUARED DISTRIBUTION

An Inverse Chi-squared distribution is denoted as InvChiSq(ν, β). The random variable X has
an Inverse Chi-squared distribution, denoted as X ∼ InvChiSq(ν, β), if its probability density
function is

f (x) =
(x/β)−1−ν/2

βΓ(ν/2)2ν/2 exp

(
− β

2x

)
(A.29)

for x > 0 and parameters ν > 0 and β > 0. Expectation and variance of
X ∼ InvChiSq(ν, β) are

E[X ] =
β

ν − 2
, for ν > 2.

Var[X ] =
2β2

(ν − 2)2(ν − 4)
for ν > 4

A.4.9 PARETO DISTRIBUTION (ONE-PARAMETER)

A one-parameter Pareto distribution function is denoted as Pareto(ξ, x0). The random variable
X has a Pareto distribution, denoted as X ∼ Pareto (ξ, x0), if its distribution function is

F (x) = 1 −
(

x
x0

)−ξ

, x ≥ x0, (A.30)

where x0 > 0 and ξ > 0. The support starts at x0, which is typically known and not consid-
ered as a parameter. Therefore, the distribution is referred to as a single-parameter Pareto. The
corresponding probability density function is

f (x) =
ξ

x0

(
x
x0

)−ξ−1

. (A.31)

Expectation, variance, and variational coefficient of X ∼ Pareto(ξ, x0) are

E[X ] = x0
ξ

ξ − 1
if ξ > 1,

Var[X 2] = x2
0

ξ

(ξ − 1)2(ξ − 2)
if ξ > 2,

Vco[X ] =
1√

ξ(ξ − 2)
if ξ > 2.

A.4.10 PARETO DISTRIBUTION (TWO-PARAMETER)

A two-parameter Pareto distribution function is denoted as Pareto2(α, β). The random variable
X has a Pareto distribution, denoted as X ∼ Pareto2(α, β), if its distribution function is

F (x) = 1 −
(

1 +
x
β

)−α

, x ≥ 0, (A.32)
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848 Miscellaneous Definitions and List of Distributions

where α > 0 and β > 0. The corresponding probability density function is

f (x) =
αβα

(x + β)α+1 . (A.33)

The moments of a random variable X ∼ Pareto2(α, β) are

E[X k] =
βkk!∏k

i=1(α− i)
, α > k.

A.4.11 GENERALIZED PARETO DISTRIBUTION

A GPD distribution function is denoted as GPD(ξ, β). The random variable X has a GPD
distribution, denoted as X ∼ GPD(ξ, β), if its distribution function is

Hξ,β(x) =
{

1 − (1 + ξx/β)−1/ξ, ξ �= 0,
1 − exp(−x/β), ξ = 0, (A.34)

where x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ when ξ < 0. The corresponding probability
density function is

h(x) =

{
1
β (1 + ξx/β)−

1
ξ−1, ξ �= 0,

1
β exp(−x/β), ξ = 0.

(A.35)

Expectation, variance, and variational coefficient of X ∼ GPD(ξ, β), ξ ≥ 0, are

E[X n] =
βnn!∏n

k=1(1 − kξ)
, ξ <

1
n
; E[X ] =

β

1 − ξ
, ξ < 1;

Var[X 2] =
β2

(1 − ξ)2(1 − 2ξ)
, Vco[X ] =

1√
1 − 2ξ

, ξ <
1
2
. (A.36)

A.4.12 BETA DISTRIBUTION

A Beta distribution function is denoted as Beta(α, β). The random variable X has a Beta
distribution, denoted as X ∼ Beta(α, β), if its probability density function is

f (x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1 − x)β−1, 0 ≤ x ≤ 1, (A.37)

for α > 0 and β > 0. Expectation, variance, and variational coefficient of a random variable
X ∼ Beta(α, β) are

E[X ] =
α

α+ β
, Var[X ] =

αβ

(α+ β)2(1 + α+ β)
, Vco[X ] =

√
β

α(1 + α+ β)
.
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A.4.13 GENERALIZED INVERSE GAUSSIAN DISTRIBUTION

A GIG distribution function is denoted as GIG(ω, φ, ν). The random variable X has a GIG
distribution, denoted as X ∼ GIG(ω, φ, ν), if its probability density function is

f (x) =
(ω/φ)(ν+1)/2

2Kν+1(2
√
ωφ)

xνe−xω−x−1φ, x > 0, (A.38)

where φ > 0, ω ≥ 0 if ν < −1; φ > 0, ω > 0 if ν = −1; φ ≥ 0, ω > 0 if ν > −1; and

Kν+1(z) =
1
2

∞∫
0

uνe−z(u+1/u)/2du.

Kν(z) is called a modified Bessel function of the third kind (see, e.g., Abramowitz and Stegun
1965, p. 375).

The moments of a random variable X ∼ GIG(ω, φ, ν) are not available in a closed form
through elementary functions but can be expressed in terms of Bessel functions:

E[Xα] =

(
φ

ω

)α/2 Kν+1+α(2
√
ωφ)

Kν+1(2
√
ωφ)

, α ≥ 1, φ > 0, ω > 0.

Often, using notation Rν(z) = Kν+1(z)/Kν(z), it is written as

E[Xα] =

(
φ

ω

)α/2 α∏
k=1

Rν+k(2
√

ωφ), α = 1, 2, . . .

The mode is easily calculated from ∂
∂x xνe−(ωx+φ/x) = 0 as

mode(X ) =
1

2ω
(ν +

√
ν2 + 4ωφ),

which differs only slightly from the expected value for large ν, that is,

mode(X ) → E[X ] for ν → ∞.

A.4.14 d -VARIATE NORMAL DISTRIBUTION

A d -variate Normal distribution function is denoted as Normal(μ,Σ), where
μ = (μ1, . . . μd )

T ∈ R
d and Σ is a positive definite matrix (d × d ). The corresponding

probability density function is

f (x) =
1

(2π)d/2
√
detΣ

exp

(
−1

2
(x − μ)TΣ−1(x − μ)

)
, x ∈ R

d , (A.39)

where Σ−1 is the inverse of the matrix Σ. Expectations and covariances of a random vector
X = (X1, . . . ,Xd )

T ∼ Normal(μ,Σ) are

E[Xi] = μi, Cov[Xi,Xj] = Σi,j, i, j = 1, . . . , d . (A.40)
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A.4.15 d -VARIATE t-DISTRIBUTION

A d -variate t-distribution function with ν degrees of freedom is denoted as Td (ν,μ,Σ), where
ν > 0, μ = (μ1, . . . , μd )

T ∈ R
d is a location vector and Σ is a positive definite matrix

(d × d ). The corresponding probability density function is

f (x) =
Γ
(
ν+d

2

)
(νπ)d/2Γ

(
ν
2

)√
detΣ

(
1 +

(x − μ)TΣ−1(x − μ)

ν

)− ν+d
2

, (A.41)

where x ∈ R
d and Σ−1 is the inverse of the matrix Σ. Expectations and covariances of a

random vector X = (X1, . . . ,Xd )
T ∼ Normal(μ,Σ) are

E[Xi] = μi, if ν > 1, i = 1, . . . , d ;
Cov[Xi,Xj] = νΣi,j/(ν − 2), if ν > 2, i, j = 1, . . . , d . (A.42)
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expectation maximization algorithm, 152
expected shortfall, 114, 499
expected value, 85
expectile risk measure, 129, 130
expert elicitation, 566
exponential tilting, 440, 784
External databases, 33
extreme value theory, 97

block maxima, 97, 98
Fréchet distribution, 99
GEV distribution, 99
GPD distribution, 100
Gumbel distribution, 99
threshold exceedances, 97, 100
Weibull distribution, 99

Faà di Bruno’s formula, 423
Fast Fourier Transform, 511
fault tree, 575
FFT, see Fast Fourier Transform
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Fourier inversion, 492
frequency

Binomial, 496
Negative Binomial, 496
Poisson, 495

frequentist approach, 146, 164
frictionless market, 767
full predictive distribution, 487

g-and-h distribution, 311, 316
ABC, 328
index of regular variation, 323
moments, 319
percentile matching, 324
sample L-moments, 326
simulation, 315
slow variation, 323

g-and-h distribution
L-moments, 315

GAMLSS, 682
GAMM, 682
gamma distribution, 91, 846
Gamma-Laguerre series representation, 739
GAMs, 682
Gaussian approximation for posterior, 161
Gaussian copula, 428
GB2, see generalized Beta distribution
generalised Pareto distribution, 848
generalized additive mixed models, see GAMM
generalized additive models, see GAM
generalized additive models for location scale

and shape, see GAMLSS
distribution, 333
generalized Beta distribution

moments, 336
simulation, 337

generalized Beta family, 333
generalized hyperbolic distribution, 340

cummulant generating function, 341
density, 341
tail properties, 342

Generalized Inverse Gaussian, 301
generalized linear mixed models, see GLMM
generalized linear model, 649

Lq prior, 662
Lq regularization, 662
basis functions, 654
Bayesian, 659
bridge, 663
exponential family, 650
LASSO, 659
maximum likelihood estimation, 655

model selection, 657
regularization, 659

geometric infinite divisibility, 720
Geometric Stable, 732
GEV distribution, 99
GIG, see Generalized Inverse Gaussian
GIG distribution, 92, 613, 849
Girsanov’s theorem, 778
Glivenko-Cantelli theorem, 249
GLM, see generalized linear model
GLMMs, 682
goodness of fit test

Anderson-Darling, 272
compound hypothesis, 246
Cramer-von-Mises, 271
for copula, 287
Kolmogorov-Smirnov, 260
power, 247
significance, 247
simple hypothesis, 246
Type I and Type II errors, 247

goodness-of-fit test, 246
governance, 43, 47
graph, 577

directed acyclic, 577

Halphen distribution, 350
type A, 354
type B, 354, 361

Halphen severity model, 301, 352
harmonic mean estimator, 285
higher moment coherent risk measure, 123
higher order risk measure, 122
HILP, see insurance policy
histogram approach, 562, 590
HMCR, see higher moment coherent

risk measure
homogeneity, 107
homogeneous function, 136, 137
homogeneous Poisson process, 224, 233
hyper-parameters, 159, 562, 588, 611

IG, see inverse Gaussian distribution
improper prior, 163
indirect inference, 157
information criterion, 242

Akaike, 242
BIC, 242
DIC, 242

insurable losses, 688
insurance, 39, 685

attachment point, 691
casualty, 692
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insurance (cont’d )
cedent, 761
deductible, 690
exclusions, 690
multiple perils, 817
total cover limit, 691
umbrella, 693, 816

insurance linked securities, 751
insurance policy, 688

accumulated loss, 694, 696
combined loss policy, 694, 697
haircut individual loss policy, 694, 702
individual loss policy capped, 694, 696
individual loss policy uncapped, 694, 695
proportional individual loss policy, 694
stochastic banding policy, 694, 703
top cover limit, 818

interest rate model, 814
International Accounting Standards Board, 28
inverse Chi-squared distribution, 847
inverse Gaussian distribution, 301
inverse transform, 168
Ito’s Lemma, 777

Karamata representation, 323
Kendall’s tau, 394
kernel, 169
key risk indicators, 31
Kolmogorov–Smirnov goodness of fit test,

151, 246, 260
Kolmogorov-Smirnov variance weighted

test, 267
Kullback–Leibler divergence, 242
kurtosis, 87, 497
Kusuoka risk measure, 124

L-moment estimator, 327
L-Moment Tukey Transforms, 315
Lévy copula, 369, 462, 465
Laguerre polynomials, 714
LASSO, 659
likelihood

censored, 151
truncated, 151

likelihood function, 149
linear correlation, 87, 390
log concave density, 531
log-likelihood function, 149
LogNormal distribution, 90, 597, 845
Loss Distribution Approach, 79
loss function, 162
low-frequency/high-severity risk, 146, 228,

523, 625, 628, 635, 647

Markov chain, 169
detailed balance condition, 173
ergodic property, 173
irreducible, 173
reversibility, 173
stationary distribution, 173
transition kernel, 169

Markov chain Monte Carlo, see MCMC
approximate Bayesian computation, 220
Gibbs sampler, 178
Metropolis-Hastings algorithm, 177
random walk Metropolis–Hastings within

Gibbs, 179
slice sampling, 189

martingale, 774
matching quantiles, 147
maximum domain of attraction, 98
maximum likelihood, 147

estimator, 149
Fisher information matrix, 150
likelihood, 149
log likelihood, 149
observed information matrix, 150

maximum likelihood method, 149, 151
MCMC

adaptive, 192
advanced, 188
auxiliary variable, 188
batch sampling, 186
burn-in stage, 181
convergence diagnostics, 182
diminishing adaptation, 194
effective sample size, 186
hybrid samplers, 187
numerical error, 185
sampling stage, 181
tuning, 180

mean, 85
mean excess function, 101
mean square error of prediction, 164
mean squared error, 147
measurable function, 774
meta-elliptical distribution, 427
method of moments, 147
Metropolis–Hastings algorithm

single-component, 179
multivariate, 177

minimum variance principle, 586
Mittage-Leffler Distributions, 732
mixed Poisson Distribution, 543
mixture distribution, 93
model error, 146
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model selection, 238, 657
diagnostic tools, 238
Q–Q plot, 238
tail diagnostics, 240

Modern Portfolio Theory, 820
moments, 496

central moments, 86, 496
cumulants, 497
raw moments, 86

money market account, 771
monotonicity, 107, 109
Monte Carlo, 499

expected shortfall, 502
quantile estimate, 500

moral hazard, 692
MPT, see Modern Portfolio Theory
multi-factor modelling, 649

EVT approach, 683
industry data, 681

n-fold convolution, 95
near misses, 27
Negative Binomial distribution, 88, 227, 516,

594, 843
negative dependence, 377

lower, 377
upper, 377

negative regression dependence, 383
NIG, see Normal-Inverse-Gaussian
nonhomogeneous

Poisson process, 233
noninformative prior, 163
Normal distribution, 844
Normal-Inverse-Gaussian, 301, 346

objective density, 177
operational risk, 1, 104

advanced measurement approach, 4, 11
basic indicator approach, 4, 9
bottom–up approach, 4
governance, 43
Internal Measurement Approach, 11
loss distribution approach, 12
score card approach, 11
standardized approach, 4, 10
taxonomy, 17
top–down approach, 4

OpRisk, see operational risk
overflow, 513

P-almost surely, 615
p-boxes, 586, 638

Panjer recursion, 492, 503
extensions, 509

parameter uncertainty, 146
Pareto distribution

one-parameter, 847
two parameter, 91, 847

Pareto optimality, 686
Pearson’s correlation coefficient, 390
Pickand’s dependence function, 406
Pickands-Balkema-de Haan theorem, 100
point estimator, 147
Poisson process

thinned, 225
Poisson regression model, 669
positive homogeneity, 108
posterior, see Bayesian inference
predictable process, 774
predictive distribution, 589
predictive interval, 160
prior, see Bayesian inference

estimation, 603
improper constant, 603

probability density function, 81
PGF see probability generating function
probability generating function, 96, 494, 527
probability mass function, 81
process variance, 164
proposal density, 177

Q–Q plot, 238
quantile

function, 85
Monte Carlo estimate, 500
regression method, 672

quantile elicitable risk measure, 129
quantile regression, 672, 674

asymmetric Laplace, 675
generalised Beta, 679
nonparametric regression, 674
parametric regression, 675
polynomial power Pareto, 676

Radon–Nikodym derivative, 776
Radon-Nikodym derivative, 778
random variable, 80

continuous, 81
discrete , 81
mixed, 81
support, 80

raw moment, 86
RCSA, 29
reciprocal importance sampling estimator, 284
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recursions
continous Panjer recursion, 550
higher order recursions, 545
mixed Poisson, 547
partial sums, 535
Waldmann’s recursion, 544
Wilmot class, 549

reinsurance market, 799
reinsurance sidecar, 815
reverse convertibles, 765
reversible jump MCMC, 284
Richardson extrapolation, 525
Riemann–Manifold Hamiltonian Monte

Carlo sampler, 196
Riemann–Stieltjes integral, 86
risk control self-assessment, 29
risk index model, 814
risk measure, 106

coherent, 107
comonotonic additivity, 109
convex, 109
distortion, 126
elicitable, 126
expectile, 129
higher moment coherent, 123
higher order, 122
Kusuoka, 124
quantile elicitable, 129
scenario-based, 108
spectral, 120
risk neutral measure, 769, 775

risk transfer
asset hedge, 764
leverage management, 764
liability hedge, 764
postloss equity recapitalization, 764

risk weighted assets (RWA), 105
RORAC, 138
Rosenblatt’s probability integral

transform, 289

SA, see standardized approach
scenario analysis, 34, 556, 571, 585
scoring function, 128
self chaining copula, 470
sequential Monte Carlo, 166

partial rejection control, 202
samplers, 210

severity
distribution, 89
LogNormal, 600
Pareto, 601

Sharpe ratio, 795
simulated tempering, 187
skewness, 87, 497
Sklar’s theorem, 416
slice sampler, 189, 484
SMC, see sequential Monte Carlo
sorting on the fly, 501
Spearman’s rank correlation, 393
spectral risk measure, 120
spliced distribution, 94
splicing, 93
SRM, see spectral risk measure
standard deviation, 87
standardized approach, 4
stepping out and shrinkage procedure, 485
stochastic ordering, 382
stress test, 68
stress testing, 571
stress-test, 59
strong law of large numbers, 170
subadditivity, 107, 108
support, 80
survival function, 80

multivariate, 416

t distribution, 846
t-copula, 431

grouped t-copula, 433
tail dependence, 398, 407

multivariate, 402
upper, 401

tail diagnostics, 240
tail function, 80
tail order functions, 408
tail order parameters, 408
tail skewness

lower, 409
upper, 409

tail VaR, 114
tail weighted Kolmogorov-Smirnov test, 268
target density, 177
taxonomy, 17
thinned Poisson process, 225
threshold

data collection, 26
exceedances, 97, 100

Tier 1 capital, 104
Tier 1 capital ratio, 105
Tier 2 capital, 105
tilting, 513
translation invariance, 107, 109
truncated data, 223
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truncated loss process, 151
truncation

constant threshold, 224
stochastic threshold, 236
time varying threshold, 232
unknown threshold, 236
stochastic truncation, 236

Tukey distribution, 323
Tukey transformation, 306

h-transform, 306
j-transform, 306
k-transform, 306

umbrella insurance, 816
unbiased, 147
underflow, 508, 513
unique martingale measure, 776

vague prior, 163
Value-at-Risk, 110, 499

variance, 87
variational coefficient, 87
Volterra integral equation, 510
Volterra integral equations second

kind, 551

Wang distortion pricing, 794
Wang transform, 790

generalized, 793
Weibull distribution, 91, 846
weight

combining data, 586
credibility, 594, 599, 625
minimum variance, 587

weighting function, 221
Williamson d-transform, 442

zero-coupon bonds, 771
Zolotarev parameterization, 712
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figure 7.4 Top left subplot: target distribution π0 at a low temperature, where the distribution is
fairly flat and simple to sample. Top right subplot: target distribution πt1 at an intermediate temperature,
where the distribution is still fairly flat and simple to sample. Bottom left subplot: target distribution πt2 at
an intermediate temperature, where the distribution is increasingly concentrated. Bottom right subplot:
target distribution πT final distribution, which is the target distribution.

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk,
First Edition. Marcelo G. Cruz, Gareth W. Peters, and Pavel V. Shevchenko.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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figure 7.5 Top left subplot: target distribution copula component under uniform distribution
function transformation for π0 at little truncation, where the distribution is fairly flat and simple to sample.
Top right subplot: target distribution copula component under uniform distribution function
transformation for πt1 at an intermediate truncation. Bottom left subplot: target distribution copula
component under uniform distribution function transformation for πt2 at an intermediate truncation.
Bottom right subplot: target distribution copula component under uniform distribution function
transformation for πT final distribution, which is the target distribution.
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figure 7.6 Top left subplot: target distribution π0 at little truncation, where the distribution is fairly
flat and simple to sample. Top right subplot: target distribution πt1 at an intermediate truncation. Bottom
left subplot: target distribution πt2 at an intermediate truncation. Bottom right subplot: target distribution
πT final distribution, which is the target distribution.
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figure 8.4 Red circles depict the project’s observation realizations x1, x2, x3, . . . , xn on the unit disk in
the complex plane for a severity model LogNormal(μ = 1, σ = 2). In the dashed black line we see the ECF
estimated for the model from the data and the solid black line demonstrates the true characteristic function.
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figure 8.7 Distribution of the test statistic as a function of the number of random variables {λi}n
i=1

for n ∈ {2, 10, 20, 30, 50, 100}. Top subplot is for weight function Case 1 and the bottom subplot is for
weight function Case 2.
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figure 8.8 Top subplot: this plot shows the true copula contours used in this model, that is, a Frank
copula, and the points correspond to the pseudo data obtained by transformation through the empirical
marginals (i.e., using the marginal scaled ranks). Bottom subplot: this plot shows the contours of the joint
loss process density for

(
Z(1),Z(2)

)
.
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figure 9.5 Top subplot: This plot shows the effect of the skewness parameter g on the elongation
transformed severity distribution versus the base Gaussian distribution with g ∈ {0.1, 0.5, 0.75, 1}. In this
case, the other parameters were set to a = 3, b = 1, and h = 0.001. Bottom subplot: This plot shows the
effect of the kurtosis parameter h on the elongation transformed severity distribution versus the base
Gaussian distribution with h ∈ {0.01, 1, 5}. In this case, the other parameters were set to a = 0, b = 1, and
g = 1.
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figure 9.6 Top left subplot: This plot shows the effect of the skewness parameter g on the elongation
transformed severity distribution versus the base Gaussian distribution with g ∈ {0.1, 0.5, 0.75, 1}. In this
case, the other parameters were set to a = 3, b = 1, and h = 0.001. Top right subplot: This plot shows the
effect of the kurtosis parameter h on the elongation transformed severity distribution versus the base
Gaussian distribution with h ∈ {0.01, 1, 5}. In this case, the other parameters were set to a = 0, b = 1, and
g = 1. Bottom left subplot: This plot shows the effect of the skewness parameter g on the elongation
transformed severity distribution versus the base LogNormal(0, 1) distribution with g ∈ {0.1, 0.5, 0.75, 1}.
In this case, the other parameters were set to a = 3, b = 1, and h = 0.001. Bottom right subplot: This plot
shows the effect of the kurtosis parameter h on the elongation transformed severity distribution versus the
base LogNormal(0, 1) distribution with h ∈ {0.01, 1, 5}. In this case, the other parameters were set to
a = 0, b = 1, and g = 1.
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figure 9.10 Log of the exponential factorial function for a range of parameters ν and α.
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figure 16.1 Comparison of the penalty term induced by the log prior of the regression coefficient to
be either the exponential power distribution or the α-stable distribution (γEP = 2γα = 1). Top left q = 2,
Top right q = 1.5, Bottom Left q = 1, Bottom Right q = 0.5.
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figure 16.2 Normal regression with EP prior (q = 1): true function in blue - observed responses in
green-filled circles, posterior mean from SMC under model M3 in red and confidence region in gray
(5–95% percentiles).
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figure 16.3 Comparison of the shrinkage results obtained with the two different priors as q
decreases (blue: q = 1.5, red: q = 1, green: q = 0.8, black: q = 0.5). Top plot is EP prior and bottom plot is
a symmetric α-Stable prior.
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figure 16.4 Comparison of the approximation of the model posterior (blue: α, red: EP).
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figure 16.5 Poisson regression with α prior (q = 1): true function in blue, observed count responses
in green-filled circles, posterior mean from SMC under model M3 in red, and confidence region in gray
(5–95% percentiles).
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figure 16.7 Top: Assymetric Laplace densities for a range of parameter values. Bottom: ALD
skewness and kurtosis.
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