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Foreword

Today, as hundreds of genomes have been sequenced and thousands of proteins and
more than ten thousand metabolites have been identified, navigating safely through
this wealth of information without getting completely lost has become crucial for
research in, and teaching of, molecular biology.

Consequently, a considerable number of tools have been developed and put on
the market in the last two decades that describe the multitude of potential/putative
interactions between genes, proteins, metabolites, and other biologically relevant
compounds in terms of metabolic, genetic, signaling, and other networks, their aim
being to support all sorts of explorations through bio-data bases currently called
Systems Biology.

As a result, navigating safely through this wealth of information-processing tools
has become equally crucial for successful work in molecular biology.

To help perform such navigation tasks successfully, this book starts by providing
an extremely useful overview of existing tools for finding (or designing) and inves-
tigating metabolic, genetic, signaling, and other network databases, addressing also
user-relevant practical questions like

• Is the database viewable through a web browser?
• Is there a licensing fee?
• What is the data type (metabolic, gene regulatory, signaling, etc.)?
• Is the database developed/maintained by a curator or a computer?
• Is there any software for editing pathways?
• Is it possible to simulate the pathway?

It then goes on to introduce a specific such tool, that is, the fabulous “Cell Il-
lustrator 3.0” tool developed by the authors. The book explains in great detail how
this tool can be used for creating, analyzing, and simulating models explicating and
testing our current understanding of basic biological processes. They pertain, for
example, to
— the organization and control of metabolic networks and metabolic flux analysis,
— the regulation of gene transcription, processing, and translation, or

v



vi Foreword

— the processing of information via signaling pathways.

The book deals with such topics by providing a fascinating array of detailed
examples. Thus, it can serve as a perfect introduction to contemporary cell biology
for anybody who wants to quickly gain insight into the most important and topical
directions of research in this field. In particular, the book provides invaluable help
for anybody who wants to learn more about why and how the current big bio-data
bases can be used to develop and support Systems Biology research.

Therefore, any biology student can, and actually should, just work through these
examples on his own screen to quickly gain important and solid expertise and be-
come a valuable and well-informed member of the continuously growing Systems
Biology research community.

The authors Masao Nagasaki, Ayumu Saito, Atsushi Doi, Hiroshi Matsuno, and
Satoru Miyano have been working at the forefront of in silico-based biology for
quite a few years, and are highly respected in the community.

I am therefore very happy to have their book appear in this series, and I congrat-
ulate the publishers for the very good work they have done in dealing with the chal-
lenging task of appropriately editing such a strongly digitally-oriented manuscript.

Prof. Dr. Andreas Dress
Director

Department of Combinatorics and Geometry (DCG)
CAS-MPG Partner Institute for Computational Biology (PICB)

Shanghai Institutes for Biological Sciences (SIBS)
Chinese Academy of Sciences (CAS)

June 2008



Preface

It has been said that “Systems Biology” is an important postgenomic challenge in
biology to understand “life as systems”. That being said, what does it mean? What
can be done with signaling pathways, metabolic pathways, and gene regulatory net-
works using computers? For those with similar concerns or questions, this should
be the first book you consult for an understanding of Systems Biology.

The definition of Systems Biology varies from scientist to scientist. Some of you
may have skimmed books or scientific papers with “Systems Biology” in the title
and seen alien terms such as “robustness analysis”, “stochastic differential equa-
tions”, or “bifurcation analysis” fly by. Some may have felt that this is similar to
lining up toy soldiers called differential equations and making them march. Those
of you who have felt that way are the intended audience of this book.

Biological organisms consist of many molecules, such as proteins, which fulfill
their functions and interact with others. One of the ways to understand this system
is to construct the system in parts on a computer and analyze. Beneath the current
attentions to Systems Biology is the compilation of large amounts of genomic data
and biological knowledge on the parts that compose everything from bacteria to
human beings. Since the basic mechanisms of these parts have been considerably
well defined, it is now time to understand how the interactions between these parts
create the high degree of complexity in biological systems.

On one hand, man-made systems such as electrical circuits and machinery can be
made over and over once there are parts and blueprints, since the system is known
from the beginning. On the other hand, organisms are made by nature and evolution,
and there is a large gap between gathering the parts and understanding the system.
Modeling and simulation are necessary technologies to close this gap. In order to
understand this system, it needs to be modeled with a high-level language including
mathematics and entered into a computer for computation. We should say a good-
bye to messy (in Japanese, we say “Gochagocha”) printed diagrams with arrows and
circles of various shapes with narrations. This is the point of entry of “Cell Illustra-
tor”, which is a software tool for biological pathway modeling and simulation.

Reading the book and using Cell Illustrator bundled in the CD-ROM should make
it possible to create highly complex pathways and simulations. There is no need for
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viii Preface

prior knowledge in differential equations or programming. The prerequisites are
interest in biology, ability to operate a cell phone (or equivalent), and mathematical
ability of a standard middle school student or better.

Using Cell Illustrator, reading the book, and finishing the exercises—answers
are provided—should make you realize how easy this can be “(ˆoˆ)v”. Although
pathway drawing does not require any mathematical or programming skills, drawing
pathways may require some artistic sense. In addition, just by drawing pathways
using Cell Illustrator, pathway knowledge will become better organized, and the
reader should feel a sense of accomplishment. The columns interspersed in the book
are addendums and digressions; they can be skimmed at the reader’s discretion.

This book is designed and structured to be used for a semester-long course text at
the undergraduate level or can be used as a part of graduate courses. Chapter 1 de-
scribes a minimum biological knowledge and Chapters 2 and 3 explain some of the
important pathway databases and software tools together with their related concepts.
Chapter 4 describes the detailed first steps and elements for modeling pathways with
Cell Illustrator. The reader may find that graphical pictures representing biological
entities and processes help understanding the elements of pathways. Chapter 5 will
guide the reader to model three kinds of pathways in a step-by-step manner as ex-
ercises. Chapter 6 discusses the computational functionalities required for Systems
Biology. This book is an English translation of the original Japanese version pub-
lished by Kyoritsu Shuppan Co., Ltd. With this edition, the data on software and
database versions are updated and Chapter 6 is enhanced with some new topics.

We are grateful to many people. First and foremost, we would like to thank the
current and former members of the Cell System Markup Language Project: Emi
Ikeda, Euna Jeong, Kaname Kojima, Chen Li, Hiroko Nishihata, Kazuyuki Nu-
mata, Yayoi Sekiya, Yoshinori Tamada, Kazuko Ueno of Human Genme Center;
Kanji Hioka, Yuto Ikegami, Hironori Kitakaze, Yoshimasa Miwa, Daichi Saihara,
Tomoaki Yamamotoya of Yamaguchi University.

Andreas Dress should be specially acknowledged for the foreword of this book.
For this English version, we were encouraged by Holger Karas and Edgar Wingen-
der of BIOBASE and Wayne Wheeler of Springer U.K. as well as Koichi Nobusawa
and Yumiko Kita of Kyoritsu Shuppan Co., Ltd. for the original Japanese version.
Special thanks go to Jocelyne Bruand of UCSC and Tatsunori Hashimoto of Har-
vard University for helping this translation, and to Seiya Imoto, Rui Yamaguchi,
Teppei Shimamura, André Fujita, Yosuke Hatanaka, Eric Perrier, Jin Hwan Do, and
Takashi Yamamoto for their tremendous supports for Cell Illustrator.

Tokyo, Masao Nagasaki
June 2008 Ayumu Saito

Atsushi Doi
Hiroshi Matsuno

Satoru Miyano
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Chapter 1
Introduction

The primary aim of Systems Biology is “systems understanding of biology”. What
does this phrase mean? What can be done with “signaling pathway”, “gene regu-
latory network”, and “metabolic pathway” using computers? This book is meant
to be the first book for those people who have such questions and interests. Un-
derstanding the contents requires neither prior background knowledge/experiences
in differential equations nor computer programming. Reading this book by using
Cell Illustrator should enable the reader to make complex biological pathways for
simulation. In this chapter we explain the basics which constitute these biological
pathways.

1.1 Intracellular Events

A multitude of events occur within a cell. Inside, various molecules are fulfilling
their functions, creating energy and proteins necessary for the cell’s survival and
reproduction. On the surface of a cell, various molecules are receiving stimuli from
the outside. This resembles a human society, with its diversity of specialists. There
are proteins that transduce signals, and proteins that receive them. Some fulfill as
critical a role as creating energy for the cell, while others help metabolize other
molecules.

1.1.1 Transcription, Translation, and Regulation

The cell’s function, consisting of a variety of protein interactions, begins with the
production of protein from DNA information. First, genetic information, which is
coded as DNA in the nucleus, undergoes the process called transcription and pro-
duces mRNA. Ribosomes translate mRNA to protein. This process is called trans-
lation. The produced proteins have various functions. Some proteins move into the

1
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nucleus after synthesis and regulate the expression of certain genes by binding to
specific sites of the DNA. This regulation is activation or repression. In the former
case, the gene is up-regulated and so is expressed more; in the latter case, the gene is
down-regulated and may not be expressed at all. Thus, not all genes are necessarily
expressed at any given time. Even in the same person, depending on the cell type,
there exist cells with different patterns of gene expression. In addition, miRNA, a
type of RNA, has been recently discovered to influence expression regulation.

COLUMN 1

Small RNA

It is commonly known that “proteins form the bulk of cell function”. As mentioned
above, according to the central dogma of molecular biology, proteins are produced
by the sequence of transcription from DNA to mRNA and translation from mRNA
to protein. However, some of the transcribed RNA have unknown function, unlike
mRNA. This type of RNA was long thought to be garbage, and kept outside the
scope of investigation.

However, in 1993, one such RNA sequence was found to control the expression
of certain genes. Similar phenomena were discovered in the 21st century in other or-
ganisms, and these sequences became known as microRNA (miRNA). The miRNA
sequences are very short, with only 20-25 base pairs length. They are thought to
combine with protein and bind to a partially complementary mRNA, and prevent
its translation, rather than moving to the cytoplasm like mRNA. In other words, the
recently discovered miRNA is a type of molecule with the ability to block protein
translation. In plants, an analogous type of RNA, short interfering RNA (siRNA),
has been found to block viral RNA transcription. The roles of small RNA segments
are being investigated. In fact, it is often said that the first functional molecules on
the Earth resembled nucleic acids like RNA. Because nucleic acids carry informa-
tion, it could be said that they are the basis of life. As sustaining any system is costly
biologically, a sufficiently evolved organism has no reason to sustain any systems
useless to survival.

In conclusion, the biological networks are complex, and one must not forget that
there exist functional molecules other than proteins.
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1.1.2 Signaling Pathways and Proteins

On the other hand, some proteins are secreted outside cell walls after being pro-
duced, and transmit messages to other cells. These proteins, called ligands, transmit
messages, while others, called receptors, receive them. The three-dimensional struc-
tures of a ligand and receptor are complementary, resembling a molecular key and
lock; therefore, a ligand only binds to the receptor that matches its shape. Upon re-
ceiving the ligand, the receptor is activated, and transduces the signal to another pro-
tein. This protein in turn activates another protein. The network of molecules trans-
ducing the signals is called a signaling pathway or signal transduction pathway.
These signals reach the nucleus and lead to the aforementioned gene regulation.

1.1.3 Metabolism and Genes

The cell metabolizes the required compounds like ATP, amino acids, and sugars
necessary through a variety of chemical reactions. For example, ethanol is me-
tabolized to acetaldehyde which in turn becomes acetic acid. In addition to the
proper reagents, these metabolic reactions require enzymes, which are produced
from genes.

1.2 Intracellular Reactions and Pathways

A metabolic pathway is a network comprising many reactions. This is also the case
for a signal transduction pathway and gene regulatory network. We generally call
this network a pathway. Usually these pathways are visually represented as a net-
work diagram of genes and their products in textbooks and pathway databases.

Figure 1.1 is an example showing gene regulatory relationships. The gene Mdm2
inhibits the gene p53, which activates the gene Bax. The arrows that connect genes
show the various relations between genes.

Mdm2 p53 −→ Bax

Fig. 1.1

Figure 1.2 is an example of a signaling pathway. The ligand FasL carries the
apoptosis signal. The receptor Fas binds with FasL and transduces the signal by
activating Caspase 8. In a signaling pathway diagram, the arrow represents chemical
interaction such as the binding of protein to protein and phosphorylation.

The pathway for converting ethanol to acetic acid is usually represented as shown
in Figure 1.3. The arrows connect the metabolic products in order. Each arrow repre-
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FasL (Ligand) −→ Fas (Receptor) −→ Caspase8 (Enzyme)

Fig. 1.2

sents a certain metabolic reaction. Though omitted in this diagram, various enzymes
necessary will usually be included as part of the diagram.

This book explores such pathways in order to understand biological systems in
silico.

Ethanol −→ Acetaldehyde −→ Acetic acid

Fig. 1.3



Chapter 2
Pathway Databases

Pathway information is available through a large number of databases ranging from
high-quality databases created by professional curators to massive databases, cov-
ering a vast number of putative pathways, created through natural language pro-
cessing and text mining of abstracts. Because of the various differences in size,
quality, and/or property, it is necessary to use the right database for the user’s pur-
pose, regardless of whether it is for commercial or for public use. In this chapter we
introduce some of the major pathway databases. These databases can display path-
way diagrams, which combine metabolic, genetic, and signal networks based on the
literature. This chapter also covers some software applications for the production,
editing, and analysis of such pathways.

2.1 Major Pathway Databases

Pathway databases are being created all around the world. Each database strongly
reflects its builder’s intent and purpose. There are databases with detailed metabolic
pathways, while others have detailed signaling pathways. Most databases are cre-
ated by curators who read papers and extract pathway information which will be or-
ganized together with pathway diagrams in the databases. Others are created using
natural language processing and text mining, which extract from papers various bio-
logical relations such as gene regulatory relations and organize them into databases.
This chapter covers those databases focused on metabolic and signaling pathways.

Pathway information is often described in the XML (eXtensible Markup Lan-
guage) data format, which varies from database to database. This format can be
easily read by both computers and humans. The following example shows the in-
formation “The lecture with Id “5” will be given on 4/1/2007 by a person named
“masao nagasaki” in XML format:

<lecture id="5">
<date>2007-04-01</date>

5



6 2 Pathway Databases

<person>masao nagasaki</person>
</lecture>

In the following chapters, we use acronyms ending with “. . . ML”. This ending
simply indicates that the pathway information is stored in some variant of XML. In
this book, we do not go into the details of XML.

COLUMN 2

What’s XML?

XML is one of many self-extensible markup languages. Its proper name is Exten-
sible Markup Language. A markup language uses a sentence structure to list and
categorize information. XML was developed in 1996 by the XML Working Group,
part of the international standardization organization W3C. Because the creator can
define and share a file format, a creator can use a standardized XML format for mul-
tiple applications, while allowing for a high degree of expression not constrained by
the syntax.

2.1.1 KEGG

KEGG (Kyoto Encyclopedia of Genes and Genomes) (http://www.kegg.jp/) is a
series of databases developed by both the Bioinformatics Center of Kyoto Uni-
versity and the Human Genome Center of the University of Tokyo. This database
has been available for over 10 years. As the name encyclopedia suggests, the
database includes information necessary for systems understanding of biology, such
as genome sequences and chemical information (Figure 2.1). With its goal of col-
lecting all knowledge relevant to biological systems, including the environmental
information, KEGG will be a true encyclopedia. The “Pathway” section of KEGG
consists mainly of metabolic pathways. For noncommercial uses, the license is
free, while for commercial uses, the license is sold from Pathway Solutions Inc.
(http://www.pathway.jp/).

KEGG is unique for its focus and coverage of yeast, mouse, and human metabolic
pathways. Currently, signaling pathways for cell cycles and apoptosis are being ex-
panded. New pathways are created by professionals (curators) who read and sum-
marize the relevant literature. The information is displayed as a browser-viewable

http://www.kegg.jp/
http://www.pathway.jp/
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Fig. 2.1

pathway diagram. For example, one could search for the existence of a metabolic
pathway from substance A to B, or the required enzymes for such a reaction. In
addition, the database has links to relevant information such as genome sequences,
positions, and conditions. The database is stored in a format called KEGGML. Since
the pathways are then displayed as GIF files, the user cannot easily edit the pathway
information.
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2.1.2 BioCyc

BioCyc is a pathway database provided by SRI International (http://www.biocyc.org/).
The database is a high-quality database focused on metabolic pathways originally
formed by SRI International’s bioinformatics research group. Related to BioCyc are
the EcoCyc, MetaCyc, HumanCyc databases. Licenses are free for academic and
nonprofit uses. Humans and E. coli are the major organisms listed with a variety
of others. EcoCyc is mainly a database of E. coli metabolic pathways. These reac-
tions are shown in the form of chemical equations. EcoCyc also contains a small
number of signaling pathways. Curators extracted the pathway knowledge from the
literature. Pathways are described with a proprietary format.

In addition, gene regulatory information upstream of the metabolic pathways is
also listed. In other words, there is a link from a metabolic pathway to the genes
coding enzymes and its regulators. The pathway map displays are separated in levels
of detail. At the most detailed level, the metabolic products are shown in terms of
the chemical equations.

2.1.3 Ingenuity Pathways Knowledge Base

Ingenuity Pathways Knowledge Base (IPKB) is the pathway database created by In-
genuity Systems Inc. (http://www.ingenuity.com/). All licenses, including academic
and nonprofit, require a fee. The database consists of gene regulatory and signaling
pathways. Curators extract knowledge from the literature for this database, which
currently contains human, mouse, and rat genetic information. (As of May 2008,
the website claims 13,600 human genes, 11,000 mouse genes, and 6,600 rat genes
cataloged.) The database uses the Ingenuity Pathways Analysis (IPA) software men-
tioned later to view and analyze pathway data and thus IPKB is inaccessible through
a web browser. Like KEGG and BioCyc, IPKB uses its own internal format for stor-
age. However, unlike KEGG and BioCyc, IPKB allows for the editing of pathways
through IPA. This edited data can later be exported as a graphic format such as SVG.

2.1.4 TRANSPATH

TRANSPATH is a gene regulatory and signaling pathway database created
by BIOBASE (http://www.biobase-international.com/). The most recent version
of the data requires a fee for both nonprofit and commercial uses. However,
some parts of the old data are provided to academic users as a trial version
(http://www.gene-regulation.com/). In addition to TRANSPATH, BIOBASE offers
the TRANSFAC database of transcription factors and PROTEOME database of
protein. It also provides a software ExPlain which combines and analyzes these
databases.

http://www.biocyc.org/
http://www.ingenuity.com/
http://www.biobase-international.com/
http://www.gene-regulation.com/
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TRANSPATH is formed similarly to those listed above through curators and
therefore maintains high quality. Pathways are listed using a proprietary format. If
the user has a license, the pathways are viewable from a web browser. In addition, it
is possible to download the data stored as text file. For example, the phosphorylation
of I-κB is shown below:

IkappaB-alpha, IkappaB-beta:p50:RelA +
ATP-IKK-alpha{p}:IKK-beta{p}:(IKK-gamma)2
-> IkappaB-alpha, IkappaB-beta{pS}:p50:RelA +
ADP (phosphorylation)

Each reaction has a link to the literature that confirms its existence. Therefore it
is easy to understand what each biochemical reaction means. Figure 2.2 shows the
IL-1 pathway displayed via a web browser, while Figure 2.3 displays the reaction
information from TRANSPATH shown through a web browser. (As of May 2008,
the website claims a total of 135,563 reactions mainly for human, mouse, and rat.)

2.1.5 ResNet

ResNet (http://www.ariadnegenomics.com/) is the pathway database created by Ari-
adne Genomics. Academic and commercial licenses require a fee. The pathways
of ResNet consist mainly of gene regulatory and signaling pathways. Unlike other
databases, ResNet is constructed through computer analysis. In other words, the
pathways and networks are created through natural language processing of rele-
vant literature. MedScan is used for this natural language processing procedure. The
database is constructed mainly from abstracts in PubMed, but some entries make use
of the full text. In addition, there are a small number of entries created by curators.

The pathway data created by MedScan can be viewed through the viewing tool
Pathway Studio. Similarly to other databases, MedScan uses its own proprietary
format. ResNet employs arrows with various labels to show the relationships be-
tween molecules. ‘+’ indicates activation, while ‘−’ indicates suppression. Rela-
tionships which cannot be determined are indicated with ‘?’. In addition, comments
are attached to the relation for nontrivial biological information. All such data are
completely user editable.

2.1.6 Signal Transduction Knowledge Environment (STKE):
Database of Cell Signaling

The database of Cell Signaling, a part of Signal Transduction Knowledge Environ-
ment (STKE) (http://stke.sciencemag.org/), is an online service provided by Sci-
ence. This is a high-quality signaling pathway database created and maintained by
curators. The database can be accessed by subscribing to the online service of Sci-

http://www.ariadnegenomics.com/
http://stke.sciencemag.org/
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Fig. 2.2

ence although user registration does grant limited functionality such as pathway
viewing. This database is accessible in GIF or SVG format through a web browser.
Similarly to KEGG and BioCyc, this makes the pathway uneditable in browser. Sim-
ilarly to ResNet, this database makes use of the labels ‘+’ for stimulatory relations,
‘−’ for inhibitory relations, ‘0’ for neutral relations, and ‘?’ for undefined relations.
A feature of this database is the separation of pathways into “specific” and “canoni-
cal”. Specific pathways are those which are unique to an organism, while canonical
pathways are those which are common. Unlike TRANSPATH or ResNet, however,
the user cannot specify a list of genes (proteins) and create a network on that selec-
tion.

The following information is available in this database (as of March 2007):

• Cell Biology (46 pathways)
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Fig. 2.3

• Developmental and Reproductive Biology (32 pathways)
• Immune, Inflammatory, and Defense Signaling (17 pathways)
• Microbiology (6 pathways)
• Neurobiology (5 pathways)
• Plant Biology (15 pathways)
• Stress, Death, and Survival Signaling (9 pathways)
• Pathways Implicated in Human Disease (11 pathways)

2.1.7 Reactome

Reactome is a pathway database containing cell metabolic and signaling pathways
(http://www.reactome.org/). Cold Spring Harbor Laboratory, European Bioinfor-

http://www.reactome.org/
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matics Institute, and Gene Ontology Consortium—which specifies Gene Ontology
mentioned later—are the main developers of the project. Although humans are the
main organism catalogued, it has data for 22 other species such as mouse and rat.
Pathway knowledge is extracted by curators.

Reactome’s pathways and reactions can be viewed but not edited through a web
browser. Though the storage format is proprietary, a large number of pathways can
be obtained in multiple formats. Human reactions are distributed through SBML
format, human protein relations are given through TSV format, and cellular event
information is given through the BioPAX format listed in Section 2.3.5. All data can
easily be downloaded and edited.

2.1.8 Metabolome.jp

Metabolome.jp (http://metabolome.jp/) is a metabolic pathway-focused database
created by some research labs led by the University of Tokyo Graduate School
of Frontier Sciences. Using an applet called ARM, pathways can be viewed and
edited through a browser. Pathways are created by curators. Each metabolic product
is shown with an atomic structural formula and it is possible to display a pathway
which considers atom movements. Unlike KEGG, it is possible to track the move-
ment of atoms in metabolic reactions. Pathway storage uses a proprietary format.

2.1.9 Summary and Conclusion

As described above, a variety of databases are available. The databases vary in the
types of information offered; there are metabolic pathway databases and signaling
pathway databases. In addition, there are differences in the organisms covered by the
databases. However, a common problem is that these databases do not have enough
information to permit simulating the pathways.

Pathway databases are constructed by curators or through the use of natural lan-
guage processing and text mining tools via computer. This difference affects the
characteristics of the databases significantly. Through methods such as natural lan-
guage processing, one has the advantage of a large breadth of literature which cu-
rators are unable to cover. In addition to the quality problem, however, there is usu-
ally the problem of lacking specific biological or experimental facts listed in the
database. Although it is likely that this technology will be improved in the future,
such databases are currently ancillary to those created by curators (such as IPKB or
TRANSPATH). Databases created by curators are on the whole more reliable and
detailed. Each pathway database has its own proprietary format. Although there are
formats such as SBML and BioPAX (mentioned later) which aim at standardizing
these formats, the current situation is not satisfactory in practice.

http://metabolome.jp/
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In addition to the databases introduced here, there are many other good pathway
databases. Some of them are:

• BioCarta: Signaling pathways (http://www.biocarta.com/)
• INOH: Signaling pathways (http://www.inoh.org/)
• iPath: Signaling pathways (http://www.invitrogen.com/content.cfm?pageid=10878)
• Molecular Interaction Map: Signaling pathways as well as gene regulatory net-

works (http://discover.nci.nih.gov/mim/index.jsp)

There are a myriad of databases which are not listed here. It is likely that
databases—whether or not they are listed here—will develop or disappear for a va-
riety of reasons: “Research fund is terminated.”; “The government fully supports the
database.”; “The database is commercialized.” When using a database, the following
items will be a useful guideline for assessment.

• Is the database viewable through a web browser?
• Is there a licensing fee?
• What is the data type (metabolic, gene regulatory, signaling, etc.)?
• Is the database developed through computer or curator?
• Is there any software for editing pathways?
• Is it possible to simulate the pathway?

2.2 Software for Pathway Display

Pathway information must somehow be displayed. In this section, we introduce soft-
ware applications that help visualize pathways.

2.2.1 Ingenuity Pathway Analysis (IPA)

Ingenuity Pathway Analysis (IPA) is the software used to display pathway data from
the Ingenuity Pathway Knowledge Base (IPKB) by Ingenuity Systems Inc. For a
given gene set, IPA automatically generates the pathways that are related to those
genes. This means that, for example, if one finds a set of genes with large gene
expression variance as a result of microarray analysis, IPA automatically generates
the pathway which involves those genes. The pathway is generated with a mixture
of human, mouse, and rat data. Therefore, it should be cautioned that there can be
no pathway in the real organism of the user’s interest even if IPA generates some
pathway.

http://www.biocarta.com/
http://www.inoh.org/
http://www.invitrogen.com/content.cfm?pageid=10878
http://discover.nci.nih.gov/mim/index.jsp
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2.2.2 Pathway Builder

Pathway Builder is a viewer that automatically generates pathways from the TRANS-
PATH database (http://www.biobase-international.com/). Pathway Builder can find
the pathways related to a set of genes and connect them to display as one pathway.
This allows to search and display genes upstream and downstream of the genes in
the set. Using this feature, one can find the genes whose transcriptions are activated
by a gene (downstream search) or find the genes which regulate a particular gene
(upstream search).

2.2.3 Pathway Studio

Pathway Studio is the viewer for Ariadne Genomics’ ResNet. Pathway Studio has a
function to add new molecules and user’s information into the pathway. The auto-
matic layout feature is one of the unique parts of this viewer. Like IPA and Pathway
Builder, Pathway Studio can search with gene names and create a pathway of genes
related to any given gene (or protein).

2.2.4 Connections Maps

Connections Maps is a viewer for Signal Transduction Knowledge Environment
(STKE): Database of Cell Signaling. This program creates the GIFs and SVGs of
the pathways according to the data created by curators called “Pathway Authori-
ties”. Genes and proteins have specific set symbols and colors, and the relations are
indicated with ‘+’ (activation), ‘−’ (repression), and ‘?’ (undefined). In addition,
the graphics have embedded links, which make it simple to get more detailed in-
formation. Because of the SVG format, the user is free to magnify any level of the
pathway. However, Connections Maps is unable to generate custom pathways from
a list of genes, unlike IPA and Pathway Builder.

2.2.5 Cytoscape

Cytoscape is a software tool designed to visualize the molecular interactions as a
network diagram (http://www.cytoscape.org/). It was developed mainly by the In-
stitute for Systems Biology and University of California San Diego as well as some
other institutions such as the Pasteur Institute, MSKCC, Agilent, and UCSF as an
open source project. The program is free to download and it requires the use of Java;
the current version (as of April 2008) is 2.6.0.

http://www.biobase-international.com/
http://www.cytoscape.org/
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The software can use protein–protein binding information, protein–DNA binding
information, and microarray data to provide a network view. The network visualiza-
tion is proprietary. Proteins and genes are shown as circles, triangles, and squares
(called nodes), while relationships are shown as lines (called edges). In addition
to nodes and edges, various attributes such as Gene Ontology or wet lab measure-
ments of expression can be added. Cytoscape has a filtering feature to show only
the network of interest. By using Gene Ontology in combination with filtering, it is
possible to show all the genes with a certain function.

In addition, analysis functionality can be provided as plugin. A number of plugins
have been developed for a variety of purposes. For example, a plugin provided by
Agilent allows Cytoscape to extract protein and genome information from textual
abstracts and display the results as a network.

A variety of storage formats can be imported, such as Simple Interaction File
(SIF), Graph Markup Language (GML), Extensible Graph Markup and Modeling
Language (XGMML), SBML, BioPAX, and PSI MI. Of these, GML and XGMML
are standard XML formats for graph (a set of vertices connected with edges) forma-
tion. SBML, BioPAX, and PSI MI will be mentioned later. The SIF format is, as the
name states, a simple format for showing interactions. For example, if protein A and
protein B act upon each other, one would simply put the interaction type between
the names and write in the following way:

A pp B (pp stands for protein-protein interaction)

2.3 File Formats for Pathways

2.3.1 Gene Ontology

Gene Ontology (GO) defines a common framework to organize biological concepts
(http://www.geneontology.org/). Ontology was originally studied in Artificial Intel-
ligence and is defined as “a hierarchical taxonomy of terms for a certain area of
knowledge”. The GO project began in the 1990s, and seeks to record genetic and
functional information in the same syntax to simplify database comparison. The
terms defined by GO are called GO terms and can be divided into the following
three categories:

• Biological processes
• Cellular components
• Molecular functions

These categories have terms such as “nuclear chromosome”, “chromosome”,
“nucleus”, and “cell”. Between these terms are relationships such as “is a” as in
“nuclear chromosome is a chromosome” or “part of ” as in “nucleus part of cell”.
These relationships are called ontologies. The relationships between such terms are
listed in a directed acyclic graph (DAG). A consortium has been formed adopting
GO and there are a large number of databases contributing to the project.

http://www.geneontology.org/
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2.3.2 PSI MI

Proteomics Standards Initiative (PSI) began around 2002 and attempts to standard-
ize data from mass spectrometry and protein–protein interaction experiments, in
order to facilitate data comparison and transfer (http://psidev.sourceforge.net/). PSI
MI is defined to handle information on protein-protein interactions.

2.3.3 CellML

CellML is the first Systems Biology XML format to integrate cellular level molec-
ular dynamics as a part of its format. Over 300 models have already been submitted
and displayed at the CellML Repository (http://www.cellml.org/). It is a format de-
veloped by the University of Auckland in New Zealand under the auspices of the
International Physiome Project. CellML 1.0 was published in 2000 and CellML1.1
is currently proposed. CellML is structured to include model structures, differential
equations-based dynamics information, and additional comments. To store all these,
CellML utilizes MathML, a math typesetting format for XML. The format seeks to
describe everything from the cellular to organ level by combining with FieldML
(http://www.physiome.org.nz/xml languages/fieldml/).

2.3.4 SBML

SBML (Systems Biology Markup Language) is one of the XML formats designed
to model biological reactions (http://www.sbml.org/). In 2001, SBML level 1 was
released, and in 2003, SBML level 2 was released. Like CellML, SBML was ex-
panded to include MathML support, spatial position and physical size information.

As of May 2008, SBML 2.3 is the current version. Currently, this format is ac-
tively heading towards level 3 release. An open source application called SBW (Sys-
tems Biology Workbench) has been developed to combine with other simulation
and analysis software for use with SBML. In addition, a database called BioMod-
els (http://www.ebi.ac.uk/biomodels/) based upon SBML, though small, has been
under development.

2.3.5 BioPAX

BioPAX was started in 2002 in order to encourage open source formats for path-
way information (http://www.biopax.org/). The format is defined by using OWL
(an XML type language used to define ontologies). BioPAX level 1 targets infor-
mation regarding compounds and metabolism. BioPAX level 2 targets molecular re-

http://psidev.sourceforge.net/
http://www.cellml.org/
http://www.physiome.org.nz/xml_languages/fieldml/
http://www.sbml.org/
http://www.ebi.ac.uk/biomodels/
http://www.biopax.org/
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lationships and includes information on molecular bindings, phosphorylation sites,
posttranslation modifications, as well as experimental data and pathway structures.
Discussions on BioPAX level 3 are developing so that it will include gene regulatory
and signaling pathways.

2.3.6 CSML/CSO

CSML (Cell System Markup Language) is an XML format designed to define
gene regulatory, metabolic, and signaling pathways with regard to system dynamics
(http://www.csml.org/). It has been developed at the Human Genome Center of the
University of Tokyo.

As of May 2008, CSML 3.0 is the newest version. In addition, CSML is widely
extensible and can import the CellML and SBML formats introduced in Sec-
tions 2.3.3 and 2.3.4.

Furthermore, in order to achieve a high level of compatibility with other data
formats, CSML defines and uses its own ontology format, Cell System Ontology
(CSO). CSO is an ontology which effectively describes dynamics and signal path-
ways not expressible by BioPAX introduced in Section 2.3.5. In addition, CSO de-
fines a large number of standardized icons (over 350) to be used for defining neces-
sary terms and relations (see Chapter 4, Figure 4.37). CSML pathways are displayed
in Cell Illustrator—software which will be described in Chapter 3—which uses
these icons. CSML models can be downloaded from the above URL (Figure 2.4).

http://www.csml.org/
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Fig. 2.4



Chapter 3
Pathway Simulation Software

In Chapter 2, we surveyed some pathway databases that are currently available.
In this chapter, we will present some of the pathway simulation software tools.
While pathway databases provide the information on a pathway with biological facts
mapped on a pathway illustration, most simulation software tools assume models to
be described with differential equations and programs, where variables represent the
concentrations of molecules and events which are hard to represent with differential
equations are described as a program in a general programming language, e.g., C++.
This may be one of the reasons why the simulation approach was not fully accepted
by the communities of molecular biology and medical sciences—these descriptions
are far from intuitive biological understanding. Generally speaking, a model is a
system represented with some kind of dynamical systems such as differential equa-
tions, and the process of creating such a model is called modeling. Recent advances
in graphical user interfaces (GUIs) of software applications for biological pathway
modeling and simulation have made it possible to create and simulate pathways in
a way just like “drawing”.

3.1 Simulation Software Backend

There are two key factors to keep in mind when evaluating simulation software
applications. The first is the method in simulation engine which we will call the
architecture. The second is the GUI used for modeling pathways. There are also
some additional matters to consider, e.g., license fees, OS (Windows, Linux, Mac
OS X), compatibility between models.

19



20 3 Pathway Simulation Software

3.1.1 Architecture: Deterministic, Probabilistic, or Hybrid?

This section is for readers who are interested in the architectures employed in soft-
ware application’s. Some technical terms are used without any detailed explana-
tions. Other readers can safely skip Section 3.1.1 since the rest of this book is not
dependent on this section.

Architecture, as used here, is the method used to describe a model. If the behavior
of an event (system) is deterministic and continuous, Ordinary Differential Equa-
tions (ODEs) and Partial Differential Equations (PDEs) are generally used for the
model. For example, enzyme reactions are often described with ODEs. In the case
of ODEs and PDEs, models can be simulated relatively fast. Furthermore, if a model
can be described with an established framework with ODEs, we can efficiently build
the model by selecting appropriate coefficients. In the case of a small system, this
enables rigorous mathematical analyses. If the event for modeling should include
probabilistic behaviors, we need to add other features. For the events involving dis-
crete behaviors such as switches, they can be approximated with special ODEs.

For such probabilistic events, Gillespie’s Direct method (GD), Gibson-Bruck
next reaction method (GB), Firth-Bray multistate stochastic method (FB), Gillespie
Tau-Leap method (TL), and Stochastic Petri Net method (SPN) are generally used.
The details of each architecture are outside the scope of this book. One feature of
these methods is that they can simplify modeling. At the same time, however, these
methods require more simulation time and the analysis of behaviors is usually more
complicated. Therefore these architectures are not a panacea and it may not be ap-
propriate to use these probabilistic methods if the details of the reactions are not
well-known. Of course, some events essentially require probabilistic features, and it
is important to consider the degree to which probabilistic action affects the model.

In addition to those two categories mentioned before, there are hybrid architec-
tures such as Vasudeva-Bhalla method (VB), Haseltine-Rawlings method (HR), and
Hybrid Functional Petri Net. These architectures allow for a higher degree of flexi-
bility than either deterministic or probabilistic models.

3.1.2 Methods of Pathway Modeling

As introduced in Chapter 2, there are many pathway model formats. Creating a path-
way model is to describe it with one of the formats which should include dynamics
in the pathway. The following can be considered to do this:

1) Utilize scripting and programming languages directly, such as C++, Java.
2) Write directly in a text format such as XML.
3) Use a GUI embedded in the simulation software. There are a variety of types

in GUIs that range from simple spreadsheets to highly human friendly draw-
ing canvases.
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3.2 Major Simulation Software Tools

Although there are many pathway simulation tools, some of them require some
programming skills. The software tools described here are those which are relatively
easy to use and install.

3.2.1 Gepasi/COPASI

Gepasi is one of the first programs developed to simulate intracellular reactions
(http://www.gepasi.org/). It runs on Windows. COPASI (http://www.copasi.org/) is
the successor to Gepasi, and it also runs on UNIX and Mac. These programs are
provided free of charge for noncommercial use. Intracellular reactions are modeled
using equations called “reactions”; these reactions are entered through a basic GUI.
The simulation results are displayed as a graph, and the architecture is based on
ordinary differential equations.

3.2.2 Virtual Cell

Virtual Cell (http://www.vcell.org/) is a cell modeling environment provided and
developed by the University of Connecticut Health Center. The program is freely
available to any researcher and distributed through an online environment called
Java Web Start. The program has a GUI with which the user can construct a path-
way by placing and connecting parts inside a cell diagram. A unique feature of
this program is that it can create 3D models. Models created using Virtual Cell are
shown on the website. The architecture is based on ordinary and partial differential
equations.

3.2.3 Systems Biology Workbench (SBW), Cell Designer,
JDesigner

Systems Biology Workbench (SBW) is a simulation environment for the SBML for-
mat. It is freely available on the project website (http://sbw.sourceforge.net/). SBW,
like some old programs, is a bare-bones simulation engine. Therefore, it must be
combined with a frontend such as Cell Designer (http://www.systems-biology.org/cd/)
or JDesigner (http://www.sys-bio.org/) which does not have the simulation capabil-
ity. Cell Designer and JDesigner have GUIs with which the user can create models
through parts selection and placement. SBW imports and simulates these models.
The architecture is a hybrid one (GD, GB like).

http://www.gepasi.org/
http://www.copasi.org/
http://www.vcell.org/
http://www.systems-biology.org/cd/
http://www.sys-bio.org/
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3.2.4 Dizzy

Dizzy is a Java simulator developed by the Institute for Systems Biology to simulate
probabilistic and deterministic biochemical reactions. As of May 2008, the latest
version is 1.11.3. Simulation results are shown as a graph. The architecture uses or-
dinary differential equations for deterministic reactions and Gilespie, Gibson-Bruck,
and Tau-Leap for probabilistic ones. Although it is possible to select either of these
two methods, it is not possible to mix both probabilistic and deterministic reactions
in one model. The program operates under Windows, Linux, and OS X.

3.2.5 E-Cell

E-Cell is a pioneering program developed by Keio University for modeling metabolic
reactions (http://www.e-cell.org/). The GUI can display the results but cannot dis-
play the pathway. As of February 2008, version 3.1.106 has been released under
GPL for Windows, Linux, and Mac OS X. Although very few models have been
created with E-Cell, it takes significant skills to quickly create a model. The archi-
tecture is a hybrid type.

3.2.6 Cell Illustrator

Cell Illustrator is a program developed by the Human Genome Center of the Univer-
sity of Tokyo. As of May 2008, the latest version is 3.0. The online version is also
released as Cell Illustrator Online 4.0 (see Section 6.3). It is currently distributed
from http://www.cellillustrator.com/. Unlike SBW mentioned in Section 3.2.3, both
drawing and simulation of pathways can be performed on a single tool (Figure 3.1).
Furthermore, the program automatically creates an underlying ontology through
modeling (drawing). The architecture is Hybrid Functional Petri Net with extension
(HFPNe) that is a highly flexible extension of Hybrid Functional Petri Net (HFPN).
The models created on Cell Illustrator are saved in the CSML format. Other formats
such as CellML and SBML can also be imported. University of Tokyo Institute
of Medical Science, Yamaguchi University Graduate School of Science and Engi-
neering, Queensland University Institute for Molecular Bioscience (IMB), and the
Visible Cell project led by ARC Bioinformatics Center currently use Cell Illustrator
and view it as a program capable of cutting-edge research.

From Chapter 4 onwards, this book will use Cell Illustrator to explain how to
model and simulate pathways. The CD-ROM included with this book has the Book
Edition of Cell Illustrator, which works under Windows, Linux, and Mac OS X.

Cell Illustrator also has a companion tool called Cell Animator, which can visu-
alize simulation results as animations (Figure 3.2).

http://www.e-cell.org/
http://www.cellillustrator.com/
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Fig. 3.1

Fig. 3.2
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3.2.7 Summary

Table 3.1 gives a comparison overview of the software tools introduced in this chap-
ter. Because there are programs which rapidly develop or cease development (espe-
cially free programs), it is important to evaluate the long-term reliability of such
software tools.

Table 3.1

Name Quality of GUI Architecture

Copasi � deterministic (ODE), analysis capabilities

Virtual Cell �� deterministic (ODE, PDE)

Cell Designer ���� none

JDesigner ���� none

SBW none hybrid (GD, GB, etc.)

Dizzy � hybrid (GD, DB, TL)

E-Cell � hybrid (HR)

Cell Illustrator ����� hybrid (HFPNe)



Chapter 4
Starting Cell Illustrator

In this chapter, we will use Cell Illustrator 3.0 (CI3.0) to understand the procedures
for creating and simulating pathway models. No expert knowledge in differential
equations or programming skill are required; the basic idea is to model and simulate
by drawing a pathway.

4.1 Installing Cell Illustrator

4.1.1 Operating Systems and Hardware Requirements

Cell Illustrator operates under almost any OS (Operating System) that can run Java
programs. Specifically, Cell Illustrator operates under Windows, Mac, and Linux.
Install Java Runtime Environment (JRE) version 1.5.0 or later to run Cell Illustrator.
There is no need to reinstall JRE if a newer version is already installed. Otherwise,
either download JRE from http://java.sun.com, or use the installation packages for
JRE 1.6.0 provided on the CD-ROM.

4.1.1.1 Supported Operating Systems

The following packages are prepared for Cell Illustrator depending on OS type and
“with or without” JRE (Java VM):

• Windows NT/2000/XP/Vista (without Java VM)
• Windows NT/2000/XP/Vista (with Java VM)
• Linux (without Java VM)
• Linux (with Java VM)
• Mac OS X 10.4.8 (Tiger) or later (no version with Java VM)

25
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4.1.1.2 Hardware Requirements

The following are the minimum requirements for running Cell Illustrator:

• CPU: 1 GHz
• RAM: 512 MB
• Disk Space: 100 MB

Under typical work load, the following are recommended specifications:

• CPU: over 2 GHz
• RAM: over 1 GB

4.1.2 Cell Illustrator Lineup

There are four versions of Cell Illustrator as of July 2007: Cell Illustrator Draw,
Cell Illustrator Standard/Classroom, and Cell Illustrator Professional. CI Draw is
free and retains full modeling capability, but lacks simulation capability. CI Stan-
dard/Classroom can simulate moderately sized pathways. (CI Classroom is the aca-
demic version of CI Standard.) CI Professional has no limitations, can create path-
ways of over 1000 elements, and can be used for the analysis of large-scale gene
networks. The 30-day trial editions are available for all versions.

On the CD-ROM is a simplified version of Cell Illustrator 3.0, which has func-
tionality between CI Draw and CI Standard. This version is more than capable of all
of the exercises in Chapters 4 and 5. If it becomes necessary to upgrade for larger
models, one license change is all that is needed. See http://www.cellillustrator.com/
for further information about licensing. Now let us approach Systems Biology with
Cell Illustrator 3.0.

4.1.3 Installing and Running Cell Illustrator

This section covers the installation of Cell Illustrator. Though this book uses the
installation to Windows Vista as an example, other Windows platforms should be
similar.

4.1.3.1 Installation on Windows

4.1.3.1.1 Without JRE or unknown

1) Install by clicking CI3.0 wj setup.exe in the CD-ROM.
2) After installation, CI will be registered in the start menu, click to start.

4.1.3.1.2 JRE is already installed.

http://www.cellillustrator.com/
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1) Install by clicking CI3.0 setup.exe in the CD-ROM.
2) After installation, CI will be registered in the start menu, click to start.

4.1.3.2 Installation on Mac OS X

The Mac version of CI does not have an installer with JRE embedded. Mac OS X can
update their JRE version by running “Software Update”. Note that Cell Illustrator
cannot be installed in the “Classic” environment.

1) Move CI3.0x m.tgz to any folder on your computer.
2) Double-click CI3.0x m.tgz to start installation.
3) After installation, the icon of Cell Illustrator will appear on the desktop. To

start, simply click the icon on the desktop.

4.1.3.3 Installation on Linux

Note that if there is already a JRE installed which is not version 1.5.0 or later, the
user needs to manually upgrade the JRE. The embedded JRE installer does not work.

4.1.3.3.1 Embedded JRE

1) Move CI3.0x lj.bin to any folder on your computer.
2) Run “chmod +x CI3.0x lj.bin” from a terminal such as xterm.
3) Run “./CI3.0x lj.bin” in the terminal (this will also install JRE).

To run Cell Illustrator, go to the newly made folder (usually called GNI) and run
“./CI”.

4.1.3.3.2 Installation without JRE Embedded

1) Move CI3.0x l.bin to any folder on your computer.
2) Run ”chmod +x CI3.0x l.bin” from a terminal such as xterm.
3) Run ”./CI3.0x l.bin” in the terminal” (this will also install JRE).

To run Cell Illustrator, go to the newly made folder (usually named GNI) and run
“./CI”.

4.1.3.4 Installation on Unix

Since the Unix version lacks an embedded JRE installer, please install JRE sepa-
rately if necessary.

1) Move CI3.0x u.jar to any folder on your computer.
2) Run “chmod +x CI3.0x u.jar”.
3) Run “./CI3.0x u.jar”.
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To run Cell Illustrator, go to the newly made folder (usually named GNI) and run
“./CI”.

4.1.4 License Install

If Cell Illustrator is installed using the installers on the CD-ROM, the license files
will automatically be installed. For example, in Windows (for the default installa-
tion), the directory

“C:\Program Files\GNI\Cell Illustrator 3.0”

contains a file named license.txt, which is the license file.
For other versions such as CI Classroom or CI Professional, manually place the

license files in the installation folder.

4.2 Basic Concepts in Cell Illustrator

4.2.1 Basic Concepts

Cell Illustrator uses a framework called the Petri net to model and simulate path-
ways. Carl A. Petri originally created the concept of Petri net as a mathematical
description of concurrent systems. Cell Illustrator uses an extension of this concept
for Systems Biology. This new concept is called a Hybrid Functional Petri Net with
extension (HFPNe). In order to facilitate biological understanding, we use alternate
terms to describe the notions in Petri net theory. As the basic architecture, Cell Illus-
trator employs the concept of HFPNe that leads to the following characteristics:

1) Pathway models can be built just like with a drawing tool.
2) Simulation can be done easily on the spot.
3) The same methodology can be applied to modeling simple pathways to com-

plex systems.

On Cell Illustrator, we make a pathway model with three kinds of elements, called
entity, process, and connector. Figure 4.1 shows the elements used in Cell Illustrator.

4.2.2 Entity

An entity describes “object” such as protein or mRNA. Three types of entities are
defined: discrete entity, continuous entity, and generic entity. These three types of
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Fig. 4.1

entity have different characteristics, and therefore, an effective modeling of a path-
way requires a proper use of these entities. These types are illustrated as shown in
Figure 4.2.

Fig. 4.2

A discrete entity has a discrete (0,1,2, . . .) value while a continuous entity can
hold any nonnegative real value. For example, a discrete entity could be used to de-
scribe the number of molecules of a specific protein, while a continuous entity could
be used to describe the concentration of the protein molecule. A generic entity can
handle any type of object; its main use in Cell Illustrator is focused on integer, real
number, string, and Boolean. We, however, omit the details about generic entities
because the advanced applications of generic entity are outside the scope of this
book.

Once placed on a canvas, an entity displays its three properties on the top left,
top right, and bottom left, as seen in Figure 4.3. Creating a canvas will be explained
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further in Section 4.3. These three fields are called Name, Variable, and Initial Value
which have the name of the entity, the variable name assigned to the entity, and the
initial value of this variable, respectively. The default for Name is an “e” followed
by a positive integer, while the default for Variable is an “m” followed by a positive
integer. The default for Initial Value is 0.

Fig. 4.3

There are three ways to modify the contents of the fields Name, Variable, and
Initial Value:

Method 1: Double-click on the target text of the entity on the canvas and edit di-
rectly (Figure 4.4).

Fig. 4.4

Method 2: Open the Element Settings Dialog and change the contents of the fields
for Name, Variable, and Initial Value as shown in Figure 4.5.

Method 3: Open the Element Lists Dialog, double-click the fields for Entity/Vari-
able/Initial Value, and change the contents as shown in Figure 4.6.

4.2.3 Process

A process is an “event” which occurs to entities such as proteins. A process could
represent a variety of events such as activation, binding, expression, transportation,
transcription, and translation. By combining entities with these processes, we can
create models so that the system behaviors of complex events and reactions can be
observed.

As in the case for entity, three types of processes are defined: discrete process,
continuous process, and generic process . Discrete process, continuous process, and
generic process are represented with the symbols in Figure 4.7. This book will cover
discrete and continuous processes and skip generic processes.
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Fig. 4.5

Fig. 4.6
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Fig. 4.7

Placing processes onto the canvas in Cell Illustrator, the three properties of a
process are shown in the top left, bottom left, and bottom right as seen in the left of
Figure 4.8. These three fields are called Name, Delay, and Speed which represent
the name of the process, the delay of the process (explained later), and the speed
of the process (explained later), respectively. By default, Name has a ‘p’ followed
by a positive integer and Delay and Speed have a value of 1. The delay is involved
only with discrete and generic processes, while the speed is involved with all types
of processes.

Fig. 4.8

There are three ways to modify the contents of the fields for Name, Delay, and
Speed:

Method 1. Double-click on the target text of the process on the canvas and edit
directly (Figure 4.9).

Fig. 4.9

Method 2. Open the Element Settings Dialog and change the contents of the fields
for Name, Delay, and Speed.

Method 3. Open the Element Lists Dialog, click the Process tab, and change the
contents of the fields for Name, Delay, and Speed.
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4.2.4 Connector

A connector is an “arrow” that connects an entity to a process or a process to an
entity. Connectors cannot connect entities to entities or processes to processes.

Specifically, a connector going from an entity to a process is called an input
connector, while a connector going from a process to an entity is called an output
connector. There are some combinations of entities and processes which cannot be
connected according to their types (see Table 4.1).

Three types of connectors are defined: process connector, inhibitory connector,
and association connector. These three types have symbols shown in Figure 4.10.
Any of these connectors can act as an input connector, but only the process connec-
tor can act as an output connector.

Fig. 4.10

Process connectors are the most versatile and can be used in any reaction. In-
hibitory connectors are used to show an inhibition from an entity to a process. An
association connector is used to denote an entity assisting a process. The specific
uses of each connector will be covered in detail in Section 4.7.

After connecting a process and an entity on a canvas, two properties are dis-
played on top and bottom, as shown in Figure 4.11. These two fields are called
Name and Threshold which represent the name of the connector and the threshold
of the connector (explained later), respectively. By default, Name has a ‘c’ followed
by a positive integer and Threshold has a value of 0.

Fig. 4.11

There are three ways to modify the contents of the fields for Name and Thresh-
old:

Method 1. Double-click on the target text of the connector on the canvas and edit
directly (Figure 4.12).

Method 2. Open the Element Settings Dialog and change the contents of the fields
for Name and Threshold.
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Fig. 4.12

Method 3. Open the Element Lists Dialog, click the Connector tab, and change
the contents of the fields for Name and Threshold.

4.2.5 Rules for Connecting Elements

Cell Illustrator defined the rules for connecting entities and processes with connec-
tors. As mentioned in Section 4.2.4, processes cannot be connected to processes and
entities cannot be connected to entities. Connectors connect processes and entities,
with limitations depending on the types of processes, entities, and connectors as
shown in Table 4.1. The rules are summarized as follows:

1) Inhibitory connectors and association connectors can only be used as input
connectors and not as output connectors. These connector types have no other
restrictions.

2) Process connectors cannot connect a continuous process to a discrete entity
and vice versa.

3) Process connectors can only connect generic entities to generic processes.

When attempting to connect elements on the canvas, a valid connection changes
the element outline green (Figure 4.13), while an invalid connection makes no
changes on the target (Figure 4.14). In this way, it is easy to recognize invalid con-
nections without remembering the rules on the canvas.

Fig. 4.13
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Table 4.1 Connection rules between entities and processes.

connector type input connector (process connector)

process type discrete continuous generic

discrete √ – √

continuous √ √ √
entity type

continuous – – √

connector type input connector (inhibitory/association connector)

process type discrete continuous generic

discrete √ √ √

continuous √ √ √
entity type

continuous √ √ √

connector type output connector (process connector)

process type discrete continuous generic

discrete √ – √

continuous √ √ √
entity type

continuous √ √ √

Fig. 4.14

4.2.6 Icons for Elements

Cell Illustrator has illustrated elements (icons for elements) in addition to the afore-
mentioned ones (explained further in Section 4.6). If these are not enough, users
can employ their custom-made illustrations for entities and processes. To change
the illustration of an element, first select the element and “right-click” → [Replace
Figure] → [Image] to paste the custom-made illustration. Using these features can
make pathway models far more readable. These custom elements have the same
variations and properties as their basic counterparts.
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4.2.6.1 Examples of Entity Icons

Protein mRNA DNA

4.2.6.2 Examples of Process Icons

Activation Cleavage Translocation

Transcription Translation Degradation

Phosphorylation Dephosphorylation Binding

4.3 Editing a Model on Cell Illustrator

After starting Cell Illustrator, the main window will be displayed (Figure 4.15). The
sections of the menu have names as given in Figure 4.15.

Creating or editing a new model requires a new canvas. There are two ways to
create a new canvas:

1) Click the icon on the top of the left tool bar. By hovering the mouse cursor
above the icon, Create New Canvas pops up.

2) Select [File] → [New] in the menu bar. Note that selecting [File] → [Close
File] or [Save] closes or saves the current canvas.

4.3.1 Adding Elements

Recall that there are three types of elements: entities, processes, and connectors.
Here are ways to add those elements to the canvas.
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Fig. 4.15

4.3.1.1 Adding Entities and Processes

There are four ways to add processes and entities onto the canvas:

1) From the top tool bar, select any of the icons , , , , ,
which represent entities and processes, and click on the location to place the
element.

2) Without selecting any elements, right-click the canvas and select Insert En-
tity/Insert Process to place a specific element on the canvas (Figure 4.16).

Fig. 4.16
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3) Select [Edit] → [Insert Entity] or [Edit] → [Insert Process] from the menu bar
to place the selected element (Figure 4.17). Elements added in this way will
be placed in the center of the canvas.

Fig. 4.17

4) Elements can be dragged and dropped from the Biological Elements Dialog,
which will be explained in detail further on.

4.3.1.2 Adding Connectors

Entities and processes are connected in the following way:

1) From the top tool bar, click on any of the icons , , which represent
connectors (Figure 4.18).

2) Select the source element from which the connector begins (Figure 4.19)
and select the destination element at which the connector ends (Figure 4.20).
There are some conditions on the combination of elements that can be con-
nected (refer to Table 4.1).
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Fig. 4.18

Fig. 4.19

Fig. 4.20

4.3.2 Model Editing and Canvas Controls

Here are the basic controls for editing the elements on a canvas.

4.3.2.1 Element Editing

Select the at the top tool bar to enter element selection mode.

4.3.2.2 Selecting and Moving Elements

Elements can be moved in element selection mode by clicking and dragging. Alter-
natively, elements can be moved using Shift and the mouse pointer. Multiple ele-
ments can be selected by dragging the mouse pointer around elements, or holding
Ctrl while selecting individual elements.
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4.3.2.3 Cut, Copy, and Paste

Select the element with element selection mode. Then Cut, Copy, and Paste can be
done in the following way:

1) Right-click and select [Cut], [Copy], or [Paste].
2) Select [Edit] → [Cut], [Copy], or [Paste] in the menu bar.
3) Press Ctrl+x, Ctrl+c, or Ctrl+v on the keyboard.

After pasting, the connectors can be bent back into shape by grabbing the small
black square (under the label ‘c1’ in Figure 4.20) in the center of the connector
and moving the vertex.

4.3.2.4 Other Canvas Operations

Most common operations are placed at the top tool bar:

“Edit Parts” shows the set of ready-made pathway parts.

“Create Frame” creates a frame for the canvas.
“Create Note” adds comments to the canvas.
“Manual Move” pans the canvas when the canvas exceeds screen size. Sim-
ilar commands are available in the Navigator Dialog.

“Zoom In” zooms in and displays the canvas.

“Zoom Out” zooms out and displays the canvas.

“Reset Zoom” returns the canvas to its original magnification.

“Fit Selection to Canvas Size” changes the magnification and pans to fit all
selected elements. If no elements are selected, then the canvas size is made
to fit all elements.
“Group” treats all selected elements as one group. If one element of a group
is selected, the rest of the group is automatically selected.

“Ungroup” returns a grouped element to its previous state.

“Load Image” loads and adds an image to the canvas.

“Set Color” changes the color for the property of the element selected by the
icons of “Select Color Tool”.

“Select Color Tool” determines which part of the element is colored

by the “Set Color” operation. specifies the inside of the element,

specifies the outer rim of the element, and specifies the color of the text
for the element.
“Set Stroke” sets the line width for the selected element.
“Toggle Grid Visible Status” toggles the visibility of the canvas grid.

“Toggle Antialiasing Status” changes the rendering method of the canvas.
When antialiasing is activated, the models look smoother.
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“Go To BioPACS” imports the KEGG metabolic pathways using BioPACS.
BioPACS is a tool that automatically converts KEGG metabolic pathways
for use by Cell Illustrator.

4.4 Simulating Models

After a model is built, the next step is to simulate this model. Here are the minimal
settings required for simulation.

4.4.1 Simulation Settings

The various settings for simulation are accessed through the Simulation Settings

Dialog (Figure 4.21). This dialog is displayed by clicking the icon on the right
tool bar.

This dialog has the following eight fields:

1) Sampling Interval
2) Chart Update Interval
3) Log Update Interval
4) Simulation Time
5) Continuous Weak Firing
6) Discrete Weak Firing
7) Firing Accuracy
8) Simulation Speed

Normally, the field of Simulation Time, which defines the time until the simulation
stops, is required. For example, if this field is set to 100[pt], then the simulation will
start at 0[pt] and stop at 100[pt]. Here, [pt] means Petri net time and is functionally
equivalent to a unit of time such as the second. The default value is 1000[pt]. For
the exercises in this book, however, 100[pt] is more than enough.

4.4.2 Graph Settings

Once the execution of simulation begins, each entity begins to vary according to the
simulation state. Cell Illustrator can plot this change onto a graph. Although there
are a few ways to create a graph, we show the simplest one:

Step 1: Select the entity to be shown on the graph. More than one entity can be
selected (Figure 4.22).
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Fig. 4.21

Fig. 4.22

Step 2: Right-click and select [Create Chart] on the canvas (Figure 4.22). This
will result in a chart as seen in Figure 4.23.

Charts cannot be deleted in this method. Editing and deleting graphs are done

through the Chart Settings Dialog (accessed through on the right tool bar).



4.4 Simulating Models 43

Fig. 4.23

4.4.3 Executing Simulation

After setting the parameters for the simulation and graph (although it is not always
necessary to set graph parameters), it is time for evaluating the model by executing

simulation. There are a few types of buttons for different types of execution. is

for standard speed execution. is for execution with animation. is for fast

forward execution. is for high-speed execution. is for one-step execution,

and is for one-step execution with animation. Here, the normal speed sets 1[pt]
to one second, and the high-speed execution depends on the processing power of the
host computer.

Before execution, the canvas must be saved by selecting either “Save Current

Canvas” or “Save Canvas To Selected File” . Attempting to execute by
before saving will bring up a dialog prompting the user to save. Note that the canvas
cannot be edited while the model is being executed; in order to stop the simulation,

as you like (firstly) need to press .
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4.5 Simulation Parameters and Rules

As explained before, one can create a model by placing entities and processes on
a canvas and by linking them with connectors. This section describes the basic pa-
rameters and functions of each basic element.

4.5.1 Creating a Model with Discrete Entity and Process

Create the model shown in Figure 4.24 in the following way:

Step 1: Place three discrete entities e1, e2, and e3 on the canvas.
Step 2: Place one discrete process p1 on the canvas.
Step 3: Draw two process connectors c1 and c2 from e1 and e2 on the left to p1

in the center.
Step 4: Draw a process connector c3 from p1 to e3.
Step 5: Select discrete entities e1, e2, and e3 and create a graph (using [Create

Chart]).

Fig. 4.24

Once the model is done, save and press the execution button (or ) to
execute the simulation. However, as seen in Figure 4.25 the values of the entities
will remain at 0.

4.5.1.1 Initial Value

To create nonzero response, the initial values for the entities e1 and e2 will be
changed to 10 as seen in Figure 4.26. If the simulation is still being executed, first

stop the simulation using and then enter 10 into the field of Initial Value. Now
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Fig. 4.25

press the execution button (or ) again. Then it displays a graph like Fig-
ure 4.27. The entities e1 and e2 will drop to zero and e3 will go to 10 but no further
changes will occur.

Fig. 4.26

4.5.1.2 Speed

Figure 4.27 shows that the values for e1 and e2 become 0 at time 10[pt]. Change
the speed of process p1 from 1 to 2, execute, and look at the graph. Now as in
Figure 4.28, e1 and e2 become 0 and e3 became 10 at time 5[pt]. As seen here, the
speed determines the rate at which e1 and e2 decrease and e3 increases.
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Fig. 4.27

Fig. 4.28
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4.5.1.3 Threshold and Conditions for Process Execution

Process p1 is connected to entities e1 and e2 with input connectors c1 and c2. The
threshold for both these connectors are set to 0. Now set the threshold for connector
c1 to 5 and reexecute the model. As seen in Figure 4.29, the entities do not change
after 3[pt]. This is because p1 was not executable (this notion is called firable in Petri
net theory). In order to execute, the following two conditions must be satisfied:

1) The entities e1 and e2 which are connected to p1 must have values greater
than the thresholds of c1 and c2, respectively.

2) Entities e1 and e2 have values greater than or equal to the speed of p1.

At time 3[pt], entities e1 and e2 have value 4. The value of entity e2 is higher
than the threshold value of connector c2(0), but the value of entity e1 is less than the
threshold value of connector c1(5). Therefore p1 is not executable and the entities
connected to process p1 do not change.

Fig. 4.29

Next, set the initial value of e2 to 5 and reexecute the simulation. Then as shown
in Figure 4.30, the model will cease execution at 2[pt] with “Warning”. Although
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the value of e1 is 6 and greater than c1 threshold of 5, e2 has a value of 1 which is
less than the process speed of 2. This causes the simulation to halt even though e2
fulfills the first condition of being greater than the threshold. If “�Do not show this
warning message for the model” is checked and “No” is pressed, this warning will
disappear and the simulation will continue. This behavior is the same for 3-input
connectors, while in the case that there are no input connectors, there is no chance
of halting. The threshold does not necessarily have to be an integer. Any nonnegative
real number can be selected.

Fig. 4.30

4.5.1.4 Delay

In the same model, change the delay of p1 from 1 to 2 and reexecute the model. The
graph will show a similar behavior in Figure 4.31. While there is a decrease of 2 for
every 1[pt] in Figure 4.30, there is a decrease of 2 for every 2[pt] in Figure 4.31.
In Figure 4.31, e1 and e2 have values of 8 and 3 at 2[pt], respectively, and p1 is
executable. After 2[pt], the value decreases again at 4[pt] where the values decrease
by the process speed of 2 and e1 and e2 have values of 6 and 1, respectively. This is
because process p1 is executed after a delay of 2[pt] once p1 becomes executable.
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As seen in this example, the delay is the time between the time when it becomes exe-
cutable and the time when it is executed. Once the process reaches 4[pt], the process
is no longer executable and therefore stays the same. In Figure 4.30, the delay is set
to 1. Therefore the process begins to be executed 1[pt] after it becomes executable,
and it is executed and the value of the entity is decreased by 2 at every 1[pt].

Fig. 4.31

4.5.2 Creating a Model with Continuous Entity and Process

Create the model shown in Figure 4.32 in the following way:

Step 1: Place three continuous entities e1, e2, and e3 on the canvas.
Step 2: Place one continuous process p1 on the canvas.
Step 3: Draw two process connectors c1 and c2 from e1 and e2 to p1.
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Step 4: Draw a process connector from p1 to the continuous entity e3.
Step 5: Select all continuous entities e1, e2, and e3 and create a graph (using

[Create Chart]).

Fig. 4.32

4.5.2.1 Initial Value, Speed, and Threshold

While discrete entities can only hold integer values, continuous entities can hold
any nonnegative real numbers. Similarly, initial values for continuous entities can
be any nonnegative real numbers. Here, set the initial values for e1 and e2 to 10,
and set the thresholds for connectors c1 and c2 to 5 and 0, respectively. Although
discrete processes have the speed and delay properties, continuous processes have
only the property of speed. In Figure 4.33, the speed of p1 is set to 1.

Fig. 4.33
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4.5.2.2 Conditions for Process Execution

A continuous process is executable if all entities connected to its input connectors
have values greater than or equal to their thresholds. As long as the process is ex-
ecutable, the process is executed and this execution will decrease the value of each
entity at some rate while increasing the entity on the output connector at some rate.
Although Figure 4.33 has only one output connector, the same increase applies for
two or more connectors. By executing the model shown in Figure 4.33, the resulting
graph should look like Figure 4.34. The values of entities e1 and e2 will be de-
creased from the initial value at speed 1, and the value of e3 is increased at speed 1
until e1 and e2 reach the value 5 at which point the process is not executable. Since
a discrete process has a delay between “becoming executable” and “execution”, the
graph is step-like as shown in Figure 4.29.

Fig. 4.34

4.5.3 Concepts of Discrete and Continuous

Cell Illustrator can describe a hybrid event consisting of discrete and continuous
elements by using entities and processes.

Discrete representation (0,1,2, . . .) is suited for events which can be described
with integers. For example, a digital clock which changes value every minute is a
discrete event. Biologically, molecular quantity is often represented using discrete
entities. For example, discrete entities can be used to describe an mRNA which
functions in few copy numbers in a cell. As other usage, they can be used to model
the switching regulation in a cell, e.g. on/off regulation by transcription factor.

On the other hand, continuous is well suited for concentrations and values which
are continuously changing. In the case of ATP and other molecules produced in
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mass, it is more reasonable to treat the whole unit as a concentration. If “discrete”
is a digital clock, then “continuous” is an analog clock.

The graphical differences for discrete and continuous representations are shown
in Figure 4.35. The discrete graph, which uses only integers, looks step-like, while
the continuous graph shows a smooth line.

Fig. 4.35

4.6 Pathway Modeling Using Illustrated Elements

As explained in Section 4.2.6, Cell Illustrator has illustrated biological entities such
as mRNAs and proteins and biological processes such as phosphorylation. These
illustrated elements are called biological elements. These biological elements allow
us to create pathway models more easily in the following way:

Step 1: Click the icon on the right tool bar. Then the Biological Elements
Dialog will be shown as in Figure 4.36.

Step 2: In this dialog there are three tabs: Entity, Process, and Cell Component,
as seen in Figure 4.37. Under the element listing is a selection of element
type: continuous, discrete, or generic. The cell components are used to
specify the locations of entities and processes in the cell. By placing them
at the appropriate locations on the selected cell component, the model will
be enhanced by knowledge such as subcellular localization information.

Step 3: Add these elements from the dialog by dragging and dropping as in Fig-
ure 4.38.
Dropping an illustrated element on an existing element updates its prop-
erties (such as graphics and ontology). This can be used to speed up the
process of updating a model.
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Fig. 4.36

Fig. 4.37
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Fig. 4.38

COLUMN 3

Ontology and Illustrated Elements

In Section 4.6, the illustrated elements were explained simply as elements with pic-
tures. However, actually, every illustrated element has a predefined set of ontologies.
Cell Illustrator makes use of an ontology called CSO (Cell System Ontology) which
strictly defines the relationship between biological terms. Cell Illustrator transpar-
ently implements this so that the user creates a pathway with the ability to distribute,
reuse, and validate, with nearly no work.
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4.7 Creating Pathway Models Using Cell Illustrator

In this section, we will model several well-known biological events. These exam-
ples will serve as tutorials for modeling biological pathways. For these examples,
continuous entities and processes are used unless specified otherwise.

4.7.1 Degradation

Inside the cell, mRNA and protein naturally break down. These reactions
are called degradation. This type of reaction can be modeled in the following way

by using a degradation process :

Step 1: Place an entity on the canvas. Set the name and initial value of the
entity to some appropriate value such as (name, initial value)=(p53, 100).

Step 2: Place a degradation process on the canvas.

Step 3: Create a process connector from the entity p53 to the degradation

process .
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Step 4: Specify the degradation speed by setting the speed on the degradation

process . The default value is set to 1.

This leads to the model in Figure 4.39.

Fig. 4.39

Execute the model and make a graph for p53 . The resulting graph should
look like Figure 4.40. In the above model, the degradation speed is not dependent
on the concentration of p53 . In order to make the degradation more realistic by

adding p53 dependency, change the parameter of the degradation process to
“m1/10” using the variable name (m1) assigned to p53 (Figure 4.41). The result
should look like Figure 4.42.

Fig. 4.40
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Fig. 4.41

Fig. 4.42

4.7.2 Translocation

Inside the cell, mRNAs and proteins are transported to and from a variety of places
such as from the cytoplasm to the nucleus, or from the nucleus to the Golgi body.
This process is called a translocation. These actions can be modeled in the following

way by using a translocation process :

Step 1: Place common cell components by pressing “Edit Parts” and selecting
[cells] → [animal cell nucleus] (Figure 4.43). Although it is possible to
add each cell component from the Biological Elements Dialog, commonly
used sets such as these are placed in .

Step 2: Place an entity in the cytoplasm and nucleoplasm and name them
“p53 cytoplasm” and “p53 nuclear”. In addition, set the initial value. In
this example, set cytoplasmic p53 to 100 and nucleoplasmic p53 to 0.
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Fig. 4.43

Step 3: Place a process near the nuclear membrane and name appropriately.
For example, a name could be “translocation”. Then create a connector c1

from cytoplasmic p53 to translocation process and then another

connector c2 from translocation process to nucleoplasmic p53 .
Step 4: Set the translocation speed as the process speed. The default value is 1.

This model should look like Figure 4.44. The graphs for cytoplasmic p53 and
nucleoplasmic p53 are shown in Figure 4.45.

Fig. 4.44
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Fig. 4.45

If, like the previous example, the translocation speed depends on p53 concentra-

tion, then set the process speed to be dependent such as “m1/10” (Figure 4.46).
The simulation result is shown in Figure 4.47.

Fig. 4.46

Now, for the types of entities and processes used in Step 1 and Step 2, the connec-
tion rules dictate that for (nucleoplasmic p53, process, cytoplasmic p53): (discrete,
discrete, discrete), (discrete, discrete, continuous), (continuous, discrete, discrete),
(continuous, discrete, continuous), (continuous, continuous, continuous) are possi-
ble.
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Fig. 4.47

4.7.3 Transcription

The transcription model for producing mRNA can be modeled in Cell Illustrator

with the following steps by using a transcription process :

Step 1: Press “Edit Parts” icon on the top tool bar and select [cells] → [ani-
mal cell nucleus]. Appropriate cell components will be placed on the can-
vas with this operation.

Step 2: Place the transcription process on the canvas, and set the contents of
the field for Name to an appropriate value. For this example, rename it
“transcription”.

Step 3: Place the entity on the canvas and name it appropriately, such as
“mRNA p53”.

Step 4: Draw a process connector from the transcription process to the entity
mRNA p53 .

Step 5: Set the transcription rate by changing the contents of the field for Speed

in the transcription process . The default value is 1.

The resulting model should look like Figure 4.48.
The graph for mRNA p53 by simulation is shown in Figure 4.49.
By the connection rules of entities and process, the entity and process of Steps 1

and 2 can take on the types (transcription, mRNA p53): (discrete, discrete), (dis-
crete, continuous), (continuous, continuous).

Normally mRNA is degrading at the same time as transcription. The model in
Figure 4.50 adds a degradation model to the previous transcription model in Sec-
tion 4.7.1. The simulation result looks like Figure 4.51.

Although in this model only the final amount of mRNA produced is modeled,
the intermediate stages can be modeled using generic entities and processes. This
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Fig. 4.48

Fig. 4.49

generic model is lightly covered in Column 5 at the end of this chapter, this topic is
outside the scope of this introductory textbook.
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Fig. 4.50

Fig. 4.51

4.7.4 Binding

Inside the cell, multiple proteins often combine to form a complex. This event is
called binding and can be modeled in the following way by using a binding process

:
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Step 1: Place three entities , , on the canvas. Set appropriate names
and initial values such as (name, initial value)=(p53, 100), (mdm2, 50),
(p53 mdm2,0).

Step 2: Place the process on the canvas. Set an appropriate name such as
“binding”.

Step 3: Create process connectors from p53 and mdm2 to process binding

. Then create a connector from process binding to entity p53 mdm2

.
Step 4: Set the binding rate by changing the speed of the binding process .

The default value is 1.

The result is given in Figure 4.52.

Fig. 4.52

Creating a graph for all entities in this model, the result should look like Fig-
ure 4.53.

Fig. 4.53

If the binding rate relies upon entities p53 (variable m1) and mdm2
(variable m2), the process speed should be set to (m1*m2)/300 (300 is an arbitrary
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constant). In this case, the model looks like Figure 4.54 and the simulation result
looks like Figure 4.55.

Fig. 4.54

Fig. 4.55

For the combinations of element types possible in Steps 1 and 2, there are nine
possible patterns; the specifics are left as an exercise to the reader.

4.7.5 Dissociation

There are cases in which a protein complex will break into its original proteins.
This event is called dissociation and can be modeled in the following way by using

a dissociation process :

Step 1: Place three entities , , on the canvas. Set appropriate names
and values for each entity. For example, (name, initial value)=(p53, 50),
(mdm2, 0), (p53 mdm2, 50).
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Step 2: Place the process on the canvas and set the process name. For this
example, set process name to “dissociation”.

Step 3: Create a process connector from entity p53 mdm2 to process . In

addition, create process connector from the process to p53 and
mdm2 .

Step 4: Set the dissociation rate as the speed of the process . The default value
is 1.

The result should look like Figure 4.56.

Fig. 4.56

Creating a graph for all entities in this model and executing its simulation, the
result should look like Figure 4.57.

Fig. 4.57

If the dissociation rate depends on the concentration of p53 mdm2 , set the
dissociation rate to be an appropriate value. For example, m3/20 would be an ar-
bitrary but dependent value. In this case, the model looks like Figure 4.58 and the
simulation result should look like Figure 4.59.

Similar to the previous event, there are nine possible patterns for the combina-
tions of entities and processes given in Steps 1 and 2.
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Fig. 4.58

Fig. 4.59

Note that if the entity and process are both discrete, then it is impossible to make
the dissociation rate fully dependent on p53 mdm2 concentration.

4.7.6 Inhibition

Up until now all connectors used were process connectors. This example will utilize
the inhibitory connector, one of the two types of connectors remaining, which acts
as inhibition of a process.

Inside the cell, it is possible to block transcription with certain drugs. By modi-
fying the model used in Section 4.7.3 with an inhibitory connector, we can simulate
this event:

Step 1: Add some entity to the canvas. And set an appropriate name such as
“doxorubicin”.

Step 2: Add a process to the canvas and draw a process connector from this

process to doxorubicin .

Step 3: Draw an inhibitory connector from doxorubicin to the transcription

process . The default value of the threshold is set to 0.
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Step 4: Connect the process transcription to the entity mRNA using a
process connector.

The result should look like Figure 4.60.

Fig. 4.60

The inhibitory connector has the effect of inhibiting a certain process. The thresh-
old determines whether or not a process is completely inhibited: if the value is
greater than the threshold, the process will not be executed.

In this model, as is seen in Figure 4.60, the initial value of doxorubicin is 0,

so initially the transcription process is executed, but right after, the doxorubicin

value becomes greater than 0 and the transcription process is stopped as in
Figure 4.61.

Fig. 4.61

The strength of a drug can be specified through the threshold value. For example,
if the threshold is raised to 5 (Figure 4.62), the drug is a weak drug which has effects
only when used at values of 5 or higher (Figure 4.63).
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Fig. 4.62

Fig. 4.63

Now for the entity and process added in Steps 1 and 3, combinations of
(discrete, discrete), (discrete, continuous), and (continuous, continuous) are possi-
ble.

4.7.7 Phosphorylation by Enzyme Reaction

This example uses the association connector, the last unused connector.
Enzyme reactions are key to cellular processes. Although enzymes are not af-

fected by the reactions, they help speed the reactions. These types of events can be
modeled by using the association connector. The model below shows phosphoryla-

tion using an enzyme and a phosphorylation process :

Step 1: Add two entities and to the canvas. Set appropriate names and
initial values such as (name, initial value)=(p53,10), (p53{p},0).

Step 2: Add a phosphorylation process to the canvas. Set an appropriate name
such as “phosphorylation”. Then draw a process connector from entity
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p53 to phosphorylation and another from phosphorylation to
p53{p} .

Step 3: Set the enzyme reaction speed by changing the speed of the phosphoryla-

tion process . The default value should be set to 1.

Step 4: Add another entity as an enzyme and set an appropriate name such as
“CAK”.

Step 5: Add a translation process to the canvas and draw a process connector

from translation to CAK .
Step 6: Draw an association connector from CAK to phosphorylation .
Step 7: Though the default value of the threshold is 0, for the purpose of demon-

strating the association connector, set this to 1.

The resulting model should look like Figure 4.64.

Fig. 4.64

The association connector helps modeling enzyme reactions. The connector is
activated when the value of the entity is greater than the threshold. Although the
connector acts nearly identically to the process connector, the association connector

does not decrease the contents of entity (CAK ) by executing the process (the

phosphorylation process ), similar to a real enzyme action.
Creating graphs for all entities in this model, the result of simulation should look

like Figure 4.65.

In this model, the initial value of CAK is 0 as is given in Figure 4.64, and

therefore initially the association connector is not active and the phosphorylation

process is not executable. Soon after, the value of CAK becomes greater

than 1 and it activates the association connector , which starts the phosphorylation

process .
The strength of enzymes can be represented by the threshold. For example, if the

enzyme threshold is changed from 2 to 5 (Figure 4.66), the quantity of the enzyme
with threshold 5 must be increased to produce the same effect (Figure 4.67).
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Fig. 4.65

Fig. 4.66

Fig. 4.67
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Inside the actual cell, phosphorylation by enzymes depends on both the enzyme
(m3) and substrate (m1). In such a situation an appropriate speed value would be
(m1*m3)/10 (the value of 10 is arbitrary). Making these changes and using contin-
uous elements, the result should look like Figure 4.68.

Fig. 4.68

The simulation result is shown in Figure 4.69.

Fig. 4.69

Note that the process and entity added in Steps 1 and 3 can be (discrete, discrete),
(discrete, continuous), and (continuous, continuous).
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COLUMN 4

Process Conflicts

Consider a network made from two discrete processes p1 and p2 and three discrete
entities e1, e2, and e3 (shown in Figure 4.70). The initial value of entity e1 is 5
while e2 and e3 have a value of 0. Looking at time 2[pt], e1 has a value of 1 and
both processes are executable. However, in order to execute both p1 and p2, there
must be a value of 2 or more (1+1=2). This situation is called a conflict. In Cell
Illustrator, processes are given priority in order to resolve these types of conflicts. If
the processes are on the same priority level, then a process is randomly selected.

Fig. 4.70
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4.8 Conclusion

In this chapter, we described installation of Cell Illustrator, its basic concepts, model
editing, and execution, as well as the workflow of converting a real cellular process
to a model. Although the generic processes and entities are outside the scope of this
book, see [3, 4] for theoretical background and applications in pathway modeling.

COLUMN 5

Using Generic Elements

While modeling various pathways, it is sometimes apparent that there are some
events which discrete and continuous elements cannot model. For those cases,
Cell Illustrator, which uses the HFPNe framework, allows for generic entities
and processes. For example, in order to model the transcription process of Sec-
tion 4.7.3 in the level of DNA sequences, it is possible to create a model as seen
in Figure 4.71. Modeling the transcription process in the DNA sequence level
can visualize phenomena such as alternative splicing and frame shifts. A protein
with many modifications can be effectively modeled with a generic entity. Ta-
ble 4.2 defines the actual behavior of the generic process. By executing the model
“fig4 71 generic model transcription.xml” contained in the provided CD-ROM, we
can see how the actual base pairs are transcribed into mRNA.

Table 4.2

connector update function
c1 m1;

import("gon.Transcription");
totalnum=m1.length();
num=m2.length();
if (totalnum ≥ num){

c2 nextcode=m1.substring(totalnum−num−1,
totalnum−num);
newsequence=m2+Transcription::Trans(nextcode);
}
else{newsequence="";};
newsequence;

c3 m3;

c4 if (m1.length()==m3.length()){m3=m3+1;}
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Fig. 4.71 Above: a model using generic entities. Below: a model using only a continuous entity.



Chapter 5
Pathway Modeling and Simulation

In this chapter we will combine the modeling methods described in Chapter 4 to
model and simulate larger pathways. Specifically, we will create models for the gene
regulatory, metabolic, and signaling pathways using Cell Illustrator. This chapter
should enable the reader to create a variety of new pathways.

5.1 Modeling Signaling Pathway

In this section, we will model the signaling pathway for the epidermal growth factor
receptor. Although this is a rough model based on known biological facts, this type
of model creation will provide us a new method for organizing biological knowledge
on pathways.

5.1.1 Main Players: Ligand and Receptor

Cell growth and differentiation are regulated by signaling molecules (ligands) from
the outside of the cell. The cell has a molecule called a receptor that binds and recog-
nizes the ligand and sends signals to induce a new reaction in the cell. For example,
the rat adrenal pheochromocytoma cell PC12 is known to differentiate to nerve cells
once the tropomyosin receptor kinase A (TrkA) receives the nerve growth factor
(NGF). In this section, we will model the early stage of the signaling pathway for the
epidermal growth factor (EGF). The receptor for EGF is the epidermal growth fac-
tor receptor (EGFR) on the cell membrane. EGFR is also called ErbB1 and belongs
to the ErbB family, a subfamily of tyrosine kinase receptors. EGFR is expressed in
a variety of cells such as epidermal, mesenchymal, and neuronal cells, and it con-
trols cell growth and differentiation. It is also known that EGFR overexpression and
mutations related to EGFR overexpression could result in cancer.

75
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5.1.2 Modeling EGFR Signaling with EGF Stimulation

There are a few steps in creating the canvas. First create a new canvas by pressing

the icon (Figure 5.1). Since the Biological Elements Dialog will be used to create

the model, open the dialog . The processes and entities used will be continuous
unless otherwise noted.

Fig. 5.1

5.1.2.1 Cell Placement

Since the model involves signals on the cell membrane, create a cell illustration on
the canvas as seen in Figure 5.2. Click on “Edit Parts” and select [cells] →
[animal cell blank]. To change the shape, select the illustration and drag the corners
while holding the Shift key. Although the shape does not affect simulation, modeling
is made simpler since placing the cursor on the illustration displays location such as
[plasma membrane] or [cytoplasm].

5.1.2.2 Placement of EGFR

EGFR is known to be located on the cell membrane.
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Fig. 5.2

Exercise 5.1.1
By following the steps in Section 4.7.3, create the translation process for EGFR.

The entity EGFR represents the concentration of EGFR and use for its icon.
Set the translation speed to 1 (Figure 5.3).

Fig. 5.3

Exercise 5.1.2
Simulate the model made in Exercise 5.1.1 and confirm the time course of the
EGFR concentration with the graph.

From the simulation of the model, we see that the concentration of EGFR is
continually increasing. In reality, the concentration of EGFR will stabilize at some
value (steady state) because of the natural degradation built into the cell. In order to
model this, we need to add a degradation process to the model.
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Exercise 5.1.3
By following Figure 5.3 and Section 4.7.1, add a degradation process with
a speed of 0.04 times the concentration of EGFR.

The resulting canvas should look like Figure 5.4.

Fig. 5.4

5.1.2.3 Binding of EGF and EGFR

EGFR is known to receive the extracellular molecule EGF for signal transduction.

Exercise 5.1.4
Place an entity EGF outside the cell. Use for its icon.

Exercise 5.1.5
By following Section 4.7.3, add a process which produces EGF.

Exercise 5.1.6
Similarly to Exercise 5.1.3, add a degradation process for EGF with a speed
of 0.01 times the concentration of EGF.

The canvas at this point should look like Figure 5.5.
In order for EGFR to activate the signal transduction, EGF and EGFR must be

bound together.



5.1 Modeling Signaling Pathway 79

Fig. 5.5

Exercise 5.1.7
By following Section 4.7.4, add a process which combines EGF and EGFR
with a speed of 0.1 times the product of the concentrations of EGF and EGFR.

Use for the complex of EGF and EGFR denoted as EGF/EGFR.

Sometimes the complex EGF/EGFR will break back into EGF and EGFR.

Exercise 5.1.8
By following Section 4.7.5, add a dissociation process for the complex

EGF/EGFR . The dissociation speed should be slower than the binding

speed and is set to 0.001 times the concentration of the complex .

Exercise 5.1.9
Add a degradation process for the complex EGF/EGFR with a speed of

0.01 times the concentration of the complex .

The resulting canvas should look like Figure 5.6.

5.1.2.4 Dimerization of the Complex EGF/EGFR

The complex EGF/EGFR is known to dimerize. We will include this in the model.
We will introduce a new feature for this. In Chapter 4, the speed of a process

decreased the values of entities connected by its input connectors and increased the
values of entities connected by its output connectors. In other words, the process
moves values at the same rate for every connector. However, since Cell Illustrator
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Fig. 5.6

is based on the HFPNe framework, the rate of the flow for each connector can be
changed. We will use this in the following exercises:

Exercise 5.1.10
By following Section 4.7.4 on binding, create a dimerization process by

which the complex EGF/EGFR is dimerized. The icon for the dimerized

entity is provided in the “PrepareElements” folder on the CD-ROM in the
file ReceptorLigandDimer.xml. We call this dimer an EGF/EGFR dimer. Set the

speed as 0.1 times the concentration of the complex . However, since only
one dimer is made from two complexes, the rate of flow for each connector
needs to be changed.

• Select the dimerization process . If the Element Settings Dialog is not
displayed, call it up by clicking .

• In the Process tab of the dialog, set the kinetic style field as “connectorcus-
tom”.

• This will make it possible to enter the speed of each connector at the bottom
(left side in Figure 5.7).
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Fig. 5.7

Exercise 5.1.11
By following Section 4.7.5, create a dissociation process for EGF/EGFR dimer.
Since the dissociation process is slower, set the process to a speed equal to
0.001 times the dimer concentration. However, since each dimer produces two
monomers, the parameters need to be reversed from the previous exercise. The
steps are below:

• Select the dissociation process , and when the dialog of the Element
Settings Dialog is open, select the Process tab.

• On the process tab of the dialog, select “connectorcustom” in the field of
Kinetic Style.

• Then on the bottom of the dialog, set the speed for each connector (Figure
5.7 right).

Exercise 5.1.12
Add a degradation process for EGF/EGFR dimer with a speed of 0.01
times its concentration.

The result should look like Figure 5.8.

5.1.2.5 Phosphorylation and Dephosphorylation of EGFR

After EGF/EGFR dimers in the cytoplasm are phosphorylated, the signal transduc-
tion pathway will be activated.
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Fig. 5.8

Exercise 5.1.13
Add a phosphorylation process for the dimer with a speed of 0.1
times the dimer concentration. The illustration for the phosphorylated dimer

is provided by PhosphorylatedReceptorLigandDimer.xml in the folder “Pre-
pareElements” on the CD-ROM.

Exercise 5.1.14
Add a dephosphorylation process for the phosphorylated dimer . Since
this process is less active than the phosphorylation process, set the speed of this

process to 0.01 times the concentration of the phosphorylated dimer .

Exercise 5.1.15
Add a degradation process for the phosphorylated dimer . Set the
speed of degradation to 0.01 times its concentration in a similar way to other
molecules.

This should result in a model looking like Figure 5.9. This model omits the en-
zymes for phosphorylation and dephosphorylation.

Simulating this model, one can see that EGF and EGFR are bound to make a
complex, then these complexes are dimerized and phosphorylated. Looking at the
graph of simulation, the concentration of EGFR goes up first, then the concentra-
tions of EGF/EGFR complex, its dimer, and its phosphorylation go up in this order.
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Fig. 5.9

In this case, the possibility of dissociation of the phosphorylated dimers is not
considered; if this is important to the model, the model must be modified to take
this into account. Similarly, there is the possibility of the ligand dissociating in the
dimerized form. Although these types of possibilities were ignored, the important
fact is that it is easy to model, simulate, and modify existing pathways by including
new ideas on the pathways.

5.1.2.6 Inhibition of EGFR Signaling by Agent

AG compounds are known to inhibit the EGFR signal pathway. We will add the
effects of an AG compound to this model.

Specifically, AG1478 is termed a tyrosine kinase inhibitor of the EGFR pathway.
In other words, AG1478 inhibits the phosphorylation in the model.

Exercise 5.1.16
Add an entity AG1478 and modify the phosphorylation process so that AG1478

inhibits the phosphorylation. For the illustration of AG1478, use and set the

initial value of this entity to 2. Add an inhibitory connector from AG1478 to

the phosphorylation process and set the threshold to 1. Since AG1478 wears

over time, add a degradation process for AG1478 and set the speed to 0.01
times the concentration of AG1478.
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Exercise 5.1.17
Simulate the new model and compare the effects of adding AG1478.

The newly updated model is shown in Figure 5.10. The phosphorylation process
is inhibited and the concentration of the phosphorylated dimer stays at 0. After run-
ning the simulation for a longer time, the inhibition stops because of AG degradation
and the phosphorylated dimers appear again (Figure 5.11).

Fig. 5.10

Fig. 5.11
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COLUMN 6

Editing Illustrations

It is very typical that we want more customized illustrations for elements instead of
the icons provided as in Chapters 3 and 4. Cell Illustrator has a function to create
custom illustrations by editing and changing them by users themselves. Right-click
the appropriate element and select [Edit Image] (Figure 5.12). This starts the CI
SVG Editor. There are a few easy steps to modify and create custom illustrations.

Fig. 5.12

Changing the Color

It is simple to change the blue protein to a red one. Click “Edit Image” and start
the CI SVG Editor for editing . The blue protein is defined by a circular
gradation from light to deep blue. Redefining this gradation can change the color.
Select the [Dialogs] → [Show Resources] on the menu bar to display the resource
dialog bar. Then select the [Radial Gradient] field inside the tab to show a gradation
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definition called “color1”. Bring up the Radial Gradient Property Dialog and rede-
fine the gradation by double clicking color1. Since there are two colors used in this
gradation, both must be changed. There are two ways to do this, but the easier way is
to select the square near the top of the dialog. Select a light pink for the left and red
for the right. After pressing OK and closing the dialog, the CI SVG Editor should
show the changes and make the element red. Lastly, the changes will be applied to
all elements on the current canvas by selecting [File] → [Save] on the menu.

Combining Two Elements

In order to create the combination of two proteins and , these illustrations
must be combined. The basic workflow involves copying one element to the other.

First, place both and on the canvas and select “Edit Image” for each to open

it in CI SVG Editor. To copy to , select [Edit] → [Copy] while the window

for is open. Then open the window for and select [Edit] → [Paste]. Ensure that

is pasted on and change the size of the canvas using CI SVG Editor. On the
Resize Dialog which is at [Transforms] → [Canvas] → [Resize], select the width
and height. In this case, about 200 horizontal and 212 vertical is appropriate. After

pressing OK, drag the to fit in the canvas. Run [File] → [Save] to commit changes.

Changing Aspect Ratio

To change the horizontal and vertical scales of an element, simply grab the corner
of the element, and drag it. This can be done without using CI SVG Editor. Note
that aspect ratio can be preserved during scaling by holding the Shift button.

Others

When editing and modifying, there is a chance that the element will not be displayed
correctly on the canvas. In this case, right-click the element and run [Reload Image]
to refresh the image.

In addition, CI SVG Editor can be used to create an illustration from scratch.
These advanced features should be used as needed.
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5.2 Modeling Metabolic Pathways

The glycolysis pathway is a pathway which breaks down glucose into pyruvic acid.
In usual chemical equations form it is written as

Glucose + 2ADP + 2NAD → 2Pyruvic acid + 2ATP + 2NADP

However, in reality, the model is made up of 10 separate reactions as seen in Fig-
ure 5.16. In this section, this pathway will be modeled by showing how a metabolic
pathway is modeled with Cell Illustrator.

5.2.1 Chemical Equations and Pathway Representations

Figure 5.13 shows a pathway representation for the following chemical equation:

Glucose + ATP −→ Glucose-6-phosphate + ADP

Although discrete elements are used here, continuous elements could be used just
as well.

The chemical reaction can be thought of as separated into the left and right sides.
Each substance is represented as an entity and the process in between represents
the reaction. The value of each entity represents the number of molecules, and the
execution of the process on Cell Illustrator is equivalent to the reaction occurring
in cells. Once the model in Figure 5.13 is executed, the glucose and ATP tokens
decrease and move to glucose-6-phosphate and ADP, which represent the chemical
equation above.

Figure 5.13 also includes the enzyme which assists the reaction. Since the en-
zyme is not affected by the reaction, an association connector is used here.

Fig. 5.13
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5.2.2 Michaelis-Menten Kinetics and Cell Illustrator Pathway
Representation

An enzyme reaction occurs through interaction of the substrate and enzyme. Let E
be an enzyme, S be a substrate, ES be the enzyme-substrate complex, and P be the
product. The enzyme reaction can be written as follows:

E + S −→←− ES −→ E + P

This reaction can be represented using continuous elements as seen in Figure 5.14.
If there is a sufficient amount of the enzyme and substrate, the Michaelis-Menten
kinetics can be used to simplify the reaction rate as

v =
Vmax[S]
[S]+Km

Here the Vmax is the highest reaction rate, and Km is called the Michaelis constant.
When the concentration of a given enzyme is constant, Vmax and Km are also

constant and this fact allows the equation to be reduced to

S −→ P

Figure 5.15 shows this as a model using continuous entities. Since an enzyme is
used for this metabolic reaction, an association connector is drawn here.

Fig. 5.14

Fig. 5.15
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5.2.3 Creating Glycolysis Pathway Model

The glycolysis pathway consists of the following parts:

(1) Glucose + ATP −→ Glucose-6-phosphate + ADP
(2) Glucose-6-phosphate −→←− Fructose-6-phosphate
(3) Fructose-6-phosphate + ATP −→ Fructose-1,6-bisphosphate + ADP
(4) Fructose-1,6-bisphosphate −→←− Glyceraldehyde-3-phosphate + Dihydroxy-

acetone phosphate
(5) Dihydroxyacetone phosphate −→←− Glyceraldehyde-3-phosphate
(6) Glyceraldehyde-3-phosphate + Phosphate + NAD+ −→ 1,3-Bisphosphoglyc-

erate + NADH
(7) 1,3-Bisphosphoglycerate + ADP −→←− 3-Phosphoglycerate + ATP
(8) 3-Phosphoglycerate −→←− 2-Phosphoglycerate
(9) 2-Phosphoglycerate −→←− Phosphoenolpyruvate

(10) Phosphoenolpyruvate + ADP −→←− Pyruvate + ATP

Since this is a continuous chain of reactions, the right-hand side of each equation
becomes the left-hand side of the next reaction. In addition, there are enzymes for
each reaction from (1) to (10) (Table 5.1). A summary of these reactions is given in
Figure 5.16.

Table 5.1 Enzymes functioning in the glycolytic pathway.

Enzyme Reaction

(1) Hexokinase irreversible

(2) Phosphoglucose isomerase reversible

(3) Phosphofructokinase irreversible

(4) Aldolase reversible

(5) Triosephosphate isomerase reversible

(6) Glyceraldehyde 3-phosphate reversible

(7) Phosphoglycerate kinase reversible

(8) Phosphoglyceromutase reversible

(9) Enolase reversible

(10) Pyruvate kinase irreversible

The numbers (1)–(10) correspond to those in Figure 5.16.

First, let us model the initial stage of the reaction in Figure 5.16. This is the
reaction given in Section 5.2.1:

Glucose + ATP −→ Glucose-6-phosphate + ADP

As previous models, simply turn substances such as glucose into entities and con-
nect each entity to the reaction process. For glucose and glucose-6-phosphate, the
illustration for small molecule should be used, while for the metabolic reac-

tion we use . Since ATP and ADP are also used, connect those entities
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Fig. 5.16

to the process . In addition, the enzyme hexokinase should be added to the

canvas, and connected to the process with an association connector with a
threshold of 3 (Figure 5.17).

Since glucose , glucose-6-phosphate , ATP , and ADP

degrade, add a degradation process for each of these entities. The degradation
speed should be 0.1 times the concentration for all entities. The threshold of glucose-
6-phosphate should be set to 1.

Also add a degradation process for hexokinase with the same speed of
0.1 times the concentration. Since in this case it can be assumed that hexokinase

was already produced, set the initial value to 5. Also add a translation process
with a speed of 1 to produce hexokinase (Figure 5.18).
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Fig. 5.17

Fig. 5.18

For the metabolic reaction , its speed should be set according to the
Michaelis-Menten equation at (Vmax[S])/([S] + Km). In order to set the values of

Vmax and Km, create two entities named Pv and Pk. The value of the entity Pv
will be used for Vmax while the value of the entity Pk will be used for Km. Here
let Vmax = 1 and Km = 1 temporarily. By setting Vmax and Km as variables, it be-
comes extremely easy to change these parameters when the model gets larger and
complicated.

Assuming the concentrations of ATP and ADP are high enough, set
the initial values of and to 300 and set the initial value of glucose to 50
and the initial value of glucose-6-phosphate to 0.

This should result in the model in Figure 5.19.
Every metabolic reaction can be modeled in a similar way by putting an entity

for the substrate S on the left, an entity for the product on the right, a process
between them, and setting the speed v of the reaction according to the Michaelis-
Menten equation.

Now the rest of the metabolic pathway will be modeled, where all the values for
Km and Vmax are set to 1.0. All reactions except (1), (3), and (10) are reversible.
However, for simplicity, in this model we do not consider the possibility of the
reverse reaction. will be used for representing enzymes and for reagents
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Fig. 5.19

and products. Process will used for representing metabolic reactions. Of course,
more detailed custom-made illustrations can be used by users.

Exercise 5.2.1
Add the following reaction (2) to the model in Figure 5.19.

Glucose-6-phosphate −→←− Fructose-6-phosphate

Then the model should look like Figure 5.20.

Fig. 5.20

Exercise 5.2.2
Add the following reaction (3) to the model created in Exercise 5.2.1:

Fructose-6-phosphate + ATP −→ Fructose-1,6-bisphosphate + ADP

Then the model should look like Figure 5.21.
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Fig. 5.21

Exercise 5.2.3
Add the following reaction (4) to the model created in Exercise 5.2.2:

Fructose-1,6-bisphosphate −→←− Glyceraldehyde-3-phosphate +
Dihydroxyacetone phosphate

Then the model should look like Figure 5.22.

Exercise 5.2.4
Add the following reaction (5) to the model created in Exercise 5.2.3:

Dihydroxyacetone phosphate −→←− Glyceraldehyde-3-phosphate

Then the model should look like Figure 5.23.

Exercise 5.2.5
Add the following reaction (6) to the model created in Exercise 5.2.4:

Glyceraldehyde-3-phosphate + Phosphate + NAD+ −→
1,3-Bisphosphoglycerate + NADH

Use , , and for phosphate, NADH, and NAD+ and add a degra-

dation process with a speed of 1/10,000th concentration for each entity. Set
the initial values of phosphate and NAD+ to 300.
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Fig. 5.22

Then the model should look like Figure 5.24.

Exercise 5.2.6
Add the following reaction (7) to the model created in Exercise 5.2.5:

1,3-Bisphosphoglycerate + ADP −→←− 3-Phosphoglycerate + ATP

Then the model should look like Figure 5.25.

Exercise 5.2.7
Add the following reaction (8) to the model created in Exercise 5.2.6:

3-Phosphoglycerate −→←− 2-Phosphoglycerate

Then the model should look like Figure 5.26.
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Fig. 5.23

Exercise 5.2.8
Add the following reaction (9) to the model created in Exercise 5.2.7:

2-Phosphoglycerate −→←− Phosphoenolpyruvate

Then the model should look like Figure 5.27.

Exercise 5.2.9
Add the following reaction (10) to the model created in Exercise 5.2.8:

Phosphoenolpyruvate + ADP −→←− Pyruvate + ATP

Then the model should look like Figure 5.28 that is a complete model for the
metabolic pathway shown in Figure 5.16.
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Fig. 5.24

COLUMN 7

Forum for Cell Illustrator

Any questions about the contents of this book are welcome to the Forum for Cell
Illustrator located at:

http://www.csml.org/forum/en/

In addition, any questions about CSML and modeling pathways on Cell Illustrator
can also be submitted to this forum.

http://www.csml.org/forum/en/
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Fig. 5.25



98 5 Pathway Modeling and Simulation

Fig. 5.26
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Fig. 5.27
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Fig. 5.28
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5.2.4 Simulation of Glycolysis Pathway

The result of plotting the graph of the concentrations for glucose, pyruvic acid,
ADP, NAD+, and NADH is given in Figure 5.29 (in this case, the time 200[pt] is
appropriate for simulation).

As mentioned at the beginning of Section 5.2, the model can be summarized in
the following reaction:

Glucose + 2ADP + 2NADH −→ 2Pyruvic + 2ATP + 2NAD+

Figure 5.29 shows about 2 times the pyruvic acid as the glucose consumed.
By building such a detailed model, it becomes easier to capture small differences

in pathways which a simple equation cannot. This allows us to understand the states
of intermediate products as well as the states of abnormality in intermediate steps.

Fig. 5.29

5.2.5 Improving the Model

The model will be improved with a few small events that serve to make it more
realistic.

A real organism uses ATP in a variety of activities, creating excess ADP, while
various reactions create NAD+ from NADH. There are some cases in which ADP
and NAD+ are naturally produced.

Figure 5.30 shows a model with these improvements. In this model a set amount
of glucose (50 here) is added at a constant interval (400[pt] here) to simulate eat-
ing. Since this model adds a periodic event, the simulation time is increased (to
2000[pt]), and the “ChartUpdateInterval” is increased (above 2[pt]). The result of
simulating this model is shown in Figure 5.31.
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Fig. 5.30
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Fig. 5.31

COLUMN 8

Kinetic Styles in Cell Illustrator 3.0

In Cell Illustrator, seven types of kinetic styles can be set: mass, stochastic-
mass (stochastic mass), stochasticlognormalmass (stochastic log normal mass),
michaelismenten (Michaelis-Menten), connectorrate (connector rate), connector-
custom (connector custom), custom. Below are the description and parameters for
each type. In the case that an entity is connected to a process through an input con-
nector, the rate of decrease is called consumption speed. In the case of the entity
connected by the output connector, this is called production speed. In the follow-
ing explanations, we assume a process p1 with one output connector c0 and k input
connectors c1, . . . ,ck and the variables for these entities are m0 to mk. The notation
ci indicates the ith connector.

Usually, simple models can be made using only “mass” and “michaelis menten”
kinetic styles. For an example of kinetic style use, see

Models\Chapter5\kineticStyle.xml

in the CD-ROM.

mass

Table 5.2 shows the details of “mass” which is a standard reaction depending upon
the mass of entities concerned.

stochasticmass

This is similar to “mass”, but instead includes Gaussian noise as part of reaction rate
(Table 5.3).
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Table 5.2

Kinetic equation mass(a,b,m1, . . . ,mk) = a ·bk ·m1 · · ·mk

Name Coefficient Function Default Value

Coefficient1 (= a)
One of the coefficients which determine reaction
rate, the larger the value the faster the reaction.

0.1

Coefficient2 (= b)
One of the coefficients which determine reaction
rate, the number of entities are linked.

1.0

ci Stoichiometry (= si)

i specifies a connector. If the given ci is an in-
put connector, then its consumption rate becomes
mass(a,b,m1, . . . ,mk) · si. If ci is an output con-
nector, then si determines production rate.

1.0

Table 5.3

Kinetic equation smass(a,b,m1, . . . ,mk) = a ·bk ·m1 · · ·mk + ε with ε ∼ N(0,σ 2)
Name Coefficient Function Default Value

Coefficient1 (= a)
One of the coefficients which determine reaction
rate, the larger the value the faster the reaction.

0.1

Coefficient2 (= b)
One of the coefficients which determine reaction
rate, the number of entities are linked.

1.0

ci Stoichiometry (= si)

ci specifies a connector. If the given ci is an in-
put connector, then its consumption rate becomes
smass(a,b,m1, . . . ,mk) · si. If ci is an output con-
nector, then si determines production rate.

1.0

Standard deviation (=σ )
Specifies the deviation in reaction rate; setting
this parameter to 0 results in the same output as
mass.

1.0

stochasticlognormalmass

This is similar to “mass” but includes lognormal noise (Table 5.4).

Table 5.4

Kinetic equation slogmass(a,b,m1, . . . ,mk) = a ·bk ·m1 · · ·mk · eε , ε ∼ N(0,σ 2)
Name Coefficient Function Default Value

Coefficient1 (= a)
One of the coefficients which determine reaction
rate, the larger the value the faster the reaction.

0.1

Coefficient2 (= b)
One of the coefficients which determine reaction
rate, the number of entities are linked.

1.0

ci Stoichiometry (= si)

ci specifies a connector. If the given ci is an in-
put connector, then its consumption rate becomes
slogmass(a,b,m1, . . . ,mk) · si. If ci is an output
connector, then si determines production rate.

1.0

Standard deviation (=σ )
Specifies the deviation in reaction rate; setting
this parameter to 0 results in the same output as
mass.

1.0
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michaelismenten

This is the often-used Michaelis-Menten reaction equation. The Km and Vmax pro-
cesses need to be set (Table 5.5). This process requires at least one enzyme with an
association connector.

Table 5.5

Name Coefficient Function Default Value

Km Set Km for the Michaelis-Menten equation. 0.1

Vmax Set Vmax for the Michaelis-Menten equation. 1.0

connectorrate

This kinetic style is used if the rate of consumption and production for all elements
are proportional to some speed (Table 5.6).

Table 5.6

Name Coefficient Function Default Value

Rate (= r) Sets the base consumption/production rate for all
connectors.

0.1

ci Stoichiometry (= si)

ci specifies a connector. If the given ci is an input
connector, then its consumption rate becomes si ·
r. If ci is an output connector, then si determines
production rate.

1.0

connectorcustom

This is used when the rates of consumption and production are varied (Table 5.7).

Table 5.7

Name Coefficient Function Default Value

ci Stoichiometry (=si)

ci specifies a connector. If the given ci is an input
connector, then its consumption rate becomes si. If
ci is an output connector, then si determines produc-
tion rate.

0
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custom

This is used if production and consumption rate for all entities can be shown in one
equation (Table 5.8).

Table 5.8

Name Coefficient Function Default Value

Speed Sets the rate of consumption/production for all ele-
ments.

1.0

5.3 Modeling Gene Regulatory Networks

As an example of a gene regulatory network, we model the system producing circa-
dian rhythms in Mus musculus (mouse).

5.3.1 Biological Clocks and Circadian Rhythms

Living organisms are constantly aware of time. This is said to be because of an inter-
nal biological clock. Within the biological clock, there are various rhythms such as
the circadian (24 hours), circatrigintan (30 days), circannual (1 year). These rhythms
are often called tide cycle, daily cycle, monthly cycle, and annual cycles and thought
to synchronize to various external rhythms.

This chapter will specifically cover the circadian rhythm and the gene regulatory
network which produces the rhythms. The term circadian is formed from the Latin
circa (around) and dies (1 day) and refers to any daily cycle.

Homo sapiens (human beings) normally operate around a 24-hour day. It is
known that living in a dark room with no way to tell the time, the interval between
eating and sleeping begins to widen and settles to a 25-hour cycle. This shows the
existence of an internal clock mechanism. This 25-hour cycle is known as the free
run rhythm. These free run rhythms vary from species to species. For humans, this
is 25 hours, for rats 24.5 hours, and for mice 23.5 hours. The difference in cycles
between species implies a genetic basis for these cycles.

In reality, however, the operating cycle is 24 hours and thus the free run rhythms
are synchronized to the daily cycle of 24 hours. Although there are many environ-
mental factors which cause synchronization, the strongest factor is considered to be
the sunlight.
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5.3.2 Gene Regulatory Network for Circadian Rhythms in Mice

Figure 5.32 shows the mechanism of the gene regulatory network for circadian
rhythms in mice as currently known. The basic structure of this mechanism is sim-
ple.

First the protein BMAL, the product of the gene Bmal, binds the protein CLOCK
produced by the gene Clock and makes a heterodimer. Then this heterodimer is
transported to the nucleus and activates the transcription of the genes Per, Cry, and
Rev-Erb.

The protein PER produced by the gene Per and the protein CRY produced by
the gene Cry bind together to produce a heterodimer. This heterodimer also moves
into the nucleus and inhibits the transcription of Per, Cry, and Rev-Erb. Thus by
indirectly regulating both Per and Cry genes by themselves, they create a negative
feedback loop.

The Rev-Erb gene produces the REV-ERB protein which moves into the nu-
cleus and inhibits the transcription of the gene Bmal. Therefore Bmal and Clock also
create a negative feedback loop through Rev-Erb. Rev-Erb is also inhibited by the
PER/CRY heterodimer and thus Rev-Erb synchronizes these two feedback loops.

As can be seen, the murine circadian rhythms are made from two negative feed-
back loops which continually regulate each other.

Fig. 5.32
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5.3.3 Modeling Circadian Rhythms in Mice

In a similar way to Sections 5.1 and 5.2, we will model the system of murine cir-
cadian rhythms with a set of guided instructions and exercises. The goal is to turn
Figure 5.32 into a model which can be simulated on Cell Illustrator.

5.3.3.1 Placement of Nucleus and Cytoplasm

In this model, we will deal with the gene regulatory network in the nucleus and
cytoplasm. First, place the nucleus and cytoplasm as seen in Figure 5.33. Although
the location and size of the nucleus will not affect the simulation, place them as
seen in Figure 5.33. This is made easier using the “Edit Parts” → [cells] →
[animal cell nucleus].

Fig. 5.33

5.3.3.2 Transcription and Translation of Per

The transcription and translation of the gene Per are known to be involved with the
regulation of the murine circadian rhythm.

Exercise 5.3.1
Create a transcription process for Per inside the nucleus. Use for the
mRNA of Per and set the transcription speed to 1.
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Exercise 5.3.2
Add a translation process within the cytoplasm which translates of
Per. Use for the protein PER.

Exercise 5.3.3
As can be seen from the graph for PER, the translation speed for Per does not
depend on the amount of the Per mRNA. Modify this model so that the Per
translation speed depends on the concentration of Per mRNA by setting the rate
to 1/5th of the mRNA concentration .

Then the result should look like Figure 5.34.

5.3.3.3 Transcription and Translation of Cry

In a similar way to Per, Cry is also transcribed and translated. From here on, entities
of various colors will be used. The folder of “PrepareElements” in the CD-ROM has
various illustrations for use in the file EntitiesForCircadianModel.xml.

Exercise 5.3.4
Create a process for Cry. Use for the mRNA of Cry and set the tran-
scription speed to 1.

Exercise 5.3.5
Create a translation process for Cry. Use the red protein illustration for
CRY.

Exercise 5.3.6
This model keeps the Cry translation rate constant regardless of the Cry mRNA
concentration. Modify the model in a similar manner to Exercise 5.3.3 to make
the translation speed dependent on the Cry mRNA concentration.

Then the model should look like Figure 5.35.

5.3.3.4 Natural Degradation of Per and Cry mRNAs and PER and CRY

The model up to now contains the transcription and translation processes of Per and
Cry. In this section, we add the processes which degrade their gene products.
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Fig. 5.34
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Fig. 5.35
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Exercise 5.3.7
Add degradation processes to Per and Cry mRNAs and proteins PER and CRY.

Use for the degradation processes and set their speeds so that they depend
on the concentrations of entities. Since the proteins are more stable than the
mRNAs, set the speed of mRNA degradation to 1/5th of its concentration, and
set the speed of protein degradation to 1/10th of its concentration.

Exercise 5.3.8
Simulate the model and confirm that the values for the mRNAs of Per and Cry
and the proteins PER and CRY converge to the steady-state values.

Then the model should look like Figure 5.36.

5.3.3.5 Interaction of Proteins PER and CRY

The proteins PER and CRY are known to bind and create a complex which is more
stable than either PER or CRY.

Exercise 5.3.9
Add a process which forms a complex PER/CRY from proteins PER
and CRY. Set the speed to 1/10th of the product of the concentrations of PER

and CRY. Add also a degradation process for with a speed of 1/15th of
its concentration.

Then the model should look like Figure 5.37.

Exercise 5.3.10
The complex PER/CRY of PER and CRY in the cytoplasm is known to be

transported to the nucleus. Add this translocation process to the model. Set
the speed of this translocation to 1/10th of the concentration of the complex
PER/CRY.

Exercise 5.3.11
Add a degradation process for the complex PER/CRY in the nucleus.
Considering the relative stability of PER/CRY, set the degradation speed to
1/15th of the concentration of PER/CRY.

Then the model should look like Figure 5.38.
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Fig. 5.36
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Fig. 5.37

5.3.3.6 Negative Feedback Loop of Genes Per and Cry

Once in the nucleus, it is known that the complex PER/CRY inhibits the transcrip-
tion of both Per and Cry. In other words, the inhibition forms a negative feedback
loop.

Exercise 5.3.12
Add inhibitory connectors so that the complex PER/CRY in the nucleus in-
hibits the transcription processes of Per and Cry. Set the threshold value for
each inhibitory connector to 1.5. Simulate and confirm that the behavior of the
mRNA of Per shows oscillations.

Then the model should look like Figure 5.39.

5.3.3.7 Introducing Rev-Erb in the Network

The murine circadian rhythms are regulated by two feedback loops; one made of
Per and Cry and the other made of Bmal and Clock. The gene Rev-Erb plays a role
to connect and synchronize these two loops.
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Fig. 5.38

Fig. 5.39
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Exercise 5.3.13
Add a transcription process for Rev-Erb and use for its mRNA. Add a

translation process from mRNA of Rev-Erb to the protein REV-ERB

. Add an inhibitory connector so that the complex PER/CRY inhibits
the transcription of Rev-Erb. Set the threshold of this inhibitory connector to

1.4. Set the speed of translation from mRNA of Rev-Erb to 1/10th of its
concentration. The speeds of other processes are the same as those considered
for the Cry pathway.

Exercise 5.3.14
It is known that after translation the protein REV-ERB is transported to the

nucleus. Add a translocation process to the model. Set the speed of translo-
cation of REV-ERB to 1/10th of its concentration. Similarly, add a degradation
process for REV-ERB in the nucleus and set the degradation speed to 1/10th of
its concentration.

Then the model should look like Figure 5.40.

5.3.3.8 Transcription and Translation of Bmal and Clock

Similarly to the genes Per and Cry, the genes Bmal and Clock form a complex. In
addition, Bmal is known to be inhibited by the protein REV-ERB in the nucleus.

Exercise 5.3.15
In the same way as Per and Cry, add a pathway comprised of the processes of
transcription, translation, and degradation for the genes Bmal and Clock. Set
their translation speeds to be proportional to the concentrations of mRNAs, and
set the degradation speeds proportional to the concentrations (exactly the same
as in the case for Per and Cry). Create an inhibitory connector with the threshold

0.8 from REV-ERB in the nucleus to the transcription process of Bmal.

Use for the Bmal mRNA, for the protein BMAL, for the Clock

mRNA, and for the protein CLOCK.

Then the model should look like Figure 5.41.

5.3.3.9 Interaction of Proteins BMAL and CLOCK

The proteins BMAL and CLOCK are known to form a complex like the proteins
PER and CRY. Similarly, the BMAL/CLOCK complex is known to be more stable
than either BMAL or CLOCK.
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Fig. 5.40

Exercise 5.3.16
Add a process which creates a complex BMAL/CLOCK of BMAL and
CLOCK. Set the speed of this process to 1/10th of the product of the concentra-

tions of BMAL and CLOCK. Add also a degradation process for with a
degradation rate 1/15th of its concentration.

Exercise 5.3.17
The complex BMAL/CLOCK is transported to the nucleus. Add this process
to the model, keeping the translocation speed identical to that of the PER/CRY
pathway. Add also a degradation process for the complex BMAL/CLOCK in
the same operation as the complex PER/CRY.

Then the model should look like Figure 5.42.
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Fig. 5.41

5.3.3.10 Transcriptional Activation by BMAL/CLOCK Complex

The complex BMAL/CLOCK in the nucleus is known to act as a transcription factor.
In other words, the complex BMAL/CLOCK binds the upstream sites of the genes
Per, Cry, and Rev-Erb and activates the transcription of these genes.

Exercise 5.3.18
Modify the model so that the complex BMAL/CLOCK activates the transcrip-
tion of the genes Per, Cry, and Rev-Erb. For each of these three genes, add an

association connector with a threshold value of 0.5.

Then the model should look like Figure 5.43.



5.3 Modeling Gene Regulatory Networks 119

Fig. 5.42

5.3.4 Creating Hypothesis by Simulation

The model in Figure 5.43 is created based on the known biological facts regarding
gene regulation but the parameters for the speeds and thresholds are hand-tuned
to reflect the facts. The simulation result in Figure 5.43 seems to show circadian
rhythms in a correct way, but is inconsistent with known biological observation.
This inconsistency concerns the relationship between Cry and Bmal.

The plot for the Cry mRNA has peaks that almost coincide with those of Bmal.
However, the experiments with murine circadian rhythms showed that the peaks
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Fig. 5.43

for Bmal are located about midway between those for Per, which differs from the
simulation result.

In order to solve this inconsistency, create a hypothesis that PER/CRY activates
Bmal. Although this is unconfirmed in mice, an analogous relationship has been
found in Drosophila. The genes Cry and Bmal of mouse are similar to the genes
Tim and dClk in Drosophila, respectively. It is known that the complex PER/TIM of
PER and TIM activates the gene dClk in Drosophila.
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Exercise 5.3.19
By using an association connector, modify the model so that the complex
PER/CRY in the nucleus activates the transcription of Bmal as mentioned above
for Drosophila. Set the threshold of the association connector to 1.6.

Then the model and results should look like Figure 5.44.

Fig. 5.44

Compared to Figure 5.43, the result in Figure 5.44 shows that the Bmal mRNA
peaks are in between the Cry mRNA peaks. The threshold value of 1.6 was se-
lected within the range of concentration of PER/CRY. Adjusting the parameters
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and adding an association connector from PER/CRY to the transcription process of
Bmal successfully brought the model closer to reality. In other words, the hypothesis
“PER/CRY activates Bmal” might be correct.

Independently, a gene called Ror was discovered which activates the Bmal tran-
scription but is inhibited by PER/CRY. In other words, PER/CRY is indirectly in-
hibiting Bmal which is opposite to the previous hypothesis. Regardless, simulating
with a model using Ror and its protein ROR results in the peaks of Bmal placed in
between those of Cry. This simulation result suggests an insight that the role of Ror
is to shift Bmal so that the peaks are in between those of Cry.

A model for the Drosophila circadian rhythms mentioned above can also easily
be constructed on Cell Illustrator. The modeling method is basically the same as
described in this chapter.

Figure 5.45 shows the genes and their network which regulate the Drosophila
circadian rhythms. Though it is similar to the gene regulatory network of mice,
there are some differences.

Fig. 5.45

In the case of Drosophila, there are five genes involved in the circadian rhythm:
Per, Tim, dClk, Cyc, and Dbt. These correspond to the murine genes Per, Cyc, Rev-
Erb, Clock, and Bmal, respectively.

Drosophila proteins PER and TIM form a heterodimer (PER/TIM) similar to
that of PER/CRY. While the protein TIM is expressed in both the nucleus and cyto-
plasm, the protein PER is expressed only in the cytoplasm. In addition, the complex
PER/TIM is known to be more stable than either PER or TIM as is the case for
PER/CRY in mice. It is also suggested that PER/TIM formed in the cytoplasm can
be transported to the nucleus.

The genes Cyc and dClk code transcription factors with DNA binding domains.
These two genes are known to be homologs of the murine genes Clock and Bmal.
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Similarly to PER and TIM, dCLK and CYC form a heterodimer dCLK/CYC
which is translocated to the nucleus. In mice, the proteins CLOCK and BMAL
form the complex CLOCK/BMAL that activates Per, Cry, and Rev-Erb. Similarly,
dCLK/CYC activates the transcription of Per and Tim. Furthermore, it is known
that dCLK/CYC inhibits the transcription of dClk itself, while PER/TIM activates
it. PER/TIM is known to inhibit dCLK/CYC from activating Per and Tim. From the
fact that when PER and TIM concentrations are high, dCLK and CYC concentra-
tions are low, the initial values of 10 will be used for PER and TIM.

Actually, there is one gene, Dbt (abbreviation for double-time), that was left out.
From various biological experiments, the following facts are known about the pro-
tein DBT:

1) DBT physically binds to PER.
2) DBT phosphorylates PER.
3) Phosphorylation makes PER unstable and causes its degradation.
4) DBT localizes in the cytoplasm.

Adding the gene Dbt to the model effectively speeds PER degradation and de-
creases the amount of PER/TIM in the nucleus. Since PER/TIM in the nucleus in-
hibits the transcription of Per and Tim, this effect becomes weaker. As a result,
adding Dbt to the model increases the period of the circadian rhythm by one cycle.
The details are similar to the murine model, which is shown in Figure 5.46. This
model for Drosophila circadian rhythms is also given in the CD-ROM.

Fig. 5.46
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The genes Dbts and Dbtl (“s” for short, “l” for long) are mutations of Dbt. Geno-
type Dbts decreases the time for locomotion cycle compared to the wild type, while
Dbtl increased the time. In addition, Dbts decreases the period of the Per mRNA
expression compared to the wild type, while Dbtl makes this longer. It is considered
that this is caused by a change in affinity between proteins DBT and PER.

Exercise 5.3.20
Modify the model in Figure 5.46 by changing the affinity of DBT and PER and
confirm that this affects the circadian rhythms.

Many hypotheses will probably come up while watching the behaviors of the
models simulated on Cell Illustrator. Since we can see the effects of such changes
visually by simulation, these hypotheses may suggest the next biological experi-
ments to design.

Three mutants are known for the gene Per: (i) PerS, which decreases the period
for metamorphosis, (ii) PerL, which increases it, and (iii) Per0 which has no period.

Exercise 5.3.21
Consider the above three mutants. For each mutant, create a hypothesis how the
mutant differs from the wild type in the model and modify the model to include
the hypothesis. Confirm or reject the hypothesis by simulating the model.

We observed through the models and their simulation how the various functions
of the genes and proteins regulate the circadian rhythms in mice and Drosophila. In
addition, this chapter showed that the model can help in not only confirming known
facts but also creating new hypotheses.

5.4 Summary

In this chapter, we created a part of the signal transduction pathway model of EGFR
activated by EGF stimulation, and also considered the effects of an inhibitory agent
AG1478. A whole EGFR pathway model is shown in [14]. Furthermore, in a similar
way, we can create a signal transduction pathway model for apoptosis induced by
Fas ligand [8], or pathways involving p53 [12, 13].

We modeled the glycolysis metabolic pathway to show the steps in creating a
typical metabolic pathway model. It is possible to connect the glycolytic pathway to
the gene regulatory network [10] of the lac operon. In addition, it is known that the
speed of the glycolysis pathway is mainly regulated by the concentrations of the en-
zymes whose reactions are irreversible, and their activations are regulated negatively
by ATP and positively by AMP. Insulin is known to increase these enzymes while
glucagon decreases them. It is a good exercise to add these facts and molecules to
the model.
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We modeled a gene regulatory network comprised of complex feedback loops
involving five genes. Although it might be easy to draw the network, it turned out
that the resulting behaviors are far from easy to understand without simulation. For
more details, see [16]. Other regulatory networks are the genetic switches model of
λ phage [6, 7] and the miRNA regulated network model [15].

Readers are also invited to visit the Cell System Markup Language (CSML) web-
site:

http://www.csml.org/

Far more complex pathways are shown together with explanations. Moreover, any
models described with SBML or CellML can be converted for CSML models so
that they can be edited and simulated on Cell Illustrator. Including these converted
models, over 300 Cell Illustrator models are available for download from this web-
site. In addition, Cell Illustrator equips a tool called BioPACS which combines data
from KEGG and BRENDA to automatically create models for Cell Illustrator. Us-
ing and editing these models, Cell Illustrator allows one to modify them by using
experimental data and new biological facts, rather than starting from scratch.

Lastly, many signal transduction pathway models based on the concept of Petri
net are provided at the following Petri Net Pathways website:

http://genome.ib.sci.yamaguchi-u.ac.jp/∼pnp/

This will also help us in creating models with Cell Illustrator.

http://www.csml.org/
http://genome.ib.sci.yamaguchi-u.ac.jp/~pnp/


Chapter 6
Computational Platform for Systems Biology

Chapters 4 and 5 covered the systematic method to model and simulate pathways.
In this chapter, we first introduce a method for visualizing and analyzing large-scale
gene networks, and then discuss further functionalities required for the research and
development in Systems Biology.

6.1 Gene Network of Yeast

In the previous chapters, towards systems understanding of biology, we introduced a
method for creating detailed models mainly based on our biological knowledge. An-
other method for creating pathways involves generating networks by computation
from large-scale experimental data such as gene expression microarray data. The
current microarray technology has made it possible to measure the gene expression
states of tens of thousands of genes.

Computational methods based on computer science and statistics have made it
possible to predict the overall gene networks from various measurements of the
system states by using computational methods such as Bayesian network methods
combined with nonparametric regression [17, 18]. Although these generated models
are still rough, they can serve as the global map of the relationship between genes
with which we can walk around on the gene networks and further biological inves-
tigations on the networks will be incubated. In particular, this gene network method
is anticipated as a strong strategy for drug target discovery [19–23].

In the next section, we will use the version of Cell Illustrator Standard to analyze
a gene network of a small size as an example.

Cell Illustrator comes with a gene network of yeast (Saccharomyces cerevisiae)
(included on the CD-ROM). Microarray measurements of a few hundred genes in-
cluding transcription factors are behind this gene network of yeast.

Microarray measurements were taken after knocking out each gene. Forcibly
halting the expression of a gene such as a transcription factor causes changes in the
expressions of the genes under its regulation. This change cascades downwards and

127
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causes even more changes. In other words, the gene expression data here reflect the
complex gene network at work.

This might be better explained as an analogy. Yeast has approximately 6000
genes. Therefore, consider some city (cell) with 6000 people (genes). This city has
various companies, factories, power plants, roads, and communication networks,
much like a cell. People do a variety of activities in the city. One day, a person M
in this city suddenly dies. M was running a company called G and the management
decisions for this company were made by M. Then the people working at the com-
pany have no idea what to do, the company stops functioning, and goes bankrupt.
As a result, there are those who lose their jobs and income while others find new
jobs. On the other hand, company G had a competitor called H. H will record a
higher profit, and the company may give out bonuses or hire more people. If it was
possible to view the bank accounts of all persons in the city (view the expression
levels of all genes with a microarray), then by killing a certain person (knocking
out a certain gene), it would be possible to see who profits and who does not (mi-
croarray analysis). Then by assuming it was possible to reset the city to its original
state (bringing back the dead), kill another person, and measure changes, you would
have the human version of yeast microarray analysis. Of course the experiment is
not as morbid as the analogy. The experiment sometimes simply adds shocks such
as “Making the environment hotter to see if air conditioners sell better”. In other
words, this is similar to adding a stimulus such as “killing a person” or “making the
city hotter” and seeing the resulting states (bank accounts) of everyone.

The yeast network included on the CD-ROM uses microarray data involving a
few hundred gene knockouts and drug responses developed in the research [19, 20].
By using a supercomputer system, we could compute networks of more than 1000
genes (Figure 6.1). Of the 1000 genes, 30 of those are included in this network,
where a directed graph shows the relationship as to how the genes are expressed.

6.2 Computational Analysis of Gene Network

We will explain some functions required for the analysis of gene networks.

6.2.1 Displaying Gene Network

Cell illustrator has two modes: detailed network mode and gene network mode. In
Chapters 4 and 5, all editing was done in the detailed network mode. In order to
analyze gene networks, Cell Illustrator should be switched to the gene net mode. As
seen in Figure 6.2, switch by selecting [View] → [Gene Net Mode] from the menu
bar. Afterwards, simply open the yeast gene network through [File] → [Open] (file
located at Models\Chapter6\Yeast30repress.xml on the CD-ROM).
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Fig. 6.1

Fig. 6.2
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6.2.2 Layout of Gene Networks

Figure 6.3 shows a circular layout of the network. Since this makes the regulatory
relationships hard to see, first change this layout.

Click on the right tool bar and open the Optimize Layout Dialog. Using the
“Import” button, load the current pathway into the dialog box. Here the layout can
be changed by selecting the “CCL Sugiyama” button (Figure 6.4) (Note: the results
of the layout will differ each time, and results may not be identical to Figure 6.4.)
Then use the “Enlarge” button to increase the spacing between elements. Pressing
the “Export” button applies the changes to the canvas (Figure 6.5).

Fig. 6.3
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Fig. 6.4

6.2.3 Pathway Search Function

Although Figure 6.5 shows the pathway in a semireadable fashion, it is difficult to
grasp the relationships visually because of the number of arrows. Searching and
isolating a specific subnetwork can make the view much more intuitive.

Click the to display the Pathway Search Dialog. Then enter the parameters in
Figure 6.6 and press the “Execute” button. This searches for paths of any direction
less than two links (edges) away between ABF2 and STF2. The Pathway Search
Results Dialog shows six such subnetworks (Figure 6.7). Highlighting any one of the
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Fig. 6.5

search results shows a subnetwork highlighted in red as seen in Figure 6.8. Selecting
multiple rows using the Shift and Ctrl keys shows the combined subnetwork.

6.2.4 Extracting Subnetworks

The subnetwork found in Section 6.2.3 can be extracted onto a new canvas. By se-
lecting [Analyze] → [Extract Subnet], the subnetwork should appear on the canvas
as seen in Figure 6.9. By saving this network, the subnetwork of interest can be
called up at any time. Save the extracted subnetwork by selecting [File] → [Save
As] for Section 6.2.4 as Extract1.xml. Call this extracted subnetwork the subnet-
work P1.
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Fig. 6.6

Fig. 6.7

6.2.5 Comparing Two Subnetworks

By comparing subnetworks extracted with various conditions, it is possible to grasp
the genes which are co-regulated and which are not. For example, comparing the
networks before and after EGF stimulation would isolate the regulation mechanisms
unique to EGF.

Two subnetworks, P1 created in Section 6.2.4 which contains bidirectional links
between ABF2 and STF2 and P2 which contain only links from STF2 to ABF2, are
compared using four methods in Table 6.1.

First, the network created in Section 6.2.4 is still selected in red, so release using
[Analyze] → [Clear Subnet]. Next, extract the network P2 using the parameters
shown in Figure 6.6 while setting the direction to reverse (Figure 6.10). Changing
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Fig. 6.8

Fig. 6.9

this option extracts only the networks which go from STF2 to ABF2. Save this new
network to a different file (Extract2.xml).

Since we have now two networks to compare, close all files using . Then by
using [File] → [Open], open both P1 and P2. Finally, select [Analyze] → [Compare]
to display six images as shown in Figure 6.11. These canvases correspond to the four
methods of comparison and the two original pathways P1 (left bottom) and P2 (right
bottom).
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Fig. 6.10

Table 6.1

No. Comparison Method Explanation

1 P1\P2 The result of subtracting the elements of P2 from P1. In the
example, this would remove all paths which are directed
from STF2 to ABF2 in P2 from P1.

2 P2\P1 The result of subtracting the elements of P1 from P2. In
the example, this would remove all paths in P1 from paths
heading from ABF2 to STF2 in P2 (resulting in an empty
set).

3 P1∩P2 Extracts the subnetwork which is common to both P1 and
P2. In the example, since all paths from ABF2 to STF2 in
P2 are also included in P1, the result would be P2.

4 P1∪P2 The union of subnetworks P1 and P2. In the example, since
all paths in P2 are included in P1, the result would be P1.

These comparisons allow us quick identification of common and unique path-
ways.

In this section we explained the basic analysis of gene networks using Cell Illus-
trator. The features covered in this section can also be used in the detailed network
mode used in Chapters 4 and 5. The measurement and computational technology
for analyzing gene networks is being improved considerably, and the analysis tools
such as Cell Illustrator will thus have more extensive functionalities.
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Fig. 6.11

6.3 Further Functionalities for Systems Biology

In this section, we consider computational capabilities which will accelerate the
research and development in Systems Biology. For this purpose, we briefly intro-
duce the online version Cell Illustrator Online 4.0 (CIO4.0). This product is the
next version of Cell Illustrator 3.0 and more functionalities are newly introduced or
enhanced to meet various requirements from Systems Biology. One of the features
of CIO4.0 is that the application launches via the Internet by using Java Web Start
technology and the user can always employ the latest functionalities in CIO4.0. The
application can be evaluated at the following websites:

http://cionline.bioillustrator.com/
http://cionline.hgc.jp/

6.3.1 Languages for Pathways: CSML 3.0 and CSO

As we have seen in Chapter 2, various pathway databases are built up with their
own XML formats. Therefore, it is important to have a strong XML which can
cover most of them for data import without loss of information while keeping the
biological meaning. CSML 3.0 is a highly optimized XML format for biological
pathway modeling and simulation that almost achieved this objective. This XML

http://cionline.bioillustrator.com/
http://cionline.hgc.jp/
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format has a full compatibility with the pathway modeling and simulation ontology
format Cell System Ontology (CSO) (Section 2.3.6). CI4.0 fully supports CSML3.0
though CI3.0 supports CSML1.9. With CSML3.0, other modeling and simulation
XML formats such as SBML (see Section 2.3.4) and CellML (see Section 2.3.3)
can be imported to CIO4.0. The ontology format BioPAX (see Section 2.3.5) can
also be imported to CIO4.0. Figure 6.12 shows these functionalities.

Fig. 6.12

6.3.2 SaaS Technology

Various types of analysis requests are coming from the R&D in Systems Biology.
Some of them require a huge supercomputer system for such as optimal parameter
search mentioned later in Section 6.3.3, very expensive/large databases to own, or
very specific analysis focused on a specific research topic. A single software cannot
cover all capabilities inside, and the software customization is very expensive or
impossible to cope with. Thus, inevitably, we need Software as a Service (SaaS)
technology for the computational platform for Systems Biology.

SaaS is a software application delivery model which is usually associated with
software business and is considered as a low-cost way to obtain the same merits
without the associated complexity and high initial cost as licensing.

SaaS technology is introduced in CIO4.0 and modules are serviced on the servers
introduced at the beginning of Section 6.3. Clients can select the desired modules
from them on their demands. The following eight modules including the beta version
are serviced on the server side as of March 2008:
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1) TRANSPATH Search Module
2) Project Management Module
3) TRANSPATH Pathway Library Module
4) High-performance Simulation Module
5) Pathway Model to Multiple Program Languages Export Module (Java, For-

tran, C++, C, Perl, and Python are supported)
6) Pathway Parameter Search Module
7) CSML to SVG Module (beta)
8) CSML to HTML Module (beta)

6.3.3 Pathway Parameter Search

The problem of parameter search for dynamic pathway models is one of the most
important topics in Systems Biology. Some challenges have been made for auto-
matic parameter estimation for HFPNe models by using a technology called data
assimilation which “blends” simulation models and observational data “rationally”
[14, 27]. This data assimilation method is more suited for a high-performance com-
puting system with Peta FLOPS computing ability. These efforts and developments
are anticipated to create groundbreaking modeling platforms for Systems Biology.

Although the data assimilation technology is still in the stage of research and
challenge, a “Pathway Parameter Search Module” is provided for CIO4.0 for a small
size parameter search. For a pathway model, this module executes the user-specified
multiple initial conditions at once and displays the result with 2D or 3D plots. By
using this method, the user can create a highly tuned model that fits the observed
result. Figure 6.13 shows a snapshot of this pathway search module. We can see
how the systems behavior will change according to the changes in parameters.

6.3.4 Much Faster Simulation

Thorough parameter search requires much faster simulation. Since the original sim-
ulation engine in Cell Illustrator is a script-based one, CIO4.0 is enhanced with
a “High-performance Simulation Module” whose performance is 10 to 100 times
faster than the original engine. A comparison is shown in Table 6.2, where the path-
way models used in comparison can be downloaded from http://www.csml.org/.

6.3.5 Exporting Pathway Models to Programming Languages

If the models described with CSML could not be used by other software applica-
tions, the efforts for making such models would be less appreciated. In order to

http://www.csml.org/
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Fig. 6.13

Table 6.2

Pathway Model Original
Engine

Module Engine

Circadian rhythms in Mus musculus (20000 [pt]) 37 sec 4 sec

Fas-induced apoptosis pathway (20000 [pt]) 66 sec 5 sec

p53 CDK-dependent phosphorylation pathway (1000 [pt]) 17 sec 5 sec

p53 ARF-dependent stabilization pathway (1000 [pt]) 3 sec Less than 1 sec

Glycolytic pathway and lac operon of E. coli (10000 [pt]) 76 sec 5 sec

@Intel Core 2 (3.0 G Hz)

cope with this situation, CIO4.0 is provided with a “Pathway Model to Multiple
Program Languages Export Module”. This module exports the model on CIO4.0
to native programming languages. As of March 2008, Java, Fortran, C++, C, Perl,
and Python are supported (Figure 6.14). By using this module, users can seamlessly
integrate their own applications to the model developed on CIO.

6.3.6 Pathway Layout Algorithms

Pathway layout is a key to better understanding of pathways. CI3.0 has the 14 basic
pathway layout algorithms. In CI4.0, seven more layout algorithms are provided.
Especially, highly customized layout algorithms for biological pathways, and three
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Fig. 6.14

grid layout algorithms (BLK, CB, and SCCB) are included. Figure 6.15 shows an
example of layout. Biological knowledge represented with Cell System Ontology
(CSO) is utilized in these algorithms so that biological entities and processes are
arranged at appropriate subcellular locations.

Fig. 6.15
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6.3.7 Pathway Database Management System

A database management system (DBMS) with GUI is also an essential functional-
ity. CIO4.0 has a DBMS for CSML which allows various searches via GUI such
as “TRANSPATH Search Module”. As of March 2008, TRANSPATH is fully sup-
ported [26]. This means that all pathway information in TRANSPATH is converted
to the data in CSML format so that pathway search results can be displayed on
CIO4.0 as shown in Figure 6.16. Moreover, with “TRANSPATH Pathway Library
Module”, more than 1000 well-established biological pathways in TRANSPATH
(signal transduction pathways and gene regulatory networks) can also be used on
CIO4.0 in a way that all pathways can be loaded, edited, saved, and simulated on
the user’s own terms (Figure 6.17).

“Project Management Module” is also a useful environment where each project
on the server can be shared by other permitted users (read, write, or both permis-
sions) and public pathway models such as those in http://www.csml.org/ can be
accessed via the GUI of the module (Figure 6.18).

Fig. 6.16
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Fig. 6.17

6.3.8 More Visually: Automatic Generation of Icons

Biologically intuitive and human-friendly icons are very appreciated in practice.
CI3.0 has about 350 handmade icons. However, when we use pathway databases
such as TRANSPATH, more than 100,000 biologically intuitive but unique icons are
necessary for graphical drawing of pathways. The number is beyond the capacity of
handmade or pseudo-handmade level. Thus the functionality is needed to automat-
ically generate icons which reflect biological meanings attached to the biological
objects. This functionality was developed for CIO4.0 so that CIO4.0 can fully use
TRANSPATH in addition to handmade icons (Processes: 92; Entities: 275; Cell
Components: 114) for more detailed pathway modeling. Figure 6.19 shows these
handmade icons (up) and automatically generated icons for TRANSPATH (down).
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Fig. 6.18
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Fig. 6.19
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