
Computational Biology

Marina Axelson-Fisk

Comparative
Gene Finding
Models, Algorithms and
Implementation

 Second Edition

Computational Biology

Volume 20

Editors-in-Chief
Andreas Dress
CAS-MPG Partner Institute for Computational Biology, Shanghai, China

Michal Linial
Hebrew University of Jerusalem, Jerusalem, Israel

Olga Troyanskaya
Princeton University, Princeton, NJ, USA

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

Editorial Board
Robert Giegerich, University of Bielefeld, Bielefeld, Germany
Janet Kelso, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
Gene Myers, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden,
Germany
Pavel A. Pevzner, University of California, San Diego, CA, USA

Advisory Board
Gordon Crippen, University of Michigan, Ann Arbor, MI, USA
Joe Felsenstein, University of Washington, Seattle, WA, USA
Dan Gusfield, University of California, Davis, CA, USA
Sorin Istrail, Brown University, Providence, RI, USA
Thomas Lengauer, Max Planck Institute for Computer Science, Saarbrücken, Germany
Marcella McClure, Montana State University, Bozeman, MO, USA
Martin Nowak, Harvard University, Cambridge, MA, USA
David Sankoff, University of Ottawa, Ottawa, ON, Canada
Ron Shamir, Tel Aviv University, Tel Aviv, Israel
Mike Steel, University of Canterbury, Christchurch, New Zealand
Gary Stormo, Washington University in St. Louis, St. Louis, MO, USA
Simon Tavaré, University of Cambridge, Cambridge, UK
Tandy Warnow, University of Texas, Austin, TX, USA
Lonnie Welch, Ohio University, Athens, OH, USA

The Computational Biology series publishes the very latest, high-quality research
devoted to specific issues in computer-assisted analysis of biological data. The main
emphasis is on current scientific developments and innovative techniques in com-
putational biology (bioinformatics), bringing to light methods from mathematics,
statistics and computer science that directly address biological problems currently
under investigation.

The series offers publications that present the state-of-the-art regarding the
problems in question; show computational biology/bioinformatics methods at work;
and finally discuss anticipated demands regarding developments in future meth-
odology. Titles can range from focused monographs, to undergraduate and graduate
textbooks, and professional text/reference works.

Author guidelines: springer.com > Authors > Author Guidelines

More information about this series at http://www.springer.com/series/5769

http://www.springer.com/series/5769

Marina Axelson-Fisk

Comparative Gene Finding
Models, Algorithms and Implementation

Second Edition

123

Marina Axelson-Fisk
Chalmers University of Technology
Gothenburg
Sweden

ISSN 1568-2684
Computational Biology
ISBN 978-1-4471-6692-4 ISBN 978-1-4471-6693-1 (eBook)
DOI 10.1007/978-1-4471-6693-1

Library of Congress Control Number: 2015935410

Springer London Heidelberg New York Dordrecht
© Springer-Verlag London 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag London Ltd. is part of Springer Science+Business Media (www.springer.com)

To Anders

Preface to the Second Edition

The first edition of Comparative Gene Finding: Models, Algorithms and Imple-
mentation was published in March 2010. Since then a lot has happened and the field
is gradually changing. A main driving force has been the ever-increasing use of
next-generation sequencing (NGS) technology, which is revolutionizing a manifold
of related fields. The pressure on computational methods and tools to handle these
large amounts of data is greater than ever. In particular, since the “old” sequence
analysis tools are not well adapted to the new situation with a huge data volume,
much shorter read lengths, and an increased level of sequencing errors.

The gene prediction process these days typically involve the running of a
multitude of bioinformatics tools, for repeat masking, for gene prediction, and for
homology analyses of data from a variety of sources. The analysis tools are
preferably gathered in an annotation pipeline that automatizes the processes and
produces a consensus annotation by means of some kind of combiner software.
Therefore, in this second edition we have chosen to add a chapter on annotation
pipelines for next-generation sequencing data. The chapter gives a brief description
of DNA sequencing in general, and of NGS techniques in particular, as well as a few
application areas relevant to the gene prediction problem. The various issues
involved in building a pipeline, is presented, with a discussion of the main steps
including sequence assembly, de novo repeat masking, gene prediction, and genome
annotation. Furthermore, Chap. 2 is extended to include a section on conditional
random fields (CRF) as yet another model for computational gene finding. CRFs
make a valuable contribution in the new sequencing technology era, as they allow for
a more flexible inclusion of differing input formats and complex interdependencies
between data.

Besides this and a few minor corrections, the second edition is largely unaltered.
The intended reader and the required prerequisites stated in the former preface
therefore remain unchanged.

Gothenburg, February 2015 Marina Axelson-Fisk

vii

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

Preface to the First Edition

Comparative genomics is a new and emerging field, and with the explosion of
available biological sequences the requests for faster, more efficient, and more
robust algorithms to analyze all this data are immense. This book is meant to serve
as a self-contained instruction of the state of the art of computational gene finding in
general, and of comparative approaches in particular. It is meant as an overview
of the various methods that have been applied in the field, and a quick introduction
into how computational gene finders are built in general. A beginner to the field
could use this book as a guide through to the main points to think about when
constructing a gene finder, and the main algorithms that are in use. On the other
hand, the more experienced gene finder should be able to use this book as a
reference to the different methods and to the main components incorporated in these
methods. I have focused on the main uses of the covered methods and avoided
much of the technical details and general extensions of the models. In exchange
I have tried to supply references to more detailed accounts of the different research
areas touched upon.

The book makes no claim of being comprehensive, however. As the amount of
available data has exploded, as has the literature around computational biology and
comparative genomics over the past few years, and although I have attempted to
leave no threads untouched, it has been impossible to include all different
approaches and aspects of the field. Moreover, I am likely to have missed several
important references that rightfully should have been mentioned in this text. To all
of you I sincerely apologize.

The structure of the book is meant to follow the natural order in which a gene
finding software is built, starting with the main models and algorithms, and then
breaking them down into the intrinsic submodels that cover the various features of a
gene. The book is initiated in Chap. 1 with a brief encounter of genetics, describing
the various biological terms and concepts that will be used in the succeeding
chapters. Here we discuss the general terms of gene structure, and discuss the
problems of settling on a gene definition, before we describe the gene finding
problem that we have set out to solve. The end of the chapter includes a historical
overview of the algorithm development of the past few decades. Chapter 2 covers

ix

some of the algorithms most commonly used for single species gene finding. Each
model section includes a theoretical encounter and illustrative examples, and is
concluded with a description of an existing gene finding software that uses the
model. In Chap. 3 we move on to sequence alignments. The chapter is divided into
two parts. The first part describes different scoring schemes used in pairwise
alignments, the application of dynamic programming, and the basic properties and
statistical foundation of heuristic database searches. The second part describes the
most common approaches to multiple sequence alignment, and the various attempts
to deal with the increased computational complexity. In Chap. 4 we take on the
main topic of the book, comparative gene finding. Here we combine the ideas in
Chaps. 2 and 3 to a comparative setting, and describe how the strengths of both
areas can be combined to improve the accuracy of gene finding. Again, each section
is structured into a theoretical part, examples and an overview of the use of the
model in an existing gene finder. Chapter 5 takes us through the gene features most
commonly captured by a computational gene model, and describes the most
important submodels used. A variety of different algorithms are described in detail,
along with several illustrations and examples. Chapter 6 goes through the basics of
parameter training, and covers a number of the different parameter estimation and
optimization techniques commonly used in gene finding. In Chap. 7 we illustrate
how to implement a comparative gene finder by giving the details behind the cross-
species gene finder SLAM. SLAM uses a generalized hidden Markov model as
main algorithm and has been used both by the Mouse Genome Sequencing
Consortium to compare the initial sequence of mouse to the human genome, and by
the Rat Genome Sequencing Consortium to perform a three-way analysis of human,
mouse, and rat. The different steps and aspects in constructing a comparative gene
finder are explained, and concluded with an encounter of various accuracy
assessment measures used to debug and benchmark the resulting software.

This book covers a number of different fields, including probability theory,
statistics, information theory, optimization theory, and numerical analysis. The
reader is expected to have some background in bioinformatics in general, and in
mathematics and mathematical statistics in particular. Basic knowledge of analysis,
probability theory, and random processes will prove very valuable. The level and
the structure of the book is such that it can readily be used as a course book for
master level students, but it can also provide valuable insights and give a good
overview to scientists wanting to get into the field quickly. Besides being specifi-
cally focused on the algorithmic details surrounding computational gene finding, it
provides a good lesson on the intrinsic parts of computational biology and bio-
logical sequence analysis, as well as in giving an overview of a number of
important mathematical and statistical areas applied in bioinformatics. A master-
level course could very well be structured simply by following the book chapter-by-
chapter, and perhaps include a smaller implementation project at the end.

Gothenburg, November 2009 Marina Axelson-Fisk

x Preface to the First Edition

Acknowledgments

First and foremost I would like to thank my colleagues Lior Pachter at UC Berkeley
and Simon Cawley at Affymetrix Inc. Thank you for inviting me to the SLAM-
project in the first place, and for introducing me to the very exciting world of
bioinformatics. Most of my gene finding work so far has been in collaboration with
them (under my maiden name Alexandersson), and without them this book would
never have come about. I really miss you guys, working with you has been a real
pleasure and I only wish you could have written this book together with me.

Next I want to extend my gratitude to my colleagues at the Mathematical Sci-
ences here in Gothenburg (Chalmers University of Technology and Gothenburg
University). This is a great department to be in, and I want to thank you for all your
help, support, and friendship, both professionally and personally. In particular
I want to mention those of you who has taken the time off their busy schedule to
review this text: Johan Jonasson, Graham Kemp (at Computer Science), Olle
Häggström, Marita Olsson, and Mikael Patriksson. Thank you for all your help,
your invaluable comments, and for being so darn picky.

Finally I want to acknowledge the Swedish Research Council (Vetenskapsrådet)
for their generous funding, which made it possible for me to focus on such a large
and time-consuming project as this.

xi

Contents

1 Introduction . 1
1.1 Some Basic Genetics . 1
1.2 The Central Dogma. 4
1.3 The Structure of a Gene . 6
1.4 How Many Genes Do We Have? . 8
1.5 Problems of Gene Definitions. 11
1.6 The Gene Finding Problem . 13
1.7 Comparative Gene Finding. 15
1.8 History of Algorithm Development . 16
1.9 To Build a Gene Finder. 22
References. 23

2 Single Species Gene Finding . 29
2.1 Hidden Markov Models (HMMs) . 29

2.1.1 Markov Chains. 30
2.1.2 Hidden Markov Models . 41
2.1.3 Dynamic Programming . 44
2.1.4 The Forward Algorithm . 47
2.1.5 The Backward Algorithm. 48
2.1.6 The Viterbi Algorithm . 49
2.1.7 EasyGene: A Prokaryotic Gene Finder. 52

2.2 Generalized Hidden Markov Models (GHMMs) 55
2.2.1 Preliminaries . 55
2.2.2 The Forward and Backward Algorithms. 57
2.2.3 The Viterbi Algorithm . 59
2.2.4 Genscan: A GHMM-Based Gene Finder 60

2.3 Interpolated Markov Models (IMMs). 70
2.3.1 Preliminaries . 71
2.3.2 Linear and Rational Interpolation 71
2.3.3 GLIMMER: A Microbial Gene Finder. 73

xiii

http://dx.doi.org/10.1007/978-1-4471-6693-1_1
http://dx.doi.org/10.1007/978-1-4471-6693-1_1
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_1#Bib1
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec12
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec12
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec13
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec13
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec14
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec14
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec15
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec15
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec16
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec16
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec20
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec20
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec21
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec21
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec22
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec22
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec23
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec23

2.4 Neural Networks. 76
2.4.1 Biological Neurons . 76
2.4.2 Artificial Neurons and the Perceptron 77
2.4.3 Multilayer Neural Networks 80
2.4.4 GRAIL: A Neural Network-Based Gene Finder 81

2.5 Decision Trees . 84
2.5.1 Classification . 84
2.5.2 Decision Tree Learning . 86
2.5.3 MORGAN: A Decision Tree-Based Gene Finder 89

2.6 Conditional Random Fields . 91
2.6.1 Preliminaries . 91
2.6.2 Generative Versus Discriminative Models 92
2.6.3 Graphical Models and Markov Random Fields 94
2.6.4 Conditional Random Fields (CRFs) 98
2.6.5 Conrad: CRF-Based Gene Prediction. 100

References. 103

3 Sequence Alignment . 107
3.1 Pairwise Sequence Alignment. 107

3.1.1 Dot Plot Matrix . 109
3.1.2 Nucleotide Substitution Models 110
3.1.3 Amino Acid Substitution Models 116
3.1.4 Gap Models . 125
3.1.5 The Needleman–Wunsch Algorithm 126
3.1.6 The Smith–Waterman Algorithm. 130
3.1.7 Pair Hidden Markov Models (PHMMs) 132
3.1.8 Database Similarity Searches 136
3.1.9 The Significance of Alignment Scores 141

3.2 Multiple Sequence Alignment. 143
3.2.1 Scoring Schemes . 144
3.2.2 Phylogenetic Trees . 147
3.2.3 Dynamic Programming . 149
3.2.4 Progressive Alignments . 152
3.2.5 Iterative Methods . 155
3.2.6 Hidden Markov Models . 158
3.2.7 Genetic Algorithms . 160
3.2.8 Simulated Annealing . 163
3.2.9 Alignment Profiles . 166

References. 171

4 Comparative Gene Finding . 175
4.1 Similarity-Based Gene Finding . 175

4.1.1 GenomeScan: GHMM-Based Gene Finding
Using Homology . 176

xiv Contents

http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec27
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec27
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec28
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec28
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec29
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec29
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec30
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec30
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec31
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec31
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec32
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec32
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec33
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec33
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec34
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec34
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec35
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec35
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec36
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec36
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec37
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec37
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec38
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec38
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec39
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec39
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec40
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec40
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec41
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Sec41
http://dx.doi.org/10.1007/978-1-4471-6693-1_2#Bib1
http://dx.doi.org/10.1007/978-1-4471-6693-1_3
http://dx.doi.org/10.1007/978-1-4471-6693-1_3
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec10
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec10
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec13
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec13
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec14
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec14
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec15
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec15
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec17
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec17
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec19
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec19
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec21
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec21
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec22
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec22
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec23
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec23
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec24
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec24
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec25
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec25
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec26
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Sec26
http://dx.doi.org/10.1007/978-1-4471-6693-1_3#Bib1
http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec2

4.1.2 Twinscan: GHMM-Based Gene Finding Using
Informant Sequences . 178

4.2 Heuristic Cross-Species Gene Finding 180
4.2.1 ROSETTA: A Heuristic Cross-Species

Gene Finder . 180
4.3 Pair Hidden Markov Models (PHMMs) 182

4.3.1 DoubleScan: A PHMM-Based Comparative
Gene Finder . 182

4.4 Generalized Pair Hidden Markov Models (GPHMMs) 185
4.4.1 Preliminaries . 185
4.4.2 SLAM: A GPHMM-Based Comparative

Gene Finder . 188
4.5 Gene Mapping . 192

4.5.1 Projector: A Gene Mapping Tool 193
4.5.2 GeneMapper—Reference-Based Annotation 194

4.6 Multiple Sequence Gene Finding . 195
4.6.1 N-SCAN: A Multiple Informant-Based

Gene Finder . 196
References. 198

5 Gene Structure Submodels . 201
5.1 The State Space . 201

5.1.1 The Exon States . 203
5.1.2 Splice Sites . 204
5.1.3 Introns and Intergenic Regions 205
5.1.4 Untranslated Regions (UTRs) 206
5.1.5 Promoters and PolyA-Signals 207

5.2 State Length Distributions . 208
5.2.1 Geometric and Negative Binomial Lengths. 209
5.2.2 Empirical Length Distributions 211
5.2.3 Acyclic Discrete Phase-Type Distributions 213

5.3 Sequence Content Sensors . 217
5.3.1 GC-Content Binning . 217
5.3.2 Start Codon Recognition . 218
5.3.3 Codon and Amino Acid Usage 219
5.3.4 K-Tuple Frequency Analysis 220
5.3.5 Markov Chain Content Sensors 222
5.3.6 Interpolated Markov Models. 224

5.4 Splice Site Detection . 225
5.4.1 Weight Matrices and Weight Array Models 225
5.4.2 Variable-Length Markov Models (VLMMs) 228
5.4.3 Maximal Dependence Decomposition (MDD). 230
5.4.4 Neural Networks. 236
5.4.5 Linear Discriminant Analysis 238

Contents xv

http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec11
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec11
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec11
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec12
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec12
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec13
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec13
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec14
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec14
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec15
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec15
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec16
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec16
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Sec16
http://dx.doi.org/10.1007/978-1-4471-6693-1_4#Bib1
http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec10
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec10
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec11
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec11
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec12
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec12
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec13
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec13
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec14
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec14
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec15
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec15
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec16
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec16
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec17
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec17
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec18
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec18
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec19
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec19
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec20
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec20
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec21
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec21
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec22
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec22
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec23
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec23

5.4.6 Maximum Entropy . 243
5.4.7 Bayesian Networks . 249
5.4.8 Support Vector Machines. 255

References. 264

6 Parameter Training . 269
6.1 Introduction . 269
6.2 Pseudocounts . 270
6.3 Maximum Likelihood Estimation . 273
6.4 The Expectation–Maximization (EM) Algorithm 279
6.5 The Baum–Welch Algorithm . 286
6.6 Gradient Ascent/Descent . 290
6.7 The Backpropagation Algorithm . 293
6.8 Discriminative Training . 299
6.9 Gibbs Sampling . 303
6.10 Simulated Annealing . 305
References. 308

7 Implementation of a Comparative Gene Finder 311
7.1 Program Structure . 311

7.1.1 Command Line Arguments 312
7.1.2 Parameter Files . 314
7.1.3 Candidate Exon Boundaries 316
7.1.4 Output Files . 317

7.2 The GPHMM Model . 318
7.2.1 Modeling Intron and Intergenic Pairs. 319
7.2.2 Modeling Exon Pairs. 320
7.2.3 Approximate Alignment. 321

7.3 Accuracy Assessment . 322
7.4 Possible Model Extensions. 323
References. 324

8 Annotation Pipelines for Next-Generation Sequencing Projects . . . 325
8.1 Introduction . 325
8.2 History of DNA Sequencing. 326

8.2.1 The Origin of Bioinformatics 331
8.3 Next-Generation Sequencing (NGS) 333

8.3.1 NGS Technologies . 334
8.3.2 Genome Sequence Assembly 336
8.3.3 NGS Applications . 342

8.4 NGS Genome Sequencing Annotation Pipelines 349
8.4.1 Assembly Quality . 350
8.4.2 Repeat Masking . 350
8.4.3 Gene Annotation. 352

xvi Contents

http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec24
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec24
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec25
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec25
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec26
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Sec26
http://dx.doi.org/10.1007/978-1-4471-6693-1_5#Bib1
http://dx.doi.org/10.1007/978-1-4471-6693-1_6
http://dx.doi.org/10.1007/978-1-4471-6693-1_6
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec10
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Sec10
http://dx.doi.org/10.1007/978-1-4471-6693-1_6#Bib1
http://dx.doi.org/10.1007/978-1-4471-6693-1_7
http://dx.doi.org/10.1007/978-1-4471-6693-1_7
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec7
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec8
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec9
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec10
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec10
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec11
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Sec11
http://dx.doi.org/10.1007/978-1-4471-6693-1_7#Bib1
http://dx.doi.org/10.1007/978-1-4471-6693-1_8
http://dx.doi.org/10.1007/978-1-4471-6693-1_8
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec1
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec2
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec3
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec4
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec5
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec6
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec10
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec10
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec13
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec13
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec14
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec14
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec15
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec15
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec16
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec16

8.4.4 De Novo Annotation Assessment 355
8.4.5 MAKER: An Annotation Pipeline

for Next-Generation Sequencing Projects 357
References. 359

Index . 369

Contents xvii

http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec17
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec17
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec18
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec18
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Sec18
http://dx.doi.org/10.1007/978-1-4471-6693-1_8#Bib1

Acronyms

CAI Codon Adaptation Index
CBI Codon Bias Index
CDS CoDing Sequence
CML Conditional Maximum Likelihood
CNS Conserved Non-coding Sequence
CRF Conditional Random Field
DAG Directed Acyclic Graph
DNA Deoxyribonucleic Acid
GHMM Generalized Hidden Markov Model
GPHMM Generalized Pair Hidden Markov Model
HMM Hidden Markov Model
IMM Interpolated Markov Model
ICM Interpolated context model
LDA Linear Discriminant Analysis
MCE Minimum Classification Error
MCMC Markov Chain Monte Carlo
MDD Maximal Dependence Decomposition
MEA Maximum Expected Accuracy
ML Maximum Likelihood
MMI Maximum Mutual Information
ORF Open Reading Frame
PHMM Pair Hidden Markov Model
PSSM Position-Specific Scoring Matrix
QDA Quadratic Discriminant Analysis
RBS Ribosomal Binding Site
RNA Ribonucleic Acid
SVM Support Vector Machine
TSS Transcription Start Site
UTR Untranslated Region
VLMM Variable-Length Markov Model
VOM Variable-Order Markov Model

xix

WAM Weight Array Model
WMM Weight Matrix Model
WWAM Windowed Weight Array Model

xx Acronyms

Chapter 1
Introduction

This book is meant to serve as an introduction to the new and very exciting field of
comparative gene finding. We introduce the field in its current state, and go through
the process of constructing a comparative gene finder by breaking it down into its
separate building blocks. But before we can dive into the algorithmic details of such
a process, we begin by giving a brief introduction to the underlying biological theory.
In this chapter we introduce the basic concepts of genetics needed for this book, and
define the gene finding problem we have set out to solve. We round off by giving a
brief account of the historical developments of approaching the gene finding problem
up to where it stands today. In the last section we split the process of building a gene
finder into its smaller parts, and the rest of the book is structured in the same manner.

1.1 Some Basic Genetics

Every living organism consists of cells, from just one cell as in the bacterium
Escherichia coli (E. coli) to many trillions (∼1012) as in human. Higher organisms
also contain considerable amounts of noncellular material, such as bones and water.
With a few exceptions each cell contains a complete copy of the genetic material,
which is the blueprint that directs all the activities in the organism, and that contains
the code for the inheritable traits that are passed from parent to offspring. The genetic
material is composed of the chemical substance deoxyribonucleic acid, or DNA for
short. A single-stranded DNA molecule is a long polymer of small subunits called
nucleotides (or bases). Each nucleotide consists of a sugar molecule, a phosphoric
acid molecule, and one of four nitrogen bases: adenine (A), thymine (T), guanine
(G) or cytosine (C), giving rise to the four-letter DNA code {A,T,G,C}. Adenine and
guanine belong to the class of purines, while cytosine and thymine belong to the
pyrimidines. The nitrogen base in purines is slightly larger than that of pyrimidines,
consisting of a six-nitrogen and a five-nitrogen ring fused together, while pyrim-
idines only have a single six-nitrogen ring. In living organisms, DNA usually comes
in double-stranded form, where two single-stranded DNA molecules are arranged

© Springer-Verlag London 2015
M. Axelson-Fisk, Comparative Gene Finding, Computational Biology 20,
DOI 10.1007/978-1-4471-6693-1_1

1

2 1 Introduction

into a long ladder, coiled to the shape of a double helix. The backbone of the ladder is
formed by the sugar and phosphate molecules of the nucleotides, while the “rungs”
of the ladder consist of the nitrogen bases joined in the middle by hydrogen bonds.
In this structure, A always binds to T, and G always binds to C, in so-called base
pairs (bp), causing the two sides of the ladder, or the two strands in the double helix,
to mirror each other.

There are two main types of cells, correspondingly distinguishing between two
main types of organisms, namely eukaryotic and prokaryotic cells. Besides the fact
that eukaryotic cells are considerably more complex than prokaryotic cells, an impor-
tant difference is that eukaryotic cells contain a nucleus while prokyarotic cells do
not. Most of the genetic material reside in the nucleus in eukaryotes, and is carried
on large, physically separate, DNA macromolecules called chromosomes. While the
chromosomes in eukaryotes are linear, the DNA in prokaryotes is organized into
circular rings. These rings are technically not chromosomes, although many tend
to use the term for prokaryotes as well. Each eukaryotic specie has a characteristic
number of chromosomes, which for instance is 46 in a typical human cell, 40 in
mouse, and only 8 in fruit fly. With “typical” cells we mean diploid cells, where
the chromosomes are organized in pairs. In each pair, one chromosome descends
from the mother, and the other from the father. There are two types of chromosome
pairs, the autosomes and the sex chromosomes. In an autosome pair the two individ-
ual chromosomes are of the same length, carry the same inheritable traits, and the
number of copies of the chromosomes is the same in both males and females. The
sex chromosomes, on the other hand, may have very different characteristics and are
also the main indicator of the gender of the organism. The human genome consists
of 23 chromosome pairs, including 22 autosomes and one pair of sex chromosomes,
X and Y. A female carries the pair XX while males carry the pair XY, where the
Y chromosome naturally always comes from the father. The ploidy of an organism
signifies the number of copies of the unique set of chromosomes in that organism.
Thus, a diploid cell contains two copies of each distinct chromosome (except for the
sex chromosomes), whereas a haploid cell bears only one copy of each. Most cells
in higher organisms are diploid, but specifically the gametes (the sperm and ova) are
haploid. Examples of haploid organisms are fungi, wasps, and ants, and for instance,
plants may switch between a haploid and a diploid, or even a polyploid state.

The genetic material on the chromosomes is organized into subunits called the
genes of the organism. The genes are subsequences of DNA spread out along the
chromosomes, and are intervened by possibly very long stretches of nonfunctional
DNA. The genes provide the templates for the proteins and RNA molecules that are
responsible for all activity in the organism, and are traditionally defined as the units
of inheritance that control the hereditary traits passed on from parent to offspring.
The genome of an organism is its complete set of DNA (or RNA for some viruses),
including both the genes and the nonfunctional stretches of DNA. The genome sizes
vary greatly between organisms; from 600,000 bp in the smallest (known) free-
living organism (a bacterium) to some 3 billion bp in human. While the genome is
very compact in lower organisms, with very little nonfunctional material, in higher
organisms the genes are hidden in a vast sea of “junk” DNA. In human, for instance,

1.1 Some Basic Genetics 3

the genes constitute only about 3 % of the human genome. If the rest of the sequence
really is junk, or if it has some sort of function, direct or indirect, is still under much
debate [10, 43].

Although mirroring one another, the chromosome strands run in opposite direc-
tions, and are said to be antiparallel. One strand is called the 5′ → 3′, the forward,
or the sense strand, while the other the 3′ → 5′, the reverse, or the antisense strand.
The 3′ and 5′ connotations correspond to the orientation of the 3′ and 5′ carbon atoms
of the sugar rings in the nucleotides (see Fig. 1.1), and the reading direction (i.e., the
direction genes are transcribed) goes from 5′ to 3′. That is, the transcription starts at
the 5′ end of the gene and ends in the 3′ end. Sequences appearing before or after a
gene (in the reading direction) is commonly referred to as upstream or downstream
of the gene respectively. Faced with a novel sequence to analyze, which strand that
gets assigned to be the forward or the reverse strand is of course arbitrary.

nitrogen
base

nitrogen
base

nitrogen
base

nitrogen
base

P

P

P

1'

1'

2'

3'

4'

5'

3'

4'

5'

2'

P

P

1'

2'

5'

5'

4'

P

1'

2'

5'

4'

3'

3'

3' end

 end

3' end

5' end

Fig. 1.1 Each nucleotide consists of a phosphoric acid molecule (P), a sugar ring, and a nitrogen
base. The antiparallel strands of the DNA double helix run in opposite directions. The direction is
given using the 3′ and 5′ carbon atoms of the sugar rings in the nucleotides. Reading the sequences
from left to right, one will have the 5′ atom to the left of the 3′, while in the antiparallel strand the
situation is reversed

4 1 Introduction

1.2 The Central Dogma

The genotype of an organism is the set of genes that the genome contains. The
phenotype, on the other hand, is the set of observable characteristics of that organism,
such as size, structure, number of cells, tissues, and organs and, also, behavior and
function of the organism. The Central Dogma in Molecular Biology formulated by
Sir Francis Crick, first in 1958, and then re-stated in 1970 [27], describes how the
genetic information contained in genes is transferred, giving the connection between
genotypes and phenotypes. Moreover, the central dogma states that protein sequences
are never translated back to DNA, RNA or a new protein, DNA is never created out of
RNA (with the exception of retroviruses), and DNA is never directly translated into
protein. Crick classified the 3 × 3 = 9 possible information transfers between DNA,
RNA, and protein into general transfers, special transfers, and unknown transfers
(see Fig. 1.2). General transfers (solid arrows in Fig. 1.2) are those that are believed
to occur naturally in all cells, such as DNA to DNA (DNA replication), DNA to RNA
(transcription), RNA to RNA (RNA replication), and RNA to protein (translation).
The RNA replication, which may seem as the least natural of all the general transfers,
may be the way in which RNA viruses replicate. Special transfers (dashed arrows in
Fig. 1.2), the RNA to DNA and DNA to protein transfers, are known to occur, but
only under specific conditions. For instance, reverse transcription of RNA to DNA
occurs in some retroviruses and retrotransposons. Direct translation of DNA into
protein has been observed, but only artificially using test tubes. The third class of
the transfers, the unknown transfers, are those believed never to occur, consisting
of the protein to DNA, protein to RNA, and protein to protein transfers, and are
not shown in the figure. Potential exceptions to these rules may exist, and while the
central dogma has been adjusted since it first was stated, it remains the backbone of
molecular biology. For the purposes of this book we are only interested in the general
transfers, and of those only the transcription (DNA to RNA) and the translational
(RNA to protein) ones.

A gene is said to be expressed when it produces a product, which for most genes
is proteins but can end with an RNA product. In essence, a protein-coding gene gets
expressed roughly in two steps; the transcription and the translation. When a gene

Fig. 1.2 The central dogma.
The solid arrows signify
general transfers, the dashed
arrows signify special
transfers, while unknown
transfers are those absent
with respect to a complete
graph

RNA

DNA

PROTEIN

1.2 The Central Dogma 5

is transcribed, the entire gene sequence, sometimes extending over many thousands
of DNA bases, is copied into another kind of nucleic acid, called ribonucleic acid
(RNA). The RNA molecule is a complementary copy of the DNA template, meaning
that a T in the DNA template results in an A in the RNA molecule, a C in a G, and
vice versa. The only exception is that the nucleotide thymine (T) in DNA is replaced
by the molecule uracil (U) in RNA. Thus, in the copying process, an A in the DNA
template results in a U in the RNA molecule.

The resulting RNA molecule is called a primary transcript, and is often further
processed before it is passed on for translation. One such process, particularly com-
mon in eukaryotes, is called splicing, in which nonfunctional parts of the transcribed
sequence are excised out of the molecule. For some genes the processed RNA is the
final product, while for most genes the RNA molecule is passed on to the translation
step. The processed RNA molecule is then called a messenger RNA (mRNA) because
it carries the genetic information from the DNA sequence to the protein-synthesis
machinery of the cell. In this machinery, the mRNA molecule is translated into pro-
tein by letting each triplet of the RNA sequence code for specific a amino acid.
These triplets are then called codons and the specific mapping between RNA triplets
and amino acids is often referred to as the genetic code (see Fig. 1.3). The resulting
protein is finally folded into a specific three-dimensional structure and transported
out into the organism to whatever place it is supposed to be.

T C A G

T

C

A

G

Fi
rs

tb
as

e
in

co
do

n

Second base in codon

T
hird

base
in

codon

TTT
TTC
TTA
TTG

Phe

Leu

CTT
CTC
CTA
CTT

Leu

ATT
ATC
ATA
ATG

Ile

Met

GTT
GTC
GTA
GTG

Val

TCT
TCC
TCA
TCG

Ser

CCT
CCC
CCA
CCG

Pro

ACT
ACC
ACA
ACG

Thr

GCT
GCA
GCC
GCG

Ala

TAT
TAC
TAA
TAG

Tyr

Stop
Stop

CAT
CAC
CAA
CAG

His

Gln

AAT
AAC
AAA
AAG

Asn

Lys

GAT
GAC
GAA
GAG

Asp

Glu

TGT
TGC
TGA
TGG

Cys

Stop
Trp

CGT
CGC
CGA
CGG

Arg

AGT
AGC
AGA
AGG

Ser

Arg

GGT
GGC
GGA
GGG

Gly

T
C
A
G

T
C
A
G

T
C
A
G

T
C
A
G

Fig. 1.3 The genetic code

6 1 Introduction

1.3 The Structure of a Gene

Most genes contain information for making specific proteins, which then perform a
wide variety of activities in the cell. Other genes, called noncoding genes, encode
functional RNA molecules often involved in the regulation of gene expression and
protein synthesis. These genes are not translated into proteins, and lack the typical
sequence constraints of coding sequences, something that makes them hard to detect
by traditional gene finding programs. Protein-coding genes can vary a lot in size and
organization, but they share several conserved features. Therefore it is common to
ignore the noncoding genes in gene finding algorithms, and, likewise, we will here
concentrate on the identification of protein-coding genes, and henceforth, when we
write “gene” we mean a protein-coding gene (Fig. 1.4).

The boundaries of a gene are often defined as the beginning and end of the tran-
scription, and the core of the gene is the coding region consisting of the DNA sequence
that eventually gets translated into protein. Furthermore, the genes in higher organ-
isms are not contiguous, but are often split into alternating coding and noncoding
segments. The coding segments, called exons, constitute the template sequences for
the amino acid sequence, and very often a separate exon corresponds to a discrete
functional or structural unit of the protein. The exons are interspersed by noncoding
regions of highly variable lengths called introns. When the gene is expressed, the
entire region surrounding the gene and sometimes extending over many thousands
of bases is transcribed into an RNA molecule using the DNA as a template. The
introns are then cut out in a process called splicing, and the exon sequences are
“glued” together again and translated into the corresponding protein. In the trans-
lation the combined exon sequence, often called the coding sequence or CDS, is
divided into triplets, or three-letter words, called codons, that each code for one of
20 possible amino acids (except for the three terminal codons TAA, TAG, and TGA).

5' 3'

exon exon exon
intron intron

transcribed segment

5' UTR
coding sequence

3' UTR

upstream
regulators

promoter

CAAT TATA

transcription
start

translation
start (ATG)

translation stop
(TAA/TAG/TGA)splice

donor
splice
acceptor

polyA

Fig. 1.4 The structure of a eukaryotic gene. The gene is defined as the segment that is transcribed
into RNA. The coding sequence consists of exons that get translated into amino acids, and inter-
vening introns that get spliced out before translation and do not encode for protein. The 5′UTR
and 3′UTR are untranslated regions flanking the coding sequence and not involved in the protein
synthesis. The promoter contains binding sites (such as CAAT and TATA) for enzymes involved in
the transcription. Additional regulatory elements, such as enhancers and suppressors, may reside
further upstream of the gene

1.3 The Structure of a Gene 7

The amino acids corresponding to the codon sequence are linked together in a long
linear string called a polypeptide, and proteins are composed of one or several large
such polypeptides.

Although the end product after splicing will consist of even base triplets (i.e., the
length is divisible by 3), the splice signal can occur in the middle of a codon. If a
codon is to be spliced, one part appears at the end of one exon in the underlying DNA
sequence, and the other at the beginning of the next exon. The intron in between the
exons is said to have phase 0, 1 or 2 depending on whether it falls between two
complete codons, after the first base of a codon, or after the second base of a codon,
respectively. Similarly, a gene can have either one of three possible reading frames
(six if we include the reverse strand in the count) corresponding to the location of the
coding sequence of the gene with respect to the beginning of the entire input sequence.
For instance, if the coding region of the gene starts k bases into the sequence, the
reading frame of the gene is k mod 3. An open reading frame (ORF) is a string of
codons occurring between an initial codon ATG and ending with one of the three
stop codons TAA, TAG, or TGA, but without any other interrupting stop codons in
between.

Not all genes are active in all types of cells or at all times. Some genes are
almost always active, though, and these are called housekeeping genes. Others are
more differentially expressed and might be active only in specific cell types or at
particular stages of development of the organism, or they may be activated only
when necessary by specific processes in the cell. Such differential expression is
achieved by regulating the transcription and the translation of the genes in various
ways, and besides consisting of exons and introns the gene is comprised of a number
of regulating components, such as the promoter, the UTRs, and the polyadenylation
signal (polyA) to mention a few. The UTRs, or untranslated regions, are regions
of untranslated exons both upstream and downstream of the coding region. The
promoter is the region surrounding the transcription start of the gene and regulates
the binding of transcription factors to the gene, and the polyA signal resides at the
end of the transcript and is part of the process that prepares the mRNA for translation.

The problem of gene finding is to accurately predict the gene structure, in particular
to locate the different gene features and predict the resulting polypeptide. It is not
obvious how to define a gene, something that we discuss further in Sect. 1.5. For
our purposes, however, we will say that a gene constitutes a contiguous segment of
DNA, composed by a number of features needed to generate the final protein. These
features include:

• Upstream non-transcribed regulatory elements, including the promoter.
• Transcription start site.
• 5′UTR.
• Coding region, including coding exons, splice sites, and introns.
• 3′UTR, including the polyA-signal.

8 1 Introduction

1.4 How Many Genes Do We Have?

In May 2000, with the DNA sequence of the human genome near completion,
Dr. Ewan Birney, a senior scientist at the European Bioinformatics Institute (EBI),
organized a sweepstake, where he invited researchers to bet on the total number of
genes in the human genome. The winner was to be announced at a Cold Spring Har-
bor conference in 2003 [105], and for the fairness of the sweepstake the pot was to be
split between the nearest bidders in each year 2000–2002. Dr. Birney was convinced
that his annotators at Ensembl [35] would have a final answer well in time, but as the
2003 conference drew nearer it became evident that the human gene number was still
far from being resolved. Still, the rules of the sweepstake stated that a winner had
to be announced, and therefore the most recent estimate of EBI resulted in 21,000
genes as the most probable “final answer”. As it turned out, all bets placed were well
above the “final answer”, and thus the lowest bet in each year, no matter how far off
it may seem, became the winning bet. The winner of year 2000 bet 27,462 genes,
and was asked how he came up with such a low number in a year when popular
estimates were considerably higher, closer to 50,000 in fact. His explanation was
that he had been in a bar drinking at the time. It had been late at night and at that
point the behavior of the other bar visitors had not seemed much more sophisticated
than that of a fruit fly, which, at that time was thought to have around 13,500 genes.
Thus, he simply doubled this number, and used his birth date, April 27, 1962, as his
final (and winning) bet.

There has been a huge interest in the total number of genes in the human genome
in recent years, which may seem as a drift away from more important questions.
However, while the gene number merely is a product of the efforts to identify and
characterize all functional units in a genome, the number itself may be of interest.
For instance, the fact that the number of genes in human is much less than origi-
nally thought, has appeared very enticing to some and raised many questions, both
of biological and philosophical nature. How is it possible that such a biologically
complex organism such as ourselves have a gene number only about a third larger
than the nematode worm Caenorhabditis elegans, and just about five times than that
of the bacterium Pseudomonas aeruginosa [25]? Or, to quote Comings in 1972 [26],
“The lowly liverwort has 18 times as much DNA as we, and the slimy, dull sala-
mander known as Amphiuma has 26 times our complement of DNA.” The question
of the apparent lack of relationship between genome size and biological complexity
has been named the C-value paradox, where the C-value signifies the amount of
DNA in a haploid eukaryotic cell. The term C-value was coined by Hewson Swift
already in 1950 [102], in reference to a “remarkable constancy in the nuclear DNA
content of all the cells in all the individuals within a given animal species” reported
by Vendrely and Vendrely [44, 104]. This constancy was taken as evidence that it
was the DNA, and not the proteins, that served as the hereditary material. However,
the combination of a fairly constant DNA content within species, and huge varia-
tions of genome sizes between species, seemed ‘paradoxical’. Although the C-value
seemed related to morphological complexity in lower organisms, the variation was

1.4 How Many Genes Do We Have? 9

profound among higher organisms, with numerous plants, insects, and amphibians
having much larger genomes than humans, something that appeared very provoca-
tive at the time. However, the basic paradox was that the DNA amount should be
constant, since it harbors the genes, and yet was much larger than expected based on
the presumed number of genes in any given organism. The solution to the paradox
came with the realization that most DNA is noncoding, so that the size of the genome
has little to do with the number of genes it holds. Moreover, the now well-known
fact that the genes are not aligned along the genome as simple pearls on a string, but
exhibit complex dependencies both in sequence residence and function, appeared to
resolve the lack of relation between genome size and biological complexity.

This solution raised a number of questions on its own, however, including the
purpose, evolution, and discontinuous distribution among species of this noncoding
DNA [44]. Gregory therefore suggested an update of the C-value paradox to the
C-value enigma [43]. The genome size variation is randomly distributed over species.
Although large among lower organisms including amphibians, plants, and unicells,
the size range is rather constrained in mammals, birds, and prokaryotes. In addition,
the C-values of related species appears discontinuous, as multiples of some basal
value even, unrelated to shifts in chromosome number. Moreover, there appears to be a
strong connection between cell size and nuclear size, and a strong negative correlation
to cell division rates; large genome sizes are much more prevalent in species with
large, slowly dividing cells. Gregory suggested that any solution to the C-value
enigma had to consider not just one, but three questions: (1) The variation of genome
sizes, continuous or discontinuous, over species, (2) the nonrandom distribution of
variation over different groups of species, where some vary greatly and others appear
constrained, and (3) the strong connection between the C-value and the cell volume,
as well as the negative correlation with division rates.

Claverie coins a similar paradox, the N-value paradox [25], for the lack of relation
between gene content and organism sophistication. The question is how to define bio-
logical complexity. Diversity of cell types? Brain circuitry? Cultural achievements?
Claverie suggests the number of “theoretical transcriptome states” that the genome
of an organism can give rise to as a measure of complexity, where the transcriptome
is the set of all transcripts (mRNA molecules) in an organism. If we, as a simpli-
fied model, assume that each gene in the genome only has two possible states, it is
either ON or OFF, the human genome could theoretically give rise to 230,000 different
“transcriptome states”. Compared to about 220,000 for the nematode worm, humans
appear to be 103000 times more complex. These numbers have to be decreased due to
co-regulation of genes, and because some of these hypothetical transcriptome states
will be lethal to the organism, but this is true for all organisms. Besides, the genes
exhibit more than two states (alternatively spliced forms) on average in human, while
this rate is less than two in worm [58]. The conclusion is that already a small number
of genes can generate tremendous complexity, by using sophisticated mechanisms
of gene regulation, rather than just increasing the number of genes [25].

While on the subject of paradoxes, Harrison et al. [49] made an interesting
discovery when comparing homology matches of the protein coding genes in
yeast (Saccharomyces cerevisiae), worm (Caenorhabditis elegans), and fruit fly

10 1 Introduction

(Drosophila melanogaster). The authors scanned all three genomes as well as human
chromosomes 21 and 22 against three different subsets of the Swiss-Prot database
[14]: bacterial proteins, all other phyla, and all other organisms than those analyzed.
Although the worm had substantially more annotated protein-coding genes than both
fly and yeast, the amount of homology detected was greater in both fly and yeast,
regardless of what subset of Swiss-Prot was used. The authors suggested to name
the tendency of a stable ratio of homology between worm and fly the H-value para-
dox, where the H -value represents the total amount of detected protein homology
measured in bases. While this discrepancy could be due to overpredictions in worm,
another plausible explanation is that the worm might have undergone a contraction
in gene number, followed by an expansion of organism-specific genes. Yet another
explanation could be differences in genome annotation, since the number of anno-
tated genes have been modified several times in both fly and yeast.

Returning to the actual question of how many genes there are, the gene number in
human has varied a great deal over the years. The original predictions, based on the
estimated number of gene products in a cell, started out well over 100,000. But when
the draft sequence of the human genome was published in 2001, the initial analysis
came to an estimate of about 30,000–40,000 protein-coding genes [53]. Ensembl
[35], which has become the golden standard for human genome annotation, currently
reports 22,258 protein-coding genes and an additional 6,411 RNA genes. Although
significant variations are still reported every now and then, the general scientific
community seems to stabilize more and more to about 23,000 protein-coding genes,
and about 27,000 genes when including RNA-genes, a number that is remarkably
close to that of the winning bet in the gene sweepstake. Settling on a final number
seems difficult even for such a well-analyzed genome as the yeast S. cerevisiae.
Although completed already over a decade ago and having undergone hundreds of
(published) genome-wide analyses, the total number of genes still varies between
sources. Table 1.1 was reported in 2004 [4], and checking current gene numbers we

Table 1.1 Estimated gene
numbers in S. cerevisiae

Reference Year Gene number

Goffeau et al. [42] 1996 5885

Cebrat et al. [21] 1997 ∼4800

Kowalczuk et al. [61] 1999 >4800

Blandin et al. [13] 2000 5651

Zhang and Wang [113] 2000 5645

Wood et al. [108] 2001 <5570

Mackiewicz et al. [71] 2002 5322

Kumar et al. [68] 2002 ∼6000

Kellis et al. [57] 2003 5726

SGD [24] 2005 5888

MIPS [76] 2005 6335

1.4 How Many Genes Do We Have? 11

get from the Saccharomyces genome database (SGD) a total of 6607 ORFs of which
4825 are verified, 971 are uncharacterized, and 811 are dubious [24].

One reason for the variations in gene number in yeast has been due to the detection
of “small ORFs” (smORFs). While the initial annotation of yeast only included
ORFs of at least 100 amino acids, it has been discovered that many genes are shorter
than that. For instance, Kellis et al. [57] performed comparative analysis between
S. cerevisiae and three other fungi, which resulted in the inclusion of 188 smORFs
constituting about 3 % of the total gene count. A similar proportion of missed smORFs
in human would result in an additional 900 or so genes. Moreover, Southan listed
a number of reasons as to why we can expect the gene number to rise back to over
30,000 again [98]:

1. Model eukaryotes tend to show a post-completion rise in gene. number.
2. The human genome is still incomplete.
3. Gene finding softwares have a significant false-negative rate.
4. Automated gene annotation pipelines are conservative.
5. Transcript coverage by mRNA and EST sequences is incomplete.
6. Sampling experiments tend to reveal new genes.
7. A fraction of rapidly evolving small proteins remain undetected.

Ultimately, before trying to establish the actual number of genes in a genome, we
need a clear definition of the concept ‘gene’, which has turned out to be easier said
than done.

1.5 Problems of Gene Definitions

The definition of a gene has been revised several times during the past century, and
the search for a comprehensive formulation is still not settled. Some even argue that
the concept should be declared dead, to leave place for new, more suitable definitions.
The concept “gene” has gone from being an abstract unit of inheritance, to carrying
specific traits passed on from parents to offspring, to being directly associated with
enzymes and other proteins, to becoming physical molecules lined up along the
chromosomes. The notion that it is the proteins that carry out all the activities in the
cell is up for debate as well. An increasing amount of evidence postulates that RNA
molecules are more important than originally thought. Moreover, the findings of new
kinds of RNA molecules emphasize their importance even more [32, 87].

12 1 Introduction

At the beginning of the twentieth century an English physician named Archibald
Garrod proposed that a gene is the object responsible for the production of a specific
protein. Although ignored for decades, his work was affirmed in 1941 by George
Beadle and Edward Tatum, who showed that genes affect heredity by determining
enzyme structures [8]. Their “one gene/one enzyme”-hypothesis, awarding them the
Nobel prize in 1958, has subsequently been refined. Now we know that not all genes
code for enzymes but for structural and regulatory proteins as well. Also, many pro-
teins, such as hemoglobin, consist of several polypeptide chains, each controlled by a
different gene. Today, the Beadle and Tatum hypothesis translates, more accurately,
into “one gene/one polypeptide,” but this concept is still questionable.

There are numerous problems with, and exceptions and contradictions to any gene
definition one has come up with. For instance, some definitions may want to include
the regulation in what is called a gene. However, regulatory sites exist that affect
every step of the gene expression process, including mRNA degradation, and post-
modifications to the resulting protein. Besides being very difficult to find since these
sites can be located virtually anywhere, some sites reside very far away from the gene
they regulate, something that would make the defined gene sequence very long. Other
problems involve trans-splicing : separate mRNA molecules may be spliced together,
both from “genes” residing on opposite strands of each other, or even on separate
chromosomes. For instance, the major peptide of the enzyme Glucose 6-phosphate
dehydrogenase is encoded from information from two different chromosomes [56].
Moreover, posttranslational events contradict the sequence view where the DNA is
thought to encode a corresponding RNA molecule. Proteins may be spliced into two
separate proteins, thus the start and end of a protein is not determined by the DNA
sequence. Similarly, separate proteins may be joined after translation, or the protein
may be modified into a completely different structure and function after translation.

The Human Gene Nomenclature, which is responsible for the naming of genes,
defines a gene as “a DNA segment that contributes to phenotype/function. In the
absence of demonstrated function a gene may be characterized by sequence, tran-
scription or homology” [106]. This is a fairly unspecific definition, as it includes all
kinds of transcripts. Since most gene finding methods only deal with protein-coding
genes, a narrower definition could be “chromosome-derived transcripts giving rise
to one or more protein forms with shared sequence identity that assign them as prod-
ucts of a single genomic locus and strand orientation” [98]. However, since gene
finding algorithms are unable to resolve multiple translation starts and alternative
splice forms within the same transcript sequence, for this purpose we need to be
more specific.

The Human Gene Nomenclature definition results in a baseline number of protein-
producing loci in the genome. But for the purpose of gene finding, we need a definition
that unravels the resulting protein sequence. That is, in the presence of alternative
splice forms, for instance, we would like to be able to identify each form separately.

1.5 Problems of Gene Definitions 13

This is a huge challenge for automatic gene finding algorithms, which tend to be
confused by alternatively spliced transcripts. Regardless, we need a slightly different
definition from the one above, as we aim to identify the underlying sequence to a
specific protein. If we try to keep the eye on the money, the purpose of gene finding
is to identify functional regions, and, if possible, the correct boundaries giving rise
to a specific transcript/protein. This is a difficult task, however, as it may produce
an artificial definition that has little to do with reality. Therefore, perhaps the most
satisfactory definition for our purposes is the one produced by the Encyclopedia of
DNA elements (ENCODE), a project whose goal is to find all functional elements
in the genome: “the gene is a union of genomic sequences encoding a coherent set
of potentially overlapping functional products” [40].

1.6 The Gene Finding Problem

There is a wide range of approaches to the problem of gene finding, addressing
different types of issues. Roughly, the approaches can divided into ab initio methods,
similarity-based methods, and comparative methods, and various combinations of
these categories. The most direct approach is the similarity based, or evidence based,
method, where known mRNA, cDNA, or protein sequences are matched against
the input sequence, and where high similarities are strong indicators for homologous
genes. The advantage is that such matches have a high reliability, and also give a good
clue to the function of the new gene. The disadvantage is when no match is found in
the database. Nothing can be said, and no sequence can be ruled out as noncoding. Ab
initio methods, also called de novo methods, use the statistical patterns and known
consensus sequences of signals to detect novel genes. The advantage is that there is
no need for a homologous genome or a database of known genes. All that is needed
is a fair parameter representation of what types of patterns one wants to look for. For
a completely unknown genome, however, this method may pose a problem, since
there are no known patterns yet. But using the pattern of a related sequence may
still help the search forward, and then the parameter settings can be updated as one
goes along. One disadvantage is that novel genes with unusual patterns that do not
resemble any known genes are likely to be missed. Comparative methods use two or
more evolutionary related sequences to identify novel genes, either in one sequence
at a time or simultaneously in all sequences. These methods utilize the strengths
in ab initio gene finding, as well as strengthening the signal of potential genes by
means of homology. Genes with unusual patterns may still be correctly predicted if
the sequence similarity is high enough.

The identification of genes is complicated for several reasons. The fact that the
regions coding for functional units only comprise 3 % of the human genome poses
a combinatorial difficulty. Another difficulty is that of overlapping or nested genes.

14 1 Introduction

That is, genes may overlap one another, or be nested within one another, both on
the same strand or on opposite strands. Such events are very difficult to model, and
often the best-case scenario is that the algorithm predicts one of the genes correctly,
but more likely the outcome will be a mish-mash of both genes. Alternative splicing
is a similar problem. Alternative splicing means that the RNA transcript can be
spliced in different ways and thereby result in different gene products. This is a
common process in eukaryotes, and explains the discrepancy between the number
of genes in an organism and the number of RNA and protein products active in
the organism. Usually, the difference between different splice forms correspond to
different combinations of the exons in the transcript, but more intrinsic splicing
processes are known to exist. Regardless, alternative splicing poses a big problem for
gene prediction models. Gene prediction softwares usually only predict a single most
likely parse of the input sequence. Allowing for suboptimal parses is one possible
solution around this.

Other challenges to gene finding include frameshifts and sequencing errors, but
the latter become less and less of an issue, as the sequencing process has been greatly
improved over the past decade. Nevertheless, if a sequencing error occurs that disrupts
the codon sequence of the gene, the resulting gene prediction will most often be
incorrect as well. Moreover, the presence of pseudogenes, is likely to confuse the gene
predictor, especially the ab initio kind. Pseudogenes are nonfunctional sequences that
still resemble genes. They may for instance be artifacts of previously active genes that
during evolution have been “turned off” one way or another. Comparative methods
tend to avoid pseudogenes, as they need to appear in both sequences at a fairly high
sequence similarity to be detected.

We have seen in Sect. 1.3 that the gene is a complicated object with many different
components. However, due to incomplete knowledge and the lack of sufficient train-
ing data, and due to computational complexity, the gene models are often simplified
to become feasible. The most common assumptions and simplifications include:

• Only model protein coding genes.
• Only model the coding part of the genes.
• Length constraints placed on the different gene features.
• Predict one optimal parse only.

As gene prediction softwares evolve and the biological knowledge and data increases,
more and more gene components can be included in the models. This can help
increase the accuracy of the predictions, and shed light not only on which genes an
organism contains, but how the genome is regulated.

1.7 Comparative Gene Finding 15

1.7 Comparative Gene Finding

All living things on earth are genetically related. The beginning of life starts with one
common ancestor, and then through evolution new species develop. The evolution
occurs through random modifications, called mutations, to the genetic code. While
such modifications occurring in a functional region of the genome are most often
harmful, and therefore selected against, every now and then a modification makes
for an improvement to the fitness of the organism, and is kept. In this manner, the
organisms slowly accumulate genetic differences, until eventually they may become
separate species. Phylogeny is the study of the genetic relationship between organ-
isms, and is aiming at understanding the course of evolution and the similarities and
dissimilarities between organisms.

There are two main driving forces to evolution: natural selection and genetic drift.
Natural selection is the process in which species gradually adapt to their surround-
ings. In this process, positive mutations are accumulated over generations, while
negative mutations are gradually sifted out. The selection occurs naturally, as indi-
viduals with a higher fitness become more successful in the population in terms of
survival and reproduction. Genetic drift is the process in which fluctuations between
different genotypes occur. With different genotypes we mean different variants of
the same gene, called alleles, resulting in different phenotypes. For instance, dif-
ferent eye colors between individuals are regulated by different alleles of the same
corresponding gene(s). While natural selection is a nonrandom process that sees to
the fitness of the population, genetic drift is a completely random process free of
selectional pressure. For instance, even if two alleles of the same genes are equally
fit, their frequencies will still fluctuate over time due to genetic drift, and sometimes
one variant will eventually vanish from the population altogether.

The main mechanism of natural selection is that of mutations. Mutations are
randomly occurring, permanent changes to the nucleotide sequence in the genome.
These are typically acquired, either by copying errors of the DNA prior to cell divi-
sion, or by exposure to environmental agents, called mutagens, that harm the DNA.
Examples of mutagens are ultraviolet light, radiation, or certain chemicals. We say
that a mutation that results in an improvement in the organism is a positive mutation,
while a harmful mutation is called negative, and a mutation that has no effect is
called neutral. The basic types of mutations are substitutions, insertions, deletions
and frameshifts. In a substitution, one nucleotide is replaced by another. If this occurs
in the protein coding part of a gene, it may cause a change in the amino acid in the
encoded protein, which in turn may result in a completely different structure and
function of the protein. We speak of a silent substitution, if it causes no change to the
amino acid, a missense substitution if it alters the amino acid, and a nonsense substi-
tution if the codon is turned into a stop codon and the corresponding protein sequence
gets truncated. In an insertion, extra bases are inserted into the sequence, while in

16 1 Introduction

a deletion bases are removed from the sequence. From a comparative genomics
point of view, insertions and deletions are mirroring processes of one another, and
are sometimes jointly referred to as indels. Frameshifts are actually the result of an
insertion or a deletion in a coding region, in which the codon triplets are “shifted” to
encode an entirely different amino acid sequence.

Comparative genomics is built on the observation that the DNA sequences of
functional elements evolve at a much lower rate than in nonfunctional DNA. The
reason is that while a mutation in a functional region is most often harmful, and
selected against, mutations in nonfunctional regions is under no selectional pressure
and therefore is kept to a higher extent. Sequence alignments of evolutionary-related
organisms can be used to highlight important functional regions, such as protein-
coding segments or regulatory signals, as well as understand the genome evolution
and the development of the organisms. Comparative gene finding utilizes the evolu-
tionary relationships by using the similarities and dissimilarities between sequences
to strengthen the signal of functional elements in the sequence. It improves the accu-
racy of gene finding immensely, in particular by bringing down the false prediction
rate, and by identifying the exact gene structures more accurately.

1.8 History of Algorithm Development

One of the first gene finding papers that presented a computer method for identify-
ing protein coding regions in genomic DNA was published in 1982 by Staden and
McLachlan [100]. It had been noticed by several others already, however, that coding
regions exhibit particular statistical patterns in their base composition that may be
utilized for gene finding. Staden and McLachlan identified the following criteria as
useful sensors for coding sequence: open reading frames (ORFs), start codons, codon
usage, ribosomal binding sites, and splice sites. That the authors were true pioneers
in the field is shown by the following quote: “An ideal method would use all these
criteria to give the probability that a section was coding in a particular reading frame”
[100]. The method presented was a first step toward this, as it analyzed the codon
usage in ORFs. Their method was later developed further by integrating both content
sensors and signal sensors for splice sites and ribosomal binding sites in a software
called ANALYSEQ [99]. Although it early seemed clear that the base composition
in coding regions follow a distinct pattern, it was Fickett who showed that this pat-
tern does not appear in noncoding DNA [33]. In his paper the author presented a
test algorithm, called TESTCODE, that just as the Staden and McLachlan method
analyzed the coding potential of open reading frames (ORF), but that also utilized
the difference in pattern between coding and noncoding regions.

1.8 History of Algorithm Development 17

In 1990 came the first automatized gene finder, called GeneModeler (gm), which
was able to integrate several coding sensors at once [34]. The flow of the program is to
pass the sequence through a series of tests, where the potential gene model is passed
through to the next step if it scores above a given threshold associated with the specific
gene feature. The program starts off by identifying all ORFs and their corresponding
frame in the input sequence, and moves on, using various weight matrices, to identify
potential translation initiation sites and splice sites. Gene models on the form ORF—
intron—ORF are constructed and both ORFs and introns are scored for sequence
composition. Each gene model is then extended to include further introns and ORFs
if possible, and all possible gene models that make it through the tests are reported,
even those that are in conflict with one another.

Somewhere around this time the development of different splice site detectors
started to emerge. Gelfand constructed a gene finder that uses discriminant analysis
for splice site detection and the TESTCODE algorithm for coding potential, and
his gene finder reported only the best variant of spliced mRNA emerging from the
model [37]. Brunak and colleagues applied neural networks to the splice site detection
of vertebrate pre-mRNA sequences [17]. Neural networks had been applied to the
problem of splice site detection earlier, but in this paper the prediction accuracy
was greatly improved by training the model on both false and true splice sites. Both
the discriminant analysis approach and the neural network approach showed great
improvements over using weight matrices to predict splice sites.

Following in the footsteps of GeneModeler, Guigó et al. constructed GeneID,
which is a hierarchically structured rule-based gene finder. A novelty with GeneID
was that it used profiles, constructed from weighted multiple alignments of various
vertebrate sequences, for the detection of start and stop codons and splice sites. The
input sequence is processed in several rounds, starting by the detection of potential
exon boundaries, and then by processing the candidate exons further using discrim-
inant analysis, until finally constructing the highest scoring gene model from the set
of candidate exons.

At this point, the idea of using external homology information, such as from
known EST, cDNA, or mRNA sequences, to improve gene prediction had awakened.
The three main approaches to similarity-based gene finding can be summarized as
follows. GRAIL [110, 111], described in more detail in Sect. 2.4.4, combines the
scores of a number of different sensors in a neural network, including information
from an EST database. ESTs are generally too short to determine the gene structure
alone, but can still provide useful information about the beginning and end of a gene,
sort out false positives, identify missed exons, and improve boundary prediction.
GeneParser [95, 96] incorporates external homology information in the gene finding
algorithm by invoking BLAST scores from matching the target sequence to a protein
database. Procrustes [38] uses a combinatorial approach, where potential exon blocks
in the input sequence are concatenated and matched to a known protein. While this
approach had been attempted before [39, 95] the spliced alignment algorithm of
Procrustes reduced computational complexity enough to make a complete search of
all possible exon assemblies feasible.

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

18 1 Introduction

The earliest gene finders would analyze only the input sequence, disregarding
the mirroring complementary strand. One problem with this approach is that genes
appearing on the opposite strand will signal high coding potential on the input strand
as well. With GENMARK [15] came the novelty of performing gene finding on both
strands simultaneously, and thereby reducing the number of false positives consider-
ably. GENMARK uses both homogeneous and nonhomogeneous Markov chains as
sequence composition models in introns and exons. A variant to the Markov chain
approach in GENMARK, which addresses the issue with small training sets, is the
interpolated Markov model (IMM), which has been implemented in the microbial
gene finder GLIMMER [30, 90]. Instead of using basic counts of codons and hexam-
ers in a training set, the probabilities are estimated using an interpolation of different
lengthed context sequences, depending on their reliability in the training set. The
IMM approach and its use in GLIMMER is described in more detail in Sect. 2.3.

One of the first hidden Markov model-based (HMM) gene finders, named Eco-
Parse [65], was developed for gene finding in E. coli. The method is similar to the
profile HMMs presented in Sect. 3.2.9 [64], but with particular focus on the codon
structure in genes. With EcoParse a flora of HMM-based gene finders, using dynamic
programming and the Viterbi algorithm to parse a sequence, emerged. The success
of using HMMs for gene finding spread, and the method has been implemented in
numerous softwares since, including HMMgene [62, 63] and VEIL [50]. The very
successful extension of the standard HMM, the generalized HMM (GHMM), was
applied to the gene finding problem a few years later, first in Genie [66], and then
followed by one of the most popular gene finders of all times, Genscan [18], which is
described in detail in Sect. 2.2.4. The generalization of the standard HMM involves
allowing for generalized length distributions of the exons, something that has proven
to improve accuracy immensely (see Sect. 5.2 for a discussion on this).

The development of gene finding continued in the search for better and more
efficient algorithms for the task. More and more gene finders chose to invoke external
homology one way or the other, early examples being GeneBuilder [79], CEM [6] and
GeneWise [12]. Meanwhile, the Human Genome Project [53] had started and was up
and running, generating more and more reliable human sequences for every day. The
idea of comparing longer contiguous sequence between homologous organisms, and
in particular comparing human and mouse, grew stronger. The first true comparative
gene finder to enter the stage was ROSETTA [7], which is described in Sect. 4.2.1.
ROSETTA combined the gene finding task with that of aligning long homologous
sequences by predicting genes in human and mouse simultaneously. The method
provided a proof of concept that comparative gene finding was both feasible and
very successful. Since then, numerous comparative methods have been introduced,
all with varying strengths and weaknesses, and with various success. After the Human
Genome Project published the initial analysis of the human sequence in 2001 [53], a
new project was launched, the Mouse Genome Sequencing Consortium [81], which

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_3
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_4

1.8 History of Algorithm Development 19

aimed at sequencing the mouse genome with the main purpose to provide thorough
comparative analyses between human and mouse. Three comparative softwares were
used in this study: SLAM [1], SGP-2 [85] and Twinscan [60]. SGP-2 is a heuristic
comparative gene finder that combines the GeneID algorithm [47] with TBLASTX
[41] alignments. Twinscan is a semi-comparative approach that extends the Genscan
GHMM-algorithm by boosting the predictions using the alignment to a homologous
informant sequence. Twinscan is described a little more in Sect. 4.1.2. SLAM uses
a generalized pair HMM (GPHMM), which is a merging of the GHMM-algorithm
used in Genscan, and the PHMM often used for sequence alignment, and is described
briefly in Sect. 4.4.2 and from an implementary point of view in Chap. 7.

A different approach that utilizes the increasing amount of well-annotated
sequences, is that of gene mapping, most notably applied in Projector [78] and
GeneMapper [22]. While gene mapping traditionally means the mapping of DNA
sequences onto their corresponding chromosomes, in gene finding terminology it
means the mapping, or projection, of annotated genes of one organism onto a new
homologous sequence of another organism. Projector uses a version of the PHMM-
algorithm in DoubleScan [77], but instead of searching for the optimal parse among
all possible, it is limited to find a parse that agrees with the provided annotated
sequence. GeneMapper is similar, but can be used both in a pairwise and a multiple
setting. While the pairwise version uses regular dynamic programming to map the
genes, the multiple version works with profiles. Both Projector and GeneMapper are
discussed further in Sect. 4.5.

While most comparative gene finders are performing pairwise comparisons, a
natural next step would be to make multiple comparisons. This has turned out to
be very complex computationally, however, such that no direct extension of the
pairwise methods to three-ways or higher has been possible yet. Attempts along
these lines have been made, though, for instance in N-SCAN [46] and DOGFISH
[19], where instead of using a single informant sequence to boost the predictions, a
multiple alignment of several informant sequences are used. N-SCAN is described
further in Sect. 4.6.1. Neither N-SCAN or DOGFISH are truly comparative in the
sense that they do not perform gene prediction in multiple sequences simultaneously,
but merely uses multiple alignments of homologous sequences as informants. An
interesting future development would be to be able to make full-fledged multiple
sequence annotations. Perhaps with more clever algorithms and even more powerful
computers this can be made possible not too far off in the future.

Table 1.2 lists a large bulk of the gene finding softwares that have been introduced
over the years. Unnamed algorithms have been excluded, and for all the softwares
out there that have been forgotten in this list, I sincerely apologize.

http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_7
http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_4

20 1 Introduction

Table 1.2 Gene finding softwares

Year Software Description

1982 TESTCODE [33] Statistical pattern analysis of ORFs

1984 ANALYSEQ [99] Combining statistical pattern sensors with basic signal
sensors

1990 GeneModeler (gm) [34] Rule-based gene finder

1991 GeneID [47] Hierarchically structured rule-based gene finder

NetGene [17] Splice site detection in pre-mRNA using neural networks

1992 GRAIL [110] Neural network-based gene finder

SORFIND [54] Prediction of internal exons in human using statistical
patterns

1993 GENMARK [15] Markov chain-based gene finder

GeneParser [95, 96] Neural network-based gene finder integrating external
homology

GREAT [39] Vector dynamic programming-based gene finder

1994 EcoParse [65] HMM-based gene finder for E. coli

FGENEH [97] Discriminant analysis-based gene finder for human

GenLang [31] Generative grammar-based gene finder

1996 Genie [66, 67] GHMM-based gene finder

Procrustes [38] Similarity-based gene finder using spliced alignments

1997 GeneWise [12] Similarity-based HMM gene finder

Genscan [18] GHMM-based gene finder

HMMgene [62, 63] HMM-based gene finder

MZEF [114] Quadratic discriminant analysis-based gene finder

VEIL [50] HMM-based gene finder

1998 GLIMMER [30, 90] Interpolated Markov model-based microbial gene finder

MORGAN [89] Decision tree-based gene finder

OPRHEUS [36] Similarity-based gene finder for bacterial genomes

Pombe [23] Discriminant analysis-based gene finder for fission yeast

SelfID [3] Iterative Markov model-based microbial gene finder

1999 CRITICA [5] Similarity-based prokaryotic gene finder

GeneBuilder [79] Similarity-based gene finder

2000 CEM [6] Similarity-based gene finder

FGENESH [88] HMM-based gene finder for human

ROSETTA [7] Comparative heuristic gene finder

2001 EuGene [91] Eukaryotic gene finder that integrates arbitrary sources
using a directed acyclic graph

GeneMarkS [9] HMM-based prokaryotic gene finder

Phat [20] GHMM-based gene finder for Plasmodium falciparum

Pro-Frame [80] Similarity-based gene finder using spliced alignments

(continued)

1.8 History of Algorithm Development 21

Table 1.2 (continued)

Year Software Description

Pro-Gen [83] Similarity-based gene finder using spliced alignments

SGP-1 [107] Similarity-based gene finder

Twinscan [60] GHMM-based comparative gene finder

2002 DoubleScan [77] PHMM-based comparative gene finder

GAZE [51] Heuristic gene finder integrating arbitrary number of
sensors

2003 AGenDA [103] Similarity-based gene finder

Augustus [101] HMM-based gene finder

DIGIT [112] Bayesian-based gene finder combining the results of
several gene finder

EasyGene [69] HMM-based gene finder with dynamical state space
generation

EvoGen [86] Comparative HMM-based gene finder that models both
gene structure and evolution

Exonomy [72] GHMM-based gene finder

GlimmerM [72] Gene finder using interpolated Markov models and
decision trees

SGP-2 [85] Comparative gene finder based on GeneID and
TBLASTX

SLAM [1] GPHMM-based comparative gene finder

Unveil [72] HMM-based gene finder

ZCURVE [48] Prokaryotic gene finder that uses the Z-curve
representation of DNA

2004 EGPred [55] Similarity-based gene finder

Ensembl [28, 35] Similarity-based gene annotation system

eShadow [84] Comparative gene finder using phylogenetic shadowing

GenomeWise [11] Similarity-based gene finder

GlimmerHMM [74] HMM- and IMM-based gene finder

Phylo-HMM [93] Comparative gene finder using phylogenetic HMMs

Projector [78] Similarity-based gene finder using gene mapping

SNAP [59] HMM-based gene finder

TigrScan [74] GHMM-based gene finder

2005 ExonHunter [16] Similarity-based HMM gene finder

GeneMark.HMM-E [70] HMM-based eukaryotic gene finder using non-supervised
learning

GenomeThreader [45] Similarity-based gene finder using spliced alignments

JIGSAW [2] Heuristic gene finder combining multiple sources of
evidence

N-SCAN [46] Extension of Twinscan to multiple informant sequences

TWAIN [73, 75] GPHMM-based comparative gene finder

(continued)

22 1 Introduction

Table 1.2 (continued)

Year Software Description

2006 Agene [82] GHMM-based gene finder using ADPH state length
distributions

DOGFISH [19] Similarity-based gene finder using multiple informant
sequences

GeneAlign [52] Similarity-based gene finder

GeneMapper [22] Similarity-based gene finder using gene mapping

shortHMM [109] GHMM-based exon prediction

2007 Conrad [29] Comparative gene finder using semi-Markov conditional
random fields

2009 mGene [92] Gene finder based on GHMMs and support vector machines

1.9 To Build a Gene Finder

The main steps in constructing a gene finding algorithm can be summarized as
follows:

1. Choose a basic mathematical model, such as a hidden Markov model, neural
network, or decision tree. This model will then serve as an umbrella that integrates
a number of subcomponents of the gene into a final prediction. Such models used
for single species gene finding are presented in Chap. 2, and those for comparative
gene finding in Chap. 4.

2. Determine a gene model, including all subcomponents it should contain. In this
step we construct the state space of our mathematical model. It may seem that
this step should come first, but the choice of the main mathematical model will
affect the appearance of the state space.

3. Choose submodels for the different components in the state space, such as exon
and intron models, splice site detectors, etc. Different submodels are presented
in Chap. 5.

4. Train the entire model, including all submodels. For this we collect a training
set of known genes and estimate the parameters of our model. Various training
algorithms are presented in Chap. 6.

Faced with a novel sequence it is common to preprocess it before plugging it into the
gene finder. At the very least it is useful to repeat mask the sequence. The universally
used software for this is called RepeatMasker [94]. The program compares the input
sequence to a library of repetitive elements and returns an output sequence where
repeats and regions of low complexity have been “masked” by replacing these regions
by N’s in the input sequence. The altered stretches signify regions unlikely to harbour
a gene, and the masked output sequence is ready for use by the gene finder. If the
gene finder is comparative, taking two homologous sequences as input, an additional
possible preprocessing step is to limit the search space in some manner. SLAM [1],

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_6

1.9 To Build a Gene Finder 23

for instance, performs an initial approximate alignment that limits the search space
to a region in the dynamic programming matrix most likely to contain the optimal
path. Other efforts to reduce the computational complexity appear in Chap. 3 in the
context of multiple alignments.

Once the gene finder is constructed and trained and the input sequences have gone
through the preprocessing, it is ready to perform the gene prediction. Typically we
begin by running the model on a test set, where we know the true answer, and then
assess the accuracy of our model. The final outcome is a parse of the input sequence,
meaning an ordered list of states predicted for the sequence. The development steps
1–5 above are likely to be iterated several times, as the accuracy assessment will
help detect problems in the algorithm or areas of the model that have room for
improvement. Various measures of accuracy assessment are described in Sect. 4.4.2.

References

1. Alexandersson, M., Cawley, S., Pachter, L.: SLAM: cross-species gene finding and alignment
with a generalized pair hidden Markov model. Genome Res. 13, 496–502 (2003)

2. Allen, J.E., Salzberg, S.L.: JIGSAW: integration of multiple sources of evidence for gene
prediction. Bioinformatics 21, 3596–3603 (2005)

3. Audic, S., Claverie, J.-M.: Self-identification of protein-coding regions in microbial genomes.
Proc. Natl. Acad. Sci. USA 95, 10026–10031 (1998)

4. Axelson-Fisk, M., Sunnerhagen, P.: Comparative genomics and gene finding in fungi. In:
Sunnerhagen, P., Piskur, J. (eds.) Topics in Current Genetics: Comparative Genomics Using
Fungi as Models, pp. 1–28. Springer, Berlin (2005)

5. Badger, J.H., Olsen, G.J.: CRITICA: coding region identification tool invoking comparative
analysis. Mol. Biol. Evol. 16, 512–524 (1999)

6. Bafna, V., Huson, D.H.: The conserved exon method for gene finding. Int. Conf. Intell. Syst.
Mol. Biol. 8, 3–12 (2000)

7. Batzoglou, S., Pachter, L., Mesirov, J., Berger, B., Lander, E.S.: Human and mouse gene
structure: comparative analysis and application to exon prediction. Genome Res. 10, 950–
958 (2000)

8. Beadle, G., Tatum, E.: Genetic control of biochemical reactions in Neurospora. Proc. Natl.
Acad. Sci. USA 27, 499–506 (1941)

9. Besemer, J., Lomsadze, A., Borodovsky, M.: GeneMarkS: a self-training method for predic-
tion of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory
regions. Nucleic Acids Res. 29, 2607–2618 (2001)

10. Biémont, C., Vieira, C.: Junk DNA as an evolutionary force. Nature 443, 521–524 (2006)
11. Birney, E., Clamp, M., Durbin, R.: GeneWise and GenomeWise. Genome Res. 14, 988–995

(2004)
12. Birney, E., Durbin, R.: Dynamite: a flexible code generating system for dynamic programming

methods used in sequence comparison. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 56–64 (1997)
13. Blandin, G., Durrens, P., Tekaia, F., Aigle, M., Bolotin-Fukuhara, M., Bon, E., Casarégola,

S., de Montigny, J., Gaillardin, C., Lépingle, A., Llorente, B., Malpertuy, A., Neuvéglise, C.,
Ozier-Kalogeropoulus, O., Perrin, A., Potier, S., Souciet, J.-L., Talla, E., Toffano-Nioche, C.,
Wésolowski-Louvel, M., Marck, C., Dujon, B.: Genomic exploration of the hemiascomyce-
tous yeasts: 4. The genome of Saccharomyces cerevisiae revisited. FEBS Lett. 487, 31–36
(2000)

14. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Martin,
M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT

http://dx.doi.org/10.1007/978-1-4471-6693-1_3
http://dx.doi.org/10.1007/978-1-4471-6693-1_4

24 1 Introduction

protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370
(2003)

15. Borodovsky, M., McIninch, J.: GENMARK: parallel gene recognition for both DNA strands.
Comput. Chem. 17, 123–133 (1993)

16. Brejova, B., Brown, D.G., Li, M., Vinar, T.: ExonHunter: a comprehensive approach to gene
finding. Bioinformatics 21, i57–i65 (2005)

17. Brunak, S., Engelbrecht, J., Knudsen, S.: Prediction of human mRNA donor and acceptor
sites from the DNA sequence. J. Mol. Biol. 220, 49–65 (1991)

18. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol.
Biol. 268, 78–94 (1997)

19. Carter, D., Durbin, R.: Vertebrate gene finding from multiple-species alignments using a
two-level strategy. Genome Biol. 7, S6.1–S6.12 (2006)

20. Cawley, S.E., Wirth, A.I., Speed, T.P.: Phat—-a gene finding program for Plasmodium falci-
parum. Mol. Biochem. Parasitol. 118, 167–174 (2001)

21. Cebrat, S., Dudek, M.R., Machiewicz, P., Kowalczuk, M., Fita, M.: Asymmetry of coding
versus noncoding strand in coding sequences of different genomes. Microb. Comp. Genomics
2, 259–268 (1997)

22. Chatterji, S., Pachter, L.: Reference based annotation with GeneMapper. Genome Biol. 7,
R29 (2006)

23. Chen, T., Zhang, M.Q.: Pombe: a gene-finding and exon-intron structure prediction system
for fission yeast. Yeast 14, 701–710 (1998)

24. Cherry, J.M., Adler, C., Ball, C., Chervitz, S.A., Dwight, S.S., Hester, E.T., Jia, Y., Juvik,
G., Roe, T., Schroeder, M., Weng, S., Botstein, D.: SGD: saccharomyces genome database.
Nucleic Acids Res. 26, 73–79 (1998)

25. Claverie, J.M.: Gene number: what if there are only 30,000 human genes? Science 291,
1255–1257 (2001)

26. Comings, D.E.: The structure and function of chromatin. Adv. Hum. Genet. 3, 237–431 (1972)
27. Crick, F.: Cetnral dogma of molecular biology. Nature 227, 561–563 (1970)
28. Curwen, V., Eyras, E., Andrews, T.D., Clarke, L., Mongin, E., Searle, S.M.J., Clamp, M.: The

ensembl automatic gene annotation system. Genome Res. 14, 942–950 (2004)
29. DeCaprio, D., Vinson, J.P., Pearson, M.D., Montgomery, P., Doherty, M., Galagan, J.E.:

Conrad: gene prediction using conditional random fields. Genome Res. 17, 1389–1398 (2007)
30. Delcher, A.L., Harmon, D., Kasif, S., White, O., Salzberg, S.L.: Improved microbial gene

identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999)
31. Dong, S., Searls, D.B.: Gene structure prediction by linguistic models. Genomics 23, 540–551

(1994)
32. The FANTOM consortium and RIKEN genome exploration research group and genome sci-

ence group (genome network project core group). Science 309, 1559–1563 (2005)
33. Fickett, J.W.: Recognition of protein coding regions in DNA sequences. Nucleic Acids Res.

10, 5303–5318 (1982)
34. Fields, C.A., Söderlund, C.A.: GM: a practical tool for automating DNA sequence analysis.

Comput. Appl. Biosci. 6, 263–270 (1990)
35. Flicek, P., Aken, B.L., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke, L., Coates,

G., Cunningham, F., Cutts, T., Down, T., Dyer, S.C., Eyre, T., Fitzgerald, S., Fernandez-
Banet, J., Grf, S., Haider, S., Hammond, M., Holland, R., Howe, K.L., Howe, K., Johnson,
N., Jenkinson, A., Khri, A., Keefe, D., Kokocinski, F., Kulesha, E., Lawson, D., Longden,
I., Megy, K., Meidl, P., Overduin, B., Parker, A., Pritchard, B., Prlic, A., Rice, S., Rios, D.,
Schuster, M., Sealy, I., Slater, G., Smedley, D., Spudich, G., Trevanion, S., Vilella, A.J., Vogel,
J., White, S., Wood, M., Birney, E., Cox, T., Curwen, V., Durbin, R., Fernandez-Suarez, X.M.,
Herrero, J., Hubbard, T.J., Kasprzyk, A., Proctor, G., Smith, J., Ureta-Vidal, A., Searle, S.:
Ensembl 2008. Nucleic Acids Res. 36, D707–D714 (2008)

36. Frishman, D., Mironov, A., Mewes, H.-W., Gelfand, M.: Combining diverse evidence for gene
recognition in completely sequenced bacterial genomes. Nucleic Acids Res. 26, 2941–2947
(1998)

References 25

37. Gelfand, M.S.: Computer prediction of the exon-intron structure of mammalian pre-mRNAs.
Nucleic Acids Res. 18, 5865–5869 (1990)

38. Gelfand, M.S., Mironov, A.A., Pevzner, P.A.: Gene recognition via spliced sequence align-
ment. Proc. Natl. Acad. Sci. USA 93, 9061–9066 (1996)

39. Gelfand, M.S., Roytberg, M.A.: Prediction of the exon-intron structure by a dynamic
programming approach. BioSystems 30, 173–182 (1993)

40. Gerstein, M.B., Bruce, C., Rozowsky, J.S., Zheng, D., Du, J., Korbel, J.O., Emanuelsson, O.,
Zhang, Z.D., Wiessman, S., Snyder, M.: What is a gene, post-ENCODE? History and updated
definition. Genome Res. 17, 669–681 (2007)

41. Gish, W., States, D.J.: Identification of protein coding regions by database similarity search.
Nat. Genet. 3, 266–272 (1993)

42. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F.,
Hoheisel, J.D., Jacq, C., Johnston, M., Louis, E.J., Mewes, H.W., Murakami, Y., Philippsen,
P., Tettelin, H., Oliver, S.G.: Life with 6000 genes. Science 274, 563–567 (1996)

43. Gregory, T.R.: Coincidence, coevolution, or causation? DNA content, cell size, and the
C-value enigma. Biol. Rev. 76, 65–101 (2001)

44. Gregory, T.R.: The C-value enigma in plants and animals: a review of parallels and an appeal
for partnership. Ann. Bot. 95, 133–146 (2005)

45. Gremme, G., Brendel, V., Sparks, M.E., Kurtz, S.: Engineering a software tool for gene
structure prediction in higher organisms. Inf. Softw. Tech. 47, 965–978 (2005)

46. Gross, S.S., Brent, M.R.: Using multiple alignments to improve gene prediction. J. Comput.
Biol. 13, 379–393 (2006)

47. Guigó, R., Knudsen, S., Drake, N., Smith, T.: Prediction of gene structure. J. Mol. Biol. 226,
141–157 (1992)

48. Guo, F.-B., Ou, H.-Y., Zhang, C.-T.: ZCURVE: a new system for recognizing protein-coding
genes in bacterial and archaeal genomes. Nucleic Acids Res. 31, 1780–1789 (2003)

49. Harrison, P.M., Kumar, A., Lang, N., Snyder, M., Gerstein, M.: A question of size: the eukary-
otic proteome and the problems in defining it. Nucleic Acids Res. 30, 1083–1090 (2002)

50. Henderson, J., Salzberg, S., Fasman, K.H.: Finding genes in DNA with a hidden Markov
model. J. Comput. Biol. 4, 127–141 (1997)

51. Howe, K.L., Chothia, T., Durbin, R.: GAZE: a generic framework for the integration of gene-
prediction data by dynamic programming. Genome Res. 12, 1418–1427 (2002)

52. Hsieh, S.J., Lin, C.Y., Liu, N.H., Chow, W.Y., Tang, C.Y.: GeneAlign: a coding exon prediction
tool based on phylogenetical comparisons. Nucleic Acids Res. 34, W280–W284 (2006)

53. Human genome sequencing consortium: initial sequencing and analysis of the human genome.
Nature 409, 745–964 (2002)

54. Hutchinson, G.B., Hayden, M.R.: The prediction of exons through an analysis of spliceable
open reading frames. Nucleic Acids Res. 20, 3453–3462 (1992)

55. Issac, B., Raghava, G.P.S.: EGPred: prediction of eukaryotic genes uisng ab initio methods
after combining with sequence similarity approaches. Genome Res. 14, 1756–1766 (2004)

56. Kanno, H., Huang, I.-Y., Kan, Y.W., Yoshida, A.: Two structural genes on different chromo-
somes are required for encoding the major subunit of human red cell glucose-6-phosphate
dehydrogenase. Cell 58, 595–606 (1989)

57. Kellis, M., Patterson, N., Endrizzi, M., Birren, B., Lander, E.S.: Sequencing and comparison
of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003)

58. Kim, H., Klein, R., Majewski, J., Ott, J.: Estimating rates of alternative splicing in mammals
and invertebrates. Nat. Genet. 36, 915–917 (2004)

59. Korf, I.: Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004)
60. Korf, I., Flicek, P., Duan, D., Brent, M.R.: Integrating genomic homology into gene structure

prediction. Bioinformatics 17, S140–S148 (2001)
61. Kowalczuk, M., Mackiewicz, P., Gierlik, A., Dudek, M.R., Cebrat, S.: Total number of coding

open reading frames in the yeast genome. Yeast 15, 1031–1034 (1999)
62. Krogh, A.: Two methods for improving performance of an HMM and their application for

gene finding. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 179–186 (1997)

26 1 Introduction

63. Krogh, A.: Using database matches with HMMGene for automated gene detection in
Drosophila. Genome Res. 10, 523–528 (2000)

64. Krogh, A., Brown, M., Mian, I.S., Sjölander, K., Haussler, D.: Hidden Markov models in
computational biology: applications to protein modeling. J. Mol. Biol. 235, 1501–1531 (2002)

65. Krogh, A., Mian, I.S., Haussler, D.: A hidden Markov model that finds genes in E.coli DNA.
Nucleic Acids Res. 22, 4768–4778 (1994)

66. Kulp, D., Haussler, D., Reese, M.G., Eeckman, F.H.: A generalized hidden Markov model for
the recognition of human genes in DNA. Proc. Int. Conf. Intell. Syst. Mol. Biol. 4, 134–142
(1996)

67. Kulp, D., Haussler, D., Reese, M.G., Eeckman, F.H.: Integrating database homology in a
probabilistic gene structure model. Pac. Symp. Biocomput. 2, 232–244 (1997)

68. Kumar, A., Harrison, P.M., Cheung, K.-H., Lan, N., Echols, N., Bertone, P., Miller, P., Gerstein,
M.B., Snyder, M.: An integrated approach for finding overlooked genes in yeast. Nat. Biotech.
20, 58–63 (2002)

69. Larsen, T.S., Krogh, A.: Easy-Gene—a prokaryotic gene finder that ranks ORFs by statistical
significance. BMC Bioinform. 4, 21–35 (2003)

70. Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y.O., Borodovsky, M.: Gene identification
in novel eukaryotic genomes by self-traning algorithm. Nucleic Acids Res. 33, 6494–6506
(2005)

71. Mackiewicz, P., Kowalczuk, M., Mackiewicz, D., Nowicka, A., Dudkiewicz, M., Laszkiewicz,
A., Dudek, M.R., Cebrat, S.: How many protein-coding genes are there in the Saccharomyces
cerevisiae genome? Yeast 19, 619–629 (2002)

72. Majoros, W.H., Pertea, M., Antonescu, C., Salzberg, S.L.: GlimmerM, Exonomy and Unveil:
three ab initio eukaryotic gene finders. Nucleic Acids Res. 31, 3601–3604 (2003)

73. Majoros, W.H., Pertea, M., Delcher, A.L., Salzberg, S.L.: Efficient decoding algorithms for
generalized hidden Markov model gene finders. BMC Bioinform. 6, 16–28 (2005)

74. Majoros, W.H., Pertea, M., Salzberg, S.L.: TigrScan and GlimmerHMM: two open source ab
initio eukaryotic gene finders. Bioinformatics 20, 2878–2879 (2004)

75. Majoros, W.H., Pertea, M., Salzberg, S.L.: Efficient implementation of a generalized pair
hidden Markov model for comparative gene finding. Bioinformatics 21, 1782–1788 (2005)

76. Mewes, H.W., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S., Frishman, D.:
MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 27, 44–48 (1999)

77. Meyer, I.M., Durbin, R.: Comparative ab initio prediction of gene structures using pair HMMs.
Bioinformatics 18, 1309–1318 (2002)

78. Meyer, I.M., Durbin, R.: Gene structure conservation aids similarity based gene prediction.
Nucleic Acids Res. 32, 776–783 (2004)

79. Milanesi, L., D’Angelo, D., Rogozin, I.B.: GeneBuilder: interactive in silico prediction of
gene structure. Bioinformatics 15, 612–621 (1999)

80. Mironov, A.A., Noivchkov, P.S., Gelfand, M.S.: Pro-Frame: similarity-based gene recognition
in eukaryotic DNA sequences with errors. Bioinformatics 17, 13–15 (2001)

81. Mouse Genome Sequencing Consortium: Initial sequencing and comparative analysis of the
mouse genome. Nature 420, 520–562 (2002)

82. Munch, K., Krogh, A.: Automatic generation of gene finders for euakryotic species. BMC
Bioinform. 7, 263–274 (2006)

83. Novichkov, P.S., Gelfand, M.S., Mironov, A.A.: Gene recognition in eukaryotic DNA by
comparison of genomic sequences. Bioinformatics 17, 1011–1018 (2001)

84. Ovcharenko, I., Boffelli, D., Loots, G.G.: eShadow: a tool for comparing closely related
sequences. Genome Res. 14, 1191–1198 (2004)

85. Parra, G., Agarwal, P., Abril, J.F., Wiehe, T., Fickett, J.W., Guigó, R.: Comparative Gene
Prediction in Human and Mouse. Genome Res. 13, 108–117 (2003)

86. Pedersen, J.S., Hein, J.: Gene finding with a hidden Markov model of genome structure and
evolution. Bioinformatics 19, 219–227 (2003)

87. RIKEN genome exploration research group and genome science group (genome network
project core group) and the FANTOM consortium. Science 309, 1564–1566 (2005)

References 27

88. Salamov, A.A., Solovyev, V.V.: Ab initio gene finding in Drosophila genomic DNA. Genome
Res. 10, 516–522 (2000)

89. Salzberg, S.L., Delcher, A.L., Fasman, K.H., Henderson, J.: A decision tree system for finding
genes in DNA. J. Comput. Biol. 5, 667–680 (1998)

90. Salzberg, S.L., Delcher, A.L., Kasif, S., White, O.: Microbial gene identification using inter-
polated Markov models. Nucleic Acids Res. 26, 544–548 (1998)

91. Schiex, T., Moisan, A., Rouzé, P.: EuGene: an eucaryotic gene finder that combines several
sources of evidenc. In: Gascuel, O., Sagot, M.-F. (eds.) Computational Biology, pp. 111–125.
Springer, Berlin (2001)

92. Schweikert, G., Zien, A., Zeller, G., Behr, J., Dieteric, C., Ong, C.S., Philips, P., De Bona, F.,
Hartmann, L., Bohlen, A., Krüger, N., Sonnenburg, S., Rätsch, G.: mGene: accurate SVM-
based gene finding with an application to nematode genomes. Genome Res. June 29 Epub
(2009)

93. Siepel, A., Haussler, D.: Computational identification of evolutionary conserved exons.
RECOMB 8, 177–186 (2004)

94. Smit, A.F.A., Hubley, R., Green, P.: RepeatMasker. http://www.repeatmasker.org
95. Snyder, E.E., Stormo, G.D.: Identification of coding regions in genomic DNA sequences: an

application of dynamic programming and neural networks. Nucleic Acids Res. 21, 607–613
(1993)

96. Snyder, E.E., Stormo, G.D.: Identification of protein coding regions in genomic DNA. J. Mol.
Biol. 248, 1–18 (1995)

97. Solovyev, V.V., Salamov, A.A., Lawrence, C.B.: Predicting internal exons by oligonucleotide
composition and discrimant analysis of spliceable open reading frames. Nucleic Acids Res.
22, 5156–5163 (1994)

98. Southan, C.: Has the yo-yo stopped? an assessment of human protein-coding gene number.
Proteomics 4, 1712–1726 (2004)

99. Staden, R.: Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Res.
12, 505–519 (1984)

100. Staden, R., McLachlan, A.D.: Codon preference and its use in identifying protein coding
regions in long DNA sequences. Nucleic Acids Res. 10, 141–156 (1982)

101. Stanke, M., Waack, S.: Gene prediction with a hidden Markov model and a new intron sub-
model. Bioinformatics 19, ii215–ii225 (2003)

102. Swift, H.: The constancy of desoxyribose nucleic acid in plant nuclei. Proc. Natl. Acad. Sci.
USA 36, 643–654 (1950)

103. Taher, L., Rinner, O., Garg, S., Sczyrba, A., Brudno, M., Batzoglou, S., Morgenstern, B.:
AGenDA: homology-based gene prediction. Bioinformatics 19, 1575–1577 (2003)

104. Vendrely, R., Vendrely, C.: La teneur du noyau cellulaire en acide désoxyribonucléique à
travers les organes, les individus et les espéces animales : Techniques et premiers résultats.
Experientia 4, 434–436 (1948)

105. Wade, N.: Gene sweepstakes end, but winner may well be wrong. New York Times, 3 June
2003

106. Wain, H.M., Bruford, E.A., Lovering, E.C., Lush, M.J., Wright, M.W., Povey, S.: Guidelines
for human gene nomenclature. Genomics 79, 464–470 (2002)

107. Wiehe, T., Gebauer-Jung, S., Mitchell-Olds, T., Guigó, R.: SGP-1: prediction and validation
of homologous genes based on sequence alignments. Genome Res. 11, 1574–1583 (2001)

108. Wood, V., Rutherford, K.M., Ivens, A., Rajandream, M.-A., Barrell, B.: A re-annotation of
the Saccharomyces cerevisiae genome. Comp. Funct. Genomics 2, 143–154 (2001)

109. Wu, J., Haussler, D.: Coding exon detection using comparative sequences. J. Comput. Biol.
13, 1148–1164 (2006)

110. Xu, Y., Mural, R.J., Einstein, J.R., Shah, M.B., Uberbacher, E.C.: GRAIL: a multi-agent
neural network system for gene identification. Proc. IEEE 84, 1544–1552 (1996)

111. Xu, Y., Uberbacher, E.C.: In: Salzberg, S.L., Searls, D.B., Kasif, S. (eds.) Computational
Methods in Molecular Biology, pp. 109–128. Elsevier Science B.V., Amsterdam (1998)

http://www.repeatmasker.org

28 1 Introduction

112. Yada, T., Takagi, T., Totoki, Y., Sakaki, Y., Takaeda, Y.: DIGIT: a novel gene finding program
by combining gene-finders. Pac. Symp. Biocomput. 8, 375–387 (2003)

113. Zhang, C.-T., Wang, J.: Recognition of protein coding genes in the yeast genome at better
than 95 % accuracy based on the Z curve. Nucleic Acids Res. 28, 2804–2814 (2000)

114. Zhang, M.Q.: Identification of protein coding regions in the human genome by quadratic
discriminant analysis. Proc. Natl. Acad. Sci. USA 94, 565–568 (1997)

Chapter 2
Single Species Gene Finding

A gene finding model usually consists of a main algorithm that serves as a kind
of “umbrella” algorithm for a large number of rather complex submodels. The
submodels represent various features of a gene, such as exons, introns, and splice site
models. Each submodel scores the probability, or likelihood, that each given sequence
region constitutes the corresponding gene feature, and then these scores are passed
on up to the main algorithm. The main algorithm uses these scores as foundation
for parsing the entire input sequence into complete gene structures that adhere to the
biological rules implemented in the model. This chapter covers a range of mathe-
matical models commonly used as main algorithms in single species gene finding.
Similar models used for comparative gene finding are presented in Chap. 4, while the
various kinds of submodels used for specific gene features are presented in Chap. 5.

2.1 Hidden Markov Models (HMMs)

One reason for the popularity of Markov models is that, due to their flexibility,
most processes can be approximated by a Markov chain. Markov theory is a well-
studied technique and includes a machinery of powerful algorithms to be used in data
analysis. The word “chain” may indicate that the random process generates a discrete
chain of events, but a Markov chain can evolve both in discrete and continuous time,
and have either a discrete or continuous state space. The Markov chains we will
consider here, however, will all have a discrete, finite state space. Moreover, since
most Markov models presented in this book will be of discrete-time type, this will
be our main focus in this section. But since continuous-time Markov models will be
mentioned in connection with substitution models in pairwise alignments (Sect. 3.1),
we give a brief account of that theory as well. For more details, see [16].

A powerful extension of the Markov theory are the hidden Markov models
(HMMs). HMMs were originally developed for speech recognition, with one of
the best references being the introduction by Rabiner [30]. Nowadays, HMMs have
become an integral part of bioinformatics with applications including modeling the

© Springer-Verlag London 2015
M. Axelson-Fisk, Comparative Gene Finding, Computational Biology 20,
DOI 10.1007/978-1-4471-6693-1_2

29

http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_3

30 2 Single Species Gene Finding

periodic patterns occurring in a gene, the sequence alignment pairing of nucleotides
and amino acids, and the point mutation process of sequence evolution. For a deeper
and more general description of HMMs applied to bioinformatics, see [18].

2.1.1 Markov Chains

A random process, also called a stochastic process, is basically the evolution in time
of some random variable. For instance, the mutation process in evolution can be
seen as a random process. What makes the process random is that it jumps randomly
between different states in a state space. A Markov chain is a random process which
is “memoryless” in the sense that the next jump only depend on the current state, and
not the past of the process. This property, called the Markov property, is described
in more detail below.

We typically write a random process as a sequence of indexed random variables
(X1, X2, . . .), where Xt is the state of the random process at time index t ∈ T . If the
index set T is finite or countable, such as the integers, we call the process a discrete-
time random process. If the indices come from a continuous set, such as an interval on
the real line, the process is a continuous-time random process. The process evolves
by jumping between the states in a state space S. Just as with the time index, the state
space can be finite, countable, or continuous. Note that there is no initial assumption
about independence between the random variables in the process. Different settings
on the index set T , the state space S, and various interdependencies between the
indices in the process make up a wide variety of random processes. Markov chains
are thus a special case of this.

Discrete-Time Markov Chains

Consider a physical process that at any instant in time will reside in one of N possible
states, call them S = {s1, . . . , sN }. Assume that the process jumps between states
at discrete time points t = 1, 2, 3, . . ., and let Xt denote the state at time t . Using
the definition of conditional probabilities, the probability of any sequence of random
variables (X1, . . . , XT) can be for states i1, . . . , iT ∈ S be decomposed as

P(X1 = i1, . . . , XT = iT) = (2.1)

= P(XT = iT |XT −1 = iT −1, XT −2 = iT −2, . . . , X1 = i1)

· P(XT −1 = iT −1|XT −2 = iT −2, . . . , X1 = i1)

· · ·
· P(X2 = i2|X1 = i1)

· P(X1 = i1).

The conditional probabilities in (2.1) represent the probabilities to jump from state
Xt to Xt+1, possibly conditioning on all the past states. What characterizes a Markov

2.1 Hidden Markov Models (HMMs) 31

chain, however, is that it is “memoryless”. That is, given the current state, the future
and the past of the process are independent. This feature, called the Markov property,
can be formalized as follows:

Definition 2.1 The process (X1, X2, . . .) is a Markov chain if it for i, j, i1, . . . ,

it−2 ∈ S satisfies the Markov property

P(Xt = j |Xt−1 = i, Xt−2 = it−2, . . . , X1 = i1) = P(Xt = j |Xt−1 = i). (2.2)

The probability of a sequence (X1, . . . , XT), generated by a Markov chain, thus
becomes

P(X1 = i1, . . . , XT = iT) = P(X1 = i1)

T∏

t=2

P(Xt = it |Xt−1 = it−1). (2.3)

Definition 2.2 The probability of the first state X1 is determined by the initial dis-
tribution π = {π1, . . . , πN }, where

πi = P(X1 = i), i ∈ S
N∑

i=1

πi = 1. (2.4)

The chain proceeds according to the transition matrix A = (ai j)i, j∈S , which is an
(N × N)-matrix consisting of transition probabilities

ai j = P(Xt = j |Xt−1 = i), i, j ∈ S. (2.5)

The transition matrix is stochastic, meaning that all entries are nonnegative ai j ≥ 0,
and each row adds up to one

N∑

j=1

ai j = 1. (2.6)

A Markov chain with transition probabilities as in (2.5) is said to be of first order, due
to its dependency on only the previous state. This can be generalized, however, such
that each state depends on several of the previous states. For instance, a second-order
Markov chain depends on the previous two states, and has transition probabilities on
the form

a(2)
i jk = P(Xt = k|Xt−1 = j, Xt−2 = i), i, j, k ∈ S. (2.7)

Just as in the first-order case, the transition probabilities are nonnegative and the
rows sum up to one

32 2 Single Species Gene Finding

n∑

k=1

ai jk = 1. (2.8)

To generalize further, a kth-order Markov chain depends on the k previous states and
is defined as

a(k)
i j = P(Xt = j |Xt−1 = i1, Xt−2 = i2, . . . , Xt−k = ik). (2.9)

where i = (i1, . . . , ik) and i1, . . . , ik, j ∈ S. The sequence Xt−1, . . . , Xt−k is some-
times referred to as the context of Xt . Note that while a first-order Markov chain of N
states has an (N × N) transition matrix, a kth-order Markov chain has an (N k × N)

transition matrix, with one row for each of the N k possible contexts. A Markov chain
of zeroth-order has no context and only consists of independent state frequencies πi .

Example 2.1 Building a Markov chain from data
As a toy-example, consider a machine that generates a DNA sequence according
to a first-order Markov chain. The state space S={A,C,G,T} is illustrated in Fig. 2.1
where the states are represented as circles, and the arrows between them represent
the transitions. The machine starts in some state according to the initial distribution
π = {πA, πC , πG , πT }, generates the corresponding DNA base, and then jumps to
a new state according to the transition probabilities ai j , i, j ∈ S.

Assume that the machine generated a DNA sequence of length T = 24,

CCTCCCGGACCCTGGGCTCGGGAC

By noting that

ai j = P(Xt = j |Xt−1 = i) = P(Xt−1 = i, Xt = j)

P(Xt−1 = i)
, (2.10)

we can deduce that a first-order Markov chain on S={A,C,G,T} models dinucleotide
frequencies {AA, AC, AG, AT,…, TG, TT}. Thus, by counting the number of times
nucleotide i is followed by nucleotide j for all i, j ∈ S in our sequence, we can
estimate the model parameters by

π̂i = ci∑
k ck

âi j = ci j

ci
, (2.11)

Fig. 2.1 The state space of a
DNA sequence generating
machine

A C

G T

2.1 Hidden Markov Models (HMMs) 33

Table 2.1 The frequency
counts and estimated model
parameters

To (j)

ci j A C G T ci

From (i) A 0 2 0 0 2

C 0 5 2 3 11

G 2 1 5 0 8

T 0 2 1 0 3

where ci is the frequency count of the single residue i , and ci j is the frequency
count of the dinucleotide {i j} for i, j ∈ S. The dinucleotide frequency counts of the
observed sequence above are shown in Table 2.1. Note that since the sequence ends
with a C, the C-row will not add up.
The estimated model parameters thus become

π̂ = (0.08, 0.46, 0.33, 0.13), Â =

⎛

⎜⎜⎝

0.00 1.00 0.00 0.00
0.00 0.56 0.22 0.22
0.25 0.12 0.62 0.00
0.00 0.67 0.33 0.00

⎞

⎟⎟⎠ . (2.12)

Using the estimated model we can predict the next nucleotide in the sequence. For
instance, given that XT = C, there is an estimated 56 % chance that the next symbol
is ‘C’. Similarly, an entire new sequence can be scored based on this model. For
instance

p(CCTG) = (2.13)

= P(X1 = C)P(X2 = C|X1 = C)P(X3 = T |X2 = C)P(X4 = G|X3 = T)

= πC · aCC · aCT · aTG
= 0.0167.

Such scoring can be used to examine how characteristic a new sequence is to the
given model and, for instance, to distinguish a coding sequence from a noncoding
sequence. This is discussed further in Example 2.2. Probabilities of indices at longer
distances in the process can be determined similarly by using

P(XT +2 = C|XT = C) = (2.14)

=
∑

k∈S

P(XT +2 = C|XT +1 = k) P(XT +1 = k|XT = C)

=
∑

k∈S

aCk akC

= 0.00 · 0.00 + 0.56 · 0.56 + 0.22 · 0.12 + 0.22 · 0.67

= 0.49. �

34 2 Single Species Gene Finding

In general, the n-step transition matrix A(n) = (ai j (n))i, j∈S , corresponding to the
nth power of A represents the transitions from i to j in n steps, where

ai j (n) =
∑

k∈S

ak j aik(n − 1). (2.15)

The previous example is an example of a Markov chain that does not vary over time.
The transition probabilities are the same regardless of where we are in the sequence,
that is, Xt is independent of how long the process has run.

Definition 2.3 A Markov chain is said to be time-homogeneous (or just homoge-
neous) if the following condition holds

P(Xt = j |Xt−1 = i) = P(Xh = j |Xh−1 = i) for t �= h. (2.16)

and inhomogeneous otherwise.

Example 2.2 Markov chain classification of E. coli
The single most powerful method of discriminating between coding and noncoding
sequences is to use the statistical differences in sequence patterns. We use the same
model as in Example 2.1 with the state space shown in Fig. 2.1.

Assume that we want to use this model to discriminate between coding and non-
coding sequences in the bacteria Escherichia coli. First, we use a training set of known
coding and noncoding sequences to estimate the model parameters. Table 2.2 shows
the dinucleotide frequencies and base counts for coding and noncoding sequences in
the E. coli strain O157:H7 [26].
The probability of a new sequence (X1, . . . , XT) is given by

P(X1 = i1, . . . , XT = iT) = πi1

T −1∏

t=1

ait ,it+1 . (2.17)

The probabilities π and ai j can be estimated as in (2.11) using the frequency counts
in Table 2.2. Now, in order to test if the given sequence is coding or not, we can

Table 2.2 The dinucleotide frequency counts in E. coli O157:H7 coding and noncoding sequences

Coding to (j) Noncoding to (j)

ci j A C G T ci ci j A C G T ci

From (i) A 0.310 0.224 0.199 0.268 0.245 A 0.321 0.204 0.200 0.275 0.262

C 0.251 0.215 0.313 0.221 0.243 C 0.282 0.233 0.269 0.215 0.239

G 0.236 0.308 0.249 0.207 0.273 G 0.236 0.305 0.235 0.225 0.240

T 0.178 0.217 0.338 0.267 0.239 T 0.207 0.219 0.259 0.314 0.259

2.1 Hidden Markov Models (HMMs) 35

calculate the probability in (2.17) for two different models, coding and noncoding,
using the corresponding frequency counts in Table 2.2.
The two probabilities are then compared using a likelihood-ratio test, or a log-odds
ratio decision rule

S(X) = log
PC (X1 = i1, . . . , XT = iT)

PN (X1 = i1, . . . , XT = iT)

{
> η ⇒ coding,

< η ⇒ noncoding,
(2.18)

where PC is the probability when the parameters have been estimated using coding
frequencies, and PN the corresponding probability using noncoding frequencies. The
threshold value η is chosen to satisfy a desired significance level (e.g., α = 0.05). It
is customary in sequence analysis to use logarithms of the probabilities to prevent the
probabilities of long sequences from falling below computer precision and become
numerically unstable. As a positive side effect products are transformed into sums,
which results in a more efficient computation.

The decision rule in (2.18) is of course very crude. The (length-normalized) log-
odds scores of coding versus noncoding sequences in E. coli are illustrated in Fig. 2.2.
We see that while the peaks of the two distributions are separated, which is necessary
in order to discriminate between the models, the overlap is significant, making it hard
to separate coding sequence from noncoding sequence based on this score alone.
Several improvements to the decision rule would be possible already at this early
stage. For one thing, a more sensitive approach would utilize the fact that coding
sequences are organized in codons. Thus, a quick fix would be to upgrade the above
model to a second-order Markov chain, using transition probabilities trained on
triplets rather than on dinucleotides.

Moreover, it is a known fact that the probability of a triplet in a coding region
depends on its position with respect to the reading frame of the sequence. Thus,
an even better model would be an inhomogeneous second-order Markov chain. We
would then train four different Markov chains, one for each coding frame and one
for noncoding sequences. An example of this is given in Sect. 5.3.5. �

Fig. 2.2 Distribution of
log-odds ratio scores of
length-normalized coding
(dark gray) and noncoding
(light gray) sequences
in E. coli

log−odds

se

qs

500

100

200

300

400

−0.04 0 0.02−0.02 0.04

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

36 2 Single Species Gene Finding

Example 2.2 illustrates a strategy for classifying an unknown DNA sequence into
coding or noncoding. What we really want, however, is to extract one or several
coding regions from a longer sequence consisting of intermediate stretches of non-
coding regions. Furthermore, in organisms where splicing may occur, we would like
to combine the coding regions into complete gene structures if possible. The Hidden
Markov Model (HMM) theory, presented in the next section, provides a suitable
framework for this.

Stationarity and Reversibility

An important question of Markov theory is the limit behavior of the chain. What are
the characteristics of a process that has run for a long time? Although the chain itself
will never converge toward a specific state (unless aii = 1 for some i ∈ S), the state
distribution may still stabilize. More specifically, what is the probability of state i
occurring when time goes to infinity? Will the behavior of the chain converge? We
call a distribution over the state space τ = {τ1, . . . , τN } a stationary distribution if

(a) τi ≥ 0 for all i , and
∑

i τi = 1.
(b) τ = τA, which is to say that τ j = ∑N

i=1 τi ai j for all j ∈ S.

The stationary distribution is sometimes called the invariant, equilibrium, or steady
state distribution. The concept of stationarity is central in Markov theory, since
convergence toward a stationary distribution somehow guarantees that the process is
well-behaved in some respect. The stationary distribution may or may not exist, and
even if it exists, the process may or may not ever reach it. We need a couple of more
concepts before we can state the requirement for a stationary distribution to exist.

Definition 2.4 We say that state i ∈ S communicates with state j ∈ S, writing
i → j , if, starting from i , the probability of ever reaching state j is positive. That
is, if ai j (m) > 0 for some m ≥ 0. We say that i and j intercommunicates if i → j
and j → i . Furthermore, we say that the state space is irreducible if all its states
intercommunicate.

Definition 2.5 We call a state recurrent if the probability of eventually returning
is 1. That is, if

P(Xt = i for some t > 1|X1 = i) = 1. (2.19)

If this probability is strictly less than 1, we say that the state is transient.

Note that although we will return to a recurrent state with probability one, the
expected time of return may very well be infinite. To make sure the expected return
time is finite, we need an additional restriction on the recurrence. Starting in state
X1 = i , let Ti be the time until the first return to state i

Ti = min{t > 1 : Xt = i |X1 = i}. (2.20)

2.1 Hidden Markov Models (HMMs) 37

Definition 2.6 We say that a recurrent state is positive if the expected time of return
is finite E[Ti] < ∞.

Now we can state the following important result:

Theorem 2.1 An irreducible chain has a stationary distribution τ if and only if all
states are positive recurrent. In that case, τ is unique and is given by τi = 1/E[Ti].
However, just because the stationary distribution exists, it is not guaranteed that the
chain ever reaches it. For this we need an extra condition.

Definition 2.7 A state i is said to have period d(i) if any return to the state must
occur in multiples of d(i) time steps. Formally, the period of state i is defined as

d(i) = gcd{n : aii (n) > 0}, (2.21)

where ‘gcd’ stands for the ‘greatest common divisor’. We say that state i is periodic
if d(i) > 1 and aperiodic otherwise. That is to say that aii (n) = 0 unless n is a
multiple of d(i). Furthermore, a Markov chain is said to be aperiodic if at least one
of its states is aperiodic.

Theorem 2.2 If the chain is irreducible and aperiodic, then for all i, j ∈ S

ai j (n) → 1

E[Ti] as n → ∞. (2.22)

Note that the limit in Eq. 2.22 is what gives the stationary distribution in Theorem 2.1.
Thus, if the chain is irreducible and aperiodic with positive recurrent states, the
transition probabilities converge to the stationary distribution.

Another useful property is time reversibility. Let X1, . . . , XT be an irreducible,
positive recurrent Markov chain with initial probabilities π and transition matrix A.
Let Y1, . . . , YT be the chain running in reverse, that is

Yt = XT −t . (2.23)

Then Y is a Markov chain as well, with transition probabilities bi j say.

Definition 2.8 We say that X is time eversible if ai j = bi j for all i, j ∈ S.

Thus, since

bi j = P(Yt = j |Yt−1 = i)

= P(XT −t = j |XT −(t−1) = i)

= P(XT −(t−1) = i |XT −t = j)P(XT −t = j)

P(XT −(t−1) = i)

= a ji
π j

πi
, (2.24)

it holds that X is time reversible if and only if πi ai j = π j a ji .

38 2 Single Species Gene Finding

Theorem 2.3 For an irreducible chain, if there exists a distribution π such that

0 ≤ πi ≤ 1,
∑

i

πi = 1, πi ai j = π j a ji for all i, j,

then the chain is time reversible, positive recurrent, and stationary with stationary
distribution π .

The interpretation of time reversibility is that it is not possible to determine the
direction of the process, or the order of states, just by observing the state sequence.
This is a very useful property for substitution models in sequence alignment (see
Sect. 3.1) as it allows us to model the distance between two evolutionary-related
sequences by analyzing the process of evolving one into the other, rather than making
inferences about the distance to some unknown common ancestor in between.

Continuous-Time Markov Chains

A continuous-time Markov chain is very similar to its discrete counterpart. It jumps
between states in a state space S = {s1, . . . , sN } and is parametrized by its initial
distribution and transition probabilities. The main difference is that instead of making
the jumps at discrete time points, the chain makes a transition after having spent a
continuous amount of time in the state. The time spent in a state is called the holding
time, or waiting time. The holding time in discrete-time chains is thus always equal
to 1, while for continuous-time processes the holding time is a continuous random
variable.

Let {X (t) : t ≥ 0} be a continuous random process, indexed by the positive real
numbers, and with a discrete state space S = {s1, . . . , sN }. The process is Markov
if it satisfies the Markov property, which for continuous-time processes translates to

P(X (tn) = j |X (t0) = i0, . . . , X (tn−1) = in−1) = P(X (tn) = j |X (tn−1) = in−1),

(2.25)
for a sequence of times t1 < t2 < · · · tn and for all j, i0, i1, . . . , in−1 ∈ S. Just as
in the discrete case, the first state X (t0), (t0 = 0), is given by an initial distribution
π = {π1, . . . , πN }, but the transition probabilities now need to be parametrized by
time as well. We denote the probability of making a transition from state i to state j
between time points s and t , where s < t , as follows

ai j (s, t) = P(X (t) = j |X (s) = i), s < t. (2.26)

When the transition probabilities are independent of how long the process has run,
we call the chain time-homogeneous (or just homogeneous).
That is, for a homogeneous Markov process it holds that

ai j (s, t) = ai j (0, t − s) for all i, j, s < t. (2.27)

http://dx.doi.org/10.1007/978-1-4471-6693-1_3

2.1 Hidden Markov Models (HMMs) 39

Henceforth, we write ai j (t) = ai j (0, t) for the transition probability of a homoge-
neous chain over time period t , and let A(t) = (

ai j (t)
)

i, j∈S denote the transition
matrix for this time period. As in the discrete-time case the rows of the transition
matrix sum to one

N∑

j=1

ai j (t) = 1, (2.28)

and a time interval can be split up in smaller segments by

ai j (s + t) =
N∑

k=1

aik(s)akj (t) =
N∑

k=1

aik(t)akj (s) if s, t ≥ 0. (2.29)

If we assume that the transition probabilities ai j (t) are continuous functions of t , we
can assume that for an infinitely small time interval “nothing happens.” That is, as
h ↓ 0

ai j (h) →
{

1 if i = j,

0 if i �= j,
(2.30)

and the transition matrix reduces to the identity matrix

A(t) → I as t ↓ 0. (2.31)

A difficulty that arises with continuous-time Markov chains is that we no longer
have a clear notion of the rates of change. In the discrete-time theory the transition
probabilities both represent the changes over unit times, as well as the rates of change
between states. In a continuous setting, however, a time interval can be divided into
infinitely many subintervals, such that while the transition probability ai j (t) gives
us the probability of changing from state i to state j in time t , it does not tell us how
many changes that have occurred in between.

We need some notion of the “instantaneous” rates of change. That is, assuming
that X (t) = i , we would like to know the behavior of the process in a small time
interval (t, t + h), where h > 0 is very close to 0. Various things may happen during
that time, but for a small enough h the events reduce to one of the two possibilities:

• Nothing happened with probability aii (h) + o(h), implying that the state is the
same at time t as at t + h.

• The chain made a single move to a new state with probability ai j (h) + o(h).

The o(h) (little-o) is an error term that accounts for any extra, unobserved, transitions
during the time interval. The term o(h) basically states that for small enough h the
probability of any extra events becomes negligible, and the probability of a particular
transition is approximately proportional to h.

40 2 Single Species Gene Finding

That is, there exist constants {μi j : i, j ∈ S} such that

ai j (h) ≈
{

μi j h if i �= j,

1 + μi i h if i = j.
(2.32)

The matrix Q = (μi j)i, j is called the transition rate matrix, also known as the
generator of the transition matrix A(t). Note that μi j ≥ 0 if i �= j , and μi i ≤ 0.
The elements μi j for i �= j models the rate at which the chain enters state j from
i , while −μi i models the rate at which the chain leaves state i . Moreover, when the
chain leaves state i (with rate −μi i), it must enter one of the other states, giving

μi i = −
∑

j �=i

μi j , (2.33)

with the result that the rows of Q sum to 0. The relation between the rate matrix Q
and the transition matrix A(t) can be deduced using the forward equations

dai j (t)

dt
=
∑

k∈S

aik(t)qkj , (2.34)

or, similarly, using the backward equations

dai j (t)

dt
=
∑

k∈S

qikak j (t). (2.35)

Subject to the boundary condition A(0) = I, where I is the identity matrix, the
forward and backward equations are given by

A(t) = eQt =
∞∑

n=0

tn

n!Qn, (2.36)

where Qn is the nth power of Q. The properties of the transition rate matrix can be
summarized as follows:

• The non-diagonal elements qi j correspond to the probability per unit time of
jumping from state i to state j .

• The row sums of the non-diagonal elements qi = −qii correspond to the total
transition rate out of state i .

• The total transition rate qi is also the rate at which the time to the next jump
decreases. That is, the holding time of state i is exponentially distributed with
parameter qi .

• The number of jumps in a time interval is Poisson distributed with parameter qi .

2.1 Hidden Markov Models (HMMs) 41

The transitions of a continuous-time Markov process can be viewed as an embedded
discrete-time Markov chain, also known as the jump process.
The transition probability ai j of the jump process, is the conditional probability of
jumping from state i to state j , given that a transition occurs, and is given by

ai j =
⎧
⎨

⎩

qi j

qi
if i �= j,

0 if i = j.
(2.37)

Analogously to the discrete case, a distribution τ = {τ1, . . . , τN } on the state space
is a stationary distribution if τi ≥ 0,

∑
i τi = 1, and τ = τA(t) for all t ≥ 0. In

terms of the rate matrix, τ is a stationary distribution if and only if

τ Q = 0. (2.38)

Theorem 2.4 Let X be an irreducible Markov chain with transition matrix A(t).

(a) If there exists a stationary distribution τ , it is unique and ai j (t) → τ j as t → ∞.
(b) If there is no stationary distribution then ai j (t) → 0 as t → ∞.

2.1.2 Hidden Markov Models

While the observed output in a standard Markov model is simply the sequence of
states, a hidden Markov model (HMM) is comprised of two interrelated random
processes, a hidden process and an observed process. The hidden process is a Markov
chain jumping between states as before, but it can only be observed via the observed
process. The observed process generates output through random functions associated
with the underlying hidden states, and is generally not Markov. In other words, given
the current state the hidden process is independent of the observed process. The
observed process, however, typically depends both on its previous outputs and on
the hidden process. For our purposes we only need to treat HMMs with a finite
state space and a discrete, finite-valued observed process producing a finite output
sequence, but it may be noted that the theory is applicable to more general situations.

Example 2.3 A simple HMM
Assume we have two dice, A and B. Die A has six sides and generates numbers
between 1 and 6, while die B only has four sides and generates numbers between
1 and 4 (Fig. 2.3). Assume that we roll the dice, one at a time, and switch between
the dice according to a Markov chain. The state space of the Markov chain is thus
S = {A, B}, and the observed outputs are the numbers we produce by rolling the
die. Die A emits each number with probability 1/6, and die B emits each number
with probability 1/4. We generate numbers from this model as follows:

42 2 Single Species Gene Finding

Fig. 2.3 A two-state HMM,
where the hidden states are
the dice, and the observed
outputs are the roll outcomes

πA = 2/3 πB = 1/3

A B

2/3

1/3

3/4

1/4

1. Choose initial die according to distribution {πA, πB} = {2/3, 1/3}.
2. Roll the die and observe the outcome.
3. Choose next die according to the transition probabilities ai j , where i is the row

and j the column index in the table below.

ai j A B
A 2/3 1/3
B 1/4 3/4

4. Continue from 2.

Assume now that we only know the observed sequence of numbers, and know noth-
ing about in which sequence the dice were rolled. Thus, the die sequence (state
sequence) is hidden from us, and the die numbers are our observed sequence gener-
ated through random functions depending on the hidden state. The HMM algorithms
can help us determine the most likely state sequence for the observed sequence, given
our model. �

We let {Xt }T
t=1 denote the Markov process as before with state space S = {s1,

. . . , sN }, initial probabilities π = {π1, . . . , πN }, and transition probabilities ai j ,
i, j ∈ S. At each step t , the process emits an observation Yt , where {Yt }T

t=1 denotes
the observed process, taking values in some symbols set V = {v1, . . . , vM }. Each
variable Yt depends on the current (hidden) state Xt , and possibly on the previous
outputs Y1, . . . , Yt−1. For simplicity we will use the shorthand Y b

a = Ya, . . . , Yb for
a subsequence between time indices a and b. We denote the emission distribution of
Y as

b j (Yt |Y t−1
1) = P(Yt |Y t−1

1 , Xt = j). (2.39)

To summarize, our HMM is characterized by the state space S, the emission alphabet
V and the initial, transition and emission probabilities {πi , ai j , b j : i, j ∈ S}.

One way to more easily understand the procedure of a Markov model is to view
it as a “sequence generating machine”, by which the observed sequence could be
generated as in Algorithm 1.

2.1 Hidden Markov Models (HMMs) 43

Algorithm 1 Generating output from a standard HMM
t = 1
Choose Xt according to π

while t < T do
Emit Yt according to bXt (Yt |Y t−1

1)

Jump to state Xt+1 according to aXt ,Xt+1

t = t + 1
end while

The joint probability of the hidden and the observed process is determined by noting
the following:

P(Xt = j, Yt |Xt−1 = i, Xt−2
1 , Y t−1

1) =
= P(Xt = j |Xt−1 = i)P(Yt |Xt , Y t−1

1)

= ai j b j (Yt |Y t−1
1). (2.40)

Using the same notation as Rabiner in [30], we let θ = {π, A, B} denote the model,
where π is the initial distribution, and A and B represent the transition and emis-
sion probabilities, respectively. Then the joint probability of the entire hidden and
observed sequence, under the model can be written as

P(X T
1 , Y T

1 |θ) = πX1 bX1(Y1)

T∏

t=2

aXt−1,Xt bXt (Yt |Y t−1
1). (2.41)

In what follows, while always conditioning on the model, we omit θ in the notation.
Thus far we have described the model, generating the hidden state sequence, that is

underlying our observations. In gene finding, or in any other situation of classification,
we are sitting at the other end. Typically, we are faced with an observed sequence
that we would like to assign state labels to. In other words, we would like to classify,
or parse, the observed sequence. In order to do so in the framework of HMMs, we
need means to:

1. Estimate the parameters of the model.
2. Validate the model.
3. Use the model as a predictive tool.

In the first step, called the training step, we build our model by estimating its para-
meters from a set of training data. That is, we use a set of sequences that are rep-
resentative for the patterns we are looking for, and where we know the state labels
for each observed symbol. The second step, called the evaluation step, is a check
that our model is a reasonable representation of reality. In this step we calculate the
probability that the observed data was produced by our model.

The main difficulty, when going from a standard Markov chain to HMMs,
is that there is no unique correspondence between the state sequence and the
observed sequence. An observed sequence could be achieved by many different state

44 2 Single Species Gene Finding

sequences, or many different paths through the state space. The goal of the third
step, called the parsing step, is to determine the most likely state sequence that could
have generated the observed sequence. We say that we parse, classify, annotate, or
decode the observed sequence by attaching state labels to each observed symbol.
The resulting state sequence then corresponds to the most probable path through the
model.

By means of dynamic programming, described below, we can efficiently solve
these problems. The corresponding HMM algorithms, utilizing the dynamic pro-
gramming method, are called the forward algorithm, the backward algorithm, and
the Viterbi algorithm. The evaluation and the decoding steps are solved directly
using these algorithms. The solution to the training problem is more complicated
and involves using a variant of the expectation–maximization (EM) algorithm called
the Baum–Welch algorithm, described in Sect. 6.5.

2.1.3 Dynamic Programming

Many optimization problems have a recursive structure, or an optimal substructure,
where the optimal solution can be divided into subproblems, which themselves have
optimal solutions. Example 2.4 illustrates the concept of breaking a recursive struc-
ture into substructures.

Example 2.4 Fibonacci numbers
As an example of a recursive structure, consider the Fibonacci numbers, where each
subsequent number in the series is the sum of the previous two numbers:

f (n) =

⎧
⎪⎨

⎪⎩

0 if n = 0,

1 if n = 1,

f (n − 1) + f (n − 2) if n > 1.

(2.42)

Although not an optimization problem, it illustrates how redundant a naive imple-
mentation of f (n) would be. If we, for instance, were to compute f (5), using a
direct (top-down) approach, we would call f (2) three times, and f (3) two times
(see Fig. 2.4), and the number of computations needed to calculate f (n) would grow
exponentially with n. Such a problem, where the recursive solution contains a rel-
atively small number of distinct subproblems repeated many times, is said to have
overlapping subproblems. By representing each subproblem by one node only, we
get a directed acyclic graph (DAG) (see Fig. 2.5), instead of the much redundant tree
representation. Instead of having an exponentially growing number of computations,
the problem grows linearly in n, since we only have to calculate each f (n) once.

�

An efficient solution to problems such as that in Example 2.4 is the dynamic pro-
gramming algorithm, which has attained a central role in computational sequence
analysis [13]. Dynamic programming is a general recursive decomposition technique

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.1 Hidden Markov Models (HMMs) 45

f (5)

f (4)

f (3)

f (2)

f (1) f (0)

f (1)

f (2)

f (1) f (0)

f (3)

f (2)

f (1) f (0)

f (1)

Fig. 2.4 A recursive tree illustrating the sub-calculations needed to determine f (5)

Fig. 2.5 A directed acyclic
graph of the computation of
the Fibonacci number f (5)

f (5)

f (4)

f (3)

f (2)

f (1)

f (0)

for global optimization problems, exhibiting the properties of optimal substructures
and overlapping subproblems. The word ‘programming’ does not refer to the process
of coding up a computer program for the purpose, but to the tabular mode of the com-
putation. The trick used in dynamic programming is to store (or cache) and reuse the
solutions to the subproblems, an approach called memoization (not memorization)
in computing. The standard dynamic programming approach has three components:

1. The recurrence relation.
2. The tabular computation.
3. The traceback.

In the recurrence relation we establish the recursive relationships between the vari-
ables, such as in (2.42). In the tabular computation the calculations are organized in
a table that is filled in one column at a time (see Fig. 2.6). There are in general two
approaches to do this:

• In a top-down approach the problem is broken down into subproblems, which
are calculated the first time they are called and then stored for further calls. This
approach combines recursion and memoization. Figure 2.4 illustrates a top-down
calculation of the Fibonacci algorithm. The contribution of dynamic programming
is that the calculation of each subproblem is stored and a map function is used to
keep track of which subproblems already have been calculated.

46 2 Single Species Gene Finding

Fig. 2.6 The tabular
computation goes through
the table column by column

1 T

1

N

St
at

e

Observation

• In a bottom-up approach all subproblems are calculated and stored in advance.
This is more efficient than the previous, but is less intuitive as it may be difficult
in certain applications to figure out all subproblems needed for the calculation in
advance. A bottom-down calculation of f (5) would simply calculate all Fibonacci
numbers subsequently, f (0), f (1), f (2), f (3), f (4), f (5).

The bottom-up approach is what is commonly used in HMM algorithms and sequence
alignment, and is what we will consider from now on. Once the table of subproblems
have been filled (bottom-up), we traceback through the table to obtain the optimal
solution. In the Fibonacci example, the calculation is finished already in the tabular
calculation, but in other situations such as in sequence alignment we still need to
figure out the optimal solution to the global problem using the table of subproblem
solutions. The easiest way to facilitate the traceback is to store pointers during the
tabular computation from each cell in the table to the optimal previous position. These
pointers are then followed in the traceback to determine the optimal path through the
table. In the following sections we will show how dynamic programming is employed
in HMMs.

2.1.3.1 Silent Begin and End States

Before we proceed to describe the HMM algorithms, we need to explain the notion
of silent states. A silent state is a state with no output. Since the first state of a Markov
chain follows a special initial distribution, adding a silent begin state X0 to the model
will simplify the formula in (2.41)

P(X T
1 , Y T

1) =
T∏

t=1

aXt−1,Xt bXt (Yt |Y t−1
1), (2.43)

2.1 Hidden Markov Models (HMMs) 47

where now
aX0,X1 = πX1 . (2.44)

Similarly, we can model the end of the sequence by adding a silent end state XT +1,
such that

P(XT +1|XT) = axT ,XT +1 . (2.45)

The end state is usually not included in a general Markov chain, where the length
of the chain may be undetermined and the end can occur anywhere in the sequence
[11]. But since we will deal exclusively with finite sequences, adding an end state
will enable the modeling of the sequence length distribution. Moreover, as we will
see in Sect. 2.2.4, the inclusion of a silent begin and end state can become a valuable
means to reduce computational complexity.

2.1.4 The Forward Algorithm

The forward algorithm is used to calculate the probability (or likelihood) of the
observed data under the given model. The recurrence relation in dynamic program-
ming is represented by the forward variables, defined as the joint probability of the
hidden state at time t = 1, . . . , T and the observed sequence up to that time,

αi (t) = P(Y t
1, Xt = i)

=
∑

j∈S

P(Y t
1, Xt = i, Xt−1 = j)

=
∑

j∈S

P(Yt , Xt = i |Y t−1
1 , Xt−1 = j)P(Y t−1

1 , Xt−1 = j)

=
∑

j∈S

P(Xt = i |Xt−1 = j)P(Yt |Y t−1
1 , Xt = i)P(Y t−1

1 , Xt−1 = j)

=
∑

j∈S

a ji bi (Yt |Y t−1
1)α j (t − 1). (2.46)

For initialization we add a silent state X0, where

αi (0) = πi , i ∈ S, (2.47)

and for termination we add a silent end state XT +1, where

αi (T + 1) = P(Y T
1 , XT +1 = i) =

∑

j∈S

α j (T)a ji . (2.48)

48 2 Single Species Gene Finding

Fig. 2.7 Each node is a sum
of the forward variables at
the previous position

...

state

1

2

N

α j(t −1)

i

bi(Yt)

αi(t)

a1i

a2i

aNi

The desired probability of the observed data, given the model, is then given by

P(Y T
1) =

∑

i∈S

P(Y T
1 , XT +1 = i) =

∑

i∈S

αi (T + 1). (2.49)

The forward variables are efficiently calculated using the tabular computation in
dynamic programming. The calculations are organized in a table as in Fig. 2.6, that
is filled in one column at a time for increasing state and time indices. The name
forward in the forward algorithm comes from the fact that we move forward through
the data. That is, each variable αi (t) at time t is a (weighted) sum over all variables
at time t − 1 (see Fig. 2.7).
The implementation of the forward algorithm is illustrated in Algorithm 2.

Algorithm 2 The forward algorithm
t = 1
Choose X1 according to π

while t < T do
Emit Yt according to bXt (Yt |Y t−1

1)

Jump to state Xt+1 according to aXt ,Xt+1

t = t + 1
end while

2.1.5 The Backward Algorithm

There is a useful HMM algorithm closely related to the forward, called the backward
algorithm, which is used in particular when solving the training problem in Sect. 6.5.
As the recursion in the forward algorithm proceeds in a forward direction with respect
to time, the recursion for the backward variables goes in the opposite direction. The
backward variable βi (t) is the probability of all observed data after time t , given the
observed data up to this time and given that the state at time t is Xt = i . As with the

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.1 Hidden Markov Models (HMMs) 49

forward, we initialize by using a silent state, but since we are going backwards the
initial state of the algorithm is the end state XT +1 of the chain

βi (T + 1) = 1, i = 1, . . . , N . (2.50)

For t = T, T − 1, . . . , 1 we define the backward variables as

βi (t) = P(Y T
t+1|Y t

1, Xt = i)

=
∑

j∈S

P(Y T
t+1, Xt+1 = j |Y t

1, Xt = i)

=
∑

j∈S

P(Xt+1 = j |Xt = i)P(Yt+1|Y t
1, Xt+1 = j)P(Y T

t+2|Y t+1
1 , Xt+1 = j)

=
∑

j∈S

ai j b j (Yt+1|Y t
1)β j (t + 1). (2.51)

We finish in the silent begin state X0, but this does not need special treatment for
the backward algorithm. The algorithm simply terminates upon calculation of βi (0),
for 1 ≤ i ≤ N . Note that, similarly to the forward algorithm, we can calculate the
probability of the observed sequence using the backward algorithm as well.

P(Y T
1) =

∑

i∈S

P(Y T
1 , X1 = i)

=
∑

i∈S

P(Y T
2 |Y1, X1 = i)P(Y1|X1 = i)P(X1 = i)

=
∑

i∈S

πi bi (Y1)βi (1). (2.52)

2.1.6 The Viterbi Algorithm

The purpose of using HMMs in biological sequence analysis is to utilize their
strengths as a predictive tool. That is, given that we have a model and have trained
its parameters, we would like to use it to classify, or decode, an unlabeled sequence
of observations. In other words, we would like to find the optimal state sequence
for the given observations and the given model. However, the solution to this prob-
lem depends on our definition of “optimal”. As discussed in [30], depending on the
optimality criterion chosen, the solution might not even be valid. For instance, one
natural criterion would be to choose the sequence of states that are individually most
likely, a method commonly referred to as posterior decoding and discussed further in
Sect. 2.1.7.1. This approach maximizes the number of correct individual states, but
as soon as some state transitions in the state space have probability zero, we stand
the risk of ending up with a state sequence that is indeed optimal in the sense that it

50 2 Single Species Gene Finding

reaches the highest likelihood, but that is impossible to achieve. In the end, what we
would like to find is the single best state sequence among all valid ones. The HMM
procedure that achieves this is called the Viterbi algorithm. The Viterbi algorithm
formulation is essentially the same as the forward algorithm, except sums are replaced
by maxima, and we need a little extra bookkeeping to track the maximizing terms.

We would like to optimize the probability of the hidden state sequence, given
the observed data P(X T

1 |Y T
1). Note, however, that this probability is maximized at

the same point as the joint probability P(X T
1 , Y T

1). Therefore, we define the Viterbi
variables as the joint probability of hidden and observed data up to time t , maximized
over all valid state sequences. The initial conditions for the recurrence relation are
the same as for the forward algorithm. The Viterbi variables for the initial silent state
X0 are given by

δi (0) = πi , i = 1, . . . , N . (2.53)

The tabular computation proceeds for t = 1, . . . , T using the recurrence relation

δi (t) = max
Xt−1

1

P(Y t
1, Xt−1

1 , Xt = i)

= max
Xt−2

1 , j
P(Y t

1, Xt−2
1 , Xt−1 = j, Xt = i)

= max
Xt−2

1 , j
P(Y t−1

1 , Xt−2
1 , Xt−1 = j)P(Xt = i |Xt−1 = j)P(Yt |Y t−1

1 , Xt = i)

= max
1≤ j≤N

δ j (t − 1)a ji bi (Yt |Y t−1
1). (2.54)

As a result, each δi (t) represents the highest probability of all paths up to time t ,
ending in state i . To facilitate the traceback we store pointers from the current position
to the optimal previous position,

ψi (t) = argmax
1≤ j≤N

a ji bi (Yt |Y t−1
1)δ j (t − 1). (2.55)

These pointers will be used to retrieve the optimal path through the state space. As
for the forward algorithm, the computation is terminated by calculating the Viterbi
variables for the silent end state XT +1

δi (T + 1) = max
X T

1

P(Y T
1 , X T

1 , XT +1 = i)

= max
1≤ j≤N

a ji δ j (T). (2.56)

The probability of the most likely state sequence is then given by

P(most likely state sequence) = max
1≤i≤N

δi (T + 1). (2.57)

2.1 Hidden Markov Models (HMMs) 51

1 T −2 T−1 T

1

2

3

N

St
at

e

Observation

...
...

...
...

···

···

···

···

X∗
T

Fig. 2.8 The traceback starts in X∗
T and moves back through the state space, following the stored

pointers ψi (t)

To extract the actual state sequence giving rise to this probability, we start the trace-
back in the silent end state giving rise to the highest value on its Viterbi variable,

X∗
T +1 = argmax

1≤i≤N
δi (T + 1), (2.58)

and backtrack recursively through the dynamic programming table (see Fig. 2.8)
using

X∗
t = ψX∗

t+1
(t + 1), t = T, T − 1, . . . , 0. (2.59)

The resulting state sequence, X∗
0, X∗

1, . . . , X∗
T +1 is then the optimal, or most prob-

able, state sequence for the given observations and given model, and represents a
parse or an annotation of the observed sequence. The implementation of the Viterbi
algorithm is illustrated in Algorithm 3.

While the Viterbi algorithm is very efficient at finding the single best path, and
is suitable to use when one path clearly dominates, it is less effective when several
paths have similar near-optimal probabilities. In such cases posterior decoding might
work better, even though it is not guaranteed to produce a valid solution. Posterior
decoding is discussed further in Sect. 2.1.7.1.

52 2 Single Species Gene Finding

Algorithm 3 The Viterbi algorithm
/* Initialize */

for i = 1 to N do
Initialize: δi (0) = πi

end for

/* The tabular computation */

for t = 1 to T do
for i = 1 to N do

δi (t) = 0
for j = 1 to N do

if a ji δ j (t − 1) > δi (t) then
δi (t) = δ j (t − 1)a ji
ψt (i) = j

end if
end for
δi (t) = bi (Yt |Y t−1

1)δi (t)
end for

end for

2.1.7 EasyGene: A Prokaryotic Gene Finder

The gene finding problem in prokaryotes is quite different from that in eukaryotes. In
particular, the prokaryotic genomes are much more dense, with much less intergenic
regions and with rarely any splicing. As a result, while eukaryote genomes may
contain less than 10 % of coding sequence, prokaryotes tend to be very gene rich
with as much as 90 % of the sequence being coding. Moreover, the prokaryotic
binding sites are usually located in direct vicinity of the protein-coding regions, and
can be included in the model and thereby strengthen the gene signal. In contrast,
eukaryotes binding sites can be located long distances from the actual gene and
are often difficult to associate with the corresponding genes. However, although
much simpler, the gene finding task is far from trivial even in prokaryotes, and is
complicated by several issues.

Gene finding in prokaryotes is usually conducted by looking for open reading
frames (ORFs). That is, long stretches of potentially coding sequences surrounded
by a pair of candidate in-frame start and stop codons, but void of in-frame stop
codons in between. The issue that arises in such an approach is that of separating
real genes from ‘spurious’, or random, ORFs. The shorter the sequences considered,
the more difficult this task becomes. Therefore, it is common to apply a minimum
length threshold on the ORFs considered in these searches. Sharp and Cowe [37]
suggested a threshold of 100 amino acids as a good trade-off between the number
of missed short genes and the number of predicted spurious ORFs. It turns out,
however, that such a threshold is very crude. Prokaryotic genomes contain plenty
of spurious ORFs above that size, and a significant amount of true genes below it
[40]. Another issue, much more prevalent in prokaryotes than in eukaryotes, is the

2.1 Hidden Markov Models (HMMs) 53

B Null RBS Start Astart Bstop Stop Astop Null E

X
10-19 3 3

X X X

3 3 6
X

Fig. 2.9 The EasyGene gene model. The numbers above the boxes represent the number of bases
modeled by that submodel, where ‘X’ indicates a variable number. B and E are begin and end states,
the NULL-states cover intergenic region before and after the gene, the RBS state include the RBS
and the spacer bases to the next state, Start and Stop model the start and stop codons, Astart, Bstop
and Astop explicitly model the codons directly after the start codon and surrounding the stop codon

problem of overlapping genes, which makes the accurate detection of translation
start sites notoriously difficult.

EasyGene [20] is an HMM-based prokaryotic gene finder, that attempts to address
these issues. EasyGene is fully automated in that it extracts training data from a raw
genomic sequence, and estimates the states for coding regions and ribosomal binding
sites (RBS) used to score potential ORFs. The EasyGene state space is illustrated
in Fig. 2.9. The B and E states are silent begin and end states of the HMM, and
the NULL-states model everything that is not part of the gene, and not in direct
vicinity of the gene. The RBS state includes the RBS as well as the bases between
the RBS and the next state, and the START and STOP states correspond to the start
and stop codons of the gene, respectively. While eukaryotic genes almost always
start with ATG, prokaryotes use a number of alternative start codons. E. coli (K-12
strain), for instance, uses ATG in about 83 % of its genes, GTG in 14 % and TTG
in 3 % of the cases, and an additional one or two very rare variants [4]. The stop
codons are typically TAA, TAG, and TGA in both eukaryotes and prokaryotes, even
if alternatives are known to exist [15]. The codons directly after the start codon and
the codons surrounding the stop codon tend to follow a distribution different from the
rest of the gene [38], a feature that can be used to strengthen the start and stop signals.
This feature is explicitly modeled in the ASTART, BSTOP, and ASTOP states.

The model for the internal codons consists of 3 parallel submodels, allowing
the HMM to keep separate statistics for atypical genes. Each submodel, consists
of a series of 3 codon models, where each codon model is a 4th-order Markov
model consisting of three states, one for each DNA base of the codon, capturing the
codon position dependency of coding sequences. As a result the length distribution
becomes negative binomial with parameters (n, p), where n is the number of serial
codon models, and p the probability of transitioning out of the specific codon model.
This model allows for more general length distributions than the geometric, which

54 2 Single Species Gene Finding

would be the result of using one codon model alone (this issue is discussed further
in Sect. 2.2).

2.1.7.1 Posterior Decoding

As a consequence of using duplicated codon states, the length of an ORF is only
realized as the sum over many HMM paths. While the Viterbi algorithm is a very
efficient decoding algorithm when one path dominates, it is not appropriate when
several paths have similar probabilities. Therefore, EasyGene uses posterior cod-
ing instead, also known as the forward–backward algorithm [30], where the indi-
vidually most likely sequence of states is computed. The details on the forward–
backward algorithm are given in Sect. 6.5, but in short we use the probabilities of
being in a given state si ∈ S at time t , given the observed sequence to determine the
individually most likely state sequence. The forward–backward variables are defined
as

γt (i) = P(Xt = si |Y T
1) = αi (t)βi (t)

P(Y T
1)

, (2.60)

and the resulting optimal state sequence is given by

X∗
t = argmax

si ∈S
γt (i), 1 ≤ t ≤ T . (2.61)

Assuming that there are no frameshifts or sequencing errors in the sequence, there
is exactly one stop codon for each start codon, and, thus, the probability of a gene
is equivalent to the posterior probability of its gene start. As a consequence, we
can easily extract all possible start codons for a gene in the case of several similar
scores. Moreover, in the case of overlapping genes the Viterbi algorithm would only
report the highest scoring, while using posterior decoding each gene is scored and
reported separately. However, posterior decoding merely bunches together indepen-
dent underlying states, without checking that the parse is valid. Although this is not a
big problem in prokaryotic gene finding, we still need to be careful when interpreting
the output of posterior decoding.

2.1.7.2 Statistical Significance of Predictions

Along with its gene predictions, EasyGene reports a measure of statistical signifi-
cance for each ORF. The measure is based on a comparison of the predicted ORFs to
the expected number of ORFs in a random sequence. The random sequence model,
called the NULL-model (different from the NULL-states in the main model), is a
third-order Markov chain using the same base frequencies as the overall genome
in question. It consists of a third-order state for intergenic regions, and a reverse
codon model to capture genes on the reverse strand (see Fig. 2.10). The significance

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.1 Hidden Markov Models (HMMs) 55

Fig. 2.10 The NULL-model
in EasyGene is used to
model random sequence with
the same background
statistics as the overall
genome. The state space
consists of a third-order
intergene state and a reverse
codon model to capture
genes on the reverse strand

measure is based on a log-odds score between the model and the NULL-model,

β = log
P(Y |M)

P(Y |N)
, (2.62)

where P(Y |M) is the probability that sequence Y contains an ORF under the model,
and P(Y |N) the same probability for the NULL-model. This score is different from
that reported by Genscan, which reports posterior exon probabilities based on the
HMM (see Sect. 2.2.4.3).

2.2 Generalized Hidden Markov Models (GHMMs)

A major problem with standard HMM is the intrinsic modeling of state duration.
Outputting exactly one observation per jump leads to a length distribution that is
exponentially decaying, something that often is unsuitable for many applications.
The solution to this problem is called a hidden semi-Markov model, or a generalized
HMM (GHMM). The word ‘generalized’ comes from this fact, that instead of having
geometric length distributions we can use a length distribution of our choice.

2.2.1 Preliminaries

A standard HMM makes a transition at each time unit t , such that the transition
time is always equal to one, and the observed output is exactly one symbol per
unit. However, by making a number of self-transitions into the same state, we can
observe a coherent subsequence emitted from the same state. We call the length of
such a sequence the duration of the state. Due to the Markov property, rendering the
process memoryless, the duration follows a geometric distribution (see Sect. 5.2.1).
Hence, using a standard HMM for the purpose of gene finding, for instance, would
impose a geometric distribution on each state. It has been noted, however, that exons

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

56 2 Single Species Gene Finding

in particular tend to follow a length distribution that is statistically very different
from the geometric distribution. Thus forcing such a model on the sequence data
may lead to bad predictions.

A semi-Markov model, has the same structure as a standard HMM, except that
the process stays in each state a random amount of time before its next transition, as
opposed to standard HMMs, where the time in each state always equals one (note that
we are only considering discrete-time processes here). More formally, a semi-Markov
process is a process W whose state sequence is generated by a Markov process X as
before, but whose transition times are given by another process ζ that may depend
on both the current state and the next. Thus, since properties of ζ may depend on the
next state in X , the process W is in general not Markovian. The associated process
(X, ζ), however, is a Markov process, hence the name semi-Markov.

In a hidden semi-Markov model, or a generalized hidden Markov model as we
will call it henceforth, there is a duration distribution associated with each state.
When a state emits output, first a duration is chosen from the duration distribution,
and then the corresponding length of output is generated. This generalization can

improve performance by allowing for more accurate modeling of the typical duration
of each particular state. As a result, the indices of the hidden and the observed process
will start to differ as soon as a state has a duration that is longer than 1. For example,
assume that the model generated the following output:

Hidden: X1: X2: X3:
Observed: Y1Y2Y3 Y4Y5 Y6Y7Y8Y9

In order to handle this, we separate the time index notation in the state sequence and
in the observed sequence as follows. Given that the hidden process is in state Xl , let
dl denote the duration of Xl chosen from a length distribution fXl (dl). To keep track
of the indices in the hidden versus the observed sequences, we introduce partial sums
for the number of emitted symbols up to (and including) state Xl

pl =
l∑

k=1

dk, and p0 = 0. (2.63)

We let L denote the length of the Markov process, X L
1 , and T the length of the

observed process, Y T
1 . For simplicity we assume that pL = T , meaning that all

of the observed output generated in the final state X L is included in the observed
sequence. Now the state sequence X L

1 , the duration sequence d L
1 , and the length of

the state sequence L , are hidden from the observer, and the observed data remains
to be the observation sequence Y T

1 . The joint probability of the hidden and observed
data becomes

P(Y T
1 , X L

1 , d L
1) =

L∏

l=1

aXl−1,Xl fXl (dl)bXl (Y
pl
pl−1+1|Y pl−1

1), (2.64)

2.2 Generalized Hidden Markov Models (GHMMs) 57

where X0 is the silent begin state as before, with

aX0,X1 = πX1 . (2.65)

One drawback with GHMMs is that statistical inference is harder than for stan-
dard HMMs. In particular, the Baum–Welch algorithm for parameter training is not
applicable. The Baum–Welch algorithm is a generalized EM-algorithm (expectation–
maximization), that uses counts of transition–emission pairs to update the expectation
part of the algorithm. Details on the Baum–Welch algorithm, and on how to train
GHMMs, can be found in Chap. 6.

2.2.2 The Forward and Backward Algorithms

One of the attractive features of using a generalized HMM for gene finding is that it
provides a natural way of computing the posterior probability of a predicted gener-
alized state, given the observed data. How this is done is described in Sect. 2.2.4.3,
in the framework of the gene finding software Genscan [7]. First, we need to adjust
the forward and backward algorithms in (2.46) and (2.51), respectively, to fit the
GHMM framework.

The Forward Variables

Recall that the forward variables are defined as the joint probability of observed
sequence up to time t , and the hidden state at time t . In a GHMM, however, we
need to adjust the definition slightly, since each state can have variable durations. We
define the forward variables αi (t) as the probability of the observed data, and that
the hidden state i at time t actually ended at time t . This is to say that Xl = i and
pl = t for some 1 ≤ l ≤ L . In what follows we let D be the maximum duration of
a state.

αi (t) = P
(

Y t
1, {some hidden state i ends at t}

)

= P
(

Y t
1,

L⋃

l=1

(
Xl = i, pl = t

))

=
∑

j∈S

D∑

d=1

P
(

Y t
1,

L⋃

l=1

(
Xl = i, pl = t, dl = d

)
,

L⋃

l=1

(
Xl = j, pl = t − d

))

=
∑

j∈S

D∑

d=1

[
P
(

Y t−d
1 ,

L⋃

l=1

(
Xl = j, pl = t − d

))
(2.66a)

·P
(L⋃

l=1

(
Xl = i, pl = t, dl = d

)∣∣∣
L⋃

l=1

(
Xl = j, pl = t − d

))
(2.66b)

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

58 2 Single Species Gene Finding

· P
(

Y t
t−d+1

∣∣∣Y t−d
1 ,

L⋃

l=1

(
Xl = i, pl = t, dl = d

)
,

L⋃

l=1

(
Xl = j, pl = t − d

))]
(2.66c)

The first term (2.66a) is simply α j (t − d). To handle the conditioning on unions
in the second (2.66b) and third (2.66c) terms, we make use of the following two
lemmas.

Lemma 2.1 If sets A, B, and C satisfy B ∩ C = ∅ and P(A|B) = P(A|C), then
P(A|B ∪ C) = P(A|B).

Lemma 2.2 If for set A and disjoint sets B1, . . . , Bn we have that P(A|Bi) =
P(A|B1) for all 1 ≤ i ≤ n, then P(A|⋃n

i=1 Bi) = P(A|B1).

As a result, for the second term (2.66b) we get

P
(L⋃

l=1

(
Xl = i, pl = t, dl = d

)∣∣∣
L⋃

l=1

(
Xl = j, pl = t − d

))

= P
(L⋃

l=1

(
Xl = i, pl = t, dl = d

)|X1 = j, p1 = t − d
)

= P(X2 = i, p2 = t, d2 = d|X1 = j, p1 = t − d)

= a ji fi (d). (2.67)

Similarly, the third term (2.66c) becomes

P
(

Y t
t−d+1

∣∣∣Y t−d
1 ,

L⋃

l=1

(
Xl = i, pl = t, dl = d,

)
,

L⋃

l=1

(
Xl = j, pl = t − d

))

= P(Y t
t−d+1|Y t−d

1 , p1 = t − d, d2 = d, X2 = i).

= bi (Y
t
t−d+1|Y t−d

1). (2.68)

Thus, the forward algorithm results in

αi (t) =
∑

j∈S

D∑

d=1

a ji fi (d)bi (Y
t
t−d+1|Y t−d

1)α j (t − d). (2.69)

We initialize and terminate as before with

αi (0) = πi , (2.70)

αi (T + 1) = P(Y T
1 , X L

1 , X L+1 = i) =
∑

j∈S

α j (T)a ji . (2.71)

2.2 Generalized Hidden Markov Models (GHMMs) 59

Just as in the non-generalized case, the probability of the observed sequence, given
the model, is given by summing over the terminal forward variables

P(Y T
1) =

∑

i∈S

αi (T + 1). (2.72)

The Backward Variables

The backward variable βi (t) denotes the probability of all the observed data after
time t , given the observed data up to time t and given that the hidden state i ended
at time t . Skipping the details, the backward variables for GHMMs are given by

βi (t) = P
(

Y T
t+1|

L⋃

l=1

(Xl = i, pl = t)
)

=
∑

j∈S

D∑

d=1

ai j f j (d)b j (Y
t+d
t+1 |Y t

1)β j (t + d). (2.73)

The backward algorithm is initiated as before, using βi (T + 1) = 1 for all i ∈ S,
and is terminated upon calculation of βi (0).

2.2.3 The Viterbi Algorithm

Now that we know what the GHMM forward algorithm looks like, adjusting the
Viterbi algorithm of the standard HMM as straightforward. Recall from Sect. 2.1.6
that the conditional probability P(X T

1 |Y T
1) of the state sequence given the observed

data is maximized by the same state sequence as the joint probability P(Y T
1 , X T

1). The
same holds in the GHMM situation; the state sequence and the associated durations
that maximizes P(X L

1 , d L
1 |Y T

1) also maximizes the joint probability P(Y T
1 , X L

1 , d L
1)

given in (2.64). As for the standard HMMs, the Viterbi algorithm only differs from
the forward algorithm in that the sums are replaced by maxima. Therefore, skipping
the technical details, the tabular computation of the GHMM Viterbi algorithm for
t = 1, . . . , T becomes

δi (t) = max
l,Xl−1

1 ,dl
1

P(Y t
1, Xl−1

1 , Xl = i, pl = t)

= max
j,d

δ j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1). (2.74)

60 2 Single Species Gene Finding

The Viterbi algorithm is initiated and terminated by

δi (0) = πi , (2.75)

δi (T + 1) = max
j

δ j (T − 1)a ji . (2.76)

The probability of the most likely sequence of states and durations is given by

P(most likely sequence of states and durations) = max
1≤i≤N

δi (T + 1). (2.77)

As we evaluate δi (t) we record the values of the optimal previous position in the
dynamic programming table, which now includes two values. In addition to knowing
the most likely previous state ψi (t) we need to know the most likely duration of that
state, in order to jump back to the right previous cell in the table. That is, we record
the previous state and its duration in the pair of variables

(
ψi (t), φi (t)

) = argmax
j,d

δ j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1), (2.78)

where now ψi (t) corresponds to the maximizing previous state j , and φi (t) to the
maximizing duration d of that state. The most probable state sequence thus ends in
a state i∗ which has duration φi∗(T + 1) and is preceded by state ψi∗(T + 1), and
the whole sequence is unraveled by backtracking using the φ’s and the ψ’s.

2.2.4 Genscan: A GHMM-Based Gene Finder

Genscan [7] is probably one of the most popular single species gene finders of all
times, and included several novel improvements when it first was published. The
novel features include:

• The ability to predict multiple genes in a sequence.
• The ability to predict partial genes at the end of the sequence.
• The ability to predict genes on both strands simultaneously.
• Binning the parameter set into several submodels, depending on the G+C content

of the input sequence.
• Modeling long-range internal dependencies in splice sites using Maximal Depen-

dence Decomposition (MDD).

While most gene predictors up to that point assumed the existence of exactly one
complete gene in the sequence to be analyzed, Genscan allows the recognition of
both multiple and partial genes. Moreover, the gene prediction is efficiently per-
formed on both strands simultaneously, by simply adding a mirror image of the state
space, connected via the intergenic state (see Fig. 2.11). Other improvements include
G+C dependent model parameters. Typically, the gene density is higher and the gene

2.2 Generalized Hidden Markov Models (GHMMs) 61

E0,0 E0,1 E0,2 E1,0 E1,1 E1,2 E2,0 E2,1 E2,2

Intron0 Intron1 Intron2

EI,0 EI,1 EI,2 Esing E0,T E1,T E2,T

Intergene

Fig. 2.11 A simplified version of the Genscan state space, modeling only the forward strand and
consisting of E-states and I -states alone. The diamond-shaped I -states are non-generalized states
emitting one symbol at a time, while the circular E-states are complex submodels with generalized
length distributions and including the splice site models

structure is more compact in regions of higher G+C content (see Sect. 5.3.1). Since
this directly affects the model parameters, Genscan separates the training sequences
into four sets; sequences of less than 43 % GC-content, 43–51%, 51–57%, and more
than 57 % G+C content. When a sequence is to be analyzed, the G+C content is
first calculated, and the corresponding set of parameters is applied in the predic-
tion process. Another novel feature in Genscan is the splice site predictor. Signal
sequences in general, and splice sites in particular exhibit significant internal depen-
dencies between nonadjacent positions, something that is not easily captured by
common weight matrices, or even with higher order Markov models. Genscan uses
the Maximal Dependence Decomposition (MDD) model for modeling splice sites.
The MDD breaks down the splice site sequence into its specific positions and creates
a decision tree arranged by the position dependencies in the order of importance.
The MDD is described in more detail in Sect. 5.4.3. The improvements introduced in
Genscan were quickly adapted by the gene finding community, and now constitute
an integral part of most modern gene finders.

A simplified version of the Genscan state space is illustrated in Fig. 2.11. The
figure only shows the forward strand and only includes exons (E-states), introns,
and intergene (I -states). The full state space consists of 27 separate states, 13 for
each strand, and a joint intergene state. The additional states include promoters,
UTR-states, and polyA-signals as well. However, the identification of such regions

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5

62 2 Single Species Gene Finding

T T G A A T G G A TGC C

T T G A A G G A TG TC C G C

G C

T T G A A G T G G A TC C G C
Intron0

Intron1

Intron2

Ei,0

Ei,1

Ei,2

E0, j

E1, j

E2, j

Fig. 2.12 Illustrating the notion of exon and intron phase. Intron j comes between exon Ei, j and
exon E j,k , j = 0, 1, 2

is significantly more difficult than the E- and I -states, leading to much less reliable
predictions in comparison to the protein-coding portion of the genes. The reverse
strand can be included in the state space by adding a mirror image of the forward
states, joined by a common intergenic state. The diamond-shaped I -states are sim-
ple, non-generalized states with geometrically distributed durations. The circular
E-states are more complex: they include codon compositions, a generalized length
distribution, and exon boundary models (splice sites, start or stop). Four types of
exons are defined, depending on which boundaries that contain them: single exons
(start to stop), initial exons (start to donor), internal exons (acceptor to donor), and
terminal exons (acceptor to stop). The introns and internal exons are separated into
three groups, corresponding to the phase of the surrounding exons. Exons can be
spliced anywhere in the reading frame; exactly between two complete codons, after
the first base of the codon, or after the second base (see Fig. 2.12). If an internal intron
appears exactly between two complete codons, it has phase 0, while if it occurs after
the first or second nucleotide, it has phase 1 or 2, respectively. The internal exons
are indexed correspondingly, with Ei, j signifying that the previous exon ended with
i extra bases (and the preceding intron has phase i), and the current exon ends with
j extra bases. The notion of phase is discussed further in Sect. 5.1.1. At a first glance
it may seem unnecessary to include such a large number of exon and intron states,
but it turns out to be computationally efficient, as it allows us to keep track of the
phase without requiring anything more than a first-order Markov chain.

It is typically the exon states that need to be generalized in the gene finding state
space, since their length distributions differ significantly from the geometric distri-
bution. Also, the length distribution tend to differ between different exon types as
well (see Sect. 5.2 for details). Therefore, Genscan uses separate empirical length
distributions for single, initial, internal, and terminal exons. The introns and inter-
genic regions, however, seem to follow the geometric length distribution fairly well
provided that a certain minimum threshold is exceeded. Also, the 5′UTR and 3′UTR
state lengths are modeled using geometric distribution.

2.2.4.1 Sequence Generation Algorithm

Consider generating a genomic sequence from the Genscan model. Say that we start
off in the intergenic state and do a number of self-transitions. The state duration of

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5

2.2 Generalized Hidden Markov Models (GHMMs) 63

the intergene and the introns in each step is always dl ≡ 1. Thus, each time we
visit the intergenic state, a single-base Yt is generated according to some distribution
bIG(Yt |Y t−1

1). The output may depend on all of the preceding sequence, but most
models only include contexts of a few bases back. Eventually, after some geometri-
cally distributed time t we make a transition into a different state, for instance the
EI,2 state. The EI,2 state represents an initial exon including the two first bases of
its last codon. An exon duration d is generated according to some generalized length
distribution fEI,2(d), where fEI,2(d) = 0 if (d mod 3) �= 2. We generate d bases

Y t+d
t+1 according to emission distribution bEI,2(Y

t+d
t+1 |Y t

1), and jump with probability
1 to intron I2. Note that while the exon sequence may depend on the entire previous
sequence as well, it is typically modeled as independent of the preceding I -state.
In intron I2 we continue as in the intergene state, executing a geometric number of
self-transitions and emitting a state-specific base in each step, before jumping to one
of the internal exons E2,i or the terminal exon E2,T . The exon sequence will finish off
the last codon of the previous exon, before continuing to generate complete codons.
It should be clear by now that the length of each specific exon state is fixed mod 3.

The algorithm for generating a sequence of predetermined length from the Gen-
scan model is summarized in Algorithm 4. The last state of the algorithm is trun-
cated appropriately to ensure that pL = T , meaning that the observed sequence ends
exactly at the last base of the last state.

Note that we left out any mentioning of the splice sites surrounding the introns.
While the I -states are simple, non-generalized states, the exons are themselves com-
plex submodels. Each exon submodel consists of its length distribution, the model for
the coding sequence as well as the exon boundaries (start, stop, donor, and acceptor
signals). Details on the exon submodels are given in Chap. 5.

Naturally, using Markov models as sequence generators are only a approxima-
tion of the reality. The process at which real genes are generated is bound to be far
more complex than any kind of mathematical model. However, using such models
as approximations of the real processes provide a powerful tool for the identification
of genes and enables us to reconstruct highly complex gene structures. Some limi-
tations of the Genscan model, however, include: (1) Only protein-coding genes are
considered, as the pattern for RNA genes are quite different and would need separate
models to be detected [32]. (2) Only introns in between protein-coding exons are
modeled, and not UTR introns for example. (3) Overlapping and alternatively spliced
genes are not handled.

2.2.4.2 Reducing Computational Complexity

Gene prediction, as well as sequence analysis in general, involves dealing with large
quantities of data, and an important question is how feasible the calculations of the
HMM algorithms are in practice. We can address this by estimating the number of
multiplications (or additions, if we use logarithms) required for each forward and
backward variable. The emission distribution bi (Y

t+d
t+1 |Y t

1) is commonly calculated

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

64 2 Single Species Gene Finding

Algorithm 4 The Genscan model
/* Initialize */

l = 1
p0 = 0
Choose X1 according to π

Choose state duration d1 according to fX1 (·)
p1 = d1

/* Generate sequence */

while pl ≤ T do
Emit Y pl

pl−1+1 according to bXl (·|·)
Jump to state Xl+1 according to aXl ,Xl+1

l = l + 1
Choose state duration dl according to fXl (·)
pl = pl−1 + dl

end while

/* Truncate the last state to get pL = T */

if pl > T then
Emit Y T

pl−1+1 according to bXl (·|·)
end if

as the product of d single-base probabilities P(Yt |Yt−1, . . . , Yt−k), each of which
is typically conditioned on a number k of previous bases. Therefore, if D is the
maximum duration of a state and N the number of states, the order of computing
a forward variable αi (t) is O(ND2). If T is the length of the DNA sequence, there
are N T such variables, leading to a total of O(TN2D2) operations to compute the
forward algorithm, and O(TN) bytes to store the variable values. This means that
the complexity of the problem is linear in the length of the sequence being analyzed,
which is a desired property. However, there is a lot of structure in the topology of
the model in Fig. 2.11 that we can take advantage of to get a significant reduction
in computational complexity. First, we partition the state space into exon states E
and intron and intergenic states I , where S = E ∪ I , and let NE and NI denote the
number of separate states in each class, such that N = NE + NI . Using the structure
of the state space, we can actually reduce the memory requirement from O(T N) to
O(T NI) by storing αi (t) only for the I -states.

Looking at the model, it is clear that an E-state must be followed by an I -state.
Also, because of the alternation between E- and I -states, at any given time and state,
either the previous state, or the state before that, was an I -state. Returning to the
forward recursion in (2.69), we can separate the summation over the previous state
j between the two-state classes E and I .

2.2 Generalized Hidden Markov Models (GHMMs) 65

αi (t) =
∑

j∈S

D∑

d=1

α j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1)

=
∑

j∈I

D∑

d=1

α j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1) (2.79a)

+
∑

j∈E

D∑

d=1

α j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1). (2.79b)

The first term (2.79a) depends on forward variables for previous I -states only, and
needs no further modification. To make the same come true for the second term
(2.79b) we need to step back one state further, which then must be an I -state. The
memory-reduced forward recursion can then be written as

αi (t) =
∑

j∈I

D∑

d=1

α j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1) (2.80a)

+
∑

j∈E

∑

k∈I

D∑

d=1

D∑

e=1

[
akj αk(t − e − 1) f j (e)b j (Y

t−d
t−d−e+1|Y t−d−e

1) (2.80b)

·a ji fi (d)bi (Y
t
t−d+1|Y t−d

1)
]
. (2.80c)

In (2.80b), instead of referring to the forward variables of the E-states, we can move
one step further back and use the forward variables of the preceding I -states, and
include the contribution of the E-states explicitly. As a result we do not have to store
the forward variables of the E-states.

Further simplifications can be made. First, recall that the I -states always have
duration d ≡ 1. As a result, the summation over d can be dropped and fi (d) can be
set to 1. Second, when leaving an exon Ei, j we jump to I j with probability 1. Thus,
the transition probability a ji = 1 for j ∈ E . Note also that the only way we can
jump directly between I -states is via self-transitions, which means that the first sum
over I -states only has one positive term. Third, we note that for any given pair of
I -states (i, k) with an intervening E-state, the connecting E-state is unique, call it
Ek,i . Thus, the summation over j ∈ E in (2.80b) has only one positive term as well,
the one involving Ek,i . Finally, the forward recursion becomes

αi (t) = bi (Yt |Y t−1
1)

[
aii αi (t − 1)

+
∑

k∈I

D∑

e=1

αk(t − e − 1)ak,Ek,i fEk,i (e)bEk,i (Y
t−1
t−e |Y t−e−1

1)

]
. (2.81)

66 2 Single Species Gene Finding

As a result, the required memory needed to store the forward variables becomes
O(T NI) and the number of operations O(T N 2

I D2). Since NI = 4 and N = 20
we have achieved an 80 % reduction in memory usage and a 96 % reduction of the
number of operations needed. Depending on the choice of exon emission distribution
bEi, j it may be possible to reduce the number of operations further, and significantly
boost the performance of the algorithm. For instance, if it is possible to make a
lookup table to compute exon probabilities in a small number of operations, then the
complexity of the forward calculation may be reduced by a factor D to O(T N 2

I D).
If we use the Genscan reduction of the state space, an extra need for a silent begin

and end state arises. Without an end state, the likelihood of the observed data would
be calculated using

P(Y T
1) =

N∑

i=1

αi (T). (2.82)

In the reduced model, however, we only store αi (T) for the I -states, i ∈ I . Although
we do not allow the sequence (or predictions of the sequence) to begin or end in the
middle of an exon, we still want it to be possible to predict an exon with a boundary
at Y1 or YT , respectively, and the sum in (2.82) would have to run over all states,
not just the I -states. We get around this by adding silent begin and end states to the
model. For the begin state X0 we set the initial distribution to be positive only for
I -states. The initialization conditions are therefore

αi (0) = πi , i ∈ I. (2.83)

Similarly, for the end state X L+1 we set transition probabilities from X L to be positive
only for transitions to I -states. The termination conditions become

αi (T + 1) = P(Y T
1 , X L+1 = i), i ∈ I. (2.84)

As before, the expression for αi (T +1) is the same as for the other forward variables
in (2.81), except it does not have the output term bi . The likelihood of the observed
data can then be calculated as usual

P(Y T
1) =

∑

i∈I

αi (T + 1). (2.85)

In the same manner, the backward and the Viterbi algorithms can be optimized to
reduce memory and computational complexity. The backward algorithm simplifies to

βi (t) = βi (t + 1)aii bi (Yt+1|Y t
1)

+
∑

k∈I

D∑

e=1

βk(t + e + 1)ai,Ei,k fEi,k (e)bEi,k (Y
t+d
t+1 |Y t

1)b j (Yt+e+1|Y t+e
1), (2.86)

with initialization βi (T + 1) = 1, i ∈ S.

2.2 Generalized Hidden Markov Models (GHMMs) 67

The optimized Viterbi algorithm becomes

δi (t) = bi (Yt |Y t−1
1)

· max
{
δi (t − 1)aii , max

k∈I
1≤e≤D

{
δk(t − e − 1)ak,Ek,i fEk,i (e)bEk,i (Y

t−1
t−e |Y t−e−1

1)
}}

(2.87)

with initialization δi (0) = πi , i ∈ I and termination as in (2.87) but without the
bi term. The backtracking procedure has to be changed slightly for the optimized
algorithms. We record the previous I -state that achieved the maximum, and if this
max involved passing through an exon state we need to record the maximizing dura-
tion of that exon as well. Otherwise, we record that the max was achieved via a
self-transition with a duration d = 1.

It is possible to speed things up further by using the fact that certain features
are (almost) always present in some of the states. For example, every initial exon
must start with a start codon ATG, and every terminal exon must end with one of
three possible stop codons; TAA, TAG, or TGA. Similarly, almost all donor sites
have consensus GT as the first two bases of the intron, and almost all acceptor sites
have an AG consensus as the final two bases of the intron. If we are willing to limit
ourselves to genes matching these rules only, we can restrict the summation over the
state length in the forward algorithm to sum only over lengths that are consistent
with these rules. The extent to which this reduces the computations will depend on
the composition of the sequence being analyzed.

Repeat masking can also help in speeding up the algorithms. The key observation
is that certain repeats (in particular long interspersed repeats such as the Alu repeat)
never occur in coding exons. Therefore, it is possible to substantially reduce the
number of potential exons to be considered (and summed over in the algorithm). The
effect on the computational complexity will depend on the frequency of repeats and
their structure in the sequence being analyzed.

2.2.4.3 Exon Probabilities

One of the attractive features of using a GHMM for gene prediction is that it provides
a natural way of computing the posterior probability of a predicted exon, given the
observed data. Say that we have predicted an exon E∗ of type se between bases a to
b, such that the length of the exon is d = (b − a + 1). We would like to compute the
probability that the prediction is correct, i.e., the probability that the exon is part of
a real gene and is predicted in the correct frame.

68 2 Single Species Gene Finding

P(E∗ ∈ se is correct |Y T
1) = P

(L⋃

l=1

(
Xl = se, dl = d, pl−1 = a − 1

)∣∣∣Y T
1

)

=
P
(

Y T
1 ,

L⋃

l=1

(
Xl = se, dl = d, pl−1 = a − 1

))

P(Y T
1)

. (2.88)

The denominator is simply the probability calculated in (2.85). To simplify the numer-
ator in (2.88), we recall that for any given pair of I -states surrounding an E-state, the
connecting E-state is uniquely defined. The opposite holds true as well; every exon
type is surrounded by a unique pair of I -states. Thus, if Xl = se we can determine
the previous and next I -states, call them i− and i+. The union in the numerator in
(2.88) can then be split into two unions, one for the preceding I -state i− and one
for the subsequent exon and I -state i+, and the desired probability can be calculated
using intermediate values of the forward and the backward algorithms.

P
(

Y T
1 ,

L⋃

l=1

(
Xl = se, dl = d, pl−1 = a − 1

))

= P
(

Y T
1 ,

L⋃

l=1

(
Xl = i−, pl = a − 1

)
,

L⋃

l=1

(
Xl = se, Xl+1 = i+, dl = d, pl = b

))

= P
(

Y a−1
1 ,

L⋃

l=1

(Xl = i−, pl = a − 1)
)

· P
(

Y b
a ,

L⋃

l=1

(Xl = se, Xl+1 = i+, dl = d, pl = b)

∣∣∣Y a−1
1 ,

L⋃

l=1

(Xl = i−, pl = a − 1)
)

· P
(

Y T
b+1

∣∣∣Y b
1 ,

L⋃

l=1

(Xl = i+, pl = b + 1)
)

= αi−(a − 1)ai−,e fse (d)bse (Y
b
a |Y a−1

1)βi+(b + 1). (2.89)

This probability can be interpreted as the probability that there is an exon of particular
type se running exactly from positions a to b in the sequence. The forward variable
αi−(a − 1) represents the probability of all possible parses to the left of the exon
that ends in the appropriate I -state i−, while the backward variable βi+(b + 1)

captures the probability of all parses to the right of the exon, beginning in I -state
i+ (see Fig. 2.13). Thus, the probability is constituted by the sum over all possible
pairings of parses to the left and the right of the exon in question, and not only by
intrinsic properties of the exon model itself. While the exon scores in many other
gene finders depend on local properties such as splice signals and codon composition,
the exon probability in Genscan is affected by the entire sequence. For instance, the
probability of an initial exon will be boosted if it is preceded by a strong promoter
signal at an appropriate distance upstream of a. This procedure, generally referred to

2.2 Generalized Hidden Markov Models (GHMMs) 69

...
...

i−

ai−,e fse(d)bse (Y
b
a |Y a−1

1)

i+

a−2
αa−1(i−)

a−1

βb+1(i+)

b+1 b+2

Fig. 2.13 Illustration of the forward–backward procedure for calculating the probability of a given
predicted exon

as the forward–backward algorithm, is presented in [30] as a method for reestimating
parameters in the training process, and is discussed in more general terms in Sect. 6.5.

We might prefer an exon probability that is less specific than the one in (2.89).
For instance, we might want to know the probability that there is any kind of exon at
all in a certain region, rather than having to specify the exon type. There is a second
kind of probability that can help address this issue.
Note that the probability of being in (and at the end of) state i at time t is given by

αi (t)βi (t) = P(Y T
1 ,

L⋃

l=1

(Xl = i, pl = t)). (2.90)

This yields

∑

i∈I

αi (t)βi (t) = P(Y T
1 , state i at time t is an I -state). (2.91)

Therefore, if we normalize (2.91) by the probability of the entire sequence P(Y T
1),

and subtract the result from 1, we get

P(the hidden state at time t is some kind of exon |Y T
1) =

= 1 −
∑

i∈I αi (t)βi (t)

P(Y T
1)

. (2.92)

This offers an alternative kind of probability to the exon probability in (2.89). It does
not help much in determining what kind of exon it is or where its boundaries are,
but may help indicating alternative candidate exon regions. Such regions could be
missed by the Viterbi algorithm since the Viterbi only determines the single most

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

70 2 Single Species Gene Finding

likely sequence of exons, and there could be highly probable alternative splicings of
a gene that goes undetected.

2.3 Interpolated Markov Models (IMMs)

Markov models have successfully been used as content sensors in DNA sequence
analysis, both as discriminators between coding and noncoding sequences (see
Chap. 5) as well as the detection of regular motifs such as eukaryotic promoters
[25]. Usually higher order Markov models are required, due to long-range depen-
dencies within a sequence. For instance, a model for coding regions should at least
be of 2nd-order, because of the organization of nucleotides into codons. A 5th-order
or higher would be even more preferred, since neighboring codons tend to be depen-
dent as well. Basically, the higher the order the more sensitive the model is. The
drawback, however, is that as the order increases, the required size of the training
data grows exponentially. For instance, in a training model of order k there are 4k+1

probabilities to estimate. Thus, for a 5th-order model the training set has to be large
enough to contain all 4096 possible hexamers, and sufficiently many times to provide
reliable estimates, which is rarely the case in gene finding. The training data gets
even more sparse, when used for the recognition of regulatory motifs such as promot-
ers [25], or for automatic correction of sequence errors in low-quality data such as
ESTs [39]. A common solution to the problem of sparse training data is to “smooth”
the parameter estimates in some way in order to avoid zero probabilities. Smoothing
strategies include using pseudocounts, backing-off procedures, or interpolation tech-
niques. Using pseudocounts simply involves various ways of adding extra counts to
the observed frequencies (see Sect. 6.2). Backing-off procedures involve setting the
model to operate on a lower order when training data is insufficient.

In interpolated Markov models (IMMs) the order of the model is not fixed. Instead
an interpolation of several Markov models of different orders is used. In pattern recog-
nition these models are called variable-order Markov models [2], in data compression
they go under the name of variable-length Markov models or context trees [31], and in
speech recognition they are commonly referred to as stochastic language models [36].
The idea of IMMs is that although some oligomers occur too rarely to give reliable
estimates, some may be very frequent, and would provide useful information to the
prediction if included. Thus, instead of falling back to a lower order Markov model
altogether, an IMM attempts to use the extra strength of the higher order, whenever
there is data to support a longer context. As a result IMMs can capture both large
and small dependencies in the sequence corresponding to the available statistics in
the training set. Although an IMM is usually less powerful than a hidden Markov
model, it has proved successful for many applications, where the problem of sparse
training sets is frequent.

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.3 Interpolated Markov Models (IMMs) 71

2.3.1 Preliminaries

The likelihood of a sequence Y T
1 can be decomposed as

P(Y T
1) =

T∏

t=1

P(Yt |Y t−1
1). (2.93)

However, using the entire previous sequence as context requires a huge training set,
and is very expensive computationally. Thus a common approximation is to use an
upper limit k of the context length.
The resulting model becomes a kth-order Markov model

P(Y T
1) ≈

T∏

t=1

P(Yt |Y t−1
t−k). (2.94)

Now, assume that we want to classify a sequence into one of N possible states, or
classes S = {s1, . . . , sN }. The conditional probabilities in (2.94) need to be estimated
for each class, from a training set of known classification. The sequence is then
classified into the state with the highest likelihood

s∗ = argmax
si ∈S

P(Y T
1 |si). (2.95)

The maximum likelihood (ML) estimates of the conditional probabilities in (2.94)
are given by

P̂(Yt |Y t−1
t−k) = f (Y t

t−k)

f (Y t−1
t−k)

, (2.96)

where f (Y b
a) denotes the frequency count of the sequence Y b

a . One problem, with the
ML-estimates, however, is that when some k-mers are very infrequent, they may yield
very unreliable estimates, or probability zero even. Even though some such k-mers
may actually not belong to the specific class, and should yield a zero count, others
may be missing due to sparse training data. The trick used in IMMs to overcome
this problem, is to combine the Markov models of different orders. The next section
describes two different interpolation schemes used to combine k-mers of different
lengths in order to smooth the estimates of low-frequent oligomers.

2.3.2 Linear and Rational Interpolation

Interpolated Markov models can be seen as a generalization of fixed-order Markov
models, where a combination of models of different orders is used. Instead of one

72 2 Single Species Gene Finding

fixed order, the conditional probabilities in (2.94) are estimated using a combination
of the ML-estimates in (2.96). Linear interpolation [36] can be written as

P̃(Yt |Y t−1
t−k) = ρ0

1

L
+ ρ1 P̂(Yt) + ρ2 P̂(Yt |Yt−1) + · · · + ρk P̂(Yt |Y t−1

t−k), (2.97)

where P̂(Yt |Y t−1
t−k) is the ML estimate in (2.96). The coefficients ρi are positive

constants that sum to one, such that P̃ is still a probability, and the factor 1/L is a
kind of “pseudocount” that ensures that none of the conditional probabilities are set
to zero. The ML-estimates P̂ of the different order models are based on counts of
oligomers in the training data. The coefficients ρi can be optimized with respect to
the likelihood using the EM-algorithm described in Sect. 6.4, where they are treated
as hidden variables in an HMM.

One problem with linear interpolation is that all the different orders in (2.97)
are treated equally, although some estimates may be less reliable than the others.
Rational interpolation [36] includes a weight function that scores the reliability of a
context Y t−1

t−i , such that

P̃(Yt |Y t−1
t−k) =

k∑

i=0

ρi · g(Y t−1
t−i) · P̂(Yt |Y t−1

t−i)

k∑

i=0

ρi · g(Y t−1
t−i)

(2.98)

where the denominator is needed for normalization. The weight function g can be
chosen different. For instance in [36] a sigmoid function is chosen, where the shape
depends on a constant bias C

g(Y t−1
t−i) = f (Y t−1

t−i)

f (Y t−1
t−i) + C

. (2.99)

For C = 0 the model reduces to linear interpolation, but for C > 0 we obtain the
rational interpolation model

P̃(Yt |Y t−1
t−k) =

k∑

i=0

ρi
f (Y t

t−k)

f (Y t−1
t−k) + C

k∑

i=0

ρi
f (Y t−1

t−k)

f (Y t−1
t−k) + C

. (2.100)

The bias has the most impact on small datasets, and the larger the training set,
the smaller the influence of C . One problem with rational interpolation is that the

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.3 Interpolated Markov Models (IMMs) 73

EM-algorithm cannot be used to estimate the coefficients ρi . Instead a gradient
descent method can be used to reach a local optimum [36].

2.3.3 GLIMMER: A Microbial Gene Finder

Microscopic organism that are too small to be observed by the naked eye are often
referred to as microbes, or microorganisms. They do not constitute a specific clas-
sification, but can be found in almost all different taxa of life, including bacteria,
animals, fungi, and plants, and include both prokaryotes and eukaryotes. Microbes
are typically unicellular, and exist anywhere in the biosphere where there is liquid
water, and they can survive extreme conditions such as heat, cold, acidity, salt, and
darkness. Besides their importance in a wide variety of areas such as food produc-
tion, water treatment (removing contaminants), and energy production (fermenting
ethanol), microbes pose as important models and tools for biotechnology, biochem-
istry, genetics, and molecular biology. Examples of popular microbes are the budding
yeast Saccharomyces cerevisiae and the bacterium Escherichia coli.

Splicing is rare in microbial genomes (as in prokaryotes in general, see Sect. 2.1.7).
Thus, the issue of microbial gene finding is not to find actual coding sequences and
determine the gene structures, but to identify the correct reading frame, and to sep-
arate overlapping genes. The main component in a microbial gene finder is, thus,
the content sensor that scores coding potential and captures dependencies between
nucleotides in open reading frames (ORFs). In addition, only some preprocessing to
select potential ORFs, and some post-processing to handle overlapping gene candi-
dates are necessary.

GLIMMER (Gene Locator and Interpolated Markov ModelER) is a microbial
gene finder, particularly suited for bacteria, archaea, and viruses [9, 10, 35]. It uses an
IMM to discriminate between coding and noncoding regions. The program consists
of two sub-modules; one that builds the IMM from training data, and one that uses
the resulting model to score new sequences.

2.3.3.1 Gene Prediction

GLIMMER scores a new sequence Y T
1 using a kth-order IMM

P(Y T
1) =

T∑

t=1

IMMk(Y
t
t−k), (2.101)

where IMMk is calculated as

IMMk(Y
t
t−k) = ρk(Y

t−1
t−k) · P(Yt |Y t−1

t−k) + (1 − ρk(Y
t−1
t−k)) · IMMk−1(Y

t
t−k).

(2.102)

74 2 Single Species Gene Finding

Table 2.3 Example in [45]
of the gene prediction output
of GLIMMER

orfID start end frame score

-------- ------ ----- -- -----

> Escherichia coli O157:H7

orf00001 11952 98 -3 2.84

orf00003 351 133 -1 5.25

orf00004 312 2816 +3 11.33

orf00005 2854 3750 +1 10.02

orf00007 3751 5037 +1 13.63

The training of the probabilities P(Yt |Y t−1
t−k) and the coefficients ρk is described in

the next section. The gene prediction procedure of GLIMMER goes as follows:

1. Identify all ORFs longer than a given threshold in the input sequence.
2. Score the ORFs in each of the six reading frames, using (2.101).
3. Select ORFs scoring higher than a given threshold for further analysis.
4. Examine selected ORFs for overlaps.
5. Report ORFs that passed the overlap analysis.

Instead of scoring the entire input sequence, open reading frames (ORFs) exceeding
a given minimum length are selected and scored using (2.101). Gene dense genomes
usually contain overlapping genes, and such occurrences are investigated further. If
two ORFs of different reading frames overlap by more than some preset minimum,
the overlapping region is scored separately in all six reading frames, and if the longer
ORF scores higher than the shorter in this region, the shorter ORF is dropped from the
analysis. GLIMMER outputs a set of predicted genes, along with notes on overlaps
that may need further examination. An example of the output format of the final gene
predictions is given in Table 2.3 (taken from [45]). The columns represent the ORF
identifier, the start and stop coordinates of the genes, the reading frame, and the gene
score.

A further extension of the IMMs used in GLIMMER are the Interpolated context
models (ICMs). While an IMM can use as many bases in the context as the training
data allows, an ICM can use any bases in the given context. That is, bases not
necessarily adjacent to one another. The idea is to capture the high dependence on
codon position when scoring a base. Often the ICM will choose a context identical
to that the corresponding IMM would have chosen, but sometimes, as in the case
with the third codon position, a slightly different model will be used.

2.3.3.2 Training the IMM

Seven submodels are trained by GLIMMER on a set of known sequences; one for each
reading frame (three for each strand), and one for noncoding regions. Each submodel
is trained by counting the occurrences of all oligomers of lengths 1, . . . , k +1 where
k is a predefined maximum context depth (default is k = 8 in GLIMMER). The last

2.3 Interpolated Markov Models (IMMs) 75

base of the oligomer defines the frame, and the preceding bases represent the context
of that base. The likelihoods P(Yt |Y t−1

t−k) in (2.102) are estimated directly from these
frequency counts using

P(Yt |Y t−1
t−k) = f (Y t

t−k)∑
y∈V f (Y t−1

t−k , y)
, (2.103)

where (Y t−1
t−k , y) denotes the concatenation of the context sequence and symbol y ∈

{A, C, G, T }.
The coefficients ρk(Y

t−1
t−k) are determined using two criteria: if the context Y t−1

t−k
occurs frequently enough, the actual frequency is used and the weight ρk is set to
1. The frequency threshold used is 400, and gives about 95 % confidence that the
estimated probabilities are within ±0.05 of their true value [35]. Otherwise, if a
context occurs less than 400 times in the training set, the frequency of the context
is compared to the IMM-value of the one base shorter context, to see if the longer
context adds information to the prediction.
The comparison is performed using a χ2-test

ρk(Y
t−1
t−k) =

⎧
⎪⎨

⎪⎩

0 if c < 0.5,

c

400

∑

y∈V

f (Y t−1
t−k , y) if c ≥ 0.5 (2.104)

where c is the probability, taken from the χ2-distribution, that the frequencies of the
longer context differ from the IMM-values of the shorter context. That is, if we let

X2 =
∑

y∈{A,C,G,T }

[
f (Y t−1

t−k , y) − IMMk−1(Y
t−1
t−k+1, y)

]2

IMMk−1(Y
t−1
t−k+1, y)

, (2.105)

where X2 is χ2-distributed with 3 degrees of freedom, the probability c is given by

c = P(χ2
3 ≥ X2). (2.106)

In effect, the frequencies of the longer context are compared to the IMM-values of the
one base shorter context, and if there is a significant difference between contexts the
longer context serve as a better predictor and gets a higher value on the coefficient
ρ. If there is little difference, meaning that the longer context adds no significant
information, the longer context model gets a lower value on ρ.

76 2 Single Species Gene Finding

2.3.3.3 GlimmerM

Eukaryotes such as the yeast S. cerevisiae, or the malaria parasite Plasmodium
falciparum, are commonly analyzed using gene finders optimized for human. While
these genomes have a gene density that is significantly lower than for microbes,
they are still very gene rich, and a prokaryote gene finder may perform better than
a human gene finder. GlimmerM is based on the GLIMMER method, but is opti-
mized for gene densities around 20 %, and has incorporated the GeneSplicer splice
site detector [27]. Moreover, GlimmerM uses a combination of decision trees and
IMM-based exon scoring. The decision trees, built by the OC1 system [24], estimate
the probability that a given sequence is coding, and the resulting gene models are
accepted if the IMM-score for the coding sequence is above a certain threshold.

2.4 Neural Networks

Artificial neural networks were first developed in an attempt to mimic the information
processing and learning of the biological nervous system, such as the brain, in order
to acquire some of their immense computational power. While the artificial neurons
used in neural networks today remain quite far from their biological counterpart, their
computational power has proved useful in a number of fields. Neural network models
have traditionally been used in speech and image recognition, but has become more
and more popular as components in DNA sequence analysis. In general, neural net-
works are suitable for classification problems with computationally complex patterns
and many hypotheses to be evaluated in parallel.

Neural networks are essentially nonlinear mappings between a set of input vari-
ables and a set of output variables. An advantage of neural networks over other such
mappings is that while many other techniques grow exponentially with the dimension
of the input space, neural networks typically only grow linearly, or quadratically, with
input dimension. We give a brief overview of the neural networks most commonly
used in computational biology, the backpropagated feed-forward neural networks.
For a more thorough treatment, see for instance [1].

2.4.1 Biological Neurons

Biological nervous systems, such as the brain, consist of myriads of neurons, which
are specialized cells designed to process and transmit information. Learning, for
instance, takes place when neurons communicate with each other. Each neuron can
connect to several thousands of others, and multiple neurons can fire in parallel.
Hence, the human brain, consisting of something like 1011 neurons, constitute a
parallel processor with a capability that is vastly superior to the most advanced
computer clusters that exist today.

2.4 Neural Networks 77

axon

dendrites

synapse

cell body

Fig. 2.14 A biological neuron consists of a cell body, a dendritic tree, and an axon. The space
between the axon and the dendrites of the next neuron is called the synapse. The neuron receives
signals on its dendrites, and transport them through the axon and into the synapse over to the next
neuron

A neuron is typically composed of a cell body, a dendritic tree, and an axon (see
Fig. 2.14). The neuron receives signals on the dendrites and releases (fires) signals
through the axon. Connected neurons are separated by a small physical gap called a
synapse. The information is carried through the system in the form of electrochemical
pulses, or action potentials, that are passed on from neuron to neuron. A neuron can
receive thousands of such pulses from different neurons, and each pulse may change
the potential of the dendritic membrane, either by inhibiting or exciting the generation
of further pulses. If the sum of these pulses exceeds a certain threshold the neuron
“fires” by generating a new pulse that travels into the synapse and over to the next
neuron.

2.4.2 Artificial Neurons and the Perceptron

An artificial neuron is, similarly to a biological neuron, composed by a cell body,
dendrites, and an axon (see Fig. 2.15). The inputs, that are received through the
dendrites, get integrated in some manner, and if the result exceeds a given threshold,
the neuron transmits an output. Thus, an artificial neuron is simply a computational
unit, that maps input values to one or more outputs. The computation is done in two
steps: first the input values x = (x1, . . . , xN) are integrated into a single value a,
through some integration function a = h(x), and then this value is transformed by
some nonlinear function g, called the activation function, to produce an output value
y = g(a) = g(h(x)).

The simplest kind of artificial neurons, first proposed by McCulloch and Pitts [22],
uses binary values (0 or 1) both for inputs and the output. The integration function is

78 2 Single Species Gene Finding

INPUTS

x1

x2

xN

Dendrites

Σ f

Integration
Activation

OUTPUT

Axon

Fig. 2.15 An artificial neuron attempts to mimic a biological neuron, and consists of a cell body,
dendrites, and an axon. The inputs are weighted and summed, before the activation function decides
whether the neuron should fire or not

an unweighted sum of excitatory and inhibitory edges. If any of the inhibitory edges
is 1, the neuron is inhibited and the output is 0.
Otherwise, if all inhibitory edges are 0, the integrated value is the sum of the excitatory
edges

a =
∑

i=1N

xi . (2.107)

The activation function is the Heaviside step function (or threshold function)

φ(a) =
{

1 if a > θ,

0 otherwise,
(2.108)

where θ is called the threshold, or the bias. If the integrated value a exceeds the
threshold, and φ takes value 1, the neuron fires. Otherwise it takes the deactivated
value 0.

However, although very useful for the computation of logical functions in finite
automatons, the McCulloch–Pitts neurons are rather limited. A generalization of the
McCulloch–Pitts neuron, called the perceptron, was developed by Rosenblatt [33]. In
its simplest form, it is basically the McCulloch–Pitts neuron with real-valued inputs
and associated weights. The input values x1, . . . , xN , xi ∈ R, are fed into the node
through edges with associated weights w1, . . . , wN . The integration function is the
weighted sum

a =
N∑

i=1

wi xi , (2.109)

2.4 Neural Networks 79

Fig. 2.16 A single-layer
network diagram

x1

x2

...

xN

y

w1

w2

wN

inputs

output

and the activation function is the same threshold function (2.108) as in the McCulloch–
Pitts neuron. A network only consisting of one neuron like this, is sometimes called a
single-layer network, because it consists of a single layer of weights (see Fig. 2.16).
In analogy with the biological neuron, the inputs xi represent the level of activity of
the neurons connected to the current neuron, and the weights wi signify the strengths
of these connections.

A further generalization of the perceptron is to allow for more general activation
functions. The activation function somehow determines how powerful the output of
the neuron should be. While biological neurons choose between “fire” or “not fire”,
mathematically it is more convenient with a smoother (differentiable) activation
function.
A popular choice is the logistic sigmoid function

φ(a) = 1

1 + e−σ(a+θ)
, (2.110)

where θ is the bias that moves the curve away from zero, and σ a parameter that
affects the steepness of the curve. The bias θ can be viewed as the number of pulses
needed for the neuron to fire. Training a neural network involves estimating the
values of the edge weights and of the bias parameter. For convenience it is common
to invoke the bias into the network by adding an extra input variable x0 ≡ 1, and an
associated edge w0 = −θ (see Fig. 2.17). Using this, and assuming σ = 1, gives the
simpler form of the activation function

φ(a) = 1

1 + e−a
. (2.111)

A small modification to (2.110) gives the ‘tanh’ activation function

φ(a) = ea − e−a

ea + e−a
, (2.112)

80 2 Single Species Gene Finding

Fig. 2.17 A single-layer
network diagram with an
added bias node

x1

x2

...

xN

1

y

w1

w2

wN −θ

inputs

output

which is symmetric and therefore may achieve faster convergence of the training
algorithms in some cases.

2.4.3 Multilayer Neural Networks

The architecture of a neural network is usually either feed-forward or recurrent. A
feed-forward network is devoid of loops; it is a directed acyclic graph where the
information moves in only one direction, from the input nodes, possibly through one
or more hidden layers, and to the output nodes. The counterpart, recurrent networks,
contain cycles. We will only consider feed-forward networks here, since almost all
applications in computational biology use layered feed-forward network models.

A multilayer neural network is a further generalization of the single-layer network,
where the network function is composed by several successive functions. In a network
architecture, this can be seen as successive layers of nodes, or processing units, with
connections running from the nodes in one layer to the next. A node can be either
hidden or visible, where visible nodes are typically those connected to the outside
world, such as the input and the output nodes, and the hidden nodes occupy layers in
between. A layer that consists of only hidden nodes is called a hidden layer, and the
total number of layers define the depth of the network. A layered network does not
contain cycles, and usually each node in one layer is connected to each of the nodes
in the next. Figure 2.18 illustrates a two-layer feed-forward network.
Note that we choose not to include the input layer when counting the depth of
the network. This is because the input nodes are not really processing units, but
only holders of the input values. With this convention, the depth corresponds to the
layers of weights to be estimated from training data. Also, a multilayer network does
not have to be fully connected as in Fig. 2.18; a more economical model would be
preferred whenever possible.

2.4 Neural Networks 81

x1

x2

x3

z1

z2

z3

z4

y1

y2

inputs
outputs

weights

w(1)
ij w(2)

jk

weights

hidden
layer

Fig. 2.18 A two-layer feed-forward network diagram

Consider a two-layer network with N input units (x1, . . . , xN), a hidden layer of
M hidden units (z1, . . . , zM), and K output units (y1, . . . , yk).
If ψ is the activation function of the hidden units and φ the activation of the output
units, the network can be represented mathematically as

yk = ψ

(M∑

j=1

w(2)
jk · z j

)
, k = 1, . . . , K

= ψ

(M∑

j=1

w(2)
jk · φ

(N∑

i=1

w(1)
i j xi

))
. (2.113)

While it is possible to use different activation functions for different layers, it is
common to use the same for all, such that ψ = φ. A multilayer perceptron is a
multilayer network, with either the threshold function (2.108) or the logistic sigmoid
function (2.110) as activation function. The advantage with the sigmoid function is
that it is differentiable, which enables the use of a very powerful training procedure
called the backpropagation algorithm described in Sect. 6.7.

2.4.4 GRAIL: A Neural Network-Based Gene Finder

GRAIL [43, 44] is a neural network-based gene finder that scores potential exons
by combining the scores of a number of content and signal sensors. Four types of

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

82 2 Single Species Gene Finding

exons are recognized: initial, internal, terminal, and single exons. These exon types
represent open reading frames in combination with their specific boundaries: start
codon to donor site (initial), acceptor to donor site (internal), acceptor site to stop
codon (terminal), or start to stop codon (single). The gene prediction is performed
in four separate steps:

1. Extract all possible exon candidates.
2. Remove improbable exons.
3. Score remaining exons.
4. Construct gene models.

The first step is a preprocessing step, where all possible exons in the sequence are
extracted. A candidate exon consists of an open reading frame surrounded by the
corresponding exon boundaries. This first step produces a huge number of candidates,
typically several thousands just in a sequence of 10,000 bp [43]. Thus, in the second
step a number of heuristic rules are applied to remove improbable exons. In the third
step, all remaining exon candidates are scored by a feed-forward neural network,
which has been trained by the backpropagation algorithm described in Sect. 6.7. The
input to the network is a feature vector of various coding measures and splice site
scores for each exon candidate. In the fourth and final step, the scored exon candidates
are combined into frame-consistent gene models.

The GRAIL neural network consists of 13 input nodes, two hidden layers with
seven, and three nodes, respectively, and one output node. A network diagram is
shown in Fig. 2.19. The hidden layer of seven nodes, not shown in the figure, is
part of the splice site scoring. A mathematical representation of the network can be
written as

y = φ

⎛

⎝
3∑

k=1

w3
k φ

(7∑

j=1

w2
k j φ

(13∑

i=1

w1
j i xi

))
⎞

⎠ , (2.114)

where φ is the logistic activation function

φ(x) = 1

1 + e−x
. (2.115)

The weights w are trained using the backpropagation algorithm.
During training, the output is evaluated using a matching function M , that measures
the overlap of the candidate exon with the true exon(s),

M(candidate) =
∑

i mi

length(candidate)

∑
i mi∑

j length(exon j)
, (2.116)

where
∑

i mi is the number of bases of the candidate exon that overlap true exons,
and

∑
j length(exon j) is the total length of all exons that overlap the candidate.

Thus, 0 ≤ M ≤ 1 with

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.4 Neural Networks 83

6-mer in-frame (Isochore)

6-mer in-frame (Candidate)

5th-order Markov model

Isochore GC Composition

Exon GC Composition

Size prob. profile

Length

Donor

Acceptor

Intron Vocabulary 1 (Isochore)

Intron Vocabulary 1 (Candidate)

Intron Vocabulary 2 (Isochore)

Intron Vocabulary 2 (Candidate)

inputs

hidden

units

output

Exon score

Fig. 2.19 The GRAIL neural network for scoring candidate exons. The network consists of 13
input nodes, two hidden layers of seven (not shown), and three nodes, respectively, and one output
node delivering the final exon score. The figure is reproduced from [43], c©1996 IEEE

M =
{

1 if prediction is correct

0 if no overlap with true exons.
(2.117)

The feature vector fed into the GRAIL neural network consists of 13 measures for
each candidate exon, including various coding measures and splice site measures
[43]. Coding potential is scored using both a frame-dependent 6-tuple preference
model and a fifth-order inhomogeneous Markov model. These measures are not
independent, but by applying supervised learning (labeled training examples), the
weights are adapted for all features together. The splice site detector in GRAIL is
in itself a neural network, that combines the scores from several measures. Neural
networks applied to splice site detection are described in more detail in Sect. 5.4.4.

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

84 2 Single Species Gene Finding

2.5 Decision Trees

A decision tree is a kind of tree diagram that can be used to choose between different
decisions for an object, by connecting series of tests on different features of the
object. Decision trees are a common ingredient in clinical research, in which various
features of the patient lie as ground for diagnosis into one of two or more clinical
categories. Traditional statistical methods struggle in such situations, where the set of
possible features may be large, or the interactions between the features are complex,
or the feature values do not follow a known distribution. Moreover, the outcome of the
analysis may be difficult to interpret, for instance if diagnosis is presented in terms of
probabilities. An advantage of decision trees is that it enables the reduction of rather
complex datasets into simple and comprehensible data structures. In addition, being
a nonparametric technique, decision trees avoid the problems of making assumptions
about the distribution.

Decision trees can be applied to classification problems, in which objects need
to be classified into different classes based on a set of features, or attributes, that
characterize the object. In this context decision trees are also called classification
trees. Here we give a brief overview of the decision tree theory applied to single
species gene finding. For a more thorough treatment, confer for instance the books
by Breiman et al. [6] or Quinlan [29].

2.5.1 Classification

Decision trees can be used to classify an object based on a set of features that
characterize the object. A decision tree consists of internal nodes and leaf nodes.
The leaf nodes contain the class labels, and each internal node performs a test on
one specific features. A new object is classified by passing it down from the root of
the tree, through a series of tests on its features, finally ending up in one of the leaf
nodes. In each node the corresponding feature is tested, and depending on the answer
the object is passed down into one of its child nodes. The process is recursed until
the object reaches a leaf node and receives its classification. In other words, given a set
of features, a decision tree represents a series of rules that are used for classification
of the corresponding object. The features can be of any type, binary, categorical, or
numerical, while the class labels must be qualitative.

Using an existing decision tree for classification is easy. The trick to decision tree
analysis is the actual construction of the tree, called decision tree learning, using
a training set of objects with corresponding feature values and known class labels.
Given a large set of possible features, decision tree learning techniques have been
developed to choose both which features that are relevant, and in which order they are
to be tested. Example 2.5 illustrates a simple dataset, borrowed from [28], containing
only categorical feature values.

2.5 Decision Trees 85

Table 2.4 A simple decision tree training set

Object Features Class

Outlook Temperature Humidity Windy

1 Sunny Hot High False N

2 Sunny Hot High True N

3 Overcast Hot High False P

4 Rain Mild High False P

5 Rain Cool Normal False P

6 Rain Cool Normal True N

7 Overcast Cool Normal True P

8 Sunny Mild High False N

9 Sunny Cool Normal False P

10 Rain Mild Normal False P

11 Sunny Mild Normal True P

12 Overcast Mild High True P

13 Overcast Hot Normal False P

14 Rain Mild High True N

With kind permission from Springer Science + Business media: [28, p. 87, Table 1]

Example 2.5 A simple decision tree training set
The following example is borrowed from [28]. In this training set the observed objects
are Saturday mornings. Suppose we use a number of different weather features to
determine whether we will undertake a certain activity or not. The classification of
the objects is thus either P or N for positive or negative instances, respectively, where
a positive instance means that the activity will take place. The weather features and
the corresponding values used are

Feature Values
Outlook Sunny, overcast, rain
Temperature Cool, mild, hot
Humidity Normal, high
Windy True, false

The dataset is presented in Table 2.4. Given this training set we would like to build
a decision tree that, based on the feature values of a new Saturday morning, can be
used to determine whether the activity in question will happen or not. In the next
section, we describe how to build such a decision tree from data. �

86 2 Single Species Gene Finding

2.5.2 Decision Tree Learning

Depending on which order the features are tested, there are many ways to build a
complete decision tree from the same training set. By the principle of Occam’s Razor,
the shortest hypothesis should always be preferable. Or, in terms of decision trees,
the tree that is optimal for a given dataset is the smallest one. However, creating
an algorithm that, for a general set of features, always finds the smallest tree is
an NP-complete problem, basically meaning that it cannot be solved in reasonable
time. Therefore, numerous algorithms have been created that search for close to
optimal trees, among the most noted ones being ID3 [28], C4.5 [29], and CART [6].
These algorithms typically use a greedy recursive procedure which, while creating
reasonable trees, cannot guarantee to find the optimal solution. Such algorithms
typically consist of the following basic steps:

1. Determine the feature that best splits the data.
2. For each pure subset (all of the same class), create a leaf node with that class. For

each impure subset, return to 1.
3. Stop when no more splits are possible and all paths end with a leaf node.

We call a set of objects pure if all objects belong to the same class, and impure
otherwise. For instance, for a given feature, we can group the objects according
to their feature values. If that grouping corresponds completely with the grouping
according to class label, it represents a pure split of the dataset.

Which feature that best splits the data is determined using some kind of measure of
impurity. A popular measure, for instance used by the ID3 algorithm, is the Shannon
entropy, or simply entropy. Suppose that we have a training set D of n objects each
characterized by a set of features A1, . . . , Ap, and each with a known class label
ci ∈ C , i = 1, . . . , n, where C is the set of all classes. The entropy of such a set can
be written as

H(D) = −
∑

c∈C

pc log2 pc, (2.118)

where the sum runs over all possible classes, and where pc is the probability of
belonging to class c ∈ C . The entropy basically measures the uncertainty, level of
randomness, or information content of the dataset. The more uniform the distribution
is, the higher the entropy. The base 2 of the logarithm transforms the value into “bits”
commonly used in information theory. The entropy assigns measure zero to pure
sets and reaches its maximum when all classes have equal probabilities. Alternative
impurity measures include the Gini index and the twoing rule.

Gini = 1 −
∑

c

p2
c , (2.119)

Twoing = |TL ||TR |
n2

(
∑

c∈C

∣∣∣
Lc

|TL | − Rc

|TR |
∣∣∣

)2

, (2.120)

2.5 Decision Trees 87

where, for a split at node T containing n objects, |TL | and |TR | are the numbers
of objects to the left and to the right of the split, respectively, and Lc and Rc are
the numbers of objects having class label c to the left and the right of the split,
respectively. The Gini index chooses the split attempting to separate as large a class
from the rest as possible, while the twoing rule attempts to split the data as cen-
tral as possible. Which splitting rule that works best depends on the application
(cf. [5, 6]).

The feature that best splits the training data is the one that causes the largest
decrease in impurity. The goal is to create descendant subsets that are purer than its
parents. This decrease in impurity is calculated using a measure called the information
gain: for a set D of n objects the information gain of splitting over a specific feature
A is given by

IG(D, A) = H(D) −
∑

v∈A

|Dv|
|D| H(Dv), (2.121)

where the sum runs over all possible feature values of A, Dv is the set of objects in
D that take value v for feature A, and |Dv| and |D| denote the numbers of objects in
each set (i.e., |D| = n). The second part of (2.121) in fact corresponds to an entity
known as the conditional entropy H(D|A)of D, given the attribute values of A.

Now we can calculate the information gain of splitting the dataset in each of the
features. Then the feature with the highest information gain is chosen to be tested first
and the test is placed in the root of the tree. Branches are created for each possible
value of the feature, the dataset is split into subsets according to their values on the
chosen feature, and the procedure is repeated in the child nodes.

Example 2.6 A simple decision tree training set (cont.)
We illustrate how the decision tree for the data in Table 2.4 is built using entropy
and information gain. First, in order to calculate the entropy H(D) in (2.118) of the
entire dataset, we estimate the class probabilities by the relative frequencies for class
labels P and N :

pP = 9/14, pN = 5/14.

Thus, the entropy becomes

H(D) = −(9/14) log2(9/14) − (5/14) log2(5/14) ≈ 0.940.

Next, if we were to split the data according to attribute ‘Outlook’, we would split the
dataset into groups according to the feature values ‘sunny’, ‘overcast’, or ‘rain’.

88 2 Single Species Gene Finding

Outlook Class Outlook Class Outlook Class
Sunny N Overcast P Rain P
Sunny N Overcast P Rain P
Sunny N Overcast P Rain P
Sunny P Overcast P Rain N
Sunny P Rain N

The entropies of the subsets become

Sunny: H(Dv) = −(3/5) log2(3/5) − (2/5) log2(2/5) ≈ 0.971
Overcast: H(Dv) = −(4/4) log2(4/4) = 0
Rain: H(Dv) = −(3/5) log2(3/5) − (2/5) log2(2/5) ≈ 0.971

The resulting information gain for ‘Outlook’ thus becomes

I G(D, Outlook) = 0.940 −
(5

14
· 0.971 + 4

14
· 0 + 5

14
· 0.971

)
≈ 0.247.

Similarly, we get for the other features

I G(D, Temperature) ≈ 0.029

I G(D, Humidity) ≈ 0.152

I G(D, Windy) ≈ 0.048

We see that ‘Outlook’ achieves the highest information gain and we therefore place
it in the root node. We draw three branches from this node, one for each of the
values of ‘Outlook’, and continue. Next we note that the ‘overcast’ group is pure (all
objects have label P), and we therefore insert a leaf node with class label P . The
other two subsets are impure and need to be split further. The information gain is
now calculated over the corresponding subsets of objects. For instance, the subset
‘sunny’ now contains n = 5 objects, and the information gain is calculated for the
features ‘Temperature’, ‘Humidity’, and ‘Windy’ for this subset,

IG(Dsunny, Temperature) ≈ 0.571

IG(Dsunny, Humidity) ≈ 0.971

IG(Dsunny, Windy) ≈ 0.020

Humidity achieves the highest information gain for this subset, and is placed in
the corresponding node. The procedure continues until all subsets are pure and can
be finished off with leaf nodes. The resulting tree is shown in Fig. 2.20. Note that
the feature ‘Temperature’ is never used. The ‘Temperature’ feature is very impure,
meaning that it has very weak (if any) association with the classification, and the tree
reaches its leaf nodes without having to take that feature into consideration. �

2.5 Decision Trees 89

Fig. 2.20 The resulting tree
of the data in Table 2.4. With
kind permission from
Springer Science + Business
media: [28, p. 87, Fig. 2]

Outlook

sunny overcast rain

Humidity P Windy

normal high true false

P N N P

The resulting decision tree classifies the objects in the training set perfectly. The risk
is, however, that the tree is too specific to the training set, and will not be able to
correctly classify new objects presented to it. This problem is known as overfitting,
and is commonly solved by some kind of pruning procedure. Pruning basically
means that parts of the tree will be cut off by turning internal nodes into leaf nodes.
This makes the tree less specific to the training set, but more flexible to new data.
Confer for instance [6, 29] for more details.

We have treated only categorical or binary feature values so far, but the feature
values are allowed to be numerical as well. The node tests in the decision tree would
then typically involve inequalities such as xi ≥ 4.2 versus xi < 4.2, or possibly
separation into several subintervals. There are many different methods for dealing
with numerical values, but most of them involve discretizing the data in some manner
in order to treat them as categorical values. A rather different treatment is introduced
by the OC1 algorithm [24], used by the MORGAN gene finder presented next. OC1
does not split the data for one specific feature, but uses linear combinations of the
feature values to determine the best decision tree.

2.5.3 MORGAN: A Decision Tree-Based Gene Finder

MORGAN (Multi-frame Optimal Rule-based Gene ANalyzer) [34] is a gene finder
that combines decision trees with dynamic programming and signal sensor algo-
rithms. The dynamic programming algorithm is used to search through all possible
parses of the sequence, while the decision tree algorithm and the signal sensors pro-
vide scores of the different parts of the potential gene. The decision trees are built
using the OC1 system [24], which uses something called oblique tests in the decision
tree nodes. In order to estimate probabilities of a potential exon or intron, the OC1
also includes a random component which means that it can produce different trees
for the same data each time it is run.

90 2 Single Species Gene Finding

Before the MORGAN system can be trained, the training set, consisting of raw
genomic DNA sequences with known exons and introns, is transformed into the form
of objects, class labels, and features. This is done by first identifying all potential
start, stop, donor, and acceptor sites, scoring above a certain threshold, in the train-
ing sequences. Next, candidate exons are identified by combining the correspond-
ing boundary sites (start-donor for initial exons, acceptor–donor for internal exons,
and acceptor-stop for terminal exons), and requiring an open reading frame (ORF)
between the sites. Similarly, potential introns are identified by pairing up donor and
acceptor sites, with an additional length constraint (between 20 and 16,000 bp), but
without the ORF requirement. For each of the three types of exons and the intron,
a decision tree is constructed. Since the true exons and introns are known in the
training set, the identified candidate exons and introns receive a label that is either
‘true’ or ‘false’. Thus, the objects are the potential exons and introns, and the class
labels are ‘true’ or ‘false’ revealing which objects are real or not.

The features used by MORGAN to characterize the objects include boundary
site scores, an in-frame hexamer statistic, and a position asymmetry statistic. The
signal sensors used to score the boundary sites are a first-order Markov model for the
start sites based on the Kozak sequence (see Sect. 5.3.2), and second-order Markov
models for the splice sites. Since no consensus sequence is known for the sequence
surrounding the stop sites, the stop codons are simply identified directly. These type
of submodels are discussed further in Chap. 5.

The in-frame hexamer statistic for a subsequence between positions i and j in the
sequence is given by

IF6(i, j) =

⎧
⎪⎨

⎪⎩

∑
k=0,3,6,..., j−6 log(fk/Fk)∑
k=1,4,7,..., j−6 log(fk/Fk)∑
k=2,5,8,..., j−6 log(fk/Fk)

(2.122)

where fk is the frequency of the hexamer starting in position k in coding sequences,
and Fk is the frequency of the hexamer among all hexamers in the training set, in all
reading frames [41]. The position asymmetry statistic, presented in [12], counts the
frequency of each nucleotide in each of the three codon positions.

The OC1 system [24], used to build the decision trees, is specifically designed
to handle numerical feature values. OC1 does not split the data according to their
feature values, but uses linear discriminant kind of tests, where, instead of using
interval tests such as xi ≥ 4.2, each internal node contains a linear combination of
one or more features,

a1x1 + a2x2 + · · · apx p ≥ ap+1. (2.123)

Since this linear combination represents a hyperplane that is nonparallel to the axes
in feature space, this is called an oblique split.

After the decision tree is built, OC1 prunes the tree using a method called com-
plexity pruning [6]. Basically, a complexity measure is calculated for each internal

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5

2.5 Decision Trees 91

node based on the number of misclassifications that would result on the training set if
that node were turned into a leaf, combined with the size of the subtree rooted at that
node. The node with the largest complexity measure is then turned into a leaf. The
series of increasingly smaller trees are then tested on a separate part of the training
set, and the tree with the highest accuracy on this set is kept as the output of the
system.

2.6 Conditional Random Fields

In gene prediction we want to connect the observed sequence data to a sequence of
labels corresponding to the underlying gene model. A successful approach to this has
been to employ hidden Markov models (HMMs), described earlier in this chapter.
One disadvantage with HMMs, however, is that in order to make computations fea-
sible, two rather strong independence assumptions have to be made: (i) given the
current state (i.e., current sequence label), the next state is conditionally independent
of everything else, and (ii) the observed output from each state only depends on
the underlying state. With these assumptions, the HMM machinery comes together
very nicely, but often the observed sequence include complex interdependencies that
when ignored may significantly hurt classification performance. Conditional random
fields (CRFs) [19] were developed mainly to fill this gap. CRFs offer an alternative
to HMMs, where, instead of making simplifying assumptions, the model is extended
to include interdependence features. The cost of this added flexibility, however, is
increased computational complexity and a less straightforward interpretation of the
parameters. This section gives a brief encounter of CRFs, in the context of compu-
tational gene prediction. More general and detailed descriptions can be found for
instance in [19, 42].

2.6.1 Preliminaries

We recall from Sect. 2.1.1 that a random process is a collection of random variables
that is indexed by some ordered set T . Such a collection can typically be used to
model the evolution of a system or the development of a physical process over time,
where the system or process switches randomly between states, or phases. If the
index set T is ordered it is often referred to as “time”, and the indexed collection
of random variables can be lined up as in a chain of events. Hidden Markov models
(HMMs), described in Sect. 2.1, are a special kind of random processes, that consist
of two interrelated process: a Markov process that is hidden from the observer,
corresponding to the state labels we want to predict (e.g., exons, introns, intergene,
etc.), and an observed process corresponding to the observed output we wish to
annotate (e.g., the DNA sequence).

92 2 Single Species Gene Finding

A random field is a generalization of random processes where the process evolves
in a multidimensional space, and the time index is replaced by a corresponding
multidimensional coordinate vector. Random fields are useful for instance to model
spatial data such as the pixels in image analysis, where both the position and the value
(attribute) of the process are of interest. As for random processes, there are many
kinds of random fields, but a family of models relevant to this section are the Markov
random fields, also known as Markov networks. A Markov random field is a collection
of random variables having a similar Markov property as for Markov chains, that
can readily be described by an undirected graph. Basically, the Markov property
for random fields state that given the neighbors in the graph, a random variable
is conditionally independent of everything else. Markov random fields are similar
to Bayesian networks, described in Sect. 5.4.7, in how the dependency structure is
represented. The difference is that Bayesian networks are directed and acyclic, while
Markov random fields are undirected and possibly cyclic. A conditional random field
(CRF) is an extension of Markov random fields in the same manner as an HMM is
an extension of a Markov chain. That is, a CRF is a Markov random field in which
each random variable can be conditioned upon a set of global observations.

2.6.2 Generative Versus Discriminative Models

Before we move on we need to introduce some new notation. In the HMM frame-
work described earlier in this chapter, the hidden label sequence is denoted X and
the observed sequence Y. In the CRF community, however, this notation is usu-
ally switched. Therefore, to avoid confusion, throughout this section the observed
sequence, also called the input sequence, is denoted O, and the hidden output
sequence is denoted H.

Generative models is a family of models where the joint probability of the hidden
and the observed sequence can be factorized as

P(O, H) = P(O)P(H|O). (2.124)

A generative model thus allows us to draw samples from it, in order to “gener-
ate” synthetic examples of the observed sequence given the hidden. However, due
to high dimensionality and complex dependencies the distribution of the observed
sequence may be difficult to render, which is why numerous independence assump-
tions often need to be made to make the computations tractable. Discriminative
models, on the other hand, is a family of conditional distributions P(H|O) where
the hidden sequence to be classified is modeled directly. The distribution of the
observed sequence is ignored and thereby the need for independency assumptions
on the observed sequence is avoided. By supplying a model for the marginal distri-
bution of the observed sequence, the conditional distribution of the discriminative
model could be used to compute the joint distribution as in (2.124), but since the
conditional distribution is all we need for classification, this is usually not done.

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

2.6 Conditional Random Fields 93

In this manner, there are generative-discriminative model pairs, where one model
can be converted into the other using Bayes’ rule (see Sect. 5.4.7). One such pair
is the naive Bayes classifiers and the logistic regression. Assume that we want to
determine a single classification label H , based on a vector of observations or features
O = (O1, O2, . . . , On). The naive Bayes classifier is based on the joint probability
of the classification label and the observations, which can be factorized as

P(H, O) = P(H)

n∏

i=1

P(Oi |H). (2.125)

The logistic regression classifier is instead based on the conditional probability and
assumes that the logarithm of the conditional distribution, log P(H |O), is a linear
function of O, such that

P(H |O) = 1

Z(O)
exp

(
θH +

n∑

i=1

θH,i Oi

)
(2.126)

where Z(O) is a normalization factor and θH is a bias weight corresponding to the
initial log P(H) component in the naive Bayes formula in (2.125). To write this in
more compact form we can define feature functions that are indicator functions for
a single class only. That is, we let fH ′, j (H, O) = 1{H ′=H}O j represent the feature
weights and fH ′(H, O) = 1{H ′=H} the bias weights. By instead using a common
index k for all different feature functions fk and their corresponding weights θk , the
logistic regression model can be written as

P(H |O) = 1

Z(O)
exp

(
K∑

k=1

θk fk(H, O)

)
. (2.127)

By training the naive Bayes classifier in (2.125) to maximize the conditional like-
lihood, we achieve the logistic regression classifier, and if the logistic regression
classifier is trained to maximize the joint distribution we achieve the naive Bayes.
In a similar manner, HMMs and CRFs are a generative-discriminative pair, and for
suitable choices of feature functions in the CRFs we can convert one model into the
other.

An important note is that while the two models in a generative-discriminative pair
exactly mirror one another in theory, this is rarely true in practice. In order for this
to hold we need access to the true distributions, but in practice we are usually left
to work with estimations and approximations resulting from only having samples of
the true distributions. Therefore, it matters which model we choose, generative or
discriminative, and the choice for a given application may not be obvious as both
approaches have their pros and cons. If we focus merely on the classification task,
discriminative models can be highly superior, both in terms of computational com-
plexity and in terms of the level of dependencies they can include. They impose

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

94 2 Single Species Gene Finding

conditional independence assumptions on the hidden sequence pretty much in the
same manner as in generative models, and they describe how the hidden sequence
may depend on the observed, while interdependencies within the observed sequence
need not be explicitly stated. This way discriminative models can include very com-
plex dependencies and overlapping features which may improve the classification
accuracy. However, generative models are usually more flexible, in particular when
it comes to training, and are more easily interpreted. Also, generative models are
better at handling missing, latent, or partially labeled data, and can sometimes per-
form better than a discriminative model as a result. Therefore, which approach to
use has to be guided by the application in question [3, 21].

2.6.3 Graphical Models and Markov Random Fields

In many statistical applications we have prior knowledge about the ordering of a
set of variables, either of the temporal ordering of events or in terms of dependency
structures. Such knowledge can often be illustrated in a graphical model G = (V, E),
where V are the vertices and E the connecting edges. The vertices correspond to the
random variables and the edges represent the dependency structure between these
variables. Graphical models can be divided into two main classes: directed acyclic
graphs (DAGs) and undirected graphs. Two important models for our purposes are
Bayesian networks which are a kind of DAGs, described in Sect. 5.4.7, and Markov
random fields, which are undirected graphs that will be discussed a little further in
this section. For a more comprehensive treatment on graphical models and random
fields, see for instance [23].

We say that random variables A and B are conditionally independent given a third
random variable C if and only if

P(A, B|C) = P(A|C)P(B|C), A, B, C ∈ V . (2.128)

Conditional independence is a powerful concept as it can be used to factorize com-
plex multivariate distributions into products of factors acting on smaller subsets of
the random variables. Any joint distribution of a set of random variables can be repre-
sented by a DAG, where the edges correspond to conditional dependencies between
the variables, and the absence of an edge implies conditional independence between
the variables of the corresponding vertices.

Now, let X = (Xv)v∈V be a collection of random variables. Recall from (2.1)
that the probability of any such set and for any ordering can be decomposed into a
product of conditional probabilities

P(X) = P(X1)

V∏

v=2

P(Xv|X1, . . . , Xv−1). (2.129)

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

2.6 Conditional Random Fields 95

For a graph G = (V, E), if there exists an ordering v1, . . . , vd of the vertices (i.e., of
the random variables) that is consistent with the graph, meaning that a directed edge
vi → v j ∈ E implies the ordering i < j , then G is called directed acyclic graph
(DAG). We define the parents π(v) of a vertex v ∈ V as the set of vertices having a
directed edge to v. A directed model is then a family of distributions that factorize as

P(X) =
∏

v∈V

P(Xv|Xπ(v)) (2.130)

where Xv is the random variable at vertex v and Xπ(v) is the set of random variables
of the parent vertices of v. Because of the recursiveness in this decomposition, the
resulting graph is acyclic, meaning that it does not contain any loops, resulting in
a DAG (see Fig. 2.21a for an illustration). A common family of directed acyclic
models are Bayesian networks, described in Sect. 5.4.7, and hidden Markov models
and neural networks described earlier in this chapter can both be considered special
cases of Bayesian networks.

In Markov random fields, on the other hand, the underlying graph is undirected
and may be cyclic, representing a correlation between the random variables rather
than a causality. An undirected graph is a graph where the edges have no direction.
That is, for two vertices i, j ∈ V the edges 〈i, j〉 and 〈 j, i〉 are equivalent. Since there
is no direction of the edges, there is no ordering of the random variables, meaning
that the distribution can no longer be factorized according to a set of parents as in
(2.130). Instead, an undirected graph can represent a family of distributions that
each factorize according to a set of factors. A factor can be any strictly positive,
real-valued function, and do not necessarily correspond to a conditional probability,
which is why we also need a normalization factor to achieve a proper probability
distribution. Formally, given a set of random variables X and a collection of A subsets
{Xa}A

a=1, an undirected graphical model is the set of distributions that can be written
as

P(X) = 1

Z

A∏

a=1

Ψa(Xa) (2.131)

A

B

C

D

A

B

C

D

(a) (b)

Fig. 2.21 An illustration of a graphical representation of four random variables, A, B, C, D.
a A directed acyclic graph where the joint distribution factorizes as P(A, B, C, D) =
P(A)P(B|A, C)P(C |A, B)P(D|B). b The corresponding undirected cyclic graph. Each node with
its former parents form a complete subgraph of the graph

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

96 2 Single Species Gene Finding

for any choice of positive factors Ψa(Xa) > 0 for all Xa . The constant Z , also known
as the partition function, is a normalization factor

Z =
∑

X

A∏

a=1

Ψa(Xa), (2.132)

where the sum runs over all possible assignments to the set X. The factors Ψa are
also called local functions, because they act on local subsets of the graph vertices,
or compatibility functions, because they represent how compatible the values in a
subset Xa are with each other.

There is a clear connection between directed and undirected graphs. To see this,
assume that the distribution of X factorizes with respect to an undirected acyclic
graph. Instead of talking about the parents of a vertex as in directed graphs, we
now talk about the neighbors n(v) of v ∈ V , meaning all vertices connected to v
by an edge. In a directed graph a random variable Xv is conditionally independent
of all predecessors in the graph, given its parents π(v). In undirected graphs the
corresponding conditional independence structure is represented by simple graph
separation. It may be tempting to think that a DAG can be converted into an undirected
graph simply by dropping the direction of the edges as in Fig. 2.21, but this does not
hold in general. A v-shape in a DAG with edges A → B ← C would in the undirected
graph result in a structure A − B − C where A and C are conditionally independent
given B, which clearly is not true. Instead we need to add an edge between A and C
in the undirected graph to indicate their connection. This way of linking “unmarried”
nodes is called moralization. Unfortunately, we loose some information of the DAG
in the process, and we therefore cannot move in the other direction, creating a DAG
from an undirected graph.

A special type of conditional independence structure is given by a Markov prop-
erty formulation, similar to that of Markov chains, and that can be defined at three
different levels: the global Markov property, the local Markov property, and the pair-
wise Markov property. The global Markov property of an undirected graph states that
any two subset of random variables are conditionally independent given a separat-
ing subset. That is, for three subsets of vertices A, B, C ⊂ V we say that XA is
conditionally independent of XB given XC if and only if the vertices in C sepa-
rates those in A from those in B. In essence, this means that if we remove all the
vertices in C from the graph, the sets A and B are no longer connected. The local
Markov property states that a random variable Xv is conditionally independent of all
other variables in the graph, given its neighbors, and the pairwise Markov property
states that two random variables not connected by an edge, are conditionally inde-
pendent given everything else. The global property implies the local, which in turn
implies the pairwise property. However, if we add the assumption that the distrib-
ution of the random variables is positive, meaning that P(Xv) > 0 for all v ∈ V ,
we achieve equivalence between the three Markov properties. A random field is a
generalization of random processes in which a collection of random variables are
indexed by a multidimensional space. In a Markov random field the index space is an

2.6 Conditional Random Fields 97

undirected graph G = (V, E) that fulfills the local Markov property. That is, for
each vertex v ∈ V , given its neighbors n(v) the corresponding random variable Xv

is conditionally independent of everything else. That is,

P(Xv|X\Xv) = P(Xv|Xn(v)), v ∈ V (2.133)

where X\Xv denotes all variables in X except Xv.
The conditional independences of an arbitrary distribution can be difficult to sort

out, and a convenient subclass of Markov random fields are those that use the max-
imal cliques of the graph as the factorization subsets. A clique is a subgraph of G
that is fully connected, meaning that there is an edge between every pair of vertices
in the subgraph. Furthermore, a maximal clique is a clique that cannot be extended
further without breaking the full connectedness property. The set of factors operat-
ing on the maximal cliques of G are called potential functions. A joint distribution,
factorized by its maximal cliques, is then proportional to the product of the potential
functions. The Hammersley–Clifford theorem [14, 23] gives that any positive dis-
tribution that satisfies the local Markov property can be factorized according to its
maximal cliques. Such a Markov random field is sometimes called a Gibbs random
field, which is popular in statistical physics because it can be represented by a Gibbs
distribution for appropriate potential functions. A Gibbs distribution is a measure
that factorizes over the maximal cliques C of the undirected graph G, and where the
distribution takes the log-linear form

P(X) = 1

Z
exp(−H(X)). (2.134)

where H(X) > 0 is called the energy function of configuration X. The meaning of
an energy function can be somewhat abstract, but it relates to the energy used to
describe the organization of atoms in thermodynamical systems. For instance, the
more ordered the atoms in a metal are, the lower the energy (see Sect. 3.2.8 for more
on this). In the Gibbs distribution, the factors in (2.131) thus take the form

Ψc(Xc) = exp(−H(Xc)) (2.135)

where H is the energy of the subset of random variables in clique c ∈ C , and the
energy function H(X) sums over the maximal cliques C . We can now give a more
formal statement of the Hammersley–Clifford theorem:

Theorem 2.5 (The Hammersley–Clifford Theorem) A positive distribution is a
Markov random field if and only if it is a Gibbs random field.

An important note is that although the maximal clique factorization corresponds to
the conditional independence structure of the graphical model, the potential functions
in themselves do not necessarily have a probabilistic interpretation. They merely
represent constraints on the underlying random variables, which in turn effect the
global probability distribution, but that do not directly translate into probabilistic
terms.

http://dx.doi.org/10.1007/978-1-4471-6693-1_3

98 2 Single Species Gene Finding

2.6.4 Conditional Random Fields (CRFs)

A conditional random field (CRF) is a Markov random field where each random
variable in the field may also be conditioned upon a set of global observations [19]. A
CRF can be seen as an extension of logistic regression where the hidden variables are
conditioned on the observed sequence. CRFs are also closely related to the hidden
Markov models (HMMs) described earlier in this chapter. In fact, for a suitable
choice of clique potentials, HMMs and CRFs form a generative-discriminative model
pair in the same way as naive Bayes and logistic regression discussed above. The
main difference between HMMs and CRFs is that while HMMs model the joint
distribution P(H, O) of an observed input sequence O and a hidden output H and
(recall that we changed the HMM notation from (X, Y) to (H, O)), CRFs focus on the
conditional distribution P(H|O) of the hidden sequence, given the observed. Thus, in
the conditional setting, the observed distribution P(O) does not need to be modeled
explicitly, leading to a simpler model which can allow the inclusion of complex
dependencies within the observed sequence. Another advantage is that the potential
functions can depend on the data, for instance by incorporating global features into
the local potential functions, something that is very hard to do in generative models.
The main disadvantage of CRFs is that they need to be trained on labeled data and the
training process is typically very computer intense. General graphs typically become
intractable fast, while graphs with a chain or tree structure may still be manageable.

The choice of potential functions for CRFs is closely related to the maximum
entropy method described in Sect. 5.4.6. In order to include interdependencies within
the observed sequence as well as other local and global knowledge of the data, we
define a set of input features. A CRF is then a Markov random field where the clique
potentials are conditioned on this feature set, denote it K,

P(H|O, K) = 1

Z(O, K)

∏

c∈C
Ψc(Hc|O, K). (2.136)

Finding the maximum entropy distribution that satisfies K features fk is an opti-
mization problem under constraints, and if we choose log-linear clique potentials as
in logistic regression we get for clique c ∈ C

Ψc(Hc|O) = exp

(
K∑

k=1

λck fck(Hc, O)

)
(2.137)

where λck is the Lagrangian multiplier associated with feature fck . Note also that we
can make the features clique specific. The resulting CRF distribution becomes

P(H|O) = 1

Z(O)
exp

⎛

⎝
∑

c∈C

K∑

k=1

λck fck(Hc, O)

⎞

⎠ . (2.138)

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

2.6 Conditional Random Fields 99

Linear-Chain CRFs

For sequence models the common choice is a linear-chain CRF, which models
the correlation between adjacent hidden variables in a linear sequence similarly
to HMMs. In a linear graph each vertex only has two neighbors, and the maximal
cliques simply constitute each pair of adjacent vertices connected by an edge. There-
fore, we can define the clique potentials on the edges e = 〈i −1, i〉 instead on vertex
subsets

Ψe(He) = exp

(
K∑

k=1

λk fk(Hi−1, Hi , O) +
K∑

k=1

μk gk(Hi , O)

)
(2.139)

where fk are feature functions of the local transitions and the global observed
sequence, and gk feature functions of the sequence label at position i and the observed
sequence. The features fk and gk are, thus, closely connected to the transitions and
emissions in an HMM. In fact, by choosing features exactly corresponding to the
logarithm of the transition and emission probabilities in an HMM, the conditional
distribution P(H|O) rendered from the joint distribution P(H, O) in an HMM, is a
CRF. That is, by rewriting the joint distribution as

P(O, H) = 1

Z

T∏

t=1

exp

⎛

⎝
∑

i, j∈S

θi j 1{Ht = j}1{Ht−1=i} +
∑

i∈S

∑

v∈V

μiv1{Ht =i}1{Ot =v}

⎞

⎠

(2.140)

and defining the parameters as

θi j = log P(Ht = j |Ht−1 = j)

μiv = log P(Ot = v|Ht = i) (2.141)

Z = 1

we achieve a direct correspondence between the HMM and the related CRF. To
see this, by using a generic notation fk for features and θk for the corresponding
parameters, we transfer the the formula in (2.140) into

P(O, H) = 1

Z

T∏

t=1

exp

(
K∑

k=1

θk fk(Ht−1, Ht , Ot)

)
. (2.142)

The conditional distribution achieved by using (2.142) in

P(H|O) = P(O, H)∑
O′ P(O′, H)

(2.143)

100 2 Single Species Gene Finding

is then a special type of linear-chain CRFs that only include features for the transitions
and emissions modeled by a standard HMM. However, general linear-chain CRFs
are not limited to the use of indicator functions, but can use any real-valued set of
functions in place of the feature functions fk in (2.142). For instance, since CRFs do
not model the observed input sequence, we can let the feature functions depend on
the entire observation sequence without having to alter the dependency structure in
the graphical model.

2.6.5 Conrad: CRF-Based Gene Prediction

Generalized (GHMMs), described in Sect. 2.2, have proved very powerful in gene
prediction, as they are flexible, easy to train, and easily interpreted probabilistically.
The disadvantages include the difficulties to include external information, such as
various homology sources, long-ranging sequence features, and unknown dependen-
cies both within and between the external sources. Since CRFs avoid the problems
of modeling the observed input data, they can easily incorporate various sources of
information, regardless of unknown dependencies and long-range effects.

Conrad [8] is a gene prediction software based on semi-Markov CRFs (SMCRFs),
which has inherited the generalized (semi-Markov) features of GHMMs and com-
bined them with discriminative features from the CRF framework. As before, we
have a hidden state sequence H of labels to be predicted, and an observed sequence
O corresponding to the given DNA sequence to be labeled. Again, a CRF expresses
the conditional probability P(H|O) as opposed to GHMMs which model the joint
probability P(H, O) of the hidden and the observed data. The conditional probability
is as before expressed in log-linear form

P(H|O) = 1

Zλ(O)
exp

⎛

⎝
∑

j

λ j Fj (H, O)

⎞

⎠ (2.144)

where λ j is the feature weight, Fj a feature function, which in itself is a sum of
features (see below), and Zλ(O) the normalizing factor.

The hidden sequence is assumed to be a linearly structured vector of labels such
as “exons”, “introns”, and “intergenes”, with one label per nucleotide in the observed
sequence. Or conversely, the observed sequence can be segmented into p intervals
{Ii }p

i=1 = {(ti , ui , vi)}p
i=1 of equally labeled segments (e.g., corresponding to an

entire exon), with start at nucleotide ti , end at ui , and the same label vi all through
the segment. The segmentation p naturally varies and is determined as part of the pre-
diction. As in GHMMs, Conrad assumes that each interval (ti , ui , vi) only depends on
the adjacent neighboring intervals Ii−1 and Ii+1. The feature function Fj is therefore
written as a sum of localized feature functions

2.6 Conditional Random Fields 101

Fj (H, O) =
p∑

i=1

f j (ti , ui , vi , vi−1, O). (2.145)

The partitioning of the observed sequence is similar to the generalized (semi-Markov)
feature of GHMMs and is what makes the CRF semi-Markov. The prediction of hid-
den labels produced by the SMCRF for a given observed sequence is the segmentation
H that maximizes then the conditional probability P(H|O).

Feature Selection

The major issues when applying SMCRFs to gene prediction is the construction of
suitable feature functions f j , and the training of their corresponding weights λ j . The
advantage over GHMMs, as mentioned earlier, is that these features are not required
to be independent or to have a probabilistic interpretation. Conrad is constructed to
use both generative features, inherited from GHMMs, and discriminative features,
with the result that Conrad can behave either as a pure GHMM or as a SMCRF or
anywhere in between. The generative features in Conrad are:

• Reference features: modeling the internal sequence composition of the different
model states, using a third-order Markov model. These features do not include the
segmentation boundaries such as start and stop codons, or splice sites.

• Length features: modeling the state length distributions of exons, introns, and
intergenic regions. The intergene lengths are modeled using an exponential dis-
tribution (the continuous counterpart of the geometric distribution), and exon and
intron lengths are modeled by a mixture of two gamma distributions.

• Transition feature: modeling the transition probabilities between states.
• Boundary features: modeling state boundary signals such as start and stop codons

and splice sites.
• Phylogenetic features: modeling species homology through state-specific multiple

alignments.

By using only reference, length, transition, and boundary features with all weights
set to λ j = 1, Conrad is equivalent to the conditional probability computed by the
corresponding GHMM by taking

PGHMM(H|O) = PGHMM(H, O)

PGHMM(O)
. (2.146)

In the GHMM, we let ai j denote the transition probability between states i, j ∈ S,
πi the initial probability of i ∈ S, and q j (Oti , Oui) the emission probability for the
segment Oti , . . . , Oui , now including the duration probability as well (emission and
duration were separated in Sect. 2.2). The joint probability then takes the form

PGHMM(H|O) = πv1

p∏

i=2

avi−1,vi qvi (Oti , Oui) (2.147)

102 2 Single Species Gene Finding

and the features in Conrad translates to

fGHMM(vi−1, vi , ti , ui , O) =
{

log(qvi (Oti , Oui)) + log(πvi) if ti = 1
log(qvi (Oti , Oui)) + log(avi−1,vi) if ti > 1.

(2.148)
This version of Conrad (called ConradG-1) is similar to Genscan [7] described in
Sect. 2.2.4. ConradG-2, which includes phylogenetic features for two-species com-
parisons is similar to Twinscan [17] described in Sect. 4.1.2.

Discriminative features are features lacking a probabilistic interpretation. The
use of discriminative features enables the ability to incorporate long-range effects
and unknown dependencies, or any other type of information that may be difficult
to model probabilistically. Conrad incorporates a few discriminative features that
represent information commonly used when annotations are curated manually, but
that is difficult to include in a probabilistic setting. The discriminative features are:

• Gap features: modeling gaps in the multiple alignments that are not captured by
the phylogenetic features.

• Footprint features: modeling the positions at which the different species in the
multiple alignment are aligned.

• EST features: modeling the connection between the EST alignments and the state
fragmentation of the hidden label sequence.

For instance, the gap feature for a specific exon E takes the form

fGAP,E (vi−1, vi , ti , ui , O) =
ui∑

k=ti

{
1 if vi = E and gap of length 1 or 2 (mod 3) at k
0 otherwise,

(2.149)
thus counting the number of gaps in the alignment that would cause a frameshift
in the coding sequence. The features are similar for introns and intergenes. Also,
the footprint and EST features work the same way, by summing similar indicator
functions while scanning through the state segment.

Parameter Training

The feature weights λ j are trained from labeled example sequences. The common
approach to train the weights in CRFs is to use conditional maximum likelihood
(CML) described in Sect. 6.8. That is, for a single pair of training sequences (H0, O0),
the CML estimator is given by

λ̂CML = argmax
λ

(log P(H0|O0)). (2.150)

The maximum is typically found using a gradient-based technique (see Sect. 6.6),
where the specific choice of algorithm depends on the formulation of the CRF. For
SMCRFs the common approach is to use dynamic programming algorithms similar
to the forward and the backward algorithms in HMMs.

http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_6
http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.6 Conditional Random Fields 103

Another approach, introduced by the Conrad group, is to use something called
maximum expected accuracy (MEA). CML optimizes the accuracy of the prediction
indirectly by maximizing the likelihood of the hidden sequences given in the training
set. Instead, one would like to optimize the accuracy directly, but this becomes
intractable since changing the weights causes changes in the segmentation, which in
turn changes the accuracy in a discontinuous way. Instead the objective function is
defined as the expected accuracy over the entire distribution of segmentations defined
by the SMCRF. However, in order to compute this, we first need to need a similarity
metric. We define a similarity function S between the training set (H0, O0) and a
certain label sequence H as

S(H, H0, O0) =
T∑

t=1

s(Ht−1, Ht , H0
t−1, H0

t , O0, t) (2.151)

where s are some kind of similarity functions over dinucleotides that can be set as
suited. For gene prediction, the function S is divided into two parts, corresponding
to splice sites and internal nucleotides. The nucleotide similarity score is simply
counting the number of correctly labeled nucleotides in each state, while the splice
site similarity scores consider both the labeling and the placement of the splice
boundary.

The objective function used to optimize the weights is then defined as the expec-
tation of the similarity function

AMEA(λ) = Eλ[S(H, H0, O0)] =
∑

y

Pλ(H|O0)S(H, H0, O0) (2.152)

and MEA estimator is given by

λ̂MEA = argmax
λ

AMEA(λ). (2.153)

This maximum is again achieved by using gradient-based methods. However, since
the objective function is not concave in λ, there is no guarantee that the global
maximum is reached. To achieve the best results, the initial weights are set by using
the CML estimates.

References

1. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT Press, Cambridge
(2001)

2. Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order Markov models.
J. Artif. Intell. 22, 385–421 (2004)

3. Bishop, C.M., Lasserre, J.: Generative or discriminative? Getting the best of both worlds.
Bayesian Stat. 8, 3–24 (2007)

104 2 Single Species Gene Finding

4. Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-vides, J.,
Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden,
M.A., Rose, D.J., Mau, B., Shao, Y.: The complete genome sequence of Escherichia coli K-12.
Science 277, 1453–1469 (1997)

5. Breiman, L.: Some properties of splitting criteria. Mach. Learn. 24, 41–47 (1996)
6. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees.

Chapman & Hall, New York (1984)
7. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol.

Biol. 268, 78–94 (1997)
8. DeCaprio, D., Vinson, J.P., Pearson, M.D., Montgomery, P., Doherty, M., Galagan, J.E.: Conrad:

gene prediction using conditional random fields. Genome Res. 17, 1389–1398 (2007)
9. Delcher, A.L., Harmon, D., Kasif, S., White, O., Salzberg, S.L.: Improved microbial gene

identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999)
10. Delcher, A.L., Bratke, K.A., Powers, E.C., Salzberg, S.L.: Identifying bacterial genes and

endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007)
11. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis. Probabilistic

Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)
12. Fickett, J.W., Tung, C.-S.: Assessment of protein coding measures. Nucleic Acids Res. 20,

6441–6450 (1992)
13. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computa-

tional Biology. Cambridge University Press, Cambridge (1997)
14. Hammersley, J., Clifford, P.: Markov fields on finite graphs and lattices.http://www.statslab.

cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf
15. Jukes, T.H., Osawa, S.: The genetic code in mitochondria and chloroplasts. Experientia 46,

1117–1126 (1990)
16. Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes, 2nd edn. Academic Press,

New York (1975)
17. Korf, I., Flicek, P., Duan, D., Brent, M.R.: Integrating genomic homology into gene structure

prediction. Bioinformatics 17, S140–S148 (2001)
18. Koski, T.: Hidden Markov Models for Bioinformatics. Springer, Berlin (2001)
19. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for

segmenting and labeling sequence data. In: Proceedings of International Conference Machine
Learning, pp. 282–289 (2001)

20. Larsen, T., Krogh, A.: EasyGene—a prokaryotic gene finder that ranks ORFs by statistical
significance. BMC Bioinform. 4, 21–35 (2003)

21. Ng, A.Y., Jordan, M.I.: On discriminative versus generative classifiers: a comparison of logistic
regression and naive Bayes. In: NIPS (2001)

22. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biol. 52, 99–115 (1943)

23. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)
24. Murthy, S.K., Kasif, S., Salzberg, S.L.: A system for induction of oblique decision trees.

J. Artif. Intell. Res. 2, 1–32 (1994)
25. Ohler, U., Harbeck, S., Niemann, H., Nöth, E., Reese, M.G.: Interpolated Markov chains for

eukaryotic promoter recognition. Bioinformatics 15, 362–369 (1999)
26. Perna, N.T., Plunkett, G., Burland, V., Mau, B., Glasner, J.D., Rose, D.J., Mayhew, G.F., Evans,

P.S., Gregor, J., Kirkpatrick, H.A., Pósfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y.,
Miller, L., Grotbeck, E.J., Davis, N.W., Lim, A., Dimalanta, E.T., Potamousis, K.D., Apodaca,
J., Anantharaman, T.S., Lin, J., Yen, G., Schwartz, D.C., Welch, R.A., Blattner, F.R.: Genome
sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001)

27. Pertea, M., Lin, X., Salzberg, S.L.: GeneSplicer: a new computational method for splice site
prediction. Nucleic Acids Res. 29, 1185–1190 (2001)

28. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
29. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann Publishers, San Mateo

(1993)

http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf
http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf

References 105

30. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proc. IEEE 77, 257–286 (1989)

31. Rissanen, J.: A universal data compression system. IEEE Trans. Inf. Theory 29, 656–664 (1983)
32. Rivas, E., Eddy, S.R.: Noncoding RNA gene detection using comparative sequence analysis.

BMC Bioinform. 2, 8 (2001)
33. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization

in the brain. Psychol. Rev. 65, 386–408 (1958)
34. Salzberg, S.L., Delcher, A.L., Fasman, K.H., Henderson, J.: A decision tree system for finding

genes in DNA. J. Comput. Biol. 5, 667–680 (1998)
35. Salzberg, S.L., Delcher, A.L., Kasif, S., White, O.: Microbial gene identification using inter-

polated Markov models. Nucleic Acids Res. 26, 544–548 (1998)
36. Schukat-Talamazzini, E.G., Gallwitz, F., Harbeck, S., Warnke, V.: Rational interpolation

of maximum likelihood predictors in stochastic language modeling. In: Proceedings of
Eurospeech’97, pp. 2731–2734. Rhodes, Greece (1997)

37. Sharp, P.M., Cowe, E.: Synonymous codon usage in Sacharomyces cerevisiae. Yeast 7, 657–678
(1991)

38. Shmatkov, A.M., Melikyan, A.A., Chernousko, F.L., Borodovsky, M.: Finding prokaryotic
genes by the ‘frame-by-frame’ algorithm: targeting gene starts and overlapping genes. Bioin-
formatics 15, 874–886 (1999)

39. Shmilovici, A., Ben-Gal, I.: Using a VOM model for reconstructing potential coding regions
in EST sequences. Comput. Stat. 22, 49–69 (2007)

40. Skovgaard, M., Jensen, L.J., Brunak, S., Ussery, D., Krogh, A.: On the total number of genes
and their length distribution in complete microbial genomes. Trends Genet. 17, 425–428 (2001)

41. Snyder, E.E., Stormo, G.D.: Identification of protein coding regions in genomic DNA. J. Mol.
Biol. 248, 1–18 (1995)

42. Sutton, C., McCallum, A.: An introduction to conditional random fields. Found. Trends Mach.
Learn. 4, 267–373 (2011)

43. Xu, Y., Mural, R.J., Einstein, J.R., Shah, M.B., Uberbacher, E.C.: GRAIL: a multi-agent neural
network system for gene identification. Proc. IEEE 84, 1544–1552 (1996)

44. Xu, Y., Uberbacher, E.C.: Computational gene prediction using neural networks and similarity
search. In: Salzberg, S.L., Searls, D.B., Kasif, S. (eds.) Computational Methods in Molecular
Biology, pp. 109–128. Elsevier Science B.V., Amsterdam (1998)

45. http://www.cbcb.umd.edu/glimmer/

http://www.cbcb.umd.edu/glimmer/

Chapter 3
Sequence Alignment

A fundamental task in biological sequence analysis is to reveal the evolutionary
relationships between biological sequences, such as protein or DNA sequences.
Moreover, by comparing novel sequences to already characterized ones, the hope
is that regions of high sequence similarity can be used to infer both the structure
and the function of novel genes. The underlying idea is that homologous sequences,
originating from the same ancestral sequence, have transformed into their current
states through a series of changes, or point mutations, to the sequence. Therefore,
high levels of sequence similarity can be used to infer homology between sequences.
It is important to note, however, that sequence similarity does not necessarily imply
homology. If the compared regions are too short, or if the sequence is repetitive
or of low complexity, the sequences may appear similar just by chance. Therefore,
the challenge is to quantify the notions of sequence similarity to separate spurious
hits with those revealing functionally important elements in the sequence. Sequence
alignments have turned out to be a suitable format for the comparison of biological
sequences. In this chapter, we introduce a number of scoring schemes and algorithms
for pairwise and multiple alignments.

3.1 Pairwise Sequence Alignment

Sequence alignment can be seen as a form of approximate string matching [38].
Methods for string matching have a long history in a wide range of areas besides
molecular biology, including error control of noisy radio channels, automatic string-
editing/correction of keyboard inputs, string comparisons/pattern matching of com-
puter files, and speech recognition [59]. Common to all these areas is the need for
methods that can handle various types of sequence differences.

The sequences are compared in sequence alignment by arranging them in rows on
top of each other such that matched residues are arranged in successive columns. By
inserting spaces at various positions and in varying numbers, the number of matching
residues can be optimized. The resulting alignment is an assembly of operations, such
as matches, mismatches, insertions and deletions (see Table 3.1).

© Springer-Verlag London 2015
M. Axelson-Fisk, Comparative Gene Finding, Computational Biology 20,
DOI 10.1007/978-1-4471-6693-1_3

107

108 3 Sequence Alignment

Table 3.1 Illustration of a sequence alignment

50 . : . : . : . : . :
Human: 247 GGTGAGGTCGAGGACCCTGCA CGGAGCTGTATGGAGGGCA AGAGC

|: || ||||: |||| --:|| ||| |::| |||---||||
Mouse: 368 GAGTCGGGGGAGGGGGCTGCTGTTGGCTCTGGACAGCTTGCATTGAGAGG

100 . : . : . : . : . :
Human: 292 TTC CTACAGAAAAGTCCCAGCAAGGAGCCACACTTCACTG

|||----------|| | |::| |: ||||::|:||:-|| ||:| |
Mouse: 418 TTCTGGCTACGCTCTCCCTTAGGGACTGAGCAGAGGGCT CAGGTCGCGG

Matches correspond to alignments of identical residues, while mismatches, or sub-
stitutions, correspond to alignments of different residues. Insertion and deletions are
signified by a lack of a corresponding match in the other sequence; residues in one
sequence are matched to empty spaces, or gaps, in the other sequence. Sequence
alignments void of gaps are often referred to as ungapped alignments. While inser-
tion and deletions represent different events biologically, in a string matching con-
text, insertions and deletions constitute inverse operations of one another, and are
therefore commonly referred to as indels [59]. Another important operation is that
of transpositions, which involve moving a sequence segment from one location to
another, resulting in a swap in the sequence order when comparing two sequences.
Transpositions are the most difficult operations to handle in sequence comparisons,
and are typically not treated in biological sequence alignment.

The simplest, and the most direct way of detecting sequence similarity is to arrange
the sequences in a dot plot, described in Sect. 3.1.1. If nothing is known about the
evolutionary relationship between the sequences compared, a dot plot provides a
graphical illustration of the level of similarity, and the location of conserved elements
in the sequences. However, in terms of revealing the best alignment in some sense,
the dot plot method is limited. For this, we need a scoring scheme that is able to
quantify the different possible alignments.

A sequence alignment measures the evolutionary distance, or the degree of
(dis)similarity, between two related sequences in some sense. Alignment algorithms
attempt to determine the optimal alignment between sequences by modeling the
mutational process that, starting from an (unknown) common ancestor, has given rise
to the observed sequences. There are many possible ways to align two sequences,
and in order to select the best one, we need means to quantify their relative quality.
The idea is to assign a score to each alignment, and then choose the one with the
optimal score. The scoring schemes used for alignments typically include a substi-
tution matrix and a gap penalty function. The substitution matrix is used to score
matches and mismatches, and the gap penalty function scores insertion and deletion
events. The resulting alignment score, which is the sum of the scores of the individual
events, gives a measure of the quality of the current alignment. Different substitution
models and gap penalty models are described in Sects. 3.1.2–3.1.4.

Since there are many ways to align two sequences, we need means to effi-
ciently sift through the possible alignments in search for the best one. The dynamic

3.1 Pairwise Sequence Alignment 109

programming algorithm is a popular method that has been applied to both global
and local alignments. A global alignment involves the matching of two sequences in
their entirety, while local alignments only search for subsequences of high similar-
ity. Global alignments are useful when comparing sequences that have not diverged
substantially, or when the sequences constitute a single element, such as a protein
domain. If the sequences are highly diverged or have become rearranged during
evolution, a local alignment might be more suitable. An important note, however, is
that the optimal alignment might not be the most biologically meaningful. A good
general strategy is therefore to review several suboptimal (near optimal) local align-
ments, before choosing the “best.” The Needleman–Wunsch algorithm for global
alignments using dynamic programming is described in Sect. 3.1.5, and the Smith–
Waterman algorithm for local alignments is described in Sect. 3.1.6.

3.1.1 Dot Plot Matrix

Dot plots are probably one of the oldest ways to compare sequences in molecular
biology [30], and provide a simple and direct means for identifying regions of sim-
ilarity between evolutionary related sequences. Dot plots are represented by a two-
dimensional array, where the sequences to be compared are placed on the axes, and
where a dot is placed in each cell corresponding to matching residues in the respec-
tive sequence positions (see Fig. 3.1). In the resulting plot, regions of similarity will
appear as diagonal stretches of dots. If the two sequences are identical, the main diag-
onal will be filled with dots, insertions, and deletions between the sequences will
appear as lateral displacements of the diagonals, and duplications appear as parallel
diagonal lines in the plot.
However, while dot plots provide a lot of information directly and are easy to interpret,
their usefulness is rather limited, in particular when comparing nucleotide sequences.
Even for unrelated sequences, the dot plot of nucleotide sequences will contain at
least 25 % dots, and even more if the base composition is skewed, making it difficult to
distinguish true homology from noise. This problem has been addressed by applying

Fig. 3.1 A dot plot of two
DNA sequences

A

C

T

A

G

G

C

C

A G C T A G G A

110 3 Sequence Alignment

300 300200100 300200100 100 200

100

200

300

(a) (b) (c)

Fig. 3.2 A dot plot of a human hemoglobin subsequence against itself using window length n = 10.
a Without filter. b Minimum number of matches m = 5. c Minimum number of matches m = 7

various filtering methods to the plots [63, 78, 87]. The purpose of filtering is to
remove spurious matches from the plot and only present the dots displaying true
homology. There are a wide variety of filters suggested, but generally they all involve
the grouping of residues in some manner. The method suggested by Maizel and Lenk
[63] slides a window of n residues over the pair of sequences, and place a dot when
the window contains at least m matches. Other methods choose to highlight the entire
window when the window match is above a certain threshold. Figure 3.2 illustrates
the dot plot of a human hemoglobin against itself, first without a filter, then with
a filter using a window length of n = 10, and the minimum number of matches
required in a window set to m = 5 and m = 7, respectively.
Dot plots of protein sequences are often less messy, largely due to the larger alphabet
of amino acids, but noise reduction is still very useful. However, an additional issue
when comparing protein sequences is that we might not only want to highlight exact
matches, but also take into account chemical and structural similarities between
amino acids. Staden [86] introduced a method that included amino acid weights in
the alignment algorithm. The weights were based on a relatedness odds matrix, or a
substitution matrix, produced by Dayhoff [16]. This work by Dayhoff and colleagues
later evolved into the now commonly used PAM matrix [18]. PAM and the similar
BLOSUM matrices [42] are described in the next section.

3.1.2 Nucleotide Substitution Models

An important problem in biological sequence analysis is to determine the evolutionary
distance between sequences. Dealing with actual time scales is often impossi-
ble, however, in particular since the substitution rate tends to vary over time both
between and within sequences. Therefore, a more convenient measure of evolutionary
distance is based on the number of substitutions that have occurred between the com-
mon ancestor and the current sequences. A very direct measure would, thus, be the

3.1 Pairwise Sequence Alignment 111

proportional number of differences (mismatches) in an ungapped alignment of the
two sequences

d = k/n (3.1)

where n is the sequence length, and k the number of mismatches. In terms of scoring
schemes, the underlying substitution matrix would thus take the form

A C G T
A 1 0 0 0
C 0 1 0 0
G 0 0 1 0
T 0 0 0 1

If we ignore gaps for now, the alignment

ATCG--G
AC-GTCA

would then receive the alignment score

S = s(A, A) + s(T, C) + s(G, G) + s(G, A) = +1 + 0 + 1 + 0 = 2.

One problem with this approach, however, is that as the evolutionary distance
increases, the number of observed substitutions is often less than the actual number
of substitutions. The reason is that as time passes, the probability of having a second
substitution in an already changed position increases, making a simple count insuf-
ficient for long evolutionary distances. To solve this and other issues, a number of
different substitution models have been proposed.

Most substitution models assume that sequence positions are independent of each
other and of previous events in the evolution history, and that substitution rates and
base composition remain the same across all sites and over time. Moreover, since we
generally have no information about the common ancestral sequence, substitution
models are usually assumed to be time-reversible (see Sect. 2.1.1). That is, the prob-
ability of changing one sequence into another is the same as the probability of the
process going in the opposite direction. As a result, when comparing two sequences
Y and Z , instead of modeling two separate mutational processes evolving from some
common ancestor, we can model the process of changing sequence Y into sequence
Z directly (see Fig. 3.3). This way we can ignore the fact that the ancestor sequence
is unknown.

A common model of substitution is to use a homogeneous, continuous-time,
time-reversible, stationary Markov chain, such as those described in Sect. 2.1.1. Let
{X (t) : t ≥ 0} denote such a substitution process, where each instance, or state,
X (t) of the process represents a (new) version of the initial sequence X (0). Since
we assume that sequence positions evolve independently, it is enough to consider
the substitution process of one specific, but arbitrary, position k in the sequence, in

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

112 3 Sequence Alignment

Ancestor

Sequence Y
Sequence Z

u steps
v steps

u+ v steps

Fig. 3.3 If the substitution process is time-reversible, we can swap the direction of one of the
processes originating in a common ancestor, and achieve a single process going from Y to Z in
u + v steps directly

order to draw conclusions on the substitution process as a whole. Let Xk(t) denote
the residue in position k after t time units. Xk(t) takes values in some state space S,
which is the set of nucleotides for DNA sequences and the set of amino acid residues
for protein sequences. We let πi , i ∈ S denote the initial probabilities of this process

πi = P(Xk(0) = i), i ∈ S (3.2)

and denote the transition matrix A(t) = (
ai j (t)

)
i, j∈S where

ai j (t) = P(Xk(t) = j |Xk(0) = i). (3.3)

Recall from Sect. 2.1.1 that, in contrast to discrete-time Markov chains, the transition
matrix is not enough to characterize the development of the process. The transition
probability ai j (t) only gives the probability that state i has changed into state j at
time t , but not how many changes that have occurred in between. For this, we need a
transition rate matrix Q = (

μi j
)

i, j∈S , giving the “instantaneous” substitution rates
between states i and j . Recall also that the connection between the transition matrix
and the transition rate matrix is approximately given by

ai j (t) ≈
{

μi j t if i �= j

1 + μi i t if i = j.
(3.4)

where μi i = −∑
j �=i μi j , such that each row of Q sums to zero. Assuming that the

evolutionary processes of two homologous sequences are identically distributed and
stationary, we can use the transition rates to calculate an interesting property,

K = 2t
∑

i∈S

πi μi (3.5)

where μi = −μi i . K can be interpreted as the mean number of substitutions per site
[89]. If the time t to the common ancestor is known, the expression in (3.5) can be
used to estimate the substitution rate, and vice versa.

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

3.1 Pairwise Sequence Alignment 113

The Jukes-Cantor Model

The simplest model for nucleotide substitution, is the Jukes-Cantor model [49], where
each site is assumed to evolve according to a Poisson process, independently of the
rest, and where all substitution rates are set to be equal. The substitution rate matrix
can be written as

Q =

⎛

⎜⎜⎝

· α α α

α · α α

α α · α

α α α ·

⎞

⎟⎟⎠ (3.6)

Recall that the rows sum to 0, such that the diagonal elements are given by taking
the negative sum of the others, −3α in this case.

The evolutionary distance between two sequences Y and Z can be defined as the
estimated number of changes per site. The Jukes-Cantor distance (or correction) is
given by

dJC(Y, Z) = −3

4
log

(
1 − 4

3
D

)
(3.7)

where D is the proportional number of differences between Y and Z in an ungapped
alignment. The Jukes-Cantor distance has the desired property that it increases lin-
early with the number of accumulated mutations, while the increase in the propor-
tional mismatch count in (3.1) slows down after a while, finally reaching an asymptote
of 0.75. However, the variance of the Jukes-Cantor distance, derived by Kimura and
Ohta [56],

Var(dJC) = H(1 − H)

n
(
1 − 3

4 H
)2 , (3.8)

goes to infinity as the distance increases, indicating that the measures get increasingly
less reliable as mutations accumulate.

The Kimura Model

The Jukes-Cantor model is somewhat unrealistic as it assumes equal substitution
rates for all types of substitutions. In reality, however, purines (A and G) are more
likely to change into a purine than into a pyrimidine (C and T), and vice versa.
Substitutions between the same type of nucleotides (purines to purines, or pyrim-
idines to pyrimidines), also known as translations, can happen readily, while substi-
tutions across types (purine to pyrimidine or vice versa), also known as transversions,
are much less frequent. Kimura [53] suggested a two-parameter model using uniform
base frequencies and a Poisson process for the substitutions, but with different rates
for transitions and transversions.

114 3 Sequence Alignment

Fig. 3.4 In the Jukes-Cantor
model, all changes are
assumed to occur with equal
probabilities, while the
Kimura 2-parameter model
has different rates for
transitions and transversions

A G

C T

α α α α

α

α
Purines

Pyrimidines

A G

CT

α

β β β β

α

If we let α denote the transition rates, and β the transversion rates, the substitution
rate matrix, with rows and columns ordered as {A,C,G,T}, is given by

Q =

⎛

⎜⎜⎝

· β α β

β · β α

α β · β

β α β ·

⎞

⎟⎟⎠ (3.9)

Figure 3.4 illustrates the difference between the Jukes-Cantor and the Kimura
2-parameter model. If p and q denote the proportional numbers of transitional and
transversal differences, respectively, the Kimura distance is given by

dK 2p(a, b) = −1

2
log(1 − 2p − q) − 1

4
log(1 − 2q). (3.10)

In the special case of α = β, we get P = Q/2 and (3.10) reduces to the Jukes-
Cantor distance. A more general approach, presented in [54], allowed for different
substitution rates for all substitutions. Again, ordering the rows and columns as
{A,C,G,T}, the substitution matrix can be written as

Q =

⎛

⎜⎜⎝

· γ α β

γ · β α

α β · γ

β α γ ·

⎞

⎟⎟⎠ (3.11)

The special case of γ = β gives the 2-parameter model above.

The Felsenstein Model

After the Kimura model, several models were proposed, with an increasing number
of parameters. One problem with both the Kimura and the Jukes-Cantor models
is that the base composition is assumed to be uniform. However, real sequences
often contain an A + T or G + C bias, and coding sequences tend to have different
frequencies for all four bases. Felsenstein [24] suggested that the substitution rate of
a nucleotide only depends on its base frequency, and proposed a method that uses

3.1 Pairwise Sequence Alignment 115

base frequencies π = (πA, πC , πG , πT) estimated from the actual sequences. The
Felsenstein transition rate matrix can be written as

Q =

⎛

⎜⎜⎝

· απA απA απA

απC · απC απC

απG απG · απG

απT απT απT ·

⎞

⎟⎟⎠ (3.12)

The parameter α can no longer be interpreted as the mutation rate, however.

The Tamura and Nei Model

Various developments and generalizations of the Felsenstein model have been imple-
mented. Hasegawa et al. [39] invoked the transition/transversion bias introduced by
Kimura into the Felsenstein model. Tamura and Nei took this one step further by using
one parameter for transversions but two for transitions, one for transitions between
purines and one for pyrimidines [88]. Their substitution rate matrix is given by

Q =

⎛

⎜⎜⎝

· βπC α1πG βπT

βπA · βπG α2πT

α1πA βπC · βπT

βπA α2πC βπG ·

⎞

⎟⎟⎠ (3.13)

General Time-Reversible (GTR) Model

The most general model suggested is probably the General Time Reversible (GTR)
model, first proposed by Tavaré [89]. This model can include as many as 12 para-
meters, but reduces to 9 under the assumption of time reversibility. Using the para-
metrization given in [99], the substitution rate matrix can be written

Q =

⎛

⎜⎜⎝

· απC βπG γ πT

απA · ρπG σ πT

βπA ρπC · τ πT

γ πA σ πC τ πG ·

⎞

⎟⎟⎠ (3.14)

Thus, the substitution rates differ between each distinct pair of nucleotides, which
makes it more general than the previous models. It requires, however, that the sub-
stitution rates are the same in both directions within a pair, which makes it time
reversible. This is not a serious limitation, though. With nonreversible substitution
models, we would be faced with something of a paradox: the distance between two
sequences X and Y would differ depending on if we measured from X to Y or from
Y to X .

The main difference between the substitution models presented are the number
of parameters included. These parameters need to be estimated from a training set,
typically using maximum likelihood estimation (see Sect. 6.3). Which model to use

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

116 3 Sequence Alignment

depends highly upon the size of the training set. Of all the models described above,
the GTR is the most sensitive, but requires a rather large training set. Moreover,
since nucleotide sequence alignments only involve a 4-letter alphabet, while the
amino acid alphabet consists of 20 residues, amino acid alignments provide a more
sensitive measure of homology. Therefore, if the sequences in question are assumed
to be protein coding, it might be a good idea to translate them into their corresponding
amino acid sequences, and use a amino acid substitution matrix for scoring. We might
not know, however, the reading frame of a sequence, which is why many alignment
methods translate the sequences in all frames and compare all possible combinations.

3.1.3 Amino Acid Substitution Models

There are several ways to score the pairings of amino acids in an alignment. Just
as in nucleotide substitution, the simplest scoring scheme for pairs of amino acids
is to simply count the number of matches in the alignment. However, while this
approach works reasonably well for closely related sequences but, the performance
is poor for larger evolutionary distances. What is more, such an approach completely
ignores the extra level of information contained in an amino acid sequence. There
is a wide variety of structural and chemical properties that affects how likely one
amino acid is to change into another. The development of amino acid substitution
models has gone from focusing on the matches in the alignment (Unitary Matrix),
to take the underlying nucleotide sequence into account (Genetic Code Matrix), to
letting structural and chemical properties affect the scoring (Dayhoff-type matrices)
[25]. The latter approach is almost universally used today. In general, properties to
consider in order to construct biologically relevant substitution matrices include:

• Matches should receive a higher score than mismatches.
• Conservative substitutions should receive a higher score than nonconservative.
• Different evolutionary distances require different scoring schemes.

Dayhoff et al. [18] pioneered the work of estimating substitution rates from real
observations, which gave rise to the popular PAM matrices. The underlying dataset
consisted of protein sequences that were close enough to guarantee unambiguous
alignments. This work was closely followed by Henikoff and Henikoff [42] in the
equally popular BLOSUM series. Several other models have been derived since,
including the GONNET matrix [31], which is based on an exhaustive matching of
the entire Swiss-Prot database [12], and the JTT matrix [48], which is an update of
the PAM matrix. Here, we give a brief overview of the construction of the PAM,
BLOSUM, and GONNET matrices.

All substitution matrices are essentially log-odds matrices [3]. A log-odds score
is the logarithm of the likelihood ratio of two models; the evolutionary substitution
model, assuming that the sequences are related, and the random model, assuming
independence between sequences. The evolutionary model returns the joint proba-
bility qi j of observing residues i and j together in an alignment, while the random

3.1 Pairwise Sequence Alignment 117

model returns the probability pi p j of observing two independent residues. Assuming
independence between sequence positions, the likelihood ratio of an alignment of
two sequences Y = Y1, . . . , YT and Z = Z1, . . . , ZT becomes

LR(alignment) =
T∏

t=1

P(Yt , Zt)

P(Yt)P(Zt)
=

T∏

t=1

qYt ,Zt

pYt pZt

. (3.15)

Note how this formulation is related to that of using the transition matrix of the
underlying evolutionary model

LR(alignment) =
T∏

t=1

P(Zt |Yt)P(Yt)

pYt pZt

=
T∏

t=1

aYt ,Zt

pZt

, (3.16)

where ai j is the transition probability from residue i to j . The log-odds ratio is more
convenient, however, since it transforms products to sums,

S =
T∑

t=1

log
P(Zt |Yt)P(Yt)

pYt pZt

=
T∑

t=1

log
aYt ,Zt

pZt

. (3.17)

The entries of a substitution matrix, thus, takes the form

Si j = log
ai j

p j
. (3.18)

The PAM Matrix

The work of constructing a statistically rigorous substitution model was originated by
Dayhoff et al. [18]. Their PAM series is based on observed percent accepted (point)
mutations in a large number of high-quality alignments. The notion ‘accepted’ comes
from the fact that in order to observe an evolutionary change of amino acids, a muta-
tion must not only occur; it must also be kept, or “accepted,” by the species. It was
observed by Dayhoff and colleagues that changes between structurally and chemi-
cally similar amino acids were accepted to a higher extent than changes between less
similar residues.

Before going through the steps of computing a PAM matrix it is important to note
that there are two different types of matrices at work here; the PAM transition matrix
estimating the transition probabilities of the underlying evolutionary process, and the
PAM substitution matrix consisting of log-odds ratios used to score the alignment
of amino acid pairs. The PAM transition matrix, corresponding to the evolutionary
distance of 1 PAM, is computed such that applying it to a protein sequence renders
the next “state” of the sequence to differ from the current state in on average 1 %
of the positions. The distance unit of 1 PAM thus corresponds to the time interval

118 3 Sequence Alignment

needed for evolution to create that amount of change in a sequence. If we had a
large number of aligned sequences, differing in on average 1 % of the positions, the
construction of the PAM transition matrix would be very straightforward:

1. Count the observed number of accepted point mutations fi j between each pair i
and j of amino acids.

2. Estimate the transition probabilities by the observed relative frequencies

ai j = fi j∑
k fik

. (3.19)

However, in reality, we usually face two main problems. First, the aligned sequences
are not strictly at a 1 % difference. Rather, the PAM matrices were constructed from
sequence families of as much as 15 % differences. To deal with this, we apply a scaling
factor on the observed frequencies. Second, since both the frequency of occurrence
and the substitution rate vary between residues, the dataset will typically not contain
all substitutions. At least not in enough numbers to provide a reliable estimate of the
substitution rate. Therefore, a factor called the relative mutability is applied to the
observed frequencies. The PAM transition matrix is constructed as follows:

1. Group the protein sequences into families of at least 85 % similarity.
2. Construct a phylogenetic tree of each group, inferring intermediate ancestor

sequences of each evolutionary split.
3. Count the observed number of accepted point mutations fi j between each pair i

and j of amino acids.
4. Calculate the relative mutability of each amino acid

mi =
∑

j �=i fi j

fi
(3.20)

where fi is the observed frequency of amino acid i .
5. Compute the estimated mutation probability matrix

Mi j =
⎧
⎨

⎩

m j fi j∑
i fi j

if i �= j,

1 − mi if i = j.
(3.21)

6. Scale the mutation probabilities to correspond to on average 1 % change when
applied to a protein sequence

ai j =
⎧
⎨

⎩

λ Mi j if i �= j,

1 −
∑

k �=i

λ Mik if i = j, (3.22)

3.1 Pairwise Sequence Alignment 119

where λ is a scaling factor set to yield an evolutionary distance of 1 PAM. That is,

λ = 0.01
∑20

i=1
∑

j �=i fi Mi j
. (3.23)

Similarly to the nucleotide substitution models, we assume that sequence residues
evolve independently of one another. Therefore, we can compute the scaling factor λ

by considering the substitution process of a single, but arbitrary alignment position
k. We let Xk(t) denote the residue in that position at time t , taking values in a state
space consisting of the 20 amino acids. The probability of observing a change after
1 PAM time unit is given by

P(Xk(1) �= Xk(0)) =
20∑

i=1

∑

j �=i

P(Xk(1) = j |Xk(0) = i)P(Xk(0) = i)

= λ

20∑

i=1

∑

j �=i

Mi j fi . (3.24)

Thus, to induce a 1 % change in 1 PAM time unit, we set

P(Xk(1) �= Xk(0)) = 0.01 (3.25)

and get the solution in (3.23). The resulting matrix A = (
ai j

)
i, j is the PAM tran-

sition matrix of the underlying substitution process. The computation of the PAM
substitution matrix is straightforward:

1. Calculate the relatedness odds matrix

Ri j = ai j

pi
, (3.26)

where pi is the relative frequency of amino acid i .
2. The final PAM1 log-odds matrix is then given by

PAMi j = log Ri j . (3.27)

The PAM transition matrix A = (
ai j

)
“defines” an evolutionary distance unit of 1

PAM. That is, used as a transition matrix applied to a target protein sequence, the
next “state” will be a new sequence with on average 1 % differences from the current
sequence. The distance unit of 1 PAM thus corresponds to the time interval needed
for evolution to create that amount of change in a sequence. This distance varies both
within and between species, as well as over time, such that there is no one-to-one
translation between PAM distance and actual time. There is an approximative rela-
tionship, however, between the percent difference between compared sequences and
their evolutionary distance in PAM units (Fig. 3.5). The average percent difference

120 3 Sequence Alignment

Table 3.2 The correspondence between percent differences in evolutionary related sequences and
evolutionary distance in PAM units

% difference 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

PAM distance 1 5 11 17 23 30 38 47 56 67 80 94 112 133 159 195 246 328

50

150

100

200

250

300

20 6040 80

Fig. 3.5 A plot of the percent difference against PAM distance

of amino acids for each matrix presented in Table 3.2 corresponds to

100

(
1 −

∑

i

pi aii

)
. (3.28)

The PAM model assumes that the amino acid composition remains constant over
time, and that the substitution process is time-homogeneous. As a result, the substi-
tution matrix for longer evolutionary times can be achieved directly by applying the
PAM1 matrix successively to the target sequence. The PAMn matrix can therefore
be achieved directly by matrix multiplication

PAMi j (n) = log Ri j (n). (3.29)

where Ri j (n) corresponds to the n-step relatedness odds matrix Rn , which, analo-
gously to (2.15), is given by

Ri j (n) =
20∑

k=1

Rik Rk j (n − 1). (3.30)

Equivalently, by scaling the elements in (3.22) by a different scaling factor λ, we can
achieve higher order PAMs.
That is, the PAMn matrix has scaling factor

λ = n/100
20∑

i=1

∑

j �=i

fi Mi j

(3.31)

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

3.1 Pairwise Sequence Alignment 121

Table 3.3 The PAM250 log-odds matrix using log-base 10 and multiplying the numbers by 10 for
readability

A R N D C Q E G H I L K M F P S T W Y V
A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -6 -3 0
R -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4 -2
N 0 0 2 2 -4 1 1 0 2 -2 -3 1 -2 -3 0 1 0 -4 -2 -2
D 0 -1 2 4 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -4 -2
C -2 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2
Q 0 1 1 2 -5 4 2 -1 3 -2 -2 1 -1 -5 0 -1 -1 -5 -4 -2
E 0 -1 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2
G 1 -3 0 1 -3 -1 0 5 -2 -3 -4 -2 -3 -5 0 1 0 -7 -5 -1
H -1 2 2 1 -3 3 1 -2 6 -2 -2 0 -2 -2 0 -1 -1 -3 0 -2
I -1 -2 -2 -2 -2 -2 -2 -3 -2 5 2 -2 2 1 -2 -1 0 -5 -1 4
L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1 2
K -1 3 1 0 -5 1 0 -2 0 -2 -3 5 0 -5 -1 0 0 -3 -4 -2
M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 -2 -1 -4 -2 2
F -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 9 -5 -3 -3 0 7 -1
P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1
S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2 1 -2 -3 -1
T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 -5 -3 0
W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17 0 -6
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10 -2
V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4

for n = 1, 2, 3, The PAMn matrix corresponds to an evolutionary time interval
of n PAMs, and the PAM0 matrix is simply the identity matrix, representing the
situation where no residues have changed yet. In the limit, as n increases, the matrix
values approaches the amino acid composition. The common representation of the
PAM250 matrix (sometimes referred to as the mutation data matrix MDM78 in [17])
is shown in Table 3.3. The PAM matrices are used extensively in various comparative
algorithms, and although it constitutes a fairly good approximation of the evolution-
ary process for the most part, it has some limitations. The PAM model is based on
several assumptions:

• Amino acid composition is constant over time.
• The substitution process is time-homogeneous such that the PAM1 can be scaled

to arbitrary evolutionary distances.
• The substitution rate is constant throughout the sequence.
• The transition probabilities at any site only depends on the current amino acid.
• Compared sequences have the same average amino acid composition.

In reality, these assumptions are often clearly violated. Both amino acid compositions
and substitution rates vary over time, within the same sequence, and between species,
and the mutability of a site is clearly position dependent. Moreover, by comparing

122 3 Sequence Alignment

closely related sequences, we ensure the occurrence of at most one substitution per
site, but instead we yield the problem that many substitutions occur too infrequently
to provide reliable estimates. When the mutation rates are extrapolated to longer
evolutionary distances, any such errors will propagate through the process and
become magnified in higher order matrices. A possible solution would be to use
counts from more distantly related sequences, such as in the GONNET matrices
[31] presented below. One problem with using longer distances, however, is that it
becomes much harder to resolve the “true” alignments on which the matrix is based.

The BLOSUM Matrix

The PAM model assumes constant substitution rates throughout the sequences. This
is clearly not true in reality, as certain positions are more important and thereby
more conserved than others. The BLOSUM (BLOcks SUbstitution Matrix) series
[42] attempts to utilize the observation that distantly related sequences tend to
have highly conserved regions, or blocks, intervened by less-conserved stretches
of sequence. While the PAM matrix is constructed from closely related sequences
and then extrapolated to varying distances, the BLOSUM matrices are constructed
empirically from multiple alignments of sequences at various evolutionary distances.
The multiple alignments are derived from the BLOCKS database [41, 43], and con-
sist of ungapped blocks of the most highly conserved regions in the proteins. The
BLOSUM80 matrix shown in Table 3.4 is constructed as follows.

Table 3.4 The BLOSUM80 matrix

A R N D C Q E G H I L K M F P S T W Y V
A 5 -2 -2 -2 -1 -1 -1 0 -2 -2 -2 -1 -1 -3 -1 1 0 -3 -2 0
R -2 6 -1 -2 -4 1 -1 -3 0 -3 -3 2 -2 -4 -2 -1 -1 -4 -3 -3
N -2 -1 6 1 -3 0 -1 -1 0 -4 -4 0 -3 -4 -3 0 0 -4 -3 -4
D -2 -2 1 6 -4 -1 1 -2 -2 -4 -5 -1 -4 -4 -2 -1 -1 -6 -4 -4
C -1 -4 -3 -4 9 -4 -5 -4 -4 -2 -2 -4 -2 -3 -4 -2 -1 -3 -3 -1
Q -1 1 0 -1 -4 6 2 -2 1 -3 -3 1 0 -4 -2 0 -1 -3 -2 -3
E -1 -1 -1 1 -5 2 6 -3 0 -4 -4 1 -2 -4 -2 0 -1 -4 -3 -3
G 0 -3 -1 -2 -4 -2 -3 6 -3 -5 -4 -2 -4 -4 -3 -1 -2 -4 -4 -4
H -2 0 0 -2 -4 1 0 -3 8 -4 -3 -1 -2 -2 -3 -1 -2 -3 2 -4
I -2 -3 -4 -4 -2 -3 -4 -5 -4 5 1 -3 1 -1 -4 -3 -1 -3 -2 3
L -2 -3 -4 -5 -2 -3 -4 -4 -3 1 4 -3 2 0 -3 -3 -2 -2 -2 1
K -1 2 0 -1 -4 1 1 -2 -1 -3 -3 5 -2 -4 -1 -1 -1 -4 -3 -3
M -1 -2 -3 -4 -2 0 -2 -4 -2 1 2 -2 6 0 -3 -2 -1 -2 -2 1
F -3 -4 -4 -4 -3 -4 -4 -4 -2 -1 0 -4 0 6 -4 -3 -2 0 3 -1
P -1 -2 -3 -2 -4 -2 -2 -3 -3 -4 -3 -1 -3 -4 8 -1 -2 -5 -4 -3
S 1 -1 0 -1 -2 0 0 -1 -1 -3 -3 -1 -2 -3 -1 5 1 -4 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -2 -1 -1 -2 -2 1 5 -4 -2 0
W -3 -4 -4 -6 -3 -3 -4 -4 -3 -3 -2 -4 -2 0 -5 -4 -4 11 2 -3
Y -2 -3 -3 -4 -3 -2 -3 -4 2 -2 -2 -3 -2 3 -4 -2 -2 2 7 -2
V 0 -3 -4 -4 -1 -3 -3 -4 -4 3 1 -3 1 -1 -3 -2 0 -3 -2 4

3.1 Pairwise Sequence Alignment 123

1. Retrieve protein blocks from the BLOCKS database.
2. In each block, cluster the sequences according to the given matrix level, and assign

sequence weights so that the contribution of each cluster in a block is equal to one.
For the BLOSUM80 matrix, sequences of at least 80 % identity are clustered.

3. In each block column, count the number of matches and mismatches, resulting
in a table of frequencies fi j of observed pairs of amino acids i and j .

4. Estimate the probability of occurrence for each pair

qi j = fi j

20∑

i=1

i∑

j=1

fi j

. (3.32)

5. Calculate the expected probability of occurrence (under the random model)

ei j =
{

pi p j if i = j,

2 pi p j if i �= j,
(3.33)

where pi is the probability of amino acid i occurring in a pair

pi = qii +
∑

i �= j

qi j/2. (3.34)

6. The log-odds ratio becomes

Si j = log2
qi j

ei j
. (3.35)

7. The final BLOSUM matrix entry is achieved by multiplying the log-odds score
by 2 and rounding off to the nearest integer.

The BLOCKS database consists of ungapped multiple alignments of highly con-
served protein regions, such as in Fig. 3.6. In each column in each block, all pairwise
counts are tallied, both matches and mismatches (recall that PAM only records sub-
stitutions). For instance, for the two blocks in Fig. 3.6 the count matrix becomes

A B C D
A 11
B 22
C 7 4 4
D 3 12 5 12

Different levels of the BLOSUM matrix are created by clustering the blocks according
to the specific percentage sequence similarity. In order to reduce sequence bias, the
sequences within a cluster are weighted such that the total contribution of each

124 3 Sequence Alignment

Fig. 3.6 Blocks are
constructed from ungapped
highly conserved multiple
alignments

GGHARG--RARH-
GHHGRG--RAGHH
-RHGR-ARHARH-
HHHARGA-HAAHG
-GHGHG--RARH-

cluster is equal to that of a single sequence. For instance, for a BLOSUM80 matrix,
the cluster threshold is set to 80 %. This means that if sequences A and B are at least
80 % identical, they belong to the same cluster. Furthermore, if sequence C is at least
80 % identical to either A or B, it is included in the cluster as well. That is, all pairs
in a cluster need not have a similarity above the given threshold.
Which log-base to use in the log-odds ratio is arbitrary, since its main purpose is
to transform multiplications to sums, but BLOSUM uses log-base 2 to enable the
interpretation of scores in “bits” representing the information content. By multiplying
the log-odds ratio by 2 and rounding to the nearest integer, the final BLOSUM scores
are presented in half-bit units.

The GONNET Matrix

While the PAM matrix is derived from closely related sequences, and then extrapo-
lated to longer evolutionary distances, Gonnet et al. [31] derived a more modern set
of substitution matrices by performing an exhaustive match of all protein sequences
available in the Swiss-Prot (now UniProt [92]) protein database [12]. In this match,
proteins of varying evolutionary distances (between 6.4 to 100 PAMs) were pair-
wise aligned using the Needleman–Wunsch algorithm for global alignments (see
Sect. 3.1.5), using classical substitution matrices and gap penalties. The alignments
were then refined iteratively by recalculating the substitution scores and gap penal-
ties from the new alignments, and realigning the sequences using the new scores.
To speed things up, sequence pairs of potentially significant similarities were iden-
tified by organizing the Swiss-Prot database in a Patricia tree [69]. A Patricia tree
is a special case of a prefix tree, which is a data structure used to enable efficient
string searches in, for instance, various types of dictionaries. The GONNET matrix
is constructed as follows:

1. Arrange all protein sequences in a Patricia tree.
2. Pairwise align all sequences within a preset distance in the tree, using the

Needleman–Wunsch algorithm.
3. Recalculate the substitution matrix and the gap penalties based on the alignments.
4. Iterate the alignments and the recalculation of the scores until no further improve-

ments can be made.

In order to identify all potentially significant homologies, the target score in the first
round of alignments (step 2) was set rather liberal. A comparison between substitution
matrices achieved from closely related sequences and from more distantly related
sequences were found to differ, underscoring the problem with the extrapolation to

3.1 Pairwise Sequence Alignment 125

Table 3.5 The GONNET250 matrix

A R N D C Q E G H I L K M F P S T W Y V
A 2 -1 0 0 1 0 0 1 -1 -1 -1 0 -1 -2 0 1 1 -4 -2 0
R -1 5 0 0 -2 2 0 -1 1 -2 -2 3 -2 -3 -1 0 0 -2 -2 -2
N 0 0 4 2 -2 1 1 0 1 -3 -3 1 -2 -3 -1 1 1 -4 -1 -2
D 0 0 2 5 -3 1 3 0 0 -4 -4 1 -3 -5 -1 1 0 -5 -3 -3
C 1 -2 -2 -3 12 -2 -3 -2 -1 -1 -2 -3 -1 -1 -3 0 -1 -1 -1 0
Q 0 2 1 1 -2 3 2 -1 1 -2 -2 2 -1 -3 0 0 0 -3 -2 -2
E 0 0 1 3 -3 2 4 -1 0 -3 -3 1 -2 -4 -1 0 0 -4 -3 -2
G 1 -1 0 0 -2 -1 -1 7 -1 -5 -4 -1 -4 -5 -2 0 -1 -4 -4 -3
H -1 1 1 0 -1 1 0 -1 6 -2 -2 1 -1 -3 -1 0 0 -2 -2 -2
I -1 -2 -3 -4 -1 -2 -3 -5 -2 4 3 -2 3 1 -3 -2 -1 -2 -1 3
L -1 -2 -3 -4 -2 -2 -3 -4 -2 3 4 -2 3 2 -2 -2 -1 -1 0 2
K 0 3 1 1 -3 2 1 -1 1 -2 -2 3 -1 -3 -1 0 0 -4 -2 -2
M -1 -2 -2 -3 -1 -1 -2 -4 -1 3 3 -1 4 2 0 -1 -1 -1 0 2
F -2 -3 -3 -5 -1 -3 -4 -5 0 1 2 -3 2 7 -4 -3 -2 4 5 0
P 0 -1 -1 -1 -3 0 -1 -2 -1 -3 -2 -1 -2 -4 8 0 0 -5 -3 -2
S 1 0 1 1 0 0 0 0 0 -2 -2 0 -1 -3 0 2 2 -3 -2 -1
T 1 0 1 0 -1 0 0 -1 0 -1 -1 0 -1 -2 0 2 3 -4 -2 0
W -4 -2 -4 -5 -1 -3 -4 -4 -1 -2 -1 -4 -1 4 -5 -3 -4 14 4 -3
Y -2 -2 -1 -3 -1 -2 -3 -4 2 -1 0 -2 0 5 -3 -2 -2 4 8 -1
V 0 -2 -2 -3 0 -2 -2 -3 -2 3 2 -2 2 0 0 -1 0 -3 -1 3

longer distances done in the PAM matrix model. The GONNET250 matrix is given
in Table 3.5. The matrix entries represent values for the log-odds ratio

10 log
qi j

pi p j
(3.36)

normalized to an evolutionary distance of 250 PAMs and rounded to the nearest
integer.

3.1.4 Gap Models

No matter how different two sequences are, by inserting appropriate amounts of
gaps, the number of mismatches can be decreased to zero. Using gaps in such an
unconstrained manner, however, will be a poor imitation of the biological reality.
Instead, we assume that insertions and deletions are rare events, and therefore we
penalize the use of gaps in an alignment.

Various models for gaps have been suggested, the simplest being a linear gap
model, where each insertion or deletion is assumed to involve a single residue that
is independent of everything else. A linear gap penalty function γ of a gap of length
k takes the form

126 3 Sequence Alignment

γ (k) = −δk, (3.37)

where k is the length of the gap and δ the penalty for each individual gap residue.
The problem with this model is that a gap of length k gets the same penalty as k
gaps of length 1. The biological reality, however, is that a single insertion or deletion
event tends to involve several residues at once. A more realistic gap model would,
thus, penalize gap residues less and less the longer the gap gets. A concave function
is a function that satisfies the condition

γ (k + 1) − γ (k) ≤ γ (k) − γ (k − 1), for all k. (3.38)

The implementation of a concave gap function is computationally expensive, how-
ever, requiring on the order of O(k3) in running time (number of operations), and
O(k2) in memory usage. Waterman [96] improves slightly on this by presenting a
gap function that requires O(k2 log k) in running time,

γ (k) = −δ − ε log(k). (3.39)

This model still becomes intractable for long sequences, however. Therefore, a com-
mon linear approximation of the concave gap function is to use an affine gap model.
The affine gap model is composed of two parameters; a gap opening penalty δ for
the first gap residue, and a gap extension penalty ε for any succeeding gap residues

γ (k) = −δ − ε(k − 1). (3.40)

The gap extension penalty is usually smaller than the gap opening penalty ε < δ,
resulting in a lower cost for long insertions than in a linear gap model. The gain
in efficiency using affine gaps over more general gap models is that the alignment
algorithm only needs to keep track of the previous pairing in the alignment, to see if
a current gap is part of a longer indel or not.

Example 3.1 Linear and affine gap penalties
A model using linear gaps would score the following two alignments equally,

TCAGGCTGGCCATG TCAGGCTGGCCATG
TCA--C---C-ATG TCA------CCATG

while the affine gap penalty model, with a lower gap extension penalty ε < δ, would
penalize the rightmost alignment less. �

3.1.5 The Needleman–Wunsch Algorithm

The number of possible alignments grows rapidly with the lengths of the sequences
to be aligned, and the computationally challenging task is to sift through them all in

3.1 Pairwise Sequence Alignment 127

Fig. 3.7 The calculation of
M(t, u) builds on one of
three previously calculated
cell scores in the matrix

M(t −1,u) M(t,u)

M(t −1,u−1) M(t,u−1)

−δ

s(Yt ,Zu) −δ

search for the optimal alignment. The Needleman–Wunsch algorithm [72] returns an
optimal global alignment using dynamic programming (see Sect. 2.1.3). The exten-
sion to local alignments is presented in the Smith–Waterman algorithm in the next
section.

The two sequences to be compared, Y = (Y1, . . . , YT) and Z = (Z1, . . . , ZU),
are organized in a matrix, much like a dot plot matrix (see Sect. 3.1.1), with sequence
Y on the horizontal axis and Z on the vertical axis (see Fig. 3.8). Each alignment of
Y and Z can then be represented by a pathway through the matrix, running from the
top-left corner to the bottom right. The only permissible operations while moving
along the path involve one step down, one step right, or one step diagonally downright
(see Fig. 3.7). A diagonal step represents a match or a mismatch in the alignment
(i.e., a pairing of two residues), a vertical step represents a gap in the Y sequence,
and a horizontal step represents a gap in Z .

The scoring model consists of a substitution score and a gap penalty, where the
substitution score typically comes from some kind of substitution matrix. We begin
to illustrate the algorithm using a linear gap model, and then extend it to affine gaps
in the next section. The calculations of the alignment algorithm are organized in an
(T + 1) × (U + 1) dynamic programming matrix M , indexed as t = 0, 1, 2, . . . , T ,
and u = 0, 1, 2, . . . , U where each cell M(t, u) represents the score of the optimal
alignment of the subsequences Y1, . . . , Yt , and Z1, . . . , Zu up to residue pair (t, u).
Recall from Sect. 2.1.3 that dynamic programming algorithms consist of three parts:

1. The recurrence relation.
2. The tabular computation.
3. The traceback.

The recurrence relation in the Needleman–Wunsch algorithm is given by

M(t, u) = max

⎧
⎪⎨

⎪⎩

M(t − 1, u − 1) + s(Yt , Zu) match/mismatch

M(t − 1, u) − δ gap in Z

M(t, u − 1) − δ gap in Y

(3.41)

where s(Yt , Zu) is the substitution score of residues Yt and Zu , and δ the linear gap
penalty. Thus, the score M(t, u) is built upon one of three possible previous positions
(see Fig. 3.7).

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

128 3 Sequence Alignment

The tabular computation begins by initiating row and column 0 using the following
scores

M(0, 0) = 0

M(t, 0) = −tδ (3.42)

M(0, u) = −uδ.

The tabular computation proceeds by calculating the recurrence relation for cell
(1, 1), and moving from cell to cell one row at a time. In each cell, we keep pointers
to the one of the previous three cells that was used to compose the current score.
When the matrix is completely filled, the last cell (T, U) contains the score of the
optimal global alignment of the two sequences under the model. In the traceback,
the alignment corresponding to the score M(T, U) is reconstructed by following the
pointers back from cell (T, U) to the very first cell (0, 0).

Example 3.2 The Needleman–Wunsch algorithm
Assume we were to align the two sequences

ANVDR
VANDR

using a gap penalty of δ = 8 and the BLOSUM80 substitution matrix in Table 3.4.
The tabular computation is illustrated in Fig. 3.8, where we see that the score of the
optimal alignment becomes 7.

Fig. 3.8 Alignment of
sequences ANVDR and
VCNDR using gap penalty
δ = 8 and the BLOSUM80
matrix. The four subcells in
each cell correspond to the
scores for a diagonal move
(top-left), a vertical move
(top-right), a horizontal
move (bottom-left), and the
optimal cell score
(bottom-right)

DV RNA

R

D

N

A

V

−32

0

−8

−16

−40

−16 −24 −32 −40

0

−16

−16 −12 −12 −28 −35−24 −32 −48−40

−24

42− 23−

−40

−48

0 −8 −8 −16 −12 −20 −20 −28 −28

−3 −2 −14 −22

−8

−8

−3

−16 −28 −36−20

−11 −2 −10

−8

−8 −16 −14 −22 −22

−18 3 −6 −7 −15−11 −10 −16 −22 −30

−11 −19 3 −5 −5 −13 −7 −15 −15

−26 −10 −1 1 −9−19 −5 −13 −15 −23

−19 −27 −5 −13 −1 1 −7 −7−9

−34 −19 −8 −3 7−27 −13 −9 −7

−27 −35 −13 −20 −8 −16 −3 −11

−15

7

3.1 Pairwise Sequence Alignment 129

The traceback through the matrix, following the stored pointers, reveals that the
optimal alignment achieving this score is

- A N V D R
V A N - D R �

3.1.5.1 Needleman–Wunsch Using Affine Gaps

In nature, insertions and deletions usually occur as block events. As a consequence,
the probability of a gap residue should be increased if the previous position in the
alignment contains a gap. Therefore, as discussed in Sect. 3.1.4, a more sensible
gap penalty than the linear is to use an affine gap model. The Needleman–Wunsch
algorithm can be adjusted to allow for a general gap function γ (g). Following [95],
the recurrence relation in (3.41) can be modified to

M(t, u) = max

⎧
⎪⎨

⎪⎩

M(t − 1, u − 1) + s(Yt , Zu)

M(t − k, u) + γ (k) k = 1, . . . , t

M(t, u − k) + γ (k) k = 1, . . . , u.

(3.43)

Figure 3.9 illustrates how position (t, u) in the alignment can be preceded by a gap
of length k = 1, . . . , u in the first sequence (representing an insertion in the second),
or a gap of length k = 1, . . . , t in the second sequence (representing an insertion in
the first).
The drawback with this model is that an alignment of sequences Y1, . . . , YT and
Z1, . . . , ZU , with U ≥ T , requires O(T U 2) in running time and O(T U) in memory
usage, since in each matrix cell (t, u) we need to loop through all previous positions
in column t and row u. Gotoh presented a method that reduces the running time
to O(T U) for a model using affine gaps [32]. However, in this method we need
to introduce several dynamic programming matrices. Instead of using (3.43), we

Fig. 3.9 With a general gap
function, position (t, u) can
be preceded with up to t gaps
in the sequence Z , or u gaps
in Y

M(t,u)

t

u

130 3 Sequence Alignment

introduce a gap opening penalty δ and a gap extension penalty ε and we define the
dynamic programming matrices as

M(t, u) = max

⎧
⎪⎨

⎪⎩

M(t − 1, u − 1) + s(Yt , Zu),

V (t, u),

W (t, u).

(3.44)

V (t, u) = max

{
M(t − 1, u) − δ,

V (t − 1, u) − ε.
(3.45)

W (t, u) = max

{
M(t, u − 1) − δ,

W (t, u − 1) − ε.
(3.46)

V (t, u) is the score of the optimal alignment of Y1, . . . , Yt and Z1, . . . , Zu when
Yt is aligned to a gap after Zu . Similarly, W (t, u) is the optimal score when Zu is
aligned to a gap after Yt . In other words, either we align Yt and Zu directly and add
a match/mismatch score s(Yt , Zu) to M(t, u), or Yt is part of an insertion in Y in
which case we use the V (t, u) score, or Zu is part of an insertion in Z (or a deletion
in Y) in which case we use the W (t, u) score.

V (t, u) : W (t, u) :
A D N V D Yt D C Yt - -
V C Zu- - - V C N A Zu

The induction is completed in T U steps, where in each step the cell (t, u) is calculated
in each of the three matrices. The matrices are initialized by setting M(0, 0) = 0 and

M(t, 0) = V (t, 0) = −δ − (t − 1)ε, t ≥ 1,

M(0, u) = W (0, u) = −δ − (u − 1)ε, u ≥ 1. (3.47)

Only M needs to initialize both a row and column 0. The cell values V (0, u) in
column u and W (t, 0) in row t will never be used.

Although the affine gap model is an improvement to the linear model, it is a very
crude approximation of a concave function, since, after the first gap opening residue
the affine model behaves like the linear.

3.1.6 The Smith–Waterman Algorithm

Through a simple modification of the Needleman–Wunsch algorithm, Smith and
Waterman provided a dynamic programming algorithm for local alignments [83]. The
reasoning for local alignments is simple that even if two sequences are too different
overall to produce a meaningful global alignment, they may still share segments of

3.1 Pairwise Sequence Alignment 131

high similarity. In particular, functional sequences, such as protein coding exons,
tend to diverge much slower than the more random sequences in between. This
is also the main motivation for comparative gene finding, which will be discussed
more in detail in the next chapter. The basis for such comparative analyses lies in the
ability to produce meaningful local alignments. The modification of the Needleman–
Wunsch to the Smith–Waterman algorithm simply involves adding one term to the
maximization in the recurrence relation

M(t, u) = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M(t − 1, u − 1) + s(Yt , Zu),

M(t − 1, u) − δ,

M(t, u − 1) − δ,

0.

(3.48)

The term 0 can be seen as a way of “resetting” the alignment in regions where
the overall similarity has become too low. The tabular computation is performed
as before, with the only difference that the matrix is initialized with zeros (since
negative values are no longer possible), M(t, 0) = M(0, u) = 0 for t, u ≥ 0. After
the tabular computation is terminated, the traceback starts in the cell (t, u) that holds
the highest score M(t, u). That is, the traceback can start anywhere in the matrix and
not necessarily in the bottom-right cell (T, U). The traceback then proceeds up and
left as before, following the stored pointers, until reaching a cell with score 0 (see
Fig. 3.10). In order for this to work, the expected score of a random match must be
negative. Otherwise, long random matches will get a high score just based on their
length. Also, at least some residue pairs (a, b) must have positive scores s(a, b) > 0,
otherwise all cells will be set to 0 and the algorithm will not find any alignments
at all.

Example 3.3 The Smith–Waterman algorithm

Borrowing a popular example from [19], assume that we want to align the amino
acid sequences

HEAGAWGHEE
PAWHEAE

using the Smith–Waterman algorithm with linear gap penalty δ = 8 and the BLO-
SUM80 matrix in Table 3.4. The highest score in the Smith–Waterman matrix (see
Fig. 3.10) is 26, so that is the cell where the traceback starts. The optimal local
alignment with score 26 is given by

A W G H E
A W - H E �

132 3 Sequence Alignment

H E A G A W G H E E

00000000000

P 0 0 0 0 0 0 0 0 0 0 0

00002505000A

W 0 0 0 0 1 0 16 12 9 5 1

41220138000080H

E

A

E 0

0

0 0

0

0

6

14 6

19 11

0 0

5

2

0

0 5

0

0 0

5

13 26

18

11 24

25

18

11 16 106

Fig. 3.10 The Smith–Waterman matrix

3.1.7 Pair Hidden Markov Models (PHMMs)

There are many ways to score an alignment, but one of the advantages of using
HMMs over more heuristic scoring schemes is that it places the alignment in a prob-
abilistic framework, and gives the problem of selecting an optimal solution a prob-
abilistic interpretation. HMMs applied to pairwise sequence alignments are called
pair HMMs (PHMMs). In theory, the PHMM could be extended to higher dimen-
sions, but for practical purposes the model is mostly used for pairwise alignments.
For multiple alignments, something called profile HMMs (see Sect. 3.2.9) are often
used. The PHMM has also been applied to gene finding in the comparative gene
finder DoubleScan [65], which is described in a little more detail in Sect. 4.3.1.

Preliminaries

Recall from Sect. 2.1 that an HMM is composed of two interrelated random processes:
a hidden process of states and an observed process. The hidden process is a Markov
chain that jumps between states in a state space, and is hidden from the observer,
and the observed process generate output as a function of the hidden process. The
basic mechanism of a PHMM is that of a standard HMM with the main difference
being that instead of generating a single output in each step, it emits an aligned pair
of symbols.

A PHMM can be illustrated in several ways (see [1] for a review), but a repre-
sentation that has become a bit of a standard is the one given in Durbin et al. [19].
In this setting, the PHMM state space consists of three main states (see Fig. 3.11):
S = {M, I, D}, where M stands for ‘match’, I for ‘insertion’, and D for ‘deletion’.

http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

3.1 Pairwise Sequence Alignment 133

Fig. 3.11 A PHMM state
space consists of a match
state M signifying a match or
a mismatch, an insertion state
I signifying an insertion in
the first sequence, and a
deletion state D signifying a
deletion in the first sequence

M

D

I

Begin End

To account for the fact that we are dealing with finite sequences, we also include
a silent begin and end state. When in the match state a pair of residues from some
given alphabet (e.g., DNA or protein residues) is generated. The insertion and dele-
tion states attempt to mimic the evolutionary process by assuming that the first input
sequence has mutated into the second, thus an insertion is represented by a residue in
the first sequence and a gap in the second, while a deletion results in a gap in the first
and a residue in the second sequence. Note that an output from the insertion state
may very well represent a deletion in the second sequence, rather than an insertion
in the first. The assignment of first and second sequences is arbitrary, and there is
no way of knowing if an indel event is actually an insertion in one sequence or a
deletion in the other.

When using a PHMM to model sequence alignments, the input is two potentially
homologous sequences Y and Z , and the output is the most probable alignment of
the two, given the model. Just as with standard HMMs, each possible alignment
can be represented by a path through a dynamic programming matrix. Let Y T

1 and
ZU

1 denote the pair of sequences to be aligned, where Y b
a = Ya, . . . , Yb denotes a

sequence segment running from index a to index b. We can use the same notation
as for standard HMMs, only modifying it to include two observed sequences rather
than one. As for standard HMMs, we let X L

1 denote the hidden state sequence taking
values in the state space S = {M, I, D}. We denote the initial probabilities

πi = P(X0 = i), i ∈ S, (3.49)

and the transition probabilities

ai j = P(Xl = j |Xl−1 = i), i, j ∈ S. (3.50)

Because of the occurrence of gaps in the produced alignment, the indices of the
hidden and the observed processes will differ and need to be separated just as in
GHMMs. Moreover, similarly to GHMMs, we can associate durations and partial
sums with the observed sequences, to account for whether an output is made or
not in that sequence. Let the durations corresponding to the states X L

1 be denoted
(d1, . . . , dL) in the Y sequence, and (e1, . . . , eL) in the Z sequence, respectively.

134 3 Sequence Alignment

Now we have that the pair of durations in each state follows one of three possible
patterns

(dl , el) =

⎧
⎪⎨

⎪⎩

(1, 1) if Xl = M,

(1, 0) if Xl = I,

(0, 1) if Xl = D.

(3.51)

Thus, we do not need an explicit duration distribution, since the durations are given
by the state. We use partial sums to keep track of the number of emitted symbols in
each sequence,

pl =
l∑

k=1

dk and ql =
l∑

k=1

ek, (3.52)

with pL = T , qL = U , and p0 = q0 = 0. Using the same terminology as in
GHMMs, and using the convention that Y b

a signifies a gap if a > b, the emission
probability in state Xl is denoted as

bXl (Y
pl
pl−1+1, Zql

ql−1+1|Y pl−1
1 , Zql−1

1) = P(Y pl
pl−1+1, Zql

ql−1+1|Xl , Y pl−1
1 , Zql−1

1).

(3.53)

Although very different in notation, this emission probability still corresponds to the
same kind of substitution and gap models used in the Needleman–Wunsch algorithm.
That is, for pl = t and ql = u, and using a linear gap model, we can write

bXl (Y
pl
pl−1+1, Zql

ql−1+1|Y pl−1
1 , Zql−1

1) =
{

s(Yt , Zu) if Xl = M,

−δ if Xl = I or D,
(3.54)

where s(a, b) is the substitution score for residues a and b, and δ is the linear gap
penalty. Finally, the joint probability of the hidden and the observed data can be
written as

P(Y T
1 , ZU

1 , X L
1 , d L

1 , eL
1) =

L∏

l=1

aXl−1,Xl bXl (Y
pl
pl−1+1, Zql

ql−1+1|Y pl−1
1 , Zql−1

1),

(3.55)
where X0 is the silent begin state with

aX0,X1 = πX1 . (3.56)

The Forward, Backward, and Viterbi Algorithms

The extension of the HMM algorithms to PHMMs is just as straightforward as for
the joint probability in (3.55) above. Recall that Y b

a corresponds to a gap if a > b.
The recursive relation for the forward algorithm becomes

3.1 Pairwise Sequence Alignment 135

αi (t, u) = P
(

Y t
1, Zu

1 , {some hidden state i ends at (t, u)}
)

= P
(

Y t
1, Zu

1 ,

L⋃

l=1

(Xl = i, pl = t, ql = u)
)

=
∑

j∈S

∑

(d,e)

α j (t − d, u − e)a ji bi (Y
t
t−d+1, Zu

u−e+1|Y t−d
1 , Zu−e

1)

= αM (t − 1, u − 1)aMi bM (Yt , Zu |Y t−1
1 , Zu−1

1)

+ αI (t − 1, u)aI i bI (Yt ,∅|Y t−1
1 , Zu−1

1)

+ αD(t, u − 1)aDi bD(∅, Zu |Y t−1
1 , Zu−1

1). (3.57)

The sum over the durations run over only three values (d, e) ∈ {(1, 1), (1, 0), (0, 1)},
which coincide with the states, resulting in a summation over only three terms. We
initialize the silent begin state X0 with

αi (0, 0) = πi ,

αi (t, 0) = 0 if t > 0, (3.58)

αi (0, u) = 0 if u > 0,

and terminate in the silent end state X L+1 with

αi (T + 1, U + 1) =
∑

j∈S

α j (T, U)a ji , i ∈ S. (3.59)

The probability of the pair of observed sequences, given the model, are then given
by

P(Y T
1 , ZU

1) =
∑

i∈S

αi (T + 1, U + 1). (3.60)

Similarly, the backward algorithm becomes

βi (t, u) = P
(

Y T
t+1, ZU

u+1|Y t
1, Zu

1 ,

L⋃

l=1

(Xl = i, pl = t, ql = u)
)

= βM (t + 1, u + 1)ai M bM (Yt+1, Zu+1|Y t
1, Zu

1)

+ βI (t + 1, u)ai I bI (Yt+1,∅|Y t
1, Zu

1)

+ βD(t, u + 1)ai D bI (∅, Zu+1|Y t
1, Zu

1). (3.61)

We initialize with

βi (T + 1, U + 1) = 1, i ∈ S, (3.62)

and terminate upon computation of βi (0, 0).

136 3 Sequence Alignment

As before, the Viterbi algorithm is essentially the same as the forward, but with
sums replaced by maxima. That is,

δi (t, u) = max
Xl−1

1 ,dl−1
1 ,el−1

1

P
(

Y t
1, Zu

1 , Xl−1
1 , Xl = i, pl = t, ql = u

)
(3.63)

= max
j,d,e

δ j (t − d, u − e)a ji bi (Y
t
t−d+1, Zu

u−e+1|Y t−d
1 , Zu−1

1)

= max

⎧
⎪⎨

⎪⎩

δM (t − 1, u − 1)aMi bM (Yt , Zu |Y t−1
1 , Zu−1

1)

δI (t − 1, u)aI i bI (Yt ,−|Y t−1
1 , Zu−1

1)

δD(t, u − 1)aMi bM (−, Zu |Y t−1
1 , Zu−1

1).

(3.64)

The initialization and termination is analogous to the forward, and the backtracking
proceeds just as for the GHMM in Sect. 2.2.3. Generally, for the traceback, we would
record three values in each cell of the dynamic programming matrix during the Viterbi
computation; the previous state and the durations of the two observed sequences. But
since the durations are given by the state, we only need to record the previous state.

Just as in the Needleman–Wunsch algorithm, we are not restricted to use a linear
gap model. Using affine gaps, the Viterbi would take the same form as in (3.43),
and could be split into three matrices as in (3.44)–(3.46) to reduce running time.
The calculations of the forward and backward algorithms would get a little more
complicated, however, but would still be doable.

3.1.8 Database Similarity Searches

In order to guarantee that the alignment algorithm always finds an optimal align-
ment, it has to search through all possible alignments. In effect, the algorithm has to
consider all pairings of the residues in first sequence, to the residues in the second.
Although dynamic programming methods efficiently utilize the recursive structure
of the alignment problem, they still become intractable when dealing with large
datasets. For instance, if we had a query sequence of 100 residues and wanted to
search for homologies in a database consisting of 10,000 sequences, each being 100
residues long, the dynamic programming algorithm would require a running time
proportional to 10, 000 × 1002 = 108. This is already infeasible, and the existing
databases are much larger than this and with considerably longer sequences. For
instance, Genbank contains over 76 million individual sequences constituting over
80 billion nucleotides [9], and the database is ever increasing.

Heuristic local alignment algorithms attempt to approximate the dynamic pro-
gramming approach, while at the same time increase the computational speed by only
search in small portions of the dynamic programming matrix. Wilbur and Lipman
[97] pioneered this approach by noting that most sequences in a database will not
match the query sequence, and should not be considered for alignment at all. Their
approach was to rapidly search through the database by using heuristics to exclude

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

3.1 Pairwise Sequence Alignment 137

irrelevant sequences. The basis of the method were to identify a list of short, but
highly similar words of a fixed length. These words would then function as “seeds”
for further analysis. The technique of Wilbur and Lipman remains the basis of two of
the most widely used bioinformatical tools today; FASTA [60] and BLAST [6]. The
idea is to first look for seeds in the query sequence, match them to the target sequence,
extend the region around the seeds, and then only perform a dynamic programming
alignment around the best extended regions. The gain in computational speed is
huge, but at the cost of sensitivity; the optimal alignment is no longer guaranteed to
be found.

3.1.8.1 FASTA

We expect evolutionary related sequences to contain at least short segments of com-
plete identity. Heuristic database searches focus on these short segments and attempt
to identify the most significant diagonals in a dot plot or dynamic programming
matrix of two strings. Lipman and Pearson first developed a method called FASTP
[60], which was later improved in the method FASTA [77]. FASTP was designed to
only compare protein sequence, while FASTA includes nucleotide sequence compar-
isons as well as being more sensitive than the original algorithm. FASTA, alongside
with BLAST described in the next section, is one of the most widely used tools for
database searches.

We call a novel, uncharacterized sequence the query sequence, while the sequences
in a database are called target sequences. The FASTA procedure of matching a query
sequence to a given target sequence goes as follows (Fig. 3.12):

1. Begin by identifying alignment seeds of length ktup in the query sequence. The
parameter ktup is typically 1–2 for proteins and 4–6 for DNA sequences. The seeds
are stored in a lookup (or hash) table along with their positions in the sequence. The
target sequence is then matched against the lookup table to identify all identical
ktup-length matches, called hotspots, between the query and the target sequence.
A hotspot is defined by a pair of coordinates (i, j), where i is the position of
the hotspot in the query sequence, and j the corresponding position in the target
sequence. The running time in this step will be linear in the size of the database
(the sum of all sequence lengths).

2. Hotspots on the same diagonal are linked together into diagonal runs and scored
by counting the hotspots and penalizing intervening mismatches. The 10 highest
scoring runs are selected.

3. The selected diagonal runs are re-evaluated using a substitution matrix, which is
typically the BLOSUM50 matrix for protein sequences and the identity matrix for
DNA sequences. Diagonal runs scoring below a certain threshold are discarded
and the highest scoring subalignment is denoted init1.

4. Until now, insertions or deletions have not been allowed. In this step, we attempt
to combine the “good” subalignments into a single longer approximate alignment
allowing for gaps by applying a kind of “joining” penalty, similar to gap penalties.

138 3 Sequence Alignment

This can be done by constructing a weighted graph, where the vertices are the
subalignments and the weight of each vertex is the score assigned in the previous
step. We extend an edge from subalignment a to subalignment b by moving
horizontally or vertically in the alignment matrix. Each edge is given a negative
weight depending on the number of gaps required, and the score of the entire path
is the sum of the vertice weights and the edge penalties. If the highest scoring
path, denoted initn , scores above a certain threshold we continue to the next step.

5. In addition to initn , FASTA calculates an alternative optimal score, denoted opt,
using a banded Smith–Waterman algorithm centered around the diagonal run
init1. The band width required depends on the choice of ktup and the idea is that
the best alignment path between the hotspots in the init1 subalignment is likely
to reside within a narrow band around the init1 diagonal.

6. In the last step, all database sequences are ranked according to their initn or
opt score, and the highest ranking candidates are realigned using a full dynamic
programming algorithm.

7. FASTA displays the highest ranking alignments along with a histogram over
the initial scores of the database sequences and a calculation of the statistical
significance of the opt score of each alignment.

To improve speed, a lookup table of the database is usually precomputed and
only updated when new entries are inserted. Because of the dynamic programming
approach in the last step of the FASTA algorithm, the final score of a candidate match
is comparable to any exact algorithm score. However, FASTA only determines the
highest scoring alignment, not all high-scoring alignments between the sequences.
Thus, repeated instances or multiple protein domains will be missed. The choice of
ktup determines the sensitivity versus computational complexity. Choosing ktup = 1
achieves a sensitivity close to that of a local dynamic programming algorithm, while
higher values increases the speed immensely, at the risk of missing true matches.
Although it is possible to show instances where the optimal alignment is missed by
FASTA, in most cases the reported alignments are comparable to the optimal, at the
while the algorithm is much faster than any exact algorithm.

As an additional note, the FASTA file format, defined by Pearson and Lipman [77],
is now one of the standard input formats for many other sequence analysis tools.

3.1.8.2 BLAST

BLAST [6], which stands for Basic Local Alignment Search Tool, is one of the most
widely used computer tools in biology. The motivation for developing the algorithm
was to increase the speed of heuristic searches even further, by looking for even
fewer and better alignment seeds. This is accomplished by integrating a substitution
matrix already in the first step. As a result, BLAST is empirically about 10 to 50
times faster than the Smith–Waterman algorithm.

Similarly to FASTA, BLAST is a word-based heuristic algorithm that identifies
short segments of high similarity, which are then extended into longer alignments.

3.1 Pairwise Sequence Alignment 139

sequence 1 sequence 1

sequence 1sequence 1

se
qu

en
ce

 2

se
qu

en
ce

 2
se

qu
en

ce
 2

se
qu

en
ce

 2
(a) (b)

(c) (d)

Fig. 3.12 Illustration of the FASTA algorithm. a Hotspots are identified and linked together in
diagonal runs. b Selected diagonal runs are rescored and the highest scoring are filtered out.
c Subalignments are joined. d The highest ranking subalignments are realigned using dynamic
programming

The short segments, or words, are longer in BLAST than in FASTA, with typical
lengths of w = 3 to 5 for protein and w = 11 to 12 for DNA sequences. BLAST
uses an approximation of the Smith–Waterman algorithm, sometimes referred to
as the maximal segment pairs algorithm. The algorithm identifies ungapped local
alignments of a query sequence and a target sequence, and only include the first and
the last elements in the Smith–Waterman recurrence relation in (3.48).

M(t, u) = max

{
M(t − 1, u − 1) + s(Yt , Zu),

0.
(3.65)

140 3 Sequence Alignment

Given a query sequence and a target sequence, the procedure of BLAST is as follows:

1. List all words of length w in the query sequence.
2. Compare the words to all possible w-lengthed words (20w possibilities for amino

acids and 4w for nucleotides), and score the alignment using a substitution matrix.
The scoring scheme used is typically a PAM120 matrix for protein sequences and
match score 5 and mismatch score-4 for DNA sequences.

3. Organize the words that score above a threshold T in a search tree.
4. Scan the target sequence for identical matches to the words in the search tree.

These matches, which are called hotspots in FASTA, are called hits in BLAST.
Note the difference between BLAST and FASTA here; FASTA lists all identical
matches as hotspots, while BLAST focuses only on the high-scoring ones.

5. Extend each hit to see if it is contained in a longer, ungapped local alignment,
called a high-scoring segment pair (HSP). Continue the extension both to the
right and to the left of the hit until the score drops more than a certain amount
below the maximum score seen yet. List all HSPs that score above a (different)
threshold S.

6. Display the HSPs ranked according to a measure of statistical significance. This
measure is described further in the next section.

Note that the search tree in step 3 may be empty for a given query sequence and a
given threshold T . The trade-off between speed and sensitivity is regulated by the
setting of T .

BLAST is typically more sensitive than FASTA for protein alignments. The reason
is the modifications to the heuristic algorithm, where conservative substitutions are
allowed in the HSPs as long as the HSP score is above a given threshold. Since this
modification has less effect for DNA sequences because of the smaller alphabet to
be matched, FASTA tends to be more sensitive than BLAST for DNA sequences.

Gapped BLAST

The extension step of BLAST (step 5 above), where a hit is extended into a longer seg-
ment, accounts for 90 % of the computational time. Therefore, considerable improve-
ments to the computational complexity have been gained by the so-called two-hit
method [7], where an extension of a hit is made only if two hits, within a certain
distance from each other, are found on the same diagonal of the alignment matrix.
Moreover, the new version of BLAST, called Gapped BLAST, allows for gaps in the
extension step. The Gapped BLAST algorithm is an improvement both in speed and
sensitivity compared to the original algorithm, with a computational time about three
times faster. With steps 1 to 4 being the same as in the original algorithm, the gapped
BLAST method proceeds as follows:

5. In the dynamic programming matrix of the sequences, search for pairs of nonover-
lapping hits on the same diagonal, at a distance of at most A steps. Concatenate
such pairs.

6. Look for the highest scoring window of a given length l (typically l = 11) in
the two-hit segments. Extend the alignment around the middle pair of residues

3.1 Pairwise Sequence Alignment 141

in the window, using the Smith–Waterman algorithm. The alignment is extended
in both directions, allowing for gaps, until the score drops more than a certain
amount below the maximum score seen yet.

In order to maintain the same sensitivity as in the original algorithm, the threshold
value T in step 3 above has been lowered in Gapped BLAST. As a result, more
single hits are found, but only a small fraction constitute a two-hit pair. The resulting
gapped Smith–Waterman alignment will be optimal if two conditions are met:
(1) the alignment is extended until score 0 is reached. Using a higher score as stop-
ping rule saves computing time, but at a small risk of missing the optimal alignment.
(2) The middle pair of residues chosen as starting point for the extension must be a
part of the optimal alignment achieved in a full Smith–Waterman alignment.

PSI-BLAST

Position-Specific Iterative BLAST, or PSI-BLAST [7], is yet another extension of
the BLAST algorithm. Here the highest scoring hits of a regular BLAST query are
used to construct a profile matrix (see Sect. 3.2.9), which is then used to search the
database again. The profile is then iteratively refined until the list of highest scoring
hits no longer changes. Each iteration of PSI-BLAST takes about the same time as
running Gapped BLAST, but is much more sensitive for distantly related sequences.
The algorithm has a drawback, however. If the query sequence contains a strongly
conserved domain, the profile will tend to be biased toward that domain, and may
miss out on picking up relevant, but weaker, homologies in other regions of the
sequence.

3.1.9 The Significance of Alignment Scores

It would be desirable to have some sort of measure of significance of an alignment
score, to be able to judge if the match indicates true homology or have arisen by
chance. Unfortunately, the statistical theory for optimal alignments is very com-
plex. Typically, one would like to compare the optimal score of a pair of aligned
sequences to the corresponding score distribution of the alignments of random, unre-
lated sequences. This can be done by employing various kinds of Monte Carlo meth-
ods, where large samples of representative pairs of random sequences are aligned and
compared to the original alignment. However, constructing such random sequences
is far from straightforward, and a number of issues need to be considered [28], since
different sampling methods can yield very different score distributions. Regardless
of method, in the case of global optimal alignments any sample of random sequences
can only give indications regarding the mean and standard deviation of the align-
ment score distribution, while the behavior of the distribution at large remains mainly
unknown. For local alignments scores, on the other hand, much more is known, and
particularly for local ungapped alignments a rigorous statistical theory for the score
distribution has been provided [50].

142 3 Sequence Alignment

The optimal alignments of a sample of random sequences provide us with a
sample of the score distribution for unrelated sequences. An important note is that
the corresponding scores each constitute the maximum of all possible scores for the
respective pair of sequences. While the well-known central limit theorem states that
the sum of a large sample of independent, identically distributed random variables
tends toward a normal distribution, the extreme value theorem gives us the limiting
distributions of minima and maxima of large samples. Karlin and Altschul [50]
showed that the score distribution of ungapped Smith–Waterman alignments tend to
a distribution called the extreme value type I distribution, or the Gumbel distribution
[36]. The Gumbel distribution models the extremes of ordered samples. That is, if
we generate a large number of samples from some distribution and only keep the
maximum value in each sample, the sample of maxima will approximately follow a
Gumbel distribution. The Gumbel distribution for the maximum M of a sample is
given by

P(M ≤ x) = exp{e− x−μ
σ } (3.66)

where μ is the mean, and σ the standard deviation of the distribution.
Karlin and Altschul adapted this theory to the situation of ungapped local align-

ments [50]. Using the terminology of BLAST in Sect. 3.1.8, recall that a high-scoring
segment pair (HSP), is an ungapped alignment of a segment where the score can-
not be improved either by trimming or extending the segment. The distribution of
HSP scores in random sequences is characterized by two parameters, λ and K . For
two random sequences of lengths m and n, respectively, the probability of the local
optimal alignment score S exceeding some value s, say, is given by the P-value of S

P = P(S ≥ s) ≈ 1 − exp{−Knme−λs} = 1 − e−E (3.67)

such that the parameters of the Gumbel distribution in (3.66) becomes μ =
log K mn/λ and σ = 1/λ. The E is called the E-value for threshold s and corresponds
to the expected number of HSPs having scores above s in the random model

E = E[#HSPs with score ≥ s] = Knme−λs (3.68)

The parameters λ and K depend on the scoring scheme used, that is, the substitu-
tion matrix and the gap penalty model. Two restrictions are imposed on the scoring
scheme for the theory to work; (1) the substitution matrix used to score residue pairs
must include at least some positive values, and (2) the expected score per pair must
be negative. If the latter condition is not fulfilled, the algorithm would score high for
long alignments just based on their lengths, regardless of similarity [50].

To get rid of the dependence on the scoring system, or more specifically on the
parameters λ and K , it is common to normalize the local alignment score into a “bit
score”

S′ = λS − log K

log 2
(3.69)

3.1 Pairwise Sequence Alignment 143

The E-value corresponding to bit score S′ is then approximated by

E ≈ mn 2−S′
. (3.70)

BLAST reports the normalized score and the E-value in (3.69) and (3.68), respec-
tively, where m is the length of the query sequence and n the length of the database
(sum of all sequence lengths).

The statistical theory developed by Karlin and Altschul was meant for ungapped
local alignments only, but there are strong indications that the same theory is applica-
ble for gapped local alignments as well [4, 7, 70, 76, 84]. A main difference is that
while parameters λ and K can be resolved analytically for ungapped alignments [50],
they have to be estimated for gapped alignments.

3.2 Multiple Sequence Alignment

Multiple sequence alignment is the extension of pairwise alignments to multiple
sequences. Multiple alignments provide more reliable information about sequence
homology than pairwise comparisons, and have many uses in molecular biology,
including:

• Identifying functionally important sites.
• Estimating the evolutionary relationship between sequences and constructing phy-

logenetic trees.
• Detecting weak but significant similarities.
• Predicting secondary structures of proteins.
• Predicting gene function.
• Designing primers for PCR experiments.

The problem of multiple sequence alignments is far from trivial due to its computa-
tional complexity. The field is growing fast and the algorithms improve continuously,
but with the ever-increasing demand for faster and more accurate methods, we have
probably only seen the beginning of this development. Here we give an overview
of the most common approaches and directions. For a more thorough description,
there are numerous good references giving detailed accounts of the underlying theory
[11, 38, 81, 96] and surveying past and recent developments [14, 23, 34, 73, 93].

In Sect. 3.2.3, we discuss the extension of dynamic programming to multiple
alignments. A dynamic programming approach would, similarly to its application to
pairwise alignments, treat evolutionary events such as substitutions, insertions, and
deletions simultaneously in all sequences considered. This problem is NP-complete,
,however, with the computational complexity growing exponentially in the number
of sequences [94]. A possible solution, used for instance in the MSA package [61]
(see Sect. 3.2.3), is instead to restrict the search space in some manner, and focus
on a subset of multiple alignments that is likely to contain the optimal solution.

144 3 Sequence Alignment

Unfortunately, the number of sequences that can be considered this way is still very
limited.

Another popular approach is to use progressive methods, described in Sect. 3.2.4,
where sequences are not aligned simultaneously, but instead included progressively
into the multiple alignment in order of their evolutionary relationships. Sequences
or groups of sequences are then aligned to the growing multiple alignment in a
pairwise manner, by using sequence profiles to represent the subalignments. Profiles
are discussed in Sect. 3.2.9.

One major problem with progressive methods is the high dependence on a correct
initial alignment, since once errors are introduced they will be propagated through
the entire process. To salvage this, many progressive methods include an iterative
refinement strategy, where the multiple alignment is recomputed in various manners
during its progressive build-up. Iterative methods are presented in Sect. 3.2.5.

An emerging field is that of structure alignments. As the tertiary structure of
proteins tends to be more conserved than the primary sequence, the inclusion of
structure information in the algorithm improves the quality of the multiple align-
ment immensely. Moreover, proteins with highly similar functions, but with too
weak sequence similarity to be detected by sequence-based methods, may often
be clearly distinguishable by structural alignment methods. This field shows great
promise, and will continue to grow as more and more protein structures become
available. However, the methods differ greatly from the sequence analysis tools
described here, and is therefore outside the scope of this book. For references, see for
instance [100].

3.2.1 Scoring Schemes

Similarly to pairwise alignments, a multiple alignment is obtained by placing the
sequences on top of each other, and inserting gaps in various places and numbers
in the sequences to increase the overall similarity. A multiple alignment can thus be
seen as a two-dimensional lattice, where the sequences constitute the rows and each
column represents a sequence position of common ancestry.

Ideally, we would score a multiple alignment based on the phylogenetic tree it
induces. Unfortunately, we rarely have enough data to parametrize such a complex
model, and a number of simplifications are necessary. As for pairwise alignments,
it is common to assume independence between sequence positions and score each
column separately. However, now that we have multiple characters in each column,
it is not obvious how to do that. For instance, a direct generalization from pairwise
alignments would be to score an alignment of three sequences

E A A S
V A - S
G C A -

3.2 Multiple Sequence Alignment 145

as the sum of the column scores

S = s(E, V, G) + s(A, A, C) + s(A,−, A) + s(S, S,−), (3.71)

where each column score is built on the probability of observing the three residues
together

s(a, b, c) = log
qabc

pa pb pc
. (3.72)

However, the amount data required to achieve reliable estimates of the three-way
probabilities qabc makes this scoring scheme intractable already for three sequences.

Another problem is that the evolutionary history of the sequence family under
analysis is not known, but needs to be inferred from the sequence alignment itself. As
a result, our ability to determine a “correct” alignment will vary with the relatedness
of the sequences, which makes it difficult to unambiguously produce a single correct
alignment. It is therefore common to focus on subsets of columns corresponding to
core structural elements that can be aligned with more confidence.

If we assume independence between columns, the scoring function of a multiple
alignment M can be written

S(M) =
∑

C

S(C) (3.73)

where C is a column in the multiple alignment. There are several possible ways to
define the column score S(C). One of the first, and probably the most popular, meth-
ods is the Sum-of-Pairs (SP) method [14], where the score of a multiple alignment
column is simply the sum of all pairwise scores in that column. Several variations
of this method exists, including the Weighted Sum-of-Pairs [5], which takes into
account the phylogenetic relationships between the sequences. Other approaches,
such as minimum entropy and maximum likelihood scores [34], use background
distributions of the column residues.

Sum-of-Pairs (SP)

The Sum-of-Pairs (SP) method [14] is one of the most popular methods for scoring
multiple alignments. It scores each column as the sum of all pairwise scores, such
that a column C = (a, b, c)T gets score

S(C) = log

(
qab

pa pb

)
+ log

(
qac

pa pc

)
+ log

(
qbc

pb pc

)
=

∑

i< j

s(ai , a j) (3.74)

where ai and a j are residues i and j , respectively, in the column. The corresponding
score for the entire multiple alignment M is then as in (3.73).

There are several problems with the SP score, however, and while it makes
sense in the pairwise case, it has no theoretical foundation in the multiple case. For
instance, highly correlated sequences will tend to outvote other, more distantly related

146 3 Sequence Alignment

sequences that may carry more information [5]. In other words, single mutation events
gets overweighted, and, more troubling, the relative score due to a single mutation
decreases as the number of sequences increases. An illustrative example of this is
given in [19].

Weighted Sum-of-Pairs (WSP)

One way to correct for the bias in SP scores is to introduce sequence weights between
all sequence pairs [5], resulting in a kind of weighted SP score (WSP) such that the
score of alignment column C can be written

S(C) =
∑

i< j

wi j s(ai , a j) (3.75)

where wi j is the weight between sequences i and j . By weighting the sequences, the
contribution of highly similar sequences is decreased and the sequence bias gets less
pronounced.

Minimum Entropy

Shannon entropy, or just entropy, in effect measures the level of variability, or ran-
domness, of a variable or a process, and the idea of the minimum entropy score is to
minimize the entropy of each column in the alignment. The entropy measure can be
written as

H(X) = −
∑

x

p(x) log p(x) (3.76)

where p(x) is the density function of some random variable X , and the sum runs
over all possible values of X . If we were to assume independence, not only between
the columns in a multiple alignment, but between sequences as well, the probability
of a column C could be written

P(C) =
∏

a

q fa
a (3.77)

where qa is the probability of residue a, and fa is the proportional count of a in the
column. The negative logarithm of this becomes exactly the minimum entropy score
of the column

S(C) = −
∑

a

fa log qa . (3.78)

The more conserved a column is, the smaller the score, and a completely conserved
column yields score 0. Thus, the optimal alignment using minimum entropy scoring,
is the one that minimizes the sum of column scores.

3.2 Multiple Sequence Alignment 147

The minimum entropy score makes more biological sense than the SP score,
since it directly emphasizes the conservation of a column. The assumption of inde-
pendence between sequences is reasonable as long as the sequences aligned are not
too biased. Various tree-based weighting schemes have been proposed as solutions
to this problem.

3.2.1.1 Gap Costs

How to extend the gap models of pairwise alignments to multiple alignments is not
immediately clear. Just as for pairwise alignments, the simplest model is to assume
that each indel residue is independent of everything else. In that case, the gap cost
can be included as en extra residue in the substitution matrix, and the inclusion in
the alignment score is straightforward. For instance, the SP score is easy to extend
to include gaps:

s(ai ,−) = −δ. (3.79)

Although, such a gap model typically generates multiple alignments with many
isolated single-residue gaps, and, thus, serves as a bad imitation of the evolutionary
process.

Affine gap costs, with separate gap opening and gap extension penalties (see
Sect. 3.1.4) generate more sensible alignments. However, as the indel length grows
the affine model becomes more and more similar to the linear. Moreover, the extension
of the affine gap model to SP-scored multiple alignments, sometimes called a natural
gap cost, is not straightforward and is computationally expensive. Altschul introduced
the quasi-natural gap model, which, by modifying the affine gap model slightly,
avoids the explosion in computational complexity that the natural gap cost model
suffers from [2]. The quasi-natural gap cost is simply the natural gap cost with an
additional cost for gaps that are opened or closed within another gap. This does not
affect the resulting multiple alignment, but it reduces the information that needs to
be stored by the dynamic programming algorithm significantly.

3.2.2 Phylogenetic Trees

The construction of phylogenetic trees is closely related to that of multiple align-
ments, as several phylogenetics methods require an initial multiple alignment to
construct the tree. In particular, progressive alignment techniques use a phylogenetic
tree to determine the order of the progressive adding of sequences.

The two basic method areas for phylogenetic analysis are distance methods
and character-based methods. In distance methods the phylogenetic tree is con-
structed from estimated evolutionary distances between sequences (or organisms).
The key assumption is that the pairwise distances are additive in the corresponding

148 3 Sequence Alignment

tree. Although this rarely holds true when using estimated distance data, coming
for instance from sequence comparisons, the goal of distance methods is to find
the phylogenetic tree that most closely fits the additivity assumption. Examples of
distance-based methods are the UPGMA [85] and the Neighbor-Joining method [80].
Examples of character-based methods are parsimony methods and maximum like-
lihood methods. Parsimony methods search for the most “parsimonious” tree, i.e.,
the tree that requires the fewest number of evolutionary events to move between the
sequences. Maximum likelihood methods search for the tree that gives the highest
likelihood of the observed data under a given model of sequence evolution.

Phylogenetic data can be displayed in many different ways. For instance, the
resulting trees can be rooted or unrooted. In a rooted tree, the distance to a common
ancestor is included, while in an unrooted tree no assumptions about a common
ancestor is made. A common notion in phylogenetic analysis is the Operational Tax-
onomic Units (OTUs). These constitute the actual objects, sequences, or molecules
that we want to relate in a phylogenetic tree, and that will appear as external nodes
(leafs). The internal nodes in the tree represent hypothetical evolutionary events, or
ancestral units.

There are many different algorithms for constructing phylogenetic trees. Here we
briefly describe the Neighbor-Joining method which is used both by MSA [61] and
CLUSTALW [91].

3.2.2.1 The Neighbor-Joining Method

The neighbor-joining (NJ) method [80] is a distance-based clustering method used to
construct phylogenetic trees. Unlike its simpler predecessor, UPGMA, [85], evolu-
tionary rates are allowed to vary between lineages. Instead, the distances are assumed
to be additive, meaning that the pairwise distance between two organisms can be
achieved by adding the distances of each branch in the tree. However, even when the
distances used are nonadditive distances, NJ produces reasonable phylogenetic trees.
A basic concept of NJ is the concept of “neighbors.” A pair of OTUs are neighbors
if they are connected by a node in an unrooted, bifurcating tree.

Assume that we have a distance matrix of N OTUs where di j denotes the distance
between OTUs i and j according to some measure. The NJ algorithm is initialized
by placing the OTUs in a star tree with center node X , and proceeds as follows:

1. Given the distance matrix, compute a new matrix M of values

Mi j = (N − 2)di j − Di − D j (3.80)

where Di represents the total dissimilarity from OTU Si and the rest, and is given
by

Di =
N∑

j=1

di j . (3.81)

3.2 Multiple Sequence Alignment 149

Fig. 3.13 The
Fitch-Margoliash method
can be used to determine the
branch lengths a, b, and c in
a star tree of three OTUs

A

B

C
a

b

c

2. Choose the OTU pair with the smallest value in M and make them “neighbors”
by creating a new node Y between this pair and the node X .

3. Temporarily collapse all other OTUs into one group and calculate the branch
lengths between the neighbor pair and node Y using the Fitch-Margoliash method
[29] for a three-branches star tree (see below).

4. Calculate the branch lengths of all other OTUs outside this pair to the new node
Y , using the Fitch-Margoliash method iteratively on the pair and each outside
OTU.

5. Consider the joined neighbors as a single, composite OTU and repeat steps 1–5
until only three OTUs remain.

6. Use the Fitch-Margoliash method on the final three (composite) OTUs.

Fitch-Margoliash

The Fitch-Margoliash method [29] can be used to calculate the branch lengths in a
star tree of three OTUs, by using the additive assumption of the distance matrix. That
is, in a system of three OTUs, A, B, and C say (see Fig. 3.13), the individual branch
lengths are achieved by solving the following equation system

⎧
⎨

⎩

dAB = a + b
dAC = a + c
dBC = b + c

⇐⇒
⎧
⎨

⎩

a = (dAB + dAC − dBC)/2
b = dAB − a
c = dAC − a

(3.82)

One problem with the neighbor-joining algorithm is that in the attempt to represent
the data in an additive tree, branches may be assigned negative lengths. Since branch
lengths provide an estimate of the number of substitutions that have occurred, nega-
tive measures become a problem. A common solution is to turn the negative length
to zero, and transfer the difference to an adjacent branch so that the total distance
between adjacent pairs remains unchanged. That way the topology of the tree is
preserved.

3.2.3 Dynamic Programming

In order to guarantee that an optimal solution is found, ideally we would like to extend
the dynamic programming approach of pairwise alignments to multiple alignments.

150 3 Sequence Alignment

A naive implementation of aligning K sequences, however, requires a K -dimensional
dynamic programming matrix. In fact, the problem of finding a global optimum for
multiple alignments grows exponentially with the number of sequences and has been
found to be NP-complete [94]. The algorithm in the MSA package, described next,
still attempts to utilize the strengths of dynamic programming but by limiting the
search space to the area most likely to harbor the optimal solution.

3.2.3.1 The MSA Package

The program MSA [61] (Multiple Sequence Alignment) extends the dynamic pro-
gramming approach for pairwise alignments to multiple alignments by first reducing
the search space by means of pairwise alignments and the Sum-of-Pairs (SP) method
[14] described above. The idea is that a multiple alignment imposes constraints on
the search space of each of the pairwise alignments and vice versa. Therefore, when
projecting a multiple alignment onto a pairwise alignment space, it is possible to
bound the number of points through which the projection can pass, which in turn
limits the number of possible points in the original multiple space. The intersection
of all these pairwise subsets of the search space is then thought to contain the optimal
alignment. The MSA algorithm proceeds as follows:

1. Calculate the scores of all pairwise alignments.
2. Estimate a phylogenetic tree based on the pairwise scores.
3. Calculate sequence pair weights according to the estimated evolutionary relation-

ships.
4. Produce a heuristic multiple alignment.
5. Calculate lower bounds of each sequence pair.
6. Compute the reduced search space.
7. Construct the final, optimal multiple alignment.

The pairwise alignment scores can be calculated using full pairwise dynamic pro-
gramming, but is typically performed using a faster heuristic method such as FASTA
[77]. Based on these scores, a phylogenetic tree is constructed using the neighbor-
joining method [80] described above. To circumvent the problem of a biased sequence
set giving too big importance to groups of near-similar sequences, MSA weights the
sequence pairs using either of the methods described in [5].

MSA uses a clever algorithm for reducing the volume of the multidimensional
dynamic programming matrix [14]. First, a heuristic multiple alignment is con-
structed, using progressive method similar to that of Feng and Doolittle [26]. Based
on this, MSA calculates bounds on each of the pairwise alignments in order to reduce
the search space. To illustrate, assume that we have a heuristic multiple alignment
of N sequences with SP score

S =
∑

k<l

S(akl), (3.83)

3.2 Multiple Sequence Alignment 151

where akl is the imposed pairwise alignment of sequences k and l and the sum runs
over all such pairs 1 ≤ k < l ≤ N . If, among all possible pairwise alignments of
sequences k and l, âkl is the optimal one, it holds that

S(âkl) ≥ S(akl). (3.84)

MSA then determines a lower bound βkl for each sequence pair, and only considers
pairwise alignments of scores higher than this bound

S(akl) ≥ βkl . (3.85)

More specifically, a cell in the dynamic programming matrix is included in the
reduced search space if the optimal pairwise alignment going through that cell scores
higher than the bound βkl (see Fig. 3.14). The default is to use the score of the pairwise
alignment imposed by the heuristic multiple alignment as lower bound for each pair
of sequences. The optimal multiple alignment is then searched for using dynamic
programming in the intersection of all reduced pairwise matrices.

Since the choice of gap penalties influences the resulting optimal alignment heav-
ily, it seems reasonable to choose a model that uses the same rationale as substitution
scores. That is, a natural extension of the SP method would be to penalize gaps in
a multiple alignment as the sum of all pairwise gap penalties. However, this has
turned out to lead to problems, and instead MSA uses an affine gap model presented
in [2], where gaps that span several columns are penalized less than the sum of the
individual gap costs. As a result, columns are not scored independently, but depend
on whether the previous column includes a gap or not.

In the original setting using the algorithm in [14], MSA could be used to align up to
six sequences. Although the time and memory requirements have been substantially
improved [37], the MSA method still becomes impractical when aligning more than

Fig. 3.14 A reduced search
space of the MSA program.
A cell of the dynamic
programming matrix is
included in the search space
if the optimal pairwise
alignment going through that
cell has a score higher than
the specified lower bound

Se
q
k

Seq l

152 3 Sequence Alignment

20 sequences or so. Because of the computational complexity, dynamic programming
algorithms for multiple alignments are typically only used when benchmarking new
heuristic methods, or when an extremely high-quality alignment is needed for a
very small number of sequences. Moreover, the quality of the resulting alignment
is questioned, as Gupta and colleagues have shown that the MSA package rarely
produces a provable optimal alignment [37].

3.2.4 Progressive Alignments

While being a direct extension of the pairwise approach, the dynamic programming
method for multiple alignments can be used only for very few, and relatively short
sequences. Progressive methods are the most widely used approach when construct-
ing multiple alignments. Although being heuristic, meaning that the optimal solution
is not guaranteed to be found, they produce reasonable alignments of large sequence
sets, and at a much lower computational cost. Progressive methods build-up the mul-
tiple alignment by adding sequences progressively according to their evolutionary
relationships. The algorithms typically consist of two main steps: the construction of
an evolutionary tree, called a guide tree, and the progressive building of the multiple
alignment. The general approach for most progressive alignment methods goes as
follows:

1. Produce pairwise alignments between all sequence pairs.
2. Calculate a distance measure for each pair.
3. Construct a guide tree based on these distances.
4. Combine the sequences into a multiple alignment in the order given by the guide

tree, starting with the closest pair.

The progressive methods vary in how they treat these steps. The pairwise alignments
can be constructed using dynamic programming, in which case the optimal similarity
scores are used, but since this becomes computationally expensive for large sequence
sets, it is common to use a fast heuristic also in this step. The guide tree is constructed
by clustering the pairwise alignment scores using methods such as the UPGMA [85]
or neighbor-joining method [80] described above.

In the final step, the guide tree is used to determine the order in which to incorporate
new sequences. Starting with the closest pair of sequences, new sequences or groups
of sequences are added progressively until all sequences have been included. If two
or more sequences are joined by a common ancestor prior to their converging to
the growing multiple alignment, we first align this subgroup, and then align that
alignment to the multiple alignment. It is not obvious how to score such a procedure,
however. If we use SP scores, a common approach when aligning two alignments is
to use the average pairwise score between the two sequence groups.

3.2 Multiple Sequence Alignment 153

Fig. 3.15 Alignment of
alignments

Group 1: Group 2:
L L E L K S A
F I E I K N G

M K - G

For instance, if we were to align the two groups in Fig. 3.15 the score of aligning the
second column in group 1 to the first in group 2, say, would be

S = 1

6

(
s(L , L) + s(L , I) + s(L , M) + s(I, L) + s(I, I) + s(I, M)

)
,

where s(L , L) is the score of aligning residue L in the first group to residue L in the
second and so on. Regarding the gaps, a common policy is “once a gap, always a
gap.” That is, when adding a sequence to the growing multiple alignment, gaps are
maintained throughout the progressive build-up.

The most widely used set of progressive methods is the Clustal family, with the
weighted variant CLUSTALW [91], described in the next section, at the frontier.
The Clustal suite offered great improvement in both sensitivity and speed when
it was first introduced, and has inspired the construction of several methods that
today perform better than their predecessor. One such method is T-Coffee [75],
which is among the most accurate methods to date [23]. With T-Coffee came the
novelty of using consistency-based scoring in progressive alignments, which has
been adopted in several methods since then. The basic idea behind consistency-
based scoring is to keep the pairwise alignments in a multiple alignment consistent.
That is, given three sequences Y , Z , and W , and three pairwise alignments (Y, Z),
(Z , W), and (Y, W), two of the alignments (Y, Z) and (Z , W) implicitly induce an
alignment between sequences Y and W that may differ from the computed alignment
(Y, W). Consistency-based scoring algorithms seek a multiple alignment that keeps
the pairwise alignments consistent.

Example 3.4 CLUSTALW
The progressive alignment method CLUSTALW [91] is one of the most commonly
used progressive methods. It extends the original algorithm CLUSTAL [44] to, among
other things, include sequence weights according to similarity to avoid the problem
of sequence bias. The procedure of CLUSTALW goes as follows:

1. Pairwise align all sequences.
2. Calculate a distance matrix of all sequence pairs based on their similarities.
3. Construct a guide tree from the distance matrix.
4. Progressively align the sequences in the order given by the guide tree.

The pairwise alignments are constructed using dynamic programming by default,
but CLUSTALW offers as an option—the fast heuristic alignment method that was
used in the original CLUSTAL program [98]. The guide tree is constructed from the
pairwise alignments scores using the neighbor-joining method [80] described above.

154 3 Sequence Alignment

Hbb_Human

Hbb_Horse

Hba_Human

Hbb_Horse

Lgb2_Luplu

Glb5_Petma

Myg_Phyca
0.389

0.398

0.219

0.442

0.226

0.061

0.062

0.084

0.081

0.055

0.065
0.015

Hbb_Horse

Myg_Phyca

Hba_Human

Hba_Horse 0.068

0.086

0.394

0.084
Hbb_Human

0.227 0.013

0.215

0.402

0.506

0.062

0.062

Lgb2_Luplu

Glb5_Petma

(a) (b)

Fig. 3.16 The CLUSTALW guide tree is used to calculate sequence weights and determine the
order of the progressive alignment. a illustrates a star tree and b a rooted tree. Reproduced from
[91] by permission of Oxford University Press

Table 3.6 Distance matrix giving the number of mismatches per residue

A B C D E F G

A - Hbb_Human – 0.17 0.59 0.59 0.77 0.81 0.87

B - Hbb_Horse – 0.60 0.59 0.77 0.82 0.86

C - Hba_Humam – 0.13 0.75 0.73 0.86

D - Hba_Horse – 0.75 0.74 0.88

E - Myg_Phyca – 0.80 0.93

F - Glb5_Petma – 0.90

G - Lgb2_Luplu –

The guide tree determines both the progressive order of the multiple alignment and
the weights assigned to the sequences. The sequences are weighted according to their
distance to the root in the guide tree, and sequences of a common branch share the
weights for that branch (see Fig. 3.16).
To illustrate the CLUSTALW procedure, we borrow the example in [91]. In this
example, seven sequences are aligned: Hba_Human (human α-globin), Hba_Horse
(horse α-globin), Hbb_Human (human β-globin), Hbb_Horse (horse β-globin),
Myg_Phyca (sperm whale myoglobin), Glb5_Petma (lamprey cyanohaemoglobin),
and Lgb2_Luplu (lupin leghaermoglobin). The sequences (and their names) come
from the UniProt database [92]. The score between each sequence pair i, j is
calculated as

d(i, j) = # matches

ungapped positions
. (3.86)

This score is sometimes referred to as a fractional identity score. The corresponding
distance measure is simply 1 − d(i, j), giving the average number of differences
per residue. The resulting distance matrix is given in Table 3.6. The neighbor-joining
method is then used to construct the unrooted tree illustrated in Fig. 3.16a. The
corresponding rooted tree in Fig. 3.16b is produced by placing the root “in the middle”
of the unrooted tree, such that the average branch lengths are equal on each side of
the root [90]. The weights given in Fig. 3.16b depend on the distance from the root,

3.2 Multiple Sequence Alignment 155

and sequences with a common branch split the weight. Since Lgb2_Luplu does not
share branches with anyone else, its weight becomes 0.442, while, for instance, the
weight for Hbb_Human is

w(Hbb_Human) = 0.062

6
+ 0.015

5
+ 0.061

4
+ 0.226

2
+ 0.081 = 0.223.

�
One major problem with progressive alignments is that of local optima. Due to
the greedy nature of the algorithm, there is no guarantee that the reported optimal
solution is a global optimum. Errors introduced in intermediate steps become fixed
and are propagated through the process, such that the result depends heavily on the
correctness of the initial alignment and the quality of the guide tree. Thus, while
computing optimal pairwise alignments between all sequences easily become too
heavy computationally, using heuristic methods for determining the distances may
compromise the guide tree. Another problem is the choice of scoring scheme. Since
we might be dealing with sequences at very different evolutionary distances, using
the same substitution matrix for all distances may be inappropriate. Some methods
therefore use several substitution matrices based on how evolutionary related the
individual sequences are.

3.2.5 Iterative Methods

The quality of progressive alignments depend heavily on the initial alignment. If
the sequences to be aligned are evolutionary distant their alignments become less
reliable, and errors made in the initial alignment are propagated through the multiple
alignment. Iterative methods attempt to correct this by recalculating the multiple
alignment through the progressive build-up. The refinement is typically produced
by splitting the multiple alignment into subgroups that are iteratively realigned and
joined back into a multiple alignment. The way of splitting into subgroups varies; it
can be guided by a phylogenetic tree, certain sequences may be separated from the
rest, or the subgroups may even be chosen at random. There is still no guarantee,
however, that the resulting multiple alignment is the optimal solution.

An early example of iterative multiple alignments was presented in the soft-
ware package PRRN/PRRP [33]. PRRN/PRRP uses a randomized iterative refine-
ment strategy, known as hill climbing, to improve the initial multiple alignment
[10]. Another iterative approach is introduced in DIALIGN (DIagonal ALIGNment)
[67, 68], where local, gap-free segments of high similarity are combined into a multi-
ple alignment. The gap-free segments correspond to diagonals in the pairwise align-
ment matrices, and are scored according to their degree of similarity as well as their
overlap with diagonals in other sequence pairs. DIALIGN generally produces high-
quality multiple alignments, but at the cost of computational complexity. To speed
things up, the local alignment tool CHAOS [13] has been included as a preprocessing

156 3 Sequence Alignment

step. CHAOS is used to identify an initial set of highly similar regions in the input
sequences that are then used as anchor points by DIALIGN. The anchor points con-
stitute pairs of equally lengthed sequence stretches which have to be matched in
the multiple alignments. These anchor points thus guide the multiple alignment and
reduce the search space of possible solutions.

More recent approaches include MUSCLE [22] and MAFFT [51], which both use
variants of tree-dependent restricted partitioning [45] as their iterative refinement
method (see Example 3.5). A novelty in MAFFT is the use of a fast Fourier trans-
form (FFT) to rapidly identify homologous segments between sequences or groups of
sequences. The algorithm detects peaks in the correlation between the chemical prop-
erties of the amino acids compared, which then provide the basis for the guide tree.

Example 3.5 MUSCLE
MUSCLE [22] is a fairly recent progressive alignment method that employs iterative
refinement. It uses strategies similar to that of PRRN [33] and MAFFT [51] and
offers great improvements in both computational speed and alignment accuracy.
The MUSCLE procedure consists of three main steps, each producing a multiple
alignment that is built progressively using profile-to-profile alignments. The steps
are detailed below, but to summarize, in the first step, a rough multiple alignment is
generated using a fairly crude guide tree. A distance matrix is calculated based on the
fraction of conserved k-mers (short exact matches of fixed length k) between pairs of
sequences. In the second step, the initial alignment is improved by generating a more
accurate guide tree based on the initial alignment. The pairwise similarity scores
are recalculated using the same “fractional identity” score as in CLUSTALW (3.86).
To reduce computational complexity, the multiple alignment is calculated only for
those branches of the tree that differ from the original guide tree. The second step
can be iterated if necessary, and in the final step the multiple alignment is further
refined using a variant of the tree-dependent restricted partitioning method [45]. The
MUSCLE procedure can be summarized as follows:

I. Draft progressive alignment:

1. Calculate the k-mer similarity score for all pairs of sequences.
2. Construct a distance matrix corresponding to the similarity scores.
3. Construct a guide tree based on the distance matrix.
4. Progressively align the sequences according to the guide tree.

II. Improved progressive alignment:

1. Calculate the fractional identity score d of pairwise alignments imposed by
the multiple alignment in the previous step.

2. Calculate the Kimura distance [55] described in Sect. 3.1.2 for all sequence
pairs

dK = − log(1 − d − d2/5). (3.87)

3. Construct a new guide tree using the new distance matrix.

3.2 Multiple Sequence Alignment 157

4. If the new tree differs from the previous a new progressive alignment is built.
To reduce computational complexity, subalignments are produced only for
the changed subtrees.

5. Either iterate this step or go to the next. The process is considered to have
converged if the number of changed nodes does not decrease between iter-
ations.

III. Iterative refinement (tree-dependent restricted partitioning):

1. Go through the edges in the order of the guide tree, starting with the edge
most distant from the root.

2. Remove the edge, resulting in two disjoint subtrees.
3. Generate profiles for each subtree using the multiple alignment from the

previous step. Discard columns containing only gaps.
4. Realign the profiles of the two disjoint subtrees.
5. Compare the SP scores of the old and the new alignment. If the score is

increased, keep the new alignment, and discard it otherwise.
6. Iterate until all edges can be visited without changing the original alignment,

or until reaching a user-defined maximum number of iterations.

The default method in MUSCLE for constructing the guide tree is UPGMA [85], but
Neighbor-Joining [80] is implemented as a user option (see Sect. 3.2.2). A common
scoring function for aligning profiles is a profile version of the SP score (PSP) used
in both CLUSTALW and MAFFT. The PSP score for aligning columns y and z in
two respective profiles is defined as

PSP(y, z) =
∑

i

∑

j

fi (y) f j (z)Si j (3.88)

where fi (y) is the observed frequency of residue i in column y and Si j is the sub-
stitution matrix score for aligning residues i and j . MUSCLE uses this score along
with a kind of position-specific affine gap penalty when assessing a new alignment
in the refinement step. The substitution matrices used are the PAM JTT 200 [48] and
PAM VTML 240 [71] matrices. In addition, MUSCLE implements a log-expectation
(LE) score defined as

L E(y, z) = (1 − fG(y))(1 − fG(z))
∑

i

∑

j

fi (y) f j (z)
pi j

pi p j
, (3.89)

where fG(y) is the observed frequency of gaps in column y. The probabilities pi , p j ,
and pi j , corresponding to the background frequencies and joint alignment probability,
respectively, of residues i and j , are taken from the PAM VTML 240 matrix. Since
the substitution matrix score in (3.88) is in the form

Si j = log
pi j

pi p j
, (3.90)

158 3 Sequence Alignment

the two scoring functions are very similar, with the main difference being the two
(1 − fG) factors in (3.89). These factors can be seen as “occupancy” factors of a
column, and are included to counteract unnecessary inclusions of gaps.
The affine gap model used to align a gap of length k in sequence Y to residues
zm1, . . . , zmk in sequence Z is given by

γ (k) = b(zm1) + t (zmk) + εk, (3.91)

where b(·) and t (·) are position-specific gap-opening and gap closing penalties, and
ε is an extension penalty that does not vary with position. MUSCLE offers several
different strategies for weighting the sequences according to their evolutionary rela-
tionships (including no weighting), but is using the CLUSTALW approach as default
(see Example 3.4). �

3.2.6 Hidden Markov Models

A hidden Markov model (HMM) is also a kind of iterative method, since the model
is updated with each additional sequence that is included in the alignment. However,
unlike other iterative methods, the parameters of an HMM are trained in parallel with
the construction of the multiple alignment. Multiple alignments based on HMMs can
be modeled by an acyclic graph of a linearly arranged set of vertices corresponding
to the columns in the alignment, and where each multiple alignment corresponds to
a path through the model. Recall from Sect. 2.1 that an HMM is composed of two
interrelated process: a hidden process and an observed process. In multiple align-
ments, the observed process constitutes the aligned sequence columns, and the hidden
process constitutes the underlying sequence of states where the state space consists
of matches, insertions, and deletions, just as in PHMMs in Sect. 3.1.7. Typically,
HMMs are trained using the Baum–Welch algorithm [79], but other methods such
as gradient descent [8] or simulated annealing [15, 57] can also be used. These and
other training methods are described in Chap. 6.

SAM—Sequence Alignment and Modeling

The program SAM [47] uses an HMM for multiple alignments. The state space,
illustrated in Fig. 3.17, mimics pairwise sequence alignments with affine gaps [47].
The alignment columns are laid out linearly, and each position has three states: match,
insertion, or deletion. In terms of adding a new sequence, a match state corresponds
to matching a residue of the new sequence to the multiple alignment column. In the
insertion state, the residue of the new sequence is “skipped” by the HMM, resulting
in a completely new column in the multiple alignment where the inserted residue
is matched to gaps in all previous sequences. In the deletion state, the multiple
alignment column is skipped by the new sequence instead, resulting in a gap in the
new sequence. In this fashion, each residue of the new sequence either belongs to a
match or to an insertion state.

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_6

3.2 Multiple Sequence Alignment 159

EB

i0 i1 i2 i3 i4

d1 d2 d3 d4

m2 m3 m4m1

Fig. 3.17 The state space of an HMM for multiple alignment. Reproduced from [47] by permission
of Oxford University Press

Just as in standard HMMs, the SAM model is composed of a hidden process and
an observed process. The hidden process, denotes it X L

1 = X1, . . . , X L , is a Markov
chain that jumps between states in a state space S = {s1, .., sN }. The observed process
now corresponds to the new sequence Y L

1 that we want to align to the model. Just as
in pair HMMs (see Sect. 3.1.7), an alignment can be specified by a path through the
state space. The probability of aligning sequence Y L

1 to the model can be written

P(Y L
1 , X L

1) =
L∏

l=1

aXl−1,Xl bXl (Yl) (3.92)

where ai j denotes the transition probability between states i and j , and bXl (Yl)

denotes the emission probability of observing residue Yl in state Xl . Note that both
the observed and the hidden sequences are of the same length L here. This notation
is possible if we only include match and insert states in the path X L

1 . The delete states
are included implicitly in the calculations such that if two consecutive states are not
directly connected in the state space, the transition probability between these states
include the transition via one or more delete states. For instance, if a match state in
column 1 (m1) is followed directly by an insert state in column 4 (i4) in the path, the
transition probability is given by

am1,i4 = am1,d2 ad2,d3 ad3,d4 ad4,i4 . (3.93)

Note that this notation makes it easy to implement affine gap penalties. A transition
from a match or insertion state to a deletion state correspond to a gap opening penalty,
while transitions between deletion states correspond to a series of gap extension
penalties.

The SAM parameters are trained using a modified version of the Baum–Welch
algorithm in Sect. 6.5, called maximum a posteriori estimation (MAP). Typically, the
parameters are estimated by using proportional counts of the corresponding events
in training set. If the training set is small or biased, however, there is always a risk of

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

160 3 Sequence Alignment

overfitting, meaning that the model fits only the training set, and any new sequence
will appear very unlikely under this model. SAM solves this problem by using a
regularizer in the reestimation step of the Baum–Welch algorithm. A regularizer can
be compared to the use of pseudocounts in parameter training (see Sect. 6.2) in which
a constant or random amount is added to the estimate to avoid overfitting.

One advantage of HMMs over other multiple alignment approaches is that HMMs
can be trained on unaligned sequences, while profiles, for instance, are constructed
from an existing initial multiple alignment. Moreover, the probabilistic foundation of
HMMs enables a meaningful interpretation of its parameters and scores. However,
HMMs suffer from several problems as well. First, the training set needs to be
rather large. Second, it is not possible to capture correlations between nonadjacent
positions. This is a problem since, in reality, amino acids that are physically far apart
in a polypeptide may become very close as the protein folds. Chemical and electrical
interactions between such amino acids are not captured in a linear model. Also,
residues are implicitly assumed to be independent in the model. This is something
that is not always true biologically, since some amino acids are more likely to appear
in near vicinity of each other than others. Third, like progressive alignments, the result
is affected by the order in which sequences are included. HMMs cannot explicitly
incorporate sequence weights, however.

3.2.7 Genetic Algorithms

Genetic algorithms, introduced by J.H. Holland in the 1960s [46], constitute a special
kind of search techniques in machine learning, and can be used in various optimiza-
tion problems. Although not originally developed for sequence analysis, the tech-
nique is inspired by the evolutionary process and Darwin’s “survival of the fittest”
by simulating a large set of solutions that “evolve” through inheritance, selection,
mutations, and recombinations. The popularity of genetic algorithms in optimization
problems is due to their ability to find the solution of rather complicated systems with-
out having to explicitly model complex interactions. Here we give a brief overview of
the technique applied to multiple alignments. For more details on the general theory,
see for instance [66].

A genetic algorithm starts out by generating a random initial population, where
each member is a potential solution to the optimization problem. A number of indi-
viduals are then selected for “reproduction.” Individuals are selected based on their
“fitness.” The better the fitness the higher the chance of being selected. The fitness
is measured by some kind of objective function, such as the Sum-of-Pairs (SP) mea-
sure for multiple alignments. The selected individuals are then modified in some
manner, mimicking the mutation process, to generate a new generation. The most
common modification operators are crossover and mutation. In a crossover opera-
tion, two parents are combined to generate the offspring, while a mutation operation
only involves the modification of a single parent. Generation sizes are typically kept
constant and the process is iterated either until a specified number of populations

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

3.2 Multiple Sequence Alignment 161

have been generated, or until a convergence criterion has been met. To ensure that
the highest scoring solutions are not lost, it is common to let a fraction of the parent
population move on unmodified to the next generation, while the mutation process
is applied to the rest to generate the remaining offsprings of that new generation.

An advantage of genetic algorithms over other optimization methods is that they
can move very abruptly; the offspring generated from one or two parents may be
radically different from its parents. Thus, the method is less likely to fall into a local
optimum. A disadvantage is that fit individuals tend to reproduce more quickly than
less fit, resulting in a large fraction of highly similar individuals in the population.
Such a reduced diversity will slow the algorithm down, unless the optimal solution is
among this over-represented group. Therefore it is important to choose an objective
function that is biased toward the more fit individuals, while still preserving the
diversity of the population.

Example 3.6 SAGA
SAGA (Sequence Alignment by Genetic Algorithm) [74] is a multiple alignment
software that uses a genetic algorithm to search for an optimal solution. The method
attempts to mimic the evolutionary process by evolving a population of multiple
alignments, while gradually improving the fitness of the population. The fitness is
measured by an objective function, which in SAGA typically is a weighted Sum-
of-Pairs score using the PAM250 matrix and an affine gap penalty. Given a set of
sequences, the SAGA procedure can be summarized as follows:

1. Generate an initial population of multiple alignments. Each alignment is con-
structed by choosing a set of random offsets, one for each sequence, move the
sequences to the right in the multiple alignment according to these offsets, and fill
the beginning and end with gaps to achieve rows of equal lengths. Generate n such
multiple alignments using a unique set of offsets for each alignment (typically
n = 100).

2. Evaluate the fitness of each member of the population. Each member (multiple
alignment) of the current population, Gn say, is assigned a fitness score using the
objective function.

3. Select individuals for reproduction. The half of the current population Gn with
the best fitness is sent directly to the next generation Gn+1, without modifications.
The other half of Gn+1 are generated by selecting parents from Gn and modifying
them.

4. Create the remaining half of the next generation. The members in Gn are used
for reproduction as follows:

a. Select parents from the current population. The expected number of off-
springs θ for each individual is estimated for each member in Gn (typically
θ ∈ {0, 1, 2}), and the selection probability of an individual is simply

P(Individual i is selected) = θi∑
j θ j

.

162 3 Sequence Alignment

b. Select reproduction operator. SAGA consists of a set of reproduction oper-
ators, each being either of crossover or mutation type. In the first round, all
operators have equal probability of being selected, but as the process goes
along these probabilities are dynamically improved based on their recent
efficiency (typically based on 10 generations back). That is, if an operator is
used to generate an offspring that gets better fitness than its parents, the oper-
ator (and preceding operators) gets a credit that will improve its selection
probability.

c. Generate an offspring. A crossover involves the combination of two parent
alignments, and results in two potential children. However, only the best-
scoring child alignment is considered. A mutation involves the modification
of a single parent. If the child is kept, the expected number of offsprings θ

is reduced by one in each of the parents.
d. Check for duplicates. Duplicates are not allowed, thus a newly generated

child is only kept if it is unique in Gn+1 and is otherwise discarded.
e. Iterate. Continue until the new generation has been filled with n individuals.

5. Evaluate the fitness of the new population. If the end condition is met, return the
highest scoring member as the solution. Otherwise, return to step 3 and construct
a new generation of offsprings.

To ensure that not only the best fit members of a population are used for reproduction,
each member get assigned an expected number of offspring value θ . During repro-
duction each parent is chosen with a probability proportional to this value, and each
time a member is used for reproduction, its expected offspring value is decreased
by 1. As a result, its probability of being selected as parent for the next child is
reduced, corresponding to a variant of selection without replacement. This process
is continued until all the parents have been chosen.

The operators used for reproduction of new generations belong to one of two
groups: crossovers or mutations. Mutation operators modify the alignment of one par-
ent in a number of different ways; by inserting gaps, by shuffling blocks of sequences
or blocks of gaps around, or by locally rearranging the alignment within a block.
A crossover involves splitting the two parental multiple alignments and rejoining
the subalignments with the other parent. The split can be made in two ways, one-
point or uniform. In the one-point variant, the multiple alignment of the first parent
is cut vertically at a completely random position of the alignment, and the second
parent alignment is cut in a staggered manner such that when recombining the sub-
alignments between the parents, the individual sequences are preserved in both new
alignments (see Fig. 3.18 for an illustration). One problem with this method is that
it can be very disruptive, especially around the cut position. Therefore, the uniform
variant is implemented in SAGA. The first step in this variant is to identify consistent
positions between the two parent alignments, meaning columns that are completely
conserved between the two. Then blocks between these consistent positions can be
swapped freely between the two parents. Thus, a child alignment is constructed by
fixing these consistent positions and then inserting blocks between them from either
parent. The blocks can be chosen in a stochastic or in a semi-hill climbing manner.

3.2 Multiple Sequence Alignment 163

WGEVN---VDEVGGEAL-
WDKVNEEE---VGGEAL-
WGKVG--AHAGEYGAEAL
WSKVGGHA--GEYGAEAL

--WGEVNVDEVG-GEAL
WD--KVNEEEVG-GEAL
WGKVGA-HAGEYGAEAL
WSKVGGHAGE-YGAEAL

WGEV--NVDEVG-GEAL
WDKV--NEEEVG-GEAL
WGKVGA-HAGEYGAEAL
WSKVGGHAGE-YGAEAL

--WGEVN---VDEVGGEAL-
WD--KVNEEE---VGGEAL-
WGKV--G--AHAGEYGAEAL
WSKV--GGHA--GEYGAEAL

Fig. 3.18 One-point crossover. The first parent is cut vertically at some random position. The
corresponding cut in the second parent becomes staggered in order to preserve the sequences.
Reproduced from [74] by permission of Oxford University Press

In the stochastic variant, each block is chosen randomly from one of the par-
ents, while in the semi-hill climbing variant the best-scoring sequence of blocks
is used. �

3.2.8 Simulated Annealing

Physical annealing is used to shape metals or to make glass or crystals less brittle
and more workable. The process consists of three stages: heating the material to a
desired temperature, holding at that temperature, and then a slow cooling down to
room temperature. In terms of thermodynamics, annealing is a process of obtaining
low-energy states of a metal or a crystal. The heating makes the atoms “unquench”
from the current state, and as the material is cooled down the atoms recrystallize in a
more ordered fashion, until reaching the state with the minimum internal energy, the
“frozen” state. However, if the initial temperature is too low the metal may become
quenched in a metastable state, and if the cooling is done too fast, the internal stress
may induce warping or cracking.

Simulated annealing, first introduced in [15, 57], is a Monte Carlo sampling
technique used to obtain an approximate solution to large optimization problems.
It has, for instance, been successfully applied to the Traveling Salesman Problem
[15], which is a classical, NP-complete optimization problem. Simulated anneal-
ing attempts to mimic the annealing process in thermodynamic systems by means
of heating, holding, and cooling the system. The correspondence between the two
processes is rather straightforward. The states in the thermodynamic system, repre-
senting the position of the atoms, translates to different solutions to the optimization
problem. The internal energy function is analogous to the objective function, and the
final frozen state translates to the global minimum. There is no obvious analogy for
the temperature, however, other than that it corresponds to a control parameter that

164 3 Sequence Alignment

represents the “willingness” of the system to jump to a state that is worse (has higher
energy) than the current.

A simulated annealing algorithm starts out with a high temperature τ (can be
infinity) that is gradually decreased until reaching τ = 0 or to a preset termination
value. The annealing schedule must be constructed in a way that ensures that the
process reaches this termination value. At each temperature step, the algorithm runs
a number of iterations where the current state is replaced by a random neighboring
state. The iteration is a descendant to a Monte Carlo simulation method called the
Metropolis algorithm [64], in which the choice of neighbor depends on the current
temperature and on the difference in energies between the states. In the algorithm,
a new state is chosen by making a slight modification to the current state. If the
energy of the new state is lower than for the current one, the new state is kept. If the
energy is higher, a Boltzmann acceptance probability is used to determine whether
the state is accepted or rejected. Basically, the acceptance criterion states that if the
energy difference is small enough, the state change is likely to be accepted, while if
the difference is too large the state is likely to be rejected. In this formulation, the
algorithm always chooses to go “downhill” when possible, but this is not a necessary
condition for the method to work. One side effect of the Metropolis scheme is that
both very good and very bad moves are excluded, but since the bad moves tend to
outnumber the good ones, it is a reasonably efficient strategy.

The jumps between solutions are almost random for high temperatures, while
lowering the temperature results in a gradually smaller search space of suboptimal
solutions. The acceptance criterion for states of higher energy allows for some moves
in the “wrong” direction, which, in contrast to more greedy algorithms, makes the
method less prone to fall into local optima. As the temperature goes down, how-
ever, the process becomes more and more reluctant to move toward higher energies.
Therefore, analogously to the physical process, too fast cooling will risk the process
of getting stuck in a local minimum. The success of the process thus depends on
the annealing schedule, which means the choice of initial temperature, the number
of iterations at each temperature step, and how fast the temperature is decreased
between steps.

Simulated annealing can both be used to train parameters, such as in the HMM-
based multiple alignment software HMMER [20] and as a refinement method of
already existing alignments such as in MSASA [52]. The application of training
HMMs with simulated annealing is described in Sect. 6.10.

Example 3.7 MSASA
Simulated annealing is similar to genetic algorithms in that it produces high-scoring
multiple alignments by iterative rearrangements. The main difference is that instead
of producing a random population of multiple alignments, simulated annealing moves
between the possible solutions using a probabilistic transition rule, in order to find
the optimal solution. This approach has been implemented in the program MSASA
(Multiple Sequence Alignment using Simulated Annealing) [52].

MSASA begins with a heuristic multiple alignment, which is then iteratively
refined using a set of transition and acceptance rules. Let M = {M1, M2, . . . , Mn}

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

3.2 Multiple Sequence Alignment 165

(a)
KDM-ASNYKEL---GF

ND----MAAQYKVLGF

(b)
KDM-ASNYKEL---GF

ND-MAAQYK---VLGF

Fig. 3.19 The Swap(2, 4, 6, right) operation swaps in the second sequence the gaps to the right
and including position 4 with the six residues to the right of these gaps

be the state space of possible multiple alignments, and C(Mi) a real-valued cost
function assigned to each state. The goal is to find the multiple alignment M∗ ∈ M
that minimizes the cost. The cost function constitutes the usual alignment score,
including substitution costs (or scores) and gap costs. The scoring scheme in MSASA
uses the Sum-of-Pairs score and natural gap costs described in Sect. 3.2.1.
The simulated annealing algorithm operates by generating a new alignment Mnew
from the current one Mcur using a transition rule that swaps the positions of null
characters (gaps) and residues.

Transition Rule

• Swap(i, j, k, dir): where i is the sequence, j the position (column) in the multiple
alignment, k the number of residues to be swapped, and dir is the swapping
direction, which is either left or right.

If the swapping direction is right, the operator takes all consecutive nulls to the right
of, and including, position j and swaps them with the k residues to the right of
these nulls. For instance, the operation Swap(2, 4, 6, right) alters the alignment (a)
into alignment (b) in Fig. 3.19. The new multiple alignment Mnew is produced by
applying the Swap-operator to each sequence in Mcur that has a null in column j .
Note that the Swap-operations may result in null columns in the new alignment, i.e.,
columns with gaps in all sequences. These cannot be removed during the simulated
annealing process, however, since reducing the length of the alignment reduces the
search space of possible solutions and thus risks excluding the optimal alignment.
Null columns are removed only after the annealing schedule has finished.

Acceptance Rule

The new alignment Mnew is either accepted or rejected using the Metropolis accep-
tance scheme [64] as follows. For ΔE = C(Mnew) − C(Mcur) if

ΔE :
{

≤ 0 accept the new state Mnew,

> 0 accept the new state with probability P(ΔE) = e−ΔE/τ .

The second criterion enables moves to states of higher cost and thereby prevents the
algorithm from getting stuck in a local minimum. The temperature τ controls the
rearrangement rate and the likelihood of each new state.

166 3 Sequence Alignment

The MSASA algorithm proceeds as follows:

1. Generate an initial multiple alignment: the initial alignment can be arbitrary, but
in order to speed things up MSASA is initiated by an alignment produced by the
MSA program [61] described in Sect. 3.2.3.

2. Choose an initial temperature τ : the temperature is initially set high and then
gradually decreased towards zero.

3. Create a new alignment from the current: the transition rule is applied as follows:

a. Choose a column j at random in the current alignment Mcur.
b. Choose a random direction dir ∈ {left, right}, and a random integer k ∈

[1, 10] and apply the Swap(i, j, k, dir) operator to each sequence in Mnew
that has a gap in column j .

4. Accept or reject the new alignment: if the new alignment Mnew has a lower
cost than the current, accept it. Otherwise, accept it with probability P(ΔE) =
e−ΔE/τ .

5. Decrease the temperature: τ = γ τ for some preset constant 0 < γ < 1.
6. End condition: if the temperature is below the final temperature τ f = 1/ log k,

remove all null columns and return the final alignment. Otherwise, return to step
3 and construct a new alignment. �

3.2.9 Alignment Profiles

In the early days of protein sequence analysis it was observed that some proteins
contained long segments that were very similar to other proteins, while the rest of
the sequence had no detectable similarity to any known protein at all. Today, we know
that most functional sequences come in families having diverged from a common
ancestor either through duplications within the genome, or through speciation into
different organisms. We know that proteins are composed of domains, which are
sequence segments that are responsible for the structure and function of the protein,
and that are often separated by sequence stretches that have little or no impact on
the activities of the protein. There are today several databases [27, 43, 82] that keep
track of known domains, which proteins that are involved in which processes, and that
store multiple sequence alignments of relevant segments in the protein sequences.
These databases allow for analyses of new sequences in terms of which families
they belong to, and what domains they contain, and thereby inferring their potential
function.

We can use a sequence family to search a database for new members, or search for
family membership of a new sequence in a database of families. A naive way to do this
would be to perform pairwise searches for each sequence in the family, but then we
might miss distantly related sequences matching features appearing in the multiple
alignment but not in the pairwise alignment. In order to identify new family members,
or family membership of a new sequence, we want to utilize features common for the

3.2 Multiple Sequence Alignment 167

family as a whole, rather than distinct similarities in a pairwise comparison. Profile
analysis is about identifying and using such features for multiple alignments.

3.2.9.1 Standard Profiles

The notion of profiles was introduced by Gribskov et al. [35] as means for detecting
more distantly related sequences than pairwise comparisons would allow in a data-
base search. The idea was straightforward and very efficient. A profile can be con-
structed from a set of multiply aligned sequences, or from a single sequence that has
been equipped with additional structural information. The result is a position-specific
scoring matrix (PSSM) that scores the probability of observing a given amino acid, or
a gap, in a specific position in the multiple alignment. A PSSM typically consists of
20+ columns and L rows, where L is the length of the underlying multiple alignment,
and the columns represent the 20 amino acids, and possibly additional columns for
gaps and unknown residues. The gap score can be split into two columns, one for a
gap opening and one for a gap extension penalty. Thus, note that while the rows in a
multiple alignment correspond to the sequences in the alignment, the representation
is rotated in a profile (see Fig. 3.20).

An entry Mka in the profile represents the score of observing amino acid a in
position k in the underlying multiple alignment. The method used by Gribskov et al.
[35] is commonly referred to the average score method. In this method each profile
entry is on the form

Mka =
20∑

b=1

ckb

N
s(a, b) (3.94)

where s(a, b) is the substitution matrix score (PAM or BLOSUM) for amino acids
a and b, ckb is the count of amino acid b in column k in the multiple alignment,
and N is the number of aligned sequences. The average method suffers from the
same problem as the Sum-of-Pairs scoring method for multiple alignments; if the
sequence set is biased, some sequences will be given too big importance in relation
to more distantly related sequences. Just as in multiple alignments, this problem can
be resolved by appropriate weighting of the sequences [62, 90]. An overview of
different sequence weights is found in [19].

Another problem, which in a sense is on the other side of the same coin, is that
with the average score method the score of a completely conserved column will be
equal to that of a single sequence. This is counter-intuitive since having a completely
conserved column in a multiple alignment should give that residue more weight the
more sequences that were included. The use of sequence weights will unfortunately
not resolve this problem completely. What we would like is some kind of probability
distribution over the residues in each position. This problem gets a natural solution,
however, in the application of hidden Markov models to profile analysis, described
in the next section.

168 3 Sequence Alignment

(a)
S S Q S L L D S G D G N T Y L
G D S L R - - - - - - G Y D A
A S G F T F S - - - - A N D M
A T G Y T F S S - - - - Y E L

(b) A C D ... Y Gap

1 A A G S A 10 3 4 ... -4 9
2 T S D S S 4 3 5 ... -4 9
3 G G S Q G 5 1 6 ... -6 9
4 Y F L S F -1 2 -4 ... 7 9
5 T T R L T 1 -2 0 ... -2 9
6 F F . L F -2 -3 -6 ... 8 4
7 S S . D S 3 2 5 ... -3 4
8 S . . S S 2 3 1 ... -2 4
9 . . . G G 2 0 2 ... -2 4

10 . . . D D 1 -1 4 ... -1 4
11 . . . G G 2 0 2 ... -2 4
12 . A G N A 6 0 4 ... -3 4
13 Y N Y T Y 0 5 0 ... 6 9
14 E D D Y D 2 -2 9 ... 0 9
15 L M A L L 3 -5 -3 ... 0 9

Fig. 3.20 A part of the profile example given in [35]. a The multiple alignment underlying the
profile. b The leftmost column, with numbers, gives the profile positions, the next four columns
represent the rotated multiple alignment, followed by a column representing the consensus of the
alignment. The corresponding profile is given in the framed box. Each column gives the score for a
specific amino acid at each position in the profile, and the rightmost column gives the gap penalty
for each position

3.2.9.2 Profile HMMs

Profile HMMs, first introduced in [40, 58], constitute a sophisticated version of
the type of position-specific scoring matrices described in the previous section, and
possess several advantages over standard profiles. Just as in all other HMMs, the
underlying model is probabilistic, resulting in a consistent and mathematically inter-
pretable treatment of evolutionary events. The model parameters are estimates of
true frequencies rather than observed, which means that a profile of only 10–20
sequences can be of as good quality as a profile of 50 sequences. Moreover, pro-
file HMMs require less skill and manual tuning in general, in comparison to the
construction of standard profiles.

The underlying state space in a profile HMM consists of a series of nodes, roughly
corresponding to the columns in a multiple alignment. We say “roughly,” because
insertions and deletions get a slightly different treatment than in standard profiles. If
we ignore the occurrence of gaps for a moment, the model would consist of a linear
sequence of match states with transition probabilities equal to 1 between them. Just as

3.2 Multiple Sequence Alignment 169

in pair HMMs, “match” only means that a residue is matched to the current column,
but it may very well be a “mismatch.”
If we consider an ungapped multiple alignment of length T , the probability of adding
a new sequence Y T

1 can be written

P(Y T
1) =

T∏

t=1

bMt (Yt), (3.95)

where bMt is the emission probability of match state Mt . However, we want to
relate the probability of observing a given residue a in the current position t , to
the background probability qa of that residue. Therefore, it is common to use the
log-odds ratio instead

S(Y T
1) =

T∑

t=1

log
bMt (Yt)

qYt

. (3.96)

The summed log-odds scores are similar to those used in substitution matrices, except
that we now score the pairing of a residue and a profile position, rather than the pairing
of two residues.

The occurrence of gaps are modeled by including an insert and a delete state along
with each match state. Figure 3.21 illustrates the full model of a profile HMM. For
simplicity, we can view the model as a sequence generating machine, or, analogously,
as a means to score a new observed sequence according to an existing multiple
alignment. Each match state and each insert state has their own sets of transition and
emission probabilities. The match states score the match of a residue in the observed
sequence to the model, while the insert states only “process” residues of the observed
sequence that do not match any position in the profile. The delete states correspond
to inserting gaps in the observed sequence and they only have state-specific transition

B

I0

Mt

It

Dt

E

Fig. 3.21 The state space and transitions of a profile HMM. Boxes represent match states, dia-
monds insert states, and circles are delete states. B and E represent the silent begin and end states,
respectively. Reprinted from [58] with permission from Elsevier

170 3 Sequence Alignment

probabilities connected to them. Note how only the insert states are equipped with
self-transitions. The actual profile starts with the first match state M1 or delete state
D1, but to allow for the possibility that the beginning of the observed sequence does
not match the profile, we add a silent begin state B with a possibility jump to an
initial insert state I0.

Having state-specific model parameters has the advantage that gaps can be penal-
ized differently depending on where they occur in the profile. Also, we can assign
different probabilities to self-transitions and transitions out of an insert state, such
that they correspond to the gap opening and gap extension penalties in an affine gap
model.

Scoring a New Sequence

The main purpose of profiles is to search for homologous sequences to a given protein
family or protein domain. This can be done in profile HMMs by using a slightly
modified version of the Viterbi algorithm. Moreover, since the intrinsic gap model is
affine, we use the same trick as in Sect. 3.1.5.1 to improve computational complexity.
That is, instead of using just one dynamic programming matrix we implement three,
one for each kind of state. The modified Viterbi algorithm for a profile of length L
and a new sequence Y T

1 to be matched to the model is given by

δM j (t) = log
bM j (Yt)

qYt

+ max

⎧
⎪⎨

⎪⎩

δM j−1(t − 1) + log aM j−1 M j ,

δI j−1(t − 1) + log aI j−1 M j ,

δD j−1(t − 1) + log aD j−1 M j .

(3.97)

δI j (t) = log
bI j (Yt)

qYt

+ max

⎧
⎪⎨

⎪⎩

δM j (t − 1) + log aM j I j ,

δI j (t − 1) + log aI j I j ,

δD j (t − 1) + log aD j I j .

(3.98)

δD j (t) = max

⎧
⎪⎨

⎪⎩

δM j−1(t) + log aM j−1 D j ,

δI j−1(t) + log aI j−1 D j ,

δD j−1(t) + log aD j−1 D j .

(3.99)

Note that when we allow for gaps, the length T of the new sequence may differ
from the profile length L . We initiate by naming the silent begin state M0 and set
δM0(0) = 0. Similarly, we name the end state ML+1, and calculate VML+1(T) using
the equations above, but without the emission term.

Besides scoring new sequences or searching a database for homologies to the
current protein family or domain, profile HMMs can be used as a tool for multiple
alignments. By training the model on unaligned sequences, using for instance the
EM-algorithm described in Chap. 6, we will in effect produce an optimal multiple
alignment of these sequences. This additional feature and others are included in the
profile HMM package HMMER [21].

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

References 171

References

1. Alexandersson, M., Bray, N., Pachter, L.: Pair hidden Markov models. In: Jorde, L.B., Little,
P., Dunn, M., Subramanian, S. (eds.) Encyklopedia of Genetics, Genomics, Proteomics and
Bioinformatics, Ch. 4.2 (17) (2005)

2. Altschul, S.F.: Gap costs for multiple alignments. J. Theor. Biol. 138, 297–309 (1989)
3. Altschul, S.F.: Amino acid substitution matrices from an information theoretic perspective.

J. Mol. Biol. 219, 555–565 (1991)
4. Altschul, S.F., Gish, W.: Local alignment statistics. Methods Enzymol. 266, 460–480 (1996)
5. Altschul, S.F., Carroll, R.J., Lipman, D.J.: Weights for data related by a tree. J. Mol. Biol.

207, 647–653 (1989)
6. Altschul, S.F., Gish, W., Miller, W., Myers, E.M., Lipman, D.J.: Basic local alignment search

tool. J. Mol. Biol. 215, 403–410 (1990)
7. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.:

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res. 25, 3389–3402 (1997)

8. Baldi, P., Chauvin, Y., Hunkapiller, T., McClure, M.A.: Hidden Markov models of biological
primary sequence information. Proc. Natl. Acad. Sci. USA 91, 1059–1063 (1994)

9. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: GenBank. Nucleic
Acids Res. 36, D25–D30 (2008)

10. Berger, M.P., Munson, P.J.: A novel randomized iterative strategy for aligning multiple protein
sequences. Comput. Appl. Biosci. 7, 479–484 (1991)

11. Bishop, M.J., Rawlings, C.J. (eds.): DNA and Protein Sequence Analysis. Oxford University
Press, Oxford (1997)

12. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin,
M.J., Mochoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT
protein knowledgebase and its supplement in 2003. Nucleic Acids Res. 31, 365–370 (2003)

13. Brudno, M., Chapman, M., Göttgens, B., Batzoglou, S., Morgenstern, B.: Fast and sensitive
multiple alignment of large genomic sequences. BMC Bioinform. 4, 66 (2003)

14. Carrillo, H., Lipman, D.: The multiple sequence alignment problem in biology. SIAM J. Appl.
Math. 48, 1073–1082 (1988)

15. Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simu-
lation algorithm. J. Optim. Theor. Appl. 45, 41–51 (1985)

16. Dayhoff, M.O.: Atlas of Protein Sequence and Structure. National Biomedical Research Foun-
dation, Washington (1969)

17. Dayhoff, M.O., Schwartz, R.M.: Matrices for detecting distant relationships.In: Dayhoff,
M.O. (ed.) Atlas of Protein Sequence and Structure, vol. 5, pp. 353–358 (1978)

18. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins.
In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, vol. 5, pp. 345–352 (1978)

19. Durbin, R., Eddy, S., Krogh, A., Mitchinson, G.: Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

20. Eddy, S.R.: Multiple alignment using hidden Markov models. Proc. Int. Conf. Intell. Syst.
Mol. Biol. 3, 114–120 (1995)

21. Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14, 755–763 (1998)
22. Edgar, R.C.: MUSCLE: a multiple sequence alignment method with reduced time and space

complexity. BMC Bioinform. 5, 113 (2004)
23. Edgar, R.C., Batzoglou, S.: Multiple sequence alignment. Curr. Opin. Struct. Biol. 16, 368–

373 (2006)
24. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J.

Mol. Evol. 17, 368–376 (1981)
25. Feng, D.F., Johnson, M.S., Dolittle, R.F.: Aligning Amino Acid sequences: comparison of

commonly used methods. J. Mol. Evol. 21, 112–125 (1985)
26. Feng, D.F., Doolittle, R.F.: Progressive sequence alignment as a prerequisite to correct phy-

logenetic trees. J. Mol. Evol. 25, 351–360 (1987)

172 3 Sequence Alignment

27. Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.-R., Ceric, G., Forslund, K.,
Eddy, S.R., Sonnhammer, E.L.L., Bateman, A.: The Pfam protein families database. Nucleic
Acids Res. 36, D281–D288 (2008)

28. Fitch, W.M.: Random sequences. J. Mol. Biol. 163, 171–176 (1983)
29. Fitch, W.M., Margoliash, E.: Construction of phylogenetic trees. Science 155, 279–284 (1967)
30. Gibbs, A.J., McIntyre, G.A.: The diagram, a method for comparing sequences. Its use with

amino acid and nucleotide sequences. Eur. J. Biochem. 16, 1–11 (1970)
31. Gonnet, G.H., Cohen, M.A., Benner, S.A.: Exhaustive matching of the entire protein sequence

database. Science 256, 1443–1445 (1992)
32. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol. 162,

705–708 (1982)
33. Gotoh, O.: Significant improvement in accuracy of multiple protein sequence alignments

by iterative refinement as assessed by reference to structural alignments. J. Mol. Biol. 264,
823–838 (1996)

34. Gotoh, O.: Multiple sequence alignments: algorithms and applications. Adv. Biophys. 36,
159–206 (1999)

35. Gribskov, M., McLachlan, A.D., Eisenberg, D.: Profile analysis: detection of distantly related
proteins. Proc. Natl. Acad. Sci. USA 84, 4355–4358 (1987)

36. Gumbel, E.J.: Statistics of Extremes. Columbia University Press, New York (1958)
37. Gupta, S.K., Kececioglu, J.D., Schäffer, A.A.: Improving the practical space and time effi-

ciency of the shortest-paths approach to sum-of-pairs multiple sequence alignment. J. Comput.
Biol. 2, 459–472 (1995)

38. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, Cambridge (1997)

39. Hasegawa, M., Kishino, H., Yano, T.: Dating of human-ape splitting by a molecular clock of
mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985)

40. Haussler, D., Krogh, A., Mian, I.S., Sjölander, K.: Protein modeling using hidden Markov
models: analysis of globins. In: HICSS-26, vol. 1, pp. 792–802 (1993)

41. Henikoff, J.G., Greene, E.A., Pietrokovski, S., Henikoff, S.: Increased coverage of protein
families with the blocks database servers. Nucleic Acids Res. 28, 228–230 (2000)

42. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc.
Natl. Acad. Sci. USA 89, 10915–10919 (1992)

43. Henikoff, S., Henikoff, J.G., Pietrokovski, S.: Blocks+: a non-redundant database of protein
alignment blocks derived from multiple compilations. Bioinformatics 15, 471–479 (1999)

44. Higgins, D.G., Sharp, P.M.: CLUSTAL: a package for performing multiple sequence align-
ment on a microcomputer. Gene 73, 237–244 (1988)

45. Hirosawa, M., Totoki, Y., Hoshida, M., Ishikawa, M.: Comprehensive study on iterative algo-
rithms of multiple sequence alignment. Comput. Appl. Biosci. 11, 13–18 (1995)

46. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor (1975)

47. Hughey, R., Krogh, A.: Hidden Markov models for sequence analysis: extension and analysis
of the basic method. Comput. Appl. Biosci. 12, 95–108 (1996)

48. Jones, D.T., Taylor, W.R., Thornton, J.M.: The rapid generation of mutation data matrices
from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992)

49. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. In: Munro, H.N. (ed.) Mammalian
Protein Metabolism, pp. 21–123. Academic Press, New York (1969)

50. Karlin, S., Altschul, S.F.: Methods for assessing the statistical significance of molecular
sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 2264–
2268 (1990)

51. Katoh, K., Misawa, K., Kuma, K., Miyata, T.: MAFFT: a novel method for rapid multiple
sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002)

52. Kim, J., Pramanik, S., Chung, M.J.: Multiple sequence alignment using simulated annealing.
Comput. Appl. Biosci. 10, 419–426 (1994)

References 173

53. Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through
comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980)

54. Kimura, M.: Estimation of evolutionary distances between homologous nucleotide sequences.
Proc. Natl. Acad. Sci. USA 78, 454–458 (1981)

55. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cam-
bridge (1983)

56. Kimura, M., Ohta, T.: On the stochastic model for estimation of mutational distances between
homologous proteins. J. Mol. Evol. 2, 87–90 (1972)

57. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
220, 671–680 (1983)

58. Krogh, A., Brown, M., Mian, I.S., Sjölander, K., Haussler, D.: Hidden Markov models in
computational biology: applications to protein modeling. J. Mol. Biol. 235, 1501–1531 (1994)

59. Kruskal, J.B.: An overview of sequence comparison: time warps, string edits, and macro-
molecules. SIAM Rev. 25, 201–237 (1983)

60. Lipman, D.J., Pearson, W.R.: Rapid and sensitive protein similarity searches. Science 227,
1435–1441 (1985)

61. Lipman, D.J., Altschul, S.F., Kececioglu, J.D.: A tool for multiple sequence alignment. Proc.
Natl. Acad. Sci. USA 86, 4412–4415 (1989)

62. Lüthy, R., Xenarios, I., Bucher, P.: Improving the sensitivity of the sequence profile method.
Protein Sci. 3, 139–146 (1994)

63. Maizel, J.V., Lenk, R.P.: Enhanced graphic matrix analysis of nucleic acid and protein
sequences. Proc. Natl. Acad. Sci. USA 78, 7665–7669 (1981)

64. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of
state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

65. Meyer, I.M., Durbin, R.: Comparative ab initio prediction of gene structures using pair HMMs.
Bioinformatics 18, 1309–1318 (2002)

66. Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge (1998)
67. Morgenstern, B., Frech, K., Dress, A., Werner, T.: DIALIGN: finding local similarities by

multiple sequence alignment. Bioinformatics 14, 290–294 (1998)
68. Morgenstern, B.: DIALIGN 2: improvement of the segment-to-segment approach to multiple

sequence alignment. Bioinformatics 15, 211–218 (1999)
69. Morrison, D.R.: PATRICIA—practical algorithm to retrieve information coded in alphanu-

meric. J. ACM 15, 514–534 (1968)
70. Mott, R.: Maximum-likelihood estimation of the statistical distribution of Smith-Waterman

local sequence similarity scores. Bull. Math. Biol. 54, 59–75 (1992)
71. Müller, T., Spang, R., Vingron, T.: Estimating Amino Acid substitution models: a comparison

of Dayhoff’s estimator, the resolvent approach and a maximum likelihood method. Mol. Biol.
Evol. 19, 8–13 (2002)

72. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities
in the Amino Acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970)

73. Notredame, C.: Recent evolutions of multiple sequence alignment algorithms. PLoS Comput.
Biol. 3, e123 (2007)

74. Notredame, C., Higgins, D.G.: SAGA: sequence alignment by genetic algorithm. Nucleic
Acids Res. 24, 1515–1524 (1996)

75. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: a novel method for fast and accurate
multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000)

76. Pearson, W.R.: Empirical statistical estimates for sequence similarity searches. J. Mol. Biol.
276, 71–84 (1998)

77. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. Proc. Natl.
Acad. Sci. USA 86, 2444–2448 (1988)

78. Pustell, J., Kafatos, C.: A high speed, high capacity homology matrix: zooming through SV40
and polyoma. Nucleic Acids Res. 10, 4765–4782 (1982)

79. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proc. IEEE 77, 257–286 (1989)

174 3 Sequence Alignment

80. Saitou, N., Nei, M.: Neighbor-joining method: a new method for reconstructing phylogenetic
trees. Mol. Biol. Evol. 4, 406–425 (1987)

81. Sankoff, D., Kruskal, J.B.: Time Warps, String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison. Addison-Wesley, New York (1983)

82. Sigrist, C.J.A., Cerutti, L., Hulo, N., Gattiker, A., Falquet, L., Pagni, M., Bairoch, A., Bucher,
P.: PROSITE: a documented database using patterns and profiles as motif descriptors. Brief.
Bioinform. 3, 265–274 (2002)

83. Smith, T.F., Waterman, M.S.: Comparison of biosequences. Adv. Appl. Math. 2, 482–489
(1981)

84. Smith, T.F., Waterman, M.S., Burks, C.: The statistical distribution of nucleic acid similarities.
Nucleic Acids Res. 13, 645–656 (1985)

85. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. Freeman, San Francisco (1973)
86. Staden, R.: An interactive graphics program for comparing and aligning nucleic acid and

amino acid sequences. Nucleic Acids Res. 10, 2951–2961 (1982)
87. Steinmetz, M., Frelinger, J.G., Fisher, D., Hunkapiller, T., Pereira, D., Weissman, S.M.,

Uehara, H., Nathenson, S., Hood, L.: Three cDNA clones encoding mouse transplantation
antigens: homology to immunoglobulin genes. Cell 24, 125–134 (1981)

88. Tamura, K., Nei, M.: Estimation of the number of nucleotide substitutions in the control region
of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993)

89. Tavare, S.: Some probabilistic and statistical problems in the analysis of DNA sequences. In:
Lectures on Mathematics in the Life Sciences, vol. 17, pp. 57–86 (1986)

90. Thompson, J.D., Higgins, D.G., Gibson, T.J.: Improved sensitivity of profile searches through
the use of sequence weights and gap excision. Comput. Appl. Biosci. 10, 19–29 (1994)

91. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting position-specific gap
penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

92. The UniProt Consortium: The universal protein resource (UniProt) 2009. Nucleic Acids Res.
37, D169–D174 (2009)

93. Wallace, I.M., Blackshields, G., Higgins, D.G.: Multiple sequence alignments. Curr. Opin.
Struct. Biol. 15, 261–266 (2005)

94. Wang, J., Jiang, T.: On the complexity of multiple sequence alignment. J. Comput. Biol. 1,
337–448 (1994)

95. Waterman, M.S., Smith, T.F., Beyer, W.A.: Some biological sequence metrics. Adv. Math.
20, 367–387 (1976)

96. Waterman, M.S.: Introduction to Computational Biology: Maps, Sequences and Genomes.
Chapman & Hall/CRC, London (1995)

97. Wilbur, W.J., Lipman, D.J.: Rapid similarity searches of Nucleic Acid and protein data banks.
Proc. Natl. Acad. Sci. USA 80, 726–730 (1983)

98. Wilbur, W.J., Lipman, D.J.: The context dependent comparison of biological sequences. SIAM
J. Appl. Math. 44, 557–567 (1984)

99. Yang, Z.: Estimating the pattern of nucleotide substitution. J. Mol. Evol. 39, 105–111 (1994)
100. Zaki, M.J., Bystroff, C.: Protein structure prediction. In: Zaki, M.J., Bystroff, C. (eds.) Methods

in Molecular Biology, vol. 413. Humana Press, New Jersey (2008)

Chapter 4
Comparative Gene Finding

In the previous chapter we presented various alignment techniques in order to shed
light on questions around evolutionary relationships. In the context of comparative
gene finding, sequence alignments can help in pinpointing regions of importance,
by highlighting evolutionary preserved segments. Single species gene finding algo-
rithms suffer from several problems, the main one being the tendency to overpredict.
The new generation of gene finders attempt to salvage this problem by automatizing
the integration of gene prediction and sequence alignment. Since the introduction of
comparative gene finders a decade or so ago, it has been proved beyond any doubt that
comparative-based gene finding works and has a considerable number of advantages
over its single species predecessors. These advantages include much higher accuracy
in the predictions, the ability to annotate a variety of features that have previously
eluded computational approaches, and, more fundamentally, a new view of gene
finding and alignment that explains how the two problems are intimately related.
In this chapter we exemplify the main areas of comparative gene finding, ranging
from similarity-based techniques, to pair HMMs and generalized pair HMMs, to
gene mapping. Last but not least we present the first attempts to extend pairwise
approaches to multiple sequence gene finding. We expect to see much more devel-
opments in this area in the near future, if only we can come to terms with the vast
increase in computational complexity that it imposes.

4.1 Similarity-Based Gene Finding

The first attempts to extend the single species algorithms go under the label of
similarity-based, or homology-based, gene finding. Methods under this label do not
fully integrate the homology information such as in pairwise alignments, but use it to
strengthen the signal of conserved elements in the genome. In addition to strengthen-
ing the coding signal, incorporating database matches can provide useful information
about the gene structure, sort out false positives, and improve boundary prediction.

© Springer-Verlag London 2015
M. Axelson-Fisk, Comparative Gene Finding, Computational Biology 20,
DOI 10.1007/978-1-4471-6693-1_4

175

176 4 Comparative Gene Finding

A straightforward approach of integrating external homology data is to include
database match scores from protein, cDNA, or EST databases, and use such scores as
additional indications of coding sequences, besides the intrinsic patterns of the input
sequence itself. Methods that apply this approach can crudely be divided into two
classes: those that make use of mRNA and cDNA sequence information, and those
aligning homologous proteins to the target sequence. Implementations of the former
class include GMAP [36], BLAT [17] and ECgene [18]. These methods apply local
alignment techniques to match the cDNAs of related species to the target genome. A
common problem for such an approach is that they need to account for a high error
rate in ESTs, and are not really useful with the homology information is too distant.
For example, the evolutionary distance of human and mouse is too great.

The method of integrating protein homology has been applied in a long line of
implementations, including GeneParser [35], Genie [21, 22], GRAIL [37, 38], SGP-
2 [30], HMMgene [20], and GenomeScan [39]. GenomeScan, which is an extension
of Genscan [9] in Sect. 2.2.4, is described in detail in the next section. Typically, in
this line of methods, a set of candidate exons are extracted from the target sequence
using various de novo methods (see Chap. 2), and then matched to a database for
further information.

A third type of similarity-based gene finding methods is implemented in the
informant-based software Twinscan [19]. Twinscan is also an extension of Genscan,
but in contrast to GenomeScan, the external homology is composed of a database of
sequences from a specific informant genome. The informant sequences are locally
aligned to the target sequence, and the conserved segments are scored and combined
with the Genscan framework to produce a final prediction. Twinscan is described in
a little more detail in Sect. 4.1.2.

Other methods, such as Procrustes [12] and GeneWise [6], have chosen to
match the genomic sequence to an informant protein directly, rather than extract-
ing homology information from a protein database. GeneWise uses a spliced align-
ment approach, where a predicted protein from the target sequence is aligned to a
known protein to improve gene structure accuracy. Procrustes uses a combinator-
ial approach, where potential exon blocks in the target sequence are assembled into
various possible protein predictions, which then are matched against known proteins.

4.1.1 GenomeScan: GHMM-Based Gene Finding
Using Homology

Genscan [9], described in Sect. 2.2.4, is a very popular and powerful tool for single
species gene finding. It exhibits a high sensitivity in its gene predictions, meaning
that it detects a high proportion of the genes in a sequence. However, along with
most single species gene finders, it suffers from a high rate of false positives, leading
to a fairly low specificity (see Sect. 7.3 for details on accuracy measures). In order
to improve this, GenomeScan [39] extends the GHMM in Genscan by matching the

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_7

4.1 Similarity-Based Gene Finding 177

target sequence to a protein database, using the database search tools BLASTP [2] and
BLASTX [13], which are variants of the BLAST algorithm described in Sect. 3.1.8.
The GenomeScan procedure can be summarized as follows:

1. Mask repeats in the genomic sequence using RepeatMasker [34].
2. Run Genscan on the masked sequence, and match the predicted peptides against a

protein database using BLASTP. Use matches with E-values above an appropriate
threshold (default is E > 10−5).

3. Compare all open reading frames (ORFs) in the genomic sequence to the database
hits retrieved in the previous steps, using BLASTX in a more sensitive search with
increased gap penalties and a relaxed E-value cutoff.

4. Run GenomeScan on the masked sequence using homology information of the
hits in the previous step as input.

Recall from Sect. 2.1 that an HMM is composed of two interrelated random processes,
a hidden process which is Markov and jumps between the states in a state space,
and an observed process that generates outputs depending on the underlying state
sequence. We denote the state space as S = {s1, . . . , sN } as before, the hidden
sequence generated by the hidden process as X L

1 , and the observed sequence as Y T
1 ,

where the notation Y b
a corresponds to a sequence stretching between indices a and b,

respectively. GenomeScan uses the same state space as Genscan with the main states
being the intergenic, intron, and exon states (see Fig. 2.11 for a simplified version).
Recall from Sect. 2.2.4 that Genscan uses a GHMM to determine the optimal path
through the state space. It is mainly the exon states that are generalized in this model,
meaning that unlike a standard HMM where the output in each step is a single residue,
an exon state first chooses a state dependent duration from a generalized distribution,
and then outputs a sequence of residues of that length. To facilitate this, we attach a
sequence of state durations d L

1 to the state sequence, one for each state, and recall the
state sequence and the corresponding state durations is called a parse of the observed
sequence Y T

1 .
To solve the gene finding problem we would like to find the state sequence and

the corresponding duration sequence that maximize the probability of the parse
given the observed sequence P(X L

1 , d L
1 |Y T

1). We recall that this probability is max-
imized in the same point as the joint probability P(Y T

1 , X L
1 , d L

1). The extension in
GenomeScan is to maximize the conditional probability of the hidden and observed
data P(Y T

1 , X L
1 , d L

1 |Γ), given some additional similarity information Γ . The simi-
larity information is retrieved from a protein database in two steps. First, the pep-
tides predicted by Genscan are matched against a protein database using a regular
protein-to-protein search (BLASTP), and the matching proteins are selected from the
database. Next all open reading frames (ORFs) in the genomic sequence are matched
against this reduced set of proteins using BLASTX, which translates the ORFs in
all reading frames before the matching. The highest scoring region of a BLASTX
hit is termed the centroid of the protein. Proteins with several high scoring regions
(multimodal), or with a BLASTX hit extending over 100 codons, are separated into
several single-modal hits with a centroid each.

http://dx.doi.org/10.1007/978-1-4471-6693-1_3
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

178 4 Comparative Gene Finding

Let Γ denote the resulting set of separated BLASTX hits, each with a defined
centroid. GenomeScan only considers parses that have at least one exon overlapping
a centroid in Γ . Let φi = (X L

1 , d L
1) denote a given parse, and let ΦΓ = {φi } denote

the set of parses with at least one exon overlapping a centroid. Since a BLAST hit
not necessarily infers homology, we let PH denote the probability that the BLASTX
hit is truly homologous, while PA = 1 − PH denotes the probability that the hit is
artefactual. The joint probability of a given parse and the genomic sequence, given
the homology information, is then defined as

P(φi , Y T
1 |Γ) =

⎧
⎨

⎩

(PH

P(ΦΓ)
+ PA

)
P(φi , Y T

1) if φi ∈ ΦΓ

PA P(φi , Y T
1) if φi �∈ ΦΓ .

(4.1)

P(φi , Y T
1) is the Genscan probability of the path and the observed sequence, while

P(ΦΓ) is the probability that ΦΓ contains the true parse. As a result, the probability
in (4.1) favors parses that are consistent with the similarity information, but does
not completely rule out inconsistent parses. P(ΦΓ) can be derived using a procedure
similar to the forward-backward algorithm described in Sect. 6.5. The probability
PA that a hit is artefactual is related to the BLASTX hit score PB using a heuristic
PA = (PB)1/r , where r is a small integer (default value r = 10). Using the formula
in (4.1) as basis, gene prediction is performed running the forward, backward and
Viterbi algorithms as in Sect. 2.2. For details, see [39].

4.1.2 Twinscan: GHMM-Based Gene Finding
Using Informant Sequences

Twinscan [19] is another extension of Genscan, in which the target sequence is
compared to an informant sequence, which is added to boost or reduce the probability
of a potential gene component. The informant sequence is not used directly in the
gene finding process. Instead, the homology found between the target sequence and
the informant sequence, is represented by a conservation sequence, obtained using a
gapped version of BLAST [2] (see Sect. 3.1.8). The conservation sequence matches
one of three possible symbols to each symbol in the target sequence:

. unaligned
| match
: mismatch.

The unaligned symbol corresponds to a gap in the informant sequence, the match
symbol to identical residues, and the mismatch symbol to differing residues in the
informant sequence. Gaps in the target sequence are uninteresting in the current
context and are therefore ignored. As a result the target sequence and the conservation
sequence will be of the same lengths.

http://dx.doi.org/10.1007/978-1-4471-6693-1_6
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_3

4.1 Similarity-Based Gene Finding 179

The procedure in Twinscan is similar to that of Genscan, except that instead of
outputting a single sequence, each state generates a pair of outputs corresponding
to the target sequence and the conservation sequence. For instance, a typical output
would be of the form:

10 20 30
| | |

Target: AGGAAGTCCTCATCAGGCTCTTTAAGGGTCAC
Conserv: ...||:|||:|:|||||:||:|||::||....
Inform: —AACTCCACGTCAGGGTCATTACCGG—-

As before we let X L
1 and d L

1 denote the underlying state path and the corresponding
state durations, respectively. Furthermore, we let Y T

1 denote the target sequence, and
let Z T

1 correspond to the conservation sequence. Given the underlying state path,
Twinscan assumes conditional independence between Y and Z , such that

P(Y T
1 , Z T

1 |X L
1 , d L

1) = P(Y T
1 |X L

1 , d L
1)P(Z T

1 |X L
1 , d L

1). (4.2)

The first probability on the right-hand side of (4.2) is simply the probability of the
observed sequence under the Genscan model

P(Y T
1 |X L

1 , d L
1) =

L∏

l=1

bXl (Y
dl
dl−1+1|Y dl−1

1) (4.3)

where bi (Y b
a) is the emission probability of sequence Y b

a in state i in the GHMM.
The second probability in (4.2) is similar to the first, but operates on the three-symbol
conservation sequence. The model used in Twinscan for the conservation sequence is
a fifth-order Markov model. That is, if we split the conversation sequence according
to the state sequence

P(Z T
1 |X L

1 , d L
1) =

L∏

l=1

P(Zdl
dl−1+1|Xl), (4.4)

each of the probabilities in the right hand product will be of the form

P(Zd1
1 |X1) =

d1∏

t=1

P(Zt |Zt−1
t−5, X1). (4.5)

The gene prediction algorithm then follows the same route as in Genscan, but with the
addition of the conservation sequence in the probability model. That is, the optimal
path determined by the Viterbi algorithm is the state sequence and state durations

180 4 Comparative Gene Finding

that maximize the joint probability P(Y T
1 , Z T

1 , X L
1 , d L

1). The procedure of Twinscan
can be summarized as follows:

1. Mask repeats in the target sequence using RepeatMasker [34].
2. Create a conservation sequence by aligning the target and the informant sequences

using WU-BLASTN (W. Gish, unpublished).
3. Run Genscan on the target and the conservation sequences, using the extended

model in (4.2).

Integrating the information sequence improves the Genscan accuracy significantly,
in particular when it comes to reduce the amount of false positives. Later in this
chapter we will see a further extension of the Twinscan model, to N-SCAN [14]
where multiple informant sequences are used to infer homology. Twinscan was one
of the gene finders used by the Mouse Genome Sequencing Consortium [26], along
with SLAM [1] and SGP-2 [30], in the initial comparison of the human and mouse
genomes.

4.2 Heuristic Cross-Species Gene Finding

The first implementations of cross-species gene finding are probably in the soft-
wares ROSETTA [5] and CEM [4]. Both programs take two homologous genomic
sequences as input and produce gene predictions simultaneously in both. ROSETTA
begins by producing a rough alignment map, focusing on highly similar k-mers, and
then refining the alignment successively in the regions in between these k-mers. The
gene prediction is then produced by combining various coding measures within the
alignment of the two sequences. CEM is similar, but uses TBLASTX [13] to iden-
tify candidate exons. High-scoring BLAST-hits are extended (or shrunk) to include
putative splice sites, and then the candidate exons are chained together to produce a
complete gene structure.

4.2.1 ROSETTA: A Heuristic Cross-Species Gene Finder

If the gene structure of a specific gene is known in one organism, it is fairly straight-
forward to identify the homologous counterpart in a related genome, given that
the gene exists and that the two organisms are not too distantly related. A far
more challenging task is to perform de novo gene prediction in the two organisms
directly. ROSETTA [5], named after the Rosetta stone, is among the first softwares
that have implemented a full cross-species gene prediction, in which two homolo-
gous sequences are annotated simultaneously. ROSETTA operates by first aligning
regions of high similarity, and then searching for coding exons in these regions.
The alignments are performed by a program named GLASS (Global Alignment

4.2 Heuristic Cross-Species Gene Finding 181

SyStem), which uses a hierarchical alignment approach to produce a heuristic global
alignment.

The motivation for constructing GLASS was that neither standard dynamic pro-
gramming algorithms such as the Needleman-Wunsch algorithm [27], nor faster
heuristics such as BLAST [2], were satisfactory for the task at hand. Dynamic pro-
gramming algorithms are not well adapted to identifying short stretches of highly
conserved regions interspersed by long regions of low or no similarity. On the other
hand, although heuristic search tools such as BLAST perform very well at identify-
ing local similarities, they usually focus on perfect matches, and may therefore miss
relevant regions.

GLASS starts out with a rough alignment consisting of long stretches of high
identity, which is then iteratively improved by aligning shorter and shorter regions
in between these stretches. In the final step, the remaining regions are aligned using
standard approaches. GLASS proceeds as follows:

1. Choose an initial value k and find all matching k-mers in the two sequences.
2. Treat each unique k-mer as a specific object, and convert both sequences into

strings of such matching objects.
3. Align the two object strings as follows: for each object align the flanking regions

before and after (e.g. 12 bp before and after) using dynamic programming, and
assign the object the combined scores of these two regions. Mismatches and gaps
receive score 0.

4. Identify the pairs of the k-mers that score above a given threshold T .
5. From this list of k-mers, remove inconsistent pairs. For instance, if two k-mers

overlap in one sequence but not the other, they are inconsistent.
6. Fix the alignment between the two sequences for the remaining k-mers.
7. Recursively repeat steps 1–6 for the regions between the k-mers, by successively

decreasing k. For instance, k = 20, 15, 12, 9, 8, 7, 6, 5.
8. After all recursions are completed, extend each aligned segment in both direction

using dynamic programming.
9. Finish by aligning all remaining unaligned segments using dynamic program-

ming.

ROSETTA parses the sequences into exons, introns, and intergenes, where three types
of exons are identified: initial, internal, and terminal exons. The gene recognition
is performed using a dynamic programming approach, where each parse is scored
according to the sum of scores of the individual exons in the parse. The submodels
used for scoring an exon are a splice site model, codon usage, amino acid similarity,
and exon length. The splice sites are scored using a combination of the maximal
dependence decomposition (MDD) algorithm [7, 8] described in Sect. 5.4.3, and a
dictionary-based approach [29]. The codon usage score of an exon is computed by
adding the log-odds ratio for each codon, using species-specific codon frequencies.
The amino acid similarity of a human-mouse exon is computed using the PAM20
matrix (see Sect. 3.1.3). The exon length score combines the agreement with known
exon length distributions and a penalty for differing lengths in the exon pair.

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_3

182 4 Comparative Gene Finding

ROSETTA was applied to a set of 117 orthologous human and mouse sequences
in [5], and proved beyond any doubt that comparative gene finding improves the
prediction accuracy significantly.

4.3 Pair Hidden Markov Models (PHMMs)

Pair hidden Markov models (PHMMs) extend the theory of HMMs to model pairs
of observed sequences. The underlying hidden process still jumps between different
states in a state space, but instead of emitting a single residue as in standard HMMs
(Sect. 2.1), or a sequence of residues of generalized length as in GHMMs (Sect. 2.2),
the output is an aligned pair of residues. While mainly used for pairwise alignments
as in Sect. 3.1.7, the PHMM theory has also been successfully applied to gene finding
in the comparative software DoubleScan [24] presented in the next section. Here the
standard PHMM state space, typically consisting of a match state, an insertion state,
and a deletion state, is extended to include the labeling into different gene features.
The resulting model is a complex composition of several PHMMs, representing
different types of exons, introns and intergenic regions in the gene model, and the
output of the model is two labeled sequences along with their pairwise alignment.

4.3.1 DoubleScan: A PHMM-Based Comparative Gene Finder

DoubleScan [24] is a comparative gene finder that predicts complete gene structures
in two homologous DNA sequences. In addition to predicting complete, multiple, or
partial genes, DoubleScan can detect homologous genes that have diverged through
exon-splitting or exon-fusion. The output of DoubleScan is the simultaneous anno-
tation of the two input sequences, along with their alignment.

The DoubleScan model is based on a PHMM, and uses two methods to retrieve
the gene predictions; the Viterbi algorithm and a heuristic method called the stepping
stone algorithm. To save on memory complexity, a linear-space implementation of
the Viterbi is used, called the Hirschberg algorithm [16].

If the Viterbi algorithm has memory complexity O(NTU), where N is the number
of states and T and U are the lengths of the observed sequences, respectively, the
Hirschberg algorithm linearizes the complexity to O(N min{T, U }) and at most
doubles the time requirement of the Viterbi. The stepping stone algorithm reduces
the time requirement of the Viterbi to near linear, but the optimal solution is no longer
guaranteed to lie within the search space.

The State Space

The DoubleScan model consists of 54 states, a simplified version is illustrated in
Fig. 4.1. Each state outputs an aligned pair of symbols, along with one of three class
labels: exon, intron, or intergene. The match states output sequence residues in both

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_3

4.3 Pair Hidden Markov Models (PHMMs) 183

intron
emit Y

intron
emit Z

match
intron

intron
emit Y

intron
emit Z

match
exon

START
START

STOP
STOP

intron
emit Y

intron
emit Z

phase 0
GT/GT match

intron

match
intron

match
intron

intron

intron
emit Z

emit Z
phase 2

phase 1

phase 2

phase 0

phase 1

emit Z
intron

−/GT

GA/−TG/−

−/AG

−/AG
phase 0
−/GT

emit Y
exon

emit Z
exon

GT/GT AG/AG

AG/−

−/AG−/GT

GT/−match IG

phase 2
GT/GT

phase 1
GT/GT

phase 2
AG/AG

phase 0
AG/AG

phase 1
AG/AG

intron

intron
emit Y

emit Y
phase 2

phase 1

phase 2

phase 0

phase 1

emit Y
intron

AG/−

AG/−

AG/−

GT/−

GT/−

phase 0
GT/−

emit Z IG

emit Y IG

Begin End

Fig. 4.1 The DoubleScan state space. In reality, extra states are included for each splice site and
each intron, to account for the three different frames the exons can be in. The dashed box at the top
represent UTR introns. Reproduced from [24] with permission from Oxford University Press

sequences, while the emit states represent insertion and deletion events and output a
residue in one sequence and a gap in the other. All paths through the state space start
and end in the silent states begin and end, respectively. These states are connected to
all other states except themselves and each other, allowing for the sequence output
to begin and end in any state.

Initial and single exons begin with the START START state, which outputs the
start codon ATG in both sequences, and then jumps to the match exon state. The

184 4 Comparative Gene Finding

match exon state and the two emit exon states all output complete codons in each
step, each coding for an amino acid. That is, exons can produce internal, in-frame
ATG-codons, but not any stop codons. The stop codon, in the end of a single or a
terminal exon is produced by the STOP STOP state, which outputs a stop codon in
each sequence.

Introns belong to one of three phases, representing the position in the codon
where the coding sequence is spliced (see Sect. 5.1.1). The phase states surrounding
the introns are responsible for producing the (aligned) sequences of spliced codons,
along with the corresponding splice site sequences, where splice sites are modeled
to adhere to the GT-AG consensus of donor and acceptor sites (see Sect. 5.1.2).
Intergenic states appear in between complete gene structures, and are modeled with
the least constraints among all states, forming a regular PHMM.

UTR exons are not modeled explicitly, but are invoked in and labeled by the
intergenic states. However, the model allows for UTR splicing by including a separate
set of UTR introns in the state space. The reasoning for this is that the inclusion of
UTR exons and introns improves the detection of the start and stop codons of the
translated portion of the genes [24]. Introns within UTRs have no phase, but are
surrounded by splice sites following the GT-AG consensus just as the introns in the
coding region.

DoubleScan predicts genes on the forward strand only, the reverse-complemented
strand requires a separate run. This could be handled, however, by adding a mirror
image to the state space, doubling the number of states, much like the Genscan state
space in Sect. 2.2.4.

The Stepping Stone Algorithm

When dealing with long pairs of sequences the memory and space requirements
quickly become overwhelming. Here we present the stepping stone algorithm used
by DoubleScan to reduce the search space in which the Viterbi algorithm searches for
an optimal path. The idea is to narrow the search around regions of high similarity by
assuming that the optimal path passes near such regions. Regions of high similarity
are detected by running BLASTN [2] on the pair of input sequences. The stepping
stone procedure goes as follows:

1. Start with the highest scoring BLASTN match and use its middle point in the
alignment matrix (x, y) as reference.

2. Find the next highest scoring match which is compatible with existing reference
points and add its middle point to the set. Continue until no more high scoring
matches can be added.

3. Extend the submatrices formed between two subsequent reference points (consti-
tuting the bottom-left and top-right corners of the sub-matrix) by a 15 bp region
around each middle point.

A match is compatible with existing reference points if all (x, y) pairs can be ordered
simultaneously. That is, in the ordered set of reference points, each point should
appear above and to the right of the previous one in the alignment matrix (see Fig. 4.2).
A variant of the Viterbi algorithm is then run on the reduced search space, where

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

4.3 Pair Hidden Markov Models (PHMMs) 185

Fig. 4.2 The search space
reduced by the stepping
stone algorithm

only the necessary values are kept to continue the calculation. Each new submatrix
calculation is initiated by the last values of the previous submatrix. Once the top-
right corner is reached the optimal state path is retrieved by recalculating the Viterbi
algorithm backwards through the search space. By only keeping the necessary Viterbi
values, the time requirements double since the Viterbi algorithm has to run twice,
but the memory requirements are decreased to a minimum.

4.4 Generalized Pair Hidden Markov Models (GPHMMs)

The GHMM has proved to be very successful for gene finding, and the PHMM a
suitable model for sequence alignment, and for quite some time the two problems
were tackled separately. This is not surprising, since a priori there was no fundamental
reason to believe that the two problems were related. However, it has become more
and more clear that solving one of the problems can aid in the solution of the other.
For instance, knowing the alignment of two related sequences can greatly improve
the gene finding, and vice versa. The first results suggesting the effectiveness of
comparative methods for gene finding included ad hoc studies of dot plots and more
sophisticated PIP plots [32] that show that exons and regulatory domains tend to be
in conserved regions [3, 15].

4.4.1 Preliminaries

A generalized pair HMM (GPHMM) [28] is a seamless merging of a GHMM and a
PHMM model, where the problems of gene finding and alignment are unified to be
solved both at once. Each state is (possibly) generalized as in the GHMM, but now
outputs an aligned pair of observations, just as in the PHMM.

We keep all the previous notation used in the GHMMs in Sect. 2.2 and in the
PHMMs in Sect. 3.1.7. As usual the HMM is composed of a hidden Markov process
and an observed (typically not Markov) process. The hidden process jumps between

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_3

186 4 Comparative Gene Finding

the states in a state space S = {s1, . . . , sN }, and generates a a state path X L
1 =

X1, . . . , X L .
The hidden process is initiated by the initial distribution π = {π1, . . . , πN } and
progresses according to the transition probabilities

ai j = P(Xl+1 = j |Xl = i), i, j ∈ S. (4.6)

Just as in PHMMs the observed process generates an aligned pair of sequences,
Y T

1 and ZU
1 , each taking values in some alphabet V = {v1, . . . , vM }, and just as

in PHMMs we need to associate state durations and partial sums with the observed
sequences to keep track of their respective indices. We let d L

1 and eL
1 denote the

durations, with corresponding partial sums pl = ∑l
k=1 dk and ql = ∑l

k=1 qk , for
sequence Y and Z , respectively. The main difference from PHMMs is that now
the durations can be generalized as in GHMMs, and the duration pairs (dl , el)

are chosen from some joint generalized length distribution fXl (dl , el). Thus, when
in state Xl the observed process first chooses a pair of durations (dl , el) and
then generates aligned output sequences according to the joint emission distribu-
tion bXl (Y

pl
pl−1+1, Zql

ql−1+1|Y pl−1
1 , Zql−1

1). In non-generalized states, to account for

insertions and deletions in the aligned output, we allow one (but not both) of the
durations (dl , el) to be zero. Recall that in order to keep the notation consistent we
let Y b

a (or Zb
a) correspond to a gap for a > b. For simplicity we assume that we

pL = T and qL = U , meaning that all of the observed output generated by the final
state X L is included in the observed sequences. Inserting all this into Eq. (2.64) gives
us the joint probability of hidden and observed data for the GPHMM

P(Y T
1 , ZU

1 , X L
1 , d L

1 , eL
1) =

=
L∏

l=1

aXl−1,Xl fXl (dl , el) bXl (Y
pl
pl−1+1, Zql

ql−1+1|Y pl−1
1 , Zql−1

1), (4.7)

where X0 represent the silent begin state with

aX0,X1 = πX1 . (4.8)

4.4.1.1 The Forward, Backward, and Viterbi Algorithms

As before, the forward algorithm is used to calculate the probability (or the likelihood)
of the observed data P(Y T

1 , ZU
1) under the given model. As in GHMMs we let D

denote the maximum possible duration in any state and define the forward variables as

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

4.4 Generalized Pair Hidden Markov Models (GPHMMs) 187

αi (t, u) = P
(

Y t
1, Zu

1 , {some hidden state i ends at (t, u)}
)

(4.9)

= P
(

Y t
1, Zu

1 ,
{

L⋃

l=1

(Xl = i, pl = t, ql = u
})

=
N∑

j=1

D∑

d=1

D∑

e=1

α j (t − d, u − e) a ji fi (d, e) bi (Y
t
t−d+1, Zu

u−e+1|Y t−d
1 , Zu−e

1).

We initialize the process in a silent begin state X0 with

αi (0, 0) = πi ,

αi (t, 0) = 0 if t > 0, (4.10)

αi (0, u) = 0 if u > 0,

and terminate in a silent end state X L+1 with

αi (T + 1, U + 1) =
∑

j∈S

α j (T, U) a ji . (4.11)

As before, we can now compute the likelihood of the observed data using

P(Y T
1 , ZU

1) =
N∑

i=1

α j (T + 1, U + 1). (4.12)

The backward algorithm is the probability of all observed data after time (t, u), given
the observed data up to that time and given that the last hidden state ended at (t, u).
That is, the backward variables are given by

βi (t, u) = P
(
Y T

t+1, ZU
u+1)|Y t

1, Zu
1 ,

L⋃

l=1

(Xl = i, pl = t, ql = u)
)

=
N∑

j=1

D∑

d=1

D∑

e=1

β j (t + d, u + e) aji fi (d, e) bi (Y
t+d
t+1 , Zu+e

u+1|Y t
1, Zu

1),

(4.13)

and are initialized by
βi (T + 1, U + 1) = 1, i ∈ S. (4.14)

As before the backward algorithm terminates upon calculation of βi (0, 0). The
Viterbi algorithm, which is used to determine the optimal path through the state
space under the given model, uses maxima instead of sums but is otherwise analo-
gous to the forward algorithm. The Viterbi variables are thus given by

188 4 Comparative Gene Finding

δi (t, u) = max
j,d,e

δ j (t − d, u − e) aji fi (d, e) bi (Y
t
t−d+1, Zu

u−e+1|Y t
1, Zu

1). (4.15)

The initialization and termination is the same as for the forward algorithm with

δi (0, 0) = πi ,

δi (t, 0) = δi (0, u) = 0 for t, u > 0, (4.16)

δi (T + 1, U + 1) = max
j

δ j (T, U) aji.

During the Viterbi computation we record the optimal previous state along with the
corresponding durations for each observed sequence. In PHMMs the durations are
given by the specific state directly, but here the durations may be generalized, and
the backtrack thus needs to know three values

(
ψi (t, u), φi (t, u), ξi (t, u)

)
(4.17)

= argmax
j,d,e

{
δ j (t − d, u − e) aji bi (Y

t
t−d+1, Zu

u−e+1|Y t−d
1 , Zu−e

1)
}
.

The probability of the optimal path is given by the largest element in the silent state
maxi δi (T + 1, U + 1), and the backtrack starts in the corresponding state

i∗ = argmax
i

δi (T + 1, U + 1). (4.18)

The backtrack proceeds by following the pointers to the previous state, starting with
ψi∗(T + 1, U + 1) which has durations φi∗(T + 1, U + 1) and ξi∗(T + 1, U + 1),
respectively.

4.4.2 SLAM: A GPHMM-Based Comparative Gene Finder

The GPHMM theory was first introduced in [28], and later implemented in a the cross-
species gene finder SLAM [1]. Instead of treating the problems of gene finding and
pairwise sequence alignment as separate, the implementation of GPHMMs places
the two problems on an equal footing. It can be used to annotate genomic sequences
by using the added signal strength in conserved regions, or it can be used as a
global alignment tool which takes advantage of the statistical features of biologically
functional regions to improve the alignment accuracy. SLAM has been used in several
large genome projects including the initial analysis of the mouse genome [26] (along
with Twinscan [19] and SGP-2 [30]) and the comparative analysis of the rat genome
[11, 31].

4.4 Generalized Pair Hidden Markov Models (GPHMMs) 189

The State Space

It is an interesting observation that we can use the same state space for the GPHMM
as for the GHMM, the difference resides in the output of the states. Thus, the SLAM
state space can be illustrated just as the Genscan state space in Fig. 2.11. The figure
only shows the model for the forward strand, and the full state space includes a mirror
image to account for genes on the reverse strand as well, resulting in a state space of
27 states; 13 for each strand and the joint intergenic strands. There are four types of
exons on each strand: single, initial, internal, and terminal exons. Single exons are
bounded by a start and a stop codon, initial exons by a start codon and a donor site,
internal exons by a donor and an acceptor site, and terminal exons by an acceptor
site and a stop codon. The introns are separated according to phase, corresponding
to where in the sequence it occurs between two exons. Intron i , i = 0, 1, 2 means
that the previous exon was spliced after i bases into its last codon. Similarly, exons
are indexed by the phases of the surrounding introns, where exon Ei, j is preceded
by an intron of phase i and succeeded by an intron of phase j , and i = I stands for
initial, and j = T for terminal exons, respectively. As in Genscan it is mainly the
exon states that need to be generalized, and we partition the state space as before
into E-states (exons) and I -states (introns and intergene).

The E- and I -states in SLAM are themselves rather complex models, illustrated
in Fig. 4.3. The E-states in Fig. 4.3a include the entire exon sequences, with possibly
spliced codons, as well as the corresponding boundary models for start or stop codons
and splice sites. An exon output is generated by the model as follows:

1. Choose a pair of durations from a joint generalized length distribution generating
lengths of the correct phase. That is, the length includes a random number of
codons, plus the extra bases needed for the spliced codons (if any) at the beginning
and the end of the exon.

2. Generate the pair of initial boundaries (start codon or acceptor site) corresponding
to the exon type, using a specified boundary model.

3. Generate extra initial bases (if any) according to exon phase.
4. Use a PHMM that outputs complete codons to generate two aligned exon

sequences according to the chosen lengths.
5. Generate extra terminal bases (if any) according to exon phase.
6. Generate the pair of terminal boundaries (donor site or stop codon) corresponding

to the exon type, using a specified boundary model.

The I -states in Genscan are modeled by standard HMM states, where a single residue
is generated in each step, resulting in geometrically distributed duration lengths.
Thus, a direct translation to the GPHMM would be to model the I -states in SLAM
by regular PHMMs. An intrinsic property of PHMMs, however, is that they generate
sequence pairs of on average the same length. While this holds true for conserved,
functional regions, introns and intergenes tend to differ in length quite notably even
between fairly closely related species. As an example, intron lengths in human and
mouse differ on average by a factor of 1.5 [26]. To account for this the SLAM
I -states generate sequences of high conservation interspersed by long stretches of

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

190 4 Comparative Gene Finding

E0,0 E0,1 E0,2 E1,0 E1,1 E1,2 E2,0 E2,1 E2,2

Intron0 Intron1 Intron2

EI,0 EI,1 EI,2 Esing E0,T E1,T E2,T

Intergene
(a)

CNS

IY IZ

(b)

M

I

D

Fig. 4.3 The SLAM state space. a Each I -state consists of three parts, a PHMM for conserved
noncoding regions, and two independent stretches of unconserved I -sequence. b Exons are modeled
as regular PHMMs in codon-space

independent sequences with geometrically distributed lengths. The SLAM I -states
thus consist of two parts (Fig. 4.3b): a pair of independent I -states for each observed
sequence, modeling long unrelated noncoding regions, and a conserved noncoding
sequence (CNS) state for modeling non-coding conserved regions. The CNSs are
modeled by regular PHMMs, but the interspersing I -states are modeled indepen-
dently, which allows for very different lengths of the resulting introns or intergenes
in the two observed sequences. Details on the submodels and an overview of the
implementation of SLAM is given in Chap. 7.

Reducing Computational Complexity

A major issue with GPHMMs is the computational complexity, both in memory
usage and running time. The required storage for the full forward algorithm in (4.9)
is O(T U N), where T and U are the observed sequence lengths, respectively, and N
is the number of states in the model. The running time depends very much upon how
long it takes to evaluate the emission distribution bi (Y t

t−d+1, Zu
u−e+1|Y t−d

1 , Zu−e
1).

A natural way to model the output is as a PHMM, which would require O(de)

http://dx.doi.org/10.1007/978-1-4471-6693-1_7

4.4 Generalized Pair Hidden Markov Models (GPHMMs) 191

calculations, where d and e are the durations of the output sequences, respectively.
Then, if D is the maximal duration of a state, the number of computations needed for
each forward variable would become O(N D4), and the total number of calculations
for the forward algorithm becomes O(T U N 2 D4). However, since SLAM uses the
same overall state space as Genscan, we can use the same tricks to reduce compu-
tational complexity as described in Sect. 2.2.4.2. That is, we can partition the state
space in E- and I -states and store the forward, backward and Viterbi variables for
the I -states only.
To illustrate how this is done let NI and NE denote the number of I - and E-states
respectively, such that N = NI + NE . Using the forward variable as an example, we
can break up the expression in (4.9) into sums over the two state classes

αi (t, u) =
=

∑

j∈I

∑

d,e

α j (t − d, u − e) ai j fi (d, e) bi (Y
t
t−d+1, Zu

u−e+1|Y t−d
1 , Zu−e

1)

(4.19a)

+
∑

j∈E

∑

d,e

α j (t − d, u − e) ai j fi (d, e) bi (Y
t
t−d+1, Zu

u−e+1|Y t−d
1 , Zu−e

1).

(4.19b)

The sum in the first class (4.19a) requires α-variable values from previous I -states
only. However, recall that the only possible transition from an I -state to an I -state
is via a self-transition, which means that the first sum over I -states only has one
positive term. Moreover, the duration pairs (d, e) in I -states run over three values
only, denote it B = {(1, 1), (1, 0), (0, 1)} (corresponding to a match, an insertion or
a deletion in Y , respectively). Thus (4.19a) becomes

(4.19a) = aii

∑

(d,e)∈B

αi (t − d, u − e) fi (d, e) bi (Y
t
t−d+1, Zu

u−e+1|Y t−d
1 , Zu−e

u).

(4.20)

Recall that Y b
a denotes a gap if a > b. To make the second class (4.19b) to sum

over previous I -states only we need to extend the backward dependence one more
hidden state. We recall that for an ordered pair of I -states (k, j) with an intervening
E-state, the E-state is uniquely defined Ek, j , and once in an E-state there is only one
possible transition out of it. We use these properties and let the sum in the second
class (4.19b) extend over two states back to get the (computationally) simplified form
of the forward algorithm

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

192 4 Comparative Gene Finding

αi (t, u) =
∑

(d,e)∈B

fi (d, e) bi (Y
t
t−d+1, Zu

u−e+1|Y t−d
1 , Zu−e

1)

[

αi (t − d, u − e) aii +

+
∑

k∈I

D∑

d ′=1

D∑

e′=1

αk(t − d ′ − d, u − e′ − e) ak,Ek,i fEk,i (d
′, e′)

· bEk,i (Y
t−d
t−d−d ′+1, Zu−1

u−e−e′+1|Y t−d−d ′
1 , Zu−e−e′)

]

. (4.21)

The first part is thus the self-transition of the current I -state i ∈ I , which sums over
the three possible durations of (d, e) in B. The second part extends two states back
k → Ek,i → i , to the previous I -state k, via the intervening E-state, which has
generalized durations denoted (d ′, e′). The initiation and termination is the same as
in Sect. 4.4.1.1, and the backward and Viterbi algorithms are simplified in the same
manner.

If we store the variables for the I -states only, the memory usage of the forward
algorithm reduces to O(T U NI). SLAM consists of N = 39 states in the full model
in Fig. 4.3, not counting the states in the boxes separately, but only NI = 7 I -states
which results in an 82 % reduction in memory usage, and nearly a 97 % reduction in
the required number of operations.

The main computational issue, however, is the lengths of the input sequences. To
handle this we need to limit the search space in some manner, for instance, as in
the stepping stone algorithm in DoubleScan in Sect. 4.3.1. SLAM uses something
called an approximate alignment, which is based on a global alignment of the input
sequences, which is then relaxed in various ways to ensure that it (most likely)
contains the optimal solution. The approximate alignment in SLAM is discussed
further in Sect. 7.2.3.

4.5 Gene Mapping

With the ever-increasing amount of sequence data available, it becomes more and
more common that with every newly sequenced genome, there is an evolutionary-
related genome already sequenced. If that homologous genome is fairly well anno-
tated, a gene mapping approach such as used by Projector [25] and GeneMapper [10]
might be more appropriate to annotate the new sequence.

Gene mapping traditionally means constructing a genetic map by assigning DNA
sequences (possibly fragmented) to specific chromosome positions. This is typically
done by either genetic mapping or physical mapping. Genetic mapping uses linkage
analysis to determine the relative position between genes on the chromosome, while
physical mapping uses molecular biology techniques to analyze the DNA molecules
directly in order determine the absolute position of the genes on the chromosome.

http://dx.doi.org/10.1007/978-1-4471-6693-1_7

4.5 Gene Mapping 193

The gene mapping methods we describe in this section are performed completely
‘in silico’ (biological experiments carried out on computer only) by means of map-
ping the genes of a well-annotated reference genome onto a newly sequenced target
genome. This idea is similar to that of using external homology such as cDNA/EST,
mRNA or protein sequences, described in Sect. 4.1. The main difference is that
similarity-based methods only use external evidence to boost the signal of coding
regions, while the exon–intron structure of the underlying gene is not known. The
gene mapping methods described in this section utilizes not only the sequence simi-
larity in homologous genes, but incorporates the extra information about splice sites
as well in order to predict complete gene structures.

4.5.1 Projector: A Gene Mapping Tool

Projector [25] is a gene mapping tool that is based on the PHMM model used in
DoubleScan, described in Sect. 4.3.1. However, instead of comparing two unanno-
tated genomes and predicting genes in both, Projector uses an annotated sequence as
informant sequence and “projects” its genes onto the unannotated target sequence.
In HMM terminology, instead of determining the globally optimal state path through
the model, Projector chooses the most probable state path among those that coincide
with the gene annotation of the informant sequence. This can be done by simply
modifying the Viterbi algorithm in (3.64) slightly.

Let Y T
1 denote the informant sequence with the known genes, and let ZU

1 corre-
spond to the target sequence to be annotated with the genes in the informant sequence.
Furthermore, let X (Y)

1 , . . . , X (Y)
T denote the sequence of (known) state labels for Y ,

where the state space is the same as for DoubleScan (see Fig. 4.1). Note that this label
sequence is not exactly the same as the the state sequence X L

1 that the PHMM pre-
dicts, as it does not take insertions and deletions into account. (Actually, the sequence
{X (Y)

t }T
t=1 is the same as X L

1 when all deletion (D) states have been removed.) The
modified Viterbi can be written as

δi (t, u) = max
j,d,e

{
δ j (t − d, u − e) a ji bi (Y

t
t−d+1, Zu

u−e+1|Y t−d
1 , Zu−e

1) I{X (Y)
t = i}

}

(4.22)

where I is the indicator function and (d, e) ∈ {(1, 1), (1, 0), (0, 1)} indicating a
match, an insertion, and a deletion in the alignment in sequence Y , respectively.
Thus, the only difference in the Viterbi formulation is the factor I{X (Y)

t = i}, which
is added to ensure that we stay within the path dictated by the gene annotation of
Y . All paths violating this restriction get probability zero. The result of the model
is then the corresponding gene prediction in Z along with an alignment of the two
sequences (see Fig. 4.4).
Projector and DoubleScan use position-dependent transition probabilities and uti-
lizes an external program, called StrataSplice [23], to capture candidate splice sites

http://dx.doi.org/10.1007/978-1-4471-6693-1_3

194 4 Comparative Gene Finding

Y

Z

Fig. 4.4 The gene prediction in Projector of the target sequence is produced within the bounds of
the known annotation in the informant sequence

in the sequence. This is done in a preprocessing step, where StrataSplice processes
each sequence separately and assigns a score to each potential donor, acceptor and
translation start site. The chosen splice sites are then used both to reduce the search
space of the dynamic programming algorithm, and to modify the transition proba-
bilities into translation starts or splice sites in the HMM. If the signal score of the
potential exon boundary is high, the transition probability is unmodified, while if the
signal score is low, the transition probability into that site is reduced.

4.5.2 GeneMapper—Reference-Based Annotation

A gene mapping software that falls into the same category as Projector is the tool
GeneMapper [10]. Similar to Projector, GeneMapper takes an already annotated
genomic sequence and maps the coding exons to a homologous target sequence.
The pairwise version uses dynamic programming to map the exons, while a multiple
species version of the program works with profiles, similar to protein profiles (see
Sect. 3.2.9), which enables the mapping over fairly large evolutionary distances. Both
GeneMapper and Projector can only work properly on conserved gene structures,
however. Deletions or insertions of whole exons in either sequence will complicate
the prediction task and compromise the results.

While Projector uses a heuristic threshold of the splice sites scores to reduce the
search space of the algorithm, GeneMapper uses a subroutine called ExonAligner
to map the annotated exons onto the target sequence. ExonAligner implements a
Smith-Waterman-like approach (see Sect. 3.1.6) to locally align each exon to the
target sequence. The alignment is constrained by the location of the potential splice
sites, which, like in Projector, are scored using StrataSplice [23]. The dynamic pro-
gramming algorithm in GeneMapper allows for both single nucleotide sequencing
errors as well as frameshifts during mapping, but since these events are expected
to be rare, the transitions into such events are heavily penalized. The procedure of
constructing a reference annotation in GeneMapper can be summarized as follows:

http://dx.doi.org/10.1007/978-1-4471-6693-1_3
http://dx.doi.org/10.1007/978-1-4471-6693-1_3

4.5 Gene Mapping 195

1. Only the most conserved exons are mapped onto the target sequence:

(i) The approximate location of the exon in the target genome is found using
tBLAST and extending the best hit (only significant hits are used).

(ii) The exact ortholog in the target sequence is predicted using ExonAligner.
(iii) The exon alignment is tested for significance using a likelihood ratio test, and

only the most highly conserved exons are let through.

These mappings are then used to provide an outline for the entire gene structure.
2. Less conserved exons are now mapped using tBLAST and ExonAligner as above,

but by being restricted by the already mapped exons.
3. Events of exon splitting and exon fusion are searched for:

(i) Introns are required to have a minimum length, thus exons separated by a too
short intron are fused together.

(ii) Exon alignments with gaps greater than the minimum intron length and with
splice sites at the gap ends are split into two.

There is a multiple species version of GeneMapper, in which the annotated gene is
mapped onto multiple target sequences using profiles. The gene gets mapped onto the
target sequences according to evolutionary distance, starting with the genome closest
to the annotated sequence, and updating the profile after each mapping. By using
profiles in this manner, genes can be mapped between fairly distant sequences, as
long as the gene structure is conserved (still allowing for exon splitting and fusion).

4.6 Multiple Sequence Gene Finding

With the ever-increasing amount of sequence data available, the need for more effi-
cient and more accurate methods to analyze them is larger than ever. Increasing the
number of species in a sequence comparison naturally improves the gene finding
accuracy further. Moreover, with the aid of several annotated genomes at various
evolutionary distances, more and more remotely related sequences can be charac-
terized. However, the availability of computer softwares that manage to utilize the
immense flow of data is still lacking. There are several possible explanations to this.
One is that until very recently, not that many sequences were available. The sequenc-
ing development has exploded during the last decade. Another explanation is the
that the computational complexity grows fast with every new sequence added. For
instance, the SLAM method presented in Sect. 4.4.2 becomes infeasible already for
three sequences. A third explanation is that the problem of multiple alignments is still
a difficult one. The more distantly related sequences that are compared, the more prob-
lems arise with genome rearrangements such as insertions and deletions, sequence
transitions and inversions. With that said, methods are emerging that attempt to uti-
lize multiple sequences in the gene finding to improve the prediction accuracy. One
such method, presented next, is N-SCAN [14], which uses a multiple alignment as
reference when annotating a related, but uncharacterized sequence.

196 4 Comparative Gene Finding

4.6.1 N-SCAN: A Multiple Informant-Based Gene Finder

The program N-SCAN [14] is a further development of Twinscan [19] described in
Sect. 4.1.2, which in turn is an extension of the GHMM-based gene finder Genscan [9]
described in Sect. 2.2.4. While Genscan is a single species gene finder, Twinscan
uses a homologous informant sequence to boost or decrease the probabilities of the
various gene components. N-SCAN is a further extension of this, where, instead of
using a single informant sequence, the target sequence is compared to a multiple
alignment of evolutionary related informant sequences. N-SCAN only annotates one
target sequence at a time, however.

We let Z T
1 denote the target sequence as before, and now we let Yt = {Y (1)

t , . . . ,

Y (N)
t }, t = 1, . . . , T denote the column at position t in the multiple alignment of

the N informant sequences. We assume that we use a kth-order model for the target
sequence and an mth-order model for the informant sequences. Then the probability
of outputting a column in the alignment between the informant sequences and the
target sequence, given the previous k bases in Z and the previous m bases in the
informants, is given by

P(Yt , Zt |Yt−1, . . . , Yt−m, Zt−1, . . . , Zt−k) =
= P(Yt |Yt−1, . . . , Yt−m, Zt−1, . . . , Zt−k) P(Zt |Zt−1, . . . , Zt−k). (4.23)

This equality comes from the assumption that Yt is independent of Zt , and that
Zt given the previous k bases is independent of the m positions of the informant
sequences. The second part P(Zt |Zt−1, . . . , Zt−k) of (4.23) is calculated as for a nor-
mal GHMM, while the first part P(Yt |Yt−1, . . . , Yt−m Zt−1, . . . , Zt−k) is computed
by N-SCAN using Bayesian networks similar to that in [33]. A brief introduction to
Bayesian networks is given in Sect. 5.4.7 in the framework of modeling splice sites.

Consider a phylogenetic tree, where the leaf nodes represent sequences from
existing species, and the internal nodes represent common ancestors to the branch-
ing subtrees. Such a tree can be seen as a Bayesian network of the probability dis-
tribution of the columns in the multiple alignment. The nodes then represent the
specific residues in the different rows of a column, and the edges correspond to
the dependencies between the nodes. Moreover, given the state of an ancestral node,
the probability distributions of the child nodes are conditionally independent of the
rest of the tree. Thus, the joint probability of a column can be factorized as

P(Yt) = P(Y (1)
t , . . . , Y (N)

t) =
n∏

i=1

P(Y (i)
t |Ypa(i)) (4.24)

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_5

4.6 Multiple Sequence Gene Finding 197

S. cerevisiae − S

S. paradoxus − S

S. mikatae − S

S. cariocanus − S

A

A

A

S 4

1S

S 2 S 3

(a) (b)

1

2

3

4

1

2

3

Fig. 4.5 a A phylogenetic tree of sequences from S. cerevisiae (S1), S. paradoxus (S2), S. mikatae
(S3), and S.cariocanus (S4). b The phylogenetic tree in (a) seen as a Bayesian network with ancestral
nodes A1, A2, and A3

where Ypa(i) denotes the parent nodes of Y (i)
t . For instance, assume that we have

homologous sequences from the four Saccharomyces species, S. cerevisiae (S1),
S. paradoxus (S2), S. mikatae (S3), and S. cariocanus (S4) as in Fig. 4.5, with internal
ancestral nodes A1, A2, and A3. The Bayesian network corresponding to this tree
could then be factorized as

P(S1, S2, S3, S4, A1, A2, A3) =
= P(A1) P(S4|A1) P(A2|A1) P(S1|A2) P(A3|A2) P(S2|A3) P(S3|A3). (4.25)

The real multiple alignment only consists of the sequences in the leaf nodes, and
during the training process the ancestral sequences are therefore treated as missing
data. However, instead of using the phylogenetic tree directly, N-SCAN transforms
it to make the target sequence the root node. This is done by simply reversing the
edges between the root and the target node. Assume for instance that S. cerevisiae
(S1) is the target in Fig. 4.5. By reversing the edges between the root node and the S1
leaf node, we get a new tree, as given in Fig. 4.6. The new tree represents the same
probability distribution, but the factorization now becomes

P(S1, S2, S3, S4, A1, A2, A3) =
= P(S1) P(A2|S1) P(A1|A2) P(A3|A2) P(S4|A1) P(S2|A3) P(S3|A3). (4.26)

The purpose of this transformation is to be able to factor out the target sequence S1,
without conditioning it on any other sequence. Finally, any ancestral node with only
one child is removed and the edge goes directly from the parent to the child of the
removed node. In Fig. 4.6 this means that node A2 is removed and an edge is drawn
from A1 to S4 directly. Since A1 represents an unknown ancestral sequence this will
not affect the results of the model.

The Bayesian network described above represents a model where the columns of
the multiple alignment are assumed to be independent. The model can be extended
to higher orders, though, following the recipe in [33]. Instead of treating each node

198 4 Comparative Gene Finding

Fig. 4.6 The transformed
tree achieved by reversing
the edges between the root
node and the S1-node in the
tree in Fig. 4.5

A

A A

1S

2

1 3

S 4 S 2 S 3

in the network as a univariate random variable, the nodes now represent a model of
order m, with each random variable depending on the previous m positions in the
multiple alignment.

References

1. Alexandersson, M., Cawley, S., Pachter, L.: SLAM: cross-species gene finding and alignment
with a generalized pair hidden Markov model. Genome Res. 13, 496–502 (2003)

2. Altschul, S.F., Gish, W., Miller, W., Myers, E.M., Lipman, D.J.: Basic local alignment search
tool. J. Mol. Biol. 215, 403–410 (1990)

3. Ansari-Lari, M.A., Oeltjen, J.C., Schwartz, S., Zhang, Z., Muzny, D.M., Lu, J., Gorrell, J.H.,
Chinault, A.C., Belmont, J.W., Miller, W., Gibbs, R.A.: Comparative sequence analysis of a
gene-rich cluster at human chromosome 12p13 and its syntenic region in mouse chromosome
6. Genome Res. 8, 29–40 (1998)

4. Bafna, V., Huson, D.H.: The conserved exon method for gene finding. Proc. Int. Conf. Intell.
Syst. Mol. Biol. 8, 3–12 (2000)

5. Batzoglou, S., Pachter, L., Mesirov, J., Berger, B., Lander, E.S.: Human and mouse gene
structure: comparative analysis and application to exon prediction. Genome Res. 10, 950–958
(2000)

6. Birney, E., Clamp, M., Durbin, R.: Genewise and genomewise. Genome Res. 14, 988–995
(2004)

7. Burge, C.B.: Modeling dependencies in pre-mRNA splicing signals. In: Salzberg, S.L., Searls,
D.B., Kasif, S. (eds.) Computational Methods in Molecular Biology, pp. 109–128. Elsevier
Science B.V. (1998)

8. Burge, C.: Identification of genes in human genomic DNA. Ph.D. thesis, Stanford University,
Stanford CA (1997)

9. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol.
Biol. 268, 78–94 (1997)

10. Chatterji, S., Pachter, L.: Reference based annotation with GeneMapper. Genome Biol. 7, R29
(2006)

References 199

11. Dewey, C., Wu, J.Q., Cawley, S., Alexandersson, M., Gibbs, R., Pachter, L.: Accurate identifi-
cation of novel human genes through simultaneous gene prediction in human, mouse, and rat.
Genome Res. 14, 661–664 (2004)

12. Gelfand, M.S., Mironov, A.A., Pevzner, P.A.: Gene recognition via spliced sequence alignment.
Proc. Natl. Acad. Sci. USA 93, 9061–9066 (1996)

13. Gish, W., States, D.J.: Identification of protein coding regions by database similarity search.
Nat. Genet. 3, 266–272 (1993)

14. Gross, S.S., Brent, M.R.: Using multiple alignments to improve gene prediction. J. Comput.
Biol. 13, 379–393 (2006)

15. Hardison, R.C., Oeltjen, J., Miller, W.: Long human-mouse sequence alignments reveal novel
regulatory elements: a reason to sequence the mouse genome. Genome Res. 7, 959–966 (1997)

16. Hirschberg, D.S.: A linear space algorithm for the computing maximal common subsequences.
Comm. ACM 18, 341–343 (1975)

17. Kent, W.J.: BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002)
18. Kim, N., Shin, S., Lee, S.: ECgene: genome-based EST clustering and gene modeling for

alternative splicing. Genome Res. 15, 566–576 (2005)
19. Korf, I., Flicek, P., Duan, D., Brent, M.R.: Integrating genomic homology into gene structure

prediction. Bioinformatics 17, S140–S148 (2001)
20. Krogh, A.: Using database matches with HMMGene for automated gene detection in

drosophila. Genome Res. 10, 523–528 (2000)
21. Kulp, D., Haussler, D., Reese, M.G., Eeckman, F.H.: A generalized hidden Markov model for

the recognition of human genes in DNA. Proc. Int. Conf. Intell. Syst. Mol. Biol. 4, 134–142
(1996)

22. Kulp, D., Haussler, D., Reese, M.G., Eeckman, F.H.: Integrating database homology in a
probabilistic gene structure model. Pac. Symp. Biocomput. 2, 232–244 (1997)

23. Levine, A.: StrataSplice at http://www.sanger.ac.uk/Software/analysis/stratasplice/
24. Meyer, I.M., Durbin, R.: Comparative ab initio prediction of gene structures using pair HMMs.

Bioinformatics 18, 1309–1318 (2002)
25. Meyer, I.M., Durbin, R.: Gene structure conservation aids similarity based gene prediction.

Nucleic Acids Res. 32, 776–783 (2004)
26. Mouse Genome Sequencing Consortium: Initial sequencing and comparative analysis of the

mouse genome. Nature 420, 520–562 (2002)
27. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in

the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970)
28. Pachter, L., Alexandersson, M., Cawley, S.: Applications of generalized pair hidden Markov

models to alignment and gene finding problems. J. Comput. Biol. 9, 389–399 (2002)
29. Pachter, L., Batzoglou, S., Spitkovsky, V.I., Banks, E., Lander, E.S., Kleitman, D.J., Berger,

B.: A dictionary based approach for gene annotation. J. Comput. Biol. 6, 419–430 (1999)
30. Parra, G., Agarwal, P., Abril, J.F., Wiehe, T., Fickett, J.W., Guigó, R.: Comparative gene

prediction in human and mouse. Genome Res. 13, 108–117 (2003)
31. Rat Genome Sequencing Consortium: Genome sequence of the Brown Norway rat yields

insights into mammalian evolution. Nature 428, 493–521 (2004)
32. Schwartz, S., Zhang, Z., Frazer, K.A., Smit, A., Riemer, C., Bouck, J., Gibbs, R., Hardison,

R., Miller, W.: PipMaker—a web server for aligning two genomic DNA sequences. Genome
Res. 10, 577–586 (2000)

33. Siepel, A., Haussler, D.: Phylogenetic estimation of context-dependent substitution rates by
maximum likelihood. Mol. Biol. Evol. 21, 468–488 (2004)

34. Smit, A.F.A., Hubley, R., Green, P.: RepeatMasker at http://www.repeatmasker.org
35. Snyder, E.E., Stormo, G.D.: Identification of protein coding regions in genomic DNA. J. Mol.

Biol. 248, 1–18 (1995)
36. Wu, T.D., Watanabe, C.K.: GMAP: a genomic mapping and alignment program for mRNA

and EST sequences. Bioinformatics 21, 1859–1875 (2005)
37. Xu, Y., Mural, R.J., Einstein, J.R., Shah, M.B., Uberbacher, E.C.: GRAIL: a multi-agent neural

network system for gene identification. Proc. IEEE 84, 1544–1552 (1996)

http://www.sanger.ac.uk/Software/analysis/stratasplice/
http://www.repeatmasker.org

200 4 Comparative Gene Finding

38. Xu, Y., Uberbacher, E.C.: In: Salzberg, S.L., Searls, D.B., Kasif, S. (eds.) Computational
Methods in Molecular Biology, pp. 109–128. Elsevier Science B.V. (1998)

39. Yeh, R.F., Lim, L.P., Burge, C.B.: Computational inference of homologous gene structures in
the human genome. Genome Res. 11, 803–816 (2001)

Chapter 5
Gene Structure Submodels

A gene model algorithm integrates a wide range of scores, or signals, coming from
the ingoing states of the model. These states are themselves complex submodels,
which incorporate a number of sensors used to score the different characteristics of
the submodel. Such sensors are traditionally divided into two groups: content sensors
and signal sensors. Signal sensors model the transition between states, and attempt
to detect the boundaries between exons and introns in the sequence, while content
sensors score the content of a candidate region, such as the base composition or
length distribution of a candidate exon or intron. In this chapter we describe some
of the main submodels used in gene finding algorithms, and detail a number of
different methods for the integrating the sensors the submodels incorporate. There
are several different types of genes, exhibiting various kinds of characteristics, but
in what follows we focus our attention on protein-coding genes.

5.1 The State Space

The main states of a gene finding model are the exons, introns, and intergene states.
The intergene state corresponds to the long stretches of sequence in between genes,
while the exons and introns constitute the main gene components of the protein-
coding portion of the gene. The sequences surrounding the boundaries between exons
and introns are called splice sites, with the donor site residing at the beginning of an
intron, and the acceptor site at the end. Although being of utmost importance for the
exact prediction of exons, the splice sites are typically not represented as separate
states in the gene model, but are usually included in the exon submodel.

In addition to the three main types of states, a gene finding model can include
various types of regulatory states. The untranslated regions (UTRs) harbor important
binding sites, and are located right before the beginning and right after the end of the
coding portion of the gene. We refer to them as the 5′ and the 3′ UTRs according to
their location, respectively, with 5′UTR signifying the upstream region and 3′UTR

© Springer-Verlag London 2015
M. Axelson-Fisk, Comparative Gene Finding, Computational Biology 20,
DOI 10.1007/978-1-4471-6693-1_5

201

202 5 Gene Structure Submodels

E0,0 E0,1 E0,2 E1,0 E1,1 E1,2 E2,0 E2,1 E2,2

Intron0 Intron1 Intron2

EI,0 EI,1 EI,2

Esing

E0,T E1,T E2,T

5 UT R 3 UT R

AP

Intergene

Fig. 5.1 The main states of a gene finding model: intergene, exons (E), introns, UTRs, promoter
(P), and polyA-signal (A)

the downstream region of the gene. The UTRs are typically structured into exons
and introns as well, but these exons are referred to as noncoding, as they are not
translated into protein. The UTRs are typically not included in single species gene
finding algorithms, mainly because their signal is rather weak and hard to detect, but
also because not enough training data has been available in the past. In a cross-species
setting, however, noncoding exons are often conserved to some degree, and tend to
disturb the gene prediction if excluded from the model. Other common regulatory
states include the promoter (P) and the polyA-signal (A). Although these elements
correspond to very short sequence motifs, which makes them difficult to detect in a
larger genomic sequence, their inclusion in a gene model may improve the prediction
of the beginning and end of the gene. Figure 5.1 illustrates a state space incorporating
the gene features that we discuss in this chapter.

5.1 The State Space 203

5.1.1 The Exon States

There are four different types of protein-coding exons: single, initial, internal, and
terminal exons. The different types exhibit fairly different properties, and benefit
from separate parameter sets for their content sensors. An exon has both a phase and
a frame. The frame refers to the reading frame with respect to the beginning of the
sequence, such that an exon beginning at coordinate k in the sequence, is of frame
(k mod 3). The phase has to do with the codon periodicity, and in a sense it is the
introns that have the phase assignation, rather than the exons. An intron of phase
0 splits the exons right between two codons, while phase 1 introns splits a codon
between the 1st and the 2nd base, and phase 2 introns between the 2nd and the 3rd
codon position (see Fig. 5.2).
The subscripts of the exons in Fig. 5.1 indicate the exon type and the phase. A single
exon is denoted Esing and corresponds to an exon that begins in a start codon and
ends in a stop codon. EI, j denotes an initial exon that is bounded by a start codon
and an donor splice site, and ends with j = 0, 1, 2 extra bases after the last codon,
to be completed in the beginning of the next exon. Ei, j denotes an internal exon that
is bounded by an acceptor and a donor site, and that has to finish the last codon of
the previous exon with [(3 − i) mod 3] extra bases, and ends with j extra bases after
its last codon. Similarly, Ei,T denotes a terminal exon, bounded by an acceptor site
and a stop codon, and that begins by finishing off the last codon with [(3− i) mod 3]
extra bases. The introns intervening the exons inherit the phase of the preceding exon
and passes it on to the next. In this manner, by including a bunch of extra states that
keep track of the phase, the process can be of first order, rather than carrying around
memory about previous exons. Table 5.1 lists the boundaries connected with each
exon type.

The characteristics of an exon, modeled in an exon submodel, include the codon
(or dicodon) composition, the state length distribution, and the boundary models.
The codon composition is a rather strong indicator for coding potential alone, as
the sequence pattern within coding exons differ significantly from that of noncoding
sequence. The prediction of the exact exon boundaries gets fuzzy, however, if codon
composition were to be the only indicator. The inclusion of a generalized length
distribution and good boundary models strengthen the exon signal and improves the
prediction accuracy of the gene finding algorithm.

GC C

C C

C C

T T G A A T G G A T

T T G A A G G A TG T G C

G C

T T G A A G T G G A T G C
Intron0

Intron1

Intron2

Ei,0

Ei,1

Ei,2

E0, j

E1, j

E2, j

Fig. 5.2 Illustrating the notion of exon and intron phase. Intron j comes between exon Ei, j and
exon E j,k , j = 0, 1, 2

204 5 Gene Structure Submodels

Table 5.1 The boundaries connected to the four exon types

Exon Notation Left bdy (5′) Right bdy (3′)
Single Esing Start codon Stop codon

Initial EI, j Start codon Donor site

Internal Ei, j Acceptor site Donor site

Terminal Ei,T Acceptor site Stop codon

5.1.2 Splice Sites

After the gene sequence has been transcribed into an RNA molecule, and before it
is translated into protein, the introns are cut out of the RNA transcript. The cleavage
process is called splicing, and the location of the exon–intron cuts are called splice
sites. These sites are physical stretches of sequences exhibiting specific character-
istics that enable the spliceosome to recognize and attach to it. The splice site at
the beginning of an intron (5′ end) is called the donor site, and the one at the end
(3′ end) is called the acceptor site (see Fig. 5.3).

Splice sites have a very specific sequence composition that can be illustrated for
instance using sequence logos [56], such as in Fig. 5.4. Sequence logos are created
from multiple alignments of sequence samples of the site in question, and show
the level of conservation, or the level of information, to be found in each sequence
position of the site. In a sequence logo, the residues observed in each column of
the multiple alignment are stacked on top of each other in increasing order, with the

exon
intron

exon

donor acceptor

Fig. 5.3 The donor site is located at the exon–intron boundary at the beginning of an intron, and
the acceptor at the intron–exon boundary at the end of the intron

0

1

2

-6 -5

T

C

A

-4 -3

T

A

C

-2

C

G

T

A

-1

A
T

G

0

G

1

T

2

G
A

3

G

T

C

A

4

C

T

G

5

C
G

T

6

G

C

A

7 8 0

1

2

-2
0

-1
9

C

-1
8

G

T
C

-1
7

T

-1
6

G

C

T

-1
5

G

C

T

-1
4

G

A

C

T

-1
3

G

C

T

-1
2

A

G

C

T

-1
1

G

C
T

-1
0

G

C
T

-9

G

A

C
T

-8

G

C
T

-7

G

C
T

-6

A

G

C
T

-5

A

C
T

-4 -3

T
C

-2

A

-1

G

0

A

C

G

1

C

T
A

2 3

(a) (b)exon intron intron exon

Fig. 5.4 Sequence logos of a human donor sites, and b human acceptor sites. The height of the
letter in position t is given by Rseq (t) in (5.2)

5.1 The State Space 205

most frequent residue on top. The level of information in each position t is computed
using the Shannon entropy H(t), given by

H(t) = −
∑

v∈V

ft (v) log2 ft (v) (5.1)

where V is the set of possible residues in the alphabet in question, and ft (v) is
the frequency of residue v ∈ V at position t . The Shannon entropy measures the
information content in “bits,” using log base 2. For DNA sequences, with four possible
residues in the alphabet (V = {A, C, G, T }), H(t) takes values between 0 and 2,
where H(t) = 2 is the maximum uncertainty indicating a uniform, or completely
random, distribution over the residues, and H(t) = 0 indicates complete certainty
with ft (v) = 1 for one of the residues in V and 0 for all the others.

The height of a sequence logo indicates the amount of information available in
each position, and is for DNA sequences calculated using

Rseq(t) = 2 − H(t). (5.2)

Figure 5.4 illustrates sequence logos of human donor and acceptor sites, generated
by the WebLogo software [24]. Directly we see the very characteristic invariant
consensus dinucleotides ‘GT’ in donors and ‘AT’ in acceptors, appearing in the first
two and the last two positions of the intron, respectively. In addition, we see that
the positions surrounding these dinucleotides contain some level of information, but
that the information content degrades rapidly as we move away from these positions.
The aim of splice site models is to capture such sequence characteristics and position
dependencies present in the splice site signals. As mentioned in Sect. 5.1.1, splice
sites are typically not modeled as separate states, but are often included as part of
the exon states, although their sequence extend into the adjacent intron as well.

5.1.3 Introns and Intergenic Regions

The intergenic and intragenic (intron) regions comprise an overwhelming portion
of the genomes of higher organisms (e.g. over 95 % of the human genome). The
intergenes are the long stretches of DNA located between genes, while the introns
are the noncoding sequences separating the exons of a multi-exon gene. Introns and
intergenic sequences have often been referred to as “junk-DNA” in the past [48],
as there were no known function of these regions. This term is becoming outdated,
however, as there is increasing indications that both intergenes and introns serve
particular purposes, both regarding structure and regulation of the genome [7, 30].

While it may seem natural to denote the sequence separating two adjacent genes
on the same strand as intergene, note that the intergene state in Fig. 5.1 is common to
both strands, and can in our definition be interrupted by genes on either strand (see
Fig. 5.5). In higher organisms, the intergenic stretches can be very long, and while

206 5 Gene Structure Submodels

Fig. 5.5 We define an
intergene as the sequence
between two adjacent genes,
regardless of the strand
assignation of these genes Gene 1

Gene 2

Gene 3

Intergene Intergene

they contain various regulatory elements, they are for the most part long stretches of
sequence of unknown function.

While rare or nonexistent in most prokaryotes, introns are common in eukaryotic
genes. Besides harboring various regulatory elements, it is becoming more and more
evident that the introns themselves have both structural and regulatory purposes, and
are vital to the viability of the cells. In prokaryotes introns are mainly found in the
tRNA (transfer) and rRNA (ribosome) coding genes. One possible explanation for
this is that for smaller organisms such as bacteria, an efficient reproduction is key,
and a streamlined genome is therefore more valuable than whatever added functions
introns provide.

Introns are bounded by a donor and an acceptor splice site, and almost all introns
begin and end with the consensus dinucleotides GT and AG, respectively (see the
next section for more on this). In order to carry the phase information between exons,
a common trick is to include numerous intron (and exon) states in the state space.
In Fig. 5.1 the index of an Introni state indicates that the previous exon generated
i = 0, 1, 2 extra bases after its last completed codon. As a result, the succeeding exon
needs to begin with j = [(3 − i) mod 3] extra bases, respectively, before producing
new codons.

The characteristics modeled in intron and intergene submodels are typically
sequence composition and length distributions. While the position dependencies
are much less than in exons, the intron and intergene sequences still show indication
of structure, and the sequence model used for instance in SLAM [2] is a first-order,
homogeneous Markov chain. The length distribution used is typically the geomet-
ric. Although the sheer length of these regions make any other model infeasible,
the geometric distribution is in fact a reasonable length model for most eukaryotic
noncoding regions.

5.1.4 Untranslated Regions (UTRs)

As described in Sect. 1.1 a protein-coding gene is expressed in several steps, the two
main steps being the transcription and translation. In the transcription step, an RNA
molecule is synthesized, using the DNA sequence between the transcription start and
the transcription end of the gene as a template. The transcribed RNA molecule, also

http://dx.doi.org/10.1007/978-1-4471-6693-1_1

5.1 The State Space 207

known as the primary transcript, consists of the protein-coding core of the gene,
surrounded by untranslated regions (UTRs) both before and after. The 5′UTR is
located upstream the core and extends from the transcription start to right before the
start codon, and the 3′UTR extends downstream of the core from right after the stop
codon to the transcription end. Before translation the introns are spliced out from
the primary transcript, and the resulting mRNA molecule consists only of the UTRs
and the coding exons. The UTRs are involved in the regulation and stabilization
during translation, but are not part of the final protein product. The 5′UTR contains
various regulatory binding sites, most notably the ribosomal binding site described
in Sect. 5.3.2. The 3′UTR contains several regulatory sequences, such as the polyA-
signal which is involved in preparing the RNA transcript for translation.

Just as the coding portion of the gene, the UTRs are structured into exons and
introns as well, and undergo splicing between the transcription and the translation
steps. The UTR exons are referred to as noncoding as they are not translated into
protein during translation. UTRs are often excluded in single species gene finding
models, as they are difficult to detect. Although the sequence composition is more
structured than in intergenic sequences, it varies greatly, and, since the sequence is not
translated, there is no clear codon structure or frame consistency to look for. On the
other hand, when it comes to comparative gene finding it has been found that including
the UTRs in some form is of vital importance to the accuracy of the model. It turns out
that the UTR exons tend to be significantly conserved between species, and ignoring
them will greatly compromise the gene prediction. As an example, the SLAM model
[2], described in Sect. 4.4.2 includes a conserved noncoding sequence (CNS) state
as part of the intergenic region, that accounts for any significantly conserved region
other than coding. The CNS model in SLAM is a simple pair HMM (see Sect. 3.1.7),
only characterized by the sequence composition and the pairwise similarity, while
the state length is still allowed to be geometric. Although such a simple model, it
improves the gene finding accuracy of SLAM vastly, as it enables the algorithm to
distinguish between true exons and exon-similar conserved elements.

5.1.5 Promoters and PolyA-Signals

The promoter is located at the transcription start site (TSS) of a gene, and constitutes
the docking site for the complex of enzymes and transcription factors needed to initi-
ate transcription. Besides the TSS, the promoter contains a TATA-box, located about
30 bp upstream of the TSS, and a variety of regulatory binding sites for transcription
modulators such as enhancers and silencers that boost or decrease the expression
level of the gene, respectively. Identification of the promoter region is of huge inter-
est, not only in order to direct gene prediction, but also to identify the regulatory
regions of the gene. These regions hold the secret to how transcription occurs, what
triggers it, and under what circumstances the gene is activated.

http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_3

208 5 Gene Structure Submodels

The problem of promoter prediction is a difficult one, however, complicated by
numerous factors. For instance, there is no clear consensus sequence to go by. The
binding sites typically follow position-specific patterns, but are too short to identify
individually. Searching for whole groups of binding sites at once is a possible way
around this problem, but since the regulatory machinery varies greatly between genes,
this is not an easy task either. As regards to the TATA-box, some promoters have it and
some do not. Some promoters occur in a CpG-island while some are not connected
to such patterns at all. In addition, there is no one-to-one correspondence between
the gene and the promoter. A gene can have several promoters, containing several
TSSs each. The TSSs (in eukaryotes) can be located all over the gene, both upstream
and downstream of the coding region, and in both exons and intron. Moreover, genes
can share promoters, and promoter regions may overlap one another.

Identifying promoters as stand-alone objects is thus very challenging. However,
by invoking the promoter as a submodel in a complete gene structure, and predicting
it as part of that structure, has the potential of improving both the promoter prediction
and the gene prediction. A wide range of methods have been applied to the mod-
eling and classification of promoter sequences, including weight matrices, Markov
chains, neural networks, k-tuple frequency models, interpolated Markov chains, and
discriminant analysis models. These methods are described in the context of splice
site detection in Sect. 5.1.2, but the methodology can easily be modified to model
promoters in the same fashion.

5.2 State Length Distributions

Recall from Sect. 2.1.1 that the duration of a state in a standard Markov process, is
the number of self-transitions into that state before leaving. In a first-order Markov
chain, or in any other “memoryless” random process, the state duration follows a
geometric distribution. This distribution arises naturally, and is the least expensive
computationally, as no memory of the number of self-transitions made so far has to be
kept. The geometric distribution is not always a good model for certain types of states,
however, and forcing it onto a state duration when it is a bad fit will compromise
prediction accuracy. Typically, the geometric distribution works well on gene features
such as introns and intergenes, where there are rather few functional constraints on
the lengths. This is rather fortunate since, due to the vast lengths of these features,
a more general model would be infeasible. Empirical data shows, however, that
exons follow a length distribution that is significantly different from the geometric.
Although much shorter, the variation in exon lengths is still considerable, and some
care has to be taken when designing more general distributions.

We begin by giving a brief encounter of the properties of the geometric distribution
before we present a few of the most common approaches to exon length modeling.

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

5.2 State Length Distributions 209

5.2.1 Geometric and Negative Binomial Lengths

The geometric distribution is a discrete distribution constructed from a (possibly
unbounded) number of Bernoulli trials. A Bernoulli trial is a random experiment
where the outcome is one of two possible values, such as “success” or “failure,” or 0
or 1. For instance, if we flip a coin, the outcome “heads” may be considered a success
and “tails” a failure (or vice versa). A Bernoulli distributed random variable X has
probability mass function

P(X = x) =
{

p if x = 1,

1 − p if x = 0,
(5.3)

where 0 ≤ p ≤ 1. A Bernoulli process consists of a series of independent Bernoulli
trials, and the distribution of the number Y of trials up to and including the first success
is geometrically distributed with parameter p. That is, if the first success occurs after
Y = k trials, there must have been k−1 preceding failures. The geometric probability
mass function (for p > 0) becomes

P(Y = k) = (1 − p)k−1 p, k = 1, 2, 3, . . . (5.4)

The expected value and the variance of the geometric distribution are given by

E[Y] = 1

p
, Var(Y) = 1 − p

p2 . (5.5)

The distribution is called geometric, because the probabilities form a geometric
sequence: p, pq2, pq3, . . . with q = 1− p, and the probability mass function decays
exponentially (see Fig. 5.6).

Fig. 5.6 The probability
mass function of the
geometric distribution
decays exponentially

0 .02

0 .04

0 .06

0 .08

0 .10

10 20 30 40 50

210 5 Gene Structure Submodels

In terms of the duration of a state in memoryless random processes such as Markov
chains, we are interested in the distribution of failures until the first success. Thus,
the success is not included in the count, and this distribution is sometimes called a
shifted geometric distribution. The probability mass function of the duration D of a
memoryless state is thus

P(D = k) = (1 − p)k p, k = 0, 1, 2, 3, . . . (5.6)

The variance is the same as for the standard geometric distribution, but the expected
value becomes

E[D] = 1 − p

p
. (5.7)

If m denotes the observed mean length of a specific gene feature, the parameter p
can thus be estimated using

p̂ = 1

1 + m
. (5.8)

A distribution related to the geometric is the negative binomial distribution. It is a
generalization of the geometric distribution, and appears as the distribution of the
number of Bernoulli trials needed to observe r ≥ 1 successes. If Y denotes the
number of trials up to and including the r th success, the probability mass function
of the negative binomial distribution is given by

P(Y = k) =
(

k − 1
r − 1

)
pr (1 − p)k−r (5.9)

where
(

k − 1
r − 1

)
= (k − 1)!

(r − 1)!(k − r)! (5.10)

is the binomial coefficient. Note that with r = 1 the negative binomial distribu-
tion coincides with the geometric. While slightly more complex than the geometric
distribution, the negative binomial is still fairly “cheap” computationally, since it
can be implemented by linking r geometrically distributed states in sequence. By
varying the number of states r , we can get varying shapes of the distribution, as illus-
trated in Fig. 5.7. A generalized way of implementing sequential geometric states to
model state durations is used in acyclic discrete phase-type distribution described in
Sect. 5.2.3.

5.2 State Length Distributions 211

= 2r

= 0.1p

0.025

0.010

0.005

0.015

0.020

0.030

(a)

(c)

(b)

= 5r

= 0.15p

= 25r

= 0.4p

(d)

80

0.03

0.02

0.01

0.04

80

0.02

0.10

0.08

0.06

0.04

= 2r

= 0.1p

80 804020

20 40 6020 40 60

60 20 40 60

0.04

0.03

0.02

0.01

Fig. 5.7 Negative binomial density plots for the number of successes r and the probability of
success p. With r = 1 we get the geometric distribution, while increasing r goes toward the normal
distribution. a r = 1 and p = 0.1. b r = 2 and p = 0.1. c r = 5 and p = 0.15. d r = 25 and
p = 0.4

5.2.2 Empirical Length Distributions

If Y1, . . . , Yn is an observed independent, identically distributed (i.i.d.) sample of
a random variable Y with probability distribution FY (y|θ), where θ is a parameter
characterizing the distribution, the empirical distribution of the sample is given by

Fn(y) = #Yi ≤ y

n
= 1

n

n∑

i=1

I(Yi ≤ y) (5.11)

where I is the indicator function. The empirical distribution converges pointwise
toward the true distribution and serves as a consistent, unbiased estimator of the
distribution from which the sample was drawn. Thus, the length distribution of a
gene feature can be estimated from a sample of such sequences. Figure 5.8 illustrates
the empirical exon length distributions for human genes used in SLAM [2], with the
exon length on the x-axis and the empirical probability on the y-axis. We see that
these distributions clearly differ from the geometric, but also from each other with
large differences in both mean and variance.

The advantage of using the empirical distribution over some characterized dis-
tribution is that no assumptions regarding the specific shape or behavior of the true

212 5 Gene Structure Submodels

(a) (b)

(d)(c)

0.0004

0.0003

0.0002

0.0001

0.005

0.004

0.003

0.002

0.001

0.001

0.002

0.003

0.004

0.0010

0.0015

0.0020

0.0005

1000 2000 3000 4000 5000 200 400 600 800 1000 1200

200 400 600 500 1000 1500

Fig. 5.8 The empirical length frequencies of human genes used in SLAM for a single exons, b
initial exons, c internal exons, and d terminal exons

distribution has to be made. For a large enough sample, the empirical distribution
will converge toward the true one, and will provide the best possible fit of the model
to the training data. One disadvantage, however, is the added computational com-
plexity. For instance, exon lengths vary from less than a hundred to several thousands
of bases. Moreover, the empirical distribution is characterized simply by its sample,
which means we need to store the probabilities of each possible duration. When
searching for the optimal state path through a gene model we have to run through
this long list of probabilities, something that is very expensive computationally and
often forces the use of truncated distributions.

Another problem with using empirical distributions is the high dependence on the
training data. For instance, just because a certain length is not represented in the given
sample, it does not mean that the probability of that length is zero. Therefore, for
small samples, one might want to smooth the empirical distribution in some manner.
The approach taken by Burge in [13] is to simulate an evolution model of the exon
lengths. Each exon length in the training sample is viewed as a representative of a
whole population of exon lengths, diverging from the same ancestral exon. It can be
argued (see [13]) that the length distribution of an observed exon of length k will be
approximately normal with mean k and variance 2k. This is used as motivation for
the following smoothing procedure.

Assume we have an observed sample of exon lengths n = n1, . . . , nm , where
nk denotes the number of exons of length k, and m is some maximum length. Then
instead of using the empirical densities fk = nk/N , where N = ∑m

k=1 nk , the fk

is replaced by a “discretized” normal density with mean k and variance 2Ck/nkm,

5.2 State Length Distributions 213

where C is a positive constant scaled to ensure a total mass of fk . The division by nk

in the variance results in a distribution that is more smoothed in areas of sparse data,
and that converges toward the unsmoothed empirical distribution as the training set
increases.

5.2.3 Acyclic Discrete Phase-Type Distributions

A possible generalization of the geometric and the negative binomial distributions
that still utilizes the efficiency of the geometric distribution, but that has more flexibil-
ity in its properties, is to link two or more geometrically distributed substates such as
in Fig. 5.9. This can be done using acyclic discrete phase-type distributions (ADPH)
[9], which for instance are used as state length distributions in the GHMM-based
gene finder Agene [45].
Recall from Chap. 2 that a transient state is a state where the probability of returning
is strictly less than 1. An absorbing state i is the opposite; the probability of exiting
such a state is zero. Consider a discrete Markov chain, consisting of m + 1 states of
which m states are transient and one is absorbing. The transition matrix of such a
Markov chain can then be written as

A =
(

A0 a
0 1

)
(5.12)

where A0 is an (m ×m)-matrix consisting of the transition probabilities between the
transient states, a is an (m × 1)-vector of transition probabilities from the transient
states into the absorbing state, 0 a (1 × m)-vector of zeros, and 1 is the probability
of a self-transition in the absorbing state. Similarly, we let π = (Π0, πm+1) denote
the initial probabilities of the states, where Π0 is the vector of initial probabilities of
the transient states and πm+1 is the initial probability of the absorbing state.

A discrete phase-type distribution (DPH) is the distribution of the time (the num-
ber of jumps) until the chain reaches the absorbing state. In this setting, the states are
often referred to as phases. An acyclic DPH (ADPH) is a DPH where the underlying
phases form an acyclic graph, such as in Fig. 5.11. As a result the transient phases
can be ordered such that A0 becomes an upper triangular matrix:

0.3 0.6

0.5 0.4

0.2

π1 π2

Fig. 5.9 An example of an ADPH with initial probabilities π1 and π2, and transition probabilities
as given. Reprinted from [9] with permission from Elsevier

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

214 5 Gene Structure Submodels

A0 =
⎛

⎝
a11 a12 a13
0 a22 a23
0 0 a33

⎞

⎠ (5.13)

The possible transitions in each transient phase i is either a self-transition, or a
transition to some phase j > i . As a result, the duration of each transient phase
becomes geometrically distributed, with exit rate 1 − aii , i = 1, . . . , m.

If we let τ denote the time till absorption, we call τ a DPH random variable of
order m and representation (Π0, A0). This representation is in general nonunique,
meaning that there might exist another representation defining the same distribution.
Moreover, the matrix representation is very redundant, since there are m2 − 1 free
parameters to be estimated but only 2m − 1 degrees of freedom in the DPH. It is
therefore common to find a unique, minimal representation, called a canonical form
of the DPH [9].

The time to absorption depends on the underlying path through the phase space.
We define the path of the ADPH as the sequence of unique phases visited before
absorption. That is, a phase is visited at most once in an ADPH, although the process
can linger in that phase via a number of self-transitions. Such a path v = (v1, . . . , vn)

then occurs with probability

P(v) =
n∏

i=1

avi ,vi+1

1 − avi ,vi

(5.14)

The time to absorption τ can now be conveniently represented using the generating
function

F (z) = E[zτ] =
∑

x

zx P(τ = x). (5.15)

More specifically, the generating function of τ via path v is given by

F (z, v) =
n∏

i=1

(1 − avi ,vi)z

1 − avi ,vi z
. (5.16)

If we let Vi denote all paths starting in state i , the generating function of τ , assuming
that the initial state is i , is given by

Fi (z) =
∑

v∈Vi

P(v)F (z, v). (5.17)

From this we get a very useful corollary [9].

Corollary 5.1 The generating function of an ADPH is the mixture of the generating
functions of its paths

5.2 State Length Distributions 215

F (z) =
m∑

i=1

πi

∑

v∈Vi

P(v)F (z, v). (5.18)

The generating function of the paths of an ADPH can be decomposed further. First,
we see in Corollary 5.1 that the generating function of τ does not depend on the order
of the phases, and thus the phases can be reorganized such that the probabilities of a
self-transition, i.e., the diagonal elements in A0, appear in decreasing order. Denote
the ordered self-transition probabilities q1 ≥ q2 ≥ · · · ≥ qm , and let pi = 1 − qi

denote the exit rate of phase i . The exit rates are thus ordered increasingly p1 ≤
p2 ≤ · · · ≤ pm .

Now we can denote each path v as a binary vector over the ordered qi ’s, with 1’s
for the phases visited by the path and 0’s for the rest. This way each path has a unique
representation, and a path of length k contains k 1’s and (m − k) 0’s. We call a path
of length k a basic path if it visits the k “fastest” phases, qm−k+1, . . . , qm−1, qm ,
and the corresponding binary vector, called the basic vector, thus contains (m − k)

initial 0’s and k terminal 1’s. With this representation we can express the following
result.

Theorem 5.1 The generating function of an ADPH is a mixture of the generating
functions of its basic paths.

As a direct consequence of Theorem 5.1 every ADPH can be uniquely represented
as a mixture of basic paths. This leads to the simplest canonical form, which is when
the only allowed jump in phase i , besides a self-transition, is a jump to the next phase
j = i + 1, as in Fig. 5.10.
The transition probabilities of the transient phases can then be written as

π = (π1, . . . , πm) A0 =

⎛

⎜⎜⎜⎝

q1 p1 0 · · · 0
0 q2 p2 · · · 0
...

...
...

...

0 0 0 · · · qm

⎞

⎟⎟⎟⎠ (5.19)

Sometimes it is more convenient to have all the initial mass concentrated in one single
phase, such that the initial phase is fixed. An alternative canonical form, leading to
an equivalent distribution of the time τ to absorption, is then one where transitions

q1 q2 q3 qm

p1 p2 p3 pm−1 pm

π1 π2 π3 πm

Fig. 5.10 In the simplest canonical form of an ADPH the only jumps allowed are a self-transition,
or a transition to the next phase. Reprinted from [9] with permission from Elsevier

216 5 Gene Structure Submodels

1

qm q1 q2 qm−1

c1 p1 p2 pm−2 pm−1

c2 cm−1 cm

Fig. 5.11 A more convenient canonical form of an ADPH where the initial phase is fixed. Reprinted
from [9] with permission from Elsevier

are possible from the initial phase to all other phases, including the absorbing phase,
while the remaining transient phases still can only move to itself or to the next phase
(see Fig. 5.11).
The ADPH representation is thus

Π0 = (1, 0, 0, . . . , 0) A0 =

⎛

⎜⎜⎜⎝

qm c1 c2 · · · cm−1
0 q1 p1 · · · 0
...

...
...

...

0 0 0 · · · qm−1

⎞

⎟⎟⎟⎠ (5.20)

By introducing sufficiently many states, the ADPH can approximate any discrete
(integer-valued) distribution. The trade-off is between computational complexity
and the quality of the fit.

Example 5.1 Agene
Agene [45] is a GHMM-based, single species, eukaryotic gene finder that uses an
ADPH as state length distribution for exons. Each ADPH consists of 15 phases that
are fitted to an empirical length distribution, and the transition probabilities of the
phases are estimated using the software PhFit [8].
The complexity of an ADPH depends on the number of fitted phases, but this num-
ber is constant in Agene, with the result that the computational complexity of the
GHMM becomes linear in the sequence length. An example, borrowed from [45],
of an ADPH and the corresponding length distribution plot is given in Fig. 5.12. The
example corresponds to the special case where the length distribution is a mixture
of a geometric and three negative binomial distributions. �

Fig. 5.12 A length
distribution model in Agene

0.9 0.9 0.9 0.9

0.04 0.1 0.1 0.1

0.010.020.03

5.3 Sequence Content Sensors 217

5.3 Sequence Content Sensors

Functional sequences are exposed to much higher evolutionary pressure than non-
functional sequences, resulting in very different evolutionary rates. As a consequence
there is a clearly distinguishable statistical bias between functional and nonfunctional
sequences,and a wide variety of coding measures have been constructed with the aim
to capture this bias. In a review of a large number of such measures [27], it was con-
cluded that the most efficient coding measure, outranking a large number of more
“sophisticated” measures, is to simply compare oligomer (k-tuple) counts in coding
versus noncoding sequences. The distribution over the 64 different codons is sig-
nificantly different in coding regions compared to noncoding regions, a feature that
has proved to be a successful means to discriminate between coding and noncoding
regions.

5.3.1 GC-Content Binning

Eukaryotic genomes tend to be a mosaic of isochores, which are long stretches of
sequences (200–1000 kb) with fairly homogeneous sequence composition within,
but with striking differences between different isochores [5, 6]. The isochores are
typically divided into five groups characterized by the GC-content, signifying two
‘light’ groups (L), and three ‘heavy’ groups (H). The groupings vary slightly between
references, but the Human Genome Project [39] used the following in their initial
analysis of the human genome:

• L1: < 38 % GC-content.
• L2: 38 − 42 % GC-content.
• H1: 42 − 47 % GC-content.
• H2: 47 − 52 % GC-content.
• H3: > 52 % GC-content.

The structure of a genome, and in particular the density of its genes, varies signifi-
cantly with the GC-content. For instance, although the H2+H3 groups together only
make up about 12 % of the human genome, they harbor on the order of 54 % of all the
genes [5]. Moreover, genes in different types of isochores exhibit clear differences
in both structure and function, and ignoring these compositional variations would
greatly affect the accuracy in gene prediction [60].

Gene model components such as base composition, length distributions, and tran-
sition probabilities are all affected by the GC-content surrounding the gene. For
instance, generally the genes are more tightly packed in GC-rich regions, resulting
particularly in shorter noncoding segments such as introns and intergenes. Exon
lengths seem to be rather homogeneous over isochores, but instead the number of
exons per gene are fewer, resulting in shorter gene products [39].

A novelty introduced in Genscan [15] was to “bin” the parameters according to
the GC-content of the sequence to be analyzed. That is, based on the GC-content,

218 5 Gene Structure Submodels

four different parameter sets were produced: I (<43 % GC-content), II (43 − 51 %),
III (51 − 57 %) and IV (>57 %). The first and second groups roughly corresponds to
isochore groups L1+L2 and H1+H2 respectively, while group III and IV correspond
to subsets of the most gene dense isochore group H3. One problem when splitting
the parameter set is to decide where to draw the boundaries between different GC-
groups in the input sequence, before applying the gene prediction algorithm. At the
time when Genscan was constructed, the gene prediction task for the most part con-
cerned sequences of up to contig length (100 kb). Thus, the parameter bin to be used
was chosen based on a preprocessing step where the GC-content of the entire input
sequence was determined. These days, when much larger quantities of contiguous
sequences are considered, we need automatic means to determine isochore bound-
aries within an input sequence. The most hands-on approach is to move a sliding
window of some length (e.g., 10–20 kb) across the sequence, register GC-content in
each window, and then identify suitable sequence divisions. An automatized method
for determining the sequence divisions is presented, for instance, in [49]. While it
is not possible to test the accuracy of this algorithm, as only a few “true” isochore
boundaries are known, the output seems more than satisfactory for the purpose of
gene prediction.

5.3.2 Start Codon Recognition

Due to its very modest length, the start codon sequence appears spuriously in vast
amounts throughout a genome, and even in when a strong coding potential indicates
the corresponding exon, it might be difficult to locate the true translation start. A
means to strengthen the signal of the translation start is to attempt to implement the
consensus sequence of the ribosomal binding site occurring in direct vicinity of the
start codon.

The start codon is typically ATG in eukaryotes, while in prokaryotes additional
variations exist, such as GTG or TTG in E. coli, for instance. The ribosomal bind-
ing site (RBS) provides a signal for protein synthesis, and occurs about 6–7 bases
upstream of the start codon in prokaryotic genes. Its consensus AGGAGG (or
sometimes AGGAGGT), referred to as the Shine-Dalgarno box [59], can be used
to strengthen the signal and facilitate the prediction of the translation start. The
eukaryotic counterpart is called the Kozak sequence [37], with consensus sequence
ACCATGG, or, more generally (GCC) RCCATGG where R stands for ‘purine’ (A
or G) and the ATG is the actual start codon of the gene.

The authors of GeneMark.hmm [42] constructed a position-specific scoring matrix
for the ribosome binding site in E. coli in order to sort out ambiguities of alternative
start codons. They selected 325 E. coli genes that had annotated RBSs in Genbank,
and collected the region between the 4 and 19 bp upstream of the start codon. The 16
bp subsequences were aligned, using simulated annealing (see Sect. 3.2.8), resulting
in the consensus sequence AGGAG shown in Table 5.2. A scoring matrix, such as in

http://dx.doi.org/10.1007/978-1-4471-6693-1_3

5.3 Sequence Content Sensors 219

Table 5.2 Nucleotide frequencies for the RBS site in E. coli

Base Position

1 2 3 4 5

A 0.681 0.105 0.015 0.861 0.164

C 0.077 0.037 0.012 0.025 0.046

G 0.077 0.808 0.960 0.043 0.659

T 0.161 0.050 0.012 0.071 0.115

Table 5.2, can be included in the gene finding model to boost the signal of potential
start codons.

The inclusion of the Shine-Dalgarno or Kozak sequences strengthens the signal of
translation start sites significantly. Unfortunately, no such sequences have (yet) been
detected for the termination sites of translation. Besides the stop codon consensus,
the sequences surrounding the stop codons seem to have very little in common.

5.3.3 Codon and Amino Acid Usage

Codon usage is by far the most important measure of coding potential in com-
putational gene prediction, and it was early a main ingredient in gene prediction
algorithms, in particular in the analysis of compact prokaryotic genomes such as the
bacterium E. coli [52] and the yeast S. cerevisiae [3]. Codon usage measures hold
the most discriminative power between coding and noncoding sequences [27], the
reason being the difference in selective pressure acting upon coding and noncod-
ing sequences. While mutations in functional regions are most often harmful and
therefore selected against, the selection pressure in nonfunctional regions is more or
less neutral, resulting in a significant differentiation in base composition. There are
a number of different approaches to measure coding potential.

A direct way, implemented already in 1982 in [64], is to compare the codon
usage of the sequence under analysis, to a precomputed codon distribution of the
corresponding specie. Assume for instance that we have sequence

a1b1c1a2b2c2 · · · anbncnan+1bn+1cn+1.

The probability of the sequence being in each frame is then given by

p1 = π1 p(a1b1c1)p(a2b2c2) · · · p(anbncn),

p2 = π2 p(b1c1a2)p(b2c2a3) · · · p(bncnan+1), (5.21)

p3 = π3 p(c1a2b2)p(c2a3b3) · · · p(cnan+1bn+1),

where p(ai bi ci) is the probability of codon ai bi ci in the known codon distribution in
frame i , and πi is the probability that the coding frame is i . Typically we let πi = 1/3

220 5 Gene Structure Submodels

Table 5.3 Codon distribution
of Leucine in E. coli O157:H7

Codon Coding Noncoding

CTA 0.038 0.076

CTC 0.101 0.116

CTG 0.493 0.238

CTT 0.110 0.164

TTA 0.134 0.214

TTG 0.125 0.191

for all frames. By sliding a window of size L across the sequence one triplet at a
time, using the measure

Pi = pi/(p1 + p2 + p3) , i = 1, 2, 3, (5.22)

it is possible to distinguish coding regions from noncoding regions.
Many codon usage measures focus on the distribution of synonymous codons.

Codons that code for the same amino acid are said to be synonymous. Synonymous
codons are codons that code for the same amino acid. For instance, in Fig. 1.3 we
see that TTA, TTG, CTT, CTC, CTA and CTT all code for Leucine, and are thus
synonymous. In random sequences there should be no particular preference for either
codon in a group of synonymous codons, while in coding sequences this distribution
is typically nonuniform. For instance, in O157:H7 the Leucine-coding codons is
distributed as in Table 5.3. We see a clear preference for the codon CTG in coding
sequences, while in noncoding sequences, the distribution is much more uniform.
Examples of synonymous codon usage measures are the Codon Adaptation Index
(CAI) [58], the Codon Bias Index (CBI) [4], the Effective Number of Codons (Nc)
[66], and Frequency of Optimal Codons (Fop) [32].

What all these measures typically do is to measure the distance between the
observed codon usage of a gene to the “preferred” codon usage, where only the most
frequent among synonymous codons are used. That is, given the sequence of amino
acids that the current gene codes for, the preferred codon usage is the sequence of
most frequently used codons in the genome that would code for the same amino acid
sequence. Since synonymous codon usage tend to be correlated with gene expression
levels, synonymous codon measures can be used both to predict genes in DNA and
to predict expression levels of genes [58].

5.3.4 K-Tuple Frequency Analysis

A natural extension of codon usage measures is to compare frequencies of longer
“words” than triplets. In coding sequences, for instance, empirical data show depen-
dencies not only within codons, but between adjacent codons as well. A direct

http://dx.doi.org/10.1007/978-1-4471-6693-1_1

5.3 Sequence Content Sensors 221

approach to capture such dependencies is taken by k-tuple frequency analysis
methods. K -tuple frequency analysis has many applications, such as discrimination
between coding and noncoding regions, determination of coding frame, prediction of
splice sites, and detection of binding sites and promoters. Basically, the frequencies
of all “words” of length k in the sequence are calculated and compared. The idea
is to utilize the statistical bias in k-tuple distributions to separate different features
in the sequence. There are several different k-tuple analysis methods available, but
they differ mainly in how the k-tuple information is used to make the separation.

A very straightforward approach is taken by Claverie and colleagues [21]. The
method presented is used to discriminate between coding and noncoding sequences
in the genome. Two frequency tables are constructed for the purpose, representing
the k-tuple distribution for each feature, and the discriminant measure for a k-tuple
x is given by

d(x) = p(x)/(p(x) + q(x)) (5.23)

where p(x) is the probability of observing k-tuple x in a coding region, and q(x)

the corresponding probability in noncoding regions. The measure d takes values
between 0 and 1, and will be near 0.5 for k-tuples with low discriminative power.
Given a novel sequence Y T

1 = (Y1, . . . , YT), this measure can then be computed for
each position in the sequence, generating a series of k-tuple scores

d = {dt }T −k+1
t=1 , (5.24)

where dt = d(Y t+k−1
t) is the d-score in (5.23) for the k-tuple starting in position t .

To obtain a more smooth score profile over the sequence, the dt values are averaged
over a window of size 2w + 1, generating a sequence profile

P =
{

Pt =
t+w∑

i=t−w

dt

}T −w−k+1

t=w+1

(5.25)

The choice of k and w is empirical and varies with the application. Typically, when
comparing coding and noncoding nucleotide sequences, the optimal settings are
k = 6 and w = 20 [21].

To determine the reading frame in a potential coding region, phase-dependent
frequency tables may be useful. In that case the reference coding sequences give
rise to three different frequency tables, one for each reading frame. That is, each
frequency table consists of all k-tuple counts in phase i = 0, 1, 2, where i indicates
the codon position of the first base in the k-tuple. Three different discriminant profiles
are then constructed, one for each combination of pairs of phases. However, due to
the third base redundancy in codons, comparisons between the first i = 0 and the
second i = 1 phases tend to be the most informative [21].

222 5 Gene Structure Submodels

The k-tuple frequency analysis method has several other uses than those
mentioned. For instance, by comparing the test sequence toward its own k-tuple
distribution can reveal repeat structures in the sequence. Moreover, comparing the
test sequence to the entire genome of the corresponding specie will provide insights
of the abundance of certain k-tuples in the genome, and the variation in information
content between different sequence positions.

5.3.5 Markov Chain Content Sensors

Rather than just counting word frequencies, such as in k-tuple frequency analysis,
a more flexible and adaptable model is to use a Markov chain that incorporates the
interdependencies between nucleotides. In Example 2.2 we showed how a first-order
Markov chain models dinucleotide frequencies when applied to DNA sequence.
However, since coding sequences are organized into triplets, a better model would
be a second-order Markov chain, such that the probability of the current base depends
on the two preceding bases.
The transition probabilities in a second-order Markov chain can be written as

a(2)
i j = P(Xt = j |Xt−1 = i, Xt−2 = i2), (5.26)

for some states i, j, i2 in a state space S. This model represents a homogeneous
Markov chain. An even more accurate model, that makes better use of the codon
structure of coding sequence, is to use an inhomogeneous Markov chain. More specif-
ically, a 3-periodic Markov chain that takes into account the fact that the distribution
of nucleotides, given the previous two (or more), varies depending on the position
in the codon. This is incorporated into the model by training four different sets of
initial and transitional probabilities, one for each of the three coding frames and one
for noncoding sequences.

Example 5.2 Markov chain classification of E. coli (cont.)
Recall from Example 2.2 that if we were to classify a DNA sequence Y =
(Y1, . . . , YT), a common decision rule is to use the log-odds ratio

log
P(Y |coding)

P(Y |noncoding)

{
> η ⇒ coding

< η ⇒ noncoding
(5.27)

where η is some empirically determined threshold. We want to model the sequence
using a second-order 3-periodic Markov chain, and for this we need three separate
parameter sets, one for each codon position. We let π1, π2 and π3 denote the three
initial probability vectors, where, for instance π1 = {π1

A, π1
C , π1

G , π1
T } gives initial

probabilities on the form

π1
A = P(Y1 = A|codon position = 1). (5.28)

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

5.3 Sequence Content Sensors 223

Fig. 5.13 Distribution of
log-odds ratio scores of
length-normalized coding
(dark gray) and noncoding
(light gray) sequences in E.
coli

seqs

log−odds

400

300

200

100

−0.05 0 0.05 0.1

Furthermore, let A1, A2 and A3 denote the transition probability matrices for each
respective reading frame, with transition probabilities on the form

ar
i jk = Pr (Yt = k|Yt−1 = j, Yt−2 = i) (5.29)

where Pr denotes the probability when Yt is in codon position r = 1, 2, 3. The
decision rule above could then be adjusted to

log
maxk P(Y |codingk)

P(Y |noncoding)

{
> η ⇒ coding (in frame k)

< η ⇒ noncoding
(5.30)

where, for instance

P(Y |coding1) = π1
Y1

a2
Y1Y2

a3
Y1Y2Y3

a1
Y2Y3Y4

· · · a3
YT −2YT1 YT

. (5.31)

Naturally, the superscript of the last probability depends on the length of the sequence.
Note that the first transition probability, a2

Y1Y2
, is of first-order, since we only have

one previous base to condition on. This probability also depends on codon posi-
tion, however. The length-normalized log-odds scores of coding versus noncoding
sequences in E. coli are illustrated in Fig. 5.13. Note that the peaks are more dis-
tinctly separated compared to the dinucleotide model in Example 2.2, indicating that
this is a better model than the first-order model to discriminate between coding and
noncoding sequences. �

We see in the example above, that using a second-order, 3-periodic Markov model
improves the separation between coding and noncoding sequences compared to a
first-order model. There is still considerable overlap between the coding and non-
coding measures, however, which would result in prediction errors if we were using
this model as our sole indicator of coding sequences. Extending the second-order
model to a 5th order, a hexamer model, and thereby incorporating dependencies
between adjacent codons as well, may improve the prediction accuracy further. One
problem with higher order models is the increased computational complexity, but in

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

224 5 Gene Structure Submodels

eukaryotic DNA, where the exons are of moderate length compared to prokaryotic
genes, this price may be well worth to pay. A more serious difficulty is the require-
ments on the training set in order to achieve reasonable frequency estimates for all
parameters. The use of interpolated Markov models, presented next, is one possible
solution to the training problem.

5.3.6 Interpolated Markov Models

Interpolated Markov models (IMMs), described in more detail in Chap. 2, have been
successfully applied to various sequence analysis problems, where the object is to
determine the likelihood and, ultimately, the class membership of certain subse-
quences.
Recall from Sect. 2.3 that the likelihood of a sequence Y T

1 = Y1, . . . , YT can be
decomposed into

P(Y T
1) =

T∏

t=1

P(Yt |Y t−1
1). (5.32)

The subsequence Y t−1
1 that the probability of Yt is conditioned on, is often called the

context of Yt . Since we cannot handle contexts of arbitrary lengths, it is common to
limit the length of the context to some constant k,

P(Y T
1) ≈

T∏

t=1

P(Yt |Y t−1
t−k). (5.33)

The resulting model is thus a kth-order Markov chain. For the discrimination between
coding and noncoding sequences, for instance, we would like to use contexts of length
k = 5 or more in order to incorporate dependencies between adjacent codons, but
since the training set rarely is large enough to support such high orders, it is common
to resort to within-codon dependencies only, and use second-order models.

The idea of IMMs is that instead of using a context of a rather low order, we
use as long contexts as the training set allows for each specific context, and only
fall back on shorter contexts when the frequency of the current context cannot be
reliably estimated. We exemplify the use of IMMs as content sensors by recalling
from Sect. 2.3 that a linear interpolation of the conditional probabilities in (5.33) is
a weighted sum of the maximum likelihood estimates of all contexts up to length
k [57]

P̃(Yt |Y t−1
t−k) = ρ0

1

L
+ ρ1 P̂(Yt) + ρ2 P̂(Yt |Yt−1) + · · · + ρk P̂(Yt |Y t−1

t−k) (5.34)

where ρk are interpolation weights that sum up to one, L is a factor that ensures
that no contexts are given a zero probability, and P̂ denotes the ML estimate of

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

5.3 Sequence Content Sensors 225

the corresponding conditional probability. An alternative to linear interpolation is
rational interpolation, in which the weights are allowed to depend on the context in
question. Rational interpolation is described in Sect. 2.3.

Once we have estimated the parameters of the interpolation model, we can use
it as a content sensor of novel sequences. It can be incorporated as a submodel in
a gene finding algorithm, or we can use it as a stand-alone indicator of coding and
noncoding sequences, for instance by using the same type of likelihood ratio test as
in Example 2.2.
An IMM is then trained for each of the two models, “coding” and “noncoding,” and
a common form of the decision rule is a log-odds ratio

log
P(Y T

1 |coding)

P(Y T
1 |noncoding)

{
> η coding,

< η noncoding,
(5.35)

for some empirically determined threshold η. A similar application is promoter recog-
nition [47], in which the two models now correspond to “promoter” and “background”
sequences.

5.4 Splice Site Detection

The major problem in gene finding is to determine the correct gene structure. While
coding sensors provide strong indicators of potential protein-coding regions, it still
remains a difficult task to determine the exact borders of these regions, and to cor-
rectly predict the final protein product. Splice site sequences exhibit characteristics
that clearly deviate from that of other sequences, and provide strong indicators of
the internal boundaries between exons and introns in multi-exon genes. The charac-
teristics involve both sequence composition as well as strong internal dependencies
between signal positions. The task of splice site detection is to use these charac-
teristics to distinguish true signal sequences from background sequences. Clearly,
just as any other gene finding submodel, splice site predictors perform best when
used as part of a larger gene finding machinery, which incorporates other pieces of
evidence as well. In this section, however, we describe various splice site models as
stand-alone discriminators, using only the sequence of the signal itself as evidence.

5.4.1 Weight Matrices and Weight Array Models

The absolutely simplest model of a biological signal is to assume that signal posi-
tions are independent and follow the same base composition. This is a poor model
for biological signals such as splice sites, however, as both the independence and
the identical distribution assumptions are clearly violated. A slightly more sensitive
model, introduced by Staden [63], is the weight matrix model (WMM), also known

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

226 5 Gene Structure Submodels

as a position-specific scoring matrix (PSSM). In this model we still assume indepen-
dence between sequence positions, but apply separate base compositions for each
position. A weight matrix W for a sequence signal of length λ is an (N × λ)-matrix,
where the columns correspond to the λ signal positions, the rows to the N possible
residues in the alphabet (N = 4 for nucleotides and N = 20 for proteins). An entry
Wi j , i = 1, . . . , N , j = 1, . . . , λ gives the frequency of residue i at position j .
Still fairly simple, a WMM is a great improvement over having equal base composi-
tions for all positions and manages, for instance, to capture the invariant dinucleotide
consensus ‘GT’ and ‘AG’ in donors and acceptors, respectively.

Given a new sequence Y = (Y1, . . . , Yλ), we can use the weight matrix to calculate
the probability, or the likelihood, that this sequence is a member of that type of signal

PWMM(Y) =
λ∏

t=1

Pt (Yt = y), (5.36)

where Pt is the probability frequency over the sequence alphabet in position t , and
Pt (Yt = y) is the weight matrix element Wyt in row y and column t . To discriminate
between signals and non-signals, we can construct a similar weight matrix for a set
of aligned non-signals, typically corresponding to the background distribution of
the genome. The decision rule can then be a log-odds ratio, where the numerator is
calculated using the weight matrix for signals, and the denominator using the weight
matrix for non-signals.

log
PS

WMM(Y)

PN
WMM(Y)

{
> η signal,

< η non-signal,
(5.37)

for some threshold η, where PS and PN correspond to the weight matrices for signal
(S) and non-signal (N) respectively.

Example 5.3 Generation of a weight matrix
Assume that we want to generate a weight matrix for a set of human donor sites,
based on the aligned sequences covering the last three exonic bases and the first
six intronic bases surrounding the donor junction (the bar signifies the exon–intron
junction in the table below).

C T G G T A A G G
C G G G T G A G C
A A A G T A A G T
A A G G T A C T T
C A G G T A A G G
C A G G T G C G G
G A C G T A T G T
C A A G T A G G T
G A G G T A A G C
C A G G T T T G T

5.4 Splice Site Detection 227

The weight matrix is then obtained by simply counting the occurrences of each
residue in each position, and dividing it by the number of sequences n = 10. That
is, the entries are given by

Wbj = nbj/n (5.38)

where nbj is the observed frequency of base b at position j .

Position
−3 −2 −1 +1 +2 +3 +4 +5 +6

A 0.2 0.8 0.2 0.0 0.0 0.7 0.5 0.0 0.0
C 0.6 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.2
G 0.2 0.1 0.7 1.0 0.0 0.2 0.1 0.9 0.3
T 0.0 0.1 0.0 0.0 1.0 0.1 0.2 0.1 0.5

The frequency matrix is commonly transformed into a log-odds matrix, that
weighs the observed base frequencies either against the frequencies of non-signal
sequences, or against the background composition of the input sequences. Moreover,
we want to avoid zero frequencies in the matrix, since we usually do not know if these
reflect the reality, or are simply the result of a too sparse training set. Therefore, it is
common to insert pseudocounts in some manner. The simplest pseudocount model
just adds 1 to all entries, and divide the frequencies by n + 4 instead (since four
pseudocounts are added to each column). The entries of the log-odds matrix W is
then given by

Wbj = log
(nbj + 1)/(n + 4)

eb
(5.39)

where eb is the expected frequency of base b. A uniform distribution over the bases
would yield eb = 0.25, while using the overall base composition of the input
sequences in this case yields {eA, eC , eG , eT } = {0.27, 0.12, 0.39, 0.22}. The result-
ing log-odds matrix (using background base composition) becomes

Position
−3 −2 −1 +1 +2 +3 +4 +5 +6

A −0.22 0.88 −0.22 −1.32 −1.32 0.76 0.47 −1.32 −1.32
C 1.41 −0.54 0.16 −0.54 −0.54 −0.54 0.56 −0.54 0.56
G −0.60 −1.00 0.38 0.70 −1.69 −0.60 −1.00 0.61 −0.31
T −1.13 −0.44 −1.13 −1.13 1.26 −0.44 −0.04 −0.44 0.66

More sophisticated pseudocount models are discussed in Sect. 6.2. �

A major drawback with weight matrix models is that the independence assumption
between positions is clearly violated in reality. An alternative approach, that models
dependencies between adjacent residues, is to use an inhomogeneous Markov model,

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

228 5 Gene Structure Submodels

also known as a weight array model (WAM) [71]. Recall from Chap. 2 that in an
inhomogeneous Markov model the model parameters are allowed to vary over the
sequence. Thus, a WAM consists of a set of transition matrices, one for each position
in the signal sequence, and the probability of a new sequence Y now takes the form

PWAM(Y) = P1(Y1)

λ∏

t=2

Pt (Yt |Yt−1) (5.40)

where P1 is an initial probability over the residues, and Pt is a position-dependent
transition probability that comes from the transition matrix for position t .

A natural extension of the WAM is to allow for higher order dependencies. How-
ever, this immediately puts extra requirements on the size of the training set. In a
comparison between WMMs and WAMs for splice site prediction, a second-order
WAM in fact performed worse than the first-order model in [14]. The sole explanation
was that the training set was too small to provide reliable parameter estimates for the
higher order model. In an attempt to circumvent this problem, the windowed weight
array model (WWAM) was introduced [14]. In a WWAM the second-order transition
probabilities are estimated by taking the average of the same second-order condi-
tional probabilities of the positions surrounding position t in a small window centered
at t . That is, a second-order transition probability Pt (Yt = A|Yt−2 = C, Yt−1 = A)

is estimated using all counts of triplet C AA within this window, rather than just the
counts in the specific position. The idea is that nearby positions are expected to have
a similar trinucleotide compositions, and can thereby provide more information to
the parameter estimates than using just the observed frequencies at a single position.
As it turns out, the WWAM appears to have better discriminative power than both
the WMM and the WAM, as it manages to capture some significant triplet biases
present in certain signal positions [14].

The application of alignment profiles to splice site detection, is essentially equiva-
lent to using weight matrices. As described in Sect. 3.2.9, a profile is a motif descrip-
tion using a position-specific scoring matrix (PSSM). A main difference from a
WMM is that the underlying alignment of a profile is allowed to include gaps.
However, since splice site alignments are gap-free the difference vanishes. The pro-
file HMMs described in Sect. 3.2.9 can naturally be applied to splice sites as well,
but since they incorporate position dependencies they are closer to WAMs than to
WMMs.

5.4.2 Variable-Length Markov Models (VLMMs)

As discussed in the previous section, sequence signals in general, and splice sites
in particular, tend to exhibit dependencies between positions. While higher order
Markov models, such as weight array models (WAMs) may be able to capture depen-
dencies between adjacent positions, the requirements on the size of the training set

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_3
http://dx.doi.org/10.1007/978-1-4471-6693-1_3

5.4 Splice Site Detection 229

increases exponentially with the order of the model, and with a sparse training set we
often have to resort to smaller model orders. As we have seen before, one possible
solution is the use of interpolated Markov models (IMMs), which interpolate lower
order models to estimate higher order models.

Another possibility is the use of variable-length Markov models (VLMMs), also
called variable-order Markov models (VOMs) or context trees [16, 54]. There are
many different variants of VLMMs, most notably in the field of lossless data com-
pression, but the common ingredient is that the order of the transition probabilities is
allowed to vary depending on the availability in the training set. The model includes
longer contexts, when these are available, and shorter contexts when the estimates
of longer contexts become unreliable.

We introduce a context function c(Y t−1
1) that maps the entire previous sequence

of Yt to a “relevant” context, typically resulting in a considerably shorter memory
string [16]. The probability of a sequence then takes the form

P(Y T
1) = P1(Y1)

T∏

t=2

P(Yt |c(Y t−1
1)), (5.41)

where, again, P1 is the initial probability of the signal. The length of the context is
given by

l(Yt) = |c(Y t−1
1)| = min

{
k : P(Yt |Y t−1

1) = P(Yt |Y t−1
t−k)

}
. (5.42)

If l(Yt) = 0 the residues of the sequence are independent. Furthermore, let k be the
smallest positive integer so that

l(Yt) ≤ k for all t ∈ [2, T]. (5.43)

Then k signifies the maximum order for each position t , and the context function c is
said to be of order k. If k is finite we say that we have a homogeneous VLMM of order
k, and if the context length is constant l(Yt) = k (for t > k naturally), the VLMM
is equivalent to a full kth-order Markov model. Moreover, if the context function
does not depend on the sequence position, the VLMM is homogeneous. However,
the structure of a splice signal is typically inhomogeneous. In an inhomogeneous
VLMM, instead of estimating a single VLMM for the entire sequence, we would
estimate a separate VLMM for each position of the sequence signal. That is, for a
sequence of length T we would need T − 1 different context functions ct , where
t = 2, . . . , T [19].

Figure 5.14 illustrates an example from [19] of a tree representation of a second-
order context function for a given splice site position. The probability of the observed
residue at the given position can be obtained directly from the tree. Each node at level
k represents one of the 4k possible contexts of the current sequence position, and
contains the probabilities for that context. The top tree in Fig. 5.14 illustrates the full

230 5 Gene Structure Submodels

(a)

A C G T

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

P(Yt)

P(Yt |A)

P(Yt |GC)

(b)

TCA

AA AC AT CC CT TA TC TG TT

Fig. 5.14 A tree representation of a context function for a splice site position [19]. The top figure
illustrates the full second-order Markov model, while the pruned version represents the context func-
tion for a VLMM. The nodes contain the conditional distribution of P(Yt |c) for the corresponding
context c

tree corresponding to a full second-order Markov model, while the bottom figure
illustrates a pruned VLMM representation.

Splice sites exhibit strong dependencies not only between adjacent positions,
but between positions enough far apart to require a too high order of a standard
VLMM. A further generalization of the VLMM structure, that is able to capture
such dependencies, is to use a permuted context. That is, instead of conditioning
only on the adjacent previous residues in order of appearance in the sequence, the
order of the context may be arbitrary. For instance, the context may be presented in the
order of influence on the current position. Such a model was first mentioned in [54],
but more recent references include [26, 70]. Another model that attempts to capture
the most significant of the nonadjacent dependencies is the Maximal Dependence
Decomposition algorithm, which is presented next.

5.4.3 Maximal Dependence Decomposition (MDD)

Weight array matrices or other kinds of Markov models can successfully capture
dependencies between adjacent positions in a sequence signal. Eukaryotic splice

5.4 Splice Site Detection 231

sites, however, display significant dependencies between both adjacent and nonad-
jacent sequence positions. The Maximal Dependence Decomposition (MDD) algo-
rithm [13, 14] attempts to capture at least the most informative of such dependencies
by using a combination of weight matrices and decision trees.

Suppose we want to model a signal Y = (Y1, . . . , Yλ) of length λ based on an
aligned set A of n such signal sequences. The MDD procedure can be summarized
as follows.

1. Determine the consensus sequence of A . If there are “ties” in the nucleotide
frequencies, the consensus at that position consists of all tied residues.

2. Determine the sequence position that has the strongest influence on the others,
using a χ2-test on pairs of positions (see below for details). Denote this position
t∗.

3. Calculate the base composition Pt∗ = {pA, pC , pG , pT } in position t∗, using A .
4. Split the sequence set A into two subsets, A + and A −, where A + consists of

signal sequences having the consensus nucleotide(s) in position t∗, and where
A − consists of the remaining sequences.

5. Calculate the base composition Pt∗ = {pA, pC , pG , pT } in position t∗, using the
entire sequence set A .

6. Calculate a weight matrix W for each subset A + and A − for all signal positions
t 	= t∗.

Repeat the procedure in steps 2–5 recursively on the subsets, resulting in further
subsets of the subsets and so on. The result can be viewed in a binary tree (see
Fig. 5.15), where each split of the tree represents a split of the sequence set. The
procedure is repeated until either of the following conditions occur:

(i) The (λ − 1)th level of the tree is reached, so no further splits are possible.
(ii) No position stands out as more influential than the others in the current subset.

(iii) The current subset has to few sequences to provide reliable estimates of the
base composition. A rule of thumb is to stop when the number of sequences
falls below 100 in a subset.

The Position with the Strongest Influence

The position having the strongest influence on the other positions in the sequence
is determined by using a χ2-test of independence on pairs of sequence positions.
Suppose we want to test if positions t and u are independent in the signal, 1 ≤ t, u ≤
λ. In a standard χ2-test we would construct a (4 × 4) contingency table, where the
rows correspond to the four possible residues {A, C, G, T } in position t , and the
columns to the same residues in position u. We would then insert the counts of the
number of sequences in the current sequence set that have the corresponding residues
in their respective positions. That is, in cell (i, j) in the table we insert the number of
sequences having residue i in position t and residue j in position u. The χ2-test then
compares these observed counts to the expected number of counts, if the sequence
positions were independent. The test used by the MDD method in [14] is also a

232 5 Gene Structure Submodels

G 5

Donor sites

(1254)

35
85

2
81
51
22

6
5
0
2

12
28

−3
−2
−1
+3
+4
+6

13
15

9
3
9

49

−3
−2
−1
+3
+4
+6

33
56

9
44
75
14

36
15

4
3
4

18

19
15
78
51
13
19

44
4
1
3

28
20

16
7

97
15

9
30

−3
−2
+3
+4
+6

11
16

3
10
42

37
10

4
4

21

18
15
53
16
21

31
30

0
2

10

21
17
43

3
10

−3
−2
+3
+4
+6

G 5G −1

(177)

A −2T 6 G −1A −2V 6G 5

(310)

G 5G −1

(823) (234)

G 5H −1

G 5G −1A −2

(487)

G 5 −1B −2G

(336)

−4
+3
+4

5
10
19

32
27
51

40
4
5

23
59
25

43
6
5

15
46
20

39
46
69

2
3
7

−3
+3
+4

3
5

11
36

37
39
62
19

42
5
5

20

18
51
22
25

30
1
4

21

18
56

8
16

29
42
80
14

23
1
8

49

−3
+3
+4
+6

−3
+3
+4
+6

(197)(1057)

H 5

A%Pos T% T%PosA% C% G% C% G%

34
59
40
70
17

29
43
56
93
5

18
11

0
3

76

Fig. 5.15 An MDD model for 1257 human donor signals from [13]. Each box correspond to a
subset of the donor sequence set. For instance G5G−1 corresponds to donor signals with consensus
nucleotide G in position 5 and −1, while H indicates a nonconsensus “not G” (A, C, or T), B
indicates “not A” (C, G or T), and V indicates “not T” (A, C or G)

χ2-test, but instead of counting all residues separately, the residues in position t are
grouped into two classes, “consensus” and “nonconsensus” residue, while position
u remains ungrouped. The resulting contingency table is now a (2 × 4)-table, where
the rows correspond to the two classes at position t , and the columns to the four
nucleotides in position u. The position t is then tested against all other positions u
in the sequence signal. To illustrate the procedure, we define a new random variable,
called a consensus indicator variable Kt , where

Kt =
{

1 if Yt matches the consensus at position t

0 otherwise.
(5.44)

Thus, instead of performing a χ2-test between variables Yt and Yu , we test Kt against
Yu instead. The position with the strongest influence is then extracted as follows.

1. For each pair of positions (t, u), t 	= u, construct a (2 × 4) contingency table
with counts of Kt and Yu .

2. Compute theχ2-statistic, denote it X2
tu , of the contingency table above of positions

t and u, t 	= u (see below).

5.4 Splice Site Detection 233

3. Collect all the X2
tu-values for all positions t and u in the signal, resulting in a

(λ × λ)-table of χ2-statistic values, where the rows correspond to position t and
the columns to position u.

4. Calculate the row sums St = ∑
u:u 	=t X2

tu in the table above. The largest row sum,
denote it S∗

t , indicates the position t∗ with the strongest influence.

The χ2-statistic for Kt and Yu is calculated by constructing a (2 × 4) contingency
table, where the rows correspond to the two Kt values “consensus” or “nonconsen-
sus”, and the columns correspond to the four possible nucleotides in position u. The
χ2-statistic is given by

X2
tu =

∑

i

∑

j

(Oi j − Ei j)
2

Ei j
(5.45)

where Oi j is the observed number of sequences in A having residues i and j in posi-
tions t and u respectively. Ei j is the expected count if the positions were independent,
given by

Ei j = ni · n· j

n
(5.46)

where ni · is the number of sequences having value i in position t , n· j the correspond-
ing count for residue j in position u, and n the total number of sequences. If sequence
position t is independent of all other positions, the row sum St will be approximately
χ2-distributed with (4 − 1)(λ − 1) degrees of freedom. If the largest row sum St∗
is significantly larger than zero, position t∗ can be used to split the sequence set as
described above.

Example 5.4 MDD of donor splice sites
We borrow the example in [14] to illustrate the use of the MDD algorithm. The
sequence set consists of 1254 human donor sequences, and we want to create an
MDD model that can be used for splice site detection in novel sequences. Each train-
ing sequence is 9 bases long, including the last three exon nucleotides with indices
−3 to −1, and the first six intron nucleotides with indices +1 to +6.

1. Determine the consensus sequence
First, the positions +1 and +2 are excluded from the MDD analysis, as they represent
the invariant donor sequence GT and do not depend on anything else. Next, the base
frequencies and consensus residues of the remaining positions are determined (see
Table 5.4).

2. Determine the sequence position with the strongest influence
Table 5.5 illustrates the contingency tables between positions −2 and +6, where the
−2 position has been grouped into sequences having the consensus nucleotide ‘A’
in position −2, and sequences with a nonconsensus nucleotide in position, −2. The
rightmost table with expected counts is computed according to (5.46). For instance,

234 5 Gene Structure Submodels

Table 5.4 Base composition and consensus sequence of the 1254 donor sites analyzed in [14]

Base Position

−3 −2 −1 +1 +2 +3 +4 +5 +6

A% 33 60 8 0 0 49 71 6 15

C% 37 13 4 0 0 3 7 5 19

G% 18 14 81 100 0 45 12 84 20

T% 12 13 7 0 100 3 9 5 46

Cons a/c A G G T a/g A G T

Table 5.5 Contingency table of position −2 and +6 in a set of donor splice sites, where the
consensus in position −2 is A

K−2 Y+6

A C G T Total

Observed

A 136 144 182 292 754

Not A 55 88 75 282 500

Total 191 232 257 574 1254

Expected

A 114.84 139.50 154.53 345.13 754

Not A 76.16 92.50 102.47 228.87 500

Total 191 232 257 574 1254

the expected count of observing an A in position −2 and an A in position +6, if the
positions were independent is given by

EAA = (754 · 191)/1254 = 114.84. (5.47)

The χ2-statistic X2−2,+6 for K−2 and Y+6 becomes

X2−2,+6 = (136 − 114.84)2

114.84
+ · · · + (282 − 228.87)2

228.87
≈ 42.9. (5.48)

Table 5.6 shows the χ2-statistics for all (t, u) pairs in the signal sequence. The bold
values are significant when using a confidence level of α = 0.001. The individual pair
values were tested using a χ2-distribution with 3◦ of freedom ((2 − 1)(4 − 1) = 3),
such that values larger than χ2

3 (0.001) = 16.27 are deemed significant. Sim-
ilarly, the row sums were compared to a χ2-distribution with 18◦ of freedom
((4 − 1)(7 − 1) = 18). The table value of this distribution is χ2

18(0.001) = 42.31,
resulting in significance for all rows. That is, the hypothesis of independence could
be rejected for all positions. Position +5 with consensus ‘G’ achieves the largest row
sum, and, thus, becomes the first split point.

5.4 Splice Site Detection 235

Table 5.6 The χ2-statistic values of pairwise positions between consensus indicator Kt and
nucleotide Yu

Position i Consensus Position j

−3 −2 −1 +3 +4 +5 +6 Si

−3 c/a – 61.8 14.9 5.8 20.2 11.2 18.0 131.8

−2 A 115.6 – 40.5 20.3 57.5 59.7 42.9 336.5

−1 G 15.4 82.8 – 13.0 61.5 41.4 96.6 310.8

+3 a/g 8.6 17.5 13.1 – 19.3 1.8 0.1 60.5

+4 A 21.8 56.0 62.1 64.1 – 56.8 0.2 260.9

+5 G 11.6 60.1 41.9 93.6 146.6 – 33.6 387.3∗

+6 T 22.2 40.7 103.8 26.5 17.8 32.6 – 243.6

The bold values are significant with p < 0.0001

3. Split the sequence set into consensus and nonconsensus subsets
Next we split the sequence set into two subsets according to whether the sequences
had the consensus ‘G’ in position +5 or not. Let G5 denote the subset of consensus
sequences, and H5 the remaining sequences.

4-5. Calculate base composition and weight matrices
The base composition at +5 is given in Table 5.4 as

P+5 = {0.06, 0.05, 0.84, 0.05} (5.49)

and weight matrices of G5 and H5 are calculated for the remaining positions. The
procedure in steps 2–5 is repeated recursively for each subset until a stop condition is
reached. The resulting MDD is given in Fig. 5.15. A minimum number of sequences
to allow for new splits was set to 175 in this example. Thus, H5 was not divided further.
G5 was split in position −1, with consensus ‘G’, resulting in subgroups G5G−1 and
G5 H−1 both having consensus residue ‘G’ in position +5, but with consensus and
nonconsensus in position −1, respectively. The consensus group G5G−1 was split
yet again at position −2, and the consensus group G5G−1 A−2 was split one last time
in position +6.

Score a New Sequence

The resulting MDD model M can be used to score a new potential signal sequence
Z = (Z−3, . . . , Z+6), and thus can be used for splice site prediction. The score
is achieved as follows. Let p−3, p−2, p−1, p1, . . . , p6 denote the base frequencies
of the consensus sequence given in Table 5.4, and let qt denote the weight matrix
scores of the current residue and the current subset of sequences. Sequence Z can
then be scored by following the decision tree illustrated in Fig. 5.16. For instance, if
Z1 Z2 coincides with the consensus dinucleotide ‘GT’ the process moves to the next

236 5 Gene Structure Submodels

Fig. 5.16 A decision tree
illustration of how to use the
MDD for scoring new
sequences Z1Z2 =‘GT’

Z5 =‘G’

Z−1 =‘G’

Z−2 =‘A’

Z6 =‘T’

P(Z|M) = 0

P(Z|M) = p5 ∏
t=5

qt

P(Z|M) = p5 · p−1 ∏
t=5,−1

qt

P(Z|M) = p5 · p−1 · p−2 ∏
t=5,−1,−2

qt

P(Z|M) = p5 · p−1 · p−2 · p6 ∏
t=5,−1,−2,6

qt

P(Z|M) = p5 · p−1 · p−2 · p6 ∏
t=5,−1,−2,6

qt

Start

yes

yes

yes

yes

yes

no

no

no

no

no

level. Otherwise the candidate donor gets score P(Z |M) = 0. At the next level, if
Z5 	=‘G’, the sequence is scored using the weight matrix entries of the subset H5.
The qt at the next level comes from the G5 H−1 weight matrix, and so on. �

5.4.4 Neural Networks

Neural networks has been successfully applied to various sequence analysis prob-
lems, and the basic theory of these models are described in Sect. 2.4. The application
of neural networks to splice site detection was first introduced by Brunak et al. [12],
and has also been integrated in gene finders such as GRAIL [67, 68] described in
Sect. 2.4.4, and Genie [38, 53]. Here we give a brief overview of the neural networks
used for splice site detection in [12].

The neural network in question is a two-layer feed-forward network, such as
described in Sect. 2.4.3, consisting of an input layer processing the sequence, a hidden
layer of nonlinear processing elements, and an output layer, typically consisting of
a single element that assigns a score to the input sequence. We recall that the output
unit is a function on the form

y = φ

(M∑

j=0

w(2)
jk · φ

(N∑

i=0

w(1)
i j xi

))
(5.50)

where xi are the input units, z j the hidden units, and y the output unit. The weights

w(1)
i j correspond to the connections between the input layer and the hidden layer,

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

5.4 Splice Site Detection 237

and w(2)
jk to the connections between the hidden layer and the output layer. The same

sigmoid activation function φ is used for both the input and the hidden layer

φ(a) = 1

1 + e−a
. (5.51)

The output unit takes values between 0 and 1, where true splice sites are assumed
to receive scores close to 1 and non-signals receive scores close to 0. Typically, the
cutoff value used to separate signal sequences from non-signals is set to 0.5. The
network is trained using the backpropagation algorithm described in Sect. 6.7.

Example 5.5 Splice site detection in GRAIL
The neural network-based gene finder GRAIL, described in Sect. 2.4.4, uses a stan-
dard neural network approach for splice site prediction. The splice site detector slides
a window across the sequence and assigns a score to the middle nucleotide of each
window sequence. For instance, the network for acceptor sites slides a window of
95 bp across the sequence, searching for signals sequences Y−60, . . . , Y35, where
Y−60, . . . , Y2 is the intron part with the consensus dinucleotide ‘AG’ located at Y1Y2,
and the exon part is in Y3, . . . , Y35. The network score is a combination of seven
different frequency measures of nucleotide “words” that are characteristic to splice
sites.
The seven frequency measures are defined as follows:

1. Position-specific 5-tuple frequencies:

−4∑

i=−23

log
f +
i (Y i+4

i)

f −
i (Y i+4

i)
, (5.52)

where f +
i and f −

i are the position-specific frequency counts of the 5-tuple Y i+4
i

for true and false splice sites, respectively.
2. Position independent 5-tuple frequencies:

0∑

i=−27

log
f +(Y i+4

i)

f −(Y i+4
i)

, (5.53)

where f + and f − now correspond to the overall background frequencies of
5-tuples in true and false splice sites, respectively.

3. Pyrimidine count in the intron region:

0∑

i=−27

I(Yi = ‘C’ or ‘T’)
√

i + 28, (5.54)

where I is the indicator function.

http://dx.doi.org/10.1007/978-1-4471-6693-1_6
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

238 5 Gene Structure Submodels

4. The normalized distance between Y0 and the nearest upstream ‘YAG’ consensus,
where ‘Y’ signifies a pyrimidine (‘C’ or ‘T’).

5. Nonadjacent pairwise counts:

4∑

i=−27

4∑

j≥i

log
f +
i (Yi Y j)

f −
i (Yi Y j)

. (5.55)

6. Coding potential in the intron region Y−60, . . . , Y−1.
7. Coding potential in the exon region Y3, . . . , Y35.

Coding potential is measured using a periodic hexamer model, and is used in addition
to the consensus dinucleotide ‘AG’ to confirm a transition from noncoding to coding
sequence. The seven measures are fed into the network, which is a two-layer feed-
forward network, consisting of seven input nodes, a hidden layer of three nodes,
and one output node. The network is trained using the backpropagation algorithm
described in Sect. 6.7. �

5.4.5 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a method in multivariate analysis concerned
with finding the best separation of different classes of objects, based on a set of fea-
tures that characterize the objects. There are two main areas of application: dimen-
sionality reduction and data classification. Dimensionality reduction involves reduc-
ing the set of features to a set that best explains the data in the sense of separating
the classes. Data classification involves determining a decision rule that can be used
to allocate a new object to one of the existing classes, based on its feature values.
We focus on data classification here, and give a brief overview of linear discriminant
analysis for the purpose of splice site detection.

Suppose that we want to assign an object Y to one of two possible classes, C1
or C2 say, based on a set of features x = (x1, . . . , x p) that characterize Y . In terms
of splice site detection, the classes are “signal” or “non-signal,” and the features
typically include various compositional measures of the signal sequence. The idea
of linear discriminant analysis is to find a model of the features that best separates the
classes. When only dealing with two classes, a discriminative model can be written
as a linear combination of the features

z =
p∑

i=1

αi xi , (5.56)

and we can use a decision rule on the form

class(Y) =
{

C1 if z ≥ c,

C2 if z < c.
(5.57)

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

5.4 Splice Site Detection 239

for some empirically determined threshold c. In what follows we focus on the case
with two classes, but the theory can be extended to an arbitrary number of classes.
For more details confer for instance [43].

Quadratic Discriminant Analysis (QDA)

Formally, the decision rule given in (5.57) assigns object Y to the class that obtains
the highest probability for the given set of features. That is,

class(Y) =
{

C1 if P(C1|x) > P(C2|x),

C2 otherwise.
(5.58)

The conditional probability of each class P(Ci |x) can be obtained using Bayes’ rule

P(Ci |x) = P(x|Ci)P(Ci)∑2
j=1 P(x|C j)P(C j)

(5.59)

where P(Ci) are called the prior probabilities of the classes, P(Ci |x) the posterior
probabilities, and P(x|Ci) are sometimes called likelihood functions of Ci . The prior
probabilities are assumed to be known, and if they are not known typically the
uniform distribution is used, assigning equal probabilities to all classes. We will
assume uniformly distributed priors throughout the rest of this section. If we apply
(5.59) to (5.58) we get that the decision on how to classify Y is based on whether

P(x|C1) > P(x|C2). (5.60)

The probabilities P(x|Ci) can be estimated from data, but this often requires a very
large training set. Here we instead assume that these conditional distributions are
multivariate normal MN(μi ,Σi). That is,

P(x|Ci) = 1

(2π)p/2|Σi |1/2 exp

(
−1

2
(x − μi)

T Σ−1
i (x − μi)

)
(5.61)

where μi is the mean vector and Σi the covariance matrix of the p features in class
Ci . Inserting (5.61) into (5.60) and manipulating the formulas somewhat leads us to
the quadratic discriminant function, which assigns Y to class C1 if

− log |Σ1|− (x−μ1)
T Σ−1

1 (x−μ1) ≥ log |Σ2|+ (x−μ2)
T Σ−1

2 (x−μ2). (5.62)

The term (x − μi)
T Σ−1

i (x − μi) is called the Mahalanobis distance and measures
the dissimilarity between the classes. The term “quadratic” in QDA comes from the
fact that the surface that separates the classes is quadratic.

240 5 Gene Structure Submodels

Linear Discriminant Analysis (LDA)

The linear form in (5.56) occurs when, in addition to the multivariate normal
assumption, we assume that the covariance matrices of the two classes are equal,
Σ1 = Σ2 = Σ . This simplifies the expression in (5.62) further,

(μ1 − μ2)
T Σ−1x ≥ 1

2
(μ1 − μ2)

T Σ−1(μ1 + μ2). (5.63)

The left hand side of the inequality is in fact a linear combination of the features,

z = αT x =
p∑

i=1

αi xi , (5.64)

where the coefficients vector is given by

α = Σ−1(μ1 − μ2). (5.65)

The threshold c in (5.57) is then given by

c = αT (μ1 + μ2)

2
. (5.66)

In practice, the mean vectors μi and the covariance matrices Σi of the feature vectors
are typically unknown and need to be estimated from a training set with known class
labels and feature vectors. Let Y1, . . . , Yn denote such a training set with correspond-
ing feature vectors x1, . . . , xn . Let ni , i = 1, 2 denote the number of objects in class
Ci , with n = n1 + n2, and x(i)

1 , . . . , x(i)
ni the corresponding feature vectors of that

class. Then the sample mean vectors and sample covariance matrices for each class
are then computed as

x̄i = 1

ni

ni∑

j=1

x(i)
j , Si = 1

ni − 1

ni∑

j=1

(x(i)
j − x̄i)(x

(i)
j − x̄i)

T . (5.67)

The mean vectors μ1 and μ2 are estimated by the sample means x̄1 and x̄2, respec-
tively, and the covariance matrix Σ is estimated using the pooled covariance matrix
given by

Sp = (n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2
. (5.68)

Faced with a new, unknown object Y0 with feature vector x0, we classify it to class
C1 if

(x̄1 − x̄2)
T S−1

p x0 ≥ 1

2
(x̄1 − x̄2)

T S−1
p (x̄1 + x̄2), (5.69)

5.4 Splice Site Detection 241

and to C2 otherwise. This formulation is in fact equal to the Fisher’s discrimi-
nant [28], which is often used interchangeably with LDA, but is slightly different.
Although arriving at the same statistic, Fisher’s approach does not assume multi-
variate normal distributions of the classes. It does, however, implicitly assume equal
covariance matrices of the classes, since a pooled estimate of the sample covariance
matrices is used.

Example 5.6 Splice site detection in FGENEH
FGENEH [61, 62] is a gene finder that uses linear discriminant analysis both for
the prediction of exons and for prediction of splice sites. The method searches for
open reading frames (ORFs) surrounded by potential splice sites, and combines
measures of coding potential and intronic sequence composition with signal sensors
for initial, terminal, and internal exon boundaries. The candidate exons are passed
on to a dynamic programming algorithm that produces the final gene model.

Initially, the sequence is scanned for all occurrence of the consensus dinucleotides
GT and AG representing candidate donors and acceptors, respectively. The splice
site predictor then combines a set of measures (features) for each candidate site, and
classifies the site into “signal” or “pseudosignal” using linear discriminant analysis.
In LDA terms, the object is thus the candidate splice site, and the features are the set
of measures that characterize a splice site.

The characteristics used for donor site classification, where negative indices sig-
nify positions in the preceding exon and positive indices positions in the succeeding
intron, are

1. The average triplet preferences in the potential coding region (−30 to −5 bp).
2. The average triplet preferences in the conserved consensus region (−4 to +6 bp).
3. The average triplet preferences in the G-rich region (+7 to +50 bp).
4. The number of significant triplets in the conserved consensus region (−4 to

+6 bp).
5. The octanucleotide preference for being coding in the (−60 to −1 bp) region.
6. The octanucleotide preference for being noncoding in (+1 to +54 bp).
7. The number of G-bases, GG-doublets, and GGG-triplets in the (+6 to +50 bp)

region.

The characteristics of acceptor sites, where now negative indices indicate positions
in the preceding intron and positive indices positions in the succeeding exon, are

1. The average triplet preferences in the branch point region (−48 to −34 bp).
2. The average triplet preferences in the Poly(T/C)-tract region (−33 to −7 bp).
3. The average triplet preferences in the conserved consensus region (−6 to +5 bp).
4. The average triplet preferences in the coding region (+6 to +30 bp).
5. The octanucelotide preferences for being coding in the (+1 to +54 bp) region.
6. The octanucelotide preferences for being intron in the (−1 to −54 bp) region.
7. The number of Ts and Cs in the poly(T/C)-tract region (−33 to −7 bp).

242 5 Gene Structure Submodels

The triplet preferences are determined in a sequence window (L , R) where L is the
number of positions upstream (5′ side) and R the number of positions downstream
(3′ side) of the exon–intron junction of the specific splice site. For donors, L = 30
and R = 50, and for acceptors, L = 80 and R = 30. The training set consists of
a set of true splice sites, as well as a set of pseudosites containing the consensus
dinucleotides without being a real splice site. The preference of a triplet at position
i in the (L , R) window is given by

P(i) = f +
i (k)

f +
i (k) + f −

i (k)
, (5.70)

where f +
i (k) and f −

i (k) are the frequencies of triplet k = 1, . . . , 64 at position i
for splice sites and pseudosites, respectively. The discrimination function used is a
mean preference index and is calculated for each candidate splice site using

Psp(j) = 1

m

(
R∑

i=L

P(i)

)
, (5.71)

where j is the position of the G in the AG or GT dinucleotide, and m is the number of
triplets in the (L , R) window. The discrimination function is calculated only for those
triplets that differ significantly in frequencies between splice sites and pseudosites.
That is, only triplets rendering P(i) − 0.5 > η, for some threshold η, are included
in (5.71), and thus, m is now the number of significant triplets in (L , R).

Internal exons are predicted by considering all open reading frames (OFRs)
flanked by the consensus dinucleotides for donors and acceptors. A candidate ORF
is scored using a discriminant function that combines the splice site scores with
sequence composition scores of the potential exon and the flanking introns. The
sequence composition scores are computed using a sliding window of length λ across
the sequence, starting 70 bp upstream of the candidate donor site and ending 70 bp
downstream of the candidate acceptor site.
The probability that the window oligonucelotide x = (x1, . . . , xλ) is coding is esti-
mated using Bayes’ rule

P(C |x) = P(x |C)P(C)

P(x |C)P(C) + P(x |N)P(N)

= fC (x)

fC (x) + fN (x)
, (5.72)

where C and N denotes “coding” and “noncoding”, and fC (x) and fN (x) are the fre-
quencies of oligonucleotide y in coding and noncoding sequences, respectively. The
prior probabilities of the two classes are set equal, P(C) = P(N) = 1

2 . The simplest
discriminant function for classifying a potential coding region Y = (Y1, . . . , YT)

5.4 Splice Site Detection 243

of length T say, is then the average oligonucleotide probability in a sliding window
across the sequence

P(C |Y) = 1

n − λ

(
n−λ∑

t=1

P(C |Y t+λ−1
t)

)
, (5.73)

where Y t+λ−1
t is the oligonucleotide starting at position t . �

5.4.6 Maximum Entropy

Suppose we have a random process Y1, Y2, . . . that we want to build a model for.
Suppose further that we have a set of constraints that we want to impose on our
model. We may for instance have some knowledge of the process, such as marginal
distributions, expected values, or at least know the bounds on such values. In the
case of splice sites, we would typically want to impose constraints that capture base
compositions and position dependencies of the signal. The idea of maximum entropy
is that, among all possible models that satisfy our constraints, choose the one that is
the most random. That is to say, we want to choose the model with the highest entropy.
By doing so, we assure that we do not inadvertently include more assumptions or
biases than we really have information on. The idea behind the principle of maximum
entropy, first proposed by Jaynes [34, 35], is to stipulate that among all possible
distributions that satisfy the given constraints, the one that “best” approximates the
true distribution, is the one with the largest (Shannon) entropy. This needs to be
applied with some caution, however, in particular since in the unconstrained situation
the distribution with the largest entropy is the uniform, something that we have shown
to be a poor model for splice site sequences in earlier sections of this chapter.

Entropy is a measure of the level of uncertainty in a random variable or process.
Or, on the other side of the coin, the entropy tells us the level of information contained
in the variable.
The entropy measure can be written as

H(p) =
∑

y

p(y) log
1

p(y)
= −

∑

x

p(y) log p(y) (5.74)

where the sum runs over all possible states (or events) y of the process, and p(y)

denotes the probability of state y. In information theory it is common to use log
base 2, to enable an interpretation in “bits,” but any base will do as long as it is used
consistently. The entropy H(p) runs between 0 and infinity, and if no constraints
are placed on the model, the distribution with the highest entropy is the uniform
distribution, which places equal probabilities to all possible states of the process.

244 5 Gene Structure Submodels

The Maximum Entropy Method

The setup of maximum entropy modeling is to determine the possible states of the
process and decide on a set of constraints. The constraints need to be consistent,
which means that they are not allowed to contradict one another. We borrow the
following example from [35].

Example 5.7 Maximum entropy motivation
Assume for instance that we roll a die a large number of times, N say, and observe
an average of 4.5 (note that a fair die would give an average of 3.5). Given this
constraint, we want to estimate the outcome probabilities

p(y) = P(Y = y), y = 1, . . . , 6 (5.75)

of the die. We can formalize our constraints as

6∑

y=1

p(y) = 1, (5.76a)

E[Y] =
6∑

y=1

y · p(y) = 4.5. (5.76b)

There are infinitely many distributions that satisfy these two constraints, and the
question is which one to choose. For instance {p(1), p(2), p(3), p(4), p(5), p(6)} =
{0, 0, 0, 0.5, 0.5, 0} is a member of the class, but without any added information we
have no reason to believe that the die only shows four or five. By choosing that
particular distribution we have implicitly included extra constraints that we might
not have call for. A reasonable assignment must not only satisfy the given constraints,
it may not include any extra assumptions or limitations. �

The principle of maximum entropy basically states that the distribution that is the
most fair, or most conservative given what we know, is the one that spreads the
probability mass as evenly as possible. To formalize, assume that we have a random
variable Y , that can take values in a sample space Ω = {ω1, . . . , ωM }. Assume
further that we have a set of feature functions f1, . . . , fK , K < M , where each
function maps the outcome of Y to a real number, fk : Ω → R, k = 1, . . . , K . The
feature functions correspond to our desired constraints, and are often indicators of
specific events or sets of events, such that

fk(y) =
{

1 if Y = y,

0 otherwise.
(5.77)

Now assume that the state probabilities p(y) = P(Y = y), y ∈ Ω , are unknown.
Instead we are given the expected values of the feature functions

5.4 Splice Site Detection 245

Fk = E[fk], k = 1, . . . , K . (5.78)

The problem we want to solve is to find the probabilities p(y), y ∈ Ω , that maximize
the entropy

H(p) = −
∑

y

p(y) log p(y), (5.79)

under the constraints

∑

y

p(y) = 1,

Fk =
∑

y

p(y) fk(y), k = 1, . . . , K . (5.80)

This is an optimization problem that is commonly solved using Lagrange multipliers,
which is a method for optimizing a function under a set of given constraints. In short,
we introduce the Lagrangian function

L = H(p) +
K∑

k=1

λk

(
E[fk] −

∑

y

p(y) fk(y)

)
+ γ

(
∑

y

p(y) − 1

)
, (5.81)

where λ1, . . . , λK and γ are the Lagrange multipliers, and solve the equation system

∂L

∂p(y)
= 0, y ∈ Ω. (5.82)

As a result we achieve the expression

p(y) = 1

Z(λ1, . . . , λK)
exp

(
∑

k

λk fk(y)

)
, (5.83)

which is on the form of a Boltzmann distribution. Z(λ1, . . . , λK) is a normalizing
factor, sometimes called a partition function, that makes the p(y) probabilities sum
to one

Z(λ1, . . . , λK) =
∑

y

exp

(
∑

k

λk fk(y)

)
. (5.84)

The coefficients λ1, . . . , λK are then determined using the constraints in (5.80) and
by solving the equation system

E[fk] = ∂

∂λk
Z(λ1, . . . , λK). (5.85)

246 5 Gene Structure Submodels

Example 5.8 Maximum entropy motivation (cont.)
We apply the Lagrange multipliers method to Example 5.7 in order to find the prob-
abilities p(y), y = 1, . . . , 6 that maximizes the entropy. We begin by formulating
the Lagrangian function based on our constraints (5.76a) and (5.76b),

L = −
6∑

y=1

p(y) log p(y)+λ

⎛

⎝4.5 −
6∑

y=1

y · p(y)

⎞

⎠+γ

⎛

⎝
6∑

y=1

p(y) − 1

⎞

⎠ . (5.86)

By differentiating L with respect to the frequencies p(y) and normalizing in order
to make the frequencies sum to one, according to (5.83) and (5.84) we achieve

p(y) = eλ y

6∑

y=1

eλ y

. (5.87)

The coefficient γ cancels out in the normalization, and the coefficient λ is given by
solving the equation

4.5 = d

dλ

6∑

y=1

eλ y =
6∑

y=1

y eλ y . (5.88)

This equation can be solved numerically by any standard computational software,
giving λ ≈ −0.400 and the corresponding maximum entropy distribution

{p(1), p(2), p(3), p(4), p(5), p(6)} = {0.363, 0.243, 0.163, 0.109, 0.073, 0.049}.
�

An generalization of the maximum entropy method, called the relative entropy model,
uses the Kullback–Leibler distance to relate the probabilities p(Y) to a more general
distribution than the uniform. For instance, under the given constraints we may want
to choose the model that is the closest to the background distribution rather than to
the uniform distribution. The Kullback–Leibler distance can be written as

KL(p||q) =
∑

y

p(y) log
p(y)

q(y)
(5.89)

where q is now the background distribution. The principle of minimum relative
entropy is to choose the distribution p∗ with the smallest Kullback–Leibler distance.
That is, among all distributions satisfying the given constraints p∗ is the distribution
closest to the background distribution q. If q is the uniform distribution, minimizing
the Kullback–Leibler distance is equivalent to maximizing the Shannon entropy.

While Lagrange multipliers are a common choice for solving the maximum
entropy optimization problem, it becomes impractical in the application to splice

5.4 Splice Site Detection 247

site detection. Another approach is to solve the problem numerically, using a strategy
called iterative scaling, which will be briefly introduced below.

Application to Splice Site Detection

In what follows we describe the application of maximum entropy to splice site detec-
tion presented in [69]. We assume as in previous sections that we have a splice signal
Y = (Y1, . . . , Yλ) of length λ, where Yt ∈ {A, C, G, T }, and we want to determine a
model for the joint probability p(Y) = P(Y1 = y1, . . . , Yλ = yλ). A DNA signal of
length λ can take on 4λ values, or we can say that the signal has 4λ possible “states.”
Based on a training set A of known signal sequences, we would like to determine
a set of constraints and find the maximum entropy approximation of p(Y). When
applied to splice site detection we would like the constraints to incorporate base
compositions and position dependencies that are characteristic for such signals.

In [69] the constraints are expressed in terms of subsets of the marginal distribu-
tions of p(Y), estimated from the training set. Two types of constraints are defined:
complete constraints and specific constraints. The complete constraints involve all
lower order marginal distributions of p(Y). For instance, if λ = 3, the set of all lower
order marginal distributions consist of all first- and second-order margins

SY = {p(Y1), p(Y2), p(Y3), p(Y1, Y2), p(Y1, Y3), p(Y2, Y3)}. (5.90)

Different subsets of SY then specify different models of p(Y). If, for instance, only
the first-order marginals p(Yt) are used as constraints, the resulting model is an
ordinary weight matrix. If second-order, nearest-neighbor constraints are used such
as p(Y1, Y2) and p(Y2, Y3) but not p(Y1, Y3)), the maximum entropy model is an
inhomogeneous first-order Markov model.

The specific constraints are observed frequencies for certain complete constraints.
For instance, the specific constraints of p(Y1, Y3) are the 16 frequencies of the
trinucleotides

{ANA, ANC, ANG, ANT , . . . , TNC, TNG, TNT}, N ∈ {A, C, G, T }.

Once we have settled on the set of constraints we want to find the model with the
largest entropy under these constraints. A common approach is to use Lagrange
multipliers [34], but due to the sheer size of our set of constraints, this tends to be
impractical. Instead we use a method called iterative scaling, that starts out with
the uniform distribution and iteratively improves it toward the maximum entropy
distribution.

Iterative Scaling

We would like to determine the distribution p(Y) that has the maximum entropy
under our set of specific constraints. The iterative scaling algorithm, first introduced
by [10], is a method for computing approximate probability distributions. It can be
shown that the following procedure converges to the distribution with the largest
entropy among those consistent with the given marginal distributions [69].

248 5 Gene Structure Submodels

We begin by specifying a set of complete constraints SY and a corresponding
list of specific constraints fk , k = 1, . . . , K , where the subscript k now signifies
the order in the list. The iteration is initialized with a uniform distribution over all
λ-lengthed sequences

p̂(0)(Y) = 4−λ, (5.91)

where we let p̂(j)(Y) denote the approximation of the joint probability p(Y) after
the j th iteration. In iteration j , we apply each of the constraints, one at a time. The
approximated probability is then updated using the formula

p̂(j)(Y) = p̂(j−1)(Y)
fk(Y)

f̂ (j−1)
k (Y)

, (5.92)

where f̂ (j−1)
k (Y) is the value of the marginal corresponding to the kth constraint in

the (j − 1)th step of the iteration. To illustrate, consider the example with a signal
length of λ = 3 above, and consider the specific constraint fk = ANA. In the j th
step of the iteration we calculate

p̂(j)(ANA) = p̂(j−1)(ANA)
fk(ANA)

f̂ (j−1)
k (ANA)

, (5.93)

where

f̂ (j−1)
k (ANA) =

∑

N∈{A,C,G,T }
p̂(j−1)(ANA). (5.94)

The probability of all other triplets (not matching ANA), is derived as follows

p̂(j)(VNW) = p̂(j−1)(VNW)
1 − fk(VNW)

1 − f̂ (j−1)
k (VNW)

, (5.95)

where V 	= A, W 	= A and N ∈ {A, C, G, T }. In each iteration, each constraint
is imposed on the approximated probability in the order of the list. The process is
iterated until convergence. To speed things up it is possible to rank the constraints
and impose them in order of importance. This can be done roughly as follows.

1. Determine the maximum entropy distribution that satisfies the so far ranked con-
straints (uniform in the first step).

2. For each unranked constraint, determine the increase in entropy achieved by
applying that constraint.

3. Place the constraint that causes the largest increase in entropy next in rank among
the ranked constraints.

5.4 Splice Site Detection 249

Continue these steps until all constraints have been ranked. Naturally, the constraints
can be ranked individually like this, or in groups if that is more sufficient for the appli-
cation. As mentioned earlier, the Kullback–Leibler distance can be used instead of
the Shannon entropy, if we instead want to minimize the distance to the background
distribution rather than to the uniform. In the ranking step, the highest ranking con-
straint is then the one that causes the largest reduction in Kullback–Leibler distance.

5.4.7 Bayesian Networks

Bayesian networks, first coined by J. Pearl [51], can be seen as graphical represen-
tations of the joint probability distribution of a set of random variables. The graph is
a directed acyclic graph (DAG), where the nodes in the graph correspond to the ran-
dom variables, and the edges to the conditional independence structure between the
nodes. The causal relationships are represented by the conditional probability distri-
butions that are connected with each node. Given the state of the parent nodes, each
node contains the possible values (or states) of the corresponding random variable,
as well as the conditional probability distribution of these states.

Preliminaries

Any joint distribution of a set of random variables Y1, . . . , YT can be factorized as

P(Y1, . . . , YT) =
T∏

t=1

P(Yt |Y1, . . . , Yt−1). (5.96)

Moreover, any such joint distribution could be represented by a directed acyclic graph
G = (V, E) (see Fig. 5.17), where the nodes V correspond to the random variables,
and the directed edges E to the conditional distributions in the factorization.
Now assume that for every variable Yt , t = 1, . . . , T there is a nonempty subset
Vt ⊆ {Y1, . . . , Yt−1} such that

P(Yt |Y1, . . . , Yt−1) = P(Yt |Vt). (5.97)

Y1 Y2 Y3 Y4 Y5

Fig. 5.17 A complete Bayesian network of the joint distribution P(Y1, . . . , Y5)

250 5 Gene Structure Submodels

That is, Yt is conditionally independent of {Y1, . . . , Yt−1}\Vt given Vt . The joint
probability thus becomes

P(Y1, . . . , YT) =
T∏

t=1

P(Yt |Vt). (5.98)

A Bayesian network is such a graph G, where the set Vt is simply the parent nodes
Ypa(t) of Yt . Thus, the joint probability can be factorized as

P(Y1, . . . , YT) =
T∏

t=1

P(Yt |Ypa(t)). (5.99)

This conditioning is known as the local, or causal Markov property: given the parent
nodes Ypa(t), the node Yt is conditionally independent of all other previous nodes
(or, in fact, all other non-descendant nodes). The process of constructing a Bayesian
network can be summarized as follows:

1. Specify the set of variables of the network.
2. Order the variables, and determine the causal relationships between them.
3. Determine the different states of each variable.
4. Determine the conditional probability distributions of each variable, given its

parents.

It is the causal relationships that determine the parent-descendant structure in (5.98).
A key issue is to order the variables properly, since a “bad” ordering may miss
some of the conditional dependencies present among the variables. In the worst case
scenario we need to search through all T ! orderings of the variables in order to
determine the best one. Fortunately, there are efficient methods for learning causal
relationships from data. It is the last step above, however, that we will treat in this
section: determining the conditional probabilities of each variable.

Some Bayesian Theory

Let X denote a discrete random variable with probability distribution P(X = x |θ)

characterized by some parameter θ . Suppose we want to determine the value of
θ using a random sample X = (X1, . . . , Xn) of independent, identically distrib-
uted (i.i.d.) variables drawn from the distribution of X . Note the difference between
the sample X1, . . . , Xn here and the set of random variables Y1, . . . , YT above;
X1, . . . , Xn are independent and come from the same distribution, while Y1, . . . , YT

are not assumed independent and not (necessarily) identically distributed.
In classical inference theory we would treat θ as a fixed, but unknown constant,

and we would search for an estimate θ̂ , that is optimal in some sense. Typical charac-
teristics of interest are the bias and variance of the estimator, and the most common
approach to the optimization is maximum likelihood (ML) estimation (see Sect. 6.3),
resulting in an estimator that is both unbiased and has a minimal variance among all
unbiased estimators. In Bayesian theory, however, we treat the random sample X as

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

5.4 Splice Site Detection 251

fixed, and introduce a level of uncertainty into the parameter θ instead. That is, the
value θ is considered to be an observation of some random variable Θ , which has
a corresponding probability distribution P(Θ = θ). Moreover, in Bayesian theory
we use not only the observations X in the estimation of θ , but include additional
background knowledge, or beliefs, denote it ξ , to infer and update the distribution of
the underlying random variable Θ . That is, we first formulate a prior distribution of
the model parameter Θ that captures our background knowledge ξ . After observing
the data, we then apply Bayes’ rule to obtain the posterior distribution of Θ , repre-
senting the updated beliefs of Θ after the new evidence X has been presented. The
posterior distribution of Θ is then given by

P(Θ|X, ξ) = P(Θ|ξ)P(X|Θ, ξ)

P(X|ξ)
, (5.100)

where P(Θ|ξ) is the prior probability, and P(Θ|X, ξ) is the posterior probability. The
term P(X|Θ, ξ), which is the probability distribution of X, is called the likelihood
when Θ is fixed, and gives the probability of observing sample X for a given Θ .
The term in the denominator, P(X|ξ), is a normalizing factor that can be achieved
by summing over all possible values of Θ

P(X|ξ) =
∫

Θ

P(X|θ, ξ)P(θ |ξ)dθ. (5.101)

From the posterior distribution we can calculate predictive distributions of future
observation Xn+1, given our training sample and our background information,

P(Xn+1|X, ξ) =
∫

Θ

P(Xn+1|θ, ξ)P(θ |X, ξ)dθ. (5.102)

If the likelihood function in (5.102) belongs to the exponential family this probability
exists in closed form and is fairly easy to compute. Examples of distributions that
belong to the exponential family are the normal (Gaussian), the exponential, the
Poisson, the Gamma, the Beta, the binomial, the geometric and the multinomial
distributions. In terms of Bayesian inference, a convenient property of the exponential
family is that if the likelihood function P(X|Θ, ξ) belongs to the exponential family
it has a simple conjugate prior that often belongs to the exponential family as well.
Choosing the prior P(Θ|ξ) is often a compromise between invoking background
knowledge of Θ and choosing a mathematically convenient form of the distribution.
A useful strategy is to choose the prior distribution in such a way that the posterior
distribution P(Θ|X, ξ) follows the same distribution. The distribution depends on
the likelihood function, and a prior chosen this way is said to be conjugate to the
likelihood.

Now assume that the distribution of X is the outcome of a multinomial experiment.
That is, while a binomial experiment results in an outcome belonging to one of two
categories (e.g., success or failure), the multinomial distribution is the generalization

252 5 Gene Structure Submodels

to when each experiment has m possible outcomes (c1, . . . , cm). We denote the
individual probabilities of falling into a specific outcome category

θi = P(X = ci |θ, ξ), i = 1, . . . , m, (5.103)

where θ = (θ1, . . . , θm) is the vector of all cell probabilities such that
∑m

i=1 θi = 1.
Thus, if X = (X1, . . . , Xn) is a set of independent multinomial experiments, X has
a multinomial distribution with cell probabilities θ = (θ1, . . . , θm). The probability
distribution of X is given by

P(X1 = x1, . . . , Xn = xn|θ, ξ) = n!
n1! · · · nm !

m∏

i=1

θ
ni
i , (5.104)

where n1 +· · ·+nm = n and n1, . . . , nm are the number of Xi ’s in each cell category
c1, . . . , cm , respectively. The conjugate prior of the multinomial distribution is the
Dirichlet distribution,

P(Θ|ξ) = Dir(α1, . . . , αm) = 1

B(α)

m∏

i=1

θ
αi −1
i . (5.105)

The term B(θ) is a normalizing factor that can be expressed in terms of the Gamma
distribution Γ

B(α) =
∏m

i=1 Γ (αi)

Γ (α)
, (5.106)

where Γ (x) = (x − 1)! and Γ (1) = 1 for an integer x > 0. The α parameters,
with αi > 0 and α = ∑m

i=1 αi , are sometimes referred to as hyperparameters. The
posterior distribution of Θ is also a Dirichlet distribution given by

P(Θ|X, ξ) = Dir(α1 + n1, . . . , αm + nm) = 1

B(α + n)

m∏

i=1

θ
αi +ni −1
i . (5.107)

Now, the probability of a new observation Xn+1 falling into category ci say, is given
by (5.102). That is,

P(Xn+1 = ci |X, θ , ξ) =
∫

Θ

θi P(Θ|X, ξ)dθ = αi + ni

α + n
(5.108)

In other words, the prediction probability of Xn+1 is the expectation of Θi , under
the posterior distribution.

Training a Bayesian Network

There are many methods for training a Bayesian network, involving various levels
of modification to the initial network structure and estimation of the conditional

5.4 Splice Site Detection 253

probability distributions. Here we only give a brief overview of the simplest case, in
which we assume that the network structure is given, and we only need to train
the probabilities. For a more thorough treatment of Bayesian networks, see for
instance [18].

Assume that we have decided on a structure of the Bayesian network, G = (V, E),
where the nodes V correspond to a set of random variables Y = (Y1, . . . , YT), with
distributions parametrized by vectors θG = (θ1, . . . , θT). Now we are back to the
general case where the Yt ’s may be both dependent and have differing distributions.
We want to train the parameters using a training set A = {Y1, . . . , Yp} of examples,
or configurations, of the network. In accordance with Bayesian inference we assume
that θG is an observation of a vector of random variables ΘG , and that the training
problem involves determining the posterior probability distribution P(ΘG |A , G),
given the training set A and the background information, which is now the network
structure G. Recall that a Bayesian network is just a graphical representation of a
joint distribution over the variables Y1, . . . , YT . There are many methods available to
train such a distribution, coming from a variety of fields including regression theory,
neural networks and decision trees. The most commonly used approach in Bayesian
networks, however, is to use the multinomial sampling methodology described in the
previous section, which is also the case that we treat here. For more details, see for
instance [22].

Hence, we let each variable Yt in the network represent a multinomial experiment,
each with m possible outcomes c1, . . . , cm . Furthermore, if Ypa(t) denotes the set of
parent nodes of Yt , we let y1

pa(t), . . . , yrt
pa(t) denote the set of possible configurations

of Ypa(t), where rt is the number of possible configurations (rt = mat for at number
of nodes in Ypa(t)). There is, thus, mrt conditional probabilities associated with each
node Yt ; one for each combination of m outcomes of Yt and rt possible configurations
of Ypa(t). We denote the probability of Yt being in category c j , given that the parents
are in configuration yi

pa(t), as

θti j = P(Yt = c j |yi
pa(t), θ t , G) (5.109)

where θ t = (θ t1, . . . , θ trt) and θ ti = (θti1, . . . , θtirt). Assuming independence
between different configurations of the nodes {Yt , Ypa(t)}, we can write the posterior
probability of ΘG as

P(ΘG |E, G) =
T∏

t=1

rt∏

i=1

P(Θti |E, G). (5.110)

In other words, with this independence assumption, we can update each parameter
vector θ ti separately.
Since the conjugate prior of the multinomial distribution is the Dirichlet distribution,
the posterior distribution of the parameter vector Θti is given by

P(Θti |E, G) = Dir(αti1 + nti1, . . . , αtirt + ntirt), (5.111)

254 5 Gene Structure Submodels

where nti j is the number of examples in the training setA with Yt = c j and Ypa(t) =
yi

pa(t). Recall that the prediction probability of a new configuration Yp+1 is the
expectation of ΘG under the posterior distribution. Thus, the probability of observing
category c j in node Yt in the new configuration, given some parent configuration yi

pa(t)
is given by

P(Yt = c j |yi
pa(t), G) = αti j + nti j

αti + nti
(5.112)

where αti = ∑rt
j=1 αti j and nti

∑rt
j=1 nti j . Because of the independence assump-

tion, the probability of the entire configuration Yp+1 is then just the product of all
individual node probabilities

P(Yp+1|E, G) =
T∏

t=1

P(Yt |ypa(t), G). (5.113)

Application to Splice Site Detection

Since a Bayesian network can model any joint distribution it has the ability to capture
both adjacent and nonadjacent dependencies between positions in a sequence signal,
and has been successfully applied to splice site detection for instance in [17]. The
set of variables Y1, . . . , Yλ is now the splice signal of length λ, and the multinomial
distributions used for the nodes run over the four possible nucleotide “categories”
{A, C, G, T }.

In the previous section we assumed that the network structure G = (V, E) was
given, but this can be determined from the training set as well. In the Bayesian
mindset this means that we introduce uncertainty into the structure as well, such
that the network G is thought to be drawn from some distribution of networks.
The training set A is then used to compute the posterior distributions of both the
parameter vector P(ΘG |A , G) and the network structure P(G|A). The probability
of a new configuration is given as before by averaging the expectation in (5.113)
over all possible structures

P(Yp+1|A) =
∑

G

P(G|A)P(Yp+1|A , G). (5.114)

The conditional probability on the right hand side is as in the previous section, and
the posterior distribution of the network is given using Bayes’ rule

P(G|A) = P(G)P(A |G)

P(A)
, (5.115)

where P(A) is a normalizing factor and does not depend on the network structure.
In the general case, the likelihood P(A |G) can be complicated to compute, but with

5.4 Splice Site Detection 255

multinomial sampling and independence between configurations, the likelihood is
simply the product of likelihoods for each configuration of {Yt , Ypa(t)} [22]

P(A |G) =
T∏

t=1

rt∏

i=1

Γ (αti)

Γ (αti) + nti

m∏

j=1

Γ (αti j + nti j)

Γ (αti j)
. (5.116)

One problem, however, is that the summation over all possible structures in (5.114)
becomes infeasible already for fairly small networks. Therefore, in order to auto-
matically train both structure and parameters of the network from training data, we
need a good search method and a scoring metric that ranks the candidate structures.
Typically the search is initiated by a graph G that has no edges, and then a set of
candidate DAGs are created successively using the search method. The algorithm
used in [17] is an inclusion-driven structure learning algorithm first introduced in
[36]. The algorithm is optimal in the sense that if the graph is sampled from the
correct distribution and if the scoring metric is consistent, the limiting structure will
be the correct one [18]. The resulting inclusion-driven Bayesian network, or idlBN,
is then used to score new configurations as in the previous section.

For the purpose of splice site detection [17] two networks are trained, one for
true signals and one for false. The decision for a new candidate splice site Y =
(Y1, . . . , YT) is then made using the usual likelihood ratio test

P(Y|ES, G)

P(Y|EN , G)

{
> η ⇒ signal,

< η ⇒ non-signal,
(5.117)

where ES and EN are the training sets of signals and non-signals respectively.

5.4.8 Support Vector Machines

Support vector machines (SVMs), first introduced by Cortes and Vapnik [23], consti-
tute a machine learning technique typically used in regression and binary classifica-
tion problems. As we shall see, SVMs share large similarities with linear discriminant
analysis (LDA) described in Sect. 5.4.5. In both methods the goal is to find the best
separation of two classes of objects, based on a set of features defined for each
object. The main difference is that while LDA uses a probabilistic approach, assum-
ing multivariate normal distributions of the feature vectors given, SVMs are purely
deterministic.

The idea of SVMs is to identify the boundary that best separates the classes.
If the classes are linearly separable, this boundary is a hyperplane (i.e., a linear
combination), in feature space. In the nonlinear case we instead define a kernel
function that transforms the nonlinear problem into a higher dimensional space, in
which the classes are linearly separable again.

256 5 Gene Structure Submodels

Linearly Separable Classes

When the two classes are linearly separable, the SVM approach is to construct two
parallel supporting hyperplanes, one for each class, at a maximal distance from each
other. The model that best separates the classes is then the hyperplane that lies right
in between these two. A plane is said to support the class, if all the points of the
class lie on the same side of that plane, and the procedure is to construct two parallel
hyperplanes that lie between the two classes of points, and then push them apart until
we bump into the first point(s) of the respective class. These touching points are then
called the support vectors of the respective class.

Just as in linear discriminant analysis we are given a training set of objects
Y1, . . . , Yn , each with a known class label Ci ∈ {−1,+1}, and each represented
by a feature vector xi = (xi1, . . . , xip)

T , i = 1, . . . , n, corresponding to a point in a
p-dimensional real space Rp. The assumption that the classes are linearly separable
means that they can be separated by a hyperplane given by

αT x + b = 0, (5.118)

where α is a normal vector (orthogonal to the hyperplane), b/||α|| is the orthogonal
distance from the hyperplane to the origin (i.e., along the vector α), and ||α|| is the
norm giving the length of the vector α. We want to determine the supporting planes
of the two classes, which is to say that we want to find the vector α and a constant b
such that, for i = 1, . . . , n

αT xi + b ≤ −1 for Ci = −1, (5.119)

αT xi + b ≥ +1 for Ci = +1. (5.120)

Due to our class representation, using −1 and +1 instead of for instance 0 and 1, the
two inequalities can be combined into a single expression as

Ci (α
T xi + b) ≥ 1, i = 1, . . . , n. (5.121)

The support vectors, specifying the two supporting hyperplanes, call them H−1 and
H+1, would then be the points satisfying

H−1 = {xi : αT xi + b = −1, Ci = −1},
H+1 = {xi : αT xi + b = +1, Ci = +1}.

We want to place a separating hyperplane H in between H−1 and H+1 such that the
distances d−1 and d+1 between the respective class hyperplanes and H are equal,
that is d−1 = d+1. This distance is called the margin of the SVM, and the hyperplane
that best separates the two classes is the one that maximizes the margin.

5.4 Splice Site Detection 257

x1

x2

−b
||α||

H−1

H+1

α

d−1

d+1

Fig. 5.18 An SVM in two dimensions

Example 5.9 An illustration SVMs in 2D
Suppose we are given a set of training objects Y1, . . . , Yn with two-dimensional
feature vectors xi = (xi1, xi2)

T and class labels Ci ∈ {−1,+1}, i = 1, . . . , n.
Assuming that the two classes are linearly separable, a separating “hyperplane” is
now a line given by

αT x + b = α1x1 + α2x2 + b = 0. (5.122)

Figure 5.18 illustrates the situation. The feature vectors are represented as points in
a two-dimensional space, where the white dots belong to class −1, and the black
dots to class +1. The two supporting hyperplanes, represented by dashed lines, are
determined by the support vectors, which are the circled points coinciding with the
dashed lines, and the separating hyperplane is the solid line drawn right in between.
A new object Yn+1 is then classified to class −1 or +1 depending on which side of
the separating hyperplane its feature vector falls. �

Simple geometry gives that the margin is in fact, d−1 = d+1 = 1/||α||, so in
order to maximize this distance, we need to minimize ||α|| under the constraints
Ci (α

T xi + b) ≥ 1, i = 1, . . . , n. Thus, the optimization problem we want to solve
can be stated as follows:

α∗ = argmin
α

{||α|| : Ci (α
T xi + b) ≥ 1, ∀i}. (5.123)

This is a rather difficult problem, however, since the norm ||α|| involves the square
root of α. A simpler, but equivalent problem is to minimize 1

2 ||α||2 instead,

α∗ = argmin
α

{
1

2
||α||2 : Ci (α

T xi + b) ≥ 1, ∀i

}
. (5.124)

258 5 Gene Structure Submodels

As mentioned in Sect. 5.4.6, optimization under a set of given constraints is typically
done using Lagrange multipliers.
We therefore introduce the Lagrangian function

L = 1

2
||α||2 −

n∑

i=1

λi
(
Ci (α

T xi + b) − 1
)
, (5.125)

where λ1, . . . , λn are the Lagrange multipliers. We want to find the α and the b that
minimize L , which involves differentiation of L and setting the derivatives to zero.
This results in

∂L

∂α
= 0 ⇔ α =

n∑

i=1

λi Ci xi , (5.126a)

∂L

∂b
= 0 ⇔

n∑

i=1

λi Ci = 0. (5.126b)

Substituting these equalities into L gives us the dual form of L ,

L D =
n∑

i=1

λi − 1

2

∑

i, j

λiλ j Ci C j xT
i xi , (5.127)

which we now need to maximize over α subject to λi ≥ 0 and
∑n

i=1 λi Ci = 0. This
is a convex quadratic problem which allows us to use something called quadratic
programming (QP) to determine the λi ’s. While linear programming involves opti-
mizing a linear objective function, quadratic programming includes methods for
optimizing a quadratic objective function subject to linear constraints. Then, insert-
ing the solution achieved by QP for the λi ’s in (5.126a) gives us the solution for α,
and what remains is to solve for the parameter b.

First we note that the support vectors of the two supporting hyperplanes are those
points xi where the Lagrange multiplier is positive, λi > 0. Thus, let V be this set
of support vectors

V = {xi : λi > 0}. (5.128)

We also note that for each such support vector xv ∈ V it holds that

Cv(α
T xv + b) = 1. (5.129)

Thus, using (5.126a) again gives us the result for b

b = 1

|V |
∑

v∈V

(
Cv −

∑

u∈V

λuCuxT
u xv

)
(5.130)

where |V | is the number of elements in V .

5.4 Splice Site Detection 259

Once we have determined α and b we are done, and the model can be used for
classification. A new object Y with feature vector x is classified using the decision
function

class(Y) = sign(αT x + b), (5.131)

such that Y is classified as −1 if class(Y) < 0 and as +1 otherwise.

Nearly Linear SVMs

The assumption of linearly separable classes is often violated in practice, and clas-
sification of DNA sequence signals certainly constitute such an example. When the
classes are no longer linearly separable, the classification task is slightly more com-
plicated.

If the classes are only almost linearly separable, we can deal with this by relaxing
the constraints in (5.119) and (5.120) slightly and construct a soft margin SVM:

αT xi + b ≤ −1 − zi for Ci = −1, (5.132a)

αT xi + b ≥ +1 + zi for Ci = +1, (5.132b)

where zi ≥ 0 for all i = 1, . . . , n. These constraints can be combined as before into
a single constraint

Ci (α
T xi + b) ≥ 1 − zi . (5.133)

In this model objects that fall within the margin between the separating hyperplane
and the support vectors are penalized with a penalty that decreases with the distance
to the separating hyperplane. The optimization problem becomes

(α∗, z∗) = argmin
α,z

{
1

2
||α||2 + C

n∑

i=1

zi : Ci (α
T xi + b) ≥ 1 − zi

}
, (5.134)

where C is a parameter that represents a trade-off between minimizing the training
error and maximizing the margin between the supporting hyperplanes. The dual form
in (5.127) remains unchanged, but the maximization is now subject to the modified
constraints 0 ≤ λi ≤ C and

∑n
i=1 λi Ci = 0. The variable b is calculated as before.

Note however, that the set of support vectors is now given by V = {xi : 0 < λi < C}.
Nonlinear SVMs

When the classes are not linearly separable a useful trick, commonly referred to
as the kernel trick [1], is to map the original data into a higher dimensional space
where the classes are linearly separable. The classification problem in the higher
dimensional space can then be solved using linear methods, and the corresponding

260 5 Gene Structure Submodels

solution is equivalent to the nonlinear classification in the original space. For a given
mapping φ : Rp → R

m , m > p, a kernel function is defined as the dot product

K (xi , x j) = φ(xi)
T φ(x j) (5.135)

for real-valued p-dimensional feature vectors xi and x j . Note that in the linearly
separable case, we work with dot products on the form xT

i x j , which are in fact
examples of linear kernels. To exploit the kernel trick, we thus need to define a
suitable map φ. An alternative would be to define the kernel function directly, without
explicitly stating the mapping.

Example 5.10 Mapping to higher dimensions
An example of a mapping from R

2 to R
3 for vector x = (x1, x2)

T is

φ(x) = (x2
1 ,

√
2x1x2, x2

2)T . (5.136)

Thus, we could for instance define the corresponding kernel as

K (α, x) = φ(α)T φ(x). (5.137)

This is just one example of many R
2 → R

3 mappings. However, one useful feature
is that we get

φ(α)T φ(x) = α2
1 x2

1 + 2α1α2x1x2 + α2
2 x2

2

= (α1x1 + α2x2)
2

= (αT x)2.

Thus, an equivalent formulation would be to define the kernel function directly

K (α, x) = (αT x)2, (5.138)

without having to bother about what the underlying mapping looks like. The question
is how this makes life easier. �

Now, Mercer’s theorem [44] gives that a continuous, symmetric, positive semi-
definite kernel function can be written as the dot product of vectors in a higher
dimension

K (xi , x j) = φ(xi)
T φ(x j). (5.139)

The kernel trick is that instead of trying to find the map φ, we determine a kernel
directly that maps our nonlinear feature data into a space where the classes are
linearly separable. By inserting the kernel in place of the dot products in our linear
formulation above, we can apply the linear classification methods to our new space.
The resulting solution is then a solution for the original data as well.

5.4 Splice Site Detection 261

More specifically, instead of defining a separating hyperplane, we seek a separating
boundary given by

αT φ(x) + b = 0, (5.140)

and the optimization problem we want to solve is given by

α∗ = argmin
α

{
1

2
||α||2 : Ci (α

T φ(xi) + b) ≥ 1

}
. (5.141)

This is solved using Lagrange multipliers as before, by simply putting K (xi , x j) in
place of xT

i x j in (5.127) and (5.130). The dual Lagrangian L D is maximized using
quadratic programming subject to the constraints 0 ≤ λi ≤ C and

∑n
i=1 λi Ci = 0,

where C is a parameter that controls the penalty for misclassification. Similarly, the
parameter b is summarized over the support vector set given by V = {xi : 0 < λi <

C}. The SVM method can be summarized as follows:

1. Select the parameter C , which determines how much misclassification should be
penalized.

2. Choose a kernel function K (xi , xi) and the corresponding parameters.
3. Determine the λi ’s that maximize

L D =
n∑

i=1

λi − 1

2

∑

i, j

λiλ j Ci C j K (xi , xi) (5.142)

subject to the constraints 0 ≤ λi ≤ C and
∑

i λi Ci = 0, using a QP algorithm.
4. Determine the set of support vectors

V = {xi : 0 < λi < C}. (5.143)

5. Calculate the threshold parameter

b = 1

|V |
∑

v∈V

(
Cv −

∑

u∈V

λuCu K (xu, xv)

)
. (5.144)

6. Classify a new object Y with feature vector x using the nonlinear decision function

class(Y) = sign

(
n∑

i=1

Ciλi K (x, xi) + b

)
. (5.145)

The tricky thing is to choose a suitable kernel function. Common examples are:

262 5 Gene Structure Submodels

• The Gaussian or radial basis kernel:

K (xi , x j) = e
−

(||xi −x j ||2
2σ2

)

. (5.146)

In this case the map φ is infinite dimensional, resulting in an infinite summation,
if we were to calculate the dot product of the map.

• The polynomial kernel:

K (xi , x j) = (xT
i x j + a)d (5.147)

for some parameters a and d. The kernel is said to be homogeneous if a0 = 0, and
inhomogeneous otherwise. The parameter d signifies the degree of the kernel.

• The sigmoidal kernel:

K (xi , x j) = tanh(a0xT
i x j − a1) (5.148)

for some parameters a0 and a1.

There are many choices of kernel functions, with a variety of applications. However,
the conditions and requirements to be placed upon such kernels are often domain
specific, and beyond the scope of this book. For a more thorough treatment of SVMs
and kernel-based methods, see for instance [20]. The near linear approach presented
above can naturally be applied to the nonlinear situation, if transformation into the
higher dimensional space is still resulting in slightly noisy data.

SVMs in Splice Site Detection

Support vector machines have been applied to various bioinformatics problems (see
[46] for a review), such as translation initiation site prediction [72], gene classification
[50], gene expression analysis [11, 29, 31], protein homology detection [33, 41],
protein classification [40], and protein fold recognition [25]. In terms of splice site
detection, a number of different kernels have been developed. Here we briefly present
the ones reviewed in [55].

A feature vector x = x1, . . . , xT is now the DNA sequence of a potential splice
site, and the kernels are thus functions of pairs of such sequences. The decision
function for classification is written as before

class(Y) = sign

(
n∑

i=1

Ciλi K (x, xi) + b

)
. (5.149)

The polynomial kernel in (5.147) is defined on real-valued objects. To accommodate
this, we can for instance transform the sequence x into binary code. For instance,
x = AACG could be transformed as

5.4 Splice Site Detection 263

x̃ = [
I(x1 = A), I(x1 = C), I(x1 = G), I(x1 = T),

I(x2 = A), I(x2 = C), I(x2 = G), I(x2 = T),

. . .

I(xT = A), I(xT = C), I(xT = G), I(xT = T)
]T

= (1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)T ,

where I is the indicator function.
The polynomial kernel

K (x̃, x̃′) = (x̃T x̃′)d (5.150)

takes into account all correlations of matches I(x̃t = x̃ ′
t) up to order d. The features

are position-dependent, and any position can be combined with any other position
to form a feature.

The locality improved (LI) kernel has previously been applied to translation
initiation site prediction [72]. It is similar to the polynomial kernel, as it also considers
correlations of matches up to order d. The main difference, however, is that the
dependencies between positions are not formed over the entire sequence, but the
sequence positions are compared within a small window of length 2l + 1. The LI
kernel is presented in [55] as

K (x, x′) =
T −l∑

p=l+1

wpwinp(x, x′) (5.151)

where p = l + 1, . . . , T − l and

winp(x, x′) =
⎛

⎝ 1

2l + 1

+l∑

j=−l

I(x p+ j = x ′
p+ j)

⎞

⎠
d

. (5.152)

The weight wp is a window score used to assign higher weights to more important
regions. If we assume that the splice site is located in the center of the sequence, we
could for instance use

wp =
{

p − l p ≤ T/2

N − p − l + 1 p > T/2
(5.153)

which assigns the highest weight to the center position, and then decreases linearly
toward the ends.

The weighted degree (WD) kernel [55] is similar to both the previous kernels,
except that here we count matches between “words” xt,k = xt , xt+1, . . . , xt+k−1 of
length k, starting in position t . The WD kernel is given by

264 5 Gene Structure Submodels

K (x, x′) =
d∑

k=1

wk

T −d∑

t=1

I(xt,k = x′
t,k) (5.154)

where the weights are chosen as wk = d − k + 1, assigning lower weights to higher
order matches.

The TOP kernel [65] is similar to the more common Fisher kernel [33] in that it
introduces prior knowledge into a probabilistic model.
The TOP kernel is given by

K (x, x′) = fθ (x)T fθ (x′), (5.155)

where θ = (θ1, . . . , θp)
T is a parameter vector and

fθ (x) = (
v(x, θ), ∂θ1 v(x, θ), . . . , ∂θp v(x, θ)

)T
. (5.156)

The terms ∂θi v(x, θ) denote the partial derivatives of v with respect to θi , i =
1, . . . , p, and

v(x, θ) = log P(c = +1|x, θ) − log P(c = −1|x, θ). (5.157)

A comparison in [55] showed that the more specialized kernels, the LI and WD
kernels, are best suited for single site prediction, but that the standard polynomial
kernel did surprisingly well. Combining the splice site prediction into a larger, gene
finding framework improved the performances considerably, as expected.

References

1. Aizerman, M., Braverman, E., Rozonoer, L.: Theoretical foundations of the potential function
method in pattern recognition learning. Autom. Remote Control 25, 821–837 (1964)

2. Alexandersson, M., Cawley, S., Pachter, L.: SLAM: cross-species gene finding and alignment
with a generalized pair hidden Markov model. Genome Res. 13, 496–502 (2003)

3. Axelson-Fisk, M., Sunnerhagen, P.: Gene finding in fungal genomes. In: Sunnerhagen, P.,
Piskur, J. (eds.) Topics in Current Genetics: Comparative Genomics Using Fungi as Models,
pp. 1–29. Springer, Berlin (2005)

4. Bennetzen, J.L., Hall, B.D.: Codon selection in yeast. J. Biol. Chem. 257, 3026–3031 (1982)
5. Bernardi, G.: Isochores and the evolutionary genomics of vertebrates. Gene 241, 3–7 (2000)
6. Bernardi, G., Olofsson, B., Filipski, J., Zerial, M., Salinas, J., Cuny, G., Menier-Rotival, M.,

Rodier, F.: The mosaic genome of warm-blooded vertebrates. Science 228, 953–958 (1985)
7. Biémont, C., Vieira, C.: Junk DNA as an evolutionary force. Nature 443, 521–524 (2006)
8. Bobbio, A., Horvath, A., Telek, M.: PhFit: a general phase-type fitting tool. Proc. Dep. Syst.

Netw. (DSN-02) 1, 1 (2002)
9. Bobbio, A., Horvath, A., Scarpa, M., Telek, M.: Acyclic discrete phase type distributions:

properties and a parameter estimation algorithm. Perform. Eval. 54, 1–32 (2003)
10. Brown, D.: A note on approximations to probability distributions. Inf. Control 2, 386–392

(1959)

References 265

11. Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares, M.,
Haussler, D.: Knowledge-based analysis of microarray gene expression data by using support
vector machines. Proc. Natl. Acad. Sci. USA 97, 262–267 (2000)

12. Brunak, S., Engelbrecht, J., Knudsen, S.: Prediction of human mRNA donor and acceptor sites
from the DNA sequence. J. Mol. Biol. 220, 49–65 (1991)

13. Burge, C.: Identification of genes in human genomic DNA. Ph.D. thesis, Stanford University,
Stanford (1997)

14. Burge, C.B.: Modeling dependencies in pre-mRNA splicing signals. In: Salzberg, S.L., Searls,
D.B., Kasif, S. (eds.) Computational Methods in Molecular Biology, pp. 109–128. Elsevier,
Amsterdam (1998)

15. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol.
Biol. 268, 78–94 (1997)

16. Bühlmann, P., Wyner, A.J.: Variable length Markov chains. Ann. Stat. 27, 480–513 (1999)
17. Castelo, R., Guigó, R.: Splice site identification with idlBNs. Bioinformatics 20, 169–171

(2004)
18. Castelo, R., Koc̆ka, T.: On inclusion-driven learning of Bayesian networks. J. Mach. Learn.

Res. 4, 527–574 (2003)
19. Cawley, S.: Statistical models for DNA sequencing and analysis. Ph.D. thesis, University of

California, Berkeley (2000)
20. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other

Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)
21. Claverie, J.-M., Sauvaget, I., Bougueleret, L.: k-Tuple frequency analysis: from intron/exon

discrimination to T-cell epitope mapping. Methods Enzymol. 183, 237–252 (1990)
22. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks

from data. Mach. Learn. 9, 309–347 (1992)
23. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
24. Crooks, G.E., Hon, G., Chandonia, J.-M., Brenner, S.E.: WebLogo: a sequence logo generator.

Genome Res. 14, 1188–1190 (2004)
25. Ding, C.H.Q., Dubchak, I.: Multi-class protein fold recognition using support vector machines

and neural networks. Bioinformatics 17, 349–358 (2001)
26. Ellrott, K., Yang, C., Sladek, F.M., Jiang, T.: Identifying transcription factor binding sites

through Markov chain optimization. Bioinformatics 18, S100–S109 (2002)
27. Fickett, J.W., Tung, C.-S.: Assessment of protein coding measures. Nucleic Acids Res. 20,

6441–6450 (1992)
28. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–

188 (1936)
29. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Sup-

port vector machine classification and validation of cancer tissue samples using microarray
expression data. Bioinformatics 16, 906–914 (2000)

30. Gregory, T.R.: Coincidence, coevolution, or causation? DNA content, cell size, and the C-value
enigma. Biol. Rev. 76, 65–101 (2001)

31. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using
support vector machines. Mach. Learn. 46, 389–422 (2002)

32. Ikemura, T.: Correlation between the abundance of Escherichia coli transfer RNAs and the
occurence of the respective codons in its protein genes: a proposal for a synonymous codon
choice that is optimal for the E. coli translational system. J. Mol. Biol. 151, 389–409 (1981)

33. Jaakola, T.S., Diekhans, M., Haussler, D.: Using the Fisher kernel method to detect remote
protein homologies. Proc. Int. Conf. Intell. Syst. Mol. Biol. 7, 149–158 (1999)

34. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)
35. Jaynes, E.T.: Information theory and statistical mechanics II. In: Ford, K. (ed.) Statistical

Physics, pp. 181–218. Benjamin, New York (1963)
36. Koc̆ka, T., Castelo, R.: Improved learning of Bayesian networks. In: Proceedings of Uncertainty

in Artificial Intelligence, pp. 269–276 (2001)

266 5 Gene Structure Submodels

37. Kozak, M.: Point mutations define a sequence flanking the AUG initiator codon that modulates
translation by eukaryotic ribosomes. Cell 44, 283–292 (1986)

38. Kulp, D., Haussler, D., Reese, M.G., Eeckman, F.H.: A generalized hidden Markov model for
the recognition of human genes in DNA. Proc. Int. Conf. Intell. Syst. Mol. Biol. 4, 134–142
(1996)

39. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K.,
Dewar, K., Doyle, M., FitzHugh, W., et al.: Initial sequencing and analysis of the human
genome. Nature 409, 860–921 (2001)

40. Leslie, C.S., Eskin, E., Cohen, A., Weston, J., Noble, W.S.: Mismatch string kernels for dis-
criminative protein classification. Bioinformatics 20, 467–476 (2004)

41. Liao, L., Noble, W.S.: Combining pairwise sequence similarity and support vector machines
for detecting remote protein evolutionary and structural relationships. J. Comput. Biol. 10,
857–868 (2003)

42. Lukashin, A.V., Borodvsky, M.: GeneMark.hmm: new solutions for gene finding. Nucleic
Acids Res. 26, 1107–1115 (1998)

43. McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York
(2004)

44. Mercer, J.: Functions of positive and negative type and their connection with the theory of
integral equations. Philos. Trans. R. Soc. Lond. A 209, 415–446 (1909)

45. Munch, K., Krogh, A.: Automatic generation of gene finders for euakryotic species. BMC
Bioinform. 7, 263–274 (2006)

46. Noble, W.S.: Support vector machine applications in computational biology. In: Schölkopf, B.,
Tsuda, K., Vert, J.-P. (eds.) Kernel Methods in Computational Biology, pp. 1–31. MIT Press,
London (2004)

47. Ohler, U., Harbeck, S., Niemann, H., Nöth, E., Reese, M.G.: Interpolated Markov chains for
eukaryotic promoter recognition. Bioinformatics 15, 362–369 (1999)

48. Ohno, S.: So much “junk” DNA in our genome. Brookhaven Symp. Biol. 23, 366–370 (1972)
49. Oliver, J.L., Bernaola-Galván, P., Carpena, P., Román-Roldán, R.: Isochore chromosome maps

of eukaryotic genomes. Gene 276, 47–56 (2001)
50. Pavlidis, P., Furey, T.S., Liberto, M., Haussler, D., Grundy, W.N.: Promoter region-based clas-

sification of genes. In: Altman, R.B., Dunker, A.K., Hunter, L., Lauderdale, K., Kelin, T.E.
(eds.) Pacific Symposium of Biocomputing, pp. 151–163. World Scientific, Singapore (2001)

51. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Francisco (1988)

52. Perna, N.T., Plunkett, G., Burland, V., Mau, B., Glasner, J.D., Rose, D.J., Mayhew, G.F., Evans,
P.S., Gregor, J., Kirkpatrick, H.A., Pósfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y.,
Miller, L., Grotbeck, E.J., Davis, N.W., Lim, A., Dimalanta, E.T., Potamousis, K.D., Apodaca,
J., Anantharaman, T.S., Lin, J., Yen, G., Schwartz, D.C., Welch, R.A., Blattner, F.R.: Genome
sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001)

53. Reese, M.G., Eeckman, F.H., Kulp, D., Haussler, D.: Improved splice site detection in genie.
J. Comput. Biol. 4, 311–323 (1997)

54. Rissanen, J.: A universal data compression system. IEEE Trans. Inf. Theory 29, 656–664 (1983)
55. Rätsch, G., Sonnenburg, S.: Accurate splice site detection for Caenorhabditis elegans. In:

Schölkopf, B., Tsuda, K., Vert, J.-P. (eds.) Kernel Methods in Computational Biology, pp.
277–298. MIT Press, London (2004)

56. Schneider, T.D., Stephens, R.M.: Sequence logos: a new way to display consensus sequences.
Nucleic Acids Res. 18, 6097–6100 (1990)

57. Schukat-Talamazzini, E.G., Gallwitz, F., Harbeck, S., Warnke, V.: Rational interpolation
of maximum likelihood predictors in stochastic language modeling. In: Proceedings of
Eurospeech’97, pp. 2731–2734. Rhodes, Greece (1997)

58. Sharp, P.M., Li, W.H.: The codon adaptation index—a measure of directional synonymous
codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987)

59. Shine, J., Dalgarno, L.: Determinant of cistron specificity in bacterial ribosomes. Nature 254,
34–38 (1975)

References 267

60. Snyder, E.E., Stormo, G.D.: Identification of protein coding regions in genomic DNA. J. Mol.
Biol. 248, 1–18 (1995)

61. Solovyev, V.V., Salamov, A.A., Lawrence, C.B.: Predicting internal exons by oligonucleotide
composition and discriminant analysis of spliceable open reading frames. Nucleic Acids Res.
22, 5156–5163 (1994)

62. Solovyev, V.V., Salamov, A.A., Lawrence, C.B.: 82: identification of human gene structure
using linear discriminant functions and dynamic programming. Proc. Int. Conf. Intell. Syst.
Mol. Biol. 3, 367–375 (1995)

63. Staden, R.: Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Res.
12, 505–519 (1984)

64. Staden, R., McLachlan, A.D.: Codon preference and its use in identifying protein coding regions
in long DNA sequences. Nucleic Acids Res. 10, 141–156 (1982)

65. Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.-R.: A new discriminative
kernel from probabilistic models. Neural Comput. 14, 2397–2414 (2002)

66. Wright, F.: The ‘effective number of codons’ used in a gene. Gene 87, 23–29 (1990)
67. Xu, Y., Mural, R.J., Einstein, J.R., Shah, M.B., Uberbacher, E.C.: GRAIL: a multi-agent neural

network system for gene identification. Proc. IEEE 84, 1544–1552 (1996)
68. Xu, Y., Uberbacher, E.C.: Computational gene prediction using neural networks and similarity

search. In: Salzberg, S.L., Searls, D.B., Kasif, S. (eds.) Computational Methods in Molecular
Biology, pp. 109–128. Elsevier, Amsterdam (1998)

69. Yeo, G., Burge, C.B.: Maximum entropy modeling of short sequence motifs with applications
to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004)

70. Zhao, X., Huang, H., Speed, T.P.: Finding short DNA motifs using permuted Markov models.
J. Comput. Biol. 12, 894–906 (2005)

71. Zhang, M.Q., Marr, T.G.: Weight array methods for splicing signal analysis. Comput. Appl.
Biosci. 9, 499–509 (1993)

72. Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.-R.: Engineering support
vector machine kernels that recognize translation initiation sites. Bioinformatics 16, 799–807
(2000)

Chapter 6
Parameter Training

The training problem is the most difficult problem of the three hidden Markov model
(HMM) problems mentioned in Sect. 2.1. It involves finding the estimates of the
model parameters that maximizes the probability of the observed sequence under
the given model. If we are given an observed sequence where the state labels are
known for each observed residue, we could estimate the parameters using regular
maximum likelihood methods. Sometimes, however, the likelihood equations may
be intractable to solve analytically, and we need to apply more elaborate techniques.
In addition, when the state labels are unknown for the training data as well, the
situation is even more tricky. In fact, in such a situation the optimization problem is
NP-complete, so that in particular there is no known algorithm that can guarantee an
optimal solution in reasonable time. Given an observed sequence with an unknown
state path, the best we can do is to find a local maximum under the given model. The
method commonly used is an iterative procedure called the Baum–Welch algorithm
[4], which is a version of the more general EM-algorithm [6].

In this chapter, we describe some of the most common techniques used for training
in gene finding. The methods are typically well established, such that they even may
be considered outdated to researchers within optimization theory. While the methods
covered here for the most part are sufficient for the purpose of training gene finding
algorithms, there may be interesting room for improvement by applying more up-to-
date optimization approaches.

6.1 Introduction

Parameter estimation, or parameter training, is an important area in mathematical
statistics, in which one attempts to fit a certain model to observed data. The model
can then be used to analyze a system and test certain hypotheses about the reality the
model attempts to capture. A model typically consists of a set of variables and a set of
mathematical formulations that describe the relationships between these variables.
The variables are, in their turn, often dependent on a number of parameters, that

© Springer-Verlag London 2015
M. Axelson-Fisk, Comparative Gene Finding, Computational Biology 20,
DOI 10.1007/978-1-4471-6693-1_6

269

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

270 6 Parameter Training

characterize the system. As the values of these parameters are usually unknown, we
use a training set of known observations to estimate these parameters. We say that
we train the model parameters. For instance, in an HMM the model is the state space
and their possible connections, and the parameters to be estimated are the initial,
transition, and emission probabilities of the model. In neural networks, it is mainly
the weights and the biases of the nodes that need training.

There exist many different methods to estimate parameters, and a number of
different features that we may want such estimates to fulfill. A central theme, however,
is that we want the estimates to be optimal, which basically means that we want to be
able to extract as much information as possible from the training data. For instance,
we may want to find the estimates that maximize the fit of the model to the data, such
as in maximum likelihood, or the estimates that optimize the classification ability of
the model, such as in discriminative training. Either way, the optimality requirement
turns the parameter estimation problem into one of optimization.

In a general setting, we first define an objective function that maps the training
data measurements onto the space of possible parameter values, and then we search
for the parameter settings that maximize (or minimize) this function. That is, for
a parameter set θ and an objective function f , we want to solve the optimization
problem

θ̂ = argmax
θ

f (θ). (6.1)

The objective function f can also be referred to as a cost function or an energy func-
tion. In what follows, we describe a number of objective functions and optimization
methods commonly used in the training of gene finding algorithms.

6.2 Pseudocounts

One problem when using a limited training set is that only events or subsequences
appearing in the data will get a positive probability. While some of the nonob-
served events may be rare, setting the probability to zero may be too strict and affect
the model accuracy negatively. A common solution is to insert extra counts, called
pseudocounts, in some manner to ensure that all events are possible. The simplest
approach is to just add a constant value to each of the counts. When this constant
equals 1 this is called the Laplace’s rule,

P(a) = ca + 1∑
b(cb + 1)

, (6.2)

where, ca is the observed count of residue a. This method is rather crude, however,
and a slightly more sophisticated approach is to take the background frequencies of
the residues into account when determining on a pseudocount. The advantage of this

6.2 Pseudocounts 271

is that resulting counts resemble the prior distribution of residues when the dataset
is small, while the pseudocounts have less and less effect as the training set grows.
The Bayesian prediction method [22] uses this strategy and adds a residue-specific
number to each count,

c̃a = ca + za, (6.3)

where za is the pseudocount for residue a. For instance, a log-odds weight matrix is
typically on the form

Wak = log
pak

pa
(6.4)

where pak is the probability that residue a occurs in position k in the sequence motif,
and pa is the background probability of a. Using the Bayesian prediction method to
insert pseudocounts, we would estimate pak by

p̂ak = cak + B pa

N + B
(6.5)

where N is the number of aligned sequences and B is a pseudocount distributed
according to the background distribution of the residues. The method is referred to
as the Bayesian prediction method because the estimate uses a Dirichlet prior dis-
tribution (see Sect. 5.4.7). Empirical studies have shown B ≈ √

N to be an efficient
approximation of the pseudocount [22].

One problem with the Bayesian prediction method is that it does not take into
account the similarities between residues, such as is done by the PAM and BLOSUM
matrices for amino acids. A simple solution to this is implemented in the data-
dependent pseudocount method [32], which utilizes the statistical significance of
alignments [17]. The probability pak is then estimated by

p̂ak = cak + B pa
∑20

b=1
cbk
N eλs(a,b)

N + B
(6.6)

where λ is the same as in BLAST (see Sect. 3.1.9).
Even more sophisticated is the use of Dirichlet mixtures, which are composed

of weighted sums of Dirichlet distributions. We describe this method next, in the
setting of the multiple alignment program SAM [12].

The SAM Regularizer

The multiple alignment program SAM [12] uses regularization as a method to avoid
overfitting of parameters. When using Bayesian statistics, regularization is closely
connected to the use of prior distributions (see Sect. 5.4.7). The use of regularizers is a
way of adding random amounts of pseudocounts to the observed counts, according to
some distribution. The regularizer used in SAM is the Dirichlet distribution, which is
the conjugate prior of the multinomial distribution. While the binomial distribution
is the distribution of the number of successes in n Bernoulli trials (success/failure),

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_3
http://dx.doi.org/10.1007/978-1-4471-6693-1_5

272 6 Parameter Training

the multinomial distribution is the generalization to when each trial can have one
of m possible outcomes (instead of just two). The parameters of the multinomial
distribution are the cell probabilities p1, . . . , pm of choosing each the respective
m outcomes in each trial. The Dirichlet distribution is the conjugate prior of this,
meaning that it models the outcome probabilities p1, . . . , pm as random variables
P1, . . . , Pm . That is, the Dirichlet probability density function with parameters α =
(α1, . . . , αm) of variables P1, . . . , Pm is given by

P(P1 = p1, . . . , P1 = p1;α) = 1

B(α)

m∏

i=1

pαi −1
i , (6.7)

where α0 = ∑m
i=1 αi . In other words, the Dirichlet distribution is the probability

distribution of the prior beliefs that the individual outcome probabilities in each trial
are p1, . . . , pm .

In the case of HMMs, the Dirichlet regularizer is the probability distribution over
the prior beliefs of the model parameters, and these prior beliefs are the standard
parameter estimates such as the proportional counts of the events occurring in the
training set. That is, for transition probability aij between states i, j ∈ S, the prior
belief is given by

âij = nij∑
k∈S nik

, (6.8)

where nij is the number of observed transitions from state i to state j in the training
set. The Dirichlet regularizer assumes that this proportional count is the outcome
of a random variable that is distributed according to a Dirichlet distribution with
parameter αij. The reestimation formula used is then given by

âij = nij + αij∑
k∈S(nik + αik)

. (6.9)

The emission probabilities of the HMM are estimated in the same way, by counting
the occurrences in the training set and adding a Dirichlet distributed random amount
to each count. The set of all the α’s are the corresponding regularizers. The advantage
of this method over the standard, in which we add a constant pseudocount to each
observed count, is that while the regularizers become important for small training
sets, their influence decreases as the training set increases. Moreover, in sequence
alignment one often has prior knowledge of the alignment problem at hand, and it
only makes sense to include this knowledge into the model.

6.3 Maximum Likelihood Estimation 273

6.3 Maximum Likelihood Estimation

The method of maximum likelihood (ML) is a very useful technique in statistics,
and is the most widely used method for training HMMs on labeled sequences. The
idea of maximum likelihood is to find the parameter settings of the given model that
maximize the probability, or the likelihood, of the observed data. In what follows, we
only consider discrete distributions, but the theory is readily expandable to continuous
distributions.

Let Y be a discrete random variable with a probability mass function fY (y|θ)

characterized by a parameter θ . When the parameter value is known, the probability
density function can be used directly to make inferences about the random variable.
If we instead reverse the roles of Y and θ and view θ as the unknown variable and Y
as the given information, we get for an observed value Y = y the likelihood function
of θ

L(θ |Y) = fY (y|θ). (6.10)

Note, however, that the likelihood is not a probability density in itself, but only
a function of the model parameter. The method of maximum likelihood uses this
likelihood function as its objective function, and attempts to find the value θ̂ of θ

that solves the equation
θ̂ = argmax

θ

L(θ |Y). (6.11)

The resulting maximum likelihood estimate is the value of θ that makes the observed
data Y = y “most probable” or “most likely” under the model.

Suppose now that we have a sample of random variables Y1, . . . , Yn , drawn from
the distribution of Y , with observed values Yi = yi , i = 1, . . . , n. Since the random
variables in a sample are independent, the likelihood function for the entire sample
becomes

L(θ |Y1, . . . , Yn) =
n∏

i=1

fY (yi |θ). (6.12)

To simplify the calculations, we transform the product in (6.12) to a sum by taking the
logarithm of the likelihood. Since the logarithm is a strictly monotone function, the
maximum of L(θ |Y) is reached in the same point as its logarithm. The log-likelihood
function is then defined as

l(θ |Y1, . . . , Yn) = log L(θ |Y1, . . . , Yn) =
n∑

i=1

log fY (yi |θ). (6.13)

The maximum likelihood estimate of θ is then obtained by maximizing the log-
likelihood function over θ

θ̂ = argmax
θ

l(θ |Y). (6.14)

274 6 Parameter Training

Example 6.1 Coin flips
Suppose that we are given a coin that shows “heads” (H) with probability p and
“tails” (T) with probability 1 − p. The random variable Y can thus take values in
{H, T }. Now suppose that we would like to estimate the parameter p based on the
following sequence of flips:

H H T H H H T T H H

The likelihood function becomes (Fig. 6.1)

L(p|Y1, . . . , Y10) =
10∏

i=1

P(Yi = yi) = p7 (1 − p)3,

and the log-likelihood

l(p|Y1, . . . , Y10) = 7 log p + 3 log(1 − p).

The maximum likelihood estimate is given by the equation

p̂ = argmax
p

l(p|Y1, . . . , Y10),

which can be obtained by solving the equation

dl(p|Y1, . . . , Y10)

dp
= 0.

As a solution, we get

dl(p|Y1, . . . , Y10)

dp
= 7

p
− 3

1 − p
= 0 ⇐⇒ p = 7

10
.

Fig. 6.1 The likelihood
function of 10 coin flips. The
maximum is achieved at
p̂ = 7/10

0.0020

0.0005

0.0010

0.0015

0.8 10.4 0.60.2

L(p)

p

6.3 Maximum Likelihood Estimation 275

More generally, for n coin flips showing heads c times, the maximum likelihood
estimate of p is given by

p̂ = c

n
.

�
The extension to the case when the probability distribution of Y depends on more
than one parameter, Θ = {θ1, . . . , θk} is straightforward. The log-likelihood function
is formulated in the same way, and the maximum likelihood estimate of Θ is found
by solving the equation system

∂l(Θ|Y)

∂θi
= 0, i = 1, . . . , k. (6.15)

Dempster [6] uses an example to illustrate the use of the EM-algorithm on a multino-
mial distribution, and we will use the same in Sect. 6.4. But first, we show how to
determine the maximum likelihood estimate of the multinomial parameters directly.

Example 6.2 A multinomial distribution
In the example by Dempster in [6], 197 animals have been categorized into four
“cells” as y = (y1, y2, y3, y4) = (125, 18, 20, 34). The underlying genetic model
depends on a single parameter 0 ≤ π ≤ 1, with cell probabilities given by

(p1, p2, p3, p4) =
(1

2
+ 1

4
π,

1

4
(1 − π),

1

4
(1 − π),

1

4
π

)
. (6.16)

Here we illustrate how to estimate the parameter π by using the maximum likelihood
method. The probability mass function of the multinomial distribution is given by

fY(y|π) = n!
y1!y2!y3!y4!

(1

2
+ 1

4
π

)y1
(1

4
(1 −π)

)y2
(1

4
(1 −π)

)y3
(1

4
π

)y4
. (6.17)

The log-likelihood function of π becomes

l(π |Y) = c + y1 log
(1

2
+ 1

4
π

)
− (y2 + y3) log

(1

4
(1 − π)

)
+ y4

(1

4
π

)
(6.18)

where c = log n! + ∑4
i=1 log(yi !) is a constant not depending on π . Taking the

derivative of l with respect to π yields

dl

dπ
= y1

2 + π
+ y2 + y3

1 − π
+ y4

π
, (6.19)

and setting the derivative to zero yields a quadratic equation with roots

π̂ = 1

394

(
15 ± √

53809
)

. (6.20)

276 6 Parameter Training

Since we require 0 ≤ π ≤ 1 there is only one valid solution,

π̂ ≈ 0.6268. (6.21)

�

HMM Training on Labeled Sequences

Turning to the case of training an HMM on labeled sequences, we recall from Sect. 2.1
that an HMM is composed of an observed process and a hidden process, where the
hidden process is a Markov chain jumping between states in a state space, and the
observed process is a function of the underlying state sequence. We assume that we
are given an observed sequence Y T

1 with the corresponding known state path X L
1 . The

HMM is characterized by the model parameters θ = {πi , aij, b j (·)} corresponding
to the initial distribution of the first hidden state, the transition probabilities of the
hidden process, and the emission probabilities of the observed process, respectively.
In this case, the likelihood function takes the form

L(θ |X, Y) = P(X L
1 , Y T

1 |θ) (6.22)

and the maximum likelihood estimate becomes

θ̂ = argmax
θ

L(θ |X L
1 , Y T

1). (6.23)

The following example illustrates how to derive the exact expression of these esti-
mates in a simple HMM where the state space consists of two dice.

Example 6.3 Two dice model
Consider Example 2.3 where we had two dice, A and B, where A had six sides,
generating numbers between 1 and 6, and B had four sides, generating numbers
between 1 and 4 (see Fig. 6.2). The hidden Markov model constitutes of a hidden

πA= 2/3 πB=1/3

A B

2/3

1/3

3/4

1/4

Fig. 6.2 A two-state HMM, where the hidden states are the dice, and the observed outputs are the
roll outcomes

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

6.3 Maximum Likelihood Estimation 277

state sequence, X T
1 = X1, . . . , XT taking values in the state space S = {sA, sB}, and

an observed sequence Y T
1 taking values in V = {1, 2, 3, 4, 5, 6}. Note that since this

is a standard HMM, the indices of the observed and the hidden process will remain
the same, and thus both sequences have the same length T . The model parameters
to be estimated are thus the initial probabilities π = {πA, πB} and the transition
probabilities A = {aij}i, j∈S of the hidden process, and the emission probabilities
B = {bi (v)}i∈S,v∈V of the observed process.

Given a training set of labeled sequences, where we know the underlying state
sequence of each observed sequence, we can use maximum likelihood to estimate
the model parameters.
If we let θ = {π, A, B} denote the model, the likelihood function is given by

L(θ |X, Y) = P(X T
1 , Y T

1 |θ) = πX1

T∏

t=2

aXt−1,Xt bXt (Yt), (6.24)

and the log-likelihood function

l(θ |X, Y) = log L(θ) = log πX1 +
T∑

t=2

(
log aXt−1,Xt + log bXt (Yt)

)
. (6.25)

As before, the maximum likelihood estimate is given by

θ̂ = argmax
θ

l(θ). (6.26)

To illustrate the ML procedure, we focus on the transition probabilities aij and note
that aAB = 1 − aAA and aBB = 1 − aBA. Furthermore, if cij denotes the number of
times the transition aij occurs in the training set, the transition probability part of the
likelihood function becomes

T∏

t=2

aXt−1,Xt = (aAA)cAA (1 − aAA)cAB (aBA)cBA (1 − aBA)cBB . (6.27)

Taking the logarithm of (6.27), the maximum likelihood estimates can be achieved
as before by setting the partial derivatives to zero. For instance, since

∂l

∂aaa
= cAA

aAA
− cAB

1 − aAA
(6.28)

the maximum likelihood estimate becomes

âAA = cAA

cAA + cAB
. (6.29)

278 6 Parameter Training

That is, the transition probability is estimated by the observed frequency among all
transitions out of the sA state. The remaining model parameters are estimated in a
similar fashion. �

The result in the example above applies directly to the general case of training an
HMM on labeled training sequences. For an HMM where the hidden states X T

1 take

values in some state space S = {s1, . . . , sN }, and the observed sequence Y T
1 takes

values in some symbol set V = {v1, . . . , vM }, the maximum likelihood parameter
estimates are given by their frequencies of occurrence in the training set.
That is, for i, j ∈ S and y ∈ V

π̂i = ci

T
, (6.30)

âij = cij

ci
, (6.31)

b̂i (y) = ci (y)

ci
, (6.32)

where cij is the number of transitions from state i to j , ci = ∑
j cij is the counts of

state i in X T
1 , and ci (y) is the number of times state i has emitted symbol y.

So far we have only considered one single training sequence. The extension to
the case of p > 1 training sequences (Y1, X1), . . . , (Yp, Xp) is simply obtained by
taking the product of the likelihoods of the individual sequences

θ̂ = argmax
θ

p∏

i=1

L(θ |Yi , Xi). (6.33)

Maximum likelihood estimation and the likelihood function has several desirable
asymptotic properties. Although the estimates are typically not unbiased for finite
samples, the bias tends to zero as the sample size increases. Moreover, the estimator
is asymptotically “efficient,” meaning that it obtains the smallest variance of all
unbiased estimators. Another useful property is that the probability distribution of
the maximum likelihood estimate tends to the normal distribution as the sample size
grows. As a result, likelihood functions can be used when constructing confidence
bounds or conducting hypothesis tests of the parameters. One disadvantage is that
although tending toward an unbiased estimate in the limit, if the sample size is small,
maximum likelihood estimates can be heavily biased. Another disadvantage is that
the likelihood equations may be difficult to solve analytically, and we may have
to use numerical techniques. One such technique is the expectation–maximization
(EM) algorithm described in the next section. The special case, when training HMMs
on unlabeled sequences, is more known as the Baum–Welch algorithm described in
Sect. 6.5. The Baum–Welch algorithm utilizes a combination of the forward and
the backward variables in Sects. 2.1.4 and 2.1.5, often referred to as the forward–
backward algorithm.

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

6.3 Maximum Likelihood Estimation 279

Gene finding models have been greatly inspired by the models used in speech
recognition. As a consequence, the problem of parameter training is very similar. In
speech recognition, however, an alternative approach to maximum likelihood esti-
mation has emerged during the last decade, namely that of discriminative training or
conditional maximum likelihood (CML) [24]. The argument for this approach is that
while the maximum likelihood method aims at estimating parameters at a rather local
level, by estimating the parameters for each submodel individually, discriminative
training optimizes the ability to discriminate between model states at a more global
level. The discriminative training approach is described in more detail in Sect. 6.8.

6.4 The Expectation–Maximization (EM) Algorithm

The expectation–maximization (EM) algorithm [6] is an iterative procedure that is
used to determine maximum likelihood estimates of parameters in situations when
data is incomplete or missing. There are a number of methods in statistics that
are in fact special cases of the EM-algorithm, including the Baum–Welch algo-
rithm for HMMs described in Sect. 6.5. The Baum–Welch algorithm is used to
train HMMs on unlabeled sequences where, thus, the underlying state sequence is
“missing.”

In general, there are two main situations when the EM-algorithm is suitable.
One is when data really is incomplete or missing, perhaps due to limitations of the
observation process. As an example, consider the problem of estimating the life time
of the light bulbs in a series of street lights. Instead of changing each bulb at the time
of failure, usually all light bulbs are exchanged at the same time, and usually before
all of them fails. Thus, in terms of the lifetimes of the bulbs, some are observed and
some are unobserved, also called censored, data points. The only lifetimes we know,
are those of the light bulbs that already failed. However, instead of just ignoring the
still functioning bulbs, their lifetimes so far may still provide additional information
to the failure time distribution and improve the estimates of the model parameters.
The other main application of the EM-algorithm is a situation which is common
in, for instance, computational pattern recognition. In this case, there is not really
any missing data, but the likelihood equations are too hard to solve analytically, and
can sometimes be made tractable by assuming the occurrence of additional hidden
parameters. We give a brief overview of the EM-algorithm here. For a nice (and
longer) presentation, with a large number of examples, see for instance [25].

We assume we have a random variable on the form W = (X, Y), where only
Y is observed and X is missing or hidden. We call W the complete data, and Y
the incomplete data. We have a joint density function f (w|θ) = f (x, y|θ) for the
complete data, which is characterized by some parameter θ , and a marginal density
function fY (y|θ) for the incomplete data,

fY (y|θ) =
∫

X
f (x, y|θ)dx . (6.34)

280 6 Parameter Training

We want to estimate the parameter θ using the information of both the observed data
and the knowledge of the complete data distribution. In EM-algorithm applications
there is typically some sort of constraint describing the dependence between the
observed and the hidden variables, for instance Y = h(X) for some function h,
but this is not necessary. The only difference from the independent situation is that
instead of considering the entire range of X , the integral in (6.34) runs over all x that
fulfills the constraint y = h(x).
Now, if we had access to all the data, we could estimate the parameter directly by
formulating the log-likelihood function called the complete-data likelihood

l(θ |X, Y) = log f (X, Y |θ). (6.35)

If X is missing, however, this computation becomes impossible.

Example 6.4 The three coin game
Assume that we have three possibly biased coins, showing “heads” (H) or “tails”
(T) as we flip them. Coin c0 shows heads with probability λ, coin c1 shows heads
with probability p1, and coin c2 shows heads with probability p2. The game goes on
as follows:

1. Flip coin c0.
2. If c0 = H , flip coin c1 three times. Otherwise, flip coin c2 three times.
3. Repeat from 1.

The observed outcome is thus series of triplets, each coming from either c1 or c2.
What is hidden from the observer is which coin gave rise to which triple. Assume
that we observe the following series

〈H H H〉, 〈T T T 〉, 〈H H H〉, 〈T T T 〉, 〈H H H〉.

How do we estimate the coin probabilities λ, p1, and p2?
Let X denote outcome of c0, and Y the observed triplet using the coin determined
by X . That is,

• X ∈ {H, T },
• Y ∈ {H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T },
• Θ = {λ, p1, p2}.
If we had access to the complete data, that is including the information of which coin
that was used, we could estimate the parameters directly using maximum likelihood.
Assume, for instance, that the complete data is

(H : 〈H H H〉), (T : 〈T T T 〉), (H : 〈H H H〉), (T : 〈T T T 〉), (H : 〈H H H〉)

where the first letter (H or T) shows the outcome of coin c0. The corresponding
maximum likelihood estimates are simply the relative frequencies of each coin. The
estimates become

6.4 The Expectation–Maximization (EM) Algorithm 281

Θ̂ = {λ̂, p̂1, p̂2} =
{3

5
,

9

9
,

0

6

}
.

The problem is how to estimate the parameters when the outcomes of X are hidden.
This is typically where the EM-algorithm becomes useful. �
Since X is an unknown random variable, the log-likelihood l(θ |X, Y) becomes a
random variable as well. That is, we can think of l(θ |X, y) as a function of X , where
y and θ are constants or parameters. The idea behind the EM-algorithm is that since
we cannot maximize the complete-data likelihood l(θ |X, Y) directly, we maximize
the conditional expectation E[l(θ |X, Y)|Y] instead, using the observations of Y and
a provisional estimate of θ . We define an auxiliary function

Q(θ ′|θ) = E[l(θ ′|X, Y)|Y, θ] = E[log f (X, Y |θ ′)|Y, θ], (6.36)

which is used iteratively to produce an improved estimate θ ′ of the current estimate θ .
Let θ(k) denote the estimate of θ after k iteration cycles, and initiate the algorithm with
some value θ = θ(0). The EM procedure then iterates over the following expectation
(E) and maximization (M) steps until convergence:

1. E-step: calculate Q(θ |θ(k)).
2. M-step: determine θ(k+1) = argmaxθ Q(θ |θ(k)).

That is, the E-step calculates the expected value of the complete-data likelihood as
a function of θ , given the observed data Y and the current parameter estimate θ(k).
In the M-step, we take the conditional expectation from the E-step and maximize
it over θ . The algorithm is initiated by choosing an initial value of θ . The initial
value can be chosen at random, although making a “reasonable” guess based on
prior knowledge, if available, may both reduce the number of iterations and improve
the results.

Example 6.5 The three coin game (cont.)
We continue Example 6.4 by assuming that the information about coin c0 is unknown,
and use the EM-algorithm to estimate the coin probabilities λ, p1 and p2. For the
complete data, we have the density function

f (x, y|Θ) = P(X = x, Y = y|Θ) = P(X = x |Θ)P(Y = y|X = x,Θ), (6.37)

where

P(X = x |Θ) =
{

λ, for x = H,

1 − λ, for x = T,
(6.38)

P(Yi = y|X = x,Θ) =
{

phi
1 (1 − p1)

3−hi , if x = H,

phi
2 (1 − p2)

3−hi , if x = T .
(6.39)

Yi denotes the observed triplet number i , and hi is the number of heads in that triplet.
The E-step of the EM-algorithm involves calculating the conditional expectation of

282 6 Parameter Training

the complete-data log-likelihood, given the observed data and the current parameter
estimates. To simplify the notation, we introduce the notation

p̃i = P(X = H |Y = yi ,Θ) (6.40)

corresponding to the posterior probability of having heads of coin c0 in the i th round.
The conditional expectation of the complete-data log-likelihood becomes

E[log f (X, Y |Θ ′)|Y,Θ] = (6.41)

=
∑

i

E[log f (X, Yi |Θ ′)|Yi ,Θ]

=
∑

i

∑

x∈{H,T }
f (x |yi ,Θ) log f (x, yi |Θ ′)

=
∑

i

∑

x

P(X = x |Y = yi ,Θ) log
(
P(X = x |Θ ′)P(Y = yi |X = x,Θ ′)

=
∑

i

p̃i log
(
λ′ p′

1
hi (1 − p′

1)
3−hi

) + (1 − p̃i) log
(
(1 − λ′)p′

2
hi (1 − p′

2)
3−hi

)
.

The update formula used in the M-step is obtained by setting the partial derivatives
of Θ ′ to 0 and solving the following equation system:

λ′ =
∑

i p̃i

n
, (6.42a)

p′
1 =

∑
i (hi/3) p̃i∑

i p̃i
, (6.42b)

p′
2 =

∑
i (hi/3)(1 − p̃i)∑

i (1 − p̃i)
, (6.42c)

where n is the number of tossing rounds. Using Bayes’ theorem, we get that

pH = P(X = H |Y = 〈H H H〉,Θ) = λp3
1

λp3
1 + (1 − λ)p3

2

, (6.43a)

pT = P(X = H |Y = 〈T T T 〉,Θ) = λ(1 − p1)
3

λ(1 − p1)3 + (1 − λ)(1 − p2)3 . (6.43b)

As an example, if we initiate the algorithm with λ(0) = 0.5, p(0)
1 = 0.4 and p(0)

2 = 0.5
we get in the E-step

p(0)
H ≈ 0.3386,

p(0)
T ≈ 0.6334.

6.4 The Expectation–Maximization (EM) Algorithm 283

Using this estimates in the M-step yields the updated parameter estimates

λ(1) = 3

5
0.3386 + 2

5
0.6334 ≈ 0.4565, (6.44a)

p(1)
1 = 3 · 0.3386

3 · 0.3386 + 2 · 0.6334
≈ 0.4450, (6.44b)

p(1)
2 = 3(1 − 0.3386)

3(1 − 0.3386) + 2(1 − 0.6334)
≈ 0.7302. (6.44c)

Iterations of the E- and the M-step progress as in Table 6.1. It is interesting to note
that if we had started in {λ(0), p(0)

1 , p(0)
2 } = {0.5, 0.5, 0.5} we would have ended

up in a local maximum {0.5, 0.6, 0.6} almost immediately, but by moving p1 just
slightly away from 0.5, to 0.49 say, the algorithm pretty soon ends up in the global
maximum. This shows the importance of choosing initial estimates not too close to
a local optimum. �

The EM-algorithm can sometimes be used even if a problem does not appear on
the form of incomplete/complete data. By reformulating it as such, for instance by
introducing artificial “missing” random variables, the maximum likelihood estima-
tion can sometimes be greatly simplified. To illustrate this, we borrow an example
presented in [6], which involves estimating the parameters in a multinomial distribu-
tion. In Example 6.2, we showed how to produce maximum likelihood estimates for
that example directly, and now we continue by introducing additional hidden data.

Example 6.6 A multinomial distribution (cont.)
Recall from Example 6.2 that we have a multinomial distribution of 4 cells, with
observations

y = (y1, y2, y3, y4) = (125, 18, 20, 34). (6.45)

The corresponding density function is given by

fY(y|π) = n!
y1!y2!y3!y4!

(1

2
+ 1

4
π

)y1
(1

4
(1 − π)

)y2
(1

4
(1 − π)

)y3
(1

4
π

)y4
(6.46)

where n = 197 is the total number of observations.

Table 6.1 Iterations in the
EM-algorithm

Cycle pH pT λ p1 p2

0 0.5000 0.4000 0.5000

1 0.3386 0.6334 0.4565 0.4450 0.7302

2 0.1598 0.8797 0.4477 0.2141 0.9129

3 0.0104 0.9983 0.4055 0.0153 0.9989

4 0.0000 1.0000 0.4000 0.0000 1.0000

284 6 Parameter Training

Moreover, the cell probabilities depend on a single parameter 0 ≤ π ≤ 1, where

(p1, p2, p3, p4) =
(1

2
+ 1

4
π,

1

4
(1 − π),

1

4
(1 − π),

1

4
π

)
. (6.47)

Now we assume that this is the observed data, and that the complete data actually
consists of 5 cells with cell probabilities

(q1, q2, q3, q4, q5) =
(1

2
,

1

4
π,

1

4
(1 − π),

1

4
(1 − π),

1

4
π

)
. (6.48)

That is, we assume that the observation of the first cell y1 = 125 is a combination
of two hidden cells y1 = x1 + x2. The complete data is thus on the form

(x, y) = (x1, x2, y2, y3, y4) (6.49)

and the density function of the complete data can be written as

f (x, y|π) = n!
x1!x2!y2!y3!y4!

(1

2

)x1
(1

4
π

)x2
(1

4
(1 − π)

)y2
(1

4
(1 − π)

)y3
(1

4
π

)y4
.

The integral in (6.34), connecting the density functions of the incomplete and the
complete data, here translates to summing over all pairs 0 ≤ x1, x2 ≤ 125 such that
x1 + x2 = 125. That is,

fY(y|π) =
∑

x1+x2=125

f (x, y|π). (6.50)

Since the last three cells in the complete data are given, the expectation in the E-step
only involves the first two cells,

E[log f (X, Y|π ′)|Y, π] =
∑

x1+x2=125

f (x|y, π) log f (x, y|π ′). (6.51)

Moreover, x1 and x2 split the cell sum 125 in proportions 1
2 : π

4 , or, equivalently, into
proportions 2 : π . That is, if we let π(k) denote the estimate of π after k cycles, the
E-step involves calculating the expectations of the corresponding random variables
with π(k) inserted,

E[X1|Y, π(k)] = 125
2

2 + π(k)
, (6.52a)

E[X2|Y, π(k)] = 125
π(k)

2 + π(k)
. (6.52b)

6.4 The Expectation–Maximization (EM) Algorithm 285

The M-step takes the current expectations x (p)
1 and x (p)

2 of x1 and x2 and produces
a new estimate π(p+1) of π using maximum likelihood as if data was complete.
Recall from Example 6.2 that the log-likelihood of the complete data is

l(π |X, Y) = c + x1 log
1

2
+ (x2 + y4) log

π

4
+ (y2 + y3) log

1 − π

4
, (6.53)

where c is a constant not depending on π . Taking the derivative over π and setting
it to zero yields a new parameter estimate

π(p+1) = x (p)
2 + y4

x (p)
2 + y2 + y3 + y4

. (6.54)

By initiating in π(0) = 0.5, the EM-algorithm reaches the estimate π ≈ 0.6268
already after five iterations. �

If we are lucky enough to deal with a distribution belonging to the exponential family,
the expectation in the E-step can be determined on a closed form. However, for more
complicated distributions, the calculations often have to be solved numerically. There
are various numerical procedures used for this, including Monte Carlo and Newton–
Cotes methods (see for instance [1]).

A nice property of the EM-algorithm is that the likelihood is guaranteed not to
decrease between steps, and a typical convergence criterion is to stop when the like-
lihood function no longer increases. There is no guarantee, however, that the global
maximum ever is reached. The resulting maximum may very well be local. Another
attractive feature of the EM-algorithm is that the M-step only involves maximum like-
lihood estimation of the complete data, which often results in rather straightforward
computations. In more complicated situations, however, the algorithm becomes less
useful. Extensions of the algorithm include the Generalized EM algorithm (GEM)
[6], and the expectation conditional maximization (ECM) algorithm [26]. The GEM-
algorithm does not attempt to maximize the auxiliary function, but is satisfied if the
new parameter value increases Q in each iteration. In the ECM-algorithm, the para-
meter vector is split into two subvectors, which are then maximized separately and
alternatively in a zig-zag manner.

Which stopping rule to use to terminate the EM-algorithm is not necessarily obvi-
ous. If the computations have converged, we terminate naturally; but if convergence
is too slow, we might decide to quit anyway. The two most straightforward criteria
are to stop either when the changes in the parameter estimates or in the likelihood
function are small enough. Various convergence issues of the EM-algorithm are
investigated in [33].

286 6 Parameter Training

6.5 The Baum–Welch Algorithm

The problem of training hidden Markov models (HMMs) translates to finding the
parameter settings that maximize the probability of the observed sequence for the
given model. If the state sequence is known, parameters can be estimated using
regular maximum likelihood estimates such as described in Sect. 6.3. In practice,
this simply means using the observed relative frequencies of the various events as
estimates of their corresponding probabilities in the HMM. If the state sequence is
unknown, however, the problem becomes NP-complete, and the best we can do is to
search for a local maximum.

The Baum–Welch algorithm [4] is a special case of the EM-algorithm [6] described
above, applied to HMMs. Just as the EM-algorithm the Baum–Welch algorithm
iterates over an expectation (E) and a maximization (M) step, utilizing something
called the forward–backward algorithm described next.

The Forward–Backward Algorithm

The forward–backward algorithm [28] is a useful procedure that can be used both
for reestimation of parameters in the Baum–Welch algorithm, and for calculating the
probability of a particular feature predicted by the Viterbi algorithm, such as the exon
probabilities computed in Sect. 2.2.4. The name of the algorithm comes from the fact
that it utilizes both the forward and the backward variables described in Sect. 2.1.2.

We recall from Sect. 2.1.2 that an HMM consists of a hidden process X T
1 and

an observed process Y T
1 . The hidden process is a Markov chain jumping between

states in some state space S = {s1, . . . , sN }, while the observed process, which is not
necessarily Markov, emits values taken from some set V = {v1, . . . , vM } depending
on the underlying state sequence. The hidden process is initialized according to
the initial distribution π = {π1, . . . , πN }, and jumps between states according to the
transition probabilities aij, i, j ∈ S. In state j , the observed process emits a symbol Yt

according to the emission probability b j (Yt |Y t−1
1). The parameters to be estimated

are thus the initial, transition, and emission probabilities {πi , aij, b j : i, j ∈ S}.
Recall further that a forward variables αi (t) represent the joint probability of the
current state i and the observed sequence up to time t ,

αi (t) = P(Y t
1, Xt = i) =

∑

j∈S

aji bi (Yt |Y t−1
1)α j (t − 1). (6.55)

Similarly, the backward variables βi (t) correspond to the conditional probability of
the observed sequence after t , given the current state i and the observed sequence up
to t ,

βi (t) = P(Y T
t+1|Y t

1, Xt = i) =
∑

j∈S

aij b j (Yt+1|Y t
1)β j (t + 1). (6.56)

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

6.5 The Baum–Welch Algorithm 287

Using the definition of conditional probabilities, we can write the joint probability
of the complete observed sequence and the state at some time point t as

P(Y T
1 , Xt = i) = P(Y t

1, Xt = i)P(Y T
t+1|Y t

1, Xt = i) = αi (t)βi (t). (6.57)

The forward variables αi (t) account for everything up to and including time t , while
the backward variables βi (t) represent the remainder of the sequence. Moreover, the
probability of the observed sequence, or the likelihood of the observed sequence,
can be written as

P(Y T
1) =

∑

i∈S

P(Y T
1 , Xt = i) =

∑

i∈S

αi (t)βi (t). (6.58)

This leads to the very useful forward–backward variables, representing the proba-
bility of the state at time t , given the observed sequence,

γi (t) = P(Xt = i |Y T
1) = P(Y T

1 , Xt = i)

P(Y T
1)

= αi (t)βi (t)∑
j∈S α j (t)β j (t)

. (6.59)

We see that γ is a probability measure since

∑

i∈S

γi (t) = 1. (6.60)

The forward–backward variables in (6.59) are the quantities used to update the para-
meter estimates in the Baum–Welch training algorithm, detailed in the next section.

The Baum–Welch Algorithm

As mentioned earlier, the Baum–Welch algorithm is a kind of EM-algorithm for
estimating the parameters in HMMs from a set of unlabeled training sequences. For
simplicity, we will assume that we are given a single training sequence Y T

1 , but the
arguments are easily expanded to multiple training sequences.

If we knew the values of the HMM parameters θ = {πi , aij, b j : i, j ∈ S}, we
could calculate the forward and the backward variables directly as in Sects. 2.1.4
and 2.1.5. Instead, we start out with an initial “guess” of the parameter values. The
Baum–Welch algorithm then alternates between the following expectation (E) and
maximization (M) steps:

1. E-step: calculate the forward and the backward variables for Y T
1 using the current

parameter settings.
2. M-step: compute new parameter estimates using the forward–backward algo-

rithm.

The forward–backward algorithm generates the variables γi in (6.59). A related
property is the probability of making a given transition, from state i to j say, at time t

http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_2

288 6 Parameter Training

ξij(t) = P(Xt = i, Xt+1 = j |Y T
1) = P(Y T

1 , Xt = i, Xt+1 = j)

P(Y T
1)

. (6.61)

The numerator in (6.61) can be rewritten as

P(Y T
1 , Xt = i, Xt+1 = j) =

= P(Y T
t+2|Y t+1

1 , Xt+1 = j)P(Yt+1|Y t
1, Xt+1 = j)P(Xt+1 = j |Xt = i)P(Y t

1, Xt = i)

= aij b j (Yt+1|Y t
1)αi (t)β j (t + 1) (6.62)

such that we get

ξij(t) = aij b j (Yt+1|Y t
1)αi (t)β j (t + 1)∑

k∈S αk(t)βk(t)
. (6.63)

The variables γi (t) and ξij(t) are related through

γi (t) =
∑

j∈S

ξij(t). (6.64)

If we take the sum of ξij(t) over t , we get a property that can be seen as the expected
number of transitions from i to j ,

T −1∑

t=1

ξij(t) = expected number of transitions from i to j. (6.65)

Similarly, by summing γi (t) over t we get the expected number of transitions out of
state i ,

T −1∑

t=1

γi (t) = expected number of transitions from i. (6.66)

These properties can now be used for reestimation of the HMM parameters in order to
maximize the likelihood of the training data. The reestimation formulas are given by

π̂i = γi (1) = expected frequency in state i at time t = 1, (6.67a)

âij =

T −1∑

t=1

ξij(t)

T −1∑

t=1

γi (t)

= expected no. of transitions from i to j

expected no. of transitions from i
, (6.67b)

6.5 The Baum–Welch Algorithm 289

b̂ j (c) =

T −1∑

t=1
Yt =c

γ j (t)

T −1∑

t=1

γ j (t)

= expected no. of times in j observing c

expected no. of times in j
. (6.67c)

The Baum–Welch procedure can be summarized as follows:

1. Start out with some initial guess of the parameters, either based on previous
knowledge of the model, or chosen at random.

2. Calculate the forward and backward algorithms for the given parameters (E-step).
3. Calculate the γi - and ξij-variables.
4. Reestimate the parameters using the formulas for π̂i , âij, and b̂ j above.

Steps 2–4 are iterated until the estimates converge according to some criterion, for
instance when the difference in the likelihood P(Y T

1) in (6.58) is sufficiently small.
An alternative approach to the one just described is to use the Viterbi algorithm

(see Sect. 2.1.6) instead of the forward–backward algorithm. That is, starting with an
initial guess of the parameters, we determine the optimal state path X∗

1, . . . , X∗
T for

the observed training sequence and the current parameter settings, using the Viterbi
algorithm. In the reestimation step, we then estimate the parameters, using maxi-
mum likelihood directly. That is, the parameters are estimated by the corresponding
relative frequencies in the hidden and observed sequences. The procedure is iter-
ated until the state path no longer changes. A major difference from the standard
Baum–Welch approach is that when using the Viterbi algorithm instead of the
forward–backward procedure, we no longer maximize the true likelihood P(Y T

1 |θ),
since we use the optimal path to reestimate the parameters rather than summing over
all paths. However, it may be argued that if we use the Viterbi algorithm as definition
of what is optimal, we should use it for training as well [7].

While the Baum–Welch algorithm or gradient descent methods described in the
next section are the most commonly used approaches to HMM parameter estimation
when using unlabeled training sequences, there is the problem of local maxima.
We are never guaranteed to reach the global maximum, and if we choose the initial
estimates unwisely we may very well end up in a local maximum instead. Alternative
methods such as Gibbs sampling or simulated annealing, may be better at avoiding
these [7, 9], as they all work by introducing randomness into the fit, so that even if
the algorithm reaches a local optimum it still has the ability to leave again. These
methods are overviewed in Sects. 6.10 and 6.9, respectively.

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

290 6 Parameter Training

6.6 Gradient Ascent/Descent

Gradient descent is an optimization algorithm used to minimize differentiable con-
tinuous functions. It is an iterative procedure where in each step we move in the
direction of the steepest negative slope, the descent of the function gradient. For
instance, if we are standing on a hillside, the gradient is a vector pointing in the
direction of the steepest slope, and the steepness of the slope is given by the mag-
nitude of the vector. The word “descent” indicates that we always search for the
minimum of a function, but naturally the “gradient ascent” method is completely
analogous. In search for the function maximum, we move along the steepest positive
slope instead of the negative.

Definition 6.1 Gradient
Let x = (x1, . . . , x p) be a p-dimensional real-valued vector, x ∈ R

p, and f : Rp →
R a real-valued differentiable function. Then the gradient of f is defined as the
vector of partial derivatives of f

∇ f (x) =
(∂ f

∂x1
, . . . ,

∂ f

∂x p

)
. (6.68)

The goal of the gradient descent method is to find the point x that minimizes (or
maximizes) an objective function f . This is done iteratively by moving in small
steps from the current point to a new point that lies in the gradient direction. The
procedure of the gradient descent algorithm basically goes as follows:

1. Choose an initial point x(0), either randomly or near the expected minimum.
2. Calculate the next point

x(n+1) = x(n) − Δx(n), (6.69)

where Δx(n) is the update term of step n + 1 given by

Δx(n) = ηn∇ f (x(n)), (6.70)

and ηn > 0 a small positive step size, called the learning rate parameter.
3. If f (x(n+1)) < f (x(n)) return to step 2 and continue the iteration. Otherwise,

terminate and return x(n) as the computed minimum.

Example 6.7 A simple gradient descent example.
Assume that we want to find the minimum of the function

f (x, y) = 3x2 + 2y2 − 3x + y + 4 (6.71)

over x, y ∈ R
2. The gradient of this function is given by

∇ f =
(

∂ f

∂x
,
∂ f

∂y

)
= (6x − 3, 4y + 1). (6.72)

6.6 Gradient Ascent/Descent 291

For a learning rate η, the updates in each iteration become

x (n+1) = x (n) − η(6x (n) − 3),

y(n+1) = y(n) − η(4y(n) + 1).

Say that we start in some arbitrarily chosen point (x (0), y(0)) = (3, 2) and use
learning rate η = 0.2. Algorithm 5 illustrates an implementation of the gradient
descent method. Here we have chosen not only to test that the function decreases,

Algorithm 5 Illustrating the gradient descent method
xnew = 3
ynew = 2
η = 0.1 /* learning rate */
ε = 0.00001; /* precision */
f (x, y) = 3x2 + 2y2 − 3x + y + 4
d = −1
while (d < 0 and |d| > ε) do

xold = xnew
yold = ynew
xnew = xold − η(6xold − 3)

ynew = yold − η(4yold + 1)

d = f (xnew, ynew) − f (xold , yold)

end while

but that the decrease is sufficiently large. The results of the iterations are given in
Table 6.2. We see that at the fifth step, the convergence is within the given precision
ε = 0.00001. �

The gradient descent method is a common ingredient in the backpropagation
algorithm described below, which is used to train artificial neural networks. Training
a neural network involves estimating the weights associated with each computa-
tional unit (neuron), by using some kind of error function that measures the differ-
ence between the observed outputs and desired target outputs. The gradient descent
method can be used to iteratively adjust the weights with the aim to minimize this
error function.

Table 6.2 The iteration
results of the Algorithm 5

n x y f (x, y) Δx Δy

0 3.0 2.0 32.0 3.0 1.8

1 0.0 0.2 4.28 −0.6 0.36

2 0.6 −0.16 3.1712 0.120 0.072

3 0.48 −0.23 3.1268 −0.024 0.0144

4 0.50 −0.25 3.12507 0.0048 0.0029

5 0.50 −0.25 3.12500 −0.00096 0.00058

6 0.50 −0.25 3.12500 0.000192 0.00012

292 6 Parameter Training

Example 6.8 Single-layer neural networks
Consider a simple single-layer neural network with a linear activation function (see
Sect. 2.4.2) taking real-valued inputs x = (x1, . . . , xN) and producing an output on
the form

y(x) =
M∑

i=0

wi φi (x). (6.73)

The wi are the input weights and φi are some functions transforming the inputs
(sometimes called basis functions).
Assume that we want to train the weights w = (w1, . . . , wM)T using D training
patterns {(x1, t1), . . . , (xD, tD)} of paired input vectors x j and corresponding desired
target values t j of y(x j). Assume further that we use the following error function to
measure the distance between observed outputs and target values

E(w) = 1

2

D∑

j=1

(y(x j) − t j)
2. (6.74)

The error function in (6.74) is called a sum-of-squares function, which measures the
sum of the squared deviations between the observed values and the desired target
values. In this particular example, with a linear network and this error function, the
value of the weights can actually be solved analytically. By solving the equation
system

∂ E

∂wi
= 0

∣∣∣∣
M

i=1
(6.75)

we get the least squares estimates (rendering the smallest, or least value, of the
sum-of-squares deviations)

ŵ = (ΦT Φ)−1ΦT T. (6.76)

T is a (D×1)-vector of target values for the D training patterns, w an (M ×1)-vector
of weights, and Φ a (D × M)-matrix with entry φi (x j) in row j and column i .

If we were to use the gradient descent method instead, we would calculate the
gradient of the error function E

∇E =
(

∂ E

∂w1
, . . . ,

∂ E

∂wM

)
, (6.77)

where
∂ E

∂wk
=

D∑

j=1

(
y(x j) − t j

)
φk(x j). (6.78)

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

6.6 Gradient Ascent/Descent 293

The updated set of weights would then be given by

w(n+1)
k = w(n)

k − η

D∑

j=1

(M∑

i=0

w(n)
i φi (x j) − t j

)
φk(x j) (6.79)

for some learning rate parameter η. �

One difficulty with the gradient descent algorithm is to choose the appropriate learn-
ing rate at each iteration. The gradient gives us the direction, but not the size of the
update. One needs to take care here, since too large steps may lead to oscillations,
while too small steps may lead to slow convergence. Another problem is that with
an update function such as in (6.70) convergence may be very slow, in particular if
the search space contains plateaus where the error function is almost constant. An
approach that has proven successful in improving the convergence rate is to include
a momentum term in the update [31],

x(n+1) = x(n) − Δx(n) + μΔx(n−1), (6.80)

where 0 < μ < 1 is a momentum parameter. That is, in addition to the current
gradient, the momentum adds a fraction of the update made in the previous step. In
the absence of local minima, the gradient keeps pointing in the same direction, in
which case the momentum term simply increases the step size. However, if the error
surface has a complex curvature, such as including long narrow valleys, the standard
gradient descent might oscillate between the sides and only progress very slowly
toward the minimum. The momentum term helps to smooth out these oscillations.

6.7 The Backpropagation Algorithm

In artificial neural networks, such as those described in Sect. 2.4, the parameters to
be trained are typically the weights associated with the network units in each layer.
A single-layer neural network can be trained by comparing the observed outputs to
the desired target values of the training data, and adjust the weights accordingly to
minimize the deviation. As long as the activation function is differentiable, we can
use methods such as the gradient descent method directly. In a multilayer network
this is not possible, however, since we do not know how to assign target values to
the hidden units. If the observed output differs from the target value, we have no
way of knowing which of the hidden units that are responsible for the deviation. A
popular solution is then to use the backpropagation algorithm, which is an iterative
method used in particular for training multilayered feed-forward neural networks.
The name “backpropagation” is an abbreviation of “backward propagation of errors,”
and indicates how the error recorded, when comparing the observed outputs to the

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

294 6 Parameter Training

target values, is propagated backward through the network in order to modify the
weights of the layers recursively.

Consider a two-layer network such as that in Fig. 6.3. The network consists of
N input units (x1, . . . , xN), a hidden layer of M units (z1, . . . , zM), and K output
units (y1, . . . , yK). The weight of the edge between input unit i and hidden unit j is
denoted w(1)

ij , while the weight of the edge between hidden unit j and output unit k is

denoted w(2)
jk . The threshold of the activation function, called the bias, is invoked in

the input layer by adding an extra input node x0 = 1 with weights w(1)
0 j on the edges

between x0 and the units in the hidden layer. Similarly, we add an extra hidden node
z0 = 1 with weights w(2)

0k between this node and the output layer. The input values of
each layer are integrated into a single value using some kind of integration function.
The integrated values are then transformed by an activation function to produce an
output value.
We assume here that the integration functions of the input layer in the hidden layer
are weighted sums on the form

a j =
N∑

i=0

w(1)
ij xi and bk =

M∑

j=0

w(2)
jk z j . (6.81)

Moreover, we assume the activation function to be the sigmoid function

φ(a) = 1

1 − e−a
. (6.82)

1

x1

x2

...

xN

1

z1

z2

...

zM

y1

y2

...

yK

w(1)
ij w(2)

jk

Fig. 6.3 A two-layer feed-forward network of N input nodes, M hidden nodes, and K output
nodes. The biases in the hidden and the output layers are included as extra constant nodes in each
layer

6.7 The Backpropagation Algorithm 295

Presented with a set of D training patterns {(x1, t1), . . . , (xD, tD)}, where each
pattern consists of an input vector xd = (xd

1 , . . . , xd
N) and a target vector td =

(td
1 , . . . td

K) of desired outputs we want to estimate the weights in such a way that the
error function

E(w) = 1

2

D∑

d=1

K∑

k=1

(yd
k − td

k)2 (6.83)

is minimized with respect to the weights w. If the network consisted of a single
layer, we could determine the weights using the gradient descent method directly.
The minimum would be achieved by calculating the gradient of the error function
with respect to the weights, and solving the equation system

⎧
⎪⎪⎨

⎪⎪⎩

∂ E
∂w11

= 0,

...
∂ E

∂wN K
= 0.

In multilayer networks, where we do not know the target values of the intermediate
hidden layers, the backpropagation algorithm provides an efficient method for deriv-
ing the partial derivatives of all weights, including those connected with the hidden
layer.

Assume for simplicity that we are given a single training pattern {x, t}. Given a
set of initial values of the network weights, the backpropagation algorithm iteratively
modifies the weight values in order to minimize the error E . The algorithm consists
of three main steps:

1. The feed–forward step: run the input vector x of the training pattern through the
network with the current weights and observe the output. During this step, we
compute and store the outputs and the derivatives of the activation function of
each individual unit.

2. The backpropagation step: run the network “backwards” by feeding a constant
vector 1 = (1, . . . , 1) into the output units and evaluate the partial derivatives of
the error function with respect to the weights.

3. The gradient descent step: modify the weights using the gradient descent method.

The backpropagation algorithm iterates over these steps, by running the training
pattern through the network repeatedly and modifying the weights in each cycle,
until the error becomes sufficiently small. The following description, detailing the
individual steps of the algorithm, is inspired by the very nice presentation given
in [30].

The Feed–Forward Step

In order to simplify calculations, we add an extra layer of K units y′ = (y′
1, . . . , y′

K),
call them the extended output units, to the network (see Fig. 6.4). We use these added
units to calculate the error term for each pair of observed values and target values.

296 6 Parameter Training

z j

jth hidden
unit

y1

y2

...

yK

output
layer

y1

y2

...

yK

extended
outputs

+
E

Fig. 6.4 The two-layer network is extended to include the calculation of the error function E

In the feed–forward step the input vector x is fed into the extended network, and the
vectors z = (z1, . . . , zM), y = (y1, . . . , yK), and y′ = (y′

1, . . . , y′
K) are calculated

according to

z j = φ

(
N∑

i=0

w(1)
ij xi

)
, j = 1, . . . , M, (6.84a)

yk = φ

⎛

⎝
M∑

j=0

w(2)
jk z j

⎞

⎠ , k = 1, . . . , K , (6.84b)

y′
k = 1

2
(yk − tk)

2, k = 1, . . . , K . (6.84c)

We have included the bias of each layer by adding the nodes z0 = y0 = 1. Their
corresponding weights are to be estimated in the same manner as the rest of the
network weights.

Next, to facilitate the backpropagation step, we compute and store the derivatives
of the activation function in each unit. The derivative of the sigmoid function is
given by

dφ(a)

da
= φ(a)(1 − φ(a)). (6.85)

Thus, in addition to the computed vectors above, we also compute and store the
following values:

In z j : z j (1 − z j)

In yk : yk(1 − yk)

In y′
k : (yk − tk)

6.7 The Backpropagation Algorithm 297

The Backpropagation Step

Starting with the output units, we introduce a useful notation, corresponding to the
backpropagated error of output unit k

δ
(2)
k = yk(1 − yk)(yk − tk). (6.86)

Using the chain rule, the partial derivatives for the second-layer weights between the
hidden layer and the output units take the form

∂ E

∂w(2)
jk

= ∂y′
k

∂yk
· ∂yk

∂bk
· ∂bk

∂w(2)
jk

= (yk − tk) yk(1 − yk)z j = δ
(2)
k z j , (6.87)

where bk = ∑M
j=0 w(2)

jk z j is the integration function of the hidden layer.

The weight w(2)
jk of interest only appears in the y′

k term in E and therefore we have

∂ E

∂w(2)
jk

= ∂y′
k

∂w(2)
jk

. (6.88)

To simplify calculations, during the feed–forward computation these terms are com-
puted and stored in the corresponding units as illustrated in Fig. 6.5. Thus, to achieve
the values of the partial derivatives, we just multiply the corresponding stored terms.

The partial derivatives of the first layer of weights between the input units and
the hidden layer are computed similarly. However, now we have to include the sum
over the k extended outputs, since the partial derivative with respect to w(1)

ij appears
in each of them. First, we denote the backpropagated error of hidden unit j as

δ
(1)
j = z j (1 − z j)

K∑

k=1

w(2)
jk δ

(2)
k . (6.89)

z j w(2)
jk

jth hidden
unit

yk(1− yk)

yk

kth output
unit

(yk− tk)

yk

kth extended
output

1

+

1

Fig. 6.5 Terms of the partial derivatives of the second layer of weights w(2)
jk are stored in the units

during the feed–forward computation

298 6 Parameter Training

Fig. 6.6 Computation of the
partial derivatives of the first
layer of weights w(1)

ij
xi

w(1)
ij

ith input
unit

z j(1− z j)

z j

jth hidden
unit

w(2)
j1

w(2)
j2

w(2)
jK

δ (2)
1

δ (2)
2

δ (2)
K

output
layer

The partial derivatives in question become

∂ E

∂w(1)
ij

= δ
(1)
j xi . (6.90)

These are easily derived from the feed–forward computation as illustrated in Fig. 6.6,
by taking the weighted sum over the backpropagated errors of the output layer δ

(2)
k ,

and multiplying it by the stored terms in the hidden units and by the input value.

The Gradient Descent Step

The partial derivatives computed above constitute the gradient of the error function,
which is a vector pointing toward the steepest slope of the error function. The gradient
descent method, described in Sect. 6.6, is an optimization method the iteratively
moves toward the nearest (possibly local) minimum by moving the weight values
in the direction of the gradient. The moves are done in small steps, where the step
length is given by a learning rate parameter η > 0.
If wij(n) denotes the value of weight wij after n cycles, the weights are updated using
the formula

wij(n + 1) = wij(n) − Δwij(n). (6.91)

The weight modifications in the two different layers are given by

Δw(1)
ij = ηδ

(1)
j xi , i = 0, . . . , N ; j = 1, . . . , M, (6.92a)

Δw(2)
jk = δ

(2)
k z j , j = 0, . . . , M; k = 1, . . . , K . (6.92b)

Note that the bias weights w(1)
0 j and w(2)

0k are updated as well, and that the update
computations include the constant bias nodes x0 = z0 = 1. It is very important that
all partial derivatives are computed before the weights are updated, or else the update
may not correspond to the gradient direction [30].

6.7 The Backpropagation Algorithm 299

Several Training Patterns

The description above uses a single training pattern to illustrate the computations. In
the presence of several training patterns {(x1, t1), . . . , (xd , td)}, we simply run the
algorithm for each pattern separately and then combine the weight updates computed
for each. That is,

Δw(1)
ij = Δ1w(1)

ij + Δ2w(1)
ij + · · · + Δdw(1)

ij (6.93)

where Δdwij is the update of weight wij given by the dth training pattern (xd , td).
If the training set is large this computation may become very time consuming, how-
ever. In that case, instead of running all patterns through the network before updating
the weights, a possible speed-up is to update the weights using the gradient of each
separate pattern. The corrections may not correspond exactly to the gradient direc-
tion, but if the patterns are selected randomly, the direction will on average be the
correct one. Another argument for this variant is that shallow local minima may be
avoided [30].

6.8 Discriminative Training

In maximum likelihood (ML) estimation, each class of submodels is typically trained
separately and then combined into the final model. While this results in a model that
best fits the training data, it may not be optimal when it comes to actual prediction,
in particular if the transitions between submodels are ambiguous [20]. The notion
discriminative training simply implies that instead of using the parameter estimates
that best “explain” the observed data, we try to optimize the discriminative ability
of the model. That is, for a set of training sequences with known state labels, maxi-
mization is taken over some function that measures the classification accuracy of the
model, rather than measuring the fit to data.

Assume that we are given a single (observed) training sequence Y = (Y1, . . . , YT)

with known state labels X = (X1, . . . , XT). The objective is to estimate the model
parameters θ in such a way that the classification probability is maximized, or,
likewise, such that the classification error is minimized. The most common objective
functions for discriminative training are those of conditional maximum likelihood
(CML) [16], maximum mutual information (MMI) [2], and minimum classification
error (MCE) [15].

Conditional Maximum Likelihood

Assume that we have p ≥ 1 pairs of training sequences with corresponding known
state sequences (X1, Y1), . . . , (Xp, Yp). Recall from Sect. 6.3 that the maximum
likelihood estimate is given by

300 6 Parameter Training

θ̂M L = argmax
θ

p∏

i=1

P(Xi , Yi |θ). (6.94)

The solution to this equation maximizes the fit of the model to the training data.
However, in terms of discrimination the resulting parameter estimates may not lead
to the optimal model in terms of its discriminative ability. An alternative approach
would be to use the conditional maximum likelihood (CML) estimator [16], that
maximizes the probability of the true state sequence, given the observed sequence.
The CML estimator is given by

θ̂C M L = argmax
θ

p∏

i=1

P(Xi |Yi , θ)

= argmax
θ

p∏

i=1

P(Xi , Yi |θ)

P(Yi |θ)

= argmax
θ

p∏

i=1

P(Xi , Yi |θ)∑
X P(X, Yi |θ)

. (6.95)

The numerator in (6.95) is the regular ML estimator, and the denominator is simply
the probability of the observed sequence.

This training criterion has for instance been used in the gene finding software
HMMgene [20], which uses a class HMM (CHMM) for its predictions. The extension
of a standard HMM to a class HMM is that in addition to emitting DNA bases in
each step, each state emits class labels alongside the DNA sequence. In this setting,
it is easier to see that the numerator of the CML estimator represents only valid
paths through the model, while the denominator is the sum over all paths, valid and
invalid. As a result, since P(X, Y|θ) ≤ P(Y|θ), the maximum is reached when the
probability of all invalid paths is minimized.

In addition to optimizing the discriminative ability, another advantage is that while
the ML method estimates one submodel at a time, CML estimates all parameters
simultaneously. A serious disadvantage, however, is that the CML equation in (6.95)
cannot be solved analytically [28]. The estimates have to be approximated using
some kind optimization procedure, such as the gradient ascent method described in
Sect. 6.6, which can be a very slow process.

Maximum Mutual Information

Another alternative to maximum likelihood is to use the maximum mutual information
(MMI) between the observed sequences and the state sequences [2]. Mutual infor-
mation is a concept used in both probability theory and information theory, and is
a measure of the dependence between two variables. More specifically, the mutual
information of two random variables X and Y measures how much information one
variable contains about the other,

6.8 Discriminative Training 301

MI(X, Y) = E

[
log

P(X, Y)

P(X)P(Y)

]
. (6.96)

Note that when X and Y are independent they contain no information of one another,
and, consequently, the mutual information is zero, MI(X, Y) = 0.
From this definition it is common to define the instantaneous or pointwise mutual
information

MI(x, y) = log
p(x, y)

p(x) p(y)
, (6.97)

where p(x, y) is the joint density function of X and Y , and p(x) and p(y) are the
corresponding marginal densities.

For the purpose of parameter training on a set of labeled observation sequences
(X1, Y1), . . . , (Xp, Yp), the maximum mutual information estimator can be
defined as

θ̂MMI = argmax
θ

p∑

i=1

log
P(Xi , Yi |θ)

P(Xi |θ)P(Yi |θ)

= argmax
θ

p∑

i=1

log
P(Yi |Xi , θ)

P(Yi |θ)

= argmax
θ

p∑

i=1

log
P(Yi |Xi , θ)∑
X P(X, Yi |θ)

. (6.98)

When the prior distribution P(Xi |θ) of the state space is independent of the observed
sequence and of the model parameters, the maximum mutual information and the
conditional maximum likelihood estimators coincide [16].

The MMI estimator has an advantage over ML and CML estimators when the
prior information about the state distribution is significant. In theory, if the under-
lying distribution assumptions are correct, the ML and the MMI estimators should
converge. However, since MMI not only tries to increase the likelihood of the correct
state labels, but also decreases the likelihood of the incorrect labels at the same time,
it generally produces a lower likelihood than the ML estimator.

Minimum Classification Error

One problem with the ML estimator is that when the assumed model differs from
the true model, the resulting optimization has little to do with the performance of the
model in terms of prediction. Using conditional maximum likelihood or maximum
mutual information improves the accuracy of the model significantly in such situ-
ations [14]. However, an even more direct approach is to attempt to minimize the
misclassification rate directly.

302 6 Parameter Training

Suppose for a moment that we would like to classify an observation Y into one
of two possible classes C1 and C2. In terms of Bayes decision theory, we utilize
some sort of prior knowledge of the distribution of classes, and then use the posterior
probability as a decision rule

class(Y) =
{

C1 if P(C1|Y) ≥ P(C2|Y),

C2 otherwise.
(6.99)

Generalized to N > 2 classes, the decision rule becomes

class(Y) = argmax
1≤i≤N

P(Ci |Y). (6.100)

This is the so-called maximum a posteriori (MAP) decoder, and theoretically it is
the decision rule that yields the minimum error rate [14].

Now we would like to incorporate the decision rule into some sort of misclassi-
fication measure. Again, for the two-class case, the simplest measure is the Bayes
discriminant

d(Y) = P(C2|Y) − P(C1|Y), (6.101)

and the optimal decision boundary is achieved by solving the equation d(Y) = 0 [15].
The generalization of the Bayes discriminant to N > 2 classes is not straight-

forward, and can be done in several ways. The minimum classification error (MCE)
criterion attempts to approximate the misclassification rate by measuring the distance
between the correct classification score and an average of the incorrect classification
scores [29],

di (Y) = − log P(Y |Ci) + log

⎛

⎝ 1

N − 1

∑

j �=i

P(Y |C j)
η

⎞

⎠
1/η

(6.102)

= −1

η
log

P(Y |Ci)
η

∑

j �=i

P(Y |C j)
η

− 1

η
log(N − 1) (6.103)

where η is a positive number. The misclassification error rate is then usually approx-
imated by embedding the misclassification measure into a “smoothed zero-one func-
tion,” such as the sigmoid

l(d) = 1

1 + e−γ d
(6.104)

where γ ≥ 1.
In terms of sequence analysis and discriminative training on p training sequences

(X1, Y1), . . . , (Xp, Yp), we swap the problem around into a maximization problem,
and define the minimum classification error as

6.8 Discriminative Training 303

θ̂MCE = argmax
θ

p∑

i=1

log
P(Yi |Xi , θ)∑
X P(X, Yi |θ)

. (6.105)

We see that this is essentially the minimum mutual information criterion, except
that instead of summing over all possible paths in the denominator, we sum over all
incorrect paths [23].

One downside with discriminative training is that its implementation is very
complex. Unfortunately, no type of EM-algorithm exists for this problem. Some
applications use gradient descent-based approaches instead (see for instance [21]),
or extended Baum–Welch [29]. Moreover, compared to maximum likelihood train-
ing the meaning of the parameters is less intuitive, and the link to the underlying
biological problem tends to get lost [24].

6.9 Gibbs Sampling

Gibbs sampling is an iterative technique that belongs to the large class of sampling
algorithms known as Markov chain Monte Carlo (MCMC) methods. It was originally
presented in [10], but carry large similarities with the much older, and very popular
Metropolis-Hastings algorithm [11, 27]. In fact, most MCMC algorithms can be
seen either as a special case or an extension of the Metropolis–Hastings algorithm.
An example of the Metropolis algorithm is given in the next section.

We assume that we want to draw a sample from a distribution P(Y) of a sequences
Y = (Y1, . . . , YT) of length T . Suppose that drawing the sample directly from
the distribution is infeasible for some reason (e.g., the distribution is unknown, or
the sample space is too large), but that drawing from the conditional distributions
P(Yt |Y1, . . . , Yt−1, Yt+1, . . . , YT), t = 1, . . . , T is quite doable. The Gibbs sam-
pling approach makes use of this, and generates a sample by cycling through all
conditional distributions and keeping all but the current variable fixed. This cycling,
which can be done randomly or in order, is repeated many times to achieve a sample
that comes from approximately the desired distribution.

A Gibbs sampling algorithm for generating a random sample from the distribution
P is illustrated in Algorithm 6. The algorithm is initialized by an arbitrary sequence
Y(0) = (Y (0)

1 , . . . , Y (0)
T), and then each new sequence (e.g., each new “state” of a

Markov chain) is generated by cycling through the conditional distributions of each
sequence position. Note how the conditional distribution of Yt utilizes the residues
generated so far in the current cycle. That this procedure in fact generates a sample
from the correct distribution P has been proved for instance in [13].

Gibbs Sampling for HMM Training

We mentioned at the end of Sect. 6.5 that while the Baum–Welch algorithm is the most
commonly used algorithm for training hidden Markov models (HMMs) on unlabeled
sequences, it suffers from the problem of avoiding local maxima. Simulated annealing

304 6 Parameter Training

Algorithm 6 A Gibbs sampler
/* Initialize: */
Y(0) = (Y (0)

1 , . . . , Y (0)
T)

/* Create K samples of Y */
for j = 1 to K do

for t = 1 to T do
Sample Y (j)

t ∼ P(Yt |Y (j)
1 , . . . , Y (j)

t−1, Y (j−1)
t+1 , . . . , Y (j−1)

T).
end for
/* Return the current sample */
return Y(j)

end for

described in the next section and Gibbs sampling are both generally better in this
respect [9]. Here we give a brief overview, inspired by [5] and [7], of a Gibbs sampler
for training of HMMs on a set of observed, unlabeled sequences.

Recall that an HMM consists of a hidden Markov chain X = (X1, . . . , XT) which
emits a sequence of observations Y = (Y1, . . . , YT). The model parameters to be
estimated are the initial, transition, and emission probabilities θ = {πi , aij, b j :
i, j ∈ S}, where S is the state space that the Markov chain operates on. Suppose we
are given a set of training sequences Y1, . . . , Yp. If we knew the corresponding state
paths X1, . . . , Xp, we could estimate the parameter set θ using maximum likelihood
directly (see Sect. 6.3), which in this case simply reduce to frequency counts of the
respective events. Thus, there is a direct translation between state paths and parameter
estimates, and we can therefore treat the state paths as the parameters to be estimated
in order to maximize the likelihood [7].

We initialize the Gibbs sampler by an arbitrary set of state sequences X(0)
1 , . . . ,

X(0)
p , and then the algorithm proceeds by iterating between two main steps. In cycle

j = 1, . . . , K , these two steps are

1. Remove the sequence pair (X(j−1)
i , Yi) from the dataset, and reestimate the para-

meters on the remaining sequences,

(X(j)
1 , Y1), . . . , (X

(j)
i−1, Yi−1), (X

(j−1)
i+1 , Yi+1), . . . , (X

(j−1)
p , Yp).

2. Resample the state path X(j)
i for training sequence Yi .

These steps are iterated until the state paths no longer change. The parameters are
reestimated after each new state path has been sampled, using regular maximum
likelihood. The tricky part is how to sample the state paths. One approach is to use
the forward-traceback procedure described in [7], which is illustrated in Algorithm
7, and which utilizes the HMM forward variables αi (t) described in Sect. 2.1.4.

We use the forward variables for the traceback instead of the Viterbi variables,
since we do not want to determine the optimal path, but rather sample a path from
the distribution over all paths. The expression in (6.106) in Algorithm 7 may be
better understood by looking at Fig. 6.7. Given the current state Xt at time t we want

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

6.9 Gibbs Sampling 305

Fig. 6.7 Stochastic
traceback: for a given state
Xt at time t the previous
state is weighted according
to its forward variable times
the transition into the current
state

...

state Xt−1

1

2

N

α j(t−1)

Xt

αi(t)

a1i

a2i

aNi

to sample the previous state Xt−1 according to its forward variable value times the
transition probability into the current state. With this formulation, the more probable
a path, the higher its probability of being sampled. However, as pointed out in [7], the
path distribution sampled from is not exactly right, since we sample from the previous
model rather than from the optimal model, but it is a reasonable approximation.

Algorithm 7 A stochastic traceback algorithm
/* Calculate the forward variables */

Initialize: αi (0) = πi
for (t = 1 to T) and (i = 1 to N) do

αi (t) = P(Y t
1, Xt = i) = ∑

j∈S aji bi (Yt |Y t−1
1)α j (t − 1)

end for
Terminate: αi (T + 1) = P(Y T

1 , XT +1 = i) = ∑
j∈S aji α j (T)

/* Sample a state path */

for t = T + 1 to 1 do
Sample Xt−1 from

P(Xt−1|Xt) = aXt−1,Xt
αXt−1 (t − 1)

∑
k∈S ak,Xt αk(t − 1)

(6.106)

end for

6.10 Simulated Annealing

The general idea of Monte Carlo simulations is to approximate a target distribution
by the empirical distribution obtained by drawing a large sample from the distrib-
ution. Markov chain Monte Carlo (MCMC) algorithms are an extension of Monte
Carlo simulations, and are used when the target distribution cannot be sampled from
directly, or when the sampling is computationally intractable. The idea is to construct
a Markov chain instead that converges to the target distribution. Simulated annealing
is an iterative approach, first introduced in [19]. The method combines the idea of
MCMC methods with an annealing schedule, where an artificial temperature variable

306 6 Parameter Training

is iteratively decreased to zero. Simulated annealing applied to multiple sequence
alignment is described in Sect. 3.2.8. Here we give a slightly more formal descrip-
tion of the general method, before we show how it can be applied to the training
of HMMs. A more general, but still very hands-on, description can, for instance, be
found in [13].

Suppose we have a large system that can switch between N possible “states” in a
state space S = {s1, . . . , sN }. For instance, N can be the number of configurations of
a large graph, or, more relevant to us, the combinatorial possibilities of a multivariate
variable. Suppose further that we want to minimize some function f (s), s ∈ S of the
state space. In statistical mechanics, this function typically represents some sort of
cost or energy of the system. If N was small enough, we could conduct an exhaustive
search and calculate f (s) for all states s ∈ S, but this is often not the case. The flavor
of MCMC methods would be to construct an aperiodic, irreducible Markov chain that
converges to a distribution that places most of its mass in the state(s) that minimize f .
A sample from that distribution would then have a high probability of being in the
vicinity of such a state. A distribution that has the desired properties is the Boltzmann
distribution

Pf (s) = 1

Z
e− f (s)/kτ (6.107)

where Z = ∑
s∈S e− f (s)/kτ is a normalizing factor called the partition function, τ is

the temperature of the system, and k the Boltzmann constant. For large temperatures
τ , the Boltzmann distribution places nearly equal probabilities to all states, while for
τ = 0 the probability mass is focused in the states with the smallest values of f (the
lowest energy). Thus, if we could create a Markov chain that converges to Pf for a
small value of τ , we would get an approximate solution to our optimization problem.
The problem, however, is that the smaller the τ the longer the time to convergence.

This is where simulated annealing comes in. Instead of fixing τ and run our
MCMC, we start out at a relatively high temperature, run the Markov chain for a while,
and then iteratively lower the temperature until the process converges according to
some convergence criterion. In effect, by decreasing the temperature (or cooling the
system), the probability mass of the Boltzmann distribution gets more and more
concentrated around the minimizing states. The temperatures τ1 > τ2 > τ3 > · · ·
and the corresponding times t1, t2, t3, . . . that we run the Markov chain at each
temperature constitute our annealing schedule. The most commonly used MCMC
method is the Metropolis algorithm [27], illustrated in Example 6.9, but basically
any MCMC algorithm could be used.

Example 6.9 The Metropolis algorithm
This example is inspired by the very nice description in [3]. Each cycle of the
Metropolis algorithm involves a proposal distribution qij and an acceptance dis-
tribution rij, where qij denotes the probability of drawing state s j when being in
state si , and rij denotes the corresponding probability of accepting the proposed state
change. We assume for now that the proposal distribution is symmetric, qij = qji,
but this property can be relaxed. The Metropolis algorithm proceeds as follows:

http://dx.doi.org/10.1007/978-1-4471-6693-1_3

6.10 Simulated Annealing 307

1. Choose an initial state si at random.
2. Given the current state si , propose a new state s j according to proposal probability

qij.
3. Accept the new state s j with probability rij, or reject it with probability 1 − rij in

which case we stay in state si for another round.

Steps 2–3 are iterated until convergence. The most common acceptance distribution
is given by

rij = min

{
1,

Pf (s j)

Pf (si)

}
. (6.108)

Using the Boltzmann distribution in (6.107) with energy function f (s) results in
acceptance probabilities

rij = min
{

1, e−Δij f/kτ
}

(6.109)

where Δij f = f (s j)− f (si). Note how the partition function Z conveniently cancels
out in this expression. Step 3 above then translates to:

3. If f (s j) ≤ f (si) accept s j , and if f (s j) > f (si) accept s j with probability
e−Δij f/kτ .

That is, we always move if the new state has lower energy, but we can also move
to a higher energy state occasionally. This last property makes it possible for the
algorithm to move away from a local optimum, even after falling into one. The
symmetry assumption of qij can be relaxed by using acceptance function

rij = min

{
1,

Pf (s j)qij

Pf (si)q ji

}
. (6.110)

The Metropolis algorithm was constructed specifically for the Boltzmann distribution
[27], but was later generalized into the much used Metropolis–Hastings algorithm
[11]. The generalized algorithm works for any distributions Pf (s), as long as there
exists a function f that dominates the density of the distribution. �
How to choose the annealing schedule is nontrivial, since small enough changes in
temperature guarantees that the process will converge eventually, but the smaller the
temperature the longer the convergence time. On the other hand, if the cooling is too
rapid, the risk of ending up in a local minimum, rather than a global, increases. One
example of a cooling strategy is to use a logarithmic annealing schedule,

τi = k

log τi−1
(6.111)

for some constant k. It can be proven that the algorithm converges almost surely (with
probability one) in such a situation [10]. However, logarithmic cooling is almost
as slow as an exhaustive search and often becomes impractical. A more common
approach is therefore to use a geometric cooling scale

308 6 Parameter Training

τi = γ τi−1 (6.112)

for some constant 0 < γ < 1. This is for instance used in the multiple alignment
program MSASA [18] described in Sect. 3.2.8.

Simulated Annealing for Training of HMMs

Assume that we are given a set of observed sequences Y1, . . . , Yp where he cor-
responding state sequences X1, . . . , Xp are unknown, and we want to estimate the
HMM parameters θ = {πi , aij, b j : i, j ∈ S}. We present here a simulated annealing
variant to this training problem, described in [7] and [8]. As energy function, we use
the negative log-likelihood function of our data,

− l(θ |X, Y) = − log P(X, Y|θ), (6.113)

such that the Boltzmann distribution in (6.107) becomes

P(Y) = 1

Z
e− 1

τ
(−l(θ |X,Y)) = 1

Z
P(X, Y|θ)1/τ , (6.114)

where Z = ∫
P(X, Y|θ ′)1/τ dθ ′. It is not clear how to sample from this distribution

directly, but a useful approximate approach is described in [8]. In this approach, a state
path is sampled randomly using the same forward-traceback procedure as in the Gibbs
sampling section above. In order to apply the dependence on a temperature variable,
we want to sample a path Xi for observed sequence Yi based on the likelihood of
the data, but with a slight modification

P(X) = P(X, Y|θ)1/τ

∑
X′ P(X′, Y|θ)1/τ

. (6.115)

The denominator, which is the normalizing factor Z , is simply the sum over all paths
and can be obtained by a modified forward algorithm using exponentiated parameters:
π̂i = π

1/τ
i , âij = a1/τ

ij , and b̂ j (y) = b j (y)1/τ . The algorithm then iterates over
the two steps described for HMM training by Gibbs sampling above, and uses the
same stochastic traceback as illustrated in Algorithm 7, only with exponentiated
parameters.

References

1. Antia, H.M.: Numerical Methods for Scientists and Engineers. Birkhauser, Basel (2002)
2. Bahl, L., Brown, P., de Souza, P., Mercer, R.: Maximum mutual information estimation of

hidden Markov model parameters for speech recognition. Proc. ICASSP-86 1, 49–52 (1986)
3. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT Press, Cambridge

(2001)

http://dx.doi.org/10.1007/978-1-4471-6693-1_3

References 309

4. Baum, L.E.: An equality and associated maximization technique in statistical estimation for
probabilistic functions of Markov processes. Inequalities 3, 1–8 (1972)

5. Chatterji, S., Pachter, L.: Large multiple organism gene finding by collapsed Gibbs sampling.
J. Comput. Biol. 12, 599–608 (2005)

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the
EM algorithm. J. R. Stat. Soc. B. 39, 1–38 (1977)

7. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis. Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

8. Eddy, S.R.: Multiple alignment using hidden Markov models. Proc. Int. Conf. Intell. Syst. Mol.
Biol. 3, 114–120 (1995)

9. Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14, 755–763 (1998)
10. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration

of images. IEEE PAMI 6, 721–741 (1984)
11. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications.

Biometrika 57, 97–109 (1970)
12. Hughey, R., Krogh, A.: Hidden Markov models for sequence analysis: extension and analysis

of the basic method. Comput. Appl. Biosci. 12, 95–108 (1996)
13. Häggström, O.: Finite Markov Chains and Algorithmic Applications. Cambridge University

Press, Cambridge (2002)
14. Juang, B.-H., Chou, W., Lee, C.-H.: Minimum classification error rate methods for speech

recognition. IEEE Trans. Speech Audio Proc. 5, 257–265 (1997)
15. Juang, B.-H., Katagiri, S.: Discriminative learning for minimum error classification. IEEE

Trans. Sig. Proc. 40, 3043–3054 (1992)
16. Juang, B.-H., Rabiner, L.R.: Hidden Markov models for speech recognition. Technometrics

33, 251–272 (1991)
17. Karlin, S., Altschul, S.F.: Methods for assessing the significance of molecular sequence features

by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 2264–2268 (1990)
18. Kim, J., Pramanik, S., Chung, M.J.: Multiple sequence alignment using simulated annealing.

Comput. Appl. Biosci. 10, 419–426 (1994)
19. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220,

671–680 (1983)
20. Krogh, A.: Two methods for improving the performance of an HMM and their application for

gene finding. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 179–186 (1997)
21. Krogh, A., Riis, S.K.: Hidden neural networks. Neural Comput. 11, 541–563 (1999)
22. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., Wootton, J.C.: Detect-

ing subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262,
208–214 (1993)

23. Majoros, W.H.: Methods for Computational Gene Prediction. Cambridge University Press,
Cambridge (2007)

24. Majoros, W.H., Salzberg, S.L.: An empirical analysis of training protocols for probabilistic
gene finders. BMC Bioinform. 5, 206 (2004)

25. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. Wiley, New York (1996)
26. Meng, X.L., Rubin, D.B.: Maximum likelihood estimation via the ECM algorithm: a general

framework. Biometrika 80, 267–278 (1993)
27. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state

calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)
28. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recog-

nition. Proc. IEEE 77, 257–286 (1989)
29. Reichl, W., Ruske, G.: Discriminative training for continuous speech recognition. Eurospeech-

95 1, 537–540 (1995)
30. Rojas, R.: Neural Networks: A Systematic Introduction. Springer, New York (1996)
31. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error prop-

agation. In: Rumelhart, D.E., McClelland, R.J. (eds.) Parallell Distributed Processing, vol. 1,
pp. 318–362. MIT Press, Cambridge (1986)

310 6 Parameter Training

32. Tatusov, R.L., Altschul, S.F., Koonin, E.V.: Detection of conserved segments in proteins: iter-
ative scanning of sequence databases with alignment blocks. Proc. Natl. Acad. Sci. USA 91,
12091–12095 (1994)

33. Wu, C.F.J.: On the convergence properties of the EM algorithm. Ann. Stat. 11, 95–103 (1983)

Chapter 7
Implementation of a Comparative
Gene Finder

In this chapter we exemplify the implementation of a gene finding software by
describing SLAM [1] in a little more detail. SLAM is a cross-species gene finder
particularly adapted to eukaryotes, and works by simultaneously aligning and anno-
tating two homologous sequences. The basic framework of SLAM is a generalized
pair HMM (GPHMM), which is a seamless merging of pair HMMs (PHMMs) typ-
ically used for pairwise alignments, and generalized HMMs (GHMMs) that have
been successfully implemented in single species gene finders such as Genscan [3].
SLAMwas used by the Mouse Genome Sequencing Consortium to compare the ini-
tial sequence of mouse to the human genome [5], and by the Rat Genome Sequencing
Consortium to perform a three-way analysis of human, mouse, and rat [4, 6].

7.1 Program Structure

The GPHMM in SLAM is implemented in the C-language, but the whole program is
coordinated by aPerl scriptslam.pl that handles the shuffling of files between three
mainmodules (see Fig. 7.1): repeat-masking, creating an approximate alignment, and
the SLAM gene prediction module. Repeat-masking greatly assists in gene finding
because, for the most part, interspersed repeats do not occur in coding exons. The
repeat masking is performed using the program RepeatMasker [7]. RepeatMasker
screens the DNA sequences for known repeats an low complexity regions. This
is a very important step, as the low complexity of many repeats will confuse the
gene finder, and on average almost 50% of the human DNA will be masked by this
program. The output of RepeatMasker is a file with detailed information about the
detected repeats, and modified sequence files where the repeats have been masked by
the letter ‘N.’ SLAM has the ability to work with sequences that have been masked
for repeats, but more importantly, sequences for which repeats have been annotated.
In the latter case the program takes advantage of repeat types that are known to rarely
occur within coding exons.

© Springer-Verlag London 2015
M. Axelson-Fisk, Comparative Gene Finding, Computational Biology 20,
DOI 10.1007/978-1-4471-6693-1_7

311

312 7 Implementation of a Comparative Gene Finder

Fig. 7.1 The SLAM
modules Seq Y Seq Z

Repeat masking

Approximate alignment

SLAM

Output

The approximate alignment created is used to reduce the search space for the dynamic
programming algorithm. In effect the two input sequences are globally aligned using
the alignment program AVID [2], and then the alignment is “relaxed.” How this is
done is described in a little more detail below. The SLAM module is the main part,
in which the gene finding and alignment is performed using a GPHMM. The input
to the SLAM module consists of two (repeat-masked) sequences, an approximate
alignment and parameter files for the pair of organisms to be analyzed. The sequences
are provided in FASTA format and the format of the approximate alignment file is
a column of integers, where the first column is the base position in the first input
sequence, and the resulting columns are left and right coordinates of the matching
window in the second sequence. Note that a base position in the first sequence can
have several matching regions in the second sequence. The SLAMmodule in Fig. 7.1
consists of the following main steps:

1. Process command line arguments.
2. Read in parameter files.
3. Read in sequence files.
4. Pair up candidate exon boundaries in the input sequences.
5. Run the GPHMM.
6. Print output.

7.1.1 Command Line Arguments

The synopsis of SLAM is:
slam [opts] seqY seqZ -p pars -a aat -org1 o1 -org2 o2

7.1 Program Structure 313

Description:

seqY seqZ
The FASTA files of the two orthologous sequences to be analyzed.

-p pars
Specifies the directory path where the parameter files are located.

-a aat
Specifies the name of the approximate alignment file.

-org1 o1 -org2 o2
Specifies which organisms to be analyzed.

SLAM comes with a number of options [opts]:

-verbose Run in verbose mode (quite a bit of output).
-debug Run in debug mode (lots of output). For debugging purposes.
-oneseq Single species gene finding.
-acceptorAG Require acceptors to have the minimal AG consensus.
-donorGT Require donors to have the minimal GT consensus.
-nocns Turn off prediction of CNSs.
-indep Independent exon scoring is used. For debugging purposes.
-okstops In-frame stop codons are allowed but at very low probabilities.
-withMatrix Allocates, initiates and uses the backtrack matrix. Quite heavy memory-wise.
-geneFile gf A kind of gene mapping (see Sect. 4.5).

The verbose and debug options are for developers use mainly and result in a
long number of checks that each substage of the program is running correctly. The
oneseq option “turns off” the second sequence and runs an ordinaryGHMMsimilar
to that of Genscan in Sect. 2.2.4.

While most donors and acceptors contain the consensus dipeptides ‘GT’ and ‘AG’
respectively, variations exist, especially in lower organisms. Therefore the splice site
model by default allows for other consensus sequences, even if their probabilities will
be very small. The optionsacceptorAG anddonorGT forces the splice site model
to assign probability zero to splice sites that deviate from the consensus dipeptides.

For long sequences the dynamic programming matrices require a lot of memory.
While the matrices for the forward, backward and Viterbi algorithms are necessary,
the backtracking matrix can be reconstructed afterwards. This saves space but adds
to the running time, and therefore, if the memory is sufficiently large, or the input
sequences are short, storing the backtrackmatrixmaybemore efficient. The default in
SLAM is to reconstruct the backtrack matrix after the GPHMM algorithms are done,
but with the withMatrix option the backtrack matrix construction is turned on.

The geneFile option functions similarly to the gene mapping programs Projec-
tor andGeneMapper described in Sect. 4.5. Thefilegf contains the knownannotation
for seqY and forces the GPHMM to only predict genes in seqZ that matches this
annotation.

http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_2
http://dx.doi.org/10.1007/978-1-4471-6693-1_4

314 7 Implementation of a Comparative Gene Finder

7.1.2 Parameter Files

SLAMexpects a whole bunch of parameter files, achieved from training data, and the
wrapping Perl script slam.pl expects them to lie in a subdirectory named Pars
in the program file directory. The structure of Pars is typically

Pars/
organism1_organism2/

bin1/ bin2/ bin3/ bin4/
parameterfiles

The parameter files are stratified into a number of bin directories according to the %
GC-content of the input sequences. For human and mouse the binning is:

bin1: [0, 43]
bin2: [43, 51]
bin3: [51, 57]
bin4: [57, 100]

Which bin that is read is determined by the Perl script slam.pl. The parameter
files in each bin directory are

exon.len.init.dat IG.freq.dat
exon.len.intl.dat introns.freq.dat
exon.len.sing.dat initprobs.dat
exon.len.term.dat stopprobs.dat
IG.len.dat transitions.dat
IG.lenBetwCNS.dat aminoMargins.dat
intron.len.dat mddDon.dat
intron.lenBetwCNS.dat mddAcc.dat
exon.freq.dat pairStats.dat
PAM1

The (.len.) files contain the length distributions of the corresponding features.
For the exons, these are empirical distributions where the files are structured as:

1222
0.002790071
0.002826134
0.002862142
0.002898041
0.002933941
0.002969688
0.003005384
0.003041009
...

The first number m indicates the number of entries in the file, and the subsequent
rows indicate the empirical probabilities of exon length n = 1, 2, . . . m. As intron and

7.1 Program Structure 315

intergene (IG) lengths aremodeledwith the geometric distribution, the corresponding
length files only contain the average length of the state. For instance,

3276

The frequency files .freq. contain the base compositions of the different features.
For instance, introns and intergenes are modeled by a second-order Markov model
(tripeptides) and consist of 16 rows of counts

Order 2, Period 1
42578 15937 22163 29396
20576 12094 2504 18230
24172 14420 18518 19802
24180 14737 21160 32083
...

The first row indicates the order and period of the model, in this case the Markov
model is non-periodic. The following 16 rows gives the tripeptide counts in the order
{A, C, G, T}. That is, tripeptide AAA occurs 42578 times in the training set, AAC
15937 times, and so on. These counts are read in and transformed into probabilities
in SLAM.

The initprobs.dat and transitions.dat files contain the initial and
transition probabilities for all states in the state space, and stopprobs.dat the
empirical distribution over the three stop codons. The pairStats.dat contains
the gap probabilities of the PHMMs for the different I -states. PAM1 contains the
PAM1 matrix, which is converted to the desired PAM order by SLAM according
to which organism pair that is considered. For instance, human and mouse uses a
PAM20 matrix. The aminoMargins.dat contains the empirical distribution of
the 20 amino acids. ThemddDon.dat andmddAcc.datfiles contain sets of splice
site sequences used to construct the MDD (maximal dependence decomposition)
splice site detector described in Sect. 5.4.3 for donors and acceptors, respectively.
For instance, mddDon.dat is on the form

order 5
upstream 3
downstream 6
size 3763
THRES 700
conserv 4 5
ignore 10
GAGGTGAGT GAGGTGAGT
CAGGTGAGA CAGGTGAGT
AACGTGAGC AATGTGAGT
CAGGTACCT CAGGTACTG
AAGGTGGGC AAGGTGGGC
ATGGTGAGC ATGGTGAGC
...

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

316 7 Implementation of a Comparative Gene Finder

Here order gives the order of the model, upstream and downstream gives the
location of the exon–intron boundary (here it is between position 3 and 4),sizegives
the number of lines in the file, THRES the threshold for when a set is large enough
to be split, conserv any eventual conserved positions (positions 4 and 5 consist of
the consensus dipeptide ‘GT’), and ignore any eventual positions to be ignored by
the MDD (none here since the given position is beyond the motif). Each subsequent
lines contain aligned pairs of splice site sequences, one from each organism. These
are read in by SLAM and theMDD is created according to Sect. 5.4.3. The alignment
of signal sequences allows the future implementation of a comparative MDD, but
currently SLAM builds two separate MDDs, one for each organism.

7.1.3 Candidate Exon Boundaries

Before starting the HMM algorithms SLAM runs through the input sequences to
detect potential exon boundaries. There are four types of boundaries considered:
translation start and stop sites, and donor and acceptor splice sites. Keeping the for-
ward and the reverse strands separate leaves us with eight boundary types: fStart,
fStop, fDon, fAcc, bStart, bStop, bDon, bAcc where ‘f’ stands for the for-
ward and ‘b’ for the backward strand. The start and stop boundaries are detected by
their exact patterns: ATG for start codons, and TAA, TAG, or TGA for stop codons.
The stop codons are scored according to their respective usage in the training set.
The splice sites are scored using the Maximal Dependence Decomposition (MDD)
model described in Sect. 5.4.3.

The potential boundaries are then paired up according to the corresponding
exon types

Left bdy Right bdy Exon type
Start Stop Single
Start Donor Initial
Acceptor Donor Internal
Acceptor Stop Terminal

For instance, each potential start site is paired up with a number of potential stop
and donor sites and vice versa. However, to avoid having to run through all possible
combinations, unallowed pairs are removed based on a numbers of restrictions on
the potential exon. These restrictions include length limits on the exon, in-frame
stop codons, or if the candidate exon sequence would fall outside the approximate
alignment. Each potential boundary is stored with information about its coordinate
position, its score, and its potential boundary pairings. Then, when the HMM enters
a potential exon state only the exons corresponding to the correct pairings are con-
sidered.

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5

7.1 Program Structure 317

7.1.4 Output Files

SLAM produces a number of output files and prints a summary of the predicted gene
structures to the screen. The screen output takes the form:

Seq Gene Exon Dir Type Start Stop Len Fr Ph Pr

Y cns 1486 1541 56 (82 % identity)
Z cns 2028 2083 56

Y 1 1 + init 1634 1705 72 1 0
Z 1 1 + init 2169 2240 72 2 0 0.83

Y 1 2 + intl 2672 2774 103 1 0
Z 1 2 + intl 2829 2931 103 2 0 0.92

Y cns 3167 3269 103 (69 % identity)
Z cns 3945 4047 103

Y 1 3 + intl 3344 3459 116 0 1
Z 1 3 + intl 4112 4227 116 0 1 0.84

Y cns 5530 5656 127 (90 % identity)
Z cns 7067 7193 127

There are two lines for each predicted exon or CNS, one for each organism. The
columns are defined as follows:

Seq: First (Y) or second (Z) sequence.
Gene: Gene index.
Exon: Exon index within the gene.
Dir: Strand direction, forward +, reverse −.
Type: Feature type, one of sing/init/intl/term or cns.
Start: The left coordinate of the feature seen from the forward direction.
Stop: The right coordinate of the feature.
Len: Feature length = Stop − Start + 1.
Fr: Frame: if the “rightmost” base of one of the exon’s codons ends at position k, the

frame is (k mod 3).
Phase: The number of extra bases at the start of the exon sequence, before reaching a new

codon.
Pr: Exon probability.

Note that the Start and Stop coordinates only indicates the left and right coordi-
nates in the sequence seen in the forward direction. If the exon is on the reverse strand
(Dir -), the start coordinate signifies the end of the exon and vice versa. Since the
CNSs have no phase or frame, the percent identity of the alignment is given instead.

Besides the screen output SLAM generates a number of output files. The base
name of the output files will be the same as the base name of the corresponding input
sequences, and files with the following extensions are generated:

318 7 Implementation of a Comparative Gene Finder

.gff GFF (general feature format) file of the predictions.

.rna A multiple FASTA file of predicted, spliced mRNAs (without UTRs).

.pep A multiple FASTA file of predicted protein sequences.

.aln Alignments of the predicted proteins in the two sequences.

.cns Alignments of the predicted CNSs in the two sequences.

7.2 The GPHMM Model

Recall from Sect. 4.4.2 that the SLAM state space can be divided into I -states and
E-states, where the I -states are the intergene and the intron states, and the E-states
are the exons (see Fig. 7.2). Moreover, the I -states are themselves composed of
two substates, namely a pair of independent I -state modeling unrelated intronic
or intergenic regions, and a CNS state modeling conserved noncoding stretches
occurring within the I -states.

E0,0 E0,1 E0,2 E1,0 E1,1 E1,2 E2,0 E2,1 E2,2

Intron0 Intron1 Intron2

EI,0 EI,1 EI,2 Esing E0,T E1,T E2,T

Intergene

(a)

CNS

IY IZ

(b)

M

I

D

Fig. 7.2 The SLAM state space

http://dx.doi.org/10.1007/978-1-4471-6693-1_4

7.2 The GPHMM Model 319

7.2.1 Modeling Intron and Intergenic Pairs

Introns and intergene sequences are modeled using second-order Markov models,
where the tripeptide frequencies are read in from a parameter file. The sequence
lengths are modeled using the geometric distribution, and the average state lengths
are supplied in the parameter files. Introns and intergeneswould typically bemodeled
by standard PHMMs, but there are several issues with this approach, however. In the
single species case, if the state length l is geometric, the self-transition probability of
the state can be estimated by aii = 1− 1

l , and the probability of transitioning out of
the state is given by 1−aii . In the two species case the situation is more complicated
as the model does not generate single sequences, but an aligned pair of sequences,
possibly containing gaps. Given the average state lengths for each of the sequences,
the computation of emission and transition probabilities is not as straightforward as
in the single species case.

Moreover, an intrinsic property of PHMMs is that they generate pairs of
sequences of approximately the same length. This can be shown using a simple
law-of-large-numbers argument. Assume, for instance, that we have a paired sample
(Y1, Z1), . . . , (Yn, Zn) where (Yi , Zi) are independent random variables taking
values in {(0, 1), (1, 0), (1, 1)}, such that the difference Di = Yi − Zi takes
values in {0, 1,−1}. The central limit theorem gives that for the sum Y − Z =∑

i (Yi − Zi) the ratio
Y − Z

σ
√

n
(7.1)

is approximately normally distributed N (0, 1) with mean 0 and variance 1. That
is, on average the differences in lengths will be approximately 0 and with small
variances. This is not a good model, however, in comparative sequence alignment, as
this constraint is often violated. For instance, the intron lengths in human and mouse
have a ratio of longer/shorter = 1.5 [5].

SLAM moves around both issues above by introducing a three-state model in
each I -state, with substates denoted by IY , IZ and CNS, and where the I -sequences
consist of long, independent stretches of intronic or intergenic sequence (IY and IZ)
intervened by short, but highly conserved regions (CNS). The transition probabili-
ties of the independent states are estimated using the shifted geometric distribution
presented in Sect. 5.2.1

a(Y)
i i = lY

1 + lY
, (7.2a)

a(Z)
i i = lZ

1 + lZ
, (7.2b)

1 − aii = 1 − a(Y)
i i a(Z)

i i . (7.2c)

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

320 7 Implementation of a Comparative Gene Finder

The CNS-states are allowed to be of fairly similar lengths in the two sequences and
are therefore modeled by regular PHMMs, with the self-transition set by a single
average length parameter lCNS

a(C N S)
i i = lC N S

1 + lC N S
. (7.3)

Assuming that the two I -sequences are independent works well for organisms as far
apart as human and mouse. For more closely related organisms this assumption may
cause problems, however. On the other hand, in that case the law-of-large-number
constraint in PHMMs will usually not be violated and a standard PHMM for the
entire I -state may suffice.

7.2.2 Modeling Exon Pairs

The main body of an exon pair is scored using a PHMM at the amino acid level.
Consider the amino acid sequences Y P

1 and Z Q
1 of a potential matching exon. Let cY

denote the codon coding for amino acid aY at position Yp+1, and, similarly, let cZ

be the codon coding for amino acid aZ at Zq+1.
For such a pair we need to evaluate the probability

P(cY , aY , cZ , aZ |Y p
1 , Zq

1) =
= P

(
cY |Y p

1 , Zq
1

)
P
(
aY |cY , Y p

1 , Zq
1

)
P
(
aZ |aY , Y p

1 , Zq
1

)
P
(
cZ |aZ , Y p

1 , Zq
1

)
. (7.4)

Codon usage tables give us the P(cY) and P(cZ |aZ) probabilities. Furthermore, we
have that P(aY |cY) = 1 (or 0) and P(aZ |aY) is given by the PAM matrix. The
dependency on the previous sequence is best modeled using a 5th-order Markov
model (2nd order at the amino acid level), but in the case of the PAM entry, this
dependency is ignored. Gap probabilities are obtained from the PAMmatrix as well.
The probability of the exon pair is given by summing (7.4) over all amino acid pairs
in the alignment. The optimal alignment (within the approximate alignment) can
obtained using the Viterbi algorithm in the standard manner.

Once the HMM algorithms have processed the input sequences and we have
an optimal prediction from the Viterbi algorithm, we can use the forward and the
backward variables to compute the posterior exon probabilities. Say for instance that
the Viterbi algorithm has predicted an exon of type se with coordinates [ly, ry] and
[lz, rz] in the Y and Z sequences, respectively. If we denote the exon durations as
d = ry − ly + 1 and e = rz − lz + 1, the joint probability of the observed data and
the predicted exons can be written

P
(

Y T
1 , ZU

1 ,∪L
l=1(Xl = se, dl = d, el = e, pl−1 = ly −1, ql−1 = lz −1)

)
. (7.5)

7.2 The GPHMM Model 321

If we let si− and si+ denote the uniquely determined I -states appearing directly
before and after the predicted exon se, the probability in (7.5) can be written as

αi−(ly − 1, lz − 1)ai−,e fse (d, e)bse

(
Y

ry
ly

, Zrz
lz

|Y ly−1
1 , Zlz−1

1

)
βi+(ry, rz). (7.6)

If we normalize this expression by P
(
Y T
1 , ZU

1

)
, which is achieved by the forward

algorithm, we get the probability of the predicted exon pair, given the data. This
probability has the same interpretation as in the one organism case.

7.2.3 Approximate Alignment

In order to reduce the search space for the dynamic programming algorithms, SLAM
makes an approximate alignment of the two input sequences. The assumption is that
there exists a “true” alignment, which is unknown to us, and in the approximate
alignment we state bounds on where we believe this alignment to lie. Approxi-
mate alignments are necessary in the GPHMM framework in order to handle input
sequences on the order of hundreds of kilobases. In effect, the SLAM approximate
alignment of the two input sequences Y T

1 and ZU
1 is a lookup table in which each base

Yt , 1 ≤ t ≤ T is mapped to a window of bases Zu−h, . . . , Zu+h . The HMMvariables
are then set to 0 whenever a coordinate pair (t, u) falls outside this window. For a
window size h per Y -base, the memory requirements gets reduced from O(TUNI)

to O(hTNI) and the number of computations from O(TUN2
I D4) to O(hTN2

I D4),
where NI is the number of I -states in the model, T and U the lengths of the input
sequences, respectively, and D the maximum length of an exon. However, while
small windows improve the computational complexity, it increases the dependency
on the accuracy of the approximate alignment. On the other hand, relaxations of the
approximate alignment allow for more robustness at the expense of computational
complexity. The approximate alignment is constructed in three steps.

1. Create a global alignment of the input sequences.
2. Relax each base-to-base match to a window of fixed size.
3. Extend the approximate alignment further around the candidate exon boundaries.

The global alignment is produced using the alignment program AVID [2]. The align-
ment is then relaxed by extending each match (Yt , Zu) to a window of fixed size 2h,
(Yt , [Zu−h, Zu+h]). However, while the alignment of exons usually tend to be rather
unambiguous, the part of the splice site sequences that extend into the surrounding
exons might have rather weak alignments. Therefore, to ensure that exons are not
excluded because of this, the approximate alignment is relaxed even further around
potential splice sites.

322 7 Implementation of a Comparative Gene Finder

7.3 Accuracy Assessment

A vital step in the software development is to assess the accuracy of the program,
mainly in order to detect problems, but also in order to be able to benchmark the
method against other methods. The two most common accuracy measures in gene
prediction are the sensitivity (SN) and the specificity (SP)measures, usually defined as

SN = TP

TP + FN
, (7.7a)

SP = TP

TP + FP
, (7.7b)

where the values TP (true positives), TN (true negatives), FP (false positives), FN
(false negatives) are defined as follows

TP = the number of coding bases predicted as coding,
TN = the number of noncoding bases predicted as noncoding,
FP = the number of noncoding bases predicted as coding,
FN = the number of coding bases predicted as noncoding.

The sensitivity (SN) is thus the proportion of bases predicted as coding among all truly
coding bases, while the specificity (SP) measures the proportion of bases correctly
predicted as coding among all bases predicted as coding. When prediction is perfect
both SN and SP are equal to 1, but usually prediction accuracy is a trade-off between
the two. For instance, a program that tends to overpredict will get a high sensitivity,
but a low specificity, while in a program that is more conservative we will see the
opposite relationship. Thus, in order to illustrate the accuracy, both measures need
to be presented.

Measures that attempt to capture both the sensitivity and the specificity in one
single measure include the correlation coefficient (CC) defined as

CC = (TP · TN) − (FN · FP)√
(TP + FN) · (TN + FP) · (TP + FP) · (TN + FN)

. (7.8)

While combining both sensitivity and specificity this measure has the undesirable
property that if no coding sequence has been predicted, the measure is undefined.
A similar measure that avoids this problem is the approximate correlation (AC)
defined as

AC = 1

2

(
TP

TP + FN
+ TP

TP + FP
+ TN

TN + FP
+ TN

TN + FN

)
− 1. (7.9)

In addition to measuring accuracy on the nucleotide level, it may be of interest to
measure accuracy on the exon level as well. Sensitivity and specificity of entire exons
are simply given by

7.3 Accuracy Assessment 323

SNE = TE

AE
, (7.10)

SPE = TE

PE
, (7.11)

where TE (true exons) is the number of exactly correctly predicted exons, and AE
and PE are all annotated exons and all predicted exons, respectively. However, con-
sidering only exactly correct exons may be a bit crude, and therefore it may be more
informative to divide exon predictions into ‘correct’ for correctly predicted exons,
‘partial’ for exon predictionswith one correct boundary, ‘overlap’ for predicted exons
with no correct boundaries but overlapping a true exon, and ‘wrong’ for predicted
exons that have no overlaps with true ones. Useful measures may then be various
proportions of these categories, such as missed exons (ME) and wrong exons (WE)
defined as

ME = number of missed exons

number of annotated exons
, (7.12)

WE = number of wrong exons

number of predicted exons
. (7.13)

7.4 Possible Model Extensions

The model presented above has a number of undesirable assumptions built into it.
The structure of the state space forces every gene to have the exact number of exons in
each organism, an assumption that is sometimes violated, especially in the beginning
or the end of genes. For instance, it is not uncommon that an exon in one organism has
been split into two in the other, leaving the resulting protein more or less unchanged.
Another model restriction is that it does not allow for frameshifts. That is, paired
exons have to have the same phase. When comparing human and mouse, this is not
a serious restriction, but may become a problem when comparing more distantly
related organisms.

A first extension to themodel could therefore be to allow for frameshifts. Relaxing
the no-frameshift assumption means that an intron state is no longer characterized by
the preceding exon in either organism, but rather by the pair of preceding exons in both
organisms. Thus, allowing for frameshifts multiplies the number of intron states by
3, resulting in a ninefold increase in computational complexity. Furthermore, there
is a ninefold increase in the number of exon states, with each current exon being
replaced by 9 exon–exon states.

It is becoming more and more common to include regulatory regions in the gene
predictions, both as they may improve the prediction accuracy of the exons, and vice
versa that identifying the coding region may aid in locating its regulatory elements.
SLAM currently predicts conserved noncoding sequences (CNSs), and these tend
to appear in regulatory regions such as the 5′ and 3′ UTRs. The intergene CNSs

324 7 Implementation of a Comparative Gene Finder

can fairly easy be converted into modeling UTRs and other regulatory elements
such as promoters or polyA-signals. None of these models take into account gene
duplications, gene rearrangements, gene overlaps or alternative splicing, however,
something that would be very valuable to be able to predict in the future.

References

1. Alexandersson, M., Cawley, S., Pachter, L.: SLAM: cross-species gene finding and alignment
with a generalized pair hidden markov model. Genome Res. 13, 496–502 (2003)

2. Bray, N., Dubchak, I., Pachter, L.: AVID: a global alignment program. Genome Res. 13, 97–102
(2003)

3. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol.
Biol. 268, 78–94 (1997)

4. Dewey, C., Wu, J.Q., Cawley, S., Alexandersson, M., Gibbs, R., Pachter, L.: Accurate identifi-
cation of novel human genes through simultaneous gene prediction in human, mouse, and rat.
Genome Res. 14, 661–664 (2004)

5. Mouse Genome Sequencing Consortium: Initial sequencing and comparative analysis of the
mouse genome. Nature 420, 520–562 (2002)

6. Rat Genome sequencing consortium: Genome sequence of the BrownNorway rat yields insights
into mammalian evolution. Nature 428, 493–521 (2004)

7. Smit, A.F.A., Hubley, R., Green, P.: RepeatMasker. http://www.repeatmasker.org

http://www.repeatmasker.org

Chapter 8
Annotation Pipelines for Next-Generation
Sequencing Projects

Next-generation sequencing technologies has caused an explosion in the availability
of genomic sequence data. This creates both opportunities and challenges, not the
least within the bioinformatics field. The opportunities include the possibility to
sequence and analyze a wide variety of organisms, spanning distant parts of the tree
of life. The challenges include dealing with the shorter sequence lengths, the reduced
data quality, and training and quality control issues when dealing with completely
novel sequences. In this chapter we present the various issues and aspects involved
in building a genome annotation pipeline, particularly aiming at next-generation
sequencing data.

8.1 Introduction

The Genomes OnLine Database (GOLD) [113] aims at being the most comprehen-
sive resource containing information about sequencing and metagenomics projects.
As of January 2015, there were 56,774 sequencing projects in the database, out
of which 6,649 are completed, 23,552 permanent drafts, and another 26,573 ongo-
ing sequencing projects. This can be compared to September 2011, when GOLD
contained information about 11,472 sequencing projects, out of which 2,907 were
completed and 8,565 ongoing. The amount of sequence data is thus increasing fast
in marks a new era in numerous related fields.

First-generation sequencing projects (Sanger sequencing) typically focused on
established model organisms, benefiting much from the large bulk of pre-existing
data knowledge. In terms of genome annotation, comprehensive datasets of species
specific gene models could be used both to train the gene prediction tools and to
quantify their level of accuracy. Second-generation sequencing projects, however,
usually do not have access to such information. They commonly involve evolution-
ary isolated organisms without any known close relatives and without pre-existing
data, which limits the ability to train gene prediction models and to measure the
accuracy of the resulting annotations. The challenges for the bioinformatics field are

© Springer-Verlag London 2015
M. Axelson-Fisk, Comparative Gene Finding, Computational Biology 20,
DOI 10.1007/978-1-4471-6693-1_8

325

326 8 Annotation Pipelines for Next-Generation Sequencing Projects

manifold, including the development of computational tools to store and manage the
large quantities of data, adapted means to analyze and visualize the annotations, and
metrics to measure the accuracy of the results. Also, as sequencing costs continue to
drop, numerous small research groups, often with apt biology knowledge but limited
bioinformatics skills, can now sequence their favorite organisms. Therefore there is
an urgent need for user friendly, portable, and easily adapted annotation pipelines,
that can proceed through the many steps of the annotation process without requiring
an expert level of mathematical modeling and computer programming skills of the
user.

In this chapter we discuss different aspects of genome annotation in next-
generation sequencing projects. We begin by giving a historical view of DNA
sequencing at large, and the corresponding bioinformatics development, followed
by going through the different steps in an NGS annotation pipeline. We round off
with an illustration of annotation pipelines from the viewpoint of the MAKER anno-
tation pipeline suite [20, 21, 65].

8.2 History of DNA Sequencing

DNA sequencing refers to any method or technology used to determine the order
of the chemical building blocks, the nucleotide bases, in a given stretch of DNA.
Everything alive on this planet is defined by its genomic sequence,which iswhyDNA
is often referred to as the “molecule of life”. The order of the chemical components
of the DNA is extremely important, as it holds the recipe for everything we are, and
if we could decode this recipe we could learn what underlies the diversity of life.
Differences and similarities in the DNA sequence, both within and between species,
can teach us many invaluable things. Some history of DNA sequencing is as follows:

• 1869: The DNA molecule is isolated.
• 1944: DNA is the carrier of inheritance.
• 1953: The DNA molecule is a double-helix.
• 1965: The first RNA molecule is sequenced.
• 1968: The first DNA sequence is published.
• 1970: The discovery of type II restriction enzymes.
• 1975: Sanger’s ‘plus and minus’ method.
• 1977: The first complete genome, bacteriophage φX174.
• 1977: Sanger’s chain-terminating dideoxy method.
• 1977: Maxam and Gilbert’s chemical degradation sequencing method.
• 1983: Polymerase Chain Reaction (PCR)
• 1986: Automated Sanger sequencing machines are manufactured.
• 1990: The Human Genome Project is launched.
• 1995: The first complete genome of a free-living organism, the bacterium

H. influenzae.
• 1996: Pyrosequencing method published.

8.2 History of DNA Sequencing 327

• 2000: Whole-genome assembly of the fruit fly Drosophila melanogaster [106].
• 2000: The first next-generation sequencing method, MPSS.
• 2001: Human genome draft sequence.
• 2004: Human genome project completed.
• 2004: Massively parallel sequencing technologies publicly available
• 2006: Illumina NGS method on the market.
• 2010: RNA-Seq.

In many ways, the DNA sequencing history begins in 1869 when Friedrich
Miescher was able to isolate a phosphate-rich microscopic substance in the pus
of surgical bandages. Since this substance resided within the cell nuclei he chose to
call it ‘nuclein’, which was later changed to nucleic acid, and eventually to deoxyri-
bonucleic acid or DNA. The existence of nuclein was unknown at the time, and
the focus of Miescher’s study were the protein components of the white blood cells
(leukocytes) extracted from the pus. However, the material he came across exhibited
no chemical properties of like those of proteins, and Miescher realized that he had
discovered an unknown substance [28].

Meanwhile, in the 1850s Gregor Mendel set out to investigate how visible traits
were transferred between generations. His geneticmodel systemwas the pea plant, as
its fertilization could be easily controlled by transferring pollen between plants. After
several years of tedious experiments, in 1865Mendel proposed his three famous laws
of inheritance, and without knowing anything about DNA or genes, he hypothesized
that each parent contributes some particular matter, which he called ‘elementen’, to
the offspring. Although controversial at first, Mendel’s principles grew in acceptance
during the decades that followed, but the chemical nature of the hypothesized matter
remained unknown for quite some time.

Scientists knew that the chromosomes somehow were the carriers of inheritable
traits, and that the chromosomes consisted of both DNA and proteins. But since the
proteins appearedmore varied than theDNAboth in chemical composition and phys-
ical properties, proteins seemed a better choice as genetic material. Therefore it came
as a great surprise, when Avery et al. in 1944 suggested that it in fact was the DNA,
and not the proteins, that was the carrier of inheritance [5]. The mystery, however,
was how this inheritance could be copied and passed on between generations.

The DNA double helix structure was published by Watson and Crick in 1953
[173]. The realization that the DNA was structured in two intertwined chains, rather
than a triple-strand that had previously been suggested, where the chains mirrored
each other in so-called base pairs resolved the puzzle of how the genetic blueprint
of an organism could be stored, copied, and passed on between generations. This is
now considered one of the most important scientific discoveries of the 20th century,
and awarded Crick and Watson, together with Maurice Wilkins, the Nobel prize in
1962. Still, knowing the larger structure was one thing, however, and determining the
precise order of the buildingblocks quite another.Due to various technical difficulties,
it would take several decades until the first DNA fragments could be “read”.

Due to various technical difficulties, the first experimental sequencing of DNA
was at a pace of only a few bases per year, and it would take several decades until

328 8 Annotation Pipelines for Next-Generation Sequencing Projects

larger DNA fragments could reliably determined. The first nucleic acid structure to
be published was that of a tRNA molecule isolated from yeast in 1965 [64]. The
method used specific enzymes, ribeonucleases (or RNase for short), to cleave the
RNA molecule into shorter fragments, but no such enzyme corresponding to DNA
was yet known to exist. In 1968, the first DNA sequence was published, representing
the cohesive ends of a bacterial virus, the bacteriophage lambda [177]. The sequence
was only partially determined, however, and the complete sequence of 12 base pairs
was published in 1971 [178]. The use of oligonucleotide primers and chain termi-
nation was introduced in the process, enabling a generalization of the sequencing
approach. Furthermore, in 1973 Gilbert and Maxam reported a 24 base pairs partial
sequence of the lac operator, a protein binding site in bacteria, using a ‘wandering-
spot analysis’ technique [46]. Also, paving the way for gel-based sequencing through
electrophoresis, in 1970 type II restriction enzymes that could cleave DNA at specific
short (4–6bp) sequences were discovered [73, 146].

The era of automated sequencing of longer DNA fragments started in 1975 when
Fredrick Sanger introduced the “plus and minus” method using DNA polymerase
with radiolabeled nucleotides [134]. Themethod could sequence asmany as 80 bases
in a single run, but struggledwith resolving the length of repeated stretches of a single
base (homopolymers). The plus-and-minus method was used to sequence the first
complete genome, that of the bacteriophage φX174 [133], consisting of 5386bp of
which 95% are coding for a total of 11 proteins. Having access to an entire genomic
sequence, it became apparent that large portions of the genome were translated in
more than one reading frame, containing sets of overlapping genes, something that
was previously unheard of.

In 1977 two new sequencing methods methods were published almost in parallel.
Maxam and Gilbert presented a sequencing method using chemical nucleotide-
specific cleavage, which was similar to the plus-and-minus method, but without
suffering from the homopolymer issue [95]. However, it was best used to sequence
shorter oligonucleotides, typically smaller than50bp in length. The real breakthrough
came with Sanger’s dideoxy method or chain-termination method, presented in 1977
[135], and awarding him the Nobel prize in Chemistry in 1980. The new Sanger
method had adopted the primer-extension strategy used on the lambda phage men-
tioned above [178], and had also solved the homopolymer issues of the plus and
minus method. Requiring fewer toxic chemicals and lower amounts of radioactivity
than the Maxam-Gilbert approach, it soon became the method of choice. Since then,
with several technical advances and refinements that sped things up and automatized
the sequencing process, the Sanger method has come to dominate the sequencing
world for several decades, and is what we now refer to as the first generation sequenc-
ing technology. Ultimately, in mass production form, Sanger sequencing produced
the first draft of the human genome in 2001 [79, 168]. One indispensable technical
advance was the development of the polymerase chain reaction (PCR), that is used
to amplify DNA fragments in the sequencing process. Although disputed, the dis-
covery is generally attributed to Kary Mullis in 1983 [7], something that awarded
him the Nobel prize in Chemistry in 1993. Although a great advance with the Sanger
method, DNA sequencing remained rather cost and labor intensive, until 1986 when

8.2 History of DNA Sequencing 329

a company named Applied Biosystems started to manufacture automated DNA
sequencing machines using Sanger sequencing with fluorescent dyes to tag each
nucleotide. Following this, in 1995 the first complete genome of a free-living organ-
ism, the bacterium Haemophilus influenzae was sequenced [43], which marked the
first published use of whole-genome shotgun sequencing. With these and numerous
other advances in sequencing technology, vastly increasing the speed and reducing
the cost, the dream of sequencing the entire human genome started to appear within
reach.

The Human Genome Project (HGP), launched in 1990, was a publicly funded
international project with the main objective to determine the DNA sequence and
all the genes of the euchromatic human genome (containing most of the geneti-
cally active material). The HGP project plan was initially set to 15 years, but a
private biotech company (Celera Genomics) rallied the HGP consortium into higher
gear, and both groups simultaneously published a human genome sequence draft in
2001 [79, 168]. The finished draft was then announced in 2003, two years ahead of
schedule, and the completion of the project was published in 2004 [70]. In reality,
however, the human genome sequence is still not complete. Technical difficulties
has left several million bases of gaps, both large and small, typically in repeat-rich
heterochromatic regions. To help achieve the goals of the HGP, a number of model
organisms were sequenced. These organisms include the common human gut bac-
teriumEscherichia coli [13], the fruit flyDrosophila melanogaster [1], the laboratory
mouse Mus musculus [102], the baker’s yeast Saccharomyces cerevisiae [51], and
the nematode Canaeorhabditis elegans [161]. These organisms and a few more are
now included in the Gene Ontology Reference Genome Project [157], which aims
at completely annotate twelve reference genomes in a unified framework to enable
cross-species analyzes and phylogenetic studies.

Being a huge achievement with several revolutionary developments, the Human
Genome Project only marked the beginning of the genomic era. The immense
resources required to complete the project clearly indicated the need for even faster
and cheaper technologies in the near future. In 2001 the National Human Genome
Research Institute (NHGRI) of the US National Institute of Health (NIH) gathered
600 researchers to plan the next phase within genomics research [139]. Among other
things, their discussions led to a list of “technological leaps” that were rather mind
provocative and verging on science fiction at the time, and mainly intended to “pro-
voke creative dreaming”. One such list itemwas to reduce sequencing costs by four to
five orders ofmagnitude, allowing the sequencing of an individual human genome for
less than $1,000 [26]. This stimulated the development of Next-Generation Sequenc-
ing (NGS).

NGS technologies all share three major developments: they do not require
bacterial cloning, the sequencing reactions are producedmassively in parallel and the
output is detected directly without the need for electrophoresis. As a result, enormous
amounts of reads can be produced, from thousands to millions of sequences simul-
taneously, allowing the sequencing of entire genomes at an unprecedented speed.

330 8 Annotation Pipelines for Next-Generation Sequencing Projects

The major drawback, however, is that the produced reads are much shorter than
for Sanger sequencing, making both the assembly and the annotation process much
more difficult and requiring the development of new and better suited computational
algorithms.

The first NGS technology, MPSS (Massively Parallel Signature Sequencing), was
developed in the 1990s by Lynx Therapeutics [18]. However, because of its com-
plexity no machines were sold to independent laboratories. The first method to be
commercializedwas published in 2005 by 454 Life Sciences (nowRoche) [94]. Their
454Genome Sequencer was a parallelized version of pyrosequencing, which reduced
sequencing cost sixfold compared to the Sanger method, and produced around 20Mb
of 110bp sequence. One year later Solexa (later merged with Lynx Therapeutics
and acquired by Illumina) released a method based on reversible dye-termination
and engineered polymerases [10]. Around the same time Applied Biosystems (now
Life Technologies) released their SOLiD (Sequencing by Oligo Ligation Detec-
tion) method [166], which applies sequencing-by-ligation. Both Solexa/Illumina and
SOLiD sequencers generated much larger quantities of sequence compared to the
454 method (∼1–3Gb), but the reads were only about 35bp in length. In 2010, the
founder of 454, Jonathan Rothberg, released the Personal Genome Machine (PGM)
under the flag of Ion Torrent (now Life Technologies) [129]. PGM resembled the
454 system, but used semiconductor technology and did not require optical detec-
tion using fluorescence and camera scanning, resulting in a higher speed, lower
cost, and smaller machines. The first PGM generated up to 270Mb of 100bp reads.
Numerous otherNGSmethods have been developed, including theQiagen-intelligent
bio-systems sequencing-by-synthesis [71], Polony sequencing [140], and Heliscope
single molecule sequencing [123]. The latter is verging on the third-generation
sequencing technologies. That is, next-generation sequencing is already regarded
as second generation technology, and a new generation of sequencers are already
emerging. Third-generation sequencing can be defined as methods that are capable
of sequencing long sequences without amplification of the DNA template, and where
sequence detection occurs in real time, reducing the sequencing time to minutes or
hours rather than days [138]. The leader of the field is currently Pacific Biosciences
that released the PacBio RS in 2010, which can generate several thousands of several
kilobases long reads [36], something that makes it very suitable for completing de
novo assemblies produced by second generation techniques.

Whether to prefer higher throughput or longer reads usually depends on the appli-
cation. The higher throughput of Illumina and SOLiD have made themmore suitable
than 454 for protein-DNA interactions studies such as ChIP-Seq [114], while 454
has been the preferred technology for de novo genome assemblies andmetagenomics
studies. With various advances in both hardware and software, Illumina systems can
now produce several hundreds bp long reads, which makes it applicable to genome
assembly as well. Illumina also claims to have broken the $1,000 genome barrier of
NHGRI with their HiSeq X Ten release, but this is when sequencing machines run
at factory-scale performing population-scale genome sequencing [167]. Illumina is
currently the leading NGS platform, offering the highest throughput, lowest cost, and
reasonable long reads. And while several other technologies seem very promising,

8.2 History of DNA Sequencing 331

such as nanopore sequencing [25], which is also considered a third-generation tech-
nology because it sequences single molecules in real time, it remains to be seen if
they can compete with Illumina. Regardless, a lot of sequence is produced in various
forms, and more will come. The challenges on the computer system and analysis
methods are immense, and the need for skilled bioinformaticians, computational
biologists and system biologists is greater than ever.

8.2.1 The Origin of Bioinformatics

Since the early days of DNA sequencing improvements and advances in sequencing
technology has led to a deluge of biological data, and computers have become indis-
pensable to handle all these data. Fortunately computer technology has managed
matched these developments, particularly regarding CPU and disk storage. Also, the
development of Internet and the World Wide Web (WWW) has revolutionized the
accessibility and exhangeability of data. However, the needs and demands for high-
throughput bioinformatics tools are greater than ever, for data processing, storage,
management, and interpretation, which in turn puts great demands on the education
and training of suitable scientists to work in these areas.

The term bioinformatics was coined in 1970 by Ben Hesper and Paulien Hogeweg
as “the study of informatic processes in biotic systems” [60], placing it on equal
footing with fields such as biophysics (physical processes in biological systems) and
biochemistry (chemical processes in biological systems). Since then the definition
has been altered and updated many times, and now comes in a variety of shapes and
forms depending on the foundation of the scientist giving it.

Initially, when the first short stretches of DNA sequences were identified, every-
thingwas handledmanually, fromgenerating the data to keeping records. But in 1977,
with the φX174 genome of nearly 5400bp [133] available, the manual management
and analysis started to become intractable. To facilitate the needs, McCallum and
Smith [96] reported a computer program that very well may mark the beginning
of modern bioinformatics, as we would define it today. The software, programmed
in COBOL, compiled the φX174 sequence from 60 manually entered punch cards,
and allowed editing of the sequence, sequence searches and automatic translation in
all reading frames. Subsequently, Roger Staden, who was involved in the computer
analysis of φX174 constructed a suite of interactive programs in 1977 “designed
specifically for use by people with little or no computer experience” [150]. The pro-
gram suite, named the Staden Package, included tools for DNA sequence assembly,
sequence editing, and sequence analysis, and is still in use today [151].

Another pioneer of bioinformatics was the physical chemist Margaret Oakley
Dayhoff, most noted for her work on nucleic acid and protein sequence databases,
and for the widely used amino acid substitution matrix PAM (Point Accepted Muta-
tions) described in Sect. 3.1.3 [30]. In 1969, Dayhoff had collected all known pro-
tein sequences at the time, and published them in the Atlas of Protein Sequence
and Structure [29]. Her work became the basis for the first public comprehensive,

http://dx.doi.org/10.1007/978-1-4471-6693-1_3

332 8 Annotation Pipelines for Next-Generation Sequencing Projects

BIOINFORMATICS

Biochemistry

Biology

Chemistry

Computer science

BiostatisticsPhysics

Systems biology

Biophysics

Microbiology

Biomedical engineering Biomedicine

Neurology

Genetics & Genomics

Mathematics & Statistics

Computational biology

Fig. 8.1 A bioinformatics network. The bioinformatics definition varies between research fields
and overlaps with numerous other fields

computerized, and publicly available protein database, and served as model for Gen-
Bank and many other molecular databases. She is also attributable for the one-letter
code for amino acids, which aimed at reducing file sizes in the punch-card era, but
which is still employed.

Bioinformatics nowadays is a broad interdisciplinary field, that aims at managing
and interpreting biological data, combining computer science, mathematics, statis-
tics, and engineering to do so. It consists of several important subfields as it is both
a collective term for biological studies that uses computer programming as part of
their method, and a term for the development of algorithms and tools needed for the
analysis of biological data. There is, thus, no clear consensus of the field definition,
and there are significant overlaps with numerous other disciplines as illustrated in
Fig. 8.1.

The Oxford English Dictionary defines bioinformatics as “the branch of science
concerned with information and information flow in biological systems, especially
the use of computational methods in genetics and genomics.” The National Institute
of Health (NIH) attempted in 2000 to define and distinguish bioinformatics from
computational biology, recognizing that “no definition could completely eliminate
overlapwith other activities or preclude variations in interpretation.”Their definitions
were:

• Bioinformatics: “research, development, or application of computational tools and
approaches for expanding the use of biological, medical, behavioral or health data,
including those to acquire, store, organize, archive, analyze, or visualize suchdata.”

• Computational biology: “the development and application of data-analytical and
theoretical methods, mathematical modeling and computational simulation tech-
niques to the study of biological, behavioral, and social systems.”

8.2 History of DNA Sequencing 333

The application areas of bioinformatics are manifold, and continues to grow, not
least with all the new ‘omics’ fields (e.g. proteomics, transcriptomics, and metage-
nomics), that emerge from the growing availability and varied types of sequence data,
and that embed a significant portion of often very specialized bioinformatics into their
definition. Examples of bioinformatics research areas, particularly connected toNGS
data, include:

• Sequence assembly
• Gene and functional element prediction
• Functional analysis of genes
• Comparative genomics
• Protein structure prediction
• Gene and protein expression analysis
• Analysis of gene regulation
• Systems biology
• Network analysis and protein-protein interactions
• Databases construction and management
• Clinical diagnostics
• Evolutionary biology
• Storage and management of big data

The future for bioinformaticians thus looks very bright, with many new and chal-
lenging areas in great need of competent and creative scientists.

8.3 Next-Generation Sequencing (NGS)

Sanger sequencing, also called chain-termination sequencing or the dideoxy method,
was first introduced in 1977 [135]. It utilizes DNA polymerase, which is the enzyme
the cell uses for DNA replication, to synthesize DNA templates, and is based on
the findings that inclusion of dideoxynucleotides (ddNTPs) into the DNA synthesis
chain inhibits the DNA polymerase activity and halts further strand extension. By
bringing both regular deoxynucletides (dNTPs) and chain-terminating dideoxynu-
cleotides (ddNTPs) to themix, the result after many sequencing reactions is a number
of DNA fragments of varying length. The fragments can then be heat denaturated
(separating the double DNA strand into two single strands) and length-separated by
gel electrophoresis, in which an electric field pulls the molecules across a gel such
that shorter molecules move faster than the longer. Labeling the DNA fragments with
radioactive phosphorus or a fluorescent dye, and then exposing an X-ray film to the
gel, gives rise to an image of dark bands that indicate the sizes of the fragments. Ini-
tially, the Sanger method involved running four separate DNA synthesis reactions on
each sample, one for each nucleotide. That is, in each reaction all four regular dNTPs
were added, but only one of the four chain-terminating ddNTPs. Each reaction then
resulted in a number of DNA fragments of varying length, all terminating in the

334 8 Annotation Pipelines for Next-Generation Sequencing Projects

same nucleotide. Then by running the four samples in different lanes in parallel on
the gel, the fragments lined up according to size, and the sequence could be “read” by
knowing which lane ended in which nucleotide. The procedure is sensitive enough
to separate DNA fragments differing by only one nucleotide in length. This process
was first automated in 1986 when Applied Biosystems presented a dye-terminator
variant [147]. By labeling each of the four ddNTPs with a different fluorescent dye,
each terminated fragment contained a nucleotide specific dye at the 3’ end, and all
fragments fluorescing the same color all had the same terminating nucleotide. As a
result, all four nucleotides could be processed in the same experiment, and the syn-
thesized DNA fragments could be length separated in the same gel lane by placing
a detector at the end of the gel, recording the color of the attached fluorescent dye
as the fragments passed by. Another advantage was that the sequencing data could
be sent directly to a computer. Another important breakthrough to the sequencing
automation came in 1996, when the gel electrophoresis was replaced by capillary
electrophoresis. In brief, by applying a high voltage charge to the sequencing reac-
tion, the DNA fragments can be length-separated based on their charge, avoiding the
tedious process of loading gels. In 1998, the 96 capillary system was announced,
which allowed the sequencing of about 900kb per day, compared to about 1kb per
day with the original chain-termination method. Also, with fragment lengths of up to
1,000bp Sanger sequencing dominated the market up until the introduction of next-
generation sequencing. However, while being a huge advancement for biological
research, and being the prevailing method for several decades, the output was still
limited. The main obstacles of Sanger sequencing are the use of gels or polymers
as separation media, the limited number of samples that can be handled in parallel,
and the difficulties to automatize the sample preparation. DNA sequencing platforms
utilizing Sanger sequencing are considered the ‘first generation’ of sequencers. Their
limitations triggered the develop the next-generation of sequencing technology.

8.3.1 NGS Technologies

Next-generation sequencing (NGS), or second-generation sequencing, has the univer-
sal characteristics of being massively parallel, meaning that the amount of sequence
data generated from a single sample is immensely larger than that of Sanger sequenc-
ing. Sequencing projects that take years with Sanger methods can now be com-
pleted in weeks. One problem is that the produced reads are much shorter (around
100bp compared to 1000bp with Sanger sequencing) and less accurate than Sanger
sequences, but these shortcomings are somewhat made up for by the much higher
degree of sequencing coverage. Coverage, or read depth, is the average number of
reads covering each nucleotide in the assembled sequence. Note, however, that this
is still only an average, some nucleotides may still be completely uncovered.

The workflow of the most common NGS techniques is similar, even if the details
differ. The first step is the sample preparation, in which the DNA sample is conversed
into a sequencing library. This is done by using a wide variety of protocols, but the

8.3 Next-Generation Sequencing (NGS) 335

common feature is that the DNA (or RNA) is fragmented into smaller segments
(50–500bp) and fused (ligated) to small DNA oligonucleotide ‘linkers’ (or adap-
tors) that can be identified by specific primers. Most imaging systems cannot detect
single fluorescent events, which iswhy the templates are amplified using polymerase-
chain reaction (PCR), and attached/immobilized to a solid surface or support. This
immobilization results in a spatial separation of the templates that allows the running
of millions of sequencing reactions in parallel. One problem with PCR amplifica-
tion, however, is that it creates mutations in the clones that may appear as sequence
variants. An alternative approach, developed by Pacific Biosciences, is a singlemole-
cule technique in which the DNA template and a single active DNA polymerase are
immobilized directly without amplification to the bottom of an optical waveguide,
which is sensitive enough to detect a single fluorescently labeled nucleotide as it is
incorporated by the DNA polymerase.

The second step in theNGSsequencing is the actual sequencingof the immobilized
templates. This is done in different ways with different pros and cons regarding accu-
racy, speed, and read length. The Illumina (formerly Solexa) systems are currently
dominating the market, with SOLiD (Life Technologies) in second place, and 454
(Roche), SMRT (Pacific Biosciences) and Complete Genomics sharing the remain-
ing market. The Illumina/Solexa platform [10] uses the sequencing-by-synthesis
approach, which similarly to Sanger sequencing uses a kind of chain-termination
nucleotides. The main difference is that the termination is reversible. The attached
nucleotide is blocking the elongation of the chain, its fluorescent dye is recorded
and removed, and the block is removed chemically to allow the synthesis to con-
tinue. This cycle is iterated until the entire DNA template is sequenced. The SOLiD
platform by Applied Biosystems (now part of Life Technologies) [166] performs
a sequencing-by-ligation technique, utilizing DNA ligase, rather than DNA poly-
merase. DNA ligase is an enzyme that catalyzes the joining of separate DNA frag-
ments. Instead of using modified nucleotides, a pool of all possible oligonucleotides
of a fixed length (typically 8–9bp) are added to the mix, each flourescently labeled
according to which position that will be sequenced. Sequence-by-ligation has the
advantage of being easy to implement and only using off-the-shelf reagents. Disad-
vantages include very short read lengths, and a problemwith palindromic sequences.
The 454 Genome Sequencer by Roche Diagnostics [94], is based on pyrosequenc-
ing. Pyrosequencing utilizes the fact that when a new base is incorporated by DNA
polymerase a pyrophosphate group is released, which can be detected as emitted
light using fiber-optic technology. Single molecule real time (SMRT) sequencing by
Pacific Biosciences is considered a third generation technology [36]. It is also based
on the sequencing-by-synthesis approach. A unique feature is that no clonal ampli-
fication is required due to a highly sensitive fluorescence detection system. During
synthesis a nucleotide is incorporated by the DNA polymerase, its fluorescent signal
is detectable for a short time and then the dye tag is cleaved off and diffuses out of
the observation area. Another advantage is that the sequencing occurs in real time,
which reduces the sequencing time to hours rather than days or weeks. The resulting

336 8 Annotation Pipelines for Next-Generation Sequencing Projects

read lengths are comparable to or even longer than those of Sanger sequencing, but
the technology still struggles with high error rates. However, on the plus side, the
artifacts of PCR amplification are avoided.

The process of sequencing a novel genome for the first time is called de novo
sequencing. A common ingredient in such sequencing projects is the generation of
mate-pair libraries. Mate-pairs are sequence reads generated in pairs from each end
of a DNA fragment, keeping careful records of the fragment lengths, which can be
several kilobases. Thus, mate-pair information can be utilized to span long repeat
regions and gaps in the original assembly, and is used by most of the current de novo
assemblers. This will be discussed more in the next section.

8.3.2 Genome Sequence Assembly

With current sequencing technologies it is impossible to sequence long DNA frag-
ments directly. For capillary methods (Sanger sequencing) the upper limit is about
1,000bp, and for next-generation technology much lower. Thus, longer sequences
must be divided into smaller fragments, and then reassembled into the sequence of
the DNA template. Two main principles are used for this: chromosome walking, and
shotgun sequencing. In chromosome walking the entire DNA fragment is sequenced
in consecutive overlapping segments, piece by piece. The procedure starts from a
short piece of known sequence, called a primer, and then the first 1,000 bases are
identified. Then a new primer is generated, complementary to the final 20 bases of
the last sequenced segment, and another 1,000 bases are identified, and so on until the
entire DNA template is sequenced. However, since for large-scale sequencing this
method becomes intractable, it is typically mostly used to close gaps, or to sequence
a disease gene located near a specific marker. For large-scale sequencing typically
shotgun sequencing is used, a method named by its analogy with the random firing
pattern of a shotgun, and which was developed in the 1970s by Frederick Sanger. In
shotgun sequencing, the DNA template is broken up into smaller random fragments,
which are then sequenced individually to obtain sequence reads. By repeating the
shotgun fragmentation several times, multiple overlapping reads are obtained for the
same DNA template. The problem of sequence assembly is then to reconstruct the
original DNA template by joining the reads together as in a huge, redundant jigsaw
puzzle. The reads are joined together into larger contiguous sequences, or contigs, by
means of their overlaps, the contigs into larger scaffolds, and ultimately the scaffolds
are merged into the complete DNA template.

8.3.2.1 Sanger Sequencing Assembly

For capillary sequence assembly, or Sanger sequencing, the two main types of
algorithms used are the overlap-layout-consensus (OLC) approach, and the de Bru-
jin graphs approach. There are several reviews and comparisons of these methods

8.3 Next-Generation Sequencing (NGS) 337

[44, 87, 99], and there are numerous successful implementations including Arachne
[8], Atlas [59], Celera Assembler [106], CAP3 [66], Euler [121], PCAP [67], Phrap
[33], RePS [170] and Phusion [104]. The OLC method comprises three steps: the
overlap step, the layout step, and the consensus step. In the overlap step all read pairs
are compared, in both strand orientations, to detect overlaps between the reads and
to create an overlap graph, also called an assembly graph. The nodes in the graph
represent the reads, and an edge connecting two nodes signifies an overlap of two
reads. The overlap step is heavily computer intensive as it scales quadratically with
the number of reads. However, Arachne has a sort-and-extend strategy that vastly
improves the situation [8]. In the layout step the overlap graph is compressed using
principles of graph theory. An assembled sequence corresponds to identifying a path
through the graph that visits every node exactly once, also known as a Hamiltonian
circuit. This problem is NP-hard, meaning that except for very small graphs, it is
practically impossible to search for an optimal solution. As a result, OLC algorithms
use various heuristics to simplify the overlap graph, typically by merging “clearly
overlapping” reads into contigs. Such clearly overlapping reads can be identified
as they tend to form highly connected clusters, or subgraphs, in the overlap graph.
The merging ends when reaching a fork, which is a node that is connected to two
or more nodes that do not share an overlap. Forks typically signify the boundary
between repeated and unrepeated segments. Greedy strategies, such as used by the
OLC-based assemblers Phrap [33] or CAP3 [66], simply merge strings in the order
of the highest scoring overlap, until a single string remains. There is no guarantee
that the optimal solution is reached, however, as the result depends heavily on the
scoring scheme and in particular on how equally scoring overlaps are ordered.

Analternative approach to the layout step inOLC is to utilize deBrujin graphs [31].
De Brujin graph assemblers take the reads and cut them into even smaller equally-
sized k-tuples, i.e., sequence segments of length k. The collection of (k − 1)-tuples
occurring in these k-tuples (two overlapping in each) constitute the nodes of the de
Brujin graph, and an edge between two nodes correspond to an overlap in an existing
k-tuple. For instance, for a 3-tuple CGT, the corresponding 2-tuple nodes connected
by an edge would be CG and GT. The assembly problem now entails finding the
shortest path (or circuit) that visits every edge, also known as the Eulerian path
[120]. Finding a Eulerian path is much less demanding than finding the Hamiltonian
path, and also, if a Eulerian path exists it is the optimal one. Moreover, the overlap
step, that of pairing all reads in the search for overlap, can be eliminated altogether
when using de Brujin graphs.

Repetitive sequences cause major problems in sequence assembly, often creating
erroneous circuits and tangled graphs. After the initial merging of reads, the resulting
contigs typically belong to one of two categories: true contigs and repeat contigs.
True contigs consist of unambiguously assembled reads. Repeat contigs are contigs
that correspond to several different regions in the genome, and can often be identified
through an unusually high coverage rate. The repeat contigs are typically put aside
for later use, while the true contigs are joined into larger scaffolds, typically using
mate-pair or paired-end information. These terms are often used interchangeably,
but represent different protocols. In both cases the reads come in pairs, representing

338 8 Annotation Pipelines for Next-Generation Sequencing Projects

opposite ends of the same DNA fragment. The main difference is the fragment size,
where paired-end fragments are typically shorter (<1 kb) than mate-pair fragments
(2–5kb). However, both types can be used to aid the assembly. By keeping track
of the distance between the pair of reads, the assemblers can make further links
between reads or contigs. This again is done by using a graph-approach, in which
now the contigs are the nodes, and the edges correspond to the paired information. The
problems here include finding all connected components in the overlap graph or de
Brujin-graph, resolving the strand orientation of each contig to make the assembly
consistent, and laying out the graph on a coherent line (or circle). Again, these
problems are NP-complete, but good heuristics exist. In addition to using mate-
pair information to cover longer regions, another approach is to combine different
sequencing technologies. For instance, the major bulk of the sequencing can be
done using NGS technology, but then be complemented by capillary sequencing.
Several assemblers can combine mixed inputs, or can exploit physical or genetic
map information.

In the final step of the assembly process, the consensus step, the final genome
sequence is determined by using the graph generated in the previous steps. Ideally
a single scaffold remains, and the assembly algorithm can resolve the consensus
sequence by means of the ingoing reads. However, often the assembly still has gaps
due to unresolvable repeats or to insufficient or conflictingmate-pair information.The
resulting assembly is then a fragmented one, composed of a number of scaffolds. This
is the case with many of the recent assemblies, especially when considering larger
eukaryotic genomes [176]. Essentially, only the human and the mouse have reached
the status of finished genomes [79, 102]. Subsequently published genomes, such as
for the rat [124], the dog [88], the rhesus macaque ([125], and the cow [155] are all
only at the level of drafts with about a 6–8 fold coverage using Sanger sequencing,
and with an N50 measure (see below) of about 20–200kbp [176].

8.3.2.2 Next-Generation Sequencing Assembly

When the first NGS technologies were released almost a decade ago, it appeared
doubtful that their short read lengths could be assembled properly to be suitable for
larger scale genomeprojects.However, early investigations showed that re-sequencing
and de novo sequencing with read lengths as short as 20–30bp still could produce
useful, however highly fragmented, assemblies of both prokaryotic and eukaryotic
genomes [174]. The tools developed for Sanger sequencing data, however, turns out
to be less suited for the shorter NGS read datasets. The increased number of reads
makes the problem computationally expensive, and with the shorter read lengths,
sequencing errors have a much larger impact and unique overlaps are more difficult
to find. Moreover, sequence repeats are harder to resolve as they often extend beyond
the read length. Therefore, over the past decade numerous novel assembly strategies,
specialized to NGS reads, have been presented. Already several years ago, Zhang
and colleagues [182] managed to list 24 distinct, academic de novo assemblers, and
more is coming.

8.3 Next-Generation Sequencing (NGS) 339

The assembly procedure for NGS data can be classified into two main areas:
reference-based assembly, in which the sequence reads are mapped to an existing
reference genome, and de novo assembly, where there is no reference and the reads
have to be pieced together by means of sequence similarity and library information
alone. During reference-based assembly, the sequenced DNA fragments are aligned
to a genome sequence from the same organism or a close relative, into a growing
assembly. This approach is used in re-sequencing applications where the objective is
to detect genetic variation between individuals, such as identifying single-nucleotide
polymorphisms (SNPs), or between healthy and disease cells, such as in various
cancers [122]. De novo assembly is used when there is no reference, for instance,
when sequencing novel species, metagenomics samples, or transcriptome samples.
While mapping reads to a reference is a relatively simple task, the absence of a
reference sequence makes matters much more challenging. The following in this
section is dedicated to de novo assembly.

Several problems arise when turning from traditional sequencing strategies to
NGS technologies. The shorter read length inNGSdata compared to Sanger sequenc-
ing results in numerous locations in which there are not enough overlaps between
reads to cover the sequence confidently. One remedy is to increase the level of cover-
age.Mathematicalmodeling shows that for Sanger sequencing of amammalian-sized
genome, a 3× coverage, i.e. an average of three overlapping reads per nucleotide, is
sufficient [78]. However, with NGS read lengths only about a tenth of Sanger reads,
the requirement increases tenfold or more. Also, the higher rates of sequencing
errors also puts higher demands on the coverage. In practice, while Sanger sequenc-
ing project may have used 7–10× coverage, NGS projects tend to use 50× or higher,
due to necessity but also due to the falling costs. No amount of coverage can however
solve the repeats issue.

Repetitive regions are themajor bottlenecks when assembling NGS short reads, in
particular in complex eukaryotic genomes. The repeat elements often extend longer
than each read, making it difficult to link it to the nonrepetitive adjacent sequences
and resolve the multitude of positions the read sequence can originate from. Some
assemblers use paired-end or mate-pair information to resolve repeats and close gaps
in the assembly, such as SSAKE [172], SOAPdenovo [84], ABySS [141], and Velvet
[181]. Some assemblers simplymask out repeats, while others attempt to utilize them
in the later stages of the scaffolding process.

With the inflated number of sequenced reads comes the challenge of a signifi-
cantly increased computational complexity. Some of the major differences between
NGS assembly algorithms lie in how they attempt to reduce this complexity prob-
lem and how they handle repeats. To simplify the assembly task, the assembly
algorithms format the input reads into specific graph data structures. Similarly to
Sanger sequencing assemblers, most NGS assemblers are using the overlap-layout-
consensus (OLC) or de Brujin graphs for their initial data formatting. The first NGS
assembler to employ de Brujin graphs was the Euler assembler [120], followed by
significant improvements in speed and accuracy in assemblers such as Velvet [181]
andALLPATHS [50], and by introducingmessage passing interface parallelization in
ABySS [141]. Examples of overlap-based assemblers include CABOG [98] and the

340 8 Annotation Pipelines for Next-Generation Sequencing Projects

MSR-CA pipeline, however MSR-CA utilizes a de Brujin graph to combine reads
that map to the same nodes and edges, significantly reducing the number of reads
that need to be considered.

One drawback with de Brujin graphs is when cutting up the reads into k-mers, one
looses the information of the longer contiguous sequence, and repeats longer than k
can simply not be resolved. Some assemblers attempt to solve this by adding read
path information, at the cost of computational complexity. Sequencing errors pose
another problem. In a de Brujin graph a single base change in a read changes k of its
k-mers into ones thatmay be rare in other reads. However,many assemblersmake use
of that feature and the topology of the graph to detect and correct such errors [142].
Another alternative is to utilize the concept of a string graph [105], where, similarly
to the OLC method, an overlap graph is generated by considering all pairs of reads.
A difference, however, is that the edges in the graph represent the sequence informa-
tion and the nodes correspond to the beginning or end of overlaps. This way, reads
contained in other reads can be discarded, as they contain no additional information.
Also, overhangs, representing the part of an overlapping read that is not covered in
the overlap, that contain several smaller ones can be discarded, saving memory in
comparison to the overlay graph approach. Non-branching paths in the string graph
are merged into one edge, and, similarly to de Brujin graphs, the genome assembly
solution corresponds to finding the shortest non-branching path that passes through
all edges (or nodes in the de Brujin graph). The subsequent steps are then similar to
the OLC approach. One key point with the string graph is that it shows that cutting up
the reads into k-mers, as done in the de Brujin approach, is unnecessary. While the
string graph does not loose the read information, the disadvantage include the pairing
of all reads in the overlap step. So far, the string graph approach has appeared useful
mainly for smaller genome assemblies. The String Graph Assembler (SGA) [142] is
the first assembler that has made assembly of larger mammalian genomes practical
for the string graph approach. However, with the promise of improved read lengths,
this approach might become more attractive in the future. Each assembly strategy
has its own pros and cons, which can make it the method of preference for certain
applications, while less suitable for others. There are several good reviews with more
details on the different assembly methods. For instance, for de novo genome assem-
bly, a detailed review of can be found in [117], and a benchmarking comparison
between the main strategies in [182].

Proving that NGS technology can be used to sequence large genomes, a major
milestonewas reached in 2010when the de novo assembly of the giant panda genome
was published [84]. It was the first genome of such complexity to be published using
next-generation sequencingmethods. Besides generating interesting data, the project
provided a proof of concept that NGS technology in fact can be used to decipher
a genome sequence of such a complexity. However, although being a monumental
accomplishment, it still contains significantly more gaps than previous mammalian
draft genomes using Sanger sequencing. This proves the need for proper metrics,
adapted to the new type of sequencing data, in order to to characterizes sequencing
and assembly quality in large genome projects.

8.3 Next-Generation Sequencing (NGS) 341

8.3.2.3 Measures of Assembly Quality

When measuring the quality of an assembly, there are two aspects to consider: conti-
guity and accuracy. Generally there is a trade-off between the two. When it comes to
the contiguity and completeness of an assembly, one of the most important measures
is the N50 summary statistic. The N50 statistic is defined as the largest contig length
such that 50% of all the assembled nucleotides reside in contigs of that length or
longer. It is computed by simply length-ordering all the assembled contigs and scaf-
folds, and, starting from the longest, summing the contig lengths until the sum equals
50% of the total assembly length. The N50 number then corresponds to the shortest
length in this list. Naturally, such an N-statistic can be computed for any percentage
level, but the N50 is the common choice. It basically corresponds to the mean contig
length, but with greater emphasis placed on the longer contigs. Generally, an N50
measure of around the median gene length in that organism is considered a decent
target for annotation, as about 50% of the genes will then be completely contained
in the assembled contigs. Typically two different N50 statistics are computed, for
contigs and for scaffolds, respectively. Note that the N50 relates to the assembled
length, and not to the actual genome size. Therefore, comparisons of N50 measures
between assembled organisms are usually not informative. When the genome size is
known (or estimated) the NG50 statistic can be used instead of the N50, relating to
the actual genome size instead of the assembled size. Moreover, while a higher N50
generally means a better assembly, a poor assembly with erroneously joined reads
may also result in a high N50. Note also that the procedure for which contigs to
include or exclude in the computation is not strictly defined and may vary between
projects. Commonly singletons, i.e., contigs consisting of a single read or read pair,
are discarded, but often contig lengths below a certain threshold are also excluded
from the assembly. As an example of why not to blindly rely on the N50measure, the
great panda genome reported a contig N50 of 40kbp and a scaffold N50 of 1.3Mbp
[84]. However, these numbers were computed on an assembly including only two-
thirds of the highest-quality data, and the resulting sequence was still fragmented in
3,805 scaffolds, which can be compared to the dog assembly that had less than 100
scaffolds [88].

In addition to the N50 statistics it is important to report the amount of gaps. In
the final assembly the scaffolds consist of linked contigs with the gaps filled with
‘N’s. Thus, two assemblies may have the same scaffold N50 but may differ heavily
in the amount of gaps. Another important measure is the percent genome coverage,
referring to the percentage of the genome that is contained in the assembly. A genome
coverage of about 90–95% is generally considered good, depending on the level of
repeats in the genome, as these typically are difficult both to sequence and to resolve
in the assembly. Gene coverage can also be measured, representing the amount of
genes included in the assembly. Typically the gene coverage is substantially higher
than the genome coverage, since the repetitive regions usually are gene poor.

Regarding the accuracy, or correctness of an assembly, there is no standardmetric.
Several attempts to devising such metrics have been made, but they are typically
computed in relation to a reference sequence. However, with the growing wealth of

342 8 Annotation Pipelines for Next-Generation Sequencing Projects

de novo genome sequences, there is a need for accuracy metrics that are not based on
the alignment to a reference genome. The correct contiguity measure (CC50) gives
a measure of the long-range connectivity of the assembly [35]. For two positions xi

and x j , where i < j , in the reference sequence, a scaffold pair yk and yl , where k < l
are said to be correctly contiguous if yk align to xi and yk to x j in the assembly. The
CC50 is then the longest distance between any correctly linked pair yk and yl such
that the proportion of correctly contiguous pairs is at least 50%. In other words, the
CC50 measures the distance at which 50% of the contigs are situated correctly in
reference to one another. Note that a correctly contiguous pair need not be covered
by the same contig or scaffold path, and that there may be numerous assembly errors
in between them.

One can always expect that there is a trade-off between a high N50 measure and
the sequencing accuracy. It has also been pointed out that the assembly quality is
sensitive to the number of sequence errors only when the coverage is low [182]. The
Assemblathon is a contest that aims to improve methods and metrics for genome
assembly by letting scientific teams compete with their softwares on the genomes
made available by the organizers. The first Assemblathon took place in 2011 [35], in
which a simulated read setwas used, created by subjecting a human genome sequence
to simulated evolution. The three most successful softwares were ALLPATHS-LG
[50], SOAPdenovo [84] and SGA [142], although there was no assembly program
that was far ahead of the other. One issue with the Assemblathon dataset was that
the repeat regions were about a half of the original human DNA, meaning that the
repeat issueswere not fully tested, and allmethodswere expected to doworse onmore
realistic data. In contrast, theGenomeAssemblyGold-StandardEvaluations (GAGE)
[132] evaluated genome assemblies and assembly algorithms on real data from high-
throughput sequencing machines, providing a snapshot of the current status of the
field. In contrast to the Assemblathon all protocols and parameter settings used in
the project were complete transparent.

The second Assemblathon, which took place in 2013, provided sequence data
from three vertebrate species: a bird, a fish and a snake [15]. From over 100 different
metrics, ten measures were chosen to assess the overall assembly quality. Among
others the amount of gene-sized scaffolds assembled, which is of interest for gene
finding purposes, was selected as a metric. Also, the CEGMA set of 458 core genes
[115, 116] was mapped to the assemblies to estimate how many genes that might
be present in the assembly. The summary of Assemblathon 2 was that many of the
algorithms produced useful assemblies, but there is still a lot of variation between
the results indicating much room for improvement.

8.3.3 NGS Applications

Since the beginning a decade ago there has beenmany technical improvements of the
NGS technology, which have led to its widespread use, breaking barriers and revolu-
tionizing many application fields such as genomics, transcriptomics, metagenomics,

8.3 Next-Generation Sequencing (NGS) 343

proteogenomics, gene expression analysis, noncoding RNA discovery, SNP detec-
tion, and protein binding sites detection [39]. The NGS technology has had a major
impact on basic research, inspiring scientists to address an increasingly diverse range
of biological problems, such as variant discovery by re-sequencing genomes, tran-
scriptome signature studies (RNA-Seq) [171], genome-wide profiling of epigenetic
marks (ChIP-Seq) [175], and species classification and novel gene discovery by
metagenomics studies [119].

Since this book focuses on computational gene prediction, the NGS application
areas most relevant to us are gene prediction in de novo genomes, RNA-Seq, and
metagenomics. Gene prediction in de novo genomes have to take into account the
new types of data, such as the difficulties with short contigs, the various types of
sequencing errors, and the parameter training and accuracy measure issues of novel
genomes. RNA-Seq is relevant because it can be utilized to guide the gene predic-
tion in de novo assemblies, and metagenomics with its additional issues to perform
gene prediction in multi-species sequence datasets. In what follows we give a brief
overview ofmetagenomics andRNA-Seq, followed by a littlemore thorough account
for gene prediction in de novo genomes.

8.3.3.1 Metagenomics

Metagenomics, or environmental genomics as it is also called, is a fairly new field
surfacing on the backwaters of NGS sequencing, and can be defined as “the applica-
tion of modern genomics techniques to the study of communities of microbial organ-
isms in their natural environments” [24]. It emerges from the ability to sequence any
given environment sample at large scale, without an intermediate laboratory culture,
and its ultimate goal is to get a more comprehensive understanding of the ecosys-
tem. The term metagenomics literally means “beyond the genome.” It stems from
the idea that the gene set obtained in an environmental sample can be regarded as a
metagenome, which in many ways can be treated as a single genome [57, 127].

An early attempt to shotgun metagenomics was reported in 2002 [17], in which
uncultured marine viral communities revealed high levels of diversity through
genome sequencing. However, real progresswasmade in the field in 2004, in terms of
two different large-scale environmental sequencing projects. One project large-scale
sequenced microorganisms in seawater samples from the Sargasso Sea [169], study-
ing gene content, diversity, and relative abundance in the sample, and the other, by
sampling acidophilic biofilm, sequenced a number of bacterial and archaeal genomes
that previously had resisted culturing attempts [165]. Since then the metagenomics
field has grown into its very own discipline, with applications as diverse as ecology
and environmental sciences to chemistry and human health [93]. Notable examples
include the sequencing of the human gut microbiome [47] and the metagenomic
analysis of biomass deconstruction of the cow rumen [61]. With these studies and
other similar projects it has become evident that in the understanding of the biology
of higher organisms, it is not enough to understand its genetics with all its genome
products and signaling networks, we also need to understand its microbiome. A very

344 8 Annotation Pipelines for Next-Generation Sequencing Projects

illustrative example is the genome sequencing of the great panda [84]. Although
being classified as a carnivore, the diet is primarily made up of bamboo. However,
sequence analysis has shown that while having all the necessary genetic components
of a carnivorous digestive system, the great panda lacks the necessary enzymes for
complete digestion of cellulose. Thus, the unusual dietary restriction of the great
panda does not seem to be dictated by genetics, but rather must depend on its gut
microbiome composition. The human body consists of the order of 1013 cells [12],
while it containsmore than 1014 microorganismswith a collectivemicrobiome, which
in turn constitutes more than 100 times as many genes as in the human genome [47].
Thus, humans can be seen as “super-organisms”with a fusion of human andmicrobial
metabolism, and to understand all processes in the human body we need to map both.

With the emergence of next-generation sequencing, sequence-based metage-
nomics has dramatically accelerated. Single genome studies using capillary sequenc-
ing technology have many advantages, particularly regarding the assembly and the
downstream bioinformatics analyzes. However, the organism under study needs to be
cultured before the sequencing can take place, which is a major limitation in micro-
biology, as only a few percent of existing microbes can undergo culturing. Using
NGS technology, environmental samples of microbial communities can be cloned
and sequence directly, without the intermediate step of a laboratory culture. How-
ever, current analyzes still rely heavily on computational tools originally designed
for capillary sequenced microbial genome projects. One of the biggest challenges of
metagenomics, besides the general NGS problems of large datasets and short read
lengths, is the high species complexity in the samples.

Some of the main bioinformatical steps involved in a metagenomics study are:
sequencing, assembly, taxonomic binning and classification, and functional annota-
tion. In the sequencing step it is important to extract DNA that is representative to
the sample, and large enough amounts of high-quality nucleic acids for library con-
struction and sequencing. In the assembly step, if the aim is to recover the genomes
or obtain full-length coding sequences (CDSs) of the uncultured organisms, then
a read assembly will be performed to obtain longer contigs. As with NGS in gen-
eral, metagenomic assemblies can be reference-based or de novo. Reference-based
assembly works well if closely related reference genomes are available, while more
distant relations will create a more fragmented assembly. De novo assemblies are
typically based on de Brujin graphs, such as in Velvet [181] or SOAPdenovo [84],
and typically require large computational resources. Current assembly programs,
however, are designed to deal with single genome sequences and should be applied
with caution, since microbial communities typically include high diversity also on
the strain or species level, which might lead to suppression of contig formation in
heterogeneous regions. Examples of softwares trying to deal with this areMetaVelvet
[108] and Meta-IDBA [118], which both attempt to identify subgraphs within the
assembly graph that correspond to related genomes.

Taxonomic binning involves the partitioning of sequences into “species bins”, or
operational taxonomic units (OTUs). This step is very important in metagenomics,
as information of the taxonomic origin gives access to the evolutionary history and
the ecological roles of the microbes in the given community. The binning step is

8.3 Next-Generation Sequencing (NGS) 345

very challenging, however. When analyzing metagenomics samples from soil, water,
or intestinal tracts, the sequence coverage rarely reaches levels that will make an
assembly practically useful. Themajority of reads remain unassembled, andwill thus
be classified solely based on its rather short sequence. The size of the data poses the
same problem here as in any other step involving NGS data. Moreover, the novelty of
themicrobes involved also hampers the binning process, as no referencematches will
be found in the sequence databases. In addition to all this, the diversity of available
binning tools presents a challenge in itself. Binning algorithms can be divided into
similarity-based and composition-basedmethods. The similarity-basedmethods vary
in choice of reference database, type of search algorithm, or how the databasematches
are processed into a taxonomic assignment. Popular composition-based tools include
MEGAN [69], SOrt-ITEMS [100],MG-RAST [49], CARMA [112], andMetaPhyler
[89]. Composition-based methods also use reference databases for their sequence
partitioning, but can in additionbedivided into supervised andunsupervisedmethods,
basedonwhether theyuse a referencedatabase or not in their initial parameter training
procedures. Popular tools include PhyloPhytia [97], NBC [128] and Phymm [16].
There are also a number of binning tools that combine compositional and similarity
information, such as PhymmBL [16] and MetaCluster [82].

Before the functional annotation can take place the genes need to be identified.
As we have seen in previous chapters in this book, many methods and tools have suc-
cessfully been developed for gene prediction in completed genomes or long enough
contig sequences. However, again due to the fragmented nature of the data, as well
as the high level of sequencing errors compared to finished genomes, these tools are
not well suited for metagenomics projects. A number of tailor-made metagenomic
prediction tools have been developed, including FragGeneScan [126], MetaGene-
Mark [97], MetaGeneAnnotator (MGA) [110] and Orphelia [63]. FragGeneScan is
described in a bit more detail below.

After the gene prediction, the predicted coding sequences, which can include par-
tial gene stretches, are typically matched against databases of annotated data. Due to
the size of a typical metagenomic dataset, manual curation is typically not possible.
However, automated annotation, such as running a BLASTX search for each open
reading frame (ORF), is also very expensive computationally, while at the same time
less demanding approaches have little success on the short read lengths involved.
Thus, faster and more robust algorithms are badly needed. Coding sequences that do
not receive a functional classification are referred to asORFans. Some of these might
simply be false predictions, while some might be true genes with yet unknown bio-
chemical function, or genes that although lacking known sequence homologiesmight
structurally match known protein families or folds. After the functional annotation,
a natural next step is the reconstruction of biochemical and regulatory pathways.
However, this lies outside the scope of this section, instead confer [32].

The field of metagenomics will only continue to grow, and the need for suit-
able and efficient analysis and data management tools grows with it. Metagenomics
holds great promises in revealing the massive microbial diversity present in our

346 8 Annotation Pipelines for Next-Generation Sequencing Projects

environment, and perhaps provide new insights and interesting molecules for future
therapeutic and biotechnological applications. For a good review on the current status
of metagenomics analytical tools and databases, see [75].

FragGeneScan: Gene Prediction in Metagenomics Data

Metagenomic gene prediction is of utmost importance as the mapping of the genetic
components in a microbial community can help elucidate the activities and interac-
tions of these components, and from there the metabolic and signaling pathways can
be reconstructed and identified. However, the gene prediction problem in metage-
nomics data is as challenging as ever. Traditional gene prediction tools developed for
application to finished sequences and complete genomes show a significant decrease
in performance when applied to metagenomics data. The main reasons are the frag-
mented nature of the data, the high diversity of the sequences in the sample, and the
higher error-rate in the sequence reads. Due to the high diversity and the short read
lengths, the resulting assembly usually consists of a significant portion of unassem-
bled reads. This is then the data set we are left with to perform gene prediction on.
Moreover, not only are we facing novel data with very limited information on how to
train our algorithms. The datasets can consist of a large number of different species,
ranging over different phyla, and with high diversity in all genome characteristics
including sequence composition and genome structure. On top of it we can expect a
significant rate of sequencing errors thatwill distort our view. Themost commongene
prediction approach in metagenomics is the similarity-based, performing homology
searches of potentially coding sequences against known protein databases. However,
novel genes are not detected this way, although this is one of the main objectives of
metagenomics, and in the highly diverse and largely unexplored microbiomic world
we might expect quite a few of those.

FragGeneScan [126] is designed to take on these challenges, and combines codon
usage with sequence error models in a hidden Markov model (HMM). NGS reads
can have error rates up to 3%, some of which can cause frameshifts and thus alter
and disrupt the gene prediction [62]. FragGeneScan is an open reading frame (ORF)
detector that can predict partial gene fragments and correct for frameshifts caused by
insertion and deletion errors in the reads. The underlying HMM combines measures
for codon usage bias, sequencing errors and start and stop codon patterns. In order
for a gene to be predicted its putative coding region must be longer than 60bp, and
the region must be bounded either by a start or a stop codon or by the read boundary.
Whether the putative regions matching these criteria are actually predicted is then
up to the underlying HMM. The FragGeneScan state space is illustrated in Fig. 8.2.

The figure only shows the forward strand with four main states. The full model
consists of seven states, three for each strand and a joint intergene state. The reverse
strand can be included by simply adding a mirror image of the forward strand,
joined at the intergenic state. The states in Fig. 8.2 correspond to intergene (large
diamond), start and stop codons (circles), and a gene state model (shaded area). The
gene state model in itself consists of six match states (diamonds), six insertion states

8.3 Next-Generation Sequencing (NGS) 347

Inter-
gene

potStratS

M1 M2 M3 M4 M5 M6

I1 I2 I3 I4 I5 I6

D1 D2 D3 D4 D5 D6

Fig. 8.2 A simplified version of the FragGeneScan state space, with only the forward strand
showing. Themainmodel consists of four superstates, the intergene (large diamond), the inner gene
state (shaded), and the start and the stop codons (circles). The gene state model in itself consists
six match states (diamonds), six insertion states (triangles), and six deletion states (squares)

(triangles), and six deletion states (squares). The insertion and deletion (indel) states,
which resemble the structure in multiple alignment HMMs (see Sect. 3.2.6), are there
to account for indel sequencing errors that may cause frame shifts. The resulting gene
state correspond to a six-periodic inhomogeneousHMM.When dealingwith finished
sequences, where the sequencing error rate is expected to be low, one can simply set
the transition probabilities to the indel states to 0. The match states use a second-
order (trinucleotide) Markov model to account for the codon structure, while the
intergene state uses a first-order (dinucleotide) Markov model. The stop state simply
consists of frequencies for the three possible stop codons TAA, TAG, and TGA,
based on the training data. The start state is more complex. In bacteria the true start
codon is often surrounded by numerous putative ones. FragGeneScan handles this by
scoring the 63bp surroundings of each putative start codon using a position-specific
scoring matrix (see Sect. 5.4.1), which considers the AT-content, the Shine-Dalgarno
box (see Sect. 5.3.2), an a triple-A downstream box [136]. The probability of each
potential start codon is computed using a naive Bayesian classifier (see Sect. 5.4.5)
by fitting two Gaussian distributions to the training set of real and false start codons,
respectively.

A set of 139 microbial complete genomes were used to train the parameters of the
FragGeneScan HMM in [126], and a linear regression model was applied to train the
parameters for varying GC-content.When applied to a new sequence, FragGeneScan

http://dx.doi.org/10.1007/978-1-4471-6693-1_3
http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5

348 8 Annotation Pipelines for Next-Generation Sequencing Projects

computes the GC-content of the input read and uses the corresponding precomputed
parameter set for gene prediction. The parameters of the indel states depend on the
sequencing method used. Currently, there are different parameter sets available for
Sanger sequencing, 454, and Illumina. Parameters for four sequencing error rates
has been estimated: 0.5 and 1% for Sanger sequencing and Illumina, and 1 and 3%
for 454 sequencing, respectively.

8.3.3.2 RNA-Seq

The transcriptome is the set of all possible RNAproducts in an organism, in a specific
cell tissue, or in a single cell. Typically, the definition includes the set of transcripts
as well as their quantity, and typically the data is extracted from cells in a specific
developmental stage or physiological condition. The key issues of transcriptomics, or
expression profiling as it also is called, are to determine all the transcripts of a species,
determine their positions and the underlying gene structures in the genome, and to
quantify their expression levels under different conditions. This has traditionally been
performed using high-throughput DNAmicroarray technology. One disadvantage of
microarrays, however, is that they require an existing reference genome, which limits
the detection of transcripts to already known sequences.

Next-generation sequencing has provided a powerful alternative to microarray
analysis. This technology, termed RNA-Seq (RNA sequencing), or whole transcrip-
tome shotgun sequencing, has the advantage that transcripts can be characterized
without any prior knowledge of the origin of the genomic sequence, which is partic-
ularly convenient when considering novel genomes. RNA-Seq has higher resolution
than microarrays and can identify novel transcripts and isoforms, alternative splice
sites, allele-specific expression, anddetect rare transcripts, all in the sameexperiment.
Also, it does not require sequence probes or primers (specific short oligonucleotides)
to hybridize with, which is useful as they tend to bias the sample [171].

RNA-Seq uses NGS technology for single-end or paired-end sequencing, and the
produced reads are either mapped onto a reference genome or a transcriptome, or
assembled de novo. The result is both a map of the transcriptome structure and of the
gene expression levels. The resolution is down to single-base precision, meaning that
the exact transcription boundaries can be detected. The background signal relative
to microarrays is very low, because RNA-Seq reads can be unambiguously mapped
to the corresponding genomic region. Moreover, while microarrays have a limited
detection range and lack sensitivity both for very low and for very high expression
levels, RNA-Seq does not have an upper limit for transcript quantification, resulting
in a large dynamic detection range.

RNA-Seq is, however, faced with similar challenges as for other applications
of NGS technology. Due to the short read length, larger RNA molecules become
fragmented and must be reassembled. Moreover, different fragmentation techniques
generate different biases in the dataset. For instance, while RNA fragmentation expe-
riences depletion of the transcript ends, cDNA fragmentation is biased toward the 3’
end of the transcripts [101, 107]. The bioinformatic challenges are also similar to

8.3 Next-Generation Sequencing (NGS) 349

other NGS applications, regarding the storing and processing of large quantities of
data, and the handling of low-quality reads and sequencing errors. Moreover, in addi-
tion to the problems of resolving alternative splicing, that of trans-splicing becomes
an issue. Trans-splicing refers to splicing events that takes place between sequences
originating fromdistant positions in the genome, or between exons from two different
genes. Therefore, due to the short read lengths, trans-splicing will cause many reads
to match multiple locations. Moreover, while RNA-Seq is capable of detecting rare
transcripts, considerable sequencing coverage is required for this. However, coverage
is harder to compute for transcriptomic data than for genome sequencing, because
the true quantities of the transcripts are usually not known, and because the transcrip-
tion levels vary across the genome and over sequencing conditions. Despite these
challenges RNA-Seq provides an unprecedented opportunity regarding the detection
of novel and rare transcripts, quantification of splicing diversity, and the capturing
of transcriptome dynamics across different tissues and sequencing conditions.

Naturally, RNA-Seq data can also aid in gene prediction. Sequencing of RNA
products and the reconstruction of full-length cDNAs have been considered as the
gold standard for the discovery and annotation of complete gene structures in eukary-
otic genomes [54]. However, before the introduction of NGS technology, this task
was very labor- and cost-intensive. With the advents of RNA-Seq, genome annota-
tions can be substantially improved both by correcting already existing predictions,
and by discovering novel genes and transcript variants. The use of RNA-Seq in gene
prediction can be done either by its inclusion of the gene prediction algorithm in a
homology-based manner, or directly by producing spliced alignments of the RNA-
Seq reads to a reference genomeand a reconstruction of the transcripts.An example of
the latter is the genome annotation update of the cucumber genome Cucumis sativus
var. sativus L. The draft genome was originally published in 2009 [68], in which
the genome sequence was assembled using a combination of Sanger and Illumina
sequencing. The gene prediction was performed by integrating multiple de novo pre-
dictions with spliced alignments of protein and transcript sequences to the genome,
resulting in a consensus gene set of 26,682 genes. In 2011 the cucumber annotation
was updated using RNA-Seq [86] bymapping the RNA-Seq reads onto the cucumber
genome sequence using Bowtie [80] and TopHat [162], and then reconstructing the
transcripts using Cufflinks [163]. In this update, the RNA-Seq reads came from 10
cucumber tissues, and the reannotation resulted in 23,248 identified protein coding
genes of which 8,700 were modified gene structures and 5,285 were novel genes.

8.4 NGS Genome Sequencing Annotation Pipelines

Sequencing has become easy and cheap,while at the same time the annotation process
has becomeharder. There are several reasons for this. The assembly difficulties for the
shorter read lengths discussed above results in shorter contigs, which complicates
the gene annotation as the gene models tend to be more cut up. A novel genome
that lacks known evolutionary close relatives makes the training, optimizing and

350 8 Annotation Pipelines for Next-Generation Sequencing Projects

configuration of prediction tools difficult. The use of ESTs and RNA-Seq data holds
promise, but merging different sources into a consensus training or prediction set is
nontrivial, as there is no reference sequence to compare to. A myriad of assembly,
analysis and visualization tools is emerging, and in fact not much bioinformatics and
computational biology skill is needed to produce a genome annotation. However,
interpreting the results is not nearly as easy. Here we briefly discuss the procedure
and issues with NGS annotation pipelines. A more thorough review of the process
is given in [180].

8.4.1 Assembly Quality

First, one needs to decide if the assembly is suitable for annotation. Standard draft
assemblies that meet the minimum standards for submission to public databases,
typically contain large portions of poor quality sequence and may even include con-
taminating sequences [23]. Amuch better target for annotation is a high-quality draft
assembly, which has an overall coverage of at least 90% and efforts have been made
to filter out contaminations. A good guide of assembly quality is the N50 summary
statistic discussed earlier. Recall that the N50 measure defines a contig (or scaffold)
lengthwhere 50%of the assembly resides in contigs (scaffolds) of at least that length.
In other words, the higher the N50 the better the assembly. A rule of thumb is that the
N50 scaffold length needs to be at least around the average gene size of the organism
in question, because in such an assembly about 50% of the genes will be covered
by a single scaffold. Average gap size and average gap number per scaffold are also
useful measurements, as too many gaps will cut up the genes, interrupt exons, and
distort the annotation.

8.4.2 Repeat Masking

Some of the biggest challenges with NGS assembly and annotation are posed by
repetitive sequences, i.e sequences that appear in identical or highly similar copies
throughout the genome. In particular eukaryotes tend to be very repeat rich. Of the
human genome, for instance, nearly half is covered by repeats, and the maize has
over 80% of its genome residing in transposable elements [164].Moreover, the study
of repetitive elements is in itself an interesting research area, both in terms of the
biological meaning and evolutionary history of repeats, and in terms of developing
methods detection methods that evolve with the sequencing technologies.

Repetitive sequences can roughly be divided into two categories: low-complexity
repeats and interspersed repeats. Low-complexity repeats consist of stretcheswhere a
handful of bases are repeated in numerous subsequent copies. Such sequences contain
very little information but can be very long,with hundreds or thousands of repetitions,
especially around the centromere or at the telomeres of a chromosome. Examples of

8.4 NGS Genome Sequencing Annotation Pipelines 351

low-complexity repeats are mono-nucleotide runs like AAAAAA, tandem repeats
like AACTGAACTGAATCTG, and different types of satellite repeats. Interspersed
repeats are more complex in both their structure and function, as they can contain
real genes and have the ability to change location (transpose), often duplicating the
sequence surrounding genes in the process. Interspersed repeats need to be removed
in some manner before annotation, as they tend to confuse the prediction algorithms.
Prohibiting gene prediction in interspersed repeats is sometimes called hard-masking
of repeats, and the practice is to replace interspersed repeat nucleotides with the letter
‘N’ in the genomic sequence file. Low-complexity repeats can also be confusing, as
they often have a GC-content that differ from noncoding sequence and therefore
may resemble the statistical pattern of real genes. A real gene cannot consist of
low-complexity sequence alone, however, but portions of it can. Therefore, low-
complexity repeats are soft-masked, whereby the corresponding genomic sequences
is transferred into capital letters in the sequence file. The gene prediction tool can
then allow the prediction of genes that are partially covered by the soft-masked
region. Repeat masking is typically done by using a software called RepeatMasker
[145], that makes use of species specific repeat libraries and performs a homology
search between the relevant libraries and the input sequence. Repeats tend to be
poorly conserved across species, however, thus novel genomes typically contain
novel repeats not present in the libraries.While low-complexity repeats are relatively
easy to detect also in a novel genome, more complex repeats, such as segmental
duplications, transposable elements, and processed pseudogenes are more difficult
to handle. In particular transposable elements are difficult, as they are structured
similarly to true genes, and may contribute extra exons to the prediction and thereby
corrupting the final gene structure.

Methods to detect transposable elements, or mobile DNA, typically fall into one
of four different categories: homology-based methods, de novo methods, structure-
based methods, and comparative methods [11]. The homology-based approach is the
most common as it capitalizes on the knowledge of previously detected transposons.
Another advantage is that transposons present in a single copy alone cannot be
detected by any other method. The homology-based methods are, however, naturally
biased toward previously detected transposon families and elements of recent activity.
De novo methods attempt to identify mobile DNA without prior information about
structure or similarity to already known transposable elements. The main advantage
is that novel elements can be detected. However, these methods identify repeated ele-
ments in general, which can include highly conserved, duplicated genes in addition
to the targeted transposons. The output must therefore be carefully post-processed to
remove real protein-coding genes from the repeats library. Structure-based methods
uses knowledge about the architecture of different transposable element families, and
focus on common structural features necessary for the process of transposition. This
category of methods share the advantage with homology-based methods of being
able to detect elements of low copy numbers. A limiting factor here, however, is
that each specific type of transposons need to be modeled and implemented sepa-
rately. An innovative fourth category involves a comparative approach proposed in
[22], where transposition events are detected as large insertions in whole-genome

352 8 Annotation Pipelines for Next-Generation Sequencing Projects

multiple alignments of related species. One advantage over the previous threemethod
categories is that this method is not constrained neither to known homologies, nor
to structures or repetition of the element in question. The disadvantage is that the
method relies on the quality of the multiple alignment, which typically is poor in
transposon-rich regions. Also, a transposable element that is more ancient than any
of the aligned genomes, and thus appearing in all of them, will not be detected by
this method.

Processed pseudogenes are even harder to handle. Processed, or retrotransposed,
pseudogenes are pieces of mRNA that are reverse transcribed back into DNA and
inserted into the genome sequence. Thus, it originates from a gene in the genome in
question, andwill highly resemble the structure of a real gene.While originating from
a mature mRNA, a retrotransposon lacks the upstream promoter, and is not viable
as a gene in itself. However, they sometimes contribute exons to existing genes,
via alternative splicing, and should then be part of the gene annotation [6]. For a
discussion on methods for constructing novel repeat libraries for novel genomes,
see [81].

8.4.3 Gene Annotation

Once the assembly is deemed acceptable and repeats are masked, the step annotation
follows. The term genome annotation is typically used for two different purposes,
structural annotation and functional annotation. The structural annotation involves
locating the functional elements in the genome sequence, which includes resolving
the coding region boundaries, the regulatory elements, and the the resulting expressed
product. The functional annotation, on the other hand, seeks to attach biological
meaning to the structural annotation, such as the biological and biochemical function,
the involvement of the gene product in signaling pathways and interactions, and gene
expression information. In what follows we solely focus on the structural annotation.

Gene annotation and gene prediction are often used interchangeably, which is
somewhat misleading. Gene prediction softwares usually only predict the protein-
coding portion of the genes, and typically only report the highest scoring exon-intron
structure for each potential gene. Moreover, a gene prediction typically contains
both complete and partial genes. A proper gene annotation, however, should con-
tain complete gene models only, in combination with detailed information about the
supporting evidence trails and quality control metrics. The gene models should con-
tain transcript boundary information with untranslated regions (UTRs), regulatory
features such as the promoter and the polyA-tail, and information about alternative
splicing. In addition to all this, in a functional annotation a function prediction is
attached to each gene model. Gene annotation is thus much more complex than mere
gene prediction, and an annotation pipeline must be able to handle several differ-
ent types of information, often quite heterogeneous in their form, and combine this
information into a coherent consensus set of gene models. Moreover, the output must
be detailed enough to work as input to genome browsers and annotation databases.

8.4 NGS Genome Sequencing Annotation Pipelines 353

Gene annotation pipelines typically go through three main step: inclusion of
homology information and external data, gene prediction, and the final annotation.
In the first step most pipelines include previously known information such as pro-
teins, ESTs and RNA-Seq data. The information comes both from the organism in
question, as well as from related organisms. Since the computational cost for align-
ing EST and RNA-Seq data is rather high, and since protein sequences are much
more conserved than their underlying nucleotide sequences, other organisms typi-
cally only contribute with protein data. A good resource for protein sequences is the
UniProt Knowledgebase (UniProtKB) [159]. It consists of two sections, Swiss-Prot
that contains manually curated protein records, and TrEMBL that contains automati-
cally annotated records awaiting review [14]. The NCBI taxonomy browser [9, 137]
can be used to assemble additional ESTs and proteins from related organisms. The
sequence data is aligned to the assembly, typically using rapid alignment programs
such as BLAST [4, 76] or BLAT [74]. The matching regions are filtered, based
on sequence similarity and, as EST data for highly expressed genes can be highly
redundant, the filtered dataset is clustered to identify gene-specific sequence groups.
After the filtering and clustering, the remaining sequences may be realigned to the
assembly to aid the exon boundary accuracy of the final annotation. As BLAST does
not have a splice site model, it is typically better to use spliced alignment tools such
as Splign [72] or Exonerate [144]. The running time is considerably higher for these
tools than for BLAST and BLAT, but the improvement is significant.

As mentioned above in Sect. 8.3.3.2, RNA-Seq data can be used to improve the
exon boundaries further and to identify alternatively spliced isoforms. However, the
computational complexity may be difficult to conquer due to the sheer size of such
transcriptome datasets. Therefore, RNA-Seq reads are typically handled in one of
two ways. The reads can be assembled de novo, using tools like SOAPdenovo [85]
or Trinity [52], and then aligned to the genome much in the same way as ESTs are.
The alternative is to align the RNA-Seq reads to the genome directly using tools like
TopHat [162], GSNAP [179] or Scripture [53], and then assemble the alignments,
rather than the reads, using tools like Cufflinks [163].

The next step in the annotation process is typically to run one or several ab initio
gene prediction softwares on the sequence, such as those described in Chap.2. As
we have emphasized earlier, the main advantage with ab initio gene finding is that
no external evidence is needed to run on a new genome. A major obstacle, however,
is that typically such software tools need to be parameter trained on known gene
models that exemplify the structure and composition we are looking for. Given a
proper training set and a high-quality sequence assembly, the sensitivity of ab initio
gene predictors can climb well above 90%. However, the accuracy in novel genomes
is typically much lower. Many programs provide pre-compiled parameter sets for
a number of well-annotated genomes (such as human, mouse, yeast, fruit fly, C.
elegans, A. thaliana, etc.), but for a novel genome there might not be a suitable close
relative among those. Or it may be unknown what a suitable close relative would be
for the genome in question. Also, depending on what kind of organism that is under
study, even a close relative may differ significantly in terms of sequence composition
and genemodel structure. Parameter training can be performed using knownproteins,

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

354 8 Annotation Pipelines for Next-Generation Sequencing Projects

ESTs and RNA-Seq data if available, but requires a significant portion of work. EST
clusters and RNA-Seq assemblies need to be post-processed to identify gene model
structures and splice sites, possibly requiring a lot of manual labor and specialized
software tools. Another approach is to use the CEGMA program [115], which is an
HMM-based program that utilizes a subset of highly conserved, universal eukaryotic
genes to train on. These issues, among others, are what automated pipelines, such as
MAKER [21] described below, attempt to address.

The last step of the annotation process is the actual annotation, where a final set of
predicted gene models is produced. Traditionally this has been done through manual
curation, which results in high-quality predictions, but which is very time consuming
and only works for small datasets with a limited number of gene models consider.
Automated pipelines typically combine the alignments of external evidence, such as
ESTs, proteins and RNA-Seq data, with the results of several different ab initio gene
finders. The combination of different gene tracks is done by some kind of combiner
or chooser algorithm that produces a consensus gene set. Such evidence-combining
approaches range from simply using majority-voting of the ingoing tracks, to more
sophisticated modeling schemes. Examples of combiners include JIGSAW [2], the
EVidenceModeler (EVM) [56], GLEAN [40] and its successor Evigan [90]. JIGSAW
pretty much accepts any raw exon predictions from any source, evidence-based or
ab initio, and combines them using a dynamic programming algorithm similar to
that in generalized HMMs (GHMMs) described in Sect. 2.2. The program utilizes
the confidence scores provided by each prediction method, when available, weights
each exon contribution using a decision tree, and chooses the highest scoring path as
the final prediction set. Like ab initio gene finders, JIGSAW requires a set of known
gene models for each new sequence to be analyzed to train the algorithm parame-
ters. JIGSAW has, among others, been used to annotate the rice genome [158] and
Cryptococcus neoformans [91]. Combining multiple evidence improves the accu-
racy of gene predictions significantly also in well-annotated genomes. When applied
to the human genome, JIGSAW was exactly correct for about 75% and partially
correct for about 97% of the human genes [3]. The EVidenceModeler (EVM) [56]
uses a nonstochastic weighted approach to combine ab initio predictions and protein
and transcript alignments. Besides the genome sequence and the different gene pre-
diction tracks, EVM takes as input a list of weight values, accounting for both the
abundance and the source of evidence, to be applied to each type of prediction. The
reported set of consensus gene structures is a resulting high scoring path through an
acyclic directed graph. EVM can either be trained on a training set or be provided
with a set of weights directly, and was used for the genome analysis of the mos-
quito Aedes aegypti [109] among others. GLEAN [40] was developed to produce a
reference gene set for the honey bee Apis mellifera and uses latent class analysis to
automatically combine disparate gene prediction evidence in the absence of known
genes. GLEAN evaluates the gene predictions from different sources by estimating
the error frequencies in each source, and takes a weighted average for a final consen-
sus prediction. GLEAN was also used for the original annotation of the cucumber
Cucumis sativus genome [68]. Evigan [90], a successor of GLEAN, uses a Bayesian
network to weigh and integrate evidence from various sources. Both GLEAN and

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

8.4 NGS Genome Sequencing Annotation Pipelines 355

Evigan uses unsupervised learning. Even after producing a consensus gene set, the
predictions may need postprocessing. Also, if integrated into a pipeline the gene pre-
dictions and evidence alignments can be combined during run time. Moreover, the
postprocessed gene models can be refined by choosing the ones most consistent with
external evidence such as ESTs, RNA-Seq and proteins. This is the approach taken
by various gene annotation pipelines such as PASA [55] and MAKER [21]. PASA
constructs maximal alignment assemblies by clustering overlapping alignments of
ESTs and full-length cDNAs. It has been used to refine and update the Arabidopsis
gene annotation [55] among other things. The PASA pipeline can both update exist-
ing gene model annotations, by comparing them to the generated alignment clusters,
as well as predict novel gene models based on the full-length cDNAs. MAKER is an
annotation pipeline described in detail in Sect. 8.4.5 below.

When the pipeline has produced a gene annotation, it is often useful to visualize the
results in somemanner. For this purpose there are numerous handy genome browsers.
However, in order to use these one needs to produce the gene annotation output in
the specific format that the browser requires. The GenericModel OrganismDatabase
(GMOD) [156] is an organization that attempts to standardize the gene annotation
process and creates tools for creating, managing, analyzing and visualizing gene
annotations. To be able to utilize GMOD tools the annotation output needs to be
in GFF3 (Generic Feature Format version 3) format [45]. This can be a complex
task, however, as each included feature (e.g. ESTs, repeats, protein alignments, gene
predictions etc.) must include various detailed information in order to be accepted by
the browser. However, once in the correct format the annotation files can be visualized
directly, using tools like GBROWSE [34] or JBROWSE [143], to produce local data
views just like those in for example the UCSC Genome Browser [160]. Moreover,
the JBROWSE browser can be embedded into Wikis for web-based community use,
which simplifies the process of updating and refining annotations.

8.4.4 De Novo Annotation Assessment

Assessing the accuracy of the genome annotation is a vital part of any genome
project as incorrect annotations will propagate throughout subsequent experiments
and projects. However, in novel genome projects where no reference genome is
available, assessment is less than straightforward. A first approach is to use tools like
InterProScan [103] or Pfam [42] to quantify the proportion of the annotated gene
models that include known protein domains. While the relative number of domains
vary between organisms, the estimated domain content may still provide a reasonable
estimate of accuracy. For instance, the domain content for well-annotated proteomes
such as human, the fruit fly D. melanogaster, the roundworm C. elegans, the plant
A. thaliana, and the yeast S. cerevisiae ranges between 57 and 75%, while a poorly
trained gene finder typically produces frequencies as low as 5–25% [65].

A low domain percentage can thus indicate a poor overall annotation quality.
It does not, however, say anything about the accuracy of the actual annotation at

356 8 Annotation Pipelines for Next-Generation Sequencing Projects

hand, but only gives an estimate of the gene coverage. In the same manner as EST
and RNA-Seq data can be useful for training of ab initio programs, it can also
be used to refine the annotation. For instance, if the external evidence contradicts
the predicted exon–intron boundaries of a gene, the gene deserves an additional
examination. Manual assessment of specific genes is usually superior and fairly
straightforward. However, with large amounts of data this process too needs to be
automatized, which is a considerably more complex task than gene prediction. For
one thing, one needs a reliable assessment measure for comparison and reference.
For this purpose, the Sequence Ontology Project [37] has developed several quality
control metrics for gene annotation projects. One such measure is the Annotation
Edit Distance (AED) [38], which measures how compatible the annotation and the
corresponding supporting evidence are.When a reference annotation is available, the
most commonaccuracymeasures are sensitivity (SN) and specificity (SP) described in
Sect. 7.3. The sensitivity is the proportion of the reference annotation that is correctly
predicted, while the specificity is the proportion of the predicted annotation that
is correct. Both these measures are needed to give a comprehensive measure of
accuracy, but as they strive in opposite directions, attempts to combine the two
into a single measures are done in measures like the correlation coefficient (CC)
and approximate correlation (AC). See Sect. 7.3 for details. Naturally, instead of
comparing a given genome prediction to a reference annotation, one can compare
two different predictions of the same genome. The AED is such a measure that
combines the sensitivity and specificity in order to measure the level of agreement
between two annotations, or between an annotation and supporting evidence. The
AED is computed as

AED = 1 − SN + SP

2

where the sensitivity (SN) and the specificity (SP) is computed as in Sect. 7.3 with
the supporting evidence used in place of the reference annotation. AED = 0 indi-
cates that the two annotations are in complete agreement, while AED = 1 means
that there is no congruence. Computed this way, the AED can both be used to iden-
tify questionable annotations as well as measure the level of changes between two
subsequent annotations.

Once the annotation errors are identified, they need to be corrected, which is yet
another task that is far from obvious. The most direct approach is to edit the exon-
intron boundaries manually by use of some kind of genome browser. For instance,
browsers such as Apollo [83], Argo [41] or Artemis [130] allow direct drag-and-drop
actions where the edits are written back to the underlying annotation files. Another
popular approach formore efficient annotation auditing is tomake use of community-
driven annotation, in so-called annotation jamborees. The term was coined in 2000
when over 40 scientists met for two weeks to jointly refine the gene models and
functionally annotate the D. melanogaster genome [58]. Moreover, by providing
internet means to search, browse and manually edit the annotation, such jamborees
can nowadays meet virtually. A successful recent example is the swift curation and
analysis of three different ant genomes, all distributed over the web [111, 149, 154].

http://dx.doi.org/10.1007/978-1-4471-6693-1_7
http://dx.doi.org/10.1007/978-1-4471-6693-1_7
http://dx.doi.org/10.1007/978-1-4471-6693-1_7

8.4 NGS Genome Sequencing Annotation Pipelines 357

8.4.5 MAKER: An Annotation Pipeline
for Next-Generation Sequencing Projects

Database resources such as Ensembl [27] has for long provided a golden standard
in terms of genome annotation. However, the amount novel genome data produced
today is exceeding their capacity, both in terms of data size and organism range.
When each lab can sequence their own favorite organism, there is an urgent need for
efficient, portable and easy-to-use annotation pipeline software to handle the data.
However, in order to be applicable, there are numerous criteria to fulfill. A pipeline
needs to contain a diverse set of softwares for data management, filtering, repeat
masking, sequence alignment, gene prediction, and consensus annotation. It has to
be easy configurable and trainable on new training data, efficient in handling large
data sets from a wide array of sources, and has to produce an output that is both
comprehensive and database ready. Preferably, a pipeline should also provide means
to view and edit the annotationsmanually. The ultimate goal of an annotation pipeline
is to provide an automatic mean that can match, or even exceed, the level of accuracy
of a human annotator, so that the annotation process can keep up with the rate at
which genomic sequence is produced.

A necessary ingredient in any annotation project is a combiner software that can
make use of a wide variety of evidence sources. MAKER2 [65] is an annotation
pipeline specialized for NGS data. Since it builds heavily on MAKER [21], we
begin our description there.MAKER is a combiner annotation package that combines
various sources of evidence for genome annotation. It is not a gene predictor by itself,
but makes use of gene predictions and other sources to produce a final consensus
annotation. MAKER is designed to work for researchers with limited bioinformatics
knowledge working on small annotation projects, but is scalable to virtually any
project size. The combiner can be used for de novo annotation of novel genomes, for
updating existing annotations, or simply for combining a variety of evidence sources.
The output is compatible with other GMOD [156] programs such as GBROWSE
[34] or JBROWSE [143] by providing the output in feature-rich GFF3-format [45].
MAKER also supports distributed parallelization on computer clusters, whichmeans
that it is scalable to virtually any data size.

The MAKER procedure is divided into five main steps: the compute phase, the
filter/cluster step, polishing, synthesis, and annotation. In the compute phase the input
sequence is masked for repeats, ab initio gene prediction is performed, and external
homology evidence is aligned to the input sequence. The repeatmasking is performed
in two steps: first RepeatMasker [145] is run to identify all types of repeats matching
entries in the RepBase library. The users can create their own species specific repeat
libraries and add them to the search. Moreover, MAKER comes with an internal
library of transposable elements and viral proteins. This library ismatched against the
genomic sequence using an internal repeat masking software called RepeatRunner,
which utilizes BLASTX [48] to identifymobile elements. Suchmobile elements tend
to be missed by RepeatMasker, even when the repeat libraries are genome specific
[148]. After repeat masking, MAKER runs a number of ab initio gene predictors. In

358 8 Annotation Pipelines for Next-Generation Sequencing Projects

its default settingMAKER is configured to use SNAP [77] as gene predictor, which is
an hiddenMarkovmodel (HMM)-based gene prediction software similar to Genscan
[19] (described in Sect. 2.2.4), but slightlymore flexible in terms of allowing for user-
defined feature models and state spaces. In addition to SNAP, MAKER supports
the use of the gene prediction softwares Augustus [152, 153], FGENESH [131] and
GeneMark-ES [92].After the gene prediction step,BLAST [4] is run to align proteins,
ESTs, and mRNAs to the genome sequence. Specifically, BLASTX and BLASTN
are used to align species-specific proteins, ESTs and mRNAS, respectively, and
TBLASTX is used to translate and align ESTs and mRNAs from related organisms.

In the filter/cluster step, low-scoring predictions and low-identity alignments of
the BLAST hits from the compute phase are filtered out, and the remaining hits are
clustered into overlapping sets expected to correspond to common gene transcripts.
Both the filtering and the clustering criteria are set by default but can be modified
by the user. Since BLAST is not splice-site aware, the tool Exonerate [76] is used in
a polishing step on the remaining data to refine the alignment clusters into spliced
alignments. The BLAST hits are realigned around splice sites, which forces the
alignments to occur in order.

After polishing, the next step is the synthesis, in which the gene predictions and
the polished EST and protein alignment clusters are combined to generate hints to the
location and boundaries of the protein coding regions. In this step MAKER attempts
to mimic a human annotator by recognizing internal exons with differing boundaries,
and matching protein alignments to consistent EST splice forms, in order to detect
potential alternative splicing. Regions outside gene clusters are labeled intergenic and
regions that fall between putative exons are labeled introns. MAKER then computes
a score for each nucleotide based on the supporting evidence of the alignments and
the gene predictions. The scores and the nucleotide labels are passed back into the
default gene predictor SNAP, which modifies its HMM state space accordingly and
is rerun on the genomic sequence. In regions lacking external evidence MAKER
uses the SNAP predictions directly. The final step is the annotation, whereby the
synthesized predictions are checked against all existing ESTs and mRNAs, UTR-
regions are included when available, and alternatively spliced forms are recorded.

The input to MAKER is the genomic sequence, and three configuration files
containing information about external executables to be used, database locations, and
various computational parameters. The internal database of transposable elements
and viral proteins is provided with the installation package. An organism specific
repeat library can be provided by the user, but is optional. If nothing is known
about the organism in question, MAKER uses the internal database only to mask
mobile elements. Similarly, the user can provide additional protein and EST/mRNA
files. The training of MAKER is a two-step process. First, SNAP is trained using
the CEGMA [115] with its subset of highly conserved, universal eukaryotic genes.
These genes are aligned using pairwise and profile-HMM alignment. The resulting
gene models then serve as an initial training set to SNAP. Second, MAKER is run on
a randomly selected subset (a fewmegabases) of genomic sequence, and the resulting
annotations are passed back into SNAP to further refine the HMM state space.

http://dx.doi.org/10.1007/978-1-4471-6693-1_2

8.4 NGS Genome Sequencing Annotation Pipelines 359

MAKER2 [65] is an extension of MAKER made to facilitate the annotation of
second generation sequencing projects. The major additions to the original MAKER
programming include the integration of theAEDmetric [38] described in the previous
section, support for the inclusion of RNA-Seq data, and a gene model pass-through
capability. Besides annotating novel sequencing projects, by including several ab ini-
tio predictions and/or additional evidence from new sequence sources such as RNA-
Seq data and others, MAKER2 is useful for the re-annotation of existing projects.

MAKER-P [20] is yet another extension of MAKER, adapted to better suit the
annotation of plant genomes, which typically are large and repeat-rich, and where
noncoding RNA and pseudogene detection is needed to a greater extent than in
animal genomes. The major extensions include pseudogene and ncRNA prediction,
and a tailor-made optimization of the computer cluster parallelization to suit large
and repeat-rich genomes.

References

1. Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amantides, P.G.,
Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al.: The genome sequence of Drosophila
melanogaster. Science 287, 2185–2195 (2000)

2. Allen, J.E., Salzberg, S.L.: JIGSAW: integration of multiple sources of evidence for gene
prediction. Bioinformatics 21, 3596–3603 (2005)

3. Allen, J.E., Majoros, W.H., Pertea, M., Salzberg, S.L.: JIGSAW, GeneZilla, and Glim-
merHMM: puzzling out the features of human genes in the ENCODE regions. Genome Biol.
7, S9 (2007)

4. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search
tool. J. Mol. Biol. 215, 403–410 (1990)

5. Avery, O.T., MacLeod, C.M., McCarty, M.: Studies of the chemical nature of the substance
inducing transformation of pneumococcal types. Induction of transformation by a desoxyri-
bonucleic acid fraction isolated from pneumococcus type III. J. Exp.Med. 79, 137–158 (1944)

6. Baertsch, R., Diekhans, M., Kent, W.J., Haussler, D., Brosius, J.: Retrocopy contributions to
the evolution of the human genome. BMC Genomics 9, 466 (2008)

7. Bartlett, J.M., Stirling, D.: A short history of the polymerase chain reaction. Methods Mol.
Biol. 226, 3–6 (2003)

8. Batzoglou, S., Jaffe, D.B., Stanley, K., Butler, K., Gnerre, S.,Mauceli, E., Berger, B.,Mesirov,
J.P., Lander, E.S.: ARACHNE: a whole-genome shotgun assembler. Genome Res. 12, 177–
189 (2002)

9. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: Genbank Nucleic
Acids Res. 37, D26–D31 (2009)

10. Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith, G.P., Milton, J., Brown, C.G.,
Hall, K.P., Evers, D.J., Barnes, C.L., Bignell, H.R., et al.: Accurate whole human genome
sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008)

11. Bergman, C.M., Quesneville, H.: Discovering and detecting transposable elements in genome
sequences. Brief. Bioinform. 8, 382–392 (2007)

12. Bianconi, E., Piovesan, A., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M.C.,
Tassani, S., Piva, F., Perez-Amodio, S., Strippoli, P., Canaider, S.: An estimation of the number
of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013)

13. Blattner, F.R., Plunkett III, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-
Vides, J., Glasner, J.D., Rode, C.K.,Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A.,

360 8 Annotation Pipelines for Next-Generation Sequencing Projects

Goeden, M.A., Rose, D.J., Mau, B., Shao, Y.: The complete genome sequence of Escherichia
coli K-12. Science 277, 1453–1474 (1997)

14. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter,M.C., Estreicher, A., Gasteiger, E.,Martin,
M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT
protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370
(2003)

15. Bradnam, K.R., Fass, J.N., Alexandrov, A., Baranay, P., Bechner, M., Birol, I., Boisvert, S.,
Chapman, J.A., Chapuis, G., Chikhi, R., et al.: Assemblathon 2: evaluating de novo methods
of genome assembly in three vertebrate species. Gigascience 2, 10 (2013)

16. Brady, A., Salzberg, S.L.: Phymm and PhymmBL: metagenomic phylogenetic classification
with interpolated Markov models. Nat. Methods 6, 673–676 (2009)

17. Breitbart, M., Salamon, P., Andresen, B., Mahaffy, J.M., Segall, A.M., Mead, D., Azam, F.,
Rohwer, F.: Genomic analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci.
USA 99, 14250–14255 (2002)

18. Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D.H., Johnson, D., Luo, S.,
McCurdy, S., Foy, M., Ewan, M., et al.: Gene expression analysis by massively parallel
signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18, 630–634 (2000)

19. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol.
Biol. 268, 78–94 (1997)

20. Campbell, M.S., Law, M., Holt, C., Stein, J.C., Moghe, G.D., Hufnagel, D.E., Lei, J.,
Achawanantakun, R., Jiao, D., Lawrence, C.J., et al.: MAKER-p: a tool kit for the rapid
creation, management, and quality control of plant genome annotations. Plant Physiol. 164,
513–524 (2014)

21. Cantarel, B.L., Korf, I., Robb, S.M.C., Parra, G., Ross, E., Moore, B., Holt, C., Sanches
Alvarado,A.,Yandell,M.:MAKER: an easy-to-use annotation pipeline designed for emerging
model organism genomes. Genome Res. 18, 188–196 (2008)

22. Caspi, A., Pachter, L.: Identification of transposable elements using multiple alignments of
related genomes. Genome Res. 16, 260–270 (2006)

23. Chain, P.S.G., Grafham, D.V., Fulton, R.S., FitzGerald, M.G., Hostetler, J., Muzny, D., Ali, J.,
Birren, B., Bruce,D.C., Buhay, C., et al.: Genome project standards in a new era of sequencing.
Science 326, 236–237 (2009)

24. Chen, K., Pachter, L.: Bioinformatics for whole-genome shotgun sequencing of microbial
communities. PLoS Comput. Biol. 1, e24 (2005)

25. Clarke, J., Wu, H.-C., Jayasinghe, L., Patel, A., Reid, S., Bayley, H.: Continuouos base identi-
fication for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009)

26. Collins, F.S., Green, E.D., Guttmacher, A.E., Guyer, M.S.: A vision for the future of genomics
research. Nature 422, 835–847 (2003)

27. Cunningham, F., Amode, M.R., Barrell, D., Beal, K., Billis, K., Brent, S., Carvalho-Silva,
D., Clapham, P., Coates, G., Fitzgerald, S., et al.: Ensembl 2015. Nucleic Acids Res. 43,
D662–D669 (2015)

28. Dahm, R.: Discovering DNA: FriedrichMiescher and the early years of nucleic acid research.
Hum. Genet. 122, 565–581 (2008)

29. Dayhoff,M.O.: Atlas of Protein Sequence and Structure. National Biomedical Research Foun-
dation, Washington (1969)

30. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: Amodel of evolutionary change in proteins. In:
Dayhoff,M.O. (ed.)Atlas of Protein Sequence andStructure, vol. 5, pp. 345–352.Washington,
Natl. Biomed. Res. Found (1978)

31. de Brujin, N.G.: A combinatorial problem. Koninklije Nederlandse Akademie v.Wetenschap-
pen 49, 758–764 (1946)

32. de Filippo, C., Ramazzotti, M., Fontana, P., Cavalieri, D.: Bioinformatic approaches for func-
tional annotation and pathway inference inmetagenomics data. Brief. Bioinform. 13, 696–710
(2012)

33. de la Bastide, M., McCombie, W.R.: Assembling genomic DNA sequences with PHRAP.
Curr. Protoc. Bioinform. Chapter 11, Unit 11.4 (2007)

References 361

34. Donlin, M.J.: Using the generic genome browser (GBrowse). In: Current Protocols in Bioin-
formatics, Chapter 9, Unit 9.9 (2009)

35. Earl, D., Bradnam, K., John, J.S., Darling, A., Lin, D., Fass, J., Yu, H.O.K., Buffalo, V.,
Zerbino, D.R., Diekhans, M., et al.: Assemblathon 1: a competitive assessment of de novo
short read assembly methods. Genome Res. 21, 2224–2241 (2010)

36. Eid, J., Fehr, A., Grey, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P.,
Bettman, B., et al.: Real-time DNA sequencing from single polymerase molecules. Science
323, 133–138 (2009)

37. Eilbeck, K., Lewis, S.E., Mungall, C.J., Yandell, M., Stein, L., Durbin, R., Ashburner, M.:
The sequence ontology: a tool for the unification of genome annotations. Genome Biol. 6,
R44 (2005)

38. Eilbeck, K., Moore, B., Holt, C., Yandell, M.: Quantitative measures for the management and
comparison of annotated genomes. BMC Bioinform. 10, 67 (2009)

39. El-Metwally, S., Hamza, T., Zakaria, M., Helmy, M.: Next-generation sequencing assembly:
four stages of data processing and computational challenges. PLoS One 9, e1003345 (2013)

40. Elsik, C.G., Mackey, A.J., Reese, J.T., Milshina, N.V., Roos, D.S., Weinstock, G.M.: Creating
a honey bee consensus gene set. Genome Biol. 8, R13 (2007)

41. Engels, R.: Argo Genome Browser. http://www.broadinstitute.organnotationargo
42. Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.R., Ceric, G., Forslund,

K., Eddy, S.R., Sonnhammer, E.L.L.: The Pfam protein families database. Nucleic Acids Res.
36, D281–D288 (2007)

43. Fleischmann, R., Adams, M., White, O., Clayton, R., Kirkness, E., Kerlavage, A., Bult, C.,
Tomb, J., Dougherty, B., Merrick, J.: Whole-genome random sequencing and assembly of
Haemophilus influenzae Rd. Science 269, 496–512 (1995)

44. Flicek, P., Birney, E.: Sense from sequence reads: methods for alignment and assembly. Nat.
Methods 6, S6–S12 (2009)

45. Generic Feature Format (GFF). http://www.sequenceontology.orggff3.shtml
46. Gilbert, W., Maxam, A.: The nucleotide of the lac operator. Proc. Natl. Acad. Sci. USA 70,

3581–3584 (1973)
47. Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I.,

Relman, D.A., Fraser-Liggett, C.M., Nelson, K.E.: Metagenomic analysis of the human distal
gut microbiome. Science 312, 1355–1359 (2006)

48. Gish, W., States, D.J.: Identification of protein coding regions by database similarity search.
Nat. Genet. 3, 266–272 (1993)

49. Glass, E.M., Wilkening, J., Wilke, A., Antonopoulos, D., Meyer, F.: Using the metagenomics
RAST server (MG-RAST) for analyzing shotgunmetagenomes. Cold SpringHarbor protocols
2010, doi:10.1101/pdb.prot5368 (2010)

50. Gnerre, S., Maccallum, I., Przybylski, D., Ribeiro, F.J., Burton, J.N., Walker, B.J., Sharpe, T.,
Hall, G., Shea, T.P., Sykes, S., Berlin, A.M., Aird, D., Costello, M., Daza, R., Williams, L.,
Nicol, R., Gnirke, A., Nusbaum, C., Lander, E.S., Jaffe, D.B.: High-quality draft assemblies
of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA
108, 1513–1518 (2011)

51. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F.,
Hoheisel, J.D., Jacq, C., Johnston, M., Louis, E.J., Mewes, H.W., Murakami, Y., Philippsen,
P., Tettelin, H., Oliver, S.G.: Life with 6000 genes. Science 274(546), 563–567 (1996)

52. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis,
X., Fan, L., Raychowdhury, R., Zeng, Q., et al.: Full-length transcriptome assembly from
RNA-Seq data without a reference genome. Nat. Biotechnol. 15, 644–652 (2011)

53. Guttman,M.,Garber,M.,Levin, J.Z.,Donaghey, J.,Robinson, J.,Adiconis,X., Fan,L.,Koziol,
M.J., Gnirke, A., Nusbaum, C., Rinn, J.L., Lander, E.S., Regev, A.: Ab initio reconstruction
of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of
lincRNAs. Nat. Biotechnol. 28, 503–510 (2010)

54. Haas, B.J., Zody, M.C.: Advancing RNA-Seq analysis. Nat. Biotechnol. 28, 421–423 (2010)

http://www.broadinstitute.organnotationargo
http://www.sequenceontology.orggff3.shtml
http://dx.doi.org/10.1101/pdb.prot5368

362 8 Annotation Pipelines for Next-Generation Sequencing Projects

55. Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith Jr, R.K., Hannick Jr, L.I.,
Maiti, R., Ronning, C.M., Rusch, D.B., Town, C.D., et al.: Improving the Arabidopsis genome
annotation usingmaximal transcript alignment assemblies. NucleicAcids Res. 31, 5654–5666
(2003)

56. Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Buell, C.R.,
Wortman, J.R.: Automated eukaryotic gene structure annotation using EVidenceModeler and
the program to assemble spliced alignments. Genome Biol. 9, R7 (2008)

57. Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J., Goodman, R.M.: Molecular biology
access to the chemistry of unknown soil microbes: a new Frontier for natural products. Chem.
Biol. 5, R245–R249 (1998)

58. Hartl, D.L.: Fly meets shotgun: shotgun wins. Nat. Genet. 24, 327–328 (2000)
59. Havlak, P., Chen, R., Durbin, K.J., Egan, A., Ren, Y., Song, X.Z., Weinstock, G.M., Gibbs,

R.A.: The atlas genome assembly system. Genome Res. 14, 721–732 (2004)
60. Hesper, B., Hogeweg, P.: Bioinformatica: een werkconcept. Kameleon 1, 28–29 (1970)
61. Hess, M., Sczyrba, A., Egan, R., Kim, T.-W., Chokhawala, H., Schroth, G., Luo, S., Clark,

D.S., Chen, F., Zhang, T., et al.: Metagenomic discovery of biomass-degrading genes and
genomes from cow rumen. Science 331, 463–467 (2011)

62. Hoff, K.: The effect of sequencing errors on metagenomic gene prediction. BMC Genomics
10, 520 (2009)

63. Hoff, K.J., Lingner, T., Meinicke, P., Tech, M.: Orphelia: predicting genes in metagenomic
sequencing reads. Nucleic Acids Res. 37, W101–105 (2009)

64. Holley, R.W., Apgar, J., Everett, G.A., Madison, J.T., Marquisee, M., Merrill, S.H., Penswick,
J.R., Zamir, A.: Structure of a ribonucleic acid. Science 147, 1462–1465 (1965)

65. Holt, C., Yandell, M.: MAKER2: an annotation pipeline and genome-database management
tool for second-generation genome projects. BMC Bioinform. 12, 491 (2011)

66. Huang, X., Madan, A.: CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877
(1999)

67. Huang, X., Wang, J., Aluru, S., Yang, S.P., Hillier, L.: PCAP: a whole-genome assembly
program. Genome Res. 13, 2164–2170 (2003)

68. Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., Lucas, W.J., Wang, X., Xie, B., Ni, P.,
et al.: The genome of the cucumber. Cucumis sativus L. Nat. Genet. 41, 1275–1281 (2009)

69. Huson, D.H., Mitra, S., Ruscheweyh, H.J., Weber, N., Schuster, S.C.: Integrative analysis of
environmental sequences using MEGAN4. Genome Res. 21, 1552–1560 (2011)

70. International Human Genome Sequencing Consortium: Finishing the euchromatic sequence
of the human genome. Nature 431, 931–945 (2004)

71. Ju, J., Kim, D.H., Bi, L., Meng, Q., Bai, X., Li, Z., Li, X., Marma, M.S., Shi, S., Wu, J.,
Edwards, J.R., Romu, A., Turro, N.J.: Four-color DNA sequencing by synthesis using cleav-
able flourescent nucleotide reversible terminators. Proc. Natl. Acad. Sci. USA 103, 19635–
19640 (2006)

72. Kapustin,Y., Souvorov,A., Tatusova,T., Lipman,D.: Splign: algorithms for computing spliced
alignments with identification of paralogs. Biol. Direct 3, 20 (2008)

73. Kelly, T.J., Smith, H.O.: A restriction enzyme from Hemophilus influenzae II. J. Mol. Biol.
51, 393–409 (1970)

74. Kent, W.J.: BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002)
75. Kim,M., Lee, K.H., Yoon, S.W., Kim, B.S., Chun, J., Yi, H.: Analytical tools and databases for

metagenomics in the next-generation sequencing era. Genomics Inform. 11, 102–113 (2013)
76. Korf, I., Yandell, M., Bedell, J.: BLAST: An Essential Guide to the Basic Local Alignment

Search Tool. O’Reilly & Asscociates, Sebastopol (2003)
77. Korf, I.: Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004)
78. Lander, E.S., Waterman, M.S.: Genomic mapping by fingerprinting random clones: a math-

ematical analysis. Genomics 2, 231–239 (1988)
79. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K.,

Dewar, K., Doyle, M., FitzHugh, W., et al.: Initial sequencing and analysis of the human
genome. Nature 409, 745–964 (2001)

References 363

80. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient alignment
of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009)

81. Lerat, E.: Identifying repeats and transposable elements in sequenced genomes: how to find
your way through the dense forest of programs. Hered. (Edinb) 104, 520–533 (2010)

82. Leung, H.C., Yiu, S.M., Yang, B., Peng, Y., Wang, Y., Liu, Z., Chen, J., Qin, J., Li, R., Chin,
F.Y.: A robust and accurate binning algorithm for metagenomic sequences with arbitrary
species abundance ratio. Bioinformatics 27, 1489–1495 (2011)

83. Lewis, S.E., Searle, S.M., Harris, N., Gibson, M., Lyer, V., Richter, J., Wiel, C., Bayrak-
taroglir, L., Birney, E., Crosby, M.A.: Apollo: a sequence annotation editor. Genome Biol. 3,
research0082 (2002)

84. Li, R., Fan, W., Tian, G., Zhu, H., He, L., Cai, J., Huang, Q., Cai, Q., Li, B., Bai, Y., et al.: The
sequence and De Novo assembly of the giant panda genome. Nature 463, 311–317 (2010)

85. Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., Kristiansen, K.,
Li, S., Yang, H., Wang, J., Wang, J.: De novo assembly of human genomes with massively
parallel short read sequencing. Genome Res. 20, 265–272 (2010)

86. Li, Z., Zhang, Z., Yan, P., Huang, S., Fei, Z., Lin, K.: RNA-Seq improves annotation of
protein-coding genes in the cucumber genome. BMC Genomics 12, 540 (2011)

87. Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu, B., Yang,
B., Fan, W.: Comparison of the two major classes of assembly algorithms: overlap-layout-
consensus and de-brujin-graph. Brief. Funct. Genomics 11, 25–37 (2012)

88. Lindblad-Toh, K., Wade, C.M., Mikkelsen, T.S., Karlsson, E.K., Jaffe, D.B., Kamal, M.,
Clamp, M., Chang, J.L., Kulbokas III, E.J., Zody, M.C.: Genome sequence, comparative,
analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005)

89. Liu, B., Gibbons, T., Ghodsi, M., Treangen, T., Pop, M.: Accurate and fast estimation of
taxonomic profiles from metagenomic shotgun sequences. BMC Genomics 12 (Suppl 2), S4
(2011)

90. Liu, Q., Mackey, A.J., Roos, D.S., Pereira, F.C.N.: Evigan: a hidden variable model for
integrating gene evidence for eukaryotic gene prediction. Bioinformatics 24, 597–605 (2008)

91. Loftus, B.J., Fung, E., Roncaglia, P., Rowley, D., Amedeo, P., Bruno, D., Vamathevan, J.,
Miranda, M., Anderson, I.J., Fraser, J.A., et al.: The genome of the basidiomycetous yeast
and human pathogen Cryptococcus neoformans. Science 307, 1321–1324 (2005)

92. Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y.O., Borodovsky, M.: Gene identification
in novel eukaryotic genomes by self-traning algorithm. Nucleic Acids Res. 33, 6494–6506
(2005)

93. Lorenz, P., Eck, J.:Metagenomics and industrial applications. Nat. Rev.Microbiol. 3, 510–516
(2005)

94. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka,
J., Braverman, M.S., Chen, Y.-J., Chen, Z., et al.: Genome Sequencing in microfabricated
high-density picolitre reactors. Nature 437, 376–380 (2005)

95. Maxam, A.M., Gilbert, W.: A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA
74, 560–564 (1977)

96. McCallum, D., Smith, M.: Computer processing of DNA sequence data. J. Mol. Biol. 116,
29–30 (1977)

97. McHardy, A.C., Martin, H.G., Tsirigos, A., Hugenholtz, P., Rigoutsos, I.: Accurate phyloge-
netic classification of variable-length DNA fragments. Nat. Methods 4, 63–72 (2007)

98. Miller, J.R., Delcher, A.L., Koren, S., Venter, E., Walenz, B.P., Brownley, A., Johnson, J.,
Li, K., Mobarry, C., Sutton, G.: Aggressive assembly of pyrosequencing reads with mates.
Bioinformatics 24, 2818–2824 (2008)

99. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation sequencing data.
Genomics 95, 315–327 (2010)

100. Monzoorul Haque, M., Ghosh, T.S., Komanduri, D., Mande, S.S.: SOrt-ITEMS: sequence
orthology based approach for improved taxonomic estimation of metagenomic sequences.
Bioinformatics 25, 1722–1730 (2009)

364 8 Annotation Pipelines for Next-Generation Sequencing Projects

101. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B.: Mapping and quantifying
mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008)

102. Mouse Genome Sequencing Consortium: Initial sequencing and comparative analysis of the
mouse genome. Nature 420, 520–562 (2002)

103. Mulder, N., Apweiler, R.: InterPro and InterProScan: tools for protein sequence classification
and comparison. Methods Mol. Biol. 396, 59–70 (2007)

104. Mullikin, J.C., Ning, Z.: The Phusion assembler. Genome Res. 13, 81–90 (2003)
105. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21, ii79–ii85 (2005)
106. Myers, E.W., Sutton, C.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz,

S.A., Mobarry, C.M., Reinert, K.H., Remington, K.A., et al.: A whole-genome assembly of
Drosophila. Science 287, 2196–2204 (2000)

107. Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., Snyder, M.: The
transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320,
1344–1349 (2008)

108. Namiki, T., Hachiya, T., Tanaka, H., Sakakibara, Y.: MetaVelvet: an extension of Velvet
assembler to De Novo metagenome assembly from short sequence reads. Nucleic Acids Res.
40, e155 (2012)

109. Nene, V., Wortman, J.R., Lawson, D., Haas, B., Kodira, C., Tu, Z.J., Loftus, B., Xi, Z., Megy,
K., Grabherr,M., et al.: Genome sequence ofAedes aegypti, amajor arbovirus vector. Science
316, 1718–1723 (2007)

110. Noguchi, H., Taniguchi, T., Itoh, T.: MetaGeneAnnotator: detecting species-specific patterns
of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage
genomes. DNA Res. 15, 387–396 (2008)

111. Nygaard, S., Zhang, G., Schiott, M., Li, C., Wurm, Y., Hu, H., Zhou, J., Ji, L., Qiu, F.,
Rasmussen, M., et al.: The genome of the leaf-cutting ant Acromyrmex echinatior suggests
key adaptations to advanced social life and fungus farming. Genome Res. 21, 1339–1348
(2011)

112. Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Cohoon,M., de Crecy-
Lagard, V., Diaz, N., Disz, T., Edwards, R., et al.: The subsystems approach to genome
annoation and its use in the project project to annotate 1000 genomes. Nucleic Acids Res. 33,
5691–5702 (2005)

113. Pagani, I., Liolios, K., Jansson, J., Chen, I.A., Smirnova, T., Nosrat, B., Markowitz, V.M.,
Kyrpides, N.C.: The Genomes OnLine Database (GOLD) v. 4: status of genomic and metage-
nomic projects and their associated metadata. Nucleic Acids Res. 40, D571–D579 (2011)

114. Park, P.J.: ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet.
10, 669–680 (2009)

115. Parra, G., Bradnam, K., Korf, I.: CEGMA: A pipeline to accurately annotate core genes in
eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007)

116. Parra, G., Bradnam, K., Korf, I.: Assessing the gene space in draft genomes. Nucleic Acids
Res. 37, 289–297 (2009)

117. Paszkiewicz, K., Studholme, D.J.: De Novo assembly of short sequence reads. Brief. Bioin-
form. 11, 457–472 (2010)

118. Peng, Y., Leung, H.C., Yiu, S.M., Chin, F.Y.: Meta-IDBA: a De Novo assembler for metage-
nomic data. Bioinformatics 27, i94–101 (2011)

119. Petrosino, J.F., Highlander, S., Luna, R.A., Gibbs, R.A., Versalovic, J.: Metagenomic pyrose-
quencing and microbial identification. Clin. Chem. 55, 856–866 (2009)

120. Pevzner, P.A., Tang, H.,Waterman,M.S.: An Eulerian path approach toDNA fragment assem-
bly. Proc. Natl. Acad. Sci. USA 98, 9748–9753 (2001)

121. Pevzner, P.A., Tang, H., Tesler, G.: De Novo repeat classification and fragment assembly.
Genome Res. 14, 1786–1796 (2004)

122. Pop, M., Phillippy, A., Delcher, A.L., Salzberg, S.L.: Comparative genome assembly. Brief.
Bioinform. 5, 237–248 (2004)

123. Pushkarev, D., Neff, N.F., Quake, S.R.: Single-molecule sequencing of an individual human
genome. Nat. Biotechnol. 27, 847–850 (2009)

References 365

124. Rat Genome Sequencing Project Consortium: Genome sequence of the Brown Norway rat
yields insights into mammalian evolution. Nature 428, 493–521 (2004)

125. Rhesus Macaque Genome Sequencing and Analysis Consortium: Evolutionary and biomed-
ical insights from the rhesus macaque genome. Science 316, 222–234 (2007)

126. Rho, M., Tang, H., Ye, Y.: FragGeneScan: predicting genes in short and error-prone reads.
Nucleic Acids Res. 38, e191 (2010)

127. Rondon, M.R., August, P.R., Betterman, A.D., Brady, S.F., Grossman, T.H., Liles, M.R.,
Loiacono, K.A., Lynch, B.A., MacNeil, I.A., Minor, C., Tiong, C.L., Gilman, M., Osburne,
M.S., Clardy, J., Handelsman, J., Goodman, R.M.: Cloning the soilmetagenome: a strategy for
accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ.
Microbiol. 66, 2541–2547 (2000)

128. Rosen, G.L., Reichenberger, E.R., Rosenfeld, A.M.: NBC: the naive Bayes classification tool
webserver for taxonomic classification of metagenomic reads. Bioinformatics 27, 127–129
(2011)

129. Rothberg, J.M., Hinz, W., Rearick, T.M., Schultz, J., Mileski, W., Davey, M., Leamon, J.H.,
Johnson, K., Milgrew,M.J., Edwards, M., et al.: An integrated semiconductor device enabling
non-optical genome sequencing. Nature 475, 348–352 (2011)

130. Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., Barrell, B.:
Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945 (2000)

131. Salamov, A.A., Solovyev, V.V.: Ab initio gene finding in Drosophila genomic DNA. Genome
Res. 10, 516–522 (2000)

132. Salzberg, S.L., Phillippy, A.M., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen, T.J.,
Schatz, M.C., Delcher, A.L., Roberts, M., Marcais, G., Pop, M., Yorke, J.A.: GAGE: a critical
evaluation of genome assemblies and assembly algorithms. Genome Res. 22, 557–567 (2012)

133. Sanger, F., Air, G.M., Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddes, C.A., Hutchison,
C.A., Slocombe, P.M., Smith, M.: Nucleotide sequence of bacteriophage phi X174 DNA.
Nature 265, 687–695 (1977)

134. Sanger, F., Coulson, A.R.: A rapid method for determining sequences in DNA by primed
synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975)

135. Sanger, F., Niclen, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors.
Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977)

136. Sato, T., Terabe, M., Watanabe, H., Gojobori, T., Hori-Takemoto, C., Miura, K.: Codon and
base biases after the initiation codon of the open reading frames in theEscherichia coli genome
and their influence on the translation efficiency. J. Biochem. 129, 851–860 (2001)

137. Sayers, E.W., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church,
D.M., DiCuccio, M., Edgar, R., et al.: Database resources of the national center for biotech-
nology information. Nucleic Acids Res. 37, D5–D15 (2009)

138. Schadt, E.E., Turner, S., Kasarskis, A.: A window into third-generation sequencing. Hum.
Mol. Genet. 19, R227–R240 (2010)

139. Schloss, J.A.: How to get genomes at one ten-thousandth the cost. Nat. Biotechnol. 26, 1113–
1115 (2008)

140. Shendure, J., Porreca, G.J., Reppas, N.B., Lin, X., McCutcheon, J.P., Rosenbaum, A.M.,
Wang, M.D., Zhang, K., Mitra, R.D., Church, G.M.: Accurate multiplex polony sequencing
of an evolved bacterial genome. Science 309, 1728–1732 (2005)

141. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J., Birol, I.: ABySS: a parallel
assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009)

142. Simpson, J.T., Durbin, R.: Efficient de novo assembly of large genomes using compressed
data structures. Genome Res. 22, 549–556 (2012)

143. Skinner, M.E., Uzilov, A.V., Stein, L.D., Mungall, C.J., Holmes, I.H.: JBROWSE: a next-
generation genome browser. Genome Res. 19, 1630–1638 (2009)

144. Slater, G.S., Birney, E.: Automated generation of heuristics for biological sequence compar-
ison. BMC Bioinform. 6, 31 (2005)

145. Smit, A.F.A., Hubley, R., Green, P.: RepeatMasker at http://www.repeatmasker.org

http://www.repeatmasker.org

366 8 Annotation Pipelines for Next-Generation Sequencing Projects

146. Smith, H.O.,Wilcox,K.W.:A restriction enzyme fromHemophilus influeanzae. I. Purification
and general properties. J. Mol. Biol. 51, 379–391 (1970)

147. Smith, L.M., Sanders, J.Z., Kaiser, R.J., Hughes, P., Dodd, C., Connell, C.R., Heiner, C., Kent,
S.B., Hood, L.E.: Flourescence detection in automated DNA sequence analysis. Nature 321,
674–679 (1986)

148. Smith, C.D., Edgar, R.C., Yandell, M.D., Smith, D.R., Celniker, S.E., Myers, E.W., Karpen,
G.H.: Improved repeat identification and masking in Dipterans. Gene 389, 1–9 (2007)

149. Smith, C.C., Zimin, A., Holt, C., Abouheif, E., Benton, R., Cash, E., Croset, V., Currie, C.R.,
Elhaik, E., Elsik, C.G., et al.: Draft genome of the globally widespread and invasive Argentine
ant (Linepithema humile). Proc. Natl. Acad. Sci. USA 108, 5673–5678 (2011)

150. Staden, R.: Sequence data handling by computer. Nucleic Acids Res. 4, 4037–4051 (1977)
151. Staden, R., Beal, K.F., Bonfield, J.K.: The Staden package, 1998. Methods Mol. Biol. 132,

115–130 (2000)
152. Stanke, M., Waack, S.: Gene prediction with a hidden Markov model and a new intron sub-

model. Bioinformatics 19, ii215–ii225 (2003)
153. Stanke, M., Steinkamp, R., Waack, S., Morgenstern, B.: AUGUSTUS: a web server for gene

finding in eukaryotes. Nucleic Acids Res. 32, W309–W312 (2004)
154. Suen, G., Teiling, C., Li, L., Holt, C., Abouheif, E., Bornberg-Bauer, E., Bouffard, P., Caldera,

E.J.,Cash,E.,Cavanaugh,A., et al.: Thegenome sequenceof the leaf-cutter antAtta cephalotes
reveals insights into its obligate symbiotic lifestile. PLoS Genet. 7, e1002007 (2011)

155. The Bovine Genome Sequencing and Analysis Consortium: The genome sequence of taurine
cattle: a window to ruminant biology and evolution. Science 324, 522–528 (2009)

156. The Generic Model Organism Database. http://www.gmod.org
157. The Reference Genome Group of the Gene Ontology: Consortium: The gene ontology’s

reference genome project: a unified framework for functional annotation across species. PLoS
Comput. Biol. 5, e1000431 (2009)

158. The Rice Genome Project: A draft sequence of the rice genome (Oryza sativa L. ssp. indica).
Science 296, 79–92 (2002)

159. The UniProt Consortium: The universal protein resource (UniProt) 2009. Nucleic Acids Res.
37, D169–D174 (2009)

160. The University of Santa Cruz Genome Browser: http://genome.ucsc.edu
161. The C. elegans Sequencing Consortium: Genome sequence of the nematode C. elegans: a

platform for investigating biology. Science 282, 2012–2018 (1998)
162. Trapnell, C., Pachter, L., Salzberg, S.L.: TopHat: discovering splice junctions with RNA-Seq.

Bioinformatics 25, 1105–1111 (2009)
163. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg,

S.L., Wold, B.J., Pachter, L.: Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol.
28, 511–515 (2010)

164. Treangen, T.J., Salzberg, S.L.: Repetitive DNA and next-generation sequencing: computa-
tional challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011)

165. Tyson,G.W.,Chapman, J.,Hugenholtz, P.,Allen, E.E., Ram,R.J., Richardson, P.M., Solovyev,
V.V.,Rubin, E.M.,Rokhsar,D.S.,Banfield, J.F.:Community structure andmetabolism through
reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004)

166. Valouev, A., Ichikawa, J., Tonthat, T., Stuart, J., Ranade, S., Peckham, H., Zeng, K., Malek,
J.A., Costa, G., McKernan, K., Sidow, A., Fire, A., Johnson, S.M.: A high-resolution, nucle-
osom position map of C. elegans reveals a lack of universal sequence-dictated positioning.
Genome Res. 18, 1051–1063 (2008)

167. vanDijk, E.L., Auger, H., Jaszczyszyn,Y., Thermes, C.: Ten years of next-generation sequenc-
ing technology. Trends Genet. 30, 418–426 (2014)

168. Venter, C.J., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O.,
Yandell, M., Evans, C.A., Holt, R.A., et al.: The sequence of the human genome. Science
291, 1304–1351 (2001)

http://www.gmod.org
http://genome.ucsc.edu

References 367

169. Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu,
D., Paulsen, I., Nelson, K.E., Nelson, W., et al.: Environmental genome sequencing of the
Sargasso Sea. Science 304, 66–74 (2004)

170. Wang, J., Wong, G.K., Ni, P., Han, Y., Huang, X., Zhang, J., Ye, C., Zhang, Y., Hu, J., Zhang,
K., et al.: RePS: a sequence assembler that masks exact repeats identified from the shotgun
data. Genome Res. 12, 821–831 (2002)

171. Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for transcriptomics. Nat.
Rev. Genet. 10, 57–63 (2009)

172. Warren, R.L., Sutton, G.G., Jones, S.J., Holt, R.A.: Assembling millions of short DNA
sequences using SSAKE. Bioinformatics 23, 500–501 (2007)

173. Watson, J.D., Crick, F.H.C.:Molecular structure of nucleic acids. Nature 171, 737–738 (1953)
174. Whiteford, N., Haslam, N., Weber, G., Prügel-Bennett, A., Essex, J.W., Roach, P.L., Bradley,

M., Neylon, C.: An analysis of the feasibility of short read sequencing. Nucleic Acids Res.
33, e171 (2005)

175. Wold, B., Myers, R.M.: Sequence census methods for functional genomics. Nat. Methods 5,
19–21 (2008)

176. Worley, K.C., Gibbs, R.A.: Genetics: decoding a national treasure. Nature 463, 303–304
(2010)

177. Wu, R., Kaiser, A.D.: Structure and base sequence in the cohesive ends of bacteriophage
lambda DNA. J. Mol. Biol. 35, 523–537 (1968)

178. Wu, R., Taylor, E.: Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence
of the cohesive ends of bacteriophage lambda DNA. J. Mol. Biol. 57, 491–511 (1971)

179. Wu, T.D., Nacu, S.: Fast and SNP-tolerant detection of complex variants and splicing in short
reads. Bioinformatics 26, 873–881 (2010)

180. Yandell, M., Ence, D.: A beginner’s guide to eukaryotic genome annotation. Nat. Rev. Genet.
13, 329–342 (2012)

181. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de Brujin
graphs. Genome Res. 18, 821–829 (2008)

182. Zhang, W., Chen, J., Yang, Y., Tang, Y., Shang, J., Shen, B.: A practical comparison of De
Novo genome assembly software tools for next-generation sequencing technologies. PLoS
One 6, e17915 (2011)

Index

A
Ab inito methods, 13
Absorbing state, 213
ABySS, 339
Acceptor sites, 201, 203, 204
Accuracy, 341
Acidophilic biofilm, 343
Action potentials, 77
Activation function, 77, 294
Acyclic, 95, 213
Acyclic discrete phase type (ADPH), 213–

216
basic path, 215
basic vector, 215

Adaptors, 335
Adenine (A), 1
ADPH, see acyclic discrete phase type
AED, see annotation edit distance
Aedes aegypti, 354
Affine gap model, 126, 129
AGenDA, 21
Agene, 22, 213, 216
Alignment

deletion, 107
dot plot, 108
dynamic programming, 109
gaps, 108
global, 109
indel, 108
insertion, 107
local, 109
match, 107
mismatch, 107
scoring schemes, 144–147
significance of scores, 141
structure, 144
substitution, 107, 108

translation, 113
transposition, 108
transversion, 113

Alignment profiles, 166–170, 228
Allele, 15
ALLPATHS, 339, 342
Alternative splicing, 14
Amino acid usage, 219
Amino acids, 5
ANALYSEQ, 16, 20
Anchor points, 156
Annealing, 163

schedule, 305
Annotation, 44, 51

assessment, 355–356
jamborees, 356

Annotation edit distance (AED), 356
Aperiodic Markov chain, 37
Apis mellifera, 354
Apollo, 356
Applied Biosystems, 329, 330, 335
Approximate alignment, 192
Approximate correlation, 322, 356
Arachne, 337
Argo, 356
Artemis, 356
Artificial neural networks, 76–83
Artificial neuron, 77
Ascent, 290
Assemblathon, 342
Assembly, see sequence assembly
Atlas, 337
Attribute, 92
Augustus, 21, 358
Autosomes, 2
Auxiliary function, 281
Average score method, 167

© Springer-Verlag London 2015
M. Axelson-Fisk, Comparative Gene Finding, Computational Biology 20,
DOI 10.1007/978-1-4471-6693-1

369

370 Index

AVID, 312
Axon, 77

B
Backing-off procedures, 70
Backpropagation algorithm, 81, 237, 293–

299
Backward algorithm, 44, 48

for GHMMs, 59
for GPHMMs, 187
for PHMMs, 135

Backward equations, 40
Bacteriophage lambda, 328
bacteriophage φX174, 328, 331
Banded Smith–Waterman algorithm, 138
Base pairs, 327
Basic Local Alignment Search Tool, see

BLAST
Basic path (ADPH), 215
Basic vector (ADPH), 215
Basis function, 292
Baum–Welch algorithm, 44, 278, 287
Bayes discriminant, 302
Bayes’ rule, 93, 239, 242, 251, 254
Bayes’ theorem, 282
Bayesian networks, 92, 196, 249–255, 354
Bayesian prediction method, 271
Bayesian theory, 250
Bernoulli process, 209
Bernoulli trial, 209
Bias, 294
Bias weight, 93
Binding sites, 201
Binning, see taxonomic binning
Binomial coefficient, 210
Binomial distribution, 271
Bioinformatics, 331–333
Biological neuron, 76
Bit score, 142
Bits, 86, 205
BLAST, 138–141, 353

bit score, 142
BLASTN, 184, 358
BLASTP, 177
BLASTX, 177, 345, 358
E-value, 142
gapped, 140
P-value, 142
TBLASTX, 180, 358
WU-BLASTN, 180

BLAT, 176, 353
BLOCKS database, 122

BLOSUM matrix, 110, 116, 122–124
BLOCKS database, 122

Boltzmann acceptance probability, 164
Boltzmann constant, 306
Boltzmann distribution, 245, 306
Bottom-up tabular computation, 46
Boundary features, 101

C
CABOG, 339
Caenorhabditis elegans, 329
CAI, see codon adaptation index
Canonical form, 214
CAP3, 337
Capillary electrophoresis, 334
CARMA, 345
CBI, see codon bias index
CC50 measure, 342
cDNA fragmentation, 348
CDSs, 344
CEGMA, 342, 354, 358
Celera

Assembler, 337
Genomics, 329

CEM, 18, 20, 180
Central dogma, 4
Central limit theorem, 142
Centroid (protein), 177
Chain-termination sequencing, 328, 333
CHAOS, 155
Character-based methods, 147
ChIP-Seq, 330, 343
Chooser algorithm, see combiner
Chromosome, 2
Chromosome walking, 336
Class HMM (CHMM), 300
Classification trees, see decision trees
Clique, 97
CLUSTALW, 148, 153
CML, see conditional maximum likelihood
CNS, see conserved noncoding sequence
COBOL, 331
Coding sequences, see CDSs
Codon, 5
Codon adaptation index (CAI), 220
Codon bias index (CBI), 220
Codon model, 53
Codon usage, 16, 219, 346
Combiner, 354, 357
Communicating states, 36
Comparative methods, 13
Compatibility functions, 96

Index 371

Complete Genomics, 335
Complete-data likelihood, 280
Concave function, 126
Conditional entropy, 87
Conditional independence, 94, 250
Conditional maximum likelihood (CML),

102, 279, 299
Conditional random fields (CRFs), 91, 98–

103
linear-chain, 99

Conjugate prior, 251, 271
Conrad, 22, 100
Consensus indicator variable, 232
Conservation sequence (Twinscan), 178
Conserved noncoding sequence (CNS), 207
Consistency-based scoring, 153
Content sensors, 201, 217
Context, 32, 224
Context trees, 70, 229
Contigs, 218, 336
Contiguity, 341
Continuous-time Markov chains, 38–41
Continuous-time random process, 30
Correct contiguity measure, see CC50 mea-

sure
Correlation coefficient, 322, 356
Cost function, 270
Covariance matrix, 240
Coverage, 334, 339
Cow rumen, 343
CRITICA, 20
Crossover operation, 160
Cryptococcus neoformans, 354
Cucumber genome, 349, 354
Cucumis sativus, 349, 354
Cufflinks, 353
C-value

enigma, 9
paradox, 8

Cytosine (C), 1

D
DAG, see directed acyclic graph
Database similarity search, 136–141
Data-dependent pseudocount method, 271
ddNTPs, 333
de Brujin graphs, 336, 337, 339, 340, 344
de novo prediction, 13
de novo sequencing, 336
Decision trees, 84–91

learning, 84, 86
overfitting, 89

pruning, 89, 90
Decode, 44
Deletion, 15, 107
Dendritic tree, 77
Deoxynucletides, see dNTPs
Deoxyribonucleic acid (DNA), 1, 327
Descent, 290
DIagonal ALIGNment, see DIALIGN
DIALIGN, 155
Dicodon, 203
Dideoxy method, 328, 333
Dideoxynucleotides, see ddNTPs
DIGIT, 21
Diploid, 2
Directed acyclic graph (DAG), 44, 80, 94,

249
Dirichlet

distribution, 252, 271
mixtures, 271
prior distribution, 271
regularizer, 272

Discrete phase-type distribution (DPH), 213
Discrete-time random process, 30
Discriminant analysis

linear, 238
quadratic, 239

Discriminative models, 92
Discriminative training, 279, 299–303
Distance methods, 147
DNA, 1, 327

antiparallel strand, 3
C-value enigma, 9
C-value paradox, 8
complementary strand, 5
downstream, 3
forward strand, 3
H-value paradox, 10
junk, 205
mutation, 15
N-value paradox, 9
open reading frame (ORF), 7
reading direction, 3
reading frame, 7
reverse strand, 3
sense strand, 3
smORFs, 11
strand direction, 2
substitution models, 110–116
upstream, 3

DNA ligase, 335
DNA polymerase, 333, 335
DNA sequencing, 326–331

adaptors, 335

372 Index

by ligation, 330, 335
by synthesis, 330, 335
capillary, 334
chain-termination, 333
chromosome walking, 336
contigs, 336
coverage, 334, 339
ddNTPs, 333
de novo, 336, 338
dideoxy method, 333
dNTPs, 333
finished genome, 338
first-generation, 328
great panda, 344
massively parallel, 329, 334
mate-pairs, 336, 337
paired-end, 337
polymerase, 335
primer, 336
pyrosequencing, 330, 335
read depth, 334
reads, 336
Sanger, 333
scaffolds, 336, 337
second-generation, 325
shotgun, 329
shotgun sequencing, 336
single molecule, 330, 335
third-generation, 330, 335

dNTPs, 333
DOGFISH, 19, 22
Domain content, 355
Donor sites, 201, 203, 204, 233
Dot plots, 108, 109

filtering, 110
Double helix, 2, 327
DoubleScan, 19, 21, 182, 193
DPH, see discrete phase-type distribution
Drosophila melanogaster, 329
Duration, 55, 135, 186, 208
Duration distribution, 56
Dynamic programming, 44–46, 89, 109,

127, 149
path, 46
recurrence relation, 45, 47
tabular computation, 45
traceback, 45, 50, 51

E
EasyGene, 21, 52–55
EBI, 8
ECgene, 176

ECM, see expectation conditional maxi-
mization

E. coli, 34, 73, 329
O157:H7, 34

EcoParse, 18, 20
Effective number of codons (Nc), 220
EGPred, 21
Electrophoresis, 333
EM-algorithm, 44, 72, 278–285
Emission probability (HMM), 42
Empirical distribution, 211
ENCODE, 13
Energy, 163
Energy function, 97, 270
Enhancer, 207
Ensembl, 8, 10, 21, 357
Entropy

conditional, 87
Shannon, 86, 146, 205, 243

Environmental genomics, seemetagenomics
Equilibrium distribution, 36
eShadow, 21
EST features, 102
EuGene, 20
Eukaryotes, 2
Euler, 337
Eulerian path, 337
European Bioinformatics Institute (EBI), 8
E-value (BLAST), 142
EVidenceModeler (EVM), 354
Evigan, 354
EvoGen, 21
Evolution, 15
Exon probabilities, 67
Exon states, 203
ExonAligner, 194
Exonerate, 353, 358
Exonomy, 21
Exons, 6, 201, 203

initial, 62, 203
internal, 62, 203
noncoding, 202, 207
phase, 62
posterior probabilities, 67
single, 62, 203
terminal, 62

Expectation conditional maximization, 285
Expectation–maximization,

see EM-algorithm
Exponential family, 251, 285
Expression profiling, see transcriptomics
Extreme value distribution, 142
Extreme value theorem, 142

Index 373

F
Factor function, 95
Fast Fourier transform (FFT), 156
FASTA algorithm, 137
FASTA format, 138
FASTP, 137
Feature function, 93, 98

boundary, 101
discriminative, 102
EST, 102
footprint, 102
gap, 102
generative, 101
length, 101
phylogenetic, 101
reference, 101
transition, 101

Feature selection, 101
Features, 93
Feed-forward network, 80
Felsenstein model, 114
FGENEH, 20, 241
FGENESH, 20, 358
Fibonacci numbers, 44
Finished genome, 338
First-generation sequencing, 328
First-order Markov chain, 31
Fisher kernel, 264
Fisher’s discriminant, 241
Fitch-Margoliash method, 149
Fitness score, 161
Fixed-order Markov models, 71
Footprint features, 102
Forward algorithm, 44, 47

for GHMMs, 57
for GPHMMs, 186
for PHMMs, 134

Forward equations, 40
Forward strand (DNA), 3
Forward–backward algorithm, 54, 69, 178,

278, 286
Fractional identity score, 154
FragGeneScan, 345–348
Frame, 7, 203
Frameshift, 14, 15, 346
Frequency of optimal codons (Fop), 220
Fruit fly, 329
Functional annotation, 344, 352

G
GAGE, 342
Gametes, 2

Gamma distribution, 252
Gap extension penalty, 126
Gap features, 102
Gap models, 125, 147

affine, 126, 129, 147, 158
extension penalty, 126, 147
linear, 125, 127, 134
natural, 147
opening penalty, 126, 147
quasi-natural, 147
sum-of-pairs, 147

Gap opening penalty, 126
Gapped BLAST, 140
Gaps, 108
Gaussian kernel, 262
GAZE, 21
GBROWSE, 355, 357
GC-binning, 60
Gel electrophoresis, 333
Gene, 2, 12

acceptor, 201
allele, 15
alternative splicing, 14
binding sites, 201
codon, 5
codon usage, 16
definition, 11–13
donor, 201
enhancer, 207
exons, 6, 201
expression, 4, 206
frame, 203
frameshift, 14
housekeeping, 7
intergene, 201
introns, 6, 201
nomenclature, 12
noncoding exons, 202
number in human, 8–11
overlapping, 53
parse, 43
phase, 7, 184, 203
polyA-signal, 7, 202, 207
primary transcript, 5, 207
promoter, 7, 202, 207
reading frame, 7
splice sites, 16, 201
splicing, 5, 6
start codons, 7, 16
stop codons, 7
structure, 6–8
TATA-box, 207
trans-splicing, 12

374 Index

transcription, 4, 206
transcription start site (TSS), 207
translation, 4, 206
UTRs, 7, 201

Gene expression, 206
Gene finding

annotate, 44
parse, 44, 177
path, 44
similarity based, 175

Gene mapping, 192–195
Gene Ontology Reference Genome Project,

329
GeneAlign, 22
GeneBuilder, 18, 20
GeneID, 17, 20
GeneMapper, 19, 22, 194
GeneMark, 20, 21, 218, 358
GeneModeler (gm), 17, 20
GeneParser, 17, 20, 176
General time-reversible (GTR) model, 115
Generalized EM-algorithm (GEM), 285
Generalized HMMs (GHMMs), 55–60

backward algorithm, 59
forward algorithm, 57
Viterbi algorithm, 59

Generalized pair HMMs (GPHMMs), 185
backward algorithm, 187
forward algorithm, 186
Viterbi algorithm, 187

Generating function, 214
Generative features, 101
Generative models, 92
Generative-discriminative pair, 93
Generator matrix, 40
Generic Model Organism Database

(GMOD), 355
GeneSplicer, 76
Genetic algorithms, 160–163
Genetic code, 5

matrix, 116
Genetic drift, 15
GeneWise, 18, 20, 176
Genie, 18, 20, 236
GenLang, 20
GENMARK, 18, 20
Genome, 2
$1,000 genome, 329
Genome annotation, 352

functional, 352
structural, 352

Genome Assembly Gold-Standard Evalua-
tions, see GAGE

Genome browsers, 356
Genomes OnLine Database (GOLD), 325
GenomeScan, 176
454 Genome Sequencer, 330
GenomeThreader, 21
GenomeWise, 21
Genotype, 4
Genscan, 18, 20, 60–70, 102, 176
Geometric distribution, 55, 209

shifted, 210
Geometric sequence, 209
GFF3, 355, 357
GHMMs, see generalized HMMs
Giant panda genome, 340
Gibbs distribution, 97
Gibbs random field, 97
Gibbs sampling, 289, 303

for HMM training, 303
Gini index, 86
GLASS, 181
GLEAN, 354
GLIMMER, 18, 73–75
GlimmerHMM, 21
GlimmerM, 21, 76
Global alignment, 109, 127
Global Alignment SyStem, see GLASS
Global Markov property, 96
Glucose 6-phosphate dehydrogenase, 12
GMAP, 176
GMOD, 357
GOLD, 325
GONNET matrix, 116, 124–125
Gradient, 290
Gradient descent/ascent, 158, 290–293, 298
GRAIL, 17, 20, 81–83, 236, 237
Graph models, 94–97

acyclic, 95
cliques, 97
directed, 95
maximal cliques, 97
moralization, 96
parent, 95
potential functions, 97
undirected, 92, 95

GREAT, 20
Great panda, 341, 344
GSNAP, 353
Guanine (G), 1
Guide tree, 152
Gumbel distribution, 142

Index 375

H
Hamiltonian circuit, 337
Hammersley–Clifford theorem, 97
Hard-masked repeats, 351
Heaviside function, 78
Heliscope, 330
Hemophilus influenzae, 329
Haploid, 2
Heuristic local alignment, 136–141
Hidden layer (NN), 80
Hidden Markov models, 41–44

backward algorithm, 48
duration distribution, 56
emission probability, 42
for multiple alignments, 158
forward algorithm, 47
forward–backward algorithm, 54
self-transitions, 55
state duration, 55
state space, 346
transition time, 55
Viterbi algorithm, 49

High-scoring segment pair (HSP), 140
Hill climbing, 155
Hirschberg algorithm, 182
HiSeq X Ten, 330
HMMER, 164, 170
HMMgene, 18, 20, 300
HMMs, see hidden Markov models
Holding time, 38
Homogeneous Markov chain, 34, 38
Homopolymers, 328
Honey bee genome, 354
Housekeeping genes, 7
Human Gene Nomenclature, 12
Human genome draft sequence, 329
HumanGenomeProject (HGP), 18, 217, 329
H-value paradox, 10
Hyperplane, 256

I
Illumina, 330, 335
IMMs, see interpolated Markov models
in silico, 193
Indels, 16, 108
Information content, 86
Information gain, 87
Information level, 204
Inhomogeneous Markov chain, 34
Initial distribution, 31
Initial exon, 203
Insertion, 15, 107

Integration function, 77
Intercommunicating states, 36
Intergene, 201, 205
Internal exon, 203
Interpolated context models (ICMs), 74
Interpolated Markov models (IMMs), 70–

76, 224
linear interpolation, 71, 224
rational interpolation, 72, 225

Interpolation techniques, 70
InterProScan, 355
Interspersed repeats, 67, 350
Introns, 6, 201, 205
Invariant distribution, 36
Ion Torrent, 330
Irreducible Markov chain, 36
Isochores, 217
Iterative alignments, 155–158
Iterative refinement, 144, 157
Iterative scaling, 247

J
Jamborees, 356
JBROWSE, 355, 357
JIGSAW, 21, 354
JTT matrix, 116
Jukes-Cantor

distance, 113
model, 113

Jump process, 41
Junk-DNA, 205

K
Kernel

Fisher, 264
Gaussian, 262
locality improved, 263
polynomial, 262
radial basis, 262
sigmoidal, 262
TOP, 264
weighted degree, 263

Kernel function, 255, 260
Kernel trick, 259
Kimura model, 113, 156
Kozak sequence, 90, 218
k-tuple frequency analysis, 220
Kullback–Leibler distance, 246

376 Index

L
Lac operator, 328
Lagrange multipliers, 245, 258
Laplace’s rule, 270
LDA, see linear discriminant analysis
Learning rate parameter, 290
Least squares estimates, 292
Length distributions, 208
Length features, 101
Leukocytes, 327
454 Life Sciences, 330
Life Technologies, 330, 335
Ligase, see DNA ligase
Likelihood, 71, 251, 273, 280, 287
Likelihood function, 239, 273
Likelihood-ratio test, 35
Linear discriminant, 90
Linear discriminant analysis (LDA), 238–

243
Linear gap model, 125, 127, 134
Linear interpolation (IMMs), 71, 224
Linear programming, 258
Linear-chain CRFs, 99
Linkage analysis, 192
little-o (o(h), 39
Local alignment, 109, 130
Local functions, 96
Local Markov property, 96, 250
Locality improved (LI) kernel, 263
Log-expectation (LE) score, 157
Log-likelihood, 273
Log-odds ratio, 35, 116, 169
Log-odds score

EasyGene, 55
Logistic regression, 93, 98
Logistic sigmoid function, 79
Low-complexity repeats, 350
Lynx Therapeutics, 330

M
MAFFT, 156
Mahalanobis distance, 239
MAKER, 354, 357–359

MAKER-P, 359
MAKER2, 357, 359

MAP, see maximum a posteriori
Markov chain Monte Carlo (MCMC), 303,

305
Markov chains (MC), 30, 222, 347

absorbing state, 213
aperiodic, 37
backward equations, 40

content sensors, 222
context, 32
continuous-time, 38–41, 111
discrete-time, 30–38
first-order, 31
fixed-order, 71
forward equations, 40
generator matrix, 40
homogeneous, 34, 38, 111
inhomogeneous, 34, 35
initial distribution, 31
irreducible, 36
jump process, 41
kth-order, 32, 71
memoryless, 31
positive state, 37
recurrent state, 36
second-order, 31
silent state, 46
state space, 30
stationary distribution, 36, 41
time-reversible, 37, 111
transient state, 36
transition probability, 31
transition rate matrix, 40, 112
variable-order, 70

Markov model, see Markov chains (MC)
Markov networks, 92
Markov property, 31, 38

global, 96
local, 96, 250
pairwise, 96

Markov random fields, 92, 96
Massively Parallel Signature Sequencing

(MPSS), 330
Match (alignment), 107
Mate-pairs, 336, 337, 339
Maximal clique, 97
Maximal dependence decomposition, see

MDD
Maximal dependence decomposition

(MDD), 181, 230–236
Maximal segment pairs algorithm, 139
Maximum a posteriori (MAP), 159, 302
Maximum entropy, 98, 243–249

principle of, 243
Maximum expected accuracy (MEA), 103
Maximum likelihood estimation, 71, 250,

273–279
Maximum mutual information (MMI), 300
MC, see Markov chains
McCulloch–Pitts neuron, 77
MCE, see minimum classification error

Index 377

MCMC, see Markov chain Monte Carlo
MDD, see maximal dependence decomposi-

tion
MDM78, 121
MEA, see maximum expected accuracy
Measures of impurity, 86
MEGAN, 345
Memoization, 45
Memoryless property, 30, 31
Mercer’s theorem, 260
Messenger RNA (mRNA), 5
Meta-IDBA, 344
MetaCluster, 345
MetaGeneAnnotator (MGA), 345
MetaGeneMark, 345
Metagenome, 343
Metagenomics, 333, 343–348

binning, see taxonomic binning
cow rumen, 343
microbiome, 344
Sargasso Sea, 343
shotgun, 343

MetaPhyler, 345
MetaVelvet, 344
Metropolis algorithm, 164, 306
Metropolis–Hastings algorithm, 303, 307
MG-RAST, 345
MGene, 22
Microbes, 73
Microbiome, 344
Microorganisms, 73
Minimum classification error (MCE), 301
Minimum entropy, 146
Mismatch (alignment), 107
Missense substitution, 15
ML, see maximum likelihood
MMI, see maximum mutual information
Mobile DNA, see transposable elements
Momentum parameter, 293
Mono-nucleotide repeats, 351
Monte Carlo methods, 285
Monte Carlo sampling, 163
Moralization, 96
MORGAN, 20, 89–91
MPSS, 330
MSA package, 143, 150
MSASA, 164, 308
MSR-CA pipeline, 340
Multilayer neural networks, 80
Multilayer perceptron, 81
Multinomial distribution, 251, 271, 275, 283
Multiple alignments, 143–170

dynamic programming, 149

Multiple Sequence Alignment, see MSA
package

Multiple sequence gene finding, 195
MUSCLE, 156–158
Mus musculus, 329
Mutagen, 15
Mutation, 15

deletion, 15
frameshift, 15
genetic algorithms, 160
indels, 16
insertion, 15
missense, 15
negative, 15
neutral, 15
nonsense, 15
positive, 15
silent, 15
substitution, 15

Mutation data matrix, 121
Mutation probability matrix, 118
Mutual information (MI), 300
MZEF, 20

N
Naive Bayes classifier, 93
National Human Genome Research Institute

(NHGRI), 329
Natural gap costs, 147
Natural selection, 15
NBC, 345
NCBI taxonomy browser, 353
Needleman–Wunsch algorithm, 109, 126,

130
affine gaps, 129
linear gaps, 127

Negative binomial distribution, 210
Negative mutation, 15
Neighbor-joining (NJ) method, 148, 150,

153
NetGene, 20
Neural networks (NN), 17, 76–83, 236

activation function, 77
backpropagation algorithm, 81, 293–299
bias, 78
depth, 80
feed-forward, 80, 236, 294
hidden layer, 80
integration function, 77
multilayer, 80
perceptron, 78
recurrent, 80

378 Index

single-layer, 79, 292
threshold function, 78
two-layer, 80, 236, 294

Neuron
action potential, 77
artificial, 77
axon, 77
biological, 76
dendritic tree, 77
McCulloch–Pitts, 77
synapse, 77

Neutral mutation, 15
Newton–Cotes, 285
Next-generation sequencing (NGS), 329,

333–336
NGS

massively parallel, 334
Nitrogen bases, 1
NN, see neural networks
Noncoding exons, 202, 207
Nonsense substitution, 15
Normalization factor, 95
NP-complete, 86, 143, 150, 163, 338
NP-hard, 337
N-SCAN, 19, 21, 180, 196
N50 statistic, 341, 350
Nucleic acid, 327
Nuclein, 327
Nucleotides, 1
N-value paradox, 9

O
Objective function, 160, 161, 270
Oblique split, 90
Oblique test, 89
OC1 system, 76, 89, 90
Occam’s razor, 86
o(h), 39
O157:H7 (E. coli), 34
OLC, 339
One-gene-one-enzyme hypothesis, 12
Open reading frame (ORF), 7, 16, 52, 73,

345
spurious, 52

Operational taxonomic units (OTUs), 148,
344

Optimal state sequence, 49
ORF, see open reading frame, see open read-

ing frame
ORFans, 345
Orphelia, 345
ORPHEUS, 20

Overfitting, 89, 160
Overlap-layout-consensus (OLC), 336
Overlapping genes, 53

P
PacBio RS, 330
Pacific Biosciences, 330, 335
Pair HMMs, see PHMMs
Paired-end, 337, 339
Pairwise alignments, 107–143
Pairwise Markov property, 96
PAM matrix, 110, 116–122, 331

relative mutability, 118
Parse, 43, 44, 51, 177
Parsimonious tree, 148
Partition function, 96, 245, 306
PASA, 355
Path, 44, 46
Patricia tree, 124
PCAP, 337
PCR, 328, 335
Percent accepted mutation (PAM), see PAM

matrix
Perceptron, 78

multilayer, 81
Personal Genome Machine (PGM), 330
Pfam, 355
Phase, 7, 62, 91, 184, 203, 213
Phase-dependent frequency, 221
Phat, 20
Phenotype, 4, 15
PhFit, 216
PHMMs, 132–136, 182–185

backward algorithm, 135
forward algorithm, 134
traceback, 136
Viterbi algorithm, 136

Phosphoric acid, 1
Phrap, 337
Phusion, 337
Phylo-HMM, 21
Phylogenetic distance, 147
Phylogenetic features, 101
Phylogenetic trees, 147–149, 196
Phylogeny, 15
PhyloPhytia, 345
Phymm, 345
Physcal mapping, 192
PIP plots, 185
Ploidy, 2
Plus-and-minus method, 328
Polony sequencing, 330

Index 379

PolyA-signal, 7, 202, 207
Polymerase chain reaction, see PCR
Polynomial kernel, 262
Polypeptide, 7
Pombe, 20
Pooled covariance matrix, 240
Position-Specific Iterative BLAST, see PSI-

BLAST
Position-specific scoring matrix (PSSM),

167, 226
Positive distribution, 96
Positive mutation, 15
Positive state, 37
Posterior decoding, 49, 54
Posterior probability, 67, 239, 251
Potential functions, 97
Prefix tree, 124
Primary transcript, 5, 207
Primer, 336
Principle of maximum entropy, 243
Prior probability, 239, 251, 271
Pro-Frame, 20
Pro-Gen, 21
Probability decomposition (chain rule), 30
Processed pseudogenes, 351, 352
Procrustes, 17, 20, 176
Profile analysis, 167
Profile HMMs, 132, 168, 228
Profile sum-of-pairs (PSP), 157
Profiles, 166–170
Progressive alignments, 144, 152–155

guide tree, 152
Projector, 19, 21, 193
Prokaryotes, 2
Promoter, 7, 202, 207
Protein domains, 166
Proteomics, 333
PRRN/PRRP, 155
Pruning, 89, 90
Pseudocounts, 70, 72, 160, 227, 270
Pseudogenes, 14

processed, 351, 352
retrotransposed, see processed

PSI-BLAST, 141
PSSM, see position-specific scoring matrix
Purine, 1
P-value (BLAST), 142
Pyrimidine, 1
Pyrosequencing, 330, 335

Q
Qiagen-intelligent bio-systems, 330
Quadratic discriminant analysis (QDA), 239

Quadratic discriminant function, 239
Quadratic programming (QP), 258
Quasi-natural gap costs, 147
Query sequence, 137

R
Radial basis kernel, 262
Random fields, 92, 96
Random process, 30, 91

continuous-time, 30
discrete-time, 30

Rational interpolation (IMMs), 72, 225
Read depth, 334
Reading frame, 7, 62
Reads, 336
Recurrence relation, 45, 47, 127, 139
Recurrent network, 80
Recurrent state, 36
Reducing complexity

GHMM, 63
GPHMMs, 190

Reference features, 101
Regularization, 160, 271
Relatedness odds matrix, 119
Relative entropy, 246
Relative mutability, 118
RepBase library, 357
Repeat masking, 22, 350–352

hard-masking, 351
soft-masking, 351

RepeatMasker, 22, 177, 180, 311, 351, 357
Repeats, 337, 339

Alu, 67
interspersed, 67, 350
low-complexity, 350
mono-nucleotides, 351
satellite, 351
tandem, 351

Restriction enzymes, 328
Retrotransposed pseudogenes, seeprocessed

pseudogenes
Reverse strand (DNA), 3
Ribeonuclease, 328
Ribonucleic acid (RNA), 5, 328
Ribosomal binding site (RBS), 16, 53, 207,

218
RNA fragmentation, 348
RNA-Seq, 343, 348–349
Roche, 330, 335
ROSETTA, 18, 20, 180
Rosetta stone, 180

380 Index

S
Saccharomyces cerevisiae, 10, 329
Saccharomyces genome database (SGD), 11
SAGA, 161
SAM, 158, 271
Sample, 273
Sample covariance matrix, 240
Sample mean vector, 240
Sanger sequencing, 325, 328, 333
Sargasso Sea sampling, 343
Satellite repeats, 351
Scaffolds, 336, 337
Scoring schemes, 144

average score method, 167
consistency based, 153
fractional identity, 154
log-expectation (LE), 157
PSP, 157

Scripture, 353
Second-generation sequencing, 325
Second-order Markov chain, 31
Self-transitions, 55
SelfID, 20
Semi-hill climbing, 162
Semi-Markov CRFs (SMCRFs), 100
Semi-Markov model, 56
Sense strand (DNA), 3
Sensitivity, 176, 322, 356
Sensors, 201

content, 201
signal, 201

Sequence Alignment and Modeling, see
SAM

Sequence Alignment by Genetic Algorithm,
see SAGA

Sequence assembly, 336–340
accuracy, 341
contiguity, 341
de Brujin graphs, 336, 340, 344
de novo, 339, 344
mate-pairs, 339
overlap-based, 339
overlap-layout-consensus, 336
paired-end, 339
quality, 350
string graph, 340

Sequence logos, 204
Sequencing by Oligo Ligation Detection

(SOLiD), 330, 335
Sequencing-by-ligation, 330, 335
Sequencing-by-synthesis, 330, 335
Sex chromosomes, 2
SGP-1, 21

SGP-2, 19, 21, 180, 188
Shannon entropy, 86, 146, 205, 243
Shifted geometric distribution, 210
Shine-Dalgarno box, 218, 347
ShortHMM, 22
Shotgun metagenomics, 343
Shotgun sequencing, 329, 336
Sigmoid function, 72, 294
Sigmoidal kernel, 262
Signal sensors, 201
Significance of alignment scores, 141

E-value, 142
P-value, 142

Silencer, 207
Silent state, 46, 133, 134
Silent substitution, 15
Similarity-based gene finding, 13, 175–180
Simulated annealing, 158, 289

for multiple alignments, 163–166
for parameter training, 305–308
for training HMMs, 308

Single exon, 203
Single molecule sequencing, 330, 335
Single-layer neural networks, 79, 292
Single-nucleotide polymorphisms, seeSNPs
SLAM,19, 21, 180, 188–192, 195, 207, 311–

324
Small ORFs (smORFs), 11
SMCRFs, see semi-Markov CRFs
Smith–Waterman algorithm, 109, 130–132

banded, 138
maximal segment pairs, 139
recurrence relation, 139

Smith-Waterman algorithm, 194
SNAP, 21, 358
SNPs, 339, 343
SOAPdenovo, 339, 342, 344, 353
Soft-masked repeats, 351
Solexa, 330, 335
SORFIND, 20
SOrt-ITEMS, 345
Specificity, 176, 322, 356
Splice site detection, 225–264
Splice sites, 16, 201, 204, 247, 254, 262
Spliced alignment, 17, 176
Splicing, 5, 6, 204
Splign, 353
Spurious ORFs, 52
SSAKE, 339
Staden Package, 331
Start codons, 7, 16, 218
State, 91

absorbing, 213

Index 381

aperiodic, 37
communicating, 36
holding time, 38
intercommunicating, 36
period, 37
positive, 37
recurrent, 36
silent, 46
transient, 36

State space, 30
path, 44

Stationary distribution, 36, 41
Statistical significance of predictions, 54
Steady state distribution, 36
Stepping stone algorithm, 184
Stochastic language models, 70
Stochastic matrix, 31
Stochastic process, see random process
Stop codons, 7
Strand (DNA), 2
StrataSplice, 193
String graph, 340
String Graph Assembler (SGA), 340, 342
String matching, 107
Structural annotation, 352
Structure alignments, 144
Substitution, 15, 107
Substitution matrix, 110

BLOSUM, 116
GONNET, 116
JTT, 116
log-odds ratio, 116
PAM, 116

Substitution models
amino acid, 117, 116–117
BLOSUM matrix, 122–124
genetic code, 116
GONNET matrix, 124–125
MDM78 matrix, 121
mutation data matrix, 121
nucleotide, 110–116
PAM matrix, 117–122
unitary matrix, 116

Sum-of-pairs (SP), 145, 160
weighted, 146

Sum-of-squares function, 292
Support vector machines (SVM), 255–264
Support vectors, 256
Swiss-Prot, 10, 353
Synapse, 77
Synonymous codons, 220

T
Tabular computation, 45
Tamura-Nei model, 115
Tandem repeats, 351
Target sequence, 137
TATA-box, 207
Taxonomic binning, 344

composition-based, 345
similarity-based, 345

TBLASTX, 180
T-Coffee, 153
Temperature, 163, 305
TESTCODE, 16, 20
Third-generation sequencing, 330, 335
Threshold function, 78
Thymine (T), 1
TigrScan, 21
Time-homogeneous Markov chain, 38
Time-reversible Markov chain, 37
TOP kernel, 264
Top-down tabular computation, 45
TopHat, 349, 353
Traceback, 45, 50, 51, 129, 136
trans-splicing, 12, 349
Transcription, 4, 206
Transcription start site (TSS), 207
Transcriptome, 9, 348
Transcriptomics, 333, 348
Transient state, 36, 213
Transition feature, 101
Transition matrix, 31, 39
Transition probability, 31

n-step, 34
Transition rate matrix, 40, 112
Transition time, 55
Translation, 4, 206
Translation (substitution), 113
Transposable elements, 350, 351
Transpose, 351
Transpositions, 108
Transposon detection, 351
Transversion (substitution), 113
Traveling salesman problem, 163
Tree-dependent restricted partitioning, 157
TrEMBL, 353
Trinity, 353
TSS, see transcription start site
TWAIN, 21
Twinscan, 19, 21, 102, 176, 178, 188, 196
Two-hit method, 140
Two-layer feed-forward network, 236, 294
Twoing rule, 86
Type II restriction enzymes, 328

382 Index

U
UCSC Genome Browser, 355
Undirected graph, 92, 94, 95
UniProtKB, 353
Unitary matrix, 116
Untranslated region (UTR), 7, 201, 206

3′UTR, 207
5′UTR, 207

Unveil, 21
UPGMA, 148
Uracil (U), 5
US National Institute of Health (NIH), 329
3′UTR, 207
5′UTR, 207
UTR, see untranslated region

V
Variable-length Markov models, 70, 228
Variable-order Markov models (VOMs), 70,

229
VEIL, 18, 20
Velvet, 339, 344
Viterbi algorithm, 44, 49

DoubleScan, 184
for GHMMs, 59

for GPHMMs, 187
for multiple alignments, 170
for PHMMs, 136

VLMM, see variable-length Markov models
VOM, see variable-order Markov models

W
Waiting time, see holding time
Wandering-spot analysis, 328
WebLogo, 205
Weight array model (WAM), 228
Weight matrix model (WMM), 226
Weighted degree (WD) kernel, 263
Weighted sum-of-pairs (WSP), 146
Whole transcriptome shotgun sequencing,

see RNA-Seq
Whole-genome shotgun sequencing, 329
Windowed weight array model (WWAM),

228
World wide web, 331
WU-BLASTN, 180

Z
ZCURVE, 21

	Preface to the Second Edition
	Preface to the First Edition
	Acknowledgments
	Contents
	Acronyms
	1 Introduction
	1.1 Some Basic Genetics
	1.2 The Central Dogma
	1.3 The Structure of a Gene
	1.4 How Many Genes Do We Have?
	1.5 Problems of Gene Definitions
	1.6 The Gene Finding Problem
	1.7 Comparative Gene Finding
	1.8 History of Algorithm Development
	1.9 To Build a Gene Finder
	References

	2 Single Species Gene Finding
	2.1 Hidden Markov Models (HMMs)
	2.1.1 Markov Chains
	2.1.2 Hidden Markov Models
	2.1.3 Dynamic Programming
	2.1.4 The Forward Algorithm
	2.1.5 The Backward Algorithm
	2.1.6 The Viterbi Algorithm
	2.1.7 EasyGene: A Prokaryotic Gene Finder

	2.2 Generalized Hidden Markov Models (GHMMs)
	2.2.1 Preliminaries
	2.2.2 The Forward and Backward Algorithms
	2.2.3 The Viterbi Algorithm
	2.2.4 Genscan: A GHMM-Based Gene Finder

	2.3 Interpolated Markov Models (IMMs)
	2.3.1 Preliminaries
	2.3.2 Linear and Rational Interpolation
	2.3.3 GLIMMER: A Microbial Gene Finder

	2.4 Neural Networks
	2.4.1 Biological Neurons
	2.4.2 Artificial Neurons and the Perceptron
	2.4.3 Multilayer Neural Networks
	2.4.4 GRAIL: A Neural Network-Based Gene Finder

	2.5 Decision Trees
	2.5.1 Classification
	2.5.2 Decision Tree Learning
	2.5.3 MORGAN: A Decision Tree-Based Gene Finder

	2.6 Conditional Random Fields
	2.6.1 Preliminaries
	2.6.2 Generative Versus Discriminative Models
	2.6.3 Graphical Models and Markov Random Fields
	2.6.4 Conditional Random Fields (CRFs)
	2.6.5 Conrad: CRF-Based Gene Prediction

	References

	3 Sequence Alignment
	3.1 Pairwise Sequence Alignment
	3.1.1 Dot Plot Matrix
	3.1.2 Nucleotide Substitution Models
	3.1.3 Amino Acid Substitution Models
	3.1.4 Gap Models
	3.1.5 The Needleman--Wunsch Algorithm
	3.1.6 The Smith--Waterman Algorithm
	3.1.7 Pair Hidden Markov Models (PHMMs)
	3.1.8 Database Similarity Searches
	3.1.9 The Significance of Alignment Scores

	3.2 Multiple Sequence Alignment
	3.2.1 Scoring Schemes
	3.2.2 Phylogenetic Trees
	3.2.3 Dynamic Programming
	3.2.4 Progressive Alignments
	3.2.5 Iterative Methods
	3.2.6 Hidden Markov Models
	3.2.7 Genetic Algorithms
	3.2.8 Simulated Annealing
	3.2.9 Alignment Profiles

	References

	4 Comparative Gene Finding
	4.1 Similarity-Based Gene Finding
	4.1.1 GenomeScan: GHMM-Based Gene Finding Using Homology
	4.1.2 Twinscan: GHMM-Based Gene Finding Using Informant Sequences

	4.2 Heuristic Cross-Species Gene Finding
	4.2.1 ROSETTA: A Heuristic Cross-Species Gene Finder

	4.3 Pair Hidden Markov Models (PHMMs)
	4.3.1 DoubleScan: A PHMM-Based Comparative Gene Finder

	4.4 Generalized Pair Hidden Markov Models (GPHMMs)
	4.4.1 Preliminaries
	4.4.2 SLAM: A GPHMM-Based Comparative Gene Finder

	4.5 Gene Mapping
	4.5.1 Projector: A Gene Mapping Tool
	4.5.2 GeneMapper---Reference-Based Annotation

	4.6 Multiple Sequence Gene Finding
	4.6.1 N-SCAN: A Multiple Informant-Based Gene Finder

	References

	5 Gene Structure Submodels
	5.1 The State Space
	5.1.1 The Exon States
	5.1.2 Splice Sites
	5.1.3 Introns and Intergenic Regions
	5.1.4 Untranslated Regions (UTRs)
	5.1.5 Promoters and PolyA-Signals

	5.2 State Length Distributions
	5.2.1 Geometric and Negative Binomial Lengths
	5.2.2 Empirical Length Distributions
	5.2.3 Acyclic Discrete Phase-Type Distributions

	5.3 Sequence Content Sensors
	5.3.1 GC-Content Binning
	5.3.2 Start Codon Recognition
	5.3.3 Codon and Amino Acid Usage
	5.3.4 K-Tuple Frequency Analysis
	5.3.5 Markov Chain Content Sensors
	5.3.6 Interpolated Markov Models

	5.4 Splice Site Detection
	5.4.1 Weight Matrices and Weight Array Models
	5.4.2 Variable-Length Markov Models (VLMMs)
	5.4.3 Maximal Dependence Decomposition (MDD)
	5.4.4 Neural Networks
	5.4.5 Linear Discriminant Analysis
	5.4.6 Maximum Entropy
	5.4.7 Bayesian Networks
	5.4.8 Support Vector Machines

	References

	6 Parameter Training
	6.1 Introduction
	6.2 Pseudocounts
	6.3 Maximum Likelihood Estimation
	6.4 The Expectation--Maximization (EM) Algorithm
	6.5 The Baum--Welch Algorithm
	6.6 Gradient Ascent/Descent
	6.7 The Backpropagation Algorithm
	6.8 Discriminative Training
	6.9 Gibbs Sampling
	6.10 Simulated Annealing
	References

	7 Implementation of a Comparative Gene Finder
	7.1 Program Structure
	7.1.1 Command Line Arguments
	7.1.2 Parameter Files
	7.1.3 Candidate Exon Boundaries
	7.1.4 Output Files

	7.2 The GPHMM Model
	7.2.1 Modeling Intron and Intergenic Pairs
	7.2.2 Modeling Exon Pairs
	7.2.3 Approximate Alignment

	7.3 Accuracy Assessment
	7.4 Possible Model Extensions
	References

	8 Annotation Pipelines for Next-Generation Sequencing Projects
	8.1 Introduction
	8.2 History of DNA Sequencing
	8.2.1 The Origin of Bioinformatics

	8.3 Next-Generation Sequencing (NGS)
	8.3.1 NGS Technologies
	8.3.2 Genome Sequence Assembly
	8.3.3 NGS Applications

	8.4 NGS Genome Sequencing Annotation Pipelines
	8.4.1 Assembly Quality
	8.4.2 Repeat Masking
	8.4.3 Gene Annotation
	8.4.4 De Novo Annotation Assessment
	8.4.5 MAKER: An Annotation Pipeline for Next-Generation Sequencing Projects

	References

	Index

