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Preface

Financial econometrics and statistics have become very important tools for empirical

research in both finance and accounting. Econometricmethods are important tools for

doing asset pricing, corporate finance, options and futures, and conducting financial

accounting research. Important econometric methods used in this research include:

single equation multiple regression, simultaneous regression, panel data analysis,

time series analysis, spectral analysis, non-parametric analysis, semi-parametric

analysis, GMM analysis, and other methods.

Portfolio theory and management research have used different statistical distri-

butions, such as normal distribution, stable distribution, and log normal distribu-

tion. Options and futures research have used binomial distribution, log normal

distribution, non-central chi square distribution, Poission distribution, and others.

Auditing research has used sampling survey techniques to determine the sampling

error and non-sampling error for auditing.

Based upon our years of experience working in the industry, teaching classes,

conducting research, writing textbooks, and editing journals on the subject of

financial econometrics and statistics, this handbook will review, discuss, and

integrate theoretical, methodological, and practical issues of financial econometrics

and statistics. There are 99 chapters in this handbook. Chapter 1 presents an

introduction of financial econometrics and statistics and shows how readers can

use this handbook. The following chapters, which have been contributed by

accredited authors, can be classified by the following 14 topics.

i. Financial Accounting (Chapters 2, 9, 10, 61, 97)

ii. Mutual Funds (Chapters 3, 24, 25, 68, 88)

iii. Microstructure (Chapters 4, 44, 96, 99)

iv. Corporate Finance (Chapters 5, 21, 30, 38, 42, 46, 60, 63, 75, 79, 95)

v. Asset Pricing (Chapters 6, 15, 22, 28, 34, 36, 39, 45, 47, 50, 81, 85, 87, 93)

vi. Options (Chapters 7, 32, 37, 55, 65, 84, 86, 90, 98)

vii. Portfolio Analysis (Chapters 8, 26, 35, 53, 67, 73, 80, 83)

viii. Risk Management (Chapters 11, 13, 16, 17, 23, 27, 41, 51, 54, 72, 91, 92)

ix. International Finance (Chapters 12, 40, 43, 59, 69)

x. Event Study (Chapters 14)

xi. Methodology (Chapters 18, 19, 20, 29, 31, 33, 49, 52, 56, 57, 58, 62, 74, 76,

77, 78, 82, 89)
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xii. Banking Management (Chapters 64)

xiii. Pension Funds (Chapters 66)

xiv. Futures and Index Futures (Chapters 48, 70, 71, 94)

In addition to this classification, based upon the keywords of chapter 2-99, we

classify the information into a) finance and accounting topics and b) methodology

topics. This information can be found in chapter 1 of this handbook.

In the preparation of this handbook, first, we would like to thank the member of

advisory board and contributors of this handbook. In addition, we would like to

make note that we appreciate the extensive help from the Editor Mr. Brian Foster,

our research assistants Tzu Tai, Lianne Ng, and our secretary Ms. Miranda Mei-Lan

Luo. Finally, we would like to thank the financial support from the Wintek

Corporation and APEX International Financial Engineering Res. & Tech. Co. Ltd.

that allowed us to write the edition of this book.

There are undoubtedly some errors in the finished product, both typo-graphical

and conceptual. I would like to invite readers to send suggestions, comments,

criticisms, and corrections to the author Professor Cheng F. Lee at the Department

of Finance and Economics, Rutgers University at the email address lee@business.

rutgers.edu.

December 2012 Cheng-Few Lee

John C. Lee
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Abstract

The main purposes of this introduction chapter are (i) to discuss important

financial econometrics and statistics which have been used in finance and

accounting research and (ii) to present an overview of 98 chapters which have

been included in this handbook. Sections 1.2 and 1.3 briefly review and

discuss financial econometrics and statistics. Sections 1.4 and 1.5 discuss

application of financial econometrics and statistics. Section 1.6 first classifies

98 chapters into 14 groups in accordance with subjects and topics. Then this

section has classified the keywords from each chapter into two groups:

finance and accounting topics and methodology topics. Overall, this chapter

gives readers of this handbook guideline of how to apply this handbook to

their research.

1.1 Introduction

Financial econometrics and statistics have become very important tools for empir-

ical research in both finance and accounting. Econometric methods are important

tools for asset-pricing, corporate finance, options, and futures, and conducting

financial accounting research. Important econometric methods used in this research

include: single equation multiple regression, simultaneous regression, panel data

analysis, time-series analysis, spectral analysis, nonparametric analysis, semi-

parametric analysis, GMM analysis, and other methods.

Portfolio theory and management research have used different statistics

distributions, such as normal distribution, stable distribution, and log-normal dis-

tribution. Options and futures research have used binomial distribution, log-normal

distribution, non-central Chi-square distribution, Poisson distribution, and others.

Auditing research has used sampling survey techniques to determine the sampling

error and non-sampling error for auditing. Risk management research has used

Copula distribution and other distributions.

Section 1.1 is the introduction. Section 1.2 discusses financial econometrics.

In this section, we have six subsections. These subsections include single equation

regression methods, simultaneous equation models, panel data analysis, as well

as alternative methods to deal with measurement error, time-series analysis,

and spectral analysis. In the next section, Sect. 1.3, we discuss financial statistics.

Within financial statistics, we discuss six subtopics, including statistical

distributions; principle components and factor analysis; nonparametric, semi-

parametric, and GMM analyses; and cluster analysis. After exploring these topics,

we discuss the applications of financial econometrics and financial statistics in

Sects. 1.4 and 1.5. In Sect. 1.6, we discuss the overview of all papers included

in this handbook in accordance with the subject and methodologies used in the

papers. Finally in Sect. 1.7, we summarize all the chapters in this handbook and add

our concluding remarks.
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As mentioned previously, Sect. 1.2 covers the topic of financial econometrics. We

divide this section into six subsections. Within Sect. 1.2.1, we talk about single equation

regression methods. We discuss some important issues related to single equation

regression methods, including Heteroskedasticity, Specification Error, Measurement

Error, Skewness and the Kurtosis Effect, Nonlinear Regression and Box-Cox transfor-

mation, Structural Change, the Chow Test and Moving Chow Test, Threshold Regres-

sion, Generalize Fluctuation Test, Probit and Logit Regression for Credit Risk Analysis,

Poisson Regression, and Fuzzy Regression. The next subsection, Sect. 1.2.2, analyzes

simultaneous equation models. Within the realm of simultaneous equation models, we

discuss two-stage least squares estimation (2SLS) method, seemly unrelated regression

(SUR) method, three-stage least squares estimation (3SLS) method, and disequilibrium

estimation method. In Sect. 1.2.3, we study panel data analysis, in which we go

over fixed effect model, random effect model, and clustering effect. The next subsection,

Sect. 1.2.3, explores alternative methods to deal with measurement error. The alternative

methods we look over in this section includes LISREL model, multifactor and

multi-indicator (MIMIC) model, partial least square method, and grouping method.

After we discuss alternative methods to deal with measurement error, we examine in

Sect. 1.2.4 time-series analysis. We include in our section about time-series analysis

some important models, including ARIMA, ARCH, GARCH, fractional GARCH, and

combined forecasting. In Sect. 1.2.5, we look into spectral analysis.

In the following section, Sect. 1.3, we discuss financial statistics, along with four

subsequent subtopics. In our first subsection, Sect. 1.3.1, we discuss some important

statistical distributions. This subsection will look into the different types of distri-

butions that are in statistics, including Binomial and Poisson distribution, normal

distribution, log-normal distribution, Chi-square distribution, and non-central

Chi-square distribution, Wishart distribution, symmetric and non-symmetric stable

distributions, and other known distributions. Then, we talk about principal compo-

nents and factor analysis in Sect. 1.3.2. In the following subsection, Sect. 1.3.3, we

examine nonparametric, semi-parametric, and GMM analyses. The last subsection,

Sect. 1.3.4, explores cluster analysis.

After discussing financial econometrics, we explore the applications of this topic

in different types of financial and accounting field research. In Sect. 1.4, we

describe these applications, including asset-pricing research, corporate finance

research, financial institution research, investment and portfolio research, option

pricing research, future and hedging research, mutual fund research, hedge fund

research, microstructure, earnings announcements, real option research, financial

accounting, managerial accounting, auditing, term structure modeling, credit risk

modeling, and trading cost/transaction cost modeling.

We also discuss applications of financial statistics into different types of

financial and accounting field research. Section 1.5 will include these applications

in asset-pricing research, investment and portfolio research, credit risk management

research, market risk research, operational risk research, option pricing research,

mutual fund research, hedge fund research, value-at-risk research, and auditing.

1 Introduction to Financial Econometrics and Statistics 3



1.2 Financial Econometrics

1.2.1 Single Equation Regression Methods

There are important issues related to single equation regression estimation method.

They are (a) Heteroskedasticity, (b) Specification error, (c) Measurement error,

(d) Skewness and kurtosis effect, (e) Nonlinear regression and Box-Cox transfor-

mation, (f) Structural change, (g) Chow test and moving Chow test, (h) Threshold

regression, (i) Generalized fluctuation, (j) Probit and Logit regression for credit risk

analysis, (k) Poisson regression, and (l) Fuzzy regression. These issues are briefly

discussed as follows:

(a) Heteroskedasticity

– White (1980) and Newvey and West (1987) are two important papers

discussing how the heteroskedasticity test can be performed. The latter

paper discusses heteroskedasticity when there are serial correlations.

(b) Specification error

– Specification error occurswhen there ismissing variable in a regression analysis.

To test the existence of specification error, we can refer to the papers by Thursby

(1985), Fok et al. (1996), Cheng and Lee (1986), and Maddala et al. (1996).

(c) Measurement error

– Management error problem is when there exists imprecise independent

variable in a regression analysis. Papers by Lee and Jen (1978), Kim

(1995, 1997, 2010), Miller and Modigliani (1966), and Lee and Chen

(2012) have explored how measurement error methods can be applied to

finance research. Lee and Chen have discussed alternative errors in variable

estimation methods and their application in finance research.

(d) Skewness and kurtosis effect

– Both skewness and kurtosis are two important measurement variables to pre-

pare stock variation analysis. Papers byLee (1976a), Sears andWei (1988), and

Lee and Wu (1985) discuss the skewness and kurtosis issue in asset pricing.

(e) Nonlinear regression and Box-Cox transformation

– Nonlinear regression and Box-Cox transformation are important tools for

finance, accounting, and urban economic researches. Papers by Lee (1976,

1977), Lee et al. (1990), Frecka and Lee (1983), and Liu (2006) have

discussed how nonlinear regression and Box-Cox transformation techniques

can be used to improve the specification of finance and accounting research.

Kau and Lee (1976), and Kau et al. (1986) have explored how Box-Cox

transformation can be used to conduct the empirical study of urban structure.

(f) Structural change

– Papers by Yang (1989), Lee et al. (2011b, 2013) have discussed how the

structural change model can be used to improve the empirical study of

dividend policy and the issuance of new equity.

(g) Chow test and Moving Chow test

– Chow (1960) has proposed a dummy variable approach to examine the

existence of structure change for regression analysis. Zeileis et al. (2002)
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have developed software programs to perform the Chow test and other

structural change models which has been frequently used in finance and

economic research.

(h) Threshold regression

– Hansen (1996, 1997, 1999, 2000a, and 2000b) have explored the issue of

threshold regressions and their applications in detecting structure change for

regression.

(i) Generalize fluctuation test

– Kuan and Hornik (1995) have discussed how the generalized fluctuation test

can be used to perform structural change to regression.

(j) Probit and Logit regression for credit risk analysis

– Probit and Logit regressions are frequently used in credit risk analysis.

Ohlson (1980) used the accounting ratio and macroeconomic data to do

credit risk analysis. Shumway (2001) has used accounting ratios and

stock rate returns for credit risk analysis in terms of Probit and

Logit regression techniques. Most recently, Hwang et al. (2008, 2009)

and Cheng et al. (2010) have discussed Probit and Logit regression for credit

risk analysis by introducing nonparametric and semi-parametric techniques

into this kind of regression analysis.

(k) Poisson regression

– Lee and Lee (2012) have discussed how the Poisson Regression can be

performed, regardless of the relationship between multiple directorships,

corporate ownership, and firm performance.

(l) Fuzzy regression

– Shapiro (2005), Angrist and Lavy (1999), and Van Der Klaauw (2002) have

discussed how Fuzzy Regression can be performed. This method has the

potential to be used in finance accounting and research.

1.2.2 Simultaneous Equation Models

In this section, we will discuss alternative methods to deal with simultaneous

equation models. There are (a) two-stage least squares estimation (2SLS) method,

(b) seemly unrelated regression (SUR) method, (c) three-stage least squares esti-

mation (3SLS) method, (d) disequilibrium estimation method, and (e) generalized

method of moments.

(a) Two-stage least squares estimation (2SLS) method

– Lee (1976a) has applied this to started market model; Miller and Modigliani

(1966) have used 2SLS to study cost of capital for utility industry; Chen

et al. (2007) have discuss the two-stage least squares estimation (2SLS)

method for investigating corporate governance.

(b) Seemly unrelated regression (SUR) method

– Seemly unrelated regression has frequently used in economic and financial

research. Lee and Zumwalt (1981) have discussed how the seemly unrelated

regression method can be applied in asset-pricing determination.
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(c) Three-stage least squares estimation (3SLS) method

– Chen et al. (2007) have discussed how the three-stage least squares estima-

tion (3SLS) method can be applied in corporate governance research.

(d) Disequilibrium estimation method

– Mayer (1989), Martin (1990), Quandt (1988), Amemiya (1974), and Fair

and Jaffee, (1972) have discussed how alternative disequilibrium estimation

method can be performed. Tsai (2005), Sealey (1979), and Lee et al. (2011a)

have discussed how the disequilibrium estimation method can be applied in

asset-pricing test and banking management analysis.

(e) Generalized method of moments

– Hansen (1982) and Hamilton (1994, ▶Chap. 14) have discussed how GMM

method can be performed. Chen et al. (2007) have used the two-stage least

squares estimation (2SLS), three-stage squares method, and GMM method

to investigate corporate governance.

1.2.3 Panel Data Analysis

In this section, we will discuss important issues related to panel data analysis. They are

(a) fixed effect model, (b) random effect model, and (c) clustering effect model.

Three well-known textbooks by Wooldridge (2010), Baltagi (2008) and Hsiao

(2003) have discussed the applications of panel data in finance, economics, and

accounting research. Now, we will discuss the fixed effect, random effect, and

clustering effect in panel data analysis.

(a) Fixed effect model

– Chang and Lee (1977) and Lee et al. (2011a) have discussed the role of

the fixed effect model in panel data analysis of dividend research.

(b) Random effect model

– Arellano and Bover (1995) have explored the random effect model and its role

in panel data analysis. Chang and Lee (1977) have applied both fix effect and

random effect model to investigating the relationshipbetween price per share,

dividend per share, and retained earnings per share.

(c) Clustering effect model

– Papers by Thompson (2011), Cameron et al. (2006), and Petersen (2009)

review the clustering effect model and its impact on panel data analysis.

1.2.4 Alternative Methods to Deal with Measurement Error

In this section, we will discuss alternative methods of dealing with measurement

error problems. They are (a) LISREL model, (b) multifactor and multi-indicator

(MIMIC) model, and (c) partial least square method, and (d) grouping method.

(a) LISREL model

– Papers by Titman and Wessal (1988), Chang (1999), Chang et al. (2009),

Yang et al. (2010) have described the LISREL model and its way to resolve

the measurement error problems of finance research.
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(b) Multifactor and multi-indicator (MIMIC) model

– Chang et al. (2009) and Wei (1984) have applied in the multifactor and multi-

indicator (MIMIC) model in capital structure and asset-pricing research.

(c) Partial least square method

– Papers by Core (2000), Ittner et al. (1997), and Lambert and Lacker (1987)

have applied the partial least square method to deal with measurement error

problems in accounting research.

(d) Grouping method

– Papers by Lee (1973), Chen (2011), Lee and Chen (2013), Lee (1977b),

Black et al. (1972), Blume and Friend (1973), and Fama and MacBeth

(1973) analyze grouping method and its way to deal with measurement

error problem in capital asset-pricing tests.

There are other errors in variable method, such as (i) Classical method,

(ii) instrumental variable method, (iii) mathematical programming method,

(iv) maximum likelihood method, (v) GMM method, and (vi) Bayesian Statistic

Method. Lee and Chen (2012) have discussed all above-mentioned methods in

details.

1.2.5 Time Series Analysis

In this section, we will discuss important models in time-series analysis. They are

(a) ARIMA, (b) ARCH, (c) GARCH, (d) fractional GARCH, and (e) combined

forecasting.

– Two well-known textbooks by Anderson (1994) and Hamilton (1994) have

discussed the issues related to time-series analysis. We will discuss some

important topics in time-series analysis in the following subsections.

– Myers (1991) discloses ARIMA’s role in time-series analysis: Lien and Shrestha

(2007) discuss ARCH and its impact on time-series analysis: Lien (2010)

discusses GARCH and its role in time-series analysis: Leon and Vaello-Sebastia

(2009) further research into GARCH and its role in time series in a model called

Fractional GARCH.

– Granger and Newbold (1973), Granger and Newbold (1974), Granger and

Ramanathan (1984) have theoretically developed combined forecasting

methods. Lee et al. (1986) have applied combined forecasting methods to

forecast market beta and accounting beta. Lee and Cummins (1998) have

shown how to use the combined forecasting methods to perform cost of capital

estimates.

1.2.6 Spectral Analysis

Anderson (1994), Chacko and Viceira (2003), and Heston (1993) have discussed

how spectral analysis can be performed. Heston (1993) and Bakshi et al. (1997)

have applied spectral analysis in the evaluation of option pricing.
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1.3 Financial Statistics

1.3.1 Important Statistical Distributions

In this section, we will discuss different statistical distributions. They are:

(a) Poisson distribution, (c) normal distribution, (d) log-normal distribution,

(e) Chi-square distribution, (f) non-central Chi-square distribution.

Two well-known textbooks by Cox et al. (1979) and Rendleman and Barter

(1979) have used binomial, normal, and lognormal distributions to develop an

option pricing model. The following subsections note some famous authors

that provide studies on these different statistical distributions. Black and Sholes

(1973) have used lognormal distributions to derive the option pricing model.

Finally, Aitchison and Brown (1973) is a well-known book to investigate lognormal

distribution. Schroder (1989) has derived the option pricing model in terms of

non-central Chi-square distribution.

Fama (1971) has used stable distributions to investigate the distribution of stock

rate of returns. Chen and Lee (1981) have derived statistics distribution of Sharpe

performance measure and found that Sharpe performance measure can be described

by Wishart distribution.

1.3.2 Principle Components and Factor Analysis

Anderson’s (2003) book entitled “An Introduction to Multivariate Statistical
Analysis” has discussed principal components and factor analysis in detail. Chen

and Shimerda (1981), Pinches and Mingo (1973), and Kao and Lee (2012) discuss

how principal components and factor analyses can be used to do finance Lee et al.

(1989) and accounting research.

1.3.3 Nonparametric and Semi-parametric Analyses

Ait-Sahalia and Lo (2000), and Hutchison et al. (1994) have discussed how

nonparametric can be used in risk management and derivative securities evaluation.

Hwang et al. (2010), and Hwang et al. (2007) have used semi-parametric to conduct

credit risk analysis.

1.3.4 Cluster Analysis

The detailed procedures to discuss how cluster analysis can be used to find

groups in data can be found in the textbook by Kaufman and Rousseeuw (1990).

Brown and Goetzmann (1997) have applied cluster analysis in mutual fund

research.
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1.4 Applications of Financial Econometrics

In this section, we will briefly discuss how different methodologies of financial

econometrics will be applied to the topics of finance and accounting.

(a) Asset-pricing Research

– Methodologies used in asset-pricing research include (1) Heteroskedasticity,

(2) Specification error, (3) Measurement error, (4) Skewness and kurtosis

effect, (5) Nonlinear regression and Box-Cox transformation, (6) Structural

change, (7) Two-stage least squares estimation (2SLS) method, (8) Seemly

unrelated regression (SUR) method, (9) Three-stage least squares

estimation (3SLS) method, (10) Disequilibrium estimation method,

(11) Fixed effect model, (12) Random effect model, (13) Clustering effect

model of panel data analysis, (14) Grouping method, (15) ARIMA, (16) ARCH,

(17) GARCH, (18) Fractional GARCH, and (19) Wishart distribution.

(b) Corporate Finance Research:

– Methodologies used in Corporate finance research include (1) Heteroske-

dasticity, (2) Specification error, (3) Measurement error, (4) Skewness and

kurtosis effect, (5) Nonlinear regression and Box-Cox transformation,

(6) Structural change, (7) Probit and Logit regression for credit risk analysis,

(8) Poisson regression, (9) Fuzzy regression, (10) Two-stage least squares

estimation (2SLS) method, (11) Seemly unrelated regression (SUR) method,

(12) Three-stage least squares estimation (3SLS) method, (13) Fixed effect

model, (14) Random effect model, (15) Clustering effect model of panel data

analysis, and (16) GMM Analysis.

(c) Financial Institution Research

– Methodologies used in Financial Institution research include (1) Heteroske-

dasticity, (2) Specification error, (3) Measurement error, (4) Skewness and

kurtosis effect, (5) Nonlinear regression and Box-Cox transformation,

(6) Structural change, (7) Probit and Logit regression for credit risk analysis,

(8) Poisson regression, (9) Fuzzy regression, (10) Two-stage least squares

estimation (2SLS) method, (11) Seemly unrelated regression (SUR) method,

(12) Three-stage least squares estimation (3SLS) method, (13) Disequilib-

rium estimation method, (14) Fixed effect model, (15) Random effect model,

(16) Clustering effect model of panel data analysis, (17) Semiparametric

analysis.

(d) Investment and Portfolio Research

– Methodologies used in investment and portfolio research include

(1) Heteroskedasticity, (2) Specification error, (3) Measurement error,

(4) Skewness and kurtosis effect, (5) Nonlinear regression and Box-Cox

transformation, (6) Structural change, (7) Probit and Logit regression for

credit risk analysis, (8) Poisson regression, and (9) Fuzzy regression.

(e) Option Pricing Research

– Methodologies used in option pricing research include (1) ARIMA,

(2) ARCH, (3) GARCH, (4) Fractional GARCH, (5) Spectral analysis,

(6) Binomial distribution, (7) Poisson distribution, (8) normal distribution,
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(9) log-normal distribution, (10) Chi-square distribution, (11) non-central

Chi-square distribution, and (12) Nonparametric analysis.

(f) Future and Hedging Research

– Methodologies used in future and hedging research include (1) Heteroske-

dasticity, (2) Specification error, (3) Measurement error, (4) Skewness and

kurtosis effect, (5) Nonlinear regression and Box-Cox transformation,

(6) Structural change, (7) Probit and Logit regression for credit risk analysis,

(8) Poisson regression, and (9) Fuzzy regression.

(g) Mutual Fund Research

– Methodologies used in mutual fund research include (1) Heteroskedasticity,

(2) Specification error, (3) Measurement error, (4) Skewness and kurtosis

effect, (5) Nonlinear regression and Box-Cox transformation, (6) Structural

change, (7) Probit and Logit regression for credit risk analysis, (8) Poisson

regression, (9) Fuzzy regression, and (10) Cluster analysis.

(h) Credit Risk Modeling

– Methodologies used in credit risk modeling include (1) Heteroskedasticity,

(2) Specification error, (3)Measurement error, (4) Skewness and kurtosis effect,

(5) Nonlinear regression and Box-Cox transformation, (6) Structural change,

(7) Two-stage least squares estimation (2SLS) method, (8) Seemly unrelated

regression (SUR) method, (9) Three-stage least squares estimation (3SLS)

method, (10) Disequilibrium estimation method, (11) Fixed effect model,

(12) Random effect model, (13) Clustering effect model of panel data analysis,

(14) ARIMA, (15) ARCH, (16) GARCH, and (17) Semiparametric analysis.

(i) Other Application

– Financial econometrics is also important tools to conduct research in

(1) Trading cost/transaction cost modeling, (2) Hedge fund research,

(3) Microstructure, (4) Earnings announcement, (5) Real option research,

(6) Financial accounting, (7) Managerial accounting, (8) Auditing, and

(9) Term structure modeling.

1.5 Applications of Financial Statistics

Financial statistics is an important tool for research in (1) Asset-pricing research,

(2) Investment and portfolio research, (3) Credit risk management research,

(4) Market risk research, (5) Operational risk research, (6) Option pricing research,

(7) Mutual fund research, (8) Hedge fund research, (9) Value-at-risk research, and

(10) Auditing research.

1.6 Overall Discussion of Papers in this Handbook

In this section, we classify 98 papers (chapters 2–99) which have been presented in

Appendix 1 in accordance with (A) Chapter titles and (B) Keywords.

(A) Chapter title classification in terms of Chapter Titles
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Based on chapter titles, we classify 98 chapters into the following 14 topics:

(i) Financial Accounting (▶Chaps. 2, 9, 10, 61, 97)

(ii) Mutual Funds (▶Chaps. 3, 24, 25, 68, 88)

(iii) Microstructure (▶Chaps. 4, 44, 47, 96)

(iv) Corporate Finance (▶Chaps. 5, 21, 30, 38, 42, 46, 60, 63, 75, 79, 95)

(v) Asset Pricing (▶Chaps. 6, 15, 22, 28, 34, 36, 39, 45, 50, 81, 85, 87, 93, 99)

(vi) Options (▶Chaps. 7, 32, 37, 55, 65, 84, 86, 90, 98)

(vii) Portfolio Analysis (▶Chaps. 8, 26, 35, 53, 67, 73, 80, 81, 83)

(viii) Risk Management (▶Chaps. 11, 13, 16, 17, 23, 27, 41, 51, 54, 72, 91, 92)

(ix) International Finance (▶Chaps. 12, 40, 43, 59, 69)

(x) Event Study (▶Chap. 14)

(xi) Methodology (▶Chaps. 18, 19, 20, 29, 31, 33, 46, 49, 52, 56, 57, 58, 62, 74,

76, 77, 78, 82, 89)

(xii) Banking Management (▶Chap. 64)

(xiii) Pension Funds (▶Chap. 66)

(xiv) Futures and Index Futures (▶Chaps. 48, 70, 71, 94)

(B) Keywords classification

Based on the keywords in Appendix 1, we classify these keywords into two groups:

(i) finance and accounting topics and (ii) methodology topics. The number behind

each keyword is the chapter it is associated with.

(i) Finance and Accounting Topics

Abnormal earnings (87), Accounting earnings (87), Activity-based costing

system (27), Agency costs (5, 97), Aggregation bias (43), Analyst experience

(2), Analyst forecast accuracy (63), Analysts’ forecast accuracy (97), Analysts’

forecast bias (63, 97), Arbitrage pricing theory (APT) (6, 7, 36, 81), Asset (93),

Asset allocation (45), Asset allocation fund (88), Asset pricing (34, 81), Asset

return predictability (76), Asset returns (52), Asset-pricing returns (96), Asym-

metric information (5), Asymmetric mean reversion (15), Asymmetric stochas-

tic volatility (62), Asymmetric volatility response (15), Balanced scorecard

(29), Bank capital (13), Bank holding companies (13), Bank risks (13), Bank

stock return (6), Banks (12), Barrier option (65), Basket credit derivatives (23),

Behavioral finance (55, 66, 73), Bias (57), Bias reduction (92), Bid-ask spreads

(96, 99), Binomial option pricing model (37), Black-Scholes model (7, 90),

Black-Sholes option pricing model (37), Board structure (42), Bond ratings

(89), Bottom-up capital budgeting (75), Bounded complexity (85), Bounds

(71), Brier score (72), Brokerage reputation (63), Business cycle (67), Business

models (75), Business performance evaluation (29), Business value of firm,

Buy-and-hold return (50), Calendar-time (50), Calendar-time portfolio

approach (14), Call option (37), Capital asset-pricing model (CAPM) (6, 25,

28, 36, 81, 93), Capital budgeting (75, 29), Capital markets (25), Capital

structure (5, 60), Carry trade (69), Case-Shiller home price indices (19), CEO

compensation (97), CEO stock options (97), Change of measure (30), Cheapest-

to-deliver bond (71), Chicago board of trade, (71), Cholesky decomposition

(23), Closed-end Funds (25), Comparative financial systems (12), Composite

trapezoid rule (51), Comprehensive earnings (87), Compromised solution (89),
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Compustat database (38), Compound sum method (46), Conditioning informa-

tion (35), Constant/dynamic hedging (44), Contagious effect (11), Corner port-

folio (45), Corporate earnings (9), Corporate finance (5), Corporate merger (21),

Corporate ownership structure (42), Corporate policies (38), Corporation regu-

lation (9), Correlated defaults (11), Cost of capital (93), Country funds (25),

Credit rating (21), Credit rating (27), Credit risk (27, 65, 91), Credit risk index

(27), Credit risk rating (16), Credit VaR (91), Creditworthiness (16), Cumula-

tive abnormal return (50), Cumulative probability distribution (45), Currency

market (58), Cyberinfrastructure (49), Daily realized volatility (40), Daily stock

price (82), Debt maturity (64), Delivery options (71), Delta (45), Demand (33),

Demonstration effect (17), Deterioration of bank asset quality (64), Determinants

of capital structure (60), Discount cash flow model (46), Discretionary accruals

(61), Discriminant power (89), Disposition effect (22), Dividends (38, 65, 79),

Domestic investment companies (17), Double exponential smoothing (88), Dual-

ity (83), Dynamics (67), Earning management (61), Earnings change (10), Earn-

ings level (10), Earnings quality (42), Earnings surprises (81), Economies of scale

(21), Ederington hedging effectiveness (70), Effort allocation (97), Effort aversion

(55), EGB2 distribution (80), Electricity (33), Empirical Bayes (85), Empirical

corporate finance (95), Employee stock option (30), Endogeneity (38, 95),

Endogeneity of variables (13), Endogenous supply (93), Equity valuation models

(87), Equity value (75), European option (7), European put (5), Evaluation (34),

Evaluation of funds (3), Exactly identified (93), Exceedance correlation (52),

Exchange rate (43, 59), Executive compensation schemes (55), Exercise bound-

ary (30), Expected market risk premium (15), Expected stock return (80),

Expected utility (83), Experimental control (4), Experimental economics (4),

Extreme events (67), Fallen angel (72), Finance panel data (24), Financial

analysts (2), Financial crisis (64), Financial institutions (12), Financial leverage

(75), Financial markets (12), Financial modeling (3), Financial planning and

forecasting (87), Financial ratios (21), Financial returns (62), Financial service

(49), Financial simulation (49), Financial statement analysis (87), Financial

strength (16), Firm and time effects (24), Firm Size (9), Firm’s performance

score (21), Fixed operating cost (75), Flexibility hypothesis (79), Foreign

exchange market (40), Foreign investment (17), Fourier inversion (84), Fourier

transform (19), Free cash flow hypothesis (79), Frequentist segmentation (85),

Fund management (53), Fundamental analysis (87), Fundamental asset values

(73), Fundamental transform (84), Futures hedging (70), Gamma (45), Gener-

alized (35), Generalized autoregressive conditional heteroskedasticity (51),

Global investments (3), Gold (58), Green function (84), Grid and cloud com-

puting (49), Gross return on investment (GRI) (75), Group decision making

(29), Growth option (75), Growth rate (46), Hawkes process (11), Heavy-tailed

data (20), Hedge ratios (98), Hedging (98), Hedging effectiveness (94), Hedging

performance (98), Herding (66), Herding towards book-to-market factor (66),

Herding towardsmomentum factor (66), Herding towards size factor (66), Herding

towards the market (66), High end computing (49), High-dimensional data (77),

Higher moments (80), High-frequency data (40), High-order moments (57),
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Historical simulation (45), Housing (78), Illiquidity (30), Imitation (66),

Implied standard deviation (ISD) (90), Implied volatility (32, 90), Impression

management (61), Impulse response (76), Incentive options (55), Income

from operations (61), Independence screening (77), Index futures (44),

Index options (32), Inflation targeting (59), Information asymmetry (2, 96),

Information content (92), Information content of trades (76), Information

technology (49), Informational efficiency (76), Instantaneous volatility (92),

Institutional investors (17), Insurance (20), Intangible assets (38), Interest

rate risk (6), Interest rate volatility (86), Internal control material weakness

(63), Internal growth rate (46), Internal rating (16), International capital asset

pricing model (ICAPM) (25, 40), Internet bubble (53), Intertemporal risk-

return relation (15), Intraday returns (44), Investment (67), Investment equa-

tions (57), Investment risk taking (97), Investment strategies (68), Investment

style (68), Issuer default (23), Issuer-heterogeneity (72), Kernel pricing (7),

Laboratory experimental asset markets (73), Lead-lag relationship (17), Left-

truncated data (20), Legal traditions (12), Limited dependent variable model

(99), Liquidity (22, 99), Liquidity risk (64), Local volatility (92), Logical

analysis of data (16), Logical rating score (16), Long run (59), Long-run

stock return (50), Lower bound (7), Management earnings (9), Management

entrenchment (5), Management myopia (5), Managerial effort (55), Market

anomalies (44), Market efficiency (28, 73), Market microstructure (4, 96),

Market model (99), Market perfection (79), Market performance measure

(75), Market quality (76), Market segmentation (25), Market uncertainties

(67), Market-based accounting research (10), Markov property (72), Martin-

gale property (94), Micro-homogeneity (43), Minimum variance hedge ratio

(94), Mis-specified returns (44), Momentum strategies (81), Monetary policy

shock (59), Mutual funds (3), NAV of a mutual fund (88), Nelson-Siegel

curve (39), Net asset value (25), Nonrecurring items (61), Net present value

(NPV) (75), Oil (58), Oil and gas industry (61), OLS hedging strategy (70),

On-/off-the-run yield spread (22), Online estimation (92), Operating earnings

(87), Operating leverage (75), Operational risk (20), Opportunistic disclosure

management (97), Opportunistic earnings management (97), Optimal hedge

ratio (94), Optimal payout ratio (79), Optimal portfolios (35), Optimal trade-

offs (29), Option bounds (7), Option prices (32), Option pricing (49, 65),

Option pricing model (90), Optional bias (2), Options on S&P 500 index

futures (90), Oracle property (77), Order imbalance (96), Out-of-sample

return (8), Out-of-the-money (7), Output (59), Overconfidence (55),

Overidentifying restrictions (95), Payout policy (79), Pension funds (66),

Percent effective spread (99), Performance appraisal (3), Performance eval-

uation (8), Performance measures (28), Performance values (68), Persistence

(44), Persistent change (31), Poison put (5), Political cost (61), Portfolio

management (3, 35, 70), Portfolio optimization (8, 83), Portfolio selection

(26), Post-earnings-announcement drift (81), Post-IT policy (59), Predicting

returns (35), Prediction of price movements (3), Pre-IT policy (59),

Preorder (16), Price impact (99), Price indexes (78), Price level (59),
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Price on earnings model (10), Pricing (78), Pricing performance (98),

Probability of informed trading (PIN) (96), Property (78), Property rights (12),

Put option (37), Put-call parity (37), Quadratic cost (93), Quality options (71),

Random number generation (49), Range (74), Rank dependent utility (83), Rating

migration (72), Rational bias (2), Rational expectations (43), Real estate (78), Real

sphere (59), Realized volatility (74), Recurrent event (72), Recursive (85), Reflec-

tion principle (65), Regime-switching hedging strategy (70), Registered trading

firms (17), Relative value of equity (75), Research and development expense (61),

Restrictions (59), Retention option (75), Return attribution (75), Return models

(10), Reverse-engineering (16), Risk (83), Risk adjusted performance (3), Risk

aversion (55), Risk management (41, 49, 67, 74, 80), Risk measurement (26),

Risk premium (80), Risk-neutral pricing (32), Robust estimation (41), S&P

500 index (7), Sarbanes-Oxley act (63), SCAD penalty (77), Scale-by-scale

decomposition (19), Seasonality (33), Semi-log (78), Sentiment (30), Shape

parameter (82), Share prices (59), Share repurchases (38), Sharpe ratios (35, 53),

Short run (59), Short selling (26), Short-term financing (64), Signaling hypothesis

(79), Sigma (37), Smile shapes (32), Smooth transition (74), Special items (61),

Speculative bubbles (73), Spot price (33), Stationarity (10), Statistical learning

(77), Stochastic discount factors (25, 35), Stochastic interest rates (98), Stochastic

order (83), Stochastic volatility (44, 84, 85, 92, 98), Stock market overreaction

(15), Stock markets (67), Stock option (65), Stock option pricing (98), Stock

price indexes (62), Stock/futures (44), Strike price (55), Structural break (31),

Subjective value (30), Substantial price fluctuations (82), Sustainable growth

rate, synergy (21), Synthetic utility value (68), Systematic risk (3, 79), TAIEX

(45), Tail risk (67), Timberland investments (34), Time-varying risk (25), Time-

varying risk aversion (40), Time-varying volatility (15), Timing options (71),

Tobin’s model (99), Top-down capital budgeting (75), Total risk (79), Tourna-

ment (73), Trade direction (96), Trade turnover industry (9), Transaction costs

(99), Transfer pricing (29), Treasury bond futures (71), Trend extraction (18),

Trust (12), Turkish economy (59), U.S. stocks (52), Ultrahigh-dimensional data

(77), Unbiasedness (43), Uncertainty avoidance (12), Uncovered interest parity

(69), Unexpected volatility shocks (15), Unsystematic risk (3), Utility-based

hedging strategy (70), VaR-efficient frontier (45), Variability percentage adjust-

ment (21), Visual Basic for applications (37), Volatility index (VIX) (92),

Volatility (37, 80), Volatility co-persistence (44), Volatility daily effect (92),

Volatility dependencies (62), Volatility feedback effect (15), Weak efficiency

(43), Weak instruments (95), Wealth transfer (75), Write-downs (61), Yaari’s

dual utility (83), Yield curve (39), Zero-investment portfolio (50).

(ii) Methodology Topics

A mixture of Poisson distribution (98), Analyst estimation (ANOVA) (2, 28),

Analytic hierarchy process (29), Analysis of variance (19), Anderson-Darling

statistic (20), Anderson-Rubin statistic (95), ANST-GARCH model

(asymmetric nonlinear smooth transition- GARCH model) (15), Approxi-

mately normal distribution (28), ARCH (41, 44), ARCH models (32),

ARX-GARCH (autoregressive (AR) mean process with exogenous (X)
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variables- GARCH model) (85), Asset-pricing tests (35), Asset-pricing

regression (24) Asymmetric dependence (52), Asymptotic distribution (44),

Autocovariance (99), Autoregression (62), Autoregressive conditional jump

intensity (82), Autoregressive model (88), Autoregressive moving average

with exogenous variables (10), Autoregressive parameters (44), Bankruptcy

prediction (27), Bayesian updating (2), Binomial distribution (28), Block

bootstrap (56), Block granger causality (17), Bootstrap (8, 50), Bootstrap

test (14), Bootstrapped critical values (24), Boundary function (31), Box-Cox

(78), Bubble test (31), Change-point models (85), Clayton copula (8, 11),

Cluster standard errors (24), Custering effect (79), Co-integration (76),

Co-integration breakdown test (31), Combination of forecasts (88),

Combinatorial optimization (16), Combined forecasting (87), Combining

forecast (27), Complex logarithm (84), Conditional distribution (56), Condi-

tional market model (50), Conditional skewness (80), Conditional value-at-

risk (26, 83), Conditional variance (70), Conditional variance estimates

(44), Contemporaneous jumps (85), Contingency tables (28), Contingent

claim model (75), Continuous wavelet transform (19), Cook’s distance (63),

Copula (8, 41, 67, 74, 91), Correction method (92), Correlation (67, 73),

Correlation analysis (99), CoVar (54), Covariance decomposition (72),

Cox-Ingersoll-Ross (CIR) model (22, 71), Cross-sectional and time-series

dependence (42), CUSUM squared test (31), Data-mining (16), Decision

trees (37), Default correlation (23, 91), Dickey-Fuller test (10), Dimension

reduction (77), Discrete wavelet transform (19), Discriminant analysis (89),

Distribution of underlying asset (7), Double clustering (24), Downside risk

model (26), Dynamic conditional correlation (52, 58, 74), Dynamic factor

model (11), Dynamic random-effects models (38), Econometric methodology

(38), Econometric modeling (33), Econometrics (12), Error component

two-stage least squares (EC2SLS) (12), Error in variable problem (60, 96),

Estimated cross-sectional standard deviations of betas (66), Event study

methodology (5, 50), Ex ante probability (82), Excess kurtosis

(44), Exogeneity test (95), Expectation–maximization (EM) algorithm

(96), Expected return distribution (45), Explanatory power (89), Exponential

trend model (88), Extended Kalman filtering (86), Factor analysis (68, 89),

Factor copula (23, 91), Factor model (39, 50), Fama-French three-factor

model (14), Feltham and Ohlson model (87), Filtering methods (19), Fixed

effects (57, 63, 79), Forecast accuracy (2, 9), Forecast bias (2), Forecasting

complexity (97), Forecasting models (27), Fourier transform method (92),

Frank copula (11), GARCH (8, 40, 41, 96), GARCH hedging strategy (70),

GARCH models (48, 52), GARCH-in-mean (40), GARCH-jump model (82),

GARJI model (82), Gaussian copula (8), Generalized correlations (77), Gen-

eralized hyperbolic distribution (94), Generalized method of moments (13),

Gibbs sampler (62), Generalized least square (GLS) (36), Generalized

method of moments (GMM) (5, 25, 43, 57, 95), Generalized two-stage least

squares (G2SLS) (12), Goal programming (89), Goodness-of-fit test (82, 20),

Granger-causality test (76), Gumbel copula (8, 11), Hazard model (72),
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Heath-Jarrow-Morton model (86), Hedonic models (78), Heston (84),

Heterogeneity (43), Heteroskedasticity (57), Hidden Markov models (85),

Hierarchical clustering with K-Means approach (30), Hierarchical system

(68), Huber estimation (66), Hyperparameter estimation (85), Hypothesis

testing (53), Ibottson’s RATS (50), Infinitely divisible models (48), Instru-

mental variable (IV) estimation (95, 57), Johnson’s Skewness-adjusted t-test
(14), Joint-normality assumption (94), Jones (1991) model (61), Jump detec-

tion (18), Jump dilution model (30), Jump process (56), Kalman filter (66),

Kolmogorov-Smirnov statistic (20), Kupiec’s proportion of failures test (48),

Large-scale simulations (14), Latent variable (60), Least squares (78), Like-

lihood maximization (32), Linear filters (18), Linear trend model (88),

LISREL approach (36, 60), Locally linear quantile regression (54), Logistic

smooth transition regression model (69), Logit regression (27),

Log-likelihood function (99), Lognormal (65), Long-horizon event study

(14), Long memory process (31, 32), Loss distribution (20), Loss function

(51), MAD model (26), Matching procedure (63), Mathematical optimization

(55), MATLAB (90), Maximum likelihood (35, 38, 52), Maximum likelihood

estimation (MLE) (36, 44, 71), Maximum sharp measure (94), Markov Chain

Monte Carlo (MCMC) (62, 69, 85), Mean-variance ratio (53), Measurement

error (36, 57), Method of maximum likelihood (51), Method of moments (35),

A comparative study of two models SV with MCMC algorithm (62), Microsoft

Excel (37), Multiple indicator multiple causes (MIMIC) (36), Minimum gener-

alized semi-invariance (94), Minimum recording threshold (20), Minimum value

of squared residuals (MSE loss function) (10), Minimum variance efficiency

(35), Misspecification (44), Model formulation (38), Model selection (56, 77),

Monitoring fluctuation test (31), Monte Carlo simulation (11, 23, 32, 49, 57),

Moving average method (88), Moving estimates processes (79), MSE (62),

Multifactor diffusion process (56), Multifactor multi-indicator approach (36),

Multiple criteria and multiple constraint linear programming (29), Multiple

criteria decision making (MCDM) (68), Multiple indicators and multiple causes

(MIMIC) model (60), Multiple objective programming (26), Multiple regression

(6, 9), Multi-resolution analysis (19), Multivariate technique (89), Multivariate

threshold autoregression model (17), MV model (26), Nonlinear filters (18),

Nonlinear Kalman filter (22), Nonlinear optimization (38), Non-normality (41),

Nonparametric (7), Nonparametric density estimation (86), Nonparametric tests

(28), Normal copula (11), Normal distribution (45), Ohlson model (87), Order

flow models (4), Ordered logit (27), Ordered probit (27), Ordinary least-squares

regression (63, 73), Ordinary least-squares (OLS) (90, 39, 95, 36), Orthogonal

factors (6), Outlier (33), Out-of-sample forecasts (56), Panel data estimates

(12, 40, 38), Panel data regressions (42, 2), Parametric approach (51), Parametric

bootstrap (35), Partial adjustment (93), Partial linear model (54), Penalized least-

squares (77), Prediction test (31), Principle component analysis (89, 91), Principle

component factors (21), Probability density function (27), Quantile

autoregression (QAR) (41), Quadratic trend model (88), Quantile dependence

(67), Quantile regression (41, 54, 67), Quasi-maximum likelihood (22),
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Quasi-maximum likelihood estimation strategy (48), Random walk models (4),

Rank regressions (63), Realized distribution (58), Rebalancing model (26),

Recursive filters (85), Recursive programming (37), Reduced-form model

(23, 93), Regime-switch model (69), Regression models (85, 78), Revenue

surprises rotation-corrected angle (84), Ruin probability (20), Seemingly

unrelated regressions (SUR) (40, 93), Semi-parametric approach (51), Semi-

parametric model (54), Serial correlation (44), Shrinkage (77), Simple adjusted

formula (84), Simulations (55), Simultaneous equations (60, 93, 95, 87), Single

clustering (24), Single exponential smoothing (88), Skewed generalized student’s

t (51), Skewness (57), Specification test (56), Spectral analysis (19), Standard

errors in finance panel data (30), Standardized Z (21), State-space model (39, 66),

Static factor model (11), Stepwise discriminant analysis (89), Stochastic domi-

nance (83), Stochastic frontier analysis (13), Structural change model (79),

Structural equation modeling (SEM) (60), Structural VAR (17), Student’s

t-copula (8, 52), Student’s t-distribution (62), Seemingly unrelated regression

(SUR) (43), Survey forecasts (43), Survival analysis (72), SVECM models (59),

Stochastic volatility (SVOL) (62), Tail dependence (52), Taylor series expansion

(90), t-Copula (11), Tempered stable distribution (48), Term structure (32, 39,

71), Term structure modeling (86), Time-series analysis (18, 34, 41), Time-

heterogeneity (72), Time-series and cross-sectional effects (12), Time-varying

covariate (72), Time-varying dependence (8), Time-varying parameter (34),

Time-varying rational expectation hypothesis (15), Trading simulations (4),

Two-sector asset allocation model (45), Two-stage estimation (52), Two-stage

least square (2SLS) (95), Two-way clustering method of standard errors (42),

Unbounded autoregressive moving average model (88), Unconditional coverage

test (51), Unconditional variance (70), Uniformly most powerful unbiased test

(53), Unit root tests (10), Unit root time series (31), Unweighted GARCH

(44), Value-at-risk (VAR) (45, 54, 83, 20, 26, 41, 48, 51, 76), Variable selection

(77), Variance decomposition (76), Variance estimation (70), Variance reduction

methods (32), Variance-gamma process (82), VG-NGARCH model (82), Visual

Basic for applications (VBA) (37), Volatility forecasting (74), Volatility regime

switching (15), Volatility threshold (58), Warren and Shelton model (87), Wave-

let (18), Wavelet filter (19), Weighted GARCH, (44), Weighted least-squares

regression (14), Wilcoxon rank test (21), Wilcoxon two-sample test (9),

Wild-cluster bootstrap (24), and Winter’s method (88).

1.7 Summary and Conclusion Remarks

This chapter has discussed important financial econometrics and statistics which

have been used in finance and accounting research. In addition, this chapter has

presented an overview of 98 chapters which have been included in this handbook.

In Sect. 1.2 “Financial Econometrics,” we have six subsections which are: a single

equation regression methods, Simultaneous equation models, Panel data analysis,

Alternative methods to deal with measurement error, Time-series analysis, and
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Spectral Analysis. Section 1.3 “Financial Statistics” has four subsections: Important

Statistical Distributions, Principle components and factor analysis, Nonparametric

and Semi-parametric analyses, Cluster analysis review and discuss financial

econometrics and statistics. In Sect. 1.4 “Applications of financial econometrics,”

we briefly discuss how different methodologies of financial econometrics will

be applied to the topics of finance and accounting. These methods include: Asset-

pricing Research, Corporate Finance Research, Financial Institution Research,

Investment and Portfolio Research, Option Pricing Research, Future and Hedging

Research, Mutual Fund Research, and Credit Risk Modeling. Section 1.5, “Appli-

cations of Financial Statistics,” states that financial statistics is an important tool

to conduct research in the areas of (1) Asset-pricing Research, (2) Investment

and Portfolio Research, (3) Credit Risk Management Research, (4) Market

Risk Research, (5) Operational Risk Research, (6) Option Pricing Research,

(7) Mutual Fund Research, (8) Hedge Fund Research, (9) Value-at-risk Research,

and (10) Auditing. Section 1.6 is an “Overall Discussion of Papers in this

Handbook.” It classifies 98 chapters into 14 groups in accordance to Chapter title

and keywords.

Appendix 1: Brief Abstracts and Keywords for Chapters 2 to 99

Chapter 2: Experience, Information Asymmetry, and Rational
Forecast Bias

This chapter uses a Bayesian model of updating forecasts in which the bias in

forecast endogenously determines how the forecaster’s own estimates weigh into

the posterior beliefs. The model used in this chapter predicts a concave relationship

between accuracy in forecast and posterior weight that is put on the forecaster’s self-

assessment. This chapter then uses a panel regression to test the analytical findings

and find that an analyst’s experience is indeed concavely related to the forecast error.

Keywords: Financial analysts, Forecast accuracy, Information asymmetry,

Forecast bias, Bayesian updating, Panel regressions, Rational bias, Optional bias,

Analyst estimation, Analyst experience

Chapter 3: An Overview of Modeling Dimensions for Performance
Appraisal of Global Mutual Funds (Mutual Funds)

This paper examines various performance models derived by financial experts

across the globe. A number of studies have been conducted to examine investment

performance of mutual funds of the developed capital markets. The measure of

performance of financial instruments is basically dependent on three important

models derived independently by Sharpe, Jensen, and Treynor. All three models

are based on the assumptions that (1) all investors are averse to risk, and are single

period expected utility of terminal wealth maximizers, (2) all investors have
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identical decision horizons and homogeneous expectations regarding investment

opportunities, (3) all investors are able to choose among portfolios solely on the

basis of expected returns and variance of returns, (4) all trans-actions costs and taxes

are zero, and (5) all assets are infinitely divisible. Overall, this paper has examined

nine alternative mutual funds measure. The method used in this kind of research is

regression analysis.

Keywords: Financial modeling, Mutual funds, Performance appraisal,

Global investments, Evaluation of funds, Portfolio management, Systematic

risk, Unsystematic risk, Risk adjusted performance, Prediction of price movements

Chapter 4: Simulation as a Research Tool for Market Architects

This chapter uses simulation to gain insights into trading and market structure topic

by two statistical methods. The statistical methods we use include experimental

design, and careful controls over experimental parameters such as the instructions

given to participants. The first is discrete event simulation and the model of

computer-generated trade order flow that we describe in Sect. 3. To create a realis-

tic, but not ad hoc, market background, we use draws from a log-normal returns

distribution to simulate changes in a stock’s fundamental value, or P*. The model

uses price-dependent Poisson distributions to generate a realistic flow of computer-

generated buy and sell orders whose intensity and supply-demand balance vary over

time. The order flow fluctuations depend on the difference between the current

market price and the P* value. In Sect. 4, we illustrate the second method, which is

experimental control to create groupings of participants in our simulations that have

the same trading “assignment.” The result is the ability to make valid comparisons

of trader’s performance in the simulations.

Keywords: Trading simulations, Market microstructure, Order flow models,

Random walk models, Experimental economics, Experimental control

Chapter 5: Motivations for Issuing Putable Debt:
An Empirical Analysis

This paper is the first to examine the motivations for issuing putable bonds in which

the embedded put option is not contingent upon a company-related event. We find

that the market favorably views the issue announcement of these bonds that we

refer to as bonds with European put options or European putable bonds. This

response is in contrast to the response documented by the literature to other bond

issues (straight, convertible, and most studies examining poison puts), and to the

response documented in the current paper to the issue announcements of poison-put

bonds. Our results suggest that the market views issuing European putable bonds as

helping mitigate security mispricing. Our study is an application of important

statistical methods in corporate finance, namely, Event Studies and the use of

General Method of Moments for cross-sectional regressions.
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Keywords: Agency costs, Asymmetric information, Corporate finance, Capital

structure, Event study methodology, European put, General method of moments,

Management myopia, Management entrenchment, Poison put

Chapter 6: Multi Risk-Premia Model of U.S. Bank Returns:
An Integration of CAPM and APT

Interest rate sensitivity of bank stock returns has been studied using an augmented

CAPM: a multiple regression model with market returns and interest rate as

independent variables. In this chapter, we test an asset-pricing model in which

the CAPM is augmented by three orthogonal factors which are proxies for the

innovations in inflation, maturity risk, and default risk. The methodologies used in

this chapter are multiple regression and factor analysis.

Keywords: CAPM, APT, Bank stock return, Interest rate risk, Orthogonal

factors, Multiple regression

Chapter 7: Non-parametric Bounds for European Option Prices

This chapter derives a new nonparametric lower bound and provides an alternative

interpretation of Ritchken’s (1985) upper bound to the price of the European option.

In a series of numerical examples, our new lower bound is substantially tighter than

previous lower bounds. This is prevalent especially for out-of-the-money (OTM)

options where the previous lower bounds perform badly. Moreover, we present that

our bounds can be derived from histograms which are completely nonparametric in

an empirical study. We first construct histograms from realizations of S&P

500 index returns following Chen et al. (2006), calculate the dollar beta of the

option and expected payoffs of the index and the option, and eventually obtain our

bounds. We discover violations in our lower bound and show that those violations

present arbitrage profits. In particular, our empirical results show that out-of-the-

money calls are substantially overpriced (violate the lower bound). The methodol-

ogies used in this chapter are nonparametric, option pricing model, and histograms

methods.

Keywords: Option bounds, Nonparametric, Black-Scholes model, European

option, S&P 500 index, Arbitrage, Distribution of underlying asset, Lower bound,

Out-of-the-money, Kernel pricing

Chapter 8: Can Time-Varying Copulas Improve Mean-Variance
Portfolio?

This chapter evaluates whether constructing a portfolio using time-varying copulas

yields superior returns under various weight updating strategies. Specifically,

minimum-risk portfolios are constructed based on various copulas and the Pearson
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correlation, and a 250-day rolling window technique is adopted to derive a sequence

of time-varied dependences for each dependence model. Using daily data of the G-7

countries, our empirical findings suggest that portfolios using time-varying copulas,

particularly the Clayton-dependence, outperform those constructed using Pearson

correlations. The above results still hold under different weight updating strategies

and portfolio rebalancing frequencies. The methodologies used in this chapter are

Copulas, GARCH, Student’s t-Copula, Gumbel Copula, Clayton Copula, Time-

Varying Dependence, Portfolio Optimization, and Bootstrap.

Keywords: Copulas, Time-varying dependence, Portfolio optimization, Boot-

strap, Out-of-sample return, Performance evaluation, GARCH, Gaussian copula,

Student’s t-copula, Gumbel copula, Clayton copula

Chapter 9: Determinations of Corporate Earnings Forecast Accuracy:
Taiwan Market Experience

This chapter examines the accuracy of the earnings forecasts by the following test

methodologies. Multiple Regression Models are used to examine the effect of six

factors: firm size, market volatility, trading volume turnover, corporate earnings

variances, type of industry, and experience. If the two-sample groups are related,

Wilcoxon Two-Sample Test will be used to determine the relative earnings forecast

accuracy. Readers are well advised and referred to the chapter appendix for

methodological issues such as sample selection, variable definition, regression

model, and Wilcoxon tow-sample test.

Keywords: Multiple regression, Wilcoxon two-sample test, Corporate earnings,

Forecast accuracy, Management earnings, Firm size, Corporation regulation,

Volatility, Trade turnover, Industry

Chapter 10: Market-Based Accounting Research (MBAR) Models:
A Test of ARIMAX Modeling

This study uses standard models such as earnings level and earnings changes, among

others. Models that fit better to the data drawn from companies listed on the Athens

Stock Exchange have been selected employing autoregressive integrated moving

average with exogenous variables (ARIMAX) models. Models I (price on earnings

model) “II (returns on change in earnings divided by beginning-of-period price and

prior period)” V (returns on change in earnings over opening market value), VII

(returns deflated by lag of 2 years on earnings over opening market value), and IX

(differenced-price model) have statistically significant coefficients of explanatory

variables. These models take place with backward looking information instead of

forward looking information that recent literature is assessed. The methodologies

used in this chapter are price on earnings model, return models, autoregressive

moving average with exogenous variables (ARIMAX), minimum value of squared

residuals (MSE loss function), and Dickey-Fuller test.
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Keywords: Market-based accounting research (MBAR), Price on earnings

model, Earnings level, Earnings change, Return models, Autoregressive moving

average with exogenous variables (ARIMAX), Minimum value of squared resid-

uals (MSE loss function), Unit root tests stationarity, Dickey-Fuller test

Chapter 11: An Assessment of Copula Functions Approach in
Conjunction with Factor Model in Portfolio Credit Risk Management

This study uses a mixture of the dynamic factor model of Duffee (1999) and a

contagious effect in the specification of a Hawkes process, a class of counting

processes which allows intensities to depend on the timing of previous events

(Hawkes 1971). Using the mixture factor- contagious-effect model, Monte Carlo

simulation is performed to generate default times of two hypothesized firms. The

goodness-of-fit of the joint distributions based on the most often used copula

functions in literature, including the Normal, t-, Clayton, Frank, and Gumbel

copula, respectively, is assessed against the simulated default times. It is demon-

strated that as the contagious effect increases, the goodness-of-fit of the joint

distribution functions based on copula functions decreases, which highlights the

deficiency of the copula function approach.

Keywords: Static factor model, Dynamic factor model, Correlated defaults,

Contagious effect, Hawkes process, Monte Carlo simulation, Normal copula,

t-copula, Clayton copula, Frank copula, Gumbel copula

Chapter 12: Assessing Importance of Time-Series Versus
Cross-Sectional Changes in Panel Data: A Study of International
Variations in Ex-Ante Equity Premia and Financial Architecture

This chapter uses simultaneous equation modeling and uses Hausman test to

determine whether to report fixed or random-effects estimates. We first report

random-effects estimates based on the estimation procedure of Baltagi (Baltagi

1981; Baltagi and Li 1995; Baltagi and Li 1994). We consider that the error

component two-stage least squares (EC2SLS) estimator of Baltagi and Li (1995) is

more efficient than the generalized two-stage least squares (G2SLS) estimator

of Balestra and Varadharajan-Krishnakumar (1987). For our second estimation

procedure, for comparative purposes, we use the dynamic panel modeling estimates

recommended by Blundell and Bond (1998). We employ the model of Blundell and

Bond (1998), as these authors argue that their estimator is more appropriate than the

Arellano and Bond (1991) model for smaller time periods relative to the size

of the panels. We also use this two-step procedure, use as an independent

variable the first lag of the dependent variable, reporting robust standard errors of

Windmeijer (2005). Thus, our two different panel estimation techniques place

differing emphasis on cross-sectional and time-series effects, with the Baltagi-Li
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estimator emphasizing cross-sectional effects and the Blundell-Bond estimator

emphasizing time-series effects.

Keywords: Panel data estimates, Time-series and cross-sectional effects, Econo-

metrics, Financial institutions, Banks, Financial markets, Comparative financial sys-

tems, Legal traditions, Uncertainty avoidance, Trust, Property rights, Error component

two-stage least squares (EC2SLS), The generalized two-stage least squares (G2SLS)

Chapter 13: Does Banking Capital Reduce Risk?: An Application
of Stochastic Frontier Analysis and GMM Approach

This chapter employs stochastic frontier analysis to create a new type of instru-

mental variable. The unrestricted frontier model determines the highest possible

profitability based solely on the book value of assets employed. We develop

a second frontier based on the level of bank holding company capital as well as

the amount of assets. The implication of using the unrestricted model is that we are

measuring the unconditional inefficiency of the banking organization. This chapter

applies generalized method of moments (GMM) regression to avoid the problem

caused by departure from normality. To control for the impact of size on a bank’s

risk-taking behavior, the book value of assets is considered in the model.

The relationship between the variables specifying bank behavior and the use of

equity is analyzed by GMM regression.

Keywords: Bank capital, Generalized method of moments, Stochastic frontier

analysis, Bank risks, Bank holding companies, Endogeneity of variables

Chapter 14: Evaluating Long-Horizon Event Study Methodology

This chapter examines the performance of more than 20 different testing procedures

that fall into two categories. First, the buy-and-hold benchmark approach uses

a benchmark to measure the abnormal buy-and-hold return for every event firm,

and tests the null hypothesis that the average abnormal return is zero. Second, the

calendar-time portfolio approach forms a portfolio in each calendar month

consisting of firms that have had an event within a certain time period prior to the

month, and tests the null hypothesis that the intercept is zero in the regression of

monthly portfolio returns against the factors in an asset-pricing model. This chapter

also evaluates the performance of bootstrapped Johnson’s skewness-adjusted t-test.
This computation-intensive procedure is considered because the distribution of

long-horizon abnormal returns tends to be highly skewed to the right. The

bootstrapping method uses repeated random sampling to measure the significance

of relevant test statistics. Due to the nature of random sampling, the resultant

measurement of significance varies each time such a procedure is used. We also

evaluate simple nonparametric tests, such as the Wilcoxon signed-rank test or the

Fisher’s sign test, which are free from random sampling variation.
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Keywords: Long-horizon event study, Johnson’s Skewness-adjusted t-test,
Weighted least-squares regression, Bootstrap test, Calendar-time portfolio approach,

Fama-French three-factor model, Johnson’s skewness-adjusted t-statistic, Large-scale

simulations

Chapter 15: Effect of Unexpected Volatility Shocks on Intertemporal
Risk-Return Relation

This chapter employs the ANST-GARCH model that is capable of capturing the

asymmetric volatility effect of a positive and negative return shock. The key feature

of the model is the regime-shift mechanism that allows a smooth, flexible

transition of the conditional volatility between different states of volatility

persistence. The regime-switching mechanism is governed by a logistic transition

function that changes values depending on the level of the previous return shock.

With a negative (positive) return shock, the conditional variance process is

described as a high (low)-persistence-in-volatility regime. The ANST-GARCH

model describes the heteroskedastic return dynamics more accurately and generates

better volatility forecasts.

Keywords: Intertemporal risk-return relation, Unexpected volatility shocks,

Time-varying rational expectation hypothesis, Stock market overreaction,

Expected market risk premium, Volatility feedback effect, Asymmetric mean

reversion, Asymmetric volatility response, Time-varying volatility, Volatility

regime switching, ANST-GARCH model

Chapter 16: Combinatorial Methods for Constructing Credit
Risk Ratings

This chapter uses a novel method, the Logical Analysis of Data (LAD), to reverse-

engineer and construct credit risk ratings which represent the creditworthiness of

financial institutions and countries. LAD is a data-mining method based on com-

binatorics, optimization, and Boolean logic that utilizes combinatorial search tech-

niques to discover various combinations of attribute values that are characteristic of

the positive or negative character of observations. The proposed methodology is

applicable in the general case of inferring an objective rating system from archival

data, given that the rated objects are characterized by vectors of attributes taking

numerical or ordinal values. The proposed approaches are shown to generate

transparent, consistent, self-contained, and predictive credit risk rating models,

closely approximating the risk ratings provided by some of the major rating

agencies. The scope of applicability of the proposed method extends beyond the

rating problems discussed in this study, and can be used in many other contexts

where ratings are relevant. This study also uses multiple linear regression to derive

the logical rating scores.
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Keywords: Credit risk rating, Reverse-engineering, Logical analysis of data,

Combinatorial optimization, Data-mining, Creditworthiness, Financial strength,

Internal rating, Preorder, Logical rating score

Chapter 17: Dynamic Interactions in the Taiwan Stock Exchange:
A Threshold VAR Models

This chapter constructs a six-variable VAR model (including NASDAQ returns,

TSE returns, NT/USD returns, net foreign purchases, net domestic investment

companies (dic) purchases, and net registered trading firms (rtf) purchases) to

examine: (i) the interaction among three types of institutional investors, particularly

to test whether net foreign purchases lead net domestic purchases by dic and rtf (the

so-called demonstration effect); (ii) whether net institutional purchases lead market

returns or vice versa, and (iii) whether the corresponding lead-lag relationship is

positive or negative? Readers are well advised to refer to chapter appendix for

detailed discussion of the unrestricted VAR model, the structural VAR model, and

the threshold VAR analysis. The methodologies used in this chapter are multivar-

iate threshold autoregression model, structural VAR, and Block Granger Causality.

Keywords: Demonstration effect, Multivariate threshold autoregression model,

Foreign investment, Lead-lag relationship, Structural VAR, Block Granger causal-

ity, Institutional investors, Domestic investment companies, Registered trading

firms, Qualified foreign institutional investors

Chapter 18: Methods of Denoising Financial Data

This chapter uses denoising analysis which imposes new challenges for financial data

mining due to the irregularities and roughness observed in financial data, particularly,

for instantaneously collected massive amounts of tick-by-tick data from financial

markets for information analysis and knowledge extraction. Inefficient decomposition

of the systematic pattern (the trend) and noises of financial data will lead to erroneous

conclusions since irregularities and roughness of the financial data make the applica-

tion of traditional methods difficult. The methodologies used in this chapter are linear

filters, nonlinear filters, time-series analysis, trend extraction, and wavelet.

Keywords: Jump detection, Linear filters, Nonlinear filters, Time-series analy-

sis, Trend extraction, Wavelet

Chapter 19: Analysis of Financial Time: Series Using Wavelet
Methods

This chapter presents a set of tools, which allow gathering information about

the frequency components of a time-series. In the first step, we discuss spectral
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analysis and filtering methods. Spectral analysis can be used to identify and to

quantify the different frequency components of a data series. Filters permit to

capture specific components (e.g. trends, cycles, seasonalities) of the original

time-series. In the second step, we introduce wavelets, which are relatively new

tools in economics and finance. They take their roots from filtering methods and

Fourier analysis, but overcome most of the limitations of these two methods.

Their principal advantages derive from: (i) combined information from both

time-domain and frequency-domain and (ii) their flexibility as they do not

make strong assumptions concerning the data generating process for the series

under investigation.

Keywords: Filtering methods, Spectral analysis, Fourier transform, Wavelet

filter, Continuous wavelet transform, Discrete wavelet transform, Multi-resolution

analysis, Scale-by-scale decomposition, Analysis of variance, Case-Shiller home

price indices

Chapter 20: Composite Goodness-of-Fit Tests for Left Truncated
Loss Sample

This chapter derives the exact formulae for several goodness-of-fit statistics that

should be applied to loss models with left-truncated data where the fit of a distribution

in the right tail of the distribution is of central importance. We apply the proposed

tests to real financial losses, using a variety of distributions fitted to operational loss

and the natural catastrophe insurance claims data. The methodologies discussed in

this chapter are goodness-of-fit tests, loss distribution, ruin probability, value-at-risk,

Anderson-Darling statistic, Kolmogorov-Smirnov statistic.

Keywords: Goodness-of-fit tests, Left-truncated data,Minimum recording thresh-

old, Loss distribution, Heavy-tailed data, Operational risk, Insurance, Ruin probabil-

ity, Value-at-risk, Anderson-Darling statistic, Kolmogorov-Smirnov statistic

Chapter 21: Effect of Merger on the Credit Rating and Performance
of Taiwan Security Firms

This chapter identifies and defines variables for merger synergy analysis followed

by principal component factor analysis, variability percentage adjustment, and

performance score calculation. Finally, Wilcoxon sign rank test is used for hypoth-

esis testing. We extract principle component factors from a set of financial ratios.

Percentage of variability explained and factor loadings are adjusted to get

a modified average weight for each financial ratio. This weight is multiplied by

the standardized Z value of the variable, and summed a set of variables get a firm’s

performance score. Performance scores are used to rank the firm. Statistical signif-

icance of difference in pre- and post-merger rank is tested using the Wilcoxon

sign rank.
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Keywords: Corporate merger, Financial ratios, Synergy, Economies of scale,

Credit rating, Variability percentage adjustment, Principle component factors,

Firm’s performance score, Standardized Z, Wilcoxon rank test

Chapter 22: On-/Off-the-Run Yield Spread Puzzle: Evidence from
Chinese Treasury Markets

This chapter uses on-/off-the-run yield spread to describe “on-/off-the-run yield

spread puzzle” in Chinese treasury markets. To explain this puzzle, we introduce

a latent factor in the pricing of Chinese off-the-run government bonds and use this

factor to model the yield difference between Chinese on-the-run and off-the-run

issues. We use the nonlinear Kalman filter approach to estimate the model. The

methodologies used in this chapter are CIR model, nonlinear Kalman filter and

Quasi-maximum likelihood model.

Keywords: On-/off-the-run yield spread, Liquidity, Disposition effect, CIR

model, Nonlinear Kalman filter, Quasi-maximum likelihood

Chapter 23: Factor Copula for Defaultable Basket Credit Derivatives

This chapter uses a factor copula approach to evaluate basket credit derivatives with

issuer default risk and demonstrate its application in a basket credit linked note

(BCLN). We generate the correlated Gaussian random numbers by using the

Cholesky decomposition, and then, the correlated default times can be decided by

these random numbers and the reduced-form model. Finally, the fair BCLN coupon

rate is obtained by the Monte Carlo simulation. We also discuss the effect of

issuer default risk on BCLN. We show that the effect of issuer default risk cannot

be accounted for thoroughly by considering the issuer as a new reference entity in

the widely used one factor copula model, in which constant default correlation is often

assumed. A different default correlation between the issuer and the reference entities

affects the coupon rate greatly and must be taken into account in the pricing model.

Keywords: Factor copula, Issuer default, Default correlation, Reduced-form

model, Basket credit derivatives, Cholesky decomposition, Monte Carlo simulation

Chapter 24: Panel Data Analysis and Bootstrapping:
Application to China Mutual Funds

This chapter estimates double- and single-clustered standard errors by

wild-cluster bootstrap procedure. To obtain the wild bootstrap samples in

each cluster, we reuse the regressors (X), but modify the residuals by

transforming the OLS residuals with weights which follow the popular

two-point distribution suggested by Mammen (1993) and others. We then
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compare them with other estimates in a set of asset-pricing regressions. The

comparison indicates that bootstrapped standard errors from double clustering

outperform those from single clustering. They also suggest that bootstrapped

critical values are preferred to standard asymptotic t-test critical values to

avoid misleading test results.

Keywords: Asset-pricing regression, Bootstrapped critical values, Cluster stan-

dard errors, Double clustering, Firm and time effects, Finance panel data, Single

clustering, Wild-cluster bootstrap

Chapter 25: Market Segmentation and Pricing of Closed-End
Country Funds: An Empirical Analysis

This chapter finds that for closed-end country funds, the international CAPM can be

rejected for the underlying securities (NAVs) but not for the share prices. This

finding indicates that country fund share prices are determined globally, whereas

theNAVs reflect both global and local prices of risk. Cross-sectional variations in the

discounts or premiums for country funds are explained by the differences in the risk

exposures of the share prices and the NAVs. Finally, this chapter shows that the share

price and NAV returns exhibit predictable variation, and country fund premiums

vary over time due to time-varying risk premiums. The chapter employs Generalized

Method of Moments (GMM) to estimate stochastic discount factors and examines if

the price of risk of closed-end country fund shares and NAVs is identical.

Keywords: Capital markets, Country funds, CAPM, Closed-end funds, Market

segmentation, GMM, Net asset value, Stochastic discount factors, Time-varying

risk, International asset pricing

Chapter 26: A Comparison of Portfolios Using Different Risk
Measurements

This study uses three different risk measurements: the Mean-variance model, the

Mean Absolute Deviation model, and the Downside Risk model. Meanwhile short

selling is also taken into account since it is an important strategy that can bring

a portfolio much closer to the efficient frontier by improving a portfolio’s risk-

return trade-off. Therefore, six portfolio rebalancing models, including the MV

model, MAD model and the Downside Risk model, with/without short selling, are

compared to determine which is the most efficient. All models simultaneously

consider the criteria of return and risk measurement. Meanwhile, when short

selling is allowed, models also consider minimizing the proportion of short selling.

Therefore, multiple objective programming is employed to transform multiple

objectives into a single objective in order to obtain a compromising solution. An

example is used to perform simulation, and the results indicate that the MAD

model, incorporated with a short selling model, has the highest market value and

lowest risk.
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Keywords: Portfolio selection, Risk measurement, Short selling, MV model,

MAD model, Downside risk model, Multiple objective programming, Rebalancing

model, Value-at-risk, Conditional value-at-risk

Chapter 27: Using Alternative Models and a Combining Technique in
Credit Rating Forecasting: An Empirical Study

This chapter first utilizes the ordered logit and the ordered probit models. Then, we use

ordered logit combining method to weight different techniques’ probability measures,

as described in Kamstra and Kennedy (1998) to form the combining model.

The samples consist of firms in the TSE and the OTC market, and are divided into

three industries for analysis.We consider financial variables,market variables aswell as

macroeconomic variables and estimate their parameters for out-of-sample tests. By

means of Cumulative Accuracy Profile, the Receiver Operating Characteristics, and

McFadden, we measure the goodness-of-fit and the accuracy of each prediction model.

The performance evaluations are conducted to compare the forecasting results, and we

find that combing technique does improve the predictive power.

Keywords: Bankruptcy prediction, Combining forecast, Credit rating, Credit

risk, Credit risk index, Forecasting models, Logit regression, Ordered logit,

Ordered probit, Probability density function

Chapter 28: Can We Use the CAPM as an Investment Strategy?:
An Intuitive CAPM and Efficiency Test

The aim of this chapter is to check whether certain playing rules, based on the

undervaluation concept arising from the CAPM, could be useful as investment

strategies, and can therefore be used to beat the Market. If such strategies work, we

will be provided with a useful tool for investors, and, otherwise, we will obtain

a test whose results will be connected with the efficient Market hypothesis (EMH)

and with the CAPM. The methodology used is both intuitive and rigorous: analyz-

ing how many times we beat the Market with different strategies, in order to check

whether when we beat the Market, this happens by chance.

Keywords: ANOVA, Approximately normal distribution, Binomial distribu-

tion, CAPM, Contingency tables, Market efficiency, Nonparametric tests, Perfor-

mance measures

Chapter 29: Group Decision Making Tools for Managerial
Accounting and Finance Applications

This chapter adopts an Analytic Hierarchy Process (AHP) approach to solve various

accounting or finance problems such as developing a business performance evalu-

ation system and developing a banking performance evaluation system. AHP uses
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hierarchical schema to incorporate nonfinancial and external performance mea-

sures. Our model has a broader set of measures that can examine external and

nonfinancial performance as well as internal and financial performance. While AHP

is one of the most popular multiple goals decision-making tools, Multiple Criteria

and Multiple Constraint (MC2) Linear Programming approach also can be used to

solve group decision-making problems such as transfer pricing and capital

budgeting problems. The methodologies used in this chapter are Analytic Hierarchy

Process, multiple criteria and multiple constraint linear programming, and balanced

scorecard and business performance evaluation.

Keywords: Analytic hierarchy process, Multiple criteria and multiple constraint

linear programming, Business performance evaluation, Activity-based costing sys-

tem, Group decision making, Optimal trade-offs, Balanced scorecard, Transfer

pricing, Capital budgeting

Chapter 30: Statistics Methods Applied in Employee Stock Options

This study provides model-based and compensation-based approaches to price

subjective value of employee stock options (ESOs). In model-based approach, we

consider a utility-maximizing model that the employee allocates his wealth

among the company stock, market portfolio, and risk-free bond, and then

derive the ESO formulae which take into account illiquidity and sentiment

effects. By using the method of change of measure, the derived formulae are

simply like that of the market values with altered parameters. To calculate

compensation-based subjective value, we group employees by hierarchical clus-

tering with K-Means approach and back out the option value in an equilibrium

competitive employment market. Further, we test illiquidity and sentiment effects

on ESO values by running the regressions which consider the problem of standard

errors in finance panel data.

Keywords: Employee stock option, Sentiment, Subjective value, Illiquidity,

Change of measure, Hierarchical clustering with K-Means approach, Standard

errors in finance panel data, Exercise boundary, Jump diffusion model

Chapter 31: Structural Change and Monitoring Tests

This chapter focuses on various structural change and monitoring tests for a class of

widely used time-series models in economics and finance, including I(0), I(1), I(d)
processes and the co-integration relationship. In general, structural change tests can be

categorized into two types: One is the classical approach to testing for structural

change, which employs retrospective tests using a historical data set of a given length;

the other one is the fluctuation-type test in a monitoring scheme, which means for

given a history period for which a regression relationship is known to be stable,
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we then test whether incoming data are consistent with the previously established

relationship. Several structural changes such as CUSUM squared tests, the QLR test,

the prediction test, the multiple break test, bubble tests, co-integration breakdown

tests, and the monitoring fluctuation test are discussed in this chapter, and we further

illustrate all details and usefulness of these tests.

Keywords: Co-integration breakdown test, Structural break, Long memory

process, Monitoring fluctuation test, Boundary function, CUSUM squared test,

Prediction test, Bubble test, Unit root time series, Persistent change

Chapter 32: Consequences of Option Pricing of a Long Memory
in Volatility

This chapter use conditionally heteroskedastic time-series models to describe the

volatility of stock index returns. Volatility has a long memory property in the

most general models and then the autocorrelations of volatility decay at a hyperbolic

rate; contrasts are made with popular, short memory specifications whose autocorrela-

tions decay more rapidly at a geometric rate. Options are valued for ARCH

volatility models by calculating the discounted expectations of option payoffs for an

appropriate risk-neutral measure. Monte Carlo methods provide the expectations. The

speed and accuracy of the calculations is enhanced by two variance reduction methods,

which use antithetic and control variables. The economic consequences of a long

memory assumption about volatility are documented, by comparing implied volatilities

for option prices obtained from short and long memory volatility processes.

Keywords: ARCH models, Implied volatility, Index options, Likelihood max-

imization, Long memory, Monte Carlo, Option prices, Risk-neutral pricing, Smile

shapes, Term structure, Variance reduction methods

Chapter 33: Seasonal Aspects of Australian Electricity Market

This chapter develops econometric models for seasonal patterns in both price returns

and proportional changes in demand for Australian electricity. Australian Electricity

spot prices differ considerably from equity spot prices in that they contain an extremely

rapid mean reversion process. The electricity spot price could increase to a market cap

price of AU$12,500 per Megawatt Hour (MWh) and revert back to a mean level

(AUD$30) within a half hour interval. This has implications for derivative pricing and

risk management. We also model extreme spikes in the data. Our study identifies both

seasonality effects and dramatic price reversals in the Australian electricity market.

The pricing seasonality effects include time-of-day, day-of-week, monthly, and yearly

effects. There is also evidence of seasonality in demand for electricity.

Keywords: Electricity, Spot price, Seasonality, Outlier, Demand, Econometric

modeling
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Chapter 34: Pricing Commercial Timberland Returns in the
United States

This chapter uses both parametric and nonparametric approaches to evaluate private-

and public-equity timberland investments in the United States. Private-equity timber-

land returns are proxied by the NCREIF Timberland Index, whereas public-equity

timberland returns are proxied by the value-weighted returns on a dynamic portfolio

of the US publicly traded forestry firms that had or have been managing timberlands.

Static estimations of the capital asset-pricing model and Fama-French three-factor

model are obtained by ordinary least squares, whereas dynamic estimations are

obtained by state-space specifications with the Kalman filter. In estimating the

stochastic discount factors, linear programming is used.

Keywords: Alternative asset class, Asset pricing, Evaluation, Fama-French

three-factor model, Nonparametric analysis, State-space model, Stochastic discount

factor, Timberland investments, Time series, Time-varying parameter

Chapter 35: Optimal Orthogonal Portfolios with Conditioning
Information

This chapter derives and characterizes optimal orthogonal portfolios in the presence

of conditioning information in the form of a set of lagged instruments. In this

setting, studied by Hansen and Richard (1987), the conditioning information is used

to optimize with respect to the unconditional moments. We present an empirical

illustration of the properties of the optimal orthogonal portfolios. The methodology in

this chapter includes regression and maximum likelihood parameter estimation, as

well as method of moments estimation. We form maximum likelihood estimates of

nonlinear functions as the functions evaluated at the maximum likelihood parameter

estimates.

Keywords: Asset-pricing tests, Conditioning information, Minimum variance

efficiency, Optimal portfolios, Predicting returns, Portfolio management, Stochas-

tic discount factors, Generalized, Method of moments, Maximum likelihood, Para-

metric bootstrap, Sharpe ratios

Chapter 36: Multi-factor, Multi-indicator Approach to Asset Pricing:
Method and Empirical Evidence

This chapter uses a multifactor, multi-indicator approach to test the capital asset-

pricing model (CAPM) and the arbitrage pricing theory (APT). This approach is

able to solve the measuring problem in the market portfolio in testing CAPM, and it

is also able to directly test APT by linking the common factors to the macroeco-

nomic indicators. We propose a MIMIC approach to test CAPM and APT. The beta

estimated from the MIMIC model by allowing measurement error on the market
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portfolio does not significantly improve the OLS beta, while the MLE estimator

does a better job than the OLS and GLS estimators in the cross-sectional regressions

because the MLE estimator takes care of the measurement error in beta. Therefore,

the measurement error problem on beta is more serious than that on the market

portfolio.

Keywords: Capital asset-pricing model, CAPM, Arbitrage pricing theory, Mul-

tifactor multi-indicator approach, MIMIC, Measurement error, LISREL approach,

Ordinary least square, OLS, General least square, GLS, Maximum likelihood

estimation, MLE

Chapter 37: Binomial OPM, Black-Scholes OPM and Their
Relationship: Decision Tree and Microsoft Excel Approach

This chapter will first demonstrate how Microsoft Excel can be use to create the

Decision Trees for the Binomial Option Pricing Model. At the same time, this

chapter will discuss the Binomial Option Pricing Model in a less mathematical

fashion. All the mathematical calculations will be taken care by the Microsoft Excel

program that is presented in this chapter. Finally, this chapter also uses the Decision

Tree approach to demonstrate the relationship between the Binomial Option Pricing

Model and the Black-Scholes Option Pricing Model.

Keywords: Binomial option pricing model, Decision trees, Black-Sholes option

pricing model, Call option, Put option, Microsoft Excel, Visual Basic for applica-

tions, VBA, Put-call parity, Sigma, Volatility, Recursive programming

Chapter 38: Dividend Payments and Share Repurchases
of U.S. Firms: An Econometric Approach

This chapter uses the econometric methodology to deal with the dynamic inter-

relationships between dividend payments and share repurchases and investigate

endogeneity of certain explanatory variables. Identification of the model parameters

is achieved in such models by exploiting the cross-equations restrictions on the

coefficients in different time periods. Moreover, the estimation entails using

nonlinear optimization methods to compute the maximum likelihood estimates of

the dynamic random-effects models and for testing statistical hypotheses using

likelihood ratio tests. This study also highlights the importance of developing

comprehensive econometric models for these interrelationships. It is common in

finance research to spell out “specific hypotheses” and conduct empirical research

to investigate validity of the hypotheses.

Keywords: Compustat database, Corporate policies, Dividends, Dynamic

random-effects models, Econometric methodology, Endogeneity, Maximum like-

lihood, Intangible assets, Model formulation, Nonlinear optimization, Panel data,

Share repurchases
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Chapter 39: Term Structure Modeling and Forecasting Using
the Nelson-Siegel Model

In this chapter, we illustrate some recent developments in the yield curve modeling

by introducing a latent factor model called the dynamic Nelson-Siegel model. This

model not only provides good in-sample fit, but also produces superior out-of-sample

performance. Beyond Treasury yield curve, the model can also be useful for other

assets such as corporate bond and volatility. Moreover, the model also suggests

generalized duration components corresponding to the level, slope, and curvature

risk factors. The dynamic Nelson-Siegel model can be estimated via a one-step

procedure, like the Kalman filter, which can also easily accommodate other variables

of interests. Alternatively, we could estimate the model through a two-step process by

fixing one parameter and estimating with ordinary least squares. The model is flexible

and capable of replicating a variety of yield curve shapes: upward sloping, downward

sloping, humped, and inverted humped. Forecasting the yield curve is achieved

through forecasting the factors and we can impose either a univariate autoregressive

structure or a vector autoregressive structure on the factors.

Keywords: Term structure, Yield curve, Factor model, Nelson-Siegel curve,

State-space model

Chapter 40: The Intertemporal Relation Between Expected Return
and Risk On Currency

The literature has so far focused on the risk-return trade-off in equity markets and

ignored alternative risky assets. This chapter examines the presence and signifi-

cance of an intertemporal relation between expected return and risk in the foreign

exchange market. This chapter tests the existence and significance of a daily risk-

return trade-off in the FX market based on the GARCH, realized, and range

volatility estimators. Our empirical analysis relies on the maximum likelihood

estimation of the GARCH-in-mean models, as described in Appendix A. We also

use the seemingly unrelated (SUR) regressions and panel data estimation to inves-

tigate the significance of a time-series relation between expected return and risk on

currency.

Keywords: GARCH, GARCH-in-mean, Seemingly unrelated regressions

(SUR), Panel data estimation, Foreign exchange market, ICAPM, High-frequency

data, Time-varying risk aversion, High-frequency data, Daily realized volatility

Chapter 41: Quantile Regression and Value-at-Risk

This chapter studies quantile regression (QR) estimation of Value-at-Risk (VaR).

VaRs estimated by the QR method display some nice properties. In this

chapter, different QR models in estimating VaRs are introduced. In particular,

VaR estimation based on quantile regression of the QAR models, Copula models,
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ARCH models, GARCH models, and the CaViaR models is systematically intro-

duced. Comparing the proposed QR method with traditional methods based on

distributional assumptions, the QR method has the important property that it is

robust to non-Gaussian distributions. Quantile estimation is only influenced by the

local behavior of the conditional distribution of the response near the specified

quantile. As a result, the estimates are not sensitive to outlier observations. Such

a property is especially attractive in financial applications since many financial data

like, say, portfolio returns (or log returns), are usually not normally distributed. To

highlight the importance of the QR method in estimating VaR, we apply the QR

techniques to estimate VaRs in International Equity Markets. Numerical evidence

indicates that QR is a robust estimation method for VaR.

Keywords: ARCH, Copula, GARCH, Non-normality, QAR, Quantile regres-

sion, Risk management, Robust estimation, Time series, Value-at-risk

Chapter 42: Earnings Quality and Board Structure:
Evidence from South East Asia

Using a sample of listed firms in Southeast Asia countries, this chapter examines the

association among board structure and corporate ownership structure in affecting

earnings quality. The econometric method employed is regressions of panel data.

In a panel data setting, I address both cross-sectional and time-series dependence.

Following Gow et al. (2010), I employ the two-way clustering method where the

standard errors are clustered by both firm and year in my regressions of panel data.

Keywords: Earnings quality, Board structure, Corporate ownership structure,

Panel data regressions, Cross-sectional and time-series dependence, Two-way

clustering method of standard errors

Chapter 43: Rationality and Heterogeneity of Survey Forecasts
of the Yen-Dollar Exchange Rate: A Reexamination

This chapter examines the rationality and diversity of industry-level forecasts of the

yen-dollar exchange rate collected by the Japan Center for International Finance.

We compare three specifications for testing rationality: the “conventional” bivariate

regression, the univariate regression of a forecast error on a constant and other

information set variables, and an error correction model (ECM). We extend the

analysis of industry-level forecasts to a SUR-type structure using an innovative

GMM technique (Bonham and Cohen 2001) that allows for forecaster cross-

correlation due to the existence of common shocks and/or herd effects. Our

GMM tests of micro-homogeneity uniformly reject the hypothesis that forecasters

exhibit similar rationality characteristics.

Keywords: Rational expectations, Unbiasedness, Weak efficiency, Micro-

homogeneity, Heterogeneity, Exchange rate, Survey forecasts, Aggregation bias,

GMM, SUR
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Chapter 44: Stochastic Volatility Structures and Intra-day
Asset Price Dynamics

This chapter uses conditional volatility estimators as special cases of a general

stochastic volatility structure. The theoretical asymptotic distribution of themeasure-

ment error process for these estimators is considered for particular features observed

in intraday financial asset price processes. Specifically, I consider the effects of

(i) induced serial correlation in returns processes, (ii) excess kurtosis in the underly-

ing unconditional distribution of returns, (iii) market anomalies such as market

opening and closing effects, and (iv) failure to account for intraday trading patterns.

These issues are considered with applications in option pricing/trading strategies and

the constant/dynamic hedging frameworks in mind. The methodologies used in this

chapter are ARCH, maximum likelihood method, and unweighted GARCH.

Keywords: ARCH, Asymptotic distribution, Autoregressive parameters, Con-

ditional variance estimates, Constant/dynamic hedging, Excess kurtosis, Index

futures, Intraday returns, Market anomalies, Maximum likelihood estimates,

Misspecification, Mis-specified returns, Persistence, Serial correlation, Stochastic

volatility, Stock/futures, Unweighted GARCH, Volatility co-persistence

Chapter 45: Optimal Asset Allocation Under VaR Criterion:
Taiwan Stock Market

This chapter examines the riskiness of the Taiwan stock market by determining the

VaR from the expected return distribution generated by historical simulation.

Value-at-risk (VaR) measures the worst expected loss over a given time horizon

under normal market conditions at a specific level of confidence. VaR is determined

by the left tail of the cumulative probability distribution of expected returns. Our

result indicates the cumulative probability distribution has a fatter left tail, com-

pared with the left tail of a normal distribution. This implies a riskier market. We

also examined a two-sector asset allocation model subject to a target VaR con-

straint. The VaR-efficient frontier of the TAIEX traded stocks recommended,

mostly, a corner portfolio.

Keywords: Value-at-risk, Asset allocation, Cumulative probability distribution,

Normal distribution, VaR-efficient frontier, Historical simulation, Expected return dis-

tribution, Two-sector asset allocation model, Delta, gamma, Corner portfolio, TAIEX

Chapter 46: Alternative Methods for Estimating Firm’s Growth Rate

The most common valuation model is the dividend growth model. The growth rate is

foundby taking theproductof the retention rateand the returnonequity.What is lesswell

understoodare thebasic assumptionsof thismodel. In thispaper,wedemonstrate that the

model makes strong assumptions regarding the financing mix of the firm. In addition,
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we discuss several methods suggested in the literature on estimating growth rates and

analyzewhether these approaches are consistentwith theuseofusingaconstantdiscount

rate to evaluate the firm’s assets and equity. The literature has also suggested estimating

growth rate by using the average percentage change method, compound-sum method,

and/or regression methods. We demonstrate that the average percentage change is very

sensitive to extreme observations. Moreover, on average, the regression method yields

similar but somewhat smaller estimates of the growth rate compared to the compound-

summethod. We also discussed the inferred method suggested by Gordon and Gordon

(1997) to estimate the growth rate. Advantages, disadvantages, and the interrelationship

among these estimation methods are also discussed in detail.

Keywords: Compound sum method, Discount cash flow model, Growth rate,

Internal growth rate, Sustainable growth rate

Chapter 47: Econometric Measures of Liquidity

A security is liquid to the extent that an investor can trade significant quantities of the

security quickly, at or near the current market price, and bearing low transaction costs.

As such, liquidity is a multidimensional concept. In this chapter, I review several

widely used econometrics or statistics-based measures that researchers have devel-

oped to capture one or more dimensions of a security’s liquidity (i.e., limited depen-

dent variable model (Lesmond et al. 1999) and autocovariance of price changes (Roll

1984)). These alternative proxies have been designed to be estimated using either

low-frequency or high-frequency data, so I discuss four liquidity proxies that are

estimated using low-frequency data and two proxies that require high-frequency data.

Low-frequency measures permit the study of liquidity over relatively long time

horizons; however, they do not reflect actual trading processes. To overcome this

limitation, high-frequency liquidity proxies are often used as benchmarks to determine

the best low-frequency proxy. In this chapter, I find that estimates from the effective

tick measure perform best among the four low-frequency measures tested.

Keywords: Liquidity, Transaction costs, Bid-ask spread, Price impact, Percent

effective spread, Market model, Limited dependent variable model, Tobin’s model,

Log-likelihood function, Autocovariance, Correlation analysis

Chapter 48: A Quasi-Maximum Likelihood Estimation Strategy
for Value-at-Risk Forecasting: Application to Equity Index
Futures Markets

The chapter uses GARCH model and quasi-maximum likelihood estimation

strategy to investigate equity index futures markets. We present the first empirical

evidence for the validity of the ARMA-GARCH model with tempered

stable innovations to estimate 1-day-ahead value-at-risk in futures markets for the

S&P 500, DAX, and Nikkei. We also provide empirical support that GARCH
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models based on the normal innovations appear not to be as well suited as infinitely

divisible models for predicting financial crashes. In our empirical analysis, we

forecast 1 % value-at-risk in both spot and futures markets using normal and

tempered stable GARCHmodels following a quasi-maximum likelihood estimation

strategy. In order to determine the accuracy of forecasting for each specific model,

backtesting using Kupiec’s proportion of failures test is applied.

Keywords: Infinitely divisible models, Tempered stable distribution, GARCH

models, Value-at-risk, Kupiec’s proportion of failures test, Quasi-maximum likeli-

hood estimation strategy

Chapter 49: Computer Technology for Financial Service

This chapter examines the core computing competence for financial services.

Securities trading is one of the few business activities where a few seconds of

processing delay can cost a company big fortune. Grid and Cloud computing

will be briefly described. How the underlying algorithm for financial analysis

can take advantage of Grid environment is chosen and presented. One of the

most popular practiced algorithms Monte Carlo Simulation is used in our cases

study for option pricing and risk management. The various distributed com-

putational platforms are carefully chosen to demonstrate the performance issue

for financial services.

Keywords: Financial service, Grid and cloud computing, Monte Carlo simula-

tion, Option pricing, Risk management, Cyberinfrastructure, Random number

generation, High end computing, Financial simulation, Information technology

Chapter 50: Long-Run Stock Return and the Statistical Inference

This chapter introduces the long-run stock return methodologies and their statistical

inference. The long-run stock return is usually computed by using a holding strategy

more than 1 year but up to 5 years. Two categories of long-run return methods are

illustrated in this chapter: the event-time approach and calendar-time approach. The

event-time approach includes cumulative abnormal return, buy-and-hold abnormal

return, and abnormal returns around earnings announcements. In former twomethods,

it is recommended to apply the empirical distribution (from the bootstrappingmethod)

to examine the statistical inference, whereas the last one uses classical t-test.
In addition, the benchmark selections in the long-run return literature are introduced.

Moreover, the calendar-time approach contains mean monthly abnormal return,

factor models, and Ibbotson’s RATS, which could be tested by time-series volatility.

Keywords: Long-run stock return, Buy-and-hold return, Factor model, Event-

time, Calendar-time, Cumulative abnormal return, Ibottson’s RATS, Conditional

market model, Bootstrap, Zero-investment portfolio
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Chapter 51: Value-at-Risk Estimation via a Semi-Parametric
Approach: Evidence from the Stock Markets

This study utilizes the parametric approach (GARCH-based models) and the semi-

parametric approach of Hull and White (1998) (HW-based models) to estimate the

Value-at-Risk (VaR) through the accuracy evaluation of accuracy for the eight stock

indices in Europe and Asia stock markets. The measure of accuracy includes the

unconditional coverage test by Kupiec (1995) as well as two loss functions, quadratic

loss function and unexpected loss. As to the parametric approach, the parameters of

generalized autoregressive conditional heteroskedasticity (GARCH) model are esti-

mated by the method of maximum likelihood and the quantiles of asymmetric distri-

bution like skewed generalized student’s t (SGT) can be solved by composite trapezoid

rule. Sequentially, the VaR is evaluated by the framework proposed by Jorion (2000).

Turning to the semi-parametric approach ofHull andWhite (1998), before performing

the traditional historical simulation, the raw return series is scaled by a volatility ratio

where the volatility is estimated by the same procedure of parametric approach.

Keywords: Value-at-risk, Semi-parametric approach, Parametric approach,

Generalized autoregressive conditional heteroskedasticity, Skewed generalized

student’s t, Composite trapezoid rule, Method of maximum likelihood, Uncondi-

tional coverage test, Loss function

Chapter 52: Modeling Multiple Asset Returns by a Time-Varying
t Copula Model

This chapter illustrates a framework to model joint distributions of multiple asset

returns using a time-varying Student’s t copula model. We model marginal distri-

butions of individual asset returns by a variant of GARCH models and then use

a Student’s t copula to connect all the margins. To build a time-varying structure for

the correlation matrix of t copula, we employ a dynamic conditional correlation

(DCC) specification. We illustrate the two-stage estimation procedures for the

model and apply the model to 45 major US stocks returns selected from nine

sectors. As it is quite challenging to find a copula function with very flexible

parameter structure to account for difference dependence features among all pairs

of random variables, our time-varying t copula model tends to be a good working

tool to model multiple asset returns for risk management and asset allocation

purposes. Our model can capture time-varying conditional correlation and some

degree of tail dependence, while it also has limitations of featuring symmetric

dependence and inability of generating high tail dependence when being used to

model a large number of asset returns.

Keywords: Student’s t copula, GARCH models, Asset returns, U.S. stocks,

Maximum likelihood, Two-stage estimation, Tail dependence, Exceedance corre-

lation, Dynamic conditional correlation, Asymmetric dependence
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Chapter 53: Internet Bubble Examination with Mean-Variance Ratio

This chapter illustrates the superiority of the mean-variance ratio (MVR) test

over the traditional SR test by applying both tests to analyze the performance

of the S&P 500 index and the NASDAQ 100 index after the bursting of the

Internet bubble in 2000s. This shows the superiority of the MVR test statistic

in revealing short-term performance and, in turn, enables investors to make

better decisions in their investments. The methodologies used in this chapter

are mean-variance ratio, Sharpe ratio, hypothesis testing, and uniformly most

powerful unbiased test.

Keywords: Mean-variance ratio, Sharpe ratio, Hypothesis testing, Uniformly

most powerful unbiased test, Internet bubble, Fund management

Chapter 54: Quantile Regression in Risk Calibration

This chapter uses the CoVaR (Conditional VaR) framework to obtain accurate

information on the interdependency of risk factors. The basic technical ele-

ments of CoVaR estimation are two levels of quantile regression: one on

market risk factors; another on individual risk factor. Tests on the functional

form of the two-level quantile regression reject the linearity. A flexible semi-

parametric modeling framework for CoVaR is proposed. A partial linear model

(PLM) is analyzed. In applying the technology to stock data covering the crisis

period, the PLM outperforms in the crisis time, with the justification of the

backtesting procedures. Moreover, using the data on global stock markets

indices, the analysis on marginal contribution of risk (MCR) defined as the

local first order derivative of the quantile curve sheds some light on the source

of the global market risk.

Keywords: CoVAR, Value-at-risk, Quantile regression, Locally linear quantile

regression, Partial linear model, Semi-parametric model

Chapter 55: Strike Prices of Options for Overconfident Executives

This chapter uses Monte Carlo simulation to investigate the impacts of managerial

overconfidence on the optimal strike prices of executive incentive options.

Although it has been shown that optimally managerial incentive options should

be awarded in-the-money, in practice, most firms award them at-the-money. We

show that the optimal strike prices of options granted to overconfident executive are

directly related to their overconfidence level, and that this bias brings the optimal

strike prices closer to the institutionally prevalent at-the-money prices. The Monte

Carlo simulation procedure uses a Mathematica program to find the optimal effort

by managers and the optimal (for stockholders) contract parameters. An expanded

discussion of the simulations, including the choice of the functional forms and the

calibration of the parameters, is provided.
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Keywords: Overconfidence, Managerial effort, Incentive options, Strike price,

Simulations, Behavioral finance, Executive compensation schemes, Mathematica

optimization, Risk aversion, Effort aversion

Chapter 56: Density and Conditional Distribution Based
Specification Analysis

This chapter uses densities and conditional distributions analysis to carry out

consistent specification testing and model selection among multiple diffusion

processes. In this chapter, we discuss advances to this literature introduced by

Corradi and Swanson (2005), who compare the cumulative distribution (marginal

or joint) implied by a hypothesized null model with corresponding empirical

distributions of observed data. In particular, parametric specification tests in the

spirit of the conditional Kolmogorov test of Andrews (1997) that rely on block

bootstrap resampling methods in order to construct test critical values are discussed.

The methodologies used in this chapter are continuous time simulation methods,

single process specification testing, multiple process model selection, and multi-

factor diffusion process, block bootstrap, and jump process.

Keywords: Multifactor diffusion process, Specification test, Out-of-sample

forecasts, Conditional distribution, Model selection, Block bootstrap, Jump process

Chapter 57: Assessing the Performance of Estimators Dealing
with Measurement Errors

This chapter describes different procedures to deal with measurement error in linear

models, and assess their performance in finite samples using Monte Carlo simulations,

and data on corporate investment. We consider the standard instrumental variables

approach proposed by Griliches and Hausman (1986) as extended by Biorn

(2000) [OLS-IV], the Arellano and Bond (1991) instrumental variable estimator, and

the higher-order moment estimator proposed by Erickson and Whited (2000, 2002).

Our analysis focuses on characterizing the conditions under which each of these

estimators produces unbiased and efficient estimates in a standard “errors in variables”

setting. In the presence of fixed effects, under heteroscedasticity, or in the absence of

a very high degree of skewness in the data, the EW estimator is inefficient and

returns biased estimates for mismeasured and perfectly measured regressors. In con-

trast to the EW estimator, IV-type estimators (OLS-IV and AB-GMM) easily handle

individual effects, heteroskedastic errors, and different degrees of data skewness.

The IV approach, however, requires assumptions about the autocorrelation structure

of the mismeasured regressor and the measurement error. We illustrate the application

of the different estimators using empirical investment models.

Keywords: Investment equations, Measurement error, Monte Carlo simulations,

Instrumental variables, GMM, Bias, Fixed effects, Heteroscedasticity, Skewness,

High-order moments
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Chapter 58: Realized Distributions of Dynamic Conditional
Correlation and Volatility Thresholds in the Crude Oil, Gold,
and Dollar/Pound Currency Markets

This chapter proposes a modeling framework for the study of co-movements in

price changes among crude oil, gold, and dollar/pound currencies that are condi-

tional on volatility regimes. Methodologically, we extend the Dynamic Conditional

Correlation (DCC) multivariate GARCH model to examine the volatility and

correlation dynamics depending on the variances of price returns involving

a threshold structure. The results indicate that the periods of market turbulence

are associated with an increase in co-movements in commodity (gold and oil)

prices. The results imply that gold may act as a safe haven against major currencies

when investors face market turmoil.

Keywords: Dynamic conditional correlation, Volatility threshold, Realized

distribution, Currency market, Gold, Oil

Chapter 59: Pre-IT Policy, Post-IT Policy, and the Real Sphere
in Turkey

We estimate Two SVECM (Structural Vector Error Correction) Models for the

Turkish economy based on imposing short run and Long-run restrictions that

accounts for examining the behavior of the real sphere in the Pre-IT policy

(before Inflation-Targeting adoption) and Post-IT policy (after Inflation-

Targeting Adoption). Responses reveals that an expansionary interest policy

shock leads to a decrease in price level, a fall in output, an appreciation in the

exchange rate, an improvement in the share prices in the very short run for the

most of Pre-IT period.

Keywords: SVECM models, Turkish economy, Short run, Long run, Restric-

tions, Inflation targeting, Pre-IT policy, Post-IT policy, Share prices, Exchange rate,

Monetary policy shock, Output, Price level, Real sphere

Chapter 60: Determination of Capital Structure: A LISREL Model
Approach

In this chapter, we employ structural equation modeling (SEM) in LISREL system

to solve the measurement errors problems in the analysis of the determinants of

capital structure and find the important factors consistent with capital structure

theory by using date from 2002 to 2010. The purpose of this chapter is to investigate

whether the influences of accounting factors on capital structure change and

whether the important factors are consistent with the previous literature. The

methodologies discussed in this chapter are structural equation modeling (SEM),

multiple indicators and multiple causes (MIMIC) model, LISREL system, simul-

taneous equations, and SEM with confirmatory factor analysis (CFA) approach.
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Keywords: Capital structure, Structural equation modeling (SEM), Multiple indi-

cators and multiple causes (MIMIC) model, LISREL system, Simultaneous equations,

Latent variable, Determinants of capital structure, Error in variable problem

Chapter 61: Evaluating the Effectiveness of Futures Hedging

This chapter examines the Ederington hedging effectiveness (EHE) comparisons

between unconditional OLS hedge strategy and other conditional hedge strategies.

It is shown that OLS hedge strategy outperforms most of the optimal conditional

hedge strategies when EHE is used as the hedging effectiveness criteria. Before

concluding that OLS hedge is better than the others; however, we need to understand

under what circumstances the result is derived.We explain why OLS is the best hedge

strategy under EHE criteria in most cases, and how most conditional hedge strategies

are judged as inferior to OLS hedge strategy by an EHE comparison.

Keywords: Futures hedging, Portfolio management, Ederington hedging effec-

tiveness, Variance estimation, Unconditional variance, Conditional variance, OLS

hedging strategy, GARCH hedging strategy, Regime-switching hedging strategy,

Utility-based hedging strategy

Chapter 62: Evidence on Earning Management by Integrated Oil
and Gas Companies

This chapter uses Jones Model (1991) which projects the expected level of discre-

tionary accruals and demonstrates specific test methodology for detection of earnings

management in the oil and gas industry. This study utilized several parametric and

nonparametric statistical methods to test for such earnings management. By compar-

ing actuals versus projected accruals, we are able to compute the total unexpected

accruals. We also correlate unexpected total accruals with several difficult to manip-

ulate indicators that reflect company’s level of activities.

Keywords: Earning management, Jones (1991) model, Discretionary accruals,

Income from operations, Nonrecurring items, Special items, Research and devel-

opment expense, Write-downs, Political cost, Impression management, Oil and gas

industry

Chapter 63: A Comparative Study of Two Models SV with MCMC
Algorithm

This chapter examines two asymmetric stochastic volatility models used to describe

the volatility dependencies found in most financial returns. The first is the

autoregressive stochastic volatility model with Student’s t-distribution (ARSV-t),

and the second is the basic Svol of JPR (1994). In order to estimate these models,

our analysis is based on the Markov ChainMonte Carlo (MCMC) method. Therefore,
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the technique used is a Metropolishastings (Hastings 1970), and the Gibbs sampler

(Casella and George 1992; Gelfand and Smith 1990; Gilks et al. 1993). The empirical

results concerned on the Standard and Poor’s 500 composite Index (S&P), CAC40,

Nasdaq, Nikkei, and Dow-Jones stock price indexes reveal that the ARSV-t model

provides a better performance than the Svol model on theMean Squared Error (MSE)

and the Maximum Likelihood function.

Keywords: Autoregression, Asymmetric stochastic volatility, MCMC, Metro-

polishastings, Gibbs sampler, Volatility dependencies, Student’s t-distribution,

SVOL, MSE, Financial returns, Stock price indexes

Chapter 64: Internal Control Material Weakness, Analysts’ Accuracy
and Bias, and Brokerage Reputation

This chapter uses the Ordinary Least-Squares (OLS) methodology in the main tests

to examine the impact of internal control material weaknesses (ICMW hereafter) on

sell side analysts. We match our ICMW firms with non-ICMWs based on industry,

sales, and assets. We re-estimate the models using rank regression technique to

assess the sensitivity of the results to the underlying functional form assumption

made by OLS. We use Cook’s distance to test the outliers.

Keywords: Internal control material weakness, Analyst forecast accuracy, Ana-

lyst forecast bias, Brokerage reputation, Sarbanes-Oxley act, Ordinary least squares

regressions, Rank regressions, Fixed effects, Matching procedure, Cook’s distance

Chapter 65: What Increases Banks’ Vulnerability to Financial Crisis:
Short-Term Financing or Illiquid Assets?

This chapter applies Logit and OLS econometric techniques to analyze the Federal

ReserveY-9C report data.We show that short-termfinancing is a response to the adverse

economic shocks rather than a cause of the recent crisis. The likelihood of financial crisis

actually stems from the illiquidity and low creditworthiness of the investment. Our

results are robust to endogeneity concerns when we use a difference-in-differences

(DiD) approachwith the Lehman bankruptcy in 2008 proxying for an exogenous shock.

Keywords: Financial crisis, Short-term financing, Debt maturity, Liquidity risk,

Deterioration of bank asset quality

Chapter 66: Accurate Formulae for Evaluating Barrier Options with
Dividends Payout and the Application in Credit Risk Valuation

This chapter approximates the discrete dividend payout by a stochastic continuous

dividend yield, so the post dividend stock price process can be approximated by

another log-normally diffusive stock process with a stochastic continuous payout

ratio up to the ex-dividend date. Accurate approximation analytical pricing
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formulae for barrier options are derived by repeatedly applying the reflection

principle. Besides, our formulae can be applied to extend the applicability of the

first passage model – a branch of structural credit risk model. The stock price falls

due to the dividend payout in the option pricing problem is analog to selling the

firm’s asset to finance the loan repayment or dividend payout in the first passage

model. Thus, our formulae can evaluate vulnerable bonds or the equity values given

that the firm’s future loan/dividend payments are known.

Keywords: Barrier option, Option pricing, Stock option, Dividend, Reflection

principle, Lognormal, Credit risk

Chapter 67: Pension Funds: Financial Econometrics on the Herding
Phenomenon in Spain and the United Kingdom

This chapter uses the estimated cross-sectional standard deviations of betas to

analyze if manager’s behavior enhances the existence of herding phenomena and

the impact of the Spanish and UK pension funds investment on the market effi-

ciency. We also estimate the betas with an econometric technique less applied in the

financial literature: state-space models and the Kalman filter. Additionally, in order

to obtain a robust estimation, we apply the Huber estimator. Finally, we apply

several models and study the existence of herding toward the market, size, book-to-

market, and momentum factors.

Keywords: Herding, Pension funds, State-space models, Kalman filter, Huber

estimation, Imitation, Behavioral finance, Estimated cross-sectional standard devi-

ations of betas, Herding toward the market, Herding toward size factor, Herding

toward book-to-market factor, and Herding toward momentum factor

Chapter 68: Estimating the Correlation of Asset Returns: A Quantile
Dependence Perspective

This chapter uses the Copula Quantile-on-Quantile Regression (C-QQR) approach

to construct the correlation between the conditional quantiles of stock returns. This

new approach of estimating correlation utilizes the idea that the condition of a stock

market is related to its return performance, particularly to the conditional quantile

of its return, as the lower return quantiles reflect a weak market while the upper

quantiles reflect a bullish one. The C-QQR approach uses the copula to generate

a regression function for modeling the dependence between the conditional

quantiles of the stock returns under consideration. It is estimated using a two-step

quantile regression procedure, where in principle, the first step is implemented to

model the conditional quantile of one stock return, which is then related in the

second step to the conditional quantile of another return.

Keywords: Stock markets, Copula, Correlation, Quantile regression, Quantile

dependence, Business cycle, Dynamics, Risk management, Investment, Tail risk,

Extreme events, Market uncertainties
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Chapter 69: Multi-criteria Decision Making for Evaluating Mutual
Funds Investment Strategies

This chapter uses the criteria measurements to evaluate investment style and

investigate multiple criteria decision-making (MCDM) problem. To achieve this

objective, first, we employ factor analysis to extract independent common factors

from those criteria. Second, we construct the evaluation frame using hierarchical

system composed of the above common factors with evaluation criteria, and then

derive the relative weights with respect to the considered criteria. Third, the

synthetic utility value corresponding to each investment style is aggregated by

the weights with performance values. Finally, we compare with empirical data and

find that the model of MCDM predicts the rate of return.

Keywords: Investment strategies, Multiple Criteria Decision Making (MCDM),

Hierarchical system, Investment style, Factor analysis, Synthetic utility value,

Performance values

Chapter 70: Econometric Analysis of Currency Carry Trade

This chapter investigates carry trade strategy in the currency markets whereby

investors fund positions in high interest rate currencies by selling low interest rate

currencies to earn the interest rate differential. In this chapter, we first provide an

overview of the risk and return profile of currency carry trade; second, we introduce

two popular models, the regime-switch model and the logistic smooth transition

regression model, to analyze carry trade returns because the carry trade returns are

highly regime dependent. Finally, an empirical example is illustrated.

Keywords: Carry trade, Uncovered interest parity, Markov chain Monte Carlo,

Regime-switch model, Logistic smooth transition regression model

Chapter 71: Analytical Bounds for Treasury Bond Futures Prices

This study employs a maximum likelihood estimation technique presented by Chen

and Scott (1993) to estimate the parameters for two-factor Cox-Ingersoll-Ross

models of the term structure. Following the estimation, the factor values are solved

for by matching the short rate with the cheapest-to-deliver bond price. Then, upper

bounds and lower bounds for Treasury bond futures prices can be calculated. This

study first shows that the popular preference-free, closed-form cost of carry model

is an upper bound for the Treasury bond futures price. Then, the next step is to

derive analytical lower bounds for the futures price under one- and two-factor

Cox-Ingersoll-Ross models of the term structure.

Keywords: Treasury bond futures, Delivery options, Cox-Ingersoll-Ross

models, Bounds, Maximum likelihood estimation, Term structure, Cheapest-to-

deliver bond, Timing options, Quality options, Chicago board of trade
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Chapter 72: Rating Dynamics of Fallen Angels and Their Speculative
Grade-Rated Peers: Static Versus Dynamic Approach

This study adopts the survival analysis framework (Allison 1984) to examine

issuer-heterogeneity and time-heterogeneity in the rating migrations of fallen

angels (FAs) and their speculative grade-rated peers (FA peers). Cox’s hazard

model is considered the pre-eminent method to estimate the probability that

an issuer survives in its current rating grade at any point in time t over the

time horizon T. In this study, estimation is based on two Cox’s hazard

models, including a proportional hazard model (Cox 1972) and a dynamic

hazard model. The first model employs a static estimation approach and time-

independent covariates, whereas the second uses a dynamic estimation

approach and time-dependent covariates. To allow for any dependence

among rating states of the same issuer, the marginal event-specific method

(Wei et al. 1989) was used to obtain robust variance estimates. For validation

purpose, the Brier score (Brier 1950) and its covariance decomposition

(Yates 1982) were applied to assess the forecast performance of estimated

models in forming time-varying survival probability estimates for issuers

out-of-sample.

Keywords: Survival analysis, Hazard model, Time-varying covariate, Recurrent

event, Brier score, Covariance decomposition, Rating migration, Fallen angel,

Markov property, Issuer-heterogeneity, Time-heterogeneity

Chapter 73: Creation and Control of Bubbles: Managers
Compensation Schemes, Risk Aversion, and
Wealth and Short Sale Constraints

This chapter takes an alternative approach of inquiry – that of using labora-

tory experiments – to study the creation and control of speculative bubbles.

The following three factors are chosen for analysis: the compensation scheme

of portfolio managers, wealth and supply constraints, and the relative risk

aversion of traders. Under a short investment horizon induced by

a tournament compensation scheme, speculative bubbles are observed in

markets of speculative traders and in mixed markets of conservative and

speculative traders. The primary method of analysis is to use live subjects

in a laboratory setting to generate original trading data, which are compared

to their fundamental values. Standard statistical techniques are used to sup-

plement analysis in explaining the divergence of asset prices from their

fundamental values.

Keywords: Speculative bubbles, Laboratory experimental asset markets,

Fundamental asset values, Tournament, Market efficiency, Behavioral finance,

Ordinary least squares regression, Correlation
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Chapter 74: Range Volatility: A Review of Models and Empirical
Studies

In this chapter, we survey the significant development of range-based volatility

models, beginning with the simple random walk model up to the conditional

autoregressive range (CARR) model. For the extension to range-based multivariate

volatilities, some approaches developed recently are adopted, such as the dynamic

conditional correlation (DCC) model, the double smooth transition conditional

correlation (DSTCC) GARCH model, and the copula method. At last, we introduce

different approaches to build bias-adjusted realized range to obtain a more efficient

estimator.

Keywords: Range, Volatility forecasting, Dynamic conditional correlation,

Smooth transition, Copula, Realized volatility, Risk management

Chapter 75: Business Models: Applications to Capital Budgeting,
Equity Value, and Return Attribution

This chapter describes a business model in a contingent claim modeling framework.

The chapter then provides three applications of the business model. Firstly, the

chapter determines the optimal capital budgeting decision in the presence of fixed

operating costs, and shows how the fixed operating cost should be accounted by in

an NPV calculation. Secondly, the chapter determines the values of equity value,

the growth option, the retention option as the building blocks of primitive firm

value. Using a sample of firms, the chapter illustrates a method in comparing the

equity values of firms in the same business sector. Thirdly, the chapter relates the

change in revenue to the change in equity value, showing how the combined

operating leverage and financial leverage may affect the firm valuation and risks.

Keywords: Bottom-up capital budgeting, Business model, Capital budgeting,

Contingent claim model, Equity value, Financial leverage, Fixed operating cost,

Gross return on investment (GRI), Growth option, Market performance measure,

NPV, Operating leverage, Relative value of equity, Retention option, Return

attribution, Top-down capital budgeting, Wealth transfer

Chapter 76: VAR Models: Estimation, Inferences, and Applications

This chapter provides a brief overview of the basic Vector autoregression (VAR)

approach by focusing on model estimation and statistical inferences. VAR models

have been used extensive in finance and economic analysis. Applications of VAR

models in some finance areas are discussed, including asset pricing, international

finance, and market microstructure. It is shown that such approach provides

a powerful tool to study financial market efficiency, stock return predictability,

exchange rate dynamics, and information content of stock trades and market

quality.
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Keywords: VAR, Granger-causality test, Impulse response, Variance decom-

position, Co-integration, Asset return predictability, Market quality, Information

content of trades, Informational efficiency

Chapter 77: Model Selection for High-Dimensional Problems

This chapter introduces penalized least squares, which seek to keep

important predictors in a model, while penalizing coefficients associated with

irrelevant predictors. As such, under certain conditions, penalized least

squares can lead to a sparse solution for linear models and achieve asymptotic

consistency in separating relevant variables from irrelevant ones. We then

review independence screening, a recently developed method for analyzing

ultrahigh-dimensional data where the number of variables or parameters can be

exponentially larger than the sample size. Independence screening selects relevant

variables based on certain measures of marginal correlations between candidate

variables and the response. Finally, we discuss and advocate multistage procedures

that combine independence screening and variable selection and that may be

especially suitable for analyzing high-frequency financial data.

Keywords: Model selection, Variable selection, Dimension reduction,

Independence screening, High-dimensional data, Ultrahigh-dimensional data, Gen-

eralized correlations, Penalized least squares, Shrinkage, Statistical learning,

SCAD penalty, Oracle property

Chapter 78: Hedonic Regression Models

The chapter examines three specific, different hedonic specifications: the linear,

semi-log, and Box-Cox transformed hedonic models and applies them to real estate

data. It also discusses recent innovations related to hedonic models and how these

models are being used in contemporary studies. This provides a basic overview of

the nature and variety of hedonic empirical pricing models that are employed in

the economics literature. It explores the history of hedonic modeling and summa-

rizes the field’s utility-theory-based, microeconomic foundations. It also provides

a discussion of and potential solutions for common problems associated with

hedonic modeling.

Keywords: Hedonic models, Regression, Real estate, Box-Cox, Pricing, Price

indexes, Semi-log, Least squares, Housing, Property

Chapter 79: Optimal Payout Ratio Under Uncertainty and the
Flexibility Hypothesis: Theory and Empirical Evidence

We theoretically extend the proposition of DeAngelo and DeAngelo’s (2006) opti-

mal payout policy in terms of the flexibility dividend hypothesis. We also
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introduce growth rate, systematic risk, and total risk variables into the theoretical

model. We use a panel data collected in the USA from 1969 to 2009 to empirically

investigate the impact of growth rate, systematic risk, and total risk on the optimal

payout ratio in terms of the fixed-effects model. Furthermore, we implement the

moving estimates process to find the empirical breakpoint of the structural change

for the relationship between the payout ratio and risks and confirm that the

empirical breakpoint is not different from our theoretical breakpoint. Our theo-

retical model and empirical results can therefore be used to identify whether

flexibility or the free cash flow hypothesis should be used to determine the

dividend policy.

Keywords: Dividends, Payout policy, Optimal payout ratio, Flexibility hypoth-

esis, Free cash flow hypothesis, Signaling hypothesis, Fixed effect, Clustering

effect, Structural change model, Moving estimates processes, Systematic risk,

Total risk, Market perfection

Chapter 80: Modeling Asset Returns with Skewness, Kurtosis,
and Outliers

This chapter uses an exponential generalized beta distribution of the second kind

(EGB2) to model the returns on 30 Dow-Jones industrial stocks. The model

accounts for stock return characteristics, including fat tails, peakedness

(leptokurtosis), skewness, clustered conditional variance, and leverage effect.

The goodness-of-fit statistic provides supporting evidence in favor of EGB2

distribution in modeling stock returns. The EGB2 distribution used in this

chapter is a four parameter distribution. It has a closed-form density function,

and its higher-order moments are finite and explicitly expressed by its parameters.

The EGB2 distribution nests many widely used distributions such as normal

distribution, log-normal distribution, Weibull distribution, and standard logistic

distribution.

Keywords: Expected stock return, Higher moments, EGB2 distribution, Risk

management, Volatility, Conditional skewness, Risk premium

Chapter 81: Does Revenue Momentum Drive or Ride Earnings or
Price Momentum?

This chapter performs dominance test to show that revenue surprises, earnings

surprises, and prior returns, each lead to significant momentum returns that cannot

be fully explained by the others, suggesting that each convey some exclusive

and unpriced information content. Also, the joint implications of revenue surprises,

earnings surprises, and prior returns are underestimated by investors, particularly

when information variables point in the same direction. Momentum
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cross-contingencies are observed in that momentum profits driven by firm funda-

mental information positively depend on the accompanying firm market informa-

tion, and vice versa. A three-way combined momentum strategy may offer monthly

return as high as 1.44%.

Keywords: Earnings surprises, Momentum strategies, Post-earnings-

announcement drift, Revenue surprises

Chapter 82: A VG-NGARCH Model for Impacts of Extreme
Events on Stock Returns

This chapter compares two types of GARCH models, namely, the VG-NGARCH

and the GARCH-jump model with autoregressive conditional jump intensity, i.e.,

the GARJI model, to make inferences on the log of stock returns when there are

irregular substantial price fluctuations. The VG-NGARCH model imposes

a nonlinear asymmetric structure on the conditional shape parameters in a variance-

gamma process, which describes the arrival rates for news with different degrees of

influence on price movements, and provides an ex ante probability for the occur-

rence of large price movements. On the other hand, the GARJI model, a mixed

GARCH-jump model proposed by Chan and Maheu (2002), adopts two indepen-

dent autoregressive processes to model the variances corresponding to moderate

and large price movements, respectively.

Keywords: VG-NGARCH model, GARCH-jump model, Autoregressive

conditional jump intensity, GARJI model, Substantial price fluctuations, Shape

parameter, Variance-gamma process, Ex ante probability, Daily stock price,

Goodness-of-fit

Chapter 83: Risk-Averse Portfolio Optimization via Stochastic
Dominance Constraints

This chapter presents a new approach to portfolio selection based on

stochastic dominance. The portfolio return rate in the new model is required to

stochastically dominate a random benchmark. We formulate optimality conditions

and duality relations for these models and construct equivalent optimization models

with utility functions. Two different formulations of the stochastic dominance

constraint, primal and inverse, lead to two dual problems which involve von

Neuman–Morgenstern utility functions for the primal formulation and rank depen-

dent (or dual) utility functions for the inverse formulation. We also discuss the

relations of our approach to value-at-risk and conditional value-at-risk.

Keywords: Portfolio optimization, Stochastic dominance, Stochastic order,

Risk, Expected utility, Duality, Rank dependent utility, Yaari’s dual utility,

Value-at-risk, Conditional value-at-risk
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Chapter 84: Implementation Problems and Solutions in Stochastic
Volatility Models of the Heston Type

This chapter compares three major approaches to solve the numerical instability

problem inherent in the fundamental solution of the Heston model. In this chapter,

we used the fundamental transform method proposed by Lewis to reduce the

number of variables from two to one and separate the payoff function from the

calculation of the Green function for option pricing. We show that the simple

adjusted-formula method is much simpler than the rotation-corrected angle method

of Kahl and Jäckel and also greatly superior to the direct integration method of

Shaw if taking computing time into consideration.

Keywords: Heston, Stochastic volatility, Fourier inversion, Fundamental trans-

form, Complex logarithm, Rotation-corrected angle, Simple adjusted formula,

Green function

Chapter 85: Stochastic Change-Point Models of Asset Returns and
Their Volatilities

This chapter considers two time-scales and uses the “short” time-scale to define

GARCH dynamics and the “long” time-scale to incorporate parameter jumps. This

leads to a Bayesian change-point ARX-GARCH model, whose unknown parameters

may undergo occasional changes at unspecified times and can be estimated by explicit

recursive formulas when the hyperparameters of the Bayesian model are specified.

Efficient estimators of the hyperparameters of the Bayesian model can be developed.

The empirical Bayes approach can be applied to the frequentist problem of partitioning

the time series into segments under sparsity assumptions on the change-points.

Keywords: ARX-GARCH, Bounded complexity, Contemporaneous jumps,

Change-point models, Empirical Bayes, Frequentist segmentation, Hidden Markov

models, Hyperparameter estimation, Markov chain Monte Carlo, Recursive filters,

Regression models, Stochastic volatility

Chapter 86: Unspanned Stochastic Volatilities and Interest Rate
Derivatives Pricing

This chapter first reviews the recent literature on the Unspanned Stochastic Volatil-

ities (USV) documented in the interest rate derivatives markets. The USV refers to

the volatilities factors implied in the interest rate derivatives prices that have little

correlation with the yield curve factors. We then present the result in Li and Zhao

(2006) that a sophisticated DTSM without USV feature can have serious difficulties

in hedging caps and cap straddles, even though they capture bond yields well.

Furthermore, at-the-money straddle hedging errors are highly correlated with

cap-implied volatilities and can explain a large fraction of hedging errors of all

caps and straddles across moneyness and maturities. We also present a multifactor
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term structure model with stochastic volatility and jumps that yields a closed-form

formula for cap prices from Jarrow et al. (2007). The three-factor stochastic volatility

model with Poisson jumps can price interest rate caps well across moneyness and

maturity. The econometric methods in this chapter include extended Kalman filter-

ing, maximum likelihood estimation with latent variables, local polynomial method,

and nonparametric density estimation.

Keywords: Term structure modeling, Interest rate volatility, Heath-Jarrow-

Morton model, Nonparametric density estimation, Extended Kalman filtering

Chapter 87: Alternative Equity Valuation Models

This chapter examines alternative equity valuation models and their ability to

forecast future stock prices. We use simultaneous equations estimation technique

to investigate the stock price forecast ability of Ohlson’s model, Feltham and

Ohlson’s Model, and Warren and Shelton’s (1971) model. Moreover, we use the

combined forecasting methods proposed by Granger and Newbold (1973) and

Granger and Ramanathan (1984) to form combined stock price forecasts from

individual models. Finally, we examine whether comprehensive earnings can

provide incremental price-relevant information beyond net income.

Keywords: Ohlson model, Feltham and Ohlson model, Warren and Shelton

model, Equity valuation models, Simultaneous equations estimation, Fundamental

analysis, Financial statement analysis, Financial planning and forecasting, Com-

bined forecasting, Comprehensive earnings, Abnormal earnings, Operating earn-

ings, Accounting earnings

Chapter 88: Time Series Models to Predict the Net Asset Value (NAV)
of an Asset Allocation Mutual Fund VWELX

This research examines the use of various forms of time-series models to predict

the total net asset value (NAV) of an asset allocation mutual fund. The first set of

model structures included simple exponential smoothing, double exponential

smoothing, and the Winter’s method of smoothing. The second set of predictive

models used represented trend models. They were developed using regression

estimation. They included linear trend model, quadratic trend model, and an

exponential model. The third type of method used was a moving average method.

The fourth set of models incorporated the Box-Jenkins method, including an

autoregressive model, a moving average model, and an unbounded autoregressive

and moving average method.

Keywords: NAV of a mutual fund, Asset allocation fund, Combination of

forecasts, Single exponential smoothing, Double exponential smoothing, Winter’s

method, Linear trend model, Quadratic trend model, Exponential trend model,

Moving average method, Autoregressive model, Moving average model,

Unbounded autoregressive moving average model
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Chapter 89: Discriminant Analysis and Factor Analysis:
Theory and Method

This chapter discusses three multivariate techniques in detail: discriminant analysis,

factor analysis, and principal component analysis. In addition, the stepwise

discriminant analysis by Pinches and Mingo (1973) is improved using a goal pro-

gramming technique. These methodologies are applied to determine useful financial

ratios and the subsequent bond ratings. The analysis shows that the stepwise discrim-

inant analysis fails to be an efficient solution as the hybrid approach using the goal

programming technique outperforms it, which is a compromised solution for the

maximization of the two objectives, namely, the maximization of the explanatory

power and the maximization of discriminant power.

Keywords: Multivariate technique, Discriminant analysis, Factor analysis, Prin-

ciple component analysis, Stepwise discriminant analysis, Goal programming,

Bond ratings, Compromised solution, Explanatory power, Discriminant power

Chapter 90: Implied Volatility: Theory and Empirical Method

This chapter reviews the different theoretical methods used to estimate implied

standard deviation and to show how the implied volatility can be estimated in

empirical work. The OLS method for estimating implied standard deviation is first

introduced and the formulas derived by applying a Taylor series expansion method

to Black-Scholes option pricing model are also described. Three approaches of

estimating implied volatility are derived from one, two, and three options, respec-

tively. Because of these formulas with the remainder terms, the accuracy of these

formulas depends on how an underlying asset is close to the present value of

exercise price in an option. The formula utilizing three options for estimating

implied volatility is more accurate rather than other two approaches. In this chapter,

we use call options on S&P 500 index futures in 2010 and 2011 to illustrate how

MATLAB can be used to deal with the issue of convergence in estimating implied

volatility of future options.

Keywords: Implied volatility, Implied standard deviation (ISD), Option pricing

model, MATLAB, Taylor series expansion, Ordinary least-squares (OLS), Black-

Scholes Model, Options on S&P 500 index futures

Chapter 91: Measuring Credit Risk in a Factor Copula Model

This chapter uses a new approach to estimate future credit risk on target portfolio based

on the framework of CreditMetricsTM by J.P. Morgan. However, we adopt the

perspective of factor copula and then bring the principal component analysis concept

into factor structure to construct a more appropriate dependence structure among

credits. In order to examine the proposed method, we use real market data instead of

a virtual one. We also develop a tool for risk analysis which is convenient to use,
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especially for banking loan businesses. The results show the fact that people assume

dependence structures are normally distributed will indeed lead to risks underestimate.

On the other hand, our proposed method captures better features of risks and shows the

fat-tail effects conspicuously even though assuming the factors are normally distributed.

Keywords: Credit risk, Credit VaR, Default correlation, Copula, Factor copula,
Principal component analysis

Chapter 92: Instantaneous Volatility Estimation by Nonparametric
Fourier Transform Methods

This chapter conducts some simulation tests to justify the effectiveness of the

Fourier transform method. Malliavin and Mancino (2009) proposed a nonparamet-

ric Fourier transform method to estimate the instantaneous volatility under the

assumption that the underlying asset price process is a semi-martingale. Two

correction schemes are proposed to improve the accuracy of volatility estimation.

By means of these Fourier transform methods, some documented phenomena such

as volatility daily effect and multiple risk factors of volatility can be observed.

Then, a linear hypothesis between the instantaneous volatility and VIX derived

from Zhang and Zhu (2006) is investigated.

Keywords: Information content, Instantaneous volatility, Fourier transform

method, Bias reduction, Correction method, Local volatility, Stochastic volatility,

VIX, Volatility daily effect, Online estimation

Chapter 93: A Dynamic CAPM with Supply Effect: Theory and
Empirical Results

This chapter first theoretically extends Black’s CAPM, and then uses price, dividend

per share, and earnings per share to test the existence of supply effect with US equity

data. A simultaneous equation system is constructed through a standard structural

form of a multi-period equation to represent the dynamic relationship between supply

and demand for capital assets. The equation system is exactly identified under our

specification. Then, two hypotheses related to supply effect are tested regarding

the parameters in the reduced-form system. The equation system is estimated by the

Seemingly Unrelated Regression (SUR) method, since SUR allows one to estimate

the presented system simultaneously while accounting for the correlated errors.

Keywords: CAPM, Asset, Endogenous supply, Simultaneous equations

Chapter 94: A Generalized Model for Optimum Futures Hedge Ratio

This chapter proposes the generalized hyperbolic distribution as the joint log-return

distribution of the spot and futures. Using the parameters in this distribution, we

derive several most widely used optimal hedge ratios: minimum variance,
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maximum Sharpe measure, and minimum generalized semivariance. To estimate

these optimal hedge ratios, we first write down the log-likelihood functions for

symmetric hyperbolic distributions. Then, we estimate these parameters by maxi-

mizing the log-likelihood functions. Using these MLE parameters for the general-

ized hyperbolic distributions, we obtain the minimum variance hedge ratio and the

optimal Sharp hedge ratio. Also based on the MLE parameters and the numerical

method, we can calculate the minimum generalized semivariance hedge ratio.

Keywords: Optimal hedge ratio, Generalized hyperbolic distribution, Martin-

gale property, Minimum variance hedge ratio, Minimum generalized semi-

invariance, Maximum Sharp measure, Joint-normality assumption, Hedging

effectiveness

Chapter 95: Instrument Variable Approach to Correct for
Endogeneity in Finance

This chapter reviews the instrumental variables (IV) approach to endogeneity from

the point of view of a finance researcher who is implementing instrumental variable

methods in empirical studies. This chapter is organized into two parts. Part I

discusses the general procedure of the instrumental variable approach, including

Two-Stage Least Square (2SLS) and Generalized Method of Moments (GMM), the

related diagnostic statistics for assessing the validity of instruments, which are

important but not used very often in finance applications, and some recent advances

in econometrics research on weak instruments. Part II surveys corporate finance

applications of instrumental variables. We found that the instrumental variables

used in finance studies are usually chosen arbitrarily, and very few diagnostic

statistics are performed to assess the adequacy of IV estimation. The resulting IV

estimates thus are questionable.

Keywords: Endogeneity, OLS, Instrumental variable (IV) estimation,

Simultaneous equations, 2SLS, GMM, Overidentifying restrictions, Exogeneity

test, Weak instruments, Anderson-Rubin statistic, Empirical corporate finance

Chapter 96: Application of Poisson Mixtures in the Estimation
of Probability of Informed Trading

This research first discusses the evolution of probability of informed trading in the

finance literature. Motivated by asymmetric effects, e.g., return and trading volume

in up and down markets, this study modifies a mixture of the Poisson distribution

model by different arrival rates of informed buys and sells to measure the

probability of informed trading proposed by Easley et al. (1996). By applying

the expectation–maximization (EM) algorithm to estimate the parameters of the

model, we derive a set of equations for maximum likelihood estimation and these

equations are encoded in a SAS Macro utilizing SAS/IML for implementation of

the methodology.
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Keywords: Probability of informed trading (PIN), Expectation–maximization

(EM) algorithm, A mixture of Poisson distribution, Asset-pricing returns, Order

imbalance, Information asymmetry, Bid-ask spreads, Market microstructure, Trade

direction, Errors in variables

Chapter 97: CEO Stock Options and Analysts’ Forecast Accuracy
and Bias

This chapter uses ordinary least squares estimation to investigate the relations

between CEO stock options and analysts’ earnings forecast accuracy and bias.

Our OLS models relate forecast accuracy and forecast bias (the dependent

variables) to CEO stock options (the independent variable) and controls for earn-

ings characteristics, firm characteristics, and forecast characteristics. In addition,

the models include controls for industry and year. We use four measures of options:

new options, existing exercisable options, existing unexercisable options, and total

options (sum of the previous three), all scaled by total number of shares outstand-

ing, and estimate two models for each dependent variable, one including total

options and the other including new options, existing exercisable options, and

existing unexercisable options. We also use both contemporaneous as well as

lagged values of options in our main tests.

Keywords: CEO stock options, Analysts’ forecast accuracy, Analysts’ forecast

bias, CEO compensation, Agency costs, Investment risk taking, Effort allocation,

Opportunistic earnings management, Opportunistic disclosure management,

Forecasting complexity

Chapter 98: Option Pricing and Hedging Performance Under
Stochastic Volatility and Stochastic Interest Rates

This chapter fills this gap by first developing an implementable option model in

closed form that admits both stochastic volatility and stochastic interest rates and that

is parsimonious in the number of parameters. Based on the model, both delta-neutral

and single-instrument minimum variance hedging strategies are derived analytically.

Using S&P 500 option prices, we then compare the pricing and hedging performance

of this model with that of three existing ones that, respectively, allow for (i) constant

volatility and constant interest rates (the Black-Scholes), (ii) constant volatility but

stochastic interest rates, and (iii) stochastic volatility but constant interest rates.

Overall, incorporating stochastic volatility and stochastic interest rates produces the

best performance in pricing and hedging, with the remaining pricing and hedging

errors no longer systematically related to contract features. The second performer in

the horse-race is the stochastic volatility model, followed by the stochastic interest

rates model and then by the Black-Scholes.

Keywords: Stock option pricing, Stochastic volatility, Stochastic interest rates,

Hedge ratios, Hedging, Pricing performance, and Hedging performance
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Chapter 99: The Le Châtelier Principle of the Capital Market
Equilibrium

This chapter purports to provide a theoretical underpinning for the problem of the

Investment Company Act. The theory of the Le Chatelier Principle is well known in

thermodynamics: The system tends to adjust itself to a new equilibrium as far as

possible. In capital market equilibrium, added constraints on portfolio investment in

each stock can lead to inefficiency manifested in the right-shifting efficiency

frontier. According to the empirical study, the potential loss can amount to millions

of dollars coupled with a higher risk-free rate and greater transaction and informa-

tion costs.

Keywords: Markowitz model, Efficient frontiers, With constraints, Without

constraints, Le Chatelier principle, Thermodynamics, Capital market equilibrium,

Diversified mutual funds, Quadratic programming, Investment company act
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Abstract

We use a Bayesian model of updating forecasts in which the bias in forecast

endogenously determines how the forecaster’s own estimates weigh into the

posterior beliefs. Our model predicts a concave relationship between accuracy in

forecast and posterior weight that is put on the forecaster’s self-assessment.
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We then use a panel regression to test our analytical findings and find that an

analyst’s experience is indeed concavely related to the forecast error.

This study examines whether it is ever rational for analysts to post biased

estimates and how information asymmetry and analyst experience factor into the

decision. Using a construct where analysts wish to minimize their forecasting

error, we model forecasted earnings when analysts combine private information

with consensus estimates to determine the optimal forecast bias, i.e., the devi-

ation from the consensus. We show that the analyst’s rational bias increases with

information asymmetry, but is concavely related with experience. Novice ana-

lysts post estimates similar to the consensus but as they become more experi-

enced and develop private information channels, their estimates become biased

as they deviate from the consensus. Highly seasoned analysts, who have superior

analytical skills and valuable relationships, need not post biased forecasts.

Keywords

Financial analysts • Forecast accuracy • Information asymmetry • Forecast bias •

Bayesian updating • Panel regressions • Rational bias • Optional bias • Analyst

estimation • Analyst experience

2.1 Introduction

Extant evidence suggests an intimate link between an analyst’s experience and her

forecasting performance. Analysts who are experienced and highly specialized

often forecast better than others (Clement and Tse 2005; Bernhardt et al. 2006).

One way they do so is by posting an optimistic bias (Mest and Plummer 2003; Gu

and Xue 2007). Novice analysts with limited resources tend to herd with others,

which results in almost no bias (Bernhardt et al. 2006). In theory, superior fore-

casters produce better estimates either by resolving information asymmetry or by

offering a better assessment. Lim (2001) suggests that analysts can improve fore-

cast accuracy by strategically biasing their forecasts upwards, which placates

management, and in essence purchases additional information.1 Analysts with

1Beyer (2008) argues that, even without incentives to appease management, analysts may still post

forecasts that exceed median earnings because managers can manipulate earnings upward to

prevent falling short of earnings forecasts. Moreover, Conrad et al. (2006) find support for the

idea that analysts’ “. . . recommendation changes are “sticky” in one direction, with analysts

reluctant to downgrade.” Evidence also indicates that analysts rarely post sell recommendations

for a stock, suggesting that losing a firm’s favor can be viewed as a costly proposition. At the

extreme, firms even pursue legal damages for an analyst’s unfavorable recommendations. In

a 2001 congressional hearing, president and chief executive officer of the Association for Invest-

ment Management and Research told the US House of Representatives Committee on Financial

Services, Capital Markets Subcommittee, that “. . .In addition to pressures within their firms,

analysts can also be, and have been, pressured by the executives of corporate issuers to issue

favorable reports and recommendations. Regulation Fair Disclosure notwithstanding, recent

history. . .has shown that companies retaliate against analysts who issue ‘negative’
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long histories of examining firms in a particular industry can also offer a unique

perspective, and they signal their ability by posting biased estimates to signal

superior ability (Bernhardt et al. 2006).

Of course, analysts do not indefinitely and indiscriminately bias forecasts to

appease the firm or signal their ability. This is mainly because analysts can learn

from the forecasts of other analysts (Chen and Jiang 2006). By incorporating

information from other forecasts, analysts can improve the accuracy of their own

forecasts without posting biased estimates. The important question then is: given

the analyst’s own assessment ability and her efficacy in procuring private informa-

tion versus using consensus information, how should she construct an optimal

forecast? Does that optimal forecast ever include bias, and how does information

asymmetry affect this decision? We address these questions by analytically

and empirically examining how an analyst’s experience and information asymme-

try affect her forecasting. In so doing, we also account for the role of the consensus

estimate in an analyst’s forecast. We begin by modeling the problem of

optimal forecasting. To be specific, we combine key features of current rational

forecasting models by Lim (2001) and Chen and Jiang (2006). As in Chen and Jiang

(2006), analysts in our model form rational (i.e., minimum squared error) forecasts

by weighing both public and private information.2 Following Lim (2001), our

analysts post rational forecasts that deviate from the consensus to purchase

private information from managers. Motivated by Lim (2001) and Bernhardt

et al. (2006), we also allow analysts to post biased forecasts because they have

more expertise than the consensus. The novelty of our approach is that we

directly model how information asymmetry and analyst experience combine to

affect the purchase of private information for use in the forecast deviation.

We are also able to model how analysts with different levels of experience, i.e.,

novice, moderately experienced, and highly seasoned analysts, construct their

forecast.

We analytically derive the optimal deviation from the consensus as one that

minimizes the mean squared error while allowing for rational Bayesian updating

based on public and private knowledge. Our analysis shows that even in a rational

forecast framework, analysts’ forecast deviation depends on the observed consen-

sus deviation of other analysts. When analysts observe others deviating from the

consensus (especially those with more experience), they gain enough insight to

avoid posting a large deviation themselves. Our results confirm the findings of both

Bernhardt et al. (2006) and Chen and Jiang (2006) – that analysts can rationally
herd. In the presence of the informative consensus, analysts choose to herd with

each other, rather than post estimates that are biased.

Our theory suggests that the likelihood of posting biased estimates, conditional

on the consensus, is significantly influenced by the analyst’s ability to process

recommendations by denying them direct access to company executives and to company-

sponsored events that are important research tools. Companies have also sued analysts personally,

and their firms, for negative coverage....”
2See also Han et al. (2001).
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information. Consistent with Hong et al. 2000), we show that novice analysts

essentially herd. Without either honed analytical abilities or valuable relationships,

these analysts follow the premise that the consensus is more accurate than their own

private information. Second, we show that a moderately experienced analyst relies

more on her sources inside the firm than her analytical skills. This manifests itself as

a biased forecast since she must appease management to tap into those sources. This

link between experience and deviation is not monotonic. Highly seasoned analysts

do not purchase as much additional information (or they purchase the information at

a reduced price), either because they possess superior analytical skills or because

their valuable relationships with firms afford them beneficial information without

the optimistic forecast. This preferential treatment is akin to that which is afforded

to companies in relationship lending with banks (Petersen and Rajan 1994). Indeed,

Carey et al. (1998) argue that the relationship lending of banks can also be ascribed

to some nonbank financial intermediaries. Although the firms that an analyst covers

are not necessarily financial, the same relationship could certainly exist and is based

on information asymmetry.

We further demonstrate that as the analyst-firm information asymmetry

increases, so does the bias. Similar to the results found in Mest and Plummer

(2003), analysts find private channels and analytical ability valuable mitigating

factors when faced with information asymmetry. Moderately experienced analysts,

who begin to tap into reliable private channels without the valuable relationships

that might afford preferential treatment, post larger deviations with the hope of

ascertaining better information. This suggests that both information asymmetry

and experience interactively affect the way analysts balance public and private

information to form forecasts. Our model also shows that the effect of information

asymmetry and analyst experience on rational deviation depends on the

dispersion of and the correlation between public and private signals. The quality

of private information channels, the informativeness of consensus, and the con-

nectedness of public and private signals significantly affect how analysts form

forecasts.

To examine the validity of our analytical findings, we empirically investigate

how analyst experience and information asymmetry affect forecast deviation from

the consensus.3 Our empirical results confirm our theoretical predictions that

rational bias (i.e., deviation from the consensus) is concavely related to analyst

experience and positively associated with information asymmetry. Novice analysts

and highly seasoned analysts post forecasts with smaller bias, while moderately

seasoned analysts post estimates that deviate further from the consensus. Moder-

ately seasoned analysts can benefit from a positive bias if they have the confidence

to separate from the herd and access reliable private sources of information.

3Clement and Tse (2005) are the closest to our analysis; however while they admit that the

observed link between inexperience and herding can be a complex issue that might have other

roots than just career concerns, they do not provide detailed insight as to what and how this

complexity develops.
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These results are stronger for earlier forecasts versus later ones. As analysts become

highly seasoned, with external information networks and superior skills in fore-

casting, they find appeasing management to purchase information less useful

(or less costly in the same way that relationship lending affords firms cheaper

capital). As one might expect, when information asymmetry increases, rational

deviation from the consensus also increases. The degree of information

asymmetry faced by seasoned analysts has a significant positive effect on the

forecast deviation (information asymmetry also affects novice analysts but not as

extensively).

This study contributes to a growing literature on rational bias in analyst fore-

casting. Motivated by recent works by Bernhardt et al. (2006), Beyer (2008), Chen

and Jiang (2006), Lim (2001), and Mest and Plummer (2003), we take an integrated

modeling approach to arrive at a rational forecast bias, which is based on Bayesian

updating of public consensus and endogenously acquired private information. Our

approach is unique in that the forecast bias affects how public and private infor-

mation are combined. Specifically, analysts can use bias to improve forecast

accuracy by purchasing private information but can also learn from other analysts

by following the consensus. Our analytical findings, which are empirically

confirmed, show that unlike behavioral models, analysts can rationally herd. Unlike

signaling models, seasoned analysts do not always post biased estimates. It also

shows the value of the relationships that both moderately experienced and

highly seasoned analysts leverage to gain reliable private information. These results

are of practical interest because they provide evidence that analysts can and may

optimally bias their earnings estimates and that this optimal bias differs across

both analyst experience and information asymmetry. This knowledge may be

useful to brokerage houses for training purposes and/or evaluation of analyst

performance, particularly across industries with different levels of information

asymmetry.

2.2 Theoretical Design

Recent studies show that earnings forecasts reflect public information and private

assessments (Boni and Womack 2006; Chen and Jiang 2006; Lim 2001; Ramnath

2002). As Bernhardt et al. (2006) note, analysts’ forecasts of public information

partly relate to the consensus, common information, and unanticipated market-wide

shocks. We thus model analyst earnings forecasts using two components of earn-

ings information: common and idiosyncratic, with some uncertainty about each

component. In doing so, we also assume, as does Lim (2001), that the idiosyncratic

component directly relates to the private information analysts can obtain from the

firm by posting an optimistic view of the firm’s prospects (Nutt et al. 1999). Our

typical analyst also observes a previously posted forecast whereby the analyst can

learn about both the common and idiosyncratic components of earnings by incor-

porating previously disclosed information. Since we assume analysts are Bayesians,

they can learn from previous forecasts as an alternative to posting a positive
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deviation to purchase private signals from the firm. Since these prior estimates

partially reflect private information, the analysts may heavily weigh them into their

assessment, depending on the perceived information asymmetry and experience of

the previous analysts.4

In this section, we model analyst earnings forecasting in the presence of forecast

uncertainty. Following recent studies (Lim 2001; Ramnath 2002), our analyst has

an unconditional estimate, E ¼ X + e, about earnings, X � N(0, s2), with

some uncertainty, e � N(0, te
�2). As in Chen and Jiang (2006), our analyst

also observes a noisy consensus forecast, Ec ¼ X + ec, with a consensus

uncertainty, ec � N(0, tc
�2). As a Bayesian, our analyst forms a conditional

forecast, F ¼ w E + (1 – w) Ec, by combining her unconditional estimate with the

consensus. The optimal weight in her conditional forecast minimizes her squared

forecast error.5

As in Lim (2001), the optimal forecasting, however, is endogenous to private

information acquisition. Our analyst’s forecast precision relates to the private

information analysts can obtain from the firm by posting an optimistic view of

the firm’s prospects. That is to say, while forecast precision, te, consists of a self-
accuracy component, t0, reflecting the analyst expertise, the forecast precision can

be improved by t(b) through placating managers by posting positively biased, b,
forecasts. The marginal precision per bias, ∂t/∂b, reflects the analyst’s information

asymmetry. This is because an analyst faced with greater information asymmetry

should derive a larger marginal benefit from a biased forecast. Since the conditional

forecast partially reflects private information, the analyst’s optimal rational forecast

(and forecast bias) depends on the analyst’s expertise and information asymmetry.

As noted before, the objective of the analyst is to minimize her squared forecast

error, F – X:

min
wjb

E F� Xð Þ2
h i

¼ min
wjb

wEþ 1� wð ÞEcð Þ2
h i

(2.1)

where E[•] is the expectation operator. Let’s assume that the analyst’s estimate and

the consensus are correlated, E[e, ec] ¼ r (t tc)
�1. This correlation reflects the

extent to which the analyst uses common private channels. The analyst objective,

Eq. 2.1, can be rewritten as

4Here, we focus only on the case of one-period sequential forecasting. However, we believe that

the main implications of our model hold true for a multi-period sequential forecasting setting.

Since we assume that the probabilistic characteristics of different components are known and

analysts can gauge each others’ experience and the amount of information asymmetry perfectly,

there would be no incentive to deviate from posting commensurate optimal, rational forecasts. If

expert analysts intentionally deviate from their optimal forecasts, no other analyst can compensate

for their experience or information asymmetry [for more discussion, see Trueman (1990)].
5For more details on Bayesian methods of inference and decision making, see Winkler (1972).
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min
wjb

w2 t0 þ t bð Þð Þ�2 þ 1� wð Þ2tc�2 þ 2rw 1� wð Þ t0 þ t bð Þð Þ�1t�1
c

h i
: (2.2)

The optimal weight which solves the aforementioned objective function is

w ¼ t0 þ t bð Þð Þ2 � rtc t0 þ t bð Þð Þ
t0 þ t bð Þð Þ2 þ t2c � 2rtc t0 þ t bð Þð Þ (2.3)

Proposition 1 Assuming positively biasing forecasts have increasing but
diminishing returns, i.e., ∂t/∂b > 0 and ∂2t/∂b2 < 0, the optimal weight on
analyst’s own unconditional estimate is concavely related to the analyst’s expertise
(i.e., self-accuracy, t0). For analysts with self-accuracy less (more) than – t(b) +
0.5 r�1 tc, the optimal weight on the analyst’s own unconditional estimate
increases (decreases) with the expertise. At the optimal weight, the analyst’s
conditional precision, t0 + t(b), equals 0.5 r�1 tc.

Proof See the Appendix 1.

As the analyst’s expertise, t0, increases, her unconditional estimate precision

rises relative to the consensus estimate precision. The analyst would then gain

more accuracy by placing more weight on her own assessment, consistent with the

findings of Chen and Jiang (2006). Forecast bias, however, affects how the

analyst’s own unconditional estimate weighs into the optimal forecast. As fore-

cast bias increases, the analyst relies more on her own assessment because larger

bias improves precision through more privately acquired information. However,

this reliance on private information is limited. When the precision of private

information reaches a certain limit, 0.5 r�1 tc, the analyst starts to reduce her

reliance on her own assessment. Since the consensus contains information, an

analyst does not need to rely solely on private information to improve her overall

accuracy.

Interestingly, the threshold on the reliance of private information is inversely

related to the correlation between analyst’s own and consensus precisions. When

the signals from the consensus and analyst are highly correlated, the analyst need

not post largely biased forecasts to improve her accuracy. At low correlations,

however, the analyst almost exclusively relies on her own assessment and uses

private channels heavily by posting biased forecasts. As Mest and Plummer (2003)

show, when uncertainty about the company is high, management becomes a more

important source of information. This confirms Bernhardt et al. (2006) contention

that signal “correlatedness” affects analyst forecasting.

Proposition 1 has an interesting testable implication. As noted, following

previous studies (Lim 2001; Chen and Jiang 2006), our analysts minimize the

squared error to arrive at the optimal bias. In a cross section of analysts, this

implies that as long as all analysts follow the squared-error-minimization rule,

then the implication of Proposition 1 holds empirically: there would be a concave

relation between experience and the weight an analyst places on her own
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unconditional assessment. However, since the weighted average of self-

assessment and consensus belief is theoretically identical with forecast error,

this then also implies that in the cross section, analysts’ forecast errors and their

experience are also related concavely.

Note that our analysts choose how to combine their own unconditional forecast

and the consensus forecast to arrive at their reported forecast. They do so by

accounting for the inherent error in each of these forecasts and choose a weight

that minimizes the squared forecast error: the difference between reported forecast

(i.e., conditional forecast) and the observed earnings. So for a novice analyst, the

choice is what weight to put on her unconditional forecast knowing that the fore-

casts reported by other analysts contain much more experience and perhaps less

information asymmetry. In the extreme case, where the novice analyst has no

confidence on her own assessment, the optimal weight for her unconditional

forecast is zero. She will fully herd. A highly seasoned analyst does the same

thing: she also chooses the weight she puts on her assessment vis-à-vis consensus.

In the alternate extreme case, where the highly seasoned analyst has utmost

confidence on her assessment, she puts 100 % weight on her unconditional forecast.

Moderately seasoned analysts thus fall somewhere in between; the weight they put

on their own unconditional forecasts is between zero and one. In such a setting, all

analysts arrive at their own squared-error-minimizing forecast. From the onset,

however, as econometricians, we can only observe their reported conditional

forecast. This means that we can only focus on the implication of analyst squared-

error-minimizing exploiting cross-sectional differences in the data. As noted, the

observed error is equal to the weighted average of unconditional forecast and

the consensus belief. This implies that observed error is directly linked with the

unobservable weight. However from Proposition 1, we know that the unobservable

optimal weight is concavely related to experience, which in turn, implies that, in

the cross section of analysts, the observed forecast error is concavely linked with

the experience as well.

Proposition 2 Assuming positively biasing forecasts have increasing but
diminishing returns, i.e., ∂t/∂b > 0 and ∂2t/∂b2 < 0, the optimal weight on an
analyst’s own unconditional estimate increases monotonically with information
asymmetry (i.e., the marginal accuracy for bias, ∂t/∂b).

Proof See the Appendix 1.

As the efficacy of the analyst’s private information acquisition increases, that is,

as ∂t/∂b rises, the analyst gains more precision with every cent of bias. More

resourceful analysts, such as those employed by large investment houses,

either have better private channels or can gain more from the same channels

(see, e.g., Chen and Jiang 2006; Clement and Tse 2005). As such, these analysts’

estimates become more accurate more rapidly as they bias their forecasts to purchase

information from the firm. From proposition 1, we know that at the optimal weight,

the sum of the analyst’s own estimate and consensus precision is constant.
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As information asymmetry increases, i.e., marginal precision per bias rises, a larger

bias is needed to obtain the optimal weight of the analyst’s estimate and the

consensus. Interestingly, as an analyst becomes more experienced, her optimal

weight on her own estimate becomes less sensitive to information asymmetry.

2.3 Empirical Method

We empirically test selected comparative statics to draw conclusions about the

validity of our analytical results. We focus our attention on analytical predictions

that result directly from the endogeneity of private information acquisition. Spe-

cifically, we test three of our model’s implications: (1) whether analyst experience

and forecast deviation are concavely related, (2) whether information asymmetry

and analyst forecast deviation are positively related, and (3) whether there is

interplay between the effects of experience and information asymmetry. We follow

Chen and Jiang (2006) and empirically define bias as the difference between an

analyst’s forecast and the consensus estimate. We calculate consensus using only

the most recent estimate from each analyst and include only those estimates that are

less than 90 days old (Lim 2001).

We first examine the impact of analyst experience on forecast deviation. As

analysts become more experienced, they post a more positive (i.e., increasing)

deviation to improve their information gathering, resulting in better forecasts.

Proposition 1 from the theoretical model suggests that this relationship is

nonlinear. Highly seasoned analysts achieve forecast accuracy on their own with-

out relying on procured information, or they possess valuable relationship with

management that does not necessitate purchasing information, causing this

nonlinearity. Empirically, we expect the relationship between deviation and expe-

rience to be concave (i.e., a positive coefficient on experience and a negative

coefficient on experience squared). To test our contentions, we estimate the

following OLS panel regression:

DFCi, t ¼ a0 þ Z0 Experiencei, t þ Z1 Experiencei, t
2 þ b0 Num Revisionsi, t

þ b1Same Quarteri, t þ b2 Reg:FDi, t þF0Xt�4 þF1IþF2tþ e,

(2.4)

where DFC is the Deviation from the consensus for analyst i in quarter t. We have

several analyst-specific controls: Experience, Experience squared, and the

NumRevisions. Following our analytical model, analysts with more experience

should be better at forecasting earnings and should have better channels of private

information. Following Leone and Wu (2007), we measure Experience in two

ways: using an absolute measure (the natural log of the quarters of experience)

and a relative measure (the natural log of the quarters of experience divided by the
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average of this measure for analysts following firms in the same industry). We

include Experience2 to test for a nonlinear relationship between Deviation and

Experience. To control for varying degrees of accuracy due to intertemporal

Bayesian updating, we include NumRevisions, which is the number of times the

analyst revises her estimate. Studies such as Givoly and Lakonishok (1979) suggest

that information has been acquired (i.e., purchased). This suggests a positive rela-

tionship between the number of revisions and the resulting deviation; thus we expect

the coefficient, b0, to be positive. Same quarter is an indicator variable for horizon

value, where the variable is equal to one if the estimate occurs in the same quarter as the

actual earnings report is released and zero otherwise. Including Same quarter can help

us understand whether analysts are more likely to be optimistic early in the period than

late in the period (Mikhail et al. 1997; Clement 1999; Clement and Tse 2005).6 We

expect the coefficient on this variable, b1, to be negative. Reg. FD is an indicator

variable equal to one if the quarter date is after Reg. FDwas passed (October 23, 2000),

and zero otherwise.7 Although extant literature is divided on whether or not Reg. FD

has decreased the information asymmetry for analysts, if information asymmetry is

decreased and more public information available, analysts will be less likely to

purchase private information, and the coefficient on Reg. FD, b2, would be negative.

Indeed, Zitzewitz (2002) shows that although private information has decreased post

Reg. FD, the amount of public information has improved. Both Brown et al. (2004) and

Irani (2004) show that information asymmetry decreased following Reg. FD.8

We control for firm effects through the inclusion of firm-specific variables such as

Brokerage reputation, Brokerage size, Accruals, Intangible assets, and Return st. dev.

(vector X in Eq. 2.4). Following Barber et al. (2000), we use the number of companies

a brokerage house follows per year in total as a proxy for brokerage size. Brokerage

house reputation may play an integral role in accessing to private information

(Agrawal and Chen 2012). To calculate broker reputation, we start with the Carter

and Manaster (1990), Carter et al. (1998) and the Loughran and Ritter (2004)

rankings. When a firm goes public, the prospectus lists all of the firms that are in

the syndicate, along with their shares. More prestigious underwriters are listed higher

in the underwriting section. Based upon where the underwriting brokerage firm is

listed, they are assigned a value of 0–9, where nine is the highest ranking. As Carter

and Manaster (1990) suggest that prestigious financial institutions provide a lower

level of risk (i.e., lower information asymmetry), we include control variables for

these characteristics of the firm and expect the relationships to be negative.9

6Horizon value and the NumRevisions are highly correlated at 65 %. We therefore orthogonalize

horizon value in the equation to ensure that multicollinearity is not a problem between these two

variables.
7http://www.sec.gov/rules/final/33-7881.htm.
8See Lin and Yang (2010) for a study of how Reg. FD affects analyst forecasts of restructuring

firms.
9Brokerage reputation and Brokerage size are highly correlated at 67 %. We therefore orthogo-

nalize brokerage reputation in the equation to ensure that multicollinearity is not a problem

between these two variables.
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As suggested by Bannister and Newman (1996) and Dechow et al. (1998),

companies that consistently manage their earnings are easier to forecast. We

include Accruals (in $ millions) to control for the possibility that earnings are

easier to forecast for companies that manage their earnings, resulting in less

information “bought” from the company.10 We expect the coefficient on this

control variable to be negative. We include Intangible assets based on the fact

that companies with greater levels of intangible assets are more difficult to forecast

based on uncertainty of future performance (Hirschey and Richardson 2004).11

Thus, we expect the coefficient to be positive. We include Return standard devia-

tion to proxy for firm risk. More volatile firms are less likely to voluntarily issue

public disclosures, making it necessary for analysts to purchase private information

(Waymire 1986). The standard deviation is defined as the monthly standard devi-

ation of stock returns over a calendar year. All firm-level variables are lagged one

year (i.e., four quarters). We include both industry (one-digit SIC code) and time

indicators to control for industries/times where it is easier to forecast (see Kwon

(2002) and Hsu and Chiao (2010), e.g., to see how analyst accuracy differs across

industry).12 Finally, a formal fixed effects treatment around analysts is taken to

ensure that standard errors are not understated.

Our theoretical analysis also examines the effect of information asymmetry on

forecast deviation. In an environment with high information asymmetry, analysts

without adequate, reliable resources need to post a positive deviation to access

information, as shown in Proposition 2. We expect a positive coefficient on

Information asymmetry. We test this relationship by estimating the following

OLS panel regression:

DFCi, t ¼ a0 þ l0 Information Asymmetryi, t þ b0Num Revisionsi, t þ b1 Same Quarteri, t
þ b2 Reg:FDi, t þF0Xt�4 þF1IþF2tþ e,

(2.5)

where t is the quarter in which we measure deviation and i denotes the ith analyst.

We define Information asymmetry three different ways: (1) the inverse of analyst

coverage, i.e., 1/(number of brokerage houses following the firm), (2) the standard

deviation of the company’s forecasts (�102), and (3) the relative firm size, i.e., the

difference between the firm’s assets and the quarterly median assets for

the industry. These definitions are constructed such that the direction of the

expected marginal coefficient is congruent with that of information asymmetry.

10Following Stangeland and Zheng (2007), we measure Accruals as income before extraordinary

items (Data #237) minus cash flow from operations, where cash flow from operations is defined as

net cash flow from operating activities (Data #308) minus extraordinary items and discontinued

operations (Data #124).
11Following Hirschey and Richardson (2004), we calculate Intangibles as intangible assets to total

assets (Data 33/Data #6).
12As an alternate proxy for industry fixed effects, Fama-French 12-industry classifications (Fama

and French 1997) are used. Results using these proxies are available upon request.
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The first definition, the inverse of analyst coverage, is based on evidence that the

level of financial analyst coverage affects how efficiently the market processes

information (Bhattacharya 2001). Analyst coverage proxies for the amount of

public and private information available for a firm and, therefore, captures

a firm’s information environment (Zhang 2006). The second definition, Forecast

dispersion, is supported in papers such as Krishnaswami and Subramaniam (1998)

and Thomas (2002), among others. Lastly, we use Relative firm size as a proxy for

information asymmetry. This is equally supported by the literature, including but

not limited to Petersen and Rajan (1994) and Sufi (2007). The firm-specific control

variables are the same as in Eq. 2.4, and a fixed effects treatment around analysts is

taken.

As previously explained, our model allows for the interaction of experience and

information asymmetry; the concavity of the relationship between experience and

Deviation may change at different levels of information asymmetry. Thus, we

estimate Eq. 2.4 for analysts with both high and low levels of information asym-

metry (i.e., based on relation to the industry-quarter median forecast dispersion).

We expect the coefficients on Experience and Experience squared to increase when

there is more information asymmetry.

Similarly, we demonstrate that experience affects the link between information

asymmetry and deviation. While the deviation of the novice and highly seasoned

analysts is only marginally affected by information asymmetry, the deviation of the

moderately experienced analyst is highly affected by information asymmetry. Since

Proposition 2 suggests that information asymmetry will affect analysts differently

based on their experience, we segment our sample into three groups: novice,

moderately experienced, and highly seasoned analysts. To form these experience

groups, we create quarterly terciles of analysts based on their experience. The

bottom third comprises the novice analysts; the middle third, moderately seasoned

analysts; and the top third, highly seasoned analysts. We examine the model in

Eq. 2.5 separately for our three experience subsamples. The coefficient on infor-

mation asymmetry should be larger for experienced analysts.

It is possible that a resolution of idiosyncratic uncertainty makes deviation

insensitive to both analyst experience and information asymmetry. Regulations

such as Reg. FD were enacted to reduce the uncertainty around companies

(De Jong and Apilado 2008). If Reg. FD reduced firm-specific uncertainty more

than common uncertainty, then the coefficients on Experience, Experience squared,

and information asymmetry should be smaller after Reg. FD. In other words, if Reg.

FD was effective in “leveling the playing field” for analysts with regard to prefer-

ential treatment of some analysts over others, the implications of this model should

no longer exist.

Extant evidence suggests that by prohibiting exclusive private communication of

pertinent information, Reg. FD would cause overall earnings uncertainty to decline

(Baily et al. 2003). In Eqs. 2.4 and 2.5, we simply control for any effect that Reg.

FD might have. By using interactive terms, however, we can explore this relation-

ship more fully by offering a comparison of the relationship between Experience/

Information asymmetry and Deviation both with and without Reg. FD. If most of
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the decrease in uncertainty comes from improving the common component of

earnings (or equivalently, reducing the amount of private information), then the

enactment of Reg. FD should make any remaining private information even more

valuable and should lead to an increase in the importance of information asymmetry

on deviation. Further, this effect should be disparate based on analyst experience.

Specifically, experienced analysts (moderately experienced more so than highly

seasoned) should see a drop in their deviation from consensus based on an increase

in information asymmetry since their private information is no longer quite so

private, i.e., there is less information to buy. Novice analysts, on the other hand, will

likely be relatively unaffected since they depend mostly on consensus anyway. In

short, since the intent of the regulation is to even the playing field for analysts, the

effect of Reg. FD on the impact of experience could be a reduction in its impor-

tance. This would especially be the case with relative experience. If Reg. FD

achieved what it set out to achieve, we should see a reduction (i.e., flattening) of

the concavity of the experience relationship with deviation from consensus.

2.4 Data

Consistent with Brown and Sivakumar (2003) and Doyle et al. (2003), we define

earnings as the First Call reported actual earnings per share.13 Our sample includes

companies based in the United States with at least two analysts, consists of 266,708

analyst-firm-quarter forecasts from 1995 to 2007, and includes all analysts’ revi-

sions. Variables are winsorized at the 1 % level to ensure that results are not biased

by outliers.

First Call data is well suited for examining analyst revisions because most of the

analysts’ estimates in the data have the date that they were published by the broker.

These revisions are reflected daily, which aids in understanding the changes in

deviation based on changes in the information environment. One limitation with

First Call data is that it identifies only brokerage houses, not individual analysts.

Following Leone andWu (2007), we make the assumption that for each firm quarter

there is only one analyst in each brokerage house following the firm. It is notewor-

thy that this biases our study against finding a nonlinear impact for analyst’s

experience.

Panel A of Table 2.1 shows the summary statistics of the variables used in our

analysis. The average Deviation from the consensus is 5.16¢. However, there is

wide dispersion, from �54.67¢ to 112.50¢, as compared to an average Forecast

error of �3.79¢, with a range of �131–72¢. The analysts in our sample have on

average 12.71 quarters of Experience (the most experienced analyst has 13 years

experience, and the least experienced analyst has no prior experience following the

firm). Analysts revise their estimates 2.49 times per quarter. The companies they

13As a robustness test, we use I/B/E/S data. Results may be found in Appendix 2.
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follow have a Return standard deviation of 13 %, Intangibles of 14 %, and Accruals

of �$0.44 (in millions) on average.

Panel B of Table 2.1 shows the correlation matrix for the variables used in the

analysis. There exists notable significant relation in the variables: Forecast error and

Experience with Deviation from consensus. The relation actually foreshadows one

of the main results of the paper, which is that private information can be used to

decrease forecast error. The correlation found in this table, �0.89, is not a problem

econometrically because fitted values are used in the specification found in

Table 2.5. The only other correlations that would be considered a problem

econometrically are for variables not used in the same specification, i.e., Experience

and Relative experience.

2.5 Empirical Findings

Table 2.2 presents the results of our estimation from Eq. 2.4, which examines how

analyst experience affects analyst deviation from the consensus. The coefficients on

our control variables all exhibit the expected signs. There is a negative relation

between the horizon value (Same quarter) and Deviation, which suggests that

analysts are more likely to be optimistic early in the period than late in the period.

Supporting the contentions of Carter and Manaster (1990), there is a negative

relationship between the brokerage characteristics – Reputation and Size – with

Deviation. There is also a negative relationship between Reg. FD and Deviation,

suggesting that the enactment of Reg. FD and its mandatory indiscriminant infor-

mation revelation have made forecasting easier. NumRevisions is positively related

to Deviation; revisions are made when valuable information content is received

(Givoly and Lakonishok 1979), suggesting that private information is paid for

through incremental deviation of their forecasts over time. We find that higher

Accruals lead to less deviation from the consensus. Firms who actively manage

earnings make forecasting easier; thus analysts do not have to purchase

private information. The positive sign on Intangible assets is expected as more

intangible assets make forecasting more difficult, necessitating the procurement of

private information. Finally, as the standard deviation of Returns increases, future

firm performance is more difficult to predict.

Turning to our variables of interest, we find that there is a highly significant

positive relationship between Experience and Deviation, as evidenced by a 0.829¢

increase in deviation for every additional unit of experience (specification 1) and

a 0.581¢ increase in deviation for every additional unit of relative experience

(specification 2).14 The results in specifications (3) and (4) confirm our contention

that this relationship is not linear. The squared Experience variable

14Inasmuch as the Experience variable is transformed using the natural logarithm, one unit of

experience is approximately equal to two quarters of experience. For tractability, we refer to this as

a unit in the empirical results.
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(both definitions) is significantly and negatively related to Deviation (�0.595¢ in

specification 3 for Experience and �1.735¢ in specification 4 for Relative experi-

ence). Confirming the analytical results, the empirical results suggest that there

exists a trade-off between public and private information. The results suggest that

when analysts first begin to follow a firm and gain experience, they are more likely

to post small deviations, indicating that they weigh public information (i.e., previ-

ous forecasts and the consensus), more heavily than private information. A possible

explanation is that they have not yet acquired the preferred access to information

that long-term relationships afford experienced analysts or the analytical expertise

to wade through noisy information. As analysts gain confidence in their analytical

ability and relationships with key personnel within the firm, however, they are more

likely to post large deviations to gain private information. Highly seasoned analysts

put almost no weight on the consensus in creating their earnings forecasts and rely

almost exclusively on their own private information. This information costs them

very little, either because they have honed their analytical ability so well that they

don’t need the information or because the cost of said information is reduced due to

their preferential relationship with the firm.

If our hypotheses are true, we would expect that analysts are more optimistic

early in the period and less so (and perhaps even pessimistic) later in the period

(shortly before earnings are announced).15 In order to test this, we segment our

sample by the median horizon value into two categories, early estimates (i.e., longer

horizon) and late estimates (i.e., shorter horizon). The results are substantially

stronger for earlier estimates as compared to late estimates. The coefficient on the

Experience variable is 6.751 when the horizon value in long and 1.945 when there is

a short horizon value (specification 5 vs. 7). The coefficients on the squared

Experience variable are also more extreme for the earlier analysts (�1.341

vs. �0.360), showing that the concavity of the function is more pronounced early

in the forecasting period and less so later. This pronounced concavity suggests that

the distinction between moderately experienced analysts and novice/highly expe-

rienced analysts is more pronounced earlier in the estimation period. Essentially,

for every additional quarter of experience, there is a 5.410¢ increase in deviation

when horizon is long and a 1.585¢ increase in deviation when horizon is short.

Results for Relative experience are qualitatively identical, albeit with a reduced

difference between early and late. Results are qualitatively identical when we

divide horizon into terciles and define early as the highest quartile and late as the

lowest. We can conclude from these results that analysts are indeed more optimistic

earlier in the estimation period.

Next, we rerun the model in Eq. 2.4 on low and high information asymmetry

subsamples (using forecast dispersion and segmenting at the median), shown in

Table 2.2, columns 9–12. As Proposition 2 suggests, the empirical results indicate

that the impact of experience on optimal deviation is smaller for analysts when

information asymmetry is low. One additional quarter of Experience increases the

15We are grateful to an anonymous referee for this point.
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analyst deviation by 0.950¢ (specification 9) in a low information asymmetry

environment versus 4.745¢ (specification 11) in a high information asymmetry

environment. One additional unit of Relative experience increases the analyst

Deviation by 1.781¢ (specification 10) in a low information asymmetry environ-

ment versus 5.572¢ (specification 12) in a high information asymmetry environ-

ment. We note once again that this relationship is not linear, as evidenced by the

statistically significant negative squared term. This implies that moderately expe-

rienced analysts post higher deviations from consensus than do their less and more

experienced colleagues.

Table 2.3 provides alternate specifications around the Reg. FD control variable.

Specifications (1) through (4) exclude the Reg. FD control to ensure that results are

not reliant on its inclusion. Overall, results from Table 2.2 remain consistent. That

said, we note that Relative experience in Specification (2) is no longer statistically

significant. The substantiation of the nonlinearity of this proxy for Experience in

Specification (4), albeit muted, suggests that this is likely due to the fact that we are

no longer controlling for the impact of Reg. FD on the deviation from consensus,

which we would expect would affect Relative Experience more so than experience

(i.e., no longer benefitting highly seasoned analysts for the preferred relationships

through better access to information) through the concavity of the function. In other

words, without controlling for Reg. FD independently, the “average” impact of the

proxy (i.e., before and after Reg. FD) is muted.

Specifications (4) through (8) explore further the effect Reg. FD has on the

relationship between Experience and Deviation. We first note that the nonlinearity

of the relationship between Experience and forecast deviation (Deviation) is intact,

indicating that leveling the playing field through Reg. FD has not (completely)

changed how forecasts are fundamentally linked with the information. Focusing on

the more potent results, we look to the Relative experience results (Specifications

7 and 8), and we note that Reg. FD is effective in reducing the private information

component, which in turn reduces the importance of relative experience. Empiri-

cally, this translates into a reduction in the concavity of the impact of Relative

experience; the “leveling of the playing field” flattens out that curve. We see this in

the Reg. FD interaction terms: specifically, a positive and significant marginal

effect on (Reg. FD * Relative experience) and negative and significant marginal

effect on (Reg. FD * Relative experience2). More concretely stated, when access to

private information is reduced, the relationship-based competitive advantage of

relative experience – preferential access to private information – is taken away.

These results highlight a distinction between precision and the value of prefer-

ential relationships between veteran analysts and management of the firm. Since all

analysts gain analytical expertise over time following the firm (though the marginal

effect of this would seem to wane for the most experienced, thus explaining the

maintained nonlinearity), but only some may gain preferential treatment by the

firm, one could argue that Experience is a better proxy for analytical precision from

the model and Relative experience is a better proxy for the preferential treatment

provided to veteran analysts that possess valuable relationships with top manage-

ment of the firms they are covering (i.e., management will provide private
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information to only analysts with the oldest relationships). In short, Reg. FD

reduces the importance of the competitive advantage of preferential treatment

(proxied by Relative experience) while retaining the importance of analytical

ability (proxied by Experience). This is seen empirically in the insignificant change

in concavity of Experience and a decrease in the concavity of Relative experience.

In this light, we see that the impact of Reg. FD is what we would expect, both with

regard to Experience (seen in Specifications 5 and 6) and Relative experience.

Panel A of Table 2.4 shows the results of Eq. 2.5, which examines directly how

Information asymmetry affects Deviation, controlling for firm, analyst, and regu-

latory factors. Specifications (1) through (3) look at the effects of Information

asymmetry on the full sample of analysts, using the inverse of Analyst coverage,

Forecast dispersion, and Relative firm size, respectively. The first proxy

(specification 1) is the inverse of Analyst coverage. As predicted in the theoretical

section, Information asymmetry is positively related to Deviation. With fewer

resources at their disposal, analysts post greater deviations as a means to purchase

private information. This supplements the marginally valuable public information

available, leading to more accurate forecasts. When information asymmetry is

measured by Analyst coverage, a unit increase in the information asymmetry

measure leads to a 0.630¢ additional Deviation. When using Forecast dispersion

as the proxy, a one-unit increase in the information asymmetry measure leads to

a 0.630¢ increase in Deviation. Lastly, using Relative firm size as the proxy for

information asymmetry, a one-unit increase in the information asymmetry measure

leads to 0.006¢ additional Deviation. From the multivariate analysis, it is evident

that Forecast dispersion is the best proxy for Deviation from the consensus. The

specifications where information asymmetry is proxied by Forecast dispersion have

approximately two times the predictive power of the analyst coverage and size

proxy (R-Squared of 0.15 vs. 0.06 and 0.08, respectively).

In specifications (4)–(6) of Table 2.4, we include indicator variables for the three

experience terciles (suppressing the constant term in the model) to examine whether

information asymmetry affects analysts in a different manner based on experience.

We first note that the marginal effect on Information asymmetry remains positive as

in the first three specifications. Looking to the marginal effect of novice

analysts – the least experienced third of analysts in a given quarter – they find

sticking closer to the herd a better alternative (Zhou and Lai 2009). The cost of

acquiring precise information for an inexperienced analyst who lacks necessary

resources would be prohibitively large, i.e., the analyst would need to post an

outrageously optimistic (positively deviated) forecast. The marginal effect on

moderately experienced analysts – the middle third in experience in a given

quarter – suggests that they post deviations that are more positive than the average

analyst in an effort to purchase valuable private information. The marginal effect

for the tercile of highly seasoned analysts suggests that they post a deviation with

a smaller magnitude. This nonlinear relationship exists regardless of the proxy for

information asymmetry. Controlling for the information asymmetry in the estima-

tion environment, these results fall in line with our prediction of nonlinearity for

Experience and our conjecture that highly seasoned analysts possess both superior
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analytical abilities, which would suggest that perhaps they have to purchase less

information to achieve precision, and valuation relationships, which allow them to

purchase information at reduced “costs” (i.e., deviation from consensus). To ensure

that the marginal effects are significantly different, we perform Wald tests to

confirm that the differences between the coefficients are statistically significant.

As can be seen at the bottom of Panel A, the differences are statistically significant

in every case.

In Panel B, we examine experience-based subsamples to see more intricately

how experience affects the impact of Information asymmetry on Deviation. Results

confirm that Experience affects the link between Information asymmetry and

Deviation. The moderately experienced analyst is the most affected by an increase

in information asymmetry, regardless of the definition of information asymmetry. It

is interesting to note that the results for Analyst coverage and Forecast dispersion

are much stronger than Relative firm size. We use a Hausman test of statistical

significance and find that the experience estimations are all statistically different.

These empirical results nicely complement the theoretical predictions of our

model. Taken collectively, the results suggest that analysts’ rational forecast devi-

ation from the consensus is a result of analysts maximizing their objective function

of minimizing error while taking into consideration the information environment in

which they operate.

To provide evidence that the deviation from the consensus discussed in the rest

of the paper is indeed rationale, we test whether an analyst posting an estimate with

the optimal deviation from consensus, empirically represented by the fitted value of

either Eqs. 2.4 or 2.5, achieves a lower forecast error (defined as estimate minus

actual earnings). Here, a negative association between fitted Deviation from con-

sensus (DFC*) and Forecast error (FE) is indicative of optimal forecasting. Chen

and Jiang (2006) argue that a positive (negative) association between observed

Deviation from consensus (DFC) and Forecast error (FE) is indicative of an analyst

overweighting (underweighting) her own assessment. This is because if analysts

follow a Bayesian updating rule and minimize squared forecast error, there should

be no link between observed deviation from forecast and forecast error. They find

that analysts, on average, overweigh their own belief, and thus the link between

observed deviation from consensus and forecast error is positive. In this paper, we

extend Chen and Jiang’s model to allow for rational biasing of forecasts, similar to

Lim (2001). As such, we find that there should be a concave relationship between

Experience and Deviation from consensus. If our theory is correct and if our

empirical model of deviation from consensus truly captures the essence of rational

forecasting that occurs among analysts, the fitted Deviation from consensus should

be devoid of analysts’ overconfidence about their own information processing. In

fact, if fitted Deviation reflects the tendency toward more rational forecasting, we

should find a negative relationship between fitted Deviation and Forecast error.

Looking to the results, which are found in Table 2.5, Panel A, we see that this is

indeed what we find. In all specifications, the fitted Deviation (DFC) is negatively

related with Forecast error. All specifications lead to a significant decline in the

forecast error of analyst estimation. Specifically, we find that a 1¢ increase in bias
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leads to a decrease in Forecast error from a low of 1.029 (specification 3) to 1.081¢

(specification 1), depending upon the specification. Considering that the sample

average Forecast error is �3.79¢, this is a significant decrease, suggesting that

posting such deviations is indeed rational.

Given the high marginal effect and considering the nonlinearity of the impact of

experience on deviation from consensus, we further test a squared term of the fitted

deviation from consensus variable. It would make sense that continually adding

a penny to one’s estimate would cease to increase the precision of the resulting

estimation at some point. In doing so, we see that the linear effect is reduced

considerably. The forecast error is decreased to less than half of a penny on average

and this reduction is decreasing with every marginal penny of bias.

Finally, we examine the fitted values of Deviation from consensus for the

different terciles of analyst experience, shown in Table 2.5, Panel B. For all five

specifications, we see evidence of nonlinearity with these fitted values. Once again,

the moderately experienced analyst is found to have the highest “optimal” devia-

tion. This confirms nicely both the theoretical and previous empirical results and

helps us to come full circle.

2.6 Robustness

To check for consistency in the results, we reexamine specifications (3) and

(4) from Table 2.2 and specification (2) from Table 2.4 on subsamples, altering

our empirical methodology and using a different data source. We analyze two

subsamples: (1) excluding revisions and (2) including only firms covered by one

analyst. We alter our empirical methodology by using random effects as opposed to

the fixed effect treatment used in the base specification of the paper. Lastly, we alter

our data source by using I/B/E/S data. Because the main empirical tests use First

Call data, which only looks at brokerage houses, one potential concern is that

perhaps we might not be able to control for analysts’ fixed effects effectively.

Given our specifications and variables we include in the model, we find that there

are only 130 unique brokerage houses. Since I/B/E/S reports analysts rather than

brokerage houses, we use their data and find results hold when individual analysts

fixed effect (7,708 unique analysts) are included. Due to the nature of IBES data, we

cannot, however, control for broker reputation and size. Results are qualitatively

identical across all robustness tests and are included in Appendix 2.

For brevity, we only use one information asymmetry proxy in Table 2.5. We

choose forecast dispersion as our proxy for information asymmetry since it provides

the best model fit (i.e., Model R2) of the three proxies. To show that our results are

robust to the other two information asymmetry proxies, we rerun Table 2.5 using

these alternate proxies. Our results are qualitatively identical and are shown in

Appendix 3.

In results not reported, we examine three final robustness tests. To address any

concerns about the power of our empirics based on the number of observations, we

examine the subsample of manufacturing firms. While this subsample is less than
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half of the original, the economic and statistical significance of coefficients

remains, providing support for our empirical results. We include alternate industry

dummies using Fama-French industry classifications (SIC codes are used for

classification in the base specifications). Results once again remain. Finally, to

address any concerns about sample selection problems and the dependence of the

power of our empirics on the number of brokerage houses, we run the estimations

not including Broker reputation (which reduces our sample to 130 houses) and have

315 brokerage houses. Our results remain. These results are available upon request.

The congruence of the results from both the included and unreported robustness

tests provides further credence to the conclusions of this study.

2.7 Conclusions

To understand the exact role experience and information asymmetry play in forming

a rational deviation, we offer an integrated framework in which an optimum forecast

is derived from weighing public and private information, where the resulting

forecast bias (i.e., deviation from the consensus) improves accuracy through the

acquisition of private information. We study how information asymmetry and

analyst experience affect the efficacy of the feedback from bias on private informa-

tion acquisition. Our construct enables a realistic optimization, where rational

forecast bias emerges as an outcome of a trade-off between public and private

information while minimizing forecast squared error. We show both analytically

and empirically that this trade-off and the resulting rational deviation are determined

by experience and information asymmetry. While the optimal bias and information

asymmetry are monotonically positively related, the optimal bias and experience are

concavely linked. Moderately experienced analysts find it optimal to purchase

private information with a positively biased deviation from the consensus. The

superior analytical skills and access to private information (at a lower cost) of highly

seasoned analysts leads them to optimally rely on private information.

We use Reg. FD as an experiment to further illuminate the relationship between

experience and forecast bias and to make a distinction between access to private

information and analytical expertise. We find that, as we would expect, the biases of

experienced analysts, who weigh private information more heavily, are affected

more. The extent to which information asymmetry and analyst experience play

a role in determining the analyst’s bias is directly affected by the dispersion of the

common and idiosyncratic signals of all analysts as well as the extent of their

correlation with each other.

Our results may help to paint a clearer picture of the types of information

produced by analysts. Institutions may be able to use these results to design

continuing education programs and to make hiring/firing decisions. Our results

can also help to explain why and how changes in the information environment

caused by regulatory changes (e.g., Reg. FD), index inclusions, and public disclo-

sures affect the role of analysts as information processors.
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Appendix 1: Proofs

The Objective Function

Given that the analyst’s forecast is a weighted average of the analyst’s uncondi-

tional estimate and the consensus, F¼ wE + (1 – w)Ec, the objective function can be

expressed as

min
wjb

w2 t0 þ t bð Þð Þ�2 þ 1� wð Þ2t�2
c þ 2rw 1� wð Þ t0 þ t bð Þð Þ�1t�1

c

h i
(2.6)

The first-order condition then is

2w t0 þ t bð Þð Þ�2 � 2 1� wð Þt�2
c þ 2r 1� wð Þ t0 þ t bð Þð Þ�1t�1

c

� 2rw t0 þ t bð Þð Þ�1t�1
c � 0

By collecting terms, we then have

w t0 þ t bð Þð Þ�2 þ t�2
c � 2r t0 þ t bð Þð Þ�1t�1

c

n o
¼ t�2

c � r t0 þ t bð Þð Þ�1t�1
c

This means that the optimal weight is

w ¼ t0 þ t bð Þð Þ2 � rtc t0 þ t bð Þð Þ
t0 þ t bð Þð Þ2 þ t2c � 2rtc t0 þ t bð Þð Þ (2.7)

Proof of Proposition 1

By taking the derivative of Eq. 2.7 with respect to t0, we have

∂w
∂t0

¼ 2t2c t0 þ t bð Þð Þ � 2rtc t0 þ t bð Þð Þ2 � rt3c

t0 þ t bð Þð Þ2 þ t2c � 2rtc t0 þ t bð Þð Þ
h i2 (2.8)

Clearly, since the denominator of ∂w/∂t0 is positive, then the sign is only

a function of the numerator. This implies that the sign changes when the numerator,

2tc(t0 + t(b)) � 2r(t0 + t(b))2 � rt2c , is at maximum. To find the maximum,

we solve for t0 that satisfies the first-order conditions of the numerator. The first-

order condition yields tc � 2r(t0 + t(b)) � 0. Thus, at optimal weight

t0 + t(b) ¼ 0.5r�1tc.
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Proof of Proposition 2

By taking the derivative of Eq. 2.7 with respect to bias, we have

∂w
∂b

¼
2t2c t0 þ t bð Þð Þ � 2rtc t0 þ t bð Þð Þ2 � rt3c
h i

∂t
∂b

t0 þ t bð Þð Þ2 þ t2c � 2rtc t0 þ t bð Þð Þ
h i2 (2.9)

Clearly, since the denominator of ∂w/∂b is positive, then the sign is only

a function of the numerator. This implies (1) that since ∂t/∂b is positive, then the

optimal weight would be monotonically increasing with ∂t/∂b or information

asymmetry, and (2) that the optimal weight is nonlinearly, concavely related to

private information precision. Since the first term in the numerator is a quadratic

function of analyst’s own precision, the maximum in the function is the point at

which the numerator changes sign. This point, however, is exactly the same point at

which ∂w/∂t0 maximizes. For biases at which t0 + t(b) falls below 0.5r�1tc., then
so long as bias increases so does the optimal weight.

Appendix 2: Alternate Samples

See Table 2.6.

Appendix 3: Alternate Proxies for Information Asymmetry for
Table 2.5

See Table 2.7.

Appendix 3 presents the results of regressing forecast error on the regressors

specified in each column. Inf. asymmetry is analyst coverage in Panel A and relative

firm size in Panel B. Same quarter is a dummy variable equal to one if the estimate is

in the same quarter as the actual and zero otherwise. Same quarter is orthogonalized

(on NumRevisions) to ensure that multicollinearity is not a problem between these

two variables. Controls is a vector of firm-specific variables including broker

reputation, broker size, accruals, intang. assets, and return std dev. Brokerage

reputation is a ranking of brokerage reputation, where 0 is the worst and 9 is the

best. Brokerage size is the natural log of the number of companies per quarter

a brokerage house follows. Brokerage reputation is orthogonalized (on brokerage

size) to ensure that multicollinearity is not a problem between these two variables.

Accruals are the accrued revenue/liabilities utilized for earnings smoothing. Intang.

assets are the covered firm’s intangible assets value relative to its total assets. Return

standard deviation is the standard deviation of the covered firm’s return. I is a vector

of one-digit SIC industry dummies. T is a vector of time dummies.
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Abstract

A number of studies have been conducted to examine investment performance of

mutual funds of the developed capital markets. Grinblatt and Titman (1989,

1994) found that small mutual funds perform better than large ones and that

performance is negatively correlated to management fees but not to fund size or

expenses. Hendricks, Patel, and Zeckhauser (1993), Goetzmann and Ibbotson

(1994), and Brown and Goetzmann (1995) present evidence of persistence

in mutual fund performance. Grinblatt and Titman (1992) and Elton, Gruber,
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and Blake (Journal of Financial Economics 42:397–421, 1996) show that past

performance is a good predictor of future performance. Blake, Elton, and

Grubber (1993), Detzler (1999), and Philpot, Hearth, Rimbey, and Schulman

(1998) find that performance is negatively correlated to fund expense, and

that past performance does not predict future performance. However, Philpot,

Hearth, and Rimbey (2000) provide evidence of short-term performance persis-

tence in high-yield bond mutual funds. In their studies of money market mutual

funds, Domian and Reichenstein (1998) find that the expense ratio is the most

important factor in explaining net return differences. Christoffersen (2001) shows

that fee waivers matter to performance. Smith and Tito (1969) conducted a study

into 38 funds for 1958–1967 and obtained similar results. Treyner (1965)

advocated the use of beta coefficient instead of the total risk.

Keywords

Financialmodeling •Mutual funds • Performance appraisal • Global investments •

Evaluation of funds • Portfolio management • Systematic risk • Unsystematic

risk • Risk-adjusted performance • Prediction of price movements

3.1 Introduction

Performance of financial instruments is basically dependent on three important

models derived independently by Sharpe, Jensen, and Treynor. All three models are

based on the assumptions that (1) all investors are averse to risk and are single-

period expected utility of terminal wealth maximizers, (2) all investors have

identical decision horizons and homogeneous expectations regarding investment

opportunities, (3) all investors are able to choose among portfolios solely on the

basis of expected returns and variance of returns, (4) all transactions costs and taxes

are zero, and (5) all assets are infinitely divisible.

3.2 Performance Evaluation Methods

The following paragraphs indicate a brief description of the studies on “perfor-

mance evaluation of mutual funds.”

Friend et al. (1962) offered the first empirical analysis of mutual funds perfor-

mance. Sharpe (1964), Treynor and Mazuy (1966), Jensen (1968), Fama (1972),

and Grinblatt and Titman (1989, 1994) are considered to be classical studies in

performance evaluation methods. Sharpe (1964) made a significant contribution in

the methods of evaluating mutual funds. His measure is based on capital asset

prices, market conditions with the help of risk and return probabilities. Sharpe

(1966) developed a theoretical measure better known as reward to variability ratio

that considers both average return and risk simultaneously in its ambit. It tested

efficacy through a sample of 34 open-ended funds considering annual returns and

standard deviation of annual return risk surrogate for the period for 1954–1963.
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The average reward to variability ratio of 34 funds was considerably smaller

than Dow Jones portfolio and considered enough to conclude that average

mutual funds performance was distinctly inferior to an investment in Dow Jones

Portfolio.

Treynor (1965) advocated the use of beta coefficient instead of the total risk.

He argues that using only naı̈ve diversification, the unsystematic variability of

returns of the individual assets in a portfolio typically average out of zero. So he

considers measuring a portfolio’s return relative to its systematic risk more

appropriate.

Treynor and Mazuy (1966) devised a test of ability of the investment managers

to anticipate market movements. The study used the investment performance out-

comes of 57 investment managers to find out evidence of market timing abilities

and found no statistical evidence that the investment managers of any of the sample

funds had successfully outguessed the market. The study exhibited that the invest-

ment managers had no ability to outguess the market as a whole but they could

identify under priced securities.

Michael C. Jensen (1967) conducted an empirical study of mutual funds during

the period 1954–1964 for 115 mutual funds. His results indicate that these funds are

not able to predict security prices well enough to outperform a buy-the-market-and-

hold policy. His study ignores the gross management expenses to be free. There was

very little evidence that any individual fund was able to do significantly better than

which investors expected from mere random chance. Jensen (1968) measured the

performance as the return in excess of equilibrium return mandated by capital asset

pricing model. Jensen’s measure is based on the theory of the pricing of capital

assets by Sharpe (1964), Linter (1965), and Treynor.

Smith and Tito (1969) conducted a study into 38 funds for 1958–1967 and

published results relating to performance of mutual funds. However, Mc Donald

(1974) examined 123 mutual funds for 1960–1969 measures to be closely corre-

lated; more importantly, he found that on an average, mutual funds perform about

as well as native “buy and hold” strategy.

Fama (1972) suggested alternative methods for evaluating investment perfor-

mance with somewhat finer breakdowns of performance on the stock selection,

market timing, diversification, and risk bearing. It devised mechanism for segrega-

tion part of an observed investment return due to managers’ ability to pick up the

best securities at a given level of risk from part that is due to the prediction of

general market price movements.

Dunn and Theisen (1983) study is about ranking by the annual performance of

201 institutional portfolios for the period 1973 through 1982 without controlling for

fund risk. They found no evidence that funds performed within the same quartile

over the 10-year period. They also found that ranks of individual managers based on

5-year compound returns revealed no consistency.

Eun et al. (1991) reported similar findings. The benchmarks used in their study

were the Standard and Poor’s 500 Index, the Morgan Stanley Capital International

World Index, and a self-constructed index of US multinational firms. For the

period 1977–1986, the majority of international funds outperformed the US market.
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However, they mostly failed to outperform the world index. The sample consisted

of 19 US-based international funds, and the Sharpe measure was used to assess

excess returns.

Barua and Varma (1993b) have examined the relationship between the NAV and

the market price on Mastershares. They conclude that market prices are far more

volatile than what can be justified by volatility of NAVs. The prices also show

a mean reverting behavior, thus perhaps providing an opportunity for discovering

a trading rule to make abnormal profits in the market. Such a rule would basically

imply buying Mastershares whenever the discount from NAV was quite high and

selling Mastershares whenever the discount was low.

Droms and Walker (1994) used a cross-sectional/time-series regression meth-

odology. Four funds were examined over 20 years (1971–1990), and 30 funds were

analyzed for a 6-year period (1985–1990). The funds were compared to the

Standard and Poor’s 500 Index, the Morgan Stanley Europe, Australia, and Far

East Index (EAFE) which proxies non-US stock markets, and the World Index.

Applying the Jensen, Sharpe, and Treynor indices of performance, they found

that international funds have generally underperformed the US market and the

international market. Additionally, their results indicated that portfolio turnover,

expense ratios, asset size, load status, and fund size are unrelated to fund

performance.

Bauman and Miller (1995) studied the persistence of pension and investment

fund performance by type of investment organization and investment style. They

employed a quartile ranking technique, because they noted that “investors pay

particular attention to consultants’ and financial periodicals’ investment perfor-

mance rankings of mutual funds and pension funds.” They found that portfolios

managed by investment advisors showed more consistent performance (measured

by quartile rankings) over market cycles and that funds managed by banks and

insurance companies showed the least consistency. They suggest that this result

may be caused by a higher turnover in the decision-making structure in these less

consistent funds. This study controls for the effects of turnover of key decision

makers by restricting the sample to those funds with the same manager for the entire

period of study.

Volkman and Wohar (1995) extend this analysis to examine factors that impact

performance persistence. Their data consists of 322 funds over the period

1980–1989 and shows performance persistence is negatively related to size and

negatively related to levels of management fees.

Elton et al. (1996) examined the predictability of stock mutual funds perfor-

mance based on risk-adjusted future performance. It also demonstrated application

of modern portfolio techniques on past data to improve selection, which permitted

construction of portfolio funds that significantly outperformed a rule based on the

past rank alone. The portfolio so selected was reported to have small, but statisti-

cally significant, positive risk-adjusted returns during a period when mutual funds

in general had negative risk-adjusted returns.

Jayadeve (1996) paper enlightens performance evaluation based on monthly

returns. His paper focuses on performance of two growth-oriented mutual funds
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(Mastergain and Magnum Express) on the basis of monthly returns compared to

benchmark returns. For this purpose, risk-adjusted performance measures

suggested by Jensen and Treynor and Sharpe are employed.

Carhart (1997) shows that expenses and common factors in stock returns such as

beta, market capitalization, 1-year return momentum, and whether the portfolio is

value or growth oriented “almost completely” explain short-term persistence in

risk-adjusted returns. He concludes that his evidence does not “support the exis-

tence of skilled or informed mutual fund portfolio managers.”

Yuxing Yan (1999) examined performance of 67 US mutual funds and the S&P

500 Index with 10-year daily return data from 1982 to 1992. The S&P index was

used as benchmark index. Daily data are transformed into weekly data for compu-

tational reasons. In the calculations, it was assumed that the S&P 500 market index

is a good one, i.e., it is efficient and its variance is constant.

Redmand et al.’s (2000) study examines the risk-adjusted returns using Sharpe’s

Index, Treynor’s Index, and Jensen’s alpha for five portfolios of international

mutual funds during 1985–1994. The benchmarks for competition were the US

market proxied by the Vanguard Index 500 mutual fund and a portfolio of funds that

invest solely in US stocks. The results show that for 1985 through 1994 the portfolio

of international mutual funds outperformed the US market and the portfolio of US

mutual funds.

Rahul Bhargava et al. (2001) evaluated the performance of 114 international

equity managers over the January 1988 to December 1997 period. Performance

tests are conducted using Sharpe and Jensen performance methodologies. Three

major findings are reported. First, international equity managers, on an average,

were unable to outperform the MSCI world market proxy during the sample period.

Second, geographic asset allocation and equity style allocation decisions enhanced

the performance of international managers during the sample period. Third, sepa-

rately managed funds were outperformed mutual funds.

Sadhak’s (2003) study is an attempt to evaluate the performance of Indian

mutual funds with the help of data pertaining to (a) trends in income and expenses,

(b) investment yield and risk-associated returns, and (c) returns of Indian mutual

funds vis-à-vis returns of other emerging markets.

Bala Ramasamy and Yeung’s (2003) survey focused on Malaysia where the

mutual fund industry started in the 1950s but only gained importance in the 1980s

with the establishment of government-initiated program. The sample size

consisting of 56 financial advisors representing various life insurance and mutual

fund companies resulted in 864 different profiles of mutual funds. The cojoint

analysis was employed to generate the questionnaire and analyze its results. The

results of this survey point to three important factors which dominate the choice of

mutual funds. These are consistent past performance, size of funds, and costs of

transaction.

Chang et al. (2003) identified hedging factor in the equilibrium asset pricing

model and used this benchmark to construct a new performance measure. Based

on this measure, they are able to evaluate mutual fund managers hedging timing

ability in addition to more traditional security selectivity and timing. While security
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selectivity performance involves forecasts of price movements of selected

individual stock, market timing measures the forecasts of next period realizations

of the market portfolio. The empirical evidence indicates that the selectivity

measure is positive on average and the market timing measure is negative on

average.

Obeid (2004) has suggested a new dimension called “modified approach for risk-

adjusted performance of mutual funds.” This method can be considered as more

powerful, because it allows not only for an identification of active resources but also

for identification of risk. He observed two interesting results: first, it can be shown

that in some cases, a superior security selection effect is largely dependent on

taking higher risks. Second, even in the small sample analyzed in the study,

significant differences appear between each portfolio manager’s styles of selection.

Gupta OP and Amitabh Gupta (2004) published their research on select Indian

mutual funds during a 4-year period from 1999 to 2003 using weekly returns based

on NAVs for 57 funds. They found that fund managers have not outperformed the

relevant benchmark during the study period. The funds earned an average return of

0.041 per week against the average market return of 0.035 %. The average risk-free

rate was 0.15 % per week, indicating that the sample funds have not earned even

equivalent to risk-free return during the study period.

Subash Chander and Japal Singh (2004) considered selected funds during the

period from November 1993 to March 2003 for the purpose of their study. It was

found that the Alliance Mutual Fund and Prudential ICICI Mutual Funds have

posted better performance for the period of study in that order as compared to other

funds. Pioneer ITI, however, has shown average performance and Templeton India

mutual fund has staged a poor show.

Amit Singh Sisodiya (2004) makes comparative analysis of performance of

different mutual funds. He explains that a fund’s performance when viewed on

the basis of returns alone would not give a true picture about the risk the fund would

have taken. Hence, a comparison of risk-adjusted return is the criteria for analysis.

Bertoni et al. (2005) analyzed the passive role that, implicitly, would

place institutional investors in such a context. The study was conducted in

Italy using empirical evidence from the Italian stock exchange (Comit Index).

This study finds that three factors reduce the freedom of institutional investors

to manage their portfolio – the market target size, the fund structure, and the

benchmarking.

Sudhakar and Sasi Kumar (2005) made a case study of Franklin Templeton

mutual fund. The sample consists of a total of ten growth-oriented mutual funds

during the period from April 2004 to March 2005. NIFTY based on NSE Index was

used as the proxy for the market index, and each scheme is evaluated with respect to

the NSE index to find out whether the schemes were able to beat the market or not.

It was found that most of the growth-oriented mutual funds have been able

to deliver better returns than the benchmark indicators. In the sample study, all

the funds have positive differential returns indicating better performance and

diversification of the portfolio, except two funds with negative differential returns,

viz., Franklin India Bluechip Fund and Templeton India Income Fund.
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Martin Eling (2006)made a remarkable contribution to the theory of “performance

evaluation measures.” In this study, data envelopment analysis (DEA) is presented as

an alternative method for hedge fund performance measurement. As an optimization

result, DEA determines an efficiency score, which can be interpreted as

a performance measure. An important result of the empirical study is that completely

new rankings of hedge funds compared to classic performance measures.

George Comer (2006) examined the stock market timing ability of two samples

of hybrid mutual funds. The results indicate that the inclusion of bond indices and

a bond timing variable in a multifactor Treynor-Mazuy model framework leads to

substantially different conclusion concerning the stock market timing performance

of these funds relative to the traditional Treynor-Mazuy model find less stock

timing ability over the 1981–1991 time period provide evidence of significant

stock timing ability across the second fund sample during the 1999–2000 period.

Yoon K. Choi (2006) proposed an incentive-compatible portfolio performance

evaluation measure. In this model, a risk-averse portfolio manager is delegated to

manage a fund, and his portfolio construction (and information-gathering) effort is

not directly observable to investors, in which managers are to maximize investors’

gross returns net of managerial compensation. He considers the effect of

organizational elements such as economics of scale on incentive and thus on

performance.

Ramesh Chander (2006) study examined the investment performance of man-

aged portfolios with regard to sustainability of such performance in relation to fund

characteristics, parameter stationarity, and benchmark consistency. The study

under consideration is based on the performance outcome of 80 investment

schemes from public as well as private sectors for the 5-year period encompassing

January 1998 through December 2002. The sample comprised 33.75 % of small,

26.75 % of medium, 21.25 % of large, and 18.75 % of the giant funds.

Ramesh Chander (2006a) study on market timing abilities enables us to under-

stand how well the manager has been able to achieve investment targets and how

well risk has been controlled in the process. The results reported were unable to

generate adequate statistical evidence in support of manager’s successful market

timing. It persisted across measurement criteria, fund characteristics, and the

benchmark indices. However, absence of performance is noted for alternative

sub-periods signifying the negation of survivorship bias.

Beckmann et al. (2007) found that Italian female professionals do not only assess

themselves as more risk averse than their male colleagues, they also prefer a more

passive portfolio management compared to the level they are allowed to. Besides,

in a competitive tournament scenario near the end of the investment period, female

asset managers do not try to become the ultimate top performer when they have

outperformed the peer group. However in case of underperformance, the risk of

deviating from the benchmark makes female professionals more willing than their

male colleagues to seize a chance of catching up.

Gajendra Sidana (2007) made an attempt to classify hundreds of mutual funds

employing cluster analysis and using a host of criteria like the 1-year-old return,

2-year annualized return, 3-year annualized return, 5-year annualized return, alpha,
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and beta. The data is obtained from value research. The author finds inconsistencies

between investment style/objective classification and the return obtained by

the fund.

Coates and Hubbard (2007) reviewed the structure, performance, and dynamics

of the mutual fund industry and showed that they are consistent with competition. It

was also found that concentration and barriers to entry are low, actual entry is

common and continuous, pricing exhibits no dominant long-term trend, and market

shares fluctuate significantly. Their study also focused on “effects of competition on

fee” and “pricing anomalies.” They suggested legal interventions are necessary in

setting fee in mutual funds of United States.

Subha and Bharati’s (2007) study is carried out for open-ended mutual fund

schemes and 51 schemes are selected by convenient sampling method. NAVs are

taken for a period of 1 year from 1 October 2004 to 30 September 2005. Out of the

51 funds, as many as 18 schemes earned higher returns than the market return. The

remaining 33 funds however generated lower returns than the market.

Sondhi’s (2007) study analyzes the financial performance of 36 diversified

equity mutual funds in India, in terms of rates of return, comparison with risk-

free return, benchmark comparison, and risk-adjusted returns of diversified equity

funds. Fund size, ownership pattern of AMC, and type of fund are the main factors

considered in this study. The study reveals that private sector is dominating public

sector.

Cheng-Ru Wu et al.’s (2008) study adopts modified Delphi method and the

analytical hierarchy process to design an assessment method for evaluating mutual

fund performance. The most important criteria for mutual fund performance should

be “mutual fund style” followed by “market investment environment.” This result

indicates investor’s focus when they evaluate the mutual fund performance.

Eleni Thanou’s (2008) study examines the risk-adjusted overall performance of

17 Greek Equity Mutual Funds between the years 1997 and 2005. The study

evaluated performance of each fund based on the CAPM performance methodol-

ogy, calculating the Treynor and Sharpe Indexes for the 9-year period as well as for

three sub-periods displaying different market characteristics. The results indicated

that the majority of the funds under examination followed closely the market,

achieved overall satisfactory diversification, and some consistently outperformed

the market, while the results in market timing are mixed, with most funds

displaying negative market timing capabilities.

Kajshmi et al. (2008) studied a sample of schemes in the 8-year period. This study

considers performance evaluation and is restricted to the schemes launched in the

year 1993 when the industry was thrown open to private sector under the regulated

environment by passing the SEBI (Mutual Funds) Regulations 1993. The perfor-

mance of the sample schemes were in line with that of the market as evident from the

positive beta values. All the sample schemes were not well diversified as depicted by

the differences in the Jensen alpha and Sharpe’s differential return.

Massimo Masa and Lei Zhang (2008) found the importance of organizational

structure on Asset Management Company of mutual fund. Their study found that

more hierarchical structures invest less in firms located close to them and deliver
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lower performance. An additional layer in hierarchical structure reduces the

average performance by 24 basis points per month. At the same time, more

hierarchical structures leads to herd more and to hold less concentrated portfolios.

Manuel Ammann and Michael Verhofen (2008) examined the impact of prior

performance on the risk-taking behavior of mutual fund managers. Their sample

taken from US funds started in January 2001 and ended in December 2005. The

study found that prior performance in the first half of the year has, in general,

a positive impact on the choice of the risk level in the second half of the year.

Successful fund managers increase the volatility and the beta and assign a higher

proportion of their portfolio to value stocks, small firms, and momentum stocks in

comparison to unsuccessful fund managers.

Onur et al. (2008) study evaluates the performance of 50 large US-based

international equity funds using risk-adjusted returns during 1994–2003. This

study provides documentation on the risk-adjusted performance of international

mutual funds. The evaluation is based on objective performance measures grounded

in modern portfolio theory. Using the methodology developed by Modigliani and

Miller in 1997, the study reports the returns that would have accrued to these mutual

funds for a 5-year holding period as well as a 10-year holding period. It is evident

from the empirical results of this study that the funds with the highest average

returns may lose their attractiveness to investors once the degree of risk embedded

in the fund has been factored into the analysis.

Qiang Bu and Nelson Lacey (2008) examined the determinants of US mutual

fund terminations and provided estimates of mutual fund hazard functions. Their

study found that mutual fund termination correlates with a variety of fund-specific

variables as well as with market variables such as the S&P 500 Index and the short-

term interest rate. This was tested with the underlying assumptions of the semi-

parametric Cox model and reject proportionality. They also found that different

fund categories exhibit distinct hazard functions depending on the fund’s invest-

ment objectives.

David M. Smith (2009) discussed the size and market concentration of the

mutual fund industry, the market entry and exit of mutual funds, the benefits and

costs of mutual fund size changes, the principal benefits and costs of ownership

from fund shareholders’ perspective, etc. This study is based on data from

Morningstar (2009) about US mutual fund industry, which was composed of

607 fund families.

Baker et al. (2010) investigated the relation between the performance and

characteristics of 118 domestic actively managed institutional equity mutual

funds. The results showed that the large funds tend to perform better, which

suggests the presence of significant economies of scale. The evidence indicates a

positive relation between cash holding and performance. They also found evidence

in a univariate analysis that expense ratio class is an important determinant of

performance, and the results are significant in a multivariate setting using Miller’s

active alpha as a performance metric.

Khurshid et al. (2009) studied the structure of the mutual fund industry in India

and analyzed the state of competition among all the mutual funds in private sector
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and public sector. The levels of competition and their trends have been obtained for

the periods March 2003–March 2009. This study found overall mutual fund indus-

try is facing a high competitive environment. An increasing trend of competition

was observed within bank institution, private sector foreign, and private sector joint

venture mutual funds.

Mohit Gupta and Aggarwal’s (2009) study focused on the portfolio creation and

industry concentration of 18 ELSS schemes during April 2006 to April 2007.

Mutual fund industry concentration was the variable used in classification or cluster

creation. This exercise was repeated each month for the period under study. Finally

portfolio performance was compared with index fund, portfolio of three randomly

picked funds of the previous month, and the return and risk parameters of ELSS

category as a whole.

Talat Afza and Ali Rauf’s (2009) study aims to provide guidelines to the

managers of open-ended Pakistani mutual funds and benefit small investors by

pointing out the significant variables influencing the fund performance. An effort

has been made to measure the fund performance by using Sharpe ratio with the help

of pooled time-series and cross-sectional data and focusing on different fund

attributes such as fund size, expenses, age, turnover, loads, and liquidity. The

quarterly sample data are collected for all the open-ended mutual funds listed on

Mutual Fund Association of Pakistan (MUFAP), for the years 1999–2006. The

results indicate that among various funds attributes are: lagged return, liquidity and

had significant impact on fund performance.

Amar Ranu and Depali Ranu (2010) critically examined the performance of

equity funds and found out the top 10 best performing funds among 256 equity

mutual fund schemes in this category. They considered three factors for selection:

(a) mutual funds having 5 years of historical performance, (b) fund schemes having

a minimum of Rs.400 crore of assets under management, and (c) funds which have

average return more than 22.47. They found that HDFC TOP 200 (Growth) option

was outperforming among the top 10 best performing equity funds.

Sunil Wahal and Albert Wang (2010) found impact of the entry of new mutual

funds on incumbents using the overlap in their portfolio holdings as a measure of

competitive intensity. Their study revealed that funds with high overlap also

experience quantity competition through lower investor flows, have lower alphas,

and higher attrition rates. These effects only appeared after the late 1990s, at which

point there appears to be endogenous structural shift in the competitive environ-

ment. Their concluding remark is that “the mutual fund market has evolved into one

that displays the hallmark features of a competitive market.”

Sukhwinder Kaur Dhanda et al.’s (2012) study considered the BSE-30 as

a benchmark to study the performance of mutual funds in India. The study period

has been taken from 1 April 2009 to 31 March 2011. The findings of the study

reveal that only three schemes have performed better than benchmark. In the year

2009, HDFC Capital Builder has the top performer. It was 69.18 returns and 26.37

SD and 0.78 beta. HDFC Capital Builder scheme has given the reward for

variability and volatility. HDFC Top 200 Fund and Birla Sun Life Advantage

Funds are on second and third position in terms of return. HDFC Top 200 Fund
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has shown better performance than Birla Sun Life Advantage Fund in terms of SD,

beta, Sharpe ratio, and Treynor ratio. Birla Sun Life Advantage Fund has more risk

than the benchmark. Kotak Select Focus Fund has the poorer performer in terms of

risk and return. Except two schemes all other schemes have performed better than

benchmark. Except Kotak Select Focus Fund all other schemes are able to give

reward for variability and volatility.

3.3 A Review on Various Models for Performance Evaluation

3.3.1 Jensen Model

Given the additional assumption that the capital market is in equilibrium, all three

models yield the following expression for the expected one-period return on any

security (or portfolio) j:

E Rj

� � ¼ RF þ bJ E Rmð Þ � RF½ � (3.1)

RF ¼ the one-period risk-free interest rate.

bJ¼ Cov(j RJ, RM)/s
2 RM¼ the measure of risk (hereafter called systematic risk)

which the asset pricing model implies is crucial in determining the prices of risky

assets.

E(RM) ¼ the expected one-period return on the “market portfolio” which

consists of an investment in each asset in the market in proportion to its fraction

of the total value of all assets in the market. It implies that the expected

return on any asset is equal to the risk-free rate plus a risk premium given by

the product of the systematic risk of the asset and the risk premium on the market

portfolio.

3.3.2 Fama Model

In Fama’s decomposition performance evaluation measure of portfolio, overall

performance can be attributed to selectivity and risk. The performance due to

selectivity is decomposed into net selectivity and diversification. The difference

between actual return and risk-free return indicates overall performance:

Rp � Rf (3.2)

wherein

Rp is actually return on the portfolio, which is monthly average return of fund

and

Rf is monthly average return on treasury bills 91 days.

The overall performance further can be bifurcated into performance due to

selectivity and risk.
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Thus,

Rp � Rf ¼ Rp � Rp bp þ Rp bp � Rf

� �� ��
(3.3)

In other words, overall performance ¼ selectivity + risk

3.3.3 Treynor and Mazuy Model

Treynor and Mazuy developed a prudent and exclusive model to measure invest-

ment managers’ market timing abilities. This formulation is obtained by adding

squared extra return in the excess return version of the capital asset pricing model as

given below:

Rpt � Rft

� � ¼ aþ bp Rmt � Rft

� �þ yp Rmt � Rft

� �2þ
ept (3.4)

where Rpt is monthly return on the fund, Rft is monthly return on 91 days treasury

bills, Rmt is monthly return on market index, and Ept is error term.

This model involves running a regression with excess investment return as

dependent variable and the excess market return and squared excess market return

as independent variables. The value of coefficient of squared excess return acts as

a measure of market timing abilities that has been tested for significance of using

t-test. Significant and positive values provide evidence in support of the investment

manager’s successful market timing abilities.

3.3.4 Statman Model

Statman measured mutual funds using the following equation (Statman 2000):

eSDAR (excess standard deviation and adjusted return)

¼ Rf þ Rp � Rf

� �
Sm=Sp
� �� Rm (3.5)

In this formulae, Rf ¼ monthly return on 3-month treasury bills, Rp ¼ monthly

return on fund portfolio, Rm ¼ monthly return on the benchmark index,

Sp ¼ standard deviation of portfolio p’s return, and Sm ¼ standard deviation of

return on the benchmark index.

This model is used for short-term investment analysis. The performance is

compared with it benchmark on monthly basis.

3.3.5 Choi Model

Choi provides a theoretical foundation for an alternative portfolio performance

measure that is incentive-compatible. In this model, a risk-averse portfolio manager

112 G.V. Satya Sekhar



is delegated to manage a fund, and his portfolio construction (and information-

gathering) effort is not directly observable to investors. The fund manager is paid on

the basis of the portfolio return that is a function of effort, managerial skill, and

organizational factors. In this model, the effect of institutional factors is described

by the incentive contractual form and disutility (or cost) function of managerial

efforts in fund operations. It focuses on the cost function as an organizational

factor (simply, scale factor). It was assumed that the disutility function of each

fund is determined by the unique nature of its operation (e.g., fund size) and is an

increasing function of managerial effort at an increasing rate.

3.3.6 Elango Model

Elango’s model also compares the performance of public sector funds vs private

sector mutual funds in India. In order to examine the trend in performance of NAV

during the study period, growth rate in NAV was computed. The growth rate was

computed based on the following formula (Elango 2003):

Growth rate: Rg ¼ Yt � Y0=Y0ð Þ � 100 (3.6)

Rg: growth rate registered during the current year

Yt: yield in current year

Y0: yield in previous year

In order to examine whether past is any indicator of future growth in the NAV,

six regression analyses were carried out. NAV of base year was considered as the

dependent variable and current year as in the independent variable.

Equation: Y ¼ Aþ b X (3.7)

Dependent variable: Y ¼ NAV of 1999–2000

Independent variable: X ¼ NAV of 2000–2001

In the same way, the second regression equation computed using NAVs of

2000–2001 and 2001–2002, as dependent and independent variables.

3.3.7 Chang, Hung, and Lee Model

The pricing model adopted by Jow-Ran Chang, Nao-Wei Hung, and Cheng-Few

Lee is based on competitive equilibrium version of intemporal asset pricing model

derived in Campbell. The dynamic asset pricing model incorporates hedging risk as

well as market. This model uses a log-linear approximation to the budget constraint

to substitute out consumption from a standard intertemporal asset pricing model.

Therefore, asset risk premia are determined by the covariances of asset returns with

the market return and with news about the discounted value of all future market

returns. Formally, the pricing restrictions on asset i imported by the conditional

version of the model are
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Etri, tþ1 � r f , tþ1 ¼ �ViI=2þ gVim þ g� 1ð ÞVih (3.8)

where

Etri, t + 1, log return on asset; rf, t + 1, log return on riskless asset;Vii denotesVart (ri,t + 1);

g is the agent’s coefficient of relative risk aversion; Vim denotes Covt (ri, t + 1, rm,t + 1)

and Vih ¼ Covt (ri,t + 1, (Et + 1 � Et), _1j ¼ 1 rj rm,t + 1 + j); the parameter,

r ¼ 1 � exp(c � w); and c � w is the mean log consumption to wealth ratio.

This states that the expected excess log return in an asset, adjusted for a Jensen’s

inequality effect, is a weighted average of two covariances: the covariance with the

return from the market portfolio and the covariance with news about future returns

on invested wealth. The intuition in this equation that assets are priced using their

covariances with the return on invested wealth and future returns on invested wealth.

3.3.8 MM Approach

Leah Modigliani and Franco Modigliani are better known as M2 in the investment

literature. This measure is developed adjusting portfolio return. This adjustment is

carried on the uncommitted (cash balances) part of the investment portfolio at the

riskless return so as to enable all portfolio holdings to participate in the return

generation process. This adjustment is needed to bring out the level playing field for

portfolio risk-return and vis-à-vis market return. The effect of this adjustment is

reported below (Modigliani and Modigliani 1997):

M2¼�Rp� Rm (3.9)

�Rp ¼ Rf� 1� Sdm=Sdpð Þð Þ þ Rp�Sdm=Sdpð Þ (3.10)

In this formulae * Rp ¼ expected return, Rf ¼ risk-free return, Sdm ¼ standard

deviation of market portfolio, and Sdp ¼ standard deviation of managed portfolio.

In case the managed portfolio has twice the standard deviation of the market,

then, the portfolio would be half invested in the managed portfolio and the

remaining half would be invested at the riskless rate. Likewise, in case the managed

portfolio has lower standard deviation than the market portfolio, it would be levered

by borrowing money and investing the money in managed portfolio. Positive

M2 value indicates superior portfolio performance, while negative indicates

actively managed portfolio manager’s inability to beat the benchmark portfolio

performance.

3.3.9 Meijun Qian’s Stage Pricing Model

Meijun Qian’s (2009) study reveals about the staleness, which is measured prices

imparts a positive statistical bias and a negative dilution effect on mutual fund

performance. First, evaluating performance with non-synchronous data generates
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a spurious component of alpha. Second, stale prices create arbitrage opportunities

for high-frequency traders whose trades dilute the portfolio returns and hence fund

performance. This paper introduces a model that evaluates fund performance while

controlling directly for these biases. Empirical tests of the model show that alpha

net of these biases is on average positive although not significant and about 40 basis

points higher than alpha measured without controlling for the impacts of stale

pricing. The difference between the net alpha and the measured alpha consists of

three components: a statistical bias, the dilution effect of long-term fund flows, and

Table 3.1 Overview of different measures

Measures Description Interpretation

Sharpe ratio Sharpe ratio ¼ fund return in excess

of risk-free return/standard deviation

of fund. Sharpe ratios are ideal for

comparing funds that have a mixed

asset classes

The higher the Sharpe ratio, the better

the fund returns relative to the amount

of risk taken

Treynor ratio Treynor ratio ¼ fund return in

excess of risk-free return/beta of

fund. Treynor ratio indicates relative

measure of market risk

The higher the Treynor ratio shows

higher returns and lesser market risk

of the fund

Jensen measure This shows relative ratio between

alpha and beta

Jensen measure is based on systematic

risk. It is also suitable for evaluating

a portfolio’s performance in

combination with other portfolios

M2 measure It matches the risk of the market

portfolio and then calculate

appropriate return for that portfolio

A high value indicates that the

portfolio has outperformed and vice

versa

Jensen model E(Rj) ¼ RF + bJ[E(Rm) � RF] The expected one-period return on the

“market portfolio”which consists of an

investment in each asset in the market

in proportion to its fraction of the total

value of all assets in the market

Fama model Rp–Rf ¼ [Rp � Rp(bp + Rp(bp–Rf)] Overall performance¼ selectivity + risk

Treynor and

Mazuy model

(Rpt–Rft) ¼ a + bp (Rmt � Rft)

+ yp (Rmt � Rft)
2+ept

This model involves running

a regression with excess investment

return as dependent variable and the

excess market return and squared

excess market return as independent

variables

Statman model eSDAR ¼ Rf + (Rp � Rf)(Sm/Sp)–Rm This model used for short-term

investment analysis. The performance

is compared with it benchmark on

monthly basis

Elango model Rg ¼ (Yt � Y0/Y0) � 100 In order to examine whether past is any

indicator of future growth in the NAV,

six regression analyses were carried

out. NAV of base year was considered

as the dependent variable and current

year as in the independent variable
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the dilution effect of arbitrage flows. Thus, assuming that information generated

in time t is not fully incorporated into prices until one period later, the observed

fund return becomes a weighted average of true returns in the current and last

periods:

rt ¼ aþ brmt þ et, (3.11)

rt
� ¼ � rt�1 þ 1� �ð Þrt, (3.12)

where rt denotes the true excess return of the portfolio with mean m and variance s2
and rmt denotes the excess market return with mean mm and variance sm. Both rt and
rmt are i.i.d, and the error term et is independent of rmt. Rt* is the observed excess

return of the portfolio with zero flows, while � is the weight on the lagged true

return. That is, the higher the �, the staler the prices. Assumedly, arbitrage traders

can earn the return rt*, by trading at the fund’s reported net assets values

(Table 3.1).

3.4 Conclusion

This paper is intended to examine various performance models derived by financial

experts across the globe. A number of studies have been conducted to examine

investment performance of mutual funds of the developed capital markets.

The measure of performance of financial instruments is basically dependent on

three important models derived independently by Sharpe, Jensen, and Treynor. All

three models are based on the assumption that (1) all investors are averse to risk and

are single-period expected utility of terminal wealth maximizers, (2) all investors

have identical decision horizons and homogeneous expectations regarding

investment opportunities, (3) all investors are able to choose among portfolios

solely on the basis of expected returns and variance of returns, (4) all transactions

costs and taxes are zero, and (5) all assets are infinitely divisible.
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Abstract

Financial economists have three primary research tools at their disposal: theoretical

modeling, statistical analysis, and computer simulation. In this chapter, we focus on

using simulation to gain insights into trading and market structure topics, which are

growing in importance for practitioners, policy-makers, and academics. We show

how simulation can be used to gather data on trading decision behavior and to

analyze performance in securities markets under controlled yet competitive condi-

tions. We find that controlled simulations with participants are a flexible and

reliable research tool when it comes to studying issues involving traders and market

architecture. The role of the discrete event simulation model we have developed is

to create a backdrop, or a controlled stochastic environment, for running market

experiments with live subjects. Simulations enable us to gather data on trading

participants’ decision making and to ascertain the ability of incentives and market

structures to influence outcomes. The statistical methods we use include experi-

mental design and careful controls over experimental parameters such as the

instructions given to participants. Furthermore, results are assessed both at the

individual level to understand how participants respond to incentives in a trading

setting and also at the market level to know whether the predicted outcomes are

achieved and how well the market operated.

There are two statistical methods described in the chapter. The first is discrete

event simulation and the model of computer-generated trade order flow that we

describe in Sect. 4.3. To create a realistic, but not ad hoc, market background, we

use draws from a log-normal returns distribution to simulate changes in a stock’s

fundamental value, or P*. The model uses price-dependent Poisson distributions to

generate a realistic flow of computer-generated buy and sell orders whose intensity

and supply-demand balance vary over time. The order flow fluctuations depend on

the difference between the current market price and the P* value. In Sect. 4.4, we

illustrate the second method, which is experimental control to create groupings of

participants in our simulations that have the same trading “assignment.” The result

is the ability to make valid comparisons of traders’ performances in the simulations.

Keywords

Trading simulations • Market microstructure • Order flow models • Random

walk models • Experimental economics • Experimental control

4.1 Studying Market Structure

Financial economists have three major research methods at their disposal:

theoretical modeling, statistical analysis, and simulation. We will focus on using

simulation to gain insights into trading and market structure. In so doing, we show

how simulation can be used to analyze participant behavior in a security market.

We find that controlled simulations with participants are a flexible and reliable

research tool when it comes to studying trading behavior and market architecture.
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Using good experimental design we can draw statistically valid conclusions from

simulations at both the individual level to understand how participants respond to

incentives in a trading setting and also at the market level to know whether the

predicted outcomes are achieved and how well the market operated. We begin by

considering the interaction between the three tools.

4.2 The Interaction Between Theoretical Modeling, Empirical
Analysis, and Simulation

A theoretical formulation based on a limited number of abstract assumptions

enables complex reality to be translated into a simplified representation that can

be rigorously analyzed. As such, theoretical modeling typically provides the

underpinnings for both empirical and simulation analysis. Theory alone, however,

can take us only so far. One cannot expect that every detailed aspect of reality can

be analyzed from a theoretical vantage point (Clemons and Weber 1997).

Moreover, in light of the literature on behavioral economics, it is clear that not all

human behavior follows the dictates of rational economic modeling.

We turn to empirical analysis both to provide confirmation of a theoretical model

and to describe aspects of reality that theoretical analysis has not been able to

explain (Zhang et al. 2011). But necessary data may not be available and empirical

analysis, like theoretical modeling, has its limitations. Variability in important

variables, such as differences across time or traded instruments, is difficult for

empiricists to control (Greene 2011; Kennedy 2008). Moreover, empirical variables

may change in correlated ways, yet this should not be mistaken for a causal

mechanism. When we seek insights that neither theory nor empirical analysis

can provide, simulation has an important role to play (Parker and Weber 2012).

An example will help explain.

4.2.1 An Application: Call Auction Trading

Consider an electronic call auction. At a call, submitted orders are batched together

for simultaneous execution at a single clearing price. For the batching, buy orders

are cumulated from the highest price to the lowest to produce a function that

resembles a downward sloping demand curve, and sell orders are cumulated from

the lowest price to the highest to produce a function that resembles an upward

sloping supply curve. The algorithm generally used for determining the clearing

price at the time that the market is called finds the price which maximizes the

number of shares that execute. In an abstract, theoretical model, the number of

shares that trade is maximized at the price where the downward sloping buy curve

crosses the upward sloping sell curve. Consequently, with continuous order

functions, the clearing price which maximizes the number of shares that trade in

a call auction is uniquely determined by the point where the two curves cross, and

this price, in economics parlance, is an equilibrium value.
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All told, this call auction procedure has excellent theoretic properties, and one

might expect that designing a well-functioning call would be a straightforward task.

This is not the case, however. In reality, as the saying goes, “the devil is in the details.”

For theoretical modeling, we might for analytic convenience assume a large

enough number of participants so that no one individual has any market power. We

might further assume that the cumulated buy and sell curves are continuous

functions and that the call auction is the only trading facility available. In reality,

however, the buy and sell curves are step functions and some players’ orders will be

large enough to impact a call’s clearing price.

To illustrate, assume an exact match of 40,000 shares to buy and 40,000 shares

to sell at a price of $50 and that, at the next higher price of $50.10, sell orders totaling

50,000 shares and buy orders totaling 30,000 shares exist. A buyer could move the

price up by entering more than 10,000 shares at $50.10 or greater.

Notice also that the real-world buy and sell curves are step functions

(neither price nor quantity is a continuous variable) and thus that the cumulated

buy orders may not exactly match the cumulated sell orders at the price where the

two curves cross. Moreover, many exchange-based call auctions are offered

along with continuous trading in a hybrid environment. These realities of the

marketplace affect participants’ order placement decisions and, consequently,

impact market outcomes for both price and the number of shares that trade.

In response, participants will enter their orders strategically when coming to

the market to trade.

These strategic interactions and the decisions that market participants make

depend on the call auction’s rules of order disclosure (i.e., its transparency) and its

rules of order execution which apply when an exact cross is not obtained. What

guidance do market architects have in dealing with questions such as these other than

their own, hopefully educated, speculation? The questions being raised may be too

context specific for theory to address and, if a new market structure is being consid-

ered, the data required for empirical analysis will not yet exist. This is when

simulation analysis can be used to good advantage.

Regarding transparency, alternative call auction structures include full

transparency (i.e., display the complete set of submitted orders), partial

transparency (e.g., display an indicated clearing price and any order imbalance at

that price), or no transparency at all (i.e., be a dark pool). Regarding the procedure

for dealing with an inexact cross, the alternatives for rationing orders on the

“heavy” side of the market include pro rata execution, the application of time

priority to orders at the clearing price exactly, and the application of time priority

to all orders at the clearing price and better (i.e., to higher priced buys or to lower

priced sells). These and other decisions have been debated in terms of, for

instance, the ability to game or to manipulate an auction, the incentive to enter

large orders, and the incentive to submit orders early in the book building

period before the auction is called. But definitive answers are difficult to

come by. This is when valuable guidance can be (and has been) obtained via the

use of simulation analysis.

124 R.A. Schwartz and B.W. Weber



4.2.2 An Application: The Search for an Equilibrium
Price and Quantity

In this section, we consider another application of simulation as a research tool: the

search for an equilibrium price and quantity in a competitive marketplace.

Determining equilibrium values for a resource’s unit price and quantity traded is

a keystone of economic analysis. In the standard formulation, equilibrium is

determined by the intersection of market demand and supply curves, with

scant consideration given to just how the buy and sell orders of participants actually

meet in a marketplace. In fact, the “marketplace” is typically taken to be

nothing more than a mystical, perfectly frictionless environment, and the

actual discovery of equilibrium values for price and quantity is implicitly

assumed to be trivial.

Real-world markets are very different. In the non-frictionless environment,

a panoply of transaction costs interact to make price and quantity discovery an

imperfect process. In this far more complex setting, two further issues need to be

analyzed: (1) the trading decisions that market participants make when

confronted by the imperfections (frictions) that characterize real-world markets

and (2) the determination of actual prices and quantities based on the

decisions of the individual participants. Both issues are ideally suited for

simulation analysis.

We consider this further in this section of the chapter, with particular reference

to one specific market: the secondary market for trading equity shares of already

issued stock. Underlying the simulation analysis is an economic model that is based

on the following assumptions:

1. The decision maker qua investor is seeking to maximize his/her expected utility

of wealth as of the end of a single holding period.

2. The investor is risk averse.

3. There are just two assets, one risk-free (cash) and one risky (equity shares).

4. There are no explicit trading cost (i.e., there are no commissions or borrowing

costs, and short selling is unrestricted).

5. Share price and share holdings are continuous variables.

6. A brief trading period (T0 to T1) that is followed by a single investment period

(T1 to T2).

7. The participant’s expectation of price at T2 is exogenous (i.e., independent of the

stock’s current price).

8. The investor is a perfect decision maker when it comes to knowing his/her

demand curve to hold shares of the risky asset.

From this set of assumptions, and following the derivation described in

Ho et al. (1985) and Francioni et al. (2010), we can obtain a participant’s demand

to hold shares of the risky asset. The participant’s demand is described by two

simple, linear functions:

P0 ¼ a� 2bN anordinarydemandcurveð Þ
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and

PR ¼ a� bN areservationpricedemandcurveð Þ

where P0 denotes price with respect to the ordinary curve, PR denotes a reservation

price, and N is the number of shares held.

The ordinary curve shows that if, for instance, the price of shares is P01, the

participant maximizes expected utility by holding N1 shares; if alternatively price is

P02, the participant maximizes expected utility by holding N2 shares; and so on.

Values given by the reservation curve show that at a quantity N1, the maximum the

participant would pay is PR1 when the alternative is to hold no shares at all; or, at

a quantity N2, the maximum the participant would pay is PR2 when the alternative is to

hold no shares at all; and so on. Identifying the reservation price demand curve

enables us to obtain easily a monetary measure of the gains from trading.

To facilitate the exposition, assume for the moment that the participant initially

holds no shares. Then if, for instance, N1 shares are acquired, we have

Surplus ¼ N1 PR � P
� �

where “Surplus” denotes the gains from buying N1 shares and P is the price at which

the N1 shares were bought (note that, for a purchase, we have Surplus > 0 for

P< PR). The participant controls P via the price of his/her order but knows neither the

price at which the order will execute (if price improvement is possible) nor whether

or not the order will, in fact, execute. Because P is not known with certainty, Surplus

is not known with certainty and thus the investor seeks to maximize the expected

value of Surplus. It follows from the derivations cited above that the maximization of

the expected value of Surplus is consistent with the maximization of the expected

utility of the end of the holding period wealth (i.e., at time T2).

With the demand curves to hold shares established, it is straightforward to obtain

linear functions that describe the investor’s propensity to buy and to sell shares in

relation to both ordinary and reservation prices. If the investor’s initial position is

zero shares, the buy curve is the same as the downward sloping demand curve. By

extending the demand curve up and through the price intercept (a) into the negative

quadrant, we see that at prices higher than the intercept, a, the investor will want to

hold a negative number of shares (i.e., establish a short position by selling shares

that he/she does not currently own). By flipping the portion of the demand to hold

curve that is in the negative quadrant into the positive quadrant (and viewing

a negative shareholdings adjustment as a positive sell), we obtain a positively

inclined (vertical) mirror image that is the sell function.

The procedure just described can easily be replicated for any initial share

holdings (either a long or a short position). The individual buy and sell curves

can be aggregated across investors and, following standard economic theory, the

intersection of the aggregate buy curve with the aggregate sell curve establishes

the equilibrium values of share price and the number of shares that trade.

This equilibrium would be achieved if all participants were, simultaneously,
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to submit their complete demand functions to the market, as they presumably would

in a perfect, frictionless environment.

Continue to assume that investors know their continuous, negatively inclined

demand curves to hold shares of the risky asset, but let us now consider how they

might operate in a non-frictionless marketplace where they cannot all simulta-

neously submit their complete and continuous, downward sloping buy functions

and upward sloping sell functions. What specific orders will they send to the

market, and how will these orders interact so as to be turned into trades? Will

equilibrium values for price and quantity be achieved? This highly complex issue

might best be approached by observing participant behavior and, to this end,

simulation can be used as the research tool. Here is how one might go about it.

Let participants compete with each other in a networked, simulated environment.

Each participant is given a demand curve to hold shares of a risky stock, and each is

asked to implement that demand curve by submitting buy or sell orders to the market.

The participants are motivated to place their orders strategically given their demand

curves, the architectural structure of the marketplace, and the objective against which

their performance is assessed – namely, the maximization of expected surplus.

The simulation can be structured as follows. Give all of the participants in

a simulation run the same demand curve,

P ¼ 20� 0:5N0

where N0 represents the number of shares initially held. Divide the participants into

two equal groups, A and B, according to the number of shares they are initially

holding, with N0A ¼ 4 for group A players and N0B ¼ 8 for group B players.

Accordingly, the buy curve for each individual in group A is

P ¼ 18� 0:5Q

and the sell curve for each individual in group B is

P ¼ 16þ 0:5Q

where Q is the number of shares bought or sold. The associated reservation curves are

PR ¼ 18� 0:25Q for thebuyersð Þ

and

PR ¼ 16þ 0:25Q for thesellersð Þ

From the ordinary (as opposed to the reservation) buy and sell curves, and

recalling that the groups A and B are of equal size, we obtain an equilibrium

price of 17 and an equilibrium quantity traded of 2 (per participant). From the
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reservation buy and sell curves, we see that if each participant bought or sold two

shares, the surplus for each would be

2 17:50� 17:00ð Þ ¼ $1:00 for thebuyersð Þ

and

2 17:00� 16:50ð Þ ¼ $1:00 for thesellersð Þ

Participants, however, do not know the distribution of initial shareholdings

across the other investors, and thus they know neither the buy and sell functions

of all the other traders, nor the equilibrium price and quantity for the market. It is up

to each of them individually to submit their orders wisely, and it is up to all of them

collectively to find the equilibrium price along with the quantity to trade at that

price. How do they operate? How well do they do? How quickly and successfully

can they collectively find equilibrium values for P and Q? And how are participant

decisions and market outcomes affected by different market structures? With regard

to each of these issues, important insights can be obtained through the use of

simulation as a research tool.

4.2.3 The Realism of Computer-Generated Data Versus
Canned Data

A live equity trading simulation can either depend exclusively on person-to-person

interaction or add computer-driven order flow; we focus on the latter. Most exper-

imental economics research is based on the former. Computer-driven simulations

can be based on either canned data or on data that the computer itself generates; we

focus on the latter. Canned data have two major limitations. First, participants in the

simulation cannot affect the stream of prices that they are trading against and,

consequently, the dynamic, two-way interaction between live participants and the

marketplace is absent. Second, canned data cannot be used to analyze new market

structure because, quite simply, it is exclusively the product of the actual market

within which it was generated.

On the other hand, a simulation model based on computer-generated data faces

a formidable challenge: capturing the dynamics of a real-world market. Canned

data does not face this problem – it is, after all, generated in a real marketplace. We

discuss the challenge of realism in this section of the chapter with specific reference

to an equity market.

It has been well established in the financial economics literature that, in an equity

market which is fully efficient, security prices follow random walks. “Efficiency” in

this financial markets context is generally understood as referring to “informational

efficiency,” by which we mean that market prices reflect all existing information. In

a nutshell, the raison d’être of a stock’s price following a random walk in a fully

informationally efficient market can be understood as follows. If all (and we mean all)
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information about a security is reflected in a stock’s market price, then only totally

new, totally unanticipated information can cause the stock’s price to change. But

totally new and thus totally unanticipated information can be either bullish or bearish

with equal probability and thus, with equal probability, can lead to either positive or

negative price changes (returns). Thus, the argument goes, in an informationally efficient

market, returns are not predictable and stock prices follow random walks.

It would be relatively straightforward to structure an equity market simulation

based on machine-driven prices that follow a random walk. One would start

a simulation run with an arbitrarily selected seed price and have that price evolve

as the simulation progresses according to random draws from a (log-normal) returns

distribution with arbitrary variance and a zero mean. Real-world prices do not

evolve in this fashion, however. In a world characterized by trading costs, imperfect

information, and divergent (i.e., nonhomogeneous) expectations based on publicly

available information, prices do not follow simple random walks. Rather, price

changes (returns) in relatively brief intervals of time (e.g., intraday) evolve in

dynamic ways that encompass complex patterns of first-order and higher-order

correlations. Structuring a computer simulation to produce prices that capture this

dynamic property of real-world markets is the objective. In the next session of this

chapter, we set forth the major properties of a machine-driven trading simulation,

TraderEx, which we have formulated so as to achieve this goal.

4.3 An Equity Market Trading Simulation Model

In this section, we focus on a key conceptual foundation of the TraderEx simulation

model: how the machine-generated order flow is structured. Above all else, it is this

modeling that captures the dynamic property of trades and prices and, in so doing,

that enables our software to compete with canned data in terms of realism. First, we

present a brief overview of the functions the computer performs.

Looking under the hood, the TraderEx software can be thought of, first and

foremost, as a package of statistical distributions. The prices and sizes of the

machine-driven orders that power the TraderEx simulation are determined by

draws from these distributions. The software also maintains and displays an order

book or set of dealer quotes, drives a ticker tape that displays trade prices and sizes,

computes summary statistics for each simulation run (e.g., a stock’s volume-

weighted average price and participant performance measures such as profit or

loss), and provides post trade analytics (both statistics and graphs). The simulation

game can be played either individually (i.e., one person interacting with the

machine-driven order flow in a solitaire environment) or as a group (i.e., in

a networked environment that also includes machine-driven order flow).

While our machine-driven order flow, as we have said, is powered by random

draws from distributions, we are able to tell meaningful economic stories about

these statistical draws. These stories involve exogenous information change and

three different economic agents: informed traders, liquidity traders, and noise

traders. Interestingly, while the simulation requires this tripartite division, it has
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also been established in the academic microstructure literature that, for an equity

market not to fail, informed traders must interact with liquidity traders, and noise

traders must also be part of the mix.

4.3.1 Informed Orders

In TraderEx, orders submitted by informed traders are specified with reference to an

exogenous variable we call P* that can be viewed as an equilibrium price. That is, at the

value P*, the aggregate flow of buy and sell orders is in balance (much as, in economic

analysis, buy and sell orders are in balance at the price where a demand curve crosses

a supply curve). More specifically, the TraderEx market is in equilibrium when the

lowest posted offer is greater than P* and the highest posted bid is less than P*. When

this equilibrium is achieved, no informed orders are submitted to the market, and an

incoming (liquidity) order can be from a buyer or a seller with equal probability. On the

other hand, if P* is greater than the lowest posted offer, informed orders kick in and

the probability of an incoming order being from a buyer is raised to 0.6 (a parameter

that can, of course, be adjusted). Equivalently, if P* is lower than the highest posted bid,

informed orders again kick in and the probability of an incoming order being

from a seller is raised to 0.6. This asymmetry between the buy and sell orders

that exists when P* is not within the quotes keeps the quotes loosely linked to P*.

P* evolves as the simulation progresses according to a Poisson arrival process.

Each jump in P* symbolizes informational change. The size of the change in P* at

each new arrival is determined by a draw from a log-normal returns distribution

with a zero mean and a variance that is a controllable parameter.

4.3.2 Liquidity Orders

The second component of the order flow, liquidity orders, is also modeled as

a Poisson arrival process, but with one important difference: at any point of time,

the probability of the newly arriving liquidity order being a buy equals the

probability of its being sell equals 0.5. All liquidity orders are priced, with the

price determined by a draw from a double triangular distribution that is located with

reference to the best posted bid and offer quotes.

A new liquidity order is entered on the book as a limit order if it is a buy

with a price lower than the best posted offer or if it is a sell with a price higher

than the best posted bid. A new liquidity order with a price equal to or more

aggressive than the best posted offer (for a buy) or the best posted bid (for a sell) is

executed immediately as a market order. Liquidity orders can (randomly) cause the

market’s bid and ask quotes to drift away from the equilibrium value, P*. When this

occurs, informed orders that are entered as market orders pull market prices

back towards P*.
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4.3.3 Momentum Orders

The third component of the order flow is orders entered by noise traders. TraderEx

activity includes just one kind of noise trader – a momentum player – and it operates

as follows: whenever three or more buy orders (or sell orders) arrive sequentially,

the conditional probability is increased that the next arriving order will also be

a buy (or a sell).

As in the microstructure literature, noise traders are needed in the simulation

model to keep participants from too easily identifying price movements that have

been caused by informed orders responding to a change in P*. This is what our

momentum orders achieve. For instance, assume that P* jumps several ticks above

the best posted offer. An accelerated arrival of informed buy orders would be

triggered and prices on the TraderEx book would rise over a sequence of trades,

causing a pattern of positively autocorrelated price movements that can, with

relative ease, be detected by a live participant. But, to obscure this, the momentum

orders create faux price trends that mimic, and therefore obfuscate, the information-

induced trends.

Momentum orders play a further role in the TraderEx simulations. They sys-

tematically cause transaction prices to overshoot P*. Then, as informed orders kick

in, prices in the simulation mean revert back to P*. This mean reversion and its

associated accentuated short-run volatility encourage the placement of limit orders.

This is because overshooting causes limit orders to execute, and limit order placers

profit when price then mean reverts. To see this, assume that the stock is currently

trading at the $23.00 level and that P* jumps from $23.00 to $24.00. As price starts

to tick up to $24.00, momentum orders join the march and carry price beyond

$24.00–$24.20. Assume a limit order to sell is on the book at $24.20 and that it

executes. The limit order placer then benefits from having sold at $24.20 when the

momentum move ends and when a P* of $24.00 exerts its influence and price mean

reverts back towards $24.00.

4.4 Simulation in Action

Since the earliest version of TraderEx was developed in 1995, we have run

hundreds of “live market” simulations with students in our trading and market

microstructure electives and with executive education participants. In addition, we

have developed training modules on trading for new hires at a number of global

banks. We have also run controlled experimental economics studies of trading

decision making and alternative market structures (Schwartz and Weber 1997).

To illustrate the potential for research from using market simulation, we will

examine the data generated by simulation participants’ behavior in a number of

settings. In a January 2011 class session of the “Trading and Financial Market

Structure” elective at London Business School, a simulation was run which covered
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1 day of trading in an order-driven market structure. In it, 42 graduate students were

divided into 21 teams of two. The order book maintained price and time priority

over limit orders. The price increment was 10 cents, and the order book at the open

looked similar to Fig. 4.1 below.

4.4.1 Trading Instructions: Simulation A

Eight teams were each given the instruction to sell 1,500 units, and seven teams

were each asked to buy 1,300. Five other teams had the role of either day traders or

proprietary trading desks. Three of these five teams were instructed to buy 900 then

sell 900 and to have a closing position of 0. Two teams were asked to sell 800, then

buy 800, and to close with a flat position. A trial simulation was run, and perfor-

mance metrics were discussed before the simulation began. The teams with a sell

instruction were told they would be assessed on the basis of the highest average
selling price, while buying teams competed on the basis of the lowest average
buying price. The “prop” teams were told that maximizing closing P&L was their

objective but that they should finish flat and have no “overnight risk.” A screen

similar to the one the participants saw is shown in Fig. 4.2.

Fig. 4.1 Initial order book at

start of simulated trading day.

Limit orders to buy are on the

left and limit orders to sell on

the right. Participants enter
buy and sell market orders in

the white boxes at the top of

the book. Limit orders are

entered by clicking on the

gray rectangles at the price
level the user selects
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One of the first lessons of behavioral studies of trading done via simulation is

that following instructions is not simple for participants. As Fig. 4.3 shows, seven of
the 21 teams did not end the simulation with the position they were instructed to

have. Three of the selling teams sold more than instructed and three of the

proprietary trading teams had short, nonzero positions at the end of the day. Of

course, the noncompliant teams had excuses – “the end of the day came too fast,” or
“there were not enough willing buyers in the afternoon,” or “we didn’t want to pay
more than the VWAP price on the screen.” These complaints could, of course, also

apply in a real equity market.

In the simulation, the market opened at £20.00. The day’s high was £23.60, the

low £18.80, and the last trade of the day was at £21.50. The £4.80 high-low range

(24 %) reflects a volatile day. The day’s volume-weighted average price (VWAP)

was £20.03. Trading volume was 42,224 units and 784 trades took place. Although

the teams were in the same market, and had the same buying or selling instructions

with the same opportunities, there were vast differences in performance. As Fig. 4.4

shows, the best buying team paid £19.68, or £0.35 less than both the worst team and

VWAP, adding nearly 2 % to the investment return. The best selling team received

£0.95 more per share than VWAP and £1.23 per share more than the worst selling

team. This outcome would add almost 5 % to one selling investor’s return relative

to the average. The conclusion is clear: trading performance has a substantial

impact on investors’ returns.
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Fig. 4.3 Final positions of 21 trading teams. Teams were supposed to end with holdings of either

�1,500 (sellers), +1,300 (buyers), or flat (0, prop-day traders)
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Also shown in Fig. 4.4 is the team’s use of limit orders. Again, there is

substantial variation, with the best buying team trading exclusively with limit

orders and the best selling team completing 79 % of its trading with limit orders.

Note that, as the chart shows, a higher use of limit orders did not assure good trading

outcomes.

Note in Fig. 4.4 that the buying teams all matched or improved on VWAP,

while only three of the selling teams were able to for more than VWAP. Teams’

trading was completed with a varied combination of limit orders and market

orders, with the best team, for instance, selling its 1,500 with 77 % limit orders

and 23 % market orders. No significant correlation existed between order choice

and performance.

As Fig. 4.5 shows, among the five proprietary trading teams, the largest loss was

generated by the team (LBS21) that also had the largest risk as measured by average

absolute value of their inventory position during the trading day. The greatest profit

came from LBS15, a team that only took a moderate level of risk. Again, the

simulation reveals substantial variation and behavioral differences across traders.

VWAP = £20.03

100%

£19.60

£19.683
LBS11

LBS5

LBS3

LBS19

LBS1

LBS8

LBS13

LBS18

LBS14

LBS4

LBS6

LBS2

LBS12

LBS10

LBS16

Buy 1,300

Sell 1,500

£19.70 £19.80 £19.90 £20.00 £20.10 £20.20

£20.977

90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Fig. 4.4 Performance of trading teams as measured by average buying or selling price (scale

shown on bottom of figure reading left to right) and the percentage of teams’ trading done via limit

orders (scale shown on top of figure reading right to left)
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4.4.2 Trading Instructions: Simulations B-1 and B-2

A quote-driven market structure was used in two other simulations with the

same graduate students. The underlying order flow and P* model simulated by

the computer is the same as in the order-driven market. The students were put into

22 teams, and two markets (i.e., two separate networks) with 11 teams each

were run. In each of the networks, seven teams were market makers, and the

other teams were given large orders to fill over the course of the day.

In B-1, the market opened at 20.00, and the day’s high and low prices were 21.00

and 18.70, respectively. The last trade was 19.50, and the VWAP was 20.00, with

706 trades generating a volume of 39,875 units. Participants were told that a unit

represented 1,000 shares and that those with buy or sell instructions were handling

institutional-sized orders that could affect prices.

In their trading, four of the market makers generated a positive profit; as

a group they earned 1.4 pence per share, or seven basis points, in

their trading. As Fig. 4.6 shows, only three of the dealers (LBS1, LBS3, LBS2)

ended the day with a flat (either zero or no more than �35 units) closing

position. The chart shows the seven dealers’ average inventory position, closing

profit or loss, and their closing inventory position. LBS4, for instance, had an

average position over the day of +797, a loss of 674, and a closing

position of +1,431.

−750 −500 −250 0

-1,345

Average Position

LBS21

LBS20

LBS15

LBS9

LBS7

P&L

250 500 750

Fig. 4.5 Performance of 5-day trading teams. Collectively the proprietary traders lost money, and

only two teams returned to a zero position
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In the B-2 market, the simulation started at 20.00, and the day’s high and low

prices were 22.30 and 19.00, respectively. The last trade was 22.20, and the VWAP

was 20.22, with 579 trades generating volume of 36,161 units. Reflecting

higher volatility, only two market makers generated a positive profit and, as

a group, they lost 2.7 pence per share, or �13 basis points, in their trading.

Figure 4.7 shows that three of the six dealers (LBS31, LBS25, LBS3) had

a flat position at the end of the day. The other dealers had short positions

reflecting the P* (equilibrium price) increases and buying pressure that drove

the prices up during the simulation.

4.4.3 Trading Instructions: Simulation C

An order-driven market structure was used to study trading when participants

are given either an upward sloping supply curve or a downward sloping demand
curve. Rather than being instructed to buy a fixed quantity of shares, buyers and

sellers are asked to maximize their surplus or profit, which is the number of shares

bought or sold times the amount their reservation price differs from the average

price they paid. The reservation prices for buyers are decreasing in the quantity they

hold in their position, a demand curve. The reservation prices for sellers are increasing

in the quantity they have sold, a supply curve. Our interest is in whether a group of

trading participants will trade the optimal quantity in the market or whether in the

absence of explicit order quantities they overtrade, or trade too little.

LBS37

LBS9

LBS1

LBS3

LBS8

LBS4

−1000 −500 0 500 1000 1500

LBS2

Average Position=>
P&L=>

Closing Position=>

Fig. 4.6 Performance of seven market maker trading teams. The teams that controlled risk by

keeping their average absolute value of their positions below 350 were able to make profits. Teams

LBS4 and LBS2 incurred large losses and held large risk positions
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In the example below, we provide the buyers’ reservation price function, which starts

at $26.00 but decreases by one for each 1,000 shares bought. If a participant buys 6,000

shares over the course of the simulation, for instance, the reservation price is $20.00.

If they paid on average $18, then the surplus generated is 12,000.

Reservation BUY curve: PR = $26 – (X units /1,000)

# shares bought = _________

PR = 26 – (# shares bought /1,000) = _________

Average buy price = _________

Surplus = (# shares) × (PR – Avg buy price) = _________

The sellers’ reservation price function is below. It starts at $12.00 but increases

by one for each 1,000 shares bought. If a participant sells 2,000 shares, the

reservation price is $14.00. If the sellers’ average selling price is $18, for instance,

the surplus is 16,000.

Reservation SELL curve: PR = $12  +  (X units /1,000)

# shares sold = _________

PR = 12 + (# shares sold/1,000) = _________

Average sell price = _________

Surplus = (# shares) × (Avg sell price – PR) = _________

LBS31

LBS26

LBS30

LBS25

LBS3

LBS28

6003000

Average Position=>
P&L=>

Closing Position=>

−300−600−900−1200

Fig. 4.7 Performance of six market maker trading teams. Only two teams, LBS #31 and #26, were

able to make profits, and the teams that allowed their average position to exceed 300 had the

largest losses
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We provided the surplus functions above to a group of 28 participants. The group

was split into teams of two, with seven buying teams and seven selling teams.

Although the teams were not aware of the other teams’ curves, the equilibrium price

was $19, and the maximum surplus was achieved by participants that built

a position of 3,500 and bought at the lowest possible prices or sold at the highest

prices (see Fig. 4.8). In our experiment, average per share trade price was $19.11.

In the experiment, participants in the 14 teams built positions ranging from 1,100

to 7,500 (see Fig. 4.9). There was a substantial dispersion of performance, yet

the market’s trade prices converged to within $0.11 of the $19.00 equilibrium price.

The average ending position was 4,001, so participants were within 15 % of the

optimal position implicit in the reservation price functions. The teams with the

greatest surpluses were able to come close to the optimal position of 3,500 and to

buy below the average price and sell at greater than the average price.

As these three simulation exercises show, a number of insights can be gained

into the effect of market structure on participant behavior and market outcomes

(the quality of price and quantity discovery) by running “live market” simulations.

First, participants’ performance varied widely despite being in the same environ-

ment with the same trading instructions. Second, markets are complicated and not

Fig. 4.8 Trading experiment with supply and demand functions and surplus calculations based on

a participant trading at the market average price over the day of $19.11. The optimal trading

strategy was to end with a position of 3,500 long (buyer) or short (seller)
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perfectly liquid; filling large orders, while competing to outperform price bench-

marks, is challenging. Participants often did not complete their instructions even

though completion was part of their assessment. Third, trading can add (or subtract)

value for investment managers. Even in fairly simple simulation games, perfor-

mance varied widely across participant teams. Finally, risk was not well controlled

by the (admittedly inexperienced) trading participants. Although given specific

position limits as guidelines, many participants had large average positions and

suffered substantial losses from adverse price movements.

Market architects today combine different trading systems designs (Zhang et al.

2011). Beyond studies of trading decision making, the live simulations provide

a method for comparing alternative market structures. For instance, implicit trading

costs incurred in handling a large order over a trading day can be contrasted in

markets with and without dealers, and with and without a dark liquidity pool. Live

simulations, by extending what can be learned with analytical modeling and

empirical data analytics, provide a laboratory for examining a broad set of questions

about trading behavior and market structures.

4.5 Conclusion

Simulation is a powerful research tool that can be used in conjunction with

theoretical modeling and empirical research. While simulation can enable

a researcher to delve into issues that are too detailed and specific for theory to

handle, a simulation structure must itself be based on a theoretical model. We have

illustrated this with reference to TraderEx, the simulation that we have developed

and used to analyze details of market structure and trading in an equity market.

One further research methodology incorporates simulation: experimental economics.

This application applies the simulated market in a laboratory where multiple players are

networked together. With a well-defined performance measure and carefully crafted

alternative market structure and/or information environments, a simulation-based exper-

imental application can yield valuable insights into the determinants of market outcomes

when market structure affects individual behavior and when behavioral economics

along with theoretically rational decision making characterizes participant actions.

Appendix

Modeling Securities Trading

The simulation methodology was chosen for its ability to accommodate critical

institutional features of the market mechanism and off-exchange dealers’ opera-

tions. While higher level abstractions and simplifications could yield an analytically

tractable model, it is not consistent with the goals of this chapter. These complex-

ities included here are the specialist’s role, the use of large and small order sizes,

and the limit and market orders.

4 Simulation as a Research Tool for Market Architects 141



Earlier market structure research provides useful insights, but missing institu-

tional details prevent it from determining the effect of third markets. Garman’s

(1976) model of an auction market identifies a stochastic order arrival process and

a market structure consistent with negative serial autocorrelations or the tendency

of price changes to reverse themselves. Garman’s model has no specialist role, and

an analytic solution is obtained only for the case with one possible price. He notes

“the practical difficulties of finding analytic solutions in the general case are

considerable, and numerical techniques such as Monte Carlo methods suggest

themselves.” Mendelson (1987) derives analytic results that provide a comparison

of market consolidation or fragmentation on market performance. The work

provides numerous insights into market design trade-offs. As a simplification,

however, all orders from traders are for one unit of the security.

Simulation has yielded useful results in other microstructure research. Garbade

(1978) investigated the implications of interdealer brokerage (IDB) operations in

a competing dealer market with a simulation model and concluded that there

are benefits to investors from IDBs through reduced dispersion of quotes and trans-

action prices closer to the best available in the market. Cohen et al. (1985) used

simulation to analyzemarket quality under different sets of trading priority rules. They

showed that systems that consolidate orders and that maintain trading priorities by an

order’s time of arrival in the market increase the quality of the market. Hakannson

et al. (1985) studied the market effects of alternative price-setting and own-inventory

trading policies for an NYSE-style specialist dealer using simulation. They found that

pricing rules “independent of the specialist’s inventories break down.”

Further Details on Simulation Model and Environment

Our simulation model has been used in experiments with subject-traders to test

hypotheses concerning market structures. The simulation model is dynamic, with

informational changes occurring in a way that creates the possibility of realizing

trading profits from close attention to price changes and careful order handling. In

our human-machine interactive environment, the computer generates orders from

an unlimited number of “machine-resident” traders and investors. This enables us

easily to satisfy the conditions for an active, competitive market.

To be useful and valid, simulation models must reflect real-world dynamics

without being burdened by unnecessary real-world detail. A simulation model also

requires a strong theoretical foundation. The advantage of simulation over theoretical

modeling is that “theorizing” requires abstracting away from some of the very details

ofmarket structure that exchange officials and regulatorswish to study. Consequently,

theoretical modeling can give only limited insight into the effects of market design

changes on the behavior of market participants. The advantage of simulation vis-à-vis

empirically testing of new market structures is that the simulated experiments can be

run at much lower cost and across a broader range of alternatives.

The objective of our computer simulation is to provide a backdrop for assessing

the decisions of live participants. Trading in the model is in a single security and is
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the result of “machine-generated” order flow interacting with the order placement

decisions of the live participants. Assumptions are made about the arrival process

of investors’ orders, changes to a price, p*, which is an “equilibrium value” at which

the expected arrival rate of buy orders equals the expected arrival rate of sell orders.

P* follows a random walk jump process. In other words, the equilibrium value

jumps randomly from one level at interarrival times based on sampling an exponential

distribution. After a shift in p*, the orders of the informed traders pull the quotes and

transaction prices up or down, causing them to trend towards the new p* level.

Occasionally, market prices can also trend away from p* because of the orders of

momentum traders or the chance arrival of a string of buy or sell liquidity orders.

However, movements away from p* are unsustainable; eventually the imbalanced

order flow causes a price reversal and market prices gravitate back towards p*.

Little work in experimental economics has used computers to create background

order flow into which participants individually enter orders (Smith and Williams

1992; Friedman 1993). Our test environment does. We use discrete event computer

simulation to do the following:

• Generate a background public order flow that can (1) be placed on a public limit

order book for later execution, or (2) execute as market orders immediately

against the public limit order book.

• Give the live participants the opportunity to trade a quantity of stock. Depending

on the market structure, the live participants can (i) place them in a public limit

order book and wait for a trade to occur or (ii) execute them against the public

limit order book immediately. Variants of the simulation model include market

makers, or call auctions, or dark liquidity pools to facilitate transactions.

• Maintain the screen which displays (i) orders on the public limit order book,

(ii) a time-stamped record of all transaction sizes and prices for each trading

session, and (iii) the users’ position, risk, and profit performance data.

• Capture information concerning (i) the live participants’ decisions and

(ii) market quality measures such as bid-ask spreads.

In summary, with this realistic and theory-based model and the ability in the

simulation to control the level of transparency provided, we have a rigorous

environment to assess trading decisions and the effects of different market rules.

Components of the Market Model

In the simulation model, assumptions are made about the arrival process of

investors’ orders, elasticity of supply and demand, and order placement strategies,

price volatility, and the proportions of market and limit orders.

Order Arrival. Orders arrive according to a price-dependent Poisson function.

Using time-stamped transactions data on six stocks traded on the London Stock

Exchange, a Kolmogorov-Smirnov goodness-of-fit test fails to reject the null

hypothesis of exponential interarrival in 17 out of 22 sample periods at the 0.10

level of significance. We would expect to reject in just over two cases due to

random realizations. The fit is not perfect in part because transactions tend to
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cluster somewhat more than predicted by the theoretical model (Weber 1991).

Given the shortcoming of using empirical distributions in simulations (Law and

Kelton 1989), the Poisson assumption appears sufficiently justified for capturing the

typical behavior of the order arrival process.

The Poisson interarrival time, T, is exponentially distributed with bt equal to the

mean interarrival time at time t. The mean interarrival time is set at the beginning of

each experiment and assumed to hold constant. A realization at time t is thus

Tt ¼ C(b). The supply and demand structure follows closely those previously

developed in the market microstructure literature (Garbade and Silber 1979), in

which buy and sell arrival rates are step functions of the difference between the

quoted price and the equilibrium value of the security Fig. 4.10.

Garman (1976) termed the intersection of the supply and demand functions

a “stochastic equilibrium.”

Demand/buy orders, D(p):

lB pi; p
�ð Þ ¼ a1 for pt

� < pi

lB pi; p
�ð Þ ¼ a1 þ a2 pt

� � pið Þ for pi ¼ pt
� þ a

with a ¼ tick size, 2 tick sizeð Þ, 3 tick sizeð Þ, . . . d
lB pi; p

�ð Þ ¼ a1 þ a2d for pt
� � pi > d

Supply/sell orders, S(p):

lS pj; p
�

� �
¼ a1 for pt

� > pi

lS pj; p
�

� �
¼ a1 þ a2 pj � pt

�
� �

for pj ¼ pt
� � a

with a ¼ tick size, 2 tick sizeð Þ, 3 tick sizeð Þ, . . . d
lS pj; p

�
� �

¼ a1 þ a2d for pj � pt
� > d

$35.00

$34.00 S(p(t))

D(p(t))

Stochastic
equilibrium,
p*(t)

$33.00

$32.00

$31.00
5.5 6.5 7.5

Arrival Rate: Orders per Hour

P
ri

ce

8.5 9.5

Fig. 4.10 Buy and sell order

arrival rates. At market prices

greater than p*, sell orders

will arrive with greater

intensity than buy orders. At

market prices less than p*,

buy orders will arrive with

greater intensity than sell

orders
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The constant a1 reflects the proportion of arrivals that are market orders.

The coefficient a2 determines the arrival rate of limit orders with reservation prices.

Limit order traders are sensitive to discrepancies between available prices and the

equilibrium value. The parameter, d, is the range around the equilibrium

value from which limit prices for limit orders are generated. At a price pi lower

than the equilibrium value at the time, pt
*, the arrival rate of buy orders will

exceed the rate of sell order arrivals. The resulting market buy orders and limit

order bids will exceed the quantity of sell orders for below-equilibrium values.

The arrival rate discrepancy will cause prices to rise since in expectation,

orders will trade against the lowest offer quotes, and add new, higher priced

bid quotes.

Order Size. Orders are between one and 250 units of the security. This reflects

a convenient normalization that is consistent with the empirically observable range

of order sizes. A unit may represent, for instance, three round lots, or 300 shares.

Beyond 250 units, we assume the trade would be handled as a block trade, and

negotiated outside of the standard market design, or arrive in the market in smaller

broken-up pieces. Large orders can have “market impact,” and can move prices up

for large buyers, and force them down for larger sellers. The functioning of the

market for large orders is consistent with observed trade discounts for large sell

orders and premiums for large buy orders.

Order Placement Strategies. The machine-generated order flow consists of

liquidity, informed, and momentum trading orders. The liquidity orders are either

limited price orders or market (immediately executable) orders. Market orders

execute on arrival but are “priced” to reflect a maximum acceptable premium or

discount to the current bid or offer. If the market order is large enough, its

price impact (the need to hit successive lower priced bids or lift higher priced

offers) will exceed the acceptable discount or premium, and the remaining

order quantity will become a limit order after partially executing against the

limit order book.

Information Generation. Idiosyncratic information events occur that change

the share value, p*, at which buying and selling order arrival rates are

balanced. Information event occurs according to a Poisson arrival process.

When an information innovation occurs, the price will have a random walk jump.

Price Random Walk. Idiosyncratic information events occur that change

the share value, p*, at which the arrival rate of buy orders equals the arrival rate

of sell orders. The time between information change is assumed to be exponentially

distributed with mean, 12 h. Empirical validation is difficult, because informatio-

n affects the share values in unobservable ways. When there is a change in

information that will shift the “balance price,” p* evolves according to a random

walk without return drift. To assure nonnegative prices, the natural log of price is

used, yielding a log-normal distribution for the equilibrium price. The white noise

term, et, is normally distributed with variance linear in the time since the

last observation. This is consistent with the price diffusion models used in

the financial economics literature (Cox and Rubinstein 1985):
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ln pt * ¼ ln pt � T * + et where, et � N(0, Ts2)
where pt * � LN(ln pt � T *, Ts2)
The natural logarithm of the current price is an unbiased estimator of the natural

logarithm of any subsequent price:

E ln pt þ T� j pt�ð Þ ¼ ln pt�
Empirical validation for the random walk model comes from numerous tests,

whose results “are remarkably consistent in their general finding of randomness . . .
serial correlations are found to be small” (Malkiel 1987).

Information Effects. If the bid and offer quotes straddle p*, there is no informed

order flow and buying and selling order arrival rates will be equal. When p* is

outside of the bid-offer range, additional one-sided market orders will be generated

according to a Poisson process.
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that the market favorably views the issue announcement of these bonds that we

refer to as bonds with European put options or European putable bonds. This

response is in contrast to the response documented by the literature to other bond

issues (straight, convertible, and most studies examining poison puts) and to the

response documented in the current paper to the issue announcements of poison

put bonds. Our results suggest that the market views issuing European putable

bonds as helping mitigate security mispricing. Our study is an application of

important statistical methods in corporate finance, namely, event studies and the
use of general method of moments for cross-sectional regressions.

Keywords

Agency costs • Asymmetric information • Corporate finance • Capital structure •

Event study methodology • European put • General method of moments •

Management myopia • Management entrenchment • Poison put

5.1 Introduction

This paper examines the motivations for issuing putable bonds in which the

embedded option is not contingent upon company-related events. The option

entitles bondholders to sell the bond back to the firm on the exercise date (usually

3–10 years after the bond is issued) at a predetermined price (usually at par). We

refer to these bonds as bonds with European put options or European putable bonds.

Unlike the poison put bonds (i.e., bonds with event risk covenants) that have been

studied by the literature,1 the exercise of the option in a putable bond is not
contingent upon a company-related event. This distinction is important because

a poison put protects the bondholder from a specific event (e.g., a takeover) and

may be designed to help prevent that event. In contrast, putable debt provides

protection to the bondholder against any deterioration in the value of her claim.

This distinction is important also because the two types of embedded put options

may serve different purposes. Crabbe and Nikoulis (1997) provide a good overview

of the putable bond market.

Corporate managers determine which contingent claims the company issues to

finance its activities. This choice includes the debt-equity mix and the specific

design of the debt. The design of the debt includes its maturity, seniority, collateral,

and the type of embedded options included in the bond contract. The theoretical

corporate finance literature indicates that including convertible, callable, and/or

putable bonds in the capital structure may help mitigate agency costs and reduce

asymmetric information. Haugen and Senbet (1981) theoretically demonstrate that

the optimal combination of embedded call and put options should eliminate the

1See for example, Crabbe (1991), Bae et al. (1994, 1997), Cook and Easterwood (1994), and Roth

and McDonald (1999), Nash et al. (2003). Billett et al. (2007) find that 5 % of corporate bonds of

their sample have a non-poison putable option.
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asset substitution problem. Bodie and Taggart (1978) and Barnea et al. (1980) show

that bonds with call options can mitigate the underinvestment problem. Robbins

and Schatzberg (1986) demonstrate that the increased interest cost of callable bond

can be used to convey the true value of the firm to the market.2

The literature has not empirically examined the motivation and equity valuation

impact of issuing debt with European put options. We fill this gap in the literature in

several ways. First, we examine the stock price reaction around the announcement

dates of the two types of putable bond issues: bonds with European put options and

bonds with poison puts. Further, we consider four alternative motivations for

incorporating either a European or a poison put option in a bond contract and test

the hypotheses that putable debt is issued to reduce security mispricing, agency

costs of debt, management entrenchment, and myopia. The first possible motivation

for issuing putable debt is asymmetric information. Consider a company that is

undervalued by the market. The market should also undervalue its risky straight-

debt issue. However, if this firm were to issue putable bonds, the put option would

be overvalued. (Recall that put options are negatively related to the value of the

underlying asset.) Consequently, the market value of bonds with a put option is less

sensitive to asymmetric information than straight bonds, minimizing market

mispricing of these debt securities. Additionally, if the market overestimates the

risk of the bond, it may overvalue the embedded put option at issuance, thereby

increasing bond proceeds and benefiting the shareholders.3 The second possible

motivation is mitigating agency costs of debt. For example, the existence of a put

option mitigates the advantage to stockholders (and the loss to bondholders) from

risk shifting, thereby reducing the incentive to shift risk. Risk shifting hurts putable

bondholders less than holders of straight bonds because the value of the put option

(which is held by bondholders) is an increasing function of the firm’s risk. The third

possible motivation is the relatively low coupon rate (a myopic view that ignores

the potential liability to the firm due to the put option). The fourth possible

motivation is that the put option may serve to entrench management. This fourth

motivation is most relevant for firms issuing poison puts since these put options are

exercisable contingent upon company-related events that are usually related to

a change in ownership.

We find that the market reacts favorably to the issue announcement of European

put bonds. We also examine the relationship between the abnormal returns around

the put issue announcement date and firm characteristics that proxy for asymmetric

information problems, potential agency costs (i.e., risk-shifting ability and the level

of free cash flow), and management myopia. The empirical evidence is consistent

with the view that the market considers issuing putable bonds as mitigating security

mispricing caused by asymmetric information. The results do not support the idea

2Other benefits posited by the literature include minimizing tax liabilities. See for example, Brick

and Wallingford (1985), and Brick and Palmon (1993).
3Brennan and Schwartz (1988) offer a similar argument to explain the benefits of issuing

convertible bonds.

5 Motivations for Issuing Putable Debt: An Empirical Analysis 151



that putable bonds are issued to obtain lower coupon rates (i.e., management

myopia). Our empirical findings are robust to a number of alternate specifications.

In contrast to European putable bonds, and consistent with the management

entrenchment hypothesis (see Cook and Easterwood (1994) and Roth and

McDonald (1999)), we find that the market reacts unfavorably to the issue

announcement of poison put bonds. However, consistent with Bae et al. (1994)

who argue that poison put bonds are useful in mitigating agency cost problems, we

find that the abnormal returns around the issue announcement of poison put bonds

are positively related to the protection level of the event risk covenant. Thus, our

results are consistent with the view that European put bonds are effective in

mitigating security mispricing problems, but, in contrast, poison put bonds are

related to management entrenchment or mitigating agency cost problems.

The paper’s organization is as follows. In the next section we summarize the

previous literature. Section 5.3 develops the empirical hypotheses. We describe the

data and empirical methodology in Sect. 5.4. The empirical results are summarized

in Sect. 5.5. We offer concluding remarks in Sect. 5.6.

5.2 Literature Review

The theoretical corporate finance literature concludes that the firm’s financing

decision may affect its equity value for several reasons. First, issuing debt

increases firm value because it decreases its tax liabilities.4 Second, issuing debt

may be, in part, a signaling mechanism that informs the market of private

information. For example, Ross (1977) and Ravid and Sarig (1991) demonstrate

that the manager of a firm with better prospects than the market perceives has an

incentive to signal her firm’s quality by issuing a greater amount of debt than

issued in a symmetric information environment. Third, prudent level of debt can

reduce the agency costs arising from the conflict of interest between managers and

shareholders as demonstrated by Jensen and Meckling (1976). For example,

Jensen (1986) demonstrates that leverage can minimize the deleterious effect of

free cash flow on the firm.5 However, leverage is also shown to generate other

4See, for example, Modigliani and Miller (1963), Scott (1976) and Kim (1978). In contrast, Miller

(1977) suggests that the tax benefit of interest is marginal. However, Mackie-Mason (1990)

empirically demonstrates the significant impact of corporate taxes upon the observed finance

choices of firms.
5Hence, empirically, we would expect that as firms announce increased levels of debt, the stock

price should increase. However, studies by Dann and Mikkelson (1984), Mikkelson and Partch

(1986), Eckbo (1986), and Shyam-Sunder (1991) indicate that there is no systematic relationship

between the announcement of firm’s debt financing and its stock price or that this relationship is

weakly negative. One potential explanation for this result is that the market can predict future debt

offerings as argued by Hansen and Chaplinsky (1993). Another potential explanation, as suggested

by Miller and Rock (1985) and documented by Hansen and Crutchley (1990), is that raising

external capital may indicate a cash shortfall.
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agency problems because of the conflict of interest between stockholders and

bondholders. These agency problems include underinvestment and risk shifting

(or asset substitution).6

Other studies indicate that these agency problems can be mitigated or eliminated

by optimal security design. For example, Haugen and Senbet (1981) demonstrate

that the optimal combination of embedded call and put options completely elimi-

nates the asset substitution problem. Bodie and Taggart (1978) and Barnea

et al. (1980) show that the call options of bonds can mitigate the underinvestment

problem. Similarly, Green (1984) demonstrates that including convertible bonds in

the capital structure may also mitigate the underinvestment problem.

The literature has also demonstrated that an appropriate debt security design

may alleviate asymmetric information problems. For example, Robbins and

Schatzberg (1986) demonstrate that the increased interest cost of callable bond

can be used to signal the value of the firm. Moreover, as similarly stated for the case

of convertible bonds by Brennan and Schwartz (1988), the inclusion of a put option

can minimize the mispricing of debt securities if the market overestimates the risk

of default. Chatfield and Moyer (1986) find that putable bonds may be issued by

financial institutions for asset-liability management in a period of volatile interest

rates. Tewari and Ramanlal (2010) find that callable-putable bonds provide protec-

tion to bondholders and improved returns to stockholders.

The literature examines the equity valuation impact of a special type of putable

bond known as the poison put bond. In poison put bonds, the put option is

exercisable contingent upon a company-related event such as a leveraged

restructuring, takeover, or downgrading the debt credit rating to speculative

grade. David (2001) shows that puts may have higher strategic value than intrinsic

value. Crabbe (1991) finds that such event-related covenant put bonds reduce the

cost of borrowing to the firm. Bae et al. (1994) conclude that stockholders benefit

from the inclusion of event-related (risk) covenants. Furthermore, Bae

et al. (1997) empirically document that the likelihood of a firm to include event

risk covenants is positively related to the firm’s agency costs of debt. In contrast,

Cook and Easterwood (1994) and Roth and McDonald (1999) find that the

inclusion of poison put bonds benefits both management and bondholders at the

expense of stockholders.

In contrast to these studies of poison put options, our study examines debt issues

in which the embedded put option is equivalent to a European put with a fixed

exercise date that is usually 3–10 years after the issue date. That is, bondholders

may exercise the put option only at the exercise date, and their ability to do so is not

contingent upon any particular company-related event. Thus, we believe that

issuing bonds with an embedded put option that is not contingent upon a company-

related event (such as a change in ownership) is not likely to be motivated by

6Myers (1977) demonstrates that shareholders may avoid some profitable net present value pro-

jects because the benefits accrue to the bondholders. Jensen and Meckling (1976) demonstrate that

leverage increases the incentives for managers, acting as agents of the stockholders, to increase the

risk of the firm.
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management entrenchment. Consequently, we consider the security mispricing

motivation and two other possible motivations: mitigating agency costs and the

myopic behavior on the part of the management.

5.3 Hypotheses

In this section, we describe four alternative motivations for incorporating a put

option in a bond contract and outline their empirical implications.

The first motivation is reduction in the level of security mispricing due to
asymmetric information. Consider a company that is undervalued by the market.7

The market should also undervalue its risky straight-debt issue. However, if this

firm were to issue putable bonds, the put option would be overvalued. Conse-

quently, the market value of bonds with put option is less sensitive to asymmetric

information than the market value of straight bonds, minimizing market mispricing

of these debt securities. Additionally, the overvaluation of the implicit put option

increases the debt proceeds at the issuance thereby benefiting the shareholders. This

possible motivation has the following empirical implications. First, issuing bonds

with put option should be associated with an increase in equity value. Second, this
increase in firm value should be negatively related to the accuracy with which the

firm’s value has been estimated prior to the bond issue. Third, because the value of
the put option is directly related to the magnitude of firm undervaluation, the

increase in equity value should be directly related to the value of the put option.

The second possible motivation is mitigating the bondholder-stockholder
agency costs.8 The value of a put option is an increasing function of the firm’s

risk. Thus, its existence mitigates the gains to stockholders from, and hence their

incentives for, risk shifting. This possible motivation has the following empirical

implications. First, the benefit to a firm from incorporating a put option in the bond

contract should be directly related to the firm’s ability to shift risk in a way that

increases the value of stockholders claims at the expense of bondholders. Second,
the inclusion of a put option should help restrain management from taking on

negative net present value projects in the presence of Jensen’s (1986) free cash

flow problem.9 In the absence of a put option, undertaking negative net present

value projects should reduce security prices for both stockholders and bondholders.

7We assume that managers of companies that are overvalued have no incentive to resolve security

mispricing. Consequently, managers of undervalued firms could send a credible signal to the

market of the firm’s undervaluation with the inclusion of a put feature. Overvalued firms should

not be able to mimic since the put option represents a potential liability that is greater to these firms

than of the undervalued firms.
8The bondholders-stockholders agency conflict has been found to be important in security design

by Bodie and Taggart (1978), Barnea et al. (1980), Haugen and Senbet (1981), Jung et al. (1996),

and Lewis et al. (1998).
9Equivalently, the inclusion of a put option should restrain management from consuming

a suboptimal amount of perquisites or nonpecuniary benefits.
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In contrast, giving bondholders the option to put the bond back to the firm at face

value shifts more of the negative price impact of undertaking negative net present

value projects to the stockholders. This negative stock price impact may reduce

management compensation that is tied to equity performance and/or induce tender

offers that will ultimately help replace the current management. These increased

costs to stockholders and management should induce management to refrain from

undertaking negative net present value projects. Thus, we hypothesize that the

benefit to the stockholders from incorporating a put option in the bond contract

should be directly related to the level of free cash flow. Third, the gain in firm value

should be related to the magnitude of the agency cost problem that the firm faces.

The valuation of the put option by the market (assuming market efficiency and

symmetric information) should be positively related to the magnitude of the agency

cost problem faced by the company. Thus, the benefit to the firm should also be

directly related to the aggregate value of the implied put option of the issue (scaled

by firm size). Fourth, for our sample of poison put bonds, the benefit to shareholders

should increase with the strength of the event risk covenant, since the greater the

strength of the event risk covenant, the less likely management will engage in value

decreasing activities. Bae et al. (1994) tested a similar set of hypotheses for

a sample of poison put bonds.10

The third possible motivation is the low coupon rate (compared to the coupon

rates of straight or callable debt issues). This motivation reflects management
myopia as it ignores the potential liability to the firm due to the put option.11 That

is, myopic management may not fully comprehend the increased risk to the firm’s

viability that is posed by the put option. In particular, bondholders would have the

right to force the firm to (prematurely) retire its debt at a time that is most

inconvenient to the firm, which in turn can precipitate a financial crisis. Further,

if the cost of financial distress is significant, given rational markets and myopic

management, issuing putable debt may negatively impact the value of equity.

This possible motivation has the following empirical implications. First, because
management myopia implies that management pursues suboptimal policies, the

issuance of putable debt should be associated with a decline in equity value.12

Second, the decline should be more severe the larger is the aggregate value of

the implied put option. Third, because expected costs of financial distress are

10Although bonds become due following formal default, hence all bonds in a sense become

putable, bondholders usually recover substantially less than face value following formal default

because equity value has already vanished. In contrast, a formal inclusion of put option may allow

bondholders to recover the face value at the expense of shareholders when financial distress is not

imminent but credit deterioration has occurred.
11Other studies that have examined managerial myopia include Stein (1988), Meulbroek

et al. (1990), Spiegel and Wilkie (1996), and Wahal and McConnell (2000).
12Haugen and Senbet (1978, 1988) theoretically demonstrate that the organizational costs of

bankruptcy are economically insignificant. However, if the putable bonds increase the potential

of technical insolvency, then it will increase potential agency costs that are not necessarily

insignificant.
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negatively related to the financial stability of the company, the decline should be

more severe the lower the credit rating of the bond.

The fourth possible motivation is that the use of put options enhances manage-
ment entrenchment. This hypothesis is relevant for firms issuing poison but not

European put bonds. In particular, many bonds with event risk covenants (i.e.,

poison puts) place restrictions on the merger and acquisition activity of the issuing

firms, thereby strengthening the hands of management to resist hostile takeover

bids. This possible motivation has the following empirical implications. First,
issuing bonds with put options should be followed by a decrease in equity value.

Second, in contrast to the mitigating agency costs hypothesis, the abnormal

returns of equity around the issue announcement date should be inversely related

to the level of event-related covenant protection offered to the bondholder.

5.4 Data and Methodology

Our sample of bonds with put options is taken from the Warga Fixed Income
Database. The database includes pricing information on bonds included in the

Lehman Brothers Bond Indices from January 1973. Using this database we select

all bonds with fixed exercise date put option (i.e., not event contingent), issued

between January 1973 and December 1996, excluding issues by public utilities,

multilateral agencies (such as the World Bank), and sovereign issues. In our sample

we keep only those issues for which we find announcement dates in the Dow Jones
News Retrieval Service. This resulted in a sample of 158 bonds of which the earliest

bond is issued in 1979. Our final sample of bonds is selected according to the

following criteria:

(a) The issuing company’s stock returns are available on the CRSP tapes. For

20 companies CRSP data are not available, resulting in 138 issues. To reduce

confounding effects, all repeat issues by the same company within a year of

a sample issue are eliminated. We also eliminated observations for which we

find other contemporaneous corporate events. This further reduced our sample

to 104 issues.

(b) Furthermore, we eliminate from the sample companies that do not have suffi-

cient accounting data, credit rating, issue size, and industry code in either the

Compustat tapes, Moody’s Industrial Manuals, or the Warga’s Fixed Income
database. This reduces our sample size by 13 firms.

(c) We eliminate one more company for which we found no I/B/E/S data, thus

yielding a final sample of 90 firms.

The list of these firms and the characteristics of these bonds are reported in

Appendix 1. The maturity of these put bonds ranges from 5 to 100 years, with an

average initial maturity of 24 years. The put exercise dates ranges from 2 to

30 years, with an average put expiration period of 7 years.13

13Four bonds have multiple put exercise dates.
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For the sake of comparison, we also construct a sample poison put bonds.14 The

issue announcements of poison put bonds are taken from Dow Jones Interactive.
We also searched LexisNexis but did not find any new announcements.15 This

search resulted in 67 observations. Our final sample of bonds with poison put

feature is further refined using criteria (a), (b), and (c) described above. Criterion

(a) reduces the sample size to 57 observations, and applying criterion (b) further

reduces it to 47 observations. The list of these firms and the characteristics of these

bonds are reported in the Appendix 2.

For these issues, we collect CRSP daily returns for our event study.16 We

calculate the abnormal returns (AR) on equity for each firm around the date of the

issue announcement, assuming that the stochastic process of returns is generated

by the market model. We define the announcement date to be the earlier of the

date on which the bond is issued and the date on which the issue information

appears in the news wires, or published in the Wall Street Journal, as depicted by

the Dow Jones Interactive. Our final sample includes only bonds whose issue

announcement explicitly mentions the inclusion of a put option. We estimate the

market model coefficients using the time period that begins 200 trading days

before and ends 31 trading days before the event, employing the CRSP value-

weighted market index as the benchmark portfolio. We use these coefficients to

estimate abnormal returns for days �30 to +30. We calculate the t-statistics

for the significance of the abnormal and cumulative abnormal returns using

the methodology employed by Mikkelson and Partch (1986). See Appendix 3

for details.

We examine the abnormal returns and their determinants for the sample of

issuers of bonds with European put options. First, we test whether issuing these

bonds significantly affects equity values. The stock price should, on average, react

positively to the issue announcement if either reducing debt security mispricing due

to asymmetric information or mitigating agency costs is a major motivation for

issuing putable bonds. On the other hand, the stock price should, on average, react

negatively to the issue announcement if management myopia (i.e., the relatively

low coupon rate compared to straight or callable debt issues) is a major motivation

of management in issuing putable bonds and if costs of financial distress are

significant.

Second, we estimate the following cross-sectional regression equation that

relates the cumulative abnormal return of the issuing firm’s equity to firm

14Unlike the European put bond sample which we were able to obtain fromWarga’s Fixed Income
Database, we obtained our sample of poison puts from Dow Jones Interactive by using keywords

such as poison put, event risk, and covenant ranking. Warga’s database does not include an

identifiable sample of poison put bonds.
15We were only able to find a sample of poison put bonds with issue announcements using Dow
Jones Interactive and LexisNexis for the period between 1986 until 1991. We did use these news

services for the periods between 1979 and 2000.
16The event study methodology was pioneered by Fama et al. (1969).
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characteristics that proxy for agency costs, asymmetric information problems, and

managerial myopia:

CAR3i ¼ b0 þ b1FCFi þ b2RISKi þ b3SIZEi þ b4INTSAVEDi

þ b5ANALYSTSi þ b6FINSi þ ei, (5.1)

where CAR3i is the 3-day (i.e., t ¼ �1, 1) cumulative abnormal return for firm I.

The variables, FCF, RISK, SIZE, INTSAVED, and ANALYSTS proxy for agency

costs, information asymmetry, or management myopia. FINS is a dummy variable

that indicates whether the company is a financial institution.

FCF is the level of free cash flow of the firm for the fiscal year prior to the issue

announcement of putable bonds. We construct two alternative measures of FCF
which are similar to the definition employed by Lehn and Poulsen (1989)

and Bae et al. (1994). FCF1 is defined as [Earnings before Interest and

Taxes – Taxes – Interest Expense – Preferred Dividend Payments – Common

Stock Dividend Payments]/Total Assets. FCF2 is defined as [Earnings before

Interest and Taxes – Taxes – Interest Expense]/Total Assets.17 The inclusion of

a put option in the bond contract should help restrain management from misusing its

cash flow resources. We therefore expect b1 to be positive if reducing agency cost is
a major motivation for issuing putable bonds.

RISK is a dummy variable that equals 1 if the putable bond is rated by Standard
and Poor’s as BBB+ or below and zero otherwise.18 The impact of issuing putable

bonds on equity value may be associated with the variable RISK because of two

alternative hypotheses. First, the level of agency costs due to the asset substitution

problem is positively related to the probability of financial distress. We use this

dummy variable as a proxy for the firm’s ability and incentive to shift risk.

According to the agency cost motivation, we expect b2 to be positive. Second,

the greater the probability of financial distress, the more likely are bondholders to

exercise their put option and force the firm to prematurely retire the debt at a time

that is most inconvenient to the firm. Thus, according to the management myopia

hypothesis, we expect b2 to be negative.

SIZE is the natural logarithm of the total asset level of the issuing firm at the end

of the fiscal year preceding the issue announcement date. SIZE may have two

contrasting impacts on CAR3. First, SIZE may be interpreted as a proxy for the

level of asymmetric information. We expect that the degree of asymmetric infor-

mation is inversely related to SIZE. Hence, according to the debt security

mispricing motivation, we expect the putable bond issue announcement to have

a larger positive impact on small firms than on large firms. Consequently, we expect

17Note that FCF1 is the actual free cash flow of the firm while FCF2 is the (maximum) potential

free cash flow if dividends are not paid. We do not subtract capital expenditures from the free cash

flow variables because they maybe discretionary and maybe allocated suboptimally to satisfy

management’s interests.
18Had we assigned the value of 1 to only junk bonds, the number of observations with the risk

variable equal to one would be too small for statistical inference.
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b3 to be negative. On the other hand, we also expect that the risk of default is

inversely related to firm size. The higher the probability of default, the lower the

probability that the firm will be in existence and be able to pay its obligations

(including the par value of the bond if the put option is exercised) at the exercise

date of these European put options. Thus, size may be an indirect proxy of the

aggregate value of the put option. In this case, we expect b3 to be positive.

INTSAVED is the scaled (per $100 of assets for the fiscal year prior to the issue

announcement date) annual reduction in interest expense due to the incorporation of

a European put option in the bond contract. The annual interest expense reduction is

calculated as the product of the dollar amount of the putable bond issue and the

yield difference between straight and putable bonds. These yield differences are

calculated by subtracting the yields to maturity of the putable bond from the yield to

maturity of an equivalent non-putable bond, also taken fromWarga’s Fixed Income
Database. The equivalent bond has similar maturity, credit rating, and call feature

as the putable bond. The equivalent non-putable bond is selected from the issuing

firm if, at the issue date of the putable debt, the issuing firm has an appropriate

(in terms of maturity, credit rating, and call feature) outstanding non-putable bond.

Otherwise, we choose an appropriate equivalent bond from a firm of the same

industry code as given by the Warga’s Fixed Income database. We posit that value

of the embedded put option is directly related to the (present) value of INTSAVED.
If the benefits of mitigating either agency costs or security mispricing are a major

reason for issuing European put bonds, and if these benefits are directly related to

the value of the embedded option, then b4 should be positive. In contrast, if

managerial myopia is a major reason for issuing European put bonds, and if the

expected reduction in equity value due to the cost of financial distress is related to

the value of the option, then b4 should be negative. The b4 coefficient may be

negative also because it proxies for a loss of interest tax shield due issuing putable

rather than straight bonds.

The variable ANALYSTS, defined as the natural logarithm of one plus the number

of analysts who follow the issuing firm for the quarter prior to the putable bond

issue announcement date, is another proxy for the degree of asymmetric informa-

tion.19 We obtain the number of analysts following each firm, for the year prior to

the bond announcement, from the I/B/E/S tapes. We hypothesize that the degree of

asymmetric information is negatively related to ANALYSTS. Thus, if asymmetric

information motivation is a major motivation for issuing putable debt, we expect

b5 to be negative.

We note that the European put and the poison put samples vary in their

proportion of financial service companies. The European put sample contains

25 (out of 90) financial service companies, while the poison put contains only

one. To control for the potential sector impact, we introduce the dummy variable

FINS which equals one if the company is a financial institution and zero otherwise

19An alternative measure of the degree of asymmetric information is the number of analysts. The

empirical results are robust to this alternative measure.
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for our regression analysis of the European put sample.20 Table 5.1 provides

a summary of the expected signs of the regression coefficients for the sample of

European put bonds.

We estimate our regressions using the general method of moments (GMM)

procedure. See Appendix 4. The procedure yields unbiased White t-statistics

estimates that are robust to heteroscedasticity.21 Note that because our instruments

are the regressors themselves, the parameter estimates from OLS and GMM are

identical. This is also discussed in Appendix 3.

We test the robustness and appropriateness of our specification by estimating

alternative specifications that include additional variables. First, we include

a dummy variable for the existence of a call feature to take into account the

effectiveness of the call feature to mitigate agency costs. Second, we include

a dummy variable to indicate that the bond’s put option expires within 5 years

because effectiveness of the put bond in mitigating agency costs may be related to

Table 5.1 A summary of expected signs of abnormal returns and their determinants for issuers of

bonds with European put options

Agency cost Security mispricing Managerial myopia

Abnormal returns Positive Positive Negative

FCF Positive No prediction No prediction

RISK Positive No prediction Negative

SIZE No prediction Ambiguous No prediction

INTSAVED Positive Positive Negative

ANALYSTS No prediction Negative No prediction

The determinants of abnormal returns are: RISK is a dummy variable equal to one if the bond issue

has an S&P bond rating of BBB+ or below and zero otherwise. FCF is defined in two separate

ways. FCF1 and FCF2 are the two free cash flow measures as described in the text. In particular,

FCF1 is defined as [Earnings before Interest and Taxes – Taxes – Interest Expense – Preferred

Dividend Payments – Common Stock Dividend Payments]/Total Assets. FCF2 is defined as

[Earnings before Interest and Taxes – Taxes – Interest Expense]/Total Assets. INTSAVED mea-

sures the relative amount of aggregate interest expense saved per $1,000 of total assets of the

issuing firm. ANALYSTS is the natural logarithm of one plus the number of analysts who follow the

issuing firm for the year prior to the putable bond issue announcement date. Those predictions that

are confirmed by our empirical study are in bold letters, and those that are significantly different

from zero are also underlined

20In the next section, we report the regression results when we exclude financial service companies

from our European put sample. Essentially, the basic results of our paper are not affected by the

inclusion or exclusion of financial services company.
21The violation of the homoscedastic assumption for OLS does not lead to biased regression

coefficients estimators but potentially biases the computed t-statistic. The GMM procedure provides

an asymptotically unbiased estimation of the t-statistics without specifying the heteroscedastic

structure of the regression equation. The t-statistics obtained using GMM are identical to those

obtained using ordinary least squares (OLS) in the absence of heteroscedasticity.
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time to expiration of the put option. Third, we also include interaction variables

between these dummy variables and FCF, SPRISK, INTSAVE, and ANALYSTS.
In alternative specifications, we include interest rate volatility measures to take

into account the potential sensitivity of the value of the put option to interest rate

volatility. It should be noted that the value of the put option depends on the

volatility of the corporate bond yield. This volatility may be due to factors specific

to the company (such as corporate mismanagement and asymmetric information

about firm’s value) and macroeconomic factors relating to the stability and level of

market-wide default-free interest rates. Our independent variables in Eqs. 5.1 and

5.2 control for firm-specific yield volatility. To incorporate the possible impact of

market-wide interest rate volatility, we include several alternative variables. We

measure interest rate volatility as the standard deviation of the monthly 5-year

Fama-Bliss discount rate from CRSP. The standard deviation is alternatively

measured during a period of 60 months and 24 months immediately prior and

after the announcement date. Alternatively, we use the level of the Fama-Bliss

discount rate as a proxy for interest rate volatility.

We repeat the analysis for the sample of issuers of poison put bonds. As with the

sample of bonds with an embedded European put option, we first examine the

abnormal returns and their determinants for the sample of issuers of poison putable

bonds. In essence, we test whether issuing these bonds significantly affects equity

value. The stock price should, on average, react positively to the issue announce-

ment if either mitigating agency costs or reducing debt security mispricing due to

asymmetric information is a major motivation for issuing poison bonds. On the

other hand, the stock price should, on average, react negatively to the issue

announcement if management myopia (i.e., the relatively low coupon rate com-

pared to straight or callable debt issues) or management entrenchment is a major

motivation of management in issuing putable bonds.

We use two alternative specifications for the cross-sectional study that relates

the abnormal returns of the poison putable bond sample to firm characteristics.

The first is described by Eq. 5.1 The second includes a variable, COVRANK, that

equals the S&P event risk ranking on a scale of 1–5. S&P event risk ranking of one

implies that the embedded put option provides the most protection to bondholders

against credit downgrade events. Event risk ranking of five offers the least

protection to bondholders against credit downgrade events. Thus, the second

specification is:

CAR3i ¼ b0 þ b1FCFi þ b2RISKi þ b3SIZEi þ b4INTSAVEDi

þ b5ANALYSTSi þ b6COVRANKi þ ei: (5.2)

If mitigating agency costs was a major motivation for issuing poison put bonds

as suggested by Bae et al. (1994), then we would expect regression coefficients

b1, b2, and b4 to be positive. We also expect b6 to be negative because

COVRANK is negatively related to extent of bondholder protection, and this

protection should deter management from asset substitution activities.
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In contrast, if, as Cook and Easterwood (1994) and Roth and McDonald (1999)

argue, management entrenchment is a major motivation behind for issuing

putable bonds, then we expect b1 to be negative since we expect the potential

loss of value due to management entrenchment to be positively related to free

cash flow and b6 to be positive.22

5.5 Empirical Results

This section presents the empirical results for tests of our hypotheses discussed

above. Panel A of Table 5.2 provides summary statistics of issuers of bonds with

a European put option. The average annual sales, long-term debt, and total assets for

the fiscal year prior to the issue announcement date are $14.66 billion, $4.21 billion,

and $30.79 billion, respectively. The mean leverage ratio, defined as the long-term

debt to total assets, is 18.6 %. The average issue size of the putable bond is $190

million and represents, on average, 2.7 % of the firm’s assets. As measured by

RISK, 24 % of putable bonds are rated below A-. The average free cash flow of the

firm as a percentage of the firm’s total assets is below 4 %. The average amount of

interest saved (INTSAVED) due to the inclusion of a put option feature in the bond

issue is approximately 0.03 % of the total assets of the issuing firm. The maximum

interest expense saved is as high as $1.23 per $100 of total assets.23 However,

INTSAVED is negative for ten observations, which may be due to the lack of

a closely matched straight bond. To guard against this error-in-variable problem,

we estimate our regression Eq. 5.1 using two alternative samples: the entire sample

and a sample comprising of positive INTSAVED observations. The number of

analysts following a company ranges from 1 to 41. Panel B of Table 5.2 provides

the corresponding summary statistics for the sample of issuers of poison put bonds.

We note that these firms are smaller than the issuers of bonds with European put

options. Additionally, issuers of poison puts have a smaller number of following

analysts, and the bonds tend to be somewhat riskier than the issuers of bonds with

European put options.

Panel A of Table 5.3 presents the average daily abnormal performance of the

equity of issuers of bonds with European put options in our sample for t ¼ �30 to

t ¼ 30. These abnormal returns are obtained from a market model. Please note that

the t-statistics presented in Table 5.3 are based on standardized abnormal returns. In

an efficient market, we expect the market to impound the economic informational

impact of the new bond issue on the day of the announcement (t ¼ 0). The average

abnormal return at t¼ 0 is almost 0.33% and is significantly positive at the 1 % level.

22If a major motivation for issuing putable bonds is to enhance management entrenchment, then

we expect that the value of entrenchment is directly related to the level of free cash flow which

management can misappropriate.
23Crabbe (1991) demonstrates that bonds with poison puts reduce the cost of borrowing for firms.
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This suggests that the market views favorably the announcement of putable bonds.

This may be due to mitigating agency costs or resolving asymmetric information.

However, for the 3-day window (t ¼ �1, 1), the abnormal return is 0.19 % but is not

statistically significant from zero.

Table 5.2 Summary statistics of putable bond issuing firms

Variable Mean Std dev Minimum Maximum

Panel A: Sample of 90 issuers of bonds with European put options

Sales 14,656.250 23,238.860 89.792 124,993.900

Long-term debt 4,206.870 7,568.520 51.522 50,218.300

Total assets 30,789.070 41,623.450 182.281 174,429.410

Leverage ratio 0.186 0.122 0.012 0.457

Issue size 190.162 106.701 14.300 500.000

Ebit 1,818.390 2,647.810 10.457 13,275.700

ISSUE 0.027 0.056 0.001 0.439

RISK 0.244 0.432 0.000 1.000

FCF1 0.020 0.093 �0.082 0.823

FCF2 0.034 0.095 �0.080 0.824

Number of analysts 21.922 8.388 1.000 41.000

INTSAVED 0.029 0.130 �0.028 1.226

Panel B: Sample of 47 issuers of bonds with poison put options

Sales 5,033.849 5,921.869 406.360 34,922.000

Long-term debt 1,203.060 2,148.865 25.707 13,966.000

Total assets 5,080.781 7,785.288 356.391 51,038.000

Leverage ratio 0.208 0.112 0.031 0.476

Issue size 158.114 80.176 50.000 350.000

Ebit 481.121 639.842 �30.800 3,825.000

ISSUE 0.062 0.048 0.006 0.251

RISK 0.314 0.469 0.000 1.000

FCF1 0.034 0.032 �0.075 0.111

FCF2 0.051 0.036 �0.050 0.132

Number of analysts 18.803 7.792 2.000 39.000

INTSAVED 0.011 0.044 �0.070 0.216

Sales, long-term debt, total assets, and EBIT are in millions of dollars and are for the fiscal year

prior to the putable bond issue announcement. Leverage ratio is the ratio of the long-term debt to

total assets. Issue size is the dollar amount of putable bond issue in millions of dollars. ISSUE is

the ratio of issue size to the total assets of the issuing firm as of the fiscal year prior to the issue

announcement date. RISK is a dummy variable equal to one if the bond issue has an S&P bond

rating of BBB+ or below and zero otherwise. FCF1 and FCF2 are the two free cash flow measures

as described in the text. In particular, FCF1 is defined as [Earnings before Interest and

Taxes – Taxes – Interest Expense – Preferred Dividend Payments – Common Stock Dividend

Payments]/Total Assets. FCF2 is defined as [Earnings before Interest and Taxes – Taxes – Interest
Expense]/Total Assets. Number of analysts is the number of analysts who follow the issuing firms

for the year prior to the putable bond issue. INTSAVED measures the relative amount of aggregate

interest expense saved per $100 of total assets of the issuing firm
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Table 5.3 The average daily abnormal returns for firms issuing putable bonds from 30 days prior

to the putable bond issuance announcement to 30 days after the announcement. The t-statistics are

based on standardized abnormal returns. CAR is the cumulative abnormal return

Event day Abnormal return t-statistic CAR

Panel A: Sample of 90 issuers of bonds with European put options

�30 0.0006 0.1988 0.0006

�29 0.0004 0.2305 0.0010

�28 0.0011 0.8169 0.0021

�27 �0.0003 �0.1248 0.0017

�26 0.0002 �0.2028 0.0019

�25 0.0003 0.0263 0.0022

�24 0.0003 0.2174 0.0025

�23 �0.0002 �0.1306 0.0023

22 0.0007 0.2573 0.0030

�21 �0.0003 �0.0367 0.0026

�20 �0.0024 �1.6700 0.0003

�19 0.0000 0.1348 0.0002

�18 �0.0025 �1.6932 �0.0022

�17 0.0029 1.7141 0.0007

�16 �0.0005 0.0154 0.0002

�15 0.0022 1.4378 0.0024

�14 0.0022 1.4701 0.0046

�13 �0.0002 �0.1052 0.0043

�12 0.0007 0.4783 0.0050

�11 �0.0014 �1.2803 0.0036

�10 0.0003 0.1904 0.0039

�9 �0.0014 �0.5100 0.0025

�8 �0.0006 �0.6052 0.0019

�7 0.0001 �0.4020 0.0021

�6 0.0005 0.1268 0.0026

�5 0.0027 1.3209 0.0053

�4 �0.0001 �0.0050 0.0052

�3 0.0020 1.4407 0.0071

�2 �0.0028 �1.8590 0.0043

�1 �0.0021 �1.4323 0.0022

0 0.0033 2.6396 0.0055

1 0.0007 0.3534 0.0061

2 0.0007 0.3177 0.0068

3 0.0002 0.2628 0.0070

4 �0.0010 �0.7364 0.0060

5 0.0000 �0.2821 0.0059

6 �0.0036 �2.4342 0.0023

7 �0.0002 �0.4355 0.0022

8 �0.0004 �0.4253 0.0018

(continued)
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Table 5.3 (continued)

Event day Abnormal return t-statistic CAR

9 �0.0007 �0.5236 0.0011

10 0.0010 1.0509 0.0021

11 0.0039 2.8180 0.0060

12 0.0010 0.7853 0.0070

13 �0.0002 �0.0036 0.0068

14 �0.0013 �0.7663 0.0055

15 0.0006 �0.0920 0.0061

16 0.0014 1.2984 0.0075

17 0.0002 0.0847 0.0077

18 �0.0001 �0.2386 0.0076

19 0.0002 �0.3055 0.0078

20 0.0005 0.3692 0.0083

21 �0.0006 �0.0998 0.0077

22 �0.0016 �1.1099 0.0061

23 �0.0014 �0.8924 0.0047

24 0.0015 1.1956 0.0061

25 0.0001 �0.3050 0.0062

26 �0.0001 0.0257 0.0061

27 0.0004 0.4372 0.0065

28 �0.0011 �0.4242 0.0054

29 0.0004 0.8785 0.0058

30 �0.0010 �0.5929 0.0048

Panel B: Sample of 47 issuers of bonds with poison put options

�30 �0.0002 �0.2385 �0.0002

�29 �0.0029 �1.7698 �0.0032

�28 �0.0005 �0.1247 �0.0036

�27 0.0015 0.2635 �0.0021

�26 �0.0010 �0.4019 �0.0031

�25 0.0013 0.6437 �0.0018

�24 0.0003 �0.1287 �0.0015

�23 �0.0007 �0.3447 �0.0022

�22 �0.0021 �1.3803 �0.0044

�21 0.0023 0.5731 �0.0020

�20 �0.0028 �1.2905 �0.0048

�19 �0.0009 0.1682 �0.0058

�18 �0.0024 �1.1787 �0.0081

�17 0.0034 1.4394 �0.0048

�16 0.0001 �0.0490 �0.0047

�15 �0.0002 �0.2326 �0.0049

�14 0.0035 1.8138 �0.0014

�13 0.0010 0.7301 �0.0005

�12 �0.0026 �1.9908 �0.0031

(continued)
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Table 5.3 (continued)

Event day Abnormal return t-statistic CAR

�11 0.0002 �0.0182 �0.0029

�10 0.0026 1.3253 �0.0003

�9 �0.0034 �1.5412 �0.0038

�8 �0.0002 0.2221 �0.0040

�7 0.0003 0.0028 �0.0037

�6 0.0019 1.0805 �0.0018

�5 �0.0009 �0.7397 �0.0026

�4 �0.0006 �0.5318 �0.0032

�3 �0.0001 �0.2118 �0.0033

�2 �0.0003 �0.0870 �0.0036

�1 �0.0028 �1.5751 �0.0064

0 �0.0028 �1.3777 �0.0092

1 0.0004 �0.5639 �0.0088

2 0.0019 0.8618 �0.0069

3 0.0027 1.4826 �0.0041

4 0.0022 1.4571 �0.0019

5 0.0034 1.2458 0.0014

6 �0.0006 �0.5491 0.0009

7 �0.0002 �0.1866 0.0006

8 �0.0036 �2.2457 �0.0030

9 0.0026 1.4036 �0.0003

10 �0.0017 �1.0479 �0.0020

11 �0.0016 �1.1626 �0.0036

12 �0.0008 �0.7991 �0.0043

13 �0.0020 �1.0808 �0.0064

14 �0.0004 �0.4107 �0.0068

15 0.0002 �0.2023 �0.0067

16 �0.0005 �0.2077 �0.0072

17 �0.0003 �0.3234 �0.0075

18 0.0005 0.5278 �0.0070

19 �0.0018 �0.9564 �0.0087

20 0.0014 0.7079 �0.0073

21 �0.0022 �1.0614 �0.0095

22 �0.0015 �0.4152 �0.0110

23 �0.0004 �0.2990 �0.0114

24 �0.0015 �0.7324 �0.0129

25 �0.0006 �0.2189 �0.0134

26 0.0004 0.4731 �0.0130

27 0.0015 0.2512 �0.0115

28 0.0014 0.2703 �0.0102

29 �0.0022 �1.1175 �0.0124

30 �0.0002 0.2668 �0.0126
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Panel B of Table 5.3 presents the corresponding results for the issuers of poison put

bonds. Note that the abnormal return at t ¼ 0 is �0.28 % with a t-statistic of �1.38.

Furthermore, during the 3-day (i.e., t ¼ �1, 1) window, the abnormal return is

negative (�0.52 %) and is significantly different than zero (t-statistic of �2.03).

This negative abnormal return is consistent with the view that poison put bonds help

entrench the current management. The cumulative abnormal returns of the two sample

types of embedded put option are also depicted in Fig. 5.1. The patterns of CARs

Table 5.4 Cross-sectional regression results for the European put sample: base case

Full sample of 90 firms

Sample of 80 bonds with positive

INTSAVED

Coef. t-ratio p-value Coef. t-ratio p-value

Intercept �0.0388 �1.69 0.095 �0.03657 �1.58 0.1193

FCF1 �0.0016 �0.09 0.9289 �0.00392 �0.22 0.8277

RISK �0.0016 �0.25 0.8026 �0.00245 �0.37 0.7117

SIZE 0.0097 2.93 0.0044 0.010637 3.03 0.0034

INTSAVED 0.0269 2.59 0.0115 0.023819 2.27 0.0259

ANALYSTS �0.0153 �2.48 0.0152 �0.01848 �2.82 0.0062

FINS �0.0203 �2.79 0.0065 �0.02062 �2.75 0.0075

w2 p-value w2 p-value

H0:b1¼b2¼b3¼b4¼b5¼b6¼0 26.38 0.0002 29.19 0.000

Adj. R2 0.1185 0.1314

Coef. t-ratio p-value Coef. t-ratio p-value

Intercept �0.0390 �1.71 0.0915 �0.03642 �1.58 0.1191

FCF2 �0.0004 �0.02 0.9808 �0.00392 �0.21 0.8309

RISK �0.0016 �0.24 0.8075 �0.00247 �0.37 0.7094

SIZE 0.0097 2.93 0.0043 0.010633 3.03 0.0034

INTSAVED 0.0270 2.59 0.0112 0.023751 2.26 0.0266

ANALYSTS �0.0152 �2.47 0.0157 �0.01849 �2.8 0.0065

FINS �0.0202 �2.73 0.0078 �0.02066 �2.7 0.0085

w2 p-value w2 p-value

H0:b1¼b2¼b3¼b4¼b5¼b6¼0 26.73 0.0002 29.25 0.000

Adj. R2 0.1184 0.1314

This table reports the regression coefficients and their t-statistics of the following regression

equation:

CAR3i ¼ b0 + b1FCFi + b2RISKi + b3SIZEi + b4INTSAVEDi + b5ANALYSTSi + b6FINS + ei
CAR3 is the cumulative abnormal return measured from the day before the announced issue to the

day after the announced issue; FCF1 and FCF2 are the two free cash flow measures as described in

the text; RISK is a dummy variable equal to one if the bond issue has an S&P bond rating of BBB+

or below and zero otherwise; SIZE is the natural logarithm of the total assets of the issuing firm at

the end of the fiscal year prior to the issue announcement; INTSAVED measures the relative

amount of aggregate interest expense saved per $100 of total assets of the issuing firm; ANALYSTS
is the natural logarithm of one plus the number of analysts following the firm; and FINS is equal to
one if the parent company is a financial institution and is equal to zero otherwise. The p-values

assume a two-tail test. All the t-ratios are heteroscedasticity consistent
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around the issue announcement dates clearly show the positive trend of CARs

for bonds with European puts versus the negative trend of CARs for bonds with

poison puts.

Next, to test our hypotheses, we examine what determines the cross-sectional

variations in the CARs for the sample of European and poison put bonds. Table 5.4

reports the parameter and t-statistic estimates for regression Eq. 5.1 for the sample

of issuers of bonds with European put options. The four regressions reported in

Table 5.4 differ by the sample that is used and by the specification used for the free

cash flow variable. The regression in the top left panel uses the entire sample of

90 observations and the variable FCF1. The regression in the top right panel reports
the results using only the 80 observations in which the variable INTSAVED is

positive. The regressions reported in the bottom panels use FCF2 instead of FCF1.
First note that our estimates are robust to these alternative specifications. The

Wald test of the hypothesis that all five independent variables are jointly zero is

rejected at the 1 % significance level for all four regression specifications. The

regression coefficients on the ANALYSTS variable, b5, are negative and significantly
different from zero for all four regressions. These estimates are consistent with the

reduction in security mispricing motivation for issuing putable bonds. In contrast,

the regression coefficients for FCF and RISK are not significantly different from

zero, indicating a lack of empirical support for the mitigating agency cost hypoth-

esis. The regression coefficients for the INTSAVED variables are positive and are

significantly different from zero in all four regressions. This result is again consis-

tent with the security mispricing motivation and inconsistent with the management

myopia motivation. Additionally, the regression coefficient b3 for the size variable
is also positive and significantly different from zero, a result more consistent with

size being related to the probability of survivorship of the firm. In summary,

announcement of bonds with European puts is associated with positive abnormal

returns which are related to our proxies for potential benefits from mitigating

security mispricing.

Panel A of Table 5.5 presents the corresponding estimates for the sample of

issuers of poison put bonds, while panel B of Table 5.5 presents the estimates of

Eq. 5.2 for the same sample. The estimates reported in Table 5.5 are different from

those in Table 5.4. The coefficients of the ANALYSTS variable, b5, are significantly
positive for the full sample. The coefficients for Size are significantly negative for

the full sample. All the other variables are not significantly different than zero. The

estimates of Eq. 5.2 indicate that the coefficients of the variable COVRANK are

negative and significantly different from 0.

Our results so far indicate that the equity abnormal returns around the issue

announcement dates of poison put bonds are negative, consistent with the mana-

gerial entrenchment evidence in Cook and Easterwood (1994) and Roth and

McDonald (1999). Additionally, the positive and significant coefficient of the

ANALYSTS variable may also be consistent with the management entrenchment

hypothesis because it appears that the market negative response to the issuance of

poison putable bonds arises from the less followed firms, where the management
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Table 5.5 Cross-sectional regression results for the poison put sample

Full sample of 47 firms

Sample of 28 bonds with

positive INTSAVED

Coef. t-ratio p-value Coef. t-ratio p-value

Panel A: Sample of issuers of bonds with poison put options

Intercept 0.015 0.530 0.602 0.030 0.680 0.506

FCF1 �0.170 �1.330 0.191 �0.082 �0.510 0.617

RISK 0.010 1.550 0.129 0.001 0.090 0.932

SIZE �0.007 �2.250 0.030 �0.006 �1.090 0.288

INTSAVED 0.022 0.370 0.714 �0.024 �0.280 0.782

ANALYSTS 0.014 2.100 0.042 0.006 0.370 0.717

w2 p-value w2 p-value

H0:b1¼b2¼b3¼b4¼b5¼0 11.927 0.036 1.906 0.861

Adj. R2 0.015 �0.181

Intercept 0.018 0.730 0.472 0.026 0.640 0.532

FCF2 �0.153 �1.280 0.208 �0.045 �0.270 0.788

RISK 0.009 1.400 0.168 0.000 0.030 0.978

SIZE �0.007 �2.480 0.017 �0.005 �1.020 0.318

INTSAVED 0.027 0.460 0.649 �0.016 �0.180 0.858

ANALYSTS 0.014 1.980 0.054 0.006 0.330 0.744

w2 p-value w2 p-value

H0:b1¼b2¼b3¼b4¼b5¼0 11.538 0.042 1.857 0.868

Adj. R2 0.007 �0.192

Full sample of 40 firms

Sample of 23 bonds with

positive INTSAVED

Coef. t-ratio p-value Coef. t-ratio p-value

Panel B: Sample of issuers of bonds with poison put options with COVRANK

Intercept 0.052 1.200 0.239 0.136 2.550 0.021

FCF1 �0.158 �1.100 0.281 �0.271 �1.330 0.201

RISK 0.011 1.140 0.264 0.006 0.370 0.720

SIZE �0.008 �1.800 0.081 �0.014 �2.370 0.031

INTSAVED 0.029 0.430 0.670 �0.071 �0.720 0.484

COVRANK �0.008 �3.900 0.000 �0.012 �3.520 0.003

ANALYSTS 0.013 2.090 0.045 0.009 0.700 0.497

w2 p-value w2 p-value

H0:b1¼b2¼b3¼b4¼b5¼b6¼0 48.723 0.000 20.513 0.002

Adj. R2 0.114 0.058

Intercept 0.053 1.440 0.160 0.117 3.030 0.008

FCF2 �0.132 �1.000 0.327 �0.159 �0.890 0.386

RISK 0.010 1.110 0.275 0.000 0.010 0.995

SIZE �0.009 �2.030 0.051 �0.013 �2.590 0.020

INTSAVED 0.032 0.510 0.616 �0.030 �0.240 0.810

COVRANK �0.008 �4.100 0.000 �0.010 �3.610 0.002

(continued)
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strategy may not be as well known prior to the bond issuance. However, these

returns are negatively related to the event risk covenant ranking consistent with the

agency cost evidence in Bae et al. (1994). The negative abnormal returns experi-

enced by issuers of poison puts and the different coefficients on SIZE, INTSAVED,
and ANALYSTS indicate that the European put bonds are viewed differently than

poison put bonds.

In summary, the results reported in Tables 5.2–5.5 are consistent with the view

that European put bonds, where the put option does not depend on a specific

company event, are more effective in mitigating problems that are associated

with security mispricing. Furthermore, there is no empirical support for the hypoth-

esis that European put bonds are used as a vehicle for management entrenchment. In

contrast, the evidence for poison put bonds is consistent with both management

entrenchment and mitigating agency costs.

We now discuss several robustness checks of our basic results. Note that, as

reported in Table 5.4, the regression coefficient of the financial industry dummy

variable, b6, is negative and significantly different from zero. To verify that the

differing results between the European put bond sample (where 25 out of 90 firms

Table 5.5 (continued)

Full sample of 40 firms

Sample of 23 bonds with

positive INTSAVED

Coef. t-ratio p-value Coef. t-ratio p-value

Panel B: Sample of issuers of bonds with poison put options with COVRANK

ANALYSTS 0.014 1.970 0.057 0.010 0.710 0.488

w2 p-value w2 p-value

H0:b1¼b2¼b3¼b4¼b5¼b6 ¼ 0 53.590 0.000 31.077 0.000

Adj. R2 0.102 �0.006

Panels A reports the regression coefficients and their t-statistics of the following regression

equation:

CAR3i ¼ b0 + b1FCFi + b2RISKi + b3SIZEi + b4INTSAVEDi + b5ANALYSTSi + ei
Panel B reports the regression coefficients the regression coefficients and their t-statistics of the

following regression equation:

CAR3i ¼ b0 + b1FCFi + b2RISKi + b3SIZEi + b4INTSAVEDi + b5ANALYSTSi + b7COVRANKi + ei
CAR3 is the cumulative abnormal return measured from the day before the announced issue

to the day after the announced issue; FCF1 and FCF2 are the two free cash flow measures

as described in the text; RISK is a dummy variable equal to one if the bond issue has a S&P

bond rating of BBB+ or below, and zero otherwise; SIZE is the natural logarithm of the total

assets of the issuing firm at the end of the fiscal year prior to the issue announcement;

INTSAVED measures the relative amount of aggregate interest expense saved per $100

of total assets of the issuing firm; ANALYSTS is the natural logarithm of one plus the number

of analysts following the firm; and COVRANK equals the S&P Event Risk Ranking

on a scale of 1–5. The p-values assume a two-tail test. All the t-ratios are heteroscedasticity

consistent
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are from the financial service sector) and the poison put sample (where only one

firm is from the financial service sector), we replicate the regressions of Tables 5.4

and 5.5 excluding all financial service companies. The estimates for the subsample

of European put bonds are reported in Table 5.6. Note that the coefficients and

significance levels are very similar to those reported in Table 5.4. Because only one

poison put company is from the financial sector and because the estimates of the

corresponding subsample of poison put bonds are very similar to those reported in

Table 5.5, we do not report these estimates. Thus, we conclude that the differences

between poison and European put bonds are not due to the different sector compo-

sition of our samples.

Table 5.6 Cross-sectional regression results for the European put sample excluding financial

service companies

Full sample of 65 firms

Sample of 61 bonds with positive

INTSAVED

Coef. t-ratio p-value Coef. t-ratio p-value

Intercept �0.0410 �1.27 0.2087 �0.0416 �1.25 0.2182

FCF1 0.0005 0.04 0.9715 �0.0016 �0.10 0.9200

RISK �0.0028 �0.41 0.6821 �0.0033 �0.49 0.6279

SIZE 0.0108 2.79 0.0071 0.0114 2.80 0.0071

INTSAVED 0.0248 1.85 0.0694 0.0242 1.79 0.0785

ANALYSTS �0.0178 �2.54 0.0138 �0.0191 �2.70 0.0093

w2 p-value w2 p-value

H0:b1¼b2¼b3¼b4¼b5¼0 32.66 0.0000 32.10 0.0000

Adj. R2 0.1450 0.1524

Intercept �0.0409 �1.28 0.2073 �0.0414 �1.25 0.2181

FCF2 0.0000 0.00 0.9992 �0.0031 �0.17 0.8676

RISK �0.0028 �0.41 0.6805 �0.0034 �0.50 0.6206

SIZE 0.0108 2.78 0.0072 0.0114 2.79 0.0071

INTSAVED 0.0248 1.85 0.0686 0.0241 1.79 0.0784

ANALYSTS �0.0178 �2.54 0.0137 �0.0191 �2.70 0.0091

w2 p-value w2 p-value

H0:b1¼b2¼b3¼b4¼b5¼0 32.66 0.0000 32.10 0.0000

Adj. R2 0.1450 0.1525

This table reports the regression coefficients and their t-statistics of the following regression

equation:

CAR3i ¼ b0 + b1FCFi + b2RISKi + b3SIZEi + b4INTSAVEDi + b5ANALYSTSi + ei
CAR3 is the cumulative abnormal return measured from the day before the announced issue to the

day after the announced issue; FCF1 and FCF2 are the two free cash flow measures as described in

the text; RISK is a dummy variable equal to one if the bond issue has a S&P bond rating of BBB+

or below, and zero otherwise; SIZE is the natural logarithm of the total assets of the issuing firm at

the end of the fiscal year prior to the issue announcement; INTSAVED measures the relative

amount of aggregate interest expense saved per $100 of total assets of the issuing firm; ANALYSTS
is the natural logarithm of one plus the number of analysts following the firm. The p-values assume

a two-tail test. All the t-ratios are heteroscedasticity consistent
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Next, we examine whether the term to expiration of European put bonds affects

our estimates.24 Table 5.7 repeats the regressions of Table 5.4 when we introduce

an additional explanatory dummy variable, EXPLT5, that is equal to one if the

Table 5.7 The cross-sectional regression results for the European put sample: impact of time to

expiration

Full sample of 90 firms

Sample of 80 bonds with

positive INTSAVED

Coef. t-ratio p-value Coef. t-ratio p-value

Intercept �0.0288 �1.27 0.2063 �0.0282 �1.22 0.2279

FCF1 0.0037 0.24 0.8147 0.0007 0.05 0.9627

RISK �0.0010 �0.16 0.8703 �0.0021 �0.32 0.7527

SIZE 0.0088 2.74 0.0075 0.0098 2.88 0.0052

INTSAVED 0.0143 1.35 0.1814 0.0131 1.22 0.2249

ANALYSTS �0.0165 �2.68 0.0090 �0.0193 �2.95 0.0043

FINS �0.0185 �2.60 0.0112 �0.0194 �2.61 0.0109

EXPLT5 0.0097 1.91 0.0601 0.0083 1.37 0.1739

w2 p-value w2 p-value

H0:b1¼b2¼b3¼b4¼b5¼b6¼ b7¼0 34.82 0.0000 37.88 0.000

Adj. R2 0.1413 0.1420

Intercept �0.0291 �1.3 0.1981 �0.0283 �1.22 0.2248

FCF2 0.0051 0.33 0.7397 0.0010 0.06 0.9506

RISK �0.0010 �0.15 0.8794 �0.0021 �0.31 0.7542

SIZE 0.0088 2.74 0.0075 0.0098 2.88 0.0052

INTSAVED 0.0144 1.36 0.1784 0.0132 1.22 0.2257

ANALYSTS �0.0164 �2.67 0.0092 �0.0193 �2.93 0.0045

FINS �0.0184 �2.53 0.0133 �0.0194 �2.57 0.0122

EXPLT5 0.0097 1.91 0.0593 0.0083 1.38 0.1733

w2 p-value w2 p-value

H0:b1¼b2¼b3¼b4¼b5¼b6¼b7¼0 34.85 0.0000 37.82 0.000

Adj. R2 0.1415 0.1420

This table reports the regression coefficients and their t-statistics of the following regression equation:

CAR3i¼b0+b1FCFi+b2RISKi+b3SIZEi+b4INTSAVEDi+b5ANALYSTSi+b6FINS+b7EXPLT5+ei
CAR3 is the cumulative abnormal return measured from the day before the announced issue to the

day after the announced issue; FCF1 and FCF2 are the two free cash flow measures as described in

the text; RISK is a dummy variable equal to one if the bond issue has a S&P bond rating of BBB+

or below and zero otherwise; SIZE is the natural logarithm of the total assets of the issuing firm at

the end of the fiscal year prior to the issue announcement; INTSAVED measures the relative

amount of aggregate interest expense saved per $100 of total assets of the issuing firm; ANALYSTS
is the natural logarithm of one plus the number of analysts following the firm; FINS is equal to one
if the parent company is a financial institution and is equal to zero otherwise; and EXPLT5 is equal
to one if the expiration of the embedded option is less than 5 years from the issue date and is equal

to zero otherwise. The p-values assume a two-tail test. All the t-ratios are heteroscedasticity

consistent

24Recall that by definition the option of poison put bonds does not have an expiration date.
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expiration date of the embedded European put option is less than 5 years from

the issue date and zero otherwise. We find that INTSAVE is still positive but is

no longer significant and the regression coefficient for EXPLT5 is positive and

is significantly different from zero at the 10 % level for the full sample.

The estimates and the significance of the other coefficients are largely

unaffected. We conclude that these results still confirm the security mispricing

hypothesis because the regression coefficients for ANALYSTS are significantly

negative.

Our results are robust to alternative specifications we described at the end of the

previous section. In particular, including a dummy variable for the existence of

a call feature, interaction variables and alternative measures of interest rate vola-

tility do not affect our results. These results are not reported here but are available

upon request.

Finally, we test for multicollinearity by examining the eigenvalues of

the correlation matrix for (non-dummy) independent variables. For orthogonal

data the eigenvalue, l, for each variable should equal 1, and S1/l ¼ the

number of regressors (i.e., five for our study). For our sample of bonds with an

embedded European put option, this sum is 7.14 when FCF1 is used, and

this sum ¼ 7.19 when FCF2 is used, indicating a lack of significant

multicollinearity. Similar results are obtained for the poison put sample. There-

fore, our findings are robust to alternate specifications and are not driven by

multicollinearity.

5.6 Concluding Remarks

This paper examines the motivations and equity valuation impact of issuing Euro-

pean putable bonds, a bond containing an embedded European put option held by

bondholders. The option entitles them to sell the bond back to the firm on the

exercise date at a predetermined price. Unlike a poison put bond which has been

studied by the literature, the exercise of the put option in a European putable bond is

not contingent upon a company-related event.

We find that the market reacts favorably to the issue announcement of such

putable bonds. We consider three alternative motivations for incorporating

a European put option in a bond contract: reducing the security mispricing

impact of asymmetric information, mitigating agency costs, and the relatively

low coupon rate (a myopic view that ignores the potential liability to the

firm due to the put option). We test these hypotheses by conducting a

cross-sectional empirical study of the impact of putable debt issue announce-

ments on the equity value of the issuing companies. Our results indicate that the

market favorably views putable bonds as a means to reduce security mispricing.

We also find that the market reaction to poison put announcements differs

from the market reaction to issue announcements for bonds with European

put options.
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Appendix 1: Sample of Firms Issuing Putable Bonds and the Put
Bond Characteristics

Name Coupon

Amount

($000’s)

Issue

date

Maturity

(years)

Put

expiration

(years) Callability

YTM

(%)

S&P

credit

rating

Air Products

and Chemicals

Inc

7.34 100,000 06/15/

1996

30 12 N 7.20 7

American

Express

8.50 150,000 06/09/

1989

10 5 N 8.56 5

Anadarko

Petroleum

Corp

7.25 100,000 03/17/

1995

30 5 N 6.90 9

Anadarko

Petroleum

Corp

7.73 100,000 09/19/

1996

100 30 N 7.21 9

Bankamerica

Corp

7.65 150,000 04/26/

1984

10 2 C 12.23 10

Bausch &

Lomb Inc

6.56 100,000 08/12/

1996

30 5 N 6.71 8

Baxter

International

Inc

8.88 100,000 06/14/

1988

30 5 C 8.96 9

Burlington

Northern

Santa Fe

7.29 200,000 05/31/

1996

40 12 N 7.39 10

Champion

International

Corp

15.63 100,000 07/22/

1982

12 3 C 15.68 9

Champion

International

Corp

6.40 200,000 02/15/

1996

30 10 N 6.69 10

Chase

Manhattan

Corp – old

7.55 250,000 06/12/

1985

12 5 C 8.87 5

Chrysler Corp 12.75 200,000 11/01/

1984

15 5 N 12.75 10

Chrysler Corp 9.65 300,000 07/26/

1988

20 5 C 9.65 10

Chrysler Corp 9.63 200,000 09/06/

1988

20 2 C 9.65 11

Circus Circus

Enterprise Inc

6.70 150,000 11/15/

1996

100 7 N 6.66 9

Citicorp 9.40 250,000 12/06/

1983

12 2 C 11.05 4

Citicorp 10.25 300,000 12/19/

1984

10 2 C 10.31 4

(continued)
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Name Coupon

Amount

($000’s)

Issue

date

Maturity

(years)

Put

expiration

(years) Callability

YTM

(%)

S&P

credit

rating

Citicorp 8.75 250,000 12/12/

1985

15 3 C 8.84 4

Coca-Cola

Enterprises

7.00 300,000 09/27/

1996

30 10 N 7.00 5

Commercial

Credit

8.50 100,000 02/05/

1988

10 5 N 8.84 8

Commercial

Credit

8.70 150,000 06/09/

1989

20 10 N 9.06 8

Commercial

Credit

8.70 100,000 06/11/

1990

20 3 N 7.54 7

Commercial

Credit

7.88 200,000 02/01/

1995

30 10 N 7.30 6

Conagra Inc 7.13 400,000 10/02/

1996

30 10 N 6.95 9

Corning Inc 7.63 100,000 07/31/

1994

30 10 N 7.81 6

Deere & Co 8.95 199,000 06/08/

1989

30 10 C 8.99 7

Diamond

Shamrock Inc

7.65 100,000 06/25/

1996

30 10 N 7.37 10

Dow

Chemical

8.48 150,000 08/22/

1985

30 14 C 9.35 7

Eastman

Kodak Co

7.25 125,000 04/08/

1987

10 5 N 8.48 8

Eaton Corp 8.00 100,000 08/18/

1986

20 10 N 7.90 7

Eaton Corp 8.88 38,000 06/14/

1989

30 15 N 9.00 7

Eaton Corp 6.50 150,000 06/09/

1995

30 10 N 6.64 7

Enron Corp 9.65 100,000 05/17/

1989

12 7 N 9.50 10

First Chicago

Corp

8.50 98,932 05/13/

1986

12 7 N 8.70 7

First Interstate

Bancorp

7.35 150,000 08/23/

1984

15 6 C 13.70 4

First Interstate

Bancorp

9.70 100,000 07/08/

1985

15 5 C 9.91 4

First Union

Corp (NC)

7.50 250,000 04/25/

1995

40 10 N 7.96 8

First Union

Corp (NC)

6.82 300,000 08/01/

1996

30 10 N 7.43 8

Ford Motor Co 7.50 250,000 10/30/

1985

15 3 N 9.63 6

(continued)
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Name Coupon

Amount

($000’s)

Issue

date

Maturity

(years)

Put

expiration

(years) Callability

YTM

(%)

S&P

credit

rating

Ford Motor Co 9.95 300,000 02/10/

1992

40 3 N 8.56 6

General

Electric Co

6.75 250,000 11/06/

1986

25 5 C 6.80 2

General

Electric Co

8.25 500,000 04/26/

1988

30 3 C 8.41 2

General

Motors Corp

8.38 200,000 04/30/

1987

10 5 N 8.38 5

General

Motors Corp

8.63 400,000 06/09/

1989

10 5 N 8.59 5

General

Motors Corp

8.88 500,000 05/31/

1990

20 5 N 8.80 5

Harris Corp 6.65 100,000 08/01/

1996

10 5 N 6.90 8

Ingersoll-

Rand Co

6.48 150,000 06/01/

1995

30 10 N 6.64 7

Intl Business

Machines

Corp

13.75 125,000 03/09/

1982

12 3 C 14.05 2

ITT Industries

Inc

8.50 100,000 01/20/

1988

10 5 N 8.50 7

ITT Industries

Inc

8.55 100,000 06/12/

1989

20 9 N 9.20 7

ITT Industries

Inc

3.98 100,000 02/15/

1990

15 3 N 8.60 7

Johnson

Controls Inc

7.70 125,000 02/28/

1995

20 10 N 7.83 7

K N Energy

Inc

7.35 125,000 07/25/

1996

30 10 N 7.47 9

Litton

Industries Inc

6.98 100,000 03/15/

1996

40 10 N 7.01 9

Lockheed

Martin Corp

7.20 300,000 05/01/

1996

40 12 N 7.29 9

Marriott Corp 9.38 250,000 06/11/

1987

20 10 N 9.74 8

Merrill Lynch

& Co

11.13 250,000 03/26/

1984

15 5 C 13.36 4

Merrill Lynch

& Co

9.38 125,000 06/04/

1985

12 6 C 9.48 4

Merrill Lynch

& Co

8.40 200,000 10/25/

1989

30 5 N 8.67 6

Motorola Inc 8.40 200,000 08/15/

1991

40 10 N 8.36 4

Motorola Inc 6.50 400,000 08/31/

1995

30 10 N 6.55 4

(continued)
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Name Coupon

Amount

($000’s)

Issue

date

Maturity

(years)

Put

expiration

(years) Callability

YTM

(%)

S&P

credit

rating

Occidental

Petroleum

Corp

9.25 300,000 08/03/

1989

30 15 N 9.37 10

Penney

(JC) Co

6.90 200,000 08/16/

1996

30 7 N 7.07 7

Philip Morris

Cos Inc

7.00 150,000 07/15/

1986

5 2 N 7.30 7

Philip Morris

Cos Inc

9.00 350,000 05/09/

1988

10 6 N 9.39 7

Philip Morris

Cos Inc

6.95 500,000 06/01/

1996

10 5 N 6.91 7

Pitney Bowes

Inc

8.63 100,000 02/10/

1988

20 10 N 8.70 4

Pitney Bowes

Inc

8.55 150,000 09/15/

1989

20 10 Y 8.64 4

Regions

Financial Corp

7.75 100,000 09/15/

1994

30 10 N 8.07 7

Ryder System

Inc

9.50 125,000 07/01/

1985

15 2 C 9.69 7

Seagram Co

Ltd

4.42 250,000 08/03/

1988

30 15 N 9.90 7

Security

Pacific Corp

12.50 150,000 09/27/

1984

12 6 C 12.62 3

Security

Pacific Corp

7.50 150,000 04/03/

1986

15 3 C 7.54 3

Service Corp

International

7.00 300,000 05/26/

1995

20 7 N 6.80 9

Southtrust

Corp

1.62 100,000 05/09/

1995

30 10 N 7.28 8

State Street

Corp

7.35 150,000 06/15/

1996

30 10 N 7.23 5

Suntrust

Banks Inc

6.00 200,000 02/15/

1996

30 10 N 6.33 7

Triad Systems

Corp

14.00 71,500 08/09/

1989

8 3 C 13.99 16

TRW Inc 9.35 100,000 05/31/

1990

30 10 N 9.28 7

Union Carbide

Corp

6.79 250,000 06/01/

1995

30 10 N 6.83 10

United

Dominion

Realty Trust

8.50 150,000 09/22/

1994

30 10 N 8.60 9

Westinghouse

Electric

11.88 100,000 03/19/

1984

12 3 C 13.38 6

(continued)
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Name Coupon

Amount

($000’s)

Issue

date

Maturity

(years)

Put

expiration

(years) Callability

YTM

(%)

S&P

credit

rating

Westinghouse

Electric

8.88 150,000 05/31/

1990

24 4 N 8.84 13

Whitman Corp 7.29 100,000 09/19/

1996

30 8 N 7.26 9

WMX

Technology

8.75 250,000 04/29/

1988

30 5 C 8.79 4

WMX

Technology

7.65 150,000 03/15/

1991

20 3 N 7.71 6

WMX

Technology

6.22 150,000 05/09/

1994

10 3 N 7.41 6

WMX

Technology

6.65 200,000 05/16/

1995

10 5 N 6.43 6

WMX

Technology

7.10 450,000 07/31/

1996

30 7 N 7.16 7

Xerox Corp 11.25 100,000 08/25/

1983

15 3 C 11.44 5

Appendix 2: Sample of Firms Issuing Poison Put Bonds and the
Put Bond Characteristics

Name Coupon

Amount

($million) Issue date

Years to

maturity Callability YTM (%)

S&P

credit

rating

Aar Corp 9.500 65 10/27/89 12 N 9.425 10

AMR 9.750 200 03/15/90 10 N 9.85 7

Anheuser-

Busch

8.750 250 12/01/89 10 N 8.804 5

Armstrong

World

9.750 125 08/18/89 19 N 9.5 5

Ashland Oil 11.125 200 10/08/87 30 C 10.896 7

Becton

Dickinson

9.950 100 03/13/89 10 N 10 6

Bowater Inc 9.000 300 08/02/89 20 N 9.331 7

Chrysler

Financial

10.300 300 06/15/90 2 N 10.43 11

Coastal

Corporation

10.250 200 12/06/89 15 N 10.02 11

Consolidated

Freightways

9.125 150 08/17/89 10 N 9.202 6

Corning Inc 8.750 100 07/13/89 10 N 8.655 7

CPC Intl 7.780 200 12/15/89 15 N 7.780 8

(continued)
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Name Coupon

Amount

($million) Issue date

Years to

maturity Callability YTM (%)

S&P

credit

rating

Cummins

Engine

9.750 100 03/21/86 30 C 10.276 9

Cyprus

Minerals

10.125 150 04/11/90 12 N 10.172 10

Dresser

Industries

9.373 68.8 03/10/89 11 C 9.650 8

Eaton Corp 9.000 100 03/18/86 30 C 9.323 7

Federal

Express

9.200 150 11/15/89 5 N 9.206 9

General

American

Transportation

10.125 115 03/22/90 12 N 10.269 8

Georgia Pacific 10.000 300 06/13/90 7 N 10.053 9

Grumman Corp 10.375 200 01/05/89 10 C 10.375 9

Harris Corp 10.375 150 11/29/88 30 C 10.321 8

Harsco 8.750 100 05/15/91 5 N 8.924 8

International

Paper

9.700 150 03/21/90 10 N 9.823 8

Kerr-Mcgee 9.750 100 04/01/86 30 C 9.459 8

Knight-Rydder 9.875 200 04/21/89 20 N 10.05 5

Lockhee Corp 9.375 300 10/15/89 10 N 9.329 7

Maytag 8.875 175 07/10/89 10 N 9.1 8

Monsanto 8.875 100 12/15/89 20 N 8.956 7

Morton

International

9.250 200 06/01/90 30 N 9.358 5

Parker-

Hannifin

9.750 100 02/11/91 30 C 9.837 7

Penn Central 9.750 200 08/03/89 10 N 9.358 11

Penn Central 10.875 150 05/01/91 20 N 11.016 11

Potlatch 9.125 100 12/01/89 20 N 9.206 8

Questar 9.875 50 06/11/90 30 C 9.930 6

Ralston Purina 9.250 200 10/15/89 20 N 9.45 8

Rite-Aid 9.625 65 09/25/89 27 C 9.99 6

Rohm And

Haas

9.373 100 11/15/89 30 C 9.618 7

Safety-Kleen 9.250 100 09/11/89 10 N 9.678 9

Sequa Corp 9.625 150 10/15/89 10 N 9.574 11

Stanley Works 8.250 75 04/02/86 10 C 8.174 7

Strawbridge

And Clothier

8.750 50 10/24/89 7 C 9.374 8

Union Camp 10.000 100 04/28/89 30 C 10.185 6

Unisys 10.300 300 05/29/90 7 N 10.794 10

(continued)
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Name Coupon

Amount

($million) Issue date

Years to

maturity Callability YTM (%)

S&P

credit

rating

United Airlines 12.500 150 06/03/88 7 C 12.500 15

United

Technologies

8.875 300 11/13/89 30 N 9.052 5

VF Corp 9.500 100 10/15/89 10 C 9.500 7

Weyerhaeuser 9.250 200 11/15/90 5 N 9.073 6

The S&P ratings are based on a scale from 1 (AAA+) to 24 (Not rated). In the Callability column,

C denotes callable bond and N denotes non-callable bond

Appendix 3: Estimating the Standard Abnormal Returns and the
White t-Statistic

Fama et al. (1969) introduced the event study methodology when they analyzed

the impact of stock dividend announcements upon stock prices. Essentially,

they used the Market Model to estimate the stochastic relationship between

stock returns and the market portfolio. In particular, we estimate the following

regression:

Ri, t ¼ ai þ biRm, t þ ei, t (5.3)

We estimate the market model coefficients using the time period that begins

200 trading days before and ends 31 trading days before the event, employing the

CRSP value-weighted market index as the benchmark portfolio. We use these

coefficients to estimate abnormal returns for days �30 to +30. The abnormal return

is defined as

ARi, t ¼ Ri, t � ai � biRm, t: (5.4)

The mean abnormal return for the sample of i firms, ARt, at time t is found by

ARt ¼
Xn
i¼1

ARi, t=n: (5.5)

In order to conduct tests of significance, we must ensure that ARi,t has identical

standard deviation. Assuming that the forecast values are normally distributed, we

can scale ARi,t by the standard deviation of the prediction, Sit, given by Eq. 5.4 In

particular,

Sit ¼ s2
i þ 1=EDð Þ þ Rmt � Rm

� �2h
=S Rmi � Rm

� �2in o1=2
(5.6)
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where s2
i is the variance of the error term of Eq. 5.3, ED is the number of days

to estimate the market model for firm I, Rmt is the return of the market portfolio, and

Rm is the mean market return in the estimation period.

Hence the standardized abnormal return, SARi,t, is equal to ARi,t/Sit. SARi,t is

distributed normally with a mean of zero and a standard deviation equal to one.

The mean standardized abnormal return for time t, SARt, is the sum of the SARi,t

divided by n. SARt is normally distributed with a mean of zero and

a standard deviation of the square root of l/n. The cumulative abnormal returns for

days 1 to k, CARk, is the sum of mean abnormal returns for t ¼ 1 to k.

The standardized cumulative mean excess returns for the k days after month

t ¼ 0, SCARt, is equal to the sum of SARt for days 1 to k. SCART is normally

distributed with a standard deviation of square root of k/n. Please see Campbell

et al. (1996) for a detailed discussion of these tests as well as event studies in general.

In our cross-sectional regressions where we regress the CARs on firm-specific

variables, we estimate the model using GMM. However, since we are not

interested in conditional estimates, our regressors are the instruments. Therefore

our parameters estimates are the same that would be obtained by OLS. However,

we use the White (1980) heteroscedastic-consistent estimator. In the standard

regression model,

Y ¼ Xbþ e (5.7)

The OLS estimator of b ¼ (X 0 X)� 1(X 0 y) with the covariance matrix

VaR bð Þ ¼ X0Xð Þ�1
X0OXð Þ X0Xð Þ�1

(5.8)

When the errors are homoscedastic,O¼s2I and the variance reduces tos2(X0X)�1.

However when O is unknown as shown by White (1980), Eq. 5.8 can be used

using a consistent estimator of O. White showed that can be done using the residual

from Eq. 5.7.

So when the heteroscedasticity is of the unknown form,

Using X0Xð Þ�1
X0diag e2

� �
X

� �
X0Xð Þ�1

(5.9)

gives us heteroscedastic-consistent White standard errors and White t-statistics.

Appendix 4: Generalized Method of Moments (GMM)

GMM is a generalization of the method of moments developed by Hansen (1982).

The moment conditions are derived from the model. Suppose Yt is a multivariate

independently and identically distributed (i.i.d.) random variable. The econometric

model specifies the relationship between Yt and the true parameters of the model

(y0). To use GMM there must exist a function f(Yt, y0) so that
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m y0ð Þ � E f Yt; y0ð Þ½ � ¼ 0: (5.10)

In GMM, the theoretical expectations are replaced by sample analogs:

g y;Ytð Þ ¼ 1=T
X

f Yt; yð Þ: (5.11)

The law of large numbers ensures that the RHS of above equation is the same as

E f Yt; y0ð Þ½ �: (5.12)

The sample GMM estimator of the parameters may be written as (see Hansen

1982)

Y ¼ arg min 1=T
X

f Yt; yð Þ
h i0

WT1=T
X

f Yt; yð Þ�: (5.13)

So essentially GMM finds the values of the parameters so that the sample

moment conditions are satisfied as closely as possible. In our case for the regression

model,

yt ¼ Xt
0bþ et: (5.14)

The moment conditions include

E yt � Xt
0bð Þxt½ � ¼ E etxt½ � ¼ 0 for all t: (5.15)

So the sample moment condition is

1=T
X

yt � Xt
0bð Þxt

and we want to select b so that this is as close to zero as possible. If we select b as

(X0X)�1(X0y), which is the OLS estimator, the moment condition is exactly satisfied.

Thus, the GMM estimator reduces to the OLS estimator and this is what we estimate.

For our case the instruments used are the same as the independent variables. If,

however, there are more moment conditions than the parameters, the GMM estimator

above weighs them. These are discussed in detail in Greene (2008, Chap. 15).

The GMM estimator has the asymptotic variance

X0Z Z0OZð Þ�1
Z0X

� ��1

(5.16)

In our case Z ¼ X since we use the independent variables as the instruments Z.

The White robust covariance matrix may be used for O as discussed in

Appendix 3 when heteroscedasticity is present. Using this approach, we estimate

GMM with White heteroscedasticity consistent t-stats.
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Abstract

Interest rate sensitivity of bank stock returns has been studied using an

augmented CAPM, a multiple regression model with market returns and interest

rate as independent variables. In this paper, we test an asset-pricing model in

which the CAPM is augmented by three orthogonal factors which are proxies for

the innovations in inflation, maturity risk, and default risk. The model proposed
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is an integration of CAPM and APT. The results of the two models are compared

to shed light on sources of interest rate risk.

Our results using the integrated model indicate the inflation beta to be

statistically significant. Hence, innovations in short-term interest rates contain

valuable information regarding inflation premium; as a result the interest rate risk

is priced with respect to the short-term interest rates. Further, it also indicates that

innovations in long-term interest rates contain valuable information regarding

maturity premium. Consequently the interest rate risk is priced with respect to

the long-term interest rates. Using the traditional augmented CAPM, our investi-

gation of the pricing of the interest rate risk is inconclusive. It shows that interest

rate risk was priced from 1979 to 1984 irrespective of the choice of interest rate

variable. However, during the periods 1974–1978 and 1985–1990, bank stock

returns were sensitive only to the innovations in the long-term interest rates.

Keywords

CAPM • APT • Bank stock return • Interest rate risk • Orthogonal factors •

Multiple regression

6.1 Introduction

Interest rate sensitivity of commercial bank stock returns has been the subject of

considerable academic research. Stone (1974) proposed a multiple regression

model incorporating both the market return and interest rate variables as return-

generating independent variables. While some studies have found the interest rate

variable to be an important determinant of common stock returns of banks (Fama

and Schwert 1977; Lynge and Zumwalt 1980; Christie 1981; Flannery and James

1984; Booth and Officer 1985), others have found the returns to be insensitive

(Chance and Lane 1980) or only marginally explained by the interest rate factor

(Lloyd and Shick 1977). A review of the early literature can be found in Unal and

Kane (1988). Sweeney and Warga (1986) used the APT framework and concluded

that the interest rate risk premium exists but varies over time. Flannery et al. (1997)

tested a two-factor model for a broad class of security returns and found the effect

of interest rate risk on security returns to be rather weak. Bae (1990) examined the

interest rate sensitivity of depository and nondepository firms using three different

maturity interest rate indices. His results indicate that depository institutions’ stocks

are sensitive to actual and unexpected interest rate changes, and the sensitivity

increases for longer-maturity interest rate variables. Song (1994) examined the

two-factor model using time-varying betas. His results show that both market

beta and interest rate beta varied over the period 1977–1987. Yourougou (1990)

found the interest rate risk to be high during a period of great interest rate volatility

(post-October 1979) but low during a period of stable interest rates (pre-October

1979). Choi et al. (1992) tested a three-factor model of bank stock returns using

market, interest, and exchange rate variables. Their findings about interest rate risk

are consistent with the observations of Yourougou (1990).
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The issue of interest rate sensitivity remains empirically unresolved. Most of the

studies use a variety of short-term and long-term bond returns as the interest rate

factor without providing any rationale for their use. The choice of bond market

index seems to affect the pricing of the interest rate risk. Yet, there is no consensus

on the choice of the interest rate factor that should be used in testing the two-factor

model. In this paper, we provide a plausible explanation of why pricing of interest

rate risk differs with the choice of interest rate variable. We also suggest a hybrid

return-generating model for bank stock returns in which the CAPM is augmented

by three APT-type factors to account for unexpected changes in the inflation

premium, the maturity-risk premium, and the default-risk premium. The use of

three additional factors provides a better understanding of the interest rate sensi-

tivity and offers a plausible explanation for the time-varying interest rate risk

observed by other investigators. Our empirical investigation covers three distinc-

tion economic and bank regulatory environments: 1974–1978, a period of increas-

ing but only moderately volatile interest rates in a highly regulated banking

environment; (2) 1979–1984, a period characterized by high level of interest rates

with high volatility, in which there was gradual deregulation of the banking

industry; and (3) 1985–1990, a low interest rate and low-volatility period during

which many regulatory changes were made in response to enormous bank loan

losses and bankruptcies. The results of the multifactor asset-pricing model are

compared with those from the two-factor model in order to explain the time-

varying interest rate risk.

The rest of this paper is divided into five sections. In Sect. 6.2, we

describe the two-factor model of the bank stock return and the pricing of the

interest rate risk. The multi-risk premia model and the specification of the

factors are discussed in Sect. 6.3. The data for this analysis is described in

Sect. 6.4. Section 6.5 presents empirical results, and Sect. 6.6 concludes the

paper.

6.2 Multiple Regression Model of Bank Return

Stone (1974) proposed the following two-variable bank stock return-generating

model:

Rjt ¼ aj þ b1jRmt þ b2jRIt þ ejt (6.1)

where Rjt is the bank common stock return, Rmt is the market return, and RIt is the

innovation in the interest rate variable. Coefficients aj and b1j are analogous to the

alpha and beta coefficients of the market model, and b2j represents interest rate risk.
Since then, numerous researchers have studied the pricing of interest rate risk with

varying results. While Stone (1974) and others did not place an a priori restriction

on the sign of b2j, the nominal contracting hypothesis implies that it should

be positive. This is because the maturity of bank assets is typically longer than
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that of liabilities.1 Support for this hypothesis was found by Flannery and James

(1984) but not by French et al. (1983).

An important issue in the empirical investigation of the two-factor model is the

specification of an appropriate interest rate factor. Theoretical consideration of

factor analysis requires that two factors, Rmt and RIt, be orthogonal whereby choice

of the second factor (RIt) would not influence the first factor loading (blj). The
resolution of this constraint requires a robust technique for determining the unex-

pected changes in the interest rate that is uncorrelated with the market return. There

are three approaches to specify the interest rate factor (Appendix 2). In the first

approach, the expected change in the interest rate is estimated using the high

correlation between the observed interest rate and the market rate. The residual –

difference between observed and estimated rates – is used as the interest rate factor.

The second approach is to identify and estimate a univariate ARMA model for the

interest rate variable and use the residuals from the ARMA model as the second

factor. In the third approach, the interest rate variable (RIt) and the market return

(Rmt) are treated as the components of a bivariate vector, which is modeled as

a vector ARMA process. The estimated model provides the unanticipated change in

interest rate variable to be used as the second factor in the augmented CAPM,

Eq. 6.1. Srivastava et al. (1999) discuss the alternate ways of specifying the

innovations in the interest rate variable and its influence on the pricing of the

interest rate risk. In this paper, the error term from the regression of interest rates

on market returns is used as the orthogonal interest rate factor in Eq. 6.1.

6.2.1 Pricing of Interest Rate Risk

In addition to changes in the level of expected or unexpected inflation, changes in other

economic conditions produce effects on interest rate risk. For example, according to the

intertemporal model of the capital market (Merton 1973; Cox et al. 1985), a change in

interest rates alters the future investment opportunity set; as a result, investors require

additional compensation for bearing the risk of such changes. Similarly, changes in the

investor’s degree of risk aversion, default risk, or maturity risk of bank financial assets

cause additional shifts in the future investment opportunities for the bank stockholders.

The specific choice of the bond market index for the two-variable model determines

what unexpected change is captured by the coefficient b2j.
The nominal return on a debt security, R, is expressed as

R ¼ Rrf þMRPþ DRPþ LP (6.2)

where Rrf is the real risk-free rate plus an inflation premium, DRP is the default-risk

premium, MRP is the maturity-risk premium, and LP is the liquidity-risk premium.

1The sign of b2j is negative when changes in bond yields and not the bond market return are used as

the interest rate variable (see Sweeney and Warga 1986).
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A change in nominal return consists of changes in the risk-free, liquidity-risk,

default-risk, and maturity-risk rate. A change in the short-term risk-free rate can

be attributed to changes in real rate or short-term inflation. A sizeable change in the

real rate takes place over a longer time horizon. Therefore, it should not signifi-

cantly impact monthly stock returns and cause the interest rate risk.2 However,

Fama and Gibbons (1982) suggested that changes in real rate may cause changes in

the magnitude of interest risk from period to period. Fama and Schwert (1977)

argued that, in equilibrium, the risk premium in the short-term interest rate is

compensation to the investor for changes in the level of expected inflation. How-

ever, French et al. (1983) pointed out that the interest rate risk is due to the

unexpected changes in inflation. More specifically, the interest rate risk can be

viewed as the compensation for expected or unexpected changes in the level of

short-term inflation. Maturity risk is associated with the changes in the slope of the

yield curve that caused a number of economic factors, such as supply and demand

of long-term credit, long-term inflation, and risk aversion. Estimates of b2j using
short-term T-bill returns as the second factor account for the changes in short-term

inflation, whereas estimates of b2j using long-term T-note returns account for the

unexpected changes in long-term inflation as well as maturity risk. The inflation

expectation horizon approximates that of the maturity of the debt security. Esti-

mating coefficient b2j using BAA bond returns as the interest rate factor explains

the fluctuations in bank stock return due to unexpected changes in long-term

inflation, maturity-risk premium, default-risk premium, or a combination of risk

premia.3

As the risk premia are additive, in Eq. 6.2, the magnitude b2j depends on

the choice of the interest rate index. A priori expectations about the relative size

of b2j are:

b2j 6-month T-billf g > b2j 3-month T-billf g
b2j 7-year T-notef g > b2j 6-month T-billf g

b2j BAA-rated bondf g > b2j 7-year T-notef g
(6.3)

where the debt security within the brackets identifies the choice of the bond market

index. A number of researchers have indicated that bank stock returns are sensitive

to unexpected changes in long-term but not short-term interest rates. This observa-

tion is consistent with the expectations expressed in Eq. 6.3. However, we are

unable to isolate and identify which component of the interest rate risk is being

2Federal Reserve’s intervention changes the short-term interest rates. These rate changes take

place after considerable deliberation and are often anticipated by financial markets. Hence, it

neither generates interest rate innovations nor produces interest rate risk.
3Liquidity premium is ignored in our discussion and subsequent model construction because our

sample does not include financially distressed banks, so there are insufficient variations in the

liquidity premium.
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priced when a long-term bond return is used. It is feasible to observe

a significant change in stock returns due to unexpected changes in default-

risk premium (or maturity-risk premium), whether or not nominal contracting

hypothesis is valid. The two-factor model can ascertain the pricing of interest

rate risk without identifying the source. Commercial banks have a variety of

nominal assets and liabilities with different sensitivities to unexpected changes

in short-term inflation, maturity risk, and default risk. In the next section, we

propose an asset-pricing model in which the interest rate factor of the

two-factor model is replaced by three factors, each of which represents

a different risk component of the bond return.4

6.3 Multi-Risk Premia Asset-Pricing Model

We propose a hybrid asset-pricing model to investigate the interest rate sensitivity

of bank stock returns.5 The traditional CAPM is augmented by three additional

APT-type factors to account for unexpected changes in the inflation premium,

the maturity-risk premium, and the default-risk rating. Hence, the proposed

return-generating model is written as

Rjt ¼ aj þ b1jRmt þ b2PjDPt þ b2MjDMRt

þ b2DjDDRt þ ejt
(6.4)

where DPt, DMRt, and DDRt are the proxies for the innovations in inflation,

maturity risk, and default risk, respectively (specification of these principal

component factors consistent with APT is discussed in the Appendix). Coeffi-

cients b1, b2P, b2M, and b2D are the measures of market risk, inflation risk,

maturity risk, and default risk, respectively. The expected return is given by

CAPM:

E Rj

� � ¼ aj þ b1jE Rmð Þ (6.5)

However, systematic risk is determined by the integrated model:

Total systematic risk ¼ market riskþ inflation riskþmaturity risk

þ default risk (6.6)

4An appropriate interest rate variable that should be used to examine the pricing of the interest rate

risk in the two-variable framework is not easily available. However, one could construct an index

composed of long-term US bonds and corporate bonds with duration equal to the net duration of

bank assets and appropriate default risk. This interest rate variable will identify the true pricing of

the interest rate risk.
5This model’s conceptual framework is provided by Chen et al. (1986). However, their factors are

not orthogonal.
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The three APT-type factors have managerial implications regarding bank’s asset

and liability management. The first factor, DPt, has implications pertaining to the

management of the treasury securities portfolio held by the bank. The value of this

portfolio is sensitive to the changes in the short-term interest rate. In addition, these

changes impact the short-maturity funding gap. The null hypothesis b2P¼ 0 implies

that management has correctly anticipated future changes in short-term inflation

and has taken steps to correctly hedge the pricing risk through the use of derivative

contracts and minimize the short-maturity funding gap.

The second factor, DMRt, has implications regarding the bank’s long-term assets

and liabilities. The market value of a bank’s net worth is very sensitive to changes

in the slope of the term structure. The null hypothesis b2M ¼ 0 conjectures that

management has correctly anticipated future changes in the slope of the term

structure and has immunized the institution’s net worth by a sensible allocation

assets in the loan portfolio, sale of loans to the secondary markets, securitization of

loans, and the use of derivative contracts. The third factor, DDRt, relates to the

management of loan losses and overall default-risk rating of bank assets. The null

hypothesis b2D ¼ 0 infers that management has correctly anticipated future loan

losses due to changes in exogenous conditions, and subsequent loan losses,

however large, will not adversely affect the stock returns.

6.4 Data Description

Month-end yield for 3-month T-bill, 6-month T-bill, 1-year T-note, 7-year T-note,

and BAA corporate bonds, for the period January 1974 to December 1990, were

obtained, and monthly returns were calculated.6 Return on the CRSP equally

weighted index of NYSE stocks was used as the market return. Month-end closing

prices and dividends for a sample of 88 banks were obtained from Compustat’s

Price, Dividend, and Earning (PDE) data tape, and monthly returns were calculated.

Availability of continuous data was the sole sample selection criteria. This selection

criterion does introduce a survivorship bias. However, it was correctly pointed out

by Elyasiani and Iqbal (1998) that the magnitude of this bias could be small and not

affect the pricing of interest risk. Equally weighted portfolios of bank returns were

calculated for this study. The total observation period is divided into three

contrasting economic and bank regulatory periods: (1) an increasing but moderately

volatile interest rate period from January 1974 to December 1978 in a highly

regulated environment; (2) a high interest rate and high-volatility period from

January 1979 to December 1984, during which there was gradual deregulation of

the industry; and (3) a low interest rate and low-volatility period from January 1985

to December 1990, during which many regulatory changes were made in response

to banks loan loss problems. The descriptive statistics of the sample are

6The return on a bond index is calculated from the yield series as RIt ¼ � (YIt � YI,t�1)/YIt

where YIt is the bond index yield at time t.

6 Multi-Risk Premia Model of US Bank Returns: An Integration of CAPM and APT 193



summarized in Table 6.1. The average monthly inflation, as measured by the

relative change in the consumer price index, was highest during 1974–1978 and

lowest during 1985–1990. The average default-risk premium was of the same order

of magnitude for all the three periods. The average maturity-risk premium was high

during 1985–1990 indicating a steeper yield curve. For the period 1979–1984, the

average maturity-risk premium was low, but its standard deviation was high. This

indicates a relatively less steep but volatile yield curve.

The bank portfolio’s average return (9.66 %), for the period 1974–1978,

was much smaller than the average market return (22.05 %). For the period

1979–1984, both returns increased dramatically; the portfolio’s average return

(22.28 %) was about the same as the average market return (22.05 %). For the

period 1985–1990, the portfolio and markets average return both dropped

dramatically to 6.48 % and 8.58 %, respectively. The estimated portfolio beta

increased from about 0.7 in the two earlier periods to about 1.0 in the latest

period.

Table 6.1 Summary statistics of portfolio returns and interest rate yields

1974–1978 1979–1984 1985–1990

Bank portfolio return 9.66%a 22.28% 6.48%

(5.95%)b (4.93%) (6.17%)

Portfolio betac 0.7091 0.7259 1.0102

CRSP market return 22.05% 22.05% 8.58%

(7.63%) (5.39%) (5.36%)

3-month T-bill yield 6.21% 10.71% 6.92%

(1.27%) (2.41%) (1.00%)

6-month T-bill yield 6.48% 10.80% 7.02%

(1.27%) (2.21%) (0.95%)

1-year T-note yield 7.05% 11.70% 7.62%

(1.25%) (2.27%) (1.00%)

7-year T-note yield 7.23% 11.91% 8.67%

(0.54%) (1.79%) (1.09%)

BAA bond yield 9.66% 14.04% 10.84%

(0.68%) (1.97%) (0.98%)

Monthly inflationd 0.78% 0.46% 0.25%

(0.69%) (0.50%) (0.23%)

Maturity-risk premiume 0.68% 0.20% 1.05%

(0.88%) (1.32%) (0.72)

Default-risk premiumf 1.94% 2.13% 2.17%

(0.77%) (0.76%) (0.46%)

aAverage returns and yields are reported on annualized basis
bStandard deviation is in parenthesis
cEstimated using single-index market model
dMeasured by the relative change in consumer price index
eYield differential between 7-year T-note and 1-year T-note
fYield differential between BAA-rated corporate bond and 7-year T-note
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6.5 Empirical Results

6.5.1 Two-Variable Regression Model and Pricing of Interest
Rate Risk

The estimated coefficients of the two-variable regression model are presented in

Table 6.2.7 For the period 1974–1978, a period characterized by low and stable

interest rates, the interest rate beta was statistically insignificant with all the

interest rate factors except the 7-year T-note returns. For the period 1979–1984,

Table 6.2 Two-variable model of the bank stock returns: Rjt ¼ aj + b1jRmt + b2jRIt + ejt

Period Estimates

Interest rate variablea

3-month

T-bill

6-month

T-bill

1-year

T-note

7-year

T-note

BAA

Bond

1974–1978 Constant, a �0.0046 �0.0045 �0.0043 �0.0033 �0.0042

(�0.18)b (�0.17) (�0.16) (�0.14) (�0.16)

Market beta, b1 0.6921 0.6886 0.6897 0.6845 0.6987

(15.05) (14.67) (15.17) (16.47) (15.76)

Interest rate beta, b2 0.0566 0.0608 0.0700 0.2893 0.2248

(1.01) (1.07) (1.24) (2.77) (0.93)

R2 0.828 0.828 0.830 0.845 0.828

F-statistic 137.3 137.7 138.8 156.3 136.9

1979–1984 Constant, a 0.0052 0.0052 0.0052 0.0052 0.0052

(1.49) (1.53) (1.57) (1.70) (1.62)

Market beta, b1 0.7261 0.7258 0.7262 0.7262 0.7264

(11.73) (12.01) (12.37) (13.33) (12.74)

Interest rate beta, b2 0.1113 0.1425 0.1714 0.3582 0.6083

(3.47) (3.99) (4.41) (5.97) (5.15)

R2 0.684 0.699 0.716 0.755 0.732

F-statistic 74.8 80.1 87.2 106.6 94.4

1985–1990 Constant, a �0.0018 �0.0018 �0.0018 �0.0018 �0.0018

(�0.51) (�0.51) (�0.52) (�0.53) (�0.52)

Market beta, b1 1.010 1.010 1.010 1.010 1.010

(15.31) (15.30) (15.45) (15.70) (15.57)

Interest rate beta, b2 0.0508 0.0374 0.1036 0.1752 0.2741

(0.51) (0.40) (1.22) (1.95) (1.62)

R2 0.773 0.772 0.777 0.794 0.780

F-statistic 117.3 117.1 120.0 125.1 122.5

aThe error term from the regression of interest rate on market return is used as the appropriate

orthogonal interest rate variable
bt-statistics are in the parenthesis

7Test of two-variable model for the period 1991–2007 indicated that interest rate risk is not priced.

Tables can be provided to interested readers.
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the interest rate beta was statistically significant with all the interest factors, and

its magnitude varied substantially. This period was characterized by a relatively

flat but volatile yield curve. For the period 1985–1990, the interest rate beta was

statistically significant only with the 7-year T-note returns as the interest rate

factor. In general, the estimated value of b2j for the periods 1974–1978 and

1985–1990 is smaller and less statistically significant than the value for the period

1979–1984.

The magnitude of interest rate beta, whether significant or not, varies with the

choice of the interest rate variable. The size of b2j increases with the choice of

securities in the following order: 3-month T-bill, 6-month T-bill, 1-year T-note,

7-year T-note, and BAA-rated bond (except b2j estimated using BAA bond return

for the period 1974–1978 and the 6-month T-bill return in 1985–1990). This

observation validates inequality (6.3) in all the periods and suggests the expanding

nature of the investment opportunity set with increased horizon (Merton 1973). As

stated earlier, the difference between b2j estimated using 7-year T-note returns and

that using 3-month T-bill returns measures the effect on the bank stock returns due

to the unexpected changes in the maturity-risk premium. Further, difference

between b2j estimated using BAA bond returns and that using 7-year T-note returns

measures the effect on the bank stock returns due to the unexpected changes in the

default-risk premium.

The fact that bank stock returns are more sensitive to the long-term interest rates

than to short-term interest rates is consistent with our expectation about the size of

b2 expressed in inequalities (6.3). Similar results were reported by other researchers

(such as Unal and Kane (1988) and Chen et al. (1986)). A shift of focus from short-

term to long-term inflation expectation could explain this result. An alternative

explanation is that bank balance sheet returns are better approximated by long-term

than by short-term bond returns. To the extent that balance maturity mismatches

occur, they should be related to long-term bond returns. The reason is simply that

long-term bond returns include the present value of more future period returns than

do short-term bond returns. That is, long-term bond returns include price changes

not included in short-term bond returns. The price changes in the long-term bond

returns represent price changes in long-term bank contracts. The most representa-

tive term equals the term of assets or liabilities, whichever is longer. If the maturity

mismatch is a net asset (liability) position, then the long-term bond maturity would

reflect the asset (liability) maturity. The estimate of a large, positive coefficient (b2j)
for 7-year T-notes and BAA bonds implies that banks mismatch in favor of assets

with relatively long maturities.

The plausible causes for the change in the interest risk from period to period are

(1) changes in real returns, as reported by Fama and Gibbons (1982), (2) unexpected

changes in short-term and long-term inflation expectation, (3) shift of focus from

short-term to long-term inflation expectation, (4) unexpected changes in risk aver-

sion, (5) unexpected changes in the default risk of bank’s nominal contracts, and

(6) structural instability of the systematic interest rate equation used to extract

interest rate innovations. The estimated coefficients of multi-risk premia model will

shed some light on this issue.
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6.5.2 Multi-risk Premia Model

The estimates of the first systematic interest rate Eq. 6.11, which specifies innovations

in the short-term default-free bond returns, are reported in Table 6.3. The ordinary

least square (OLS) estimates were rejected because of the presence of serial auto-

correlation as indicated by the Durbin-Watson statistic (see Woolridge 2009).

A Durbin-Watson statistic equal to 2 indicates the absence of any serial autocorre-

lation. The generalized least square (GLS) estimates seemed more appropriate

because the Durbin-Watson statistic was approximately equal to 2 and the value of

R2 was higher. Results reported in Table 6.3 exhibit a significant correlation between

market return and short-term interest rate variable in the period 1974–1978, but not in

the periods 1979–1984 and 1985–1990. However, a low value of R2 indicates that the

relationship expressed in Eq. 6.4 is not as robust as one would have preferred. This

approach of extracting changes in short-term inflation was used by Fama and Schwert

(1977) and French et al. (1983). Their estimation period overlapped our estimation

period 1974–1978 but not the later ones. In Table 6.4 we present the results of the

second systematic interest rate Eqs. 6.12a and 6.12b. The estimated coefficient, y1,
determined the average slope of the yield curve during the estimation period. TheOLS

estimates were rejected because of the presence of serial correlation indicated by the

Durbin-Watson statistics. The term structure coefficient y1 was significant in all the

periods for Specifications a and b. However, coefficients y2 of Specification b was

Table 6.3 Estimating a proxy for ex-post unexpected inflation: RST,t ¼ d0 + d1Rmt + et

Estimated coefficients

1974–1978 1979–1984 1985–1990

Ordinary least square

Constant, d0 �0.0068 �0.0070 0.0037

(�0.87)a (�0.45) (0.89)

Market linkage coefficient, d1
b 0.2987 0.5791 �0.0891

(2.97) (2.19) (�1.13)

R2 0.132 0.076 0.018

Durbin-Watson statistic 1.90 1.19 1.12

Generalized least square

Constant, d0 �0.0075 �0.0013 0.0044

(�0.82) (�0.08) (0.83)

Market linkage coefficient, d1
b 0.3173 0.3136 �0.0806

(3.16) (1.44) (�1.15)

R2 0.145 0.306 0.242

Durbin-Watson statistic 1.99 1.97 1.92

Ordinary Least Square estimates were rejected because of the presence of serial correlation

indicated by Durbin-Watson statistic

RST,t and Rmt are 3-month T-bill and CRSP equally-weighted market returns
at-statistics are in the parenthesis
bCoefficient d1 measures the stock–bond market linkage
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significant only during 1985–1990. The errors from Specification a for periods

1974–1978 and 1979–1984 and from Specification b for the period 1985–1990 were

used to specify the second risk factor DMRt. Estimates of the third systematic interest

rate Eqs. 6.13a and 6.13b are presented in Table 6.5. As before, the GLS estimates

were deemed appropriate. The errors from Specification a for the periods 1974–1978
and 1979–1984 and from Specification b for the period 1985–1990 were used to

specify the unexpected change in default risk, DDRt.

Results of the multi-risk premia model are presented in Table 6.6. The inflation

beta is statistically significant in the periods 1979–1984 and 1985–1990 but not in

the period 1974–1978. It was shown in Table 6.3 that quasi-differenced short-term

interest rates were correlated with the market return for the period 1974–1978 but

not for the periods 1979–1984 and 1985–1990. Hence, one could argue that when

short-term interest rates are correlated with the market return (i.e., 1974–1978), the

error term from Eq. 6.8 contains no systematic information. This results in the

inflation beta being insignificant and the interest rate risk not priced with respect to

the short-term rates within the context of the two-factor model. A corollary is that,

when short-term interest rates are uncorrelated with the market return (i.e.,

1979–1984 and 1985–1990), the error term from Eq. 6.11 contains valuable infor-

mation leading to the inflation beta being significant. The maturity beta was found

Table 6.4 Estimating alternate proxies for maturity-risk premia: Specification a : RLT, t ¼ y0 þ
y1RST, t þ et, Specification b : RLT, t ¼ y0 þ y1RST, t þ y2Rmt þ et

1974–1978 1979–1984 1985–1990

Specification a: generalized least square

Constant, y0 �0.0028 �0.0053 0.0017

(�1.02)a (�2.11) (0.66)

Term structure coefficient, y1
b 0.3988 0.5201 0.8183

(10.30) (16.29) (14.96)

R2 0.675 0.846 0.820

Durbin-Watson statistic 1.98 1.83 1.84

Specification b: generalized least square

Constant, y0 �0.0024 �0.0064 0.0011

(�0.84) (�2.47) (0.48)

Term structure coefficient, y1
b 0.4070 0.5122 0.8105

(10.02) (15.78) (15.34)

Market linkage coefficient, y2
c �0.0216 0.0576 0.0944

(�0.68) (1.07) (2.56)

R2 0.677 0.849 0.835

Durbin-Watson statistic 1.98 1.82 1.80

Ordinary least square estimates were rejected because of the presence of serial correlation

indicated by Durbin-Watson statistic

RLT,t and RST,t are 7-year T-note and 1-year T-note returns
at-statistics are in the parenthesis
bCoefficient y1 measures the average slope of the yield curve
cCoefficient y2 accounts for the stock–bond market linkage
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to be statistically significant in the periods 1974–1978 and 1979–1984 but not for

the period 1985–1990. Results in Table 6.4 (Specification b) showed that long-term

interest rates were correlated with the market return for the period 1985–1990 but

not for the periods 1974–1978 and 1979–1984. Hence, we posit that when long-

term interest rates are correlated with the market return (i.e., 1985–1990), the error

term from Eq. 6.12b contains no systematic information. This results in the maturity

beta being insignificant. A corollary is that, when long-term interest rates are

uncorrelated with the market return (i.e., 1974–1978 and 1979–1984), the error

term from Eq. 6.12b contains valuable information producing a significant maturity

beta and the interest rate risk is priced with respect to the long-term rates within the

context of the two-factor model. The default beta was found to be statistically

significant in the period 1985–1990 but not for the periods 1974–1978 and

1979–1984. The economic factors that lead to significant correlation between

market returns and long-term interest rates (Eq. 6.12b) or between market returns

and BAA-rated bond returns (Eq. 6.13b) caused the interest rate risk to be priced

with respect to the long-term rates within the context of the two-factor model

(1985–1990). Since the correlation between market return and interest rate changes

over time, the interest rate risk also changes over time.

Table 6.5 Estimating alternate proxies for the default-risk premia: Specification a : RBAA, t ¼
j0 þ j1RLT, t þ et, Specification b : RBAA, t ¼ j0 þ j1RLT, t þ j2Rmt þ et

1974–1978 1979–1984 1985–1990

Specification a: generalized least square

Constant, j0 �0.0021 �0.0039 0.0010

(�0.60)a (�1.12) (0.66)

Default-risk coefficient, j1
b 0.0842 0.4129 0.4734

(2.27) (12.27) (13.47)

R2 0.553 0.800 0.772

Durbin-Watson statistic 1.88 1.97 1.99

Specification a: generalized least square

Constant, j0 �0.0019 �0.0051 0.0006

(�0.54) (�1.41) (0.48)

Term structure coefficient, j1
b 0.0861 0.3976 0.4637

(2.30) (11.35) (13.83)

Market linkage coefficient, j2
c �0.0066 0.0491 0.0577

(�0.49) (1.49) (2.39)

R2 0.555 0.806 0.785

Durbin-Watson statistic 1.87 1.97 2.00

Ordinary least square estimates were rejected because of the presence of serial correlation

indicated by Durbin-Watson statistic

RBAA,t and RLT,t are BAA corporate bond and 7-year T-note returns
at-statistics are in the parenthesis
bCoefficient j1 measures the average yield differential between RBAA,t and RLT,t
cCoefficient j2 accounts for the stock–bond market linkage
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Negative inflation and maturity betas for the period 1985–1990 need some

explanation because it is contrary to a priori expectation. For the period

1985–1990, the bank portfolio and market return both dropped dramatically to

6.48 % and 8.58 %, respectively. However, the estimated portfolio beta increased

from about 0.7 in the two earlier periods to about 1.0 in this period (beta estimated

independently by the single-index model). Consequently, the market factor alone

will overestimate the bank portfolio’s expected return. The negative values of

inflation beta and maturity beta (though insignificant) correct the overestimation.

Economic factors and regulatory changes that fuelled M&A activities during this

period must have been such that they increased the portfolio beta without increasing

the ex-post portfolio return. Some of these unidentifiable factors are negatively

correlated with the interest rates. One of the shortcomings of the factor analytic

approach is that factors are at times unidentifiable. In spite of difficulties in

explaining some of the results for the period 1985–1990, the multi-risk premia

model does provide greater insight into the pricing of interest rate risk.

6.6 Conclusions

In this paper, we examine the interest rate sensitivity of commercial bank returns

covering three distinct economic and regulatory environments. First, we investigate

the pricing of the interest rate risk within the framework of the two-factor model.

Table 6.6 Multi-risk premia model of the bank stock returns: Rjt ¼ a0j + b1jRmt + b2QjDPt +
b2MjDMRt + b2DjDDRt + ejt

Estimated coefficientsa

1974–1978 1979–1984 1985–1990

Constant, a0 �0.0056 0.0041 �0.0047

(�1.84)b (1.04) (�1.31)

Market beta, b1 0.7397 0.6833 0.7185

(16.94) (10.55) (17.55)

Inflation beta, b2P 0.0698 0.1292 �0.2157

(1.27) (3.45) (�2.29)

Maturity beta, b2M 0.5350 0.4881 �0.2476

(2.87) (2.93) (�1.38)

Default beta, b2D �0.1973 0.1153 �0.5696

(�0.56) (0.43) (�1.94)

R2 0.849 0.754 0.851

Durbin-Watson statistic 2.00 2.04 1.98

Ordinary least square estimates were rejected because of the presence of serial correlation

indicated by Durbin-Watson statistic

Portfolio beta estimated using single-index model are 0.7091, 0.7259, and 1.0102 for the periods

1974–1978, 1979–1984, and 1985–1990, respectively
aGeneralized least square estimates
bt-statistics are in the parenthesis
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Our results indicate that interest rate risk was priced during 1979–1984 irrespective

of the choice of interest rate variable. However, during the periods 1974–1978 and

1985–1990, bank stock returns were sensitive only to the unexpected changes in the

long-term interest rates. Next, we tested to an asset-pricing model in which the

traditional CAPM is augmented by three additional factors to account for unex-

pected changes in the inflation, the maturity premium, and default premium. Our

results show that the inflation beta was significant for the periods 1979–1984 and

1985–1990, but not for the period 1974–1978; the maturity beta was significant for

the periods 1974–1978 and 1979–1984 but not for the period 1985–1990; and the

default beta was significant for the period 1985–1990 but not for the periods

1974–1978 and 1978–1984.

We can infer that when short-term interest rates are correlated with the

market return, the innovations in short-term interest rate are indeed white

noise. However, innovations in short-term interest rates contain valuable

information when short-term interest rates are uncorrelated with the market

return. This will lead to a significant inflation beta and the interest rate risk

will be priced with respect to the short-term rates within the context of the

two-factor model. We can also infer that when long-term interest rates are

correlated with the market return, the innovations in long-term interest rate

are indeed white noise. However, innovations in long-term interest rates

contain valuable information when long-term interest rates are uncorrelated

with the market return. This results in a significant maturity beta and priced

interest rate risk with respect to the long-term rates within the context of the

two-variable model.

Appendix 1: An Integration of CAPM and APT

The traditional CAPM is augmented by three additional APT-type principal

component factors (Johnson and Wichern 2007) to account for unexpected changes

in the inflation premium, the maturity-risk premium, and the default-risk rating.

Hence, the proposed return-generating model is written as

Rjt ¼ aj þ b1jRmt þ b2PjDPt þ b2MjDMRt þ b2DjDDRt þ ejt (6.7)

where DPt, DMRt, and DDRt are the proxies for the innovations in inflation,

maturity risk, and default risk, respectively. Coefficients b1, b2P, b2M, and b2D are

the measures of systematic market risk, inflation risk, maturity risk, and default risk,

respectively, and are consistent with APT.

Principal Component Factor Specification

An important issue in the empirical investigation of this model is the specification of

an appropriate inflation and maturity-risk and default-risk factors. Being innovations
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in economic variables, these factors cannot be predicted using past information.

Hence, they must meet the following conditions:

E DPt t� 1j Þ ¼ 0ð
E DMRt t� 1j Þ ¼ 0ð
E DDRt t� 1j Þ ¼ 0ð

(6.8)

where E(.jt�1) is the expectation based on available information at t�1. Theoret-

ical consideration dictates that the choice of a factor (say DMRt) should not

influence any other factor loadings (say ∃1j). Hence, there should not be any

contemporaneous cross-correlations between the factors. Hence,

E DPt:DMRtð Þ ¼ 0

EðDPt:DDRtj ¼ 0

E DRt:DDRtð Þ ¼ 0

(6.9)

In addition, there are no common market shocks that may influence any of the

risk factors. So the following conditions

E Rmt:DPtð Þ ¼ 0

E Rmt:DMRtð Þ ¼ 0

E Rmt:DDRtð Þ ¼ 0

(6.10)

must be satisfied. We use a generated regressor approach to construct orthogonal

inflation-risk, maturity-risk, and default-risk factors.

Economic factors that lead to changes in the equity market return also induce

term structure movements. This leads to a significant correlation between the stock

market index and the bond market index. Hence, we use the stock market return to

forecast systematic changes in the short-term interest rates. The innovations in the

short-term default-free bond return specify the unexpected changes in inflation.

Hence, the first systematic interest rate equation is written as

RST, t ¼ d0 þ d1Rmt þ eIt (6.11)

where Rmt is the return on the stock market index and RST,t is the return on the short-

term default-free bond return. The error term in Eq. 6.11, eIt, specifies the unex-

pected change in inflation and is the generated regressor which serves as a proxy for

factor DPt. Fama and Schwert (1977) and French et al. (1983) employ similar

approaches to specify a proxy for changes in inflation.

The yield differential between short-term and long-term default-free bond

represents the slope of the yield curve. The relationship used to construct the

maturity-risk factor is given by the second systematic interest rate equation:

RLT, t ¼ y0 þ y1RST, t þ eMt (6.12a)
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where y1 measures the average slope of the yield curve. Alternately, we will also

test the following systematic interest rate equation:

RLT, t ¼ y0 þ y1RST, t þ y2Rmt þ eMt (6.12b)

Inclusion of the independent variable, Rmt, will control for the stock–bond

market linkage. The estimated coefficient y1 measures the slope of the yield

curve, and it determines the maturity-risk premium on long-term assets and liabil-

ities. The error term in Eqs. 6.12a or 6.12b, eMt, specifies the unexpected change in

maturity risk and will be used as the generated regressor which serves as a proxy for

factor DMRt.

The portfolio of commercial banks used for this study consisted of money

center and large national and regional banks. Most of these banks were well

capitalized and had acquired a balanced portfolio of assets. The average

default-risk rating of the portfolio of banks should be close to the default-

risk rating of a high-grade corporate bond. Hence, the yield differential

between BAA corporate bond and long-term treasury security is used to

construct the default-risk factor. Our third systematic interest rate equation is

written as

RBAA, t ¼ j0 þ j1RLT, t þ eDt (6.13a)

Alternately, we will also test the following systematic interest rate

equation:

RBAA, t ¼ j0 þ j1RLT, t þ j2Rmt þ eDt (6.13b)

where j1 measures the average default risk on BAA corporate bond. Inclusion of the

independent variable, Rmt, will control for the stock–bond market linkage. The error

term in Eqs. 6.13a or 6.13b, eDt, specifies the unexpected change in default risk

and serves as the generated regressor which will be used as the proxy for

factor DDRt.

Appendix 2: Interest Rate Innovations

An important issue in the empirical investigation of the two-factor model is the

specification of an appropriate interest rate factor. Theoretical consideration of

factor analysis requires that two factors, Rmt and RIt, be orthogonal whereby

choice of the second factor (RIt) would not influence the first factor loading

(blj). The resolution of this constraint requires a robust technique for determin-

ing the unexpected changes in the interest rate that is uncorrelated with the

market return. The three approaches to specify the interest rate factor are

presented here.
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Orthogonalization Procedure

Economic factors producing changes in the market return also induced term

structure movements. This leads to a high correlation between the market factor

and the interest rate factor. Hence, market return can be used as an instrument

variable to forecast the expected changes in the interest rates. To find the unex-

pected component of interest rates, the expected interest rate is purged by

regressing RIt on Rmt and using the residuals. The systematic interest rate risk

equation is

RIt ¼ d0 þ d1Rmt þ eit (6.14)

The residuals, eit, are the unsystematic interest rates and are used to replace RIt

in Eq. 6.14. The validity of this approach has been questioned on methodological

grounds. It is pointed out that this orthogonalization procedure produces biased

estimates of coefficients (intercept and b1j in Eq. 6.14) and that the deficiency of b2j
is not improved. On the other hand, use of an unorthogonal interest rate factor leads

to the errors-in-variable problem, i.e., the estimated coefficient b2j also captures

some of the effects responsible for changing the market factor, and hence, it is not

a true measure of the interest rate risk. Another problem using an unorthogonal

interest rate factor stems from the fact that interest rate (RIt) is usually

autoregressive. Therefore, residuals, eit, from Eq. 6.14 are autocorrelated unless

GLS parameter estimation procedure is employed. To use the GLS procedure,

a variance-covariance matrix has to be specified, which is not an easy task.

Univariate ARMA Model

The second approach is to identify and estimate an ARMA model for the interest

rate variable, RIt (Flannery and James (1984)). The unanticipated change in interest

rate from the estimated model (i.e., residuals) is used to replace RIt in Eq. 6.14. In

general, the ARMA model of order (p, q) for the univariate time series, RIt, is

written as

RIt ¼ ф1RIt�1 þ ф2RIt�2 þ . . .þ фpRIt�p þ m� y1eI, t�1 � . . .� yqe1, t�q þ eIt

(6.15)

where eIt, eI,t�1, . . . are identically and independently distributed random errors

with mean zero. The ARMA procedure for the modeling of time series data is

outlined in Box and Jenkins (1976). The modeling is usually done in three steps.

First, a tentative parsimonious model is identified. Second, the parameters are

estimated, and diagnostic (Box-Pierce Q) statistics and residual auto correlation

plots are examined. The model is acceptable if the time series of residuals is white

noise and the Box-Pierce Q statistics are significant.
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This approach leads to unbiased estimates of all the coefficients in Eq. 6.14. The

shortcoming of the univariate ARMA approach is that valuable information

contained in the stock and bond market linkage is ignored. Consequently, coeffi-

cient b2j captures some of the effects of economic factors producing stock market

changes.

Vector ARMA Model

In recent years vector autoregressive moving average (VARMA) models have

proved to be useful tools to describe the dynamic relationship between economic

variables. A vector autoregressive moving average model of order (p, q) for

k-dimensional time series, Rt ¼ (R1t, R2t, . . . Rkt)
T, is generated by the following

equation:

F Bð ÞRt ¼ Y Bð Þet (6.16)

F Bð Þ ¼ I� ф1B� ф2B
2 � . . .� фpB

p
� �

(6.17)

Y Bð Þ ¼ I� y1B� y2B2 � . . .� yqBq
� �

(6.18)

where B is the back shift operator, I is kxk unit matrix, and et is a sequence of an

independent k-dimensional vector with zero mean and positive definite covariance

matrix. The interest rate variable RIt and the market return Rmt are treated as the

components of a bivariate vector. Then vector (RIt, Rmt)
T is modeled as a vector AR

process. The estimated model provides the unanticipated change in interest rate

variable to be used as the second factor in the augmented CAPM model.
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Abstract

There is much research whose efforts have been devoted to discovering the

distributional defects in the Black-Scholesmodel, which are known to cause severe

biases. However, with a free specification for the distribution, one can only find

upper and lower bounds for option prices. In this paper, we derive a new nonpara-

metric lower bound and provide an alternative interpretation of Ritchken’s (1985)

upper bound to the price of the European option. In a series of numerical examples,

our new lower bound is substantially tighter than previous lower bounds.
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This is prevalent especially for out-of-the-money (OTM) options where the previ-

ous lower bounds perform badly. Moreover, we present that our bounds can be

derived from histograms which are completely nonparametric in an empirical

study. We first construct histograms from realizations of S&P 500 index returns

following Chen, Lin, and Palmon (2006); calculate the dollar beta of the option and

expected payoffs of the index and the option; and eventually obtain our bounds.We

discover violations in our lower bound and show that those violations present

arbitrage profits. In particular, our empirical results show that out-of-the-money

calls are substantially overpriced (violate the lower bound).

Keywords

Option bounds • Nonparametric • Black-Scholes model • European option • S&P

500 index • Arbitrage • Distribution of underlying asset • Lower bound • Out-of-

the-money • Kernel pricing

7.1 Introduction

In a seminal paper, Merton (1973) presents for the first time the no-arbitrage bounds

of European call and put options. These bounds are nonparametric and do not rely on

any assumption.1 Exact pricing formulas such as the Black and Scholes (1973) model

and its variants, on the other hand, rely on strong assumptions on the asset price

process and continuous trading. Due to the discreteness of actual trading opportuni-

ties, Perrakis and Ryan (1984) point out that option analyses in continuous time limit

the accuracy and applicability of the Black-Scholes and related formulas. Relying on

Rubinstein’s (1976) approach, the single-price law, and arbitrage arguments, they

derive upper and lower bounds for option prices with both a general price distribution

and discrete trading opportunities. Their lower bound is tighter than that of Merton.

Levy (1985) applies stochastic dominance rules with borrowing and lending at the

risk-free interest rate to derive upper and lower option bounds for all unconstrained

utility functions and alternatively for concave utility functions. The derivation of these

bounds can be applied to any kinds of stock price distribution as long as the stock is

“nonnegative beta,” which is identical to the assumption of Perrakis and Ryan (1984).

Moreover, Levy claims that Perrakis and Ryan’s bounds can be obtained by applying

the second-degree stochastic dominance rule. However, Perrakis and Ryan do not

cover all possible combinations of the risky asset with the riskless asset, and their

bounds are therefore wider than those of Levy. Levy also applies the first-degree

stochastic dominance rule (FSDR) with riskless assets to prove that Merton’s bounds

are in fact FSDR bounds and applies the second-degree stochastic dominance rule to

strengthen Merton’s bounds on the option value. At the same time, Ritchken (1985)

uses a linear programming methodology to derive option bounds based on primitive

prices in incomplete markets and claims that his bounds are tighter than those of

Perrakis and Ryan (1984).

1The only assumption is that both option and its underlying stock are traded securities.
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With an additional restriction that the range of the distribution of the one-period

returns per dollar invested in the optioned stock is finite and has a strictly positive

lower limit, Perrakis (1986) extends Perrakis and Ryan (1984) to provide bounds for

American options. Instead of assuming that no opportunities exist to revise positions

prior to expiration in Levy (1985) and Ritchken (Ritchken 1985), Ritchken and Kuo

(1988) obtain tighter bounds on option prices under an incomplete market by

allowing for a finite number of opportunities to revise position before expiration

and making more restrictive assumptions on probabilities and preferences. The

single-period linear programming option model is extended to handle multiple

periods, and the stock price is assumed to follow a multiplicative multinomial

process. Their results show that the upper bounds are identical to those of Perrakis,

while the lower bounds are tighter. Later, Ritchken and Kuo (1989) also add suitable

constraints to a linear programming problem to derive option bounds under higher

orders of stochastic dominance preferences. Their results show that while the upper

bounds remain unchanged beyond the second-degree stochastic dominance, the

lower bounds become sharper as the order of stochastic dominance increases.2

Claiming that Perrakis and Ryan (1984), Levy (1985), Ritchken (1985), and

Perrakis (1986) are all parametric models, Lo (1987) derives semi-parametric

upper bounds for the expected payoff of call and put options. These upper bounds

are semi-parametric because they depend on the mean and variance of the stock price

at maturity but not on its entire distribution. In addition, the derivation of

corresponding semi-parametric upper bounds for option prices is shown by adopting

the risk-neutral pricing approach of Cox and Ross (1976).3 To continue the work of

Lo (1987), Zhang (1994) and De La Pena et al. (2004), both of which assume that the

underlying asset price must be continuously distributed, sharpen the upper option

bounds of Lo (1987). Boyle and Lin (1997) extend the results of Lo (1987) to

contingent claims on multiple underlying assets. Under an intertemporal setting,

Constantinides and Zariphopoulou (2001) derive bounds for derivative prices with

proportional transaction costs and multiple securities. Frey and Sin (1999) examine

the sufficient conditions of Merton’s bounds on European option prices under random

volatility. More recently, Gotoh andKonno (2002) use the semi-definite programming

and a cutting plane algorithm to study upper and lower bounds of European call option

prices. Rodriguez (2003) uses a nonparametric method to derive lower and upper

2To further explore the research work of Ritchken and Kuo (1989) under the decreasing absolute

risk aversion dominance rule, Basso and Pianca (1997) obtain efficient lower and upper option

pricing bounds by solving nonlinear optimization problem. Unfortunately, neither model provides

enough information of their numerical examples for us to compare our model with. The Ritchken-

Kuo model provides no Black-Scholes comparison, and the Basso-Pianca model provides only

some partial information on the Black-Scholes model (we find the Black-Scholes model under 0.2

volatility to be 13.2670 and under the 0.4 volatility to be 20.3185, which are different from what

are reported in their paper (12.993 and 20.098, respectively)) which is insufficient for us to provide

any comparison.
3Inspired by Lo (1987), Grundy (1991) derives semi-parametric upper bounds on the moments of

the true, other than risk-neutral, distribution of underlying assets and obtains lower bounds by

using observed option prices.
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bounds and contributes a new tighter lower bound than previous work. Huang (Huang

2004) puts restrictions on the representative investor’s relative risk aversion and

produces a tighter call option bound than that of Perrakis and Ryan (1984). Hobson

et al. (2005) derive arbitrage-free upper bounds for the prices of basket options. Peña

et al. (2010) conduct static-arbitrage lower bounds on the prices of basket options via

linear programming. Broadie and Cao (2008) introduce new and improved methods

based on simulation to obtain tighter lower and upper bounds for pricing American

options. Lately, Chung et al. (2010) also use an exponential function to approximate

the early exercise boundary to obtain tighter bounds on American option prices.

Chuang et al. (2011) provide a more complete review and comparison of theoretical

and empirical development on option bounds.4

In this paper we derive a new and tighter lower bound for European option prices

under a nonparametric framework. We show that Ritchken’s (1985) upper bound is

consistent with our nonparametric framework. Both bounds are nonparametric

because the price distribution of underlying asset is totally flexible, can be arbitrarily

chosen, and is consistent with any utility preference.5 We compare our lower bound

with those in previous studies and show that ours dominate those models by a wide

margin. We also present the lower bound result on the model with random volatility

and random interest rates (Bakshi et al. 1997; Scott 1997) to demonstrate how easily

our model can be made consistent with any parametric structure.6 Finally, we

present how our bounds can be derived from histograms which are nonparametric

in an empirical study.We discover violations of our lower bound and show that those

violations present arbitrage profits.7 In particular, our empirical results show that

out-of-the-money calls are substantially overpriced (violate the lower bound).

7.2 The Bounds

A generic and classical asset pricing model with a stochastic kernel is

St ¼ Et Mt,TST
� �

, (7.1)

where Mt,T is the marginal rate of substitution, also known as the pricing kernel

that discounts the future cash flow at time T; Et[.] is the conditional expectation

4Since our paper only provides a nonparametric method on examining European option bounds,

our literature review is much limited. For a more complete review and comparison on prior studies

of option bounds, please see Chuang et al. (2011).
5Christoffersen et al. (2010) provide results for the valuation of European-style contingent claims

for a large class of specifications of the underlying asset returns.
6Given that our upper bound turns out to be identical to Ritchken’s (1985), we do not compare with

those upper bound models that dominate Ritchken (e.g., Huang (2004), Zhang (1994) and De La

Pena et al. (2004)). Also, we do not compare our model with those models that require further

assumptions to carry out exact results (e.g., Huang (2004) and Frey and Sin (1999)), since it is

technically difficult to do.
7For the related empirical studies of S&P 500 index options, see Constantinides et al. (2009, 2011).
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under the physical measure ℙ taken at time t; and St is the value of an arbitrary

asset at time t. The standard kernel pricing theory (e.g., Ingersoll (1989))

demonstrates that

Dt,T ¼ Et Mt,T
� �

, (7.2)

where Dt,T is the risk-free discount factor that gives the present value of $1 over the

period (t,T). The usual separation theorem gives rise to the well-known risk-neutral

pricing result:

St ¼ Et Mt, TSt
� �

¼ Et Mt, T
� �

Ê
Tð Þ
t

ST½ �,
¼ Dt,TÊ

Tð Þ
t ST½ �

(7.3)

If the risk-free interest rate is stochastic, then Êt
(T)[.] is the conditional expec-

tation under the T-forward measure P̂ Tð Þ. When the risk-free rate is non-stochastic,

then the forward measure reduces to the risk-neutral measure P̂ and will not depend

upon maturity time, i.e., E
Tð Þ
t �½ � ! Êt �½ �.8

Note that Eqs. 7.1 and 7.3 can be applied to both the stock and the option prices.

This leads to the following theorem which is the main result of this paper.

Theorem 7.1 The following formula provides a lower bound for the European call

option Ct:

Ct ¼ Dt, TEt CT½ � þ bC St � Dt,TEt ST½ �� �
(7.4)

where bC ¼ cov CT ; ST½ �
var ST½ � :

Proof By Eq. 7.1, the option price must follow Ct ¼ Et[Mt,T CT], and hence

Ct ¼ Et Mt, TCT

� �

¼ Et Mt,T
� �

Et CT½ � þ cov Mt, T ,CT

� �

¼ Dt,TEt CT½ � þ cov Mt,T ,CT

� � (7.5)

or

Ct � Dt, TEt CT½ � ¼ cov Mt,T ;CT

� �
: (7.6)

Similarly,

St � Dt,TEt ST½ � ¼ cov Mt,T ; ST
� �

: (7.7)

8Without loss of generality and for the ease of exposition, we take non-stochastic interest rates and

proceed with the risk-neutral measure P̂ for the rest of the paper.
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Hence, to prove Eq. 7.4, we only need to prove

cov Mt,T ;CT

� � � bCcov Mt,T ; ST
� �

: (7.8)

Note that cov[Mt,T,CT] ¼ cov[Mt,T, max{ST � K, 0}] is monotonic in strike

price K and has a minimum value when K ¼ 0 in which case cov[Mt,T,CT] ¼ cov

[Mt,T,ST] and a maximum value when K!1 in which case cov[Mt,T,

CT] ¼ 0. Hence, cov[Mt,T,ST] � cov[Mt,T,CT] which is less than 0. Note that

0 < bC < 1 (see the proof in the following Corollary). In Appendix 1, it is proved

that cov[Mt,T,CT] � bC cov[Mt,T,ST].

The put lower bound takes the same form and is provided in the following corollary:

Corollary 7.1 The lower bound of the European put option Pt can be obtained by the

put-call parity and satisfies the same functional form in Theorem 7.1:

Pt ¼ Dt, TEt PT½ � þ bP St � Dt, TEt ST½ �� �
(7.9)

where bP ¼ cov PT ; ST½ �
var ST½ � :

[Proof] By the Put-Call Parity:

Pt ¼ Ct þ Dt, TK � St � Ct þ Dt, TK � St ¼ Pt: (7.10)

We then substitute in the result of Theorem 7.1 to get

Pt ¼ Dt,TEt CT½ � þ bC St � Dt, TEt ST½ �� �þ Dt, TK � St
¼ Dt,TEt ST þ PT � K½ � þ bC St � Dt, TEt ST½ �� �þ Dt, TK � St
¼ Dt,TEt PT½ � þ bP St � Dt,TEt ST½ �� �

(7.11)

where bP¼ bC� 1. Note that bP< 0< bC. This also implies that bc<1. Finally, it is

straightforward to show that bP ¼ cov PT ;ST½ �
var ST½ � using the put-call parity.

Therefore, for both call and put options, since the relationship between the

pricing kernel M and stock price S is convex, the theorem provides a lower

bound.9 Merton (1973) shows that the stock price will be the upper bound for

the call option and the strike price should be the upper bound for the put

option; otherwise, arbitrage should occur. Ritchken (1985) provides a tighter

upper bound10 than that of Merton, which is stated in the following theorem,

although we provide an alternative proof to Ritchken that is consistent with our

derivation of the lower bound.

9In the Appendix, e > 0.
10Perrakis and Ryan (1984) and Ritchken (1985) obtain the identical upper bound.
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Theorem 7.2 The following formulas provide upper bounds for the European call

and put options (Ritchken (1985))11:

Ct ¼ St
Et ST½ �Et CT½ �

Pt ¼ St
Et ST½ �Et PT½ � þ Dt, T � St

Et ST½ �
� �

K:
(7.12)

Proof Similar to the proof of the lower bound, the upper bound of the call option is

provided as follows:

St
Et ST½ �Et CT½ � ¼ Et Mt, TST

� �
Et ST½ � Et CT½ �

¼ Et Mt, TSTCT

� �� cov Mt,TST ,CT

� �
Et ST½ �

>
Et Mt, TSTCT

� �
Et ST½ �

¼ Ct
E

Cð Þ
t ST½ �
Et ST½ �

> Ct:

(7.13)

The third line of the above equation is a result from the fact that cov[Mt,TST,
CT] < 0. The fourth line of the above equation is a change of measure with the call

option being the numeraire. The last line of the above equation is a result based upon

Et
(C)[ST]/Et[ST] > 1.12

By the put-call parity, we can show that the upper bound of the put option

requires an additional term:

Pt ¼ Ct þ Dt, TK � St ¼ St
Et ST½ �Et PT þ ST � K½ � þ Dt,TK � St

¼ St
Et ST½ �Et PT½ � þ Dt,T � St

Et ST½ �
� �

K:

(7.14)

The lower and upper bounds we show in this paper have two important advantages

over the existing bounds. The bounds will converge to the true value of the option if:

• The expected stock return,
Et ST½ �
St

, approaches the risk-free rate.

• The correlation between the stock and the call or put option (rSC or rSP)
approaches 1 or �1.

11This is same as Proposition 3-i (Eq. 7.26) in Ritchken (1985).
12By the definition of measure change, we have Et[CTST]¼ Et[CT]Et

(C)[ST] which implies Et
(C)[ST]/

E[ST] ¼ Et[CTST]/{Et[CT]Et[ST]} > 1.
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These advantages help us identify when the bounds are tight and when they are

not. The first advantage indicates that the bounds are tight for low-risk stocks and

not tight for high-risk stocks. The second advantage indicates that the bounds are

tighter for in-the-money options than out-of-the-money options.

7.3 Comparisons

The main purpose of this section is to compare our lower bound to several

lower bounds in previous studies, namely, Merton (1973), Perrakis and Ryan

(1984), Ritchken (1985), Ritchken and Kuo (1988), Gotoh and Konno (2002),

and Rodriguez (2003) using the Black-Scholes model as the benchmark for its

true option value. We also compare Ritchken’s upper bound (which is also our

upper bound) with more recent works by Gotoh and Konno (2002) and

Rodriguez (2003).

The Black-Scholes model has five variables: stock price, strike price, volatility

(standard deviation), risk-free rate (constant), and time to maturity. In addition to

the five variables, the lower bound models need the physical expected stock return.

The following is the base case for the comparison:

Current stock S0 50

Strike K 50

Volatility s 0.2

Risk-free rate r 0.1

Time to maturity T 1

Stock expected return m 0.2

In the Black-Scholes model, stock price (S) evolution follows a log normal

process:

dS ¼ mSdtþ sSdW (7.15)

where instantaneous expected rate of stock return m and volatility of stock price s
are assumed to be constants and where dW is a wiener process. The call option price

is computed as

C ¼ S0N dþð Þ � e�rTKN d�ð Þ (7.16)

where

d� ¼ ln S0 � ln K þ r � 0:5s2ð ÞT
s
ffiffiffi
T

p :
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The lower bound is computed by simulating the stock price using Eq. 7.15 via

a binomial distribution approximation:

Sj ¼ S0u
jdn�j: (7.17)

As n approaches infinity, Sj approaches the log normal distribution, and the

binomial model converges to the Black-Scholes model. Under the risk-neutral

measure, the probability associated with the jth state is set as

bPr j½ � ¼ n
j

� �
p̂j 1� p̂ð Þn�j

(7.18)

where

p̂ ¼ erDt � d

u� d
,

u ¼ es
ffiffiffiffi
Dt

p
,

d ¼ e�s
ffiffiffiffi
Dt

p
,

and Dt ¼ T/n represents the length of the partition. Under the actual measure, the

formula will change to

Pr j½ � ¼ n
j

� �
pj 1� pð Þn�j

(7.19)

where

p ¼ emDt � d

u� d
:

Finally, the pricing kernel in our model is set as

M0T j½ � ¼
bPr j½ �
Pr j½ � e

�rT : (7.20)

In our results, we let n be great enough so that the binomial model price is 4-digit

accurate to the Black-Scholes model. We hence set n to be 1,000. The results are

reported in Table 7.1. The first panel presents the results for various moneyness

levels, the second panel presents the results for various volatility levels, the third

panel presents the results for various interest rates, the fourth panel presents the

results for various maturity times, and the last presents the results for various stock
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expected returns. In general, the lower bounds are tighter (for all models) when the

moneyness is high (in-the-money), volatility is high, risk-free rate is high, time to

maturity is short, and the expected return of stock is low.

This table presents comparisons between our lower bound and existing lower

bounds by Merton (1973), Perrakis and Ryan (1984), and Ritchken (1985). The

base case parameter values are:

• Stock price ¼ 50

• Strike price ¼ 50

• Volatility ¼ 0.2

• Risk-free rate ¼ 10 %

• Time to maturity ¼ 1 year

• Stock expected return (m) ¼ 20 %

The highlighted rows represent the base case.

As we can easily see, universally our model for the lower bound is tighter than any

of the comparative models. One result particularly worth mentioning is that our lower

bound performs better than the other lower bound models in out-of-the-money

options. For example, our lower bound is much better than Ritchken’s (1985)

lower bound when the option is 20 % out-of-the-money and continues to show

value when Ritchken’s lower bound returns to 0 (see the first panel of Table 7.1).

While Ritchken and Kuo (1988) claim to obtain tighter lower bounds than

Perrakis (1986) and Perrakis and Ryan (1984), they do not show direct comparisons

in their paper. Rather, they present through a convergence plot (Figure 3 on page

308 in Ritchken and Kuo (1988)) of a Black-Scholes example with the true value

being $5.4532 and the lower bound approaching roughly $5.2. The same parameter

values with our lower bound show a lower bound of $5.4427, which demonstrates

a substantial improvement over the Ritchken and Kuo model.

The comparisons with more recent studies of Gotoh and Konno (2002) and

Rodriguez (2003) are given in Tables 7.2 and 7.3.13 Gotoh and Konno use

semi-definite programming and a cutting plane algorithm to study upper and lower

bounds of European call option prices. Rodriguez uses a nonparametric method to

derive lower and upper bounds. As we can see in Tables 7.2 and 7.3, except for very

few upper bound cases, none of the bounds under the Gotoh and Konno’s model and

Rodriguez’s model are very tight, compared to our model. Furthermore, note that our

model requires no moments of the underlying distribution.14

The base case parameter values are:

• Stock price ¼ 40

• Risk-free rate ¼ 6 %

• Stock expected return (m) ¼ 20 %

13We also compare with the upper bound by Zhang (1994), which is an improved upper bound by

Lo (1987), and show overwhelming dominance of our upper bound. The results (comparison to

Tables 7.1, 7.2, and 7.3 in Zhang) are available upon request.
14The upper bounds by the Gotoh and Konno model perform well in only in-the-money, short

maturity, and low volatility scenarios, and these scenarios are where the option prices are close to

their intrinsic values, and hence the percentage errors are small.
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Table 7.1 Lower bound comparison

S Blk-Sch Merton PR Ritch. Our $error %error
20 0.0000 0 0 0 0 0.0000
25 0.0028 0 0 0 0 0.0028
30 0.0533 0 0 0 0 0.0533
35 0.3725 0 0 0 0.0008 0.3717 99.78
40 1.3932 0 0 0.272 0.8224 0.5708 40.97
45 3.4746 0 1.441 2.278 2.8957 0.5789 16.66
50 6.6322 4.758 5.449 5.791 6.1924 0.4398 6.63
55 10.6248 9.758 10.017 10.143 10.3535 0.2714 2.55
60 15.1288 14.758 14.849 14.888 14.9851 0.1437 0.95
65 19.9075 19.758 19.788 19.797 19.8395 0.0680 0.34
70 24.8156 24.758 24.768 24.767 24.7860 0.0296 0.12
75 29.7794 29.758 29.761 29.76 29.7673 0.0121 0.04
80 34.7658 34.758 34.759 34.754 34.7611 0.0047 0.01

Vol Blk-Sch Merton PR Ritch. Our $error %error
0.1 5.1526 4.7580 4.7950 4.8630 4.8930 0.2596 5.04
0.15 5.8325 4.7580 5.0290 5.2400 5.4367 0.3958 6.79
0.2 6.6322 4.7580 5.4490 5.7890 6.1924 0.4398 6.63
0.25 7.4847 4.7580 5.9700 6.4360 7.0247 0.4600 6.15
0.3 8.3633 4.7580 6.5370 7.1010 7.8864 0.4769 5.70
0.35 9.2555 4.7580 7.1180 7.7760 8.7601 0.4954 5.35
0.4 10.1544 4.7580 7.6990 8.4570 9.6382 0.5162 5.08
0.45 11.0559 4.7580 8.2680 9.1250 10.5170 0.5389 4.87
0.5 11.9574 4.7580 8.8220 9.7780 11.3945 0.5629 4.71
0.55 12.8569 4.7580 9.3570 10.4240 12.2692 0.5877 4.57

Rate Blk-Sch Merton PR Ritch. Our $error %error
0.02 4.4555 0.9901 1.7380 2.7680 3.0243 1.4313 32.12
0.04 4.9600 1.9605 2.6940 3.5010 3.8402 1.1198 22.58
0.06 5.4923 2.9118 3.6310 4.2490 4.6400 0.8523 15.52
0.08 6.0504 3.8442 4.5490 5.0200 5.4240 0.6264 10.35
0.1 6.6322 4.7581 5.4490 5.7970 6.1924 0.4398 6.63
0.12 7.2355 5.6540 6.3310 6.5810 6.9456 0.2900 4.01
0.14 7.8578 6.5321 7.1960 7.3670 7.6839 0.1739 2.21
0.16 8.4965 7.3928 8.0430 8.1470 8.4076 0.0889 1.05
0.18 9.1488 8.2365 8.8740 8.9350 9.1169 0.0319 0.35
0.2 9.8122 9.0635 9.6880 9.7170 9.8122 0.0000 0.00
0.22 10.4841 9.8741 10.4870 10.4830 10.4841 0.0000 0.00

T Blk-Sch Merton PR Ritch. Our $error %error
0.1 1.5187 0.4975 1.2850 1.3600 1.4976 0.0211 1.39
0.2 2.3037 0.9901 1.8870 2.0240 2.2469 0.0568 2.47
0.3 2.9693 1.4777 2.4000 2.5940 2.8696 0.0997 3.36
0.4 3.5731 1.9605 2.8730 3.0990 3.4266 0.1465 4.10
0.5 4.1371 2.4385 3.3250 3.5830 3.9416 0.1955 4.72
0.6 4.6726 2.9118 3.7640 4.0510 4.4272 0.2454 5.25
0.7 5.1862 3.3803 4.1940 4.5020 4.8909 0.2953 5.69

(continued)
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The base case parameter values are:

• Strike price ¼ 50

• Volatility ¼ 0.2

• Risk-free rate ¼ 10 %

• Time to maturity ¼ 1 year

• Stock expected return (m) ¼ 20 %

7.4 Extensions

In addition to a tight lower bound, another major contribution of our model is

that it makes no assumption on the distribution of the underlying stock (unlike Lo

(1984) and Gotoh and Konno (2002) who require moments of the underlying distri-

bution) or any assumption on interest rates and volatility (unlike Rodriguez (2003)

who requires constant interest rates). As a result, our lower bound can be used with

models that assume random volatility and random interest rates or any arbitrary

specification of the underlying stock. Note that our model needs only the dollar beta

of the option and expected payoffs of the stock and the option.15 In this section, we

extend our numerical experiment to a model with random volatility and random

interest rates.

Option models with random volatility and random interest rates can be derived

with closed form solutions under the Scott (1997) and Bakshi et al. (1997)

Table 7.1 (continued)

0.8 5.6822 3.8442 4.6170 4.9460 5.3375 0.3447 6.07
0.9 6.1635 4.3034 5.0350 5.3710 5.7705 0.3930 6.38
1 6.6322 4.7581 5.4490 5.7890 6.1924 0.4398 6.63

Mu (µ) Blk-Sch Merton PR Ritch. Our $error %error
0.1 6.6322 4.7580 6.3740 6.4310 6.6322 0.0000 0.00
0.15 6.6322 4.7580 5.8380 6.0610 6.4703 0.1620 2.44
0.2 6.6322 4.7580 5.4490 5.7890 6.1924 0.4398 6.63
0.25 6.6322 4.7580 5.1800 5.5820 5.8689 0.7633 11.51
0.3 6.6322 4.7580 5.0040 5.4360 5.5572 1.0750 16.21
0.35 6.6322 4.7580 4.8940 5.3090 5.2936 1.3386 20.18
0.4 6.6322 4.7580 4.8300 5.2130 5.0929 1.5393 23.21
0.45 6.6322 4.7580 4.7940 5.1330 4.9536 1.6786 25.31

Note: S is the stock price; vol is the volatility; rate is the risk-free rate;Mu (m) is the expected rate
of return of stock; Blk-Sch is the Black-Scholes (1973) solution; Merton is the Merton (1973)

model; PR is Perrakis and Ryan (1984) model; Ritch. is the Ritchken (1985) model; Our is our
model; $error is error in dollar; %error is error in percentage

15The term “dollar beta” is originally from Page 173 of Black (1976). Here we mean bc and br.
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specifications. However, here, given that there is no closed form solution to the

covariance our model requires, we shall use Monte Carlo to simulate the lower

bound. In order to be consistent with the lower bound, we must use the same Monte

Carlo paths for the valuation of the option. For the ease of exposition and simplicity,

we assume the following joint stochastic processes of stock price S, interest rate r,
and volatility V under the actual measure, respectively:

dS ¼ mSdtþ ffiffiffiffi
V

p
SdŴ2

dr ¼ a y� rð Þdtþ vdŴ2

dV ¼ �VdŴ2

(7.21)

where dW is a wiener process, dWidWj ¼ 0, m, a, y, u, and � are constants. The

processes under the actual measure are used for simulating the lower and upper

bounds. The Monte Carlo simulations are performed under the risk-neutral measure

in order to compute the option price:

dS ¼ rSdtþ ffiffiffiffi
V

p
SdŴ 1

dr ¼ a y� rð Þdtþ vdŴ2

dV ¼ �VdŴ3:

(7.22)

Table 7.2 Comparison of upper and lower bounds with the Gotoh and Konno (2002) model

Stk

Lower bound

Blk-Sch

Upper bound

Our GK Our GK

S ¼ 40; rate ¼ 6 %; vol ¼ 0.2; t ¼ 1 week

30 10.0346 10.0346 10.0346 10.1152 10.0349

35 5.0404 5.0404 5.0404 5.1344 5.0428

40 0.4628 0.3425 0.4658 0.5225 0.5771

45 0.0000 0.0000 0.0000 0.0000 0.0027

50 0.0000 0.0000 0.0000 0.0000 0.0003

S ¼ 40; rate ¼ 6 %; vol ¼ 0.8; t ¼ 1 week

30 10.0400 10.0346 10.0401 10.1202 10.1028

35 5.2644 5.0404 5.2663 5.3483 5.4127

40 1.7876 1.2810 1.7916 1.8428 2.2268

45 0.3533 0.0015 0.3548 0.3717 0.5566

50 0.0412 0.0000 0.0419 0.0444 0.1021

S ¼ 40; rate ¼ 6 %; vol ¼ 0.8; t ¼ 12 week

30 11.9661 10.4125 12.0278 12.7229 12.8578

35 8.7345 6.2980 8.8246 9.4774 9.7658

40 6.2141 3.8290 6.3321 6.8984 7.5165

45 4.3432 2.5271 4.4689 4.9421 6.8726

50 2.9948 1.5722 3.1168 3.4990 4.5786

Note: S is the stock price; Stk is the strike price; vol is the volatility; rate is the risk-free rate; Blk-
Sch is the Black-Scholes (1973) solution; GK is the Gotoh and Konno (2002) model; Our is our
model; $error is error in dollar; %error is error in percentage
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To simplify the problem without loss of generosity, we assume that investors

charge no risk premiums on interest rate risk and volatility risk, i.e., dW2 ¼ dŴ 2

and dW3 ¼ dŴ3.

The simulations are done by the following integrals under the actual (top

equation) and risk-neutral (bottom equation) measures:

St ¼ S0exp

ðt
0

mudu�
ðt
0

1⁄2Vuduþ
ðt
0

ffiffiffiffiffiffi
Vu

p
dWu

� �

Ŝt ¼ S0exp

ðt
0

rudu�
ðt
0

1⁄2Vuduþ
ðt
0

ffiffiffiffiffiffi
Vu

p
dŴu

� �
:

(7.23)

The no-arbitrage price of the call option is computed under the risk-neutral

measure as

C ¼ E exp �
ðt
0

rudu

� �
max Ŝt � K, 0

� �	 

: (7.24)

Table 7.3 Comparison of upper and lower bounds with the Rodriguez (2003) model

S

Lower bound

Blk-Sch

Upper bound

Our Rodriguez Our Rodriguez

30 0.0221 0 0.0538 0.1001 0.1806

32 0.0725 0.0000 0.1284 0.2244 0.3793

34 0.1828 0.0171 0.2692 0.4451 0.7090

36 0.3878 0.1158 0.5072 0.7973 1.2044

38 0.7224 0.3598 0.8735 1.3100 1.8900

40 1.2177 0.7965 1.3950 2.0044 2.7767

42 1.8982 1.4521 2.0902 2.8927 3.8619

44 2.7711 2.3329 2.9676 3.9697 5.1315

46 3.8319 3.4286 4.0255 5.2211 6.5640

48 5.0709 4.7177 5.2535 6.6302 8.1337

50 6.4703 6.1724 6.6348 8.1753 9.8149

52 8.0072 7.7635 8.1494 9.8327 11.5835

54 9.6574 9.4631 9.7758 11.5794 13.4187

56 11.3974 11.2462 11.4933 13.3950 15.3032

58 13.2067 13.0922 13.2832 15.2621 17.2235

60 15.0683 14.9845 15.1292 17.1674 19.1693

62 16.9716 16.9101 17.0179 19.1024 21.1328

64 18.9035 18.8593 18.9384 21.0573 23.1086

66 20.8559 20.8250 20.8822 23.0262 25.0926

68 22.8239 22.8020 22.8429 25.0056 27.0822

70 24.8018 24.7867 24.8157 26.9915 29.0754

Note: S is the stock price; Blk-Sch is the Black-Scholes (1973) solution; Rodriguez is the

Rodriguez (2003) model; Our is our model; $error is error in dollar; %error is error in percentage
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The bounds are computed under the actual measure. For example,

E Ct½ � ¼ E max St � K, 0f g½ �: (7.25)

Given that dWidWj ¼ 0, we can simulate the interest rates and volatility

separately and then simulate the stock price. That is, conditional on known interest

rates and volatility, under independence, the stock price is log normally distributed.

We perform our simulations using 10,000 paths over 52 weekly periods. The

parameters are given as follows:

Strike K 50

Time to maturity T 1

Stock expected return m 0.2

Reverting speed a 0.5

Reverting level y 0.1

Interest rate volatility u 0.03

Initial interest rate r0 0.1

Initial variance V0 0.0416

Volatility on variance � 0.2

Note that implicitly we assume the price of risk for both interest rate process and

volatility process to be 0, for simplicity and without loss of generality. The results

are shown in Table 7.4. Compared to the model of the Black-Scholes (i.e., the first

panel of Table 7.4), the lower bound performs similarly in the random volatility

and random interest rate model. Take the base case as an example where the

Black-Scholes price is 6.6322, the Bakshi-Cao-Chen/Scott price is 13.6180 as

a result of extra uncertainty in the stock price due to random volatility and interest

16This is so because the initial volatility is 0.2.

Table 7.4 Lower bound under the random volatility and random interest rate model

S BCC/Scott Our $error %error
25 1.9073 1.1360 0.7713 40.44
30 3.2384 2.4131 0.8253 25.49
35 5.2058 4.1891 1.0167 19.53
40 7.5902 6.5864 1.0039 13.23
45 10.2962 9.5332 0.7630 7.41
50 13.6180 12.8670 0.7510 5.52
55 17.1579 16.5908 0.5671 3.30
60 21.1082 20.5539 0.5543 2.63
65 25.0292 24.7251 0.3040 1.21
70 29.3226 29.0742 0.2484 0.85

Note: S is the stock price; BCC/Scott are Bakshi et al. (1997) and Scott (1997) models; Our is our
model; $error is error in dollar; %error is error in percentage
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rates. The error of the lower bound of our model is 0.7510 in the Bakshi-Cao-Chen/

Scott case as opposed to 0.4398 in the Black-Scholes case.17 The percentage error is

5.52 % in the Bakshi-Cao-Chen/Scott case versus 6.63 % in the Black-Scholes case.

The in-the-money options have larger percentage errors than those of the out-of-

the-money options.

The parameters are given as follows:

Strike price 50

Time to maturity 1

Stock expected return 0.2

Reverting speed 0.5

Reverting level 0.1

Interest rate volatility 0.03

Price of risk 0

Initial interest rate 0.1

Initial volatility 0.2

Volatility on volatility 0.2

The Monte Carlo paths are 10,000. The stock price, volatility, and interest rate processes are

assumed to be independent

7.5 Empirical Study

In this section, we test the lower and upper bounds against data. Charles Cao has

generously provided us with the approximated prices of S&P 500 index call option

contracts, matched levels of S&P 500 index, and approximated risk-free 90-day

T-Bill rates for the period of June 2, 1988 through December 31, 1991.18 For each

day, the approximated option prices are calculated as the average of the last bid and

ask quotes. Index returns are computed using daily closing levels for the S&P

500 index that are collected and confirmed using data obtained from Standard and

Poor’s, CBOE, Yahoo, and Bloomberg.19

The dataset contains 46,540 observations over 901 days (from June 2, 1988, to

December 31, 1991). Hence, on average there are over 50 options for various

maturities and strikes. The shortest maturity of the dataset is 7 days and the longest

is 367 days. 15 % of the data are less than 30 days to maturity, 32 % are between

17This Black-Scholes case is from the highlighted row in the first panel of Table 7.1.
18The data are used in Bakshi et al. (1997).
19The (ex-dividend) S&P500 indexwe use is the index that serves as an underlying asset for the option.

For option evaluation, realized returns of this indexneednot be adjusted for dividends unless the timing

of the evaluated option contract is correlated with lumpy dividends. Because we use monthly

observations, we think that such correlation is not a problem. Furthermore, in any case, this should

not affect the comparison of the volatility smile between our model and the Black-Scholes model.
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30 and 60 days, 30 % are between 60 and 180 days, and 24 % are more than

180 days to maturity. Hence, these data do not have maturity bias.

The deepest out-of-the-money option is �18.33 %, and the deepest

in-the-money option is 47.30 %. Roughly half of the data are at-the-money options

(46 % of the data are within 5 % in-the-money and out-of-the-money). 10 % are

deep-in-the-money (more than 15 % in-the-money), but less than 1 % of the data are

deep-out-of-the-money (more than 15 % out-of-the-money). Hence, the data have

disproportional fraction of in-the-money options. This is clearly a reflection of the

bull market in the sample period.

The best way to test the lower and upper bounds derived in this paper is to use

a nonparametric, distribution-free model. Note that the lower bound in Theorem 7.1

requires only the expected return of the underlying stock and the covariance

between the stock and the option. There is no further requirement for the lower

and the upper bounds. In other words, our lower bound model can permit any

arbitrary distribution of the underlying stock and any parametric specification of the

underlying stock such as random volatility, random interest rates, and jumps.

Hence, to best test the bounds with a parsimonious empirical design, we adopt

the histogram method introduced by Chen et al. (2006) where the underlying asset

is modelled by past realizations, i.e., histogram.

We construct histograms from realizations of S&P 500 index (SPX) returns. We

calculate the price on day t of an option that settles on day T using a histogram of

S&P 500 index returns for a holding period of T–t, taken from a 5-year window

immediately preceding time t.20 For example, an x-calendar-day option price on

any date is evaluated using a histogram of round 252
365
x

� �
-trading-day holding period

returns where round [.] is rounding the nearest integer.21 The index levels used to

calculate these returns are taken from a window that starts on the 1260th (� 5 	
252) trading day before the option trading date and ends 1 day before the trading

date. Thus, this histogram contains 1, 260� round 252
365
x

� �
-trading-day return reali-

zations. Formally, we compute histogram of the (unannualized) returns by the

following equation:

Rt, tþx, i ¼ ln St�i�x � ln St�i, (7.26)

where each i is an observation in time and t is the last i. For example, if t is 1988/06/
02 and x is 15 calendar days (or ten business days). We further choose our

histogram horizon to be 5 years or 1,260 business days. Fifteen business days

after 1988/06/02 is 1988/06/17. To estimate a distribution of the stock return for

1988/06/17, we look back a series of 10-business-day returns. Since we choose

a 5-year historical window, or 1,260-business-day window, the histogram will contain

20We use three alternative time windows, 2-year, 10-year, and 30-year, to check the robustness of

our procedure and results.
21The conversion is needed because we use trading-day intervals to identify the appropriate return

histograms and calendar-day intervals to calculate the appropriate discount factor.
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1,260 observations. The first return in the histogram, R1933/06/02,1933/06/07,1, is the differ-
ence between the log of the stock price on 1988/06/01, ln St–1, and the log of the stock

price 15 calendar days (ten business days) earlier on 1988/05/17, ln St–1–a. The second

observation in the histogram, R1933/06/02/1933/06/07,2 is computed as ln St–2–ln St–2–a.
After, we complete the histogram of returns, we then convert it to the histogram of

prices by multiplying every observation in the histogram by the current stock price:

Stþx, i ¼ StRt, tþx, i: (7.27)

The expected option payoff is calculated as the average payoff where all the

realizations in the histogram are given equal weights. Thus, Et[CT,T,K] and Et[ST]
are calculated as

Et CT, T,K
� � ¼ 1

N

XN

i¼1
max ST, i � K, 0

� �

Et ST½ � ¼ 1

N

XN

i¼1
ST, i

8><
>:

, (7.28)

whereN is the total number of realized returns andCt,T,K is the price observed at time t,
of an option that expires at time T with strike price K. Substituting the results in Eq.

7.28 in the approximation pricing formula of Eq. 7.4, we obtain our empirical model:

Ct ¼ Pt,TEt CT,T,K
� �þ bC St � Pt,TEt ST½ �� �

¼ Pt,T
1

N

XN

i¼1
max ST, i � K, 0

� �þ bC St � Pt, T
1

N

XN

i¼1
ST, i

� �
(7.29)

where the dollar beta is defined as bC ¼ cov CT ;ST½ �
var ST½ � as defined in Eq. 7.4.

Note that option prices should be based upon projected future volatility levels

rather than historical estimates. We assume that investors believe that the distribu-

tion of index returns over the time to maturity follows the histogram of a particular

horizon with a projected volatility. In practice, traders obtain this projected vola-

tility by calibrating the model to the market price. We incorporate the projected

volatility, n*t,T,K, into the histogram by adjusting its returns:

R

t, T,K, i ¼

v
t, T,K
vt, T

Rt,T, i � Rt, T
 �þ Rt, T ::, i ¼ 1, � � �,N, (7.30)

where the historical volatility nt,T is calculated as the standard deviation of the

historical returns as follows:

v2t, T ¼ 1

N � 1

XN

i¼1
Rt, T, i � Rt, T
 �2

(7.31)

where Rt,T,i ¼ ST,i/St and Rt, T ¼ 1
NS

N
i¼1Rt, T, i is the mean return.
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Note that the transformation from R to R* changes the standard deviation

from nt,T to n*t,T,K, but does not change the mean, skewness, or kurtosis. In our

empirical study, we approximate the true volatility by the Black-Scholes

implied volatility. For the upper bound calculations, we also need an

expected mean return of the stock. In our empirical study, we simply use

the histogram mean for it.

The selection of the time horizon is somewhat arbitrary. Empiricists know

well that too long horizons reduce the impact of recent events and yet too

short understate the impact of long time effects. Given that there is no

consensus on a most proper horizon, we perform our test over a variety of choices,

namely, 5-year, 10-year, and 30-year, and the results are similar. To

conserve space, we provide the results on the 10-year and leave the others

available on request.

The results are shown in Table 7.5. Columns (1) and (2) define the maturity

and moneyness buckets. Short maturity is less than 30 days to maturity, medium

is between 31 and 90 days, long is between 91 and 180 days, and real long is

over 180 days to maturity. At-the-money is between 5 % in-the-money and 5 %

out-of-the-money (or �5 %), near-in-the-money/near-out-of-the-money is

between 5 % and 15 %, and deep-in-the-money/deep-out-of-the-money is over

15 %. Moneyness is defined as S/K–1. Column (3) is a frequency count of the

number of observations in each bucket. Column (4) represents the average value of

the ratios of the lower bound over the market price of the option.

Column (5) shows the number of violations when the lower bound is higher than

the market price.

Out of the entire sample (46,540 observations), on average, the lower bound is

9.57 % below the market value and the upper bound is 9.28 % above the market

value. When we look into subsamples, the performances vary. In general, the lower

bound performs better in-the-money than out-of-the-money and medium maturity

than other maturities. The best lower bound performance is when the option is near-

in-the-money and short-term maturity (2.83 % below market value).

To visualize the upper and lower bounds, we plot selected contracts in Fig. 7.1.

In Fig. 7.1, we plot at-the-money (ATM) options from four maturities, 1 month

(Fig. 7.1a), 2 months (Fig. 7.1b), 3 months (Fig. 7.1c), and 6 months (Fig. 7.1d).

As we move from short maturity to long maturity, the number of observations

drops (51, 38, 21, 15 observations, respectively). The bounds are wider as we

move from short maturity to long maturity, consistent with the analysis in

the previous sections.

As we can see, in general, the lower bound using histograms is best for

in-the-money and short-dated options and worst for out-of-the-money options.

On average the lower bound is 9.57 % below the market value (the ratio is

90.43 %). However, there are violations. For example, medium-term, near-out-of-

the-money options have five violations of the lower bound, and there are a total

of 4,233 violations. Theoretically, there should be arbitrage opportunities when the

bounds are violated. To test the lower bound does imply arbitrage opportunities, we
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perform a simple buy and hold trading strategy. If the lower bound is violated, we will

buy the option and hold it till maturity. For the 4,233 (out of 46,540) violations, the

buy and hold strategy generated $22,809 or an average of $5.39 per contract.

Given that the buy and hold strategy can be profitable simply due to the bull market,

we compute those that had no violation of the lower bound. For the 42,307 cases that

violated no lower bound, the average profit is $1.83. Hence, the options that violated

the lower bound imply a trading profit 200 % above the average.

Table 7.5 Empirical results on the lower bound

(1) (2) (3) (4) (5)
Maturity Money Total % lbdd Violation

Short Deep out 0 0
Medium Deep out 0 0

Long Deep out 84 57.26 0
Real long Deep out 295 61.18 0

Short Near out 145 65.33 0
Medium Near out 1,925 69.27 5

Long Near out 3,554 82.29 30
Real long Near out 3,317 86.88 271

Short At 4,106 89.73 492
Medium At 7,732 92.45 962

Long At 5,650 92.82 380
Real long At 3,857 92.61 584

Short Near in 2,220 97.17 218
Medium Near in 3,924 97.08 785

Long Near in 2,951 94.50 234
Real long Near in 2,018 90.31 130

Short Deep in 660 92.48 0
Medium Deep in 1,296 94.52 29

Long Deep in 1,352 93.14 46
Real long Deep in 1,454 89.42 67

Total 46,540 90.43 4,233

Note:

1. This is based upon 2,520 business-day (10 years) horizon. Results of other horizons are similar

and are available on request

2. Columns (1) and (2) define the maturity and moneyness buckets. Short maturity is less than

30 days to maturity, medium is between 31 and 90 days, long is between 91 and 180 days, and real

long is over 180 days to maturity. At-the-money is between 5 % in-the-money and 5 % out-of-the-

money (or �5 %), near-in-the-money/near-out-of-the-money is between 5 % and 15 %, and deep-

in-the-money/deep-out-of-the-money is over 15 %. Moneyness is defined as S/K � 1. Column

(3) is a frequency count of the number of observations in each bucket. Column (4) represents the

average value of the ratios of the lower bound over the market price of the option. Column

(5) shows the number of violations when the lower bound is higher than the market price

3. The best lower bound performance is when the option is near-in-the-money and short-term

maturity (2.83 % below market value)

The underlying stock return distribution is a 10-year historical return histogram with the volatility

replaced by the Black-Scholes implied volatility
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Fig. 7.1 (continued)
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7.6 Conclusion

In this paper, we derive a new and tighter lower bound for European option

prices comparing with those of previous studies. We further reinterpret

Ritchken’s (1985) upper bound under a nonparametric framework. Our

model contributes to the literature in two different ways. First, our bounds

require no parametric assumption of the underlying stock or the moments of

the distribution. Furthermore, our bounds require no assumptions on interest

rates or volatility. The only requirements of our model are the dollar beta

of the option and expected payoffs of the stock and the option. Hence, our

bounds can be applied to any model such as the random volatility and

random interest rate model by Bakshi et al. (1997) and Scott (1997).

Second, despite of much looser and flexible assumptions, our bounds are

significantly tighter than the existing upper and lower bound models. Most

importantly, our bounds are tighter for the out-of-the-money options that

cannot be bounded efficiently by previous models. Finally, we apply our model to

real data using histograms of the realized stock returns. The results show that

nearly 10 % of the observations violate the lower bound. These violations are

shown to generate significant arbitrage profits, after correction of the bull market in

the sample period.
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Fig. 7.1 (a) Plot of 30-daymaturity actual ATMoption prices and its upper and lower bound values.

(b) Plot of 60-day maturity actual ATM option prices and its upper and lower bound values. (c) Plot
of 91-day maturity actual ATM option prices and its upper and lower bound values. (d) Plot of
182-day maturity actual ATM option prices and its upper and lower bound values
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Appendix 1

In this appendix, we prove Theorem 7.1. Without loss of generality, we prove

Theorem 7.1 by a three-point convex function. The extension of the proof to

multiple points is straightforward but tedious. Let the distribution be trinomial

and the relationship between the pricing kernel M and the stock price S be convex.

In the following table, x � 0; y > e � 0.

Probability M S C ¼ max{S � K, 0}

p2 M + x S + y > K S + y � K

2p(1 � p) M S � e < K 0

(1 � p)2 M � x S � y < K 0

When e ¼ 0, the relationship between the pricing kernel M and stock price S is

linear, and we obtain equality. When e > 0, the relationship is convex. We first

calculate the mean values:

E M½ � ¼ M � xþ 2px
E S½ � ¼ S� yþ 2pðy� e

�þ 2p2e
E C½ � ¼ p2ðSþ y� K

�
:

The three covariances are computed as follows:

cov M; S½ � ¼ 2pð1� p
�
xðyþ eð2p� 1

��
cov M;C½ � ¼ 2p2ð1� p

�
xðSþ y� K

�
cov S;C½ � ¼ 2p2ð1� p

�ðSþ y� K
�ðyþ pe

�
:

The variance of the stock price is more complex:

var S½ � ¼ 2p 1� pð Þz

where

z ¼ y2 þ e2 1� 2pþ 2p2
 �þ 2ey 2p� 1ð Þ �

> 0:

As a result, it is straightforward to show that

cov S;C½ �
var S½ � cov M; S½ � ¼ 2p2 1� pð Þ Sþ y� Kð Þ yþ peð Þ

2p 1� pð Þz 2pð1� p
�
xðyþ eð2p� 1

��

¼ 2p2 1� pð ÞxðSþ y� K
� yþ peð Þ yþ e 2p� 1ð Þð Þ

z

¼ 2p2 1� pð ÞxðSþ y� K
�
1þ e 1� pð Þ y� eð Þ

z

	 


� 2p2 1� pð ÞxðSþ y� K
� ¼: cov M,C½ �:
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The fourth line is obtained because cov[M,C]< 0 and 1þ e 1�pð Þ y�eð Þ
z > 1. Note that

the result is independent of p since all it needs is 0 < p < 1 for 1þ e 1�pð Þ y�eð Þ
z to be

greater than 1. Also note that when e ¼ 0 the equality holds.
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Abstract

Research in structuring asset return dependence has become an indispensable

element of wealth management, particularly after the experience of the recent

financial crises. In this paper, we evaluate whether constructing a portfolio using

time-varying copulas yields superior returns under various weight updating

strategies. Specifically, minimum-risk portfolios are constructed based on vari-

ous copulas and the Pearson correlation, and a 250-day rolling window tech-

nique is adopted to derive a sequence of time-varied dependencies for each

dependence model. Using daily data of the G7 countries, our empirical findings

suggest that portfolios using time-varying copulas, particularly the Clayton

dependence, outperform those constructed using Pearson correlations. The

above results still hold under different weight updating strategies and portfolio

rebalancing frequencies.

Keywords

Copulas • Time-varying dependence • Portfolio optimization • Bootstrap • Out-

of-sample return • Performance evaluation • GARCH • Gaussian copula •

Student’s t-copula • Gumbel copula • Clayton copula

8.1 Introduction

The return of a portfolio depends heavily on its asset dependence structure. Over the

past decade, copula modeling has become a popular alternative to Pearson corre-

lation modeling when describing data with an asymptotic dependence structure and

a non-normal distribution.1 However, several critical issues attached to the appli-

cations of copulas emerge: Do portfolios using time-varying copulas outperform

those constructed with Pearson correlations? How does the risk return of copula-

based portfolios change over the business cycle? The estimation of parameters has

become particularly critical for finance academics and professionals on the heels of

the recent financial crises. In this chapter, we model the time-varying dependence

of an international equity portfolio using several copula functions and the Pearson

correlation. We investigate whether a portfolio constructed with copula dependence

yields superior returns as compared to a portfolio constructed using a Pearson

correlation under various weight updating strategies.

This paper extends the existing literature in two ways. First, we estimate our

time-varying copulas using a rolling window of the latest 250 trading days. It is well

accepted that the dependencies between asset returns are time varying (Kroner and

Ng 1998; Ang and Bekaert 2002). Differing from the regime-switching type used in

Rodriguez (2007) and Okimoto (2008) or the time-evolving type GARCH model

used in Patton (2006a), we estimate time-varying copulas via a rolling window

1See Chan et al. (1999), Dowd (2005), Patton (2006a), Engle and Sheppardy (2008), Chollete

et al. (2009), Bauer and Vorkink (2011).
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based on daily data from the previous year. The rolling window method has several

benefits. First, it is a method frequently adopted by practitioners. Second, the rolling

window method considers only the past year’s information when forming depen-

dencies, thus avoiding disturbances that may have existed in the distant past.

Several studies have applied this technique, such as Aussenegg and Cech (2011).

However, Aussenegg and Cech (2011) considered only the daily Gaussian and

Student’s t-copulas in constructing models, and it is reasonable to consider monthly

and quarterly frequencies, given that portfolio managers do not adjust their portfo-

lios on a daily basis. Our research also extends Aussenegg and Cech’s (2011) study

by including the Archimedean copulas to govern the strength of dependence.

Second, our study investigates how the choice of copula functions affects

portfolio performance during periods of economic expansion and recession. The

expansion and recession periods we define are based on announcements from the

National Bureau of Economic Research (NBER). While the use of copula functions

in financial studies has grown enormously, little work has been done in comparing

copula dependencies under different economic states.

Using daily US dollar-denominated Morgan Stanley Capital International

(MSCI) indices of the G7 countries, our empirical results suggest that the

copula-dependence portfolios outperform the Pearson-correlation portfolios. The

Clayton-dependence portfolios, for most scenarios studied, deliver the highest

portfolio returns, indicating the importance of lower-tail dependence in building

an international equity portfolio. Moreover, the choice of weight updating fre-

quency matters. As we increase the weight updating frequency from quarterly to

monthly, the portfolio returns for the full sample and recession periods also

increase, regardless of the choice of dependence measure. Our finding supports

the value of active portfolio reconstruction during recession periods.

This paper is organized as follows. Section 8.2 reviews the literature on copula

applications in portfolio modeling. Section 8.3 describes the empirical models.

Section 8.4 presents the data used. The main empirical results are reported in

Sect. 8.5. Section 8.6 concludes.

8.2 Literature Review

Copulas, implemented in either static or time-varying fashion, are frequently seen in

options pricing, risk management, and portfolio selection. In this section, we review

some copula applications in portfolio selection. Patton (2006a) pioneered time-

varying copulas by modifying the copula functional form to allow its parameters to

vary. Patton (2006a) used conditional copulas to examine asymmetric dependence in

daily Deutsche mark (DM)/US dollar (USD) and Japanese yen (Yen)/US dollar

(USD) exchange rates. His empirical results suggest that the correlation between

DM/USD and Yen/USD exchange rates is stronger when the DM and Yen are

depreciating against the dollar. Hu (2006) adopted a mixture of a Gaussian copula,

a Gumbel copula, and a Gumbel survival copula to examine the various dependence

structures of four stock indices. His results demonstrate the underestimation problem
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due to multivariate normality correlations and the importance of incorporating both

the structure and the degree of dependence into the portfolio evaluation. Kole

et al. (2007) compared the Gaussian, Student’s t, and Gumbel copulas to illustrate

the importance of selecting an appropriate copula to manage the risk of a portfolio

composed of stocks, bonds, and real estate. Kole et al. (2007) empirically demon-

strated that the Student’s t-copula, which considers the dependence both in the center
and the tail of the distribution, provides the best fit for the extreme negative returns of

the empirical probabilities under consideration.

Rodriguez (2007) studied financial contagions in emerging markets using

switching Frank, Gumbel, Clayton, and Student’s t-copulas. Rodriguez (2007)

found evidence that the dependence structures between assets change during

a financial crisis and that a good asset allocation strategy should allow dependence

to vary with time. Chollete et al. (2009) modeled asymmetric dependence in

international equity portfolios using a regime-switching, canonical vine copula

approach, which is a branch of the copula family first described by Aas

et al. (2007). Chollete et al. (2009) documented that the canonical vine copula

provides better portfolio returns and that the choice of copula dependencies affects

the VaR of the portfolio return. Chollete et al. (2011) investigated international

diversification benefits using the Pearson correlation and six copula functions. Their

results show that dependence increases over time and that the intensity of the

asymmetric dependence varies in different regions of the world.

While some existing studies have applied copulas to the optimization of portfo-

lio selection, most have tended to focus on portfolio risks, i.e., value at risk, rather

than portfolio returns. Empirically, however, investors pay at least equal attention

to portfolio returns. Our study is among the few that have focused on equity

portfolio returns using time-varying copulas.

8.3 Empirical Methods

8.3.1 Copulas

A copulaC is a function that links univariate distribution functions into a multivariate

distribution function. Let F be an n-dimensional joint distribution function and let

U ¼ (u1, u2, . . ., un)
T be a vector of n random variables with marginal distributions

F1, F2, . . ., Fn. According to Sklar’s (1959) theorem, if the marginal distributions

F1, F2, . . ., Fn are continuous, then a copula C exists, where C is a multivariate

distribution function with all uniform (0,1) marginal distributions.2 That is,

F u1; u2; . . . ; unð Þ ¼ C F1 u1ð Þ,F2 u2ð Þ, . . . ,Fn unð Þð Þ, for all u1, u2, . . . , un 2 ℝn: (8.1)

2For detailed derivations, please refer to Cherubini et al. (2004), Demarta and McNeil (2005),

Embrechts et al. (2003), Embrechts et al. (2005), Franke et al. (2008), Nelson (2006), and

Patton (2009).
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For a bivariate case, the model can be defined as

F x; yð Þ ¼ C FX xð Þ,FY yð Þð Þ (8.2)

8.3.2 Copula Specifications

In this paper, we consider four copula functions: the Gaussian, Student’s t, Gumbel,

and Clayton. The Gaussian copula focuses on the center of the distribution and

assumes no tail dependence. The Student’s t-copula stresses both the center of the

distribution and symmetric tail behaviors. The Clayton copula emphasizes lower-

tail dependence, while the Gumbel copula focuses on upper-tail dependence.

Table 8.1 summarizes the characteristics of each copula in detail.

8.3.3 Gaussian Copula

The Gaussian copula is frequently seen in the finance literature due to its close

relationship to the Pearson correlation. It represents the dependence structure of two

normal marginal distributions. According to Nelson (2006), the bivariate Gaussian

copula can be expressed as

C x; yð Þ ¼
ðF�1 xð Þ

�1
ds

ðF�1 yð Þ

�1
dt

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p exp � s2 � 2rstþ t2

2 1� r2ð Þ
� �

¼ Fr F�1 xð Þ,F�1 yð Þ� �
, (8.3)

where F denotes the univariate standard normal distribution function and Fr is the

joint distribution function of the bivariate standard normal distribution with correla-

tion coefficient –1� r� 1. The Gaussian copula has no tail dependence unless r¼ 1.

8.3.4 Student’s t-Copula

Unlike the Gaussian copula, which fails to capture tail behaviors, the Student’s t-copula
depicts the dependence in the center of the distribution as well as in the tails. The

Student’s t-copula is defined using the multivariate t distribution and can be written as

Table 8.1 The characteristics of different copulas

Dependence model Tail dependence Parameter range

Pearson correlation No r ϵ (�1, 1)
Gaussian copula No r ϵ (�1, 1)
Student’s t-copula Yes (symmetry) r ϵ (�1, 1), v > 2

Gumbel copula Yes (upper tail) d ϵ (0, 1)
Clayton copula Yes (lower tail) a ϵ [�1,1)\{0}
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Ct
v,r x; yð Þ ¼

ðt�1v xð Þ

�1

ðt�1v yð Þ

�1

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p 1þ s2 � 2rstþ t2

v 1� r2ð Þ
� ��vþ2

2

dsdt

¼ t2v, r t�1v xð Þ, t�1v yð Þ� �
, (8.4)

where t2v, r indicates the bivariate joint t distribution, tv
�1 is the inverse of

the distribution of a univariate t distribution, v is the degrees of freedom, and r
is the correlation coefficient of the bivariate t distribution when v > 2.

8.3.5 Archimedean Copulas

According to Embrechts et al. (2005), the coefficient of upper-tail dependence (lu)
of two series, X and Y, can be defined as

lu x; yð Þ ¼ limq�1�P Y > F y qð Þ X > F x qð Þ�� �
:

h
(8.5)

The upper-tail dependence presents the probability that Y exceeds its qth
quantile given that X exceeds its qth quantile, considering the limit as q goes to

its infinity. If the limit lu∈[0,1] exists, then X and Y are said to show upper-tail

dependence. In the same manner, the coefficient of lower-tail dependence (ll) of
X and Y is described as

ll x; yð Þ ¼ limq�0þP Y � F y qð Þ X � F x qð Þ�� �
:

h
(8.6)

Since both FU1
and FU2

are continuous density functions, the upper-tail

dependence can be presented as

lu ¼ lim
q�0�

P
	
Y > F y qð Þ X > F x qð Þ�� �

P X > F x qð Þ	 � : (8.7)

For lower-tail dependence, it can be described as

ll ¼ lim
q�0þ

P
	
Y � F y qð Þ X � F x qð Þ�� �

P X � F x qð Þ	 � : (8.8)

8.3.5.1 Gumbel Copula
The Gumbel copula is a popular upper-tail dependence measure as suggested in

Embrechts et al. (2005). The Gumbel copula can be written as

c x; yð Þ ¼ exp � �ln xð Þ1d

n

þ �ln yð Þð 1
d

od
� �

, (8.9)
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where 0 < d � 1 measures the degree of dependence between X and Y. When

d ¼ 1, X and Y do not have upper-tail dependence (i.e., X and Y are independent at

upper tails), and when d! 0, X and Y have perfect dependence.

8.3.5.2 Clayton Copula
The Clayton copula is used to measure lower-tail dependence. The Clayton copula

is defined as

c x; yð Þ ¼ max x�a þ y�a � 1ð Þ�1
a; 0

h i
, (8.10)

where a describes the strength of dependence. If a! 0, X and Y do not have lower-

tail dependence. If a!1, X and Y have perfect dependence.

8.3.6 Portfolio Construction

The selection of optimal portfolios draws on the seminal work of Markowitz

(1952). Specifically, we adopt the variance minimization strategy with no short

selling and transaction cost assumptions.3 An optimal portfolio allocation can be

found by solving the following optimization problem:

Min wf gw
0
Vw

Subject to
X

wi ¼ 1, wi � 0, (8.11)

where wi is the weight of asset i, and V is the covariance matrix of asset returns.

Because dependence is a time-varying parameter, the data from a subset of

250 trading days prior to the given sample date t is used to derive the dependence

for date t. With 1,780 daily data points in our sample, we calculate a total of 1,531

dependencies for each copula method and the Pearson correlation. With these

dependencies, optimal portfolio weightings can be obtained by solving

a quadratic function subject to specified constraints. The optimal weightings for

time t are used to calculate the realized portfolio returns for (t + 1).4

In practice, portfolio managers periodically reexamine and update the optimal

weights of their portfolios. If the asset allocation of an existing portfolio has

deviated from the target allocation to a certain degree and if the benefit of updating

exceeds its costs, a portfolio reconstruction action is executed. In this paper,

we construct a comprehensive study of portfolio returns by varying the state of

3Short selling usually involves other service fees, which vary depending on the creditability of the

investors. Because the focus of this study is on the effect of the dependence structure on portfolio

performance, we assume that short selling is not allowed to simplify the comparison.
4For example, we use return data from t1 to t250 to calculate the optimal portfolio weights with

dependencies estimated from the copulas and the Pearson correlation. The optimal portfolio

weights are applied to the return data at t251 to calculate the realized portfolio returns.
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the economy (i.e., expansion or recession), the dependence structure, and the

frequency of weight updating, i.e., quarterly, monthly, and daily. Quarterly

updating allows investors to update the optimal weights on the first trading days

of March, June, September, and December; monthly updating allows investors to

update the optimal weights on the first trading days of each month. Under daily

updating, investors update the optimal weights every trading day.

8.4 Data

The data are the US dollar-denominated daily returns of the Morgan Stanley Capital

International (MSCI) indices for the G7 countries, including Canada, France,

Germany, Italy, Japan, the UK, and the USA. The sample period covers from the

first business day in June 2002 to the last business day in June 2009, for a total of

1,780 daily observations. Based on the definitions provided by the National Bureau

of Economic Research, we separate the data into an expansion period from June

2002 to November 2007 and a recession period from December 2007 to June 2009.

Table 8.2 presents the descriptive statistics. Among the G7 countries, Canada

had the highest daily returns, while the USA had the lowest. Germany, however,

experienced the most volatile returns. All return series exhibit high kurtosis,

suggesting fat tails on return distributions. The results of the Jarque-Bera test reject

the assumption that the G7 indices have normal distributions.

8.5 Empirical Results

8.5.1 Dependence

Using 1,780 daily data points from the G7 countries, for each dependence model,

we estimate 21 dependence pairs, each containing a sequence of 1,531 dependen-

cies. The parameters for the Gaussian, Student’s t, Gumbel, and Clayton copula

functions are estimated using the two-stage inference for the margins (IFM) method

proposed by Joe and Xu (1996) and Joe (1997).

Table 8.2 The summary statistics of the G7 indices

Canada France Germany Italy Japan UK USA

Mean (%) 0.0301 0.0064 0.0082 0.0003 �0.0017 �0.0039 �0.0082
Std. dev. 0.0164 0.0171 0.0178 0.0161 0.0155 0.0159 0.0144

Skewness �0.8781 0.0740 0.0666 0.0477 �0.1475 �0.0535 �0.1365
Kurtosis 14.1774 10.7576 8.6920 12.9310 7.4592 12.9143 12.1182

Jarque-Bera 9494 4465 2404 7315 1481 7290 6171

JB P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 1780 1780 1780 1780 1780 1780 1780

The results indicate that the daily returns of the G7 indices are not normally distributed
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The dependencies from the Pearson correlation are calculated using the standard

method. Appendix 1 shows the maximum and the minimum of the 21 dependence

pairs of each dependence model.

The graphs in Fig. 8.1 show the dependencies between the USA and other

countries as estimated via the various copulas and the Pearson correlation. In

general, the Gaussian copula estimation is similar to that of the corresponding

Pearson correlation, but the Student’s t-copulas show significant jumps over time.

For our sample period, Japan shows a low dependence with the US market as

compared to other economies.

8.5.2 Average Portfolio Returns

Table 8.3 presents the average portfolio returns for the full sample period,

the expansion period, and the recession period for the quarterly, monthly, and

daily weight updating strategies. Under the quarterly weight updating, the

Clayton-dependence portfolios have the highest average returns at 6.07 % in the

expansions and�12.52 % in the recessions, and the Pearson-correlation portfolios

have the lowest average returns, 5.48 % in the expansions and �14.25 % in the

recessions. The order of portfolio performance, in the form of its dependence

model regardless of the state of economy, is as follows: the Clayton copula, the

Gumbel copula, the Student’s t-copula, the Gaussian copula, and the Pearson

correlation. Because both the Clayton and Gumbel copulas highlight the tail

dependence between assets, the empirical evidence suggests that with

a quarterly weighting strategy, tail dependence, particularly lower-tail depen-

dence, is important for obtaining superior average portfolio returns across differ-

ent states of the economy.

As we increase the updating frequency from quarterly to monthly, similar empir-

ical results are observed. That is, the Clayton-copula portfolios yield the highest

average returns, while the Pearson-correlation portfolios provide the lowest average

returns. In the expansion periods, the order of portfolio performance, in the form of its

dependence model, is as follows: the Clayton copula, the Student’s t-copula, the
Gaussian copula, the Gumbel copula, and the Pearson correlation. In recession

periods, the order of portfolio performance, in the form of its dependence model, is

as follows: the Clayton copula, the Gumbel copula, the Student’s t- copula, the

Gaussian copula, and the Pearson correlation. According to Kole et al. (2007), the

Gaussian copula, which does not consider lower-tail dependence, tends to be overly

optimistic on the portfolio’s diversification benefits, and the Gumbel copula, which

focuses on the upper tail and pays no attention to the center of the distribution, tends

to be overly pessimistic on the portfolio’s diversification benefits. We verify this

argument by observing that the Gumbel-copula portfolio outperforms only the

Pearson-correlation portfolio in the expansion periods, while the Gaussian-copula-

dependence portfolio outperforms the Pearson-correlation portfolio only in recession

periods. Interestingly, as we increase the weight updating frequency from quarterly to

monthly, the average portfolio returns for the full sample and recession periods also
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increase, regardless of the choice of dependence measures. Thus, the empirical results

seem to support the need for active portfolio reconstruction during recessions.

As the weight updating frequency increases to daily, the Clayton copula delivers

only the highest average portfolio returns during the expansion period. The

Student’s t-copula, by contrast, generates the highest portfolio average returns

for the full sample and recession periods. The influence of the lower-tail

dependence seems to diminish under daily weight reconstruction. The Gaussian-

copula portfolio delivers the worst portfolio performance in both expansion and

recession periods.

8.5.3 Testing Significance of Return Difference

The results reported in the previous section show the average portfolio returns for

different dependencies and weight updating frequencies. One issue with average

returns is that if extreme values exist over the examined period, the empirical

results may be biased and relatively high-standard deviations will be reported.

Previous methods of examining the robustness of portfolio performance usually

build on the data normality assumption (Jobson and Korkie 1981; Memmel

2003), which goes against the empirical facts.
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Fig. 8.1 The dependence using different copulas and Pearson correlation. Panel (a) USA versus

Canada. Panel (b) USA versus France. Panel (c) USA versus Germany. Panel (d) USA versus

Italy. Panel (e) USA versus Japan. Panel (f) USA versus UK
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To cope with this problem, Ledoit and Wolf (2008) proposed an alternative

testing method using the inferential studentized time-series bootstrap. Ledoit and

Wolf’s (2008) method is as follows.5 Let a and b be two investment strategies, and

let rat and rbt be the portfolio returns for strategies a and b, respectively, at time t,
where t ranges from 1 to i. The mean vector m and the covariance matrix S for the

return pairs (ra1,rb1)’,. . .,(rat,rbt)’ are denoted by

m ¼ ma
mb

 �
and

X
¼ s2a sab

sab s2b

 �
: (8.12)

The performance of strategies a and b can be examined by checking whether the

difference between the Sharpe ratios for strategies a and b are statistically different
from 0. That is,

D ¼ Sa � Sb ¼ ma
sa
� mb
sb

(8.13)

5For detailed derivations and computer codes, please refer to Ledoit and Wolf (2008).

Table 8.3 Average portfolio returns

Clayton Gaussian Gumbel Student’s t Pearson

Panel A: quarterly adjustments

Full sample returns 1.44 % 0.91 % 1.16 % 1.11 % 0.57 %

(1.1903) (1.1749) (1.1922) (1.1763) (1.0644)

Expansion returns 6.07 % 5.63 % 5.70 % 5.66 % 5.48 %

(0.6946) (0.0798) (0.6962) (0.7014) (0.6613)

Recession returns �12.52 % �13.35 % �12.56 % �12.64 % �14.25 %

(2.0549) (2.0025) (2.0578) (1.7922) (2.0153)

Panel B: monthly adjustments

Full sample returns 1.63 % 1.08 % 1.22 % 1.22 % 0.75 %

(1.1764) (1.1812) (1.1835) (1.1736) (1.0199)

Expansion returns 6.15 % 5.67 % 5.66 % 5.69 % 5.23 %

(0.6800) (0.6928) (0.6870) (0.6864) (0.6401)

Recession returns �12.01 % �12.78 % �12.19 % �12.30 % �12.80 %

(2.0375) (2.0355) (2.0474) (2.0247) (1.1708)

Panel C: daily adjustments

Full sample returns 1.34 % 0.85 % 1.16 % 1.47 % 1.03 %

(1.1737) (1.1651) (1.1749) (1.1733) (1.0253)

Expansion returns 5.84 % 5.35 % 5.59 % 5.70 % 5.39 %

(0.6733) (0.6859) (0.6839) (0.6766) (0.6367)

Recession returns �12.27 % �12.74 % �12.22 % �11.34 % �12.14 %

(2.0382) (2.0053) (2.0277) (2.0346) (1.7280)

The average portfolio returns are presented in an annualized, percentage format. Three weight

updating frequencies are considered: quarterly, monthly, and daily. Within each frequency, we

report the returns for the full sample period, the expansion period, and the recession period. The

numbers in the parentheses are standard errors
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and

D̂ ¼ bSa � bSb ¼ bma
bsa �

bmb
bsb , (8.14)

where D is the difference between the two Sharpe ratios, and Sa and Sb are the

Sharpe ratios for strategies a and b, respectively.
Let the second moments of the returns from strategies a and b be denoted by ga

and gb. Then ga ¼ E(gat
2) and gb ¼ E(gbt

2). Let u and û be (ma, mb, ga, gb)’ and
m̂a, m̂b, ĝa , ĝað Þ0, respectively. Then D and D̂ can be expressed as

D ¼ f uð Þ and D̂ ¼ f ûð Þ (8.15)

where f uð Þ ¼ maffiffiffiffiffiffiffiffiffi
ga�m2a
p � mbffiffiffiffiffiffiffiffiffiffi

gb�m2b
p and

ffiffi
i
p

û � uð Þ!d N 0;Cð Þ:
For time-series data, Ledoit and Wolf (2008) have argued

that C can be evaluated by the studentized bootstrap as bC� ¼ 1
#

XW

j¼1 xjx
0
j,

where xj ¼ 1ffiffi
b
p
Xb

t¼1 y
�
j�1ð Þbþtt ¼ 1, . . . ,#:# is the integer part of the fraction of

the total observations divided by the blocks b. Also,

y�t ¼ r�ta � m̂�a , r
�
tb � m̂�b , r

�2
ta � ĝ�a , r

�2
tb � ĝ�b

� �
t ¼ 1, . . . , i: (8.16)

Following Ledoit and Wolf’s (2008) method, we examine the significance of

60 pairs of portfolio performance. The size of the bootstrap iteration is 10,000 to

ensure a sufficient sample.6 Table 8.4 presents the results from Ledoit and Wolf’s

(2008) portfolio performance test.

The results indicate that during the recession periods and using quarterly

weight updating, the Pearson correlation underperforms all the copula dependencies

at a confidence level of 90 % or greater. During recession periods and adopting

monthlyweight updating, the superiority of the copula dependencies jumps to a 99%

confidence level. Moreover, during the recession periods and assuming daily

updating, the Student’s t-copula outperforms the Pearson correlation at the 99 %

confidence level.

Overall, Ledoit and Wolf’s (2008) empirical tests illustrate the superiority of

copulas during recession periods, regardless of the frequency of weight updating.

During a bullish market, this advantage seems not as statistically significant as

during a bearish market.

6Ledoit and Wolf (2008) suggested that 5,000 iterations guarantee a sufficient sample. We adopt

a higher standard of 10,000 iterations to strengthen our testing results.
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8.6 Conclusions

In this paper, we study whether adopting time-varying copulas as a measure of

dependence of asset returns can improve portfolio performance. This study was

motivated by the fact that the traditional Pearson correlation is inadequate in

describing most financial returns. Moreover, the robustness of copula functions

has not been fully examined under different states of the economy and weight

updating scenarios. We evaluate the effectiveness of various copulas in managing

portfolios while considering portfolio rebalance frequencies and the business cycle.

The significance of return difference is tested using the studentized time-series

bootstrap method suggested by Ledoit and Wolf (2008).

The main findings are as follows: first, an international equity portfolio modeled

using the Pearson correlations underperforms those modeled using copula-based

Table 8.4 Ledoit and Wolf portfolio performance test

Panel A: quarterly adjustments

CL-GA CL-GU CL-PE CL-t GA-GU

Expansion 0.821 0.812 0.788 0.677 0.916

Recession 0.060a 0.987 0.054a 0.839 0.0760a

GA-PE GA-t GU-PE GU-t PE-t

Expansion 0.892 0.930 0.766 0.912 0.778

Recession 0.0030c 0.0727a 0.0267b 0.943 0.026b

Panel B: monthly adjustments

CL-GA CL-GU CL-PE CL-t GA-GU

Expansion 0.193 0.415 0.568 0.744 0.881

Recession 0.249 0.803 0.021c 0.295 0.092a

GA-PE GA-t GU-PE GU-t PE-t

Expansion 0.850 0.892 0.795 0.896 0.809

Recession 0.001c 0.318 0.019c 0.475 0.008c

Panel C: daily adjustments

CL-GA CL-GU CL-PE CL-t GA-GU

Expansion 0.389 0.814 0.732 0.929 0.913

Recession 0.000c 0.119 0.173 0.371 0.000c

GA-PE GA-t GU-PE GU-t PE-t

Expansion 0.928 0.915 0.460 0.831 0.301

Recession 0.718 0.001c 0.045c 0.778 0.019c

The performance tests are conducted using the approach suggested by Ledoit and Wolf (2008).

The tests examine whether the returns from two portfolios are significantly different at the

95 % level

CL stands for the Clayton copula, GA stands for the Gaussian copula, GU stands for the gumbel

copula, PE stands for Pearson correlation, and t stands for the Student’s t-copula
aRepresents 90 % statistical significance
bRepresents 95 % statistical significance
cRepresents 99 % statistical significance
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dependencies, especially during recession periods. Our findings remain robust

regardless of the rebalancing frequency. Second, the importance of lower-tail

behaviors in portfolio modeling is highlighted by the higher average portfolio

returns of the Clayton-dependence portfolios. Third, the choice of weight updating

frequency affects portfolio returns. The portfolios using monthly weight updating

frequency provide better portfolio returns than those using quarterly and daily weight

adjustments.

We add to the current literature by thoroughly evaluating the effectiveness

of asymmetric conditional correlations in managing portfolio risk. This paper

synthesizes the major concepts and modi operandi of previous research and max-

imizes the practicality of applying copulas under a variety of scenarios. Future

research into copulas can be extended to the contagion of various asset classes and

interest rates and evaluations of the impact of certain economic events.

Appendix 1

Appendix 1 illustrates the dependence of the G7 countries from different depen-

dence models. Note that to ease the comparison between dependencies, we trans-

form Gumbel dependencies by (1� d). Therefore, the range for the Clayton and the
Gumbel copulas is between 0 and 1, with 0 meaning no dependence and 1 standing

for perfect dependence. The range for the Gaussian copula, the Student’s t-copula,
and the Pearson correlation is �1 to 1, with 0 meaning no dependence and 1 or �1
standing for complete dependence.

CA FR DE IT JP UK USA

Panel A: Gaussian dependence

CA

Max

Min

FR

Max 0.7064

Min 0.3914

DE

Max 0.6487 0.9686

Min �0.2016 0.7856

IT

Max 0.6320 0.9407 0.9274

Min �0.2143 �0.2303 0.7001

JP

Max 0.1814 0.2761 0.2478 0.4023

Min �0.2115 �0.2238 �0.2229 0.0119

UK

Max 0.6393 0.9100 0.8665 0.8575 0.4664

Min �0.1945 �0.2384 �0.2008 �0.2050 0.0329

(continued)
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CA FR DE IT JP UK USA

USA

Max 0.7221 0.5031 0.5231 0.4661 0.5831 0.5671

Min �0.1864 �0.2127 �0.2087 �0.2414 �0.2241 0.1997

Panel B: Student’s t dependence

CA

Max

Min

FR

Max 0.7509

Min 0.3921

DE

Max 0.4578 0.9810

Min �0.1070 0.7476

IT

Max 0.4367 0.9810 0.9586

Min �0.1089 0.7476 0.6937

JP

Max 0.1093 0.1679 0.1522 0.6846

Min �0.1284 �0.1511 �0.1574 0.0093

UK

Max 0.4478 0.8055 0.7380 0.7316 0.7335

Min �0.1094 �0.1546 �0.1359 �0.1230 0.0284

USA

Max 0.5733 0.8055 0.3457 0.3176 0.4375 0.6614

Min �0.1107 �0.1546 �0.1343 �0.1360 �0.1519 0.2687

Panel C: Gumbel dependence

CA

Max

Min

FR

Max 0.5947

Min 0.3220

DE

Max 0.3744 0.9063

Min 0.0000 0.5928

IT

Max 0.3666 0.7286 0.8544

Min 0.0000 0.0000 0.5516

JP

Max 0.0961 0.1384 0.1222 0.5356

Min 0.0000 0.0000 0.0000 0.0200

(continued)
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CA FR DE IT JP UK USA

UK

Max 0.3650 0.6946 0.6156 0.6086 0.5855

Min 0.0000 0.0000 0.0000 0.0000 0.0234

USA

Max 0.4340 0.2816 0.2952 0.2649 0.3261 0.5967

Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.2493

Panel D: Clayton dependence

CA

Max

Min

FR

Max 0.6763

Min 0.2899

DE

Max 0.3585 0.9327

Min 0.0000 0.6696

IT

Max 0.3463 0.7635 0.9004

Min 0.0000 0.0000 0.6006

JP

Max 0.0038 0.0408 0.0287 0.6476

Min 0.0000 0.0000 0.0000 0.0000

UK

Max 0.3657 0.7193 0.6567 0.6506 0.6794

Min 0.0000 0.0000 0.0000 0.0000 0.0000

USA

Max 0.5248 0.2450 0.2476 0.1987 0.3472 0.6622

Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.1982

Panel E: Pearson correlation

CA

Max

Min

FR

Max 0.7002

Min 0.3966

DE

Max 0.6944 0.9726

Min 0.3645 0.7890

IT

Max 0.6833 0.9596 0.9477

Min 0.3877 0.8204 0.6965

(continued)
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CA FR DE IT JP UK USA

JP

Max 0.3549 0.4594 0.4702 0.4073

Min �0.0411 0.0251 0.0170 �0.0072
UK

Max 0.7080 0.9573 0.9298 0.9181 0.4612

Min 0.3676 0.7791 0.6572 0.6990 0.0154

USA

Max 0.7586 0.6096 0.7443 0.5871 0.2078 0.5480

Min 0.3764 0.2647 0.2921 0.2481 �0.1562 0.1913
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Abstract

Individual investors are actively involved in stock market and are making

investment decision based on publicly available and nonproprietary information,

such as corporate earnings forecasts from the management and the financial

analyst. Also, the management forecast is another important index investors

might use.

To examine the accuracy of the earnings forecasts, the following test meth-

odology have been conducted.Multiple regression models are used to examine

the effect of six factors: firm size, market volatility, trading volume turnover,

corporate earnings variances, type of industry, and experience. If the two-sample

groups are related, Wilcoxon two-sample test will be used to determine the

relative earnings forecast accuracy.

The results indicate that firm size has no effect on management forecast,

voluntary management forecast, mandatory management forecast, and analysts’

forecast. There are some indications that forecasting accuracy is affected by

market ups and downs. The results also reveal that relative accuracy of earnings

forecasts is not a function of trading volume turnover. However, management’s

earnings forecast and analysts’ forecasts are sensitive to earnings variances.

Readers are well advised and referred to the chapter appendix for methodo-

logical issues such as sample selection, variable definition, regression model,

and Wilcoxon two-sample test.

Keywords

Multiple regression • Wilcoxon two-sample test • Corporate earnings • Forecast

accuracy • Management earnings • Firm size • Corporation regulation •

Volatility • Trade turnover • Industry

9.1 Introduction

In recent times, individual investors are actively involved in stock market and are

making investment decision based on publicly available and nonproprietary infor-

mation. Corporate earnings forecasts are an important investment tool for investors.

Corporate earnings forecasts come from two sources: the company management

and financial analyst. As an insider, the management has the advantage of

possessing more information and hence provides a more accurate earnings forecast.

However, because of the existing relationship of the company with its key investor

group, the management may have a tendency to take an optimistic view and

overestimate its future earnings. In contrast, the financial analysts are less informed

about the company and often rely on management briefings. They have more

experiences in the overall market and economies and are expected to analyze

companies objectively. Hence, analysts should provide reliable and more accurate

earnings forecast.
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Whether investors should rely on the earnings forecast made by the management

or by the analyst is a debatable issue. Many researchers have examined the accuracy

of such earnings forecasts. Because there are differences in methodologies, sample

selections and time horizons, the findings and conclusions from the previous studies

are conflicting and inconclusive. This motivated us to do a new analysis by using

a different methodology.

According to Regulations for Publishing Corporate Earnings Forecast imposed

by the Department of Treasury,1 publicly traded Taiwanese companies have to

publish their earnings forecasts under the following situations:

1. To issue new stocks or acquired liabilities;

2. When more than one third of the board has been changed;

3. When one of the situations as listed in section 185 of the corporation regulations

happens;

4. Merger and acquisitions;

5. Profit gain/loss up to one third of its annual revenue due to an unexpected event;

6. Revenue loss over 30 % compared to last year;

7. Voluntarily publish its earnings forecast

Since management earnings forecasts are mandatory or voluntary, the focus of

this research is to examine the accuracy of management’s overall earnings forecast,

management voluntary earnings forecast, management mandatory earnings fore-

cast, and financial analyst earnings forecast.

9.2 Literature Review

Jaggi (1980) examined the impact of company size on forecast accuracy using

management’s earnings forecasts from the Wall Street Journal and analysts’

earnings forecasts from Value Line Investment Service from 1971 to 1974. He

argued that because a larger company has strong financial and human capital

resources, its management’s earnings forecast would be more accurate than the

analyst’s. The sample data were classified into six categories based on the size of

the firms’ total revenue to examine the factors that attribute to the accuracy of

management’s earnings forecast with the analyst’s. The result of his research did

not support his hypothesis that management’s forecast is more accurate than the

analyst’s.

Bhushan (1989) assumed that it is more profitable trading large companies’

stocks because large companies have better liquidity than the small ones. Therefore,

the availability of information is related to company size. His research results

support his hypothesis that the larger the company size, the more information is

available to financial analysts and the more accurate their earnings forecasts are.

Kross and Schreoder (1990) proposed that brokerage firm’s characteristics influ-

ence analysts’ earnings forecasting accuracy. In their analysis, sample analysts’

1Securities Regulation Committee, Department of Treasury, series 00588, volume #6, 1997
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earnings forecasts from 1980 to 1981 were obtained from Value Line Investment,

and the market value of a firm is used as the size of the firm. The results of this study

on analysts’ earnings forecasts did not find a positive relation between the company

size and the analyst’s forecast accuracy. Xu (1990) used the data range from 1986 to

1990 and the logarithm of average total revenue as a proxy of company earnings

and examined factors associated with the accuracy of analysts’ earnings forecast.

The hypothesis that the larger the firm size is, the more accurate the analysts’

earnings forecast would be was supported.

Su (1996) focuses on comparison of relative accuracy of management and

analysts’ earnings forecasts by using cross-sectional design method. Samples

selection includes forecast data during the time period from 1991 to 1994. The

company’s “book value” of its total assets is used as a proxy for the size of the

company in the regression analysis. The author believes that analysts are more

attracted to larger companies, and there are more incentives for them to follow large

companies than small companies in their forecasting. Therefore, the size of

a company will affect the relative accuracy of analyst earnings forecast. On the

other hand, large companies possess excessive human and financial resources and

information which analysts have no access to, to allow managers to anticipate the

corporate future earnings with high accuracy. The study results show that analyst

and voluntary earnings forecast accuracy for larger companies are higher than

forecast accuracy for small companies.

Yie (1996) examines the factors influencing management and financial analyst

earnings forecasting accuracy. Data used in this study are the earnings forecasts

during the years 1991–1995. She uses the company’s total assets and market value

of the company’s equity as proxies for company size. The finding of this research

reveals that the relative earnings forecast accuracy (management, voluntary man-

agement, mandatory management, and analyst) is not affected by the size of the

company when the company’s total assets are used as the proxy of company size.

The result also indicates that mandatory management’s earnings forecast and

analysts’ earnings forecasts are influenced by company size if market value of

company’s equity is used.

Xu (1990) examines the relative accuracy of analysts’ earnings forecasts,

a hypothesis that market volatility is one of factors that influence the relative

accuracy of analyst earnings forecast. In upmarket situation, a vast amount of

information regarding corporate earnings and overwhelming trading activities

may hinder the analyst from getting realistic and objective information; thus,

overoptimistic forecast might be a result. In contrast, when market is experiencing

a downturn, individual investors are less speculative and more rational; thus,

information about corporate earnings tends to be more accurate. Under these

circumstances, the analyst tends to provide earnings forecasts with a higher level

of accuracy. The results of this study support the author’s hypothesis. Jiang (1993)

examines the relative accuracy between management’s earnings forecast and ana-

lyst earnings forecast. He hypothesizes that analysts’ earnings forecast has a higher

degree of accuracy in down market compared to upmarket situation. He uses
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samples forecast data from years 1991 to 1993 in his analysis and finds that the

result of this research supports his argument.

Das et al. (1998) used a cross-sectional approach to study the optimistic

behavior of financial analysts. Especially, they focused on the predicative accu-

racy of past information analysts’ earnings forecast associated with magnetite of

the bias in analysts’ earnings forecasts. The sample selection covers the time

period from 1989 to 1993 with 274 companies’ earnings forecasts information.

A regression method was used in this research. The term “optimistic behavior” is

referred to as the optimistic earnings forecasts made by financial analysts. The

authors hypothesize the following scenario: there is higher demand for nonpublic

information for firms whose earnings are more difficult to predict than for firms

whose earnings can be accurately forecasted using public information. Their

finding supports the hypothesis that analysts will make more optimistic forecasts

for low-predictability firms with an assumption that optimistic forecast facilitates

access to management’s nonpublic information. Clement (1999) studies the rela-

tion between the quality and forecast accuracy of analysts’ reports. It also identifies

systematic and time persistence in analysts’ earnings forecast accuracy and exam-

ines the factors associated with degree of accuracy. Using the I/B/E/S database, the

author has found that earnings forecast accuracy is positively related with analysts’

experience (a surrogate for analyst ability and skill) and employer size (a surrogate

for resources available) and inversely related with the number of firms and

industries followed by the analyst. The sample selection covers the time horizon

from 1983 to 1994 with earnings forecasts of 9,500 companies and 7,500 analysts.

The author believes that as the analyst’s experience increases, his earnings forecast

accuracy will increase, which implies that the analyst has a better understanding of

the idiosyncrasies of a particular firm’s reporting practices or he might establish

a better relationship with insiders and therefore gain better access to the managers’

private information. An analyst’s portfolio complexity is also believed to have

association with his earnings forecast accuracy. He hypothesizes that forecast

accuracy would decrease with the number of industries/firms followed. The effect

of available resources impacts analyst’s earnings forecast in such a way that

analysts employed by a larger broker firm supply more accurate forecasts than

smaller ones. The rationale behind this hypothesis is that the analyst hired

by a large brokerage firm has better access to the private information of managers

at the companies he follows. Large firms have more advanced networks that

allow the firms to better disseminate their analyst’s recommendations into the

capital markets. The results of this research support the hypothesis made by the

author.

Xiu (1992) studies the relative accuracy of management and analysts’ earn-

ings forecasts using Taiwan database covering the period 1986–1990. The

management and analyst’s earnings forecasts used in the study are from Busi-

ness News, Finance News, Central News Paper, and The United Newspaper. The

research methodology is to examine management’s earnings forecast accuracy

with prior and posterior analyst’s earnings forecasts. The result reveals that
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a management’s forecast is superior to prior analyst’s forecast, but less accurate

than posterior analyst’s earnings forecasts.

Jiang (1993) examined the determinants associated with analysts’ earnings

forecast and management and analyst’s earnings accuracy under different assump-

tions. A sample of Taiwan corporations is collected from the Four Seasons news-

paper. Jiang uses cross-sectional regression analysis to investigate the relations

between the forecast accuracy and firm’s size, rate of earnings deviation, forecast-

ing time horizon, market situation, and rate of annual trading volume turnover. His

results show that earnings forecasts provided by analysts are more accurate than

management earnings forecasts. Chia (1994) focuses a study on mandatory man-

agement earnings forecasts and the rate of trading volume turnover in an

unpublished thesis.

9.3 Testable Hypotheses

9.3.1 Firm Size

The size of a firm is believed to have influence on the accuracy of analyst’s and

management’s earnings forecast. Jaggi (1980), Bhushan (1989), and Clement (1999)

found that the larger the company is, the more accurate the earnings forecast will

be. They believe that holding other factors constant, larger companies have more

financial and human resources available that allow the management to draw more

precise earnings forecast than smaller companies. Thus, forecasts and recommenda-

tions supplied by larger firms are more valuable and accurate than the smaller firms:

H1: The accuracy of management’s earnings forecast increases with the size of

the firm.

H2: The accuracy of management’s voluntary earnings forecast increases with the

size of the firm.

H3: The accuracy of management’s mandatory earnings forecast increases with the

size of the firm.

H4: The accuracy of analysts’ earnings forecast increases with the size of the firm.

9.3.2 Volatility of Market

The accuracy of earnings forecast will be affected by market situation. When

market is very volatile and unstable, investors who are looking for the opportunities

to profit will act more, speculative about what would be the next for the market. In

this situation, it is more difficult for analysts to figure out the real useful information

for their forecasts; they might have a tendency to overoptimistically forecast the

earnings and provide recommendations. When a market is in a relative stable
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period, investors tend to be rational about the next movement of the market; there is

less biased information regarding corporate earnings among the general investors;

thus, the information accessed by analysts will allow them to be more objective in

the earnings forecast. In contrast, the management has the insights on what is really

happening in the aspects of operation, finance, top management changes, and

profitability of the business. Even if they are less vulnerable regardless of what

the market situation is, voluntary management’s earnings forecast might be affected

by market volatility to some extent:

H5: Management’s earnings forecast will not be affected by volatility of market.

H6: Voluntary management’s earnings forecast is a function of the of market

volatility.

H7: Mandatory management’s earnings forecast is not affected by market volatility.

H8: Accuracy of analysts’ earnings forecast is affected by market volatility.

9.3.3 Volume Turnover

The relationship between trading volume turnover and accuracy of earnings

forecast can be examined based on the hypothesis that daily stock trading volume

represents the public investors’ perception about a company. Larger trading volume

during a day for a particulate stock reflects a higher degree of divergence on

confidence about the company’s stock, and vice versa. This public perception on

a stock might distract management’s and analysts’ judgment; they need more time

and strive extra efforts in order to prove accurate earnings forecasts:

H9: Trading volume turnover affects the accuracy of management’s earnings

forecast.

H10: Trading volume turnover affects the accuracy of voluntary management’s

earnings forecast.

H11: Trading volume turnover affects the accuracy of mandatory management’s

earnings forecast.

H12: Trading volume turnover affects the accuracy of analysts’ earnings forecast.

9.3.4 Corporate Earnings Variance

Corporate earnings surprises are an important aspect of analysts’ earnings forecast.

The larger the earnings surprise is, the less useful the past information will be in

earnings forecasting and the harder it is to make accurate forecasts. Corporate

earnings variances represent the earnings surprises a company has in the past; it

would affect the accuracy of management and analysts’ earnings forecasts:

H13: Corporate earnings variances affect the accuracy of management’s earnings

forecast.

H14: Corporate earnings variances affect the accuracy of voluntary management’s

earnings forecast.
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H15: Corporate earnings variances affect the accuracy of mandatory manage-

ment’s earnings forecast.

H16: Corporate earnings variances affect the accuracy of analysts’ earnings

forecast.

9.3.5 Type of Industry

There may exist a relationship between the type of industry and earnings forecast

accuracy. They hypothesize that the difference between different industries may

result in different levels of accuracy on earnings forecast. Some analysts may not

possess adequate knowledge necessary in the forecasting in a particular industry;

therefore, their forecast may not be as accurate as management’s earnings forecast.

Hence, the following hypotheses can be tested:

H17: Type of industries influences the accuracy of management‘s earnings forecast.

H18: Type of industries affects the accuracy of voluntary management’s earnings

forecast.

H19: Type of industries affects the accuracy of mandatory management’s earnings

forecast.

H20: Type of industries affects the accuracy of analysts’ earnings forecast.

9.3.6 Forecasting Experience

Analysts’ accuracy of earnings forecast will improve as their experience and

knowledge about companies increase. They learn from their previous forecasts

and make the next forecast more accurate. A similar argument can be made about

the management’s earnings forecast. Hence, the following hypotheses can be

tested:

H21: Forecasting experience influences the accuracy of management’s earnings

forecast.

H22: Forecasting experience affects the accuracy of voluntary management’s

earnings forecast.

H23: Forecasting experience affects the accuracy of mandatory management’s

earnings forecast.

H24: Forecasting experience affects the accuracy of analysts’ earnings forecast.

9.4 Empirical Results

9.4.1 Comparison of Management and Analyst’s Earnings Forecast

To compare the relative accuracy of management and analysts’ earnings forecasts,

we focus on four major aspects regarding the relative accuracy of earnings fore-

casts. First, management versus analysts’ earnings forecasts is made to compare the
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relative accuracy of the forecasts. Secondly, a comparison is made between volun-

tary management’s forecasts and analysts’ forecasts. Thirdly, mandatory manage-

ment’s forecasts are compared with analysts’ forecasts to determine the relative

accuracy of the forecasts. Finally, tests of hypothesis have been made to further

prove the relative accuracy of management and analysts’ earnings forecasts.

Table 9.1 provides descriptive statistics of management and financial analysts’

earnings forecasts based from 1987 to 1999. It can be observed that absolute errors

of management earnings forecasts are less than the analyst’s in the years 1992,

1993, 1995, 1996, 1997, and 1997. It indicates that management’s earnings fore-

casts are superior to analysts during that time period. But, in other time periods, the

absolute errors for management’s earnings forecast are higher than analysts’,

indicating analysts provide higher forecast productions. Overall, it is less obvious

to conclude who has higher predicate ability for providing more precise earnings

forecast.

The last three rows of Table 9.1 list the mean absolute errors of earnings

forecasts by management and analysts during three different time periods. From

1988 to 1992, management’s forecast absolute mean error is 1.796, whereas

analyst’s earnings forecast absolute mean error is 1.503. From 1993 to 1999,

management’s earnings forecast absolute mean error is 2.031, while analysts’

forecast absolute mean error shows higher value of 2.236. If we look at the entire

time period from 1987 to 1999, the absolute mean error for management’s forecast

is less than the absolute mean error for analysts’ earnings forecast, which is 1.969

and 2.043 respectively. A conclusion can be drawn from the above results that

management’s earnings forecasts are more accurate than analysts’ forecasts from

the early 1990s, but less accurate during the late 1980s.

Table 9.2 shows the results of the Wilcoxon signed-rank test used to test the

relative accuracy of managements’ forecast and analysts’ forecast. Comparing the

negative ranks and positive ranks in Table 9.2, management’s forecasts are less

accurate than analysts’ forecasts in the years 1987, 1988, 1989, 1990, and 1999, but

more accurate in the years 1995 and 1998. There is no significant difference in the

absolute errors between management’s forecasts and analysts’ forecasts.

If we examine the z-values of the test for the entire time period (1986–1999), the

z-value for Wilcoxon signed-rank test is �0.346, which is not significant enough to

tell the difference between the two samples. This supports the hypothesis H1 that

there are no significant differences between management’s forecast accuracy and

analysts’ forecast accuracy. This also agrees with the findings suggested by Imhoff

and Pare (1982) and Baretley and Cameron (1991). They believe the reason for that

is due to the similar abilities of forecasters and comparable networks to access

company information (public/private) between management and analysts; it is

possible that both can provide relative accurate earnings forecasts.

If the entire time period is divided into two subsamples, one is from 1987 to 1992

and the other is from 1993 to 1999, the latter subsample shows a significant level of

0.05 with a z-value of�2.138, which indicates that management’s forecasts are less

reliable than analysts’ forecasts. For the former subsample, it shows no contradic-

tion with the results by Imhoff and Pare (1982) and Baretley and Cameron (1991).
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9.4.2 Factors Influencing the Absolute Errors of Earnings Forecast

9.4.2.1 Firm Size
We argue that the management possesses the relative advantage of having private

insights that the analyst cannot access, and that a larger company has stronger

human and financial resources. Therefore, the management forecasts of corporate

earnings are much more precise. On the other hand, a larger company tends to draw

attentions and is more likely to attract and be followed by financial analysts;

analysts’ forecasts can be objective and accurate as well; however, the results

from our research do not support this argument. Table 9.4 shows that the p-value

of t-parameter for the size of a company (0.478) does not reach a significant level,

indicating the size of a company is not associated with the accuracy of manage-

ment’s earnings forecast. This result does not support the hypothesis H1: manage-

ment’s earnings forecast accuracy increases with the size of company. Tables 9.5

and 9.6 show results of the regression analysis for two subsamples representing the

time period of 1987–1992 and 1993–1999 to investigate the relationship between

company size and accuracy of management’s earnings forecast.

Table 9.2 Wilcoxon signed-rank test for earnings forecast accuracy of management and analyst’s

forecasts errors

Year Sample size Negative ranks Positive ranks Ties Z-value Sig.

1999 402 150 230 22 �3.119 0.002***

1998 360 209 140 11 �5.009 0***

1997 317 147 140 30 �0.5 0.96

1996 267 143 119 5 �1.567 0.17

1995 226 117 89 20 �2.857 0.004***

1994 178 82 90 6 �0.339 0.734

1993 157 74 79 4 �0.502 0.616

1992 126 60 62 4 �1.136 0.256

1991 144 69 69 6 �0.407 0.684

1990 120 43 76 1 �2.941 0.003***

1989 116 46 67 3 �2.7 0.007***

1988 96 28 60 8 �3.503 0***

1987 78 27 51 0 �3.315 0.001***

1993–1999 1,299 626 607 66 �1.592 0.111

1987–1993 1,288 569 665 54 �2.138 0.033**

1987–1999 2,587 1,195 1,272 120 �0.346 0.73

Negative ranks: absolute error of management’s earnings forecast < absolute error of analyst

earnings forecast

Positive ranks: absolute error of management’s earnings forecast > absolute error of analyst

earnings forecast

Tie: absolute error of management’s earnings forecast¼ absolute error of analyst earnings forecast
*Significant level ¼ 0.1, ** significant level ¼ 0.05, *** significant level ¼ 0.01
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9.4.2.2 Volatility of Market
In Table 9.4, the p-value of t-parameter in column 4 for the volatility of market of
a company (0.075) does not reach a significant level, which implicates the

accuracy of management’s earnings forecast is not positively associated with

the volatility of market. This result supports the hypothesis H1: management’s

earnings forecast accuracy will not change with market volatility. Further exam-

ining the two sub-tables of Tables 9.4, 9.5, and 9.6, p-value of parameter for the

volatility of market of a company (0.310) indicates that management’s earnings

forecast accuracy will not change with market volatility during 1987–1999. But

the t-parameter for the volatility of market is �2.569, indicating the management

can provide accurate forecast during upmarket, but less accurate forecast during

down market.

9.4.2.3 Trading Volume Turnover
The p-values of t-parameter in column 4 for the trading volume turnover of

a company in all three tables do not reach a significant level. The regression

analysis does not support the hypothesis H8 that trading volume turnover will

affect management earnings forecast accuracy.

9.4.2.4 Corporate Earnings Variances
In Table 9.4, the p-values of t-parameter (2.74) in column 4 for the rate of earnings

divination of a company is 0.01, which shows corporate earnings variances affect

management’s earnings forecast accuracy. Positive value of t-parameter means

management earnings forecast accuracy decreases as corporate earnings variance

Table 9.3 Taiwan stock market volatility from 1987 to 1999

Year Rm (%) Rf (%) Rm � Rf (%) Market volatility

1999 27 4 23 Upmarket

1998 �13 6 �19 Down market

1997 14 5 9 Upmarket

1996 39 5 34 Upmarket

1995 �24 5 �29 Down market

1994 �13 5 �18 Down market

1993 55 6 49 Upmarket

1992 �28 6 �34 Down market

1991 13 6 7 Upmarket

1990 �59 8 �67 Down market

1989 51 7 44 Upmarket

1988 124 4 120 Upmarket

1987 138 4 134 Upmarket

Market volatility measure, Rm, suggested by Pettengill et al. (1995), is the last month’s market

return minus the first month’s market return divided by the first month’s market return in a given

year. Rf is the risk-free rate
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increases. This supports the hypothesis H12 that corporate earnings variance has an

effect on management earnings forecast accuracy. From the examination for

Tables 9.5 (1993–1999) and 9.6 (1987–1992), management earnings forecast

accuracy is affected by corporate earnings variances during the recent years

(1993–1999).

9.4.2.5 Type of Industry
To determine whether and which industry will influence the forecast accuracy,

18 industries are selected and represented by a dummy variable Ij. From Table 9.4,

I8 is the only industry that has a significant level for the p-values of t-parameter of

14.73. According to our assumption, I8 represents the chemical industry. Thus, we

conclude that management’s forecasts are reliable for most of the industries studied

in this research, except for the chemical industry.

Table 9.4 Regression model for the absolute errors of management earnings forecasts dating

from 1987 to 1999

Independent variable Correlation coefficient t-statistic p-value of t-statistic

Intercept �11.59 �0.52 0.604

Size 0.69 0.71 0.478

I1: Market volatility 2.86 �1.55 0.122

TR: Rate of trading volume turnover 0.09 0.10 0.923

CV: Corporate earnings variances 2.74 3.50 0.00***

E: Forecasting experience 1.00 1.25 0.212

I2: Cement 0.71 0.11 0.196

I3: Food �0.38 �0.07 0.943

I4: Plastic �1.13 �0.20 0.844

I5: Textile �0.87 �0.19 0.853

I6: Electrical machinery 0.85 0.14 0.888

I7: Electronic equipment and cable �0.78 �0.13 0.895

I8: Chemical 14.83 2.70 0.007***

I9: Glass and ceramic �1.36 �0.17 0.867

I10: Paper manufacturing �0.84 �0.11 0.912

I11: Steel �0.79 �0.14 0.891

I12: Rubber �0.46 �0.68 0.946

I13: Auto �2.74 �0.28 0.782

I14: Electronics �0.82 �0.17 0.865

I15: Construction �1.01 �0.18 0.856

I16: Transportation �0.53 �0.08 0.933

I17: Travel �0.76 �0.10 0.924

I18: Insurance �0.92 �0.14 0.886

I19: Grocery 0.65 0.09 0.925

R-square 0.016

I2–I19: dummy variables for industry
*Significant level ¼ 0.10, ** significant level ¼ 0.05, *** significant level ¼ 0.01
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9.4.2.6 Forecasting Experience
The results of regression analyses for investigating the relationship of forecasting

experience and management’s earnings forecast accuracy are shown in Tables 9.4,

9.5, and 9.6. All three p-values of t-parameter in column 4 for forecasting experi-

ence indicate that management earnings forecast accuracy is not affected by

previous forecasting experiences. This conclusion does not support the hypothesis

H20 that forecasting experiences affect management’s forecast accuracy. Test of

other hypotheses indicates similar results.

9.5 Conclusions

The results of our research indicate that company size has no effect on any of the

following: management forecast, voluntary management forecast, mandatory

Table 9.5 Regression model for the absolute errors of management earnings forecasts dating

from 1993 to 1999

Independent variable Correlation coefficient t-statistic p-value of t-statistic

Intercept �18.16 �0.59 0.552

Size 1.00 0.76 0.450

I1: Market volatility �2.54 �1.02 0.310

TR: Rate of trading volume turnover 0.04 0.03 0.976

CV: Corporate earnings variances 3.48 3.42 0.001***

E: Forecasting experience 1.26 1.23 0.218

I2: Cement 1.94 0.21 0.836

I3: Food �0.96 �0.15 0.885

I4: Plastic �2.08 �0.27 0.789

I5: Textile �1.39 �0.23 0.815

I6: Electrical machinery 1.20 0.14 0.875

I7: Electronic equipment and cable �1.42 �0.18 0.859

I8: Chemical 20.36 2.84 0.005***

I9: Glass and ceramic �1.91 �0.17 0.854

I10: Paper manufacturing �2.22 �0.19 0.851

I11: Steel �1.13 �0.16 0.875

I12: Rubber �0.74 �0.08 0.935

I13: Auto �3.29 �0.26 0.798

I14: Electronics �3.01 �0.50 0.617

I15: Construction �1.55 �0.23 0.822

I16: Transportation �0.37 �0.05 0.964

I17: Travel �0.36 �0.03 0.974

I18: Insurance �1.99 �0.23 0.815

I19: Grocery �0.70 �0.08 0.939

R-square 0.016

I2–I19: dummy variables for industry
*Significant level ¼ 0.10, ** significant level ¼ 0.05, *** significant level ¼ 0.01
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management forecast, and analysts’ forecast. This result agrees with Jaggi

(1980) and Kross and Schreoder (1990) that analyst’s earnings forecast accuracy

is not related with the size of company, but differs from the results suggested by

Bhushan (1989), Das et al. (1998), Clement (1999), Xu (1990), and Jiang (1993)

that company size does influence the relative precision of management or ana-

lysts’ earnings forecasts.

It can be seen that the relative accuracy of management’s earnings forecast and

analyst’s earnings forecast is not affected by market situation across the entire

range of sampled forecasts. There are some indications that forecasting accuracy

is affected by market ups and downs. For instance, the relative accuracy of

voluntary management’s earnings forecast during the entire time period, accuracy

of management’s forecast, and analysts’ earnings forecasts during the years 1978

through 1992 are more accurate when market is up and are less accurate during the

Table 9.6 Regression model for the absolute errors of management earnings forecasts dating

from 1978 to 1992

Independent variable Correlation coefficient t-statistic p-value of t-statistic

Intercept 15.55 0.87 0.386

Size �0.68 �0.87 0.383

I1: Market volatility �2.57 �1.78 0.075*

TR: Rate of trading volume turn over) 0.25 0.47 0.636

CV: Corporate earnings variances �0.39 �0.59 0.555

E: Forecasting experience 0.57 0.76 0.450

I2: Cement �0.59 �0.11 0.914

I3: Food 0.54 0.11 0.913

I4: Plastic �0.16 �0.03 0.974

I5: Textile 1.17 0.26 0.799

I6: Electrical machinery �0.68 �0.12 0.905

I7: Electronic equipment and cable 0.40 0.08 0.936

I8: Chemical 2.05 0.41 0.680

I9: Glass and ceramic �0.40 �0.06 0.955

I10: Paper manufacturing 2.05 0.37 0.709

I11: Steel 0.56 0.10 0.923

I12: Rubber �0.14 �0.02 0.981

I13: Auto 1.94 0.24 0.814

I14: Electronics 7.98 1.64 0.102

I15: Construction 0.04 0.01 0.994

I16: Transportation �0.36 �0.06 0.949

I17: Travel �0.96 �0.16 0.876

I18: Insurance 1.63 0.29 0.770

I19: Grocery 3.78 0.66 0.509

R-square 0.035

I2–I19: dummy variables for industry
*Significant level ¼ 0.10, ** significant level ¼ 0.05, *** significant level ¼ 0.01
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down market. This result agrees with what Su has suggested – earnings forecast

accuracy is affected by market volatility, but in different ways. We believe that

due to the fact that more individual investors who are most likely to chase the

market when it is up saturate the Taiwan stock market. They examine corporate

earnings with more caution, so their expectations for companies in general are

more realistic and rational. Therefore, overall earnings forecast accuracy is

increased, and vice versa.

The results of this study reveal that relative accuracy of all four kinds of earnings

forecasts is not the functions of trading volume turnover. This agrees with the

results obtained by Chai, but it disagrees with the results of Jiang (1993). Results of

regression analysis indicate that management’s earnings forecast and analysts’

forecasts are sensitive to the corporate earnings variances. This conclusion proves

the hypothesis supports H13 through H16 and supports the theories of Kross and

Schreoder (1990) and Jiang (1993). We postulate that corporate earnings variance

of earnings surprises is an important indicator for a company’s profitability and its

earnings in the future. The management and analysts use past year’s earnings

surprises to forecast that future earnings, with an assumption of higher forecast

inaccuracy, are a result of a high degree of earnings deviation. Therefore, they will

need to exercise their highest ability in making earnings forecast more accurate. But

we found that the higher the corporate earnings variance is, the lower the forecast

accuracy will be for both the management and for analysts. Corporate earnings

variances should not be used as an important indicator as how a company is

operating, but it represents a complicated business environment it operates

in. The higher the complicity of the business environment is, the less accurate the

prediction/forecast will be.

Analyst earnings forecast and management’s earnings forecast are biased for the

chemical industry over the entire time period of sampled forecast; voluntary

management’s earnings forecasts for textile, electrical machinery, and paper

manufacturing industries are inaccurate during 1993–1999. Mandatory manage-

ment’s earnings forecasts are very inaccurate for the food industry, textile industry,

and travel industry in the time period of 1993–1999. This supports Kross and

Schreoder (1990) who concluded that analyst’s earnings forecast is affected by

the type of industry he/she follows.

The results reveal that the relative accuracy of management’s earnings forecast

and analyst’s earnings forecast do not respond to the differences of forecasters’

previous experiences. But, the relative accuracy of mandatory management’s

earnings forecast for forecasters affect the entire time period and the subsampled

voluntary management’s forecast previous earnings forecast experiences. This

conclusion agrees with Clement’s (1999) finding.

We rationalize that forecast accuracy is positive related to the forecasting

experiences as hypotheses H21 through H24 state. The results from this study

indicate otherwise. The forecast accuracy of mandatory and voluntary manage-

ment’s earnings forecast has a negative relationship with previous forecasting

experiences. We argue that it is because of (1) mis-quantifying variable as
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a proxy of forecasting experiences and (2) only using the past mandatory man-

agement’s earnings forecasts as the base of future focusing without paying

attention to ways on how to reduce the forecasting errors in those forecasts.

Therefore, the more forecasting experiences the forecaster has, the less accurate

the forecast will be.

Methodology Appendix

Sample Selection

This research uses cross-sectional design to examine the relative accuracy of

management and analysts’ earnings forecast. Due to the disclosure regulation in

Taiwan, management’s earnings forecast is classified as two categories: manda-

tory earnings forecast and voluntary earnings forecast1. Samples used are

management’s and analysts’ earnings forecasts at all publicly traded companies

during the time period of 1987–1999. The forecasts are compared with actual

corporate earnings on an annual basis. Voluntary and mandatory management’s

forecast and analysts’ forecast are then used to compare with actual corporate

earnings to evaluate the effects of management motivation and behaviors on their

earnings forecasts.

Management and analysts’ pretax earnings forecast data are collected from

“Taiwan Business & Finance News” during the time period of 1987–1999. Actual

corporate earnings are collected from the Department of Education’s “AREMOS”

database. Only those firms were included in the samples whose stocks were traded on

the Taiwan Stock Exchange before December 31, 1999. Also, forecasts made after

accounting year and before announcement of earnings were excluded from the sample.

Management’s earnings forecast and analysts’ earnings forecast samples for this

research are selected to cover the time period from 1987 to 1999. Available database,

over the 13-year period, consisted of 5,594 management’s earnings forecasts, in

which 2,894 management forecasts are voluntary and 2,700 management’ forecasts

are mandatory. A total of 17,783 analysts’ forecasts are in the database. The selected

samples, presented in Table 9.7, consist of 2,941 management earnings forecasts, of

which 2,046 are voluntary and 1,679 mandatory forecasts and 3,210 analysts’

earnings forecasts. Table 9.7 shows that the average number of analysts’ earnings

forecasts is more than the number of management’s earnings forecasts. A higher

frequency of analysts’ earnings forecasts is expected as an analyst may cover more

than one firm. Most of management’s earnings forecasts are made after 1991; it may

be attributed by the amendment of “Regulation of Financial Report of Stock Issuer”

imposed by the Taiwanese government in 1991. In the new regulation, a new section

dealing with earnings forecast was added requiring company’s management to

disclose its earnings forecasts to the general public. Comparing the number of

management voluntary forecasts and mandatory forecasts, the latter is about 1.5

times more than the former except during the years 1991–1993.
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Variable Definition

Absolute Earnings Errors
The mean value of total corporate earnings before tax is used as proxy of earnings

forecast. Using earnings before tax in the analysis will eliminate other factors, such

as raising cash for capital investment, earnings retention for capital investment, and

stock distribution from paid in capital that might impact the accuracy of the

analysis. Absolute earnings (before tax) forecast error is used to compare the

relative accuracy of management and analysts’ earnings forecasts.

Management’s forecasts errors are calculated as follows:

MFm, i, t ¼ 1

N
�
Xn

j¼1

FEm, i, j, t

MF1m, i, t ¼ 1

N
�
Xn
j¼1

FE1m, i, j, t

MF2m, i, t ¼ 1

N
�
Xn
j¼1

FE2m, i, j, t

Table 9.7 Sample of earnings forecasts by management and analysts from Taiwan database

selected for the study

Year Management voluntary Management mandatory Management Analysts

1999 407 236 319 479

1998 408 238 335 430

1997 384 227 288 376

1996 328 201 223 322

1995 281 193 218 279

1994 219 135 112 247

1993 172 137 84 225

1992 139 78 84 200

1991 156 154 16 175

1990 125 125 NAa 154

1989 123 123 NA 130

1988 112 112 NA 106

1987 87 87 NA 87

Total 2,941 2,046 1,679 3,210

aMandatory forecast requirement was introduced in 1991
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AFEm, i, t ¼ MFm, i, t � AE
i, t
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i, t

� �
=AE

i, t
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���

AFE2m, i, t ¼ MF2m, i, t � AE
i, t

� �
=AE

i, t

���
���

where,

MFm,i,t: mean management’s pretax earnings forecast for company i at time t

MF1m,i,t: mean management’s voluntary pretax earnings forecast for company

i at time t

MF2m,i,t: mean management’s mandatory pretax earnings forecast for company

i at time t

FEm,i,j,t: management’s jth pretax earnings forecast for company i at time t

FE1m,i,j,t: voluntary management’s jth pretax earnings forecast for company i at

time t

FE2m,i,j,t: mandatory management’s jth pretax earnings forecast for company i in

year t

AFEm,i,t: absolute error of management’s pretax earnings forecast for company

i at time t

AFE1m,i,t: absolute error of voluntary management’s pretax earnings forecast for

company i at time t

AFE2m,i,t: absolute error of mandatory management’s pretax earnings forecast

for company i at time t

AEi,t: actual pretax EPS for company i at time t

Analysts forecast errors are calculated as follows:

MFf, i, t ¼ 1

n
�
Xn
j¼1

FEf, i, j, t

AFEf, i, t ¼ MFf, i, t � AE
i, t

� �
=AE

i, t

���
���

where

MFf,i,t: mean analysts’ pretax earnings forecast for company at time t

FEf,i,j,t: analysts’ jth pre-tax earnings forecast for company i at time t;

AFEf,i,t: absolute error of analyst’s pre-tax earnings forecast for company i at

time t;

AEi,t: actual pre-tax EPS for company i at time t.
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Company Size
Unlike other previous researchers who used market value of company’s equity

as a indication of size of a company, in this study, a company’s last year’s

total revenue is used as the size of the company. The reason is because

Taiwanese market is not efficient and investors are not informed fully with

information they need during their investment decision-making process; specu-

lations among individual investors are the main cause of the stock market

volatility; thus, market value of company’s equity cannot fully represent

a company’s real size.In order to better control the company size for our

regression analysis, a logarithm of company’s last year’s total revenue is used

as the following:

SIZEi, t ¼ ln TAi, t�1

� �

where

SIZEi,t: the size of company i at time t;

TAi,t�1: total revenue of company i at time t�1.

Market Volatility

This study adapts what Pettengill, Glenn N, Sundaram, Sridhar, and Mathur

and Ike used in their research to measure market volatility. Market volatility

is measured as upmarket or down market by using market-adjusted return.

This return is calculated as Rm�Rf, in which Rm is the last month’s

market return minus the last first month’s market return divided by the first

month’s market return in a given year. Rf is the risk-free interest rate in the

same year:

Return Market�adjustedð Þ ¼ Rm�Rf

where

Upmarket if Return (Market-adjusted) >0

Down market if Return (Market-adjusted) <0

A dummy variable is used to identify market volatility. Market volatility is set to

1 if a year’s Return (Market – adjusted) is greater than 0 and set to 0 otherwise. Table 9.3

reports the market volatility of Taiwan market.

Trading Volume Turnover
Trading volume turnover is defined as the value of a company’s stock daily trading

volume divided by the company’s number of shares outstanding. To make this

proxy better fit in the regression analysis, a logarithm is applied to the value and

multiplies by 1,000:
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AVi, t ¼ 1

N

Xn
j¼1

Vi, j, t

TRi, t ¼ ln 1, 000� AVi, t�1

CSi, t�1

� �

where

Vi,j,t: daily trading volume in day j at time t for company i

AVi,t: mean daily trading volume at time t for company i

CSi,t�1: number of shares outstanding at time t�1 for company i

TRi,t: rate of trading volume turnover at time t for company i

Corporate Earnings Variance
In this research, we only consider the past 3 years’ historical earnings surprises as

a proxy of a company’s corporate earnings variances. Thus, the corporate earnings

variance is defined as the following:

CVi, t ¼ LN
s Xð Þ
X
�� ��

 !

s Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

Xt � X
� �2

n� 1

vuuut

X ¼ 1

3

X3
t¼1

Yt

where

CVi,t: corporate earnings variance at time t for company i

s(x): actual corporate earnings variance for company i

Xt: actual earnings at time t for company i

X: mean EPS (before tax) for company i

Yt: actual EPS at time t for company i

Type of Industry
There are two major ways to classify industries:

(i) “Industry classification of Republic of China” by State Council in 1987

(ii) Industry classification used by stock exchange house
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In this research, we use the latter one to classify industries, and a variable Ij is set

to represent nineteen different industries: cement, food, plastic, textile, electrical

machinery, electronic equipment and cable, chemical, glass and ceramic, paper

manufacturing, steel, rubber, auto, electronics, construction, transportation, travel,

insurance, and others.

Proxy for Experience
According to research done by previous researchers, although earnings forecast

accuracy is positively related to management and analysts’ previous forecasting

experiences, it is difficult to quantify the experiences. In this research, we argue that

the accuracy of nth management and analyst’s earnings forecast depends on their

(n � 1)th forecasting experience. Therefore, the proxy of experience is defined as

the following:

Em, i, t ¼
Xn
j¼1

Em, i, j, t�1

E1m, i, t ¼
Xn
j¼1

E1m, i, j, t�1

E2m, i, t ¼
Xn
j¼1

E2m, i, j, t�1

Ef, i, t ¼
Xn
j¼1

Ef, i, j, t�1

where

Em,i,t: total number of times of management’s earnings forecasting experience at

time t for company i

E1m,i,t: total number of times of voluntary management’s earnings forecasting

experience at time t for company i

E2m,i,t: total number of times of mandatory management’s earnings forecasting

experience at time t for company i

Ef,i,t: total number of times of analysts’ earnings forecasting experience at time

t for company i

Regression Model

A multiple regression model is used to examine the effect of six factors: firm size,

market volatility, trading volume turnover, corporate earnings variances, type of

industry, and experience.
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Regression model for management’s forecast absolute error percentage:

AFEm, i ¼ a0 þ a1 SIZEið Þ þ a2Ii, 1

þ a3 TRið Þ þ a4 CVið Þ þ a5 Em, i
� �

þ
X23
k¼6

akIi, k�4 þ ei

(9.1)

Regression model for voluntary management’s forecast absolute error

percentage:

AFE1m, i ¼ b0 þ b1 SIZEið Þ þ b2Ii, 1

þ b3 TRið Þ þ b4 CVið Þ þ b5 E1m, i
� �

þ
X23
k¼6

bkIi, k�4 þ ei

(9.2)

Regression model for mandatory management’s forecast absolute error

percentage:

AFE2m, i ¼ c0 þ c1 SIZEið Þ þ c2Ii, 1

þ c3 TRið Þ þ c4 CVið Þ þ c5 E2m, i
� �

þ
X23
k¼6

ckIi, k�4 þ ei

(9.3)

Regression model for analysts’ forecast absolute error percentage:

AFEf, i ¼ d0 þ d1 SIZEið Þ þ d2Ii, 1

þ d3 TRið Þ þ d4 CVið Þ þ d5 Ef, i
� �

þ
X23
k¼6

dkIi, k�4 þ ei

(9.4)

where

AFEm,i: absolute error percentage of management’s forecast for company i

AFE1m,i: absolute error percentage of voluntary management’s forecast for

company i

AFE2m,i: absolute error percentage of mandatory management’s forecast for

company i

AFEf,i: absolute error percentage of analysts’ forecast for company i

SIZEi: size of company i

Ii,1: market volatility (1 if market is upmarket, 0 if market is down market)
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TRi: rate of trading volume turn over for company i

CVi: corporate earnings variances for company i

Em,i: management’s earnings forecasting experience for company i

E1m,i: voluntary management’s earnings forecasting experience for company i

E2m,i: mandatory management’s earnings forecasting experience for company i

Ef,i: analyst earnings forecasting experience for company i

Ii,2�19: type of industry for company i

Wilcoxon Two-Sample Test

If the two-sample groups are related, Wilcoxon two-sample test will be used to

determine the relative earnings forecast accuracy:

Z ¼ W� E Wð Þffiffiffiffiffiffiffiffiffiffiffiffi
V Wð Þp

where

W1: rank sum of absolute error percentage for management’s earnings forecasts

W2: rank sum of absolute error percentage for analysts’ earnings forecasts

W: smaller value between W1 and W2

E(W): expected values of W-distributionffiffiffiffiffiffiffiffiffiffiffiffi
V Wð Þp

: deviation of W-distribution
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Abstract

The purpose of this study is to provide evidence drawn from publicly traded

companies in Greece as far as some of the standard models of accounting earnings

and returns relations mainly collected through the literature. Standard models such

as earnings level and earnings changes have been investigated in this study.Models

that fit better to the data drawn from companies listed on the Athens Stock

Exchange have been selected employing autoregressive integratedmoving average

with exogenous variables (ARIMAX)models.Models I (price on earnings model),

II (returns on change in earnings divided by beginning-of-period price and prior

period), V (returns on change in earnings over opening market value),VII (returns

deflated by lag of 2 years on earnings over opening market value), and IX

(differenced-price model) have statistically significant coefficients of explanatory

variables. In addition, model II (returns on change in earnings divided by

beginning-of-period price and prior period with MSE (minimum squared error)
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loss function in ARIMAX (2,0,2)) is prevalent. These models take place with

backward-looking information instead of forward-looking information that recent

literature is assessed. Application of generalized autoregressive conditional

heteroscedasticity (GARCH) models is suggested for further future research.

Keywords

Market-based accounting research • Price on earnings model • Earnings level •

Earnings change • Return models • Autoregressive-moving average with exog-

enous variables • Minimum value of squared residuals (MSE loss function) •

Unit root tests • Stationarity • Dickey-Fuller test

10.1 Introduction

The relationship between accounting earnings and stock prices has been discussed both

in the accounting and financial literature. In a consideration of market-based account-

ing research, the association between returns and earnings has been very low due to

(i) poor specification of the estimating equation, (ii) poor informational properties of

reported earnings, (iii) inappropriate choice of the assumed proxy for expected earn-

ings, and (iv) the availability of more timely sources of the value-relevant information

in earnings statement (Strong and Walker 1993). This has been resolved by allowing

for time-series and cross-sectional variation in the regression parameters, by including

an earnings yield and partitioning all-inclusive earnings into pre-exceptional, excep-

tional, and extraordinary components. Yet, empirical evidence on returns-earnings

association in certain applications is very strong (Easton and Harris 1991; Kothari

and Zimmerman 1995). Standard empirical models, that is, price-earnings association,

and returns-earnings association (earnings level and earnings changes) have been

investigated in the USA and UK with no empirical evidence from at least the rest of

Europe. The purpose of this paper is to develop an empirical background by investi-

gating whether some of the standard models that have been collected through the

literature would be relevant for evaluating accounting earnings/returns associations in

a stock market being in transition from an emerging to a matured one. In other words,

we purport to select those models that better fit to available data. The rationale of the

Greek stock market response is one major objective, while the other is to make some

comparisons with other findings presented in the literature.

The Athens stock exchange has been established on 1876. It was an emerging

market some years ago and has run up to a mature one. It is a normal market with no

surprises, and investments are not only a place for corporations to get financing;

more importantly it is a place to create wealth. Registered companies are young,

growth-oriented to long-established enterprises. The Greek stock market has played

a great role in the economic development of the country in the last half of the

twentieth century. Facts that have influenced the ASE is the inclusion of the country

in the Economic and Monetary Union and the crash of 1999 that affected the life of

many Greek families. The ASE operates in a country which has been in deep

recession since 2008.

280 A. Maggina



The paper is organized as follows: Literature is discussed in Sect. 10.2.

Methodology and model building process are described in Sect. 10.3.

Section 10.4 discusses the sample design. Section 10.5 presents empirical findings.

Conclusions are summarized in last Sect. 10.6.

10.2 Review of the Literature

Common interest of both accounting and finance scholars and users of financial

statements (primarily, financial analysts and investors) is to obtain concrete and

increased knowledge of the association between accounting earnings and stock

prices for a more or less predictive ability explanation. An evaluation of the

informational content of, at least, the most basic accounting numbers contributes

to the improvement of models. Among the various treatments of the relation

between accounting earnings and stock prices, the seminal work of Ball and

Brown (1968) is precedent. Their work indicates that accounting earnings and

some of its components exhibit an information content drawn through stock prices.

Later on, Brown et al. (1985) worked on the relative ability of the current innova-

tion in annual earnings and the revision in next year’s earnings forecasts to explain

changes in stock prices. However, it has empirically been tested (Fama et al. 1969;

Fama 1970). Successive changes in individual common stocks are very nearly

independent because of an efficient market in which adjustments to new informa-

tion are rapidly made (Mandelbrot 1966; Samuelson 1965). Beaver (1970) and

Rosenberg and Marathe (1975) worked to discover financial statement components

that are related to risk and, thus, predict expected stock returns. They maintain

that financial statements constitute an assured source of information (and can be

prepared in a short time period) and, consequently, the direction of 1-year-ahead

earnings changes affects stock prices. Their results indicate that the summary

measure robustly predicts future stock returns.

Beaver et al. (1980) developed a model known as BLM theory. They followed

the traditional price-earnings relation and tested for the information content of

prices with respect to future earnings. BLM regress percentage change in price

which may contain information about future earnings not reflected in the current

earnings. Lev and Ohlson (1982) describe price and return models as complemen-

tary. Given that stock prices are associated with accounting earnings, analysts

forecast the reported accounting numbers, and as Brown et al. (1985) maintain,

analysts use their 1-year-ahead forecasts to convey their expectations about perma-

nent earnings. In all the above treatments of the subject matter referring to account-

ing earnings and stock prices, the more and more prevailing role of managerialism

could be more or less emphatic. Trueman (1986) explained why managers would be

willing to disclose forecasts of higher or lower than expected earnings. Undoubt-

edly, the disclosure of favorable accounting numbers or the disclosure of forecasts

of favorable expected earnings contributes to an increase of the market value of the

firm. Hirst et al. (2008) assert that managers often issue earnings forecasts to correct

information asymmetry problems and, thus, influence their firm’s stock price.
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Lipe and Kormendi (1987) found that stock returns were considered as a function of

the revisions in expectations of earnings. They show that the stock return reaction to

earnings is a function of (1) the time-series properties of earnings, (2) the interest

rate used to discount expected future earnings, and (3) the relative ability of

earnings. Furthermore, Freeman (1987) maintains that the relation between security

prices and firm-specific information is associated with the market value of a firm’s

common equity and concludes that the magnitude of the abnormal returns related to

earnings is a decreasing function of firm size. Of much interest is a hypothesis

tested by Freeman (1987) which implies that (i) the abnormal security returns

related to accounting earnings occur earlier for large than for small firms and

(ii) abnormal returns are lower for large firms and higher for small firms. The

information content theorists consider size as an important conditioning variable

when testing the information content of prices with respect to future earnings and

contemporaneous price changes.

Beaver et al. (1987), Collins et al. (1987), Collins and Kothari (1989), and many

others show that unexpected earnings for a year are correlated with returns

from a prior year. Christie (1987) concludes that while return and price models

are economically equivalent, return models are econometrically less

problematic. Meanwhile, Holthausen and Verrecchia (1988) worked on price

changes when information is announced. Landsman and Magliolo (1988) argue

that price models are superior to return models for certain applications. According

to Cornell and Landsman (1989), stock prices respond to earnings announcements.

Alternatively stated, unexpected increases in earnings are associated with a rise in

stock prices, and unexpected decreases in earnings are associated with a fall in stock

prices. Relating unexpected accounting earnings and security prices aims to assess

the information content of the latter (Collins and Kothari 1989). Conservative

proponents support the view that financial statement ratios are the basic tools for

evaluating and predicting accounting earnings and, consequently, security prices.

Ou and Penman (1989) maintain that the relationship of financial statement char-

acteristics to value is not apparent. Easton and Zmijewski (1989) and that of Board

and Walker (1990) analyze a coefficient that measures the response of stock prices

to accounting earnings coefficient. They measure the response of stock prices to

accounting earnings announcements, and they empirically show that the higher this

coefficient, the smaller the stock price changes.

Lipe (1990) worked on the relation between stock returns and accounting earnings,

assuming that market observes current-period information other than earnings. In the

process of relating stock prices to accounting earnings, (i) a coefficient which mea-

sures the stock-return response to a one dollar earnings changes as a function of both

“predictability” and “persistence” of earnings, and (ii) the variance of stock price

changes during the reporting of earnings has been tested in the literature (Cho and

Jung 1991; etc.). Easton and Harris (1991) presented models relating earnings vari-

ables and security returns, concluding that both current earnings level and the earnings

change variables play a role in the security valuation. They are in fact correlated.

Strong andWalker (1993) used a panel regression approach to examine the association

between annual stock price returns and reported earnings figures of industrial
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companies in the UK and proved through an analysis of earnings components that

models of the relation between earnings and returns that focus exclusively on the

deflated first difference of earnings are misspecified. Kahya et al. (1993) showed that

earnings growth rates are predictable using past earnings growth rates, stock price

returns are predictable using past earnings growth rates as well as stock price returns,

and firm size has no incremental explanatory power with respect to equity prices.

Kothari and Zimmerman (1995) provide empirical results confirming that price

models’ earnings response coefficients are less biased and argue that the price specifi-

cation suffers more from heteroscedasticity/misspecification problems than the return

model. They conclude that in some research contexts, the combined use of both price

and return models may be useful. Chen et al. (2001) obtain evidence of value relevance

of accounting information in China based on a return and a price model according to

both the pooled cross section and time-series regressions or the year-by-year regressions,

and find that value relevance is higher for companies using only A shares to domestic

investors despite of the lack of alternative information sources (i.e., earnings forecasts,

financial analysts), the lack of a sufficient level of corporate governance, and the even

recent new phenomenon of independent auditing in China. Lundholm andMyers (2002)

examined how a firm’s disclosures affect the mix of earnings information reflected in its

annual stock return and found that increased disclosure activity “brings the future

forward” into current stock returns. Chen et al. (2011) examined the properties of

accounting numbers of listed firms in China by investigating the interplay between

accounting earnings and stock prices. They found that core earnings (or operating

income) have a greater association with contemporaneous stock returns than

nonoperating revenues and expenses, and they also found that different types of firm

ownership may have different impacts on the information content of earnings

components.

10.3 Methodology and Models Used

Literature concerning accounting earnings and stock prices has been formulated

in the framework of an earnings-based valuation model expanded with the

dividend irrelevance proposition. These standard models which have also been

tested by Easton and Harris (1991) and Zimmerman and Kothari (1995) are as

follows:

I. Price on earnings

Pi, j ¼ aþ bAi, j þ ei, j� (10.1)

II. Returns on change in earnings divided by beginning-of-period price and prior

period earnings divided by the price at the beginning of the return period

Ai, j=Pi, j�1

�� � ¼ ai, j þ bi, j Ai, j � Ai, j�1

� �
=Pi, j�1 þ Ai, j�1=Pi, j�1

� ���
(10.2)
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III. Returns on earnings over opening market value

Pi, j � Pi, j�1

� �þ di, j
� �

=Pi, j�1 ¼ ai, j þ bi, j Ai, j=Pi, j�1

� �þ ei, j (10.3)

IV. Returns on prior earnings model over opening market value

Pi, j � Pi, j�1

� �þ di, j
� �

=Pi, j�1 ¼ ai, j þ bi, j Ai, j�1=Pi, j�1

� �þ ei, j (10.4)

V. Returns on change in earnings over opening market value

Pi, j � Pi, j�1

� �þ di, j
� �

=Pi, j�1 ¼ ai, j þ bi, j Ai, j � Ai, j�1

� �
=Pi, j�1

� �þ ei, j (10.5)

VI. Returns on change in earnings over opening market value and on earnings over

opening market value

Pi, j � Pi, j�1

� �þ di, j
� �

=Pi, j�1 ¼ aþ b1i, j Ai, j � Ai, j�1

� �
=Pi, j�1

� �
þ b2i, j Ai, j=Pi, j�1

� �þ ei, j
� �

(10.6)

VII. Returns (deflated by lag of 2 years) on earnings over opening market value

Pi, j � Pi, j�1

� �þ di, j
� �

=Pi, j�2 ¼ ai, j þ bi, j Ai, j=Pi, j�1

� �þ ei, j (10.7)

VIII. Return model regressed on earnings over opening market value

Pi, j=Pi, j�1 ¼ aþ b1i, jAi, j=Pi, j�1 (10.8)

IX. Differenced-price model

Pi, j � Pi, j�1 ¼ Ai, j � Ai, j�1 (10.9)

where

Pi,j ¼ stock price (per share) of firm i in period j

Ai,j ¼ earnings per share of firm i in period j

di,j ¼ dividend per share of firm i in period j

a ¼ a constant in a linear relationship(intercept parameter)

b1,b2 ¼ a slope parameter or a coefficient in a linear regression

i ¼ cross-selection item, j ¼ time-series item

To be familiar and consistent with the existing literature, some requirements are

stressed. For example, earnings per share divided by price at the beginning of the

return period (Ai,j/Pi,j � 1) refers to current earnings level variable. Change in

earnings divided by beginning-of-period price refers to earnings change variable

[(Ai,j � Ai,j � 1)/Pi,j � 1]. Thus far, the models that have been selected to be tested

express the following:

Model I: Expresses price as a multiple of earnings.

Model II: Expresses historical price-earnings ratios with an earnings change versus

earnings levels explanation form.
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Model III: From an earnings valuation perspective, earnings levels(divided by

beginning-of-period price) will be associated with returns.

Model IV: Illustrates a linear relation between prior earnings divided by beginning-

of-period price and security returns over that period.

Model V: Regresses annual security returns on change in earnings divided by

beginning-of-period price.

Model VI: Expresses the contribution of change in earnings versus earnings levels

in the explanation of stock returns.

Model VII: Returns (deflated by lag of 2 years) on earnings over opening market value.

Model VIII: Expresses returns on earnings level divided by beginning-of-period price.

Model IX: Expresses differenced-price model.

As in Easton and Harris (1991), the models under investigation have been based

on either the book value valuation model or the earnings valuation model.

The book value valuation model indicates that

Pij ¼ BVij þ uij (10.10)

Taking first differences we have

DPij ¼ DBVij þ uij (10.11)

But in general

DBVij ¼ Aij � dij (10.12)

Substituting (3) into (2), rearranging and dividing by Pij�1 yields

(DPij + dij)/Pij�1 ¼ Aij/Pij�1 + uij (model III)

On the other hand,

Pij ¼ rAij þ uij (10.13)

Given the dividends irrelevance proposition, we have

Pij þ dij ¼ rAij þ uij (10.14)

It follows that (DPij + dij)/Pij�1 ¼ r(DAij/Pij�1) + uij (model V)

ARIMAX (autoregressive integrated moving average with exogenous variables) as

a suitable technique for nonstationarity time-series modeling is employed in this study.

10.4 Sample Selection

The whole population containing all Greek-listed companies in the Athens

Stock Exchange is investigated in this study. The total number of companies

amounts to 513 companies. The main source of data is the Athens Stock
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Exchange Annual Yearbook, the annual statistical bulletin, and the Internet.

Total number of companies refers to the time period 1974 up to 2005 (the most

recently available data when writing the paper). The full sample (1974–2005) is

separated in two samples (1974–1999 and 2000–2005) which correspond to

two-time periods, that is, before the Euro currency and the Euro era. As in

Kothari and Zimmerman (1995), to avoid any undue influence of extreme

observations, the largest and the lowest 1 % of observations is excluded from

the sample. EPS take positive or zero values. All firms have a December fiscal

year-end. Annual earnings include those from discontinued operations and

extraordinary items.

10.5 Empirical Findings

For each year, a nonconstant number of companies is available. We define the total

number of companies at each year t as nt. We would like to estimate the following

nine models for the period from 1974 to 2005:

Model I

Pt ¼ aþ bAt þ et, for et � N 0; s2
� �

, (10.15)

where Pt ¼ nt
�1
Xnt
i¼1

Pi, t and At ¼ nt
�1
Xnt
i¼1

Ai, t:

Model II

At

Pt�1

¼ aþ b1
At � At�1

Pt�1

þ b2
At�1

Pt�1

þ et, for et � N 0; s2
� �

, (10.16)

where
At

Pt�1

¼ nt
�1
Xnt
i¼1

Ai, t

Pi, t�1

,
At � At�1

Pt�1

¼ nt
�1
Xnt
i¼1

Ai, t � Ai, t�1

Pi, t�1

, and
At�1

Pt�1

¼ nt
�1

Xnt
i¼1

Ai, t�1

Pi, t�1

.

Model III

Pt � Pt�1 þ dt
Pt�1

¼ aþ b1
At

Pt�1

þ et, for et � N 0; s2
� �

, (10.17)

where
Pt � Pt�1 þ dt

Pt�1

¼ nt
�1
Xnt
i¼1

Pi, t � Pi, t�1 þ di, t
Pi, t�1

and
At

Pt�1

¼ nt
�1
Xnt
i¼1

Ai, t

Pi, t�1

.
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Model IV

Pt � Pt�1 þ dt
Pt�1

¼ aþ b1
At�1

Pt�1

þ et, for et � N 0; s2
� �

, (10.18)

where
Pt � Pt�1 þ dt

Pt�1

¼ nt
�1
Xnt
i¼1

Pi, t � Pi, t�1 þ di, t
Pi, t�1

and At�1

Pt�1
¼ nt

�1
Xnt
i¼1

Ai, t�1

Pi, t�1

.

Model V

Pt � Pt�1 þ dt
Pt�1

¼ aþ b1
At � At�1

Pt�1

þ et, for et � N 0; s2
� �

, (10.19)

where
Pt � Pt�1 þ dt

Pt�1

¼ nt
�1
Xnt
i¼1

Pi, t � Pi, t�1 þ di, t
Pi, t�1

and

At � At�1

Pt�1

¼ nt
�1
Xnt
i¼1

Ai, t � Ai, t�1

Pi, t�1

.

Model VI

Pt � Pt�1 þ dt
Pt�1

¼ aþ b1
At � At�1

Pt�1

þ b2
At

Pt�1

þ et, for et � N 0; s2
� �

, (10.20)

where
Pt � Pt�1 þ dt

Pt�1

¼ nt
�1
Xnt
i¼1

Pi, t � Pi, t�1 þ di, t
Pi, t�1

,

At � At�1

Pt�1

¼ nt
�1
Xnt
i¼1

Ai, t � Ai, t�1

Pi, t�1

, and
At

Pt�1

¼ nt
�1
Xnt
i¼1

Ai, t

Pi, t�1

.

Model VII

Pt � Pt�1 þ dt
Pt�2

¼ aþ b1
At

Pt�1

þ et, for et � N 0; s2
� �

, (10.21)

where
Pt � Pt�1 þ dt

Pt�2

¼ nt
�1
Xnt
i¼1

Pi, t � Pi, t�1 þ di, t
Pi, t�2

and
At

Pt�1

¼ nt
�1
Xnt
i¼1

Ai, t

Pi, t�1

.

Model VIII

Pt

Pt�1

¼ aþ b1
At

Pt�1

þ et, for et � N 0; s2
� �

, (10.22)

where
Pt

Pt�1

¼ nt
�1
Xnt
i¼1

Pi, t

Pi, t�1

and
At

Pt�1

¼ nt
�1
Xnt
i¼1

Ai, t

Pi, t�1

.
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Model IX

Pt � Pt�1ð Þ ¼ aþ b1 At � At�1ð Þ þ et, for et � N 0; s2
� �

, (10.23)

where Pt � Pt�1ð Þ ¼ nt
�1
Xnt
i¼1

Pi, t � Pi, t�1

� �
and

At � At�1ð Þ ¼ nt
�1
Xnt
i¼1

Ai, t � Ai, t�1

� �
.

The nine aforementioned models are characterized by autocorrelated and

heteroscedastic residuals. Thus, the models are expanded in the ARIMAX

(autoregressive integrated moving average) framework (for details about ARIMAX

modeling, the interested reader is referred to Box and Jenkins (1976)) in order to

model the autocorrelated residuals. Moreover, we take into consideration White’s

(1980) heteroscedasticity-consistent covariance matrix estimator which provides

correct estimates of the coefficient covariances in the presence of heteroscedasticity

of unknown form.

The ARIMAX (p,d,q) models are estimated in the following form:

1� Lð Þdyt ¼ Xtbþ et

1�
Xp

i¼1

ciL
i

 !
et ¼ 1þ

Xq

i¼1

diL
i

 !
et

et � N 0; s2ð Þ,

(10.24)

where yt is the dependent variable, Xt is the vector of explanatory variables, L is the

lag operator, and b is a vector of parameters to be estimated. ci, for i ¼ 1,. . .,p, and
di, for i ¼ 1,. . .,q, are also parameters to be estimated.

For each of the nine models, the ARIMAX (p,d,q) specification is estimated for

p ¼ 0,1,2, d ¼ 0,1,2 and q ¼ 0,1,2. Therefore, for each model, 27 ARIMAX

specifications are estimated. The ARIMAX (p,d,q) specification with the minimum

value of squared residuals (MSE loss function) is selected as the most appropriate.

The following Table presents the selected specifications for each model (Table 10.1).

Table 10.1 The ARIMAX (p,d,q) specification for each of the nine models and the relative MSE

loss functions

Model I ARIMAX(1,0,1) 2.766371

Model II ARIMAX(2,0,2) 0.003763

Model III ARIMAX(2,0,2) 0.741482

Model IV ARIMAX(2,0,2) 0.719591

Model V ARIMAX(0,1,1) 0.732002

Model VI ARIMAX(2,0,2) 0.584564

Model VII ARIMAX(2,1,1) 0.888239

Model VIII ARIMAX(2,0,2) 0.762231

Model IX ARIMAX(2,1,2) 2.245854
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Hence, the estimated models are the following:

Model I

Pt ¼ 8:5� 5:1At þ et
et ¼ 1:05et�1 þ et � 1:46et�1

et � N 0; s2ð Þ:
(10.25)

Model II
At

Pt�1

¼ �0:004þ 0:99
At � At�1

Pt�1

þ 1:04
At�1

Pt�1

þ et

et ¼ 1:5et�10:84et�2 þ et � 1:14et�1 þ 0:52et�2

et � N 0; s2ð Þ:
(10.26)

Model III

Pt � Pt�1 þ dt
Pt�1

¼ 0:28� 0:21
At

Pt�1

þ et

et ¼ 0:32et�1 þ 0:46et�2 þ et þ 0:92et�1 � 1:16et�2

et � N 0; s2ð Þ:
(10.27)

Model IV

Pt � Pt�1 þ dt
Pt�1

¼ �0:47þ 2:48
At�1

Pt�1

þ et

et ¼ 0:21et�1 þ 0:36et�2 þ et � 0:68et�1 � 1:42et�2

et � N 0; s2ð Þ:
(10.28)

Model V

1� Lð ÞPt � Pt�1 þ dt
Pt�1

¼ 0:055� 0:5
At � At�1

Pt�1

þ et

et ¼ et � 1:52et�1

et � N 0; s2ð Þ:
(10.29)

Model VI

Pt � Pt�1 þ dt
Pt�1

¼ �0:33� 2:6
At � At�1

Pt�1

þ 2:4
At

Pt�1

þ et

et ¼ 0:4et�1 þ 0:3et�2 þ et0:37et�1 � 1:9et�2

et � N 0; s2ð Þ:
(10.30)

Model VII

1� Lð ÞPt � Pt�1 þ dt
Pt�2

¼ 0:2� 0:76
At

Pt�1

þ et

et ¼ 0:1et�1 þ 0:3et�2 þ et � 1:7et�1

et � N 0; s2ð Þ:
(10.31)
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Model VIII

Pt

Pt�1

¼ 1:3� 0:22
At

Pt�1

þ et

et ¼ 0:31et�1 þ 0:46et�2 þ et þ 0:94et�1 � 1:1et�2

et � N 0; s2ð Þ:
(10.32)

Model IX

1� Lð Þ Pt � Pt�1ð Þ ¼ 0:16� 5:54 At � At�1ð Þ þ et
et ¼ �0:25et�1 þ 0:13et�2 þ et � 1:2et�1 � 0:64et�2

et � N 0; s2ð Þ:
(10.33)

In the sequel, for the models being estimated, the estimates of the coefficients,

their standard errors, the t-ratios, and their p-values are presented. According to the

t-statistics, computed as the ratio of the coefficients to their standard errors, the

coefficients of the explanatory variables are statistically significant in models

I (price on earnings), II (returns on change in earnings divided by beginning-of-

period price and prior period earnings divided by the price at the beginning of the

return period), V (returns on change in earnings over opening market value), VII

(returns (deflated by lag of 2 years) on earnings over opening market value, and IX

(differenced-price model).

Thus, we conclude that these models explain the relationship between dependent

and explanatory variables, whereas the models III (returns on earnings over opening

market value), IV (returns on prior earnings model over opening market value), VI

(returns on change in earnings over opening market value, and on earnings over

opening market value), and VIII (return model regressed on earnings over opening

market value) fail to explain any strong relationship for the variables under

investigation.

Model I

Coefficient Std. error t-statistic Prob.

C 8.533220 14.06649 0.606635 0.5494

A �5.132325 1.427713 �3.594788 0.0013

AR(1) 1.059546 0.183145 5.785297 0.0000

MA(1) �1.461802 0.439241 �3.328021 0.0026

Model II

Coefficient Std. error t-statistic Prob.

C �0.004505 0.001576 –2.857574 0.0092

A_A_1_TO_P_1 0.999564 0.000720 1388.375 0.0000

A_1_TO_P_1 1.045894 0.006215 168.2873 0.0000

AR(1) 1.586004 0.418002 3.794251 0.0010

(continued)
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Coefficient Std. error t-statistic Prob.

AR(2) –0.846287 0.326826 –2.589408 0.0167

MA(1) –1.149986 0.488050 –2.356289 0.0278

MA(2) 0.523007 0.324461 1.611925 0.1212

Model III

Coefficient Std. error t-statistic Prob.

C 0.283162 0.469953 0.602534 0.5527

A_P_1 �0.215456 0.245653 �0.877076 0.3895

AR(1) 0.328559 0.487341 0.674188 0.5069

AR(2) 0.461880 0.150453 3.069922 0.0054

MA(1) 0.922833 0.503703 1.832097 0.0799

MA(2) �1.168622 0.757600 �1.542532 0.1366

Model IV

Coefficient Std. error t-statistic Prob.

C �0.474203 0.250825 �1.890572 0.0713

A_1_TO_P_1 2.482914 2.237444 1.109710 0.2786

AR(1) 0.210692 0.313382 0.672316 0.5081

AR(2) 0.363890 0.330713 1.100322 0.2826

MA(1) �0.683117 0.316795 �2.156340 0.0418

MA(2) �1.427611 0.387230 �3.686727 0.0012

Model V

Coefficient Std. error t-statistic Prob.

C 0.055179 0.014928 3.696284 0.0010

A_A_1_TO_P_1 �0.508631 0.167841 �3.030438 0.0053

MA(1) �1.529472 0.264051 �5.792342 0.0000

Model VI

Coefficient Std. error t-statistic Prob.

C �0.333214 0.401790 �0.829324 0.4158

A_A_1_TO_P_1 �2.616280 1.897450 �1.378840 0.1818

A_P_1 2.428167 1.979060 1.226929 0.2328

AR(1) 0.442328 0.194141 2.278386 0.0328

AR(2) 0.322828 0.140587 2.296282 0.0316

MA(1) 0.373195 0.331781 1.124822 0.2728

MA(2) �1.954250 0.408247 �4.786934 0.0001

10 Market-Based Accounting Research (MBAR) Models: A Test of ARIMAX Modeling 291



Model VII

Coefficient Std. error t-statistic Prob.

C 0.238146 0.139477 1.707424 0.1018

A_P_1 �0.760945 0.282609 �2.692572 0.0133

AR(1) 0.094551 0.236234 0.400242 0.6928

AR(2) 0.326603 0.207761 1.572016 0.1302

MA(1) �1.739517 0.430607 �4.039685 0.0005

Model VIII

Coefficient Std. error t-statistic Prob.

C 1.336294 0.475802 2.808510 0.0100

A_P_1 �0.226643 0.247267 �0.916591 0.3689

AR(1) 0.313565 0.480801 0.652171 0.5208

AR(2) 0.462875 0.157081 2.946732 0.0072

MA(1) 0.937106 0.494468 1.895180 0.0707

MA(2) �1.106481 0.744072 �1.487061 0.1506

Model IX

Coefficient Std. error t-statistic Prob.

C 0.169538 0.371999 0.455748 0.6530

A_MINUS_A_1 �5.545373 0.888799 �6.239178 0.0000

AR(1) �0.254505 0.276560 �0.920251 0.3674

AR(2) 0.135901 0.243004 0.559251 0.5816

MA(1) �1.192648 0.472557 �2.523820 0.0193

MA(2) �0.640639 0.667506 �0.959750 0.3476

10.5.1 Unit Root Tests: Testing for Stationarity

We estimate the augmented Dickey and Fuller (1979) test in order to investigate the

null hypothesis of a unit root or nonstationarity of the time series under investiga-

tion, i.e., yt. The Dickey-Fuller test is carried out by estimating:

Dyt ¼ a0 þ a1yt�1 þ a2tþ
Xl
i¼1

biDyt�i þ et (10.34)

where et � N(0,s2), and D is the difference operator, or D ¼ (1 � L). The lag order

l of
Xl
i¼1

biDyt�i is selected based on the Schwarz (1978) information criterion.

The null and the alternative hypotheses may be written as
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H0 : a1 ¼ 0

HA : a1 6¼ 0:
(10.35)

A rejection of the null hypothesis indicates that the series yt is

stationary. The Eq. 10.20 is estimated in three different versions: (i) for

a0 ¼ a2 ¼ 0, (ii) for a2 ¼ 0, and (iii) for a0 6¼ 0 and a2 6¼ 0. The variables we are

interested in are

Pt in model I; At in model I; At

Pt�1
in models II, III, VI, VII, and VIII; At�At�1

Pt�1
in

models II, V, VI; At�1

Pt�1
in models II and IV; Pt�Pt�1þdt

Pt�1
in models III, IV, V, and VI;

Pt�Pt�1þdt
Pt�2

in model VII; Pt

Pt�1
in model VIII; (Pt � Pt�1) in model IX; and (At � At�1)

in model IX.

The test statistics and the relative p-values from testing 21 for the Eq. 10.20 for

a0 ¼ a2 ¼ 0 are the following:

Variable Test statistic p-value

Pt �2.256635 0.0254

At �3.414078 0.0013
At

Pt�1
�5.218131 0.00

At�At�1

Pt�1
�6.010163 0.00

At�1

Pt�1
�3.238033 0.00

Pt�Pt�1þdt
Pt�1

�4.363369 0.00

Pt�Pt�1þdt
Pt�2

�5.920676 0.00

Pt

Pt�1
�2.698176 0.0087

(Pt�Pt�1) �7.122593 0.00

(At � At � 1) �7.294227 0.00

The test statistics and the relative p-values from testing 21 for the Eq. 10.20 for

a2 ¼ 0 are the following:

Variable Test statistic p-value

Pt �3.625190 0.0109

At �5.722834 0.00
At

Pt�1
�5.587381 0.00

At�At�1

Pt�1
�6.107705 0.00

At�1

Pt�1
�5.774024 0.00

Pt�Pt�1þdt
Pt�1

�4.399238 0.0016

Pt�Pt�1þdt
Pt�2

�6.043400 0.00

Pt

Pt�1
�4.345041 0.0018

(Pt � Pt�1) �6.998199 0.00

(At � At�1) �7.157803 0.00
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The test statistics and the relative p-values from testing 21 for the Eq. 10.20 for

a0 6¼ 0 and a2 6¼ 0 are the following:

Variable Test statistic p-value

Pt �3.565939 0.0497

At �5.698735 0.0003
At

Pt�1
�5.667882 0.0004

At�At�1

Pt�1
�6.213167 0.0001

At�1

Pt�1
�5.673596 0.0003

Pt�Pt�1þdt
Pt�1

�4.332965 0.0092

Pt�Pt�1þdt
Pt�2

�5.931949 0.0002

Pt

Pt�1
�4.290153 0.0102

(Pt � Pt�1) �6.875067 0.00

(At � At�1) �7.024534 0.00

In all the cases, the p-values are less than a 5 % level of significance. Therefore,

the null hypothesis is rejected at any case. Hence, the series are defined, by the

augmented Dickey-Fuller tests, to be stationary.

10.5.2 Forecasting Dependent Variables

For the following models, the dependent variable is predicted for the year 2006,

after adding in the dataset the values of the explanatory variables for the year 2006:

Model I

Pt ¼ 8:5� 5:1At þ et
et ¼ 1:05et�1 þ et � 1:46et�1

et � N 0; s2ð Þ:
(10.36)

Model II

At

Pt�1

¼ �0:004þ 0:99
At � At�1

Pt�1

þ 1:04
At�1

Pt�1

þ et

et ¼ 1:5et�10:84et�2 þ et � 1:14et�1 þ 0:52et�2

et � N 0; s2ð Þ:
(10.37)

Model III

Pt � Pt�1 þ dt
Pt�1

¼ 0:28� 0:21
At

Pt�1

þ et

et ¼ 0:32et�1 þ 0:46et�2 þ et þ 0:92et�1 � 1:16et�2

et � N 0; s2ð Þ:
(10.38)
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Model IV

Pt � Pt�1 þ dt
Pt�1

¼ �0:47þ 2:48
At�1

Pt�1

þ et

et ¼ 0:21et�1 þ 0:36et�2 þ et � 0:68et�1 � 1:42et�2

et � N 0; s2ð Þ:
(10.39)

Model V

1� Lð ÞPt � Pt�1 þ dt
Pt�1

¼ 0:055� 0:5
At � At�1

Pt�1

þ et

et ¼ et � 1:52et�1

et � N 0; s2ð Þ:
(10.40)

Model VI

Pt � Pt�1 þ dt
Pt�1

¼ �0:33� 2:6
At � At�1

Pt�1

þ 2:4
At

Pt�1

þ et

et ¼ 0:4et�1 þ 0:3et�2 þ et0:37et�1 � 1:9et�2

et � N 0; s2ð Þ:
(10.41)

Model VII

1� Lð ÞPt � Pt�1 þ dt
Pt�2

¼ 0:2� 0:76
At

Pt�1

þ et

et ¼ 0:1et�1 þ 0:3et�2 þ et � 1:7et�1

et � N 0; s2ð Þ:
(10.42)

Model VIII

Pt

Pt�1

¼ 1:3� 0:22
At

Pt�1

þ et

et ¼ 0:31et�1 þ 0:46et�2 þ et þ 0:94et�1 � 1:1et�2

et � N 0; s2ð Þ:
(10.43)

Table 10.2 The 1-year-ahead forecasts (year 2006) of the dependent variables for the nine

models

Number of model Best model Forecast of the dependent variable

Model I ARIMAX(1,0,1) �1.066527

Model II ARIMAX(2,0,2) 0.010287

Model III ARIMAX(2,0,2) �0.094187

Model IV ARIMAX(2,0,2) �0.236392

Model V ARIMAX(0,1,1) �0.715401

Model VI ARIMAX(2,0,2) 0.059651

Model VII ARIMAX(2,1,1) 0.372343

Model VIII ARIMAX(2,0,2) 0.833744

Model IX ARIMAX(2,1,2) �4.755135
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Model IX

1� Lð Þ Pt � Pt�1ð Þ ¼ 0:16� 5:54 At � At�1ð Þ þ et
et ¼ �0:25et�1 þ 0:13et�2 þ et � 1:2et�1 � 0:64et�2

et � N 0; s2ð Þ:
(10.44)

See Table 10.2

10.6 Conclusions and Suggestions for Further Future Research

This study denotes whether some standard models of market-based accounting

research can explain stock returns in a different country than the USA and UK. In

other words, in the Greek stock market, there is a memory of earnings in stock returns.

Models I (price on earnings), II (returns on change in earnings divided by beginning-of-

period price and prior period earnings divided by the price at the beginning of the return

period), V (returns on change in earnings over opening market value), VII (returns

deflated by lag of 2 years on earnings over openingmarket value), and IX (differenced-

price model) have statistically significant coefficients of explanatory variables. In

addition, model II with MSE (minimum squared error) loss function in ARIMAX

(2,0,2) is prevalent. ARIMAX (2,0,2) is a representation of the ARIMAX (p,d,q) with

two lags in autoregressive, after being differenced 0 times, with two lags in residuals.

Unlike the US market, in the Athens Stock Exchange, there is a far lower ratio of

professional analysts per registered company, and management earnings forecasts are

only recently and very rarely made publicly available which as fact makes earnings

change and earnings level as determinant factor in stock returns. Further analysis in

earnings components and revenues from sales may explain more satisfactorily the

returns and earnings association. This is in the due course. The issuance of a law on

1985 (Presidential Decree 360/1985) for the publication of semiannual reports and

the issuance of a law (2533/1997) for the publication of quarterly reports seem to

have no effect on the main accounting moments employed in this study. Even the

institutional changes such as liberalization of the auditing profession, corporate tax

cuts, and the change in currency seem to have no effect on the models under

investigation. The different business environment that is going to be formed with

forecasted financial statements and the IAS(IFRS) may make the model selection

a different task. Besides application of generalized autoregressive conditional

heteroscedasticity (GARCH) models is suggested for further future research.
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Abstract

In credit risk modeling, factor models, either static or dynamic, are often used to

account for correlated defaults among a set of financial assets. Within the realm of

factor models, default dependence is due to a set of common systemic factors.

Conditional on these common factors, defaults are independent. The benefit of

a factor model is straightforward coupling with a copula function to give an

analytic formulation of the joint distribution of default times. However, factor

models fail to account for the contagion mechanism of defaults in which a firm’s
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default risk increases due to their commercial or financial counterparties’ defaults.

This study considers a mixture of the dynamic factor model of Duffee (Review of
Financial Studies 12, 197–226, 1999) and a contagious effect in the specification

of a Hawkes process, a class of counting processes which allows intensities to

depend on the timing of previous events (Hawkes. Biometrika 58(1), 83–90,
1971). Using the mixture factor-contagious-effect model, Monte Carlo simulation

is performed to generate default times of two hypothesized firms.

The goodness-of-fit of the joint distributions based on the most often used

copula functions in literature including the normal, t-, Clayton, Frank, and
Gumbel copula, respectively, is assessed against the simulated default times. It

is demonstrated that as the contagious effect increases, the goodness-of-fit of the

joint distribution functions based on copula functions decreases, which high-

lights the deficiency of the copula function approach.

Keywords

Static factor model • Dynamic factor model • Correlated defaults • Contagious

effect • Hawkes process-Monte • Carlo simulation • Normal copula • t-copula •
Clayton copula • Frank copula • Gumbel copula

11.1 Introduction

An understanding of correlated defaults of the underlying assets is fundamental to

portfolio management and the pricing of credit derivatives such as a CDS contract,

a CDO contract, or a basket default swap contract (Hull and White 2001; Zhou

2001; Das et al. 2006). There exist, however, different ways of introducing corre-

lations when modeling assets’ defaults. In Schönbucher (2003), a good modeling

framework for correlated defaults should include (1) being able to produce default

correlations of a realistic magnitude, (2) being able to model the timing of defaults,

(3) being capable of reproducing default clustering periods, and (4) easily calibrated

and implemented by keeping the number of parameters under control without

growing dramatically with the number of assets.

In responding to these properties, two types of factor models coupled with a set

of small number of common systemic factors have been followed in literature to

account for default correlations. The first type of factor model is static in the sense

that the modeling of default correlations among a set of I assets is based on the

creditworthiness indices X1, . . ., XI at a specific time point T, which is analogous to
Merton’s structural model (1974) in which an asset defaults when its creditworthi-

ness index falls below some threshold at a specific time point. The static factor

model has been widely used for the computation of joint default and loss probability

distribution in a portfolio (Vasicek 1997; Koyuoglu and Hickman 1998; Finger

2000; Schönbucher 2003). Portfolio credit risk models fit within this framework

include CreditMetrics (1997) of JP Morgan, Credit Risk+ of Credit Suisse Financial

Products (1997), and KMV’s portfolio manager (Kealhofer 1995).
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In the static factor model, default dependence among a set of I assets is

introduced by the correlations between the creditworthiness X1, . . ., XI and a set

of common systemic economic factors. Conditional on these common systemic

factors, the creditworthiness X1, . . ., XI are independent. Depending on the distri-

butions imposing on these common systemic factors, a specific type of copula

function can be used to obtain an analytical expression for the joint distribution

of the default times for the I assets (Li 1999, 2000; Schönbucher 2003; Gregory and
Laurent 2005).

The second type of factor models uses a more consistent framework to model

correlated defaults via assets’ default intensities that describe the evolution of

instantaneous default probabilities dynamically over time. In parallel to the static

factor model, the dynamic factor model generates default dependency among assets

through a set of common factors. Conditioned to the realization of these common

factors, the assets’ defaults are independent. However, being different from the

static factor model in which common factors affect assets’ creditworthiness at

a specific time horizon, the common factors in dynamic factor models affect assets’

default intensities dynamically over time (Duffee 1999; Yu 2005; Driessen 2005;

Elizalde 2005).

The benefit of a factor model, either static or dynamic, is its straightforward

conjunction with a copula function to give an analytic formulation of the joint

distribution of default times (Li 1999, 2000; Schönbucher and Schubert 2001;

Schönbucher 2003; Gregory and Laurent 2005). In this way, model parameters

can be readily inferred from the common systemic factors and individual assets’

default times. The main drawback of a factor model, however, is that the likelihood

of an asset’s default does not change due to the defaults of any other assets, i.e., the

default of one asset does not trigger the defaults of other related assets. While this

might be adequate for production firms, it may be inadequate for studying the

default risk of a financial institution with large positions in a few assets whose

default can trigger the failure of other financial institutions (Lucas 1995; Jarrow and

Yu 2001; Nagpal and Bahar 2001; Das et al. 2006). Under such circumstance,

correlated defaults are due to counterparties’ default risk. For this reason, the

contagious default models in which the default intensity of an asset depends on

the status (default/not default) of the other assets are proposed (Davis and Lo 2001;

Jarrow and Yu 2001). These contagious default models allow extra-default depen-

dence to be introduced compared to the factor models.

This study uses a mixture of a dynamic factor model by Duffee (1999) with

a contagious effect as a benchmark model to generate simulated default times of

two assets. Various copula functions that are often used in credit risk modeling,

including the normal copula, t-copula, Clayton copula, Frank copula, and Gumbel

copula, are employed to calibrate the simulated default times. As the contagious

effect increases, the simulated default times show that the goodness-of-fit of the

aforementioned copula functions decreases.

The paper is organized as follows. Section 11.2 introduces the static factor

model and its link to the copula function approach. Section 11.3 introduces the
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dynamic factor model in a point process. Section 11.4 introduces the contagious

effect model based on mutually exciting point processes. The theoretical founda-

tions of the copula function approach are given in Sect. 11.5. A simulation study is

given in Sect. 11.6. Section 11.7 concludes.

11.2 Dependence Structure in Static Factor Model

In a static factor model, the creditworthiness indices X1, . . ., XI of I assets at

times 0 < t1, . . ., tI � T are explained by 1 or a set of common systemic risk factors

Y1, . . ., YK in the form

Xi ¼
XK
j¼1

rijYj þ ri Kþ1ð Þei

where rij determines the relative importance of asset i to the common factor Yj and
ri(K+1) the relative weight of idiosyncratic factor ei for asset i. To the extent that the
creditworthiness indices are related to the common systemic factors Y1, . . ., YK, the
likelihood of joint default events across assets varies accordingly. Here the common

factors Y1, . . ., YK and the idiosyncratic factors e1,. . ., eI are independent. In the

following, for simplicity, we will consider a single factor Y and the ith asset’s

creditworthiness index:

Xi ¼ riY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
ei: (11.1)

Equation 11.1 is the one-factor model adopted in CreditMetrics (Gupton

et al. 1997). Since the default environment is completely determined by creditwor-

thiness indices X1, . . ., XI at times t1, . . ., tI, respectively, the factor model is static in

that the dynamics of the firms’ credit quality that evolves during the time horizon

[0, T] is ignored.
Suppose default of the ith asset occurs if the creditworthiness index

Xi falls below a certain threshold ui at time ti and the marginal distribution

functions

F1 t1ð Þ ¼ Pr t1 � t1ð Þ, . . . ,FI tIð Þ ¼ Pr tI � tIð Þ
of the default times t1, . . ., tI are given. The threshold ui and the joint distribution of
the default times t1, . . . , tI satisfy Fi(ti)¼ Pr(Xi� ui) and F(t1, . . . , tI)¼ Pr(X1� u1,
. . ., XI � uI), respectively. By noting that conditional on the common factor Y, the
creditworthiness indices X1, . . . , XI are independent and therefore

Pr X1 � U1, . . . ,XI � UIð Þ ¼
ð

P
I

i¼1
P Xi � uijyð Þ

� �
f yð Þdy:
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If assuming the latent common factors Y and idiosyncratic factors e1, . . ., eI are
standard normally distributed, then the creditworthiness indices Xi are also standard

normally distributed. Therefore, the conditional probability

P Xi � ui yjð Þ ¼ F
F�1 Fi tið Þð Þ � riyffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2i
p

 !

And the joint distribution F(t1, . . ., tI) of default times t1, . . ., tI is linked to

a one-factor normal copula function in the form

F t1; . . . ; tIð Þ ¼
ð

P
I

i¼1
F

F�1 Fi tið Þð Þ � riyffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

p
 !" #

f yð Þdy (11.2)

where f is the standard normal density function. Alternatively, one can assume that

the latent common factor Y is Gamma distributed with parameter 1/y and let

P Xi � ui yjð Þ ¼ exp �y’�1 Fi tið Þð Þ� �

where’�1(s)¼ s�y� 1 and ’ is the generator. Then the joint distribution F(t1, . . ., tI)
is linked to a one-factor Clayton copula function in the form

F t1; . . . ; tIð Þ ¼
ð

P
I

i¼1
exp �y’�1 Fi tið Þð Þ� �� �

f yð Þdy: (11.3)

The Clayton copula function and its generator ’ are given in Definition 2.7 of

Appendix 2.

11.3 Dependence Structure in Dynamic Factor Model Using
Intensity Function

In the dynamic factor model, as in the reduced-form model put forward

by Jarrow and Turnbull (1995), Lando (1998), and Duffie and Singleton

(1999a), default is treated as an unpredictable jump of a firm’s value and the

default time t is treated as the time of the unpredictable jump. Often the

unpredictable jump or default is considered as triggered by an exogenous

event that occurs with an instantaneous likelihood specified by the intensity

function of the first jump in a point process. The formal definition of a point

process and properties of its intensity function are given in Definitions 1.1–1.2

of Appendix 1.

In the dynamic factor model, the intensity function of a default depends on

certain exogenously determined stochastic common systemic factors Xt which
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induce correlated defaults among assets (Duffee 1999; Driessen 2005; Elizalde

2005; Yu 2005). In contrast to the static factor model, the evolution of these

common factors over time is modeled, and conditional on the evolution of these

common factors Xt, defaults are independent. The formulation of the default

intensity as such is referred as a doubly Poisson point process (Lando 1998). In

Definition 1.3, the properties of a point process and a (doubly) Poisson process are

given. An example of a dynamic factor model is given in Duffee (1999), in which

the default intensity of asset i is

li, t ¼ a0, i þ a1, i X1, t � X1

� �þ a2, i X2, t � X2

� �þ l�i, tc

where a0,i, a1,i, and a2,i are constants and X1,t and X2,t are two latent factors

interpreted as the slope and level of the default-free yield curve, i.e., the risk-free

interest rate

rt ¼ ar þ X1, t þ X2, t:

The asset’s specific intensity l�i;t, independent across assets, is assumed to obey

a mean-reversion process

dl�i,t ¼ ki yi � l�i,t
� �

dtþ sli
ffiffiffiffiffiffi
l�i,t

q
dWi,t (11.4)

where W1,t, . . .,WI,t are independent Brownian motions. To introduce more default

correlation, Duffie and Singleton (1999b) incorporate joint as well as idiosyncratic

jumps in the default intensity li,t.
In Das et al. (2007), the hypothesis whether default events can be modeled as

a doubly Poisson point process that solely depends on “exogenous” factors is tested.

Based on a time series of US corporate defaults, they strongly rejected the hypoth-

esis that defaults can be modeled as a doubly Poisson point process. Instead of

a factor model, in the following, the contagious model in which default status of

other firms will affect the default intensity of the underlying asset will be

considered.

11.4 Contagious Model: Mutually Exciting Intensity Function

Examples of contagious models include the infectious default model by Davis and

Lo (2001) in which the intensity function follows a piecewise deterministic Markov

process and the propensity model by Jarrow and Yu (2001). In the propensity

model, firms are divided into K primary and I-K-1 secondary firms: the default

intensities l1,t, . . ., lK,t of primary firms are determined by some exogenously
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common factors, while those of the secondary firms depend on the status (default or

not) of the primary firms but not the other way around (asymmetric dependence).

Specifically, the default intensity of the ith secondary firm is given by

li, t ¼ li,t þ
XK
j¼1

aji, t1 tj � tf g (11.5)

where K + 1 � i � I. Here li,t represents the part of secondary firm i’s hazard rate

independent of the default status of other firms.

Recently, Hawkes process, a class of counting processes which allow intensities

to depend on the timing of previous events (Hawkes 1971), had been adopted to

model the aggregate default intensity of a portfolio (Azizpour and Giesecke 2008;

Errais et al. 2010). In Errais et al. (2010), the cumulated default intensity of n firms

is specified by

l tð Þ ¼ l0 þ
Xn
j¼1

ae�b t�tjð Þ1 tj � tf g: (11.6)

In Lando and Nielsen (2010), a total of 2,557 firms with an average of 1,142 and

a minimum of 1,007 firms at any time throughout the sample period from January

1982 to December 2005 are used to calibrate the goodness-of-fit of an extended

dynamic factor model that includes exogenously determined common factors as

well as a contagion effect in terms of a Hawkes process. During the sampling

period, 370 firms default and a contagious effect is concluded.

In this study, we simulate the default times of two firms using a mixture model

based on a dynamic factor model of Duffee (1999) together with a contagious effect

in the specification of a Hawkes process. Various commonly used copula functions

are calibrated against simulated default times to demonstrate the copula functions in

the modeling of credit default risk.

11.5 Copula Functions

Copulas, introduced by Sklar (1959), have been extensively applied in areas such as

actuarial science using survival data. It was adopted by Li (2000) and Gregory and

Laurent (2005) to the application in modeling the joint distribution of the default

times t1, . . ., tI of a set of I firms. According to Sklar (1959), for any continuous

joint distribution F(t1, . . ., tI), there exists a uniquely determined I-dimensional

copula CF(u1, . . ., uI), where ui ¼ F(ti), 1 � i � I, such that for all (t1, . . ., tI) in RI,

F t1; . . . ; tIð Þ ¼ CF F1 t1ð Þ, . . . ,FI tIð Þð Þ: (11.7)

In Definition 2.1, the formal definition of a copula is given. The theorem by Sklar

(1959) is given in Appendix 2.

11 An Assessment of Copula Functions Approach 305



According to Sklar (1959), as the existence of the copula function CF is

guaranteed, the joint distribution F of default times t1, . . ., tI can be obtained via

Eq. 11.7 given the marginal distributions F1, . . ., FI of individual default times.

However, the analytic formulation of the specific copula function CF is usually

unknown and even intractable. For this reason, some copula functions are chosen in

an ad hoc way in credit risk modeling. The most often used copulas are the normal

copulas (Li 2000; Frey et al. 2001; Gregory and Laurent 2005). However, normal

copula presents no tail dependency and has been criticized for not assigning enough

probability for the occurrence of extreme events.

To account for tail dependency, the double-t-copula or a member of

the Archimedean-type copulas can be used. The t-copula is radically

symmetric in that its lower and upper tail dependence is the same. In case

lower tail dependence is desired, the Clayton copula should be used, while

a Gumbel copula should be used for upper tail dependence. However, the Gumbel

copula does not allow for negative dependence. To compare these copulas,

three indices to measure the dependence structure between two random variables

introduced by the copula function are given in Definitions 2.3–2.4, respectively.

The three dependence measures include the global dependent measure,

i.e., Kendall’s tau, and two tail dependent measures, i.e., the upper/lower tail

dependence coefficients.

Instead of tail dependence, this study focused on the dependent structure of the

firms’ default times due to contagious effects. Schönbucher and Schubert (2001)

study the dynamics of default intensities and show that a Clayton copula, a member

of the Archimedean copula family, is related to the contagious models of Davis and

Lo (2001) and Jarrow and Yu (2001). In the following simulation study based on

a mixture of the dynamic factor model of Duffee (1999) and a contagious effect

specified by a Hawkes process, the aforementioned copula functions are calibrated

against the simulated default times generated by the mixture model to test the

goodness-of-fit of the copulas when contagious effect is present.

11.6 Simulation Study

A simulation based on a mixture of the dynamic factor model of Duffee (1999)

incorporated with contagious effect specified by a Hawkes process is performed here.

In Duffee (1999), a firm’s default intensity is determined by two factors X1,t and X2,t,

where X1,t and X2,t are the two latent components of the risk-free interest rate rt¼ ar +
X1,t + X2,t. The latent components Xj,t, j ¼ 1, 2, obeys the mean-reversion process:

dXj, t ¼ �j mj � Xj, t
� �

dtþ sXj
ffiffiffiffiffiffiffi
Xj, t

p
dWX

j, t (11.8)

where WX
1;t and WX

2;t are two independent Wiener processes. To account for coun-

terparty default risk, however, a modification is made on the default intensity in

Eq. 11.8 by including the default status of the other firm(s). For the two-firm case,

the default intensities are, respectively,
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l1, t ¼ a0,1 þ a1,1 X1, t � X1

� �þ a2,1 X2,t � X2

� �

þ l�1,t þ ae�b t�t2ð Þ1 t2�tf g
(11.9)

l2, t ¼ a0,2 þ a1,2 X1, t � X1

� �þ a2,2 X2, t � X2

� �

þ l�2, t þ ae�b t�t1ð Þ1 t1�tf g
(11.10)

where t1 and t2 are the default times of the 1st and 2nd firm, respectively. The

firm’s specific default intensities l�1;t and l�2;t are assumed to follow the mean-

reversion processes in Eq. 11.4.

The values of the parameters ki, yi, �j, mj, a0,i, a1,i, a2,i, sXj , 1�i�2, 1�j�2 are

from Duffee (1999), in which month-end prices of noncallable corporate bonds

from January 1985 to December 1995 across 161 firms, with majority of investment

grade bonds, are used to calibrate default intensity process. In Table 11.1, the

parameter values used are given. Two cases with different contagious effects are

considered in the study. In the first case, the parameter a that specifies the conta-

gious effect is set to 0.1, while the a value is 0.25 in the second case. For each case,
10,000 pairs of simulated default times for the two firms are generated.

Five different copula functions are considered to fit the empirical joint distribu-

tion of the default times t1 and t2. They are the normal, t-, Clayton, Frank, and
Gumbel copula, respectively. For the normal and t-copula, the parameter r is set to

the empirical correlation coefficient of the simulated default times. Minimum mean

squares error is used to obtain the estimated parameter values of the degree of

freedom v in t-copula and y in Clayton, Frank, and Gumbel copula, respectively.

In Table 11.2, the estimated parameters for the five copula functions and the

corresponding sum squares of errors (SSE) are given. As can be seen in Table 11.2,

Table 11.1 Parameter specification for mixture model

Panel a:

i ki yi sj
l

1 0.023 0.0036 0.051

2 0.600 0.1407 0.104

Panel b:

j ar �jmj sj
X

1 �10.474 1.003 0.0134

2 �10.032 0.060 0.0449

Panel c:

i a0,i a1,i a2,i
1 0.0132 –0.142 0.001

2 0.0196 0.001 0.062

This table reports the parameter values of the proposed mixture model. In Panel a, the parameter

values in the mean-reversion process in Eq. 11.4 for the two firms (i¼ 1,2), respectively, are given.

In Panel b, parameter values of the latent components Xj,t (j¼ 1,2) in Eq. 11.8 are given. In Panel c,

parameter values of default intensities li(i ¼ 1,2) in Eqs. 11.9 and 11.10, respectively, are given
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the normal copula is outperformed by the t-, Frank, and Gumbel copulas when

a ¼ 0.10, while outperformed by the t- and Gumbel copulas only when a ¼ 0.25. It

can also be seen that as the contagious effect parameter a increases from 0.10 to

0.25, except the Gumbel copula, the SSEs also increase significantly for the normal,

t-, Clayton, Frank, and Gumbel copulas. In both cases, i.e., a ¼ 0.10 and a ¼ 0.25,

the Gumbel copula performs the best while the Clayton copula performs the worst

among the five copula approximations.

In Figs. 11.1 and 11.2, the contour plots of the differences between the empirical

and copula-based joint distribution functions when the contagious effect parameter

a¼ 0.10 and a¼ 0.25, respectively, are given. For the normal copula, as can be seen in

Fig. 11.1 (panel a), larger deviations from the empirical joint distribution occur when

the default times t1 and t2 are in the range from 5 to 10 years when a ¼ 0.10. When

a¼ 0.25, as illustrated in Fig. 11.2 (panel a), larger deviations occur in the range from

5 to 15 years. For the t-copula, larger deviations from the empirical joint distribution

occur when the default times t1 and t2 are in the range from 5 to 10 years when

a ¼ 0.10. However, in panel b of Fig. 11.2 where a ¼ 0.25, in addition to the range

between 5 and 10 years, the t-copula fails to approximate the empirical joint distri-

bution well for small default times t1 and t2. This implies that as the contagious effect

increases, the t-copula does not explain the lower tail dependence well. In panel d of
Figs. 11.1 and 11.2, when using the Gumbel copula, larger deviations occur when the

default times t1 and t2 are in the range from 2 to 7 years. This indicates that the

Gumbel copula does not approximate well for smaller default times.

Taken together, the goodness-of-fit of the normal, t-, Clayton, Frank, and Gumbel

copula, respectively, decreases as the contagious effect parameter a increases.

This phenomenon is more apparent for the Frank copula. The contour plots of the

Table 11.2 Parameter estimation of copula functions

Case I: a ¼ 0.1

Copula type SSE Parameter estimation

Normal 0.2394 r ¼ 0.2137

t-copula 0.1650 r ¼ 0.2137, d.f. ¼ 10

Clayton 0.6043 y ¼ 0.51

Frank 0.1695 y ¼ 1.70

Gumbel 0.1591 y ¼ 1.15

Case II: a ¼ 0.25

Copula type SSE Parameter estimation

Normal 0.3867 r ¼ 0.4687

t-copula 0.2213 r ¼ 0.4687, d.f. ¼ 3

Clayton 1.4439 y ¼ 1.51

Frank 0.4525 y ¼ 3.75

Gumbel 0.1431 y ¼ 1.45

This table reports the estimated parameters of the normal, t-, Clayton, Frank, and Gumbel copulas.

For the parameter r, empirical correlation of the simulated default times is used. SSE is used to

obtain the estimates of the degree of freedom (d.f.) for the t-copula and the parameter y for the

Clayton, Frank, and Gumbel copula, respectively
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differences between the empirical and Frank copula-based joint distribution functions

when the contagious effect parameter a ¼ 0.10 and a ¼ 0.25, respectively, are given

in Panel a–b of Fig. 11.3. As can be seen in Fig. 11.3, when a ¼ 0.10, the Frank

copula fails to approximate the empirical distribution well only for small default
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normal, t-Clayton, and Gumbel copula, respectively. The contagious effect parameter a is 0.1
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times t1 and t2. As the contagious effect parameter a ¼ 0.25, however, the Frank

copula fails to approximate the empirical distribution well not only for small default

times t1 and t2 but also larger t1 and t2. This can also be seen in Table 11.2, where

the SSE increases from 0.1695 to 0.4525 as a increases from 0.10 to 0.25.

11.7 Conclusion

As a firm’s default determines the economic opportunities available, it is very likely

that the status of firms’ defaults will affect one another. That is, a firm’s default

might have contagious effect on other firms’ defaults. As a result, one often

observes firms’ default simultaneously. This study demonstrates that the copula

functions from literature do not necessarily, and most unlikely, match the joint

distribution F of the correlated default times t1, . . ., tI of a set of I firms as the

contagious effect is increasing.

Five of the most often used copula functions in literature, namely, the normal,

t-, Clayton, Frank, and Gumbel copulas, are under study. Among the five copula

functions, the Clayton copula performs the worst, whereas the Gumbel copula

performs the best. Except the Gumbel copula, the goodness-of-fit of the other

four copulas decreases as the contagious effect increases. This suggests further

advanced statistical tool for the modeling of contagious defaults in a more consis-

tent and accurate way is in need.
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Appendix 1: Point Process and Its Intensity

Let (O, H, P) be a probability space, where P is a physical measure. A formal

definition of a point process is given below.

Definition 1.1 A point process N with stopping times t1, t2, . . . . 2[0,T] is a counting
measure on the probability space (O, H, P) in that for any Borel subset E�[0,T], the
counting measure N(E) represents the number of time points t1, t2, . . . , in E.

Let {Ht: t2[0, T]} be a filtration on (O, P) so that Ht contains the accumulated

information generated by a point process N till time t. The notion of the compen-

sator of the point process N is given below.

Definition 1.2 Define the compensator A of the point process N as the unique

random measure on (O, P) such that:

i. A is Ht-predictable.

ii. For every nonnegative Ht-predictable process H,

E

ðT

0

HdN

0
@

1
A ¼ E

ðT

0

HdA

0
@

1
A:

The characterization of the compensator A is essential to the statistical infer-

ence of the point process N in that the compensated processM(t)¼ N(t)� A(t), t 2
[0,T] is a martingale under P. In this case a positive, Ht-predictable process l(t)
exists so that

A tð Þ ¼
ðt

0

l sð Þds:

Then l(t) is called the intensity process of the point processN. The Ht-predictable

intensity has the x dt, the probability one of the stopping time tk that occurs during
(t-dt,t] is

P N t� dt, tð � ¼ 1 Ht�j � ¼ l tð Þdtþ o dtð Þ:½
Definition 1.3 If the compensator process A(t) is continuous and deterministic, then

the point process N(t) is a Poisson process. A doubly stochastic Poisson process

M(t) is a point process in which the intensity process l(t) is Ft-predictable, where Ft
contains the accumulated information generated by the point process M till time

t and the entire trajectory {l(s): s > 0}. Conditioning on one realization of the

intensity process {l(s): s> 0}, the point processM(t) is an inhomogeneous Poisson

process.
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Appendix 2: Copula Functions

Basically, a copula functionC links the joint distribution F(y1, . . ., yI) of Imultivariate

random variables Y1, . . ., YI to their univariate marginal distributions F1(y1), . . .,
FI(yI). A formal definition of a copula function is given as follows.

Definition 2.1 A function C: [0, 1]N![0, 1] is a copula if there are uniform random

variables U1, . . ., UN taking values in [0, 1] such that C is their joint distribution

function that satisfies:

1. C(1, . . ., 1, ui, 1, . . ., 1) ¼ ui for all i ¼ 1, . . ., N and ui2[0, 1].
2. For all u2[0, 1]N, C(u) ¼ 0 if at least one coordinate ui ¼ 0, i ¼ 1, . . ., N.
3. For all u2[0, 1]N, v2[0, 1]N with ui � vi, i ¼ 1, . . ., N, the C volume of the

hypercube

X2
i1¼1

. . .
X2
i¼1

�1ð Þ
i1þ...þiN

C wi1 ; . . . ;wiNð Þ � 0

where wik = uk if ik ¼ 1 else wik= vk.
The theoretical groundwork of applying a copula function is based on Sklar’s

theorem (Sklar 1959) in the following:

Theorem 2.2 Let t1, . . ., tI be random variables with marginal distribution func-

tions F1, . . ., FI and joint distribution function F. Then there exists an I-dimensional

copula C such that

F t1; . . . ; tIð Þ ¼ C u1; . . . ; uIð Þ ¼ C F1 t1ð Þ, . . . ,FI tIð Þð Þ

for all (t1, . . ., tI) in R
I, where ui ¼ F(ti), 1�i�I. Moreover, if each Fi is continuous,

then the copula C is unique.

In order to calibrate a copula, indices that measure the dependence structure

introduced by the choice of the copula function are used. We focus on three

dependence measures that depend only on the copula function, not in the marginal

distributions. Among the three dependence measures, Kendall’s tau is the measure

of global dependence, while upper/lower tail dependence coefficients are two local

measures of dependence.

Definition 2.3 Let F be the joint distribution of two random variables X1 and X2

with marginal F1 and F2, respectively. Kendall’s tau is the probability of con-

cordance minus the probability of discordance. Specifically, if (X1, X2) and (X
0
1,

X
0
2) are two realizations of F, then Kendall’s tau is defined as

P X1 � X1
0

� �
X2 � X2

0
� �

> 0
h i

� P X1 � X1
0

� �
X2 � X2

0
� �

< 0
h i

(11.11)

If C is the copula of the joint distribution F, i.e., C(u1,u2) ¼ C(F1(x1), F2(x2)),
Kendall’s tau is
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tau ¼ 4

ð1

0

ð1

0

C u; vð ÞdC u; vð Þ � 1:

Definition 2.4 Let F(X1, X2) be the joint distribution of two random variables X1 and

X2, with marginal F1 and F2. The coefficients of upper and lower tail dependence

are defined, respectively, as

lU ¼ lim
u"1

Pr X1 > F�1
1 uð Þ X2 > F�1

2 uð Þ		
 �

lL ¼ lim
u#0

Pr X1 < F�1
1 uð Þ X2 < F�1

2 uð Þ		
 �
:

Definition 2.5. (Normal Copula) The I-dimensional normal copula is expressed as

C u1; . . . ; uIð Þ ¼ FI
S F�1 u1ð Þ, . . . ,F�1 uIð Þ� �

,

where S is a positive-definite correlation matrix, FI
S is the distribution function of

an I-dimensional multivariate normal random vector with correlation matrix S, and
F�1 is the inverse of the distribution function of a standard normal random variable.

The density function c of C(u1, . . ., uI) is

c u1; . . . ; uIð Þ ¼ 1

Sj j1=2
exp

1

2
z

0
S�1 � II�I

� �
z

� 

where z 0 ¼ (F�1(u1), . . ., F
�1(uI)), and II�I is the unity matrix. For a normal

copula, the relationship between the linear correlation coefficient r and Kendall’s

tau is

r ¼ sin 2p� tauð Þ: (11.12)

On the other hand, the coefficients of upper and lower tail dependence are both

zero, i.e., a normal copula is tail independent.

Definition 2.6 (t-Copula) The I-dimensional t-copula is expressed as

C u1; . . . ; uIð Þ ¼ tIn,S t�1
n u1ð Þ, . . . , t�1

n uIð Þ� �

where tn
�1 denotes the inverse of the distribution function of a univariate t-student

random variable with n degrees of freedom and tIn;S denotes the distribution function

of a multivariate t-distribution with n degrees of freedom and positive-definite

dispersion matrix S. Its density function is

G n
2

� �� �I�1G nþI
2

� �
1þ z

0
S�1z
n

� ��nþI
2

G nþ1
2

� �� �I
Sj j�

1
2 I

i¼1
1þ z2i

n

� � nþ1ð Þ
2
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where z 0 ¼ (tn
�1(u1), . . ., tn

�1(uI)). For a t-copula, the relationship between the

linear correlation coefficient r and Kendall’s tau is the same as Eq. 11.12. The

coefficients of upper and lower tail dependence are

lU ¼ lL ¼ 2� 2tn
nþ 1ð Þ 1� rð Þ

1þ r

� 1=2

:

Definition 2.7 (Archimedean Copula) The I-dimensional Archimedean copula can

be expressed as

C u1; . . . ; uIð Þ ¼ f�1
XI
i¼1

f uið Þ
 !

(11.13)

where the generator f is a continuous strictly decreasing function from [0, 1] to

[0, 1] satisfying f(0) ¼ 1 and f(1) ¼ 0. In particular, when the generator

f uð Þ ¼ u�y � 1

y
, y � 0

then Eq. 11.13 is called a Clayton copula. When the generator

f uð Þ ¼ �ln
e�yu � 1

e�y � 1

� 
, y 6¼ 0

Equation 11.13 is called a Frank copula. When the generator f(u) ¼ (�lnu)y,
y� 1, Eq. 11.13 is a Gumbel copula. In particular, the density function of a Clayton

copula is

c u1; . . . ;uIð Þ¼ 1� Iþ
XI
i¼1

u�y
i

 !�I�1=y

P
I

i¼1
u�y�1
i i�1ð Þyþ1ð Þ
 �

: (11.14)

For a Clayton copula, Kendall’s tau and tail dependency measures are

tau ¼ 1þ 4

ð1

0

uy � 1

yuy�1
du ¼ y

y� 2

lU ¼ 2� 2 lim
v!0

f
0
2vð Þ

f
0
vð Þ ¼ 0

lL ¼ 2 lim
v!0

f
0
2vð Þ

f
0
vð Þ ¼ 2

where the function ’(u) ¼ f�1(v) is the inverse of the generator f.

314 L.-J. Kao et al.



References

Azizpour, S., & Giesecke, K. (2008). Self-exciting corporate defaults: Contagion vs. Frailty.
Working paper, Stanford University.

Credit Suisse Financial Products. (1997). CreditRisk+: A credit risk management framework.

New York.

CreditMetrics. (1997). The benchmark for understanding credit risk. Technical document.

New York: JP Morgan.

Das, S. R., Freed, L., Geng, G., & Kapadia, N. (2006). Correlated default risk. Journal of Fixed
Income, 16(2), 7–32.

Das, S., Duffie, D., Kapadia, N., & Saita, L. (2007). Common failings: How corporate defaults are

correlated. Journal of Finance, 62, 93–117.
Davis, M., & Lo, V. (2001). Infectious defaults. Quantitative Finance, 1, 382–387.
Driessen, J. (2005). Is default event risk priced in corporate bonds? Review of Financial Studies,

18, 165–195.
Duffee, G. R. (1999). Estimating the price of default risk.Review of Financial Studies, 12, 197–226.
Duffie, D., & Singleton, K. J. (1999a). Modeling term structures of defaultable bonds. Review of

Financial Studies Special, 12(4), 687–720.
Duffie, D., Singleton, K. J. (1999b). Simulating correlated defaults. Working paper, Graduate

School of Business, Stanford University.

Elizalde, A. (2005). Do we need to worry about credit risk correlation? Journal of Fixed Income,
15(3), 42–59.

Errais, E., Giesecke, K., & Goldberg, L. R. (2010). Affine point processes and portfolio credit risk.

SIAM Journal on Financial Mathematics, 1, 642–665.
Finger, C. (2000). A comparison of stochastic default rate models. RiskMetrics Journal, 1(2), 49–73.
Frey, R., McNeil, A., & Nyfeler, M. (2001). Copulas and credit models. RISK, 111–114.
Gregory, J., & Laurent, J. P. (2005). Basket default swaps, CDO’s and factor copulas. Journal of

Risk, 7(4), 103–22.
Gupton, G., Finger, C., & Bhatia, M. (1997). Credit metrics technical document. New York:

Morgan Guaranty Trust.

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes.

Biometrika, 58(1), 83–90.
Hull, J., & White, A. (2001). Valuing credit default swaps II: Modeling default correlations.

Journal of Derivatives, 8(3), 12–22.
Jarrow, R., & Turnbull, S. (1995). Pricing derivatives on financial securities subject to credit risk.

Journal of Finance, 50, 53–86.
Jarrow, R., & Yu, F. (2001). Counterparty risk and the pricing of defaultable securities. The

Journal of Finance, 56, 1765–1799.
Kealhofer, S. (1995). Managing default risk in portfolios of derivatives. In: David M. Rowe (ed.)

Derivative Credit Risk: Advances in Measurement and Management. London: Risk Publications.
Koyuoglu, H. U., & Hickman, A. (1998). Reconcilable differences. Risk, 11(10), 56–62.
Lando, D. (1998). On cox processes and credit risky securities. Review of Derivative Research, 2,

99–120.

Lando, D., & Nielsen, M. S. (2010). Correlation in corporate default: Contagion or conditional

independence? Journal of Financial Intermediation, 19(3), 355–372.
Li, D. X. (1999). On default correlation: A copula function approach. Working paper 99–07,

The Risk Metrics Group.

Li, D. X. (2000). On default correlation: A copula approach. Journal of Fixed Income, 9, 43–54.
Lucas, D. (1995). Default correlation and credit analysis. Journal of Fixed Income, 9(4), 76–87.
Merton, R. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of

Finance, 29, 449–470.
Nagpal, K., & Bahar, R. (2001). Measuring default correlation. Risk, 14(3), 129–132.

11 An Assessment of Copula Functions Approach 315
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Abstract

In the study of economic and financial panel data, it is often important to

differentiate between time series and cross-sectional effects. We present

two estimation procedures that can do so and illustrate their application by

examining international variations in expected equity premia and financial archi-

tecture where a number of variables vary across time but not cross-sectionally,

while other variables vary cross-sectionally but not across time. Using two

different estimation procedures, we find a preference for market financing to be

negatively associated with the size of expected premia. However, we also find that

US corporate bond spreads negatively determine financial architecture according

to the first procedure but not according to the second estimation as US corporate

bond spreads change value each year but have the same value across countries.

Similarly some measures that change across countries but do not change across

time, such as cultural dimensions as well as the index of measures against self-

dealing, are significant determinants of financial architecture according second

estimation but not according to the first estimation. Our results show that using

these two estimation procedures together can assess time series versus cross-

sectional variations in panel data. This research should be of considerable interest

to empirical researchers.

We illustrate with simultaneous-equation modeling. Following a Hausman

test to determine whether to report fixed or random-effects estimates, we first

report random-effects estimates based on the estimation procedure of Baltagi

(Baltagi 1981; Baltagi and Li 1995; Baltagi and Li 1994). We consider that the

error component two-stage least squares (EC2SLS) estimator of Baltagi and Li

(1995) is more efficient than the generalized two-stage least squares (G2SLS)

estimator of Balestra and Varadharajan-Krishnakumar (1987). For our second

estimation procedure, for comparative purposes we use the dynamic panel

modeling estimates recommended by Blundell and Bond (1998). We employ

the model of Blundell and Bond (1998), as these authors argue that their

estimator is more appropriate than the Arellano and Bond (1991) model for

smaller time periods relative to the size of the panels. We also use this

two-step procedure and use as an independent variable the first lag of the

dependent variable, reporting robust standard errors of Windmeijer (2005).

Thus, our two different panel estimation techniques place differing emphases

on cross-sectional and time series effects, with the Baltagi-Li estimator

emphasizing cross-sectional effects and the Blundell-Bond estimator

emphasizing time series effects.

Keywords

Panel data estimates • Time series and cross-sectional effects • Econometrics •

Financial institutions • Banks • Financial markets • Comparative financial

systems • Legal traditions • Uncertainty avoidance • Trust • Property rights •

Error component two-stage least squares (EC2SLS) • Generalized two-stage

least squares (G2SLS)
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12.1 Introduction

Recently, there has been a veritable explosion of studies in a wide variety of areas

that employ panel data econometric methodology. Analysis of panel data allows

independent variables to vary both cross-sectionally and across time, while

panel data econometrics correct for cross-correlations between time series and

cross-sectional error terms. In recent years there has been the introduction of

a number of new refinements in analyzing panel data (Petersen 2009; Wooldridge

2010), all maintaining the goal of accounting for cross-correlation between time

series and cross-sectional error terms when assessing coefficient significance.

However, in the study of economic and financial panel data, it is often important to

assess the differential impact of time series versus cross-sectional effects; but panel data

techniques are unclear how this may be accomplished. In other words, panel data

methodologies typically do not inform us fully regarding which effect (time series or

cross-sectional) is more important or more dominant within particular data sets or

contexts. In this chapter we employ two contrasting estimation procedures, which,

respectively, emphasize cross-sectional versus time series differences, to clarify the

impacts of these two influences. We undertake this comparison of econometric methods

within a finance-related context which takes into account possible endogeneity.

We illustrate with simultaneous-equation modeling (outlined below). Following

a Hausman test to determine whether to report fixed or random-effects estimates,

we first report random-effects estimates based on the estimation procedure of

Baltagi (1981; Baltagi and Li 1994, 1995). We consider that the error component

two-stage least squares (EC2SLS) estimator of Baltagi and Li (1995) is more

efficient than the generalized two-stage least squares (G2SLS) estimator of Balestra

and Varadharajan-Krishnakumar (1987).

For our second estimation procedure, for comparative purposes we use the

dynamic panel modeling estimates recommended by Blundell and Bond (1998).

We employ the model of Blundell and Bond (1998), as these authors argue that their

estimator is more appropriate than the Arellano and Bond (1991) model for smaller

time periods relative to the size of the panels. We also use the two-step procedure,

reporting robust standard errors of Windmeijer (2005). Within this modeling we use

as an independent variable the first lag of the dependent variable. Thus, our two

different panel estimation techniques place differing emphases on cross-sectional

and time series effects, with the Baltagi-Li estimator emphasizing cross-sectional

effects and the Blundell-Bond estimator emphasizing time series effects.

Regarding the context of this econometric study, recent research suggests that both

national variations in the structures of financial intermediation and equity premia are

determined bymany similar socioeconomic factors so that national variations in equity

premia can be expected to influence national variations in the structure of financial

intermediation and vice versa. But, until very recently prior literatures in these two

areas have ignored each other and the resulting possible endogeneity problems. Recent

exceptions include Aggarwal and Goodell (2011a, b), both of which examine the role

of financial architecture in determining nations’ equity premia. In this chapter we use

this economic context to illustrate two differing estimation procedures.
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We find that a number of independent variables used in this study significantly

determine financial architecture across nations and across time. While a number of

our results are consistent across differing estimation procedures, we also document

a number of results that differ according to the two estimation procedures. After

controlling for outliers and serial correlation in further robustness checks, we find

that some significant differences remain, differences that help assess the relative

influence of time series versus cross-sectional variations.

We document, using the two different estimation procedures, a preference for

market financing to be negatively associated with the size of expected premia,

However, after controlling for multicollinearity and serial correlation in robustness

checks, we also find that US corporate bond spreads negatively determine financial

architecture according to the first procedure but not according to the second estima-

tion as US corporate bond spreads change value each year but have the same value

across countries. Similarly some measures that change across countries but do not

change across time, such as cultural dimensions as well as the index of measures

against self-dealing, are significant determinants of financial architecture according

to the second estimation but not according to the first estimation. We conclude from

our presented example that the two estimation procedures can produce results with

different emphases with regard to cross-sectional and time series effects.

12.2 Literature

12.2.1 Panel Data Estimation Procedures: Time Series Versus
Cross-Sectional Effects

In recent years, the development of panel data econometrics has facilitated a large

increase in scholarship where panel data models are applicable. This is particularly

the case in international financewhere data can be described across countries and time

as well as across industries and time. The development of panel data methods has

followed from the introduction byHansen (1982) ofGeneralizedMethod ofMoments

(GMM). GMM, including the use of instrumental variables, allows the implementa-

tion of consistent estimations based on conditional expectations which are inconsis-

tent with the use of earlier methods such as ordinary least squares regression.

Dynamic effects can render the fixed-effects estimator of panel models biased and

inconsistent, especially for data covering finite and short time periods. Among

alternative estimators that control for persistence is the system Generalized

Method of Moments (GMM) estimator proposed by Blundell and Bond (1998).

This procedure addresses econometric problems such as regressor endogeneity,

measurement error, and weak instruments while controlling for time-invariant,

country-specific effects such as distance or common language. Arellano and Bond

(1991) suggest transforming the model, either in the first differences or in orthogonal

deviations, to eliminate the fixed effects and to estimate it by using the two-step

GMM estimator. The second and higher lags of the endogenous variable in levels are

suitable instruments to overcome the estimation problem. However, when data are
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highly persistent, Blundell and Bond (1998) argue that this procedure can be

improved by using the system – GMM estimation – which supplements the equations

in the first differences with equations in levels. For the equations in the first differ-

ences, the instruments used are the lagged levels, and for the equations in levels, the

instruments are the lagged differences.

In addition, the use of simultaneous-equation modeling on the same data

set allows us to assess the results using the Blundell and Bond estimation procedure

against an alternative. Following a Hausman test to determine whether to report

fixed or random-effects estimates, we report random-effects estimates based on the

estimation procedure of Baltagi (1981; Baltagi and Li 1994, 1995). We believe that

the error component two-stage least squares (EC2SLS) estimator of Baltagi and Li

(1995) is more efficient than the generalized two-stage least squares (G2SLS)

estimator of Balestra and Varadharajan-Krishnakumar (1987) because of

a broader set of transformations of the instruments.

It is very useful to examine the differences obtained with these two estimation

procedures. These two panel data estimation procedures have different emphases

with regard to cross-sectional versus time series effects. Because of the nature of

their construction, while the Baltagi-Li estimator emphasizes cross-sectional

effects, the Blundell-Bond estimator emphasizes time series effects.

12.2.2 Financial Architecture, Transactions Costs, and Risks

The channeling of funds from savers to investors, or financial intermediation, is

a necessary function in all countries and is generally undertaken primarily through

financial institutions and/or through financial markets. Either financing channel must

resolve the issues of asymmetric information, adverse selection, and agency costs

involved infinancing contracts that cover themonitoring and collection of funds provided

by savers to investors. Given that all optimal contracts are incomplete, the efficacy and

efficiency of overcoming contracting costs depends on the nature of “hold-up” costs in

a country, i.e., the ability and willingness of the contracting parties to try and take

advantage of each other.

This ability and willingness to take advantage of the other party in incomplete

contracts depend not only on industrial structure and the legal environment

(reflecting the relative power of the contracting agents and legal constraints on

their behavior) but also on ethical and other informal conventions that depend on

social and cultural values. As these differ from country to country and given that

institutions and markets differ in how they enforce incomplete contracts, financial

institutions may be optimal in some combinations of ethical, cultural, and social

conditions, while financial markets may be optimal in other conditions, and financial

institutions may be favored in some countries, while financial markets are favored in

other countries. Recent research notes that national preferences for market financing

increase with political stability, societal openness, economic inequality, and equity

market concentration and decrease with regulatory quality and ambiguity aversion

(e.g., Modigliani and Perotti 2000; Ergungor 2004; Kwok and Tadesse 2006;

Aggarwal and Goodell 2009).
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Of course, as noted by Coase (1960), in a theoretically ideal and perfect financial

system, it would make no difference whether financial intermediation was privately done

through banks or publicly through markets. However, in reality many factors must be

considered. According to North (1990), the costliness of information needed for mea-

surement and enforcement of exchanges creates “transaction costs.” Transaction costs

involve costs of defining property rights and costs of enforcing contracts – including costs

of information. “Transformation costs” are the costs associated with using technology

and the efficiency of factor and product markets and are reflected in transactions costs.

Whether institutions lower or raise overall transactions costs has to do in part with the

ability of participants to be informed and to understand the nature of the particular

institutional environment. This includes not just understanding the nature of contracts and

their enforceability but also the temperament and motivations of other participants.

Additional transactions costs may also be associated with market transactions. As

noted by Williamson (1988) and others more recently (e.g., Aggarwal and Zhao

2009), Transaction Cost Economics (TCE) suggests that when the costs of market

exchange are sufficiently high, firms can obtain cheaper financing through some

other means. The alternative to market financing is typically through some sort of a

prescribed arrangement, such as a bank loan or, more broadly, through a prescribed

transfer of resources through a horizontal or vertical network. Hart (1995, 2001)

recognize that the primary transaction costs of market exchanges stem from the

uncertainties of contracts. From the point of view of the equity investor, obtaining

reliable information about firms is innately costly and, to some degree, fallible.

These costs will be shared with the supplier of equity, causing equity financing to be

more costly for the firm. This view is supported by Bhattacharya and Thakor (1993)

who suggest that a unifying thread among a great number of papers on banking is

that “intermediation is a response to the inability of market-mediated mechanisms to

efficiently resolve informational problems.”

Modigliani and Perotti (2000) theorize that when societies’ enforcement regimes

are not adequate, bank financing is favored. In this instance the binding of transactions

becomes more private than public and reflects longer-term reputations and relation-

ships between the parties, such as those between firms and their banks. Modigliani and

Perotti (2000) suggest that when the rights of minority (or outside) investors are not

adequate, less equity investment will be available for new enterprises (also see Myers

1977). According to Modigliani and Perotti (2000), in such societies, there will be

more bank lendings instead of financing with public equity.

Modigliani and Perotti (2000) also suggest that banks, because of an emphasis

on collateral, are less likely or able to differentiate firms with good future prospects

versus those with poor future prospects. Alternatively, markets with good gover-

nance are better able to distinguish between these types of firms, a view supported

by recent literature.1 However, Rajan (1992) notes that a higher emphasis on

1For instance, Shirai (2004) reports that, because of improvements in official oversight for the

period 1997–2001, Indian capital markets improved significantly in being able to differentiate

high-quality firms from low-quality firms.
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collateral can also lead to such an informational advantage for banks such that they

can charge excessively high interest rates which can weaken economic develop-

ment. Underlying Rajan and Zingales (1998) is the notion that when reliable

information about firms is too difficult or costly for the general public, banks

provide delegated monitoring (see Diamond 1984).

As this brief review of the relevant literature indicates, the international

determinants of financial architecture must include national characteristics such

as quality of investor protection, cultural and legal variables, and the equity

premium. However, there may be an endogeneity problem as financial architecture

seems to depend on a number of similar variables and the two variables, financial

architecture and equity premia, may influence each other. Our research design

includes a resolution of this issue.

12.2.3 Equity Premium as Measure of Equity Risk

We can expect variations in the ex ante equity premia across countries. Equity

premia can be expected to reflect the price of risk in equity investments. Depending

on national characteristics such as the nature of their institutional structures and

their levels of financial development, countries may differ with regard to both the

risk involved in equity investments and in the price of such risk. One way to think

about this extra risk and its price is to think about how the supply and demand for

equity investments may differ across countries, especially as most countries have

less than perfect capital markets.

Ibbotson et al. (2006) suggest that because of many obstacles and limitations, the

supply and demand for equity in markets may not respond to market forces as

would be expected from a theoretical view of efficient markets.2 For example, the

supply of equity may be restricted as bureaucratic rules and regulations may deter the

formation and market listing of corporate shares. Similarly, the demand for equity

may be limited due to uncertain property rights and the unreliability of public

information on potential investments. As the equity premium is the price of equity

risk, it is determined by the balance between supply and demand for equity. In order

to understand the nature and size of equity premia, it is important to account for the

nature of equity demand and supply in actual, imperfect, markets.

While there are no perfect measures of national supply of equity, a number

of variables could be used as indirect indicators. For example, stock market

capitalization as a ratio of GDP is one such widely used measure. But this ratio

by itself is an inadequate proxy because this measure will rise with a rise in

valuation (as well as with new listings) and valuation is itself affected by supply.

Other arguable measures of equity supply would include the number of shares

2Ibbotson et al. (2006) actually start with somewhat of an alternative view to the commonly held

notion that prices in capital markets are set by the supply and demand for capital. Instead, they

focus on the viewpoint of the supplier of capital (an investor) and suggest that there is a supply and

demand for returns and that it is returns that are priced in the marketplace.
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listed per unit of population or the number of new shares listed. A more extensive

evaluation of how developed an equity market is might include R2, the degree

to which individual stocks move synchronously with the overall equity market in

that country (Morck et al. 2000), or the degree to which market capitalization

is concentrated in a few firms. Turner (2003) associates the development of

nations’ private bond markets with the quality of their local investor bases.

Regulatory restrictions and lack of accounting standards can inhibit bond trading

by institutional investors. So if the quality of local bond markets in some measure

reflects the narrowness of the local investor base, then the quality of the bond

market might partially and indirectly determine the nonpecuniary (e.g., for control

rights) demand for equity.

Similarly, the demand for equity returns is likely to be influenced by a great

variety of factors that influence the risk level of equity and society’s perceptions,

tolerance, or price of equity risk. The nature of legal protection for investors,

disclosure requirements, the level of social trust that a particular society

believes can be placed in strangers, and the political stability of a country certainly

are some factors that come to mind. However, it is also reasonable to suppose that

there is correlation among many of the social, cultural, legal, and governance factors

that might affect the demand for equity. Ibbotson et al. (2006) suggest that the

demand for equity return is potentially also affected by concern for real returns as

opposed to nominal returns. Further, Moerman and van Dijk (2010) document

evidence that inflation risk is priced in international asset returns – so our investiga-

tion of the demand for equity returns also ought to control for inflation variability.

The supply and demand for equity in a country are also likely to be affected by

its financial architecture, i.e., the relative importance of the banking sector versus

financial markets in a country. It is now well recognized that some countries like

Japan and Germany are bank oriented, while other countries, like the Anglo-Saxon

countries, depend more on financial markets. For example, it can be expected that

equity premia are likely to be lower in countries with well-developed financial and

equity markets with a less restricted, and so greater, supply of equity than in bank-

oriented countries.

12.3 Methodology

As discussed briefly above, it seems that both national variations in the structures of

financial intermediation and equity premia are determined by many similar socio-

economic factors so that national variations in equity premia can be expected to

influence national variations in the structure of financial intermediation and vice

versa. But, until very recently, prior literatures in these two areas have ignored each

other and the resulting possible endogeneity problem. Recent exceptions include

Aggarwal and Goodell (2011a, b), both of which papers examine the role of financial

architecture in partial determining nations’ equity premia. This chapter overcomes

this limitation of prior research and examines the determinants of international

variations in financial architecture, accounting for the relationship between financing
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architecture and ex ante equity risk premia with different estimation techniques.

One estimation technique uses simultaneous-equation estimates that include the

equity premium as an instrumental variable along with a number of other relevant

institutional, governance, and cultural factors. Another estimation technique uses

a dynamic panel data modeling which includes as an independent variable the ex ante

equity premium as a predetermined variable. Specifically, this chapter examines the

nature of international variations in national financial architecture with a special

emphasis on exploring the role of ex ante equity premia.

12.3.1 Estimating the Equity Premium

This chapter uses the abnormal earnings growth (AEG) model to estimate the ex

ante equity premium. This model is chosen not just because of its efficacy at

predicting ex post values but rather also because it is regarded as a fundamental

model upon which other previously used models are based (Penman 2005). In

addition, we use AEG estimations rather than alternative estimations in order to

avoid assumptions of future payout ratios. Further, the AEG model avoids the

problem with some estimation procedures when composite market-to-book ratios

for particular country/years are less than one.

Our estimates of ex ante equity premiums are based on data from the

period 1996–2006. Consensus of all available individual earnings forecasts

are obtained from Institutional Brokers Estimate System (I/B/E/S) of Thomson

Financial, as well as data for actual earnings per share, dividends per share, share

prices, and the number of shares outstanding. In the interests of consistency, forecasts

are collected as of April each year. Most firms end their fiscal years in December,

and, typically, values are reported within 90 days of the fiscal year end. If a firm has

I/B/E/S earnings forecasts for +1 and +2 years and a 5-year growth forecast, it is

retained in the sample. Firm-level data are then aggregated for each year. This paper

uses national treasury bill rates as a measure of the risk-free rate. This data is obtained

from International Financial Statistics of the International Monetary Fund (IMF).

This chapter estimates that abnormal earnings grow at a constant rate after

5 years at a rate equal to the rate of expected nominal GDP growth. Expected

GDP growth is modeled according to the following equation:

expNomGDPgrowth ¼ 1þ expInflationð Þ � 1þ expRealGDPgrowthð Þ � 1

(12.1)

Expected inflation is modeled as the arithmetic average of the current, preceding,

and subsequent years’ inflation as reported by IFS. Expected real GDP growth is

modeled as the arithmetic average of the current, preceding and subsequent years’ real

GDP growth as reported by World Development Indicators. If national treasury

bill rates are not available, a 1-year money market rate or a similar country-specific

short-term rate is used.
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This chapter uses the following AEG model:

p0 ¼
eps1
k

gst þ k d1
eps1

� glt

k � glt

 !
(12.2)

where eps1 is the next-period forecasted earnings per share (when all firms aggre-

gated, this becomes next year’s forecasted earnings), p0 is the price which when all

firms are aggregated becomes aggregate market values, d1 are the dividends per

share which become aggregate dividends, glt is the long-term growth rate, and gst is
the short-term growth rate. We proxy the short-term rate as the geometric average

of growth in earnings forecasts up to the fifth forecast. The long-term growth rate

is proxied as the rate of expected nominal GDP growth. We do not incorporate

the 5-year growth forecast from I/B/E/S in the estimate of the short-term growth

rate because of concerns that, by using an average of the 5-year growth

forecast from I/B/E/S, a bias will be introduced as a consequence of equal

weighting across years.

12.3.2 Estimating the Cross-Border Determinants
of Financial Architecture

Besides the use of expected equity premia as an instrumental variable, we also use

a number of other independent variables. We control for inflation variability

(INFLATION_VOLATILITY) using the variance of the preceding 5 years as

reported by IFS. To capture time variation in risk appetite, we include the annual

difference from Moody’s Baa corporate bond yield and 10-year Treasury yield as

reported by the St Louis Federal Reserve for the middle of April for each year.

STOCK_VOLATILITY is the annualized standard deviation of monthly equity

returns of the respective Morgan Stanley Country Index. To account for relative

firm size and equity market concentration, we establish a Herfindahl index for each

country for each year (CONCENTRATION). A value of CONCENTRATION

close to 1 would suggest that most market capitalization for a particular country

in a given year is due to a small number of firms. Market capitalization data is

obtained from I/B/E/S. Based on Aggarwal and Goodell (2009), we speculate in

advance of empirical findings that country/years with high market capitalization

concentration will be more market based.

We control for regional differences by including as an independent variable

a dummy variable and REGION_EUROPE that receive “1” if the country is Europe.

We consider that the European region has historically had a unique relationship with

banking (see Rajan and Zingales 2003). We also control for cross-national differ-

ences in wealth and wealth inequality by including real GDP and the Gini coefficient

from World Development Indicators.
In order to assess the cultural impact on financial architecture, we include

as independent variables four cultural dimensions of Hofstede (2001):
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uncertainty avoidance (UAI), power distance (PDI), masculinity (MAS), and

individualism (IDV). Kwok and Tadesse (2006) and others have found that

national culture is an important partial determinant of nations’ preference for

markets versus banks.

We control for regulatory quality using a governance indicator from Djankov

et al. (2008) his is the comprehensive index of cross-national differences in

protection of investors from self-dealing, the anti-self-dealing index

(ANTI_SELF_DEAL). Fligstein (2001) suggests that market participants primarily

value stable worlds and that markets are state-directed societal solutions to

competition. More efficient regulation and control of corruption will

improve transparency and so lower costs of resolving the asymmetry of

information inherent with markets. Aggarwal and Goodell (2009), Kwok and

Tadesse (2006), and Ergungor (2004) have found that governance impacts

financing preferences.

12.3.3 Estimation Methodologies

In order to use the estimator of Baltagi and Li (1995), we design a set of simulta-

neous equations. With regard to our modeling of simultaneous equations, we

suggest that the risk factors and costs generally involved with resolving asymmetric

information in markets is reflected in the equity premium. Therefore we model

financial architecture as partially determined by the respective country/year equity

premium as well as political factors. Our empirical estimation models are based on

this set of equations:

FIN_ARCHit ¼ ait þ
X

b1it � EQ_PREMit þ b2itX2it þ eit (12.3)

EQ_PREMit ¼ ait þ b1itFIN_ARCHit þ
X

b2itX1it þ eit (12.4)

In Eqs. 12.3 and 12.4, FIN_ARCH is domestic stock market capitalization

divided by domestic assets of deposit money banks; this measure is

constructed from the data from Beck et al. (2000). EQ_PREM is our estimate of

the equity premium, and X1 and X2 represent a number of independent

variables, including risk, political, and social factors. Alternatively, as noted earlier,

we also use, for the same respective sets of independent variables, the

results of Blundell and Bond (1998) dynamic panel estimation procedures.

12.3.4 Data

We analyze data for 41 countries over a recent 11-year period using panel data

methods. Specifically, we assess data for the 11-year period, 1996–2006, from
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41 countries: Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile, Czech

Republic, Denmark, Finland, France, Germany, Greece, India, Indonesia, Ireland,

Italy, Hong Kong, Hungary, Israel, Japan, Korea, Malaysia, Mexico, New Zealand,

the Netherlands, Norway, Philippines, Pakistan, Peru, Poland, Portugal, Russia,

Singapore, South Africa, Spain, Sweden, Thailand, Turkey, the United Kingdom,

and the United States.3 The countries we include here cover much breadth across

regions, cultures, legal origins, and difference in national wealth. In selecting

independent variables we have tried and managed to avoid excess correlation

among them. We estimate models that focus on structural variables and then add

in turn a regional variable and then cultural, governance, and security protection

variables. All models have variance inflation factors (VIF) of less than 10 for all

regressors indicating that any multicollinearity is unlikely to be a problem. Never-

theless, in subsequent robustness checks, we also address other specific correlations

among particular pairs of independent variables.

12.4 Results

12.4.1 Descriptive Statistics

Table 12.3 presents the means, and standard deviations of the variables used in our

models. Together these independent variables reflect the factors we described

earlier that may affect cross-national differences in financing predilections. Column

4 shows the standard deviation divided by the mean. This column suggests that the

dummy variable for European region, and our Herfindahl for market concentration

are the most variable of the independent variables (1.06, 0.96), while FIN_ARCH,

and EQUITY PREMIUM are similarly variable (0.73, 0.40) (Table 12.3).

12.4.2 Results of Baltagi-Li EC2SLS Modeling
and Blundell-Bond Modeling

Table 12.4 shows the results of panel regressions using the system of Eqs. 12.3 and

12.4, with our estimate of financial architecture as a dependent variable and our

estimate of the equity premium as an instrumented variable. The estimation is carried

out using the random-effects EC2SLS estimator proposed by Baltagi and Li (1992,

1995), and Baltagi (2001). Baltagi (2001) suggests the EC2SLS estimator is more

3We begin our period of study in 1996 in order to include our measure of market concentration

which is a Herfindahl index we construct using data from I/B/E/S. There is insufficient data from

I/B/E/S for many countries prior to 1996. Another important reason, however, is that the measures

we use for political stability, control of corruption, and regulatory from Kaufmann et al. (2008) are

only available from 1996. Generally, our sample is restricted to those country/years which have

sufficient data reported by I/B/E/S and are included by Kaufmann et al. (2008). We stop in 2006 to

avoid the effects of the global financial crises and recession that started in 2007.
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efficient than the usual Balestra and Varadharajan-Krishnakumar (1987) G2SLS

estimator because of a broader set of transformations of the instruments. Alternatively

Table 12.5 shows, for the same respective sets of independent variables as Table 12.4,

the results of Blundell and Bond (1998) dynamic panel estimates.

Table 12.4 reports the results of EC2SLS random-effects estimates, while

Table 12.5 reports Blundell and Bond (1998) estimates. Model 1 restricts the

independent variables to just the equity premium. In this model EQ_PREM is

negatively significant at 5 % in both Tables 12.4 and 12.5. Both estimation pro-

cedures suggest in Model 1 an association of lower equity premia with more

market-oriented countries.

Model 2 adds to the independent variables that describe the volatility of the

financial and economic environment: INFLATION_VOLATILITY and

STOCK_VOLATILITY. The equity premium is again negatively significant, at 1 %

in Table 12.4 and 10 % in Table 12.5. Equity premium is again negatively significant

according to both estimation procedures. INFLATION_VOLATILITY is not signif-

icant with regard to either estimation procedure, while STOCK_VOLATILITY is

negatively significant in both Tables 12.4 and 12.5.

Table 12.1 Mean financial architecture

Country Mean Country Mean

South Africa 2.47 Greece 0.69

The United States 2.35 Israel 0.64

Finland 2.00 Korea 0.60

Hong Kong 1.93 Indonesia 0.59

Sweden 1.72 Spain 0.58

Chile 1.52 Brazil 0.58

Singapore 1.47 Norway 0.57

Russia 1.40 Hungary 0.57

Switzerland 1.36 Ireland 0.57

Argentina 1.31 Belgium 0.56

Malaysia 1.20 New Zealand 0.51

The United Kingdom 1.15 Pakistan 0.49

Australia 1.11 Italy 0.48

Philippines 0.99 Poland 0.45

Canada 0.92 Thailand 0.41

India 0.87 Czech Republic 0.41

Mexico 0.87 Japan 0.40

The Netherlands 0.75 Germany 0.33

Denmark 0.72 Portugal 0.31

France 0.72 Austria 0.18

Turkey 0.71

This table lists the mean national financial architecture for 41 countries for 1996–2006. Financial

architecture is domestic stock market capitalization divided by domestic assets of deposit money

banks (this measure is constructed from the data from Beck et al. (2000))
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Model 3 adds to the other three independent variables CONCENTRATION,

REGION_EUROPE, and LN_GDP. This results in CONCENTRATION being

positively significant with regard to both estimation procedures. Equity premium

is again negatively significant in both tables. A difference in the two tables is that in

Table 12.4 REGION_EUROPE is negatively significant, while in Table 12.5 this

variable is not significant. STOCK_VOLATILITY is negatively significant in both

Tables 12.4 and 12.5, although only at 10 % in Table 12.4.

Model 4 add to the independent variables the Hofstede cultural dimensions UAI,

PDI, MAS, and IDV. Model 4 also adds SPREAD, the spread between US

corporate bonds and US 10-year Treasuries. This results in differences between

Table 12.2 Mean equity premia

Country Mean Country Mean

Brazil �4.24 Finland 7.24

Turkey 1.61 Australia 7.33

Argentina 1.71 Hong Kong 7.37

Hungary 3.08 Germany 7.51

Mexico 3.62 Austria 7.65

Poland 3.75 Canada 7.65

Norway 3.82 France 7.84

India 4.44 Japan 7.85

Indonesia 5.19 Chile 8.03

South Africa 5.54 Greece 8.35

Belgium 6.01 Switzerland 8.38

Denmark 6.08 Portugal 8.38

The United Kingdom 6.24 The Netherlands 8.41

Italy 6.27 Malaysia 8.62

Israel 6.38 Thailand 8.85

Philippines 6.42 Spain 9.07

New Zealand 6.57 Korea 9.27

Singapore 6.64 Pakistan 10.61

Czech Republic 6.84 Ireland 10.65

Sweden 6.84 Russia 39.16

The United States 7.02

This table lists the mean expected national mean equity premia for 41 countries for 1996–2006.

This chapter uses the following AEG model

p0 ¼ eps1
k

gst þ k
d1
eps1

� glt

k � glt

� �

Where eps1 is the next-period forecasted earnings per share (when all firms aggregated, this

becomes next year’s forecasted earnings), p0 is the price which when all firms are aggregated

becomes aggregate market values, d1 are the dividends per share which becomes aggregate

dividends, glt is the long-term growth rate, and gst is short-term growth rate. We proxy the

short-term rate as the geometric average of growth in earnings forecasts up to the fifth forecast.

The long-term growth rate is proxied as rate of expected nominal GDP growth
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Tables 12.4 and 12.5. SPREAD is significantly negative in Table 12.5 while not

significant in Table 12.4. Three cultural variables, PDI, MAS, and IDV, are

significant in Table 12.4 while not significant in Table 12.5. In Table 12.4, UAI and

MAS are negatively significant at 1 % and 5 %, respectively. In Table 12.4,

IDV and PDI are both positively significant at 1 %. However, UAI, MAS, IDV,

and PDI are not significant in Table 12.5. In other results, both tables show

LN_GDP positively significant, suggesting equity premia are larger in wealthier

countries.

Model 5 adds to the independent variables of Model 4, the comprehensive

index of anti-self-dealing (ANTI_SELF_DEAL) of Djankov et al. (2008). These

result, in Table 12.4, with regulatory efficiency, as reflected in measures against

self-dealing being positively significant. In Table 12.5, however, this variable is

not significant.

Table 12.3 Summary of data sources used in this study

1 2 3 4 5

Variable Mean

Standard

deviation

Stdev/

mean Source

FIN_ARCH 0.92 0.67 0.73 Beck et al. (2000)

EQUITY_PREMIUM 7.28 2.91 0.40 Equity premium estimated from the

data from I/B/E/S and treasury rate

data from International Financial
Statistics

INFLATION_VOLATILITY 8873.06 296.65 0.03 Variance of preceding 5 years of

inflation

STOCK_VOLATILITY 24.49 14.77 0.60 The annualized standard deviation of

monthly equity returns of respective

Morgan Stanley Country Index

CONCENTRATION 0.18 0.17 0.96 Herfindahl index created for this

chapter based on number of firms

REGION_EUROPE 0.47 0.50 1.06 A dummy variable that is assigned

“1” if the country is in Europe and

“0” otherwise

LN_GDP 9.12 1.24 0.14 PPP GDP per capita from World
Development Indicators

UAI 62.76 24.88 0.40 Uncertainty Avoidance, Hofstede

(2001)

PDI 53.74 21.72 0.40 Power Distance, Hofstede (2001)

MAS 51.22 19.44 0.38 Masculinity, Hofstede (2001)

IDV 51.52 23.83 0.46 Individualism, Hofstede (2001)

SPREAD 2.15 0.53 0.25 Difference from Moody’s Baa

corporate bond yield and 10-year

Treasury yield St Louis Federal
Reserve

ANTI_SELF_DEAL 0.52 0.24 0.47 Djankov et al. (2008)

Means, standard deviations, and sources of variables used in statistical estimates reported in

succeeding tables, 1996–2006
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12.4.3 Additional Econometric Details

In our results for Table 12.4, we consistently report random-effects estimates.

We do this because the results of Hausman tests (Hausman 1978) suggest that

random-effects estimates may be used. Reading across the models in Table 12.4, we

see that Hausman tests for the models are consistently insignificant. Therefore we

do not reject the NULL hypothesis that the estimates are inconsistent (Hausman

1978). In the Appendix we also report the Pearson correlation coefficients

(Appendix 1) and the variance inflation factors (Appendix 2) for our five models

in Tables 12.4 and 12.5. Examining Appendix 1, we see that the largest correlation

among our independent variables is –0.67 between IDV and PDI. The next largest

correlation is between PDI and LN_GDP (–0.63). Since PDI is a partner in the two

largest correlations in our sample, we exclude this independent variable in robust-

ness tests described in Table 12.6.

In Table 12.4, we report the locally invariant test statistic of Baltagi and Wu

(1999) (LBI). The LBI for our models in Table 12.4 are all not close to 2. This may

suggest that serial correlation is a problem for these models. However, while

commonly used, the significances of LBI are difficult to interpret.

Because the dynamic panel estimator of Blundell and Bond (1998) assumes that

there is no autocorrelation in the idiosyncratic errors, we also report in Table 12.5

Arellano-Bond test statistics. The Arellano-Bond test for zero correlation in

first-differenced errors is significant for differences of one lag. However, because

the first difference of white noise is necessarily autocorrelated, it is only necessary to

be concernedwith second and higher autocorrelations. Examining theArellano-Bond

test across the models in Table 12.5, we see that the values for lags 2 and 4 are also

consistently significant. In subsequent robustness tests described below, we also

control for other lags in order to control for serial correlation.

12.4.4 Discussion of Initial Results

With the exception of Model 4 in Table 12.4, EQUITY_PREMIUM is negatively

significant in every model of both Tables 12.4 and 12.5. Both modelings point

toward a negative association of the size of the expected equity premium with

financial architecture (the ratio of stock market size to banking size). It is also

intuitively reasonable to expect a lower equity premium in more market-oriented

nations. This is consistent with the results of Aggarwal and Goodell (2011a, b).

With the exception of Model 4 in Table 12.4, STOCK_VOLATILITY

is negatively significant in every model of both Tables 12.4 and 12.5.

CONCENTRATION is positively significant in every model in which it is present

in both Tables 12.4 and 12.5. REGION_EUROPE is negatively significant in

Models 3 and 4 in Table 12.4, but is not significant in any models in Table 12.5.

LN_GPD is positively significant in Models 4 and 5 of both Tables 12.4 and 12.5.

SPREAD is negatively significant in Models 4 and 5 in Table 12.5, but is not

significant in any models in Table 12.4. ANTI_SELF_DEAL is positively

334 R. Aggarwal and J.W. Goodell
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significant (at 10 %) in Model 5 in Table 12.4 but is not significant in Table 12.5.

Many of the cultural dimensions of Hofstede (2001) are significant in Table 12.4.

For instance, PDI, IDV, and MAS are significant in every model in which they are

present, while UAI is significant in Model 4. However, none of these cultural

variables are significant in Table 12.5.

Summarizing these differences, both static and dynamic estimation methods find

evidence of a negative association of financial architecture with the expected equity

premium. This suggests that investors demand less return for holding equity in more

market-oriented countries. Both static and dynamic estimation methods find evidence of

a negative association of financial architecture with stock volatility. This suggests that

less volatile markets are associated with being more market-oriented. Both static and

dynamic estimation methods find evidence of a positive association of financial archi-

tecture with equitymarket concentration. This suggests that, despite the widely dispersed,

market orientation of the United States, overall, more market-oriented countries have

greater concentration of equity ownership into fewer firms. Both static and dynamic

estimation methods also find evidence of a positive association of financial architecture

with national wealth, suggesting that wealthier countries are more market oriented.

While the two estimation procedures used in Tables 12.4 and 12.5 yield very

similar results with respect to a number of independent variables, some differences

also exist. For instance, SPREAD is significantly negative in Table 12.5 but not

significant in Table 12.4. SPREAD changes value each year but is the same across

countries. We consider that the difference between Tables 12.4 and 12.5 with

respect to SPREAD may be due to a difference in emphasis between these

tables with regard to cross-sectional versus time series effects, with the Baltagi-Li

estimator emphasizing cross-sectional effects and the Blundell-Bond estimator

emphasizing time series effects. Similarly the cultural dimensions of Hofstede

(2001) – as well as ANTI_SELF_DEALING – do not change over our time period.

However these variables vary widely across countries. And so the result that these

variables are significant in Table 12.4 but not significant in Table 12.5 is consistent

with the notion that Table 12.4 emphasizes cross-sectional differences, while

Table 12.5 emphasizes time series differences.

12.4.5 Robustness Checks

As noted above, because the dynamic panel estimator of Blundell and Bond (1998)

assumes that there is no autocorrelation in the idiosyncratic errors, we also report in

Table 12.5 Arellano-Bond test statistics. The Arellano-Bond test for zero correla-

tion in first-differenced errors is significant for differences of one lag. However,

because the first difference of white noise is necessarily autocorrelated, it is only

necessary to be concerned with second and higher autocorrelations that are higher

than 1 for the models in Table 12.5. However, examining the Arellano-Bond test

across the models in Table 12.5, the values for lags 2 and 4 are also consistently

significant. Therefore, in Table 12.6, we also control for the first three lags of our

dependent variable.
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Additionally, in order to avoid multicollinearity, we also employ, in Table 12.7,

a two-stage model for some variables in order to lower multicollinearity. We note

that the Pearson correlation coefficients between IDV and PDI as reported in

Appendix 1 is –0.67. Further, the correlation between PDI and LN_GDP is –0.63.

We first regress the respective independent variable (either IDV or PDI) on our

measure of wealth along with some other cultural variables. Specifically, we

regress each variable on wealth (LN_GDP). We then use the residuals from these

regressions as our independent variables in Eq. 12.3:

IDVit ¼ ai þ
X

b1 � LN_GDPit þ eit (12.5)

PDIit ¼ ai þ
X

b1 � LN_GDPit þ eit (12.6)

We then include the residuals from Eqs. 12.5 and 12.6 as substitute independent

variables for IDV and PDI, respectively. We refer to these variables as RESID_IDV

and RESID_PDI, respectively. This procedure lowers the correlation between IDV

(RESID_IDV) and PDI (RESID_PDI) to zero. The correlation between

RESID_IDV and RESID_PDI is now lowered to –0.45.

12.4.6 Discussion of Robustness Tests

The models in Table 12.6 are the same as those in Tables 12.4 and 12.5, with the

exception of including three lags of the dependent variable. The results of

Table 12.6 substantially corroborate the results of Tables 12.5 and 12.4.

EQUITY__PREMIUM is negatively significant in every model. CONCENTRA-

TION is positively significant. STOCK_VOLATILITY is generally negatively

significant, as in Tables 12.4 and 12.5. However, unlike the previous tables this

variable is not significant in Model 5. Like Table 12.5, SPREAD is negatively

significant. Overall the results of Table 12.6 suggest that the results of Table 12.5

are not driven by serial correlation in higher lags and/or excessive multicollinearity.

Table 12.7 shows the results of the most comprehensive model (Model 5 in

Tables 12.4, 12.5, and 12.6) using three lags of the dependent variable and replacing

IDV and PDI with RESID_IDV and RESID_PDI. As seen in Table 12.7, controlling

for correlation between PDI and IDV by orthogonalizing both to LN_GDP results in

little change to the estimates for our most comprehensive model. Model 1 in

Table 12.7 is very similar toModel 5 in Table 12.4. Similarly, Model 2 in Table 12.7

is very similar to Model 5 in Table 12.5.

12.4.7 Discussion of Differences in the Results of the Two
Different Modelings

As noted above, while the two estimation procedures used in this study yield

very similar results with respect to a number of independent variables, some
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Table 12.7 Cross-national determinants of financial architecture: comparison of static and

dynamic panel modeling

Dependent variable: financial architecture Model

1 2

INTERCEPT 0.88* (0.088) 0.86 (0.774)

LAG1_FIN_ARCH 1.11*** (0.000)

LAG2_FIN_ARCH –0.62*** (0.000)

LAG3_FIN_ARCH 0.19** (0.030)

EQUITY_PREMIUM –0.03** (0.021) –0.00***(0.000)

INFLATION_VOLATILITY –0.00 (0.133) 0.00 (0.723)

STOCK_VOLATILITY –0.01** (0.050) –0.01 (0.180)

CONCENTRATION 0.91*** (0.000) 1.28*** (0.000)

REGION_EUROPE –0.17 (0.215) –0.31 (0.766)

LN_GDP 0.04 (0.419) 0.18 (0.486)

UAI –0.00 (0.199) –0.00 (0.935)

RESID_PDI 0.01*** (0.000) 0.02 (0.454)

MAS –0.00* (0.054) –0.02 (0.348)

RESID_IDV 0.01*** (0.007) –0.00 (0.983)

SPREAD 0.04 (0.405) –0.09** (0.025)

ANTI_SELF_DEAL 0.46* (0.071) –2.02 (0.227)

Observations/groups 395/41 290/41

Wald chi square 1453.14*** (0.000) 850.11*** (0.000)

Hausman 3.47 (0.838)

LBI 0.97

R-square (0.04, 0.14,0.11)

AR tests –1.84(0.066)

–0.80(0.422)

0.05(0.963)

1.28(0.201)

This table reports results of tobit regressions for 41 countries, for 1996–2006. FIN_ARCH is

stock market capitalization divided by domestic assets of deposit money banks from Beck,

Demirguc-Kunt, Levine (2000), EQUITY PREMIUM is ex ante equity premium estimations

from the data from I/B/E/S; INFLATION_VOLATILITY is variance of preceding 5 years of

inflation from International Financial Statistics; STOCK_VOLATILITY is the annualized stan-

dard deviation of monthly equity returns of respective Morgan Stanley Country Index; CONCEN-

TRATION is a Herfindahl index of equity market concentration created for this chapter;

REGION_EUROPE is a dummy variable that is assigned “1” if market is in Europe and “0”

otherwise; LN_GDP is natural log of real GDP per capita; UAI, PDI MAS, and IDV are cultural

dimensions of Hofstede (2001); SREAD is difference between Moody’s Baa corporate bond yield

and 10 year Treasury yield from St Louis Federal Reserve; ANTI_SELF_DEAL is the index of

measures against self-dealing from Djankov et al. (2008)

Variance inflation factors are less than 10 for all variables and models. P values in parentheses.

Random-effects, EC2SLS estimates reported for Model 1. Blundell-Bond dynamic panel

estimates (Modified to control for three lags) reported in Model 2. *** Significance at 1 % level,
** significance at 5 % level, * significance at 10 % level
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differences in the results using Blundell-Bond dynamic panel modeling and

Baltagi-Li static panel modeling persist. For instance, the variable SPREAD

which has a time series aspect but no cross-sectional aspect is significantly negative

in the estimation of Blundell-Bond but not significant using Baltagi-Li EC2SLS

estimator. We consider that the difference between these two estimators with

respect to SPREAD may be due to a difference in emphasis between these estima-

tors with regard to cross-sectional versus time series effects, with the Baltagi-Li

estimator emphasizing cross-sectional effects and the Blundell-Bond estimator

emphasizing time series effects. Similarly the cultural dimensions of Hofstede

(2001) and our index of measures against self-dealing have no time series aspect

but these variables vary widely across countries. These variables are significant

using Baltagi-Li estimation but not significant using Blundell-Bond estimation.

These differences in the results using differing estimation procedures are consistent

with the Baltagi-Li estimator emphasizing cross-sectional differences, while

Blundell-Bond estimator places greater emphasis on time series differences,
due to the fact that the Blundell-Bond modeling includes as an independent variable

the one-period lag in the dependent variable and so controls for fixed effects across

one-period lags.

12.5 Conclusions

There has been a veritable explosion of studies in a wide variety of areas

that employ panel data econometric methodology in recent years. Analysis of

panel data allows independent variables to vary both cross-sectionally and across

time, while panel data econometrics correct for cross-correlations between time

series and cross-sectional error terms. In addition, there has now been the intro-

duction of a number of new refinements in analyzing panel data (Petersen 2009;

Wooldridge 2010), all maintaining the goal of accounting for cross-correlation

between time series and cross-sectional error terms when assessing coefficient

significance.

However, in the study of economic and financial panel data, it is often important

to assess the differential impact of time series versus cross-sectional effects; but

panel data techniques are unclear how this may be accomplished. In other words,

panel data methodologies typically do not inform us fully regarding which

effect (time series or cross-sectional) is more important or more dominant within

particular data sets or contexts. In this chapter we employ two contrasting

estimation procedures, which, respectively, emphasize cross-sectional versus time

series differences, to clarify the impacts of these two influences. We undertake this

comparison of econometric methods within a finance-related context which takes

into account possible endogeneity.

In this chapter we show that a number of independent variables are significant in

partially determining financial architecture using either or both of the estimation

procedures of Baltagi and Li (1992) and Blundell and Bond (1998). Overall, we find
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a negative association of the equity premium with financial architecture. A smaller

equity premium inclines societies toward being more market oriented. A Herfindahl

Index for equity market concentration is positively significant. Generally, when

market capitalization is concentrated in fewer firms, societies are more market

oriented. We also find that stock volatility is generally negatively significant.

This suggests that stock volatility inclines societies away from markets and

toward banks.

However, of greater interest for this study, we find that some of our independent

variables impact cross-national differences in financial architecture according to

Baltagi and Li (1992) estimation, while other independent variables impact finan-

cial architecture according to Blundell and Bond (1998) estimation. While the two

estimation procedures yield very similar results with respect to a number of

independent variables, some differences exist also.

US Corporate bond spreads negatively determine financial architecture

according to Blundell and Bond (1998) estimation but not according to Baltagi

and Li (1992) estimation. US Corporate bond spreads change value each year but

have the same value across countries. Similarly some measures that change across

countries but do not change across time, such as the cultural dimensions of Hofstede

(2001) as well as the index of measures against self-dealing, are significant deter-

minants of financial architecture according to Baltagi-Li estimation but not

according to Blundell-Bond estimation. This is consistent with different estimation

techniques placing differing emphasis on cross-sectional and time series effects,

with the Baltagi-Li estimator emphasizing cross-sectional effects and the Blundell-

Bond estimator emphasizing time series effects.

These are critical findings that have important implications for the use of panel

data estimation procedures, especially where it is important to differentiate between

time series and cross-sectional influences. Our results show that using the two panel

estimation procedures used here together can better differentiate between time

series and cross-sectional variations in panel data. Thus, our results should be of

much interest to scholars especially in finance and economics.

Appendix 1: Pearson Correlation Coefficients

1 2 3 4 5 6 7 8 9 10 11 12 13

1 FIN_ARCH 1

2 EQUITY_PREMIUM 0.03 1

3 INFLATION_VOLATILITY �0.07 �0.16 1

4 MARKET_VOLATILITY �0.05 �0.10 0.11 1

5 CONCENTRATION 0.03 0.00 0.04 0.30 1

6 REGION_EUROPE �0.19 0.12 �0.10 �0.14 0.18 1

7 LN_GDP 0.08 0.00 �0.09 �0.42 �0.02 0.38 1

8 UAI �0.32 0.07 0.06 0.13 0.15 0.18 �0.12 1

9 PDI 0.04 0.08 0.07 0.27 �0.18 �0.35 �0.63 0.18 1

10 MAS �0.10 �0.07 �0.01 �0.10 �0.21 �0.16 �0.06 0.15 0.06 1

(continued)
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1 2 3 4 5 6 7 8 9 10 11 12 13

11 IDV 0.10 �0.05 �0.07 �0.37 0.00 0.44 0.51 �0.17 �0.67 0.12 1

12 SPREAD �0.05 0.14 �0.08 0.06 �0.10 0.02 0.00 0.02 �0.01 0.01 0.01 1

13 ANTI_SELF_DEAL 0.29 0.05 �0.09 �0.09 �0.20 �0.48 0.05 �0.49 0.02 0.00 �0.07 �0.01 1

Appendix 2: Estimation Procedure of Baltagi-Li EC2SLS

Following Baltagi (1981), consider the jth structural equation:

yj ¼ Yjaj þ Xjbj þ uj ¼ Zjdj þ uj, j ¼ 1, 2, . . . ,M,

yj ¼ NT � 1; Yj ¼ NT � Mj � 1
� �

;Xj ¼ NT � Kj;

Zj ¼ YjXj

� �
; d

0
j ¼ a

0
j; b

0
j

� �
; nj ¼ Mj þ Kj � 1

(12.7)

The additive error components structure is given by

uj ¼ Zuuj þ Zllj þ vj, j ¼ 1, 2, . . . ,M, (12.8)

where Zu ¼ IN
N

eT, Zl ¼ eN
N

IT

IN and IT are identifying matrices of order N and T, respectively. eN and eN are

vectors of ones of order N and T, respectively.

uj
0 ¼ (u1j, u2j, . . . , uNj), lj

0 ¼ (l1j,l2j, . . . , lTj), and vj
0 ¼ (v1j, v2j, . . . , vNTj) are

random vectors with means of zero and the following covariance matrix:

E
uj
lj
vj

0
@

1
A u

0
1l

0
1v

0
1

� �
¼

s2ujl IN 0 0

0 s2ljl IT 0

0 0 s2vjl ITN

2
64

3
75 (12.9)

for j and l ¼ 1,2,. . . .M. As noted by Baltagi (1981), this implies that the covariance

matrix between jth and lth structural equation is

Sjl ¼ E uju
0
l

� �
¼ s2ujlAþ s2ljlBþ s2vjl INT, (12.10)

where A ¼ IN
N

eTe
0
T, B ¼ eNe

0
N

N
IT

It follows that

Sij ¼ s23jl
JNT
NT

þ s21jl
A

T
� JNT

NT

� �
þ s22jl

B

N
� JNT

NT

� �
þ s2vjlQ (12.11)
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where

Q ¼ INT � A
T � B

N þ JNT
NT and JNT ¼ eNTeNT

0

also

s23jl ¼ s2vjl þ Ns2ljl þ Ts2ujl and s21jl ¼ s2vjl þ Ts2ujl as well as

s22jl ¼ s2vjl þ Ns2ljl

s2vjl ,s
2
1jl
,s22jl ,s

2
1jl

are the characteristic roots of ∑ij of multiplicity (N�1)(T�1),

N�1, T�1, and 1, respectively (Baltagi 1981; Nerlove 1971).

If the rank condition K � K1 + M1 � 1 holds for Eq. 12.7, then we can apply

transformation Qh to Eq. 12.7 to get

y
hð Þ
1 ¼ Y

hð Þ
1 a1 þ X

hð Þ
1 b1 þ u

hð Þ
1 ¼ Z

hð Þ
1 d1 þ u

hð Þ
1 (12.12)

y1
(h) ¼ Qhy1, . . .,; u1

(h) ¼ Qhu1 for h ¼ 1,2,3.

As noted by Baltagi (1981), u1
(h) has a covariance matrix which is a scalar times

an identity matrix.

However, Baltagi (1981) applies a 2SLS procedure to Eq. 12.12 in order to

correct for simultaneity:

Xh0yh1 ¼ Xh0Zh
1d1 þ Xh0uh1 (12.13)

The resulting estimator of d1 is

d̂
hð Þ
1, 2SLS ¼ Z

hð Þ0
1 Pw hð ÞZh

1

h i�1

Z
hð Þ0
1 Pw hð Þyh1

h i
(12.14)

where

Pwh ¼ X hð ÞX hð Þ X hð Þ0X hð Þ
� ��1

X hð Þ0

The variance components are then estimated by

s hð Þ2
11 ¼ y

hð Þ
1 � Z

hð Þ
1 d̂

hð Þ
1, 2SLS

� �0

y
hð Þ
1 � Z

hð Þ
1 d̂

hð Þ
1, 2SLS

� �
=n hð Þ (12.15)

As noted by Baltagi (1981), since d1 is common to all three transformations of

Eq. 12.13, we can apply an Aitken estimation to the following sets of equations

(Baltagi 1981):

X 1ð Þ0y 1ð Þ
1

X 2ð Þ0y 2ð Þ
1

X 3ð Þ0y 3ð Þ
1

0
B@

1
CA ¼

X 1ð Þ0Z 1ð Þ
1

X 2ð Þ0Z 2ð Þ
1

X 3ð Þ0Z 3ð Þ
1

0
B@

1
CAd1 þ

X 1ð Þ0u 1ð Þ
1

X 2ð Þ0u 2ð Þ
1

X 3ð Þ0u 3ð Þ
1

0
B@

1
CA (12.16)
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This results in the following estimator:

d̂1,GLS ¼ S
3

h¼1
Z

hð Þ0
1 PwhZ

hð Þ
1 =s hð Þ2

11

h i� ��1

S
3

h¼1
Z

hð Þ0
1 Pwhy

hð Þ
1 =s hð Þ2

11

h i� �
(12.17)

Substituting the estimate of ŝ hð Þ2
11 from Eq. 12.15 into Eq. 12.17 yields

d̂1,EC2SLS ¼ S
3

h¼1
Z

hð Þ0
1 PwhZ

hð Þ
1 =ŝ

hð Þ2
11

� 	� ��1

S
3

h¼1
Z

hð Þ0
1 Pwhy

hð Þ
1 =ŝ

hð Þ2
11

� 	� �

Appendix 3: Estimation Procedure of Blundell and
Bond (1998) System GMM Estimation

We consider the first-order autoregressive panel data model:

yit ¼ ayi, t�1 þ uit (12.18)

In this case, uit ¼ �i + vit
where i ¼ 1, . . . N and t ¼ 2, . . . . . . . T
As described by Bun and Windmeijer (2010), following Blundell and Bond

(1998), we assume that �i and vit have the error components structure

E �ið Þ ¼ 0;E vitð Þ ¼ 0;E vit�ið Þ ¼ 0 (12.19)

Additionally

E vitvisð Þ ¼ 0 for t 6¼ s (12.20)

Additionally the initial condition satisfies

E yi1vitð Þ ¼ 0: (12.21)

It then follows that the following (T – 1)(T – 2)/2 linear moments conditions are

valid:

E yt�2
i Duit

� �
t ¼ 3, . . . : , T, (12.22)

where

yt�2
i ¼ yi1; yi2; . . . ; yit�2ð Þ0 and Duit ¼ uit � uit�1 ¼ Dyit � aDyit�1
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Defining

Zdi ¼
yi1 0 0 . . . 0 . . . 0

0 yi1 yi2 . . . 0 . . . 0

: : : . . . : . . . :
0 0 0 . . . yi1 . . . yiT�2

2
664

3
775;Dui ¼

ui3
ui4
:
:
:
DuiT

2
6666664

3
7777775

This leads to a more efficient representing of the moment conditions:

E Z
0
diDui

� �
¼ 0 (12.23)

Following Arellano and Bover (1995), the GMM estimator of a is given by

ad ¼ Dy
0
�1ZdW

�1
N Z

0
dDy

Dy0
�1ZdW

�1
N Z

0
dDy�1

where Dy ¼ (Dy1
0
, Dy2

1 . . . DyN
0
)0, Dyi ¼ (Dyi3Dyi4, . . . , DyiT)0, Dy�1 the lagged

version of Dy, and Zd ¼ (Zd1
’ , Zd2

’ , . . . , ZdN
’ ) ’, and WN is a weight determining the

efficiency of the GMM estimator.

ad is a GMM estimator in the differenced model. As noted by Bun and

Windmeijer (2010), this estimator is referred to as the difference GMM estimator.

However, following Blundell and Bond (1998), who follow on Arellano and

Bover (1995), we also assume additional conditions:

E �iDyi2ð Þ ¼ 0 (12.24)

This condition holds when the process is mean stationary:

yi1 ¼
�i

1� a
þ ei (12.25)

Additionally, E(ei) ¼ E(ei�i) ¼ 0.

Further, if Eqs. 12.19, 12.20, 12.21, and 12.24 hold, then further (T – 1)(T – 2)/2

linear moments conditions are valid:

E uitDyt�1
i

� � ¼ 0 for t ¼ 3, . . . , T, (12.26)

where

yt�1
i ¼ Dyi2,Dyi3, . . . ,Dyit�1ð Þ0
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Defining

Zdi ¼
Dyi2 0 0 . . . 0 . . . 0

0 Dyi2 Dyi3 . . . 0 . . . 0

: : : . . . : . . . :
0 0 0 . . .Dyi2 . . .DyiT�1

2
664

3
775; Dui ¼

ui3
ui4
:
:
:

DuiT

2
6666664

3
7777775

The above moment conditions can be written as

E Z
0
liui

� �
¼ 0 (12.27)

The GMM estimator based on these estimates is then given by

al ¼ y
0
�1ZlW

�1
N Z

0
ly

y
0
�1ZlW

�1
N Z

0
ly�1

al is a GMM estimator in the levels model. This is referred to as the levels’ GMM

estimator (Bun and Windmeijer 2010).

The full set of linear moments under assumptions (Eqs. 12.19, 12.20, 12.21, and

12.24) is

E yt�2
i Duit

� � ¼ 0 (12.28)

E uitDyi, t�1

� � ¼ 0

for t ¼ 3, . . ., T
Following Bun and Windmeijer (2010), this can be resolved as

E Z
0
sipi

� �
¼ 0, (12.29)

where

Zsi ¼
Zdi 0 . . . 0

0 Dyi2 . . . 0

: : : :
0 0 . . . DyiT

2
664

3
775; pi ¼

Dui
ui

� 	

As noted by Wind, the GMM estimator based on these conditions is

as ¼ q
0
�1ZsW

�1
N Z

0
sq

q
0
�1ZsW

�1
N Z

0
sq�1

where

qi ¼ Dy
0
iy

0
i

� �0

as is the system GMM estimator of Blundell and Bond (1998).
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Abstract

In this chapter, we thoroughly analyze the relationship between capital and bank

risk-taking. We collect cross section of bank holding company data from 1993 to

2008. To deal with the endogeneity between risk and capital, we employ

stochastic frontier analysis to create a new type of instrumental variable. The

unrestricted frontier model determines the highest possible profitability based

solely on the book value of assets employed. We develop a second frontier based
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on the level of bank holding company capital as well as the amount of assets. The

implication of using the unrestricted model is that we are measuring the uncon-

ditional inefficiency of the banking organization.

We further apply generalized method of moments (GMM) regression to avoid

the problem caused by departure from normality. To control for the impact of

size on a bank’s risk-taking behavior, the book value of assets is considered in

the model. The relationship between the variables specifying bank behavior and

the use of equity is analyzed by GMM regression. Our results support the theory

that banks respond to higher capital ratios by increasing the risk in their earning

asset portfolios and off-balance-sheet activity. This perverse result suggests that

bank regulation should be thoroughly reexamined and alternative tools devel-

oped to ensure a stable financial system.

Keywords

Bank capital • Generalized method of moments • Stochastic frontier analysis •

Bank risks • Bank holding companies • Endogeneity of variables

13.1 Introduction

Bank capital management has become an important issue to both commercial

bankers and central bankers after the recent financial crisis. As the subprime

mortgage debacle spread, the balkanized regulatory system designed over half

a century ago appeared totally inadequate for today’s complex financial system.

In this study, we evaluate the role of capital in regulatory risk management by

examining a wide-range bank holding company data. Historically, both theoretical

and empirical papers on the relationship between capital and risk have produced

mixed results.1 Yet a new look at the role of bank capital in risk management is now

critical if we are to protect the financial system of the twenty-first century.

This chapter fits into a long history of literature dealing in general with bank risk

management and more specifically with the question of what constitutes an ade-

quate level of bank capital. Our contribution consists of the analysis of a large cross

section of bank holding companies over the years that the Basle Accords have been

implemented. In addition, we introduce a unique, to our knowledge, method to

exogenously model an instrumental variable for capital in a regression with risk.

One of the primary goals of bank regulators is to minimize the risk held on and

off their balance sheets by financial institutions. In this way, the negative external-

ities of bank failures and the risk to taxpayers from losses from the federal bank

safety net are avoided or reduced. A mandatory bank capital requirement is one of

the most important tools historically used by regulators to stabilize the financial

industry. The recent financial crisis, however, challenges the effectiveness of these

1For detailed discussion, please see Berger et al. (1995); Gatev et al. (2009); Hovakimian and Kane

(2000); Shrieves and Dahl (1992); and VanHoose (2007).
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mandatory capital requirements. The inherent characteristics of today’s banking

industry such as rapid financial innovation, high financial leverage, information

asymmetry, liquidity creation, and the federal bank safety net all distort incentives

and reward risk-taking. If maintaining a certain level of capital is viewed by bank

managers only as a necessary evil, then critical questions emerge: How is capital

related to specific measures of risk including credit risk, liquidity risk, interest rate

risk, off-balance-sheet risk, market risk, and overall bank risk? Do higher levels of

capital improve or lower the efficiency of banking? Answers to these questions will

help to establish the role of capital in regulatory risk management.

Empirical studies of bank capital and bank risk, however, face an inherent

problem. In order to measure the effect of the level of capital on bank risk-taking,

it would be useful to regress risk, as the dependent variable, on capital, as the

independent variable. However, there is an obvious endogeneity problem.

The amount of risk a bank can undertake is dependent on its amount of capital,

and the amount of capital needed is dependent on the amount of risk that a bank

wants to undertake. In other words, they are jointly determined, much like price

and quantity in a basic microeconomic analysis. The solution to this problem is

normally either to use a simultaneous equation model or to use instrumental

variables. However, a simultaneous equation model must be properly identified,

and no one has yet been able to accomplish this in regard to risk and bank capital.

Likewise, no one, to our knowledge, has yet found a true instrument for capital that

is independent of risk.

We present a methodology for the development of an exogenous instrument for

capital in a regression with risk by using stochastic frontier analysis. First, we

determine the maximum possible income that can be achieved from a given level of

assets. This is referred to as fitting an upper envelope. Such a frontier is obviously

exogenous to any specific bank because it is determined by the data from all banks

in the sample. The distance from the frontier to any specific bank’s actual income

can be considered a measure of bank inefficiency. Next, to develop the instrument

for capital, we create a second frontier conditioned on bank capital as well as the

amount of assets employed. The incremental inefficiency from the second frontier

is a function of the bank’s capital but independent of the bank’s risk, and it is this

incremental inefficiency that we propose to use as an instrument for capital.

Our analysis adds to the existing literature in several ways. First, we employ

a large panel data set to consider the capital-risk relationship for a wider range of

bank holding companies than typically reviewed. Previous empirical studies have

commonly used market measures of risk. However, this approach necessarily limits

the sample to publically owned banks or bank holding companies. In this study, we

acknowledge the importance of small banks and bank holding companies, as well as

the largest bank holding companies. This concern is significant since public policy

related to the banking industry must consider a broad sample of banks and not only

the largest organizations. As a result, we turn to the typical accounting measures of

a bank’s risk and utilize a large panel data set. In a second contribution, stochastic

frontier analysis is applied to exogenously generate the effect of the use of capital in

banking.
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Finally, the results provide evidence of bank holding companies reacting to

higher mandatory capital requirements by increasing the amount of risk the bank

holding company accepts. We use the generalized method of moments and look at

seven different measures of risk: credit risk, liquidity risk, interest rate risk,

off-balance-sheet risk, market risk, overall risk, and leverage risk. In general,

many results support the proposition that increased capital requirements reduce

risk in BHCs. There are, however, some results that suggest the opposite – that

BHCs increase risk as their capital ratios increase. This is obviously an important

finding with major public policy implications. If the primary tool used by regulators

to ensure a stable financial system is creating perverse results, then alternative tools

must be developed.

The rest of the chapter is organized as follows. Section 13.2 summarizes the

literature that deals with bank capital regulation. Section 13.3 presents our meth-

odology, and Sect. 13.4 reports the data along with its univariate analysis. In

Sect. 13.5, we present our empirical results. Section 13.6 concludes.

13.2 Literature Review

It has been argued that excessively high capital requirements can produce social

costs through lower levels of intermediation. In addition, there can be unintended

consequences of high capital requirements such as risk arbitrage (increasing risk to

offset the increase in capital and thereby maintain the same return on capital),

increased securitization, and increased off-balance-sheet activity, all of which

could mitigate the benefits of increased capital standards. See Berger et al. (1995)

and Santos (2001). The extent to which these unintended consequences played

a role in our recent crisis is yet to be determined.

Moral hazard is high on the list of problems receiving attention in this post-

financial crisis environment. The presence of a federal safety net creates moral

hazard because bank management does not have to worry about monitoring by

depositors (see Merton 1977; Buser et al. 1981; Laeven and Levine 2009). Absent

depositor monitoring, banks are free to increase risk. If, however, deposit insurance

and other elements of a federal safety net are reasons for increases in bank risk, why

do they continue to exist? The answer lies in the contemporary theory of financial

intermediation. It has been well established in the literature that there is need for

both demand deposit contracts and the possibility of bank runs (Diamond and

Dybvig 1983; Calomiris and Kahn 1991; Diamond and Rajan 2000; and Santos

2001). If the possibility of bank runs is needed, and bank runs are harmful, then

government deposit insurance is an optimal solution. There is a related issue. Banks

have a unique ability to resolve information asymmetries associated with risky

loans. As a result, bank failures can produce a serious contraction in credit avail-

ability, especially among borrowers without access to public capital markets. The

federal safety net is needed to avoid this credit contraction. Likewise, if a bank is

considered “too big to fail,” then the government will always bail the bank out, and

there is no reason for bank management to limit risk.
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It needs to be noted that not everyone is in agreement that the use of capital

requirements is the best way to reduce risk in banking. Marcus (1984) and Keeley

(1990) argue that a bank’s charter value mitigates against increased risk. Banks

operate in a regulated environment, and therefore, a charter to operate containsmarket

power. Excessive risk increases the cost of financial distress, and this can cause a loss

of charter value. Kim and Santomero (1988) argue that a simple capital ratio cannot be

effective, and any ratio would need to have exactly correct risk weights in a risk-based

system. Gorton and Pennacchi (1992) discuss “narrow banking” and propose splitting

the deposit services of banks from the credit services. In other words, the financial

system would include money market accounts and finance companies. The money

market accounts would only invest in short-term high-quality assets and leave the

lending to the finance companies that would not take in any deposits.

In Prescott (1997), he reviews the precommitment approach to risk management.

Briefly, banks commit to a level of capital, and if that level proves to be insufficient,

the bank is fined. This is used currently in the area of capital in support of a trading

portfolio but cannot be used for overall capital ratios since a fine against a failed

bank is not effective. Esty (1998) studies the impact of contingent liability of

stockholders on risk. In the late nineteenth and early twentieth century, bank

stockholders were subject to a call or an assessment for more money if needed to

meet the claims on a bank. There was a negative relation between increases in risk

and the possible call on bank stockholders. Calomiris (1999) makes a strong case

for requiring the use of subordinated debt in bank capital structures. The need to

issue unguaranteed debt and the associated market discipline would act as an

effective limit to the amount of risk a bank would be able to assume. John

et al. (2000) argue that a regulatory emphasis on capital ratios may not be effective

in controlling risk. Since all banks will have a different investment opportunity set,

an efficient allocation of funds must incorporate different risk-taking for different

investment schedules. These authors go on to argue that senior bank management

compensation contracts may be a more promising avenue to control risk using

incentive-compatible contracts to achieve the optimal level of risk.

Marcus and Shaked (1984) show howMerton’s (1977) put option pricing formula

can be made operational and then used the results to estimate appropriate deposit

insurance premium rates. The results of their empirical analysis indicated that the then

current FDIC premiums were higher than was warranted by the ex ante default risk of

the sample banks. This implies that banks are not transferring excessive risk to the

deposit insurance safety net and capital regulation is effectively working.

Duan et al. (1992) address the question of the impact of fixed-rate versus risk-

based deposit insurance premiums directly. The authors tested for specific risk-

shifting behavior by banks. If banks were able to increase the risk-adjusted value of

the deposit insurance premiums, then they had appropriated wealth from the

FDIC. This is because the FDIC, at the time, could not increase the insurance

premium even though risk had increased. Their empirical findings were that only

20 % of their sample banks were successful in risk-shifting behavior and therefore

the problem was not widespread. This also implies that capital management has

been effective.
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Keeley (1992) empirically studied the impact of the establishment of objective

capital-to-assets ratio requirements in the early 1980s. His evidence documents an

increase in the book value capital-to-assets ratio of previously undercapitalized

banks, and this, of course, was the goal of the new capital regulations. His study,

however, is unable to confirm the same result when looking at the market value

capital ratios. While the market value capital-to-assets ratios also increased, there

was no significant difference between the undercapitalized banks and the ade-

quately capitalized banks. Nevertheless, this was more evidence that capital regu-

lation was working.

Hovakimian and Kane (2000) use the same empirical design as Duan

et al. (1992) but for a more recent time period, and they obtain opposite results.

They also start with the argument of Merton (1977) that the value of deposit

insurance increases in asset return variance and leverage. They regress the change

in leverage on the change in risk and find a positive rather than a negative coeffi-

cient. The coefficient must be negative if capital regulation forces banks to decrease

leverage with increases in risk. In a second test, they regress the change in the value

of the deposit insurance premium on the change in the asset return variance. Here

again the coefficient must be negative (or zero) if there is any restraint. In this

equation, the coefficient measures how much the bank can benefit from increasing

the volatility of its asset returns. The option-model evidence presented shows that

capital regulation has not prevented risk-shifting by banks and that it was possible

for banks to extract a deposit insurance subsidy.

In Hughes et al. (2001), the authors study the joint impact of two functions of

bank capital. First is the capital’s influence on market value conditioned on risk, and

second is its impact on production decisions incorporating endogenous risk. Effi-

cient BHCs are determined according to frontier analysis, and then these BHCs are

assumed to be value-maximizing firms. The conclusion is that these value-

maximizing firms do achieve economies of scale, but the analysis of production

must include capital structure and risk-taking.

Berger et al. (2008) note that US banks hold significantly more equity capital

than the minimum amount required by regulators. Their evidence documents the

active management of capital levels by BHCs including setting target levels of

capital above regulatory minimums and moving quickly to achieve their targets.

Over the 15-year period of their study, BHCs regularly used new issues of shares

and share repurchase programs to actively manage their capital levels. Several

reasons for differing capital ratios among BHCs are given by the authors. Banks

with high earnings volatility would likely hold more capital. Banks whose cus-

tomers are more sensitive to default risk via counterparty exposure may be forced to

hold more capital. Firms with high charter values will want to minimize their costs

of financial distress by maintaining high capital ratios. On the other hand, larger

banks by asset size tend to be more diversified, enjoy scale economies in risk

management, have ready access to capital markets, and are possibly viewed as “too

big to fail” with attendant implicit government guarantees.

Flannery and Rangan (2008) also document a large increase in bank capital

during the 1990s. The authors note the timing correlation with deregulation of the
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banking industry and the related increase in risk exposure. They suggest that

increased diversification may have been offset by the increased risk of the newly

permissible activities. As a result, it was counterparty risk that was the driving force

for higher capital ratios.

13.3 Methodology

13.3.1 Instrumental Variable for Capital

We differ from previous studies that deal with the endogeneity between risk and

capital using traditional methods such as a simultaneous equation approach or two-

or three-stage regression analysis.2 In this study, we follow the method and concept

of Hughes et al. (2001, 2003); and others and use stochastic frontier analysis to

estimate the inefficiency of our sample of bank holding companies. See Jondrow

et al. (1982) for a discussion of fitting production frontier models. We then create

a unique instrumental variable for bank capital to be used in regressions of capital

and risk. The question we ask is: “How efficient is a bank holding company in

converting the resources with which it has to work into profit?” The frontier

developed is exogenous to any specific bank since it is based on the results of all

banks in the sample. From this frontier, we measure the inefficiency of each bank as

the distance between the frontier and that specific bank’s pretax income. This

measure, however, must be adjusted for those elements that are beyond the control

of the bank.

Our unrestricted frontier model determines the highest possible profitability

based solely on the book value of assets employed. The unrestricted model is

specified as

PTI BVA; sBANKð Þ ¼ aþ b1BVAþ b2 BVAð Þ2 þ e
e ¼ x� B
x � iid N 0; s2x

� �
, B � 0ð Þ � iid N 0; s2B

� � (13.1)

where PTI is pretax income, BVA is of book value of assets, x is statistical noise, B is
systematic shortfall (under management control), and B � 0. A quadratic specifi-

cation is used to allow for a nonlinear relation between the pretax income and the

book value of assets.

Our next step is to develop a second frontier based on the level of bank holding

company capital as well as the amount of assets. The implication of using the

unrestricted model is that we are measuring the unconditional inefficiency of the

banking organization. By also conditioning the model on capital, we can develop

a measure of the incremental efficiency or inefficiency of an organization due to its

2In Appendix 1, we explain the execution of stochastic frontier in this chapter.
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capital level. It is this incremental inefficiency due to a bank’s capital level that we

propose to use as an instrument for capital in a regression of risk on capital.

Specifically, our restricted model, again in a quadratic form, is as follows:

PTI BVA;BVC; sBANKð Þ ¼ aþ b1BVAþ b2 BVAð Þ2 þ b3BVCþ e
e ¼ v� u
v � iid N 0; s2v

� �
u � 0ð Þ � iid N 0; s2u

� � (13.2)

where BVC is the book value of capital, v is statistical noise, and u denotes the

inefficiency of a bank considering its use of both assets and capital.

The two assessments of inefficiency allow us to measure the difference in

profitability due to the use of capital by calculating the difference in the inefficiency

between the restricted and unrestricted model. Specifically,

d ¼ u� B (13.3)

This becomes our instrumental variable for capital. While any measure of

profitability endogenously includes risk, our instrument, the difference between

two measures of profitability conditioned only on capital, is related to capital but

not to risk which is included in both models.

13.3.2 Generalized Method of Moments

We first apply a generalized method of moments (GMM) regression in this study.3

There are several reasons why we need to consider the infeasibility of the OLS

regression. First, the departure from normality of the variable d due to the combined

error terms should be taken into account in the analysis. There is no theory to

support a Gaussian distribution of these variables. Furthermore, in practice, the

ranges of the independent and dependent variables are bounded within certain

intervals. Unlike other estimators, GMM is robust and does not require information

on the exact distribution of the disturbances. We follow Hamilton (1994) to

construct our GMM estimation. To control for the impact of size on a bank’s

risk-taking behavior, the book value of assets is considered in the model (Gatev

et al. 2009). The relationship between the variables specifying bank behavior and

the use of equity is analyzed by GMM regression. Specifically,

yk, t ¼ ct þ bk, tdi, t þ gk, tln BVAð Þ þ �k, t, (13.4)

where yk,t is one of the measures of risk or behavior (e.g., total equity/total asset)

for bank i in year t; c is a constant; bk,t is the coefficient of instrumental

3In Appendix 2, we provide the derivation of the GMM model.

356 W.-J.P. Chiou and R.L. Porter



variable of capital, di,k, for k’s regression in year t; gk,t is the coefficient of natural
logarithm of bank’s book value; and �k,t is the error term.

13.4 Data

We obtain our data on bank holding companies from Federal Reserve reports FR

Y-9C for the years 1993–2008. Data on risk-weighted assets, tier 1 capital, and tier

2 capital were not included with the FR Y-9C reports from 1993 to 1996. We were

graciously provided this missing information by the authors of Berger et al. (2008).

Table 13.1 displays the descriptive statistics of the sample BHCs in our analysis.

The total of 24,973 bank-year observations ranges from 2,256 in 2005 to 678 in

2008. From 2005 to 2006, there is an especially large drop in the number of BHCs

included in our data. This is primarily due to a change in the reporting criteria for

the FR Y-9C report. Starting in 2006, the threshold for required reporting by a BHC

was increased from BHCs with $150 million in total assets to BHCs with $500

million in total assets. Note that in spite of the 57 % drop in the number of BHCs

reporting in 2006 compared with 2005, the total assets represented in the sample for

these 2 years decreased by only 14 %.

Our data start in 1993 because 1992 was the final year in which capital ratios were

still adjusting in order to conform to the Basle I Capital Accord. As a result, 1993

represents the first year that does not include anymandated changes in the capital ratios.

The entire period of 1993–2008 contains a number of significant events affecting the

banking industry. For instance, the Riegle-Neal Interstate Banking and Branching Act

was passed in 1994 eliminating geographic restrictions on bank expansion. In 1999 the

Gramm-Leach-Bliley Financial Services Modernization Act was passed effectively

repealing the Glass-Steagall Act. Together these two acts overturned 65 years of

legislation and regulation intended to keep banks financially sound.

From an economic point of view, the early portion of our time period represented

a time of recovery from recession. The economy then moved from recovery to

growth, and the decade ended in a tech-stock boom followed by a bursting of the

tech-stock price bubble and an attendant recession. The new decade brought

traditional financial policies intended to stimulate the economy which, in hindsight,

probably helped to lay the foundation for the housing price bubble which precip-

itated the 2007–2009 financial crisis. The time period from 1993 to 2008 seems to

be a very appropriate period in which to analyze bank capital ratios.

Previous empirical studies have used market measures of risk and various risk

measures derived from a market model based on return data. However, this

approach necessarily limits the sample to publically owned banks or bank holding

companies. In this study, we wish to determine the impact of capital on various

measures of risk and acknowledge the importance of small banks and bank holding

companies, as well as the largest bank holding companies. This concern is signif-

icant since public policy related to the banking industry must consider the broadest

sample and not only the largest organizations. As a result, we utilize a large panel

data set and turn to the typical accounting measures of a bank’s risk.
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13.4.1 Overall Observations of BHC Data

We see the significant events and the economic activity listed above in the statistics

in Table 13.1. First, the size of BHCs measured by either their asset values or equity

has increased, while the number of banks has decreased. This trend is still evident

after adjusting for changes in the reporting criteria for the FR Y-9C report. The

government deregulation noted above has resulted in increased concentration in the

banking industry. We note also the significant cross-sectional variation in scale of

BHCs that suggests the utilization and operation of their resources vary

considerably.

When we look in Table 13.1 at the basic leverage ratio of equity to assets (E/A),

we see a generally rising ratio. In 1993, the ratio was 8.5 %, while in 2008 it was

9.2 %. These ratios appear to be in line with mandatory capital requirements. We

also see variation in this trend consistent with prevailing economic activity. For

example, the decline from 9.4 % in 1998 to 8.9 % in 1999 reflects the tech-stock

problems of that time period. In Table 13.1, we also see a rising trend in RA, the

ratio of risk-based assets to total assets. Here, however, the trend is far more

pronounced, rising from 43.80 % in 1993 to 76.00 % in 2008. Confirmation of

these two trends comes from the trend in CAP, the ratio of tier 1 plus tier 2 capital to

risk-based assets. This ratio declines from 16.10 % in 1993 to 14.50 % in 2008.

While these ratios are substantially above the Basle Capital Accord standards, the

trend is clearly down.

Another dramatic trend over this time period is the increase in off-balance-sheet

activity. In Table 13.1, the off-balance-sheet activities-to-total assets ratio (OBS)

has increased from 12.00 % in 1993 to 31.50 % in 2008. While this trend is not

a surprise, we need to ask if there is capital to support this expansion and consider

the makeup of the components of off-balance-sheet activities. It is unclear whether

BHCs use off-balance-sheet activities to decrease or increase risk.

The time-varying overall performance measures of our sample of BHCs such as

pretax income (PTI), return on equity (ROE), nonperforming assets ratio (NPA),

and the interest-sensitive gap (Gap) are shaped by major economic occurrences and

policies. Return on equity has varied in a relatively narrow band over this time

period. With the exception of 2007 and 2008, the return on equity ranged from

12.20 % to 13.50 %. In line with the financial crisis that started in 2007, ROE

declined to 11.00 % in 2007 and to 8.40 % in 2008. It is also noteworthy that the

highest return on equity was in the first year of our sample period, 1993. Nonper-

forming assets appear to move in concert with economic activity. The recovery and

expansion period of 1993–1998 is marked by a steady decrease in the ratio of

nonperforming assets to equity. This is followed by an increase in this ratio during

the tech-stock bubble and recession after which we see another decline until the

crisis of 2007 and 2008.

Since the industrial structure of financial services changes intertemporally, we

analyze the risk and use of capital by BHCs year by year. The analysis suggests banks

progressively depend more on aggressive funding sources and new product lines over

our sample period. Given that financial leverage (e.g., equity/asset ratio) must remain

13 Does Banking Capital Reduce Risk? 359



approximately stable due to regulatory requirements, bankersmay try to improve their

ROE by (1) enhancing overhead efficiency (OHE), (2) engaging in more off-balance-

sheet activities (OBS), and (3) using interest-sensitive gap management in an attempt

to decrease their total risk-based capital ratio (Cap) while maintaining an attractive

ROE. The above developments in the banking industry generate potential improve-

ment in performance but also intensify uncertainties and complexities of bank man-

agement. Therefore, a study to investigate the impact of the use of capital on the

riskiness of banks is an indispensible element in bank management.

13.4.2 Instrumental Variable

The statistical summary of our instrumental variable, d, for each year is shown in

Table 13.2. Consistent with the findings documented by Hughes et al. (2001), John

et al. (2000), Keeley (1990), and Kim and Santomero (1988), the use of equity

capital by banks, on average, triggers a loss in efficiency. The dispersion of d is

substantial both cross-sectionally and intertemporally. For our sample, the distri-

bution of d in the same year tends to be skewed to the left-hand side and leptokurtic

(i.e., has positive excess kurtosis). Therefore, we look at nonparametric statistics

and use a normality-free regression model in our analysis to avoid the possible

errors in estimation.

Table 13.2 Distribution of instrumental variables

Mean SD Skewness Kurtosis Max Min

1993 �0.038 0.106 �0.167 1.936 0.470 �0.494

1994 �0.040 0.112 �0.386 3.394 0.511 �0.805

1995 �0.036 0.114 �0.196 3.791 0.551 �0.753

1996 �0.041 0.111 �0.037 1.852 0.506 �0.557

1997 �0.223 0.162 �2.848 16.357 0.302 �1.253

1998 �0.032 0.112 �0.018 3.332 0.544 �0.744

1999 �0.053 0.144 �0.266 1.274 0.502 �0.714

2000 �0.054 0.144 �0.101 1.358 0.541 �0.761

2001 �0.049 0.144 �0.146 1.286 0.558 �0.624

2002 �0.042 0.153 �0.160 1.707 0.726 �0.739

2003 �0.021 0.151 0.078 0.573 0.540 �0.559

2004 �0.021 0.121 0.070 1.425 0.531 �0.634

2005 �0.024 0.122 0.044 2.229 0.555 �0.841

2006 �0.016 0.137 �0.506 4.024 0.519 �1.006

2007 �0.015 0.190 �0.438 1.536 0.542 �0.616

2008 �0.012 0.049 �2.758 27.015 0.129 �0.581

Descriptive statistics of the instrumental variable for capital over sample years are presented.

The instrumental variable d ¼ u � B is a measure of incremental bank inefficiency due to

capital level, where the stochastic frontiers are PTI ¼ a + b1BVA + b2(BVA)
2 + e, e ¼ x � B,

and PTI ¼ a + b1BVA + b2(BVA)
2 + b3BVC + e, e ¼ v � u
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13.4.3 Measures of Bank Risk

We investigate the risks faced by banks from various aspects. Table 13.3 displays

the measures of risk used in this study: credit risk, liquidity risk, interest rate risk,

off-balance-sheet (OBS) risk, market risk, and finally leverage risk. Credit risk is

concerned with the quality of a bank’s assets. Historically this has focused on

a bank’s loan portfolio, but recent events have shown the importance of looking at

all bank assets in light of potential default risk. Liquidity risk measures the ability of

a bank to meet all cash needs at a reasonable cost whenever they arise. Interest rate

risk is the extent to which banks have protected themselves from market-driven

changes in the level of interest rates. Banks have the opportunity to use asset/

liability management tools to mitigate the impact of changes in interest rates on

both bank earnings and bank equity. We also collect data on off-balance-sheet

activities and investigate their relationship with bank capital. Market risk is the risk

of changes in asset prices that are beyond the control of bank management. Finally,

leverage risk is the risk arising from the capital structure decisions of the BHC. The

first five measures of risk relate to the various elements of business risk confronting

bank management. Leverage risk, on the other hand, relates directly to the financial

decisions taken in terms of the amount of capital employed. From another perspec-

tive, it can be said that minimum capital requirements (i.e., maximum leverage

standards) are mandated by regulators to mitigate the various elements of business

risk that the BHC accepts.

Table 13.4 displays the Spearman correlation coefficients between bank size

and our instrumental variable over the sample period. We look at this nonpara-

metric test due to the non-normal distribution of the instrument and variables. We

believe that the generally insignificant correlation between our instrument and the

book value of assets in combination with the generally significant correlation of

our instrument and the book value of equity justifies the use of delta as an

instrument for capital. In addition, Table 13.4 shows that, measured by book

value of equity and pretax income, large BHCs tend to suffer a greater loss in

efficiency than their smaller counterparts at a statistically significant level. On the

other hand, the value of assets does not necessarily demonstrate a negative relation

with bank efficiency. These findings suggest that the inefficiency of BHCs comes

from the use of equity capital but is not directly led by the expansion of business

scale and/or scope. Therefore, a careful investigation of the impact of capital on

banking risks is appropriate.

13.5 Empirical Results

We look at seven different measures of risk: credit risk, liquidity risk, interest rate

risk, off-balance-sheet risk, market risk, composite risk, and leverage risk. While

many of the results support the proposition that increased capital requirements

reduce risk in BHCs, there are some very significant results that suggest the

opposite – that BHCs increase risk as their capital ratios increase.
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Table 13.3 Variables

Symbol Definition

Overall risk

Eq/A Total equity/total asset

RA/A Total risk-based assets/total assets

RC/RA Capital requirement ratio (total risk-based capital/total risk-based assets)

Tier 1/RA Tier 1 capital/total risk-based assets

Tier 2/tier 1 Tier 2 capital/tier 1 capital

Credit risk

NPL/LL Nonperforming assets/total loans and leases

NPL/E Nonperforming assets/total equity capital

Charge-offs/L Net loan charge-offs/total loans and leases

Provision/L Annual provision for loan losses/total loans and leases

Provision/E Annual provision for loan losses/total equity capital

Allowance/L Allowance for loan losses/total loans and leases

Allowance/E Allowance for loan losses/total equity capital

Liquidity risk

STPF/A Short-term purchased funds (Eurodollars, federal funds, security RPs, large CDs,

and commercial paper)/total assets

Cash/A Cash and due from other banks/total assets

HLA/A Cash assets and government securities/total assets

FFS/A (Federal funds sold + reverse RPs – sum of federal funds purchased – RPs)/total

assets

FFP/A (Federal funds purchased + RPs)/total assets

Cash/STPF Cash and due from other banks/short-term purchased funds (Eurodollars, federal

funds, security RPs, large CDs, and commercial papers)

Interest rate risk

Gap Interest-sensitive gap (IS assets – IS liabilities)/total assets

Off-balance-sheet risk

OBS/A Off-balance-sheet assets/total assets

Der/A Credit equivalent amount of off-balance-sheet derivative contracts/total assets

Der/RA Credit equivalent amount of off-balance-sheet derivative contracts/total risk-based

assets

IR Der Notional amount of interest rate derivatives held for trading/notional amount of

interest rate derivatives held for other purposes

FX Der Notional amount of foreign exchange derivatives held for trading/notional amount

of foreign exchange derivatives held for other purposes

Eq Der Notional amount of equity derivatives held for trading/notional amount of equity

derivatives held for other purposes

Cmd Der Notional amount of commodity derivatives held for trading/notional amount of

commodity derivatives held for other purposes

OBS/E Total OBS LC, commitments, credit card lines of credit, and loan/total equity

Der/A Total derivatives/total assets

(continued)
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Our results are displayed in Tables 13.5, 13.6, 13.7, 13.8, 13.9, and 13.10 and

provide a number of interesting insights. To enhance robustness, we present both

Spearman’s rank correlation coefficient between the tested variable and the instru-

mental variable for capital, d, and the coefficient of d in GMM regressions. To

control for the size of the bank holding companies, each coefficient of d is generated
by GMM regression with a constant and the natural logarithm of the book value of

assets. While the coefficient of the control variable and the constant term are omitted

from the tables, they are available upon request. In Table 13.5, we find a positive

relationship between ratio of total equity to total assets and our instrument for capital

(see Eq/A). The coefficient on our instrument is strictly positive and statistically

significant. This is clearly what we would expect. As leverage decreases, so does

risk; therefore, higher capital should be associated with higher levels of this risk

measure. In other words, it should be a positive relationship, and it is. However, for

the ratio of risky assets to total assets, risk increases as the ratio increases. Therefore,

higher capital should be associated with lower levels of this risk measure (a negative

relationship), and again that is what we find. When we look at just tier 1 capital to

total risky assets, we find the expected positive relationship, and when we look at the

ratio of tier 2 to tier 1 capital, we find the expected negative relationship.

In Table 13.6, we look at some traditional measures of credit risk. As the ratio of

nonperforming loans to total loans increases, so does risk. Therefore, the coefficient

on capital should be negative, and they are with several exceptions over the years. Our

second measure of credit risk is the ratio of nonperforming loans to total equity. Here

again higher levels of the ratio imply higher risk, so we expect to find a negative

relationship and we do, and this time without exception and at high levels of

significance. When we look at the ratio of loan charge-offs to loans outstanding, we

have more exceptions, but in general we find an expected negative relationship.

Table 13.3 (continued)

Symbol Definition

Market risk

Trading

assets

Trading account assets/total assets

Trading A/L Trading account assets/trading account liabilities

Investment

M/B

Market value of investment portfolio/book value of investment portfolio

Performance

PTI/A Pretax income/asset

ROE Return on equity

ROA Return on asset

ATR Average tax rate (taxes/pretax income)

Spread Earning spread (interest income/(loan + investment)�(interest expenses/deposits))

OHE Overhead efficiency (noninterest expenses/noninterest income)
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The ratio of the provision for loan loss to total loans is an ambiguous measure.

A high provision could indicate bank management is expecting high loan losses. On

the other hand, a high ratio could indicate conservative bankmanagement that is taking

no chances on an underfunded allowance for loan loss. When we look at the provision

as a percentage of total equity, we again have the same ambiguous results possible. In

general, we find that both of these risk measures produce a negative coefficient on our

measure of capital. The ambiguity seems to be resolved in that as the provision for loan

losses increases, so does risk. The alternative explanation is that risk should decrease

with this ratio, but higher capital levels produce counterintuitive results. The ratio of

the allowance for loan loss to total loans moves inversely with capital while the ratio

of allowance for loan loss to total equity moves in the opposite direction.

We turn now to the allowance for loan losses. Like the provision for loan loss

ratios, we have the same ambiguous expectations, but now we find conflicting

results. There is no clear expectation for the impact of this ratio on risk. In other

words, both the ratio of the allowance for loan losses to total loans and the ratio of

the allowance for loan losses to total equity can be reflecting either high risk or low

risk. What we find is that the allowance for loan loss as a percentage of loans

produces a positive sign for the coefficient on capital, while the allowance for loan

loss as a percentage of equity produces a negative sign on the coefficient.

We find even more consistent counterintuitive results when we look at the

relationship between capital and liquidity risk in Table 13.7. Lower capital ratios are

generally related to higher levels of short-term purchased liabilities (see STPF/A

and FFP/A). Since short-term purchased money is more volatile than core deposits,

for example, we would expect high levels of purchased money to be associated with

high levels of capital, yet this is not what we find. On the other hand, we do find that

higher capital ratios are related to more liquid assets (HLA/A) and better coverage

of short-term liabilities (FFS/A). Since both of these ratios imply higher levels of

liquidity, we expected them to be related to lower levels of capital. Apparently

liquidity risk is not reflected in a BHC’s capital level.

When we look at a BHC’s exposure to interest rate risk, we again find counter-

intuitive results. As noted above, Table 13.7 shows that low capital ratios are related

to high levels of short-term purchased funds. This can result in a fundamental

liquidity problem if some markets for short-term borrowing completely dry up as

we have observed in the recent financial crisis. Our more direct measure of interest

rate risk is the interest-sensitive gap (gap) which we define as interest-sensitive

assets minus interest-sensitive liabilities divided by total assets. Here we find

ambiguous results. It is obvious that wider gaps expose banks to more risk if

interest rates move against the bank. However, wide gaps can be held in both

a positive and negative direction. A high positive gap indicates a BHC has a large

amount of interest-sensitive assets in relation to interest-sensitive liabilities and will

be hurt by falling interest rates. A high negative gap indicates a BHC has a large

amount of interest-sensitive liabilities in relation to interest-sensitive assets and will

be hurt if interest rates rise. Our results in Table 13.7 indicate that wider gaps are

associated with lower levels of capital, but this is only a true measure if BHCs

typically held a positive gap.
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In Table 13.8, we turn our attention to BHCs’ off-balance-sheet activity. Rather

surprisingly, off-balance-sheet exposures seem to be inversely related to capital levels

in spite of the Basle Capital Accords. Recall that the Basle Accords require the

maintenance of capital in support of off-balance-sheet activity. Yet all of ourmeasures

of off-balance-sheet risk are associatedwith low capital levelswith one exception. The

notional amount of commodity derivatives held for trading compared with the

notional amount of commodity derivatives held for other purposes is associated

with a higher level of capital. Our interpretation of the ratios that measure the amount

of derivatives held for trading comparedwith the derivatives held for other purposes is

that the derivatives not held for trading are held to hedge an existing position on the

books of the BHC. As a result, a high ratio implies more trading activity in relation to

hedging activity, and therefore, more capital should be required. However, we again

find high OBS ratios associated with low levels of capital.

In Table 13.9, we look at two measures of market risk: the size of the BHCs’

trading account and the amount of unrealized gains or losses on the BHCs’

investment portfolio. We again find what we believe are counterintuitive results.

First, larger trading portfolios inherently contain a larger amount of market risk. On

the other hand, a large amount of unrealized gains in the investment portfolio

mitigates market risk, at least to some extent. We find, however, low levels of

capital associated with higher trading portfolios, while high levels of capital are

associated with higher unrealized gains in the investment portfolio.

Our results concerning performance measures are shown in Table 13.10. Here

we find evidence of higher capital ratios being associated with higher return on

assets ratios and with higher net interest spreads. Since higher returns on earning

assets are logically associated with higher risk, it is appropriate that higher capital is

used in support of the additional risk. However, while the direction of the causality

is not clear, this could be interpreted as more evidence that BHCs increase risk to

maintain a target return on equity in the face of higher capital requirements.

13.6 Conclusions

In this study, we thoroughly analyze a large cross section of bank holding company

data from 1993 to 2008 to determine the relationship between capital and bank risk-

taking. Our sample includes a minimum of almost 700 BHCs in 2008 and

a maximum of about 1,500 BHCs in 1993. This produces nearly 25,000

company-year observations of BHCs starting with the year that risk-based capital

requirements were first in place. Our data cover a period containing significant

changes in the banking industry and varying levels of economic activity. The

Riegle-Neal and Gramm-Leach-Bliley acts were passed during this time period,

and the tech-stock and housing bubbles both burst with attendant recessions. By

including a larger size range of BHCs in our analysis over a long sample period, our

results are applicable to relatively small BHCs as well as to the largest 200 or so

BHCs traditionally included in empirical studies.
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We employ stochastic frontier analysis to create a new type of instrumental

variable for capital to be used in regressions of risk and capital, thereby mitigating

the obvious endogeneity problem. The instruments are validated to confirm their

high correlation with capital and limited correlation with risk. We conclude that

they are suitable for use in our models and employ a GMM estimator to acknowl-

edge the non-normal distribution of the instruments.

Our results are consistent with the theory that BHCs respond to higher capital

ratios by increasing the risk in the earning asset portfolios. We find an inverse

relationship between the proportion of risky assets held by a bank holding company

and the amount of capital they hold. We also find lower levels of capital associated

with measures of credit risk that indicate a riskier loan portfolio. For example, the

amount of nonperforming assets held by the bank holding company is inversely

related to the bank holding company’s capital.

Our findings also demonstrate a counterintuitive relationship between bank

capital and liquidity risk. Less liquid banks tend to have low capital ratios, while

more liquid banks tend to have high capital ratios. These same results suggest that

a higher level of interest rate risk is also related to lower levels of capital. Our

direct measure of the mismatch between interest-sensitive assets and liabilities

provides additional evidence, although somewhat ambiguously, of higher interest

rate risk being associated with lower capital. High levels of off-balance-sheet

activity and of market risk exposure are likewise surprisingly related to low capital

levels. Finally, we note the association of high levels of capital with high return on

asset ratios. This association at least suggests that bank holding companies do

increase the risk of their earning assets in order to provide an adequate return on

their capital.

Our analysis adds to the existing literature with three contributions. First, we

employ a large panel data set to consider the capital-risk relationship for a wider

range of bank holding companies than previously reviewed. Second, stochastic

frontier analysis is applied to exogenously generate the effect of the use of capital in

banking. Finally, our results provide what we believe are important findings with

potentially major public policy implications. If the primary tool used by bank

regulators to ensure a stable financial system is, instead, creating perverse results,

then alternative tools must be developed. Further exploring the relationship

between the efficiency of capital and the risk strategy adopted by a bank would

be a contribution to this literature.

Appendix 1: Stochastic Frontier Analysis

Stochastic frontier analysis (SFA) is an economic modeling method that is intro-

duced by Jondrow et al. (1982). The frontier without random component can be

written as the following general form:

PTIi ¼ TEi � f xi; bð Þ, (13.5)
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where PTIi is the pretax income of the bank i, i ¼ 1,..N, TEi denotes the technical

efficiency defined as the ratio of observed output to maximum feasible output, xi is
a vector of J inputs used by the bank i, f(xi, b) is the frontier, and b is a vector of

technology parameters to be estimated. Since the frontier provides an estimate of

the maximum feasible output, we then can measure the shortfall of the observed

output from the maximum feasible output. Considering a stochastic component that

describes random shocks affecting the production process in this model, the sto-

chastic frontier becomes

PTIi ¼ evi � TEi � f xi; bð Þ: (13.6)

The shock, ℯvi , is not directly attributable to the bank or the technology but may

come from random white noises in the economy, which is considered as a two-sided

Gaussian distributed variable.

We further describe TEi as a stochastic variable with a specific distribution

function. Specifically,

TEi ¼ e�ui , (13.7)

where ui is the nonnegative technical inefficiency component, since it is required

that TEi � 1. Thus, we obtain the following equation:

PTIi ¼ evi�ui � f xi; bð Þ: (13.8)

We then can describe the frontier according to a specific production model.

In our case, we assume that bank’s profitability can be specified as the log-linear

Cobb-Douglas function:

PTIi ¼ aþ
XH
h¼1

bhlnxi, h þ vi � ui: (13.9)

Because both vi and ui constitute a compound error term with a specific distri-

bution to be determined, hence the SFA is often referred as composed error model.

In our study, we use the above stochastic frontier with different inputs to

generate the net effect of bank capital without mixing the impact of risk. The

unrestricted model (without including bank equity) is

PTI BVA; sBANKð Þ ¼ aþ b1BVAþ b2 BVAð Þ2 þ e
e ¼ x� B
x � iidN 0; s2x

� �
, B � iidN 0; s2B

� � , (13.10)

where BVA is the natural logarithm of book value of assets, x is statistical noise, B is
systematic shortfall (under management control), and B� 0. Our restricted model is

as follows:
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PTI BVA;BVC; sBANKð Þ ¼ aþ b1BVAþ b2 BVAð Þ2 þ b3BVCþ e:
e ¼ v� u
v � iidN 0; s2v

� �
u � iidN 0; s2u

� � , (13.11)

where BVC is the natural logarithm of book value of capital, v is statistical noise,
and u denotes the inefficiency of a bank considering its use of both assets and

capital. The difference in the inefficiency between the restricted and unrestricted

model,

d ¼ u� B, (13.12)

is our instrumental variable. The instrumental variable for capital can be used in

regressions of various measures of risk, as the dependent variable, on our instru-

ment for capital, as the independent variable, while controlling for BHC size.

Appendix 2: Generalized Method of Moments

Hansen (1982) develops generalized method of moments (GMM) to estimate

parameters that its full shape of the distribution function is not known. The method

requires that a certain number of moment conditions were specified for the model.

These moment conditions are functions of the model parameters and the data, such

that their expectation is zero at the true values of the parameters. The GMMmethod

then minimizes a certain norm of the sample averages of the moment conditions.

Suppose the error term «t ¼ «(xt, y) is a (T � 1) vector that contains

T observations of the error term «t, where xt includes the data relevant for the

model and y is a vector of Nb coefficients. Assume there are NH instrumental

variables in an (NH � 1) column vector, ht and T observations of this vector form

a (T � NH) matrix H. We define

f t yð Þ � ht 	 « xt; yð Þ: (13.13)

The notation 	 denotes the Kronecker product of the two vectors. Therefore,

ft (y) is a vector containing the cross product of each instrument in h with each

element of «. The expected value of this cross product is a vector with NeNΗ

elements of zeros at the parameter vector:

E f t y0ð Þ½ 
 ¼ 0: (13.14)

Since we do not observe the true expected values of f, thus we must work instead

with the sample mean of f,

gt yð Þ � T�1
XT
t¼1

f t yð Þ ¼ T�1
XT
t¼1

ht«t yð Þ ¼ T�1 H
0
«t yð Þ: (13.15)
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We can minimize the quadratic form

QT yð Þ � gT yð Þ0WTgT yð Þ, (13.16)

where WT is an (NH � NH) symmetric, positive definite weighting matrix. We then

find the first-order condition is

DT ŷT
� �0

WTgT ŷT
� �

¼ 0, (13.17)

where DT (yT) is a matrix of partial derivatives defined by

DT yTð Þ ¼ ∂gT yTð Þ=∂y0
:

Note the above problem is nonlinear; thus, the optimization must be solved

numerically.

Applying the asymptotic distribution theory, the coefficient estimate ŷT is

ffiffiffi
T

p
ŷT � y0
� �

!d N 0;Oð Þ, (13.18)

where O¼ (D0
0WD0)

�1 D0
0WSWD0 (D0

0WD0)
�1. D0 is a generalization ofMHX in

those equations and is defined by D0 � E[∂f(xt, y0)/∂y0]. S is defined as

S � lim
T!1

Var T1=2
XT
t¼1

f t y0ð Þ
" #

¼ lim
T!1

Var T1=2gT y0ð Þ
h i

: (13.19)

The GMM estimators are known to be consistent, asymptotically normal, and

efficient in the class of all estimators that do not use any extra information aside

from that contained in the moment conditions. For more discussion of the execution

of the GMM, please refer to Campbell et al. (1997) and Hamilton (1994).
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Abstract

We describe the fundamental issues that long-horizon event studies face in

choosing the proper research methodology and summarize findings from

existing simulation studies about the performance of commonly used methods.

We document in details how to implement a simulation study and report our own

findings on large-size samples. The findings have important implications for

future research.

We examine the performance of more than 20 different testing procedures

that fall into two categories. First, the buy-and-hold benchmark approach uses
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a benchmark to measure the abnormal buy-and-hold return for every event firm

and tests the null hypothesis that the average abnormal return is zero. Second, the

calendar-time portfolio approach forms a portfolio in each calendar month

consisting of firms that have had an event within a certain time period prior to

the month and tests the null hypothesis that the intercept is zero in the regression

of monthly portfolio returns against the factors in an asset-pricing model. We

find that using the sign test and the single most correlated firm being the

benchmark provides the best overall performance for various sample sizes and

long horizons. In addition, the Fama-French three-factor model performs better

in our simulation study than the four-factor model, as the latter leads to serious

over-rejection of the null hypothesis.

We evaluate the performance of bootstrapped Johnson’s skewness-adjusted

t-test. This computation-intensive procedure is considered because the distribution

of long-horizon abnormal returns tends to be highly skewed to the right. The

bootstrapping method uses repeated random sampling to measure the significance

of relevant test statistics. Due to the nature of random sampling, the resultant

measurement of significance varies each time such a procedure is used. We also

evaluate simple nonparametric tests, such as the Wilcoxon signed-rank test or the

Fisher’s sign test, which are free from random sampling variation.

Keywords

Long-horizon event study • Johnson’s skewness-adjusted t-test • Weighted

least squares regression • Bootstrap test • Calendar-time portfolio approach •

Fama-French three-factor model • Johnson’s skewness-adjusted t-statistic •

Large-scale simulations

14.1 Introduction

A large number of papers in finance literature have documented evidence that firms

earn abnormal returns over a long time period (ranging from 1 to 5 years) after

certain corporate events. Kothari andWarner (2007) report that a total of 565 papers

reporting event study results were published between 1974 and 2000 in five leading

journals: the Journal of Business (JB), Journal of Finance (JF), Journal of Finan-
cial Economics (JFE), Journal of Financial and Quantitative Analysis (JFQA), and
the Review of Financial Studies (RFS). Approximately 200 of the 565 event studies

use a maximum window length of 12 months or more.

The evidence of long-horizon abnormal returns contradicts the efficient market

hypothesis that stock prices adjust to information fully within a narrow time

window (a few days). To reconcile the contradiction, Fama (1998) argues that

“Most important, consistent with the market efficiency prediction that apparent

anomalies can be due to methodology, most long-term return anomalies tend to

disappear with reasonable changes in technique.” Several simulation studies such as

Kothari and Warner (1997) and Barber and Lyon (1997) document evidence that

statistical inference in long-horizon event studies is sensitive to the choice of
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methodology. Therefore, it is crucial to gain an understanding of the properties and

limitations of the available approaches before choosing a methodology for a long-

horizon event study.

At the core of a long-horizon event study lie two tasks: the first is to measure the

event-related long-horizon abnormal returns, and the second is to test the null

hypothesis that the distribution of these long-horizon abnormal returns concentrates

around zero. A proper testing procedure for long-horizon event studies has to do

both tasks well. Otherwise, two types of error could arise and lead to incorrect

inference. The first error occurs when the null hypothesis is rejected, not because

the event has generated true abnormal returns, but because a biased benchmark has

been used to measure abnormal returns. A biased benchmark shifts the concentra-

tion of abnormal returns away from zero and leads to too many false rejections of

the null hypothesis. The second error occurs when the null hypothesis is accepted,

not because the event has no impact, but because the test itself does not have

enough power to statistically discriminate the mean abnormal return from zero.

A test with low power is undesirable, as it will lead researchers to reach the

incorrect inference that long-term effect is statistically insignificant. Thus, the

researchers would want a procedure that minimizes both sources of error or at

least choose a balance between them.

Two approaches have been followed in recent finance literature to measure and

test long-term abnormal returns. The first approach uses a benchmark to measure the

abnormal buy-and-hold return for every event firm in a sample and tests whether the

abnormal returns have a zero mean. The second approach forms a portfolio in each

calendar month consisting of firms that have had an event within a certain time period

prior to the month and tests the null hypothesis that the intercept is zero in the

regression of monthly calendar-time portfolio returns against the factors in an asset-

pricing model. To follow either approach, researchers need to make a few choices as

illustrated in Fig. 14.1. For the calendar-time portfolio approach, researchers choose

an asset-pricing model and an estimation technique to fit the model. Among the most

popular asset-pricing models are Fama and French’s (1993) three-factor model and

its four-factor extension proposed by Carhart (1997) that includes an additional

momentum-related factor. Two techniques are commonly used to fit the pricing

model: the ordinary least squares (OLS) technique and the weighted least squares

(WLS) technique. On the other hand, if adopting the buy-and-hold benchmark

approach, researchers choose either a reference portfolio or a single control firm as

the benchmark for measuring abnormal returns and select either parametric or

nonparametric statistic for testing the null hypothesis of zero abnormal return.

Permutations of these choices under both approaches generate a large number of

possible testing procedures that can be used in a long-horizon event study. It is

neither practical nor sensible to implement all the testing procedures in an empirical

study of a financial event. Therefore, it would be very useful to provide guidance on

the strength and weakness of the procedures based on simulation results. Simulation

study generates large number of repetitions under various circumstances for

each testing procedure, which allows the tabulations of these two types of

error for comparison.
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We organize this chapter as follows. Section 14.2 discusses the fundamental

issues in long-horizon event studies that have been documented in the literature.

Section 14.3 reviews existing simulation studies. Section 14.4 reports results from

a simulation study of large-size samples. Section 14.5 contains some suggestions

for future research.

14.2 Fundamental Issues in Long-Horizon Event Studies

14.2.1 The Buy-and-Hold Benchmark Approach

The long-term buy-and-hold abnormal return of firm i, denoted as ARi, is calculated as

ARi ¼ Ri � BRi, (14.1)

where Ri is the long-term buy-and-hold return of firm i and BRi is the long-term

return on a particular benchmark of firm i. The buy-and-hold return of firm i over t
months is obtained by compounding monthly returns, that is,

Ri ¼
Yt

t¼1
1þ ritð Þ � 1, (14.2)

where rit is firm i’s return in month t. Calculation of the benchmark return BRi is

given below. The benchmark return, BRi, estimates the return that an event firm

would have had if the event had not happened.

Several articles clearly show that long-term abnormal returns are very sensitive to

choice of benchmarks; see, e.g., Ikenberry et al. (1995), Kothari and Warner (1997),

Barber and Lyon (1997), and Lyon et al. (1999). If wrong benchmarks were used in

measuring long-term abnormal returns, inference on the significance of a certain event

To Test the Significance of Long-Horizon Abnormal Returns

Calendar-Time
Portfolio Approach

Asset Pricing
Model

Fama and French’s
Three-Factor Model,

Carhart’s Four-
Factor Model

OLS,
WLS

Model
Specification, e.g.,

Estimation
Technique, e.g., Parametric

Tests, e.g.,

Reference Portfolio
Benchmarks, e.g., SZBM,

SZBMBT, MC10

Single Firm
Benchmarks, e.g.,

SZBMI, MCI

Nonparametric
Tests, e.g.,

Parametric
Tests, e.g.,

Nonparametric
Tests, e.g.,

t-test,
Johnson’s test

Bootstrapped test,
Sign test

t-test,
Johnson’s test

Bootstrapped test
Sign test

Buy-and-hold
Benchmark
Approach

Fig 14.1 Overview of the two approaches to choose a methodology for long-horizon event study
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would be erroneous. Most existing studies use either a single matched firm or a matched

reference portfolio as the benchmark. Barber and Lyon (1997) point out that the control

firm approach eliminates the new listing bias, the rebalancing bias, and the skewness

problem. It also yields well-specified test statistics in virtually all the situations they

consider. Further, Lyon et al. (1999) advocate a reference portfolio of firms that match

on size and BE/ME. The issue on choice of the benchmark is practically unresolved.

Ang and Zhang (2004) additionally argue that the control firm method overcomes

another important problem that is associated with the event firm not being representative

in important aspects of the respective matched portfolio in the reference portfolio

approach. This leads to the matched portfolio return generating a biased estimate of

expected firm return. This problem is particularly severe with small firms.

A common practice in computing an event firm’s long-term abnormal return is to

utilize a benchmark that matches the event firm on size and BE/ME. The practice is

often justified by quoting the findings in Fama and French (1992) that size and

BE/ME combine to capture the cross-sectional variation in average monthly stock

returns and that market beta has no additional power in explaining cross-sectional

return differences. However, in a separate paper, Fama and French (1993)

demonstrate that expected monthly stock returns are related to three factors:

a market factor, a size-related factor, and a book-to-market equity ratio

(BE/ME)-related factor. To resolve this issue, Ang and Zhang (2004) show that

matching based on beta in addition to size and BE/ME does not improve the

performance of the approach.

A recent trend is to use computation-intensive bootstrapping-based tests, such as

the bootstrapped Johnson’s skewness-adjusted t-statistic (e.g., Sutton 1993 and Lyon
et al. 1999) and the simulated empirical p-values (e.g., Brock et al. 1992 and

Ikenberry et al. 1995). These procedures rely on repeated random sampling to

measure the significance of relevant test statistics. Due to the nature of random

sampling, the resultant measurement of significance varies every time such

a procedure is used. As a consequence, different researchers could reach contradic-

tory conclusions using the same procedure on the same sample of event firms. In

contrast, simple nonparametric tests, such as the Wilcoxon signed-rank test or the

Fisher’s sign test, are free from random sampling variation. Barber and Lyon (1997)

examined the performance of the Wilcoxon signed-rank test in a large-scale simula-

tion study. They show that the performance depends on choice of the benchmark. The

signed-rank test is well specified when the benchmark is a single size and BE/ME

matched firm and misspecified when the benchmark is a size and BE/ME matched

reference portfolio. However, Barber and Lyon (1997) present only simulation

results for 1-year horizon. No simulation study in the finance literature has examined
the performance of these simple nonparametric tests for 3- or 5-year horizons, which
are the common holding periods in long-horizon event studies.1

1The sign test has an advantage over the signed-rank test in that it does not require a symmetric

underlying distribution, while the signed-rank test does.
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Power is an important consideration in statistical hypothesis testing. Lyon

et al. (1999) report that bootstrapping-based tests are more powerful than Student’s

t-test in testing 1-year abnormal returns in a large-scale simulation study. However,

they do not report evidence on the power of these tests for the longer 3- or 5-year

horizon. In statistics literature, bootstrapping is primarily for challenging situations

when the sampling distribution of the test statistic is either indeterminate or difficult

to obtain and that bootstrapping is less powerful in hypothesis testing than other

parametric or simple nonparametric methods when both bootstrapping and other

methods are applicable (see, e.g., Efron and Tibshirani 1993, Chap. 16 and Davison

and Hinkley 1997, Chap. 4). In a recent study on 5-year buy-and-hold abnormal

returns to holders of the seasoned equity offerings, Eckbo et al. (2000) note that

bootstrapping gives lower significance level relative to the Student’s t-test.
Ang and Zhang (2004) find that most testing procedures have very low power for

samples of medium size over long event horizons (3 or 5 years). This raises concern

about how to interpret long-horizon event studies that fail to reject the null

hypothesis. Failure to reject is often interpreted as evidence that supports the null

hypothesis. However, when power of the test is low, such interpretation may no

longer be warranted. This problem gets even worse when event firms are primarily

small firms. They observe that all tests, except the sign test, have much lower power

for samples of small firms.

More recently, Schultz (2003) argue via simulation that the long-run IPO

underperformance could be related to the endogeneity of the number of new issues.

Firms choose to go IPO at the time when they expect to obtain high valuation in the

stock market. Therefore, IPOs cluster after periods of high abnormal returns on new

issues. In such a case, even if the ex ante returns on IPO are normal, the ex post

measures of abnormal returns may be negative on average. Schultz suggests using

calendar-time returns to overcome the bias. However, Dahlquist and de Jong (2008)

find that it is unlikely that the endogeneity of the number of new issues explains the

long-run underperformance of IPOs. Viswanathan and Wei (2008) present

a theoretical analysis on event abnormal returns when returns predict events.

They show that, when the sample size is fixed, the expected abnormal return is

negative and becomes more negative as the holding period increases. This implies

that there is a small-sample bias in the use of long-run event returns. Asymptoti-

cally, abnormal returns converge to zero provided that the process of the number of

events is stationary. Nonstationarity in the process of the number of events is

needed to generate a large negative bias.

The issues discussed above are associated with the buy-and-hold approach to

testing long-term abnormal returns.2 In addition, this approach suffers from the

cross-correlation problem and the bad model problem (Fama 1998; Brav 1999;

Mitchell and Stafford 2000). The cross-correlation problem arises because matching

on firm-specific characteristics fails to completely remove the correlation between

2Variations of this approach have been used extensively; see, e.g., Ritter (1991); Ikenberry

et al. (1995); Ikenberry et al. (1996); and Desai and Jain (1997), among many others.
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event firms’ returns. The bad model problem arises because no benchmark gives

perfect estimate of the counterfactual (i.e., what if there was no event) return of an

event firm and benchmark errors are multiplied in computing long-term buy-and-

hold returns. Therefore, Fama (1998) advocates a calendar-time portfolio approach.3

14.2.2 The Calendar-Time Portfolio Approach

In the calendar-time portfolio approach, for each calendar month, an event portfolio

is formed, consisting of all firms that have experienced the same event within the t
months prior to the given month. Monthly return of the event portfolio is computed

as the equally weighted average of monthly returns of all firms in the portfolio.

Excess returns of the event portfolio are regressed on the Fama-French three factors

as in the following model:

Rpt � Rft ¼ aþ b Rmt � Rft

� �þ sSMBt þ hHMLt þ et, (14.3)

where Rpt is the event portfolio’s return in month t; Rft is the 1-month Treasury bill rate,

observed at the beginning of the month; Rmt is the monthly market return; SMBt is the
monthly return on the zero investment portfolio for the common size factor in stock

returns; andHMLt is themonthly return on the zero investment portfolio for the common

book-to-market equity factor in stock returns.4 Under the assumption that the Fama-

French three-factor model provides a complete description of expected stock returns, the

intercept, a, measures the average monthly abnormal return on the portfolio of event

firms and should be equal to zero under the null hypothesis of no abnormal performance.

A later modification that has gained popularity is the four-factor model that

added a momentum-related factor to the Fama-French three factors:

Rpt � Rft ¼ aþ b Rmt � Rft

� �þ sSMBt þ hHMLt þ pPR12t þ et, (14.4)

where PR12t is the momentum-related factor advocated by Carhart (1997).

Typically, we compute PR12t by first ranking all firms by their previous

11-month stock return lagged 1 month and then taking the average return of the

top one third (i.e., high past return) stocks minus the average return of the bottom

one third (i.e., low past return) stocks.

Under the assumption that the asset-pricing model adequately explains variation

in expected stock returns, the intercept, a, measures the average monthly abnormal

return of the calendar-time portfolio of event firms and should be equal to zero

under the null hypothesis of no abnormal performance. If the test concludes that the

3Loughran and Ritter (1995), Brav and Gompers (1996), and Brav et al. (2000), among others,

have used the calendar-time portfolio approach.
4See Fama and French (1993) for details on construction of the mimicking portfolios for the

common size and book-to-market equity factors. We thank Eugene Fama for providing us with

returns on Rft, Rmt, SMBt, and HMLt.
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time series conforms to the asset-pricing model, the event is said to have had no

significant long-term effect; otherwise, the event has produced significant

long-term abnormal returns. Lyon et al. (1999) report that the calendar-time

portfolio approach together with the Fama-French three-factor model, which shall

be referred to as the Fama-French calendar-time approach later, is well specified for

random samples in their simulation study.

However, we do not know how much power the Fama-French calendar-time

approach has. Loughran and Ritter (1999) criticize the approach as having very low

power. They argue that reduction in power is caused by using returns on contam-

inated portfolios as factors in the regression, by weighting each month equally and

by using value-weighted returns of the calendar-time portfolios. However, their

empirical evidence is based only on one carefully constructed sample of firms and is

hardly conclusive. No large-scale simulation study has been done to examine power

of the Fama-French calendar-time approach, which we will remedy in this paper.

The Fama-French calendar-time approach, estimated with the ordinary least

squares (OLS) technique, could suffer from a potential heteroskedasticity problem

due to unequal and changing number of firms in the calendar-time portfolios. The

weighted least squares (WLS) technique, which is helpful in addressing the

heteroskedasticity problem, has been suggested as a way to deal with the changing

size of calendar-time portfolios. When applying WLS, we use the monthly number

of firms in the event portfolio as weights.

14.3 A Review of Simulation Studies on Long-Horizon Event
Study Methodology

Several papers have documented performance of testing procedures in large-scale

simulations. Table 14.1 surveys these papers with reference to testing procedures

under their investigation and their simulation settings. The simulation technique

was pioneered by Brown and Warner (1980, 1985) to evaluate size and power of

testing procedures. In this section, we review these simulation studies.

As shown in Fig. 14.1, there are two approaches for a long-term event study: the

calendar-time portfolio approach versus the buy-and-hold benchmark approach.

There has been a debate on which approach prescribes the best procedure for long-

term event studies. Both approaches have been under criticisms. The buy-and-hold

benchmark approach is susceptible to biases associated with cross-sectional corre-

lation, insufficient matching criteria, new equity issues, periodic balancing, and

skewed distribution of long-term abnormal returns, while the calendar-time

portfolio approach may suffer from an improper asset-pricing model and heteroske-

dasticity in portfolio returns. See Kothari and Warner (1997), Barber and Lyon

(1997), Fama (1998), Loughran and Ritter (1999), Lyon et al. (1999); and others

for more detailed discussions. Kothari and Warner (1997) argue that the combined

effect of these issues is difficult to specify a priori and, thus, “a simulation study with

actual security return data is a direct way to study the joint impact, and is helpful in

identifying the potential problems that are empirically most relevant.”
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In their simulation study, Kothari and Warner (1997) measure the long-term

(up to 3 years) impact of an event by cumulative monthly abnormal returns, where

monthly abnormal returns are computed against four common models: the market-

adjusted model, the market model, the capital asset-pricing model, and the Fama-

French three-factor model. They find that tests for cumulative abnormal returns are

severely misspecified. They identify sample selection, survival bias, and bias in

variance estimation as potential sources of the misspecification and suggest that

nonparametric and bootstrap tests are likely to reduce misspecification.

Barber and Lyon (1997) address two main issues in their simulation study. First,

they argue that buy-and-hold return is a better measure of investors’ actual experience

over a long horizon and should be used in long-term event study (up to 5 years). They

show simulation evidence that approaches using cumulative abnormal returns cause

severe misspecification, which is consistent with the observation in Kothari and

Warner (1997). Second, they use simulations to measure both size and power of

testing procedures that follow the buy-and-hold benchmark approach. An important

finding is that using a single control firm as benchmark yields well-specified tests,

whereas using reference portfolio causes substantial over-rejection.

In a later paper, Lyon et al. (1999) report another simulation study (for up to the

5-year horizon) that investigates the performance of both buy-and-hold benchmark

approach and calendar-time portfolio approach. They find that using the

Fama-French three-factor model yields a well-specified test. However, they advo-

cate a test that uses carefully constructed reference portfolio as benchmark and the

bootstrapped Johnson’s statistic for testing abnormal returns. They present

evidence that this test is well specified and has high power at the 1-year horizon.

Two questions remain unanswered in Lyon et al. (1999). First, how much power

does the bootstrap test have for event horizons longer than 1 year (e.g., 3 or 5 years

that is common in long-horizon studies)? It is known in statistics literature that

a bootstrap test is not as powerful as simple nonparametric tests in many occasions

(see Efron and Tibshirani 1993, Chap. 16 and Davison and Hinckley 1997,

Chap. 4). It is necessary to know the actual power of such test for event horizons

beyond 1 year. Second, is the calendar-time portfolio approach as powerful as the

buy-and-hold benchmark approach? Loughran and Ritter (2000) argue that the

calendar-time portfolio approach has low power, using simulations and empirical

evidence from a sample of new equity issuers. However, they do not measure how

much power the approach actually has, which makes it impossible to compare the

two approaches directly in more general settings.

Mitchell and Stafford (2000) is the only study that empirically measures power

of the calendar-time portfolio approach using simulations. Their main focus is to

assess performance of several testing procedures in three large samples of major

managerial decisions, i.e., mergers, seasoned equity offerings, and share

repurchases (up to 3 years). They find that different procedures lead to contradicting

conclusions and argue that the calendar-time portfolio approach is preferred. To

resolve Loughran and Ritter’s (2000) critique that the calendar-time portfolio

approach has low power, they conduct simulations to measure the empirical

power and find that the power is actually very high with an empirical rejection
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rate of 99% for induced abnormal returns of�15% over a 3-year horizon. Since they

have a large sample size, this finding is actually consistent with what we document in

Table 14.5. However, their simulations focus on only samples of 2,000 firms. Many

event studies have much smaller sample sizes, especially after researchers slice and

dice a whole sample into subsamples. More evidence is needed in order to have great

confidence in applying the calendar-time portfolio approach in such studies.

Cowan and Sergeant (2001) focus on the buy-and-hold benchmark approach in their

simulations. They find that using the reference portfolio approach cannot overcome the

skewness bias discussed in Barber and Lyon (1997) and that the larger the sample size,

the smaller the magnitude of the skewness bias. They also argue that cross-sectional

dependence among event firms’ abnormal returns increases in event horizon due to

partially contemporaneous holding periods, which may cause the overlapping horizon

bias. They propose a two-group test using abnormal returns winsorized at three

standard deviations to deal with these two biases and report evidence that this test

yields correct specifications and considerable power in many situations.

All previous simulation studies use only size and BE/ME to construct

benchmarks, which is often justified by the findings in Fama and French (1992)

that size and BE/ME together adequately capture the cross-sectional variations in

average monthly stock returns. Ang and Zhang (2004) use two other matching

criteria to explore whether better benchmarks could be used for future studies. The

two criteria are market beta and pre-event correlation coefficient. Using market beta

is motivated by the fact that Fama and French’s (1993) three-factor model has

a market factor, a size-related factor, and a BE/ME-related factor. Matching on the

basis of size and BE/ME does not account for the influence of the market factor. The

rationale for using pre-event correlation coefficient is that matching on size and

BE/MEmay fail to control for other factors that could influence stock returns, such as

industry factor, seasonal factor, momentum factor, and other factors shared by only

firms of the same characteristics, such as geographical location, ownership, and

governance structures. Matching on the basis of pre-event correlation coefficient

helps remove the effect of these factors on the event firm’s long-term return.

The main findings in Ang and Zhang (2004) include the following. First, the four-

factor model is inferior to the well-specified three-factor model in the calendar-time

portfolio approach in that the former causes too many rejections of the null hypothesis

relative to the specified significance level. Second, WLS improves the performance of

the calendar-time portfolio approach over OLS, especially for long event horizons.

Third, the Fama-French three-factor model has relatively high power in detecting

abnormal returns, although power decreases sharply as event horizon increases. Fourth,

the simple sign test is well specified when it is applied with a single firm benchmark,

but misspecified when used with reference portfolio benchmarks. More importantly,

the combination of the sign test and the benchmark with the single most correlated firm

consistently has much higher power than any other test in our simulations and is the

only testing procedure that performs well in samples of small firms.

Jegadeesh and Karceski (2009) propose a new test of long-run performance that

allows for heteroskedasticity and autocorrelation. Previous tests used in Lyon

et al. (1999) implicitly assume that the observations are cross-sectionally uncorrelated.
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This assumption is frequently violated in nonrandom samples such as samples with

industry clustering or with overlapping returns. To overcome the cross-correlation bias

in event firms’ returns, they recommend a t-statistic that is computed using a generalized

version of the Hansen and Hodrick (1980) standard error. Their simulation studies show

that the new tests they propose are reasonably well specified in random samples, in

samples that are concentrated in particular industries, and also in samples where event

firms enter the sample on multiple occasions within the holding period.

In summary, these simulation studies show that testing procedures differ

dramatically in performance. Some procedures reject the null hypothesis at an

excessively high rate, while others have very low power. These findings confirm

the Fama (1998) statement that evidence for long-term return anomalies is

dependent upon methodology and suggest that caution must be exercised in

choosing the proper methodology for a long-term event study.

14.4 A Simulation Study of Large-Size Samples

A simulation study of large-size samples serves two purposes. First, it is well

documented that the distribution of buy-and-hold abnormal returns tends to be skewed

to the right. Kothari and Warner (2007) mention that the extent of skewness bias is

likely to decline with sample size. It is of interest to provide evidence on how much is

the level of right-skewness in the average abnormal returns of large-size samples.

Second, although it is expected that testing power increases with sample size, it is of

practical interest to knowmore precisely howmuch power a test can have in a sample

of 1,000 observations. Large sample simulation defines the limits of a procedure.

14.4.1 Research Design

In this simulation study, we construct 250 samples each consisting of 1,000 event

firms. To produce one sample, we randomly select, with replacement, 1,000 event

months between January 1980 and December 1992, inclusively.5,6 This allows us to

calculate 5-year abnormal returns until December 1997. For each selected event

month, we randomly select, without replacement, one firm from a list of qualified

firms. The qualified firms satisfy the following requirements: (i) They are publicly

traded firms, incorporated in the USA, and have ordinary common shares with

Center for Research in Security Prices (CRSP) share codes 10 and 11; (ii) they have

return data found in the CRSP monthly returns database for the 24-month period

5We use a pseudorandom number generator developed by Matsumoto and Nishimura (1998) to

ensure high quality of random sampling.
6Kothari andWarner (1997) use 250 samples, each of 200 event months between January 1980 and

December 1989 inclusively. Barber and Lyon (1997) use 1,000 samples, each of 200 event months

in a much longer period from July 1963 to December 1994. The period under our study, between

January 1980 and December 1992, is of similar length to Kothari and Warner’s.
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prior to the event month; (iii) they have nonnegative book values on COMPUSTAT

prior to the event month so that we can calculate their book-to-market equity ratios.

The 250 samples, each of 1,000 randomly selected firms, comprise the

simulation setting for comparing the performance of different testing procedures.7

We apply all testing procedures under our study to the same samples. Such

controlled comparison is more informative because it eliminates difference in

performance due to variation in the samples.

For the buy-and-hold approach, we compute the long-term buy-and-hold abnor-

mal return of firm i as the difference between the long-term buy-and-hold return of

firm i and the long-term return of a benchmark. The buy-and-hold return of firm

i over t months is obtained by compounding monthly returns. In case that firm

i does not have return data for all t months, we replace missing returns by the

same-month returns of a size and BE/MEmatched reference portfolio.8We evaluate

a total of five benchmarks and four test statistics in this study. We briefly describe

them in the following and give the details in the Appendix.

Three of the benchmarks are reference portfolios. The first reference portfolio

consists of firms that are similar to the event firm in both size and BE/ME. We

follow the same procedure as in Lyon et al. (1999) to construct the two-factor

reference portfolio. We use the label “SZBM” for this benchmark. The second
reference portfolio consists of firms that are similar to the event firm not only in size

and BE/ME but also in market beta. We use the label “SZBMBT” for this bench-

mark. The third reference portfolio consists of ten firms that are most correlated

with the event firm prior to the event. We use the label “MC10” for this benchmark.

The other two of the five benchmarks consist of a single firm. The first single
firm benchmark is the firm that matched the event firm in both size and BE/ME. To

find the two-factor single firm benchmark, we first identify all firms whose market

value is within 70–130 % of the event firm’s market value and then choose the firm

that has the BE/ME ratio closest to that of the event firm. We use the label

“SZBM1” for this benchmark. The second single firm benchmark is the firm that

has the highest correlation coefficient with the event firm prior to the event. We use

the label “MC1” for this benchmark.

We apply four test statistics to test the null hypothesis that the mean long-term

abnormal return is zero. They include Student’s t-test, Fisher’s sign test, Johnson’s

skewness-adjusted t-test, and the bootstrapped Johnson’s t-test. Fisher’s sign test is

a nonparametric test and is described in details in Hollander andWolfe (1999, Chap. 3).

Johnson’s skewness-adjusted t-statistic was developed by Johnson (1978) to deal with
the skewness-related misspecification error in Student’s t-test. Sutton (1992) proposes

to apply Johnson’s t-test with a computationally intensive bootstrap resampling

7Ang and Zhang (2004) examine two other simulation settings. Under one setting, they have another

250 samples of 200 event firms, a smaller sample size than the setting in this chapter. Under the other

setting, they have the sample size of 200 with the requirement that event firms belong to the smallest

quintile sorted by NYSE firm size. The second setting is used to examine the effect of small firms.
8Filling in missing returns is a common practice in calculating long-term buy-and-hold returns;

e.g., see Barber and Lyon (1997), Lyon et al. (1999), and Mitchell and Stafford (2000).
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technique when the population skewness is severe and the sample size is small. Lyon

et al. (1999) advocate use of the bootstrapped Johnson’s t-test because long-term

buy-and-hold abnormal returns are highly skewed when buy-and-hold reference port-

folios are used as benchmarks. We follow Lyon et al. (1999) and set the resampling

size in the bootstrapped Johnson’s t-test to be one quarter of the sample size.

For the Fama-French calendar-time approach, we use both the Fama-French

three-factor model and the four-factor model. We apply both ordinary least

squares (OLS) and weighted least squares (WLS) techniques to estimate parameters

in the pricing model. The WLS is used to correct the heteroskedasticity problem due

to the monthly variation in the number of firms in the calendar-time portfolio. When

applying WLS, we use the number of event firms in the portfolio as weights.

14.4.2 Simulation Results for the Buy-and-Hold Benchmark
Approach

In this section, we examine the performance of testing procedures that follow

the buy-and-hold benchmark approach. Implementation of the buy-and-hold

benchmark approach involves choosing both benchmark and test statistic. For this

reason, rather than focusing on what is the best among all benchmarks, or focusing

on what is the best among all test statistics, we address the more practical question

of finding the best combination of benchmark and test statistic. Combination of the

five benchmarks and the four test statistics yields 20 testing procedures, out of

which we look for the best combination.

For each sample of 1,000 abnormal returns, we compute mean, median, standard

deviation, interquartile range, skewness coefficient, and kurtosis coefficient.

Table 14.2 reports the average of these statistics over 250 samples.

Since these event firms, being randomly selected, may not experience any event or

may experience events that have offsetting effects on averaged stock returns, we

expect their abnormal returns to concentrate around zero. In Table 14.2, means are

close to zero for all five benchmarks at all three holding periods, but medians differ

systematically according to the type of benchmark used. Medians are clearly negative

under the three reference portfolio benchmarks (i.e., SZBM, SZBMBT, and MC10),

but close to zero under the two single firm benchmarks (i.e., SZBM1 and MC1). The

evidence suggests that reference portfolio benchmarks overestimate holding period

returns of many event firms, resulting in far too many event firms having negative

abnormal returns under the portfolio-based benchmarks. The extent of the

overestimation bias by portfolio-based benchmarks is quite severe and gets worse

as the time horizon lengthens. The bias, as measured by the magnitude of median,

ranges from around 4 % at a 1-year horizon to 12 % at a 3-year horizon and to more

than 20 % at a 5-year horizon. Bias of this magnitude could cause too many events to

be falsely identified as having significant long-term impact.

Volatility of abnormal returns increases with the length of holding period under all

five benchmarks. For the same holding period, volatility is higher under the two single

firm benchmarks than under the three reference portfolio benchmarks. This is expected
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because reference portfolios have lower volatility due to averaging. As for kurtosis, all

five benchmarks produce highly leptokurtic abnormal returns, with kurtosis coeffi-

cients ranging from 41.4 to 67.5, which are far greater than three, the kurtosis

coefficient of any normal distribution. At last, skewness coefficients for the two single

firm benchmarks are close to zero regardless of event horizons, while skewness

coefficients for the three portfolio benchmarks are excessively positive.

To sum up, probability distributions of long-term abnormal returns exhibit

different properties, depending on whether the benchmark is a reference portfolio

or a single firm. Under a reference portfolio benchmark, the distribution is highly

leptokurtic and positively skewed, with a close-to-zero mean but a highly negative

median. Under a single firm benchmark, the distribution is highly leptokurtic but

symmetric, with both mean and median close to zero. Statistical properties of

long-term abnormal returns have important bearings on performance of test

Table 14.2 Descriptive statistics of abnormal returns in samples of 1,000 firms

Benchmark

Descriptive statistics

Mean Median

Standard

deviation

Interquartile

range

Skewness

coefficient

Kurtosis

coefficient

Panel A: 1-year holding period

SZBM 0.009 �0.032 0.574 0.453 4.332 60.763

SZBMBT �0.001 �0.043 0.586 0.462 4.074 58.462

MC10 0.000 �0.040 0.591 0.463 3.853 56.733

SZBM1 0.005 0.005 0.814 0.638 �0.203 53.034

MC1 0.002 �0.003 0.780 0.584 0.229 53.202

Panel B: 3-year holding period

SZBM 0.034 �0.112 1.240 0.963 4.561 57.644

SZBMBT �0.001 �0.139 1.264 0.982 4.258 54.616

MC10 0.000 �0.126 1.286 0.982 3.996 53.153

SZBM1 0.023 0.022 1.746 1.305 �0.137 51.176

MC1 0.016 �0.006 1.658 1.200 0.736 43.430

Panel C: 5-year holding period

SZBM 0.068 �0.209 2.034 1.490 5.287 67.521

SZBMBT 0.002 �0.248 2.073 1.514 4.982 64.364

MC10 0.007 �0.223 2.106 1.516 4.652 61.091

SZBM1 0.054 0.039 2.802 1.979 0.269 41.428

MC1 0.036 0.000 2.745 1.834 0.500 50.365

This table reports descriptive statistics that characterize the probability distribution of long-term

abnormal returns, in samples of 1,000 firms. Abnormal return is calculated as the difference in holding

period return between the event firm and its benchmark.We use five benchmarks: a reference portfolio

matched by size and BE/ME (SZBM); a reference portfolio matched by size, BE/ME, and beta

(SZBMBT); a reference portfolio consisting of ten firms, within the event firm’s size and BE/ME

matched portfolio, whose returns are most correlated with the event firm’s MC10; a single firm

matched by size and BE/ME (SZBM1); and a single firm, from the event firm’s size and BE/ME

matched portfolio, whose returns have the highest correlation with the event firm’s MC1. We compute

mean, median, standard deviation, interquartile range, skewness coefficient, and kurtosis coefficient

for abnormal returns in every sample. Since there are 250 samples in the simulation, entries in the table

are the average of these statistics over the 250 samples
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statistics. Overall, it seems single firm benchmarks have more desirable properties.

Between the two single firm benchmarks, MC1 shows better performance than

SZBM1, because the abnormal returns based on MC1 have both mean and median

being closer to zero and smaller standard deviation.

A superior test should control for the probability of committing two errors. First,

it is important to control for the probability of misidentifying an insignificant event

as having statistical significance; in other words, the empirical size of the test,

which is computed from simulations, is close to the prespecified significance level

at which the test is conducted. When this happens, the test is well specified. Second,

power of the test should be large, that is, the probability of finding a statistically

significant event if one did exist.

Table 14.3 reports empirical size of all 20 tests for three holding periods.

Empirical size is calculated as the proportion of 250 samples that rejects the null

hypothesis at the 5 % nominal significance level. With only a few exceptions,

Student’s t-test is well specified against the two-sided alternative hypothesis.

Despite excessively high skewness in abnormal returns from reference portfolio

benchmarks, Student’s t-test is well specified against two-sided alternative

hypothesis because the effect of skewness at both tails cancels out (see, e.g.,

Pearson and Please 1975). When testing against the two-sided alternative

hypothesis, Johnson’s skewness-adjusted t-test is in general misspecified, but its

bootstrapped version is well specified in most situations. The sign test is

misspecified when applied to abnormal returns from reference portfolio

benchmarks, and the extent of misspecification is quite serious and increases in

the length of holding period. This is not surprising because abnormal returns from

reference portfolio benchmarks have highly negative medians.

Table 14.4 reports empirical power of testing the null hypothesis of zero abnormal

return against the two-sided alternative hypothesis. We follow Brown and Warner

(1980, 1985) to measure empirical power by intentionally forcing the mean

abnormal return away from zero with induced abnormal returns. We induce nine levels

of abnormal returns ranging from�20 % to 20 % at an increment of 5 %. To induce an

abnormal return of�20 %, for example, we add�20% to the observed holding period

return of an event firm. Empirical power is calculated as the proportion of 250 samples

that rejects the null hypothesis at 5 % significance level.

With a large sample size of 1,000, the power of these tests remains reasonably

high at the longer holding period. Ang and Zhang (2004) report that, with the sample

size of 200, the power of all tests deteriorates sharply as holding period lengthens

from 1 to 3 and to 5 years and is alarmingly low at the 5-year horizon. For example,

when the induced abnormal return is�20 % over a 5-year horizon, the highest power

of the bootstrapped Johnson’s t-test is 13.6 % for a sample of 200 firms, whereas the

highest power is 62.8 % for a sample of 1,000 firms.

We compare the power of the three test statistics: Student’s t-test, the

bootstrapped Johnson’s skewness-adjusted t-test, and the sign test. All three

test statistics are applied together with the most correlated single firm benchmark.

The evidence shows that all three tests are well specified. However, the sign

test clearly has much higher power than the other two tests.
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Table 14.4 Power of tests in samples of 1,000 firms

Test Benchmark

Induced abnormal return over the holding period (%)

�20 �15 �10 �5 0 5 10 15 20

Panel A: 1-year holding period

t SZBM 100.0 99.6 98.4 62.0 4.0 92.8 100.0 100.0 100.0

SZBMBT 100.0 99.6 98.8 76.8 5.2 79.2 100.0 100.0 100.0

MC10 100.0 99.6 98.4 73.6 5.6 77.6 100.0 100.0 100.0

SZBM1 100.0 99.6 93.6 46.8 4.4 58.4 97.6 99.2 100.0

MC1 100.0 99.6 97.2 50.8 3.6 58.0 96.8 99.6 100.0

Jt SZBM 89.2 94.4 93.2 55.2 7.2 94.4 100.0 100.0 100.0

SZBMBT 89.6 94.4 95.2 69.6 6.4 83.2 100.0 100.0 100.0

MC10 91.2 95.6 95.2 66.4 6.4 80.0 100.0 100.0 100.0

SZBM1 98.4 97.6 92.0 47.6 5.6 58.8 94.8 98.0 98.0

MC1 98.0 98.4 95.6 50.0 5.2 59.2 95.6 98.0 98.0

BJt SZBM 80.8 86.0 85.2 47.6 6.4 93.2 100.0 100.0 100.0

SZBMBT 79.2 85.2 86.0 57.2 4.0 81.2 100.0 100.0 100.0

MC10 81.6 86.4 87.2 56.4 6.4 78.8 100.0 100.0 100.0

SZBM1 96.0 96.0 87.2 40.4 3.6 51.6 90.0 95.2 94.0

MC1 95.6 95.6 88.8 44.4 3.2 51.6 91.6 95.6 95.6

Sign SZBM 100.0 100.0 100.0 100.0 75.6 28.4 100.0 100.0 100.0

SZBMBT 100.0 100.0 100.0 100.0 92.0 10.4 99.2 100.0 100.0

MC10 100.0 100.0 100.0 100.0 85.6 17.2 100.0 100.0 100.0

SZBM1 100.0 100.0 100.0 72.0 4.0 92.0 100.0 100.0 100.0

MC1 100.0 100.0 100.0 93.6 9.6 90.4 100.0 100.0 100.0

Panel B: 3-year holding period

t SZBM 96.0 80.8 43.2 9.6 11.2 58.0 96.0 100.0 100.0

SZBMBT 98.4 93.2 70.8 30.8 5.2 19.2 73.2 98.4 100.0

MC10 98.4 92.4 70.0 26.8 4.8 19.2 72.4 98.8 100.0

SZBM1 88.4 63.6 30.8 10.0 6.0 27.6 64.4 85.6 96.4

MC1 92.4 74.0 36.4 10.4 6.8 22.4 64.0 91.2 97.6

Jt SZBM 91.2 74.8 38.4 9.6 14.4 66.4 96.4 100.0 100.0

SZBMBT 94.8 88.0 65.6 26.0 5.2 24.4 78.4 98.8 100.0

MC10 94.0 87.6 62.8 24.4 6.8 23.2 76.8 99.2 100.0

SZBM1 86.4 63.2 32.4 12.4 7.6 29.2 64.0 84.8 94.4

MC1 90.4 72.4 36.0 12.0 8.4 24.4 64.8 90.4 97.6

BJt SZBM 84.8 66.0 32.4 7.6 12.8 62.4 96.0 100.0 100.0

SZBMBT 88.8 82.0 58.4 21.6 5.6 21.6 74.8 98.4 100.0

MC10 90.4 79.6 54.8 19.6 5.6 21.6 73.6 98.0 100.0

SZBM1 81.6 56.4 27.6 8.0 5.2 24.4 56.4 79.6 88.8

MC1 86.0 65.6 29.6 8.8 6.4 20.4 55.2 86.8 94.4

Sign SZBM 100.0 100.0 100.0 100.0 99.6 63.6 6.0 27.2 88.8

SZBMBT 100.0 100.0 100.0 100.0 100.0 89.6 27.6 6.8 64.4

MC10 100.0 100.0 100.0 100.0 100.0 78.4 15.6 12.4 78.8

SZBM1 100.0 94.8 56.4 14.0 9.2 54.8 94.0 100.0 100.0

MC1 100.0 100.0 95.2 50.0 6.4 37.2 86.4 100.0 100.0

(continued)
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14.4.3 Simulation Results for the Calendar-Time Portfolio Approach

Table 14.5 reports the rejection frequency of the calendar-time portfolio approach

in testing the null hypothesis that the intercept is zero in the regression of monthly

calendar-time portfolio returns, against the two-sided alternative hypothesis. Rejec-

tion frequency is measured as the proportion of the total 250 samples that reject the

null hypothesis. We compute rejection frequencies at nine nominal levels of

induced abnormal returns, ranging from �20 % to 20 % at an increment of 5 %.

Since monthly returns of the calendar-time portfolio are used in fitting the model, to

examine the power of testing the intercept, we need to induce abnormal returns by

Table 14.4 (continued)

Test Benchmark

Induced abnormal return over the holding period (%)

�20 �15 �10 �5 0 5 10 15 20

Panel C: 5-year holding period

t SZBM 58.0 28.4 9.6 1.6 17.6 40.8 79.2 97.6 99.2

SZBMBT 84.8 63.2 37.6 14.8 3.6 8.4 32.8 66.0 92.0

MC10 80.4 61.2 32.8 11.6 2.0 10.4 32.4 69.6 92.0

SZBM1 38.0 18.4 7.2 4.0 8.0 21.6 41.6 64.8 82.4

MC1 50.4 23.6 10.4 4.0 6.0 17.2 38.0 61.2 81.2

Jt SZBM 44.4 23.6 7.2 5.6 20.4 52.0 85.2 98.8 99.6

SZBMBT 72.0 51.6 27.6 11.2 4.4 14.8 40.0 73.2 94.8

MC10 71.6 51.2 27.6 7.6 4.4 15.6 38.0 73.6 96.4

SZBM1 38.0 20.0 8.8 6.0 10.4 23.6 42.4 65.2 82.0

MC1 48.8 24.4 11.2 6.0 8.4 18.8 38.4 60.4 79.6

BJt SZBM 35.2 19.6 5.2 2.8 19.6 48.0 82.8 98.0 99.6

SZBMBT 62.8 43.2 21.6 8.4 2.8 12.8 36.8 70.0 94.0

MC10 60.0 42.4 20.0 6.4 2.8 14.4 36.0 72.0 94.8

SZBM1 30.0 16.0 5.6 4.0 6.4 16.4 33.6 54.4 70.4

MC1 38.4 17.6 9.6 3.2 5.2 15.2 30.8 50.4 70.8

Sign SZBM 100.0 100.0 100.0 100.0 100.0 95.6 72.0 22.8 3.2

SZBMBT 100.0 100.0 100.0 100.0 100.0 99.6 93.2 61.6 19.2

MC10 100.0 100.0 100.0 100.0 100.0 98.4 81.6 40.8 7.6

SZBM1 91.2 63.2 20.8 4.0 12.0 48.8 86.0 97.2 100.0

MC1 99.2 92.8 59.2 22.8 2.4 20.4 67.2 93.6 99.2

This table reports empirical power of testing the null hypothesis of zero abnormal return against the two-

sided alternative hypothesis, in samples of 1,000 firms. Empirical power is calculated as the proportion

of 250 samples that reject the null hypothesis at 5 % significance level. Abnormal return is calculated

as the difference in holding period return between the event firm and its benchmark. We use five
benchmarks (a reference portfolio matched by size and BE/ME (SZBM); a reference portfolio matched

by size, BE/ME, and beta (SZBMBT); a reference portfolio consisting of ten firms, within the event

firm’s size and BE/ME matched portfolio, whose returns are most correlated with the event firm’s

MC10; a single firmmatched by size andBE/ME (SZBM1); and a single firm, from the event firm’s size

and BE/ME matched portfolio, whose returns have the highest correlation with the event firm’s MC1)

and four test statistics (the conventional t-test (t), Johnson’s skewness-adjusted t-test (Jt), the

bootstrapped Johnson’s skewness-adjusted t-test (BJt), and Fisher’s sign test (sign)). We study power

at nine levels of induced abnormal return, ranging from �20 % to 20 % at an increment of 5 %
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adding an extra amount to actual monthly returns of every event firm before

forming the calendar-time portfolios. For example, in order to induce the �20 %

nominal level of abnormal holding period return, we add the extra amount

of �1.67 % (¼�20 %/12) to an event firm’s 12 monthly returns for a 1-year

horizon, or add the abnormal amount of �0.56 % (¼ �20 %/36) to the firm’s

24 monthly returns for a 3-year horizon, or the abnormal amount of �0.33 %

(¼�20 %/60) to the firm’s 60 monthly returns for a 5-year horizon.

Note that the nominal induced holding period return is different from the

effective induced abnormal holding period return, because adding the abnormal

amount each month does not guarantee that an event firm’s holding period return

will be increased or decreased by the exact nominal level. We measure the effective
induced holding period return of an event firm as the difference in the firm’s holding

Table 14.5 Rejection frequency of calendar-time portfolio approach in samples of 1,000 firms

Panel A: 1-year holding period

Average effective induced holding period return (%)

�20.4 �15.7 �10.7 �5.5 0 5.7 11.7 17.9 24.4

Three factors OLS 100.0 100.0 99.2 53.2 2.4 78.8 100.0 100.0 100.0

WLS 100.0 100.0 99.6 74.4 2.0* 82.8 100.0 100.0 100.0

Four factors OLS 100.0 99.2 90.8 18.0 28.0* 97.6 100.0 100.0 100.0

WLS 100.0 99.6 93.2 20.8 25.2* 98.8 100.0 100.0 100.0

Panel B: 3-year holding period

Average effective induced holding period return (%)

�25.2 �19.3 �13.2 �6.8 0 7.1 14.5 22.3 30.4

Three factors OLS 98.0 86.8 38.0 3.6 2.4 32.0 84.8 99.6 99.6

WLS 100.0 97.2 65.2 10.0 1.2* 36.0 91.6 100.0 100.0

Four factors OLS 69.2 22.0 1.6 6.4 55.2* 94.0 99.6 100.0 100.0

WLS 92.0 38.0 4.0 10.4 75.6* 99.6 100.0 100.0 100.0

Panel C: 5-year holding period

Average effective induced holding period return (%)

�31.1 �23.9 �16.3 �8.3 0 8.7 17.9 27.4 37.5

Three factors OLS 64.8 31.2 10.0 0.8 4.0 27.6 62.4 90.8 99.6

WLS 94.4 58.4 14.8 0.4 4.0 36.0 81.2 99.2 100.0

Four factors OLS 12.4 1.6 5.2 32.8 70.8* 89.2 98.8 100.0 100.0

WLS 14.0 1.2 14.8 62.4 94.0* 100.0 100.0 100.0 100.0

This table reports rejection frequency in testing the null hypothesis that the intercept in the

regression of monthly calendar-time portfolio returns is zero, in samples of 1,000 firms. Both
the Fama-French three-factor model and the four-factor model are used in the regression. Model

parameters are estimated with both OLS and WLS estimation techniques. Rejection frequency is

equal to the proportion of 250 samples that reject the null hypothesis at 5 % significance level. We

measure rejection frequency at nine levels of induced abnormal returns. We induce abnormal

returns by adding an extra amount to monthly returns of every event firm before forming the

calendar-time portfolios. The effective induced holding period return of an event firm is equal to

the difference in the firm’s holding period return between before and after adding the monthly

extra amount. The average effective induced holding period return is computed over all event

firms in the 250 samples
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period return between before and after adding the monthly abnormal amount. The

average effective induced holding period return is computed over all event firms in

the 250 samples. The average induced holding period return allows us to compare

power of the buy-and-hold benchmark approach with that of the calendar-time

portfolio approach at the scale of holding period return.

We first examine empirical size of the calendar-time portfolio approach, which is

equal to the rejection frequency when no abnormal return is induced. In Table 14.5,

the empirical size is in the column with zero induced return. It is very surprising that

when the four-factor model is used, the test has excessively high rejection frequency

at 3-year and 5-year horizons. The rejection frequency, for example, is 94.0 % at the

5-year horizon with the WLS estimation! In contrast, when the Fama-French three-

factor model is used, the empirical sizes are not significantly different from the 5 %

significance level. The evidence strongly suggests that the three-factor model is

preferred for the calendar-time portfolio approach, whereas the four-factor model

suffers from overfitting and should not be used.

Table 14.5 shows that, for a sample of 1,000 firms, the power of this approach

remains high as event horizon increases. WLS estimation does improve the power

of the procedure over the OLS, and the extent of improvement becomes greater as

holding period gets longer. By comparing Tables 14.4 and 14.5, we find that the

power of the Fama-French calendar-time approach implemented with WLS tech-

nique (i.e., FF, WLS) has almost the same power as the buy-and-hold benchmark

approach implemented with the most correlated single firm and the sign test (i.e.,

MC1, sign), at the 1-year horizon, but slightly less at the 3- and 5-year horizons.

14.5 Conclusion

Comparing the simulation results in Sect. 14.4 with those in Ang and Zhang (2004),

we find that sample size has a significant impact on the performance of tests in long-

horizon event studies. With a sample size of 1,000, a few tests perform reasonably

well, including the Fama-French calendar-time approach implemented with WLS

technique and the buy-and-hold benchmark approach implemented with the most

correlated single firm (MC1) and the sign test. In particular, they have reasonably

high power even for the long 5-year holding period. On the contrary, with a sample

size of 200, Ang and Zhang (2004) find that the power of most well-specified tests is

very low for the 5-year horizon, only in the range of 10–20 % against a high level of

induced abnormal returns, while the combination of the most correlated single firm

and the sign test stands out with a power of 41.2 %. Thus, the most correlated single

firm benchmark dominates for most practical sample sizes, and in addition, the

simplicity of the sign test is appealing.

The findings have important implications for future research. For long-horizon

event studies with a large sample, it is likely to be more fruitful to spend efforts on

understanding the characteristics of the sample firms, than on implementing

various sophisticated testing procedures. The simulation results here show that the

commonly used tests following both the Fama-French calendar-time approach and
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the buy-and-hold benchmark approach perform reasonably well. In a recent paper,

Butler and Wan (2010) reexamine the long-run underperformance of bond-issuing

firms and find that straight debt and convertible debt issuers appear to have system-

atically better liquidity than benchmark firms, and controlling for liquidity by having

an additional matching criterion eliminates the underperformance. This resonates

well with Barber and Lyon’s (1997) suggestion that “as future research in financial

economics discovers additional variables that explain the cross-sectional variation in

common stock returns, it will also be important to consider these additional variables

when matching sample firms to control firms” (pp. 370–71). One reason why the

benchmark with a single most correlated firm performs well in our simulations may

be that returns of highly correlated firms are likely to move in tandem in response to

changes in risk factors that are well known, such as the market, size, and book-to-

market ratio, but also changes in other factors, such as industry, liquidity, momen-

tum, and seasonality.

On the other hand, for long-horizon event studies with a small sample, it may be

necessary to use a wide range of tests and interpret their outcome with care. This

prompts researchers to continue searching for better test statistics. For example,

Kolari and Pynnonen (2010) find that even relatively low cross-correlation among

abnormal returns in a short event window causes serious over-rejection of the null

hypothesis. They propose both cross-correlation and volatility-adjusted as well as

cross-correlation-adjusted scaled test statistics and demonstrate that these statistics

perform well in samples of 50 firms. It is an open and interesting question

whether these statistics have high power in long-horizon event studies with

a small sample.

Appendix

This appendix includes the details on the benchmarks and the test statistics that are

used in our simulation studies. We use five benchmarks. The first benchmark is

a reference portfolio constructed on the basis of firm size and BE/ME. We follow

Lyon et al. (1999) to form 70 reference portfolios at the end of June in each

year from 1979 to 1997. At the end of June of year t, we calculate the size of

every qualified firm as price per share multiplied by shares outstanding. We sort all

NYSE firms by firm size into ten portfolios, each having the same number of firms,

and then place all AMEX/NASDAQ firms into the ten portfolios based on firm size.

Since a majority of NASDAQ firms are small, approximately 50 % of all firms fall

in the smallest size decile. To obtain portfolios with the same number of firms, we

further partition the smallest size decile into five subportfolios by firm size

without regard to listing exchange. We now have 14 size portfolios. Next, we

calculate each qualified firm’s BE/ME as the ratio of the book equity value

(COMPUSTAT data item 60) of the firm’s fiscal year ending in year t � 1 to its

market equity value at the end of December of year t � 1. We then divide each of

the 14 portfolios into five subportfolios by BE/ME and conclude the procedure

with 70 reference portfolios on the basis of size and BE/ME.
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The size and BE/ME matched reference portfolio of an event firm is taken to

be the one of the 70 reference portfolios constructed at the month of June prior to the

event month that matches the event firm in size and BE/ME. The return on a size and

BE/ME matched reference portfolio over t months is calculated as

BRSZBM
i ¼

Yt�1

t¼0

1þ
Xnt

j¼1
rjt

nt

2
4

3
5� 1, (14.5)

where month t¼ 0 is the event month, nt is the number of firms in month t, and rjt is
the monthly return of firm j in month t. We use the label “SZBM” for the benchmark

that is based on firm size and BE/ME.

The second benchmark is a reference portfolio constructed on the basis of firm size,

BE/ME, and market beta. The Fama-French three-factor model suggests that expected

stock returns are related to three factors: a market factor, a size-related factor, and a BE/

ME-related factor. Reference portfolios constructed on the basis of size and BE/ME

account for the systematic portion of expected stock returns due to the size and BE/ME

factors, but not the portion due to the market factor. Our second benchmark is based on

firm size, BE/ME, and market beta to take all three factors into account.

To build a three-factor reference portfolio for a given event firm, we first

construct the 70 size and BE/ME reference portfolios as above and identify the

one that matches the event firm. Next, we pick firms within the matched portfolio

that have returns in CRSP monthly returns database for all 24 months prior to the

event month and compute their market beta by regressing the 24 monthly returns on

the value-weighted CRSP return index. Lastly, we divide these firms that have

market beta into three portfolios by their rankings in beta and pick the one that

matches the event firm in beta as the three-factor reference portfolio. The return on

a three-factor portfolio over t months is calculated as

BRSZBMBT
i ¼

Yt�1

t¼0

1þ
Xlt

j¼1
rjt

nt

2
4

3
5� 1, (14.6)

where month t¼ 0 is the event month, nt is the number of firms in month t, and rjt is
the monthly return of firm j in month t. We use the label “SZBMBT” to indicate that

the benchmark is based on firm size, BE/ME, and market beta.

The third benchmark is a reference portfolio constructed on the basis of firm size,

BE/ME, and pre-event correlation coefficient. The rational for using pre-event

correlation coefficient as an additional dimension is that returns of highly correlated

firms are likely to move in tandem in response to not only changes in “global” risk

factors, such as the market factor, the size factor, and the BE/ME factor in the Fama-

French model, but also changes in other “local” factors, such as the industry factor,

the seasonal factor, liquidity factor, and the momentum factor. Over a long time

period following an event, both global and local factors experience changes that

affect stock returns. It is reasonable to expect more correlated stocks would be
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affected by these factors similarly and should have resulting stock return patterns

that are closer to each other. Therefore, returns of a reference portfolio on the basis

of pre-event size, BE/ME, and pre-event correlation coefficient are likely to

be better estimate of the status quo (i.e., what if there was no event) return of

an event firm.

To build a reference portfolio on the basis of size, BE/ME, and pre-event

correlation coefficient, we first construct the same 70 size and BE/ME reference

portfolios as above and identify the combination that matches the event firm. Next,

we pick firms within the matched size and BE/ME reference portfolio that have

returns in CRSP monthly returns database for all 24 months prior to the event month

and compute their correlation coefficients with the event firm over the pre-event

24 months. Lastly, we choose the ten firms that have the highest pre-event

correlation coefficient with the event firm to form the reference portfolio. Return

of the portfolio over t months is calculated as

BRMC10
i ¼

X10
j¼1

Yt�1

t¼0
1þ rjt
� �� 1

10
, (14.7)

where month t ¼ 0 is the event month and rjt is the monthly return of firm j in
month t. We use the label “MC10” to indicate that the benchmark consists of the

most correlated ten firms. The benchmark return is the return of investing equally in

the ten most correlated firms over the t months beginning with the event month.

The benchmark is to be considered as a hybrid between the reference portfolio

discussed above and the matching firm approach shown below.

The fourth benchmark is a single firm matched to the event firm in size and

BE/ME. Barber and Lyon (1997) report that using a size and BE/ME matched firm

as benchmark gives measurements of long-term abnormal return that is free of the

new listing bias, the rebalancing bias, and the skewness bias documented in Kothari

and Warner (1997) and Barber and Lyon (1997). To select the size and BE/ME

matched firm, we first identify all firms that have a market equity value between

70 % and 130 % of that of the event firm and then choose the firm with BE/ME

closest to that of the event firm. The buy-and-hold return of the matched firm

is computed as in Eq. 14.2. We use the label “SZBM1” to represent the single

size and BE/ME matched firm.

The fifth and last benchmark is a single firm that has the highest pre-event correlation

coefficient with the event firm. Specifically, to select the firm, we first construct the

70 size and BE/ME reference portfolios and identify the one that matches the event firm.

Next, we pick firms within the matched size and BE/ME reference portfolio that

have returns in CRSP monthly returns database for all 24 months prior to the event

month and compute their correlation coefficients with the event firm over the pre-event

24months.We choose the firmwith the highest pre-event correlation coefficient with the

event firm as the benchmark. The buy-and-hold return of the most correlated firm

is computed as in Eq. 14.2. We use the label “MC1” to represent the most

correlated single firm.
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We apply four test statistics to test the null hypothesis of no abnormal returns:

(a) Student’s t-test, (b) Fisher’s sign test, (c) Johnson’s skewness-adjusted t-test, and
(d) bootstrapped Johnson’s t-test.
(a) Student’s t-test

Given the long-term buy-and-hold abnormal returns for a sample of n event

firms, we compute Student’s t-statistic as follows:

t ¼ AR

s ARð Þ= ffiffiffi
n

p , (14.8)

where AR is the sample mean and s(AR) the sample standard deviation of the

given sample of abnormal returns. The Student’s t-statistic tests the null

hypothesis that the population mean of long-term buy-and-hold abnormal

returns is equal to zero. The usual assumption for applying the Student’s

t-statistic is that abnormal returns are mutually independent and follow the

same normal distribution.

(b) Fisher’s sign test

To test the null hypothesis that the population median of long-term buy-and-

hold abnormal returns is zero, we compute Fisher’s sign test statistic as follows:

B ¼
Xn
i¼1

I ARi > 0ð Þ, (14.9)

where I(ARi > 0) equals 1 if the abnormal return on the ith firm is greater than

zero and 0 otherwise. At the chosen significance level of a, the null hypothesis
is rejected in favor of the alternative of nonzero median if B � b(a/2, n, 0.5) or
B < [n � b(a/2, n, 0.5)], or in favor of positive median if B � b(a, n, 0.5), or in
favor of negative median if B < [n � b(a, n, 0.5)]. The constant b(a, n, 0.5) is
the upper a percentile point of the binomial distribution with sample size n and

success probability of 0.5. The usual assumption for applying the sign test is

that abnormal returns are mutually independent and follow the same continuous

distribution. Note that application of the sign test does not require the popula-

tion distribution to be symmetric. When the population distribution is symmet-

ric, the population mean equals the population median, and the sign test then

indicates the significance of the population mean (see Hollander and Wolfe

2000, Chap. 3).

(c) Johnson’s skewness-adjusted t-test
Johnson (1978) developed the following skewness-adjusted t-test to correct the
misspecification of Student’s t-test caused by the skewness of the population

distribution. Johnson’s test statistic is computed as follows:

J ¼ tþ 1

3
ffiffiffi
n

p t2gþ 1

6
ffiffiffi
n

p g, (14.10)

where t is Student’s t-statistic given in Eq. 14.8 and g is an estimate of the

coefficient of skewness given by g ¼
Xn
i¼1

ARi � AR
� �3

=s ARð Þ3n . Johnson’s
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t-test is applied to test the null hypothesis of zero mean under the assumption

that abnormal returns are mutually independent and follow the same continuous

distribution. At the chosen significance level of a, the null hypothesis is rejected
in favor of the alternative of nonzero mean if J > t(a/2, u) or J < � t(a/2, u),
or in favor of positive mean if J > t(a, u), or in favor of negative mean if

J < �t(a, u). The constant t(a, u) is the upper a percentile point of the Student’s
t distribution with the degrees of freedom u ¼ n � 1.

(d) Bootstrapped Johnson’s skewness-adjusted t-test
Sutton (1992) proposes to apply Johnson’s t-test with a computer-intensive

bootstrap resampling technique when the population skewness is severe and the

sample size is small. He demonstrates it by an extensive Monte Carlo study that

the bootstrapped Johnson’s t-test reduces both type I and type II errors com-

pared to Johnson’s t-test. Lyon et al. (1999) advocate the bootstrapped

Johnson’s t-test in that long-term buy-and-hold abnormal returns are highly

skewed when buy-and-hold reference portfolios are used as benchmarks. They

report that the bootstrapped Johnson’s t-test is well specified and has consider-

able power in testing abnormal returns at the 1-year horizon. In this paper, we

document its power at 3- and 5-year horizons.

We apply the bootstrapped Johnson’s t-test as follows. From the given

sample of n event firms, we draw m firms randomly with replacement counted

as one resample until we have 250 resamples. We calculate Johnson’s test

statistic as in Eq. 14.10 for each resample and end up with 250 J values, labeled
as J1, � � �, J250. Let J0 denotes the J value of the original sample. To test the null

hypothesis of zero mean at the significance level of a, we first determine two

critical values, C1 and C2, such that the percentage of J values less than C1

equals a/2 and the percentage of J values greater than c2 equals a/2, and then

reject the null hypothesis if J0 < C1 or J0 > C2. We follow Lyon et al. (1999) to

apply the bootstrapped Johnson’s t-test with m ¼ 50.9
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We suggest that an unexpected volatility shock is an important risk factor to

induce the intertemporal relation, and the conflicting findings on the relation

could be attributable to an omitting variable bias resulting from ignoring the

effect of an unexpected volatility shock on the relation. With the effect of an

unexpected volatility shock incorporated in estimation, we find a strong positive

K. Nam (*) • J. Krausz

Yeshiva University, New York, NY, USA

e-mail: knam@yu.edu; krausz@yu.edu

A.C. Arize

Texas A & M University-Commerce, Commerce, TX, USA

e-mail: chuck.arize@tamuc.edu

C.-F. Lee, J. Lee (eds.), Handbook of Financial Econometrics and Statistics,
DOI 10.1007/978-1-4614-7750-1_15,
# Springer Science+Business Media New York 2015

413

mailto:knam@yu.edu
mailto:krausz@yu.edu
mailto:chuck.arize@tamuc.edu


intertemporal relation for the US monthly excess returns for 1926:12–2008:12.

We reexamine the relation for the sample period studied by Glosten, Jagannathan,

and Runkle (Journal of Finance 48, 1779–1801, 1993) and find that their sample

period is indeed characterized by a positive (negative) relation under a positive

(negative) volatility shock with the effect of a volatility shock incorporated in

estimation. We also find a significant link between the asymmetric mean reversion

and the intertemporal relation in that the quicker reversion of negative returns is

attributed to the negative intertemporal relation under a prior negative return shock.

For estimations we employ the ANST-GARCH model that is capable of

capturing the asymmetric volatility effect of a positive and negative return

shock. The key feature of the model is the regime-shift mechanism that allows

a smooth, flexible transition of the conditional volatility between different states

of volatility persistence. The regime-switching mechanism is governed by

a logistic transition function that changes values depending on the level of the

previous return shock. With a negative (positive) return shock, the conditional

variance process is described as a high (low)-persistence-in-volatility regime.

The ANST-GARCH model describes the heteroskedastic return dynamics more

accurately and generates better volatility forecasts.

Keywords

Intertemporal risk-return relation • Unexpected volatility shocks • Time-varying

rational expectation hypothesis • Stock market overreaction • Expected market

risk premium • Volatility feedback effect • Asymmetric mean reversion •

Asymmetric volatility response • Time-varying volatility • Volatility regime

switching • ANST-GARCH model

15.1 Introduction

The trade-off between risk and return is a core tenet in financial economics.

In particular, the intertemporal risk-return relation is a key element to explain the

predictable variation of expected asset returns.1 Despite its importance in asset

pricing, there has been a long-standing debate on the empirical sign of the

intertemporal relation, with findings that are mixed and inconclusive.

Criticisms of the mixed results often refer to a lack of conditional information. If

the predetermined conditional information set does not contain an important vari-

able that affects the risk-return trade-off, the econometric modeling of market

expectations suffers from the model misspecification problem and leads to

a wrong conclusion on the empirical nature of the intertemporal risk-return relation.

1Fama and French (1989) argue that systematic patterns in the predictable variations of expected

returns are consistent with the intertemporal asset pricing model by Lucas (1978) and Breeden

(1979) and the consumption smoothing idea by Modigliani and Brumberg (1955) and Friedman

(1957). Ferson and Harvey (1991) and Evans (1994) also document the relative importance of the

time-varying risk premia to the conditional betas to explain predictable variations in expected

returns.
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In this chapter, we suggest that an unexpected volatility shock is an important

risk factor to induce the intertemporal risk-return trade-off, and the conflicting

findings on the relation could be attributable to an omitting variable bias resulting

from ignoring the effect of an unexpected volatility shock on the relation. Incor-

porating the effect of an unexpected volatility shock in estimation of the relation,

we find a strong positive intertemporal relation between the expected market risk

premium and the predictable volatility for the US monthly excess returns of market

indices for the period of 1926:01–2008:12.

Conventional belief about the intertemporal relation is that a positive risk-return

relation is consistent with the time-varying rational expectation hypothesis in the

sense that a substantial amount of predictable variations of the expected risk premium

is induced by the risk-averse investors’ revision of their expectations in responding to

changing volatility. For example, Pindyck (1984) empirically shows that much of the

decline in stock prices during the 1970s in the US stock market is attributable to the

upward shift in risk premium arising from high stock market volatility.2 Studies that

support a positive relation include French et al. (1987), Fama and French (1988),

Ball and Kothari (1989), Turner et al. (1989), Harvey (1989), Cecchetti et al. (1990),

Haugen et al. (1991), Campbell and Hentschel (1992), Scruggs (1998), Kim

et al. (2001), Ghysel et al. (2005), Ludvigson and Ng (2007), Pastor et al. (2008),

Bali (2008), Darrat et al. (2011), and Nyberga (2012).

Although a positive intertemporal relation is consistent with Merton’s (1980)

dynamic CAPM, there is another side to the argument that the equilibrium asset

pricing does not necessarily imply a positive relation. Abel (1988) suggests that

a positive risk-return relation is consistent with the general equilibrium model only

when the coefficient of relative risk aversion is less than one. Barky (1989) suggests

that the directional effect of an increase in riskiness on stock prices depends on the

curvature of the utility function. Showing evidence of a strong negative relation for

their sample period, Glosten et al. (hereinafter GJR) (1993) suggest that both

positive and negative intertemporal relations are consistent with the equilibrium

asset pricing theory.3 Among others, Campbell (1987), Pagan and Hong (1989),

Breen et al. (1989), Nelson (1991), Backus and Gregory (1993), Harvey (2001), and

Ang et al. (2006) support a negative intertemporal relation.4

2He suggested that a substantial portion of time variation in the expected risk premium is

associated with time-varying risk factors in investment opportunities.
3They argue that investors may not require a large premium for bearing risk, but rather may reduce

the risk premium when they perceive exceptionally optimistic expectations on the future perfor-

mance of stock prices.
4Brandt and Kang (2004) find that the conditional mean and volatility are negatively correlated

contemporaneously but positively correlated unconditionally due to the positive lead-lag relation

between the two moments of stock returns. Poterba and Summers (1986) suggested that, due to the

low level of volatility persistence, the volatility effect on the expected risk premium dissipates so

quickly that it cannot have a major effect on stock price movements. Note that there are some

studies that report weak evidence of the intertemporal relation. See Baillie and DeGennaro (1990),

Whitelaw (1994, 2000), Boudoukh et al. (1997), Yu and Yuan (2011), and M€uller et al. (2011).
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A price shock generates two sources of forecasting errors: a return forecasting

error and a volatility forecasting error. Unlike a return forecasting error, the

unanticipated volatility shock has not been paid much attention by the literature.

We refer the volatility forecasting error to as an unexpected volatility shock. An

unexpected volatility shock is indeed an important risk factor to affect investors’

pricing behavior in that rational risk-averse investors revise their expectations

in responding not only to an underlying volatility but also to an unexpected

volatility shock. This implies that the intertemporal behavior of the expected

market risk premium is driven by both the predictable volatility and the unexpected

volatility change.

While the underlying return volatility has been widely examined by many

studies, the impact of an unexpected volatility shock has not been given much

attention by the literature. Almost all of the previous empirical studies on this

topic completely ignore the effect of an unexpected volatility shock on the

relation, so that their empirical results reflect only a partial intertemporal

risk-return relation. Thus, considering an unexpected volatility shock as the

conditional information in estimation, we reexamine the nature of the

intertemporal relation.

Especially, we examine an asymmetrical effect of a positive and

negative unexpected volatility shock on the relation. We conjecture that

a higher volatility level than predicted would increase the expected risk premium

and induce a stronger positive intertemporal relation. We define a positive

(negative) unexpected volatility shock as the case where actual market volatility

is higher (lower) than expected. Our estimation results show that a positive

unexpected volatility shock (the case in which the actual volatility is higher than

expected) causes a stronger positive intertemporal relation than does a negative

unexpected volatility shock (the case in which the actual volatility is lower than

expected).

The effect of an unexpected volatility shock considered in this chapter

is different from the volatility feedback effect proposed by Campbell and

Hentschel (1992). While the volatility feedback effect focuses on the contempo-
raneous effect of concurrent volatility shocks on the expected returns,

our volatility shock effect implies the consequence of a prior unexpected

volatility shock on the intertemporal relation. However, the estimation

of their contemporaneous volatility feedback effect is subject to the endogeneity

problem, as it is theoretically impossible to obtain the concurrent

volatility forecasting error due to an unavailability of the current volatility

information.5

5To avoid the endogeneity problem, French et al. (1987) examined the volatility feedback effect

using ex post unexpected volatility changes. They found a strong negative relation between

unexpected returns and ex post unexpected volatility changes and interpreted it as evidence

supporting a positive intertemporal relation.
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15.2 Theoretical Models

Merton (1973) suggests the intertemporal risk-return relation as a function of stock

market volatility, which can be specified in the following general form:

E Rmt � rf t Ot�1j Þ ¼ f spmt
� �

, p ¼ 1, 2,
�

(15.1)

Where E(�) is the expectation operator, E(Rmt�rft|Ot�1) is the

time-varying expected market risk premium conditional on the information set

Ot�1, Rmt is the return on a stock market index portfolio, and rft is the risk-free

interest rate. The market volatility is represented by either smt or smt
2 , where

smt
2 ¼ Et�1[(Rmt � rft)� Εt�1(Rmt � rft)]

2. Although
@E Rmt�rf tjOt�1ð Þ

@s2mt
> 0 is consistent

with the equilibrium asset pricing theory, there has been a long-standing

controversy in the sign of the relation.

The intertemporal relation is driven not only by predictable volatility but also by

an unexpected volatility change. We thus consider the intertemporal relation in the

following form:

E Rmt � rf tjOt�1ð Þ ¼ f 1 ŝ2
mt

� �þ f 2 e2mt�1 � ŝ2
mt�1

� �
, (15.2)

where e2mt�1 and ŝ2
mt�1 are the actual realized volatility series and the predicted

volatility series, respectively, such that e2mt�1 � ŝ2
mt�1 represents a prior unexpected

volatility shock. Many studies employ the GARCH models to conditionally

estimate the predictable volatility series ŝ2
mt . Equation 15.2 implies that

@E Rmt�rf tjOt�1ð Þ
@s2mt

consists of two components:
@f 1
@ŝ2

mt

and
@f 2

@ e2
mt�1

�ŝ2
mt�1ð Þ . While the first

term
@f 1
@ŝ2

mt

measures the effect of predictable market volatility on the relation, the

second term
@f 2

@ e2
mt�1

�ŝ2
mt�1ð Þ captures the effects of an unexpected volatility shock on

the intertemporal relation. However, most of the previous empirical studies

on this topic completely ignore the second term and focus only on the first

term. Consequently, their empirical results show only a partial intertemporal

relation.

Thus, we examine the empirical nature of the full intertemporal relation by

considering not only the predictable conditional volatility but also the effect of an

unexpected volatility shock on the relation. Especially, we define an unexpected

volatility shock in two separate cases of a positive and negative unexpected

volatility shock to examine an asymmetrical effect of a positive and negative

unexpected shock on the relation, if any. A positive (negative) unexpected volatility

shock is denoted as e2mt�1 > ŝ2
mt�1 (e

2
mt�1 < ŝ2

mt�1), implying that the actual market

volatility is higher (lower) than the predicted conditional market volatility. We then

examine the sign of intertemporal relation under each case of e2mt�1 > ŝ2
mt�1 and

e2mt�1 < ŝ2
mt�1, respectively.
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We specify the linear form of intertemporal relation with a dummy variable to

capture the asymmetric effect of a positive and negative unexpected volatility shock

on the relation

Rmt � rf t ¼ aþ l1ŝmt þ l2ŝmt � dt þ emt, (15.3)

where emt is a series of white noise innovations, and ŝmt is the conditional standard
deviation of market portfolio. Note that we use ŝmt instead of ŝ2

mt as the conditional

forecasts of stock market volatility. The use of ŝmt is suggested as the slope of the

capital market line by Merton (1980). Also, in estimation, using ŝmt is expected to

yield an improvement in the statistical efficiency, mainly due to a reduction in the

mean square error of the regression. dt is the dummy variable for a positive or

negative unexpected volatility shock. It takes the value 1 with a prior unexpected

positive volatility shock (i.e., e2mt�1 > ŝ2
mt�1 ) and 0 otherwise. The intertemporal

relation is thus measured by l1 + l2 when e2mt�1 > ŝ2
mt�1 with dt ¼ 1 or by l1

otherwise with dt ¼ 0. The asymmetrical effect of a positive and negative unex-

pected volatility shock on the intertemporal relation, if any, is captured by l2.
Specifically, l2 > 0 (or l1 + l2 > l1) implies that a positive volatility shock has

a positive impact on the intertemporal relation.

15.3 Empirical Models

15.3.1 Asymmetric Nonlinear Smooth Transition GARCH Model

To generate the forecast of time-varying market volatility, we employ the asym-

metric nonlinear smooth transition (ANST) GARCH model that is capable of

capturing the asymmetric volatility effect of a positive and negative return shock.

The key feature of the model is the regime-shift mechanism that allows a smooth,

flexible transition of volatility between different states of volatility persistence. For

monthly excess return series rt, we specify

ht ¼ a0 þ a1e2t�1 þ a2ht�1

� �þ b0 þ b1e2t�1 þ b2ht�1

� �
F et�1ð Þ, (15.4)

whereF(et�1)¼ {1 + exp[�g(et�1)]}
� 1 and et¼ rt�E(rt|Ot�1)with et|Ot�1�N(0, ht).

Given et ¼ vt �
ffiffiffiffi
ht

p
, the normalized residuals are distributed as vt�iidN 0; 1ð Þ . The

logistic transition function F(et�1) is a smooth and continuous function of et–1 and
the speed parameter g and takes a value between 0 and 1: 0 < F(et�1) < 0.5 for

et�1< 0, 0.5< F(et�1)< 1 for et � 1> 0, and F(et�1)¼ 0.5 for et�1¼ 0. The volatility

persistence ismeasured by (a1 + a2) + (b1 + b2)F, and the conditionb1 + b2< 0 captures

the excess volatility of a negative return shock. For any negative return shock that

causes 0 < F(et�1) < 0.5, the current volatility is described as a high-persistence-in-
volatility regime. For any positive return shock causing 0.5< F(et�1)< 1, the current
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volatility is described as a low-persistence-in-volatility regime. When et � 1 ¼ 0,

F(et�1)¼ 0.5, which implies that the current volatility ht is halfway between the upper
and lower volatility regimes. g governs the speed of transition between volatility

regimes. When g approaches 1, our model with b0 ¼ b2 ¼ 0 degenerates into the

GJR model.

Note that the volatility transition mechanism in GARCH models has

been applied in the several models, such as the modified GARCH model by

Glosten et al. (1993), the smooth transition GARCH model by Gonzalez-Rivera

(1998), the SVSARCH (sign- and volatility-switching ARCH) model by Fornari

and Mele (1997), and the MSVARCH (Markov switching volatility ARCH) model

by Turner et al. (1989) and Hamilton and Susmel (1994). For more details, see

Harvey (1993), Lutkepol (1993), Hamilton (1994), Campbell et al. (1997),

Gourieroux and Monfort (1997), and Rothman (1999).

15.3.2 Empirical Models for the Intertemporal Relation

We examine a simple linear form of the intertemporal relation in the following

model for monthly excess return series rt:
Model 1:

rt ¼ mþ frt�1 þ d
ffiffiffiffi
ht

p
þ et

ht ¼ a0 þ a1e2t�1 þ a2ht�1

� �þ b0 þ b1e2t�1 þ b2ht�1

� �
F et�1ð Þ,

(15.5)

where F(et�1) ¼ {1 + exp[�g(et�1)]}
� 1. We include the first-order autoregressive

term in the mean equation to capture the serial dependence in returns. The

intertemporal relation is measured by the coefficient d.
Model 1, however, ignores the asymmetric effect of an unexpected volatility shock

on the intertemporal relation; hence, it suffers from the omitting variable problem. The

estimate of d in Model 1 measures only a partial intertemporal relation. To measure

the full intertemporal relation, we present Model 2 in the following specification:

Model 2:

rt ¼ mþ frt�1 þ dþ tMtÞ½ �
ffiffiffiffi
ht

p
þ et

ht ¼ a0 þ a1e2t�1 þ a2ht�1

� �þ b0 þ b1e2t�1 þ b2ht�1

� �
F et�1ð Þ,

(15.6)

where Mt is a dummy variable to capture the asymmetrical effect of a positive

and negative unexpected volatility shock on the intertemporal relation. We define

ê2t�1 � ht�1 > 0 � ê2t�1 � ht�1 < 0
� �

as a positive (negative) unexpected volatility

shock, which implies that actual volatility is greater (less) than expected. It thus

takes a value 1 if ê2t�1 > ht�1 or 0 otherwise.

The sign of the intertemporal relation is measured by the sign of d + t under

a positive volatility shock (̂e2t�1 > ht�1), while it is measured by the sign of d under a
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negative volatility shock (ê2t�1 < ht�1). Thus, t captures an asymmetrical effect of

a positive and negative volatility shock on the relation. We put an empirical focus

on t > 0 (or d + t > d), which indicates a positive impact of a positive unexpected

volatility shock on the intertemporal relation.6

We specify Model 3 to examine whether allowing the asymmetry for the

constant term affects the estimation of the intertemporal relation. A possibility is

that the asymmetrical effect of a positive and negative volatility shock on the

relation might disappear.

Model 3:

rt ¼ m1 þ m2Mtð Þ þ frt�1 þ dþ tMtð Þ
ffiffiffiffi
ht

p
þ et

ht ¼ a0 þ a1e2t�1 þ a2ht�1

� �þ b0 þ b1e2t�1 þ b2ht�1

� �
F et�1ð Þ,

(15.7)

where m2Mt captures the asymmetric effect of a prior positive and negative

volatility shock on the level of the conditional mean return. In Model 3, we focus

on whether the estimated value of t is still statistically significant even with

a presence of m2Mt.

15.4 Empirical Results

15.4.1 The Data

We employ the excess market returns as the expected market risk premiums.

To generate the excess returns, we use the monthly nominal returns of the value-

and equal-weighted market portfolio index of the NYSE, AMEX, and NASDAQ

from the CRSP data files from 1926:01 to 2008:12. The monthly excess return series

is constructed by subtracting the 1-month US T-bill returns reported by Ibbotson

Associates from the monthly nominal index returns. The excess return series is

computed as percentage returns. We employ three sample periods: the full period

(1926:01–2008:12), the pre-87 Crash period (1926:01–1987:09), and the GJR period

(1951:04–1989:12). Table 15.1 reports the summary statistics for the data. The

descriptive statistics indicate that both the nominal and the excess returns series of

the two market indexes exhibit significant excess kurtosis and positive first-order

autocorrelation, characterizing the nonnormality of the short-horizon stock returns.

15.4.2 Estimation Results, Interpretations, and Diagnostics

We employ the maximum likelihood method with the analytical derivatives of each

parameter provided in the Gauss code. All the statistical inferences are based on

the Bollerslev-Wooldrige (1992) robust standard errors. Estimation results of

6Note that t ¼ 0 supports the volatility irrelevance argument by Poterba and Summers (1986).
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Model 1 for the full period (1926:01–2008:12) and the pre-87 Crash period

(1926:01–1987:09) are reported in Table 15.2. Model 1 examines the sign of the

simple linear relation between the expected risk premium and the predictable

market volatility. Estimation results for Model 1 show that the intertemporal

relation in a simple linear form is significantly positive for both the full sample

and subsample periods. The estimated value of d is 0.077 (0.080 for the pre-87

Crash period) and statistically significant at the 1 % level for both sample periods.

With regard to the conditional variance equation, the asymmetric

volatility response of a positive and negative return shock is well captured by

b1 + b2 < 0 with a statistical significance. The average estimated value of ht for
the full sample period under a lower volatility regime is 36.37, while it is 24.00

under a higher volatility regime. Also, the estimation results show a high estimated

value of the transition parameter g, which indicates that the transition between

volatility regimes occurs very quickly. This implies that the volatility regime is

divided into only two extreme regimes: the upper and lower volatility regimes. The

upper (lower) regime is induced by any negative (positive) return shock and

exhibits a high volatility persistence (a low volatility persistence) in the conditional

volatility process.

Estimation results of Model 2 are reported in Table 15.2. There are several

notable findings. First, a positive volatility shock has a positive impact on the

intertemporal relation. The results show that the estimated value of t is significantly
positive (0.052 for the full period and 0.041 the pre-87 Crash period) and statisti-

cally significant at the 1 % level for both sample periods. This implies that an

unexpected volatility shock is priced such that, for a positive volatility shock, the

expected risk premium for the full sample period increases by 5.2 % (4.1 % for the

pre-87 Crash period) of the predicted conditional volatility
ffiffiffiffi
ht

p
. Second, the results

show that the intertemporal coefficients are all positive for both sample periods.

The estimated value for the full period d + t¼ 0.0878 is (0.093 for the pre-87 Crash

period) under prior positive volatility shock, while it is d¼ 0.035 for the full period

and 0.052 for the pre-87 Crash period under prior negative volatility shock. The

results indicate that the sign of the intertemporal relation is indeed positive when

the effect of an unexpected volatility shock is incorporated in estimation. Third, the

estimation result of t > 0 indicates that the slope of the capital market line is

relatively steeper under a positive volatility shock than under a negative volatility

shock. This implies that a positive volatility shock increases the degree of risk

aversion.

Estimation results of Model 3 are also reported in Table 15.2. In Model 3, we

examine the possibility that the asymmetrical effect of a positive and

negative volatility shock may disappear under the presence of asymmetry in the

constant term allowed in the conditional mean equation. The estimation

results show a positive value of m2 for both periods, indicating that a prior

positive volatility shock raises the conditional mean returns. This asymmetrical

effect of a prior volatility shock on the constant term is more profound for the

pre-87 Crash period (m2 is 0.351 and statistically significant at the 1 % level).

With respect to the intertemporal relation, t is still positive and statistically
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significant at the 1 % level for both periods (t1 is 0.054 for the full period and 0.048
for the pre-87 Crash period). This implies that, even with the asymmetry allowed in

the constant term, there still exists a significant asymmetrical effect of

a positive and negative volatility shock on the intertemporal relation. Also, d is

still significantly positive for both periods, confirming the positive full

intertemporal relation.

Table 15.3 reports the summary of diagnostics for the estimation results, such as

skewness, kurtosis, the Jarque-Bera normality test, and the Ljung-Box Q test on

the normalized and the squared normalized residuals. The Ljung-Box Q statistics

on the normalized residuals checks serial correlation in the residuals. Rejection

of the null of no autocorrelation up to a certain lag length indicates that either

the dynamics of the conditional mean or the lag structure of the conditional

variance process is not well specified or that both equations are not well specified

by the model. The Ljung-Box statistics on the squared normalized residuals

ascertains if the serial dependence in the conditional variance is well captured by

the equation.

We also perform the negative sign bias test (NSBT) suggested by Engle and Ng

(1993) to examine the ability of the model to capture the so-called leverage effect

of a negative return shock on the conditional variance process. The negative sign

bias test shows insignificant t-values for all estimations and indicates that the

asymmetric volatility response to a positive and negative return shock is well

captured by the ANST-GARCH model.7 The Ljung-Box Q(10) test indicates that
the serial dependence of the conditional mean and variance is well captured by

models 1–3.

15.4.3 GJR Sample Period

Using modified (E)GARCH-M models, Glosten et al. (1993) report a strong

negative intertemporal relation for their (GJR) sample period of

1951:04–1989:12. However, they do not consider the effect of an unanticipated

volatility shock on the estimation of the relation, so that their results reflect only

a partial intertemporal relation. We thus evaluate the full intertemporal relation for

their sample period by incorporating the effect of an unexpected volatility shock in

the estimation of the relation. Allowing a time dummy in the conditional mean

equation to capture the characteristic of the GJR sample period, we specify Model

5 as follows:

7The negative sign bias test is performed with the regression equation vt
2¼ a + bSt � 1

� et � 1 + p0zt
* +

et, where v
2
t ¼ et=

ffiffiffiffi
ht

p� �2
. St � 1

� ¼ 1 if et � 1 < 0, and St � 1
� ¼ 0 otherwise. Also, z�t ¼ eh Cð Þ=ht,

where eh Cð Þ ¼ @ht=@C evaluated at the values of maximum likelihood estimates of parameter C.

The test statistic of the NSBT is defined as the t-ratio of the coefficient b in the regression.

A statistically significant t-value implies the failure of the model to absorb the effect of sign bias

and indicates that the volatility model considered is misspecified.
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Model 4 (Modified Model 1 for GJR Period):

rt ¼ mþ frt�1 þ dþ dGGt

� � ffiffiffiffi
ht

p þ et
ht ¼ a0 þ a1e2t�1 þ a2ht�1

� �þ yrf t
þ b0 þ b1e2t�1 þ b2ht�1

� �
F et�1ð Þ,

(15.8)

where Gt is a dummy variable that takes a value 1 for the GJR sample period or

0 otherwise. The coefficient dG captures the differential effect of the GJR period, if

any, on the intertemporal relation, while d measures the relation for the full period.

The negative intertemporal relation reported by Glosten et al. (1993) can be

confirmed by d + dG < 0. One of the important features of the above modified

Model 1 is its capacity to distinguish the relation for the GJR sample period from

that for the entire sample period. We also estimate the same model with and without

the 1-month T-bill returns rft included in the conditional variance equation.8

Estimation results of Model 4 are reported in Table 15.4. A notable finding is

that the estimated value of dG is strongly negative (–0.103 with rft and –0.092

without rft) and highly significant with d + dG < 0. This result implies that,

comparing to the full period, the GJR sample period is especially characterized

by a strong negative intertemporal relation, and this result is consistent with that of

Glosten et al. (1993).

As mentioned earlier, however, this result does not consider the effect of an

unexpected volatility shock on the relation, reflecting only a simple partial

intertemporal relation. In order to examine the full relation for the GJR sample

period, we specify Model 5 as follows:

Model 5 (Modified Model 2 for GJR Period):

rt ¼ mþ frt�1 þ dþ tMtð Þ þ dG þ tGMt

� �
Gt

� � ffiffiffiffi
ht

p
þ et

ht ¼ a0 þ a1e2t�1 þ a2ht�1

� �þ yrf t þ b0 þ b1e2t�1 þ b2ht�1

� �
F et�1ð Þ,

(15.9)

where Gt is a time dummy variable that takes the value 1 for the GJR period

or 0 otherwise. The full intertemporal relation for the GJR period is measured by

d + dG + t + tG under a positive volatility shock and by d + dG under a negative

volatility shock, such that the differential effect of the GJR period on the full

relation is captured by dG + tG. We also estimate the same model with and without

rft included in the conditional variance equation.

Estimation results of Model 5 for the GJR sample period are reported

in Table 15.4. It shows that the estimated value of all four important parameters

(d, t, dG, and tG) capturing the intertemporal relation are statistically significant

at the 1 % level. There are several notable findings. First, the estimation result of

8Several studies show that the estimation results are sensitive to the inclusion of 1-month T-bill

return in the conditional variance equation. See Campbell (1987), Glosten et al. (1993), and

Scruggs (1998).
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dG + tG ¼ � 0.088 (–0.065 without rft) confirms that the GJR period is

indeed characterized by a significant negative relation. Second, the estimation

result of t + tG ¼ 0.113 (0.137 without rft) implies that, even for the GJR

sample period, there still exists a significant positive effect of a positive

volatility shock on the full intertemporal relation. Third, the estimation results of

d + dG + t + tG ¼ 0.061 (0.081 without rft) and d + dG ¼ � 0.052 (–0.056

without rft) imply that the GJR sample period exhibits a positive intertemporal

relation under a positive volatility shock and a negative relation under a negative

volatility shock. Note the above results are not sensitive to the inclusion of rft in
estimation.

Diagnostic tests in Table 15.5 indicate that all the estimations pass the

Ljung-Box Q(10) test on the normalized and squared normalized residuals. This

result implies that there is no serial dependence remaining in the conditional mean

and variance processes. The negative sign bias test shows insignificant t-values for
all estimations, indicating that the estimated conditional variance process well

captures the excess volatility response caused by a negative return shock.

Table 15.4 Estimation results of models 4 and 5 for the GJR sample period

Coeff.

Model 4 for GJR sample period Model 5 for GJR sample period

With rf Without rf With rf Without rf

m 0.546 (9.944) 0.443 (9.288) 0.531 (6.136) 0.543 (5.166)

f 0.056 (5.930) 0.072 (7.909) 0.051 (5.143) 0.051 (5.394)

d 0.059 (5.925) 0.080 (6.392) 0.103 (4.164) 0.100 (3.678)

t 0.046 (4.312) 0.046 (3.778)

dG �0.103 (�12.369) �0.092 (�8.882) �0.155 (�12.540) �0.156 (�11.720)

tG 0.067 (6.560) 0.091 (6.903)

a0 0.001 (0.766) 0.001 (0.581) 0.007 (0.238) 0.014 (0.202)

a1 0.110 (3.199) 0.110 (3.291) 0.104 (3.359) 0.102 (3.303)

a2 1.060 (25.142) 1.072 (28.727) 1.061 (26.070) 1.071 (29.469)

b0 2.482 (2.564) 3.007 (3.464) 2.270 (2.538) 2.689 (2.971)

b1 �0.029 (�0.457) �0.042 (�0.795) �0.019 (�0.337) �0.021 (�0.399)

b2 �0.412 (�4.672) �0.428 (�4.883) �0.404 (�4.420) �0.416 (�4.840)

y 0.885 (1.065) 0.901 (1.128)

g 121.735 (1.944) 217.354 (2.441) 287.546 (2.128) 254.235 (1.963)

The GJR sample period (1951:04–1989:12) is evaluated by incorporating the period as a dummy

variable in the mean equation, with the 1-month T-bill rates included or excluded in the condi-

tional variance equation. The modified models to estimate the GJR sample period are as follows

Model 4 (modified Model 1 for GJR period): rt ¼ mþ frt�1 þ dþ dGGt

� � ffiffiffiffi
ht

p þ et
Model 5 (modified Model 2 for GJR period): rt ¼ mþ frt�1 þ dþ tMtð Þ þ dG þ tGMt

� �
Gt

� � ffiffiffiffi
ht

p þ et
where the indicator function Gt is a dummy variable for the GJR sample period, and rft is
the yield on 1-month T-bill from Ibbotson Associates. The function Mt is specified to capture

the asymmetric effect of an unexpected volatility shock on the relation, such that Mt ¼ 1 if ê2t�1

> ht�1 ; otherwise, Mt ¼ 0. The conditional variance equation for the two estimation

models is specified as ht ¼ [a0 + a1et�1
2 + a2ht�1] + [b0 + b1et�1

2 + b2ht�1]F(et�1), where

F(et�1)¼ {1 + exp[�g(et�1)]}
� 1. The values in parentheses are the Bollerslev-Wooldridge robust

t-statistics
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15.4.4 The Link Between Asymmetric Mean Reversion and
Intertemporal Relation

It has been known that the expected market returns exhibit an asymmetric mean-

reverting pattern that negative returns are more likely to revert to positive returns

than positive returns reverting to negative returns. However, the quicker reversion

of negative returns is hardly justified under a positive intertemporal relation. Under

a positive intertemporal relation, a negative return shock raises the risk premium to

compensate for the excess volatility, and an increase in risk premium reduces the

current stock price, which in turn reduces the concurrent stock price. Thus, if

a positive intertemporal relation is correct, a negative return should be more likely

to be accompanied by another negative return for the subsequent periods.

Nam et al. (2001) suggest that the quicker reversion of a negative return is

attributed to a reduction in the expected risk. They show that the intertemporal

relation is significantly negative under a prior negative return shock. They argue

that a negative return shock generates an optimistic expectation by investors, of

the future performance of a stock experiencing a recent price drop, thereby reducing

the expected market risk premium. As a reduction in risk premium in turn raises the

current stock price, negative returns are more likely to revert to positive returns.

While successfully explaining the link between the asymmetric mean-reverting

property and the intertemporal relation, Nam et al. (2001) do not consider the effect

of an unexpected volatility shock on the link. In this section, we investigate the

Table 15.5 Diagnostics of the models 4 and 5 for the GJR sample period

Model 4 for GJR sample period Model 5 for GJR sample period

Without rf With rf Without rf Without rf

Skewness of vt �0.636 �0.623 �0.646 �0.626

Kurtosis of vt 5.251 5.083 5.216 5.018

JB-Normality 246.664 (0.000) 217.536 (0.000) 242.89 (0.000) 208.29 (0.000)

Q(10) on vt 10.190 (0.424) 10.397 (0.406) 10.111 (0.431) 10.846 (0.370)

Q(10) on vt
2 10.514 (0.397) 10.418 (0.405) 9.7167 (0.466) 10.122 (0.430)

NSBT on ht �1.198 (0.231) �1.162 (0.246) �1.205 (0.228) �1.105 (0.269)

This table presents a summary of diagnostics on the normalized residuals and the

squared normalized residuals from the estimations. The normalized residual series is defined as

vt ¼ et=
ffiffiffiffi
ht

p
. JB-Normality refers to the Jarque-Bera normality test statistic, which is distributed as

w2 with two degrees of freedom under the null hypothesis of normally distributed residuals.

Q(10) is the Ljung-Box Q(10) test statistic for checking serial dependence in the normalized

residuals and the squared normalized residuals from the estimations. NSBT refers to the negative

sign bias test suggested by Engle and Ng (1993). It is a diagnostic test that examines the ability of

the specified model to capture the so-called leverage effect of a negative return shock on the

conditional volatility process. The test is performed with the regression equation vt
2 ¼ a +

bSt�1
� et�1 + p0zt

* + et, where v
2
t ¼ et=

ffiffiffiffi
ht

p� �2
. St�1

� ¼ 1 if et�1 < 0, and St�1
� ¼ 0 otherwise. Also,

z�t ¼ eh Cð Þ=ht , where eh Cð Þ ¼ @ht=@C , is evaluated at the values of the maximum likelihood

estimates of parameter C. The test statistic of the NSBT is defined as the t-ratio of the coefficient

b in the regression. The value in the parentheses is the p-value of the individual test statistics

considered
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impact of an unexpected volatility shock on the observed link. First, we specify the

following nonlinear autoregressive model to confirm the asymmetric mean rever-

sion of the expected market risk premium:

Model 6:

rt ¼ m1 þ m2F et�1ð Þ½ � þ f1 þ f2F et�1ð Þ½ �rt�1 þ et

ht ¼ a0 þ a1e2t�1 þ a2ht�1

� �þ b0 þ b1e2t�1 þ b2ht�1

� �
F et�1ð Þ,

(15.10)

where the asymmetry is allowed in both the conditional mean and variance, such

that the asymmetry in both processes is controlled by a prior return shock.

The return serial correlation varies between f1 and f1 + f2 depending on the

value of the transition function F(et�1). Under an extreme negative prior return

shock that causes F(et�1) ¼ 0, serial correlation is measured by f1, while it is

measured by f1 + f2 for an extreme positive return shock yielding F(et�1)¼ 1.9

A quicker reversion of a negative return is captured by f1 > 0 (or f1 + f2 > f1).

Note that the condition f1 < 0 (a negative serial correlation under et�1 < 0)

indicates a stronger reverting tendency of a negative return.

Estimation results of Model 6 are reported in Table 15.6. It shows that the

estimated value of f2 is positive and highly significant for both the full

period and the pre-87 Crash period. The measured serial correlation is negative

(f1 ¼ � 0.078 and –0.076, respectively, for the two periods) under a prior negative

return shock, while it is positive (f1 + f2 ¼ 0.056 and 0.094, respectively, for the

two periods) under a prior positive return shock. This result confirms the asymmet-

rical reverting pattern of the expected returns that a negative return reverts more

quickly, while a positive return tends to persist.

Secondly, we specify Model 7 to examine if there is a link between the

asymmetric mean reversion and the intertemporal relation.

Model 7:

rt ¼ m1 þ m2F et�1ð Þ½ � þ f1rt�1 þ d1 þ d2F et�1ð Þ½ �
ffiffiffiffi
ht

p
þ et

ht ¼ a0 þ a1e2t�1 þ a2ht�1

� �þ b0 þ b1e2t�1 þ b2ht�1

� �
F et�1ð Þ:

(15.11)

The partial intertemporal relation is measured by the estimated value of d1 under
a prior negative return shock causing F(et�1) ¼ 0, while it is measured by d1 + d2
under a prior positive return shock causing F(et�1) ¼ 1. Thus, d2 measures the

differential impact of a positive and negative return shock on the partial

intertemporal relation.

The estimation results presented in Table 15.6 show two notable findings. First,

d2 is positive and statistically significant at the 1 % level (d2 ¼ 0.258 for the full

period and 0.334 for the pre-87 Crash period). This result implies that there is

9Stationarity condition of rt is satisfied with |f1 + f2F(et � 1)| < 1, i.e., |f1| < 1 for et � 1 < 0 or

|f1 + f2| < 1 for et � 1 > 0.
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a strong asymmetry in the partial intertemporal relation under a prior positive and

negative return shock. Second, the partial intertemporal relation is indeed negative

under a prior negative return shock (d1 ¼ � 0.155 for the full period and –0.182

for the pre-87 Crash period), while it is positive under a prior positive return shock

(d1 + d2¼ 0.103 for the full period and 0.152 for the pre-87 Crash period). This result

implies that while a positive return shock complies with the conventional

positive intertemporal relation, a negative return shock indeed induces a negative

intertemporal behavior of the expected market returns. More importantly, the results

of Models 6 and 7 confirm the highly significant asymmetric link between the mean

reversion and the intertemporal relation. The quicker reversion of negative returns is

attributed to the negative intertemporal relation under a prior negative return shock.

Model 7 does not incorporate the asymmetrical impact of a positive and negative

volatility shock in the estimation of the intertemporal relation. To get empirically

more reliable results on the link between the mean reversion and the full

intertemporal relation, we propose Model 8 in the following specification.

Model 8:

rt ¼ m1 þ m2F et�1ð Þ½ � þ f1rt�1 þ d1 þ t1Mtð Þ þ d2 þ t2Mtð ÞF et�1ð Þ½ �
ffiffiffiffi
ht

p
þ et

ht ¼ a0 þ a1e2t�1 þ a2ht�1

� �þ b0 þ b1e2t�1 þ b2ht�1

� �
F et�1ð Þ,

(15.12)

where the full intertemporal relation is measured separately under a positive and

negative return shock. When a negative return shock causing F(et�1) ¼ 0 is realized,

the full intertemporal relation is measured by d1 + t1, for which t1 captures an

asymmetrical impact of a prior unexpected volatility shock on the relation. With

a prior positive return shock, the relation is measured by d1 + d2 + t1 + t2, for which
t1 + t2measures an asymmetrical effect of a prior volatility shock on the relation, if any.

The estimation results of Model 8 are reported in Table 15.6. There are several

notable findings. First, the results show that three out of the four important parameters

(d1, t1, d2, and t2) to capture the full intertemporal relation are statistically significant

at the 5 % level. Second, the result of d1 + t1¼� 0.181 (–0.220 for the pre-87 Crash

period) and d1 + d2 + t1 + t2¼ 0.020 (0.057 for the pre-87 Crash period) implies that

the full intertemporal relation is still negative (positive) under a prior negative

(positive) return shock. Third, more importantly, the results of t1 ¼ 0.079 and t1 +
t2 ¼ 0.051 (0.024 and 0.076 for the pre-87 Crash period) indicate that a positive

volatility shock has a positive impact on the intertemporal relation, regardless of the

sign of a prior return shock. This implies that a positive unexpected volatility shock

consistently induces a positive impact on the intertemporal risk-return relation.

Table 15.7 reports the results of diagnostic tests. The Ljung-Box Q(10) test

results on vt and vt
2 indicate that serial dependence is well captured by the

specified conditional mean and variance processes. The negative sign bias test

shows insignificant t-values for all estimations, confirming the capability of the

ANST-GARCH model to capture the excess volatility response caused by

a negative return shock.
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15.5 Conclusions

We suggest that the intertemporal risk-return relation is driven not only by the

underlying market volatility but also by an unexpected volatility shock. Most of the

previous literature on this topic ignores the effect of an unexpected volatility shock

on the relation. Thus, their results reflect only a partial intertemporal relation. With

the effect of an unexpected volatility shock incorporated in the estimation of the

relation, we find a strong positive intertemporal relation for the US monthly excess

returns for the period of 1926:01–2008:12.

We also reexamine the relation for the GJR sample period with the effect of

a volatility shock incorporated in estimation. The estimation results show that the

GJR sample period is indeed characterized by a strong positive (negative) relation

under a positive (negative) volatility shock. This implies that the negative relation

reported by Glosten et al. (1993) is attributed to ignoring the effect of an unexpected

volatility shock on the relation.

Lastly, we examine the observed link between the mean reversion property and

the intertemporal relation under a consideration of the impact of an unexpected

volatility shock on the link. We confirm that the quicker reversion of negative

returns is attributed to the negative intertemporal relation under a prior negative

return shock. We interpret this negative intertemporal relation as reflective of

strong optimistic expectations as perceived by investors of the future performance

of a stock experiencing a recent price drop.

Appendix 1: Method to Derive the Variance of the Parameters
with Restrictions

In estimations, we employ the parameter restrictions for the positivity of the

conditional variance process. To get the true variance of the restricted parameter,

we apply the following functional transformations:

Case 1. Logistic Function Transformation
Suppose that a parameter b̂ is restricted to a logistic function of b̂ in order to

guarantee 0 < b̂ < 1.

Hence,

b̂ ¼ f b̂
� � ¼ 1

1þ e�b̂
, (15.13)

where b̂ is the actual coefficient estimated from computation, and b̂ is the true

parameter estimate we want to transform from Eq. 15.13. Using Taylor expan-

sion, Eq. 15.13 can be expressed as

f b̂
� � ¼ f bð Þ þ f 0 bð Þ b̂ � b

� �
, (15.14)

or
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f b̂
� �� f bð Þ ¼ f 0 bð Þ b̂ � b

� �
: (15.15)

Using f bð Þ ¼ 1
1þe�b ¼ b and Eq. 15.15 can be expressed as

b̂ � b ¼ f 0 bð Þ � b̂ � b
� �

: (15.16)

Then, from Eq. 15.16 we can get var b̂
� �

as follows:

var b̂
� �

¼ E b̂ � b
� �2

¼ f 0 bð Þ½ �2 � E b̂ � b
� �2

, (15.17)

where the true value of f 0(b) is not known. We thus use the MLE of b, b̂, to get

the value of f 0(b). Then the variance of b̂ can be calculated as follows:

var b̂
� �

¼ f 0 b̂
� �� �2 � var b̂

� �
, (15.18)

where f 0 b̂
� � ¼ f b̂

� �
1� f b̂

� �� �
:

Case 2. Exponential Function Transformation
Suppose that a parameter b̂ is restricted to an exponential function of b̂ in order to
guarantee 0 < b̂ < 1. Hence,

b̂ ¼ f b̂
� � ¼ e�b̂ : (15.19)

Using Eq. 15.18,

var b̂
� �

¼ f 0 b̂
� �� �2 � var b̂

� �
, (15.20)

where f 0 b̂
� � ¼ f b̂

� �� �2 ¼ b̂
2
:

Appendix 2: News Impact Curve

We derive the functions of the news impact curve (NIC) for the ANST-GARCH and

the GJR models as follows:

ANST-GARCH (1,1) Model:

Model : ht ¼ a0 þ a1e2t�1 þ g1ht�1

� �þ b0 þ b1e2t�1 þ b2ht�1

� � � F et�1ð Þ (15.21)

NIC : ht ¼ Cþ a1 þ b1F et�1ð Þ½ �e2t�1

and
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C ¼ a0 þ b0F et�1ð Þ þ g1 þ b2F et�1ð Þ½ �s2, (15.22)

where F et�1ð Þ ¼ 1þ exp �g et�1ð Þ½ �f g�1:

GJR (1, 1) Model:

Model : ht ¼ a0 þ a1e2t�1 þ b1ht�1 þ a2e2t�1

� � � I et�1 > 0ð Þ, (15.23)

where I et�1 > 0ð Þ ¼ 1, if et�1 > 0

0, if et�1 < 0

	 

:

NIC : ht ¼ a0 þ b1s2ð Þ þ a1e2t�1, if et�1 > 0

a0 þ b1s2ð Þ þ a1 þ a2ð Þe2t�1, if et�1 < 0

	 

: (15.24)

Appendix 3: Sign Bias Tests

Based on the news impact curve, we perform three diagnostic tests for examining

the ability of a model to capture asymmetric effect of news on conditional variance:

the sign bias test (SBT), the negative sign bias test (NSBT), and the positive sign
bias test (PSBT). These tests are performed by the t-statistic on the coefficient

b under the following regression equations:

v2t ¼ aþ bS�t�1 þ b
0
z�t þ et (15.25)

v2t ¼ aþ bS�t�1et�1 þ b
0
z�t þ et (15.26)

v2t ¼ aþ bSþt�1et�1 þ b
0
z�t þ et, (15.27)

where v2t ¼ et=
ffiffiffiffi
ht

p� �2
, St�1

� ¼ 1 if et�1 < 0 and St�1
� ¼ 0 otherwise, and

St�1
+ ¼ 1 � St�1

� . z�t ¼ eh yð Þ=h�t , where eh yð Þ ¼ @ht=@y evaluated at the

values of maximum likelihood estimates of parameter y, and ht
* is the estimated

conditional variance by a model considered.
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Abstract

This study uses a novel method, the Logical Analysis of Data (LAD), to reverse

engineer and construct credit risk ratings which represent the creditworthiness of

financial institutions and countries. LAD is a data mining method based on

combinatorics, optimization, and Boolean logic that utilizes combinatorial

search techniques to discover various combinations of attribute values that are

characteristic of the positive or negative character of observations. The proposed

methodology is applicable in the general case of inferring an objective rating

system from archival data, given that the rated objects are characterized by

vectors of attributes taking numerical or ordinal values. The proposed

approaches are shown to generate transparent, consistent, self-contained, and

predictive credit risk rating models, closely approximating the risk ratings

provided by some of the major rating agencies. The scope of applicability of

the proposed method extends beyond the rating problems discussed in this study

and can be used in many other contexts where ratings are relevant.

We use multiple linear regression to derive the logical rating scores.

Keywords

Credit risk rating • Reverse engineering • Logical Analysis of Data • Combina-

torial optimization • Data mining • Creditworthiness • Financial strength •

Internal rating • Preorder • Logical rating score

16.1 Introduction

16.1.1 Importance of Credit Risk Ratings

Credit ratings published by such agencies as Moody’s, Standard & Poor’s, and Fitch

are considered important indicators for financial markets, providing critical infor-

mation about the likelihood of future default. The importance of credit ratings is

recognized by international bodies, as manifested by the Basel Capital Accord

(2001, 2006). The progressively increasing importance of credit risk ratings is

driven by the dramatic expansion of investment opportunities associated with the

globalization of the world economies. Since these opportunities are often risky, the

internationalized financial markets have to rely on agencies’ ratings for the assess-

ment of credit risk.

The importance of credit risk rating systems is manifold, as shown below:

• Credit approval: the credit risk rating plays a major role in the credit

preapproval decisions. Indeed, a binary decision model in which the credit risk

rating of the obligor is an explanatory variable is typically used to preapprove the

decision to grant or not the credit.

• Pricing: in case of loan preapproval, the credit risk rating impacts the conditions

(interest rate, covenants, collaterals, etc.) under which the final credit is granted

(Treacy and Carey 2000). The credit risk rating is also utilized in the operations

subsequent to the preapproval stage.
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• Provisioning: the credit risk rating is a variable used for calculating the expected
losses, which, in turn, are used to determine the amount of economic capital

that a bank must keep to hedge against possible defaults of its borrowers.

The expected loss of a credit facility is a function of the probability of default

of the borrower to which the credit line is granted, as well as the exposure at

default and the loss given default associated with the credit facility. Since there

is usually a mapping between credit risk rating and the borrower’s probability of

default, and provided that the rating of a borrower is a key predictor to assess the

recovery rate associated with a credit facility granted to this borrower, the

importance of the credit risk rating in calculating the amounts of economic

capital is evident.

• Moral hazard: the reliance upon an objective and accurate credit risk rating

system is a valuable tool against some moral hazard situations. Some financial

institutions do not use a credit risk rating model but instead let lending officers

assign credit ratings based on their judgment. The lending officers are in charge

of the marketing of banking services, and their performance and therefore

compensation are determined with respect to the “profitability” of the relation-

ships between the bank and its customers. Clearly, the credit risk ratings

assigned by the lending officers will affect the volume of the approved loans

and the compensation of the officer who, as a result, could have an incentive to

assign ratings in a way that is not consistent with the employer’s interests. Thus,

the use of a reliable credit risk rating system could lead to avoiding such perverse

incentive situations.

• Basel compliance: the New Basel Capital Accord (Basel II) requires banks to

implement a robust framework for the evaluation of credit risk exposures of

financial institutions and the capital requirements they must bear. This involves

the construction and the cross-validation of accurate and predictive credit risk

rating systems.

Financial institutions, while taking into account external ratings (e.g., those

provided by Fitch, Moody’s, S&P’s), have increasingly been developing efficient

and refined internal rating systems over the past years. The reasons for this trend are

multiple.

First, the work of rating agencies, providing external, public ratings, has recently

come under intense scrutiny and criticism, justified partly by the fact that some of

the largest financial collapses of the decade (Enron Corp, etc.) were not anticipated

by the ratings. At his March 2006 testimony before the Senate Banking Committee,

the president and CEO of the CFA Institute1 highlighted the conflicts of interest in

credit ratings agencies (Wall Street Letter 2006). He regretted that credit rating

agencies “have been reluctant to embrace any type of regulation over the services

they provide” and reported that credit rating agencies “should be held to the highest

standards of transparency, disclosure and professional conduct. Instead, there are no

standards.” The problem is reinforced by the fact that rating agencies, charging fees

1Wall Street Letter. 2006. CFA To Senate: Follow Our Lead On Credit Rating.
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to rated countries, can be suspected of reluctance to downgrade them, because of the

possibility of jeopardizing their income sources. This is claimed, for example, by

TomMcGuire, an executive vice-president of Moody’s, who states that “the pressure

from fee-paying issuers for higher ratings must always be in a delicate balance with

the agencies’ need to retain credibility among investors.”2 The necessity to please the

payers of the ratings opens the door to many possible issues. Kunczik (2001) notes

that the IMF fears the danger that “issuers and intermediaries could be encouraged to

engage in rating shopping – a process in which the issuer searches for the least

expensive and/or least demanding rating.” The reader is referred to Hammer

et al. (2006) for a discussion of some other criticisms (lack of comprehensibility,

procyclicality, black box, lack of predictive and crisis-warning power, regional bias,

etc.) commonly addressed to rating agencies.

Second, an internal rating system provides autonomy to a bank’s management in

defining credit risk in line with that bank’s core business and best international

practices. Internal ratings are also used to report to senior management various key

metrics such as risk positions, loan loss reserves, economic capital allocation, and

employee compensation (Treacy and Carey 2000).

Third, while the Basel Committee on Banking Supervision of the Bank for

International Settlements favored originally (i.e., in the 1988 Capital Accord) the

ratings provided by external credit ratings agencies, it is now encouraging the

Internal Ratings-Based (IRB) approach under which banks use their own internal

rating estimates to define and calculate default risk, on the condition that the robust

regulatory standards are met and the internal rating system is validated by the

national supervisory authorities. The committee has defined strict rules for credit

risk models used by financial institutions and requires them to develop and cross-

validate these models in order to comply with the Basel II standard (Basel Com-

mittee on Banking Supervision 2001, 2006).

Fourth, aside from the Basel II requirements, banks are developing internal risk

models to make the evaluation of credit risk exposure more accurate and transpar-

ent. Credit policies and processes will be more efficient, and the quality of data will

be improved. This is expected to translate into substantial savings on capital

requirements. Today’s eight cents out of every dollar that banks hold in capital

reserves could be reduced in banks with conservative credit risk policies, resulting

in higher profitability.

16.1.2 Contribution and Structure

The above discussion outlines the impact of the credit risk ratings, the possible

problems of objectivity and transparency of external (i.e., provided by rating

agencies) credit risk ratings, and the importance and need for financial institutions

to develop their own, internal credit risk rating systems.

2The Economist, July 15, 1995, 62.
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In this chapter, we use the novel combinatorial pattern extraction method called

the logical analysis of data (LAD) to learn a given credit risk rating system and to

develop on its basis a rating system having the following characteristics:

• Self-containment: the rating system does not use as predictor variables any other

credit risk rating information (non-recursiveness). Clearly, this requirement pre-

cludes the use of lagged ratings as independent variables. It is important to note that

this approach is in marked contrast with that of the current literature (see Hammer

et al. 2006, 2011 for a discussion). The significant advantage of the non-recursive

nature of the rating system is its applicability to not-yet-rated obligors.

• Objectivity: the rating system only relies on measurable characteristics of the

rated entities.

• Transparency: the rating system has formal explicit specification.

• Accuracy: it is in close agreement with the learned, opaque rating system.

• Consistency: the discrepancies between the learned rating system and the

constructed one are resolved by subsequent changes in the learned rating system.

• Generalizability: applicability of the rating system to evaluate the creditwor-

thiness of obligors at subsequent years or of obligors that were not previously

rated.

• Basel compliance: it satisfies the Basel II Accord requirements (cross-

validation, etc.).

In this study, we derive a rating system for two types of obligors:

• Countries: Eliasson (2002) defines country risk as the “risk of national gov-

ernments defaulting on their obligations,” while Afonso et al. (2007) state that

“sovereign credit ratings are a condensed assessment of a government’s ability

and willingness to repay its public debt both in principal and in interests on

time.” Haque et al. (1996) define country credit risk ratings compiled by

commercial sources as an attempt “to estimate country-specific risks, particu-

larly the probability that a country will default on its debt-servicing obligations.”

• Financial institutions: bank financial strength ratings represent the “bank’s

intrinsic safety and soundness” (Moody’s 2006).

Two different approaches developed in this chapter for reverse engineering and

constructing credit risk ratings will be based on the following:

• Absolute creditworthiness, which evaluates the riskiness of individual obligors.

• Relative creditworthiness, which first evaluates the comparative riskiness of

pairs of obligors; the absolute riskiness of entities is then derived from their

relative riskiness using the combinatorial techniques of partially ordered sets.

As was noted in the literature (de Servigny and Renault 2004), banks and other

financial service organizations are not fully utilizing the opportunities provided by

the significant increase in the availability of financial data. More specifically, the

area of credit rating and scoring is lacking in up-to-date methodological advances

(Galindo and Tamayo 2000; de Servigny and Renault 2004; Huang et al. 2004).

This provides a tremendous opportunity for the application of modern data mining

and machine learning techniques, based on statistics (Jain et al. 2000) and combi-

natorial pattern extraction (Hammer 1986). The above described approaches are

implemented using the LAD combinatorial pattern extraction method, and it turns
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out to be a very conclusive case for the application and the contribution of data

mining to the credit risk industry.

This chapter is structured as follows. Section 16.2 provides an overview of LAD

(Hammer 1986), which is used to develop a new methodology for reverse engineer-

ing and rating banks and countries with respect to their creditworthiness. Section 16.3

details the absolute creditworthiness model constructed for rating financial institu-

tions and describes the obtained results. Section 16.4 is devoted to the description of

two relative creditworthiness models for rating countries and contains an extensive

description of the results. Section 16.5 provides concluding remarks.

16.2 Logical Analysis of Data: An Overview

The logical analysis of data (LAD) is a modern data mining methodology based on

combinatorics, optimization, and Boolean logic3. LAD can be applied for the analysis

and classification of archives containing both binary (Hammer 1986; Crama

et al. 1988) and numerical (Boros et al. 1997) data. The novelty of LAD consists in

utilizing combinatorial search techniques to discover various combinations of attri-

bute values that are characteristic of the positive or negative character of observations
(such as whether a bank is solvent or not or whether a patient is healthy or sick). Then

LAD selects (usually small) subsets of such combinations (usually optimizing

a certain quality objective) to construct what is called a model (Boros et al. 2000).

We briefly describe below the basic concepts of LAD, referring the reader for a more

detailed description to Boros et al. (2000) and Alexe et al. (2007).

Observations in archives analyzed by LAD are represented by n-dimensional

real-valued vectors which are called positive or negative based on the value of the

additional binary (0,1) attribute called the outcome or the class of the observation.
Consider a dataset as a collection of M points (aj, z j) where the outcome z j of
observation j has value 1 for a positive outcome and 0 for a negative one and aj is an

n-dimensional vector. Figure 16.1 illustrates a dataset containing five observations

described by three variables. Each component aj[i] of the [5 � 3]-matrix in

3The presentation in this section is partially based on Hammer et al. (2006).

a[1]

Observation Outcome

j a[2] a[3] z j

1 3.5 3.8 2.8 1

2 2.6 1.6 5 1

3 1 2.2 3.7 1

4 3.5 1.4 3.9 0

5 2.3 2.1 1 0

Variables

Fig. 16.1 Set of observations
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Fig. 16.1 gives the value taken by variable i in observation j. We will use a[i] to
denote the variables corresponding to the components of this dataset. The rightmost

column provides the outcome of the observation.

LAD discriminates positive and negative observations by constructing a binary-

valued function f depending on the n input variables, in such a way that it closely

approximates the unknown actual discriminator. LAD constructs this function f as
a weighed sum of combinatorial patterns.

In order to specify how such a function f is found, we first transform the original

dataset into a binarized dataset in which the variables can only take the values 0 and
1. We shall achieve this goal by using indicator variables which show whether the

values the variables take in a particular observation are “large” or “small”; more

precisely, each indicator variable shows whether the value of a numerical variable

does or does not exceed a specified level. This is achieved by defining, for each

variable a[i], a set of K(i) values {ci,k j k ¼ 1,..., K(i)}, called cut points to which

binary variables {yi,k j k ¼ 1,. . .,K(i)} are associated. The values of these binary

variables for each observation (z j, aj) are then defined as:

y j
i, k ¼ 1 if a j i½ � � ci, k

0 otherwise

�

Figure 16.2 provides the binarized dataset corresponding to the data displayed in

Fig. 16.1 and shows the values ci,k of the cut points k for each variable a[i] and those
of the binary variables yi,k

j associated with any cut point k of variable i in observa-

tion j. For example, y1,1
1 ¼ 1 since a1[1 ¼ 3.5 is greater than c1,1 ¼ 3.

Positive (negative) patterns are combinatorial rules obtained as conjunctions of

binary variables and their negations, which, when translated to the original vari-

ables, constrain a subset of input variables to take values between identified upper

and lower bounds, so that:

• All the pattern conditions are satisfied by a sufficiently high proportion of the

positive (negative) observations in the dataset.

Variables

c1,1 c1,2 c1,3 c2,1 c2,2 c3,1 c3,2 c3,3

3 2.4 1.5 3 2 4 3 2

z j

1 1 1 1 1 1 0 0 1 1

2 0 1 1 0 0 1 1 1 1

3 0 0 0 0 1 0 1 1 1

4 1 1 1 0 0 0 1 1 0
5 0 0 1 0 1 0 0 0 0

Cutpoints

Binary 
Variables

O
b

se
rv

at
io

n
s

O
u

tc
o

m
ea[1] a[2] a[3]

i,ky j

Fig. 16.2 Binarized dataset
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• At least one of the pattern conditions is violated by a sufficiently high proportion

of the negative (positive) observations.

The number of variables the values of which are constrained in the definition of a

pattern is called the degree of the pattern. The fraction of positive (negative)

observations covered by a positive (negative) pattern is called the prevalence of it.

The fraction of positive (negative) observations among those covered by a positive

(negative) pattern is called the homogeneity of it. Considering the above example,

the pattern

y1, 3 ¼ 0 and y3, 1 ¼ 1

is a positive one of degree 2 covering one positive observation and no negative

observation. Therefore, its prevalence is equal to 100/3 % and its homogeneity is

equal to 100 %. In terms of the original variables, it imposes a strict upper bound (3)

on the value of a[1] and a strict lower bound (4) on the value of a[3].
LAD starts its analysis of a dataset by generating the pandect, that is, the

collection of all patterns in a dataset. Note that the pandect of a dataset of typically

occurring dimension can contain exponentially large number of patterns, but many

of these patterns are either subsumed by other patterns or similar to them. It is

therefore important to impose a number of limitations on the set of patterns to be

generated, by restricting their degrees (to low values), their prevalence (to high

values), and their homogeneity (to high values); these bounds are known as LAD

control parameters. The quality of patterns satisfying these conditions is usually

much higher than that of patterns having high degrees, or low prevalence, or low

homogeneity. Several algorithms have been developed for the efficient generation

of large subsets of the pandect corresponding to reasonable values of the control

parameters (Boros et al. 2000). The collections of patterns sufficient for classifying

the observations in the dataset are called models. A model includes sufficiently

many positive (negative) patterns to guarantee that each of the positive (negative)

observations in the dataset is “covered” by (i.e., satisfies the conditions of) at least

one of the positive (negative) patterns in the model. Good models tend to minimize

the number of points in the dataset covered simultaneously by both positive and

negative patterns in the model. LAD models can be constructed using the

Datascope software (Alexe 2002).

LAD classifies observations on the basis of model’s evaluation of them in the

following way. An observation (contained in the given dataset or not), satisfying the

conditions of some of the positive (negative) patterns in the model and not satisfying

the conditions of any of the negative (positive) patterns in the model, is classified as

positive (negative). To classify an observation that satisfies both positive and negative
patterns in the model, LAD utilizes a discriminant that assigns specific weights to the

patterns in the model (Boros et al. 2000). To define the simplest discriminant that

assigns equal weights to all positive (negative) patterns, let p and q represent the

number of positive and negative patterns in a model, and let h and k represent the

numbers of those positive, respectively, negative patterns in the model which cover

a new observation o. Then the discriminant D(o) is calculated as
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D oð Þ ¼ h=p� k=q (16.1)

and the corresponding classification is determined by the sign of this expression. LAD

leaves unclassified any observation for which D(o) ¼ 0, since in this case either the

model does not provide sufficient evidence or the evidence it provides is contradictory.

Computational experience with real-life problems has shown that the number of

unclassified observations is usually small. The results of classifying the observations

in a dataset can be represented in the form of a classification matrix (Table 16.1).
Here, the percentage of positive (negative) observations that are correctly

classified is represented by a (respectively d). The percentage of positive

(negative) observations that are misclassified is represented by c (respectively b).
The percentage of positive (negative) observations that remain unclassified is

represented by e (respectively f). Clearly, a + c + e ¼ 100 % and b + d + f ¼
100 %. The quality of the classification is defined by

Q ¼ 1

2
aþ dð Þ þ 1

4
eþ fð Þ (16.2)

16.3 Absolute Creditworthiness: Credit Risk Ratings
of Financial Institutions

16.3.1 Problem Description

The capability of evaluating the credit quality of banks has become extremely

important in the last 30 years given the increase in the number of bank failures:

during the period from 1950 to 1980, bank failures averaged less than seven per

year, whereas during the period from 1986 to 1991, they averaged 175 per year

(Barr and Siems 1994).4 Curry and Shibut (2000) report that the so-called savings

and loan crisis cost around $123.8 billion. Central banks are afraid of widespread

bank failures since they could exacerbate cyclical recessions and result in more

severe financial crises (Basel Committee on Banking Supervision 2004). More

accurate credit risk models for banks could enable the identification of problematic

banks early, which is seen as a necessary condition by the Bank for International

Settlements (2004) to avoid failure, and could serve the regulators in their efforts to

minimize bailout costs.

Table 16.1 Classification

matrix
Observation classes

Classification of observations

Positive Negative Unclassified

Positive a c e

Negative b d f

4The presentation in this section is based on Hammer et al. (2012).
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The evaluation and rating of the creditworthiness of banks and other financial

organizations is particularly challenging, since banks and insurance companies

appear to be more opaque than firms operating in other industrial sectors. Morgan

(2002) attributes this to the fact that banks hold certain assets (loans, trading assets,

etc.), the risks of which change fast and are very difficult to assess, and it is further

compounded by banks’ high leverage. Therefore, it is not surprising that the main

rating agencies (Moody’s and S&P’s) disagree much more often about the ratings

given to banks than about those given to obligors in other sectors. The difficulty of

accurately rating those organizations is also due the fact that the rating migration

volatility of banks is historically significantly higher than it is for corporations and

countries and that banks tend to have higher default rates than corporations

(de Servigny and Renault 2004). Another distinguishing characteristic of the

banking sector is the external support (i.e., from governments) that banks receive

and other corporate sectors do not (Fitch Rating 2006). A thorough review of the

literature pertaining to the rating and evaluation of credit risk of financial institu-

tions can be found in Hammer et al. (2012).

In the next sections, we shall:

• Identify a set of variables that provides sufficient information to accurately

replicate the Fitch bank ratings.

• Construct LAD patterns to discriminate between banks with high and low ratings.

• Construct an optimized model utilizing (some of) the LAD patterns which is

capable of distinguishing between banks with high and low ratings.

• Define an accurate bank rating system on the basis of the discriminant values

provided by the constructed model.

• Cross-validate the proposed rating system.

16.3.2 Data

16.3.2.1 External Credit Risk Ratings of Financial Institutions
This section starts with a brief description of the Fitch individual bank rating

system. Long- and short-term credit ratings provided by Fitch constitute an opinion

on the ability of an entity to meet financial commitments (interest, preferred

dividends, or repayment of principal) on a timely basis (Fitch Ratings 2001).

These ratings are comparable worldwide and are assigned to countries and corpo-

rations, including banks.

Fitch bank ratings include individual and support ratings. Support ratings com-

prise five rating categories which reflect the likelihood that a banking institution

will receive support either from the owners or the governmental authorities if it runs

into difficulties. The availability of support, though critical, does not reflect

completely the likelihood that a bank will remain solvable in case of adverse

situations. To complement a support rating, Fitch also provides an individual

bank rating to evaluate credit quality separately from any consideration of outside

support. This rating is commonly viewed as assessing a bank were it entirely

independent and could not rely on external support. It supposedly takes into
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consideration such factors as profitability and balance sheet integrity, franchise,

management, operating environment, and prospects.

We present in Table 16.2 a detailed description of the nine rating categories

characterizing the Fitch individual bank credit rating system. Since individual bank

credit ratings are comparable across different countries, they will be used in the

remaining part of this chapter. In addition, Fitch uses gradations among these five

ratings: A/B, B/C, C/D, and D/E, the corresponding numerical values of which

being, respectively, 8, 6, 4, and 2. This conversion of the Fitch individual bank

ratings into a numerical scale is commonly used (see, e.g., Poon et al. 1999).

16.3.2.2 Variables and Observations
We use the following 14 financial variables (loans, other earning assets, total

earning assets, nonearning assets, net interest revenue, customer and short-term

funding, overheads, equity, net income, total liability and equity, operating income)

and nine representative financial ratios as predictors in our model. The variables are

as follows: ratio of equity to total assets (asset quality), net interest margin, ratio of

interest income to average assets, ratio of other operating income to average assets,

ratio of noninterest expenses to average assets, return on average assets (ROAA),

return on average equity (ROAE), cost-to-income ratio (operations), and ratio of net

loans to total assets (liquidity). The values of these variables were collected at the

end of 2000 and come from the database Bankscope.

As an additional variable, we use in this study the S&P’s risk rating of the country

where the bank is located. The S&P’s country risk rating scale comprises 22 different

categories (from AAA to D). We convert these categorical ratings into a numerical

scale, assigning the largest numerical value (21) to the countries with the highest

rating (AAA). Similar numerical conversions of country risk ratings are also used by

Ferri et al. (1999) and Sy (2004). Similarly, Bloomberg has also developed a standard

cardinal scale for comparing Moody’s, S&P’s, and Fitch-BCA ratings.

Table 16.2 Fitch individual rating system (Fitch Ratings 2001)

Category Numerical scale Description

A 9 A very strong bank. Characteristics may include outstanding

profitability and balance sheet integrity, management, or

operating environment

B 7 A strong bank. There are no major concerns regarding the

bank

C 5 An adequate bank which, however, possesses one or more

troublesome aspects. There may be some concerns

regarding its profitability, balance sheet integrity,

management, operating environment or prospects

D 3 A bank which has weaknesses of internal and/or external

origin. There are concerns regarding its profitability,

management, balance sheet integrity, franchise, operating

environment or prospects

E 1 A bank with very serious problems which either requires or

is likely to require external support
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Our dataset consists of 800 banks rated by Fitch and operating in 70 different

countries (247 in Western Europe; 51 in Eastern Europe; 198 in Canada and the

USA; 45 in developing Latin American countries; 47 in the Middle East; 6 in

Oceania; 6 in Africa; 145 in developing Asian countries; 55 in Hong Kong, Japan,

and Singapore).

16.3.3 An LAD Model for Bank Ratings

Our design of an objective and transparent bank rating system on the basis of the LAD

methodology is guided by the properties of LAD as a classification system. Therefore,

we define a classification problem associated to the bank rating problem, construct

an LAD model for it, and then define a bank rating system rooted in this LAD model.

We define as positive observations the banks which have been rated by Fitch

as A, A/B, or B and as negative observations those whose Fitch rating is D, D/E, or E.
In the binarization process, cut points were introduced for the 19 of the 24 numer-

ical variables shown in Table 16.3. Actually, the other five numerical variables

were also binarized, but since it turned out that they were redundant, only the

variables shown in Table 16.3 were retained for constructing the model. Table 16.3

provides all the cut points used in pattern and model construction. For example, two

cut points (24.8 and 111.97) are used to binarize the numerical variable “profit

before tax” (PbT), that is, two binary indicator variables replace PbT, one telling

whether PbT exceeds 24.8 and the other telling whether PbT exceeds 111.97.

The first step of applying the LAD technique to the problem binarized with the

help of these variable cut points was the identification of a collection of powerful

patterns. One example of such a powerful negative pattern is (i) the country risk

rating is strictly lower than A and (ii) the profits before tax are at most equal to

€111.96 millions. One can see that these conditions describe a negative pattern,
since none of the positive observations (i.e., banks rated A, A/B, or B) satisfy both

of them, while no less than 69.11 % of the negative observations (i.e., those banks

rated D, D/E, or E) do satisfy both conditions. This pattern has degree 2, prevalence

69.11 %, and homogeneity 100 %.

The model we have developed for bank ratings is very parsimonious, consisting

of only 11 positive and 11 negative patterns, and is built on a support set of only
19 out of the 24 original variables. All the patterns in the model are of degree at

most 3, have perfect homogeneity (100 %), and very substantial prevalence

(averaging 50.9 % for the positive and 37.7 % for the negative patterns).

16.3.4 LAD Model Evaluation

16.3.4.1 Accuracy and Robustness of the LAD Model
The classification of the banks whose ratings are A, A/B, B, D, D/E, or E with the

above LAD model is 100 % accurate. We use ten two-folding experiments to cross-

validate the model. In each of those experiments, we randomly assign the
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observations to a training and a testing sets of equal size. We use the training set to

build the model, and we apply it to classify the observations in the testing set. In the

second half of the experiment, we reverse the role of the two sets. The average

accuracy and the standard deviation of the accuracy are, respectively, equal to

95.12 % and 0.03. These results highlight the predictive capability and the robust-

ness of the derived LAD model.

We have also computed the correlation between the discriminant values of the

LAD model and the bank credit risk ratings (represented on their numerical scale).

Despite the fact that the correlation measure takes into account all the banks in the

dataset (i.e., not only those which were used in creating the LAD model but also

those rated B/C, C, or C/D, which were not used in the learning process), the

correlation is very high, equal to 80.70 %, attesting to the strong predictive power of

the LAD model. The ten two-folding experiments described above were then used

to verify the stability of the correlation between the LAD discriminant values and

the bank ratings. The average correlation is equal to 80.04 %, with a standard

deviation of 0.04, another testimony of the stability of the close positive association

between the LAD discriminant values and the bank ratings.

16.3.4.2 From LAD Discriminant Values to Ratings
The objective of this section is to map the numerical values of the LAD

discriminant to the nine bank rating categories (A, A/B, . . ., E). This will be

accomplished using a nonlinear optimization problem that partitions the interval of

the discriminant values into nine subintervals that we associate to the nine rating

categories. The partitioning is determined through cut points xi such that

�1 ¼ x0 � x1 � x2 � . . .. . .. . . � x8 � x9 ¼ 1, where i indexes the rating categories

(with one corresponding to E and nine corresponding to A). A bank should be rated i if
its discriminant value is in the interval [xi, xi+1]. Since such a perfect partitioning may

not exist, we replace the LAD discriminant values di by an adjusted discriminant value
di and find values of di for which such a partitioning exists and which are “as close as

possible” to the values di. The expression “as close as possible” involves the minimi-

zation of the mean square approximation error. Referring to the rating category of bank

i by j(i) and to the set of banks by N, we solve the convex nonlinear problem

minimize
X
i2N

di � dið Þ2

subject to di � xj ið Þþ1, i 2 N

xj ið Þ < di, i 2 N

� 1 ¼ x0 � x1 � x2, . . . , � xj, . . . , x8 � x9 ¼ 1

� 1 � di � 1, i 2 N

(16.3)

on the NEOS server (Czyzyk et al. 1998) with the solver Lancelot to determine the cut

points xj and the adjusted discriminant values di that will be used for rating the banks

not only in the training sample but also those which are not. In this case, the bank rating

is defined by the particular subinterval containing the LAD discriminant value.
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As compared to ordered logistic regression, the LAD-based approach has the

additional advantage that it can be used for generating any desired number of rating

categories. The LAD model can take the form of a binary classification model and

can be used to preapprove or not a loan to a bank. The LAD rating approach can

also be used to derive models with higher granularity (i.e., more than nine rating

categories), which are used by banks to further differentiate their customers and to

tailor accordingly their credit pricing policies.

16.3.4.3 Conformity of Fitch and LAD Bank Ratings
In this section, the goal is to investigate to goodness of fit of our rating system and

observe to which extent the original LAD discriminant values fit in the identified

rating subintervals. We denote by qk (k ¼ 0, . . ., 8) the fraction of banks whose

rating category determined in this way differs from its Fitch rating by exactly

k categories. It is worth recalling that the rating cut points were derived using all

the banks in the sample but that the LAD discriminant values were obtained by only

taking into account the banks rated A, A/B, B, D, D/E, and E. This is why we

calculate separately the discrepancy counts for the banks rated A, A/B, B, D, D/E,

and E and for these rated B/C, C, and C/D.

Table 16.4 highlights the high goodness of fit of the proposed LAD model. More

than 95 % of the banks are rated within two categories of their Fitch rating, with

about 30 % of the banks receiving exactly the same rating as in the Fitch rating

system and another 51 % being off by exactly one rating category. The very high

concordance between the LAD and the Fitch ratings is illustrated by the weighted

average distances between the two ratings equal to (i) 0.93 for the categories

A, A/B, B, D, D/E, and E; (ii) 0.98 for the categories B/C, C, and C/D; and (iii)

0.95 for all banks in the dataset. The stability of the proposed rating system and its

suitability to evaluate the creditworthiness of “new” banks, that is, banks which are

not rated by agencies or banks the rater has not dealt with before, are magnified by

the fact that the goodness of fit of the ratings of the banks not used in deriving the

LAD model is very close to the goodness of fit for the banks used for deriving the

LAD model (i.e., those rated A, A/B, B, D, D/E, and E).

In order to appraise the robustness of the proposed rating system, we apply ten

times the two-folding procedure described above to derive the average (qk)

Table 16.4 Discrepancy analysis

k

qk
N ¼ {A, A/B, B, D,
D/E, E} N ¼ {B/C, C, C/D}

N ¼ {A, A/B, B, B/C,
C, C/D, D, D/E, E}

0 29.60 % 29.36 % 29.50 %

1 53.28 % 47.71 % 51.00 %

2 12.05 % 18.96 % 14.88 %

3 4.23 % 3.36 % 3.88 %

4 0.85 % 0.61 % 0.75 %

5–6–7–8 0.00 % 0.00 % 0.00 %
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discrepancy counts (Table 16.5) of the bank ratings predicted for the testing sets.

The fact that on the average the difference between the Fitch and the LAD ratings is

only 0.98 is a very strong indicator of the LAD model’s stability and the absence of

overfitting.

16.3.4.4 Importance of Variables
While the focus in LAD is on discovering how the interactions between the values

of small groups of variables (as expressed in patterns) affect the outcome (i.e., the

bank ratings), one can also use the LAD model to learn about the importance of

individual variables. A natural measure of importance of a variable in an LAD

model is the frequency of its appearance in the model’s patterns. The three most

important variables in the 22 patterns constituting the LADmodel are the credit risk

rating of the country where the bank is located, the return on average total assets,

and the return on average equity. The importance of the country risk rating variable,

which appears in 18 of the 22 patterns, can be explained by the fact that credit rating

agencies are reluctant to give an entity a better credit risk rating than that of the

country where it is located. Both the return on average assets and the return on

average equity variables appear in six patterns. These two ratios, respectively,

representing the efficiency of assets in generating profits and that of shareholders’

equity in generating profits, are critical indicators of a company’s prosperity and are

presented by Sarkar and Sriram (2001) as key predictors to assess the wealth of

a bank. The return on average equity is also found significant for predicting the

rating of US banks (Huang et al. 2004).

16.3.5 Remarks on Reverse Engineering Bank Ratings

The results presented above demonstrate that the LAD approach can be used to

derive rating models with varying granularity levels:

• A binary classification model to be used for the preapproval operations

• A model with the same granularity as the benchmarked rating model

• A model with higher discrimination power, that is, with higher granularity than

that of the benchmarked rating model, to allow the bank to refine its pricing

policies and the allocation of regulatory capital

We show that the LAD model cross-validates extremely well and therefore is

highly generalizable and could therefore be used by financial institutions to develop

internal, Basel-compliant rating models.

The availability and processing of data have been major obstacles in the way of

using credit risk rating models. Until recently, many banks did not maintain such

Table 16.5 Cross-validated discrepancy analysis

k

0 1 2 3 4 5 6 7 8

qk 29.01 % 51.18 % 14.10 % 4.36 % 1.14 % 0.20 % 0.01 % 0.00 % 0.00 %
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datasets and were heavily dependent on qualitative judgments. It is only after the

currency crises of the 1990s and the requirements imposed by the Basel Accord that

financial institutions have seen an incentive in collecting the necessary data and

maintaining the databases.

The move towards a heavier reliance on rating models is based on the assump-

tion that models produce more consistent ratings and that, over the long haul,

operating costs will diminish since less labor will be required to produce ratings.

The model proposed in this chapter will reinforce the incentives to develop and rely

upon credit risk models in bank operations due to the following:

• The accuracy and predictive ability of the proposed model will guarantee

dependable ratings.

• Its parsimony will alleviate the costs of extracting and maintaining large

datasets.

• It will result in leaner loan approval operations and faster decisions and could

thus reduce the overall operating costs.

16.4 Relative Creditworthiness: Country Risk Ratings

16.4.1 Problem Description

Country risk ratings have critical importance in the international financial markets

since they are the primary determinants of the interest rates at which countries can

obtain credit.5 There are numerous examples of countries having to pay higher rates

on their borrowing following their rating downgrade, an often cited example being

Japan. As mentioned above, another critical aspect of country risk ratings concerns

their influence on the ratings of national banks and companies that would make

them more or less attractive to foreign investors. That is why the extant literature

calls country risk ratings the “pivot of all other country’s ratings” (Ferri et al. 1999)

and considers them the credit risk ceiling for all obligors located in a country

(Eliasson 2002; Mora 2006). Historical record shows the reluctance of raters to give

a company a higher credit rating than that of the sovereign where the company

operates. Contractual provisions sometimes prohibit institutional investors from

investing in debt rated below a prescribed level. It has been demonstrated (Ferri

et al. 1999) that variations in sovereign ratings drastically affect the ratings of banks

operating in low-income countries, while the ratings of banks operating in high-

income countries (Kaminsky and Schmukler 2002; Larrain et al. 1997) do not

depend that much on country ratings. Banks, insurance companies, and public

institutions frequently assess the amount of exposure they have in each country

and establish lending limits taking into account the estimated level of country risk.

Credit managers in multinational corporations have to assess evolving conditions in

foreign countries in order to decide whether to request letters of credit for particular

5The presentation in this section is based on Hammer et al. (2006, 2012).
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transactions. Country risk estimates and their updates are utilized on a real-time

basis by multinational corporations facing constant fluctuation in international

currency values and difficulties associated with moving capital and profits across

national boundaries. Financial institutions have to rely on accurate assessments of

credit risk to comply with the requirements of the Basel Bank for International

Settlements. Feeling the pressure to get higher ratings could lead to fraud attempts.

A notorious case was Ukraine’s attempt to obtain IMF credits through misleading

reporting of its reserve data on foreign exchanges.

The existing literature on country risk, defined by Bourke and Shanmugam

(1990) as “the risk that a country will be unable to service its external debt due to

an inability to generate sufficient foreign exchange,” recognizes both financial/

economic and political components of country risk. There are two basic approaches

to the interpretation of the reasons for defaulting. The first one is the debt-service
capacity approach which considers the deterioration of solvency of a country as

preventing it from fulfilling its commitments. This approach views country risk as

a function of various financial and economic country parameters. The second one is

the cost-benefit approach which considers a default on commitments or

a rescheduling of debt as a deliberate choice of the country. In this approach the

country accepts possible long-term negative effects (e.g., the country’s exclusion

from certain capital markets (Reinhart 2002) as preferable to repayment). Being

politically driven, this approach includes political country parameters in addition to

the financial and economic ones in country risk modeling (Brewer and Rivoli 1990,

1997; Citron and Neckelburg 1987).

16.4.2 Data

16.4.2.1 Ratings
We analyze in this chapter Standard & Poor’s foreign currency country ratings, as

opposed to the ratings for local currency debt. The former is the more important

problem, since the sovereign government has usually a lower capacity to repay

external (as opposed to domestic) debt, and as an implication, the international

bond market views foreign currency ratings as the decisive factor (Cantor and

Packer 1996). This is manifested by much higher likelihood for international

investors to acquire foreign currency obligations rather than domestic ones. In

evaluating foreign currency ratings, one has to take into account not only the

economic factors but also the country intervention risk, that is, the risk that

a country imposes, for example, exchange controls or a debt moratorium. The

evaluation of local currency ratings need not take into account this country

intervention risk.

Table 16.16 lists the different country risk levels used by S&P’s and also pro-

vides descriptions associated with these labels. A rating inferior to BB+ indicates

that a country is non-investment grade (speculative). A rating of CCC+ or lower

indicates that a country presents serious default risks. BB indicates the least degree

of speculation and CC the highest. The addition of a plus or minus sign modifies the
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rating (between AA and CCC) to indicate relative standing within the major rating

category. These subcategories are treated as separate ratings in our analysis.

16.4.2.2 Selected Variables
The selection of relevant variables is based on three criteria. The first criterion is the

variable’s significance (relevance) in assessing countries’ creditworthiness. The

review of the literature on predictors for country risk ratings (see Hammer

et al. 2011) played an important role in defining the set of candidate variables to

include in our model. The second criterion is the availability of complete and

reliable statistics, to allow us to maintain the significance and the scope of our

analysis. The third criterion is the uniformity of data across countries. This is why

we decided against incorporating the unemployment rate statistics provided by the

World Bank, since it is compiled according to different definitions: there are

significant differences between countries in the treatment of temporarily laid off

workers, those looking for their first job, and the criteria for being considered as

unemployed.

After applying the criteria of relevance, availability, and uniformity described

above, the following variables were incorporated in our model: gross domestic
product per capita (GDPc), inflation rate (IR), trade balance (TB), exports’ growth
rate (EGR), international reserves (RES), fiscal balance (FB), debt to GDP
(DGDP), political stability (PS), government effectiveness (GE), corruption
(COR), exchange rate (ER), and financial depth and efficiency (FDE).

In addition to eight economic variables that have already been used in the

country credit risk rating literature, a new one, called financial depth and efficiency
(FDE), was added. This variable is measured as the ratio of the domestic credit

provided by the banking sector to the GDP. It measures the growth of the banking

system since it reflects the extent to which savings are financial. The financial depth

and efficiency variable was first considered in Hammer et al. (2006, 2011) for the

evaluation of country risk ratings. The reason to include this variable is that it

captures some information that is relevant to the assessment of the creditworthiness

of a country and that is not accounted for by other variables and in particular by the

fiscal balance of a country.

Our analysis utilized the values of these nine economic/financial variables and

three political variables taken at the end of 1998. Our dataset included the values of

these 12 variables for the 69 countries considered: 24 industrialized countries,

11 Eastern European countries, eight Asian countries, ten Middle Eastern countries,

15 Latin American countries, and South Africa. The dependent variable is the

S&P’s country risk ratings for these countries at the end of 1998. The sources

utilized for compiling the values of the economic/financial variables include the

International Monetary Fund (World Economic Outlook Database), the World

Bank (World Development Indicators database), and, for the ratio of debt to gross

domestic product, Moody’s publications. Values of political variables are taken

from Kaufmann et al. (1999a, b), whose database is a joint product of the Macro-

economics and Growth, Development Research Group and Governance, Regulation

and Finance Institutes affiliated with the World Bank.
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16.4.3 Rating Methodologies

In the next subsections, we derive two new combinatorial models for country risk

rating by reverse engineering and “learning” from past S&P’s ratings. The models

are developed using the novel combinatorial-logical technique of logical analysis of

data which derives a new rating system only from the qualitative information

representing pairwise comparisons of country riskiness. The approach is based on

a relative creditworthiness concept, which posits that the knowledge of (pre)order

of obligors with respect to their creditworthiness should be the sole source for

creating a credit risk rating system. Stated differently, only the order relation

between countries should determine the ratings. Thus, the inference of a model

for the order relation between countries is the objective of this study. This is in

perfect accordance with the general view of the credit risk rating industry. Altman

and Rijken (2004) state that the objective of rating agencies is “to provide an

accurate relative (i.e., ordinal) ranking of credit risk,” which is confirmed by

Fitch ratings (2006) saying that “Credit ratings express risk in relative rank order,

which is to say they are ordinal measures of credit.” Bhatia (2002) adds that:

“Although ratings are measures of absolute creditworthiness, in practice, the ratings

exercise is highly comparative in nature. . . On one level, the ratings task is one of

continuously sorting the universe of rated sovereigns – assessed under one uniform

set of criteria – to ensure that the resulting list of sovereigns presents a meaningful

global order of credit standing. On another level, the sorting task is constrained by

a parallel need to respect each sovereign’s progression over time, such that shifting

peer comparisons is a necessary condition – but not a sufficient one – for upward or

downward ratings action.”

A self-contained model of country risk ratings can hardly be developed by

standard econometric methods since the dataset contains information only
about 69 countries, each described by 12 explanatory variables. An alternative at

hand possible with combinatorial techniques is to examine the relative riskiness of
one country compared to another one, rather than modeling the riskiness of each

individual country. This approach has the advantage of allowing the modeling to be

based on a much richer dataset (2,346 pairs of countries), which consists of the

comparative descriptions of all pairs of countries in the current dataset.

The models utilize the values of nine economic and three political variables

associated to a country, but do not use directly or indirectly previous years’ ratings.

This is a very important feature, since the inclusion of information from past ratings

(lagged ratings, rating history) does not allow the construction of a self-contained

rating system and does not make possible to rate the creditworthiness of not-yet-

rated countries. We refer to Hammer et al. (2006, 2011) for a more detailed

discussion of the advantages of building a non-recursive country risk rating system.

Moreover, the proposed LAD models completely eliminate the need to view the

ratings as numbers. Section 16.4.3.1 presents the common features of the two

developed LAD models, while Sects. 16.4.3.2 and 16.4.3.3 discuss the specifics

of the LAD-based Condorcet ratings and the logical rating scores, respectively.
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16.4.3.1 Commonalities
Pairwise Comparison of Countries: Pseudo-observations
Every country i 2 I ¼ {1, . . ., 69} in this study is described by the 13-dimensional

vector Ci, whose first component is the country risk rating given by Standard &

Poor’s, while the remaining 12 components specify the values of the nine eco-

nomic/financial and of the three political variables. A pseudo-observation Pij,

associated to every pair of countries i, j 2 I, provides in a way specified below

a comparative description of the two countries.

Every pseudo-observations is also described by a 13-dimensional vector. The

first component is an indicator which takes the value 1 if the country i in the pseudo-
observation Pij has a higher rating than the country j, –1 if the country j has a higher
rating than the country i, and 0 if the two countries have the same rating. The other

components k, k ¼ 2, . . ., 13 of the pseudo-observation Pij[k] are derived by taking

the differences of the corresponding components of Ci and Cj:

Pij k½ � ¼ Ci k½ � � Cj k½ �, k ¼ 2, . . . , 13 (16.4)

Transformation (16.4) alleviates the problems related to the small size (j I j)
of the original dataset by constructing a substantially larger dataset containing

j I j*(j I j �1) pseudo-observations. While the set of pseudo-observations is not

independent, since Phi + Pij ¼ Phj, Hammer et al. (2006) show that this does not

create any problems for the LAD-based combinatorial data analysis techniques.

We illustrate the construction of pseudo-observations with Japan and Canada.

Rows 2 and 3 in Table 16.6 display the values of the 12 economic/financial and

political variables, as well as the S&P’s rating for Japan and Canada (at the end of

December 1998), while rows 4 and 5 report the pseudo-observations PJapan, Canada and

PCanada, Japan from the country observations CJapan and CCanada. Since Japan and

Canada are rated, respectively, AAA and AA + by S&P’s at the end of December

1998 and the rating AAA is better than rating AA+, the first component of the pseudo-

observation vector is equal to 1. The set of pseudo-observations is antisymmetric.

An advantage of this transformation is that it allows us to avoid the problems

posed by the fact that the original dataset contains only a small number (j I j)
of observations. The transformation (16.4) provides a larger dataset containing

j I j*(j I j �1) pseudo-observations.

Construction of Relative Preferences
The LAD-based reverse engineering of Standard & Poor’s rating system starts with

deriving an LAD model (constructed as a weighed sum of patterns) from the

archive of all those pseudo-observations Pij, corresponding to pairs of countries

i and j having different S&P’s ratings. A model resulting from applying LAD to the

1998 dataset consists of 320 patterns. As an example, let us describe two of these

patterns below. The positive pattern

FDE > 28:82;GDPc > 1539:135;GE > 0:553

16 Combinatorial Methods for Constructing Credit Risk Ratings 459



T
a
b
le

1
6
.6

E
x
am

p
le
s
o
f
co
u
n
tr
y
an
d
p
se
u
d
o
-o
b
se
rv
at
io
n
s

S
&
P
’s

ra
ti
n
g

F
D
E

R
E
S

IR
T
B

E
G
R

G
D
P
c

E
R

F
B

D
G
D
P

P
S

G
E

C
O
R

C
Ja
p
a
n

A
A
A

1
3
8
.4
4

5
.1
6
8

.6
5

2
1
.7
4
7
1

�2
.5
4

2
4
3
1
4
.2

0
.8
3
9

�7
.7

0
.4
7

1
.1
5
3

0
.8
3
9

0
.7
2
4

C
C
a
n
a
d
a

A
A
+

9
4
.6
9

1
.0
1
9
6
4

0
.9
9

5
5
.9
1
7
7

8
.7
9

2
4
8
5
5
.7

0
.9
3
9

0
.9

0
.5

1
.0
2
7

1
.7
1
7

2
.0
5
5

P
Ja
p
a
n
,
C
a
n
a
d
a

1
4
3
.7
5

4
.1
5

�0
.3
4

�3
4
.1
7

�1
1
.3
3

�5
4
1
.5

�0
.1

�8
.6

�0
.0
3

0
.1
2
6

�0
.8
7
8

�1
.3
3
1

P
C
a
n
a
d
a
,
Ja
p
a
n

�1
�4

3
.7
5

�4
.1
5

0
.3
4

3
4
.1
7

1
1
.3
3

5
4
1
.5

0
.1

8
.6

0
.0
3

�0
.1
2
6

0
.8
7
8

1
.3
3
1

460 A. Kogan and M.A. Lejeune



can be interpreted in the following way. If country i is characterized by

(i) A financial depth and efficiency (FDE) exceeding that of country j by at least

28.82, and

(ii) A gross domestic product per capita (GDPc) exceeding that of country j by at

least 1,539.135, and

(iii) A government efficiency (GE) exceeding that of country j by at least 0.553

then country i is perceived as more creditworthy than country j.
Similarly, the negative pattern

GDPc < �4, 886:96;ER < 0:195;COR < �0:213

can be interpreted in the following way. If country j is characterized by

(i) A gross domestic product per capita (GDPc) exceeding that of country i by
4,886.96, and

(ii) An exports growth rate (EGR) exceeding that of country i by 0.195, and

(iii) A level of incorruptibility (CR) exceeding that of country i by 0.213

then country i is perceived as less creditworthy than country j.
The constructed LAD model allows us to compute the discriminant D(Pij) for

each pseudo-observation Pij(i 6¼ j). We call the values D(Pij) of the discriminant the

relative preferences. They can be interpreted as measuring how “superior” the

country i’s rating over that of country j. We call the [69 � 69]-dimensional

antisymmetric matrix D, having the relative preferences as components, the relative
preference matrix. Its components are relative preferences D(Pij) (i 6¼ j) associated
with every pair of countries, including those that have the same S&P’s ratings, even

though only those pseudo-observation Pij for which i and j had different ratings

were used in deriving the LAD model.

Classification of Pseudo-observations and Cross-Validation
The dataset used to derive the LAD model contains 4,360 pseudo-observations,

with an equal number of positive and negative pseudo-observations, and is anti-

symmetric (Pij ¼ �Pij). The results of applying the LAD model to classify the

observations in the dataset are presented in Table 16.7. The overall classification

quality of the LAD model (according to Eq. 16.2) is 95.425 %.

This very high classification accuracy may be misleading, since the constructed

LAD model can be overfitting the data, that is, it is adapted excessively well to

random noise in the training data and thus has an excellent accuracy on this training

data, but could perform very poorly on new observations. We therefore utilize

a statistical technique known as “jackknife” (Quenouille 1949) or “leave-one-out”

Table 16.7 Classification matrix

Classified as

Positive Negative Unclassified Total

Positive observations 93.90 % 3.72 % 2.38 % 100 %

Negative observations 3.72 % 93.90 % 2.38 % 100 %
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to show that the achieved high classification accuracy is not due to overfitting. This

technique removes from the dataset one observation at a time, learns a model from

all the remaining observations, and evaluates the resulting model on the removed

observation; then it repeats all these steps for each observation in the dataset. If on

the average the predicted evaluations are “close to” the actual ones, then the model

is not affected by overfitting.

In the case at hand, it would not be statistically sound to implement the jackknife

technique in a straightforward way because of the dependencies among pseudo-

observations (Hammer et al. 2006). Indeed, even after explicitly eliminating a single

pseudo-observation Pij from the dataset, it would still remain in the dataset implicitly,

since Pih + Phj + Pij. This problem can be resolved by modifying the above described

procedure so that at each step, instead of just removing a single pseudo-observation Pij,
all the pseudo-observations which involve a particular country i are removed. Then, the

LAD discriminant is derived on the basis of the remaining pseudo-observations and

used to evaluate the relative preferences for every removed pseudo-observation,

resulting in a row of relative preferences of all pseudo-observations Pij which involve

the country i. This modified procedure is repeated for every country in the dataset, and

the obtained rows are combined into a matrix of relative preferences denoted by DJK.

The absence of overfitting is indicated by a very high correlation level of 96.48 %

between the matrix DJK and the original relative preference matrix D.
To further test for overfitting, we use the obtained matrix of relative preferences

DJK to classify the dataset of 4,360 pseudo-observations. The results of this classifi-

cation are presented in Table 16.8, and the overall classification quality of the LAD

model (according to formula (16.2)) is 95.10%. The results in Table 16.8 are virtually

identical to those shown in Table 16.7, thus proving the absence of overfitting.

Since the derived LAD model does not suffer from overfitting, it is tempting to

interpret the signs of relative preferences as indicative of rating superiority and

infer that a positive value for D(Pi,j) indicates that country i is more creditworthy

than country j, while a negative one for D(Pi,j) justifies the opposite conclusion.

However, this naı̈ve approach towards relative rating superiority ignores the poten-

tial noise in the data and in relative preferences, which would make it difficult to

transform classifications of pseudo-observations to a consistent ordering of coun-

tries by their creditworthiness. It is shown in Hammer et al. (2006) that the

relationship based on the naı̈ve interpretation of the relative preferences can violate

the transitivity requirement of an order relation and therefore does not provide

a consistent partially ordered set of countries.

The following section is devoted to overcoming this issue by relaxing the overly

constrained search for (possibly nonexistent) country ratings whose pairwise

Table 16.8 Classification matrix for DJK

Classified as

Positive Negative Unclassified Total

Positive observations 93.49 % 3.67 % 2.84 % 100 %

Negative observations 3.67 % 93.49 % 2.84 % 100 %
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orderings are in precise agreement with the signs of relative preferences. Instead,

we utilize a more flexible search for a partial order on the set of countries, which

satisfies the transitivity requirements and approximates well the set of relative

preferences.

16.4.3.2 Condorcet Ratings
The ultimate objective of this section, which is based on the results of Hammer

et al. (2006), is to derive a rating system from the LAD relative preferences. This is

accomplished in two stages. First, we use the LAD relative preferences to define

a partial order on the set of countries which represents their creditworthiness dominance

relationship. Then, we extend the derived dominance relationship to two rating systems,

respectively, based on the so-called weak Condorcet winners and losers. The number of

rating categories in these rating systems is the same and will be determined by the

structure of the partial order obtained in the first stage, that is, it is not a priory fixed.

From LAD Relative Preferences to a Partial Order on the Set of Countries
A partial order P(X) is a reflexive, antisymmetric, and transitive binary relation on

a set X. Any two distinct elements x and y of X such that (x, y) 2P(X) are said to be
comparable and denoted by x � y. If neither (x, y) 2 P(X) nor (y, x) 2 P(X), then
x and y are called incomparable and denoted by x || y.

As was mentioned above, the naı̈ve rating superiority relation based on the LAD

model is not transitive. This difficulty can be overcome by defining a strengthened

version of the naı̈ve rating superiority relation, to be called the dominance rela-
tionship. While the former only relies on the sign of the relative preference D(Pij),

the definition of dominance of a country i over another country j takes into account
not only the sign of the relative preference D(Pij) but also the values of the relative

preferences of each of these two countries i and j over every other country k.
We will need the following notation to define the dominance relationship. Let

Sij kð Þ ¼ D Pikð Þ � D Pjk

� �
(16.5)

define the external preference of country i over country jwith respect to country k, let

Sij ¼

X
j2I

Sij kð Þ

Ij j (16.6)

define the average external preference of i over j, and let

sij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k2C

D Pikð Þ � D Pjk

� �� �� Sij
� �2

Ij j

vuuut
(16.7)

define the standard deviation of the external preference of i over j.
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The dominance relationship of a country i over another country j will be defined
by two conditions. The first one requires that D(Pij) > 0. It might also seem logical

to require that Sij(k) > 0 for every country k, k 6¼ i, j. However, this condition is so

difficult to satisfy that the resulting partially ordered set is extremely sparse, with

very few country pairs that are comparable. Thus, a more relaxed second condition

will require that, only at a certain confidence level, the external preference of i over
j should be positive. We parameterize the level of confidence by the multiplier � of

the standard deviation sij. More formally, for a given � > 0,

• A country i is said to dominate another country j if

D Pij

� �
> 0

Sij � �sij > 0

�
(16.8)

• A country i is said to be dominated by another country j if

D Pij

� �
< 0

Sij þ �sij < 0

�
(16.9)

• In all the other cases, countries i and j are said to be not comparable; this can be

due to the lack of evidence, or to conflicting evidence about the dominance of

i over j.
Note that the larger the value of � is, the stronger the conditions are, and the

fewer pairs of countries are comparable. If � is sufficiently large, then the domi-

nance relationship is transitive and is a partial order, since it becomes progressively

sparser until being reduced to empty. On the other hand, if � is small (and in

particular for � ¼ 0), then the dominance relationship becomes denser, but is not

necessarily transitive.

We are looking for a “rich” dominance relationship (applying to as many

country pairs as possible) which is transitive. Formally, our objective is to maxi-

mize the number of comparable country pairs subject to preserving the transitivity

of the dominance relationship.

The richest dominance relationship defined by the two conditions (16.8) and

(16.9) in the case of � ¼ 0 will be called the base dominance relationship. If i and
j are any two countries comparable in the base dominance relationship, then it is

possible to calculate the smallest value of the parameter �ij ¼ j Sij/sij j such that the
i and j are not comparable in any dominance relationship defined by a parameter

Table 16.9 Correlation levels between LAD and canonical relative preferences

D dS&P dM dII dLRS

D 100 % 93.21 % 92.89 % 91.82 % 97.57 %

dS&P 93.21 % 100 % 98.01 % 96.18 % 95.54 %

dM 92.89 % 98.01 % 100 % 96.31 % 95.20 %

dII 91.82 % 96.18 % 96.31 % 100 % 94.11 %

dLRS 97.57 % 95.54 % 95.20 % 94.11 % 100 %
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value exceeding or equal to �ij. This calculation is based on the fact that given

a value of �, it is possible to check in polynomial time (Tarjan 1972) whether the

corresponding dominance relationship is transitively closed. Then the algorithm

that determines in polynomial time the minimum value �* for which the

corresponding dominance relationship is still transitive, sorts at most j I j2 numbers

�ij in ascending order, and then checks one by one the transitivity of the

corresponding dominance relationships. When the dominance relationship becomes

transitive for the first time, the algorithm stops and outputs �* equal to the

corresponding value of the parameter �ij. This study utilizes this value �* and the

corresponding dominance relationship between countries, called here the logical
dominance relationship and denoted by the subscript of LAD (e.g., �

LAD
).

The definition of dominance relationship between countries on the basis of

average external preferences bears some similarities to the so-called “column

sum methods” (Choo and Wendley 2004) utilized in reconciling inconsistencies

resulting from the application of pairwise comparison matrix methods.

Extending Partially Ordered Sets to “Extreme” Linear Preorders
The information about country preferences contained in the economic and political

attributes is represented most faithfully by the logical dominance relationship

defined above. However, it is impractical to use, since this partial order requires

a large amount of data to describe. On the other hand, country preferences can be

expressed very compactly by country ratings, since the latter are a very special type

of partial orders called linear preorders.

A partial order P(X) is called a linear preorder if there exists a mapping

M : X ! {0,1, . . ., k} such that x � y if and only if M(x) > M(y). Therefore,
a linear preorder is completely described by specifying its mappingM. Without loss

of generality, one can assume that for every i2 {0,1, . . ., k}, there exists x 2 X such

that M(x) ¼ i. Such a linear preorder is said to have k + 1 levels.

To make logical dominance of countries practically utilizable, this relationship

should be transformed into a linear preorder preserving all the order relations between

countries (i.e., is an extension of the partial order) and is as close as possible to it. The
logical dominance relationship can be extended in a multitude of ways to a variety of

linear preorders. In particular, two extreme linear preorders are constructed below that

we call the optimistic and the pessimistic extensions, denoted by OE and PE, respec-

tively. The names are justified since the former assigns to each country the highest level

it can expect, while the latter assigns to each country the lowest level it can expect:

• In the first step ofOE construction, those countries that are not dominated by any

other country are assigned the highest level and are then removed from the set of

countries under consideration. Iteratively, non-dominated countries in the

remaining set of countries are assigned the highest remaining level until every

country is assigned a level denoted by OEi.

• In the first step of PE construction, those countries that do not dominate any

other country are assigned the lowest level and are then removed from the set of

countries under consideration. Iteratively, non-dominating countries in the
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remaining set of countries are assigned the lowest remaining level until every

country is assigned a level denoted by PEi.

The method utilized above to construct OE and PE is known as the Condorcet
method. It represents a specific type of voting system (Gehrlein and Lepelley

1998), and it is often used to determine the winner of an election. The Condorcet

winner(s) of an election is generally defined as the candidate(s) who, when

compared in turn with every other candidate, is preferred over each of them.

Given an election with preferential votes, one can determine weak Condorcet
winners (Ng et al. 1996) by constructing the Schwartz set as the union of all

possible candidates such that (i) every candidate inside the set is pairwise

unbeatable by any other candidate outside the set (ties are allowed) and (ii) no

proper subset of the set satisfies the first property.

The Schwartz set consists exactly of all weak Condorcet winners. The weak
Condorcet losers are the reverse of the weak Condorcet winners, that is, those

losing pairwise to every other candidate. OE assigns the highest level to those

countries that are the weak Condorcet winners, that is, better than or incomparable

with every other country. PE assigns the lowest level to those countries that are

the weak Condorcet losers, that is, worse than or are incomparable with every

other country. Note that both OE and PE have the minimum possible number of

levels. Indeed, in a directed graph whose vertices are the countries and whose arcs

represent comparable countries in the dominance relationship, the length of the

longest directed path bounds from below the number of levels in any linear

preorder extending the dominance relationship. This length equals the number

of levels in OE and PE.

16.4.3.3 Logical Rating Scores
The LAD relative preferences can be utilized in a completely different way

(compared to OE or PE) to construct country risk ratings. We describe here how

to derive new numerical ratings of all countries, called “logical rating scores”

(LRS), by applying multiple linear regression. LRS were defined by Hammer

et al. (2011) as numerical values whose pairwise differences approximate

optimally the relative preferences over countries as expressed in their risk

ratings. A common way to calculate the relative preferences is based on

interpreting sovereign ratings as cardinal values (see, e.g., Ferri et al. 1999;

Hu et al. 2002; Sy 2004). If the sovereign ratings b are viewed as cardinal values,

then one can view the relative preferences D as differences of the corresponding

ratings:

D Pij

� � ¼ bi � bj, for all i, j 2 I, i 6¼ j (16.10)

Since the system (16.10) is not necessarily consistent, it should be relaxed in the

following way:

D Pij

� � ¼ bi � bj þ eij, for all i, j 2 I, i 6¼ j (16.11)
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The values of the b’s providing the best L2 approximation of the D’s can be

found by solving the following multiple linear regression problem:

D pð Þ ¼
X
k2I

bk 	 xk pð Þ þ e pð Þ, (16.12)

where p ¼ {(i, j)ji, j 2 I, i 6¼ j} and xk i; jð Þ ¼
1, for k ¼ i
�1, for k ¼ j
0, otherwise

8<
: .

The logical rating scores bk obtained by fitting the regression model are given in

Column 8 of Table 16.16.

16.4.4 Evaluation of the Results

In this section, we analyze the results obtained with the proposed rating systems.

The evaluation of the results involves the analysis of the following:

• The relative preferences

• The partially ordered set (i.e., the logical dominance relationship)

• The LRS scores and the Condorcet ratings (extremal linear extensions)

with respect to the rating system of S&P’s as well as that of Moody’s and The

Institutional Investor.

16.4.4.1 Canonical Relative Preferences
In this section, we evaluate the quality of the informational content in the matrix D
of relative preferences. To reach this goal, we first define, for any set of numerical

scores si representing sovereign ratings, the canonical relative preferences
dij ¼ si�sj for each pair of countries. Second, we compare the LAD relative

preferences D(Pij) with the canonical relative preferences dS&P
ij, d

M
ij, d

II
ij, and

dLRSij associated, respectively, to the S&P’s ratings, Moody’s ratings, The Institu-

tional Investor’s scores, and the logical rating scores (Hammer et al. 2011). The

corresponding matrices of relative preferences are denoted dS&P, dM, dII, and dLRS,
respectively. We evaluate the proximity between the LAD relative preferences

(Hammer et al. 2006) and the canonical relative preferences based on their corre-

lation levels (Table 16.9).

The high correlation levels show that the LAD relative preferences are in strong

agreement with both the ratings of S&P’s and those of the other agencies, as well as

with the logical rating scores. The superiority of the logical rating scores compared

to the relative preferences associated with the LAD discriminant is explained by the

filtering of the noise done when deriving the LRS scores.

16.4.4.2 Preference Orders
The logical dominance relationship is compared to the preference orders derived

from the S&P’s and Moody’s ratings (viewed as partially ordered sets) and the
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partially ordered sets associated with The Institutional Investor’s scores and the

logical rating scores. The partially ordered sets corresponding to The Institutional

Investor’s scores and the logical rating scores are obtained as follows:

i � j if si � sj > y
i≺j if si � sj < �y
ijjj otherwise

where y is the positive number chosen so as to obtain a partially ordered set of the

same density as the dominance relationship and si represents the numerical score

given to country i by the respective rating system. The incomparability between two

countries means, for S&P’s and Moody’s, that the two countries are equally

creditworthy, while for the logical dominance relationship, it means that the

evidence about the relative creditworthiness of the two countries is either missing

or conflicting. The concept of density of a partially ordered set is defined in

Hammer et al. (2006) and represents the extent to which a partial order on a set

of countries differentiates them by their creditworthiness.

To assess the extent to which the preference orders agree with each other, the

following concepts are introduced (Hammer et al. 2006). Given a pair of countries

(i, j), two partially ordered sets are:

• In concordance if one of the following relations i� j, i≺ j, or i || j holds for both
partially ordered sets

• In discordance if i� j for one of the partially ordered sets and i≺ j for the other one
• Incomparable otherwise, that is, if i || j for one of the partially ordered sets, and

either i � j or i ≺ j for the other partially ordered set.

We measure the levels of concordance, discordance, or incomparability between
two partially ordered sets by the fractions of pairs of countries for which the two

partially ordered sets are, respectively, in concordance, discordance, or incompa-

rable. Hammer et al. (2006) have shown that there is a very high level of agreement

between the following:

• The logical dominance relationship and the preference orders associated with

S&P’s and Moody’s ratings and The Institutional Investor scores

• The logical dominance relationship and the logical rating scores

16.4.4.3 Discrepancies with S&P’s
Logical Dominance Relationship
This section is devoted to the study of the discordance between the logical domi-

nance relationship and the preference order of S&P’s. We define as a discrepancy
(Hammer et al. 2006) a country pair for which the logical dominance relationship

and the preference order of S&P’s are in discordance. The 2.17 % discordance level

between the logical dominance relationship and the preference order of S&P’s

represents 51 discrepancies.

Next, in order to determine the minimum number of countries, for which the

S&P’s ratings must be changed so that the new adjusted S&P’s preference order has
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a 0 % discordance level with the dominance relationship, we solve the integer

program below:

min
X
i2I

ai

subject to

S	i � Si
�� �� � M	ai, forall i 2 I

S	i � S	j foreverypair i; jð Þ such that i �
LAD

j

ai 2 0; 1f g, S	i e 0; 1; . . . ; 21f g for all i 2 I

(16.13)

where ai takes the value 1 if the S&P’s rating of country i must be modified and the

value 0 if otherwise, Si is the original S&P’s rating of country i, Si
* is the adjusted

S&P’s rating of country i, andM is a sufficiently large positive number (e.g.,M¼ 22).

The optimal solution of Eq. 16.13 shows that the 0 % discordance level can be

achieved by adjusting the S&P’s ratings of nine countries: France, India, Japan,

Colombia, Latvia, Lithuania, Croatia, Iceland, and Romania. To check the rele-

vance of the proposed rating adjustments, we examine the S&P’s ratings posterior

to December 1998. We observe that Romania, Japan, and Columbia’s S&P’s

ratings have been modified in the direction suggested by our model. More precisely,

Columbia was downgraded by S&P’s twice, moving from BBB� in December

1998 to BB+ in September 1999 and then to BB in March 2000. Japan was

downgraded to AA+ in February 2001 and AA in November 2001. Romania was

upgraded to B in June 2001. The S&P’s rating of the other countries (Iceland,

France, India, Croatia, Latvia, and Lithuania) has remained unchanged.

Logical Rating Scores
We have already shown that the LRS and the S&P’s ratings are in close agreement.

However, since LRS and the S&P’s ratings are not expressed on the same scale, the

comparison of the two scores of an individual country presents a challenge. In order

to bring the LRS and the S&P’s ratings to the same scale, we apply a linear

transformation a*bi + c to the logical rating scores bi in such a way that the mean

square difference between the transformed LRS and the S&P’s ratings is mini-

mized. This is obtained by solving a series of quadratic optimization problems in

which the decision variables are a and c. Clearly, the consistency of the LRS and

S&P’s ratings is not affected by this transformation.

In 1998, it appears that five countries (Columbia, Hong Kong, Malaysia,

Pakistan, and Russia) have an S&P’s rating that does not fall within the confidence

interval of the transformed LRS. The 1-year modification of the S&P’s ratings for

Columbia,Pakistan, andRussia is in agreementwith the1998LRSof these countries and

highlights the prediction power of theLRSmodel.Moreover, the evolution of the S&P’s

ratings of Malaysia and Hong Kong is also in agreement with their 1998 LRS. Indeed,

bothMalaysia andHongKonghavebeenupgradedshortly thereafter, the formermoving

from BBB- to BBB in November 1999 and the latter from A to A+ in February 2001.
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16.4.4.4 Optimistic and Pessimistic Extensions
The optimistic and pessimistic extensions of the logical dominance relationship

(Table 16.16) comprise 21 levels, while the S&P’s rating system contains 22 rating

categories. Table 16.10 provides the correlation levels between all the ratings

(scores). The analysis reconfirms the high level of agreement between the proposed

rating models and that of S&P’s. The high correlation levels attest that the LRS

approximate very well the S&P’s ratings, as well as those of the other rating

agencies.

16.4.4.5 Temporal Validity
In this section, we apply the “out-of-time” or “walk-forward” validation approach

(Sobehart et al. 2000; Stein 2002) to further verify the robustness and the relevance

of our rating models. This involves testing how well the LAD model derived from

the 1998 data performs when applied to the 1999 data. To evaluate the “temporal

validity” of the proposed models, we proceed as follows: (i) we derive the LAD

relative preferences, (ii) we build the logical dominance relationship and run the

regression model for the LRS scores, (iii) we calculate the weak Condorcet ratings

(pessimistic and optimistic extensions) and the logical rating scores, and (iv) we

compare these to the rating systems of the rating agencies (S&P’s, Moody’s, and

The Institutional Investor).

Relative Preferences
Table 16.11 shows that the LAD relative preferences are highly correlated with

those of the S&P’s rating system, as well as with the logical rating scores. The LAD

relative preferences and the LRS were obtained by applying to the 1999 data the

models derived from the 1998 data.

The high levels of pairwise correlations between the S&P’s 1999 ratings, the

relative preferences given by the LAD discriminant, and the canonical relative

preferences corresponding to LRS show that the LRS model has a very strong

temporal stability and indicate its high predictive power.

Preorders
The logical dominance relationship is compared to the 1999 preference order of the

S&P’s and the partially ordered set associated with the logical rating scores.

Table 16.12 displays the concordance, discordance, and incomparability levels

Table 16.10 Correlation analysis

S&P’s Moody’s II OE PE LRS

S&P’s 100 % 98.01 % 96.18 % 94.31 % 95.40 % 95.54 %

Moody 98.01 % 100 % 96.31 % 94.13 % 95.42 % 95.20 %

II 96.18 % 96.31 % 100 % 93.26 % 94.62 % 94.11 %

OE 94.31 % 94.13 % 93.26 % 100 % 99.15 % 99.24 %

PE 95.40 % 95.42 % 94.62 % 99.15 % 100 % 99.10 %

LRS 95.54 % 95.20 % 94.11 % 99.24 % 99.10 % 100 %
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between the logical dominance relationship, the preference order of S&P’s, and the

partial order associated with the logical rating scores and underlines their very

strong level of agreement.

Discrepancies with S&P’s
The discordance level between the logical dominance relationship obtained

using the 1999 data and the preference order of the 1999 S&P’s ratings is equal

to 2.64 %. The solution of the above integer programming problem (16.13) reveals

that the discrepancies would disappear if one modified the ratings of eight countries

(France, Japan, India, Colombia, Latvia, Croatia, Iceland, and Hong Kong). The

relevance of the ratings obtained with the logical dominance relationship is proven

by observing the rating changes published by S&P’s subsequent to December 1999.

The identification of the discrepancies between S&P’s ratings and the LRS

scores requires the derivation of the confidence intervals for the new, 1999 obser-

vations and therefore for the transformed LRS of each country (Hammer

et al. 2007). We denote by n and p the number of observations and predictors,

respectively. The expression t(1� a/2, n� p) refers to the Student test with (n� p)
degrees of freedom, and with upper and lower tail areas of a/2, Xj is the

p-dimensional vector of the values taken by the observation Yj on the

p predictors, Xp

0
is the transposed of Xj, and (X0X)�1 is the variance-covariance

matrix, that is, the inverse of the [p � p]-dimensional matrix (X0X). Denoting
by MSE the mean square of errors, the estimated variance

s2 Ŷ j

� � ¼ MSE	 1þ X
0
j X

0
X

� ��1
Xj

h i
of the predicted rating Ŷ j and the (1�a)

confidence interval for Ŷ j, n are given by

Ŷ j, n � t 1� a=2, n� pð Þ	s pred½ �, Ŷ j, n þ t 1� a=2, n� pð Þ	s pred½ �	 

(16.14)

Table 16.11 Correlation

levels between relative

preference matrices

dS&P D dLRS

dS&P 100 % 91.70 % 94.12 %

D 91.70 % 100 % 96.98 %

dLRS 94.12 % 96.98 % 100 %

Table 16.12 Concordance,

discordance, and

incomparability levels with

dominance relationship

Logical dominance relationship

Concordance Incomparability Discordance

S&P’s 84.21 % 13.15 % 2.64 %

Logical rating

score

93.43 % 6.49 % 0.08 %

Logical rating score

Concordance Incomparability Discordance

S&P’s 83.46 % 12.69 % 3.85 %
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Hammer et al. (2007b) say that there is a discrepancy between S&P’s rating Rj
SP

and the logical rating score if

RSP
j =2 Ŷ j, n � t 1� a=2, n� pð Þ	s pred½ �, Ŷ j, n þ t 1� a=2, n� pð Þ	s pred½ �	 


for

a ¼ 0.1.

Applying the 1998 LRS model to the 1999 data, only two countries (Russia and

Hong Kong) have S&P’s ratings that are outside the confidence intervals of the

corresponding transformed LRS. The creditworthiness of these two countries seems

to have been under-evaluated by S&P’s in 1998: the ratings of both were upgraded

in 1999.

Condorcet Ratings and LRS Scores
The optimistic and pessimistic extensions (Table 16.16) of the logical dominance

relationship obtained using the 1999 data both comprise 20 levels, while the S&P’s

rating system contains 22 rating categories. Table 16.13 provides the correlation

levels between the 1999 S&P’s ratings, the optimistic and pessimistic extension

levels, and the logical rating scores. The high levels of correlation and their

comparison with those presented in Table 16.10 provide further evidence of the

temporal validity of the proposed models.

16.4.4.6 Predicting Creditworthiness of Unrated Countries
Condorcet Approach
The application of the logical dominance relationship to predict the rating of

countries not included in the original dataset, and for years subsequent to 1998, is

an additional validation procedure, sometimes referred to as “out-of-universe”

cross-validation (Sobehart et al. 2000; Stein 2002). We use the 1998 LAD model

to calculate the relative preferences for all pseudo-observations involving one or

two of the four “new” countries (Ecuador, Guatemala, Jamaica, Papua New

Guinea), which allows us to derive the logical dominance relationship and the

computation of the optimistic and pessimistic extensions of previously unrated

countries. The levels assigned to these countries by the recalculated optimistic

and pessimistic extensions are shown in Table 16.14.

It appears that:

• Guatemala’s first S&P’s rating (in 2001) was BB. Guatemala’s OE/PE levels are

the same as Morocco’s (the only country with OE ¼ PE ¼ 5), and Morocco’s

S&P’s rating in 1999 was BB.

Table 16.13 Correlation

analysis
S&P’s OE PE LRS

S&P’s 100.00 % 95.09 % 95.15 % 94.12 %

OE 95.09 % 100.00 % 99.59 % 98.43 %

PE 95.15 % 99.59 % 100.00 % 98.24 %

LRS 94.12 % 98.43 % 98.24 % 100.00 %
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• Jamaica’s first S&P’s rating (1999) was B. Its OE/PE levels (OE ¼ 3, PE ¼ 2)

are identical to these of Paraguay, Brazil, the Dominican Republic, and Bolivia,

which had 1999 S&P’s ratings of B, B+, B+, and BB-, respectively.

• The first S&P’s rating for Papua New Guinea was B+. Its OE/PE levels (OE¼ 3,

PE ¼ 3) are the same as those of Peru and Mexico, which both had 1999 S&P’s

ratings of BB.

• Ecuador’s OE/PE levels (OE¼ 3, PE¼ 2) are the same as those of Paraguay, Brazil,

the Dominican Republic, and Bolivia, which had 1999 S&P’s ratings of B, B+, B+,

and BB-, respectively. Interestingly, while the initial S&P’s rating of Ecuador was

SD (in July 2000), it was upgraded in August 2000 (1 month later) to B.

The striking similarity between the initial S&P’s rating of each of the four

countries discussed above and the S&P’s ratings of those countries which have

the same OE/PE levels validates the proposed model, indicating its power to predict

the creditworthiness of previously unrated countries.

LRS Approach
The LAD discriminant, which does not involve in any way the previous years’

S&P’s ratings, allows the rating of previously unrated countries in the following

way. First, we construct all the pseudo-observations involving the new countries to

be evaluated. Second, we calculate the relative preferences for these pseudo-

observations, and we add the resulting columns and rows to the matrix of relative

preferences. Third, we determine the new LRS for all the countries (new and old) by

running the multiple linear regression model (16.12). Fourth, we apply the linear

transformation defined above to the LRS so that the transformed LRS and the

S&P’s ratings are on the same scale.

The evaluation of the ability of LRS to accurately predict S&P’s ratings is

carried out by comparing the predicted LRS (obtained as described above) and

the S&P’s ratings (when they first become available). We compute the confidence

intervals (16.14) for the transformed LRS of four countries never rated by S&P’s by

December 1998. The predictions for Guatemala, Jamaica, and Papua New Guinea

correspond perfectly to the first time (subsequent) S&P’s ratings. The comparison

between the LRS and the first (July 2000) S&P’s rating (SD) to Ecuador shows that

S&P’s rated it too harshly, since 1 month later S&P’s raised its rating to B-,

justifying the LRS prediction.

Table 16.14 Out-of-

universe validation Optimistic

extension

Pessimistic

extension

First S&P’s

rating

S&P’s

linear

extension

Ecuador 3 2 SD (07/2000) 0

Guatemala 5 5 BB (10/2001) 10

Jamaica 3 2 B (11/1999) 7

Papua

New

Guinea

3 3 B+ (01/1999) 8
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16.4.5 Importance of Variables

The methodology developed in this chapter permits the assessment of the

importance of the variables in rating countries’ creditworthiness. In LAD,

the importance of variables is associated with their use in the patterns of the

LAD model and is usually measured by the proportion of patterns containing

a particular variable. The patterns of the 1998 LAD model show that the three

most frequently used variables are financial depth and efficiency, political stabil-

ity, and gross domestic product per capita (appearing in 47.5 %, 39.4 %, and

35.6 % of the LAD patterns, respectively).

The presence of political stability among the three most significant ones in the

selected set justifies the inclusion of political variables in country risk rating

models. This result is in agreement with the cost-benefit approach to country risk

(i.e., the risk of defaulting is heavily impacted by the political environment, see

Brewer and Rivoli 1990, 1997; Citron and Neckelburg 1987; Afonso 2003) which is

not a view shared by all (Haque et al. 1996, 1998).

The fact that the LAD approach identifies gross domestic product per capita as

significant was expected, for most studies on country risk ratings acknowledge its

crucial importance in evaluating the creditworthiness of a country. A key new result

is the identification of the financial depth and efficiency variable as a major factor

for the prediction of country risk ratings.

16.5 Conclusions

The central objective of this study is to develop transparent, consistent, self-

contained, and stable credit risk rating models, closely approximating the risk

ratings provided by some of the main rating agencies. We use the combinatorial

optimization method called LAD and develop a relative creditworthiness approach

for assessing the credit risk of countries, while an absolute creditworthiness

approach is used for financial institutions.

The evaluation of the creditworthiness of financial organizations is particularly

important due to the growing number of banks going bankrupt and the magnitude of

losses caused by such bankruptcies, and it is challenging due to the opaqueness of

the banking sector and the high variability of banks’ creditworthiness. We use the

logical analysis of data (LAD) to reverse engineer the Fitch bank credit ratings. The

LAD method identifies strong combinatorial patterns distinguishing banks with

high and low ratings. These patterns constitute the core of the rating model

developed here for assessing the credit risk of banks. The results show that the

LAD ratings are in very close agreement with the Fitch ratings. In that respect, it is

important to note that the critical component of the LAD rating system – the LAD

discriminant – is derived utilizing only information about whether a bank’s rating is

“high” or “low,” without the exact specification of the bank’s rating category.

Moreover, the LAD approach uses only a fraction of the observations in the dataset.

The higher classification accuracy of LAD appears even more clearly when
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performing cross-validation and applying the LAD model derived by using the

banks in the training set to those in the testing one.

This study also shows that the LAD-based approach to reverse engineering bank

ratings provides a model that is parsimonious and robust. This approach allows to

derive rating models with varying levels of granularity that can be used at different

stages in the credit granting decision process and can be employed to develop

internal rating systems that are Basel 2 compliant. Besides impacting the credit risk

of a financial institution, the use of the generalizable and accurate credit risk rating

system proposed here will also be critical in mitigating the financial institution’s

operational risk due to breakdowns in established processes and risk-management

operations or to inadequate process mapping within business lines. In particular, the

reliance on such risk rating system will reduce the losses due to mistakes made in

executing transactions, such as settlement failures, failures to meet capital regula-

tory requirements, or untimely debt collections, or the losses due to the offering of

inappropriate financial products or credit conditions, or giving incorrect advice to

counterparty.

The evaluation of the creditworthiness of countries is also of utmost importance,

since the country’s risk rating is generally viewed as the upper bound on the rating

that entities within a given country can be assigned. This study proposes an LAD

methodology for inducing a credit risk system from a set of country risk rating

evaluations. It uses nine economic and three political variables to construct the

relative preferences of countries on the basis of their creditworthiness. Two

methods are then developed to construct countries’ credit rating systems on the

basis of their relative creditworthiness. The first one is based on extending the

preorder of countries using the Condorcet voting technique and provides two rating

systems (weak Condorcet winners and losers), while the second one uses linear

regression to determine the logical rating scores.

The proposed rating systems correlate highly with those of the utilized rating

system (S&P’s) and those of other rating agencies (Moody’s and The Institutional

Investor) and are shown to be stable, having an excellent classification accuracy

when applied to the following years’ data or to the ratings of previously unrated

countries. Rating changes implemented by the S&P’s in subsequent years have

resolved most of the (few) discrepancies between the constructed partially ordered

set and S&P’s initial ratings. This study provides new insights on the importance of

variables by supporting the necessity of including in the analysis, in addition to

economic variables, also political variables (“political stability”), and by identify-

ing “financial depth and efficiency” as a new critical factor in assessing

country risk.

The rating systems proposed here for banks as well as countries are as follows:

• Avoid overfitting as attested by the back-testing analysis (i.e., extremely high

concordance between in- and out-of-sample rating predictions calculated using

the k-folding and jackknife cross-validation methods).

• Distinguish themselves from the rating models in the existing literature by their

self-contained nature, that is, by their non-reliance on any information derived

from lagged ratings. Therefore, the high level of correlation between predicted

16 Combinatorial Methods for Constructing Credit Risk Ratings 475



and actual ratings cannot be attributed to the reliance on lagged ratings and is

a reflection of the predictive power of the independent variables included in

these models. An important advantage of the non-recursive nature of the pro-

posed models is their applicability to not-yet-rated obligors.

The scope of the proposed methodology extends beyond the rating problems

discussed in this study and can be used in many other contexts where ratings are

relevant. The proposed methodology is applicable in the general case of inferring an

objective rating system from archival data, given that the rated objects are charac-

terized by vectors of attributes taking numerical or ordinal values.

Appendix

See Tables 16.15 and 16.16.

Table 16.15 Standard & Poor’s country rating system

Level Description

Investment

rating

AAA An obligor rated AAA has extremely strong capacity to meet its financial

obligations. AA is the highest issuer credit rating assigned by S&P’s

AA An obligor rated AA has very strong capacity to meet its financial

commitments. It differs from the highest rated obligors only in small

degree

A An obligor rated A has strong capacity to meet its financial commitments

but is somewhat more susceptible to the adverse effects of changes in

circumstances and economic conditions than obligors in higher-rated

categories

BBB An obligor rated BBB has adequate capacity to meet its financial

commitments. However, adverse economic conditions or changing

circumstances are more likely to lead to a weakened capacity of the obligor

to meet its financial commitments

Speculative

rating

BB An obligor rated BB is less vulnerable in the near term than other lower-

rated obligors. However, it faces major ongoing uncertainties and exposure

to adverse financial or economic conditions which could lead to its inability

to meet financial commitments

B An obligor rated B is more vulnerable than the obligors rated BB, but, at

the time of the rating, it has the capacity to meet financial commitments.

Adverse business, financial conditions could likely impair its capacity to

meet financial commitments

Default rating CCC An obligor rated CCC is vulnerable at the time of the rating and is

dependent upon favorable business, financial, and economic conditions to

meet financial commitments

CC An obligor rated CC is highly vulnerable at the time of the rating

C An obligor rated C is vulnerable to nonpayment at the time of the rating and

is dependent upon favorable business, financial, and economic conditions

to meet financial commitments

D An obligor rated D is predicted to default

SD An obligor rated SD (selected default) is presumed to be unwilling to repay
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Abstract

This paper constructs a six-variable VARmodel (includingNASDAQ returns, TSE

returns, NT/USD returns, net foreign purchases, net domestic investment compa-

nies (dic) purchases, and net registered trading firms (rtf) purchases) to examine:

(i) the interaction among three types of institutional investors, particularly to test

whether net foreign purchases lead net domestic purchases by dic and rtf (the

so-called demonstration effect); (ii) whether net institutional purchases lead market

returns or vice versa; and (iii) whether the corresponding lead-lag relationship is

positive or negative? The results of unrestricted VAR, structural VAR, and multi-

variate threshold autoregression models show that net foreign purchases lead net

purchases by domestic institutions and the relation between them is not always

unidirectional. In certain regimes, depending on whether previous day’s TSE

returns are negative or previous day’s NASDAQ returns are positive, we find

ample evidence of a feedback relation between net foreign purchases and net

domestic institutional purchases. The evidence also supports a strong positive-

feedback trading by institutional investors in the TSE. In addition, it is found that

net dic purchases negatively lead market returns in Period 4. The MVTAR results

indicate that net foreign purchases lead market returns when previous day’s

NASDAQ returns are positive and have a positive influence on returns.

Readers are well advised to refer to chapter appendix for detailed discussion

of the unrestricted VAR model, the structural VAR model, and the threshold

VAR analysis.

Keywords

Demonstration effect • Multivariate threshold autoregression model • Foreign

investment • Lead-lag relationship • Structural VAR • Block Granger causality •

Institutional investors • Domestic investment companies • Registered trading

firms • Qualified foreign institutional investors

17.1 Introduction

As financial markets are gradually liberalized in emerging economies, capital invest-

ments have been flowing into these countries at increasing rates. Needless to say, such

capital movements in terms of bringing in direct investment along with technological

know-how can be instrumental in raising a nation’s productivity. On the downside,

capital inflows directed at investing in the host country’s security markets can be

disruptive. From a macroeconomics perspective, foreign capital inflows are beneficial

in that they provide much-needed capital. From a microeconomics perspective, they

also lower the cost of capital and enhance competitiveness. Nevertheless, capital

inflows can also be disruptive if arbitrage is their main purpose. When capital flight

occurs, as was the case in the 1997Asian financial debacle and the 1994Mexican Peso

crisis, movements in foreign capital could be extremely disruptive and damaging.

Given the potentially negative impact of foreign investments, Taiwan’s Ministry of

Finance exercised caution by implementing foreign capital policies in a three-stage
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process. First, it directed a number of local trust companies to issue investment funds

abroad for the local stock market. Second, qualified foreign investment companies

were allowed to invest in Taiwan’s stock market. Third, foreign individual as well as

institutional investors were permitted to directly participate in trading in the Taiwan

Stock Exchange Corporation (hereafter TSE). The first stage took effect from

September 1983 until December 29, 1990, when the second stage replaced the first

stage with a maximum investment limit of $2.5 billion. In response to the strong

demand to invest in the TSE, the ceiling was raised to $5 billion and to $7.5 billion in
August 1993 and March 1994, respectively. Foreign investments later increased

substantially (see Table 17.1), and as a result the ceiling was lifted entirely in 1996

except for a maximum investment limit to each individual stock.

The relatively slow pace in allowing foreign investment in Taiwan was the result

of ongoing debates between the Central Bank of China and the Securities and

Futures Commission of the Ministry of Finance regarding the stability of foreign

investment. The focus of the discussion was on the following three questions. First,

are there differences in the trading behaviors of different type of institutions? One

objective of opening up the domestic market to foreign investments is to utilize its

advantages in information acquisition, information processing, and trade execution

to improve the overall performance of local institutional investors.1 Second, will

Table 17.1 Inflows and outflows of foreign capital investment in the TSE Unit: millions of

US dollars

Period

Securities

investment

companies

Foreign institutional

investors Natural person Foreign total

Inflow Outflow Inflow Outflow Inflow Outflow Net inflow

1991 263 53 448 0 0 0 658

1992 57 61 447 17 0 0 426

1993 653 93 1,859 97 0 0 2,322

1994 451 207 2,279 634 0 0 1,889

1995 664 457 3,509 1,506 0 0 2,210

1996 565 477 6,213 3,881 334 8 2,747

1997/1 � 4 12 644 4,442 2,529 261 78 1,465

Cumulative amount 2,664 1,992 19,198 8,664 595 85 11,716

Source of data: Securities and Futures Commission, Ministry of Finance, Taiwan

1This is because foreign institutions may well have better research teams and buy stocks according

to the fundamentals such as the firm’s future profitability. In contrast, local institutions and

individual investors usually choose stocks based on insider information or what the newspapers

write about. However, if stocks bought by foreign investors have a better performance than that of

local institutions and individual investors, the latter tend to buy the stocks bought by successful

foreign investors the previous day. Hence this gives rise to the so-called “demonstration effect.”

Such a concept is similar to the “herding” which Lakonishok et al. (1992) referred to as correlated

trading across institutional investors. Nonetheless, their definition is close to the contemporaneous

correlation rather than the lead-lag relation under study, and as such this leads to the demonstration

effect which we documented.
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the trades of the three groups of classified institutional investors affect stock returns

of the TSE? Third, will the lifting of restrictions on foreign capital contribute to the

volatility of both the foreign exchange and stock markets in Taiwan?

The purpose of this paper is to provide answers to two of the aforementioned

issues: (1) Are there differences in the trading behaviors of different types of

institutions? Typically, we examine interaction among the three types of institu-

tions: qualified foreign institution investors (qfii), domestic investment companies

(dic), and registered trading firms (rtf). (2) Does institutional trading “cause” stock

returns or do institution investments follow movements in stock prices? The

distinction between this paper and previous literature lies in following aspects:

(i) Most previous studies uses low-frequency – yearly, quarterly, or at best weekly –

data (Nofsinger and Sias 1999; Cai and Zheng 2002; Karolyi 2002). In this paper we

employ daily data to help explore these issues in detail and to provide new evidence

on the short-term dynamics among institutional investors and stock returns.2

(ii) Unlike previous studies that used a bivariate VAR model (Froot et al. 2001),

we use a six-variable VARmodel, which includes three types of institutional trades,

stock returns in the TSE, NT/USD exchange rate changes, and NASDAQ index

returns to test related relationships. (iii) Improving on the conventional linear VAR

analysis in the previous studies, we employ the threshold concept and split data into

two regimes based on whether previous trading day’s market returns are positive or

negative.

A number of studies have examined the relationship between investment flows

and stock returns. Brennan and Cao (1997) develop a theoretical model of interna-

tional equity flows that relies on the informational difference between foreign and

domestic investors. The model predicts that if foreign and domestic investors are

differently informed, portfolio flows between two countries will be a linear function

of the contemporaneous return on all national market indices. Moreover, if domes-

tic investors have a cumulative information advantage over foreign investors about

domestic securities, the coefficient of the host market return is expected to be

positive.

Nofsinger and Sias (1999) use US annual data to investigate the relationship

between stock returns and institutional and individual investors. They identify

a strong positive correlation between changes in institutional ownership and stock

returns measured over the same period. Their results suggest that (i) institutional

investors practiced positive-feedback trade more than individual investors and

(ii) institutional herding impacted price more than that by individual investors.

Nofsinger and Sias show that institutional herding is positively correlated with lag

returns and appears to be related to stock return momentum.

Choe et al. (1999) use order and trade data from November 30, 1996 to the end of

1997 to examine the impact of foreign investors on stock returns. They found strong

2Froot et al. (2001) also use daily data, but they examine the behavior of capital flows across

countries. In addition, our models and approaches used in the estimation differ drastically from

theirs.
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evidence of positive-feedback trading and herding by foreign investors before

South Korea’s economic crisis. During the crisis period, herding lessened and

positive- feedback trading by foreign investors mostly disappeared.3

Grinblatt and Keloharju (2000) use a Finland data set to analyze it to the extent

that past returns determine the propensity to buy and sell. They find that foreign

investors tend to be momentum investors, buying past winning stocks and selling past

losing ones. Domestic investors, particularly households, tend to be contrarians.

Froot et al. (2001) by making use of daily international portfolio flows (44 coun-

tries from 1994 to 1998) along with a bivariate unrestricted VAR model find that

lagged returns are statistically significant in predicting future flows. The evidence of

the predictability of returns by flows is, however, ambiguous. In developed markets,

there is no statistical evidence of stock predictability. For emerging markets, the

evidence for predictability is strong, although less so for the Emerging European

region. However, they estimate a restricted VAR model that assumes current inflows

will affect current prices, and the causality does not run from contemporaneous returns

to the flows. They provide the evidence of a positive contemporaneous correlation

between current inflows and returns in emerging markets.

Hamao and Mei (2001) investigate the impact of foreign investment on Japan’s

financial markets. Using monthly data from July 1974 to June 1992, they find that

(1) trades of foreign investors tend to increase market volatility more than that by

domestic investors; (2) foreign investors havemore sophisticated investment technology

than do domestic investors; and (3) foreign investors seem tomake investment decisions

on the basis of not only short-term gains but also long-term fundamentals.

Cai and Zheng (2002) use institutional holding data from the third quarter of 1981

to the last quarter of 1996 in order to examine the lead-lag relationship between

portfolio excess returns and the institutional trading. Beyond it, they compute institu-

tional trading as the change of institutional holdings from last quarter to the current

quarter. The unrestricted VAR analysis indicates that stock returns Granger-cause

institutional trading on quarterly basis, not vice versa. This implies the institutions

“herd” on past price behavior instead of being dominant price-setters in the market.

Using weekly data of Japan, Karolyi (2002) find consistent positive-feedback

trading among foreign investors before, during and after the Asian financial

debacle. Japanese banks, financial institutions, investment trusts and companies

are, on the other hand, aggressive contrarian investors. There is no evidence that the

trading activity by foreigners destabilized the markets during the crisis.4

Griffin et al. (2003) study the daily and intraday relationship between stock

returns and trading of institutional as well as individual investors for NASDAQ

100 securities. The daily unrestricted VAR results indicate that the institutional

3Lakonishok et al. (1992) refer to the positive-feedback trading or trend chasing as buying winners

and selling losers and the negative feedback trading or contrarian as buying losers and selling

winners. Cai and Zheng (2002) point out that feedback trading occurs when lagged returns act as

the common signal that the investors follow.
4Karolyi (2002) reaches such a conclusion because there is little evidence of any impact of foreign

net purchases on future Nikkei returns or currency returns.
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buy-sell imbalances are positively related to previous day’s returns and the institu-

tional buy-sell imbalances (previous day) are not associated with current return.

The results are consistent with the finding by Sias and Starks (1997) using US data.

Griffin et al. (2003) estimate a structural VAR with the contemporaneous returns in

the institutional imbalance equation and discover a strong contemporaneous rela-

tionship between daily returns and institutional buy-sell imbalances.

Kamesaka et al. (2003) use Japanese weekly investment flow data over 18 years

to investigate the investment patterns and performance of foreign investors, indi-

vidual investors, and five types of institutional investors. Not surprisingly, they find

individual investors perform poorly, while securities firms, banks, and foreign

investors perform admirably over the sample period.

Several related studies focus mainly on Taiwan’s stock market. Huang and Hsu

(1999) detect decreased volatility in the weighted TSE using Levene’s F-statistic

following market liberalization. Lee and Oh (1995), implementing a vector

autoregression (VAR) model, find a reduction in the explanatory power of macro-

economics variables. Wang and Shen (1999) indicate that foreign investments exert

a positive impact on the exchange rate with only a limited effect on the TSE. In

addition, by using the turnover rate as a proxy for non-fundamental factors and

earnings per share for fundamental factors within the framework of a panel data

model, Wang and Shen are able to identify that (i) the non-fundamental factors

impacted the returns of the TSE before market liberalization and (ii) both the

fundamental and non-fundamental factors exerted an impact following market

liberalization.

Lee et al. (1999) investigate interdependence and purchasing patterns among

institutional investors, large, and small individual investors. Their results, based on

15-min intraday transaction data (3 months for 30 companies), highlight the

important role played by large individual investors, whose trading affects not

only stock returns but also small individual investors. However, net buys (i.e., the

difference between total buy and total sell) by institutional investors have no effect

on the TSE returns, and vice versa.

The previous literature is predominantly focused on the relationship between

institutional trading and stock returns, rarely on the interaction among institutional

investors. For example, the majority of prior studies find evidence of positive-

feedback trading by institutions, with the exception of Froot et al. (2001), who

discover that in Latin America and emerging East Asian markets, the trading by

institutions positively predicts future returns. Karolyi (2002) also detects that

foreign investors in Japan are positive-feedback traders, while Japanese financial

institution and companies are contrarian investors.

Most of the studies to date on these issues have been on the USA and Japanese

markets despite that some of the literature gives scant attention to Taiwan’s stock

market. When investigating the related issues in large countries such as the USA

and Japan, the influence of the foreign sector on the domestic market could be

neglected; however, for a small country such as Taiwan, it should not be ignored.

This is because the electronics industry in Taiwan is closely connected to the US

companies listed on the NASDAQ. Ultimately, after examining the interaction
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among institutional investors and the dynamic relationship between stock returns

and institutional investors, the conclusion may also be affected by whether returns

of domestic market are positive or negative.

To circumvent the above problems, this paper employs a six-variable VAR

model, which takes into account trades of three types of institutional investors

(qfii, dic, and rtf), foreign returns, domestic returns, and changes in the NT/USD

exchange rate to jointly test hypotheses under different market conditions. Using

daily data, we find that net foreign purchases lead net domestic purchases. How-

ever, such a relation is not unidirectional. Under certain conditions (either when

previous day’s TSE returns are negative or previous day’s NASDAQ returns are

positive), we identify a feedback relation between net foreign purchases and net

domestic purchases. It highlights the well-known argument in Taiwan regarding

foreign investors: The demonstration effect on domestic institutional investors is

not entirely correct. As for the lead-lag relation between market returns and

institutional trading, we find that in most cases market returns at least lead both

net foreign and dic purchases; however, market returns also lead net rtf purchases if
the relationship between contemporaneous returns and institutional trading is

considered. On the other hand, our results also indicate that net dic purchases

lead market returns and are negatively associated with market returns in the fourth

period. The MVTAR analysis shows that when previous day’s NASDAQ returns

are positive, net foreign purchases positively lead stock returns.

The remainder of this paper is organized as follows. Section 17.2 describes the

sample data and the basic statistics. Section 17.3 investigates the lead-lag relation

for three groups of institutional investors in order to explore the issue of whether

foreign investments give rise to demonstration effects in Taiwan’s stock market and

examines the relationship between institutional trading activity and stock returns of

the TSE. To further explore the interaction among three types of market partici-

pants, the sample is divided into two regimes based on either the sign of the market

returns or that of the NASDAQ index returns of previous trading day, respectively.

The last section provides a conclusion.

17.2 Sample Data and Basic Statistics

This paper employs daily data from December 13, 1995 to May 13, 2004 for a large

sample analysis.5 The variables considered include purchases (qfiibuy) and sales

(qfiisell) by qfii, purchases (dicbuy) and sales (dicsell) by dic, purchases (rtfbuy) and
sales (rtfsell) by rtf, TSE daily weighted stock index (pt), NASDAQ stock index

(naspt), and the NT/USD exchange rate (et). The data are from the Taiwan Eco-

nomic Journal (TEJ). The changes in the exchange rate and the logarithmic returns

on TSE and NASDAQ indices are defined as

5The data began on December 13, 1995, since the inception of the TEJ.
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Det ¼ loget � loget�1ð Þ � 100%,

rt ¼ log pt � log pt�1ð Þ � 100%

nasrt ¼ log naspt � log naspt�1ð Þ � 100%

Net foreign purchases (qfiibst) are computed as the daily purchases (qfiibuyt) less
sales (qfiisellt) of Taiwan stocks by foreigners. Similarly, net dic purchases (dicbst)
are computed as the daily purchases (dicbuyt) less sales (dicsellt) of Taiwan stocks

by dic, and net rtf purchases (rtfbst) are computed as the daily purchases (rtfbuyt)
less sales (rtfsellt) of Taiwan stocks by rtf. The VAR analysis used here depends on

whether the time series are stationary; hence, a unit root test is to be performed in

advance to avoid spurious regression. The Phillips and Perron test is applied and the

results are illustrated in Table 17.2.

The Phillips and Perron test results indicate that all time series are statistically

significant at 1 % level. There is no further differencing needed before applying VAR.

Table 17.3 presents the summary statistics for the time series used in this paper.

Table 17.2 Unit root tests for the six time series

Test nasrt rt Det qfiibst dicbst rtfbst

PP �44.04* �42.76* �43.32* �28.47* �31.12* �29.90*

The sample period starts from December 13, 1995, to May 13, 2004, a total of 1989 observations.

qfiibuyt and qfiisellt ¼ purchases and sales by qualified foreign institutional investors, and

qfiibst ¼ qfiibuyt-qfiisellt. dicbuyt and dicsellt ¼ purchases and sales by domestic investment

companies, and dicbst ¼ dicbuyt-dicsellt. rtfbuyt and rtfsellt ¼ purchases and sales by registered

trading firms, and rtfbst ¼ rtfbuyt-rtfsellt. nasrt are the NASDAQ index returns. rt is the TSE index

return. Det is changes in the NT/USD exchange rate. qfiibst is net purchases by qfii. dicbst is net
purchases by dic, and rtfbst is net purchases by rtf. y denotes the level of the variable. Dy denotes

the first difference of the variable. * denotes statistical significance at 1 % level

Table 17.3 Summary statistics for the net institutional purchases, stock returns and NT/USD

currency returns

Mean Median Maximum Minimum Std. dev.

Det 0.0105 0.0000 3.4014 �2.9609 0.3331

rt 0.0083 �0.0438 8.5198 �12.6043 1.7839

nasrt 0.0302 0.1300 13.2546 �10.4078 2.0210

qfiibuyt 5,386.30 4,130 31,415 151 4,513.78

qfiisellt 4,675.17 3,601 44,000 74 4,027.41

qfiibst 711.11 372 19,408 �23772 3,171.87

dicbuyt 3,191.66 2,924 14,980 192 1,643.79

dicsellt 3,306.13 3,096 11,854 141 1,556.99

dicbst �114.49 �120 10,070 �8,876 1,277.43

rtfbuyt 1,814.00 1,418 10,972 49 1,433.95

rtfsellt 1,837.15 1,504 18,024 32 1,384.79

rtfbst �23.15 �36 6,379 �11,177 934.55

For variable definitions, see Table 17.2
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The average percentage change in the exchange rate on the daily basis is

0.011 %; the average daily TSE return is 0.0083 %; and the average daily NASDAQ

return equals 0.0302 %. Overall, qfii are net purchasers on average and two other

domestic institutional investors are net sellers of equity over the sample period,

reflecting different trading strategies adopted by foreign and domestic institutional

investors. Such distinct trading activities among institutional investors can also be

seen in Fig. 17.1.

Figure 17.1 presents the cumulative net purchases and daily net purchases by

qfii, dic, and rtf and how they are associated with the TSE returns, NASDAQ

returns, and NT/USD exchange rate. Over the entire period, the cumulative net

purchases by qfii suggest an upward trend in general, while those of dic and rtf
tend to present a downward trend. Overall, the NASDAQ index is more volatile

than the TSE index (1995/12/13 ¼ 100), and it seems that there exists some

correlation between the two indices. During the Asia financial crisis in 1997, the

NT/USD exchange rate suffered a great upward swing (depreciation of New

Taiwan Dollar) followed by a slight downward slide in 1999 and then rose

again from 2002 onwards. Over the sample period, the volatility of net purchases

by foreigners seemed to have increased since 2002. As for the relationship

between net purchases by institutions and stock returns, no clear correlation

could be detected as shown in Fig. 17.1. To grasp a better understanding on

their linkages, the contemporaneous correlation of net purchases by the three

types of institutional investors, stock returns, and currency returns are displayed

in Table 17.4.

An inspection of Table 17.4 points out that returns on the NT/USD

exchange rate (currency returns) are negatively correlated with both the

TSE returns and net purchases by the three types of institutional investors,

especially by foreign investors. Such relations are very much in line with the

expectation. When stock prices rise following the influx of foreign capital,

the local currency is expected to appreciate to a degree and as such negative

correlations among them is expected. In addition, we find that returns on the

TSE and NASDAQ are positively correlated. It is noteworthy that there exists

a positive contemporaneous correlation between net purchases by the three

types of institutional investors and the TSE returns with the correlation

coefficients ranging from about 0.3 (qfiibst and rt) to 0.4419 (rtfbst and rt).
In short, this finding largely echoes the previous results (e.g., Froot

et al. 2001; Karolyi 2002).

The greatest correlation between institutional trading and NASDAQ

returns is that of rtfbst and nasrt at 0.0938 followed by dicbst and qfiibst,
respectively. Owing to the time difference, the TSE returns may be

influenced by NASDAQ index returns. If nasrt�1 is used instead, a higher

correlations between nasrt�1 and net purchases by institutions are found:

0.3441 for qfiibst, 0.2369 for dicbst, and 0.1428 for rtfbst, respectively. It

implies that previous day’s NASDAQ returns exert a greater impact on net

purchases by each institutional investor in the TSE than do the current

NASDAQ returns.
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Fig. 17.1 (continued)
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2) Net dic Purchase

1) Cumulative Net rtf Purchase
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Fig. 17.1 Trends of cumulative net purchase, net purchases by the three types of institutions,

Taiwan stock prices, NASDAQ index, and the NT/USD exchange rate. a-1 Cumulative net qfii
purchase, a-2 Net qfii purchase, b-1 Cumulative net dic purchase, b-2 Net dic purchase, c-1
Cumulative net rtf purchase, c-2 Net rtf purchase. Notes: qfii qualified foreign institutional

investors, dic domestic investment companies, rtf registered trading firms
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17.3 Lead-Lag Relation Among the Three Groups
of Institutional Investors in the TSE

17.3.1 The Unrestricted VAR Model

Note that prices of many Taiwanese electronics securities are affected by the

NASDAQ returns and hence foreign portfolio inflows may induce fluctuations of

exchange rate. To investigate interactions emanated from the three types of insti-

tutional investors and the relationship between institutional trading activity and

stock returns in Taiwan, we employ a six-variable VAR model using the NASDAQ

returns (nasrt), currency returns (Det), TSE returns (rt), net foreign purchases

(qfiibst), net dic purchases (dicbst), and net rtf purchases (rtfbst) as the underlying
variables. We attempt to answer the issues pertaining to (i) the interaction among

trading activities of the three types of institutions and (ii) the relationship between

stock returns and institutional trading. First, we propose a six-variable unrestricted

VAR model shown below:

nasrt

Det
rt

qfiibst

dicbst

rtfbst

2
666666664

3
777777775
¼

f11 Lð Þ f12 Lð Þ f13 Lð Þ f14 Lð Þ f15 Lð Þ f16 Lð Þ
f21 Lð Þ f22 Lð Þ f23 Lð Þ f24 Lð Þ f25 Lð Þ f26 Lð Þ
f31 Lð Þ f32 Lð Þ f33 Lð Þ f34 Lð Þ f35 Lð Þ f36 Lð Þ
f41 Lð Þ f42 Lð Þ f43 Lð Þ f44 Lð Þ f45 Lð Þ f46 Lð Þ
f51 Lð Þ f52 Lð Þ f53 Lð Þ f54 Lð Þ f55 Lð Þ f56 Lð Þ
f61 Lð Þ f62 Lð Þ f63 Lð Þ f64 Lð Þ f65 Lð Þ f66 Lð Þ

2
666666664

3
777777775

�

nasrt�1

Det�1

rt�1

qfiibst�1

dicbst�1

rtfbst�1

2
666666664

3
777777775
þ

e1t
e2t
e3t
e4t
e5t
e6t

2
666666664

3
777777775

(1)

Table 17.4 Correlation matrix of net purchases by institutions, stock returns, and exchange rate

changes

Det rt nasrt qfiibst dicbst rtfbst

Det 1.0000

rt �0.1338 1.0000

nasrt 0.0124 0.1322 1.0000

qfiibst �0.1270 0.2976 0.0482 1.0000

dicbst �0.0991 0.3750 0.0586 0.2400 1.0000

rtfbst �0.0767 0.4419 0.0938 0.3559 0.3779 1.0000

See also Table 17.3
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where fij(L) is the polynomial lag of the jth variable in the ith equation.

To investigate the lead-lag relation among three types of institutional investors,

we need to test the hypothesis that each off-diagonal element in the sub-matrix

f44 Lð Þ f45 Lð Þ f46 Lð Þ
f54 Lð Þ f55 Lð Þ f56 Lð Þ
f64 Lð Þ f65 Lð Þ f66 Lð Þ

2
4

3
5 is zero.

On the other hand, to determine whether the TSE returns of the previous day lead

net purchases by the three types of institutional investors, we test the hypothesis that

each polynomial lag in the vector f43 Lð Þf53 Lð Þf63 Lð Þ½ �0 is zero. Conversely, if we
want to determine whether previous day’s net purchases by institutional investors

lead current market returns, we test the hypothesis that each element in the vector

[f34(L)f35(L)f36(L)] is zero. Before applying the VAR model, an appropriate lag

structure needs to be specified. A 3-day lag is selected based on the Akaike

information criterion (AIC). Table 17.5 presents the lead-lag relation among the

six time series using block exogeneity tests.

The

f44 Lð Þ f45 Lð Þ f46 Lð Þ
f54 Lð Þ f55 Lð Þ f56 Lð Þ
f64 Lð Þ f65 Lð Þ f66 Lð Þ

2
4

3
5 block represents the potential interaction among

three types of institutional investors. The results indicate that net foreign purchases lead

net dic purchases and the dynamic relationship between these two variables can be

provided by the impulse response function (IRF) in Fig. 17.2a. Clearly, a one-unit

standard error shock to net foreign purchases leads to an increase in net dic purchases,
but this effect dissipates quickly by Period 2. Figure 17.2b, c indicate a feedback

relation between net purchases by qfii and rtf. A one-unit standard error shock to net

foreign purchases results in a positive response to net rtf purchases over the next two
periods, which become negative in Period 3, followed by a positive response again after

Period 4. Furthermore, a one-unit standard error shock to net rtf purchases also gives rise
to an increase in net foreign purchases, which decays slowly over ten-period horizon.

Figure 17.2d shows that net purchases by dic lead net rtf purchases. A one-unit

standard error shock to net dic purchases produces an increase in net rtf purchases in the
first three periods and then declines thereafter. Overall, these impulse responses suggest

that previous day’s net foreign purchases exert a noticeable impact on net rtf purchases,
while previous day’s net rtf purchases also has an impact on net foreign purchases. It

implies that not only do foreign capital flows affect the trading activity of domestic

institutional investors but also the relation is not unidirectional. To be specific, there is

a feedback relation between net rtf purchases and net foreign purchases.

As for the effect of the three types of institutional trading activity on stock

returns in the TSE, Table 17.5 reveals that net dic purchases on previous day lead

the TSE returns. We can also see in Fig. 17.2e that after Period 3, net dic purchases
exert a negative (and thus destabilizing) effect on market returns, while the other

two institutional investors do not have such an effect over the sample period.

Examining the relationship between market returns and trading activity of the

three types of institutional investors, we find that either the net foreign purchases

or net dic purchases on previous trading day are affected by the previous day’s TSE
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Fig. 17.2 Impulse responses to innovations in the unrestricted VAR models (up to ten periods).

Notes: Solid lines represent response path and dotted lines are bands for the 95 % confidence

interval around response coefficients. r, TSE returns; nasr, NASDAQ returns; de, exchange rate

changes; qfiibs, net qfii purchases; dicbs, net dic purchases; rtfbs, net rtf purchases
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returns. Moreover, the IRFs in Fig. 17.2f, g also reveal a significant positive relation

between TSE returns and net foreign purchases up to four periods and a significant

positive relation between TSE returns and net dic purchases for two periods, which
becomes negative after Period 3. In other words, foreign investors in the TSE

engage in positive-feedback trading, while those of the dic tend to change their

strategy and adopt negative-feedback trading after Period 3.

On the other hand, Table 17.5 indicates that previous day’s NASDAQ returns

significantly affect both current TSE returns and net purchases by the three types of

institutional investors. The impulse response in Fig. 17.2h–k also confirms that

previous day’s NASDAQ returns are positively related to both current returns and

net purchases by these institutional investors, with the exception that a negative

relation between net dic purchases and previous day’s NASDAQ returns is found

after Period 4. Such results are much in sync with the expectation since the largest

sector that comprises the TSE-weighted stock index is the electronics industry to

which many listed companies on NASDAQ have a strong connection. In addition,

although previous day’s net qfii and dic purchases also lead the NASDAQ returns,

we find that no significant relation exists except for Period 4 with a significantly

negative relation between them.

The liberalization of Taiwan’s stock market has ushered in significant amount of

short-term inflows and outflows of foreign capital, which have induced fluctuations in

the exchange rate. As is seen from Table 17.5, the TSE returns lead currency returns

and it appears that the initial significant effect of stock returns on currency returns is

negative for the first three periods and then turns to be significantly positive thereafter

(Fig. 17.2n). Given that foreign investors are positive-feedback traders, the capital

inflows is expected to grow in order to increase their stakes in TSE securities when

stock prices rise. Consequently, NT/USD is expected to appreciate.

17.3.2 The Structural VAR Model

The unrestricted VAR model does not consider the effect of current returns on net

purchases by institutions. The prior study by Griffin et al. (2003) includes current

returns in the institutional imbalance equation and finds a strong contemporaneous

positive relation between institutional trading and stock returns.6 Therefore, to

further examine the relationship between institutional trading and stock returns,

we introduce the current TSE returns (rt) in the net purchases equations of the three
types of institutional investors and reestimate the VAR model before conducting

the corresponding block exogeneity tests. Table 17.6 presents the estimation results.

As indicated in the last row of Table 17.6, we find evidence of a strong

contemporaneous correlation between current returns and net institutional

6The main purpose of this paper is to improve our understanding on the interaction among

institutional investors and the relationship between institutional trading and stock returns. The

following discussion will therefore focus on these two issues.
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purchases, which confirms the finding by the previous research. Moreover, as

shown in Table 17.5, we find no evidence that past returns lead net rtf purchases
when the unrestricted VAR model is used. In contrast to it, when the contempora-

neous impact of stock returns on net institutional purchases is considered, we find

that past returns also lead net rtf purchases as well as net purchases by qfii and dic
when the structural VAR model is used (Table 17.6). In other words, net purchases

by the three types of institutions are affected by past stock returns as was evidenced

by previous studies. The corresponding impulse response relations are presented

in Fig. 17.3.

Comparing the impulse response relations in Figs. 17.2 and 17.3, it is clear that

when the impact of current returns on net institutional purchases is considered,

a one-unit standard error shock from rt does not produce a positive impulse

response in institutional trading until Period 2.7 The responses of foreign investors

are rather distinct from those of domestic institutional investors after Period 3. In

general, a sustained positive response from foreign investors is observed, while

a negative response is witnessed for dic and sometimes, an insignificant response

for rtf manifests itself after Period 3.

17.3.3 The Threshold VAR Analysis

We pool all the data together when estimating either the unrestricted or restricted

VAR model; however, the trading activity of institutional investors may depend on

whether stock prices rise or fall.8 A small economy like Taiwan also depends to

a large degree on the sign of NASDAQ index returns. Consequently, to investigate

institutional trading under distinct regimes based on market returns, we use the

multivariate threshold autoregression (MVTAR) model proposed by Tsay (1998)
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Fig. 17.3 Selected impulse responses to innovations up to ten periods in the structural VAR

models. Notes: See also Fig. 17.2

7Figure 17.2f, g show significantly positive responses of qfiibst and dicbst to rt in Period 1 if the

impact of current returns is not considered.
8Recall that both the positive-feedback and negative-feedback trading are associated with the sign

of market returns on the previous trading day.
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to test the relevant hypotheses. Let yt ¼ [nasrt, Det, rt, qfiibst, dicbst, rtfbst]
0 be

a 6 � 1 vector and the MVTAR model can be described as

yt ¼ f0;1 þ
Xp

i¼1

fi, 1yt�i

 !
� 1� I zt�d > cð Þ½ �

þ f0;2 þ
Xp

i¼1

fi, 2yt�i

 !
� I zt�d > cð Þ þ et

(2)

where E(e) ¼ 0, E(ee0) ¼ S, and I(�) is an index function, which equals 1 if the

relation in the bracket holds. It equals zero otherwise. zt�d is the threshold variable

with a delay (lag) d.
In order to explore whether institutional trading activity would change during

different domestic and foreign market return scenarios, the potential threshold

variables used are rt�1 and nasrt�1.
9 Before estimating Eq. 2, we need to test for

possible potential nonlinearity (threshold effect) in this equation. Tsay (1998)

suggests using the arranged regression concept to construct the C(d) statistic to

test the hypothesis Ho:fi,1 ¼ fi,2, i ¼ 0, . . . p. If H0 can be rejected, it implies that

there exists the nonlinearity in data with zt�d as the threshold variable. Tsay (1998)

proves that C(d) is asymptotically a chi-square random variable with k(pk + 1)

degrees of freedom, where p is the lag length of the VAR model and k is the number

of endogenous variables yt.
10 Table 17.7 presents the estimation results of the C(d)

statistic.

As shown in Table 17.7, the null hypothesis H0 is rejected using either past

returns on the TSE or NASDAQ, suggesting that our data exhibit nonlinear

threshold effect. Theoretically, one needs to rearrange the regression based on the

size of the threshold variable zt�d before applying a grid search method to find the

optimal threshold value c*. Nonetheless, our goal is to know whether the institu-

tional trading behavior depends on the sign of market returns, as such the threshold

is set to zero in a rather arbitrary way.11 Table 17.8 lists the results of block

9Here, we assume that net purchases by institutions are only affected by market returns on the

previous trading day.
10For more details see Tsay (1998).
11A previous study by Sadorsky (1999) also splits data into two regimes based on the sign of the

variable to discuss whether variables used would change their behaviors under different regimes.

Table 17.7 The C(d)
statistic

Threshold variable Statistic

nasrt�1 195.08 (0.00)

rt�1 136.22 (0.08)

Values in parentheses are p values. The delay (d) is assumed to

be one
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exogeneity tests for the lead-lag relation in the rt�1 < 0 and rt�1 � 0 regimes,

respectively.

The interaction among institutional investors is depicted in Table 17.8: Current

net purchases by foreign investors affect that by domestic institutions when previ-

ous day’s TSE returns are negative. Note that no such relation is evidenced when

previous day’s TSE returns are positive. A feedback relation between rtf and qfii is
observed when rt�1 is positive or negative. However, dic is found to lead rtf only
when rt�1 is positive. Such results reveal different institutional trading strategies

under distinct return regimes. The demonstration effect – previous day’s net foreign

purchases have on domestic institutions using the unrestricted VAR model – seems

to surface only when previous day’s market returns are negative. Therefore, it may

produce misleading results if we fail to consider the sign of previous returns.

The impulse responses in Fig. 17.4 illustrate that the responses of dic and rtf
from the qfii shock are quite similar to the ones in Fig. 17.2f, g.12 As for the impact

of previous day’s market returns on current net purchases by institutions, it can be

shown via the MVTAR model that market returns lead net purchases by qfii and dic
when previous day’s market returns are negative, which is consistent with the

finding using the one-regime VAR model. When previous day’s market returns

are positive, market returns lead net purchases by the dic only. Obviously, returns
have more influence on net institutional purchases when previous day’s

returns were negative. In addition, we find that net dic purchases on the previous

day may affect current returns when the one-regime VAR model is used. Actually,

the MVTAR analysis reveals that such a relation emerges only when previous day’s

market returns are positive. The impulse responses depicted in Fig. 17.4 (Panel B)

demonstrate that a one-unit standard error shock to net dic purchases produces an
increase in market returns in Period 2, and then they turns to be negative after

Period 4, a result similar to those using the one-regime VAR model.

Among the listed companies on the TSE, the electronics sector has the largestmarket

share, which accounts for more than 60 % of all trades. This being the case, Taiwan’s

stock market is closely related to the NASDAQ index as is evidenced using the

conventional VAR model. To further investigate whether the interaction among insti-

tutions and the relationship between institutional trading and stock returns are affected

by the sign of previous day’s NASDAQ index return, nasrt�1 is used as the threshold

variable. That is, block Granger causality tests are performed by splitting our data into

two regimes based on the sign of the variable nasrt�1. Table 17.9 reports the results.

The results indicate that net qfii purchases lead to that of two domestic institu-

tional investors regardless of the sign of previous day’s NASDAQ returns. More-

over, when nasrt�1 < 0, net rtf purchases lead net qfii purchases, which is in line

with that using the one-regime VAR model. However, when nasrt�1 � 0, the net

purchases by either dic or rtf lead net qfii purchases, and net qfii purchases lead net

purchases by either dic or rtf. In other words, we find strong evidence of a feedback

12To economize space, only relevant impulse responses are presented here; the remaining are

available upon request.
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relation between net foreign purchases and two domestic net purchases when

previous day’s NASDAQ returns are positive. The results pertaining to the impact

of previous day’s returns on institutional trading parallel those using the

unrestricted VAR model: Previous day’s returns have an impact on the net pur-

chases by qfii and dic, but not on net purchases by rtf regardless of the sign of

previous day’s NASDAQ returns. As for the impact of net institutional purchases

rt-1 ≥ 0

rt-1< 0
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Fig. 17.4 Selected impulse responses to innovations up to ten periods in the MVTAR models.

(a) rt�1 < 0, (b) rt�1 � 0. Notes: See also Fig. 17.2
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Fig. 17.5 (continued)
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on previous day’s stock returns, only net dic purchases still lead stock returns when
nasrt�1< 0, as was the case in the one-regime model. However, we find that net qfii
purchases also lead stock returns when nasrt�1 � 0.

The results from Panel B of Fig. 17.5g indicate that a one-unit standard error shock

from net qfii purchases made on previous days produces a positive response to stock

returns in Period 2, but no significantly negative responses are found during other

periods. The results of the MVTAR model also capture the phenomenon in the

one-regime model: Net dic purchases exert a negative impact on market returns.

However, such an effect is witnessed when previous day’s NASDAQ returns are

negative.

17.4 Conclusion

In this paper we investigate whether the trading behavior of foreign investors leads

that of Taiwanese institutional investors (i.e., the demonstration effect) and whether

institutional trading has a destabilizing effect on the stock market. The reason we

select Taiwan in our study is due to her unique role of being gradually opened up to

foreign investment and her high stock returns volatility. To provide more informa-

tion to these issues, this paper has constructed a six-variable VAR model including

trading activities of three types of institutional investors, the TSE returns,

NASDAQ returns, and currency returns so as to examine the interaction and the

dynamic relationship between institutional trading and stock returns using daily

data from December 13, 1995 to May 13, 2004.
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Fig. 17.5 Impulse responses to innovations up to ten periods in the MVTAR models (portion).

(a) nasrt�1 < 0, (b) nasrt�1 � 0. Notes: See also Fig. 17.2
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The results from the conventional unrestricted VAR model indicate that net

purchases by foreign investors lead those by domestic institutions (and thus the

demonstration effect), while net purchases by rtf also lead those by foreign inves-

tors. That is, there exists a feedback relation between them. As for the relationship

between institutional trading and stock returns, we find that except for rtf, both
foreign and dic net purchases are positively affected by previous day’s TSE returns.

That is, both the qfii and dic engage in positive-feedback trading. We also find that

previous day’s net dic purchases first produce a positive and then a negative impact

on stock returns. Furthermore, we employ a structural VAR model with the

contemporaneous returns included in the three net institutional purchase equations.

A comparison of the structural and unrestricted VAR models suggests that the TSE

returns positively lead net rtf purchases using the structural VAR model, which

cannot be observed when the unrestricted VAR model is used. In other words, if the

contemporaneous relation between returns and net institutional purchases is taken

into account, we find that rtf are also positive-feedback traders.

On the other hand, the sign of market returns does affect trading activities of the

institutions. As a result, this paper makes use of the MVTAR model introduced by

Tsay (1998). By splitting data into two regimes based on the sign of both TSE and

NASDAQ returns on the previous trading day, we find that the demonstration effect

that foreign investors have on domestic institutions arises only when previous day’s

TSE returns are negative. In addition, when previous day’s TSE returns are nega-

tive, stock returns lead both net purchases by qfii and dic. However, stock returns

lead only net dic purchases when previous day’s TSE returns are positive. Finally,

we find the relation that net dic purchases lead market returns using the unrestricted

VAR model tends to emerge only when previous day’s TSE returns are positive.

As for the effect of NASDAQ returns on institutional trading, the results from

this paper suggest that when previous day’s NASDAQ returns are positive,

a feedback relation between net foreign purchases and net domestic purchases

prevails. Moreover, it is found that the net dic purchases lead the TSE returns, as

do the net foreign purchases. The latter, however, exert a positive influence on the

TSE returns.

In summary, our results suggest that net foreign purchases do lead net domestic

purchases, but more details manifest when the threshold model is applied. When

previous day’s TSE returns are negative (or previous day’s NASDAQ returns are

positive), a feedback relation between net foreign purchases and net domestic

purchases is observed. It implies that the widespread argument that foreign inves-

tors have a demonstration effect on domestic institutions in Taiwan is not entirely

correct. In examining the relation between market returns and institutional trading,

we find that market returns at least lead net purchases by both qfii and dic in most

cases. Market returns also lead net rtf purchases if the relationship of contempora-

neous returns and institutional trading is considered. Our analysis also indicates that

net dic purchases lead market returns and are negatively associated with market

returns in Period 4. The results of the MVTAR model suggest that when previous

day’s NASDAQ returns are positive, net foreign purchases positively lead stock

returns and thus will not exert a destabilizing influence on the market.
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Appendix 1

The Unrestricted VAR Model

The prices of many Taiwanese electronics securities are affected by the NASDAQ

returns and hence foreign portfolio inflows may induce fluctuations of exchange

rate. To investigate interactions emanated from the three types of institutional

investors and the relationship between institutional trading activity and stock

returns in Taiwan, we employ a six-variable VAR model using the NASDAQ

returns (nasrt), currency returns (Det), TSE returns (rt), net foreign purchases

(qfiibst), net dic purchases (dicbst), and net rtf purchases (rtfbst) as the underlying
variables. We attempt to answer the issues pertaining to (i) the interaction among

trading activities of the three types of institutions and (ii) the relationship between

stock returns and institutional trading. First, we propose a six-variable unrestricted

VAR model shown below:

nasrt

Det
rt

qfiibst

dicbst

rtfbst

2
666666664

3
777777775
¼

f11 Lð Þ f12 Lð Þ f13 Lð Þ f14 Lð Þ f15 Lð Þ f16 Lð Þ
f21 Lð Þ f22 Lð Þ f23 Lð Þ f24 Lð Þ f25 Lð Þ f26 Lð Þ
f31 Lð Þ f32 Lð Þ f33 Lð Þ f34 Lð Þ f35 Lð Þ f36 Lð Þ
f41 Lð Þ f42 Lð Þ f43 Lð Þ f44 Lð Þ f45 Lð Þ f46 Lð Þ
f51 Lð Þ f52 Lð Þ f53 Lð Þ f54 Lð Þ f55 Lð Þ f56 Lð Þ
f61 Lð Þ f62 Lð Þ f63 Lð Þ f64 Lð Þ f65 Lð Þ f66 Lð Þ

2
666666664

3
777777775

�

nasrt�1

Det�1

rt�1

qfiibst�1

dicbst�1

rtfbst�1

2
666666664

3
777777775
þ

e1t
e2t
e3t
e4t
e5t
e6t

2
666666664

3
777777775

Where fij(L) is the polynomial lag of the jth variable in the ith equation. To

investigate the lead-lag relation among three types of institutional investors, we

need to test the hypothesis that each off-diagonal element in the sub-matrix

f44 Lð Þ f45 Lð Þ f46 Lð Þ
f54 Lð Þ f55 Lð Þ f56 Lð Þ
f64 Lð Þ f65 Lð Þ f66 Lð Þ

2
4

3
5 is zero.

On the other hand, to determine whether the TSE returns of the previous day lead

net purchases by the three types of institutional investors, we test the hypothesis that

each polynomial lag in the vector f43 Lð Þf53 Lð Þf63 Lð Þ½ �0 is zero. Conversely, if we
want to determine whether previous day’s net purchases by institutional investors

lead current market returns, we test the hypothesis that each element in the vector

[f34(L)f35(L)f36(L)] is zero. Before applying the VAR model, an appropriate lag

structure needs to be specified. A 3-day lag is selected based on the Akaike
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information criterion (AIC). Table 17.5 presents the lead-lag relation among the six

time series using block exogeneity tests.

The

f44 Lð Þ f45 Lð Þ f46 Lð Þ
f54 Lð Þ f55 Lð Þ f56 Lð Þ
f64 Lð Þ f65 Lð Þ f66 Lð Þ

2
4

3
5 block represents the potential interaction among

three types of institutional investors. The results indicate that net foreign purchases

lead net dic purchases and the dynamic relationship between these two variables

can be provided by the impulse response function (IRF) in Fig. 17.2a. Clearly,

a one-unit standard error shock to net foreign purchases leads to an increase in net

dic purchases, but this effect dissipates quickly by Period 2. Figure 17.2b, c indicate
a feedback relation between net purchases by qfii and rtf. A one-unit standard error

shock to net foreign purchases results in a positive response to net rtf purchases over
the next two periods, which become negative in Period 3, followed by a positive

response again after Period 4. Furthermore, a one-unit standard error shock to net rtf
purchases also gives rise to an increase in net foreign purchases, which decays

slowly over ten-period horizon.

Figure 17.2d shows that net purchases by dic lead net rtf purchases. A one-unit

standard error shock to net dic purchases produces an increase in net rtf purchases in the
first three periods and then declines thereafter. Overall, these impulse responses suggest

that previous day’s net foreign purchases exert a noticeable impact on net rtf purchases,
while previous day’s net rtf purchases also has an impact on net foreign purchases. It

implies that not only do foreign capital flows affect the trading activity of domestic

institutional investors but also the relation is not unidirectional. To be specific, there is

a feedback relation between net rtf purchases and net foreign purchases.

As for the effect of the three types of institutional trading activity on stock

returns in the TSE, Table 17.5 reveals that net dic purchases on previous day lead

the TSE returns. We can also see in Fig. 17.2e that after Period 3, net dic purchases
exert a negative (and thus destabilizing) effect on market returns, while the other

two institutional investors do not have such an effect over the sample period.

Examining the relationship between market returns and trading activity of the

three types of institutional investors, we find that either the net foreign purchases

or the net dic purchases on previous trading day are affected by the previous day’s

TSE returns. Moreover, the IRFs in Fig. 17.2f, g also reveal a significant positive

relation between TSE returns and net foreign purchases up to four periods and

a significant positive relation between TSE returns and net dic purchases for two

periods, which becomes negative after Period 3. In other words, foreign investors in

the TSE engage in positive-feedback trading, while those of the dic tend to change

their strategy and adopt negative-feedback trading after Period 3.

Table 17.5 indicates that previous day’s NASDAQ returns significantly affect

both current TSE returns and net purchases by the three types of institutional

investors. The impulse response in Fig. 17.2h–k also confirms that previous day’s

NASDAQ returns are positively related to both current returns and net purchases by

these institutional investors, with the exception that a negative relation between

net dic purchases and previous day’s NASDAQ returns is found after Period 4.
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Such results are much in sync with the expectation since the largest sector that

comprises the TSE-weighted stock index is the electronics industry to which many

listed companies on NASDAQ have a strong connection. In addition, although

previous day’s net qfii and dic purchases also lead the NASDAQ returns, we find

that no significant relation exists except for Period 4 with a significantly negative

relation between them (Figs. 17.1 and 17.2).

The liberalization of Taiwan’s stock market has ushered in significant amount of

short-term inflows and outflows of foreign capital, which have induced fluctuations in

the exchange rate. As is seen from Table 17.5, the TSE returns lead currency returns

and it appears that the initial significant effect of stock returns on currency returns is

negative for the first three periods and then turns to be significantly positive thereafter

(Fig. 17.2n). Given that foreign investors are positive-feedback traders, the capital

inflows is expected to grow in order to increase their stakes in TSE securities when

stock prices rise. Consequently, NT/USD is expected to appreciate.

The Structural VAR Model

The unrestricted VAR model does not consider the effect of current returns on net

purchases by institutions. The prior study by Griffin et al. (2003) includes current

returns in the institutional imbalance equation and finds a strong contemporaneous

positive relation between institutional trading and stock returns. Therefore, to

further examine the relationship between institutional trading and stock returns,

we introduce the current TSE returns (rt) in the net purchases equations of the three
types of institutional investors and reestimate the VAR model before conducting

the corresponding block exogeneity tests. Table 17.6 presents the estimation results.

As indicated in the last row of Table 17.6, we find evidence of a strong contem-

poraneous correlation between current returns and net institutional purchases, which

confirms the finding by the previous research. As shown in Table 17.5, we find no

evidence that past returns lead net rtf purchases when the unrestricted VAR model is

used. When the contemporaneous impact of stock returns on net institutional pur-

chases is considered, we find that past returns also lead net rtf purchases as well as net
purchases by qfii and dicwhen the structural VARmodel is used (Table 17.6). In other

words, net purchases by the three types of institutions are affected by past stock returns

as was evidenced by previous studies. The corresponding impulse response relations

are presented in Fig. 17.3.

Comparing the impulse response relations in Figs. 17.2 and 17.3, it is clear that

when the impact of current returns on net institutional purchases is considered,

a one-unit standard error shock from rt does not produce a positive impulse

response in institutional trading until Period 2. The responses of foreign investors

are rather distinct from those of domestic institutional investors after Period 3. In

general, a sustained positive response from foreign investors is observed, while

a negative response is witnessed for dic and sometimes, an insignificant response

for rtf manifests itself after Period 3.
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The Threshold VAR Analysis

We pool all the data together when estimating either the unrestricted or restricted

VAR model; however, the trading activity of institutional investors may depend on

whether stock prices rise or fall. A small economy like Taiwan also depends to

a large degree on the sign of NASDAQ index returns. Consequently, to investigate

institutional trading under distinct regimes based on market returns, we use the

multivariate threshold autoregression (MVTAR) model proposed by Tsay (1998) to

test the relevant hypotheses. Let yt ¼ [nasrt, Det, rt, qfiibst, dicbst, rtfbst]0 be a 6� 1

vector and the MVTAR model can be described as

yt ¼ f0;1 þ
Xp

i¼1

fi, 1yt�i

 !
� 1� I zt�d > cð Þ½ �

þ f0;2 þ
Xp

i¼1

fi, 2yt�i

 !
� I zt�d > cð Þ þ et

where E(e) ¼ 0, E(ee0) ¼ S, and I(�) is an index function, which equals 1 if the

relation in the bracket holds. It equals zero otherwise. zt�d is the threshold variable

with a delay (lag) d.
In order to explore whether institutional trading activity would change during

different domestic and foreign market return scenarios, the potential threshold

variables used are rt�1 and nasrt�1. Before estimating Eq. 2, we need to test for

possible potential nonlinearity (threshold effect) in this equation. Tsay (1998)

suggests using the arranged regression concept to construct the C(d) statistic to

test the hypothesis Ho:fi,1 ¼ fi,2, i ¼ 0, . . .p. If H0 can be rejected, it implies that

there exists the nonlinearity in data with zt�d as the threshold variable. Tsay (1998)

proves that C(d) is asymptotically a chi-square random variable with k(pk + 1)

degrees of freedom, where p is the lag length of the VAR model and k is the number

of endogenous variables yt. Table 17.7 presents the estimation results of the C(d)
statistic.

As shown in Table 17.7, the null hypothesis H0 is rejected using either past

returns on the TSE or NASDAQ, suggesting that our data exhibit nonlinear

threshold effect. Theoretically, one needs to rearrange the regression based on the

size of the threshold variable zt�d before applying a grid search method to find the

optimal threshold value c*. Nonetheless, our goal is to know whether the institu-

tional trading behavior depends on the sign of market returns, as such the threshold

is set to zero in a rather arbitrary way. Table 17.8 lists the results of block

exogeneity tests for the lead-lag relation in the rt�1 < 0 and rt�1 � 0 regimes,

respectively.

The interaction among institutional investors is depicted in Table 17.8: Current

net purchases by foreign investors affect that by domestic institutions when previ-

ous day’s TSE returns are negative. Note that no such relation is evidenced when
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previous day’s TSE returns are positive. A feedback relation between rtf and

qfii is observed when rt�1 is positive or negative. However, dic is found to lead

rtf only when rt�1 is positive. Such results reveal different institutional trading

strategies under distinct return regimes. The demonstration effect – previous day’s

net foreign purchases have on domestic institutions using the unrestricted VAR

model – seems to surface only when previous day’s market returns are negative.

Therefore, it may produce misleading results if we fail to consider the sign of

previous returns.

The impulse responses in Fig. 17.4 illustrate that the responses of dic and rtf
from the qfii shock are quite similar to the ones in Fig. 17.2f, g. As for the impact of

previous day’s market returns on current net purchases by institutions, it can be

shown via the MVTAR model that market returns lead net purchases by qfii and dic
when previous day’s market returns are negative, which is consistent with the

finding using the one-regime VAR model. When previous day’s market returns

are positive, market returns lead net purchases by the dic only. Obviously, returns
have more influence on net institutional purchases when previous day’s

returns were negative. In addition, we find that net dic purchases on the previous

day may affect current returns when the one-regime VAR model is used. Actually,

the MVTAR analysis reveals that such a relation emerges only when previous day’s

market returns are positive. The impulse responses depicted in Fig. 17.4 (Panel B)

demonstrate that a one-unit standard error shock to net dic purchases produces an
increase in market returns in Period 2, and then they turns to be negative after

Period 4, a result similar to those using the one-regime VAR model.

To further investigate whether the interaction among institutions and the

relationship between institutional trading and stock returns are affected by the

sign of previous day’s NASDAQ index return, nasrt�1 is used as the threshold

variable. That is, block Granger causality tests are performed by splitting our

data into two regimes based on the sign of the variable nasrt�1. Table 17.9 reports

the results.

The results indicate that net qfii purchases lead that of two domestic institutional

investors regardless of the sign of previous day’s NASDAQ returns. Moreover,

when nasrt�1< 0, net rtf purchases lead net qfii purchases, which is in line with that
using the one-regime VAR model. However, when nasrt�1 � 0, the net purchases

by either dic or rtf lead net qfii purchases, and net qfii purchases lead net purchases

by either dic or rtf. In other words, we find strong evidence of a feedback relation

between net foreign purchases and two domestic net purchases when previous day’s

NASDAQ returns are positive. The results pertaining to the impact of previous

day’s returns on institutional trading parallel those using the unrestricted VAR

model: Previous day’s returns have an impact on the net purchases by qfii and dic,
but not on net purchases by rtf regardless of the sign of previous day’s NASDAQ

returns. As for the impact of net institutional purchases on previous day’s stock

returns, only net dic purchases still lead stock returns when nasrt�1 < 0, as was the

case in the one-regime model. However, we find that net qfii purchases also lead

stock returns when nasrt�1 � 0.
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Abstract

Denoising analysis imposes new challenges for financial data mining due to the

irregularities and roughness observed in financial data, particularly, for instan-

taneously collected massive amounts of tick-by-tick data from financial markets

for information analysis and knowledge extraction. Inefficient decomposition of

the systematic pattern (the trend) and noises of financial data will lead to

erroneous conclusions since irregularities and roughness of the financial data

make the application of traditional methods difficult.

In this chapter, we provide a review to discuss some methods applied for

denoising analysis of financial data.
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18.1 Introduction

Technical developments allow corporations and organizations to instantaneously

collect massive amounts of data, particularly the tick-by-tick data from financial

markets. Mining financial data turns to be the foundation for financial informatics

and stimulates the research interest in analyzing information conveyed at different

frequencies in this data. Financial data have the complex structure of irregularities

and roughness that are caused by a large number of instantaneous changes of the

markets and trading noises. The noises conveyed in the financial data usually

illustrate heavy tailedness, that is, the underlying time series data exhibits a large

number of occasional jumps. Ignoring these irregularities can easily lead to erro-

neous conclusions for data mining and statistical modeling. As consequence, the

statistical data mining methods (or models) require a denoising algorithm to clean

the data in order to obtain more significant results (see Sun and Meinl (2012)).

Most data cleaning methods focus only on a known type of irregularity.

In financial data, the irregularity is manifold, that is, the irregularity varies along

with time and changes with different measuring scales (see Fan and Yao (2003) and

Sun et al. (2008)). Finding an effective denoising algorithm turns out to be the

initial task of financial data mining (see Au et al. (2010) and Meinl and Sun (2012)).

In this chapter we will outline the classic and newly established methods for the

denoising analysis (trend extraction) of financial data analysis. We talk about

different approaches and a respective classification of them. Based on this classi-

fication we focus on nonparametric methods (i.e., linear and nonlinear filters) and

examine their pros and cons.

18.2 Denoising (Trend Extraction) of Financial Data

There is no universal definition of trend which applies to all application in different
fields, and it is generally accepted that a trend is a slowly evolving component that

is the main driving force for long-term development beneath the system. Pollock

(2001) characterizes trend as being limited to certain low frequencies of the data.

This notion excludes any noisy influences and fluctuations from higher frequency

levels. However, this notion of trends is not satisfactory for many financial data we

encounter in practice.

Some theoretical models (like the Black-Scholes model) do not incorporate

aspects like seasonalities or even jumps; they are still widely used today in practice,

assuming perfect division between the trend and stochastic fluctuations. It is

insufficient for many financial data we measure today, especially, when considering

trends over longer time horizon, we perceive significant jumps or steep slopes
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which cannot be attributed to be part of the persistent stochastic noise. Another

example we can observe in electricity markets, where it has been found that jumps

occur on such a regular basis that is has been found reasonable to model these by

specific stochastic processes; see Seifert and Uhrig-Homburg (2007). These patterns

contradict the slow evolving characteristic and the low-frequency notion generally

associated with trends and have been considered as an inherent part of them.

A basic model (among others proposed by Fan and Yao (2003)) is stated as

follows. Given a time series Xt, t � 0, this series can be decomposed into

Xt ¼ #t þ st þ Yt, (18.1)

where #t represents a slowly varying function known as trend component, st a single
of combination of periodic functions (i.e., seasonal components), and Yt the

stochastic component, assumed to be stationary.

A trend is a mostly slow (in respect to the noise) evolving pattern in a time series,

with its driving force not being attributed to any noise present in the signal. Trends

may also exhibit edged frontiers (i.e., jumps and sudden regime changes) as well as

steep slopes, roofs, and valleys (see Joo and Qiu (2009)), as long as these patterns

can be contributed to the long-term dynamics of the time series and do not stem

from the noise component responsible for short-term variations.

We note that trend must always be interpreted in respect to the time series at

hand (i.e., the period coverage of the financial data) and the goal of the data

analysis, that is, on which scale the trend and the noise are relevant. We ignore

any distinction between long-, intermediate-, and short-term trends and/or

seasonalities, as these usually depend on the context of the financial data.

The question that may now arise is if we consider a trend # to be specified

according to Eq. 18.1, how does this agree with the notion that the trend may also

exhibit jumps, which clearly contradict this definition? Without going further into

this, we only note that this kind of trend would require a different (and more

accurate) definition of how trend is to be defined in a time series, than the generally

accepted notion in today’s literature. While we will not propose a new definition

either and leave this task to others, we can point out how jumps enter the trend.

As pointed out by, for example, Tsay (2005), jumps in financial time series data,

and particularly in high-frequency data, are attributed to external events, like the

increase or drop in interest rates by some governmental financial institution. These

events can be considered to happen only occasionally and are very sparse in relation

to the frequency the data is measured, that is, the amount of data exhibiting no

jumps at all. In the field of high-frequency financial data analysis, jumps are thus

assumed to be extreme events that happen with low probability but form neverthe-

less part of the stochastic distribution and must be considered to be modeled there.

Thus, Y will be modeled either by stochastic processes including jump components

(see, e.g., Seifert and Uhrig-Homburg (2007)) or by a distribution itself, depending

on the model. Such a distribution for high-frequency financial data has then found

to be heavy tailed, that is, jumps happen with enough regularity that they cannot

simply be discarded as nonrecurring events; see, for example, Rachev (2003).
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However, as these extreme events can have an enormous impact on the stochastic

variance analysis and its succeeding usage, and furthermore could lead to mislead-

ing results in the regions of the signal without any jumps, it is generally

preferred to include them into the trend component # rather than the stochastic

component Y.
In, for example, Wang (1995), a definition of an a-cusp in a continuous function

f at x0 is given, that is, if there exists an e > 0 so that

f x0 þ hð Þ � f x0ð Þj j � Kjhja (18.2)

holds for all h 2 [x0 � e, x0 + e]. For a ¼ 0, f is said to have a jump at x0. It is
commonly agreed that the jump should significantly differ from the other fluctua-

tions (i.e., the noise) in the signal. As said above, jumps are just one particular

pattern of extreme events we are interested in. Others are steep slopes, roofs, and

valleys, which in Joo and Qiu (2009) are defined by at this point having a jump in

the first-order derivative of the regression curve.

Other extreme events frequently occurring in many practical applications are spikes

and outliers. However, these are usually undesirable features that should not be

included in the trend of affect it by any means. This is due to the following reasons.

First, in many cases, these outliers or spikes consist only of one or very few points often

caused by measurement errors, and it is obvious that they were caused by some factor

that plays no vital role in the ongoing time series analysis (unless the focus is on what

caused these outliers). Second, while jumps imply a permanent change in the

whole time series, outliers do not contribute to this. While we are aware that

the distinction between a few (adjacent) outliers and roofs/valleys is not precise,

from the context of the time series in most cases, it is evident whether an occurrence

should be considered as an outlier that is to be neglected or a significant feature to be

included in the trend.

In this work we only consider homogeneous financial time series data. However,

in many applications and particularly for high-frequency financial time series data,

this data is initially irregularly spaced. Homogeneity in this context means that for

a given series Xt, t 2 N, holds t + 1 � t ¼ c, with a constant c > 0, that is, all time

steps are equally spaced. As we will see, this is not always the case for empirical

time series, especially in the area of financial high-frequency data. In this case, it is

necessary to preprocess the inhomogeneous (i.e., irregularly spaced) time series by

interpolation methods in order to regularize the raw data. Though there exist models

which can handle inhomogeneous time series directly (see Dacorogna (2001), but

they also remark that most today’s models are suited for regularly spaced time

series only), regarding the methods we discuss in the following sections, we restrict

ourselves to homogeneous ones.

In this chapter we focus on nonparametric methods for trend extraction. This is

due to the reason that in most time series we analyze in this work, we cannot

reasonably assume any model for the underlying trend. Yet, as noted in the

framework above, in case such assumptions hold, we can expect those models to
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perform better than nonparametric models, since they exploit information that

nonparametric approaches cannot. Furthermore, the commitment to certain para-

metric time series or trend models can be seen as a restriction when considering the

general case, which may lead even to misleading results in case the trend does not

match model, as certain patterns might not be captured or considered by the

model itself. This can easily be seen at a most basic example, in case a linear trend

is expected, which in most cases will only be a poor estimator for any nonlinear

trend curve. In this case nonparametric approaches are less restrictive and can

more generally be applied, while of course not delivering the same accuracy

as parametric models which exactly match the underlying trend, with only

their parameters to be calibrated. If, e.g., the trend follows sinusoidal curve, a

sinusoidal curve with its parameters being estimated by, e.g., the least-squares

method will almost surely provide a better accuracy than any other nonparametric

approach. On the other hand, if the underlying trend is linear or even contains

only little deviations from a perfect sinusoidal curve, a sinusoidal fit to this trend,

it has been shown at simple examples that the parametric sinusoidal approach can

lead to confusing results and conclusions.

We further require that the method used for trend extraction be robust, that is,

the results are reliable and the error can be estimated or is at least bounded in some

way. In many cases (see, e.g., Donoho and Johnstone (1994)), the robustness

of a method is shown by proving its asymptotic consistency, that is, its conver-

gence towards a certain value for certain parameters tending towards infinity.

It should be remarked that the robustness should be independent of the

time series itself and/or any specific algorithm parameter sets, in order to be

applicable in practice. Of course this does not exclude specific assumptions on the

time series that must be met or parameter ranges for which the algorithm is

defined.

Therefore, as we cannot reasonably assume any model for the any time series

in general, in this work, we focus on nonparametric approaches only. Within these

approaches we focus on two main branches for trend extraction: linear

and nonlinear filters. This is for the reason because linear filters are known and

have proven to deliver a very smooth trend (given the filtering window size is

large enough), while nonlinear filters excel at preserving characteristic patterns

in a time series, i.e., especially jumps. Both methods in general require only

very few (or none at all) information about the underlying data, be-

sides their configuration of weights and calibration parameters, and are thus

applicable to a wide range of time series, independent of the field the data was

measured in.

Although there exists a variety of other nonparametric methods, most of these

already rely on specific assumptions or choices of parameters which in general

cannot easily be derived for any time series data or different analysis goals.

Nevertheless, for the sake of completeness, later in this chapter we list some

alternative methods, also including parametric approaches, which have been

applied in economic, financial, or related time series data.
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18.3 Linear Filters

Linear filters are probably the most common and well-known filters used for trend

extraction and additive noise removal. We first provide the most general notion of

this filter class and then depict the two viewpoints of linear filters and how they can

be characterized. While this characterization on the one hand is one of the most

distinguishable advantages of linear filters, on the other hand at the same time, it

leads to the exact problem we are facing in this work, that is, the representation of

sharp edges in otherwise smooth trends.

18.3.1 General Formulation

The filtered output depends linearly from the time series input. Using the notation of

Fan and Yao (2003), a linear filter of length 2h + 1 can be defined as

X̂t ¼
Xh
i¼�h

wiXtþi, (18.3)

with X̂t the filtered output and wi the filter weights. These kinds of filters are

also known as (discrete) convolution filters, as the outcome is the convolution of

the input signal with a discrete weight function, where often the following notation

is used:

w�Xt :¼
Xh
i¼�h

wiXt�i ¼
Xh
i¼�h

wt�iXi: (18.4)

Thus, for every data point Xt, the filtered output X̂t is the result of weighted

summation of data points around t. Applied for the whole time series, this results in

weighted average window of size L ¼ 2h + 1 which is moved throughout the whole

series. The size of this window is also called the bandwidth of the filter. It is also

common notation to set h � 1 even if the window filter size should be finite, with

wi ¼ 0 for ij j > h.
The probably best known linear filter is the mean filter, with wi ¼ 2h + 1, that is,

all filter weights are uniformly distributed. A more general viewpoint is given by

the notion of kernel filters. Given a kernel function w.l.o.g. with support [�1, 1],

this function assigns the weights according to

wi ¼ K i=hð ÞXh

j¼�h
K j=hð Þ

: (18.5)

Commonly used examples are the Epanechnikov kernel

KE uð Þ ¼ 3

4
1� u2
� �þ , (18.6)
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the Gaussian kernel

KG uð Þ ¼ 1ffiffiffiffiffiffi
2p

p exp
�u2

2

� �
, (18.7)

and the symmetric beta family

KB
g uð Þ ¼ 1

B 1=2, gþ 1ð Þ 1� u2
� �g

I uj j�1: (18.8)

For the values g 2 {0, 1, 2, 3}, the kernel KB
g (u) corresponds to the uniform,

Epanechnikov, biweight, and triweight kernel functions, respectively.

18.3.2 Transfer Functions: Time Versus Frequency Domain

The previous section depicts the linear filtering method in the time domain, i.e., we

look at the time series Xt and its respective filtered output X̂t and how they evolve

over time t. Another perception can be given by taking the frequency domain into

account. For all linear filters, we cannot only give its definition as depicted earlier,

but also in respect to the frequencies, the filters let pass. This notion can be derived

as follows.

While the sequence of filter weights wi, also called impulse response sequence,
determines the filtered output in the time domain (or equivalent are the linear filter’s

time domain representation), via the discrete Fourier transform (DFT), we can

derive the transfer function

W fð Þ ¼
X1
j¼�1

wje
�i2pf j, (18.9)

its counterpart in the frequency domain, also called frequency response function.
Alternatively, if this formulation is given in the beginning, we can also derive the

weights via the inverse transform:

wj ¼
Z 1=2

�1=2

W fð Þei2pf jdf : (18.10)

Obviously, these two formulations are equivalent, as one can be derived from the

other, and vice versa. By considering the transfer function’s polar representation,

W fð Þ ¼ W fð Þj jeiy fð Þ, (18.11)
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with W fð Þj j the gain function. The magnitude in gain W fð Þj j describes the linear
filters behavior in the frequency domain, that is, what kind of frequencies and their

respective proportions will let passed or be blocked. For our needs, it

satisfies to distinguish between high – and low-pass filters, that is, filters that

let pass either the high frequencies and block the lower ones, or vice versa. Of

course, other filter types exist; for example, by combining high – and low-pass

filters (e.g., in a filter cascade), one can derive band-pass and stop filters,

so that the frequency domain output will be located only in a certain frequency

range. In this work we are specifically interested in low-pass filters, as they

block the high-frequency noise and the output consists of the generally

low-frequency trend.

As we assume that the weights wj are real valued, one can show

(see, e.g., Percival and Walden (2006)) that W �fð Þ ¼ W� fð Þ, and, with W� fð Þj j ¼
jW fð Þj , it follows that W �fð Þj j ¼ jW fð Þj . Therefore, the transfer functions

are symmetric around zero. Because of its periodicity, we need to consider W fð Þ
only an interval of unit length. For convenience, this interval is often taken

to be [�1/2, 1/2], i.e., fj j � 1/2. Therefore, with above-depicted

symmetry, it suffices to consider f 2 [0, 1/2] in order to fully specify the transfer

function.

While saying that certain frequencies are blocked and others are passed, this

holds only approximately true, since the design of such exact frequency filters is not

possible, but always a transition between the blocked and passing frequencies. The

goal of many linear filters is either to minimize these transitions (i.e., the range of

by this affected frequencies), which, on the other hand, inevitably causes ripples in

the other frequencies, that is, they are not any longer blocked, or to let them pass

completely (see Bianchi and Sorrentino (2007) and the references therein for

further details about this topic).

As we have seen at above examples, linear filters can be designed either from

a time or from a frequency perspective. The time domain usually focuses on putting

more weights on the surrounding events (i.e., events that recently before or

occurred shortly after) and, thus, gives an (economic) interpretation similar to

the, for example, ARMA and GARCH models. On the contrary, the frequency

domain is based on the point of view that certain disturbances (almost) exclusively

are located in a certain frequency range and are thus isolated from the rest of the

signal. Also, the slowly evolving trend can be seen to occupy only the lower

frequency ranges. Thus, the (economic) meaning lies here in the frequency of

events; see, for example, Dacorogna (2001).

Although linear filters can be designed to block or let pass certain frequencies

nearly optimal, at the same time this poses a serious problem when facing trends

that exhibit jumps or slopes. As these events are also located in the same (or in case

of slopes the adjacent) frequency range as the high-frequency noise, this has the

effect that jumps and edged frontiers are blurred out, while steep slopes mostly are

captured with poor precision only. Hence, from a frequency perspective, a smooth

trend and edge preservation are two conflicting goals. This is as the linear filters are

not capable to distinguish between the persistent noise and a single events that,
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while located in the same frequency range, usually have a higher energy and, thus,

significantly larger amplitude. Thus, the same filtering rule is applied throughout

the whole signal, without any adaption. Note, however, that linear filters still give

some weight to undesirable events like outliers, due to their moving average

nature. Thus, while some significant features like jumps are not displayed in

enough detail, other unwanted patterns, like spikes, still partially carry over to

the filtered output. To overcome all these drawbacks for that kind of trends or

signals, besides the class of linear filters, the class of nonlinear filters has been

developed.

18.4 Nonlinear Filters

As we have seen, linear filters tend to blur out edges and other details though they

form an elementary part of the time series’ trend. In order to avoid this, a wide range

of nonlinear filters has been developed which on one hand preserve those details

while on the other try to smooth out as much of the noise as possible. We do not find

nonlinear filters only in time series, but they were in many cases developed

specifically for two-dimensional signals, specifically images, where the original

image, probably corrupted by noise during data transmission, consists mainly of

edges, which form the image.

18.4.1 General Perception

While linear filters generally provide a very smooth trend achieved through aver-

aging, two characteristics pose a problem for this class of filters:

• Outliers and spikes

Single, extreme outliers and spikes can cause the whole long-term trend to

deviate in the same direction, though they obviously do not play a part in it.

• Jumps, slopes, and regime changes

Whenever there occurs a sudden external event in the underlying main

driving force, it causes the trend to jump, that is, contrary to spikes it

changes permanently onto another plane. While slopes are not that extreme,

they also show a similar behavior as they decay or rise with the trend’s unusual

degree.

The reasons for the deviation sensitivity to these events are given by one of the

most favorable linear filters’ characteristics themselves: It follows directly from

them being characterizable in terms of frequency passbands we explained earlier

that all frequencies are treated the same (i.e., filtered according to the same rule)

throughout the whole signal. This means that no distinction is made (and even

cannot be made) between noise and those patterns, as they are located in approx-

imately the same frequency range. Technically, as long as an outlier or a jump is

contained in the weighted moving average filtering window, also a weight is

assigned to these outlier data points or the points on the other plane, i.e., before
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and after the jump. Nonlinear filtering procedures try to avoid this by using

a different approach, for example, by considering a single value only (instead of

multiple weighted ones) that was selected from an ordered or ranked permutation of

the original values in the filtering window.

Although we cannot characterize nonlinear filters in the same way as we do with

linear filters (i.e., by transfer functions) besides their characteristics not being

classifiable in that way, according to Peltonen et al. (2001), we can divide the

whole class of these filters into several subclasses that share the same or similar

approaches. Among them, there are stack filters, weighted median filters, polyno-

mial filters, and order statistic filters. Astola and Kuosmanen (1997) provide two

different taxonomies for further classification, though they remark that these divi-

sions are not unique. In their work, they extensively show how those different filters

behave (i.e., their characteristics) when applied onto different benchmark signals in

respect to the mean absolute error (MAE) and mean squared error (MSE) measures.

The behavior of nonlinear filters is generally characterized by their impulse and

step response, i.e., the filtered output when the input consists of a single impulse or

step only. These impulses generally are given by the sequence [. . . , 0, 0, 0, a, 0, 0,
0, . . .] and [. . . , 0, 0, 0, a, a, a, . . .], respectively, with a 6¼ 0. Though in most cases

no analytical result can be given, these characteristics help us to understand how the

nonlinear filter behaves in respect to those patterns, for which the linear filters

generally fail to deliver adequate results.

Despite their undoubtedly good ability to preserve outstanding features in a time

series while extracting the trend, nonlinear filters also suffer some drawbacks:

1. Insufficient smoothness

Though most nonlinear filters try to deliver a smooth trend and a good resolution

of edged frontiers, beyond the jumps’ surrounding regions, they usually fail to

deliver a smooth trend as accurate as even simple linear filter (e.g., the mean

filter) provides. Yet, by applying further smoothing procedures (e.g., by recur-

sive filters or some kind of linear filtering on the nonlinear output, with a smaller

bandwidth, as most of the noise is already smoothed out) comes at the price that

the prior preserved details of jumps or slopes tend to get lost.

This effect is even aggravated when the high-frequency noise present in the

signal is extremely high, i.e., the trend which evolves, besides the jumps, quite

slowly is dominated by the noise with extremely high amplitudes. Some filters

try to counter this effect, but they either:

• Provide only a tradeoff between an overall smooth signal and poor jump

resolution, or a trend still exhibiting ripples but preserved edges, or

• Rely on further information about the time series itself, that is, the noise

component and its structure, the jumps or the trend itself

This is due to the problem that most filtering rules are applied throughout the

whole signal, that is, they do not adapt themselves sufficiently when the filtering

window approaches a jump. An overview of these and other nonlinear filters’

performance is given by Astola and Kuosmanen (1997), proving again the

well-known insight that there cannot exist one solution that performs optimal

for all cases. Though the authors also report some approaches that try to
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incorporate that behavior, these filters provide only dissatisfactory results (see

the examples below).

2. Lack of frequency control

Another feature nonlinear filters are lacking is the ability to regulate the filtered

output in terms of frequency passbands, as linear filters do. Since Pollock (2001)

defines the trend in terms of frequency bands and Ramsey (1999, 2002) points

out that frequency analysis is an important aspect in financial time series, so is

frequency control. Though not necessary for all applications, the ability to

a priori control and regulate the filters output (in contrast to an only a posteriori

frequency analysis of the filtered result) may come handy when one wants to ensure

that certain frequencies are not contained in the output, that is, when certain

information about the noise frequencies is at hand, the analyst can decide before

the actual filtering process (and thus, without any try and error procedures) what

frequency parts should be filtered out. Although a nonlinear filter can also provide

the same or a similar result, no theoretical results or statements are available before

the filtering procedure has been carried out completely. This incapacity of the

nonlinear filter follows directly from the fact that nonlinear filters do not rely on

frequency passbands, as they must be able to filter events, even though they occupy

nearly the same frequency range (i.e., noise and jumps), due to different rules.

As Astola and Kuosmanen (1997) classify linear filters to be a subclass of the

class of nonlinear filters, above statement does not exactly hold true, i.e., it would

mean that a subclass of nonlinear filters can be characterized by their transfer

function and frequency output. We, however, separate the classes of linear and

nonlinear filters by whether or not a filter can be described by a transfer function or

not, which marks a strict division of these two classes.

18.4.1.1 Examples
To illustrate the different courses of action of nonlinear filters and give the reader an

idea of their general procedure, in this section we outline several examples of above

named subclasses. As this list cannot be exhaustive by any means, of course, we

note that we do not take filters into account that already rely on specific assumptions

of the systems beneath the time series themselves.

Trimmed Mean Filter
This filterworks essentially as themeanfilter,with the difference that the extremevalues

of the ordered series X(i) are trimmed. Index t is omitted here as the order is no longer in

concordance with time. Therefore, an (r, s)-fold trimmedmean filter is given by

1

N � r � s

XN�s

i¼rþ1

X ið Þ: (18.12)

A special case is the choice of r¼ s. A further modification of the trimmed mean

filter is not to discard the ordered values beyond X(r) and X(s), but instead replace

them by X(r+1) and X(s+1) themselves. This is the Winsorized mean filter:
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1

N
r � X rþ1ð Þ

XN�s

i¼rþ1

X ið Þ þ s � X N�sð Þ

 !
: (18.13)

In these methods, the (r, s) tuple is dependent of the data itself. Other filters

consider to make these values independent from the data or dependent from the

central sample itself, i.e., nearest neighbor techniques. All those filters have in

common that they discard all samples from the ordered series being too far away

(respectively) according to some measure.

L-Filters and Weighted Median
L-filters (also called order statistics filters) make a compromise between the

weighted moving averages of linear filters and the nonlinear ordering operation.

The idea is that the filtered output is generated by weighted averages over the

ordered samples, that is,

XN
i¼1

wiX ið Þ, (18.14)

with wi the filter weights. A similar notion is given by weighted median filters, where

the weights are assigned to the time ordered sample Xt and where the weights denote

a duplication operation, i.e., wi∘Xt = Xt, 1, . . . ,Xt,wi
. The output is then given by

median w1∘X1, . . . ,wN∘XNf g: (18.15)

Ranked and Weighted Order Statistic Filters
An rth-ranked-order statistic filter is simply given by taking X(r) as the filter output.

Examples are the median, the maximum (r ¼ N), and the minimum (r ¼ 1)
operation. This can also be combined with weights as depicted above, that is,

rth order statistic w1∘X1, . . . ,wN∘XNf g: (18.16)

Hybrid Filters
Another approach is the design of nonlinear filters consisting of filter cascades,

that is, the repeated application of different filters on the respective

outputs. A general formulation is, for example, given by rth-order statistic

F1(X1, . . . , Xn), . . . , FM(X1, . . . , Xn), where F1, . . . , FM can denote any other

filtering procedure. A concrete example is the median hybrid filter that combines

prior linear filtering procedure with a succeeding median ordering operation, i.e.,

median 1=kð Þ
Xk
i¼1

Xi, Xkþ1, 1=kð Þ
XN
i¼kþ2

Xi

( )
: (18.17)
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Selective Filters
An interesting approach is given by the principle of switching between different

output rules depending on some selection rule, for example, based on the fact that

the mean filter delivers a larger (smaller) output than the median filter when the

filtering window approaches an upward (downward) jump. Thus, a selection rule

would be given by

mean X1 , ..., XN

� � � median X1 , ..., XN

� �
: (18.18)

A certain drawback of this selection rule is that it is one-sided, that is, it considers

only the first half of the region around the jump. This is due to the fact that the mean

for the second half, after the jump has occurred, is generally smaller (larger) than the

median. Other rules can include thresholds and aim at deciding whether there has

actually happened a jump or there was an impulse in the signal, which is not caused

by the noise distribution, but due to some other explanatory effect.

Above-depicted examples of nonlinear filters should give the reader an overview

over the most common methods applied in practice. For detailed information about

each filter’s characteristics, advantages, and drawbacks, we refer to Astola and

Kuosmanen (1997), where there are also the references to the original works to be

found. Yet, we see that basically most of these filters rely on some ordered statistics,

with their input or output modified prior or afterwards, respectively. Since this basic

principle applies to most filters not directly dependent on some specific character-

istic or assuming a certain structure of the original series to be filtered, the different

methods pointed out above can be combined in numerous ways. In many cases,

however, even though we portrait only the very basic methods, we see that almost

all of them already incorporate an implicit or explicit choice of additional param-

eters besides the filter bandwidth, either by weights, rules, or thresholds. These

choices introduce further biases into the filtering process. Though some of these

parameters can be chosen to be optimal in some sense (i.e., minimize a certain

distance measure, e.g., the MSE for the L-filters), they lack the concrete meaning of

weights we have for linear filters.

18.5 Specific Jump Detection Models and Related Methods

In this section we list further related methods that are concerned with the estimation

of long-term trends exhibiting edged frontiers, i.e., jumps and/or steep slopes. We

first review methods being explicitly developed either only for the detection of

jumps in a signal corrupted by noise or approaches that also include capturing (i.e.,

modeling) those very jumps. We show the advantages and limits of applications of

these methods, highlighting in which aspects further research is still necessary. We

conclude this chapter by listing some of the most in practice well-known methods.
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18.5.1 Algorithms for Jump Detection and Modeling

The issue of detecting and modeling jumps in time series has been recognized as an

essential task in time series analysis and therefore has already been considered

extensively in the literature. Though we introduce wavelet methods in the next

chapter only, we list the works based on these methods here as well without going

into details. We only note that wavelets, based on their characteristics, make

excellent tools for jump and spike detection, as it is this what they were developed

for in the first place (see Morlet (1983)).

Generally, the most appreciated procedures in the recent literature can be seen as

two different general approaches. One is via wavelets, and the other uses local

(linear) estimators and derivatives.

One of the first approaches using wavelets for jump detection in time series,

besides the classical wavelet literature, for example, Mallat and Hwang (1992), was

given by Wang (1995, 1998). He uses wavelets together with certain data-

dependent thresholds in order to determine where in the signal jumps have hap-

pened and whether they are significantly different from short-varying fluctuations,

and provides several benchmark signals. Assumptions about the noise

structure were made according to Donoho and Johnstone (1994), that is, the

approach is applicable for white (i.e., uncorrelated) Gaussian noise only. This

work was extended by Raimondo (1998) to include even more general cusp

definitions. More recent contributions extend these works to stationary noise

(Yuan and Zhongjie (2000)) and other distributions (Raimondo and Tajvidi

(2004)) and also provide theoretical results about asymptotic consistency.

A further application specifically on high-frequency data is given by Fan and

Wang (2007).

The other line is given by Qiu and Yandell (1998) who estimate jumps using

local polynomial estimators. This work is continued in Qiu (2003) where jumps are

not only detected but also represented in the extracted time series. Gijbels

et al. (2007) further refine the results by establishing a compromise between

a smooth estimation for the continuous parts of a curve and a good resolution of

jumps. Again, this work is limited to pure jumps only and, since it uses local linear

estimators as the main method, has no frequency interpretation available. Sun and

Qiu (2007) and Joo and Qiu (2009) use derivatives to test the signal for jumps and to

represent them.

Finally, we note a completely different approach that is presented in Kim and

Marron (2006): a purely graphical tool for the recognition of probable jumps (and

also areas where almost certainly no jumps occurred). Yet, the authors confess that

their work is only to be seen as a complementary approach, and refer to Carlstein

et al. (1994) for further thorough investigation.

We note that there exists already a good body of work about how to detect (i.e.,

estimate their location), and even how to model jumps (i.e., estimate their height),

though in most works bounded to strict requirements on the noise or the trend

model. However, although most models will also automatically include the

detection of steep slopes, they fail at modeling the slope itself. While a jump
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can easily be presented (either by indicator functions or any other methods used in

the cited works above), matters are different with slopes: Since there can be given

no general formulation or model of the exact shape of a slope, any parametric

approach will fail or deliver only a poor approximation if the model does not fit

the occurred slope. Examples of such different kinds of slopes are innumerous:

Sine, exponential, and logarithmic decays are only the most basic forms to

approximate such events, which in practical examples rarely follow such ideal-

ized curves. Naturally, only nonparametric approaches will adapt themselves to

the true shape of the underlying trend but generally suffer the same drawbacks as

all linear and nonlinear methods pointed out above, i.e., they always have to

bargain a tradeoff between bias and signal fidelity.

18.5.2 Further Related Methods

We conclude this section by outlining the most popular and established filtering

methods.

18.5.2.1 General Least-Squares Approaches
The most general approach can be seen by setting up a parameterized model and

calibrating the model afterwards, generally using some minimization procedure in

respect to some error measure. This can be seen as a straightforward approach,

requiring only the initialization of an appropriate model and choice of error

measure.

An example from the energy market is given by Seifert and Uhrig-Homburg

(2007) and Lucia and Schwartz (2002), who set up a trigonometric model in

conjunction with indicator functions and minimize the squared error for each

time step in order to estimate the deterministic trend as well as values for different

seasons and days. Though they find that their model works well in practice, for

general cases it might be difficult always finding an appropriate model, especially

when there is no information about the trend, its seasonal cycles, and other

(deterministic or stochastic) influences. This is especially the case when the data

set covers only a short period of time.

When analyzing financial time series data, one could suggest the trigonometric

model and the order of the sinusoidal functions; in general it may be difficult to set

up such a model or reason, why this model and its estimated trend are appropriate

for the respective time series. This requires either a rigorous a priori analysis of the

series itself or further information about the external factors (i.e., the system the

time series is derived from) and their interaction. In addition to this, the estimation

can never be better than the model and to which accuracy it approximates the true

trend.

We note another probable critical issue when using indicator functions in

combination with least-squares estimation. First, using indicator functions confines

the model to jumps only, that is, slopes or similar phenomena cannot be captured by

that approach, as the indicator functions automatically introduce jumps in the trend
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component. Thus, indicator functions excel at modeling jumps but perform poorly

with other types of sudden changes. Second, for this approach, it is extremely

important to determine the location of the jump as exact as possible, as otherwise

the estimated trend in this area may be highly inaccurate.

It is therefore dubious, whether such parametric approaches are appropriate to

deal with economic and financial time series, though they will perform very well, if

their requirements are met.

18.5.2.2 Smoothing Splines
Smoothing splines, though also utilizing the least-squares methods, on the contrary

do not rely on a specific model assumption. Instead, they penalize the regression

spline in respect to its roughness, i.e.,

min
m

XN
t¼1

Xt � m tð Þð Þ2 þ o
ð

m00 xð Þð Þ2 dx: (18.19)

It follows directly from this definition that for o ¼ 0 this yields us an interpo-

lation while for o ! 1 m will approximate a linear regression.

In practice, there emerges another difficulty: In many cases, the (optimal) choice

of o remains unclear. Although there exist several works that have established some

data-dependent rules for this, in many cases, when the assumptions about the noise do

not hold or the time series incorporates additional deterministic (e.g., cycles) or

stochastic components (e.g., outliers that are part of the system and not due to

measurement or other errors), the choice of the penalizing smoothing parameter is

a difficult task that has been and is still undergoing extensive research (see Morton

et al. (2009), Lee (2003), Hurvich et al. (1998), Cantoni and Ronchetti (2001),

Irizarry (2004)). We only mention particularly the cross-validation method which is

used to determine the optimal smoothing parameters (see Green and Silverman

(1994)). Furthermore, though o is eventually responsible for the degree of smooth-

ness (i.e., on which scale or level the trend shall be estimated), one can hardly neither

impose nor derive any additional meaning on or from this parameter.

18.5.2.3 The Hodrick-Prescott Filter
The Hodrick-Prescott (HP) filter was first introduced by Leser (1961) and later

became popular due to the advanced works of Hodrick and Prescott (1997). In order

to extract the trend t ¼ [t0, . . . , tN + 1] from a given time series X, this trend is

derived by solving

min
t

XN
t¼1

Xt � ttð Þ2 þ o ttþ1 � ttð Þ � tt � tt�1ð Þð Þ2: (18.20)

We note that (besides from not using a spline basis for approximation)

this approach can be seen as a discretized formulation of the smoothing spline.
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The smoothing parameter o plays the same role, while the penalized smoothness

measure is the discretized version of the second derivative. Thus, though several

authors propose explicit rules (of thumb) for choosing o (see, e.g., Ravn and Uhlig

(2002), Dermoune et al. (2008), Schlicht (2005)), some researchers like Harvey and

Trimbur (2008) also recognize that in some way this choice still remains kind of

arbitrary or problematic for many time series which cannot be associated in the same

time terms.

18.5.2.4 The Kalman Filter
Another sophisticated filter was developed by Kalman (1960). It is a state-space

system specifically designed to handle unobserved components models and can be

used to either filter past events from noise or forecast. Another good introduction to

the Kalman filter can be found in Welch and Bishop (1995) and a thorough

discussion in Harvey (1989).

The basic Kalman filter assumes that the state x 2 ℝn of underlying process in

a time series can be described by a linear stochastic difference equation:

xt ¼ Axt�1 þ But�1 þ wt�1, (18.21)

with A the state transition model that relates in conjunction with the (optional)

control input B, the respective input ut, and the noise component

wt the previous state to the next. In the above equation, A and B are ass-

umed to be constant but may also change over time. Of this model (i.e., the true

state xt), only

zk ¼ Hxk þ vk (18.22)

can be observed. Both noise components are assumed to be independent of one

another and to be distributed according to

w � N 0;Qð Þ and v � N 0;Rð Þ: (18.23)

With A, B, Q, and R assumed to be known, the filter predicts the next state xt
based on xt�1 and also provides an estimate of the accuracy of the actual prediction.

Since its first development, the Kalman filter has become popular in many areas;

see, for example, Grewal et al. (2001). However, a serious drawback of this Kalman

procedure is that many real-world models do not fit the assumptions of the model, for

example, above requirement of a linear underlying system is often not met. Though

there exist extensions for nonlinear systems (see e.g., Julier and Uhlmann (1997)),

there still exists the problem that one or more of the required parameters are unknown.

While for many technical systems (e.g., car or missile tracking systems) based on

physical laws the state transition model A is exactly known, this becomes a difficult

issue in many other application areas, including finance. Additionally, as, e.g., Mohr

(2005) notes, the performance of the Kalman filter can be very sensitive to initial

conditions of the unobserved components and their variances, while at the same time it
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requires an elaborate procedure of model selection. He also notes that in macroeco-

nomic time series, the Kalman filter does not work with annual data. Therefore, we see

that while the Kalman filter unquestionably delivers excellent results in many areas

(and has also applied for financial time series as well, though not without critique), its

usage is not convenient for general cases we treat in this work, requiring more

assumptions and knowledge about the underlying model.

18.6 Summary

In this chapter we provided an overview of the different tasks of time series analysis

in general and the specific challenges of time series trend extraction. We pointed

out several methods and outlined their advantages and disadvantages, together with

their requirements. The reader should keep in mind the following key points:

• Linear filters provide a very smooth trend but fail to capture sudden changes.

• Nonlinear filters capture jumps extremely well but are very sensitive to higher

levels of noise.

• Advanced methods may provide good results depending on the scenario but

often rely on very specific assumptions that can yield misleading results, in case

they are not completely met.

• The specific task of jump detection and modeling is well understood but lacks

appropriate methods for more general changes like steep slopes.

• And the most important: No methods universally perform best for all tasks!
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Abstract

This chapter presents a set of tools, which allow gathering information about the

frequency components of a time series. In a first step, we discuss spectral

analysis and filtering methods. Spectral analysis can be used to identify and to

quantify the different frequency components of a data series. Filters permit to

capture specific components (e.g., trends, cycles, seasonalities) of the original

time series. Both spectral analysis and standard filtering methods have two main

drawbacks: (i) they impose strong restrictions regarding the possible processes

underlying the dynamics of the series (e.g., stationarity) and (ii) they lead to

a pure frequency-domain representation of the data, i.e., all information from the

time-domain representation is lost in the operation.

In a second step, we introduce wavelets, which are relatively new tools in

economics and finance. They take their roots from filtering methods and Fourier

analysis, but overcomemost of the limitations of these twomethods. Their principal
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advantages derive from (i) combined information from both time domain and

frequency domain and (ii) their flexibility as they do not make strong assumptions

concerning the data-generating process for the series under investigation.

Keywords

Filtering methods • Spectral analysis • Fourier transform • Wavelet filter •

Continuous wavelet transform • Discrete wavelet transform • Multiresolution

analysis • Scale-by-scale decomposition • Analysis of variance • Case-Shiller

home price indices

19.1 Introduction

The purpose of this chapter is to present a set of methods and tools belonging to the

so-called frequency-domain analysis and to explain why and how they can be used

to enhance the more conventional time-domain analysis. In essence, time-domain

analysis studies the evolution of an economic variable with respect to time, whereas

frequency-domain analysis shows at which frequencies the variable is active. We

focus on concepts rather than technicalities and illustrate each method with exam-

ples and applications using real datasets.

The usual time-domain approach aims at studying the temporal properties

of a financial or economic variable, whose realizations are recorded at

a predetermined frequency. This approach does not convey any information

regarding the frequency components of a variable. Thus, it makes the implicit

assumption that the relevant frequency to study the behavior of the variable

matches with its sampling frequency. An issue arises, however, if the variable

realizations depend (in a possibly complicate manner) on several frequency

components rather than just one. In such a case, the time-domain approach

will not be able to efficiently process the information contained in the original

data series.

In this chapter, we start by discussing methods belonging to the frequency-
domain analysis. These tools are very appealing to study economic variables that

exhibit a cyclical behavior and/or are affected by seasonal effects (e.g., GDP,

unemployment). Spectral analysis and Fourier transforms can be used to quantify

the importance of the various frequency components of the variable under investi-

gation. In particular, they allow inferring information about the length of a cycle

(e.g., business cycle) or a phase (e.g., expansion or recession). The presence of such

patterns also imposes the use of appropriate methods when it comes to model the

dynamics of the variable. Filtering methods have proven useful in this context.

Notably, filters may serve to remove specific frequency components from the

original data series.

In a second step, we introduce wavelets. During the last two decades, wavelets have

become increasingly popular in scientific applications such as signal processing and

functional analysis. More recently, these methods have also started to be applied to

financial datasets. They are very attractive as they possess the unique ability to provide
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a complete representation of a data series from both the time and frequency perspec-

tives simultaneously. Hence, they allow breaking down the activity on the market into

different frequency components and to study the dynamics of each of these compo-

nents separately. They do not suffer from some of the limitations of standard

frequency-domain methods and can be employed to study a financial variable, whose

evolution through time is dictated by the interaction of a variety of different frequency

components. These components may also behave according to nontrivial (noncyclical)

dynamics – e.g., regime shifts, jumps, and long-term trends.

For instance, the presence of heterogeneous agents with different trading

horizons may generate very complex patterns in the time series of stock prices

(see M€uller et al. 1995; Lynch and Zumbach 2003). This heterogeneity may in

particular induce long memory in stock return volatility. In such a case, studying the

properties of a time series and trying to model it from the perspective of a single

frequency can be misleading. Much information will be lost because of the naive

and implicit aggregation of the different frequency components into a single com-

ponent. Furthermore, as these components may interact in a complicated manner

and may be time varying or even nonstationary, standard methods like Fourier

analysis are not appropriate. Therefore, one has to resort to more flexible filtering

methods like wavelets.

The remaining of this chapter is structured as follows. In Sect. 19.2, we

discuss spectral analysis and filtering methods. Section 19.3 is devoted to the

presentation of wavelets, Sect. 19.3.1 explains the relevant theoretical back-

ground, Sect. 19.3.2 discusses the implementation of these methods, and

Sect. 19.3.3 presents a complete case study. Section 19.4 offers a short

conclusion.

19.2 Frequency-Domain Analysis

19.2.1 Spectral Analysis: Some Basics and an Example

Studying the properties of an economic variable in the time domain is done

through time series analysis. Similarly, the purpose of spectral analysis is to

study the properties of an economic variable over the frequency spectrum, i.e.,

in the frequency domain. In particular, the estimation of the population spectrum

or the so-called power spectrum (also known as the energy-density spectrum)

aims at describing how the variance of the variable under investigation can be

split into a variety of frequency components. The subject has been extensively

researched during the previous 40 years (see Iacobucci (2003) for a short litera-

ture review). Our discussion is based primarily on Hamilton (1994) and Gençay

et al. (2002).

19.2.1.1 Fourier Transform
The basic idea of spectral analysis is to reexpress a covariance-stationary process

x(t) as a new sequence X(f), which determines the importance of each frequency
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component f in the dynamics of the original series. This is achieved using the

discrete version of the Fourier transform1

X fð Þ ¼
X1

t¼�1 x tð Þe�i2pft, (19.1)

where f denotes the frequency at which X(f) is evaluated. In order to gain a deeper

insight into this decomposition, one may think about the De Moivre’s (Euler’s)

theorem, which allows to write e–i2pft as

e�i2pft ¼ cos 2pf tð Þ � i sin 2pftð Þ: (19.2)

Hence application of formula (19.1) is similar to projecting the original signal

x(t) onto a set of sinusoidal functions, each corresponding to a particular frequency

component. Furthermore, one can use the inverse Fourier transform to recover the

original signal x(t) from X(f):

x tð Þ ¼ 1

2p

Z p

�p
X fð Þe�i2pftdf : (19.3)

Equation 19.3 shows that X(f) determines how much of each frequency compo-

nent is needed to synthesize the original signal x(t).

19.2.1.2 Population Spectrum and Sample Periodogram
Following Hamilton (1994), we define the population spectrum of x(t) as

sx oð Þ ¼ 1

2p

X1
j¼�1 gje

�ioj, (19.4)

where gj is the jth autocovariance of x(t)
2;o¼ 2pf is a real scalar, which is related to the

frequency f¼ 1/t at which the spectrum is evaluated; and t is the period length of one
cycle at frequency f.3 One may notice that the right part of Eq. 19.4 is indeed the

discrete-time Fourier transform of the autocovariance series. There is also a close link

between this expression and the autocovariance generating function,which is defined by

gx zð Þ ¼
X1

j¼�1 gjz
j, (19.5)

where z denotes a complex scalar. This implies that one can easily recover the

autocovariance generating function from the spectrum. In the same spirit, an

1The discrete version of the Fourier transform is used because the time series is recorded at

discrete-time intervals.
2The jth autocovariance of x(t) is given by gj ¼ E[(x(t) � m)(x(t � j) � m)], where m denotes the

expected value of x(t).
3As an example, let us consider an economic variable, whose evolution is fully determined by the

state of the economy. A complete business cycle lasts on average 36 months and therefore

f ¼ 1/36 months.
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application of the inverse discrete-time Fourier transform allows a direct estimation

of the autocovariances from the population spectrum.

In practice, the sample periodogram ŝx oð Þ can be estimated with either nonpara-

metric or parametric approaches. We briefly describe these two approaches hereafter.

The first approach is nonparametric because it infers the spectrum from a sample of

realizations of the variable x without trying to assign an explicit structure to the data-

generating process underlying its evolution. The estimation of the sample

periodogram is straightforward as it is directly related to the squared magnitude of

the discrete-time Fourier transform │X(f)│ of the time series x(t)

ŝx oð Þ ¼ 1

2p
1

T
X fð Þj j2, (19.6)

where T is the length of the time series x(t). │X(f)│2 is also known as the power

spectrum of x(t). This approach is usually called the “periodogram.” As noted in

Hamilton (1994), its accuracy seems questionable as the confidence interval for the

estimated spectrum is typically very broad. Furthermore, the variance of the

periodogram does not tend to zero as the length of the data series tends to infinity.

This implies that the periodogram is not a consistent estimator of the population

spectrum. Therefore, modified versions of the periodogram have been put forward.

For instance, smoothed periodogram estimates have been suggested as a way to

reduce the noise of the original estimator and to improve its accuracy. The idea

underlying this approach is that sx(o) will be close to sx(l) when o is close to l.
This suggests that sx(o) might be estimated with a weighted average of the values of

sx(o) for values of l in a neighborhood around o, where the weights depend on the
distance between o and l (Hamilton 1994). The weights are typically determined

by a kernel weighting function. Welch’s method (Welch 1967) and Childers (1978)

constitute another alternative based on a simple idea: instead of estimating a single

periodogram for the complete sample, one divides the original sample into sub-

samples, estimates the periodogram for each subsample, and computes the average

periodogram over all subsamples.

The second approach is based on some parameterization of the data-

generating process of x(t). Methods belonging to this category are close in spirit

to the population spectrum, i.e., to a direct application of Eq. 19.4. Typically

some specification based on an ARMA (autoregressive moving average) repre-

sentation is chosen to represent the temporal dynamics of the variable. The

model is then calibrated, i.e., the ARMA coefficients are estimated from the

realizations of the process x(t). These estimated coefficients are employed to

calculate the spectrum. As long as the autocovariances are reasonably well

estimated, the results would also be reasonably close to the true values.

A detailed discussion of the various parametric methods (e.g., the covariance,

Yule-Walker and Burg methods) is beyond the scope of this introduction, but

parametric methods are particularly effective when the length of the observed

sample is short. This is due to their ability to distinguish the noise from the

information contained in the data.
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19.2.1.3 Example
We now turn to the discussion of a simple example. We consider a time series,

which has the following dynamic:

x tð Þ ¼ a � cos 2pt
21

� �
þ b � sin 2pt

63

� �
þ e tð Þ,

where e(t) is a random term that follows a normal distribution with mean zero and

unit variance. One may observe that the process is driven by two cyclical compo-

nents, which repeat themselves, respectively, each 21 and 63 units of time.

The full line in Fig. 19.1 shows the first 100 (simulated) realizations of x(t); the

dotted lines are for the cos and sin functions. At first glance, it seems difficult to

distinguish the realizations of x(t) from a purely random process. Figure 19.2

reports the autocorrelations (left panel) and partial autocorrelations (right panel)

of x(t) (upper panel) and of the cos and sin components (bottom panel). Again, it

remains difficult, when looking at this figure, to gather conclusive evidence

concerning the appropriate model specification for x(t).
On the other hand, results from the Fourier analysis, reported in Fig. 19.3, clearly

show that two cyclical components drive the evolution of x(t) and repeat themselves

around each 21 and 63 units of time. This demonstrates the effectiveness of Fourier

methods for the study of processes featuring cyclical components.

19.2.1.4 Illustration: Home Prices in New York City
We now illustrate how spectral methods can be applied to real economic data series.

We consider the Case-Shiller home price index for the city of New York. The

dataset covers the period January 1987 to December 2011 on a monthly basis. The

upper panel of Fig. 19.4 shows the evolution of the index level over this time period,

while the lower panel reports the time series of index returns. Results from the

Dickey-Fuller test cannot reject the null hypothesis that the index level series is

nonstationary. Application of the Fourier transform requires the series under study

to be stationary. We therefore study the spectral properties of the index using the

time series of returns rather than the levels themselves.

We also estimate the autocorrelations and partial autocorrelations of the index

returns up to 48 lags (i.e., 4 years of observations). These are reported in Fig. 19.5.

The structure of both the autocorrelations and the partial autocorrelations indicates

that the index returns are significantly autocorrelated and it also suggests a cyclical

(or seasonal) behavior of the returns. This observation is in line with previous

results from the literature (see Kuo 1996; Gu 2002). In order to gain more insight

into the presence of such patterns, we compute the power spectrum of the series

using parametric and nonparametric methods displayed in Fig. 19.6. The estimated

power spectra returned by the two nonparametric methods (periodogram and

Welch) are much noisier than the spectra obtained from the parametric methods

(Yule-Walker and Burg). The Welch method also seems to result in an

oversmoothed estimate of the power spectrum as compared to the other estimates
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(e.g., periodogram estimates). On the other hand, the difference between the

Yule-Walker and the Burg methods is minimal. Nevertheless, the key message

remains remarkably similar: strong seasonalities affect home prices with

a frequency of recurrence of 12 months.

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

4
Evolution of xt

xt cos sin

Fig. 19.1 Sample path of x(t)
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Fig. 19.2 Autocorrelations and partial autocorrelations of x(t). The upper panel reports the

autocorrelations (left panel) and partial autocorrelations (right panel) of x(t). The lower panel

shows similar statistics for the cosinus and sinus functions
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19.2.2 Filtering Methods

A filter is a mathematical operator that serves to convert an original time series x(t)
into another time series y(t). The filter is applied by convolution of the original

series x(t) with a coefficient vector w:

y tð Þ ¼ w � xð Þ tð Þ ¼
X1

k¼�1 w kð Þx t� kð Þ, (19.7)

The purpose of this operation is to explicitly identify and to extract

certain components from x(t). In the present context, one may want to remove

from the original time series some particular features (e.g., trends, business

cycles, seasonalities, or noise) that are associated with specific frequency

components.

19.2.2.1 Frequency Response Function
Filters in the time domain can be characterized on the basis of their impulse-
response function, which traces the impact of a one-time unit impulse in x(t)
on subsequent values of y(t). Similarly, in the frequency domain, the analysis

of the frequency response function (or transfer function) of a filter tells us

which frequency components the filter captures from the original series. The

frequency response function is defined as the Fourier transform of the filter

coefficients

H fð Þ ¼
X1

k¼�1 w kð Þe�i2pfk: (19.8)
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Fig. 19.3 Spectral analysis. The periodogram has been estimated directly from the realizations of

x(t). The population spectrum has been estimated on the basis of the theoretical autocovariances of x(t)
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The frequency response, H(f), can be further split into two parts:

H fð Þ ¼ G fð Þeiy fð Þ, (19.9)

where G(f) is the gain function, eiy(f) the phase function, and y the phase angle

(or equivalently the argument of H( f )). The gain function is the magnitude of the

frequency response, i.e.,G(f)¼ jH( f )j. If the application of the filter on x(t) results in
a phase shift, i.e., if the peaks and lows of x(t) and y(t) have a different timing, the

phase angle y will be different from zero. The use of uncentered moving average
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Fig. 19.5 Autocorrelations and partial autocorrelation of the returns on the New York home

price index
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Fig. 19.4 Case-Shiller home price index for the city of New York. Price levels and returns are

reported in the upper and lower panel respectively.

19 Analysis of Financial Time Series Using Wavelet Methods 547



filters leads to this (often) undesirable feature because turning points will be recorded

earlier in the original series than in the filtered series. On the other hand, centered

(symmetric) moving averages have y( f ) ¼ 0; hence, there is no phase shift for this

class of filters. For instance, the frequency response of a two-period uncentered

moving average filter with coefficients w(k) ¼ 0.5 for k ¼ 0, 1 is4

H fð Þ ¼
X1

k¼0
0:5e�i2pfk

¼ 0:5þ 0:5e�i2pf

¼ 0:5 eipf þ e�ipf� �
e�ipf

¼ cos pfð Þe�ipf

This result shows the existence of a phase shift as the phase angle is y( f ) ¼ �pf.5

Hence, the turning points from the original series will be shifted to the right in the

filtered series. On the other hand, a filter with coefficients w(k) ¼ 1/3 for k¼ �1, 0, 1

has a zero phase angle.

Based on their gain functions, filters can be categorized as follows:

• High-pass filters should be able to capture the high-frequency components of

a signal, i.e., the value of their gain function G(f) should equal one for frequen-

cies f close or equal to 1/2.
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Fig. 19.6 Spectral analysis of the return series. Comparison between parametric (Burg and

Yule-Walker) and non-parametric (Periodogram and Welch) methods

4See also Gençay et al. (2002) who uses a similar example.

5In full generality, the phase angle can be computed as y fð Þ = arctan
Im H fð Þ½ �
Re H fð Þ½ �
� �

, where Im[H(f)] and

Re[H(f)] are, respectively, the imaginary part and the real part of H(F).
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• Low-pass filters should be able to capture the low-frequency components of

a signal, i.e., G(f) ¼ 1 for f close or equal to 0.

• Band-pass filters should be able to capture a range of frequency components of

a signal, i.e., G(f) ¼ 1 for flo < f < fhi.
• All-pass filters capture all the frequency components of a signal, i.e.,G(f)¼ 1 for

8f. Such filters leave the frequency components of the original signal unaltered.

Filters are commonly used in economics. The Hodrick and Prescott (1997) filter

is probably the best known. It has a structure and a gain function which enable it to

capture business cycle components.

19.2.2.2 Example
A basic example of a high-pass filter is a filter that takes the difference between two

adjacent values from the original series; its coefficients arewhi¼ [0.5,� 0.5]. Similarly,

the most simple low-pass filter is a 2-period moving average; in this case

wlo¼ [0.5, 0.5]. In wavelet theory,whi=
ffiffiffi
2

p
andwlo=

ffiffiffi
2

p
form the Haar wavelet family.

In this case, the low-pass filter wlo is basically an averaging filter, while the high-pass

filter whi is a differencing filter. The gain functions for these two filters are reported in

Fig. 19.7.

19.2.2.3 Illustration
The full line in the left panels of Fig. 19.8 shows themonthly (unadjusted) returns on the

Case-Shiller New York home price index from 1987 to 2011. We add to the top panel

the output series resulting from the application of both a centered and an uncentered

(causal) 3-period moving average on the original data. The three-filter coefficients have

a value of 1/3. This implies that the output series of the centeredmoving average at time

t is basically the average return from months t – 1 to t + 1. Similarly, the uncentered

moving returns the average return from t – 2 to t. It is apparent from the figure that the

uncentered moving average leads to a phase shift of 1 month. The bottom panel shows

the outputs of a 7-periodmoving average. The filter coefficients are equal to 1/7. Again,

we consider both centered and uncentered filters. The use of an uncentered moving

average leads to a phase shift of 3 months as compared to the centered moving average.

The right part of the figure reports the gain functions for the 3-period and the

7-period moving averages. The gain function is similar for both the uncentered and

the centered moving average. The only element that distinguishes these two filters

is indeed their phase function. One may notice that (i) both filters are low-pass

filters, and (ii) the longer filter captures more efficiently the low-frequency

components of the original signal than the short filter.

19.3 Scale-by-Scale Decomposition with Wavelets

To a large extent, wavelets can be seen as a natural extension to spectral and Fourier

analysis as (i) wavelets do not suffer the weaknesses of Fourier analysis, and

(ii) wavelets provide a more complete decomposition of the original time series

than Fourier analysis does.
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Fig. 19.8 Two moving averages and their frequency responses. Left panels show the outputs from

a 3-period (upper panel) and a 7-period (lower panel) moving average filters applied on the returns on

the Case-Shiller New York home price index. Right panels report the corresponding gain functions
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There are some problems with spectral methods and Fourier transforms. Notably,

these methods require the data under investigation to be stationary. This is often not the

case in economics and finance. In particular, volatility is known to exhibit complicated

patterns like jumps, clustering, and long memory. Furthermore, the frequency decom-

position delivered by Fourier analysis only makes sense if the importance of the various

frequency components remains stable over the sample period. Ex ante, there is good

reason to expect this assumption not to hold for a variety of economic and financial

variables. For instance, volatility changes are likely to exhibit a different frequency

spectrumwhen trading activity is intense than when the market is quiet. The short-time

Fourier transform (which is also known as the Gabor or windowed Fourier transform)

has been suggested to overcome these difficulties. The idea is to split the sample into

subsamples and to compute the Fourier transform on these subsamples. Hence, this

extension achieves a better trade-off between the time and the frequency representation

of the original data. Nevertheless, this provides at best a partial solution to the

aforementioned issues as the strong restrictions regarding the possible data-generating

process over each subsample are maintained.

Wavelets do not make any of these assumptions. Furthermore, wavelets pro-

vide a complete decomposition of the original series, which is located both in time

and in frequency. From a mathematical viewpoint, a wavelet is a function, which

enables to split a given signal into several components, each reflecting the

evolution trough time of the signal at a particular frequency. Wavelet analysis

has originally been used in signal processing (e.g., image processing and data

compression). Its applications to economics and finance are relatively recent.

Nevertheless, the range of application of wavelets is potentially wide: denoising

and seasonality filtering, decorrelation and estimation of fractionally integrated

models, identification of regime shift and jumps, robust estimation of the covari-

ance and correlation between two variables at different time scales, etc.

From a physicist perspective, but with application to time series analysis,

Percival and Walden (2000) and Struzik (2001) provide a mathematically rigorous

and exhaustive introduction to wavelets. Struzik (2001) particularly emphasizes the

unique ability of nonparametric methods (like wavelets) to let the data speak by

themselves. Thus, such methods avoid making misleading interpretations of the

coefficients obtained from the calibration of misspecified models. Gençay

et al. (2002) discuss the use of wavelets for specific purposes in economics and

finance and adopt a more intuitive approach (with many illustrations and examples),

while Ramsey (2002) surveys the most important properties of wavelets and

discusses their fields of application in both economics and finance. Crowley

(2007) proposes a genuine guide to wavelets for economists. His article can be

considered as a complete and easily understandable toolkit, precisely explaining in

which circumstances to use wavelets and how to proceed. Schleicher (2002) is

a complementary reference to those already named; Schleicher focuses on some

mathematical concepts underlying the use of wavelets and discusses them in details

using examples.

This short literature review focuses only on textbook-style references. There are

however quite a large amount of economic and financial articles that have employed
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wavelets for empirical purposes. Ramsey6 and Gençay7 and their respective coau-

thors can be considered as the pioneers of the use of wavelets in economics and

finance. Other recent contributions include Nielsen and Frederiksen (2005),

Vuorenmaa (2005), Oswiecimka et al. (2006), Elder and Jin (2007), Fan

et al. (2007), Fernandez and Lucey (2007), Rua and Nunes (2009), Manchaldore

et al. (2010), Curci and Corsi (2012), and Hafner (2012).

19.3.1 Theoretical Background

19.3.1.1 What Is a Wavelet?
As its name suggests, a wavelet is a small wave. In the present context, the term

“small” essentially means that the wave grows and decays in a limited time frame.

Figure 19.9 illustrates this notion by contrasting the values taken by a simple wavelet

function (the Morlet function)8 and the values of the sin function, which can be

considered as a sort of “large” wave. In order to clarify the notion of small wave, we

start by introducing a function, which is called the mother wavelet and is denoted by

c(t). This function is defined on the real axis and must satisfy two conditions:
Z 1

�1
c tð Þdt ¼ 0: (19.10)

Z 1

�1
c tð Þj j2dt ¼ 1: (19.11)

Taken together, these conditions imply (i) that at least some coefficients of the

wavelet function must be different from zero and (ii) that these departures from zero

must cancel out. Clearly the sin function does not meet these two requirements.

A vast variety of functions meets conditions (19.10) and (19.11). Nevertheless, these

conditions are very general and not sufficient for many practical purposes. Therefore,

one has to impose additional conditions in order to run a specific analysis with

wavelets. One of these conditions is the so-called admissibility condition, which
states that a wavelet function is admissible if its Fourier transform

C fð Þ ¼
Z 1

�1
c tð Þe�i2pftdt, (19.12)

is such that

CC ¼
Z 1

0

C fð Þj j2
f

df satisfies 0 < CC < 1: (19.13)

These conditions allow reconstructing a function from its continuous wavelet

transform (see Percival and Walden (2000) for more details).

6See Ramsey et al. (1995), Ramsey and Zhang (1997), and Ramsey (1999).
7See Gençay et al. (2003), Gençay et al. (2010), Gençay and Fan (2010), and Gençay and

Gradojevic (2011).
8The Morlet wavelet is actually similar to a sin curve modulated by a Gaussian envelope.

552 P. Masset



19.3.1.2 The Continuous Wavelet Transform (CWT)
As a starting point, we discuss the CWT. The CWT primarily aims at quantifying

the change in a function at a particular frequency and at a particular point in time. In

order to be able to achieve this, the mother wavelet c(t) is dilated and translated:

cu,s tð Þ ¼
1ffiffi
s

p c
t� u

s

� �
, (19.14)

where u and s are the location and scale parameters. The term 1ffiffi
s

p ensures that the

norm of cu,s(t) is equal to one. The CWT, W(u, s), which is a function of the two

parameters u and s, is then obtained by projecting the original function x(t) onto the
mother wavelet cu,s(t):

W u; sð Þ¼
Z 1

�1
x tð Þcu,s tð Þdt: (19.15)

To assess the variations of the function on a large scale (i.e., at a low frequency),

a large value for s will be chosen and vice versa. By applying the CWT for

a continuum of location and scale parameters to a function, one is able to
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Fig. 19.9 The Morlet wavelet and the sin function
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decompose the function under study into elementary components. This is

particularly interesting for studying a function with a complicated structure,

because this procedure allows extracting a set of “basic” components that have

a simpler structure than the original function. By “synthesizing” W(u, s), it is also
possible to reconstruct the original function x(t) (see Gençay et al. (2002) for more

details).

In empirical applications, several difficulties with the CWT occur. First, it is

computationally impossible to analyze a signal using all wavelet coefficients. CWT

is thus more suitable for studying functions than signals or (economics) time series.

Second, as noted by Gençay et al. (2002), W(u, s) is a function of two parameters

and as such it contains a high amount of redundant information. We therefore turn

to the discussion of the discrete wavelet transform (DWT).

19.3.1.3 The Discrete Wavelet Transform (DWT)
The core difference between the CWT and the DWT is that the latter does not use

all translated and dilated versions of the mother wavelet to decompose the original

signal (Gençay et al. 2003). The idea is to select u and s such that the information

contained in the signal can be summarized in a minimum of wavelet coefficients.

This objective is achieved by setting

s ¼ 2�j and u ¼ k2�j,

Where j and k are integers representing the set of discrete translations and discrete
dilatations. Gençay et al. (2002) refer to this procedure as the critical sampling of
the CWT. This implies that the wavelet transform of the original function or

signal is calculated only at dyadic scales, i.e., at scales 2j. A further implication is

that for a time series with T observations, the largest number of scales for the

DWT is equal to the integer J such that J ¼ blog2(T)c ¼ blog(T)/log(2)c. It is not
possible to directly apply the DWT if the length of the original series is not dyadic

(i.e., if J < log2(T) < J + 1). In such case, one has either to remove some

observations or to “complete” the original series in order to have a series of

dyadic length. Several methods exist to deal with this kind of boundary problems

(see Sect. 19.3.2).

The DWT is based on two discrete wavelet filters, which are called the mother
wavelet hl ¼ (hl, . . .,hL–1) and the father wavelet g1 ¼ (g1,. . .,gL–1). The mother

wavelet is characterized by three basic properties:

XL�1

l¼0
hl ¼ 0,

XL�1

l¼0
hl

2 ¼ 1,and
XL�1

l¼0
hlhlþ2n ¼ 0 for all integers n 6¼ 0 (19.16)

These three properties ensure that (i) the mother wavelet is associated with

a difference operator, (ii) the wavelet transform preserve the variance of the original

data, and (iii) a multiresolution analysis can be performed on a finite variance data

series. The first property implies that the mother wavelet (also called “differencing
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function”) is a high-pass filter as it measures the deviations from the smooth

components. On the other hand, the father wavelet (“scaling function”) aims at

capturing long-scale (i.e., low-frequency) components of the series and generates

the so-called scaling coefficients.9

The mother and father wavelets must respect the following conditions:

XL�1

l¼0
hl ¼ 0: (19.17)

XL�1

l¼0
gl ¼ 1: (19.18)

The application of both the mother and the father wavelets allows separating the

low-frequency components of a time series from its high-frequency components.

Furthermore, a band-pass filter can be constructed by recursively applying

a succession of low-pass and high-pass filters.

Let’s assume that we have observed a sample of size T of some random variable

x(t), {x(1), x(2), . . ., x(T)}. The wavelet and scaling coefficients at the first level of
decomposition are obtained by convolution of the data series with the mother and

the father wavelets:

w1 tð Þ ¼
XL�1

l¼0
hlx t0ð Þ and v1 tð Þ ¼

XL�1

l¼0
glx t0ð Þ (19.19)

where t ¼ 0,1, . . .,T/2 � 1 and t0 the time subscript of x is defined as t 0 ¼ 2t + 1 �
l mod T. The modulus operator is employed to deal with boundary conditions.10

It ensures that the time subscript of x stays always positive. If, for some particular

values of t and l, the expression 2t + 1 – l becomes negative, the application of the

modulus operator returns t 0 ¼ 2t + 1� l + T. Thus, we are implicitly assuming that x
can be regarded as periodic. Alternative methods to deal with boundary conditions

are discussed thereafter. w1(t) and v1(t) are, respectively, the wavelet and the scaling

coefficients at the first scale. Hence, w1(t) corresponds to the vector containing the

components of x recorded at the highest frequency. One may notice that the operation

returns two series of coefficients that have length T/2. To continue the frequency-by-
frequency decomposition of the original signal, one typically resorts to what is known

as the pyramid algorithm.

19.3.1.4 Pyramid Algorithm
After having applied the mother and father wavelets on the original data series, one

has a series of high-frequency components and a series of lower-frequency

9The low-pass filter can be directly obtained from the high-pass filter using the quadrature mirror

relationship; see Percival and Walden (2000, p. 75).
10For two integer a and b, a modulus b is basically the remainder after dividing a by b, i.e., a mod

b ¼ a–c � b with c ¼ ba/bc.
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components. The idea of the pyramid algorithm is to further decompose the

(low-frequency) scaling coefficients v1(t) into high- and low-frequency components:

w2 tð Þ ¼
XL�1

l¼0
hlv1 t0ð Þ and v2 tð Þ ¼

XL�1

l¼0
glv1 t0ð Þ, (19.20)

where t ¼ 0,1, . . .,T/4 � 1 and t0 ¼ 2t + 1 � l mod T. After two steps, the

decomposition looks like w ¼ [w1 w2 v2]. One can then apply the

pyramid algorithm again and again up to scale J ¼ blog2(T)c to finally obtain

w ¼ [w1 w2 . . . wj vj]. Figure 19.10 summarizes these steps. One may also apply the

algorithm up to scale Jp < J only. This is known as the partial DWT.

19.3.1.5 The Maximal Overlap Discrete Wavelet Transform (MODWT)
The standard DWT suffers from three drawbacks. First, it requires a series with

a dyadic length. Second, DWT is not shift invariant, i.e., if one shifts the series one

period to the right, the multiresolution coefficients will be different. Third, it may

introduce phase shifts in the wavelet coefficients: peaks or troughs in the original

series may not be correctly aligned with similar events in the multiresolution

analysis. To overcome these problems, the MODWT has been proposed. This

wavelet transform can handle any sample size, it has an increased resolution at

coarser scales (as compared to the DWT), and it is invariant to translation. It also

delivers a more asymptotically efficient wavelet variance than the DWT.11

The main difference between the DWT and the MODWT lies in the fact that the

MODWT considers all integer translations, i.e., u ¼ k. This means that the

MODWT keeps at each frequency a complete resolution of the series. Whatever

the scale considered, the length of the wavelet and scaling coefficient vectors will

be equal to the length of the original series. The wavelet and scaling coefficients at

the first level of decomposition are obtained as follows:

w
�
1 tð Þ ¼

XL�1

l¼0
h
�
lx t0ð Þ and v

�
1 tð Þ ¼

XL�1

l¼0
g
�
lx t0ð Þ, (19.21)

where t ¼ 0,1,. . .T and t0 ¼ t – l mod T. As for the DWT, the MODWT coefficients

for scales j> 1 can be obtained using the pyramid algorithm. For instance,w
�
j and v

�
j

are calculated as

j = 1 j = 2 j = 3 j = 4 […] j = J

x(t) v1(t) v2(t) v3(t) v4(t) vJ(t)

w1(t) w2(t) w3(t) w4(t) wJ(t)

Fig. 19.10 Flowchart of the pyramid algorithm

11See Crowley (2007) for more details about the properties of MODWT.
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w
�
j tð Þ ¼

XL�1

l¼0
h
�
lv
�
j�1 t0ð Þ and v

�
j tð Þ ¼

XL�1

l¼0
g
�
lv
�
j�1 t0ð Þ, (19.22)

where t0 ¼ 2j–1 l mod T.
Using matrix notation, we can conveniently calculate the wavelet and scaling

coefficients up to scale J. We first define a matrix W
�
that is composed of J + 1

sub-matrices, each of them T x T:

W
� ¼

W
�

1

W
�

2

⋮
W
�

J

V
�
J

2
666664

3
777775

(19.23)

Each W
�

j has the following structure:

W
�

j ¼

h
�
0=2

j=2 0 0 � � � 0 h
�
L�1=2

j=2 � � � h
�
1=2

j=2

h
�
1=2

j=2 h
�
0=2

j=2 0 � � � 0 0 � � � ⋮
⋮ h

�
1=2

j=2 h
�
0=2

j=2 � � � 0 0 � � � h
�
L�1=2

j=2

h
�
L�1=2

j=2 ⋮ h
�
1=2

j=2 � � � 0 0 � � � 0

0 h
�
L�1=2

j=2 ⋮ � � � 0 0 � � � 0

0 0 h
�
L�1=2

j=2 � � � 0 0 � � � 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ � � � ⋮
0 0 0 � � � h

�
0=2

j=2 0 � � � 0

0 0 0 � � � h
�
1=2

j=2 h
�
0=2

j=2 � � � 0

0 0 0 � � � ⋮ ⋮ � � � 0

0 0 0 � � � h
�
L�1=2

j=2 h
�
L�2=2

j=2 � � � h
�
0=2

j=2

2
66666666666666666664

3
77777777777777777775

(19.24)

V
�
J has a similar structure asW

�
J but it contains the coefficients associated to the

father wavelet instead of the mother wavelet.

We can now directly calculate all wavelet and scaling coefficients via

w
� ¼ W

�
x, (19.25)

where w
�
is a vector made up of J + 1 length T vectors of wavelet and scaling

coefficients, w
�
, . . . ,w

�
j and vj

�
; i.e., w

�
= w

�
1w
�
2w
�
J� � � v�J

	 
T
.

19.3.1.6 Multiresolution Analysis (MRA)
Multiresolution analysis can be used to reconstruct the original time series x from
the wavelet and scaling coefficients, vj

�
and wj

�
. In order to achieve this, one has

to apply the inverse MODWT on vj
�
and wj

�
, j ¼ 1,. . ., J.12

12Our presentation of the multiresolution analysis is restricted to the case of the MODWT.

Nevertheless, a very similar procedure exists for the DWT; see Percival and Walden (2000).
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W
�
is an orthonormal matrix, as such W

�
TW
�
= 1. Hence, if we multiply both side

of Eq. 19.25 by W
�

T , we get

W
�

T w
� ¼ W

�
TWx

� ¼ x: (19.26)

As W
�

T= W
�

1 W
�

2 � � � W
�

J V
�

J

h i
and w

�
= w

�
1 w
�

2 w
�
J� � �v�J

	 
T
, we can further

rearrange Eq. 19.26 and show that

x ¼
XJ

j¼1
W
�

j
T
w
�
j þ V

�
J

T
v
�

J
: (19.27)

Setting Dj = W
�

j
T
w
�
j and Sj = V

�
j
T
v
�
j , we can reconstruct the original time

series as

x ¼ D1 þ . . .þ DJ þ SJ: (19.28)

This “reconstruction” is known as multiresolution analysis (MRA). The ele-

ments of Sj are related to the scaling coefficients at the maximal scale and therefore

represent the smooth components of x. The elements of Dj are the detail (or rough)
coefficients of x at scale j.

On the basis of formula (19.28), one may also think of a way to compute an

approximation or a smooth representation of the original data. This can be achieved

by considering the scaling coefficients and the wavelet coefficients from scale Js
(Js < J) to J only, i.e.:

xS ¼ DS þ . . .þ DJ þ SJ: (19.29)

Equation 19.29 can be used, for instance, to filter out noise or seasonalities from

a time series. In image processing, Eq. 19.29 serves for data compression.

Equation 19.27 has been specifically derived for the MODWT but similar results

are available for the DWT (see Percival and Walden 2000).

19.3.1.7 Analysis of Variance
On the basis of the wavelet and scaling coefficients, it is also possible to decompose

the variance into different frequency components. There are some slight differences

between the variance decomposition for the DWT and for the MODWT. We will

therefore first present the main results for the DWT and then discuss their extension

to the MODWT.
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Using the wavelet and scaling coefficients of the discrete wavelet transform, it is

possible to decompose the energy of the original series on a scale-by-scale basis:

xk k2 ¼
XT�1

t¼0
x tð Þ2 ¼

XJ

j¼1

XT=2J�1

t¼0
wj tð Þ2 þ vJ tð Þ2, (19.30)

where kxk2 denotes the energy of x. The wavelet coefficients capture the deviations
of x from its long-run mean at the different frequency resolutions. Therefore, at

scale j ¼ J ¼ log2(T), the last remaining scaling coefficient is equal to the sample

mean of x,

E xð Þ ¼ vJ: (19.31)

On this basis, we can express the variance of x as

V xð Þ ¼ E x2
� �� E xð Þ2 ¼

XJ

j¼1
E wj

2
� � ¼

XJ

j¼1
V wj

� �
, (19.32)

where V(wj) denotes the variance of the wavelet coefficients at scale j.
If we consider the wavelet and scaling coefficients obtained from a partial DWT,

the variance of x can be expressed as

V xð Þ ¼
XJp

j¼1
V wj

� �þ V vJp
� �

: (19.33)

The variance of the scaling coefficients has to be taken into account because vJp
incorporates deviations of x from its mean at scales Jp < j < J.13

An alternative way to decompose the energy of x is based on the smooth and

detail coefficients of the MRA. As above, kxk2 can be computed as the sum of the

energy of the smooth and detail coefficients. This approach is, however, valid only

for the DWT (See Gençay et al. 2002).

It is important to note that some of the wavelet coefficients involved in Eq. 19.32

are affected by boundary conditions. One should remove the corresponding wavelet

coefficients in order to get an unbiased estimator of the wavelet variance:

V̂ xð Þ ¼
XJ

j¼1

1

2ljT̂ j

X T

2 j
�1

t¼L
0
j

wj tð Þ2
" #

, (19.34)

where lj is the scale that is associated to the frequency interval [1/2j+1 1/2j].

L
0
j ¼ d(L � 2) (1 � 2� j)e is the number of DWT coefficients computed using the

boundaries. Hence, T̂ j = T=2j � L
0
j is the number of coefficients unaffected by the

boundary.

13One may notice that the variance of the scaling coefficient at scale J is 0 as vJ is a scalar (the

sample mean of x).
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We now turn to the analysis of variance in the context of the MODWT.

Equation 19.32 remains perfectly valid. The MODWT keeps the same number of

coefficients at each stage of the wavelet transform. The way of dealing with boundary

conditions must therefore be adapted. From the detail coefficients of a partial

MODWT of order Jp < log2(T), the wavelet variance can be estimated as follows:

V̂ xð Þ ¼
XJp

j¼1

1

T̂ j

XT�1

t¼Lj�1
w
�
j tð Þ2

" #
(19.35)

where Lj¼ (2j� 1) (L� 1) + 1 is the number of scale lj wavelet coefficients, which
are affected by boundary conditions. This number also corresponds to the length of

the wavelet filter at scale lj. T̂ j = T � Lj þ 1 is thus the number of wavelet

coefficients unaffected by the boundary.

19.3.2 Implementation and Practical Issues

19.3.2.1 Choice of a Wavelet Filter
Many different wavelet filters exist with each of them being particularly suitable

for specific purposes of analysis. Wavelet filters differ in their properties and in

their ability to match with the features of the time series under study. Further-

more, when it comes to implement a discrete wavelet transform, one also has to

decide about the filter length. Because of boundary conditions, longer filters are

well adapted for long time series. The simplest filter is the Haar wavelet, which is

basically a difference and average filter of length two. In finance, most researchers

have worked either with Daubechies (denoted as “D”) or with Least-Asymmetric

(“LA”) filters of length 4–8. Elder and Jin (2007) and Nielsen and Frederiksen

(2005) employ D(4) filters. Gençay et al. (2003, 2010) suggest that the LA

(8) wavelet (i.e., a Least-Asymmetric filter of length 8) is a good choice for

analyzing financial time series, while Subbotin (2008) uses a LA(4) wavelet.

Crowley (2007) argues that the impact of choosing another wavelet filter has

a rather limited impact on the distribution of the variance of the time series across

the scales.

Depending on the purpose of the analysis, it might be appealing to select

a wavelet filter which satisfies one or more of the following properties:

• Symmetry: symmetric filters are appealing as they ensure that there will be no

phase shift in the output series. Unfortunately, most wavelets are not

symmetric. An exception is the Haar wavelet. The requirement of a symmetric

wavelet is, however, less essential if a MODWT is used as it ensures that the

original series and its filter coefficients will be aligned.

• Orthogonality: this property refers to the fact that the wavelet and the scaling

coefficients contain different information. This is an important feature as it

allows for the wavelet decomposition to preserve the energy (variance) of the

original series (Crowley 2007). Daubechies and Least-Asymmetric wavelets
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meet this requirement, that is, their scaling and wavelet coefficients are orthog-

onal by construction.

• Smoothness: The degree of smoothness is measured by the number of continu-

ous derivatives of the basis function. As such, the Haar wavelet is the least

smooth wavelet. The choice of a more or less smooth filter depends essentially

on the data series to be represented. If the original time series is very smooth,

then one will opt for a smooth wavelet. For instance, the Haar wavelet is

appropriate for the analysis of a pure jump process.

• Number of vanishing moments: The number of vanishing moments of the

wavelet function has a direct implication on the ability of the wavelet

to account for the behavior of the signal. That is, if a signal has

a polynomial structure or if it can be approximated by a polynomial of

order q, then the wavelet transform will be able to properly capture this

polynomial structure only if it has q vanishing moments. For instance,

Daubechies wavelets have a number of vanishing moments which is half

the length of the filter. Thus, the Haar and D(8) have, respectively, 1 and

4 vanishing moments.

The last two properties depend not only on the wavelet filter but also on its

length. In fact, the most crucial point is probably not to choose the “right” filter but

to choose a filter with an appropriate length. Increasing filter length allows better

fitting the data. Unfortunately, this also renders the influence of boundary condi-

tions more severe. Hence, a trade-off has to be found.

Problems due to boundary conditions arise in two situations. The first case

concerns the DWT. To use the DWT, one requires a time series with a dyadic

length. If the series does not meet this requirement, i.e., if its length N is such that

2j < N < 2j+1, one has the choice between removing observations until N ¼ 2j and

completing the series such that N ¼ 2 j+1. Removing data might be the best

alternative but it leads to a loss of information.

The second case concerns both the DWT and the MODWT. The wavelet filter

has to be applied on all observations, including observations recorded at the

beginning (t ¼ 1). A problem arises because the convolution operator requires

that L – 1 observations are available before t. In this case, removing data is

useless. Therefore, one has to complete the data series. One solution is to pad

each end of the series with zeros; this technique is known as “zero padding.” An

alternative is to use the fit from a polynomial model to replace nonexisting data at

each end of the series (“polynomial approximation”). One may also complete

each end of the series either by mirroring the last observations (“mirror” or

“reflection”) or by taking the values observed at the beginning of the other end of

the series (“circular”). The choice depends on the data considered. For instance,

if working on stock returns, the use of a “mirror” seems to be the most suitable

approach as it accounts for the presence of volatility clustering. Moreover, after

the multiresolution decomposition of the original signal, one may obviously

discard the coefficients that are affected due to their proximity to the boundaries

of the series.
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Instead of selecting a priori specific wavelet function, one may also use the

so-called optimal transforms. The idea is to choose the wavelet function that

minimizes a loss function (e.g., the entropy cost function; see Crowley 2007).

19.3.2.2 Examples of Wavelet Filters and Their Gain Functions
Figure 19.11 shows the coefficients of the Haar, D(4), D(8), and LA(8) wavelets for

level j ¼ 4. One may observe the very simple structure of the Haar wavelet. When

comparing the latter with the D(4) and D(8) filters, it becomes clear that the longer

the filter, the smoother it is. The LA(8) looks less asymmetric than the D(8).

Nevertheless it is still far from being symmetric.

Studying the frequency response of these filters permits to assess their ability to

capture the different frequency components. Figure 19.12 displays the gain function

for each wavelet filter at scales 1–4. It is evident from the figure that the longer

filters (D(8) and LA(8)) have better frequency localization. The gain functions of

the D(8) and LA(8) are similar. In order to make this statement clearer, we contrast

the gain functions of the Haar, D(4) and D(8) wavelets at scale j ¼ 5 in Fig. 19.13.

The D(8) captures much better the components corresponding to frequencies

between 1/2j and 1/2j+1.

19.3.2.3 Example
Let’s consider a variable x, whose dynamics is primarily driven by an AR(1) process

and three cyclical components:

y tð Þ ¼ 0:90y t� 1ð Þ þ
X5

s¼3
5 cos

2pt
s

� �
þ e tð Þ, (19.36)

e(t) is an i.i.d. Gaussian process with mean zero and unit variance and

t ¼ 1, . . . ,10,000. In the absence of seasonalities and noise, the autocorrelation

function of y should take value 0.90k at lag k. Wavelets can be used to remove the

impact of both noise and seasonalities. From Eq. 19.36, one may notice that the

cyclical components have a period length of 3–5 periods. Hence, they have an

impact on frequencies between 1/5 and 1/3.

At scale j, the wavelet detail Dj captures frequencies 1/2 j+1� f � 1/2j and

the wavelet smooth Sj captures frequencies f < 1/2 j+1. If we use a level

2 multiresolution analysis, the wavelet smooth S2 will thus capture the compo-

nents of the time series, which have a frequency f < 1/8. This means that S2 will
take into account changes in y that are associated with a period length of at least

8 units of time. Therefore, S2 should keep the AR(1) dynamics of y, while
removing its cyclical behavior and noise.

Figure 19.14 reports the autocorrelation coefficients for the original time series y,
for the theoretical AR(1) process, and for the wavelet smooth S2. In order to assess the
impact of choosing a different wavelet filter, we use both the Haar and the LA

(8) wavelets. The results are very similar even if for short lags the LA(8) seems to

provide some improvements over the Haar. All in one, this example demonstrates the

ability of a wavelet filter to deal with a complex cyclical structure and with noise.

562 P. Masset



19.3.3 Illustration: Home Price Indices for Different US Cities

19.3.3.1 Descriptive Statistics
In this section, we study the evolution of home prices in 12 US cities from January

1987 to February 2012 (302 months).14 We employ the Case-Shiller home price

indices. The data has been gathered from the Standard & Poors website. Pj(t)
denotes the price index level for the jth city in period t which has been standardized
so that it has a value of 100 in the first month of the sample, i.e., Pj(t¼ 0)¼ (8j). We

compute the index returns as

rj tð Þ ¼ log Pj tð Þ
	 
� log Pj t� 1ð Þ	 


:

Table 19.1 reports some descriptive statistics for the returns on each of the

12 home price indices. There are huge disparities in performance. The largest price

increases are to be found in Portland (+216 % since 1987 but �31 % since the
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Fig. 19.11 Mother wavelet filters. The Haar, D(4), D(8), and LA(8) filters at scale j ¼ 4

14Los Angeles (LA), San Francisco (SF), Denver (De), Washington (Wa), Miami (Mi), Chicago

(Chi), Boston (Bos), Las Vegas (LV), New York (NY), Portland (Po), Charlotte (Cha), and

Cleveland (Cl).
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beginning of the subprime/financial crisis), Washington (+174 % and �34 %

respectively), and Los Angeles (+169 % and �42 %). Las Vegas (+35 %

and �62 %), Charlotte (+71 % and �20 %), and Cleveland (+76 % and �24 %)

are the worst performers. The volatility of home price changes has been much larger

in cities like San Francisco, Los Angeles, Las Vegas, and Miami than in northeast

cities (plus Portland and Denver). This higher volatility is, to a large extent, the

result from the severe price downturn in these four cities during the last 6 years of

the sample. It is worth mentioning that some cities have been less affected by the

home price crash than others (e.g., Denver and Boston). The skewness is always

negative and the kurtosis is generally smaller than three.

19.3.3.2 Autocorrelations
Figure 19.15 shows the autocorrelations (up to 24 lags, i.e., 2 years) of the index

returns. The full lines are for the original series, while the dotted lines show the

autocorrelations computed from the smooth coefficients obtained using the MRA

from a partial MODWT. We employ a LA(8) filter with Jp ¼ 3. Hence, the wavelet

smooth (S3) should capture the frequency components that are associated with

a period length of at least 16 months and should therefore be free of seasonal

effects. In order to deal with the boundary conditions, we use the reflection method.

Some indices are very affected by seasonal effects (Portland, Boston, Denver,

Charlotte, and Cleveland) while other indices are much less affected

0 0.5
0

0.5

1
G1(f)

G1(f)

G1(f)

G1(f)

H
aa

r

0 0.5
0

0.5

1

D
4

0 0.5
0

0.5

1

D
8

0 0.5
0

0.5

1

LA
8

G2(f)

G2(f)

G2(f)

G2(f)

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

G3(f)

G3(f)

G3(f)

G3(f)

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

G4(f)

G4(f)

G4(f)

G4(f)

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

0 0.5
0

0.5

1

Fig. 19.12 Gain function for the Haar, D(4), D(8), and LA(8) wavelets

564 P. Masset



0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lags

AR(1) y S2 Haar S2 LA(8)

Fig. 19.14 Autocorrelations estimated before and after having removed some specific frequency

components of the original time series

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
G5(f)

Haar

D(4)

D(8)

Fig. 19.13 Gain function for the Haar, D(4), and D(8) at scale j ¼ 5

19 Analysis of Financial Time Series Using Wavelet Methods 565



T
a
b
le

1
9
.1

D
es
cr
ip
ti
v
e
st
at
is
ti
cs

fo
r
th
e
1
2
h
o
m
e
p
ri
ce

in
d
ic
es

L
A

S
F

D
e

W
a

M
i

C
h
i

B
o
s

L
V

N
Y

P
o

C
h
a

C
l

A
v
er
ag

3
.9

%
3
.9

%
3
.5

%
4
.0

%
2
.8

%
2
.7

%
2
.9

%
1
.2

%
3
.0

%
4
.6

%
2
.1

%
2
.3

%

S
td
.

4
.4

%
4
.9

%
2
.6

%
3
.5

%
4
.0

%
3
.6

%
3
.2

%
4
.8

%
2
.8

%
3
.1

%
2
.1

%
3
.1

%

S
k
ew

.
(0
.4
)

(0
.7
)

(0
.6
)

(0
.2
)

(1
.2
)

(1
.1
)

(0
.1
)

(0
.3
)

(0
.2
)

(0
.8
)

(0
.7
)

(0
.8
)

K
u
rt
.

1
.0

1
.8

1
.1

0
.7

2
.9

3
.1

(0
.0
)

4
.9

(0
.1
)

2
.0

2
.1

6
.9

L
as
t

1
5
9
.5

1
2
4
.6

1
2
1
.8

1
7
5
.7

1
3
9
.5

1
0
5
.4

1
4
6
.2

8
9
.9

1
5
9
.6

1
2
9
.6

1
0
8
.1

9
4
.1

H
ig
h

2
7
3
.9

2
1
8
.4

1
4
0
.3

2
5
1
.1

2
8
0
.9

1
6
8
.6

1
8
2
.5

2
3
4
.8

2
1
5
.8

1
8
6
.5

1
3
5
.9

1
2
3
.5

B
o
tt
o
m

1
5
9
.2

1
1
7
.7

1
2
0
.2

1
6
5
.9

1
3
7
.0

1
0
5
.4

1
4
5
.8

8
9
.9

1
5
9
.6

1
2
9
.6

1
0
8
.1

9
4
.1

W
e
re
p
o
rt
th
e
av
er
ag
e
re
tu
rn
,t
h
e
st
an
d
ar
d
d
ev
ia
ti
o
n
(b
o
th
an
n
u
al
iz
ed

an
d
in
%
),
th
e
sk
ew

n
es
s,
an
d
th
e
k
u
rt
o
si
s
o
f
h
o
m
e
p
ri
ce

in
d
ex

re
tu
rn
s.
W
e
al
so

re
p
o
rt
th
e

in
d
ex

le
v
el

in
th
e
la
st
m
o
n
th

o
f
th
e
sa
m
p
le

as
w
el
l
as

th
e
h
ig
h
es
t
le
v
el

re
ac
h
ed

b
ef
o
re

th
e
cr
is
is
an
d
th
e
lo
w
es
t
le
v
el

re
ac
h
ed

d
u
ri
n
g
th
e
cr
is
is

566 P. Masset



(Miami, Las Vegas, and Los Angeles). In general the indices that display the least

significant seasonal patterns are also those that have been the most affected by the

recent crisis. This observation may suggest that the (quasi) absence of these patterns

is the result of the predominant role of speculation on price changes in these cities.

One may again observe the ability of wavelets to remove seasonal patterns. The

autocorrelations estimated from the wavelet smooth show the long-run temporal

dynamics of home prices. In contrast to financial markets, whose evolution is

almost unpredictable, home prices are strongly autocorrelated. The autocorrelation

remains positive even after 2 years.

19.3.3.3 Variance and Cross-Correlations
Next, we analyze the variance of each index returns series and the correlations

between the different indices at a variety of frequencies. We employ a partial

MODWT with Jp ¼ 5. Hence, at the largest scale, the wavelet coefficients contain

information regarding price changes over horizon of 32–64 months. Similarly, the

scaling coefficients capture the evolution for periods longer than 64 months.

Figure 19.16 shows the distribution of variance across the different frequencies.

From Fig. 19.16, one may notice that most of the variance is due to frequency

components associated with scales 3 and 6. On the other hand, variance at scales

1 and 2 is low and may be due to noise. Scales 4–5 are not related to important

frequency components, neither to seasonal patterns (scale j ¼ 3 nor to business
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Fig. 19.15 Autocorrelations of rj(t). This figure shows the autocorrelations for both the original

returns series and the wavelet smooth series for each home price index
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cycle components (scales j > 5). Thus, it comes as no surprise that they do not have

much information content.

Scale 3 corresponds to periods of 8–16 months, and as such the variance observed

at this scale reflects the importance of seasonal patterns in the dynamics of the various

home price indices. As before, we observe that seasonal effects have a very limited

impact on prices in Miami; they are also much less important in cities like Las Vegas,

Los Angeles, Washington, and New York than in Boston, Denver, Charlotte, and

Cleveland. Interestingly the ordering is reversed when considering the variance at

scale 6. That is, the index returns series on which seasonalities have a weak impact

exhibit the largest percentage of long-term volatility.

Figure 19.17 reports the correlation between the various city indices at different

scales. The largest correlations are observed at scales larger than 2. In particular at

scale 3, the correlations are very significant. This is because seasonalities affect

most indices simultaneously. One may notice that indices 5 and 8 (Miami and Las

Vegas) show less correlation with the other indices. At scales 4 and 5, the correla-

tions become highly significant. This demonstrates that the series tend to behave

very similarly in the long run.

An extension to this correlation analysis is to study how many (economic)

factors are important to explain the structure of the correlation matrix at each
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Fig. 19.16 Distribution of the wavelet variance across scales. Each bar corresponds to the

variance recorded at a specific scale j and for a particular city. Cities are ordered as follows

(from left to right): Miami, Las Vegas, Los Angeles, Washington, New York, San Francisco,

Chicago, Portland, Boston, Denver, Charlotte, Cleveland
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scale. In order to address this question, one may resort to random matrix theory

(RMT). A good introduction is provided by Bouchaud and Potters (2004) (See also

Sharifi et al. (2004) for a literature review). Here, we concentrate on the main

premises of RMT. That is, this approach should help to (i) assess if the correlation

coefficients have a genuine information content or if they are merely due to the

noise inherent in the data and (ii) estimate the number of factors that are necessary

to “explain” the correlation matrix. This is done by comparing the eigenvalues of

the empirical correlation matrix with those from a theoretical distribution.

Let’s consider a dataset with N time series of length T. We assume that the

theoretical random matrix belongs to the ensemble of Wishart matrices. On this

basis, we can derive the theoretical distribution of the eigenvalues of the correlation

matrix. Under the null of pure randomness, the eigenvalues must be confined within

the bounds15:

lmin ¼ 1þ 1

q
� 2

ffiffiffi
1

q

s !
and lmax ¼ 1þ 1

q
þ 2

ffiffiffi
1

q

s !
, (19.37)

where q = T
N. If the correlation matrix is random, then the probability that any of

its eigenvalues lies outside the bounds defined by [lmin, lmax] is zero. Hence, the

15See Sharifi et al. (2004) and Kwapien et al. (2007).
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presence of eigenvalues larger than the upper bound can be taken as an evidence

that the structure of the correlation matrix is not due to chance, i.e., that there are

deviations from RMT. Furthermore, the number of such eigenvalues can be

interpreted as corresponding to the number of factors underlying the evolution of

the N time series. A potential problem with the RMT approach is that it

requires N!1 and T!1. In our case, these conditions are evidently not fulfilled

as T¼ 302 and N¼ 12. To account for this, we also estimate lmax from the empirical

distribution of the correlation matrix eigenvalues. To this aim, we resample (without

replacement) the original time series of returns and then apply the MODWT on the

resampled data and calculate the correlation matrix and its eigenvalues at each scale

of the MODWT. This procedure is done 100,000 times. In Fig. 19.18, we report lmax

as computed on the basis of Eq. 19.37 and the empirical values of lmax obtained from

our simulations. In the latter case, we consider two different values for lmax, which

correspond to the 5 %- and, respectively, 1 %-percentile of the empirical cumulative

distribution of l. The theoretical (RMT) maximum eigenvalue is always much lower

than its empirical counterparts. This is probably due to the small sample size.

In Table 19.2, we report the eigenvalues of the correlation matrix for each

scale of the MODWT. Comparing the eigenvalues lk, k ¼ 1,. . .,12 with l̂max

demonstrates that there is a single factor underlying the evolution of home
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prices. At each scale, the eigenvalue that is attached to this factor is significant at

the 99 % level. This unique factor can be interpreted as a sort of national-wide

home price index.

19.4 Conclusion

This chapter discusses spectral and wavelet methods. It aims at being an easy-to-

follow introduction and it is structured around conceptual and practical explana-

tions. It also offers many supporting examples and illustrations. In particular, the

last section provides a detailed case study, which analyzes the evolution of home

prices in the USA over the last 20 years using wavelet methodology.
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M€uller, U., Dacorogna, M., Davé, R., Pictet, O., Olsen, R., & Ward, J. (1995). Fractals and

intrinsic time – A challenge to econometricians (Working Papers). Olsen and Associates.

Z€urich
Nielsen, M., & Frederiksen, P. (2005). Finite sample comparison of parametric, semiparametric,

and wavelet estimators of fractional integration. Econometric Reviews, 24, 405–443.
Oswiecimka, P., Kwapien, J., & Drozdz, S. (2006). Wavelet versus detrended fluctuation analysis

of multifractal structures. Physical Review E, 74, 016103.
Percival, D., & Walden, A. (2000). Wavelet methods for time series analysis. Cambridge:

Cambridge University Press.

Ramsey, J. B. (1999). The contribution of wavelets to the analysis of economic and financial data.

Philosophical Transactions of the Royal Society of London A, 357, 2593–2606.
Ramsey, J. B. (2002). Wavelets in economics and finance: Past and future. Studies in Nonlinear

Dynamics & Econometrics, 3, 1–29.
Ramsey, J. B., & Zhang, Z. (1997). The analysis of foreign exchange data using waveform

dictionaries. Journal of Empirical Finance, 4, 341–372.
Ramsey, J. B., Zaslavsky, G., & Usikov, D. (1995). An analysis of U. S. stock price behavior using

wavelets. Fractals, 3, 377–389.
Rua, A., & Nunes, L. (2009). International comovement of stock market returns: A wavelet

analysis. Journal of Empirical Finance, 16, 632–639.
Schleicher, C. (2002). An introduction to wavelets for economists (Working Paper). Bank of

Canada.

572 P. Masset



Sharifi, S., Crane, M., Shamaie, A., & Ruskin, H. (2004). Random matrix theory for portfolio

optimization: A stability approach. Physica A, 335, 629–643.
Struzik, Z. (2001). Wavelet methods in financial time-series processing. Physica A, 296, 307–319.
Subbotin, A. (2008). A multi-horizon scale for volatility. University of Paris-1: CES Working

Paper 2008.20.

Vuorenmaa, T. (2005). A wavelet analysis of scaling laws and long-memory in stock market
volatility, Bank of Finland Research Discussion Paper.

Welch, P. (1967). The use of fast Fourier transforms for the estimation of power spectra: A method

based on time averaging over short modified periodograms. IEEE Transactions on Audio and
Electroacoustics, 15, 70–73.

19 Analysis of Financial Time Series Using Wavelet Methods 573



Composite Goodness-of-Fit Tests for
Left-Truncated Loss Samples 20
Anna Chernobai, Svetlozar T. Rachev, and Frank J. Fabozzi

Contents

20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

20.2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

20.3 EDF Statistics for Left-Truncated Loss Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

20.3.1 Supremum Class Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

20.3.2 Quadratic Class Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582

20.3.3 Cramér-von Mises Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

20.4 “Upper Tail” Anderson-Darling Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

20.4.1 Supremum Class “Upper Tail” Anderson-Darling Statistic . . . . . . . . . . . . . . . . . . 584

20.4.2 Quadratic Class “Upper Tail” Anderson-Darling Statistic . . . . . . . . . . . . . . . . . . . 585

20.5 Application to Loss Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

20.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

Derivation of AD2* Computing Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

Derivation of W2* Computing Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

Derivation of ADup
2 Computing Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

Derivation of ADup
2* Computing Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

A. Chernobai (*)

Department of Finance, M.J. Whitman School of Management, Syracuse University, Syracuse,

NY, USA

e-mail: annac@syr.edu

S.T. Rachev

Department of Applied Mathematics and Statistics, College of Business, Stony Brook University,

SUNY, Stony Brook, NY, USA

FinAnalytica, Inc, New York, NY, USA

e-mail: rachev@pstat.ucsb.edu

F.J. Fabozzi

EDHEC Business School, EDHEC Risk Institute, Nice, France

e-mail: fabozzi321@aol.com; frank.fabozzi@edhec.edu

C.-F. Lee, J. Lee (eds.), Handbook of Financial Econometrics and Statistics,
DOI 10.1007/978-1-4614-7750-1_20,
# Springer Science+Business Media New York 2015

575

mailto:annac@syr.edu
mailto:rachev@pstat.ucsb.edu
mailto:fabozzi321@aol.com
mailto:frank.fabozzi@edhec.edu


Abstract

In many financial models, such as those addressing value at risk and ruin

probabilities, the accuracy of the fitted loss distribution in the upper tail of the

loss data is crucial. In such situations, it is important to test the fitted loss

distribution for the goodness of fit in the upper quantiles, while giving lesser

importance to the fit in the low quantiles and the center of the distribution of the

data. Additionally, in many loss models the recorded data are left truncated with

the number of missing data unknown. We address this gap in literature by

proposing appropriate goodness-of-fit tests.

We derive the exact formulae for several goodness-of-fit statistics that

should be applied to loss models with left-truncated data where the fit of

a distribution in the right tail of the distribution is of central importance.

We apply the proposed tests to real financial losses, using a variety of

distributions fitted to operational loss and the natural catastrophe insurance

claims data, which are subject to the recording thresholds of $1 and $25 million,

respectively.

Keywords

Goodness-of-fit tests • Left-truncated data • Minimum recording threshold •

Loss distribution • Heavy-tailed data • Operational risk • Insurance • Ruin

probability • Value at risk • Anderson-Darling statistic • Kolmogorov-Smirnov

statistic

20.1 Introduction

In most loss models, the central attention is devoted to studying the distribu-

tional properties of the loss data. The shape of the dispersion of the data

determines the vital statistics such as the expected loss, variance, and ruin

probability, value at risk, or conditional value at risk where the shape in the

right tail is crucial. Parametric procedures for testing the goodness of fit

(GOF) include the likelihood ratio test and chi-squared test. A standard

semi-parametric procedure to test how well a hypothesized distribution fits

the data involves applying the in-sample GOF tests that provide a comparison

of the fitted distribution to the empirical distribution. These tests, referred to

as empirical distribution function (EDF) tests, include the Kolmogorov-

Smirnov test, Anderson-Darling test, and the Cramér-von Mises tests. Related

works on the discussion of these widely used tests include Anderson and

Darling (1952, 1954), D’Agostino and Stephens (1986), and Shorack and

Wellner (1986).

In many applications, the data set analyzed is incomplete, in the sense that the

observations are present in the loss database only if they exceed a predetermined
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threshold level. This problem is usually absent in risk models involving market

risk and credit risk. However, it is a common problem in operational risk or

insurance claims models. In operational risk, banks’ internal databases are subject

to a minimum recording threshold of roughly $6,000–$10,000, and external

databases usually collect operational losses starting from $1 million, BCBS

(2003). Similarly, in non-life insurance models, the thresholds are set at $5 million,

$25 million, or other levels. Consequently, in the analysis of operational losses,

recorded loss data are left truncated, and, as a result, it is inappropriate to employ

standard GOF tests.

GOF tests for truncated and censored data have been studied by Dufour and

Maag (1978), Gastaldi (1993), and Guilbaud (1998), among others. In this paper,

we derive the exact formulae for several GOF test statistics that should be applied

where there exist incomplete samples with an unknown number of missing data in

low quantiles and propose two new statistics to determine the goodness of fit in the

upper tail that can be used for loss models where the accuracy of the upper tail

estimate is of central concern.

The paper is organized as follows. In Sect. 20.2 we describe the problem of left-

truncated samples and explain the necessary adjustments that are required to the

GOF tests to make them applicable for the truncated samples. In Sect. 20.3 we

review the widely used test statistics for complete samples and derive the exact

formulae for the statistics to be used for left-truncated samples. We propose in

Sect. 20.4 two new EDF statistics to be used for the situations when the fit in the

upper tail is of the central concern. Application of the modified EDF tests to

operational loss data, obtained from Zurich IC2 FIRST Database, and the USA

natural catastrophe insurance claims data, obtained from Insurance Services Office

Inc. Property Claim Services, is presented in Sect. 20.5, with final remarks in

Sect. 20.6. Necessary derivations are provided in the Appendix.

20.2 Problem Setup

Suppose we have a left-truncated sample, with the data below a prespecified

threshold level H not recorded (not observable). The observable data sample

x ¼ {x1, x2, . . ., xn} has each data point at least as great as H and includes a total

of n observations. Let {X( j)}1� j�n be a vector of the order statistics, such

that X(1) � X(2) � . . . � X(n). The empirical distribution function of the sample is

defined as

Fn xð Þ :¼ # observations � x jð Þ
n

¼
0 x < x 1ð Þ
j

n
x jð Þ � x < x jþ1ð Þ, j ¼ 1, 2, . . . , n� 1

1 x � xn,

8>><
>>:

:

(20.1)

20 Composite Goodness-of-Fit Tests for Left-Truncated Loss Samples 577



Graphically, the empirical distribution function of an observed data sample is

represented as a step function with a jump of size 1/n occurring at each recorded

sample value. On the other hand, with left-truncated data which is a part of a larger

complete data set, the true size of jumps of the EDF at each value of the complete
data sample would be of size 1/nc, nc ¼ n + m rather than 1/n, where nc is the total
number of points of the complete data set and m is the unknown number of missing

points. In the GOF tests the null hypothesis states that the observed loss sample

belongs to a family of truncated distributions, with the parameter specified (simple

test) or unspecified (composite test).

We fit a continuous truncated distribution F to the data, given that the data

exceed or equal to H, and estimate the conditional parameters y with the maximum

likelihood (or an alternative method) by

ŷMLE ¼ argmax
y

log
Yn
k¼1

fy xkð Þ
1� Fy Hð Þ

 !
: (20.2)

Assuming that F is the true distribution, the estimated number of missing points

m̂ and the number of observed points n are related as1

m̂

n
¼ zH

1� zHð Þ (20.3)

resulting in

n̂c ¼ n
zH

1� zHð Þ þ n ¼ n

1� zHð Þ (20.4)

where zH :¼ F̂y Hð Þ is the estimated distribution evaluated at the truncation point.

Then, the estimated empirical distribution function F̂nc xð Þ of complete data

sample is

F̂nc xð Þ :¼ estimated # observations � x jð Þ
n̂c

, (20.5)

where the numerator refers to the total number of observations of the complete data

sample, not exceeding in magnitude the jth-order statistic of the incomplete

(observed) data sample such that X(1) � X(2) � . . . � X(n). By Eqs. 20.3 and 20.4,

Eq. 20.5 becomes

F̂nc xð Þ ¼ m̂ þ j

n= 1� zHð Þ ¼
nzH þ j 1� zHð Þ

n
¼ zH þ j

n
1� zHð Þ, j ¼ 1, 2, . . . , n:

1More accurately, m̂ should be estimated as m̂ ¼ n zH
1�zHð Þ

l m
, but this detail can be ignored for all

practical purposes.
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Rearranging terms leads to the fitted distribution function of the observed sample

of the following form:

F̂
�
y xð Þ ¼

F̂y xð Þ � F̂y Hð Þ
1� F̂y Hð Þ x � H

0 x < H,

8<
: (20.6)

so that Fy(X) � U[Fy(H), 1] and F
�
y Xð Þ � U 0; 1½ � under the null hypothesis that the

fitted distribution function is true. Therefore, the estimated empirical distribution

function of the observed part of the data, using Eq. 20.1, is represented by

Fn xð Þ 1� F̂y Hð Þ� �þ F̂y Hð Þ¼
F̂y Hð Þ x< x 1ð Þ
j

n
1� F̂y Hð Þ� �þ F̂y Hð Þ x jð Þ � x< x jþ1ð Þ, j¼ 1,2, . . . ,n�1

1 x� xn,

8>><
>>:

:

(20.7)

Figure 20.1 gives a visual illustration of the idea we just described. With

these modifications, the in-sample GOF tests can be applied to the left-truncated

samples.

In this paper we consider tests of a composite hypothesis that the

empirical distribution function of an observed incomplete left-truncated loss data

sample belongs to a family of hypothesized distributions (with parameters not

specified), i.e.,

H0 : Fn xð Þ 2 F�
y xð Þ vs: HA : Fn xð Þ =2 F�

y xð Þ: (20.8)

Under the null Eq. 20.8,F�
y Xð Þ � U 0; 1½ �, and the null is rejected if the p-value is

lower than the level a, such as a from 5 % to 10 %. Letting D be the

observed value of a GOF statistic (such as Kolmogorov-Smirnov or Anderson-

Darling) and d the critical value for a given level a, the p-value is computed as

p-value ¼ P(D� d). Since the distribution of the statistic is not parameter-free, one

way to compute the p-values and the critical values is by means of Monte Carlo

simulation, for each hypothesized fitted distribution (Ross 2001). Under the

procedure, the observed value D is computed. Then, for a given level a, the
following algorithm is applied:

1. Generate a large number of samples I (such as I ¼ 1,000) from the fitted

truncated distribution of size n (the number of observed data points), such that

these random variates are above or equal to H.
2. Fit a truncated distribution and estimate conditional parameters ŷ for each

sample i ¼ 1, 2, . . .I.
3. Estimate the GOF statistic value Di for each sample i ¼ 1, 2, . . .I.
4. Calculate p-value as the proportion of times the sample statistic values exceed

the observed value d of the original sample.

5. Reject H0 if the p-value is smaller than a.
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A p-value of, for example, 0.3, would mean that in 30 % of samples of the same

size simulated from the same distribution with the same parameter estimation

procedure applied, the test statistic value was higher than the one observed in the

original sample.

20.3 EDF Statistics for Left-Truncated Loss Samples

The EDF statistics are based on the vertical differences between the empirical

and fitted (truncated) distribution function. They are divided into two classes:

(1) the supremum class (such as Kolmogorov-Smirnov and Kuiper statistics) and

EDF missing
EDF observed
Fitted CDF missing 
Fitted CDF observed

1

0
H

x

F(x)

jump size 1/(n+m) 

EDF

fitted CDF = Fθ(x)

observedmissing

Fθ(H)

EDF observed
Fitted CDF observed

1

F(x)

H

observed
x

EDF

jump size 1/n 

fitted CDF = (Fθ(x)−Fθ(H)) / (1−Fθ(H))

Fig. 20.1 Illustration of the

empirical distribution

function for data with missing

observations below the

threshold H and the fitted

cumulative distribution

function
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(2) the quadratic class (such as Anderson-Darling and Cramér-von Mises statistics).

In this section, we derive the exact computing formulae for a number of EDF

test statistics, modified so that they can be applied to left-truncated loss samples.

For the left-truncated samples, Fy
�(X) denotes the null distribution function for

left-truncated sample values. The variable Fy
�(X) is distributed uniformly over the

[0, 1] interval. The variable Fy(X) is distributed uniformly over the [Fy(H), 1]
interval. We reserve some other notations: zH :¼ F̂y Hð Þ that was defined earlier and
zj :¼ F̂y x jð Þ

� �
for truncated samples. In this section we discuss the Kolmogorov-

Smirnov, Kuiper, Anderson-Darling, and the Cramér-von Mises statistics and use

an asterisk (*) to denote their left-truncated sample analog.

20.3.1 Supremum Class Statistics

20.3.1.1 Kolmogorov-Smirnov Statistic
A widely used supremum class statistic, the Kolmogorov-Smirnov (KS) statistic,
measures the absolute value of themaximum distance between the empirical and fitted

distribution function and puts equal weight on each observation. Let {X( j)}1<j<n be

the vector of the order statistics and X(1) < X(2) < . . . < X(n), such that strict

inequalities hold. Usually, such distance is the greatest around the median of the

sample. For the left-truncated data samples, the KS statistic is expressed as

KS� ¼ ffiffiffi
n

p
sup
x

Fn xð Þ � F̂
�
y xð Þ

���
���: (20.9)

The KS* statistic can be computed from

KSþ� ¼ ffiffiffi
n

p
sup
j

Fn x jð Þ
� �� F̂

�
y x jð Þ
� �n o

¼
ffiffiffi
n

p
1� zH

sup
j

zH þ j

n
1� zHð Þ � zj

� �
,

KS�� ¼ ffiffiffi
n

p
sup
j

F̂
�
y x jð Þ
� �� Fn x jð Þ

� �n o
¼

ffiffiffi
n

p
1� zH

sup
j

zj � zH þ j� 1

n
1� zHð Þ

� 	� �
,

and becomes

KS� ¼ max KSþ�, KS��f g: (20.10)

20.3.1.2 Kuiper Statistic
The KS statistic gives no indication of whether the maximum discrepancy between

Fn(x) and F̂
�
y xð Þ occurs when Fn(x) is above F̂

�
y xð Þ or when F̂�

y xð Þ is above Fn(x). The
Kuiper statistic (V) is closely related to the KS statistic. It measures the total sum of

the absolute values of the two largest vertical deviations of the fitted distribution

function from Fn(x), when Fn(x) is above F̂
�
y xð Þ and when F̂

�
y xð Þ is above Fn(x).

For left-truncated data samples, it is computed as

V� ¼ KSþ� þ KS��, (20.11)

with KS+* and KS�* defined in Sect. 20.1.1.
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20.3.1.3 Anderson-Darling Statistic
There are two variations of the Anderson-Darling (AD) statistic. Its

simplest, supremum class version is a variance-weighted KS statistic with

a weight of c F̂
�
y xð Þ


 �
¼ F̂

�
y xð Þ 1� F̂

�
y xð Þ


 �
 ��1=2

attached to each observation

in Eq. 20.9. (The second version will be discussed in the next section.) Under this

specification, the observations in the lower and upper tails of the truncated sample are

assigned a higher weight. Let {X( j)}1� j�n be the vector of the order statistics, such that

X(1) � X(2) � . . . � X(n). Then the AD statistic is defined for left-truncated samples as

AD� ¼ ffiffiffi
n

p
sup
x

Fn xð Þ � F̂
�
y xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F̂
�
y xð Þ 1� F̂

�
y xð Þ


 �r

��������

��������
: (20.12)

For left-truncated samples, the computing formula is derived from

ADþ� ¼ ffiffiffi
n

p
sup
j

Fn x jð Þ
� �� F̂

�
y x jð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̂
�
y x jð Þ
� �

1� F̂
�
y x jð Þ
� �
 �r

8>><
>>:

9>>=
>>;

¼ ffiffiffi
n

p
sup
j

zH þ j
n 1� zHð Þ� zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zj� zH
� �

1� zj
� �q

8><
>:

9>=
>;

AD�� ¼ ffiffiffi
n

p
sup
j

F̂
�
y x jð Þ
� ��Fn x jð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̂
�
y x jð Þ
� �

1� F̂
�
y x jð Þ
� �
 �r

,

8>><
>>:

9>>=
>>;

¼ ffiffiffi
n

p
sup
j

zj� zH� j� 1

n
1� zHð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zj� zH
� �

1� zj
� �q

8><
>:

9>=
>;

,

and becomes

AD� ¼ max ADþ�, AD��f g: (20.13)

20.3.2 Quadratic Class Statistics

The quadratic statistics for complete data samples are grouped under the Cramér-

von Mises family as

Q ¼ n

ð1

�1
Fn xð Þ � F̂y xð Þ� �2

c F̂y xð Þ� �
dF̂y xð Þ, (20.14)

in which the weight function c F̂y xð Þ� �
is assigned to give a certain weight

to different observations, depending on the purpose. For left-truncated

samples, we denote the Cramér-von Mises family as Q* and F̂y xð Þ is replaced by

F̂
�
y xð Þ:

Q� ¼ n

ð1

H

Fn xð Þ � F̂
�
y xð Þ


 �2
c F̂

�
y xð Þ


 �
dF̂

�
y xð Þ: (20.15)
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Depending on the form of the weighting function, the sample observations are

given a different weight. c F̂
�
y xð Þ


 �
¼ F̂

�
y xð Þ 1� F̂

�
y xð Þ


 �
 ��1

yields the quadratic

Anderson-Darling statistic and c F̂
�
y xð Þ


 �
¼ 1 yields the Cramér-von Mises statistic.

Derivation of the computing formulae makes use of Eq. 20.1 and involves the Proba-

bility Integral Transformation (PIT) technique. For left-truncated samples, this leads to

Q� ¼ n

ð1

0

Fn z�ð Þ � z�ð Þ2c z�ð Þdz� ¼ n

1� zH

ð1

zH

Fn z�ð Þ � z� zH
1� zH

� 	2

c
z� zH
1� zH

� 	
dz,

(20.16)

where Z� ¼ F̂
�
y Xð Þ ¼ Z�zH

1�zH
with F�

y Xð Þ � U 0; 1½ � under the null, and so Z ¼ F̂y Xð Þ
with Fy(X) � U[Fy(H), 1] under the null. Fn(Z

�) ¼ Fn(X) ¼ Fy
�(Fn(X)) is the

empirical distribution function of Z*. zH ¼ F̂y Hð Þ ¼ Fy F̂y Hð Þ� �
.

20.3.2.1 Anderson-Darling Statistic
The supremum version of the AD statistic was described in Sect. 20.1.3. Another,

more generally used, version of this statistic belongs to the quadratic class defined by

the Cramér-von Mises family (Eq. 20.15) with the weight function for left-truncated

samples of c F̂
�
y xð Þ


 �
¼ F̂

�
y xð Þ 1� F̂

�
y xð Þ


 �
 ��1

. Again, with this specification,

most weight is being put on the outer left and right quantiles of the distribution,

proportional to the appropriate tails. Let {X( j)}1� j�n be the vector of the order

statistics, such that X(1) � X(2) � . . . � X(n). The computing formula for the AD
statistic for left-truncated samples becomes (the derivation is given in Appendix)

AD2� ¼ � nþ 2n log 1� zHð Þ � 1

n

Xn
j¼1

1þ 2 n� jð Þð Þlog 1� zj
� �þ . . .

þ 1

n

Xn
j¼1

1� 2jð Þlog zj � zH
� �

:

(20.17)

20.3.3 Cramér-von Mises Statistic

Cramér-von Mises (denoted as W2) statistic belongs to the Cramér-von Mises

family (Eq. 20.15) with the weight function c F̂
�
y xð Þ


 �
¼ 1 . Let {X( j)}1� j�n

be the vector of the order statistics, such that X(1) � X(2) � . . . � X(n).

The computing formula for the statistic for left-truncated samples becomes (the

derivation is given in Appendix)

W2� ¼ n

3
þ nzH
1� zH

þ 1

n 1� zHð Þ
Xn
j¼1

1� 2jð Þzj þ 1

1� zHð Þ2
Xn
j¼1

zj � zH
� �2

: (20.18)
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20.4 “Upper Tail” Anderson-Darling Statistic

In practice, there are often cases when it is necessary to test whether

a distribution fits the data well in the upper tail and the fit in the lower tail

or around the median is of little or less importance. Examples include opera-

tional risk and insurance claims modelling, in which goodness of the fit in the

tails determines the value at risk, conditional value at risk, and ruin probabil-

ities. Given the Basel II Capital Accord’s recommendations, under the loss

distribution approach the operational risk capital charge is derived from the

value-at-risk measure, which requires an accurate estimate of the upper tail of

the loss distribution. Similarly, in insurance, the upper tail of the claim size

distribution is central to obtaining accurate estimates of ruin probability. For

this purpose, we introduce a statistic, which we refer to as the upper tail
Anderson-Darling statistic and denote by ADup. We propose two different

versions of the statistic.

20.4.1 Supremum Class “Upper Tail” Anderson-Darling Statistic

The first version of ADup belongs to the supremum class EDF statistics. For

complete data samples, each observation of the KS statistic is assigned a weight

of c F̂y xð Þ� � ¼ 1� F̂y xð Þ� �� ��1
. Under this specification, the observations in the

upper tail are assigned a higher weight than those in the lower tail. Let {X( j)}1� j�n

be the vector of the order statistics, such that X(1) � X(2) � . . . � X(n). Then we

define the ADup statistic for complete data samples as

ADup ¼
ffiffiffi
n

p
sup
x

Fn xð Þ � F̂y xð Þ
1� F̂y xð Þ

����
����: (20.19)

Denoting zj :¼ F̂y x jð Þ
� �

, the computing formula is derived from

ADþ
up ¼

ffiffiffi
n

p
sup
j

j
n � zj
1� zj

( )
,

AD�
up ¼

ffiffiffi
n

p
sup
j

zj � j� 1
n

1� zj

( )
,

and becomes

ADup ¼ max ADþ�
up , AD

��
up

n o
: (20.20)

For left-truncated samples, the counterpart of the ADup statistic can be similarly

computed using
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ADþ�
up ¼ ffiffiffi

n
p

sup
j

Fn x jð Þ
� �� F̂

�
y x jð Þ
� �

1� F̂
�
y x jð Þ
� �

( )
¼ ffiffiffi

n
p

sup
j

zH þ j
n 1� zHð Þ � zj
1� zj

( )
,

AD��
up ¼ ffiffiffi

n
p

sup
j

F̂
�
y x jð Þ
� �� Fn x jð Þ

� �

1� F̂
�
y x jð Þ
� �

( )
¼ ffiffiffi

n
p

sup
j

zj � zH � j� 1
n 1� zHð Þ

1� zj

( )
,

and becomes

AD�
up ¼ max ADþ�

up , AD
��
up

n o
: (20.21)

20.4.2 Quadratic Class “Upper Tail” Anderson-Darling Statistic

Another way to define the upper tail Anderson-Darling statistic is by an integral of

the Cramér-von Mises family (Eq. 20.14) with the weighting function2 of the form

c F̂y xð Þ� � ¼ 1� F̂y xð Þ� ��2
for complete samples and c F̂

�
y xð Þ


 �
¼ 1� F̂

�
y xð Þ


 ��2

for left-truncated samples. Such weighting function gives a higher weight

to the upper tail and a lower weight to the lower tail. We define this statistic

as ADup
2 .

Let {X( j)}1� j�nbe the vector of the order statistics, such thatX(1)�X(2)� . . .�X(n).

The ADup
2 statistic’s general form for complete samples can be expressed as

AD2
up ¼ n

ð1

H

Fn xð Þ � F̂y xð Þ� �2

1� F̂y xð Þ� �2 d F̂y xð Þ: (20.22)

For complete data samples Fy(X)� U[0, 1] under the null hypothesis. If we denote

zj :¼ F̂y x jð Þ
� �

, straightforward calculations lead to the following computing formula:

AD2
up ¼ 2

Xn
j¼1

log 1� zj
� �þ 1

n

Xn
j¼1

1þ 2 n� jð Þð Þ 1

1� zj
:

For incomplete left-truncated samples, Fy
*(X) is distributed U[Fy(H), 1]

under the null. Applying the PIT technique leads to the computing formula of the

2It has been shown that the weighting function c tð Þ ¼ 1� tð Þ�b
possesses nice asymptotic

properties only for b¼[0,2) (Deheuvels and Martynov 2003). For b¼2, which is the case consid-

ered in this chapter, the asymptotic distribution of the test statistic has infinite mean. This is indeed

a concern for very large samples (i.e., the asymptotic case n!1). Yet, because firms’ operational

loss data samples are typically relatively small, the asymptotic distribution of the test statistic

should not generate large concerns. Nevertheless, the results of the proposed quadratic class upper-

tail Anderson-Darling test should be treated with caution and with consideration of the properties

described above.
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Table 20.1 Description of EDF statistics for complete data samples

H0 : Fn(x) ∈ F(x) vs. HA : Fn(x) =2 Fy(x)

Notations: zj :¼ F̂y x jð Þ
� �

, j ¼ 1, 2, . . . , n

Statistic Description and computing formula

KS KS ¼ ffiffiffi
n

p
sup
x

Fn xð Þ � F̂y xð Þ�� ��

Computing formula:

KS ¼ ffiffiffi
n

p
max sup

j

j

n
� zj

n o
, sup

j
zj � j� 1

n

n o( )

V
V ¼ ffiffiffi

n
p

sup
x

Fn xð Þ � F̂y xð Þ� þ sup
x

F̂y xð Þ � Fn xð Þ� �

Computing formula:

V ¼ ffiffiffi
n

p
sup
j

j

n
� zj

n o
þ sup

j
zj � j� 1

n

n o !

AD

AD ¼ ffiffiffi
n

p
sup
x

Fn xð Þ � F̂y xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̂y xð Þ 1� F̂y xð Þ� �q

�������

�������
Computing formula:

AD ¼ ffiffiffi
n

p
max sup

j

j
n � zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zj 1� zj
� �q

8><
>:

9>=
>;
, sup

j

zj � j�1
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zj 1� zj
� �q

8><
>:

9>=
>;

8><
>:

9>=
>;

ADup
ADup ¼

ffiffiffi
n

p
sup
x

Fn xð Þ � F̂y xð Þ
1� F̂y xð Þ

����
����

Computing formula:

ADup ¼
ffiffiffi
n

p
max sup

j

j
n � zj
1� zj

� �
, sup

j

zj � j�1
n

1� zj

� �( )

AD2

AD2 ¼ n

ð1

�1

Fn xð Þ � F̂y xð Þ� �2
F̂y xð Þ 1� F̂y xð Þ� �dF̂y xð Þ

Computing formula:

AD2 ¼ �nþ 1

n

Xn

j¼1
1� 2jð Þlog zj � 1

n

Xn

j¼1
1þ 2 n� jð Þð Þ log 1� zj

� �

W2

W2 ¼ n

ð1

�1
Fn xð Þ � F̂y xð Þ� �2

dF̂y xð Þ

Computing formula:

W2 ¼ n

3
þ 1

n

Xn

j¼1
1� 2jð Þzj þ

Xn

j¼1
zj
2

ADup
2

AD2
up ¼ n

ð1

�1

Fn xð Þ � F̂y xð Þ� �2

1� F̂y xð Þ� �2 dF̂y xð Þ

Computing formula:

AD2
up ¼

1

n

Xn

j¼1
1þ 2 n� jð Þð Þ 1

1� zj
� �þ 2

Xn

j¼1
log 1� zj
� �
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Table 20.2 Description of EDF statistics for left-truncated (threshold ¼ H) data samples

H0 : Fn(x) ∈ Fy
*(x) vs. HA : Fn(x) =2 Fy

*(x), F�
y xð Þ :¼ Fy xð Þ�Fy Hð Þ

1�Fy Hð Þ

Notations: zj :¼ F̂y x jð Þ
� �

, zH ¼ F̂y Hð Þ, j ¼ 1, 2, . . . , n

Statistic Description and computing formula

KS* KS� ¼ ffiffiffi
n

p
sup
x

Fn xð Þ � F̂
�
y xð Þ

���
���

Computing formula:

KS� ¼
ffiffiffi
n

p
1� zH

max sup
j

(
zH þ j

n
1� zHð Þ � zj

n o
,

sup
j

zj � zH þ j� 1

n
1� zHð Þ

� 	� �)

V*
V� ¼ ffiffiffi

n
p

sup
x

Fn xð Þ � F̂
�
y xð Þ

n o
þ sup

x
F̂
�
y xð Þ � Fn xð Þ

n o� 	

Computing formula:

V� ¼
ffiffiffi
n

p
1� zH

sup
j

zH þ j

n
1� zHð Þ � zj

n o
þ sup

j
zj � zH þ j� 1

n
1� zHð Þ

� 	� � !

AD*

AD� ¼ ffiffiffi
n

p
sup
x

Fn xð Þ � F̂
�
y xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F̂
�
y xð Þ 1� F̂

�
y xð Þ


 �r

��������

��������
Computing formula:

AD� ¼ ffiffiffi
n

p
max sup

j

zH þ j
n 1� zHð Þ � zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zj � zH
� �

1� zj
� �q

8><
>:

9>=
>;
, sup

j

zj � zH � j�1
n 1� zHð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zj � zH
� �

1� zj
� �q

8><
>:

9>=
>;

8><
>:

9>=
>;

ADup
*

AD�
up ¼

ffiffiffi
n

p
sup
x

Fn xð Þ � F̂
�
y xð Þ

1� F̂
�
y xð Þ

�����

�����
Computing formula:

AD�
up ¼

ffiffiffi
n

p
max sup

j

zH þ j
n 1� zHð Þ � zj
1� zj

� �
, sup

j

zj � zH � j�1
n 1� zHð Þ

1� zj

( )( )

AD2*

AD2� ¼ n

ð1

H

Fn xð Þ � F̂
�
y xð Þ


 �2

F̂
�
y xð Þ 1� F̂

�
y xð Þ


 �dF̂�
y xð Þ

Computing formula:

AD2� ¼ �nþ 2nlog 1� zHð Þ � 1
n

Xn

j¼1
1þ 2 n� jð Þð Þlog 1� zj

� �þ
1
n

Xn

j¼1
1� 2jð Þlog zj � zH

� �

W2*

W2� ¼ n

ð1

H

Fn xð Þ � F̂
�
y xð Þ


 �2
dF̂

�
y xð Þ

Computing formula:

W2� ¼ n

3
þ n zH
1� zH

þ 1

n 1� zHð Þ
Xn
j¼1

1� 2jð Þzj þ 1

1� zHð Þ2
Xn
j¼1

zj � zH
� �2

(continued)
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ADup
2* statistic for left-truncated samples of the following form (the derivation is

given in Appendix):

AD2�
up ¼ �2n log 1� zHð Þ þ 2

Xn
j¼1

log 1� zj
� �þ 1� zH

n

Xn
j¼1

1þ 2 n� jð Þð Þ 1

1� zj
:

Tables 20.1 and 20.2 summarize the EDF statistics and their computing formulae

for complete and left-truncated samples.

20.5 Application to Loss Data

In this section we apply the GOF testing procedure to (1) operational loss data,

extracted from an external database, and (2) catastrophe insurance claims data. The

operational loss data set was obtained from Zurich IC Squared (IC2) FIRST Database

of Zurich IC Squared (IC2), an independent consulting subsidiary of Zurich Financial

Services Group. The external database is comprised of operational loss events

throughout the world. The original loss data cover losses in the period 1950–2002.

A few recorded data points were below $1 million in nominal value, so we excluded

them from the analysis, to make it more consistent with the conventional threshold for

external databases of $1 million. Furthermore, we excluded the observations before

1980 because of relatively few data points available (which is most likely due to poor

data recording practices). The final data set for the analysis covered losses for the time

period between 1980 and 2002. It consists of five types of losses: “relationship” (such

as events related to legal issues, negligence, and sales-related fraud), “human” (such

as events related to employee errors, physical injury, and internal fraud), “processes”

(such as events related to business errors, supervision, security, and transactions),

“technology” (such as events related to technology and computer failure and tele-

communications), and “external” (such as events related to natural and man-made

disasters and external fraud). The loss amounts have been adjusted for inflation using

the Consumer Price Index from the U.S. Department of Labor. The numbers of data

points of each type are n ¼ 849, 813, 325, 67, and 233, respectively.

Table 20.2 (continued)

H0 : Fn(x) ∈ Fy
*(x) vs. HA : Fn(x) =2 Fy

*(x), F�
y xð Þ :¼ Fy xð Þ�Fy Hð Þ

1�Fy Hð Þ

Notations: zj :¼ F̂y x jð Þ
� �

, zH ¼ F̂y Hð Þ, j ¼ 1, 2, . . . , n

Statistic Description and computing formula

ADup
2 *

AD2�
up ¼ n

ð1

H

Fn xð Þ � F̂
�
y xð Þ


 �2

1� F̂
�
y xð Þ


 �2 dF̂
�
y xð Þ

Computing formula:

AD2�
up ¼ �2n log 1� zHð Þ þ 2

Xn
j¼1

log 1� zj
� �þ 1� zH

n

Xn
j¼1

1þ 2 n� jð Þð Þ 1
1�zj
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Table 20.3 Goodness-of-fit tests for operational loss data

KS V AD ADup AD2 ADup
2 W2

Exponential

Relationship 11.0868 11.9973 1.3·107 1.2·1023 344.37 1.2·1014 50.5365

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

Human 14.0246 14.9145 2.4·106 1.1·1022 609.15 3.0·1012 80.3703

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

Processes 7.6043 8.4160 3.7·106 1.7·1022 167.61 6.6·105 22.5762

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

Technology 3.2160 3.7431 27.6434 1.4·106 27.8369 780.50 2.9487

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

External 6.5941 6.9881 4.4·106 2.0·1022 128.35 5.0·107 17.4226

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

Catastrophe 5.5543 5.9282 9.0·106 4.1·1022 72.2643 6.1·1013 13.1717

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

Lognormal

Relationship 0.8056 1.3341 2.6094 875.40 0.7554 4.6122 0.1012

[0.082] [0.138] [0.347] [0.593] [0.043] [0.401] [0.086]

Human 0.8758 1.5265 3.9829 1086.16 0.7505 4.5160 0.0804

[0.032] [0.039] [0.126] [0.462] [0.044] [0.408] [0.166]

Processes 0.6584 1.1262 2.0668 272.61 0.4624 4.0556 0.0603

[0.297] [0.345] [0.508] [0.768] [0.223] [0.367] [0.294]

Technology 1.1453 1.7896 2.8456 41.8359 1.3778 6.4213 0.2087

[<0.005] [0.005] [0.209] [0.994] [<0.005] [0.067] [<0.005]

External 0.6504 1.2144 2.1702 316.20 0.5816 2.5993 0.0745

[0.326] [0.266] [0.469] [0.459] [0.120] [0.589] [0.210]

Catastrophe 0.6854 1.1833 5.3860 1.1·104 0.7044 27.4651 0.0912

[0.243] [0.307] [0.064] [0.053] [0.068] [0.023] [0.111]

Weibull

Relationship 0.5553 1.0821 3.8703 2.7·104 0.7073 13.8191 0.0716

[0.625] [0.514] [0.138] [0.080] [0.072] [0.081] [0.249]

Human 0.8065 1.5439 4.3544 3.2·104 0.7908 8.6610 0.0823

[0.093] [0.051] [0.095] [0.068] [0.053] [0.112] [0.176]

Processes 0.6110 1.0620 1.7210 2200.75 0.2069 2.2340 0.0338

[0.455] [0.532] [0.766] [0.192] [0.875] [0.758] [0.755]

Technology 1.0922 1.9004 2.6821 52.5269 1.4536 4.8723 0.2281

[<0.005] [<0.005] [0.216] [0.944] [<0.005] [0.087] [<0.005]

External 0.4752 0.9498 2.4314 4382.68 0.3470 5.3662 0.0337

[0.852] [0.726] [0.384] [0.108] [0.519] [0.164] [0.431]

Catastrophe 0.8180 1.5438 5.6345 1.5·104 1.3975 15.8416 0.1965

[0.096] [0.041] [0.043] [0.028] [0.007] [0.025] [0.006]

Pareto (GPD)

Relationship 1.4797 2.6084 3.5954 374.68 3.7165 22.1277 0.5209

[<0.005] [<0.005] [0.172] [>0.995] [<0.005] [0.048] [<0.005]

(continued)
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The insurance claims data set covers claims resulting from natural catastrophe

events occurred in the United States over the time period from 1990 to 1996. It was

obtained from Insurance Services Office Inc. Property Claim Services (PCS). The

data set includes 222 losses. The observations are greater than $25 million in

nominal value.

Left-truncated distributions of four types were fitted to each of the data set:

exponential, lognormal,Weibull, and Pareto (GPD). Table 20.3 presents the observed

statistic values and the p-values for the six data sets (five operational losses and

insurance claims), obtained with the testing procedure described in Sect. 20.2.

The results reported in Table 20.3 suggest that fitting heavier-tailed distribu-

tions, such as Pareto and Weibull, results in lower values of the GOF statistics,

which leads to acceptance of the null for practically all loss types and all

criteria of the goodness of fit, viewed from the high p-values. Since the analysis

of operational losses deals with estimating the operational value at risk

(VaR), it is reasonable to determine the ultimate best fit on the basis of the ADup

and ADup
2 statistics, introduced in this paper. As can be seen from Table 20.3, these

proposed measures suggest a much better fit of the heavier-tailed distributions.

Moreover, for the Pareto distribution, while the statistics that focus on the center of

the data (Kolmogorov-Smirnov, Kuiper, Cramér-von Mises) do not show a good

fit, the ADup and ADup
2 statistics indicate that the fit in the upper tail is very good.

It should be noted that the Pareto and Weibull distributions very often suggest

a superior fit in the upper tail to the lognormal distribution. Yet it is the lognormal

distribution that was suggested in 2001 by the Basel Committee (BCBS (2001)).

20.6 Conclusions

In this paper we present a technique for modifying the existing goodness-of-fit test

statistics so that they can be applied to loss models in which the available data set is

Table 20.3 (continued)

KS V AD ADup AD2 ADup
2 W2

Human 1.4022 2.3920 3.6431 374.68 2.7839 23.7015 0.3669

[<0.005] [<0.005] [0.167] [>0.995] [<0.005] [0.051] [<0.005]

Processes 1.0042 1.9189 4.0380 148.24 2.6022 13.1082 0.3329

[<0.005] [<0.005] [0.104] [>0.995] [<0.005] [0.087] [<0.005]

Technology 1.2202 1.8390 3.0843 33.4298 1.6182 8.8484 0.2408

[<0.005] [<0.005] [0.177] [>0.995] [<0.005] [0.067] [<0.005]

External 0.9708 1.8814 2.7742 151.94 1.7091 8.6771 0.2431

[0.009] [0.005] [0.284] [0.949] [<0.005] [0.106] [<0.005]

Catastrophe 0.4841 0.8671 2.4299 1277.28 0.3528 4.3053 0.0390

[0.799] [0.837] [0.369] [0.239] [0.490] [0.235] [0.645]

This table reports goodness-of-fit test statistic values for operational loss data of various risk types.

p-values are reported in square brackets and were obtained via 1,000 Monte Carlo simulations
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incomplete and is truncated from below. Such left truncation is often present in loss

data when the data are being recorded starting from a fixed amount and the data

below are not recorded at all. Exact computing formulae for the Kolmogorov-

Smirnov, Kuiper, Anderson-Darling, and Cramér-von Mises for the left-truncated

samples are presented.

In risk management, it is often vital to have a good fit of a hypothesized

distribution in the upper tail of the loss data. It is important in loss models that

deal with value at risk, conditional value at risk, and ruin probability. We suggest

using two other versions of the Anderson-Darling statistic (which we refer to as

the upper tail Anderson-Darling statistic) in which the weighting function is

proportional to the weight of only the upper tail of the distribution. Supremum

and quadratic versions of the statistic are proposed. Such statistic is convenient to

use when it is necessary to examine the goodness of fit of a distribution in the right

tail of the data, while the fit in the left tail is unimportant.

The technique is applied to check the goodness of fit of a number of

distributions using operational loss data and catastrophe insurance claims data

sets. From the empirical analysis we conclude that heavier-tailed distributions better

fit the data than Lognormal or thinner-tailed distributions in many instances. In

particular, the conclusion is strongly supported by the upper tail Anderson-Darling
tests.

Appendix

Derivation of AD2* Computing Formula

By the PIT technique

AD2� ¼ n

ðþ1

H

Fn xð Þ � F̂
�
y xð Þ


 �2

F̂
�
y xð Þ 1� F̂

�
y xð Þ


 � d F̂
�
y xð Þ

PIT n̂c
ð1

zH

Fn z�ð Þ 1� zHð Þ þ zH � zð Þ2
z� zHð Þ 1� zð Þ dz,

where in the original integral Fn(Z
�) ¼ Fy

�(Fn(X)) ¼ Fn(X) is the empirical

distribution function of Z� :¼ F̂
�
y Xð Þ ¼ F�

y F̂
�
y Xð Þ


 �
so that F�

y �ð Þ � U 0; 1½ � .
Changing variable and using Eq. 20.7, the integral becomes expressed in terms of

zH :¼ F̂y Hð Þ ¼ Fy F̂y Hð Þ� �
and Z :¼ F̂y Xð Þ ¼ Fy F̂y Xð Þ� �

so that Fy(·) � U[zH,1].

We estimate n̂c as n
1�zH

.

Using Eq. 20.7, the computing formula is expressed in terms of zj :¼ F̂y x jð Þ
� � ¼

Fy F̂y x jð Þ
� �� �

, j ¼ 1, 2, . . ., n, as
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1

n̂c
AD2� ¼

ðz1
zH

z� zHð Þ2
z� zHð Þ 1� zð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

dzþ
Xn�1

j¼1

ðzjþ1

zj

j
n 1� zHð Þþ zH� z
� �2

z� zHð Þ 1� zð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B

dzþ
ð1
zn

1� zð Þ2
z� zHð Þ 1� zð Þdz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C

:

Separately solving for A, B, and C, we obtain

A ¼ zH � z1 þ 1� zHð Þ log 1� zHð Þ � log 1� z1ð Þð Þ;

B ¼ z1 � zn þ 1� zH
n2

Xn�1

j¼1

n� jð Þ2 log 1� zj
� �� log 1� zjþ1

� �� �� . . .

� 2
1� zH
n2

Xn�1

j¼1

j2 log zj � zH
� �� log zjþ1 � zH

� �� �

¼ z1 � zn þ 1� zHð Þlog 1� z1ð Þ � 1� zH
n2

Xn
j¼1

1þ 2 n� jð Þð Þ log 1� zj
� �þ . . .

þ 1� zHð Þlog zn � zHð Þ þ 1� zH
n2

Xn
j¼1

1� 2jð Þlog zj � zH
� �

;

C ¼ zn � 1þ 1� zHð Þ log 1� zHð Þ � log zn � zHð Þð Þ:

Summing the terms A, B, and C, multiplying by n̂c, and simplifying yields the

final computing formula:

AD2� ¼ � nþ 2n log 1� zHð Þ � 1

n

Xn
j¼1

1þ 2 n� jð Þð Þ log 1� zj
� �þ . . .

þ 1

n

Xn
j¼1

1� 2jð Þlog zj � zH
� �

:

Derivation of W2* Computing Formula

By the PIT technique

W2� ¼ n

ðþ1

H

Fn xð Þ � F̂
�
y xð Þ


 �2
d F̂

�
y xð Þ

PIT n̂c
ð1

zH

Fn z�ð Þ 1� zHð Þ þ zH � zð Þ2
1� zHð Þ2 dz,
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where in the original integral Fn(Z
�) ¼ Fy

�(Fn(X)) ¼ Fn(X) is the empirical

distribution function of Z� :¼ F̂
�
y Xð Þ ¼ F�

y F̂
�
y Xð Þ


 �
so that F�

y �ð Þ � U 0; 1½ � .
Changing variable and using Eq. 20.7, the integral becomes expressed

in terms of zH :¼ F̂y Hð Þ ¼ Fy F̂y Hð Þ� �
and Z :¼ F̂y Xð Þ ¼ Fy F̂y Xð Þ� �

so that

Fy(·) � U[Fy(H), 1]. We estimate n̂c as n
1�zH

.

Using Eq. 20.7, the computing formula is expressed in terms of zj :¼ F̂y x jð Þ
� � ¼

Fy F̂y x jð Þ
� �� �

, j ¼ 1, 2, . . ., n, as

1� zHð Þ2
n̂c

W2� ¼
ðz1
zH

zH � zð Þ2dz
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A

þ
Xn�1

j¼1

ðzjþ1

zj

j

n
1� zHð Þ þ zH � z

� 	2
dz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

þ
ð1
zn

1� zð Þ2dz
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

C

:

Separately solving for A, B, and C, we obtain

A ¼ � zH
3

3
þ zH

2z1 � zHz1
2 þ z1

3

3
;

B¼ zn
3

3
� z1

3

3
þ zHz1

2� zHzn
2þ zH

2z1þ zH
2znþ . . .

þ 1� zHð Þ2
n2

Xn�1

j¼1

j2 zjþ1� zj
� �þ1� zH

n

Xn�1

j¼1

j zj
2� zjþ1

2
� �þ2zH

1� zH
n

Xn�1

j¼1

j zjþ1� zj
� �

¼ zn
3

3
� z1

3

3
þ zHz1

2� zHzn
2� zH

2z1þ zH
2znþ 1� zHð Þ2

n2
n2znþ

Xn
j¼1

1�2jð Þzj
 !

þ . . .

þ1� zH
n

Xn
j¼1

zj
2�nzn

2

 !
þ2zH

1� zH
n

nzn�
Xn
j¼1

zj

 !

¼ 1� zHð Þznþ zH 1� zHð Þzn� 1� zHð Þzn2þ 1� zHð Þ2
n2

Xn
j¼1

1�2jð Þzjþ . . .

þ1� zH
n

Xn
j¼1

zj
2�2zH

1� zH
n

Xn
j¼1

zj;

C ¼ 1

3
þ zn

2 � zn � zn
3

3
:

Summing the terms A, B, and C, multiplying by n̂c

1�zHð Þ2, and simplifying yields

the final computing formula:

W2� ¼ n

3
þ nzH
1� zH

þ 1

n 1� zHð Þ
Xn
j¼1

1� 2jð Þzj þ 1

1� zHð Þ2
Xn
j¼1

zj � zH
� �2

:
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Derivation of ADup
2 Computing Formula

By the PIT technique

AD2
up ¼ n

ðþ1

�1

Fn xð Þ � F̂y xð Þ� �2

1� F̂y xð Þ� �2 d F̂y xð Þ PIT n

ð1

0

Fn zð Þ � zð Þ2
1� zð Þ2 dz,

where Fn(Z) ¼ Fy(Fn(X)) ¼ Fn(X) is the empirical distribution function of Z ¼ F̂y Xð Þ
¼ F F̂y Xð Þ� �

so that Fy(·) � U[0,1].

Using Eq. 20.1, the computing formula is expressed in terms of zj :¼ F̂y x jð Þ
� � ¼

F F̂y x jð Þ
� �� �

, j ¼ 1, 2, . . ., n, as

1

n
AD2

up ¼
ðz1
0

z2

1� zð Þ2 dz

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
A

þ
Xn�1

j¼1

ðzjþ1

zj

j
n � z
� �2
1� zð Þ2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

dzþ
ð1
zn

1� zð Þ2
1� zð Þ2 dz

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
C

:

Separately solving for A, B, and C, we obtain

A ¼ z1 � 1þ 1

1� z1
þ 2log 1� z1ð Þ;

B¼ zn� z1� 1

n2

Xn�1

j¼1

n� jð Þ2 1

1� zj
� 1

1� zjþ1

� 	
� . . .

�2
1

n

Xn�1

j¼1

n� jð Þ log 1� zj
� �� log 1� zjþ1

� �� �

¼ zn� z1� 1

1� z1
þ 1

n2

Xn
j¼1

1þ2 n� jð Þð Þ 1

1� zj
�2log 1� z1ð Þþ2

1

n

Xn
j¼1

log 1� zj
� �

;

C ¼ 1� zn:

Summing the terms A, B, and C, multiplying by n, and simplifying yields the

final computing formula:

AD2
up ¼ 2

Xn
j¼1

log 1� zj
� �þ 1

n

Xn
j¼1

1þ 2 n� jð Þð Þ 1

1� zj
:
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Derivation of ADup
2* Computing Formula

By the PIT technique

AD2�
up ¼ n

ðþ1

H

Fn xð Þ � F̂
�
y xð Þ


 �2

1� F̂
�
y xð Þ


 �2 dF̂
�
y xð Þ PIT n̂c

ð1

zH

Fn z�ð Þ 1� zHð Þ þ zH � zð Þ2
1� zð Þ2 dz,

where in the original integral Fn(Z
�) ¼ Fy

�(Fn(X)) ¼ Fn(X) is the empirical

distribution function of Z� :¼ F̂
�
y Xð Þ ¼ F� F̂

�
y Xð Þ


 �
so that F�

y �ð Þ � U 0; 1½ � .
Changing variable and using Eq. 20.7, the integral becomes expressed in terms of

zH :¼ F̂y Hð Þ ¼ F F̂y Hð Þ� �
and Z :¼ F̂y Xð Þ ¼ Fy F̂y Xð Þ� �

so that Fy(·) � U[zH,1].

We estimate n̂c as n
1�zH

.

Using Eq. 20.7, the computing formula is expressed in terms of zj :¼ F̂y x jð Þ
� � ¼

F F̂y x jð Þ
� �� �

, j ¼ 1, 2, . . ., n as

1

n̂c
AD2�

up ¼
ðz1
zH

z� zHð Þ2
1� zð Þ2 dz

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
A

þ
Xn�1

j¼1

ðzjþ1

zj

j
n 1� zHð Þþ zH� z
� �2

1� zð Þ2 dz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

þ
ð1
zn

1� zð Þ2
1� zð Þ2 dz

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
C

:

Separately solving for A, B and C, we obtain

A ¼ z1 � zH � 1� zHð Þ þ 1� zHð Þ2 1

1� z1
� 2 1� zHð Þlog 1� zHð Þ

þ 2 1� zHð Þlog 1� z1ð Þ;

B ¼ zn � z1 � 1� zHð Þ2
n2

Xn�1

j¼1

n� jð Þ2 1

1� zj
� 1

1� zjþ1

� 	
� . . .

� 2
1� zH

n

Xn�1

j¼1

n� jð Þ log 1� zj
� �� log 1� zjþ1

� �� �

¼ zn � z1 � 1� zHð Þ2 1

1� z1
þ 1� zHð Þ2

n2

Xn
j¼1

1þ 2 n� jð Þð Þ 1

1� zj
� . . .

� 2 1� zHð Þlog 1� z1ð Þ þ 2
1� zH

n

Xn
j¼1

log 1� zj
� �

;

C ¼ 1� zn:
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Summing the terms A, B, and C, multiplying by n̂c, and simplifying yields the

final computing formula:

AD2�
up ¼ �2nlog 1� zHð Þ þ 2

Xn
j¼1

log 1� zj
� �þ 1� zH

n

Xn
j¼1

1þ 2 n� jð Þð Þ 1

1� zj
:
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Abstract

The effect of a merger on credit rating is investigated by testing the significance

of change in a firm’s rank based on comprehensive performance score and

synergistic gains. We extract principle component factors from a set of financial

ratios. Percentage of variability explained and factor loadings are adjusted to get

a modified average weight for each financial ratio. This weight is multiplied by

the standardized Z value of the variable, and summed a set of variables to get

a firm’s performance score. Performance scores are used to rank the firm.

Statistical significance of difference in pre- and post-merger rank is tested

using the Wilcoxon sign rank (double end).

We studied the merger of financial firms after the enactment of Taiwan’s

Merger Law for Financial Institution in November 2000 to examine synergies

produced by merger. Synergistic gains affect corporate credit ratings. After

taking into account the large Taiwan market decline from 1999 to 2000, test

results show there is no significant operating, market, and financial synergy

produced by the merger firms. Most likely explanations for the insignificant

rank changes are short observation period and the lack of an adequate sample in

this investigation.

We identify and define variables for merger synergy analysis followed

by principal component factor analysis, variability percentage adjustment,

and performance score calculation. Finally, Wilcoxon sign rank test is used

for hypothesis testing. Reader is well referred to the appendix for details.

Keywords

Corporate merger • Financial ratios • Synergy • Economies of scale • Credit

rating • Variability percentage adjustment • Principle component factors • Firm’s

performance score • Standardized Z • Wilcoxon rank test

21.1 Introduction

Corporate credit rating helps in determining the soundness of a financial system.

It gives lenders and venture capitalists confidence in making direct investment

in domestic and foreign countries. Credit rating determines the probability that

the corporation will be able to meet its obligations. There are a number of credit

rating agencies worldwide.1 The top three agencies that deal in credit ratings are

Moody’s, Standard & Poor’s, and Fitch IBCA. Independent objective assessments

of the credit worthiness of companies help investors decide the riskiness of

the security issued by the firm. Credit rating institutions base their subjective

1World leading credit rating agencies are Moody’s Investors Service, Standard & Poor’s Corp,

Fitch Investors Service, Duff & Phelps, Japan Bond Research Institution, Nippon Investors

Service, Japan Credit Rating Agency, China Credit Rating Agency, and Taiwan New Economy

Newspaper (Weston and Mansinghka 1971; Williamson 1981).
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rating judgments by the experiences and expertise of their analyst teams.

Their public confidences come from their reputation. Yet different analysts or

different credit rating institutions may give different meanings or powers to

the likelihood of the same incident. Credit rating agencies often revise their

ratings after a corporate event. This research deals with the event of corporate

mergers.

A merger is the quickest method of corporate growth. At the end of the

twentieth century, there was an upsurge of mergers in Europe, the USA, and

Asia. The same was true for Taiwan. Mergers occurred in various industries of

Taiwan, with financial industry the most dominant. For example, the merger of

Bank of Taiwan, Local Bank, and the Central Credit Bureau was the first large

merger initiated by the government. The institution resulting from the merger

ranked in the top 70 in the world. Yuan Dao, the number one corporation in the

security industry, captured 10 % of the Taiwanese brokerage business after its

acquisition of Jing Hua. The Merger Law for Financial Institutions passed in

November 2000 and permitted the merger of domestic financial institutions, such

as banks, insurance companies, and security companies, and allowed for the

establishment of assets Management Corporation. After a merger, operating

income, market share, revenues, and total asset increase. But does a merger help

to improve corporate quality and competence? When does merger synergy mani-

fest? What are its merits? There are a number of questions that need discussion and

analysis. The scope of this paper is limited. We study the effect of mergers on credit

rating by testing the significance of change in firm’s rank based on comprehensive

performance score and synergistic gains.

21.2 Merger Literature

Firms merge with the stated intent of shareholders’ wealth maximization. Value

maximization is achieved by increased profit, reduced risk, or both. Theories

that posit wealth maximization are efficiency theory (synergy), information and

signaling theory, and tax advantage.2 Non-value maximization concerns with

agency theory. In this research we focus primarily on efficiency theory, also called

synergy theory. Synergy theory implies three components: operation synergy,

market synergy, and financial synergy. Operation synergy is produced due to

economies of scale, operating reduction, and sharing of management expertise.

Under market synergy, a merger reduces market competitors and increases market

concentration leading to a monopolization or increased market share. The increased

market share produces superior profits via pricing strategy or corporate collusion.

The merging corporation increases its market share so as to influence product price

2Theory of merger is discussed in Brigham and Daves (2007), Copeland and Weston (1979),

Gardner (1996), and Rhodes (1983). Tax incentive is discussed in Weston and Chung (1983).
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and quantity and to achieve market synergy. However, corporations in pursuit of

market synergy must abide by the fair trade law. Seth (1990) said it was easy to

achieve market synergy via horizontal merger instead of pricing strategy or

corporate collusion. Financial synergy reduces the systematic risk and lowers the

capital cost. There is extensive literature of merger-related studies. The following is

a selected sample.

Ansoff et al. (1971) used a questionnaire to collect 12 financial variables:

sales, retained earnings, total asset, return on capital, etc. Their research

showed that sales management, technology, and R&D produced operating

synergy. Weston and Mansinghka (1971) estimated management energy with

corporate growth using variables: total asset, sales, net profit, retained earnings,

and stock price. Their research indicates that a conglomerate merger gives the

corporation a higher growth rate than the growth of other corporations within

the same industry. Beattie (1980) used nonsystem risk and stock return to

estimate merger synergy. His finding is that after a merger, nonsystem risk

declines, yet corporate stock returns do not increase. Hoshino (1982) estimated

corporate synergy with seven financial data: the ratio of net worth and total

liabilities, ratio between net worth and total assets, liquidity ratio, ratio of

interest rate to debt, turnover ratio, ratio of net profit and total liabilities, and

ratio of net profit to total assets. His finding is that a merged corporation has

increased liquidity, but lower profitability and stability. Muller (1985) used

market share percentage to estimate the effect of merger. His finding is that

there is no significant change in market share; some companies even lose

market share after merger. Sigh and Montgomery (1987) used stock returns

to discuss related and non-related merger synergy. Their finding is that

a related merger has a higher return. Healy et al. (1992) used the ratio between

before-tax capital flow and total assets to estimate merger synergy. Their

finding is that the return on operating cash flow improves significantly.

Williamson (1981) stated that vertical merger could reduce the communication

cost between upper and lower stream corporations, cost of product quality

check, storage cost, and delivery cost. Yet Scherer (1980) thought a different

market configuration could impact the gains due to economies of scale.

The more complete the market competition is, the less is the gain due to

economies of scale. On the other hand, Rhodes (1983) thought that the

resources configuration within a corporation is complicated and

bureaucratic. Hence, the internal capital market is less efficient than the

external capital market. In support of financial synergy, Fluck and Lynch

(1999) pointed out that after a merger, a corporation could have greater

investment opportunities at lower cost than before. Lewellen (1971) suggested

the merger could reduce the capital cost. Levy and Sarnat (1970) thought

stockholders could achieve risk reduction via portfolio diversification at

a lower cost than that of the merger. Higgins and Schall (1975) pointed out

the coinsurance effect and hence a reduced cost of bankruptcy. Hence, there is

a transfer of wealth from creditors to stockholders from creditors, as stock-

holders could reissue bonds with a lower interest rate.
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21.3 Empirical Analysis

The effect of a merger on credit rating is investigated by (1) testing the significance

of change in a firm’s rank based on a comprehensive performance score and

(2) examining post-merger synergy. Synergistic gains from a merger could be in

the form of operating (management) synergy, market synergy, and/or financial

synergy. Data for this research cover January 1999 to December 2000. Premerger

analysis covers year 1999, and post-merger analysis covers year 2000.3 Definitions

of financial ratios are presented in Appendix 1. The methodology of factor extrac-

tion and weight assignment is discussed in Appendix 2. Since the analyses are based

on ranks, the usual “t-test” method is unsuitable to examine the significance of

change in operating, financial, or market performance pre- and post-merger. Hence,

we use the Wilcoxon Sign Rank Test that checks whether two sets of ranks, pre- and

post-merger, come from the same sample or two samples (Appendix 3).4

In Table 21.1, we list five acquiring financial institutions and the acquired institu-

tions. The footnote of Table 21.1 lists 13 non-merger firms. These 13 firms are

included in the analysis for comparison.

21.3.1 Comprehensive Performance Score

Principle component factor analysis was used to extract common factors with

factor loading greater than 1. Using 12-month financial ratio covering 1999,

we produced five factors (Table 21.2, Panel A). The variability explained by five

extracted factors is 24.458 %, 23.764 %, 13.268 %, 12 %, and 11.031 %.

33-month and 6-month analyses were performed but are omitted as these did not add additional

foresight.
4References for Statistical and Econometric issues are Johnson and Wichern (2007) and

Woolridge (2009).

Table 21.1 Merged security firms

Merged security firms Survived corporation Date of announcement Date of merger

YuanDa, JinHua, Dafa YuanDaJinHua Nov. 29, 1999 July 01, 2000

YuanFu, JiaHe, YongSheng YuanFu Jan. 28, 1999 July 24, 2000

JianHong, WanSheng JianHong Feb. 11, 2000 Aug. 28, 2000

BaoLai, DaShun, ShiTai,

HuaYu

BaoLai Feb. 19, 2000 Sep. 9, 2000

FuBang, HuangQiu,

ZhongRi, JinShan,

HuaXin, ShiLing, KuaiLe

FuBang Feb. 21, 2000 Sep. 9, 2000

13 non-merger firms used to test the model are as follows: TaiYu, DaHua, QunYi, ZhongXin,

YongChang, TaiZhen, JinDing, RiShen, DaXin, KangHe, YaZhou, XinBao, and TongYi
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The percentage of variability explained was adjusted to make the total variability

explained equal to 100. The adjusted percentage of variability explained by five

extracted factors is 28.937 %, 28.116 %, 15.698 %, 14.198 %, and 13.051 %. Using

12-month financial ratio covering 2000, six extracted common factors with factor

loading greater than 1 are presented in Table 21.2 (Panel B). The adjusted percent-

age of variability explained by six extracted factors is 24.746 %, 22.407 %,

17.435 %, 13.857 %, 11.724 %, and 9.832 %. The adjusted variability percentage

is multiplied by factor loading and summed over all variables to get the total

loading for a variable. Then factor loadings are adjusted such that total factor

loadings add to 100 (Eq. 21.2). Initial and adjusted weights for each variable are

presented in Table 21.3. Finally, the values of adjusted weights for 1999 and 2000

are averaged and sign modified to reflect a positive or negative variable. It is

presented in the last column of Table 21.3 and used to calculate comprehensive

performance score. The modified average weight for each variable is multiplied by

the standardized Z value of the variable and summed over all the variables to get

a firm’s performance score and comprehensive rank (Table 21.4). The premerger

comprehensive ranks of the five merger firms and 13 non-merger firms are listed in

Table 21.4, Panel A. Panel B of Table 21.4 presents comprehensive post-merger

comprehensive ranks. Rank changes in Table 21.4 can be summarized as JianHong

dropped from rank 1 to 6, YuanDaJinHua rose from rank 3 to 2, YuanFu

rose from rank 7 to 1, FuBang dropped from rank 2 to 4, and BaoLai rose from

rank 16 to 8. The test of significance of the comprehensive rank differences, for

Table 21.2 Extracted factors and explained variability

Factor Factor loading

Explained variability

Percentage Cumulative percentage Adjusted percentage

Panel A: December 1999

1 4.647 24.458 24.458 28.937

2 4.515 23.764 48.222 28.116

3 2.521 13.268 61.49 15.698

4 2.28 12 73.49 14.198

5 2.096 11.031 84.521 13.051

Total 16.059 84.521 84.521 100

Panel B: December 2000

1 4.245 22.34 22.34 24.746

2 3.844 20.229 42.569 22.407

3 2.991 15.74 58.309 17.435

4 2.377 12.51 70.819 13.857

5 2.011 10.584 81.403 11.724

6 1.686 8.876 90.279 9.832

Total 17.154 90.279 90.279 100.000

Principle component factors. See Appendix 2

602 S. Srivastava and K. Hung



merger and non-merger firms, was conducted using the Wilcoxon sign rank (double

end) test discussed in Appendix 3. Panel A of Table 21.5 indicates that the merger

firm’s comprehensive rank difference is statistically insignificant. Panel B of

Table 21.5 indicates that the non-merger firm’s comprehensive rank difference is

also statistically insignificant. Plausible explanations for the insignificant rank

changes are a short observation period, the lack of adequate samples, and the

sharp decline in JianHong’s performance score. Another plausible reason may be

that some security firms (such as YuanDaJinHua and YuanFu) have already

achieved high premerger comprehensive performance scores, and any improvement

in post-merger performance did not make a significant difference.

21.3.2 Test of Merger Synergy

We use 12-month data to examine operating synergy, market synergy, and financial

synergy. If operating synergy exists, then operating cost ratio will be reduced

Table 21.3 Adjusted variable weights for comprehensive performance analysis

December 1999 December 2000

Item Variable

Initial

weight

Adjusted

weight

Initial

weight

Adjusted

weight

Average

weighta

Financial structure Xi1 �0.254 �9.010 �0.192 �4.404 6.707

Xi2 0.263 9.329 �0.025 �0.583 4.373

Solvency Xi3 0.388 13.741 0.321 7.358 10.549

Xi4 0.408 14.455 0.323 7.405 10.930

Asset utilization Xi5 0.127 4.489 0.310 7.107 5.798

Xi6 �0.214 �7.575 0.171 3.925 1.825

Profitability Xi7 0.333 11.806 0.396 9.077 10.442

Xi8 0.324 11.472 0.380 8.704 10.088

Xi9 0.327 11.573 0.366 8.399 9.986

Xi10 0.302 10.706 0.372 8.525 9.616

Cash flow Xi11 �0.021 �0.732 0.325 7.459 3.363

Xi12 �0.042 �1.487 0.174 3.977 1.245

Xi13 0.035 1.232 0.207 4.743 2.988

Growth Xi14 0.194 6.891 0.282 6.456 6.674

Xi15 0.214 7.575 0.193 4.434 6.005

Size Xi16 0.185 6.559 0.255 5.833 6.196

Xi17 0.265 9.398 0.273 6.263 7.831

Industry specific Xi18 0.289 10.229 0.201 4.604 7.417

Xi19 �0.301 �10.654 0.031 0.717 4.969

Total 2.821 100.000 4.363 100.000

Variable definitions are in Appendix 1
aSign of average variable weights is changed to reflect a positive or negative variable
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significantly; if market synergy exists, then two other ratios (ratio of operating

income to total assets and market share change rate) will increase significantly; and

existence of financial synergy is indicated by the decline in variability of operating

(business) risk.

Some financial variables of security firms are greatly influenced by market

conditions. The operating income, in particular, is greatly influenced by a bull or

bear market. In years 1999 and 2000, the Taiwan stock market fell from over 10,000

points to over 5,000 points. In order to reduce the market impact on variables,

we adjust the operating cost to operating income ratio and the operating income to

total asset ratio. The operating cost ratio and the operating return on assets are

normalized by the industry average of the ratio.

Table 21.6 presents a test of significance of operating synergy for merger and

non-merger firms. The test result shows there are no significant changes of operat-

ing costs ratio for merger firms. But for non-merger firms, there are significant

increases of operating cost ratio. Then operating income is adjusted for market drop

in 2000, and the significance of operating synergy is tested again. The test result is

presented in Table 21.7.

Table 21.4 Security firm’s comprehensive performance score and rank

Firm

Comprehensive

score Rank Firm

Comprehensive

score Rank

Panel A: December 1999

JianHonga 112.441 1 YongChang 4.045 10

FuBanga 90.757 2 ZhongXin 2.177 11

YuanDaJinHuaa 88.033 3 TaiYu �3.648 12

TongYi 57.312 4 DaHua �4.140 13

QunYi 47.620 5 KangHe �47.811 14

RiShen 47.457 6 JinDing �81.604 15

YuanFua 40.041 7 BaoLaia �106.382 16

TaiZhen 21.349 8 YaZhou �116.505 17

XinBao 12.180 9 DaXin �163.323 18

Panel B: December 2000

YuanFua 162.4621 1 TaiZhen �10.0671 10

YuanDaJinHuaa 132.0642 2 DaHua �19.123 11

RiShen 118.3488 3 KangHe �29.1604 12

FuBanga 77.26606 4 YaZhou �75.6848 13

ZhongXin 50.47429 5 YongChang �77.5209 14

JianHonga 48.7586 6 TaiYu �96.5883 15

QunYu 32.33424 7 JinDing �98.3886 16

BaoLaia 31.40838 8 XinBao �101.256 17

TongYi 16.56453 9 DaXin �150.395 18

ameans Wilcoxon sign rank test for performance score difference between before after merger is

statistically significant
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The test of significance of merger synergy is performed by examining two

financial ratios: ratio of operating income to total assets (operating return ratio)

and market share. Table 21.8 presents the first test of significance of market synergy

using operating return ratio. Result shows there are significant increases in the

ratio of operating income to total assets for both merger and non-merger

security firms. This indicates a positive market synergy. We repeat the test of

significance after adjusting the operating income to account for the market decline.

Results presented in Table 21.9 show there are insignificant differences in the

ratio of operating income to total assets for both merger and non-merger

security firms. The second test of significance of market synergy using market

share change is presented in Table 21.10. Results in Table 21.10 show there are

significant increases of market share for merger security firms. This means

positive market synergy. For the non-merger firms, there are significant declines
of market share. Taking the two variables into consideration, we state that

positive market synergy is produced by the merger of security firms. We use the

variability of operating risk to assess financial synergy. The test results in

Table 21.11 show there is insignificant financial synergy for merger firms.

However, there is significant change in the variability of operating risk for

non-merger security firms.

Table 21.5 Test of significance of merger and non-merger firms’ comprehensive rating

Firm

December

1999 ranks

December

2000 ranks Difference Di Class W

Panel A: merger firms

JianHong 1 6 �5 5 3 W (+) ¼ 33

YuanDaJinHua 3 2 1 1 1 W (�) ¼ 45

YuanFu 7 1 6 6 4 W ¼ 33

FuBang 2 4 �2 2 2

BaoLai 16 8 8 8 5

Panel B: non-merger firms

TaiYu 12 15 �3 3 6.5 W (+) ¼ 33

DaHua 13 11 2 2 3.5 W (�) ¼ 45

QunYi 5 7 �2 2 3.5 W ¼ 33

ZhongXin 11 5 6 6 11

YongChang 10 14 �4 4 8.5

TaiZhen 8 10 �2 2 3.5

JinDing 15 16 �1 1 1

RiShen 6 3 3 3 6.5

DaXin 18 18 0

KangHe 14 12 2 2 3.5

YaZhou 17 13 4 4 8.5

XinBao 9 17 �8 8 12

TongYi 4 9 �5 5 10

Wilcoxonsign rank (double end) test indicates that rank difference is statistically insignificant,
Eq. 21.6
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21.4 Conclusion

The effect of a merger on credit rating was examined by testing the significance

of change in firm’s rank based on a comprehensive performance score

and examining post-merger synergy. Synergistic gains from a merger could be

in the form of operating synergy, market synergy, and/or financial synergy.

Our test showed that merger and non-merger firms’ comprehensive performance

rank difference was statistically insignificant. Plausible explanations for the

insignificant rank changes are a short observation period and the lack of adequate

samples. Other plausible explanation may be that some security firms have already

achieved high premerger comprehensive performance scores, and any improvement

in post-merger performance did not make a significant difference.

We used a standardized score of operating cost ratio to rank firms for their

operating synergy. Test results show there is no significant operating synergy for

merger and non-merger security firms. We used standardized scores of ratio of

operating income to total assets and market share change to rank firms for their

market synergy. Test result shows there are significant increases in the ratio of

Table 21.6 Test of significance of merger and non-merger firms’ operating cost ratioa

Firm

December

1999 score

December

2000 score Difference Di Class W

Panel A: merged firms

JianHong 71.634 67.332 4.302 4.302 2 W (+) ¼ 3

YuanDaJinHua 58.689 78.167 –19.478 19.478 5 W (�)¼ 12

YuanFu 71.857 79.305 –7.448 7.448 4 W ¼ 3

FuBang 70.040 75.378 �5.338 5.338 3

BaoLai 92.007 91.503 0.503 0.503 1

Panel B: non-merger firms

TaiYu 76.548 122.296 �45.748 45.748 12 W (+) ¼ 3

DaHua 84.481 83.181 1.299 1.299 2 W (�)¼ 88

QunYi 71.105 73.431 �2.325 2.325 4 W ¼ 3

ZhongXin 79.395 84.665 �5.269 5.269 5

YongChang 79.471 111.708 �32.238 32.238 11

TaiZhen 81.915 95.024 �13.109 13.109 8

JinDing 98.436 107.020 �8.584 8.584 6

RiShen 66.200 66.167 0.034 0.034 1

DaXin 121.563 143.634 �22.071 22.071 10

KangHe 81.531 93.207 �11.676 11.676 7

YaZhou 104.699 106.014 �1.316 1.316 3

XinBao 74.861 136.984 �62.123 62.123 13

TongYi 63.744 85.364 �21.621 21.621 9

aOperating cost/operating income

Wilcoxon sign rank (double end) test indicates that rank difference is statistically

insignificant, Eq. 21.6
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operating income to total assets for both merger and non-merger security firms,

indicating a positive market synergy. However, after adjusting the operating

income market decline, the results indicate insignificant differences in the ratio of

operating income to total assets for both merger and non-merger security

firms. We used standardized score of variability of operating risk to rank firms

for their financial synergy. The test results show there is insignificant financial

synergy for merger firms; however, there is significant change in the variability of

operating risk for non-merger security firms.

Appendix 1: Variables for Merger Synergy Analysis

Post-merger credit rating of the firm depends on the extent of synergy produced by

the merger. Components of merger synergy are operating synergy, market synergy,

and financial synergy.

Each synergy component is determined by firm characteristics: financial

structure, solvency, asset utilization, profitability, cash flow, growth, scale, and

industry-specific ratio. In this study a number of financial ratios are used to assess

Table 21.7 Test of significance of merger and non-merger firms’ adjusted operating cost ratioa

Firm

December

1999 score

December

2000 score Difference Di Class W

Panel A: merger firms

JianHong 93.492 79.475 14.017 14.017 4 W (+) ¼ 10

YuanDaJinHua 76.597 92.263 �15.667 15.667 5 W (�) ¼ 5

YuanFu 93.783 93.607 0.176 0.176 1 W ¼ 5

FuBang 91.412 88.972 2.440 2.440 2

BaoLai 120.081 108.005 12.076 12.076 3

Panel B: non-merger firms

TaiYu 99.905 144.351 �44.446 44.446 12 W (+) ¼ 32

DaHua 110.259 98.183 12.076 12.076 9 W (�)¼ 59

QunYi 92.802 86.674 6.129 6.129 5 W ¼ 32

ZhongXin 103.622 99.933 3.688 3.688 3

YongChang 103.720 131.854 �28.134 28.134 11

TaiZhen 106.911 112.161 �5.250 5.250 4

JinDing 128.472 126.320 2.152 2.152 1

RiShen 86.400 78.099 8.301 8.301 6

DaXin 158.656 169.537 �10.881 10.881 7

KangHe 106.409 110.016 �3.608 3.608 2

YaZhou 136.646 125.133 11.513 11.513 8

XinBao 97.704 161.688 �63.985 63.985 13

TongYi 83.194 100.759 �17.565 17.565 10

aOperating cost/operating income adjusted for the drop in the market

Wilcoxon sign rank (double end) test indicates that rank difference is statistically

insignificant, Eq. 21.6
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operating performance of the firm before and after the merger. The following

section outlines firm characteristics and variables to measure operating

performance.

Merger Synergy

Operating synergy – it refers to the improvement of operating efficiency achieved

via scale economy, transaction cost economy, and differential efficiency caused by

merger. Market synergy – increase in market share due to enhanced negotiating

power and dominant pricing strategy.

Financial synergy – diversification of financial risk and cost of capital reduction.

Operating Synergy

A. – Financial structure

Xi1 – Debt ratio

Xi2 – Ratio of long-term capital to fixed assets

Table 21.8 Test of significance of merger and non-merger firms’ operating return on assetsa

Firm

December

1999 score

December

2000 score Difference Di Class W

Panel A: merger firms

JianHong 16.868 17.171 �0.303 0.303 1 W (+) ¼ 0

YuanDaJinHua 13.591 22.133 �8.542 8.542 3 W (�)¼ 15

YuanFu 14.667 26.617 �11.949 11.949 4 W ¼ 0

FuBang 14.245 16.876 �2.630 2.630 2

BaoLai 12.429 25.243 �12.814 12.814 5

Panel B: non-merger firms

TaiYu 12.881 15.878 �2.997 2.997 12 W (+) ¼ 10

DaHua 15.783 12.746 3.037 3.037 2 W (�)¼ 81

QunYi 13.893 18.924 �5.031 5.031 4 W ¼ 10

ZhongXin 13.214 26.546 �13.332 13.332 5

YongChang 16.797 19.702 �2.905 2.905 11

TaiZhen 12.783 14.188 �1.405 1.405 8

JinDing 11.884 15.938 �4.054 4.054 6

RiShen 18.111 24.489 �6.379 6.379 1

DaXin 15.232 15.240 �0.008 0.008 10

KangHe 14.146 16.561 �2.414 2.414 7

YaZhou 16.653 16.268 0.385 0.385 3

XinBao 13.316 15.023 �1.706 1.706 13

TongYi 13.732 21.170 �7.438 7.438 9

aOperating income/total assets

Wilcoxon sign rank (double end) test indicates that ratio difference is statistically significant,
Eq. 21.6
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B. Solvency

Xi3– Current ratio

Xi4– Quick ratio

C. Asset utilization

Xi5 – Operating return on assets

Xi6 – Net worth turnover ratio

D. Profitability

Xi7 – Return on assets

Xi8 – Return on equity

Xi9 – Profit margin

Xi10 – Earnings per share

E. Cash flow

Xi11 – Cash flow to short-term liability

Xi12 – 5-year cash flow to debt obligations

Xi13 – Retention ratio

F. Growth

Xi14 – Growth in revenue

Xi15 – Growth in earnings

Table 21.9 Test of significance of merger and non-merger firms’ adjusted operating return on

assetsa

Firm

December

1999 score

December

2000 score Difference Di Class W

Panel A: merger firms

JianHong 0.0190 0.0154 0.0035 0.0035 2 W (+) ¼ 3

YuanDaJinHua 0.0153 0.0199 �0.0046 0.0046 3 W (�)¼ 12

YuanFu 0.0165 0.0239 �0.0074 0.0074 4 W ¼ 3

FuBang 0.0160 0.0152 0.0008 0.0008 1

BaoLai 0.0140 0.0227 �0.0087 0.0087 5

Panel B: non-merger firms

TaiYu 0.0145 0.0143 0.0002 0.0002 1 W (+) ¼ 53

DaHua 0.0177 0.0115 0.0063 0.0063 12 W (�)¼ 38

QunYi 0.0156 0.0170 �0.0014 0.0014 5 W ¼ 33

ZhongXin 0.0149 0.0239 �0.0090 0.0090 13

YongChang 0.0189 0.0177 0.0012 0.0012 4

TaiZhen 0.0144 0.0128 0.0016 0.0016 7

JinDing 0.0134 0.0143 �0.0010 0.0010 2

RiShen 0.0204 0.0220 �0.0017 0.0017 8

DaXin 0.0171 0.0137 0.0034 0.0034 9

KangHe 0.0159 0.0149 0.0010 0.0010 3

YaZhou 0.0187 0.0146 0.0041 0.0041 11

XinBao 0.0150 0.0135 0.0015 0.0015 6

TongYi 0.0154 0.0190 �0.0036 0.0036 10

a(Operating income/total assets) adjusted for the drop in the market

Wilcoxon sign rank (double end) test indicates that ratio difference is statistically insignificant, Eq. 21.6
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G. Size

Xi16 – Total assets

Xi17 – Net worth

H. Industry-specific ratios

Xi18 – Consignment to current assets

Xi19 – Long-term financing to net worth

Market Synergy

Xi5 – Operating return on assets turnover

Xi20 – Market share variability

Financial Synergy

Xi21 – Operating risk variability

Table 21.10 Test of significance of merger and non-merger firms’ change in market share

Firm

December

1999 score

December

2000 score Difference Di Class W

Panel A: merger firms

JianHong 6.169 5.255 0.914 0.914 1 W (+) ¼ 1

YuanDaJinHua 11.463 17.270 �5.807 5.807 5 W (�)¼ 14

YuanFu 5.992 7.497 �1.505 1.505 2 W ¼ 1

FuBang 6.007 7.698 �1.692 1.692 3

BaoLai 5.745 8.076 �2.331 2.331 4

Panel B: non-merger firms

TaiYu 1.982 1.475 0.507 0.507 5 W (+) ¼ 80

DaHua 9.589 5.589 4.000 4.000 13 W (�)¼ 11

QunYi 8.389 8.197 0.192 0.192 1 W ¼ 11

ZhongXin 4.932 6.402 �1.470 1.470 11

YongChang 3.090 2.559 0.531 0.531 6

TaiZhen 5.462 4.929 0.532 0.532 7

JinDing 5.128 4.678 0.450 0.450 4

RiShen 9.547 7.487 2.061 2.061 12

DaXin 3.109 1.830 1.280 1.280 10

KangHe 2.580 2.209 0.371 0.371 3

YaZhou 2.300 1.462 0.838 0.838 8

XinBao 1.431 1.178 0.253 0.253 2

TongYi 7.085 6.210 0.876 0.876 9

Wilcoxon sign rank (double end) test indicates that ratio difference is statistically significant,
Eq. 21.6
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Appendix 2

Principal Component Factor Analysis of Merger Synergies

Principal component factor analysis is used to examine merger synergies. It is

a multivariable statistic method focusing on the relationship between groups of

variables. Its purpose is to express the original data structure with fewer factors

while keeping most of the information provided by the original data structure.

Factor analysis is composed of two parts: one is common factor, and the other is

specific factor. Factor analysis intends to group the variables with same common

factors. In other words, it discusses how to break down every variable Xi of

P variables X1�XP into the linear combination of q common factors fj(q, and

q�p), j ¼ 1, 2 . . .q and specific factor ei. The model is as follows:

X1 ¼ m1 þ L11F1 þ L12F2 þ � � � þ L1qFq þ e1
X2 ¼ m2 þ L21F1 þ L22F2 þ � � � þ L2qFq þ e2

⋮
Xp ¼ mp þ Lp1F1 þ Lp2F2 þ � � � þ LpqFq þ ep

(21.1)

Table 21.11 Test of significance of merger and non-merger firms’ operating risk

Firm

December

1999 score

December

2000 score Difference Di Class W

Panel A: merger firms

JianHong 5250.000 �8.178 5258.178 5258.178 5 W (+) ¼10

YuanDaJinHua 42.250 �29.701 71.951 71.951 2 W (�) ¼ 5

YuanFu 10.324 14.973 �4.649 4.649 1 W ¼ 5

FuBang 1017.647 �17.895 1035.542 1035.542 3

BaoLai �93.671 1010.000 �1103.671 1103.671 4

Panel B: non-merge firms

TaiYu 1274.074 �205.391 1479.465 1479.465 11 W (+) ¼ 70

DaHua 127.941 �54.839 182.780 182.780 7 W (�)¼ 21

QunYi 1657.895 1.198 1656.697 1656.697 12 W ¼ 21

ZhongXin 59.877 �3.089 62.965 62.965 3

YongChang �249.479 �216.376 �33.103 33.103 1

TaiZhen �230.769 �96.078 �134.691 134.691 6

JinDing �101.587 �7566.667 7465.079 7465.079 13

RiShen �29.612 67.241 �96.853 96.853 4

DaXin �58.108 127.016 �185.124 185.124 8

KangHe 228.378 �72.840 301.218 301.218 9

YaZhou �50.000 0.000 �50.000 50.000 2

XinBao 413.333 �292.208 705.541 705.541 10

TongYi 64.151 �37.701 101.852 101.852 5

Wilcoxon sign rank (double end) test indicates that ratio difference is statistically insignificant,
Eq. 21.6
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where F1 . . ., Fq are common factors, ei is specific factor for variable Xi, and Lij is

the factor loading of variable Xi and common factor Fj. Factors extracted are

independent and also analysis preserves the information in the original variables.

There is no overlap of information among principle components. The model should

be parsimonious, in the sense that a few principle components should be able to

replace the original set of variables.

Variability Percentage Adjustment

All principle components with factor loading greater than 1 are selected. Then

weights are assigned to different variables based on percentage of variability

explained. The variability percentage adjustment is adjusted as follows:

Vadj
j ¼ Vj=SjVj (21.2)

where Vj (j ¼ 1,2. . .q) is the percentage of variability explained by factor Fj.

Factor Loading Adjustment

The adjusted variability percentage Vadj
j is multiplied by factor loading Lij and

summed over all variables (j ¼ 1,2. . .q) to get the total loading fo variable Xi. Then

adjust Li such that total factor loadings add to 100.

Li ¼
X

Vadj
j Lij

Ladji ¼ 100� Li=
X

Li

� � (21.3)

Every variable has a weight, Ladji before and after the estimation period; we average

it to obtain weight Wi. For some variables, Xi, the greater the value of the variable,

the better it is for the operating, financial, or merger synergy. Those variables are

classified as positive variables. If opposite is true, then those variables are classified

as negative variable. Hence adjusted variable weights are redesigned to correctly

reflect operating synergy score: Wi
* ¼ {Wi or –Wi} for positive and negative

variables, respectively.

Performance Scores

All variables are not measured in the same unit, so they are standardized as

Xi
� ¼ {Xi–Ave(Xi)}/s, where Ave(Xi) is the average and s is the standard

deviation of variable Xi (i ¼ 1,2. . .p). The adjusted variable weight Wi
* multiplied
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by standardized variable Zi gives the performance score of variable Xi. Appropriate

standardized performance score of the variable is used to rank the firm for its

operating or financial or market synergy. The sum of the standardized performance

scores over the set of variables gives the comprehensive performance score:

S ¼PWi
�:Zi (21.4)

where the summation is over the first 19 variables listed in Appendix 1. Then firms

are ranked in terms of their respective comprehensive performance score. The

greater the total score is, the better is the comprehensive performance rating. On

the other hand, the smaller the total score, the worse is the performance rating and

lower is its rank.

Appendix 3

Wilcoxon Sign Rank Test

Usual “t-test” method is unsuitable to examine the significance of change in

operating, financial, or market performance before and after merger as we deal

with ranks. We use the Wilcoxon sign rank test which checks whether two sets of

ranks, pre- and post-merger, come from the same sample or two samples. Let D be

the difference between observed value from the sample and reference value. Then

we delete those observations whose value of D is zero and rank incrementally the

rest of observations in terms of the absolute value of D. If two or more absolute

values are the same, we give each value an appropriate rank, then average those

ranks, and use the averaged rank as the rank of the same absolute values.

The statistic analysis method of test is as follows:

The differences between the post-merger synergy ranks (Xi) and corresponding

premerger synergy ranks (Yi), Di is ranked in descending order. Let Ri be the serial

number of Di (if they have the same rank, then take their average value).

Di ¼ Xi � Yi i ¼ 1, 2, � � �n
Ri ¼ rank Dij jð Þ i ¼ 1, 2, � � �n

W þð Þ ¼
X

Ri Xi � Yi > 0

W �ð Þ ¼
X

Ri Xi � Yi < 0

W ¼ min Wþ ,W�ð Þ

(21.5)

where W(+) is the total of absolute value of serial numbers of positive rank changes

and W(�) is the total of absolute value serial numbers of negative rank changes.

W is the test statistic.
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Test Hypotheses

For comprehensive performance ranks:
H0: Performance rating after merger ¼ performance rating before merger

(Z1 ¼ Z2).

H1: Performance rating after merger 6¼ performance rating before merger
(Z1 6¼ Z2).

For operating, market, and financial synergy:
H0 ¼ No synergy occurred after merger (Z1 ¼ Z2).

H1 ¼ Synergy occurred after merger (Z1 6¼ Z2).

We undertake a double end test. Under the significant level of a, we find

the critical value W(a) from the appropriate statistical table. The null hypothesis

is rejected if

W � �W a=2ð Þð Þ or

W � W a=2ð Þð Þ (21.6)

This means that merger has produced significant synergy and performance

(and credit) rating has affected. The appropriate variables for operating, market,

and financial variables are operating cost ratio, ratio of operating income to total

assets and market share, and variability of operating risk, respectively.
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Abstract

In this chapter, we document a negative on-/off-the-run yield spread in Chinese

Treasury markets. This is in contrast with a positive on-/off-the-run yield spread

in most other countries and could be called an “on-/off-the-run yield spread

puzzle.” To explain this puzzle, we introduce a latent factor in the pricing of

Chinese off-the-run government bonds and use this factor to model the yield
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difference between Chinese on-the-run and off-the-run issues. We use the

nonlinear Kalman filter approach to estimate the model. Regressions results

suggest that liquidity difference, market-wide liquidity condition, and disposi-

tion effect (unwillingness to sell old bonds) could help explain the dynamics of

a latent factor in Chinese Treasury markets. The empirical results of this chapter

show evidence of phenomena that are quite specific in emerging markets such as

China.

The Kalman filter is a mathematical method named after Rudolf E. Kalman.

It is a set of mathematical equations that provides an efficient computational

(recursive) means to estimate the state of a process, in a way that minimizes the

mean of the squared error. The nonlinear Kalman filter is the nonlinear version

of the Kalman filter which linearizes about the current mean and covariance.

The filter is very powerful in several aspects: it supports estimations of past,

present, and even future states, and it can do so even when the precise nature of

the modeled system is unknown.

Keywords

On-/off-the-run yield spread • Liquidity • Disposition effect • CIR model •

Nonlinear Kalman filter • Quasi-maximum likelihood

22.1 Introduction

It is well known that there exists an on-the-run phenomenon in worldwide Treasury

markets. This phenomenon refers to the fact that just-issued (on-the-run or new)

government bonds of a certain maturity are generally traded at a higher price or

lower yield than previously issued (off-the-run or old) government bonds maturing

on similar dates. For example, Amihud and Mendelson (1991), Warga (1992),

Kamara (1994), Furfine and Remolona (2002), Goldreich et al. (2005), and

Pasquariello and Vega (2009) report the existence of positive on-/off-the-run

yield spread in the US Treasury market with different frequency data. Mason

(1987) and Boudoukh and Whitelaw (1991, 1993) provide similar evidence in

Japan. In spite of different opinions on the information content of the yield spread,

there is no disagreement in the literature that the on-/off-the-run yield spread in

Treasury markets is significantly positive.

Academics have proposed many theories to explain the positive on-/off-the-run

yield spread. Early studies directly attribute this spread to the liquidity difference

between new bonds and old bonds (Amihud and Mendelson 1991; Warga 1992;

Kamara 1994). More recent work provides some other possible explanations, such

as different tax treatment (Strebulaev 2002), specialness in the repo market1

(Krishnamurthy 2002), the value of future liquidity (Goldreich et al. 2005), search

1Specialness refers to the phenomenon that loans collateralized by on-the-run bonds offer lower

interest rates than their off-the-run counterparts in repo markets.
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costs (Vayanos and Weill 2008), and market frictions of information heterogeneity

and imperfect competition among informed traders (Pasquariello and Vega 2009).

No matter what arguments are proposed, however, the important role that liquidity

plays in the positive on-/off-the-run yield spread and the liquidity premium

hypothesis (Amihud and Mendelson 1986) has never been denied. It is widely

accepted, by both practitioners and academics, that off-the-run bonds with a lower

liquidity level tend to have a higher yield than otherwise similar, yet more liquid,

on-the-run bonds.

In this chapter, we document a negative on-/off-the-run yield spread in Chinese

Treasury markets, which is contrary to the usual on-the-run phenomenon in other

countries and could be called the on-/off-the-run yield spread puzzle in China. Guo and

Wu (2006) and Li and He (2008) report that on-/off-the-run yield spread in Chinese

Treasury markets is significantly positive, but they did not match the on-the-run and

off-the-run bonds correctly. For example, they compare the yield of a just-issued

7-year government bond with that of a previously issued 7-year government bond

that has a different maturity. This is not consistent with the calculation of the usual on-/

off-the-run yield spread. In order to calculate the spread correctly, we need to match

the bonds in terms of maturity date. For example, we compare a just-issued 1-year

government bond and a previously issued government bond maturing on similar dates.

The maturities are both about 1 year and the durations are close to each other.

To explain on-/off-the-run yield spread puzzle, we introduce a latent factor in the

pricing of Chinese off-the-run bonds. This latent factor is used to model the yield

difference between on-the-run bonds and off-the-run bonds. We employ a nonlinear

Kalman filter to estimate the model and examine the temporal properties of the latent

factor. We find that the liquidity premium hypothesis still holds in Chinese Treasury

markets. In particular, the change of the latent factor is positively related to the

liquidity difference between off-the-run and on-the-run bonds and positively related

to the market-wide liquidity condition. Both findings are consistent with the liquidity

premium hypothesis. On the other hand, disposition effect (unwillingness to sell old

bonds in bear markets) dramatically changes the sign of the yield spread and causes

the puzzle. The change of latent factor in Chinese Treasury markets is negatively

related to 7-day repo rates. When interest rates go up and the returns of the bond

markets are negative, the holders of off-the-run bonds are reluctant to realize loss and

will not sell their bonds, which consequently leads to a relatively low yield level of

off-the-run bonds and a negative on-/off-the-run yield spread.

Our article makes several contributions to the literature. We document

a negative on-/off-the-run yield spread in China. We introduce a latent factor to

explain the yield difference between on-the-run bonds and off-the-run bonds and

employ the nonlinear Kalman filter in estimation. Our basic ideas are in line with

Longstaff et al. (2005) and Lin et al. (2011). We also provide evidence of irrational

investor behavior that is quite specific in emerging Treasury markets such as China.

In China, the liquidity premium hypothesis still holds, whereas the existence of

disposition effect causes the puzzle.

The chapter is organized as follows. In Sect. 22.2, we present a pricing model of

government bonds that introduces a latent factor for the off-the-run bonds.
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In Sect. 22.3, we describe the data, report the estimation results, and perform

a variety of regression analyses. We present our conclusions in Sect. 22.4.

22.2 Bond Pricing Models

22.2.1 On-the-Run Bond Pricing Model

We use the Cox et al. (1985, CIR) model to price the Chinese on-the-run govern-

ment bonds. The CIR model has been a benchmark interest rate model because of

its analytical tractability and other good properties. In this model, the risk-free short

rate, rt, is assumed to follow a square-root process as

drt ¼ k y� rtð Þdtþ sr
ffiffiffiffi
rt

p
dWr, t, (22.1)

under the risk-neutral measure Q. k is the speed of mean reversion, y is the long-

term mean value, sr is the volatility parameter of rt, and Wr denotes a standard

Brownian motion under Q. Such specification allows for both mean reversion and

conditional heteroskedasticity and guarantees that interest rates are nonnegative.

At time t, the price of an on-the-run government bond maturing at tM could be

written as

Pon
t ¼ EQ

t

XM
m¼1

Cm exp �
ðtm
t

rsds

� �" #
, (22.2)

where Pt
on is the on-the-run bond price, Cm is the cash flow payments at time tm, and

M is the total number of cash flow payments. That is, the price of a government bond is

the expected present value of the cash flow payments under the risk-neutral measure.

Solving Eq. 22.2 gives

Pon
t ¼

XM
m¼1

CmAm, t exp �Bm, trt
� �

, (22.3)

where

Am, t ¼ 2h exp kþ hð Þ tm � tð Þ=2f g
2hþ kþ hð Þ exp tm � tð Þhf g � 1ð Þ
� �2ky=s2r

,

Bm, t ¼ 2 exp tm � tð Þhf g � 1ð Þ
2hþ kþ hð Þ exp tm � tð Þhf g � 1ð Þ ,

and

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2s2r

q
:
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22.2.2 Off-the-Run Bond Pricing Model

In order to model the on-/off-the-run yield spread in Chinese Treasury markets,

we next incorporate a latent component, l, into the pricing model of Chinese

off-the-run government bonds and extend (22.2) to

Poff
t ¼ EQ

t

XM
m¼1

Cm exp �
ðtm
t

rs þ lsð Þds
� �" #

, (22.4)

where Pt
off is the off-the-run bond price. Similar to Longstaff et al. (2005) and Lin

et al. (2011), we assume that under the risk-neutral measure Q,

dlt ¼ sldWl, t, (22.5)

where Wl is a standard Brownian motion independent of Wr under Q and sl is the
volatility parameter.

Given the stochastic processes in (22.1) and (22.5), we can obtain the analytical

solution for the pricing formula of (22.4),

Poff
t ¼

XM
m¼1

CmAm, t exp Dm, t � Bm, trt � tm � tð Þlt
� �

, (22.6)

where Dm, t =
s2l tm�tð Þ

6
and other notations are the same as in (22.3).

22.3 Data and Empirical Estimation

22.3.1 Data Summary

We use the price of Chinese government bonds in the interbank market to

estimate the pricing model. The data are from the RESSET dataset. There are

two main bond markets in China. One is the interbank bond market, while the

other is the exchange bond market. The interbank bond market is a quote-

driven over-the-counter market, and the participants are mainly institutional

investors. Its outstanding value and trading volume account for over 90 % of

Chinese bond markets. The number of bonds traded in the interbank market is

at least three times that traded in the exchange market. This is very important

for our empirical study, since we need enough bonds to match new and

old ones.
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Our sample period is from December 2003 to February 2009. We use monthly

data and choose the actively traded government bonds with 1 year and 3 years to

maturity. Thus, for each month in our sample period, a most recently issued 1-year

and 3-year government bonds are selected as the on-the-run bonds, and we get

another old bond maturing on similar dates to match each on-the-run bond.2

Altogether, 63 matched pairs of 1-year government bonds and 63 matched pairs

of 3-year government bonds are included in the final sample.

Table 22.1 reports the summary statistics for the sample bonds. As expected, the

modified durations of off-the-run and on-the-run bonds are quite close to each other.

This means if interest rate risk is the only risk factor, these bonds should be traded at

similar yields. To examine whether the same on-the-run phenomenon exists in

Chinese Treasury markets, we compute the on-/off-the-run yield spread as

DyM, t ¼ yoffM, t � yonM, t, (22.7)

where yoffM;t and yonM;t are the time t yield of the off-the-run bond and the on-the-run

bond maturing at tM, respectively. In our sample, tM� t is equal to 1 year or 3 years.
Figure 22.1 plots the time series of DyM,t of the 1-year bond and 3-year bond.

Table 22.1 also reports the means of on-/off-the-run yield spreads and their

statistical significance. Both the 1-year on-/off-the-run yield spread and the 3-year

on-/off-the-run yield spread are negative, which is inconsistent with the findings in

other markets. Moreover, the 3-year on-/off-the-run yield spread is significantly

2The main reason for the data selection comes from the concern of trading activity. Trading in

Chinese Treasury markets is not active, especially in the earlier period.

Table 22.1 Summary statistics

Off-the-run On-the-run

Mean Std Mean Std Difference

One year

Yield (%) 2.24 0.92 2.31 0.72 �0.07

Modified duration (years) 0.68 0.25 0.73 0.22 �0.05

Age (years) 4.3 2.92 0.26 0.22 4.04a

Coupon (%) 2.95 2.73 1.39 1.46 1.63a

Three years

Yield (%) 2.72 0.78 2.83 0.79 �0.11b

Modified duration (years) 2.47 0.33 2.48 0.31 �0.01

Age (years) 3.05 1.45 0.38 0.32 2.67a

Coupon (%) 3.39 2.32 2.89 0.62 0.50

This table reports the summary statistics of the Chinese 1-year and 3-year on-the-run and off-the-

run government bonds between December 2003 and February 2009. The coupon rate and yield are

in percentages, while age and modified duration are in years. This table also reports the difference

between the off-the-run bonds and the on-the-run bonds
aandb indicate statistical significance at the 5 % and 1 % level, respectively
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negative at the 10 % level, which suggests the existence of a significantly negative

on-/off-the-run yield spread and remains a puzzle. The 1-year on-/off-the-run yield

spread is negative but not significant. However, this spread has some noise,

since the difference of coupon rate between the on-the-run issues and off-the-run

issues is 1.63 % and significant at the 1 % level. This difference could affect

the significance of the on-/off-the-run spread at the 1-year level. Generally

speaking, we find evidence of a negative on-/off-the-run spread, which is contrary

to the established fact of a positive on-/off-the-run yield spread in most other

countries and could be called the on-/off-the-run yield spread puzzle in China.

22.3.2 Empirical Methodology

To explain the on-/off-the-run yield spread puzzle in China, we use the CIR

model to price the on-the-run issues and the CIR model with the latent factor to

price the off-the-run issues. We first estimate the parameters of the CIR model

using all on-the-run bonds. Given the parameters of the CIR process, we further

estimate the parameters of the latent factor using off-the-run bonds. Thus, the latent

factor represents the yield difference between on-the-run and off-the-run bonds.

In our empirical study, we employ the Kalman filter to estimate the parameters.3

The standard Kalman filter is not appropriate here because it requires linear state

functions and the measurement functions, while Eqs. 22.3 and 22.6 are nonlinear.

3See Hamilton (1994) for an explanation of Kalman filter.

−2.50%

−2.00%

−1.50%

−1.00%

−0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

One-year Three-year

Fig. 22.1 Time series of Chinese on-/off-the-run yield spread. This figure plots the yield

difference between the off-the-run and on-the-run Chinese government bonds between December

2003 and February 2009
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We therefore use the nonlinear Kalman filter for estimation. The details of the

nonlinear Kalman filter with its Matlab codes are reported in the Appendix.

After we estimate the parameters, we then study the dynamic of the latent

component and examine its temporal properties to explore the explanations of the

on-/off-the-run yield spread puzzle in China.

22.3.3 Estimation Results

22.3.3.1 Estimation Results of On-the-Run Issue
The left-hand column of Table 22.2 reports the estimation results of the CIR model

using on-the-run bonds. As shown, all the parameters are significant at the 1 %

level. The long-term mean value, the speed of mean reversion, and the volatility

parameter of r are 0.023, 0.089, and 0.063, respectively. These results are reason-

able and close to the results of other research on dynamic models in the Chinese

interest rate (Hong et al. 2010).

Table 22.2 Estimates of pricing models

On-the-run issues

drt = k y� rtð Þdtþ sr
ffiffiffiffi
rt

p
dWr, t

Off-the-run issues

drt = k y� rtð Þdtþ sr
ffiffiffiffi
rt

p
dWr, t

dlt ¼ sldWl,t

The state function rt ¼ g + frt � 1 + et rt = gþ frt�1 þ etlt = lt�1 þ sl �t � �t�1ð Þ
The measurement

function

yont ¼ aon
t + bon

t rt + von
t yofft ¼ aoff

t + boff
t rt + jofft lt + voff

t

k 0.089(6.403)a

y 0.023(6.486)a

sr 0.063(247.921)a

sl 0.009(8.530)a

var(et) 0.000008

var(�t) 0.000007

One year Three years One year Three years

var(von
t ) 0.000035 0.000020

var(voff
t ) 0.000011 0.0000006

RMSE 0.0045 0.0038 0.0062 0.0058

MAD 0.0596 0.0517 0.0705 0.0672

This table reports the estimate results of pricing models for on-the-run and off-the-run

Chinese government bonds. The parameters of the CIR model are estimated from monthly

on-the-run bond data. These parameters are then used to estimate the latent factor in the monthly

off-the-run bond data. We use a nonlinear Kalman filter approach to estimate the parameters.

yont =
yon1, t
yon3, t

� �
, yofft =

yoff1, t

yoff3, t

" #
, von

t =
oon

1, t
oon

3, t

� �
, and voff

t =
ooff

1, t

ooff
3, t

" #
, where subscript 1 and 3 denote 1-year

and 3-year bonds and superscript on and off denote on-the-run and off-the-run bonds, respectively.
The numbers in parentheses are t values
aindicates statistical significance at the 1 % level respectively. RMSE and MAD are root mean

square error and mean absolute deviation, respectively
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Figure 22.2 plots the time series of r estimated from the model. Most of the time,

the value of r is in the interval between 2 % and 4 %. We also plot the time series of

the 7-day repo rate in the Chinese interbank market. Similar trends in these two

curves suggest that r does capture the change of the market interest rate.

22.3.3.2 Estimation Results of Off-the-Run Issue
With all the parameters obtained for r, we next estimate the parameters of l using
the data of off-the-run bonds.4 The right-hand column of Table 22.2 reports the

estimation results. The parameter of sl is significant at the 1 % level.

Figure 22.3 plots the time series of l estimated from the data. As we can see from

the figure, most of l are negative. We conduct the t-test and find the average of l is
significantly negative at the 5 % level (the t-statistic is�017). Since l represents the
yield difference between off-the-run bonds and on-the-run bonds, negative

l provides further, strong evidence of the on-/off-the-run yield spread puzzle in

Chinese Treasury markets.

22.3.4 Regression Analysis

The analysis so far reveals that on average, the off-the-run bonds are traded at

a higher price or lower yield than the on-the-run bonds in Chinese Treasury

markets, which is hard to explain rationally. We next explore the information

contained in this negative yield spread by examining the temporal properties of

the latent component, l.

5.00%
r 7-day Repo Rate4.50%

4.00%

3.50%

3.00%

2.50%

2.00%

1.50%

1.00%

0.50%

0.00%

Fig. 22.2 Time series of implied risk-free interest rate and 7-day repo rate in Chinese interbank

market. This figure plots the time series of implied risk-free interest rate estimated from the CIR

model using Chinese on-the-run government bonds, and the time series of 7-day repo rate in

Chinese interbank market

4We also estimate the parameters of r and l jointly using the on-the-run and off-the-run data

together and find the results are quite similar.
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In order to explain the temporal properties of the latent component, we introduce

several variables. One is the turnover ratio difference between on-the-run issues and

off-the-run issues as a measure of liquidity difference, and it is used to examine

whether an on-/off-the-run yield spread in Chinese Treasury markets is related to

the difference in liquidity conditions. The turnover ratio difference between

on-the-run issues and off-the-run issues is defined as

TRt ¼
TRoff

1, t � TRon
1, t

	 

þ TRoff

3, t � TRon
3, t

	 


2
� 10�5,

where TR is the turnover ratio, the subscript 1 and 3 denote 1-year bonds and 3-year

bonds, and the superscript on and off denote on-the-run bonds and off-the-run bonds.
Pasquariello and Vega (2007, 2009) find that the release of macroeconomic news

changes liquidity, and hence the on-/off-the-run yield spread, in the US Treasury

market. For example, when macroeconomic news brings more funds into the bond

market, market-wide liquidity conditions will be better, investors might trade old

bonds more actively, and the yield difference between off-the-run bonds and

on-the-run bonds might decrease, and vice versa. Similarly, we introduce the

percentage change of a broad money supply measure, DM2, as a proxy of

market-wide liquidity conditions to examine whether there is covariation of the

latent component with changes in market-wide liquidity conditions. We use one

lagged DM2 to examine the impact of macroeconomic conditions on Dlt.
The last factor we investigate is investors’ behavior. It is observed that in

Chinese bond markets, there exists a “disposition effect.” Bond holders are

reluctant to realize loss and will not sell old bonds if they have a loss from the

investment. Consequently, old bonds might be traded at a lower yield than new

bonds. In China, the 7-day repo market is one of the most active bond markets, and

−0.80%

−0.60%

−0.40%

−0.20%

0.00%

0.20%

0.40%

Fig. 22.3 Time series of latent factor. This figure plots the time series of latent factor estimated

from the Chinese off-the-run government bonds
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the change of the 7-day repo rate is a good measure of market conditions. When the

7-day repo rate goes up, the bond investment will generate a loss for the investors

and the disposition effect might occur. We use the interbank 7-day repo rates as the

proxy of the market interest rate to investigate whether the on-/off-the-run yield

spread puzzle in China is related to this irrational behavior. If the investors are

rational and the liquidity premium hypothesis holds, the liquidity of the whole

market will decrease in the bear market, and the old bonds will be traded at a higher

yield. Thus, detecting the response of the on-/off-the-run yield spread to the

change of the 7-day repo rate could help us distinguish whether the disposition

effect or the liquidity factor dominates. Similarly, we use one lagged 7-day repo

rate in the time series regression.

In what follows, we first run univariate time series regressions of Dlt against each
variable and then conduct multivariate regression analysis against all the three

factors. The regression models are specified as follows:

Univariate regression of Dlt on the turnover ratio difference, TRt:

Dlt ¼ b0 þ b1TRt þ et:

Univariate regression of Dlt on the lagged percentage change of the money supply,

DM2t�1:

Dlt ¼ b0 þ b1DM2t�1 þ et:

Univariate regression of Dlt on the lagged 7-day repo rate, Rt�1:

Dlt ¼ b0 þ b1Rt�1 þ et:

Table 22.3 Time regression results

(1) (2) (3) (4)

Dlt ¼ b0 +
b1TRt + et

Dlt ¼ b0 +
b1DM2t � 1 + et

Dlt ¼ b0 +
b1Rt � 1 + et

Dlt ¼ b0 + b1TRt + b2DM2t � 1

+ b3Rt � 1 + et
Intercept 4.330(0.253) �0.001(�2.349)a 0.001(2.348)a 0.0005(0.905)

TRt 0.904(1.625)b �0.231(�0.390)

DM2t�1 0.037(2.263)a 0.027(1.663)b

Rt�1 �0.057(�2.703)c �0.045(�1.930)a

Adj. R2 0.043 0.084 0.114 0.163

This table reports the results of regressing the change of latent component, Dlt, on the on-/off-the-
run turnover ratio difference (TRt), the lagged percentage change of M2 (DM2t�1), and the lagged

7-day repo rate (Rt�1). The numbers in parentheses are t values
a,b, and c indicate statistical significance at the 10 %, 5 %, and 1 % level, respectively

Univariate regression of Dlt on the turnover ratio difference

Dlt ¼ b0 + b1TRt + et.
Univariate regression of Dlt on the lagged percentage change of the money supply:

Dlt ¼ b0 + b1DM2t � 1 + et.
Univariate regression of Dlt on the lagged 7-day repo rate:

Dlt ¼ b0 + b1Rt � 1 + et.
Multivariate regression of Dlt on the turnover ratio difference, lagged percentage change of the

money supply, and lagged 7-day repo rate:

Dlt ¼ b0 + b1TRt + b2DM2t � 1 + b3Rt � 1 + et
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Multivariate regression of Dlt on the turnover ratio difference, lagged percentage
change of money supply, and lagged 7-day repo rate:

Dlt ¼ b0 þ b1TRt þ b2DM2t�1 þ b3Rt�1 þ et:

22.3.4.1 Univariate Regression Analysis
Columns (1), (2), and (3) of Table 22.3 report the results of univariate time series

regressions of Dlt against the turnover ratio difference, the lagged percentage

change of the money supply, and the lagged 7-day repo rate, respectively.

As shown, all coefficients are significant, indicating that all these factors are useful

to explain the change of the on-/off-the-run yield spread in China. It is an interesting

finding that is worth further exploring.

The coefficients for TR and the lagged DM2 are significantly positive at the

10 % level and the 5 % level, respectively. That means the latent component

contains information about liquidity conditions. In particular, since lt is negative
most of the time, the positive sign of coefficients implies that when the explan-

atory variable increases, the on-/off-the-run yield spread will increase and move

close to zero. In other words, there will be less difference between off-the-run

bond yields and on-the-run bond yields. The significantly positive coefficient of

TR suggests that if the on-/off-the-run turnover ratio difference increases, that is,

the liquidity of old bonds becomes better, the yield difference between off-the-

run bonds and on-the-run bonds declines, and vice versa. This is consistent with

the liquidity premium hypothesis. Similarly, the significantly positive coefficient

of lagged DM2 reveals that if the money supply increases and market-wide

liquidity improves, the yield difference between old bonds and new bonds

declines, and vice versa. Both results provide evidence of a liquidity premium

in Chinese government bond yields. The liquidity premium hypothesis still holds

in Chinese Treasury markets despite the existence of the on-/off-the-run yield

spread puzzle.

The lagged 7-day repo rate is significantly negatively related to Dlt. That is,
when the market interest rate goes up and the bond investors have a loss, the yield

difference between old bonds and new bonds increases and the on-/off the run

spread becomes more negative. This indicates the disposition effect dominates the

effect of liquidity. When investors have a loss, the unwillingness to sell old bonds

leads to a lower yield for old bonds and a negative on-/off-the-run yield spread. The

regression against the lagged 7-day repo rate has the largest adjusted R square,

which implies the disposition effect could better explain the change in the on-/off-

the-run yield spread in China than the liquidity condition.

22.3.4.2 Multivariate Regression Analysis
Column (4) of Table 22.3 reports the results of multivariate regression. The

coefficient of TR is not significant any more, indicating that after controlling for

market-wide liquidity conditions and the disposition effect, the liquidity difference

has no influence on the on-/off-the-run yield spread. On the other hand, market-

wide liquidity and the disposition effect are still significant at the 10 % level.

628 R. Chen et al.



The adjusted R square of the multivariate is about 16 %. This suggests that the

on-/off-the-run spread could be partly explained by the change in market-wide

liquidity conditions and the disposition effect.

22.4 Conclusion

In this chapter, we document a negative on-/off-the-run yield spread in Chinese

Treasury markets. This is contrary to the positive on-/off-the-run yield spread found

in most other countries and could be called the “on-/off-the-run yield spread

puzzle.” We introduce a latent factor into the pricing formula of off-the-run

bonds to capture the yield spread and estimate this factor by the nonlinear Kalman

filter. The result confirms the existence of the puzzle.

To reveal the information content of the negative on-/off-the-run yield spread, we

perform univariate and multivariate time series regressions of the change of the latent

factor against the turnover ratio difference between off-the-run issues and on-the-run

issues (a measure of the liquidity difference between off-the-run issues and on-the-run

issues), the lagged percentage change of M2 (a measure of market-wide liquidity

conditions), and the lagged 7-day repo rates (a measure of disposition effect). We find

that the liquidity premium hypothesis still holds in Chinese Treasurymarkets. The yield

spread, however, is dominated by the irrational disposition effect. When the investors

have a loss from the bond investment, they are more reluctant to sell old bonds, which

leads to a higher price and a lower yield for old bonds and hence causes the puzzle.

Our study is an attempt to explore the coexistence of a standard theoretical

hypothesis and irrational behavior in emerging Treasury markets such as China.

These markets have been a topic of interest increasingly, as the role of the emerging

markets in the global economy becomes more and more important.

Appendix 1: Nonlinear Kalman Filter

Let yonM;t represent the time t yield of an on-the-run government bond maturing at tM.
Equation 22.3 could be written as

Pon
t ¼

XM
m¼1

CmAm, t exp �Bm, trt
� � ¼

XM
m¼1

Cm exp �yonM, t tm � tð Þ
	 


: (22.8)

As shown, yonM;t is a nonlinear function of rt, which is inconsistent with the

requirements of the standard Kalman filter that state functions and measurement

functions should be linear. So we use the extended (nonlinear) Kalman filter to

linearize nonlinear functions. The idea is to employ the Taylor expansions around

the estimate at each step. That is, we express yonM;t as

yonM, t rtð Þ � yonM, t r̂ tjt�1

� �þ @yonM, t
@rt

jrt¼r̂ tjt�1
� rt � r̂ tjt�1

� �
, (22.9)

where r̂ tjt�1 is the estimate of rt at time t–1.

22 On-/Off-the-Run Yield Spread Puzzle: Evidence from Chinese Treasury Markets 629



To get
@yonM, t
@rt

, we calculate the first-order derivative of Pon
t with respect to rt,

@Pon
t

@rt
¼ �

XM
m¼1

CmAm, tBm, t exp �Bm, trt
� � ¼ @Pon

t

@yonM, t

@yonM, t
@rt

: (22.10)

Thus, we have

@yonM, t
@rt

¼

XM
m¼1

CmAm, tBm, t exp �Bm, trt
� �

XM
m¼1

Cm tm � tð Þ exp �yonM, t � tm � tð Þ
	 
 : (22.11)

Given r̂ tjt�1, we can use Eq. 22.8 to calculate yonM, t r̂ tjt�1

� �
and then use Eq. 22.11

to get
@yonM, t
@rt

Finally, the linearized measurement model for the on-the-run issues at time t is

yont ¼aon
t þbon

t rt þ von
t (22.12)

where

yont ¼ yon1, t
yon3, t

� �
,

aon
t ¼

yon1, t r̂ tjt�1

� �� r̂ tjt�1 �
@yon1, t
@rt

jrt¼r̂ tjt�1

yon3, t r̂ tjt�1

� �� r̂ tjt�1 �
@yon3, t
@r

jrt¼r̂ tjt�1

2
664

3
775,

bon
t ¼

@yon1, t
@rt

jrt¼r̂ tjt�1

@yon3, t
@rt

jrt¼r̂ tjt�1

2
664

3
775,

and von
t is the error term,

von
t ¼ oon

1, t
oon

3, t

� �
,

where the subscript of 1 and 3 represent the 1-year bonds and 3-year bonds, while

the superscript on refers to on-the-run bonds.

After we get the measurement function, the third step is to rewrite (22.1) as

a discrete state function,

rt ¼ gþ frt�1 þ et, (22.13)
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where

g ¼ y 1� exp �k � Dtð Þð Þ,
f ¼ exp �k � Dtð Þ,

and et is the error term of rt and Dt is the size of the time interval in the discrete

sample. In our study, Dt ¼ 0.0833. The conditional mean and conditional variance

of rt are

r̂ tjt�1 ¼ y 1� exp �kDtð Þð Þ þ exp �kDtð Þ � rt�1

Var rtjt�1

� � ¼ s2r
1� exp �kDtð Þ

k

� �
1

2
y 1� exp �kDtð Þ þ exp �kDtð Þ � rt�1ð Þ

� �
:

(22.14)

Similarly, the state functions of the off-the-run issues are

rt ¼ gþ frt�1 þ et
lt ¼ lt�1 þ slet:

(22.15)

The conditional mean and conditional variance of lt are lt�1 and s2l Dt,
respectively.

The corresponding measurement function is

yofft ¼ aoff
t þ boff

t rt þ jofft lt þvoff
t , (22.16)

where off refers to off-the-run bonds,

yofft ¼ yoff1, t

yoff3, t

" #
,

aoff
t ¼

yoff1, t r̂ tjt�1; l̂tjt�1

� �� r̂ tjt�1 �
@yoff1, t

@rt
jrt¼r̂ tjt�1

� l̂ tjt�1 �
@yoff1, t

@lt
jlt¼l̂ tjt�1

yoff3, t r̂ tjt�1; l̂tjt�1

� �� r̂ tjt�1 �
@yoff3, t

@rt
jrt¼r̂ tjt�1

� l̂ tjt�1 �
@yoff3, t

@lt
jlt¼l̂ tjt�1

2
6664

3
7775,

boff
t ¼

@yoff1, t

@rt
jrt¼r̂ tjt�1

@yoff3, t

@rt
jrt¼r̂ tjt�1

2
6664

3
7775,

jofft ¼
@yoff1, t

@lt
jlt¼l̂ tjt�1

@yoff3, t

@lt
jlt¼l̂ tjt�1

2
6664

3
7775,
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voff
t ¼ ooff

1, t

ooff
3, t

" #
,

@yoffM, t

@rt
¼

XM
m¼1

CmAm, tBm, t exp Dm, t � Bm, trt � tm � tð Þlt
� �

XM
m¼1

Cm tm � tð Þ exp �yoffM, t � tm � tð Þ
	 
 ,

@yoffM, t

@lt
¼

XM
m¼1

CmAm tm � tð Þ exp Dm, t � Bm, trt � tm � tð Þlt
� �

XM
m¼1

Cm tm � tð Þ exp �yoffM, t � tm � tð Þ
	 
 ,

and l̂tjt�1 is the estimate of lt at time t–1.
Once we get the state functions and the measurement functions, we employ the

regular iterative prediction-update procedure and the method of quasi-maximum

likelihood to estimate the parameters. When estimating the parameters of the

off-the-run issues, we use just the parameters g and f estimated from the on-the-run

issues to identify sl.

Appendix 2: Matlab Codes

Codes for the On-the-Run Bonds

%*************definethelikelihoodfunction***************%
function [logfun v1 zz QQ RR rr]¼kalfun(param)
k¼param(1);
theta¼param(2);
sigm¼param(3);
sigm2¼param(4);
v1¼zeros(63,2);
v¼zeros(2,1);
rr¼zeros(63,1);
zz¼zeros(63,2);
RR¼0;
QQ¼0;
load data.mat
z1¼data(:,1); % YTMs of one-year bonds
z3¼data(:,3); % YTMs of three-year bonds
c1¼data(:,2); % cash flows of one-year bonds
c3¼data(:,4:6); % cash flows of three-year bonds
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couponrate¼data(:,7); % the coupon rate of three-year
bonds

z¼[z1,z3];
%gam¼sqrt(k^2+2*theta^2);
gam¼sqrt(k^2+2*sigm^2);
tao¼[1 2 3]’;
dt¼1/12;
a¼zeros(3,1);
b¼zeros(3,1);
for j¼1:3

a(j)¼log((2*gam*exp(k*j/2+gam*j/2))/((k+gam)*(exp
(gam*j)-1)+2*gam)^(2*k*theta/sigm^2));

b(j)¼(2*exp(gam*j)-2)/((k+gam)*(exp(gam*j)-1)
+2*gam);

end
r_(1)¼theta; %the initial value of r
A¼ exp(-k*dt);
P_¼(1/(1-A^2))*
(sigm^2*(1-exp(-k*dt))/k)*(theta*(1-exp(-k*dt))/2+r_

(1)*exp(-k*dt)); %the initial value of P
C¼theta*(1-exp(-k*dt)); %r(i)¼C+A*r(i-1)
zm¼zeros(63,2); %the prediction of YTM
R¼sigm2*[1 0;0 sqrt(1/3)]; %the covariance of measure-

ment functions
logfun¼0;
for i¼1:63
Q¼(sigm^2*(1-exp(-k*dt))/k)*(theta*(1-exp(-k*dt))/2

+r_(i)*exp(-k*dt)); %the conditional variance of state
functions

pz1(i)¼(c1(i)*b(1)*exp(a(1)-b(1)*r_(i)))/c1(i)*exp
(-z1(i)*1); %the partial derivative of one year z against r

pz3(i)¼sum(c3(i,:)’.*b.*exp(a-b*r_(i)))/sum(c3(i,:)’.
*tao.*exp(-z3(i)*tao)); %the partial derivative of three
year z against r

P1¼c1(i)*exp(a(1)-b(1)*r_(i)); %the prediction price
of one-year bond

P3¼sum(c3(i,:)’.*exp(a-b*r_(i))); % the prediction
price of three-year bond

%zm1¼bndyield(P1,c1(i),’20-Jan-1997’,’20-Jan-
1998’,1);

zm1¼-log(P1/c1(i)); %nonlinear measurement function
for one-year bonds

zm3¼bndyield(P3,couponrate(i),’20-Jan-1997’,’20-Jan-
2000’,1); %nonlinear measurement function for three-year
bonds
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H¼[pz1(i) pz3(i)]’;
%C1¼[zm1 zm3]’-H*r_(i);
%zm(i,:)¼ C1+H*r_(i);
%zm(i,:)¼ C1+H*r(i);
zm(i,:)¼[zm1 zm3]’; %the prediction of YTMs
v¼z(i,:)’-zm(i,:)’; %the error of measurement functions
v1(i,:)¼v’; % the error between the prediction and the

real value
F¼H*P_*H’+R; %the kalman gain
if det(F)<¼0

logfun¼0;
return

end
rr(i,:)¼r_(i);
zz(i,:)¼zm(i,:);
r(i)¼r_(i)+P_*H’*inv(F)*v; %update r
P¼P_-P_*H’*inv(F)*H*P_; %update P
ll¼-0.5*log(det(F))-0.5*v’*inv(F)*v; %likelihood

function
logfun¼logfun+ll;

r_(i+1)¼A*r(i)+C; %predict r
P_¼A*P*A’+Q; %predict P

end
QQ¼Q;
RR¼R;
logfun¼-logfun;
function covv¼covirance(param)
covv¼zeros(4,4);
for i¼1:4

for j¼1:4
parama¼param;
paramb¼param;
paramab¼param;
parama(i)¼param(i)*1.01;
paramb(j)¼param(j)*0.99;
paramab(i)¼param(i)*1.01;
paramab(j)¼paramab(j)*0.99;
ua¼kalfun(parama);
db¼kalfun(paramb);
udab¼kalfun(paramab);
kk¼kalfun(param);

covv(i,j)¼(ua+db-kk-udab)/((0.01*param(i))*
(0.01*param(j)));

end
end
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Codes for the Off-the-Run Bonds

%************define the likelihood function *************%
function [logfun LL zz v1 QQ RR]¼kalfunL(paramL)
sigm3¼paramL(1);
sigm4¼paramL(2);
load dataL.mat
z1¼dataL(:,1); %YTMs of one-year bonds
z3¼dataL(:,3); % YTMs of three-year bonds
c1¼dataL(:,2); % cash flows of one-year bonds
c3¼dataL(:,4:6); % cash flows of three-year bonds
couponrate¼dataL(:,7); %the coupon rate of three-year

bonds
r¼dataL(:,8); %the estimated r in the CIR model
% the estimated parameters in the CIR model
k¼0.08899;
theta¼0.022659;
sigm¼0.063329;
gam¼sqrt(k^2+2*sigm^2);
z¼[z1,z3];
tao¼[1 2 3]’;
dt¼1/12;
a¼zeros(3,1);
b¼zeros(3,1);
e¼zeros(3,1);
zz¼zeros(63,2);
v1¼zeros(63,2);
v¼zeros(2,1);
RR¼0;
QQ¼0;
for j¼1:3

a(j)¼log((2*gam*exp(k*j/2+gam*j/2))/((k+gam)*(exp
(gam*j)-1)+2*gam)^(2*k*theta/sigm^2));

b(j)¼(2*exp(gam*j)-2)/((k+gam)*(exp(gam*j)-1)
+2*gam);

e(j)¼(sigm3^2*tao(j)^3)/6;
end
L_(1)¼0; %the initial value of L
v1¼zeros(63,2);
v¼zeros(2,1);
P_¼0;
zm¼zeros(63,2); %the prediction of YTM
R¼sigm4*[1 0;0 sqrt(1/3)]; %the covariance of measure-

ment functions
logfun¼0;
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for i¼1:63
Q¼sigm3^2*dt; %the conditional variance of state

functions
pz1(i)¼(c1(i)*exp(a(1)-b(1)*r(i)+e(1)-L_(i)*1))/c1(i)

*exp(-z1(i)*1);%thepartialderivativeofoneyearzagainstr
pz3(i)¼sum(c3(i,:)’.*tao.*exp(a-b*r(i)+e-L_(i)

*tao))/sum(c3(i,:)’.*tao.*exp(-z3(i)*tao)); %the par-
tial derivative of three year z against r

P1¼c1(i)*exp(a(1)-b(1)*r(i)+e(1)-L_(i)*1); %the pre-
diction price of one-year bond

P3¼sum(c3(i,:)’.*exp(a-b*r(i)+e-L_(i)*tao)); % the
prediction price of three-year bond

%zm1¼bndyield(P1,c1(i),’20-Jan-1997’,’20-Jan-
1998’,1);

zm1¼-log(P1/c1(i)); %nonlinear measurement function
for one-year bonds

zm3¼bndyield(P3,couponrate(i),’20-Jan-1997’,’20-Jan-
2000’,1); %nonlinear measurement function for three-year
bonds

H¼[pz1(i) pz3(i)]’;
%C1¼[zm1 zm3]’-H*r_(i);
%zm(i,:)¼ C1+H*r_(i);
%zm(i,:)¼ C1+H*r(i);
zm(i,:)¼[zm1 zm3]’; %the prediction of YTMs
v¼z(i,:)’-zm(i,:)’; %the error of measurement

functions
v1(i,:)¼v’; % the error between the prediction and

the real value
F¼H*P_*H’+R; %the kalman gain
if det(F)<¼0

logfun¼0;
return

end
LL(i,:)¼L_(i);
zz(i,:)¼zm(i,:);
L(i)¼L_(i)+P_*H’*inv(F)*v; %update r
P¼P_-P_*H’*inv(F)*H*P_; %update P
ll¼-0.5*log(det(F))-0.5*v’*inv(F)*v;
logfun¼logfun+ll;
L_(i+1)¼L(i); %predict r
P_¼P+Q; %predict P

end
QQ¼Q;
RR¼R;
logfun¼-logfun;
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function covvL¼coviranceL(paramL)
covvL¼zeros(2,2);
for i¼1:2

for j¼1:2
parama¼paramL;
paramb¼paramL;
paramab¼paramL;
parama(i)¼paramL(i)*1.0000001;
paramb(j)¼paramL(j)*0.9999999;
paramab(i)¼paramL(i)*1.0000001;
paramab(j)¼paramab(j)*0.9999999;
ua¼kalfunL(parama);
db¼kalfunL(paramb);
udab¼kalfunL(paramab);
kk¼kalfunL(paramL);

covvL(i,j)¼(ua+db-kk-udab)/((0.0000001*paramL(i))*
(0.0000001*paramL(j)));

end
end
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numbers by using the Cholesky decomposition, and then the correlated default

times can be decided by these random numbers and the reduced-form model.

Finally, the fair BCLN coupon rate is obtained by the Monte Carlo simulation.

We also discuss the effect of issuer default risk on BCLN. We show that the

effect of issuer default risk cannot be accounted for thoroughly by considering

the issuer as a new reference entity in the widely used one-factor copula model,

in which constant default correlation is often assumed. A different default

correlation between the issuer and the reference entities affects the coupon rate

greatly and must be taken into account in the pricing model.

Keywords

Factor copula • Issuer default • Default correlation • Reduced-form model •

Basket credit derivatives • Cholesky decomposition • Monte Carlo simulation

23.1 Introduction

Structural and reduced-form models are the two main approaches for modeling

default risk. The structural model (Merton 1974) defines default as occurring when

a firm’s asset value falls below its debt. The reduced-form model (Jarrow and

Turnbull 1995), also known as the intensity model, views the default event as an

unexpected exogenous stochastic event. It estimates the intensity of the default

occurrence by using market data.

However, whether by the structural or reduced-form model, obtaining the joint

distribution of default times among a set of assets will be very complicated. Li (1999,

2000) first introduces the copula function (Sklar 1959) to simplify the estimation of

the joint distribution. Li assumes that the default events of reference entities follow

a Poisson process and sets the dependence structure as a Gaussian copula function.

Finally, he performs Monte Carlo simulation to obtain the default times. The copula

approach is the main approach for multi-name credit derivatives pricing in the last

decade. Mashal and Naldi (2003) use the copula approach to analyze how the default

probabilities of the protection sellers and buyers affect basket default swap (BDS)

spreads. While pricing the single-name credit default swap (CDS) with counterparty

risk based on the continuous-time Markov model, Walker (2006) indicates that using

a time-dependent correlation coefficient can improve the market-standard Gaussian

copula approach. By connecting defaults through a copula function, Brigo and

Chourdakis (2009) find that when the counterparty risk is involved, both the default

correlation and credit spread volatility impact the contingent CDS value.

In the implementation of the Gaussian copula using Monte Carlo simulation, the

computational complexity increases with the number of reference entities. Thus the

factor copula method, which makes the default event conditional on independent

state variables, is introduced to deal with these problems. Andersen et al. (2003)

find that one or two factors provide sufficient accuracy for the empirical correlation

matrices one encounters in credit basket applications. Hull and White (2004)

employ a multifactor copula model to price the kth-to-default swap and
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collateralized debt obligation (CDO). Moreover, Laurent and Gregory (2005) use

one-factor Gaussian copula to simplify the dependence structure of reference

entities and apply this approach to price BDS and CDO. Wu (2010) develops

three alternative approaches to price the basket credit linked note (BCLN) with

issuer default risk using only one correlation parameter. Wu et al. (2011) analyze

how issuer default risk impacts the BCLN coupon rate by an implied default

correlation between the issuer and the reference entities.

On the other hand, acceleration techniques such as the importance sampling method

and others are used to improve the simulation efficiency. Chiang et al. (2007) and Chen

and Glasserman (2008) apply the Joshi-Kainth algorithm (Joshi and Kainth 2004), and

Bastide et al. (2007) use the Stein method (Stein 1972) for the multi-name credit

derivative pricing to reduce variance of the simulation results.

This article constructs a factor copula framework to evaluate defaultable basket

credit derivatives. The effect of the default correlation between the issuer and the

reference entities is considered in the proposed model. Its application in BCLN with

issuer default risk is also demonstrated. This study shows that the default correla-

tion between the issuer and the reference entities plays an important role in the

decision of fair BCLN coupon rate.

The remainder of this article is organized as follows. Section 23.2 reviews the

factor copula model and shows the proposed basket credit derivative pricing

model with issuer default event. Subsequently, Section 23.3 introduces the BCLN

and demonstrates how to price it when issuer default risk exists. Section 23.4 presents

the results of numerical analysis. Conclusions are finally drawn in Section 23.5.

23.2 Factor Copula with Issuer Default Risk

The most widely used copula function is the Gaussian copula and its definition is as

follows:

CGa u1, u2, . . . , uNð Þ ¼ FR f�1 u1ð Þ, f�1 u2ð Þ, . . . , f�1 uNð Þ� �
(23.1)

where FR denotes a multivariate cumulative normal (Gaussian) distribution,

R represents the correlation coefficient matrix, and f�1 is the inverse function of

one dimensional cumulative Gaussian distribution.

Consider a credit portfolio which contains N reference entities, the default times

of each reference entity are t1,t2, . . . ,tN, respectively. According to the reduced-

form model, each reference entity default follows a Poisson process. The cumula-

tive default probability before time t is

Fi tð Þ ¼ P ti � tð Þ ¼ 1� e�lit, i ¼ 1, 2, . . . , N (23.2)

where li is the hazard rate of the reference entity i. Because Fi(t)�U(0,1), applying
the Gaussian copula obtains the multivariate joint distribution of default times, as

follows:
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F t1, t2, . . . , tNð Þ ¼ FR f�1 F1 t1ð Þð Þ, f�1 F2 t2ð Þð Þ, . . . , f�1 FN tNð Þð Þ� �

(23.3)

Let Xi represent the Gaussian random variable corresponding to the default time

of the reference entity i. In the one-factor copula model, the default time of

reference entity i depends on a common factor eY and a firm specific risk factor

exi. Both eY and eXi are independent standard Gaussian variables. The details of

one-factor copula model are given in Appendix 1. Thus Xi can be created via

Cholesky decomposition, as follows:

Xi ¼ rXiYeY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rXiY

2

q
eXi

, i ¼ 1, 2, . . . , N (23.4)

where rXiY denotes the correlation coefficient between the reference entity Xi and

the common factor eY. How to apply the Cholesky decomposition for generating

correlated random variables is shown in Appendix 2.

One-factor Gaussian copula model with constant pairwise correlations has

become the standard market model. In the standard market model, all rXiY in

Eq. 23.4 are equal to r, then the constant pairwise correlation rXiXj
(i 6¼ j) will

be r2. Let X1¼ f�1(F1(t1)), X2¼ f�1(F2(t2)), . . . , XN¼ f�1(FN(tN)), by mapping

ti and Xi, we can simulate the default time of the reference entity i using the

following equation:

ti ¼ F�1
i f Xið Þð Þ ¼ �ln 1� f Xið Þð Þ

li
, i ¼ 1, 2, . . . , N (23.5)

When issuer default risk is involved in the basket credit derivative, a natural

way is to view it as one reference entity of the derivative holder’s credit portfolio,

as discussed in Wu (2010). Wu (2010) assumes the issuer default time is deter-

mined by a Gaussian random variable Z. Like the reference entity variable Xi, Z is

decided by the common factor eY and the issuer’s specific risk factor eZ. Both eY
and eZ are independent standard Gaussian variables. Because the issuer is

viewed as one additional reference name in the portfolio, the correlation coeffi-

cient between Z and eY is also r. In this approach, Z and Xi are formulated as

follows:

Z ¼ reY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
eZ (23.6)

Xi ¼ reY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
eXi

, i ¼ 1, 2, . . . , N (23.7)

In the above approach, the default correlation between the issuer and the reference

entities will be fixed to r2, which is always positive. Thus, it is not flexible enough

to deal with the default correlation. The default correlation between the issuer and
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the reference entities has a different impact on the fair coupon rate, and this needs to

be considered in credit derivative pricing.

Suppose that the default correlation between the issuer and the reference entities is

rXZ. The relationship between the issuer, reference entities, and the common factor in

the proposed model is shown in Fig. 23.1. Given that the three random variables eY,
eZ, and eXi are independent of each other, Xi, which is the Gaussian random variable

corresponding to the default time of the reference entity i, can be obtained by the

Cholesky decomposition. Thus, when the default correlation between the issuer and

the reference entities is incorporated into the pricing model, Z and Xi should be

formulated as follows:

Z ¼ reY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
eZ (23.8)

Xi ¼ reY þ rXZ � r2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p eZ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2 � rXZ � r2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p
 !2

vuut eXi
(23.9)

To obtain a real number value of Xi, the following criteria must be satisfied.

r2 þ rXZ � r2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
 !2

� 1 (23.10)

By rearranging the above equation, the criteria can be written as follows:

2r2 þ r2XZ � 2r2rXZ � 1 (23.11)

According to the above settings, the correlation coefficient between the reference

entity Xi and Xj will be

Issuer
Z

Common Factor 
Y

Reference 
Entities

Xi, i = 1,2,…,N
rXZ

r r

Fig. 23.1 The default

correlations between the

issuer, reference entities, and

the common factor in the

proposed model
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rXiXj
¼ Cov Xi;Xj

� �
sXi

sXj

¼ Cov

reY þ rXZ � r2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p eZ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2 � rXZ � r2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

 !2
vuut eXi

,

reY þ rXZ � r2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p eZ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2 � rXZ � r2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

 !2
vuut eXj

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼ r2 þ rXZ � r2ð Þ2
1� r2

¼ r2 þ r2XZ � 2rXZr
2

1� r2

(23.12)

23.3 Pricing a Defaultable Basket Credit Linked Note

Basket credit linked note (BCLN) is a kind of basket credit derivative

product. It is a note with a price or coupon linked to credit events of

reference entities (obligations). The conventional form of BCLN is the kth-
to-default BCLN. The BCLN holder (the protection seller) pays the notional

principal to the BCLN issuer (the protection buyer) at the start of the

contract and receives the coupon payments until either the kth default or

the contract maturity, whichever occurs earlier. If the kth default occurs

before contract maturity, the BCLN holder receives the recovered value of

the reference entity from the BCLN issuer. Otherwise, the BCLN holder

receives the notional principal back on contract maturity. In derivative

markets, the issuer default risk is attracting considerable attention because

of the recent financial turmoil and collapses of large financial institutions. If

the BCLN issuer defaults, the BCLN holder will not receive the recovered

value of the reference entity as the credit event happens nor the notional

amount at the contract maturity. The coupon payments also cease due to the

issuer default. Thus the issuer default results in a large loss. Therefore, it is

important to incorporate issuer default risk in BCLN pricing to obtain

a reasonable coupon rate.

If the issuer default risk is not considered, the value of a kth-to-default BCLN
with N reference entities, of which the notional principal is one dollar, can be

written as follows:
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BCLN ¼ EQ
c�

XT
i¼1

e�rti I ti < tkð Þ
þ dk � e�rtk � I tk � tTð Þ
þ e�rtT � I tk > tTð Þ

2
6664

3
7775 (23.13)

where the coupon rate is c and is paid annually. The coupon payment dates are

ti,i ¼ 1,2,� � �,T. The maturity date is tT. Furthermore, tk is the kth default time, and

t1 < t2 <� � �< tN. dk is the recovery rate of the kth default reference entity. Thus dk
denotes the recovery value, which the issuer pays to the BCLN holder on the kth
default. The discount rate is r%. Finally, Q denotes the risk-neutral probability

measure, and I(.) is an indicator function.

Let the above equation equals one, the equation can be rewritten as:

c� EQ
XT
i¼1

e�rti I ti < tkð Þ
" #

¼ EQ 1� dk � e�rtk � I tk � tTð Þ
�e�rtT � I tk > tTð Þ
� � (23.14)

Here we employ the Monte Carlo simulation, which is described in Appendix 3, to

obtain the initial fair BCLN coupon rate c as follows:

c ¼

XW
s¼1

1� dsk � e�rts
k � I tsk � tT

� �
�e�rtT � I tsk > tT

� �
� �

XW
s¼1

XT
i¼1

e�rti I ti < tsk
� �" # (23.15)

where W represents the number of simulation runs. tsk represents the kth default

time, and dsk denotes the recovery rate of the kth default reference entity at the sth
simulation, respectively.

When the issuer default risk is involved, whether the issuer default occurs before

or after the kth default must be taken into account. This article defines t̂ as the issuer
default time and d̂ as the issuer recovery rate. The BCLN holder gets back the

recovered value of the reference obligation if the kth default occurs before both the

issuer default time t̂ and maturity date tT. If the issuer default occurs before the kth
default and maturity date, the issuer will not provide the BCLN holder with the

redemption proceeds and stop the coupon payments. In this situation, the notional

principal multiplied by the issuer recovery rate is returned to the BCLN holder. To

obtain all of the notional principal back, both the kth default time and the issuer

default time must be later than the contract maturity date. Thus, the value of a kth-
to-default BCLN with issuer default risk is modified as follows:
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BCLN ¼ EQ

c�
XT
i¼1

e�rti I ti < min tk, t̂ð Þð Þ

þ dk � e�rtk � I tk < min t̂, tTð Þð Þ
þ d̂ � e�rt̂ � I t̂ < min tk, tTð Þð Þ
þ e�rtT � I tT < min tk, t̂ð Þð Þ

2
66666664

3
77777775

(23.16)

Therefore, the fair value of the coupon rate c with issuer default risk is

c ¼

XW
s¼1

1� dsk � e�rts
k � I tsk < min t̂s, tTð Þ� �

�d̂ � e�rt̂s � I t̂s < min tsk, tT
� �� �

�e�rtT � I tT < min tsk, t̂
s

� �� �

2
664

3
775

XW
s¼1

XT
i¼1

e�rti I ti < min tsk, t̂
s

� �� �
" # (23.17)

where t̂s represents the issuer default time at the sth simulation.

23.4 Numerical Analysis

The numerical example presented here is a 5-year BCLN with three reference

entities; all of which are with notional principal one dollar, hazard rate 5 %, and

recovery rate 30 %. Furthermore, the coupon is paid annually; the hazard rate and

recovery rate of the issuer are 1 % and 30 %, respectively. Sixty thousand runs of

Monte Carlo simulation are executed to calculate the coupon rates, and the results

are shown in Tables 23.1, 23.2 and 23.3.

As we can see in Tables 23.1, 23.2 and 23.3, when issuer default risk

is considered by viewing it as one reference entity of the credit portfolio

(column II), the BCLN coupon rate increases compared to those without issuer

default risk (column I) for k ¼ 1–3. This is reasonable because the existence of

issuer default risk increases the risk of holding a BCLN; thus, the holder will

demand a higher coupon rate.

When the default correlations between the issuer and the reference entities are

considered as in the proposed model, the BCLN coupon rates with issuer default risk

(column III) are greater than those without issuer default risk (column I) for k¼ 2 and 3

in Tables 23.2 and 23.3. However, when k ¼ 1 in Table 23.1, most of the BCLN

coupon rates with issuer default risk are lower than those without issuer default risk,

especially when the issuer and the reference entities are highly negatively or positively

correlated. This result shows that the BCLN coupon rates with issuer default risk are

not necessarily greater than those without issuer default risk.Moreover, fromFigs.23.2,

646 P.-C. Wu et al.



T
a
b
le

2
3
.1

F
ir
st
-t
o
-d
ef
au
lt
B
C
L
N
co
u
p
o
n
ra
te
s
w
it
h
o
u
t
an
d
w
it
h
is
su
er

d
ef
au
lt
ri
sk
.
(I
)
D
ef
au
lt
fr
ee
:
Is
su
er

d
ef
au
lt
ri
sk

is
n
o
t
in
cl
u
d
ed

in
th
e
p
ri
ci
n
g
m
o
d
el
.

(I
I)
In

cr
ed
it
p
o
rt
fo
li
o
:
T
h
e
is
su
er
is
v
ie
w
ed

as
o
n
e
re
fe
re
n
ce

en
ti
ty

o
f
th
e
cr
ed
it
p
o
rt
fo
li
o
.T

h
e
d
ef
au
lt
co
rr
el
at
io
n
s
b
et
w
ee
n
th
e
is
su
er
an
d
th
e
re
fe
re
n
ce

en
ti
ti
es

ar
e
fi
x
ed

to
r2
,
w
h
ic
h
is
al
w
ay
s
p
o
si
ti
v
e.
(I
II
)
T
h
e
p
ro
p
o
se
d
m
o
d
el
:
T
h
e
d
ef
au
lt
co
rr
el
at
io
n
b
et
w
ee
n
th
e
is
su
er

an
d
th
e
re
fe
re
n
ce

en
ti
ti
es

is
r X

Z
,
w
h
ic
h
m
ay

b
e

p
o
si
ti
v
e
o
r
n
eg
at
iv
e

r

(I
)

(I
I)

(I
II
)
T
h
e
p
ro
p
o
se
d
m
o
d
el

D
ef
au
lt
fr
ee

In
cr
ed
it
p
o
rt
fo
li
o

r X
Z

�0
.9

�0
.6

�0
.3

0
0
.3

0
.6

0
.9

�0
.9

8
.0
1
9
5
%

8
.0
3
4
6
%

–
–

–
–

–
–

7
.6
7
0
0
%

�0
.8

9
.2
6
2
5
%

9
.3
4
7
1
%

–
–

–
–

7
.0
2
9
2
%

9
.3
5
9
3
%

7
.8
8
5
2
%

�0
.7

1
0
.2
4
1
7
%

1
0
.4
2
7
9
%

–
–

–
7
.2
8
9
5
%

1
0
.2
1
2
4
%

1
0
.1
5
6
2
%

7
.9
3
2
7
%

�0
.6

1
1
.0
4
6
9
%

1
1
.3
5
0
1
%

–
–

–
1
0
.5
5
4
6
%

1
1
.4
0
6
1
%

1
0
.5
4
8
8
%

7
.9
4
5
2
%

�0
.5

1
1
.7
6
0
4
%

1
2
.1
9
2
8
%

–
–

1
0
.2
1
8
4
%

1
2
.0
2
1
3
%

1
2
.0
9
7
4
%

1
0
.7
8
4
0
%

7
.9
6
5
0
%

�0
.4

1
2
.3
3
3
6
%

1
2
.8
8
4
6
%

–
8
.8
1
1
0
%

1
1
.8
8
5
6
%

1
2
.9
6
0
9
%

1
2
.5
1
3
9
%

1
0
.9
2
7
5
%

7
.9
6
6
5
%

�0
.3

1
2
.7
8
9
0
%

1
3
.4
5
0
9
%

–
1
0
.6
5
7
6
%

1
2
.9
5
9
4
%

1
3
.5
4
7
9
%

1
2
.7
8
5
2
%

1
1
.0
2
7
3
%

7
.9
6
5
9
%

�0
.2

1
3
.1
3
0
4
%

1
3
.8
6
4
5
%

7
.5
0
6
2
%

1
1
.7
0
3
5
%

1
3
.5
9
1
0
%

1
3
.9
2
3
6
%

1
2
.9
8
3
9
%

1
1
.0
7
9
1
%

7
.9
8
9
4
%

�0
.1

1
3
.3
3
3
6
%

1
4
.1
1
8
1
%

8
.7
8
4
6
%

1
2
.2
3
9
8
%

1
3
.9
2
6
3
%

1
4
.1
3
2
7
%

1
3
.1
1
5
2
%

1
1
.1
0
3
8
%

7
.9
7
5
8
%

0
1
3
.3
8
7
5
%

1
4
.1
7
8
5
%

9
.0
7
3
8
%

1
2
.3
8
6
5
%

1
4
.0
2
1
0
%

1
4
.1
7
8
5
%

1
3
.1
2
0
5
%

1
1
.1
1
0
5
%

7
.9
9
3
3
%

0
.1

1
3
.3
5
4
7
%

1
4
.1
2
1
5
%

8
.7
2
7
4
%

1
2
.1
7
4
3
%

1
3
.8
9
6
2
%

1
4
.1
3
7
3
%

1
3
.0
7
6
4
%

1
1
.1
0
3
6
%

8
.0
0
4
4
%

0
.2

1
3
.1
2
3
6
%

1
3
.8
3
3
6
%

7
.4
4
0
0
%

1
1
.5
9
6
4
%

1
3
.4
9
2
3
%

1
3
.8
8
6
3
%

1
2
.9
6
7
8
%

1
1
.0
7
0
3
%

7
.9
9
4
1
%

0
.3

1
2
.7
7
4
4
%

1
3
.4
0
7
3
%

–
1
0
.5
3
4
4
%

1
2
.8
0
3
5
%

1
3
.4
8
7
1
%

1
2
.7
9
4
0
%

1
0
.9
9
9
5
%

7
.9
7
0
2
%

0
.4

1
2
.2
9
3
3
%

1
2
.8
2
0
9
%

–
8
.6
8
3
1
%

1
1
.7
6
6
8
%

1
2
.8
4
3
6
%

1
2
.5
0
3
4
%

1
0
.9
0
3
6
%

7
.9
7
0
4
%

0
.5

1
1
.7
0
9
1
%

1
2
.1
2
5
2
%

–
–

1
0
.1
2
7
0
%

1
1
.9
3
8
7
%

1
2
.0
4
1
5
%

1
0
.7
6
0
3
%

7
.9
7
1
5
%

0
.6

1
0
.9
8
5
4
%

1
1
.2
8
0
6
%

–
–

–
1
0
.4
8
4
6
%

1
1
.3
3
4
3
%

1
0
.5
1
0
2
%

7
.9
4
4
8
%

0
.7

1
0
.1
9
4
1
%

1
0
.3
7
5
0
%

–
–

–
7
.1
9
6
2
%

1
0
.1
6
6
1
%

1
0
.1
1
0
6
%

7
.9
2
1
0
%

0
.8

9
.2
0
6
1
%

9
.2
8
0
2
%

–
–

–
–

6
.9
6
4
4
%

9
.2
9
3
3
%

7
.8
3
9
8
%

0
.9

7
.9
7
8
8
%

7
.9
8
9
2
%

–
–

–
–

–
–

7
.6
3
1
9
%

23 Factor Copula for Defaultable Basket Credit Derivatives 647



T
a
b
le

2
3
.2

S
ec
o
n
d
-t
o
-d
ef
au
lt
B
C
L
N

co
u
p
o
n
ra
te
s
w
it
h
o
u
t
an
d
w
it
h
is
su
er

d
ef
au
lt
ri
sk
.
(I
)
D
ef
au
lt
fr
ee
:
Is
su
er

d
ef
au
lt
ri
sk

is
n
o
t
in
cl
u
d
ed

in
th
e
p
ri
ci
n
g

m
o
d
el
.
(I
I)
In

cr
ed
it
p
o
rt
fo
li
o
:
T
h
e
is
su
er

is
v
ie
w
ed

as
o
n
e
re
fe
re
n
ce

en
ti
ty

o
f
th
e
cr
ed
it
p
o
rt
fo
li
o
.
T
h
e
d
ef
au
lt
co
rr
el
at
io
n
s
b
et
w
ee
n
th
e
is
su
er

an
d
th
e
re
fe
re
n
ce

en
ti
ti
es

ar
e
fi
x
ed

to
r2
,
w
h
ic
h
is
al
w
ay
s
p
o
si
ti
v
e.
(I
II
)
T
h
e
p
ro
p
o
se
d
m
o
d
el
:
T
h
e
d
ef
au
lt
co
rr
el
at
io
n
b
et
w
ee
n
th
e
is
su
er

an
d
th
e
re
fe
re
n
ce

en
ti
ti
es

is
r X

Z
,
w
h
ic
h

m
ay

b
e
p
o
si
ti
v
e
o
r
n
eg
at
iv
e

r

(I
)

(I
I)

(I
II
)
T
h
e
p
ro
p
o
se
d
m
o
d
el

D
ef
au
lt
fr
ee

In
cr
ed
it
p
o
rt
fo
li
o

r X
Z

�0
.9

�0
.6

�0
.3

0
0
.3

0
.6

0
.9

�0
.9

5
.2
1
6
9
%

5
.2
5
8
5
%

–
–

–
–

–
–

5
.2
8
7
0
%

�0
.8

4
.9
7
1
4
%

5
.1
4
9
0
%

–
–

–
–

5
.9
4
8
1
%

5
.1
9
9
8
%

5
.2
2
1
3
%

�0
.7

4
.7
2
0
3
%

5
.0
4
0
6
%

–
–

–
6
.1
4
6
3
%

5
.3
3
9
0
%

4
.9
6
1
7
%

5
.2
0
4
1
%

�0
.6

4
.4
7
5
3
%

4
.9
0
7
7
%

–
–

–
5
.5
4
6
3
%

4
.9
7
3
8
%

4
.8
2
7
0
%

5
.2
1
3
5
%

�0
.5

4
.2
4
7
6
%

4
.7
8
4
4
%

–
–

5
.8
2
6
4
%

5
.1
0
6
1
%

4
.7
3
7
2
%

4
.7
5
9
2
%

5
.1
7
3
6
%

�0
.4

4
.0
5
6
8
%

4
.6
5
8
7
%

–
6
.1
6
5
6
%

5
.3
8
2
7
%

4
.8
1
2
9
%

4
.6
0
4
4
%

4
.7
0
5
5
%

5
.1
5
4
1
%

�0
.3

3
.8
8
8
8
%

4
.5
4
4
0
%

–
5
.7
8
8
0
%

5
.0
6
6
4
%

4
.6
0
7
8
%

4
.4
9
8
6
%

4
.6
5
6
6
%

5
.1
4
2
2
%

�0
.2

3
.7
7
6
6
%

4
.4
4
9
0
%

6
.3
0
2
8
%

5
.5
0
6
0
%

4
.8
4
1
7
%

4
.4
5
8
4
%

4
.4
2
3
8
%

4
.6
1
5
3
%

5
.1
3
7
5
%

�0
.1

3
.6
9
1
7
%

4
.3
7
1
7
%

6
.1
0
7
9
%

5
.3
3
3
2
%

4
.7
0
2
8
%

4
.3
7
5
9
%

4
.3
7
1
1
%

4
.6
0
2
0
%

5
.1
4
3
4
%

0
3
.6
6
4
6
%

4
.3
4
1
2
%

6
.0
3
8
6
%

5
.2
6
1
2
%

4
.6
4
7
7
%

4
.3
4
1
2
%

4
.3
4
4
1
%

4
.5
8
6
7
%

5
.1
5
0
7
%

0
.1

3
.6
8
3
3
%

4
.3
5
5
9
%

6
.0
9
5
9
%

5
.3
0
3
3
%

4
.6
8
3
6
%

4
.3
6
0
6
%

4
.3
4
7
8
%

4
.5
9
3
9
%

5
.1
6
3
6
%

0
.2

3
.7
4
8
0
%

4
.4
0
2
5
%

6
.2
4
7
5
%

5
.4
5
8
4
%

4
.7
9
1
6
%

4
.4
2
4
4
%

4
.3
7
1
0
%

4
.5
9
6
9
%

5
.1
7
3
2
%

0
.3

3
.8
8
1
7
%

4
.5
0
7
0
%

–
5
.7
2
3
5
%

4
.9
9
4
2
%

4
.5
5
8
0
%

4
.4
4
3
0
%

4
.6
2
8
8
%

5
.1
9
0
0
%

0
.4

4
.0
2
4
2
%

4
.5
9
9
5
%

–
6
.0
9
4
3
%

5
.3
1
6
5
%

4
.7
5
1
3
%

4
.5
2
7
6
%

4
.6
6
7
9
%

5
.1
9
0
8
%

0
.5

4
.2
1
5
5
%

4
.7
2
4
9
%

–
–

5
.7
5
3
3
%

5
.0
5
9
6
%

4
.6
8
5
4
%

4
.7
0
5
1
%

5
.2
0
1
6
%

0
.6

4
.4
0
9
2
%

4
.8
3
3
8
%

–
–

–
5
.4
9
5
2
%

4
.9
0
0
2
%

4
.7
5
6
5
%

5
.2
0
0
5
%

0
.7

4
.6
4
4
7
%

4
.9
5
5
9
%

–
–

–
6
.0
6
3
9
%

5
.2
7
0
4
%

4
.8
8
5
1
%

5
.1
9
2
9
%

0
.8

4
.9
1
3
8
%

5
.0
8
7
3
%

–
–

–
–

5
.8
7
3
4
%

5
.1
4
0
4
%

5
.2
0
6
5
%

0
.9

5
.1
9
5
2
%

5
.2
3
3
6
%

–
–

–
–

–
–

5
.2
6
0
2
%

648 P.-C. Wu et al.



T
a
b
le

2
3
.3

T
h
ir
d
-t
o
-d
ef
au
lt
B
C
L
N
co
u
p
o
n
ra
te
s
w
it
h
o
u
t
an
d
w
it
h
is
su
er

d
ef
au
lt
ri
sk
.
(I
)
D
ef
au
lt
fr
ee
:
Is
su
er

d
ef
au
lt
ri
sk

is
n
o
t
in
cl
u
d
ed

in
th
e
p
ri
ci
n
g
m
o
d
el
.

(I
I)
In

cr
ed
it
p
o
rt
fo
li
o
:
T
h
e
is
su
er
is
v
ie
w
ed

as
o
n
e
re
fe
re
n
ce

en
ti
ty
o
f
th
e
cr
ed
it
p
o
rt
fo
li
o
.
T
h
e
d
ef
au
lt
co
rr
el
at
io
n
s
b
et
w
ee
n
th
e
is
su
er
an
d
th
e
re
fe
re
n
ce

en
ti
ti
es

ar
e
fi
x
ed

to
r2
,
w
h
ic
h
is
al
w
ay
s
p
o
si
ti
v
e.
(I
II
)
T
h
e
p
ro
p
o
se
d
m
o
d
el
:
T
h
e
d
ef
au
lt
co
rr
el
at
io
n
b
et
w
ee
n
th
e
is
su
er

an
d
th
e
re
fe
re
n
ce

en
ti
ti
es

is
r X

Z
,
w
h
ic
h
m
ay

b
e

p
o
si
ti
v
e
o
r
n
eg
at
iv
e

r

(I
)

(I
I)

(I
II
)
T
h
e
p
ro
p
o
se
d
m
o
d
el

D
ef
au
lt
fr
ee

In
cr
ed
it
p
o
rt
fo
li
o

r X
Z

�0
.9

�0
.6

�0
.3

0
0
.3

0
.6

0
.9

�0
.9

3
.5
7
9
0
%

3
.7
1
6
7
%

–
–

–
–

–
–

3
.8
1
5
0
%

�0
.8

3
.0
1
1
5
%

3
.3
6
3
2
%

–
–

–
–

5
.1
0
4
1
%

3
.4
1
2
2
%

3
.6
9
3
7
%

�0
.7

2
.6
4
2
9
%

3
.1
4
4
1
%

–
–

–
5
.2
5
3
6
%

3
.3
8
6
2
%

3
.1
0
8
3
%

3
.6
5
4
5
%

�0
.6

2
.3
9
9
3
%

2
.9
8
5
3
%

–
–

–
3
.4
8
8
5
%

3
.0
1
4
3
%

2
.9
8
5
9
%

3
.6
2
2
3
%

�0
.5

2
.2
3
1
9
%

2
.8
7
3
5
%

–
–

3
.7
7
0
6
%

3
.0
4
1
6
%

2
.8
6
4
4
%

2
.9
2
2
8
%

3
.6
2
2
5
%

�0
.4

2
.1
1
0
7
%

2
.7
8
3
5
%

–
4
.5
5
6
0
%

3
.2
0
1
3
%

2
.8
4
1
9
%

2
.7
7
5
2
%

2
.8
8
5
8
%

3
.6
0
8
8
%

�0
.3

2
.0
2
8
0
%

2
.7
1
7
7
%

–
3
.6
7
8
2
%

2
.9
5
1
1
%

2
.7
3
4
4
%

2
.7
2
4
3
%

2
.8
6
1
4
%

3
.5
9
3
3
%

�0
.2

1
.9
8
0
9
%

2
.6
5
9
7
%

5
.3
7
9
7
%

3
.3
0
4
0
%

2
.8
0
0
3
%

2
.6
6
3
5
%

2
.6
7
4
3
%

2
.8
2
7
3
%

3
.5
8
8
6
%

�0
.1

1
.9
4
9
9
%

2
.6
2
5
1
%

4
.5
0
8
5
%

3
.1
3
8
4
%

2
.7
2
4
2
%

2
.6
2
4
7
%

2
.6
4
8
0
%

2
.8
1
5
5
%

3
.5
8
8
9
%

0
1
.9
3
5
9
%

2
.6
0
2
0
%

4
.3
2
4
6
%

3
.0
8
1
9
%

2
.6
9
1
6
%

2
.6
0
2
0
%

2
.6
3
6
0
%

2
.8
0
1
3
%

3
.5
7
4
5
%

0
.1

1
.9
4
7
0
%

2
.6
1
0
1
%

4
.5
0
1
2
%

3
.1
3
3
1
%

2
.7
0
7
2
%

2
.6
0
9
5
%

2
.6
3
5
6
%

2
.7
9
9
6
%

3
.5
7
5
4
%

0
.2

1
.9
7
1
9
%

2
.6
3
2
0
%

5
.3
2
6
2
%

3
.2
7
8
7
%

2
.7
6
7
7
%

2
.6
3
5
7
%

2
.6
4
8
2
%

2
.8
0
9
9
%

3
.5
7
6
1
%

0
.3

2
.0
1
7
1
%

2
.6
6
6
8
%

–
3
.6
2
8
9
%

2
.8
9
6
2
%

2
.6
7
8
0
%

2
.6
7
8
8
%

2
.8
2
0
5
%

3
.5
8
5
9
%

0
.4

2
.0
8
8
3
%

2
.7
2
1
4
%

–
4
.4
9
1
0
%

3
.1
6
5
1
%

2
.7
8
3
6
%

2
.7
1
8
6
%

2
.8
4
2
6
%

3
.5
8
7
9
%

0
.5

2
.2
1
0
5
%

2
.8
2
3
1
%

–
–

3
.7
4
0
5
%

2
.9
9
6
0
%

2
.8
0
9
8
%

2
.8
8
9
4
%

3
.6
0
0
7
%

0
.6

2
.3
7
9
3
%

2
.9
4
7
1
%

–
–

–
3
.4
6
1
5
%

2
.9
8
2
5
%

2
.9
4
6
8
%

3
.6
2
5
7
%

0
.7

2
.6
2
7
9
%

3
.1
0
9
9
%

–
–

–
5
.2
0
0
6
%

3
.3
5
7
3
%

3
.0
7
8
4
%

3
.6
3
4
5
%

0
.8

2
.9
7
8
3
%

3
.3
1
4
4
%

–
–

–
–

5
.0
2
6
5
%

3
.3
6
2
8
%

3
.6
8
1
8
%

0
.9

3
.5
5
8
3
%

3
.6
8
5
8
%

–
–

–
–

–
–

3
.7
9
9
2
%

23 Factor Copula for Defaultable Basket Credit Derivatives 649



23.3 and 23.4, we find that when the correlation between the issuer and the reference

entities approaches a strongly positive correlation (rXZ ¼ 0.9), the BCLN coupon rate

curve becomes flatter and less sensitive to the common factor.

23.5 Conclusion

This article applies a factor copula approach for evaluating basket credit derivatives

with issuer default risk. The proposed model considers the different effects of
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Fig. 23.3 Second-to-default BCLN coupon rates under various default correlations between the

common factor and reference entities/issuer (r)
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Fig. 23.2 First-to-default BCLN coupon rates under various default correlations between the

common factor and reference entities/issuer (r)
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the default correlation between the issuer and the reference entities.

A numerical example of the proposed model on BCLN is demon-

strated and discussed in the article. The example shows that viewing the issuer

default as a new reference entity cannot reflect the effect of issuer default risk

thoroughly. The different default correlation between the issuer and the reference

entities affects the coupon rate greatly and must be taken into account in credit

derivative pricing.

Appendix 1: Factor Copula

In a factor copula model, we assume that different variables depend on some

common factors. The most widely used model in finance is the one-factor Gaussian

copula model.

One-Factor Gaussian Copula Model

Let Si(t) ¼ P(ti > t) and Fi(t) ¼ P(ti � t) be the marginal survival and marginal

default distributions, respectively. Let Y be the common factor and f its density
function. Assume the default times are conditionally independent, given the

common factor Y. q
ijY
t ¼ P(ti > t | Y) and p

ijY
t ¼ P(ti � t | Y) are the conditional

survival and conditional default distributions, respectively. According to the law

of iterated expectations, the joint survival and default distribution functions are

as follows:
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Fig. 23.4 Third-to-default BCLN coupon rates under various default correlations between the

common factor and reference entities/issuer (r)
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S t1; t2; . . . ; tnð Þ
¼ P ti > t1, t2 > t2, . . . , tn > tnð Þ
¼
ðYn

i¼1

q
i yj
t f yð Þdy

(23.18)

F t1; t2; . . . ; tnð Þ
¼ P ti � t1, t2 � t2, . . . , tn � tnð Þ
¼
ðYn

i¼1

p
i yj
t f yð Þdy

(23.19)

In the one-factor Gaussian copula, the credit variable Xi is Gaussian

distributed. Xi depends on the common factor Y and an individual factor eXi as
follows:

Xi ¼ rXiYY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rXiY

2
q

eXi
, i ¼ 1, 2, . . . , N (23.20)

where Y and eXi are two independent standard Gaussian random variables.

We can get the default time ti¼ F�1
i (f(Xi)), where f(�) is the cumulative density

function of a standard Gaussian variable. Then the conditional distribution of ti,
given the common factor Y, is

p
i Yj
t ¼ f

f�1 Fi tð Þð Þ � rXiYYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2XiY

q

0
B@

1
CA, (23.21)

and the joint distribution function of t1,t2,� � �,tn is as follows:

F t1; t2; . . . ; tnð Þ ¼
ðYn

i¼1

p
i yj
t f yð Þdy

¼
ð Yn

i¼1

f
f�1 Fi tð Þð Þ � rXiYYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2XiY

q

0
B@

1
CA

2
64

3
75f yð Þdy (23.22)

where f(y) is the standard Gaussian density. The copula of default times is

a Gaussian copula.

Law of Iterated Expectations

The law of iterated expectations states that E(Y)¼ E(E(Y|X)). The proof is as follows:
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E E Y Xjð Þð Þ ¼
ð
E Y Xjð Þf X xð Þ dx

¼
ð ð

y f X Yj y xjð Þ dy

� �
f X xð Þ dx

¼
ð ð

y f X,Y x; yð Þ dxdy

¼
ð
y

ð
f X, Y x; yð Þ dx

� �
dy

¼
ð
y f yð Þ dy ¼ E Yð Þ

(23.23)

Appendix 2: Cholesky Decomposition and Correlated Gaussian
Random Numbers

Cholesky Decomposition

A symmetric positive defined real number matrix A can be decomposed as

follows:

A ¼ LLT (23.24)

where L is a lower triangular matrix with strictly positive diagonal entries and LT is
the transpose of L. This format is the Cholesky decomposition and it is unique. The

entries of L are as follows:

Lj, j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aj, j �

Xj�1

k¼1

L2j, k

vuut (23.25)

Li, j ¼ 1

Lj, j
Ai, j �

Xj�1

k¼1

Li, kLj, k

 !
, for i > j (23.26)

Correlated Gaussian Random Numbers

In financial applications, the Cholesky decomposition is usually used to create

correlated Gaussian random variables. Suppose we need to generate n correlated

random Gaussian numbers, X1, X2, � � �, Xn, given a positive defined correlation

coefficient matrix R. We first generate iid standard Gaussian random variables Z1,
Z2,� � �, Zn and let
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X ¼
X1

X2

⋮
Xn

2
664

3
775, Z ¼

Z1

Z2

⋮
Zn

2
664

3
775:

Let X ¼ CZ, where C is an n � n matrix; then R ¼ Var(X) ¼ E(XXT) ¼ CCT and

C is the lower triangular matrix of the Cholesky decomposition of R. Therefore, we
can obtain the correlated Gaussian random variables X1, X2, � � �, Xn by letting

X ¼ CZ.

Appendix 3: Monte Carlo Simulation

Monte Carlo simulation is a computational algorithm based on random number

sampling. It generates n iid random samples X1, X2, � � �, Xn of the random

variable X and estimates E[X] by X = X1þX2þ���þXn

n . X converges to E[X] as

n ! 1, according to the law of large numbers.

Weak Law of Large Numbers (WLLN)

Let X1, X2, � � � , Xn be an iid sequence of random variables for which E[X] < 1.

Then X1þX2þ���þXn

n 				!P
E X½ � as n ! 1. The WLLN implies that the Monte

Carlo method converges to E[X].

Strong Law of Large Numbers (SLLN)

Let X1, X2, � � � , Xn be an iid sequence of random variables for which E[X] < 1.

Then X1þX2þ���þXn

n 				!a:s:
E X½ � as n ! 1. The SLLN implies that the Monte

Carlo method almost surely converges to E[X].

Uniform and Nonuniform Random Numbers

Usually, the computer has a uniform random number generator, which can generate

a sequence of iid uniform random numbers U1, U2, � � � on [0,1]. Then, how do we

get the nonuniform random numbers? Usually, these can be achieved by inversion.

Given a distribution function F(∙), there is a one-to-one mapping from U(∙) to F(∙).
Since F(∙) is nondecreasing, F-1(x) ¼ inf{y : F(y) � x}. If F is continuous and

strictly increasing, the inverse of the function is F(F�1(x)) ¼ F�1(F(x)) ¼ x. Thus,
the nonuniform random numbers with distribution F can be obtained by x¼ F�1(u),
where u is a uniform random number on [0,1].
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Abstract

Thompson (Journal of Financial Economics 99, 1–10, 2011) argues that double
clustering the standard errors of parameter estimators matters the most when the

number of firms and time periods are not too different. Using panel data of

similar number in firms and time periods on China’s mutual funds, we estimate

double- and single-clustered standard errors by wild-cluster bootstrap procedure.

To obtain the wild bootstrap samples in each cluster, we reuse the regressors

(X) but modify the residuals by transforming the OLS residuals with weights

which follow the popular two-point distribution suggested by Mammen (Annals
of Statistics 21, 255–285, 1993) and others. We then compare them with other
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estimates in a set of asset pricing regressions. The comparison indicates that

bootstrapped standard errors from double clustering outperform those from

single clustering. Our findings support Thompson’s argument. They also suggest

that bootstrapped critical values are preferred to standard asymptotic t-test
critical values to avoid misleading test results.

Keywords

Asset-pricing regression • Bootstrapped critical values • Cluster standard

errors • Double clustering • Firm and time effects • Finance panel data • Single

clustering • Wild-cluster bootstrap

24.1 Introduction

Researchers using finance panel data have increasingly realized the need to account

for the residual correlation across both firms and/or time in estimating standard

errors of regression parameter estimates. Ignoring such clustering can result in

biased OLS standard errors. Two forms of residual dependence that are common in

finance applications are time-series dependence and cross-sectional dependence.

The former is called a firm effect, whereas the latter a time effect. The usual

solution to account for the residual dependence is to compute clustered standard

errors. The notable examples are Petersen (2009) and Thompson (2011).

Using the Monte Carlo-simulated panel data, Petersen (2009) compares the

performance of many different standard error estimation methods surveyed in the

literature. These methods include White’s heteroskedasticity-robust standard

errors, single clustering (by firm or by time), and double clustering (by both firm

and time). His findings suggest that the performance of different methods depends

on the forms of residual dependence. For example, in the presence of a firm effect,

the clustered standard errors are unbiased and can produce correctly sized

confidence intervals while those estimated by OLS, White, or Fama-MacBeth

method are biased.

Much of the analysis in Petersen (2009) is based on the simulated panel data set

whose data structure is certain. With the simulated panel data set, it is easier to

choose among the estimation methods. This paper chooses an alternative method,

namely, bootstrapping, to investigate the performance of standard errors estimated

by White’s OLS and single- and double-clustering methods with actually observed

data. The use of the bootstrap method is motivated by Kayhan and Titman (2007)

who show that bootstrapped standard errors are robust to heteroskedasticity, and

serial correlation problems in panel finance data applications. Moreover, despite

the wide use of the bootstrap in statistical and econometric applications, the

survey finding of Petersen (2009) found that the bootstrap applications are

relatively scarce in the finance literature. Hence, it may be of some interest to

investigate the bootstrapping application to a set of panel finance data on

Chinese mutual funds.
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The bootstrap method is applied to a panel data set on the monthly returns for

54 Chinese mutual funds over the period of September 2002–August 2006. The data

set is applied to a set of asset pricing regressions. Table 24.1 contains summary

statistics such as sample skewness, sample excess kurtosis, and two test statistics for

normality for the variables used in the asset pricing regressions. They suggest that

normality does not characterize the variables. Additionally, since the time-series

and/or cross-sectional independence assumption is most likely to be violated in panel

data sets, ignoring these dependence could result in biased estimates of the standard

errors. As evidenced in Kayhan and Titman (2007), bootstrapping is a possible

alternative to handle this dependence issue.

In this paper, we are particularly interested in the performance of the bootstrapped

double-clustered standard error estimates, because Thompson (2011) has argued that

double clustering matters most when the number of firms and time periods are not too

different. Given the panel data set we have collected which consists of 54 China mutual

fund returns for 48 months with data exhibiting firm and time effects, double clustering

is likely to show a significant difference. Our findings show that the bootstrapped

standard errors from double clustering leads to more significant test results. We also

demonstrate the importance of using bootstrapped critical values in hypothesis testing.

A number of bootstrap procedures are available in the literature. The

bootstrap procedure we consider in this paper is the wild-cluster bootstrap procedure,

which is an extended version of the wild bootstrap proposed by Cameron et al. (2008)

in a cluster setting. This procedure has been shown by Cameron et al. (2008) to perform

very well in practice, despite the fact that the pairs cluster bootstrap works well in

principle. In this paper, our comparison of the finite-sample size of the bootstrapped

t-statistics resulting from the pairs cluster bootstrap and wild-cluster bootstrap also

indicates that the wild-cluster bootstrap performs better.

The rest of the paper is organized as follows. Section 24.2 presents the wild-cluster

bootstrap procedure. Section 24.3 discusses the empirical results and the last section

gives conclusions.

Table 24.1 Summary statistics for variables used in China’s mutual fund regressions

(Sept 2002–Aug 2006)

Variable Mean

Std.

deviation Skewness Kurtosis

Normality test stat.

W-sq. A-sq.

Mutual funds

returns

0.0006 0.0580 0.1313 0.1489 0.1809*** 0.2062***

Market

excess

returns

0.0025 0.0465 0.1554 �0.7801 2.4993*** 18.3650***

Notes: Sample size N ¼ 2,592. Individual mutual funds return is the dependent variable, while the

market excess return is the independent variable. W-sq or W2 ¼ Cramer-von Mises test statistic, and

A-sq or A2¼Anderson-Darling test statistic. Both test statistics are empirical distribution function (EDF)

statistics. The computing formulas for W2 and A2 statistics are available in Stephens (1974), p. 731
*** denotes statistical significance at the 1 % level
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24.2 Wild-Cluster Bootstrap

The bootstrap we use in this paper is known as the “wild-cluster bootstrap”

which is based on the nonclustered wild bootstrap proposed by Wu (1986).

Proofs of the ability of the wild bootstrap to provide refinements in the

linear regression model for linear regression models with heteroskedastic errors

can be found in Liu (1988) and Mammen (1993). Cameron et al. (2008)

extended Wu’s (1986) wild bootstrap to the clustered setting.

The wild-cluster bootstrap procedure involves two stages. In the first stage,

we consider the asset pricing model with G clusters (subscripted by g), and

with Ng observations within each cluster, namely, yg ¼ X
0
gb + eg, g ¼ 1, . . . ,G,

b is k � 1, Xg is Ng � k, and yg and eg are Ng � 1 vectors. We fit the model to

the actually observed panel data set by OLS and estimate White’s

heteroskedasticity-robust standard errors, as well as standard errors,

clustered by firm, by time, and by both. We then save residuals and

denote them as êg.

The second stage is the resampling procedure which creates bootstrap

samples for each cluster, ŷ�1;X1

� �
; . . . ; ŷ�G;Xg

� �� �
where ŷ�g = X

0
gb̂ þ e�g . For

each bootstrap sample in a cluster, the explanatory variables are reused and

unchanged. The residuals e�g are constructed according to e�g = agêg , where the

weight ag serves as a transformation of the OLS residuals êg . A variety of

constructions of weights ag have proposed in the literature1. We use the

two-point distribution of the weight variable ag suggested in Mammen (1993),

Brownstone and Valletta (2001), and Davidson and Flachaire (2008), namely, ag
which takes on one of the following values: (i) 1� ffiffiffi

5
p� �

=2 � �0:6180 with

probability 1þ ffiffiffi
5

p� �
= 2

ffiffiffi
5

p� � � 0:7236 or (ii) 1þ ffiffiffi
5

p� �
=2 � 1:6180 with

probability 1� 1þ ffiffiffi
5

p� �
= 2

ffiffiffi
5

p� � � 0:2764 . Note that this random variable ag
has a mean zero with variance equal to one and the constraint E(a3g) ¼ 1. We

perform 1,000 replications. On each replication, a new set of e�g is generated and

a new set of bootstrap-data is created based on ŷ�G = X
0
gb̂ þ e�g, and therefore a new

set of parameter estimates, denoted as b̂
�
, is obtained.

For the 1,000 starred estimates (e�g), we calculate their bootstrapped

standard errors using different estimation methods. The bootstrapped test

statistics are calculated by dividing the 1,000 parameter estimates by the

corresponding bootstrapped standard errors. The bootstrapped critical values

can be obtained from the bootstrapped distribution of these test

statistics. A detailed explanation of the procedure we follow is documented

in Appendix 1.

1For example, in Cameron et al. (2008), ag takes the value +1 with probability 0.5, or the value�1

with probability 1–0.5.
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24.3 Empirical Results

24.3.1 Data and Definitions of the Variables

The Data. The sample consists of the returns on 54 publicly traded closed-end

mutual funds that are gathered for 48 months from September 2002 to August 2006,

a total of 2,592 observations. The mutual fund data set is purchased from the GTA

Information Technology Company, Shenzhen, China. For simplicity, we divide the

mutual funds investment objectives into equity growth and nongrowth funds. Our

sample consists of 37 (68.5 %) growth funds and 17 (31.5 %) nongrowth funds.

Although the first closed-end fund in China was sold to the public in April 19982,

complete data for all 54 mutual funds are collected from September 2002.

The summary statistics for the variables used in China’s mutual fund return

regressions are displayed in Table 24.1, and the test statistics for normality for these

variables suggest that the variables are non-normal.

Definitions of the variables. The following are the definitions of the variables

used in the estimation procedures: Ri, t ¼ the return of a mutual fund i in excess of

the risk-free rate in month t. Savings deposit rate of the People’s Bank of China3 is

used as the proxy for the risk-free rate. Rm, t ¼ is the market return in excess of the

risk-free rate in month t and is calculated4 as follows:

Rm, t ¼ 0:4� R1, t þ 0:4� R2, t þ 0:2� 0:0006, (24.1)

where R1 is the monthly return on Shanghai Stock Exchange index, R2 the monthly

return on Shenzhen Stock Exchange index, and 0.06 % is the monthly return on

savings deposits.

24.3.2 Results

Table 24.2 presents the results from a set of asset pricing regressions of China

mutual fund returns on its market returns. The firm and time effect in OLS residuals

and data can be seen graphically in Fig. 24.1. Figure 24.1, Panel A, shows the

within-firm autocorrelations in OLS residuals and independent variable, respec-

tively, for lags 1–12. Panel B of Fig. 24.1 displays the within-month autocorrela-

tions for residuals for lags 1–12. As the independent variable is a monthly series

without cross-sectional units, we cannot calculate its within-month autocorrela-

tions, thus no within-month plot is available for the independent variable.

Figure 24.1 suggests that the residuals exhibit both firm and time effects, whereas

2Chen and Lin (2006), p. 384
3Data are taken from the website of the People’s Bank of China: http://www.pbc.gov.cn/publish/

zhengcehuobisi/627/index.html.
4The calculation follows that of Shen and Huang (2001), p. 24.

24 Panel Data Analysis and Bootstrapping: Application to China Mutual Funds 661

http://www.pbc.gov.cn/publish/zhengcehuobisi/627/index.html
http://www.pbc.gov.cn/publish/zhengcehuobisi/627/index.html


independent variable shows firm effects. Given Thompson’s (2011) argument that

double clustering matters most when the number of firms and time periods are not

too different, our data set which has the number of mutual funds (54) similar to

the number of months (48) is expected to imply that double clustering is important

in our analysis.

In Table 24.2, the second column presents the OLS parameter estimates, whereas

the remaining columns report their corresponding t-statistics by dividing each param-

eter estimate by its corresponding standard error. These t-statistics indicate all beta

coefficients are statistically significant at the 1 % level, whereas the intercept is only

significant in one case (under column II) when the standard error computed by single

clustering by firm is used. More importantly, the t-statistics in Table 24.2 enable us to
compare the clustered standard errors constructed from double and single clustering

with the OLS White estimate. Notice that the t-statistic for beta coefficient

obtained from double clustering (SÊboth) is 9.10 (column IV) which is much smaller

than 46.9 calculated using the White method (column I), indicating the presence of

firm and time effects. It also means that the double-clustering standard errors are

much larger. A comparison of t-statistics in columns III and IV implies the SÊboth of

the beta coefficient (9.10) is similar to the standard error clustered by time which is

9.01. This means that the firm effects do not matter much. The comparison reveals

that OLS White standard errors are underestimated when residuals exhibit both firm

and time effects.

Table 24.2 Application to asset pricing modeling

t-statistics

Clustered by

White Firm Time Firm and time

Regressor Estimate I II III IV

Rm, t 0.8399 46.935*** 65.492*** 9.017*** 9.099***

1 % critical value (CV) 2.576 2.576 2.576 2.576

Intercept �0.0016 �1.858 �2.222** �0.326 �0.327

1 % critical value (CV) �2.576 �2.576 �2.576 �2.576

Coefficient estimates OLS

R-squared 0.4539

Regressor Estimate V VI VII VIII

Rm, t 0.8401 47.215*** 66.808*** 50.886*** 73.672***

Bootstrapped 1 % CV 1.951 2.661 2.520 11.898

Intercept �0.0016 �1.878** �2.262** �2.033** �2.659

Bootstrapped 1 % CV �2.300 �2.717 �2.371 �12.288

Coefficient estimates Wild-cluster

bootstrap

R-squared 0.4579

Notes: The dependent variable is the monthly mutual fund return in excess of risk-free rate,

denoted as Ri,t, and the independent variable Rm,t is the market returns in excess of risk-free rate.

Both variables are monthly observations from September 2002 to August 2006
***, and ** denote statistical significance at the 1 %, and 5 % levels, respectively
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Turning to the results obtained by the wild-cluster bootstrapping, the story changes.

The bootstrapped t-statistics of the beta coefficient estimates displayed in columns

V–VIII of Table 24.2 differ quite significantly from those in columns I–IV. The

t-statistic is 47.2 when the bootstrapped White standard error is used and 66.8 if the

bootstrapped standard error clustered by the firm is used. This means the firm effect is

significant in the data.By a similar comparison, the bootstrapped t-statistic is 73.7when

the double-clustered standard error is used, meaning both the time and firm effects are

strong in the residuals. The bootstrapped t-statistic is 50.9 when the bootstrapped

standard error clustered by time is used implying the time effect exists in the data.

These comparisons suggest both the firm and time effects matter in the computation of

the bootstrapped standard errors using double as well as single clustering. Their

implication is that we might follow what Kayhan and Titman (2007) have done in

their study to simply compute the bootstrapped standard errors with our panel data set.

PANEL B: Within Month
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Fig. 24.1 The autocorrelations of residuals and the independent variable are plotted for 1–12

lags. The solid lines in Panel A and B show, respectively, within-firm and within-month autocor-

relations in residuals, whereas the dashed line in Panel A shows the within-firm autocorrelations in

the independent variable
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The statistical significance of the bootstrapped t-statistics of the beta coefficient

estimates is determined by using the bootstrapped critical values reported

in Table 24.3. Compared with the bootstrapped critical values presented in

Table 24.3, we notice that all bootstrapped t-statistics constructed from bootstrapped

standard errors are statistically significant at the 1 % level. The intercept is now

significant in three cases (columns V–VII) when the standard errors were computed

by White and by single clustering. It is noteworthy that in Table 24.3 the

bootstrapped critical values on beta coefficient estimates when double clustering is

used are numerically larger than the corresponding asymptotic t-test critical values
of 2.58 (1%), 1.96 (5%), and 1.65 (10%), indicating that the use of the large-sample

(normal approximation) critical values can lead to misleading test results when both

firm and time effects exist in the residuals. On the other hand, intercept coefficient

in column VIII was not significant when bootstrapped double clustering is

used. Interestingly, we observe from Table 24.3 that bootstrapped critical values

differ considerably depending on different standard error estimation methods.

We now examine the finite-sample size of the bootstrapped t-statistics assuming

the beta coefficient takes the OLS estimate under the null hypothesis. Table 24.4

shows that for the bootstrapped t-statistics, no serious size distortion is found as

Table 24.3 Bootstrapped critical values

Percentiles 0.005 0.025 0.05 0.95 0.975 0.995

OLS White

Rm,t �1.842 �1.396 �1.174 1.213 1.490 1.951

Intercept �2.300 �1.656 �1.396 1.385 1.587 2.091

Clustered by firm

Rm,t �2.621 �1.984 �1.698 1.766 2.007 2.661

Intercept �2.717 �2.035 �1.700 1.778 2.014 2.672

Clustered by time

Rm,t �2.513 �1.795 �1.510 1.517 1.821 2.520

Intercept �2.371 �1.956 �1.608 1.629 1.917 2.364

Clustered by firm and time

Rm,t �6.517 �4.376 �3.491 3.081 4.416 11.898

Intercept �12.288 �4.053 �2.792 3.136 4.384 8.168

Note: Critical values are obtained by implementing the bootstrap procedure presented in the

Appendix 1

Table 24.4 Rejection rates using wild-cluster bootstrapped critical values

OLS White Clustered by firm Clustered by time Clustered by firm and time

Rm,t 0.050 0.067 0.053 0.052

Intercept 0.042 0.034 0.037 0.036

Note: The number of replications is 1,000

664 W.L. Chou et al.



reflected by the close to 5 % size values. However, for the tests based on the

standard asymptotic t-test critical values, all tests suffer from serious size distortion.

For example, those based on the OLS White and clustered by time are undersized,

while others oversized (see Table 24.5).

24.4 Conclusion

In this paper, we examine the performance of single- and double-clustered standard

errors using the wild-cluster bootstrap method. The panel data set on the Chinese

mutual funds used in the analysis has similar number of firms (54) and time periods

(48); we are particularly interested in the performance of the bootstrapped

double-clustered standard errors. This is mainly due to the conclusion made in

Thompson (2011) that double clustering the standard errors matters the most when

the number of firms and time periods are not too different.

In the presence of firm and time effects, the standard OLS White standard errors

are found to be underestimated when compared to standard errors computed from

double clustering (columns I–IV, Table 24.2). Further, the wild-cluster

bootstrapped standard errors are found to account for the firm and time effects in

residuals, as evidenced in column VIII of Table 24.2. The bootstrapped t-statistic

computed by OLS White method is found to be much smaller than that calculated

from the double clustering, suggesting that the firm and time effects in

residuals are strong.

The size values for the test statistics of the beta coefficient estimates

in Table 24.4 suggest that the bootstrapped double clustering outperforms the

single clustering either by firm or by time. They support Thompson’s (2011)

argument that double clustering the standard errors of parameter estimators matters

the most when the number of firms and time periods are not too different.

Size distortions reported in Table 24.5 imply that it may not be appropriate to

compare the bootstrapped t-statistics with standard t-test critical values. These
findings also suggest that to avoid obtaining misleading test results with the

presence of either firm or time effects or both, the bootstrapped critical values are

preferred to conventional critical values. Additionally, a comparison of the sizes

displayed in Table 24.4 with those calculated using the pairs cluster bootstrap

method shown in Table 24.6 also suggests the wild-cluster bootstrap approach

performs better.

Table 24.5 Rejection rates using conventional critical values

OLS White Clustered by firm Clustered by time Clustered by firm and time

Rm,t 0.004 0.069 0.037 0.206

Intercept 0.012 0.046 0.036 0.203

Note: The number of replications is 1,000
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Appendix 1: Wild-Cluster Bootstrap Procedure

The following steps are used to obtain the wild-clustered bootstrapped standard

errors and critical values:5

(i) Define firm effects, and time effects. The asset pricing model using individual

variables Ri,t and Rm,t is specified as

Rit ¼ b0 þ Rm, tb1 þ eit, i ¼ 1, . . . , N, t ¼ 1, . . . , T (24.2)

where the variables Ri,t and Rm,t are, respectively, the return of mutual fund

i and the market return in excess of risk-free rate in month t. b0 and b1
are unknown parameters. The construction of the variables is detailed in

Sect. 24.3.1. eit is the error term. It may be heteroskedastic but is assumed to

be independent of the explanatory variable E(eit | Rm,t) ¼ 0.

Following Thompson (2011), we make the following assumptions on the

correlations between errors, eit:

(a) Firm effects: The errors may be correlated across time for a particular firm,

that is, E(eit, eik | Rm,t,Rm,k) 6¼ 0 for all t 6¼ k.

(b) Time effects: The errors may be correlated across firms within the same time

period, that is,

E eit, ejt Rm, t
��� � 6¼ 0 for all i 6¼ j:

Let G be the number of clusters, and let Ng be the number of observations

within each cluster. The errors are assumed to be independent across clusters

but correlated within clusters. The asset pricing model can be written as

Rig ¼ b0 þ Rmb1 þ eig, i ¼ 1, . . . , Ng g ¼ 1, . . . , G,
Rg ¼ db0 þ Rmgb1 þ eg, g ¼ 1, . . . , G,

(24.3)

where Rig, Rm, and eig are scalars;Rg, Rmg, and eg are Ng� 1 vectors; and

d is Ng � 1 vector with all elements equal to 1.

(ii) Fit data to model. We fit model (Eq. 24.3) to the observed data using OLS

and obtain the parameter estimates b̂0 and b̂1 together with the OLS residuals

êg, g ¼ 1,. . ., G

5See also Cameron et al. (2008) for details

Table 24.6 Rejection rates using pairs cluster bootstrapped critical values

OLS White Clustered by firm Clustered by time Clustered by firm and time

Rm,t 0.043 0.040 0.040 0.040

Intercept 0.062 0.048 0.059 0.060

Note: The number of replications is 1,000
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(iii) Construct 1,000 bootstrap samples. The bootstrap-residuals are obtained

according to the following transformation relation: e�g = agêg, where ag takes

on one of the following values: (i) 1� ffiffiffi
5

p� �
=2 � �0:6180 with probability

1þ ffiffiffi
5

p� �
= 2

ffiffiffi
5

p� � � 0:7236 or (ii) 1þ ffiffiffi
5

p� �
=2 � 1:6180 with probability

1� 1þ ffiffiffi
5

p� �
= 2

ffiffiffi
5

p� � � 0:2764:

Hence,

(a) For each cluster g = 1, . . . , G, set e�g = 1:618�êgwith probability 0.2764
or e�g = �0:618�êg with probability 0.7236.

(b) Repeat (a) 1,000 times to obtain e�g and then construct the bootstrap

samples R�
g as follows:

R�
g ¼ db̂0 þ Rmgb̂1 þ e�g: (24.4)

(iv) With each pseudo sample generated in step (iii), we estimate the parameters b̂
�
0

and b̂
�
1 by OLS, White standard errors (SÊwhite)which are OLS standard errors

robust to heteroskedasticity, as well as standard errors clustered by firm (SÊfirm), by

time (SÊtime), and by both firm and time (SÊboth). The simulations are performed

using GAUSS 9.0. The standard error formulas can be found in Thompson (2011).

(v) Construct bootstrapped test statistics by taking ratios of b̂
�
i ið = 0, 1Þ obtained

by OLS to its corresponding SÊwhite, SÊfirm, SÊtime, and SÊboth obtained in

step (iv). More specifically, the bootstrapped test statistics are expressed as

follows:

w�
i ¼

b̂
�
i � b̂i

SÊ b̂
�
i

� 	 , i ¼ 0, 1, (24.5)

where SÊ b̂
�
i

� 	
can either be SÊwhite, SÊfirm, SÊtime, or SÊboth.

(vi) Obtain the empirical distribution of the individual test statistics by sorting the

1,000 test statistics computed in step (v) in an ascending order. Bootstrapped

critical values are then obtained from this empirical distribution at the following

quantiles: 0.5 %, 2.5 %, 5 %, 95 %, 97.5 %, and 99.5 %, respectively.
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Abstract

This paper finds that for closed-end country funds, the international CAPM can

be rejected for the underlying securities (NAVs) but not for the share prices. This

finding indicates that country fund share prices are determined globally where as

the NAVs reflect both global and local prices of risk. Cross-sectional variations

in the discounts or premiums for country funds are explained by the differences
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in the risk exposures of the share prices and the NAVs. Finally, this paper shows

that the share price and NAV returns exhibit predictable variation and country

fund premiums vary over time due to time-varying risk premiums. The paper

employs generalized method of moments (GMM) to estimate stochastic

discount factors and examines if the price of risk of closed-end country fund

shares and NAVs is identical. GMM is an econometric method that was a

generalization of the method of moments developed by Hansen (Econometrica
50, 1029–1054, 1982). Essentially GMM finds the values of the parameters so

that the sample moment conditions are satisfied as closely as possible.

Keywords

Capital markets • Country funds • CAPM • Closed-end funds • Market

segmentation • GMM • Net asset value • Stochastic discount factors • Time-

varying risk • International asset pricing

25.1 Introduction

The purpose of this paper is to provide an empirical analysis of pricing of closed-

end country equity funds in the context of rational asset-pricing models which

account for the role of market segmentation and time-varying risk premiums.

Specifically, the paper addresses the following issues. How are country fund

share prices and net asset values (NAVs) determined? What are the implications

of differential pricing of closed-end fund shares and NAVs for cross-sectional and

time-series variations in the premiums of the funds? The answers to these questions

contribute to the burgeoning literature on country funds.

Closed-end country equity funds are a relatively recent innovation in international

capital markets. Whereas only four closed-end country equity funds traded in New

York at the end of 1984, currently there are 94 closed-end country equity funds targeting

over 31 countries. Past researchers have examined issues related to the benefits of

diversification from holding these funds (Bailey and Lim 1992; Chang et al. 1995;

Bekaert and Urias 1996) and how they should be designed and priced (Hardouvelis

et al. 1993; Diwan et al. 1995; Bodurtha et al. 1995). Relatively unexplored is how the

expected returns of the country fund share prices and NAVs are determined, in

a framework of market segmentation and time-varying risk premiums.

Country fund share prices are determined in the USA, but their NAVs are

determined in the country of origin of the fund. Models of international

asset pricing (e.g., Errunza and Losq 1985) and models of country fund pricing

(e.g., Errunza et al. 1998) suggest that the expected returns on country fund share

prices should be determined by their covariances with the world market portfolio.

However, if there are barriers to investment, such as limits on ownership, the capital

markets may be segmented. In such a segmented market, the expected returns of the

NAVs will be determined by their covariances with the world market portfolio as

well as the home market portfolio, to the extent that the home market is not spanned

by the world market.
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The foundation of this paper is in such a framework of market segmentation and

its implications for international capital market equilibrium. In such a market

structure where the local investors have complete access to the world market but

the foreign investors (e.g., the US investors) have only partial access to the local

equity market in terms of the percentage of equity of a firm they can own, the prices

paid by foreigners relative to local investors can be higher due to the limited supply

of the local securities. To preclude arbitrage, it is assumed that the local investors

cannot buy the securities at a lower price and sell it to the foreign investor at

a higher price. Thus, foreign investors are willing to pay a premium due to the

diversification benefits from adding that security to their purely domestic portfolio.

The premium arises only if the cash flows of the local security are not spanned by

the purely domestic portfolio for the foreign investor. Since closed-end country

fund’s share prices and NAVs are determined in two separate markets, the expected

returns on the prices and NAVs can be different, leading to premiums, both positive

and negative. Thus, barriers to investments may be sufficient to generate

premiums.1

Even in the absence of institutional restrictions on foreign equity ownership or

even in a purely domestic context (see, e.g., Pontiff 1997), it is still possible for

observed price returns to be much more volatile than NAV returns. As shown in the

academic literature, closed-end country fund share prices and NAVs are not perfect

substitutes. The sources of these differences may be attributable to differences in

numeraires, information, and possibly noise trading causing excess volatility in the

share price returns (see Lee et al. 1991). Apart from investment restrictions, these

imperfections alone may be sufficient to generate premiums. However, Bonser-

Neal et al. (1990) document that relaxation of investment restrictions leads to

a decrease in the share price-NAV ratio for a sample of country equity funds.

Further, Bodurtha et al. (1995) document that the correlation of changes in country

fund premiums and domestic fund premiums is low and insignificant, indicating

that the structure of international capital markets is an important contributor in

determining premiums.

Thus, the objective of this paper is to provide an analysis of what explains the

expected returns on closed-end country fund share prices and NAVs in a segmented

market framework. The paper utilizes both unconditional and conditional tests

on mean-variance efficiency of the world market index (as proxied by the

Morgan Stanley Capital International world index) and provides results on the

cross-sectional and time-series variations of premiums across closed-end country

equity funds. In addition, the paper employs generalized method of moments

(GMM) as discussed in Appendix 1 to estimate stochastic discount factors

and examines if the price of risk of closed-end country fund shares and NAVs

is identical.

1Hence forth both premiums and discounts are referred to as premiums. Therefore, a discount is

treated as a negative premium.
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The sample consists of 40 closed-end country equity funds. Twenty of the funds

are from developed markets and 20 funds are from emerging markets.2 The main

empirical findings of the paper are as follows. For country fund share prices, the

hypothesis that the unconditional international CAPM is a valid model cannot be

rejected. However, for the NAVs the international CAPM can be rejected.

This finding suggests that country fund share prices and NAVs are not priced

identically. The share prices reflect the global price of risk only, but the NAVs

reflect both the global and the local prices of risk. It is shown that the differences in

risk exposure to the world market index of share prices and NAVs can explain up to

18.7 % of the cross-sectional variations in premiums for developed market funds,

but only 1.9 % of the variation for emerging market funds.

When conditioning on information is allowed, the international CAPM explains

country fund share returns and NAV returns for both developed and emerging

markets. However, the hypothesis that the price of risk is identical between

closed-end fund shares and NAVs can be rejected for alternate stochastic discount

factors for majority of the markets. This finding is consistent with market segmen-

tation. Therefore, differential pricing of the fund shares and the underlying portfolio

causes expected returns to be different and explains the existence of premiums and

their variation over time. Finally, it is shown that the country fund premiums vary

over time due to differential conditional risk exposures of the share prices

and NAVs.

The principal contributions of this paper are as follows. Existence of premiums

on closed-end funds has been a long-standing anomaly. In the domestic setting,

negative premiums have been the norm, which has been attributed to taxes,

management fees, illiquid stocks, or irrational factors (e.g., noise trading).

Although these factors may also be important in explaining country fund premiums,

unlike domestic closed-end funds, country fund share prices and NAVs are deter-

mined in two different market segments. This paper provides a rational explanation

for the premiums on country funds based on differential risk exposures of the share

prices and NAVs and market segmentation. Unlike the noise trading hypothesis

which assumes the presence of “sentiment” or an additional factor for the share

prices but not the NAVs, this paper shows that the same factor may be priced for the

share prices and the NAVs, but priced differently. The differential risk exposures

are shown to be among the significant determinants of cross-sectional variations in

the premiums. Further, this paper examines the role of time variations in expected

returns for country fund returns and attributes the time-varying country fund

premiums to time-varying country fund returns.

The paper is organized as follows. Section 25.2 presents the theoretical motiva-

tion and the hypotheses. Section 25.3 presents the data and the descriptive statistics.

Section 25.4 provides the empirical results for pricing of country funds. Concluding

remarks are presented in the last section.

2In 1993, the World Bank defined an emerging market as a stock market in a developing country

with a GNP per capita of $8,625 or less. This is the definition of an emerging market in this paper.
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25.2 Theoretical Motivation

This section first focuses on the theoretical motivation for the empirical testing of the

unconditional mean-variance efficiency of the world market index in the context of

country funds. The following subsections present tests for cross-sectional variations in

country fund premiums and the methodology for pricing country funds using stochas-

tic discount factors. Finally, this section outlines the methodology for explaining the

time variations in country fund premiums attributable to time-varying risk premium.

25.2.1 Pricing of Country Funds in the Context of
International CAPM

In a global pricing environment, the world market portfolio surrogates the market

portfolio. If purchasing power parity is not violated and there are no barriers to

investment, the world market portfolio is mean-variance efficient (see, e.g., Solnik

1996; Stulz 1995) and expected returns are determined by the international CAPM.

The international CAPM implies that the expected return on an asset is proportional

to the expected return on the world market portfolio:

E r½ �i ¼ biE rw½ � (25.1)

where, for any asset i, E[ri] is the expected excess return on the asset and E[rw] is the

expected excess return on the world market portfolio. The excess returns are

computed in excess of the return on a risk-free asset. Following a standard practice

(see Roll 1977), mean-variance efficiency of a benchmark portfolio can be

ascertained by estimating a regression of the form

ri, t ¼ ai þ bi, wrw, t þ ei, t (25.2)

where ri,t is the excess return on a test asset and rw,t is the return on a benchmark

portfolio.

The GMM-based methodology as outlined in Mackinlay and Richardson (1991) is

employed to test mean-variance efficiency of the world market index in the context of

country funds, using just a constant and the excess return on the worldmarket index as

the instruments.3 The hypothesis that ai ¼ 0, for all i ¼ 1, . . ., N, where N is the

number of assets, is tested. This is the restriction implied by the international CAPM.

The joint hypothesis is tested by a Wald test for country fund share prices and NAVs

returns. Since country fund’s share prices are determined with complete access to

their markets of origin, their expected returns are expected to be determined via the

3Although the evidence in favor of the domestic CAPM is ambiguous, many studies such as

Cumby and Glen (1990) and Chang et al. (1995) do not reject the mean-variance efficiency of the

world market index. Interestingly, although Cumby and Glen (1990) do not reject mean-variance

efficiency of the world market index, they reject mean-variance efficiency of the US market index.
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international CAPM (see, e.g., Errunza and Losq 1985). However, if the country from

which the fund originates has restrictions on foreign equity investments, the expected

returns of the NAVs will be determined via their covariances with both the world

market portfolio and the part of the corresponding local market portfolio which is not

spanned by the world market portfolio (see Errunza et al. 1998).

Letting ei, t ¼ ri, t � ai � bi, wrw, t (25.3)

for the N assets, the residuals from the above equation can be stacked into

a vector et+1. The model implies that E[ei,t+1jZt] ¼ 0, for 8 i and 8 t. Therefore, E

[et+1 � Zt] ¼ 0 for 8 t, where Zt is a set of predetermined instruments. GMM

estimation is based on minimizing the quadratic form f0Of, where the sample

counterpart of E[et+1 � Zt] is given by f¼ {1/T[∑E[et+1 � Zt]} and O is an optimal

weighting matrix in the sense of Hansen (1982).

25.2.2 Cross-Sectional Variations in Country Fund Premiums

If the mean-variance efficiency of the world market portfolio is not rejected, then

expected returns of the test assets are proportional to their “betas” with respect to

the world market portfolio. Therefore,

E rað Þ ¼ lwba, w where a ¼ p or n (25.4)

where E(rp) and E(rn) are the expected excess returns on the share prices and NAVs,

respectively, and lw is the risk premium on the world market index. Stulz and

Wasserfallen (1995) demonstrate that the logarithm of two share prices can be

written as a linear function of the differences in their expected returns.4 Therefore,

Prem ¼ log P=NAVð Þ ¼ E rnð Þ � E rp
� �

(25.5)

where Prem is the premium on a fund calculated as the logarithm of the price-NAV

ratio. Combining Eqs. 25.4 and 25.5 leads to the testable implication

Prem ¼ lw bn,w � bp,w
� �

(25.6)

The above equation assumes that the international CAPM is valid and world

capital markets are integrated. In reality, the world markets may be segmented.

Therefore, the effect of market segmentation is captured by introducing additional

4Stulz and Wasserfallen (1995) use the log-linear approximation of Campbell and Ammer to write

the logarithm of the price of a stock as ln(P) ¼ ESZi[(1 � Z)dt+j+1 � rt+j+1] + y, where Z is

a log-linear approximation parameter and rt+j+1 is the return from t+j to t+j+1. Assuming that Z is

the same for prices and NAVs, and the relation holds period by period, the premium can be written

as above.
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variables based on prior research of Errunza et al. (1998) who document that measures

of access, spanning, and substitutability of the prices and NAVs have explanatory

power for the cross-sectional variation of premiums. The spanning measure (SPN) is

the conditional variance of the NAV return of a fund, unspanned by the US market

return and the fund’s share price returns, with specification as follows:

rn, t ¼ ai þ birUS, t þ birp, t þ ei, t (25.7)

where ei,t has a GARCH (1, 1) specification. The conditional volatility of ei,t is the

measure of spanning. The measure of substitution (SUB) is the ratio of conditional

volatilities of the share price and NAV returns of a fund not spanned by the US

market. The specifications for the expected return equations are

rn, t ¼ ai þ birUS, t þ en, t (25.8)

rp, t ¼ ai þ birUS, t þ ep, t (25.9)

where the error terms en,t and ep,t have GARCH (1, 1) specifications.5 The ratio of

the conditional volatilities of the residuals in Eqs. 25.8 and 25.9 is used as the

measure of substitutability of the share prices and NAVs.

Since it is difficult to systematically classify countries in terms of degree of access,

a dummy variable is used to differentiate developed and emerging markets. The

dummy variable takes value of one for developed markets. Another measure of

access, which is the total purchase of securities from a country by US residents as

a proportion of total global purchase, is also used as a measure of access to

a particular market. It is expected that the premiums are lower for countries with

easy access to their capital markets. Therefore, the coefficient on the access

variable is expected to be negative. The measure of spanning is interpreted as the

degree of ease with which investors could obtain substitute assets for the NAVs. As

noted earlier, even if there are barriers to foreign equity ownership, availability of

substitute assets can overcome the barriers. Since the spanning variable is

the volatility of the residual as specified in Eq. 25.7, it is expected to be positive.

The measure of imperfect substitutability of the share prices and NAVs is the ratio of

the variances of the share price and NAV returns. It is expected that the premium is

inversely related to this measure. Therefore, the extended cross-sectional equation is

Premi ¼ d0 þ d1DIFi þ d2SPNi þ d3SUBi þ d4ACCi þ ei (25.10)

where:

DIFi ¼ the difference of the betas on the world market index for the NAVs and the

share prices.

SPNi¼ the conditional residual volatility fromEq. 25.7 used asmeasures of spanning.

5Note that unlike here, Errunza et al. (1998) use returns on industry portfolios to proxy for the US

market.
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SUBi ¼ the imperfect substitutability of the share prices and the NAVs proxied by

the ratio of conditional volatilities in Eqs. 25.8 and 25.9.

ACC ¼ a measure of access to a market proxied by a dummy variable which is

1 for developed markets [ACC(d)] or the total purchase of securities from the US

residents from that country as a fraction of global security purchases [ACC(cf)].

The empirical specification in Eq. 25.10 or its variations is used in the empirical

analysis for explaining cross-sectional variations in premiums. The higher the

difference of risk exposures, the higher is the premium. Therefore, the sign of d1
is expected to be positive. However, as the level of unspanned component is higher,

the level of premiums should be higher. Therefore the sign of d2 is expected to be

positive. Also, the higher the substitutability of the share prices and the NAVs, the

lower should be the premium. Therefore, d3 is expected to be negative. Since higher
access is associated with lower premiums, d4 is also expected to be negative.

25.2.3 Conditional Expected Returns and Pricing of Country Funds

If investors use information to determine expected returns, expected returns could

vary over time because of rational variations in risk premium. In such a scenario,

the premium on a country fund can be time varying as a result of the differential

pricing of the share prices and the NAVs.

Let Rtþ1 ¼ Ptþ1þDtþ1

Pt
, where Pt+1 is the price at time t+1 and Dt+1 is the dividend

at time t+1. Asset-pricing models imply that E[Mt+1Rt+1jZt] ¼ 1, where Zt is

a subset of the investor’s information set at time t (see, e.g., Ferson 1995). M is

interpreted as a stochastic discount factor (SDF). The existence of the above

equation derives from the law of one price. Given a particular form of an SDF, it

is estimated by using GMM as outlined earlier.6

The SDFs examined in this paper are the SDFs implied by the international

CAPM and its extension under market segmentation. The international CAPM is

obtained by assuming that the SDF is a linear function of the return on the world

market index (Rw, t+1). Specifically, the SDF is:

International CAPM: M ¼ l0 þ l1Rw, tþ1 (25.11)

A two-factor SDF, where the second factor is the return on a regional index

(specifically for Asia or Latin America), is also estimated. Such a model is implied

by the models of Errunza and Losq (1985).7 Specifically, the SDFs is:

Two-factor model: M ¼ l0 þ l1Rw, tþ1 þ l2Rh, tþ1 (25.12)

6Ferson and Foerster (1994) show that an iterated GMM approach has superior finite sample

properties. Therefore the iterated GMM approach is used in the estimations.
7For such conditional representation, see, for example, Ferson and Schadt (1996).
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Once an SDF is estimated for a group of share prices and NAVs, the coefficients

of the estimated SDFs are compared to test the hypothesis that for a given SDF, the

share price and NAV are priced identically.8

25.2.4 Conditional Expected Returns and Time-Varying Country
Fund Premiums

To examine the role of time-varying risk premiums in explaining the time variation

in country fund premiums, the following procedure is used. Similar to Ferson and

Schadt (1996), a conditional international CAPM in which the betas vary over time

as a linear function of the lagged instrumental variables is used. The following

equations are estimated via GMM:

rp, tþ1 ¼ ap þ bp,w Ztð Þrw, tþ1 þ ep, tþ1 (25.13)

rn, tþ1 ¼ an þ bn,w Ztð Þrw, tþ1 þ en, tþ1 (25.14)

where the excess return on the world market index is scaled by a set of instrumental

variables. Using Eq. 25.6 and the above time-varying betas, the premium can be

written as

Premtþ1 ¼ g0 þ g1 bn,w Ztð Þ � bp,w Ztð Þ� �þ eprem, tþ1 (25.15)

The empirical specification in Eq. 25.15 is used for explaining the time-varying

premiums. If the time-varying betas are significantly different and their difference

can explain the time variation of country fund premiums, the coefficient g1 is

expected to be positive and significant.

25.3 Data and Descriptive Statistics

The sample includes all single-country closed-end country equity funds publicly

trading in New York as of 31 August 1995. The test sample is limited to country

funds with at least 100 weeks of weekly NAV observations.9 An overview of the

sample is presented in Table 25.1. The funds are classified as developed market or

8See Cochrane (1996) for such specifications. Cochrane (1996) calls such models as “scaled factor

models.” See Bansal et al. (1993) for a nonlinear specification of stochastic discount factors.
9Unlike industrial initial public offerings (IPOs), closed-end fund IPOs are “overpriced” (Weiss

1989). Peavy (1990) finds that new funds show significant negative returns in the aftermarket.

Hanley et al. (1996) argue that closed-end funds are marketed to a poorly informed public and

document the presence of flippers – who sell them in the immediate aftermarket. They also

document evidence in support of price stabilization in the first few days of trading. Therefore,

the first 6 months (24 weeks) of data for each fund is excluded in the empirical analysis.
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Table 25.1 Closed-end country funds: sample overview

Fund name IPO date Symbol

No of shares

(millions)

Net assets

($ millions) Listing

Panel A: Developed market funds

First Australia

fund

16 December

1985

AUS 15.9 163.4 AMEX

Italy fund 27 February 1986 ITA 9.5 89.4 NYSE

Germany fund 18 July 1986 GER 13.5 173.9 NYSE

UK fund 6 August 1987 GBR 4.0 51.2 NYSE

Swiss Helvetia

fund

19 August 1987 SHEL 9.2 181.8 NYSE

Spain fund 21 June 1988 SPN 10.0 94.2 NYSE

Austria fund 22 September

1989

AUT 11.7 107.9 NYSE

New Germany

fund

24 January 1990 GERN 32.5 373.8 NYSE

Growth fund of

Spain

14 February 1990 GSPN 17.3 164.0 NYSE

Future Germany

fund

27 February 1990 GERF 11.9 171.5 NYSE

Japan OTC

equity fund

14 March 1990 JPNO 11.4 115.4 NYSE

Emerging

Germany fund

29 March 1990 GERE 14.0 130.6 NYSE

Irish investment

fund

30 March 1990 IRL 5.0 51.4 NYSE

France growth

fund

11 May 1990 FRA 15.3 168.4 NYSE

Singapore fund 24 July 1990 SGP 6.9 97.4 NYSE

China fund 7 July 1992 CHN 10.8 136.3 NYSE

Jardine Fleming

China fund

17 July 1992 JCHN 9.1 114.5 NYSE

Greater China

fund

17 July 1992 GCHN 9.6 116.2 NYSE

Japan equity fund 14 August 1992 JPNE 8.1 102.8 NYSE

First Israel fund 23 October 1992 FISR 5.0 53.7 NYSE

Total 230.7 2,657.8

Panel B: Emerging market funds

Mexico fund 3 June 1981 MEX 37.3 765.6 NYSE

Korea fund 22 August 1984 KOR 29.5 610.0 NYSE

Taiwan fund 16 December

1986

TWN 11.3 289.5 NYSE

Malaysia fund 8 May 1987 MYS 9.7 180.6 NYSE

Thai fund 17 February 1988 THA 12.2 343.8 NYSE

Brazil fund 31 March 1988 BRA 12.1 376.4 NYSE

India growth

fund

12 August 1988 INDG 5.0 146.7 NYSE

(continued)
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emerging market funds using the World Bank’s definition of an emerging market.

The three China funds are classified as developed market funds because the majority

of their assets are in Hong Kong. The weekly (Friday closing) prices, NAVs, and

corresponding dividends for each fund are obtained from Barrons and Bloomberg. 10

The returns are adjusted for stock splits and dividends. The 7-day Eurodollar deposit

rate, provided by the Federal Reserve, is used as the risk-free benchmark.

Table 25.1 (continued)

Fund name IPO date Symbol

No of shares

(millions)

Net assets

($ millions) Listing

ROC Taiwan

fund

12 May 1989 RTWN 27.9 365.7 NYSE

Chile fund 26 September

1989

CHL 7.0 367.0 NYSE

Portugal fund 1 November

1989

PRT 5.3 75.9 NYSE

First Philippine

fund

8 November

1989

FPHI 9.0 212.0 NYSE

Turkish

investment fund

5 December 1989 TUR 7.0 33.5 NYSE

Indonesia fund 1 March 1990 INDO 4.6 42.3 NYSE

Jakarta growth

fund

10 April 1990 JAKG 5.0 43.2 NYSE

Thai capital fund 22 May 1990 THAC 6.2 124.8 NYSE

Mexico equity

and income fund

14 Aug 1990 MEXE 8.6 103.0 NYSE

Emerging

Mexico fund

2 October 1990 EMEX 9.0 117.6 NYSE

Argentina fund 10 October 1991 ARG 9.2 108.1 NYSE

Korea investment

fund

14 February 1992 KORI 6.0 87.4 NYSE

Brazilian equity

fund

9 April 1992 BRAE 4.6 91.4 NYSE

Total 226.5 4,484.5

This table presents the sample of closed-end country funds. The funds are classified as from

developed markets or emerging markets using the World Bank’s definition of emerging markets.

The China funds are classified as developed market funds because the majority of their invest-

ments are in Hong Kong. The net assets reported is as of 31 December 1994. The listing of the

funds is denoted as NYSE, New York Stock Exchange and AMEX, American Stock Exchange.

The Germany fund, Korea fund, and the Thai capital fund also trade on the Osaka Stock Exchange.

The future Germany fund is now called Central European equity fund

10For some of the funds, such as the India growth fund, the prices and net asset values are as of

Wednesday closing. This may lead to nonsynchronous prices and NAVs. However, as Bodurtha

et al. (1995) and Hardouvelis et al. (1993) show, the effects of nonsynchronous trading are not

pervasive and do not affect the analysis.
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Table 25.2 Closed-end country funds: descriptive statistics

Panel A: Developed market funds

Fund

Price returns (%) NAV returns (%) Premium (%)

Volatility ratioMean Std Mean Std Mean Std

AUS 0.092 3.051 0.106 2.438 �10.182 5.172 1.565*

ITA 0.009 4.126 �0.029 2.943 �5.985 9.311 1.965*

GER 0.106 3.943 0.130 2.372 �1.120 11.316 2.762*

GBR 0.140 3.363 0.148 2.285 �11.873 5.728 2.165*

SHEL 0.330 4.482 0.259 2.017 �3.497 4.989 4.938*

SPN �0.007 4.128 0.033 2.505 �0.076 11.923 2.716*

AUT �0.005 3.874 �0.048 2.334 �9.860 7.709 2.754*

GERN 0.113 3.787 0.113 2.146 �15.003 6.020 3.113*

GSPN 0.239 5.159 0.143 2.675 �14.522 8.655 3.717*

GERF 0.194 3.288 0.179 2.392 �14.246 5.942 1.889*

JPNO 0.171 5.004 0.014 3.474 6.522 10.494 2.074*

GERE 0.051 3.548 0.014 2.200 �14.750 6.200 2.601*

IRL 0.261 3.220 0.189 2.226 �15.473 5.816 2.091*

FRA 0.133 3.456 0.090 2.133 �13.266 8.020 2.625*

SGP 0.261 4.238 0.134 2.599 �1.136 10.606 2.658*

Average 0.138 2.284 0.092 1.541 �8.310 4.775 1.481*

Panel B: Emerging market funds

Symbol

Price returns (%) NAV returns (%) Premium (%)

Volatility ratioMean Std Mean Std Mean Std

MEX 0.841 12.670 0.897 14.695 �5.783 8.646 0.743

KOR 0.277 4.778 0.295 3.428 18.625 11.146 1.943*

TWN 0.177 5.636 0.123 3.562 8.477 12.806 2.503*

MYS 0.308 4.581 0.251 3.233 �3.636 7.599 2.007*

THA 0.232 4.359 0.358 3.458 �3.264 10.251 1.588*

BRA 0.786 7.048 0.831 6.607 1.464 8.481 1.137*

INDG 0.297 5.518 0.130 4.144 0.833 15.397 1.773*

RTWN 0.235 5.026 0.030 2.998 0.443 8.892 2.809*

CHL 0.354 5.629 0.315 4.454 �8.589 8.363 1.597*

PRT 0.209 4.639 0.129 2.284 �6.313 7.311 4.125*

FPHI 0.489 4.490 0.359 2.589 �21.127 5.345 3.005*

TUR 0.112 6.078 0.130 7.164 13.052 16.077 0.720

INDO 0.199 5.387 0.000 2.638 15.190 10.105 4.168*

JAKG 0.249 4.987 0.045 2.308 5.221 7.947 4.666*

THAC 0.449 4.921 0.377 3.510 �8.516 6.409 1.964*

Average 0.347 2.478 0.284 1.939 0.447 4.093 1.277*

This table presents the descriptive statistics of the sample of closed-end country funds. The sample

covers the period January 1991–August 1995 (244 weekly observations). All the returns are

weekly returns in US dollars. The premium on a fund is calculated as the logarithm of the price-

net asset value ratio. The “volatility ratio” is the ratio of variance of price returns over the variance of

NAV returns for that fund. An asterisk (*) denotes that the variance of price returns is significantly

higher than the variance of NAV returns, from an F-test at the 5 % level of significance
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Table 25.2 reports the descriptive statistics for the sample of funds. The IFC

global indices are available weekly from December 1988. Therefore, for emerging

market funds which were launched before December 1988, the analysis begins in

December 1988. To enable comparison across funds, a common time frame of

January 1991–August 1995 is chosen. Since, the data for the first 6 months are not

used in the analysis, only 30 funds listed on or before July 1990 are considered.

The mean premium on the index of developed market funds is �8.31 %, whereas

the mean premium on the emerging market funds is 0.44 %. A t-test of the

difference of means indicates that the mean premium of the index of the emerging

market funds is significantly higher than the mean premiums on the index of

developed market funds at the 1 % level of significance.

Figure 25.1 plots the time series of the premiums for the index of developed and

emerging market funds. The figure clearly indicates that the premiums on emerging

market funds are usually positive and higher than the premiums on developed market

funds, highlighting the effects of market segmentation. Table 25.2 also presents the

ratio of the variance of the excess price returns over the variance of the excess NAV

returns. For 27 funds out of the 30 funds, the ratios are significantly higher than one.11

A set of predetermined instrumental variables similar to instruments used in

studies of predictability of equity returns for developed markets (Fama and French

1989; Ferson and Harvey 1993) and emerging markets (Bekaert 1995) are used in

the empirical analysis when testing conditional asset-pricing models. The instru-

ments are the dividend yield on the Standard and Poor’s 500 Index, calculated as the

last quarter’s dividend annualized and divided by the current market price (DIVY);

the spread between 90-day Eurodollar deposit rate and the yield on 90-day US

treasury bill (TED); and the premium on an index of equally weighted country

funds (FFD). Only three instruments are used in order to be parsimonious repre-

sentation of the conditional asset-pricing models.

TED is calculated using data from the Federal Reserve of Chicago and DIVY is

obtained from Barrons. FFD is constructed using the sample of 30 funds listed in

Table 25.2. Table 25.3 reports the sample characteristics of these instruments.

As Fama and French (1989) show, the dividend yields and interest rates track the

business cycle, and expected returns vary as a function of these instruments.

Table 25.4 reports the descriptive statistics for the returns on the market indices

and the correlations of returns on the market indices of various countries with the

returns on the US index. The developed market indices are from Morgan Stanley

Capital International and the emerging market indices are from the International

Finance Corporation. All the developed market indices have significantly higher

correlations with the US market index, compared to the emerging markets, which

implies that there are potential diversification benefits from investing in emerging

markets.

11Assuming that the price returns and NAV returns are from two normal populations, the test

statistic which is the ratio of the variances has an F distribution (if the two variances are estimated

using the same sample size). The null hypothesis that the variance of price returns is greater than

the variance of NAV returns is tested using this statistic at the 5 % level of significance.
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Fig. 25.1 Country fund premiums

Table 25.3 Summary statistics for the instrumental variables

Panel A: Means and standard deviations (%)

Mean Std. dev

TED 0.34 0.18

DIVY 2.91 0.23

FFD �3.87 3.93

Panel B: Correlations of the instrumental variables

TED DIVY FFD

TED 1.00

DIVY 0.50 1.00

FFD �0.55 �0.25 1.00

The statistics is based on weekly data from January 1991–August 1995 (244 weekly observations).

The spread between 90-day Eurodollar deposits and 90-day US treasury yields (TED), the

dividend yield on the Standard and Poor’s 500 index (DIVY), and an equally weighted index of

the premiums for the sample of funds in Table 25.2 (FFD)
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Table 25.4 Market indices: descriptive statistics

Country Mean (%) Std. (%) Correlation with USA

Panel A: Developed markets

Austria �0.002 2.675 0.178

Hong Kong 0.485 3.366 0.174

Australia 0.227 2.212 0.292

Israel �0.000 3.351 0.130

France 0.167 2.272 0.334

Germany 0.180 2.416 0.238

Spain 0.090 2.627 0.329

Ireland 0.209 2.675 0.299

Italy 0.085 3.558 0.146

Japan 0.117 3.006 0.180

Singapore 0.336 2.018 0.231

Switzerland 0.375 2.186 0.285

USA 0.235 1.371 1.000

UK 0.143 2.186 0.335

Europe 0.169 1.808 0.377

Panel B: Emerging markets

Argentina 0.841 6.562 0.136

Brazil 1.145 7.577 0.221

Chile 0.687 3.180 0.125

India 0.259 4.534 �0.021

Indonesia 0.114 3.302 �0.031

Korea 0.130 3.432 0.040

Malaysia 0.410 2.802 0.163

Mexico 0.351 4.303 0.195

Philippines 0.636 3.618 0.141

Portugal 0.147 2.560 0.155

Taiwan 0.132 4.483 0.153

Thailand 0.520 3.609 0.189

Turkey 0.121 7.660 0.061

Asia 0.211 2.137 0.188

Latin America 0.554 3.314 0.640

World 0.172 1.410 0.277

This table presents the descriptive statistics for the returns on market indices of developed and

emerging markets for the time period January 1991–August 1995. The table also presents the

correlation of the returns, with the returns on the US market. All the developed market indices are

weekly indices from Morgan Stanley Capital International. The emerging market indices are from

the International Finance Corporation
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25.4 Empirical Results: Pricing of Country Funds

This section presents the empirical results for pricing of country funds. The results

from the unconditional tests indicate that, in general, developed market closed-end

fund returns have significant risk exposures to the world market index, while

emerging market closed-end fund returns have significant risk exposures to both

the world market index and the corresponding local market index. Second, the

hypothesis of unconditional mean-variance efficiency of the world market

index cannot be rejected using the share price returns of either developed or

emerging market funds and NAV returns of some of the developed market funds.

However, the hypothesis of unconditional mean variance of the world market index

can be rejected for emerging market NAVs and some developed market NAVs.

This finding indicates that while the share prices reflect the global price of risk, the

NAVs may reflect both the global and the respective local prices of risk. Tests of

predictability using global instruments indicate that country fund share price and

NAVs exhibit significant predictable variation. When conditional asset-pricing

restrictions are examined using alternate stochastic discount factors, the results

indicate that the share prices and NAVs of the closed-end country funds are not

priced identically for some developed and all the Asian market funds. This finding

is consistent with market segmentation. Finally, it is shown that the time-varying

premiums for country funds are attributable to time-varying risk premiums.

The detailed results are discussed below.

25.4.1 Unconditional Risk Exposures of Country Funds

To ascertain the risk exposures of the share price and NAV returns of the sample of

country funds, the following econometric specification is employed:

rp, t ¼ ap þ bp,wrw, t þ bp, hrh, t þ ep, t (25.16)

rn, t ¼ an þ bn,wrw, t þ bn, hrh, t þ en, t (25.17)

where, for any country fund “i” (the subscript “i” has been dropped for

convenience):

rp,t ¼ the excess total return on the share price (including dividends) of a country

fund between t�1 and t.

rn,t ¼ the excess return on the NAV of a country fund between t�1 and t.

rw,t ¼ the excess return on the Morgan Stanley Capital International (MSCI) world

market index.

rh,t ¼ the excess return on the MSCI or International Finance Corporation (IFC)

global index, corresponding to the country of origin of the fund.

The coefficients bp,w, bp,h are the risk exposures on the world and home market

portfolios for the price returns, and bn,w,bn,h are the risk exposures on the world and
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home market portfolios for the NAV returns. Two hypotheses are tested. The

hypotheses are share price returns have significant risk exposures to the world market

index and the NAV returns have significant risk exposures to both the world market

index and the corresponding local market index. These hypotheses are implied by the

international CAPM and its extension under market segmentation (see Errunza and

Losq 1985 and Diwan et al. 1995). If assets are priced in a global environment,

the country fund share price as well as NAV returns should have significant

risk exposure to the world market index only. However, when there are barriers

to investment, the local market factor may be a source of systematic risk for

the NAVs.

The risk exposures on the prices and NAVs could be different when the prices

and NAVs are imperfect substitutes. By jointly estimating Eqs. 25.16 and 25.17,

the hypothesis that the risk exposures on the world market and the home market

indices are identical for the price and NAV returns is tested via a Wald

test which is w2 distributed, with degrees of freedom equal to the number of

restrictions.12 Since the local indices are significantly correlated with the world

index, for ease of interpretation, they are made orthogonal to each other by

regressing the local index returns on a constant and the world index return and

using the residuals as the local index return. Therefore, the risk exposure on

the local or regional index is the marginal exposure in the presence of the world

market index.

The results from the regressions to estimate risk exposures are reported in

Table 25.5. Panel A of Table 25.5 presents the results for developed market funds

and panel B presents the results for the emerging market funds. The results

presented in Table 25.5 indicate that 15 of the 15 developed market funds and

12 of the 15 emerging market funds price returns have significant exposure to the

world index at the 5 % level of significance. Also, 12 of the developed market funds

and 14 of the emerging market funds price returns have significant exposure to their

corresponding local market index, in the presence of the orthogonal world

market index. For the NAVs, all 15 of the developed funds and ten of the emerging

market funds returns have significant exposure to the world market index. More-

over, 14 of the developed and 13 of the emerging market NAV returns have

significant exposure to their local market index, in the presence of the world market

index. The adjusted R-squares across all the regressions vary from a low of zero to

a high of 92 %.13

12For a set of linear restrictions, the Wald test statistic is given byW ¼ Rb½ -r�0 R Var bð Þ R0½ � Rb½ -r�,
where b is the vector of estimated parameters and Rb ¼ r is the set of linear restrictions.
13Risk exposures of the price and NAV returns were also estimated using regional indices in place

of the local market indices for the funds from Europe, Latin America, and Asia. These results

indicate that, out of the 12 European funds, only two funds’ price returns have significant risk

exposure to the MSCI Europe index in the presence of the MSCI world index. Also, out of the

seven Latin American funds, all seven price returns and six NAV returns have significant exposure

to the Latin American index. Also, out of the 11 Asian funds, nine price returns and eight NAV

returns have significant risk exposures to the Asian index.
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These results confirm the hypothesis that returns on prices and NAVs are

generated as a linear function of the returns on the world market and possibly the

corresponding local market index. The fact that 27 out of the 30 funds have

significant risk exposure to the world market index indicates that the share prices

may be determined via the global price of risk. The higher adjusted R-squares for the

NAVs indicate that the world market index and the corresponding local market index

have higher explanatory power for the time-series variations of the returns. The

intercepts in the univariate regressions are not significantly different from zero,

which suggests that the return on the world market index and an orthogonal return

on the local market index are mean-variance efficient for the price and NAV returns.

When Wald tests are performed to test the hypothesis that the risk exposures on

the prices and NAVs are identical, the results presented in the last two columns of

Table 25.5 indicate that for 21 (14 from developed) out of the 30 funds, the null

hypothesis of the same betas on the world index is rejected at the 10 % level of

significance. Similarly, for eight funds the null hypothesis of the same betas on the

local index is rejected at the 5 % level. This is a very important finding since it

indicates that the systematic risks of the shares and NAVs are different. The fact

that closed-end funds may have different risk exposures for the share and NAVs has

been documented for domestic funds by Gruber (1996). Also different risk expo-

sures for restricted and unrestricted securities have been documented by Bailey and

Jagtiani (1994) for Thai securities and by Hietala (1989) for Finnish securities.

These results indicate that country fund share prices and NAVs may have

differential risk exposures. The different risk exposures will result in different

expected returns for the share prices and NAVs, which is one of the sources of

the premiums. This section clearly shows that country fund share price and NAV

returns have significant risk exposure to the world market index. The different risk

exposures will result in different expected returns for the share prices and NAVs,

which is one of the sources of the premiums. The issue of whether the country funds

are priced in equilibrium via the international CAPM is the focus of next section.

25.4.2 Pricing of Country Funds in the Context of
International CAPM

The results of the mean-variance efficiency of the MSCI world index, using

Eq. 25.2, are presented in Table 25.6. The table reports the w2 and the p-values

from a Wald test for the hypothesis that a set of intercepts are jointly zero.14 This

hypothesis is the restriction implied by unconditional international CAPM. Failure

to reject this hypothesis would imply that the world market index is mean-variance

efficient and expected returns are proportional to the expected returns on the world

14Other studies such as Cumby and Glen (1990) fail to reject the mean-variance efficiency of the

MSCI world market portfolio for national indices of developed markets. Also, Chang et al. (1995)

fail to reject the mean-variance efficiency of the MSCI world market index for a sample of

developed as well as emerging market indices.
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market index. The hypothesis is tested using GMM for an exactly identified system

as shown in section IA. To ensure a longer time series, the tests are conducted using

funds listed before December 1990.

The null hypothesis that the intercepts are jointly zero cannot be rejected for the

share prices of the 15 developed market funds as well as the 15 emerging market

funds. But, the null hypothesis is rejected at the 5 % level for the NAVs of both

developed and emerging market funds. The tests are also conducted on subsets of

funds to check the robustness of the results. Since the classification of developed

and emerging markets is based on national output, it may not always capture

whether a country’s capital market is well developed. The subset consists of

funds with zero intercepts for the NAV returns, on an individual basis. For this

subset of the developed market funds consisting of 11 funds, though not reported

here, the mean-variance efficiency of the world index cannot be rejected for both

the share prices and NAVs. For emerging market funds NAVs, even for subsets of

funds, the MSCI world market index is not mean-variance efficient. These results

indicate that the world market index is an appropriate benchmark for the share

prices but not necessarily for the NAVs.

These results have important implications for capital market integration. Since

for the NAVs, the mean-variance efficiency of the world market index is rejected, it

implies that the share prices and NAVs are priced differently. This differential

pricing is sufficient to generate premiums on the share prices. Also, the fact that

mean-variance efficiency of the world market index cannot be rejected for share

prices of both developed and emerging markets is consistent with the theoretical

prediction of Diwan et al. (1995). Since the country fund share prices are priced

with complete access to that market, in equilibrium, their expected returns should

be proportional to their covariances with the world market portfolio. If the NAVs

are priced with incomplete access, the world market portfolio is not mean-variance

efficient with respect to those returns. The results in this section are consistent

with this notion. As the earlier section shows, the risk exposures of the share prices

and NAVs may differ. If the international CAPM is a valid model for the share

prices and NAVs, as outlined in section IB, this differential risk exposure can

explain cross-sectional variations in premiums. The next section analyzes the effect

of the differential risk exposures of the share prices and NAVs on the country fund

premiums.

25.4.3 Cross-Sectional Variations in Country Fund Premiums

This section presents the results for tests of the hypothesis that cross-sectional

variation in country fund premiums is positively related to the differences in the risk

exposures of the share prices and NAVs. The theoretical motivation for this was

presented in section IC. Equation 25.10 is estimated for each week during the

last 75 weeks of the sample and the parameter estimates are averaged. The results

indicate that cross-sectional variation in country fund premiums is explained by the
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differential risk exposures of a closed-end country fund share price and NAV returns.

The estimation proceeds are as follows: after the betas are estimated using 75 weeks

of data prior to the last 75 weeks of the sample, the difference in the betas on the world

index is used as an explanatory variable in regressions with the premiums as the

dependent variable.

The results are reported in Table 25.7. The results indicate that, for the full

sample, the difference in risk exposure is significant and the adjusted R-square is

9.5 %. For the developed market funds, the results in panel B indicate that the

differences in the betas on the world index have significant explanatory power for

the cross-section of premiums for the developed market funds, with an adjusted

R-square of 18.7 %. For the emerging market funds, however, as reported in

panel C, the differences in risk exposures are not significant, and the adjusted

R-square is only 1.9 %. This result is not surprising, given the result of the previous

section that the world market index is not mean-variance efficient for the emerging

market NAVs. When a dummy variable which takes value of one for the developed

markets is added, it is highly negatively significant, indicating that the premiums

for developed market funds are significantly lower than the emerging market fund

premiums. The differential risk exposure is however significant only at the 10 %

level, when the dummy variable is added.

As an extended specification, measures of spanning, integration, and substitution

(based on prior research of Errunza et al. 1998) are used as additional explanatory

variables. When measures of spanning, substitution, and access are used as addi-

tional explanatory variables, the adjusted R-squares go up to 39.5 % for the full

sample. The measure of spanning has a positive sign as expected. The measure of

spanning is also significant across the developed market funds. However, contrary

Table 25.6 Pricing of country funds in the context of international CAPM

Test assets

Chi-squares for price returns

[p-value]

Chi-squares for NAV returns

[p-value]

Developed market country

funds (15 funds)

15.71 [0.40] 44.48 [0.00]

Emerging market country

funds (15 funds)

10.64 [0.77] 25.47 [0.04]

This table presents the Chi-squares for the null hypothesis that the intercepts are jointly zero for

a set of assets when their excess returns are regressed on the excess return on the MSCI world

index. The regression estimated is

ri,t ¼ ai + birw,t + ei,t, i ¼ 1.... N

The null hypothesis Ho: ai¼ 0 for all i¼ 1. . .N is tested by a Wald test using GMM estimates from

an exactly identified system. The p-values are based on standard errors robust to heteroskedasticity

and serial correlation (13 Newey-West lags). The sample covers January 1991–August 1995. The

test assets are excess price/NAV returns of country funds

The composition of the test assets are as follows – the developed market funds are AUT, AUS,

FRA, GER, GERE, GERF, GERN, GSPN, IRL, ITA, JPNO, SGP, SPN, SHEL, and

GBR. The emerging market funds are BRA, CHL, FPHI, INDG, INDO, JAKG, KOR, MYS,

MEX, PRT, RTWN, TWN, THAC, THA, and TUR
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Table 25.7 Cross-sectional variations in country fund premiums

CONST DIF SPN SUB ACC(d) ACC (CF) Adj. R2

Panel A: Full sample

�0.05 0.08 0.095

(1.60) (2.85)*

�0.15 0.06 63.77 0.03 �0.02 0.395

(0.07) (2.00)* (2.04)* (1.55) (1.40)

�0.17 0.07 69.48 0.03 �0.00 0.383

(2.79)* (2.00)* (2.28)* (1.60) (0.02)

�0.16 72.59 0.03 0.300

(2.73)* (2.26)* (1.73)

�0.00 0.05 �0.08 0.184

(0.18) (2.03)* (2.85)*

Panel B: Developed market funds

�0.09 0.11 0.187

(2.51)* (4.33)*

�0.29 0.12 207.76 0.05 0.551

(4.23)* (4.03)* (2.05)* (2.27)*

�0.29 0.12 210.39 0.08 0.00 0.565

(4.28)* (3.81)* (2.06)* (2.12)* (0.00)

�0.28 234.11 0.04 0.370

(4.07)* (2.12)* (2.14)*

Panel C: Emerging market funds

0.00 0.01 0.019

(0.25) (0.40)

�0.10 0.02 53.72 0.02 0.395

(1.21) (0.60) (1.75)** (0.86)

�0.01 0.02 49.56 0.01 0.03 0.383

(0.95) (0.51) (1.59) (0.95) (0.15)

�0.09 50.91 0.01 0.301

(1.11) (1.64) (0.86)

Results from an OLS regression of premiums on country funds on DIF (the difference between the

betas on the world market index, for the price returns and NAV returns). The coefficient ACC

(CF) is a measure of access proxied by the total purchase of securities by US residents (divided

by the global purchase) from the country of origin of the fund. The coefficient ACC(d) is

a dummy variable that takes value one for developed markets and zero for emerging markets.

The coefficients below are the averages from the regression of the premiums on the independent

variables for each week for the last 75 weeks of the sample (Mar 94–Aug 95). The t-statistics are

presented in the parenthesis * and ** denote significance at the 5 % and 10 % levels of significance,

respectively. The spanning measure (SPN) is the conditional variance of the NAV return of a fund,

unspanned by the US market return and the fund’s share price returns, with specification as

follows:

rn,t ¼ ai + birUS,t + + birp,t + ei,t
where ei,t has a GARCH(1, 1) specification. The measure of substitution (SUB) is the ratio of

conditional volatilities of the share price and NAV returns of a fund not spanned by the US market.

The specification are

rn,t ¼ ai + birUS,t + en,t, rp,t ¼ ai + birUS,t + ep,t
The error terms en,t and ep,t have GARCH (1, 1) specifications as follows (ht is variance of the error

term):

ht ¼ y0 + y1e2i;t�1 + y2ht�1

The equation for the cross-sectional regressions is

Premi ¼ d0 + d1DIFi + d2SPNi + d3SUBi + d4ACCi + ei
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to expectation, the measure of spanning is not significant across emerging market

funds. This could be due to very low variability of the variables within emerging

markets. The measure of substitutability, which is the ratio of conditional

variances of the price returns and NAV returns, is not significant. The measure of

substitutability persists to be insignificant for the subsets of emerging market funds.

The measure of access proxied by purchase of securities by US residents from that

market is not significant.

These results indicate that differential risk exposures and measures of access and

spanning are significant determinants of cross-sectional variation in closed-end

country fund premiums. Also, the measures of segmentation explain premiums

better across developed and emerging markets compared to only within emerging

markets. The phenomenon that differential risk exposures can explain cross-

sectional variations in premiums on unrestricted securities relative to securities

restricted to only local investors has been previously documented for Thai

equities by Bailey and Jagtiani (1994) and for Swiss equities by Stulz and

Wasserfallen (1995). Therefore, both market segmentation and other factors

which make the closed-end country fund shares and the underlying securities

imperfect substitutes – which is the source of the differences in the risk exposures

and the excess volatility of the share prices – account for the cross-sectional

variations in the premiums. The significance of the difference in risk exposures

indicates that the greater the difference in risk exposures across a sample of country

funds, the higher the premium. Second, the premium is higher for country funds

originating from countries whose capital markets are less integrated with the US

capital market.

Although an important finding, the differential risk exposures cannot explain

the time variation in premiums. The academic literature has documented that the

country fund premiums vary over time. Figure 25.1 illustrates the time variation of

country fund premiums. Section IIIB reported the results for pricing of country funds

in the context of the unconditional international CAPM which indicated that country

fund share prices are priced consistent with the international CAPM, whereas the

NAVs may or may not be priced via the international CAPM. Unconditional mean-

variance efficiency of a benchmark portfolio implies conditional mean-variance

efficiency, but not vice versa (Ferson 1995). If expected returns conditional on an

information set are also different for the share prices and the NAVs, it could explain

not only the premiums but also their variation over time, which is further explored in

section IIIF. To analyze the time variability of expected returns, the predictability of

the funds share price and NAV returns is examined in the next section.

25.4.4 Predictability of Closed-End Country Fund Returns

To assess the predictability of price and NAV returns, 4-week cumulative returns

(the sum of returns over a 4-week period beginning the next week) are used, since

most studies of predictability have used a monthly horizon. Predictability of the

returns would imply that expected returns vary over time due to rational variation in
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risk premiums. To test the hypothesis of predictability, the returns for both

share prices and NAVs are regressed on a set of global and fund-specific

instruments, to ascertain the predictive power of these instruments. The global

instruments are TED and DIVY. The fund-specific instrument is the lagged

premium on an equally weighted index of all the funds in the sample (FFD).

The lagged premium was found to have predictive power for price returns by

Bodurtha et al. (1995). Also, Errunza et al. (1998) find that when time series of

premiums is regressed on a global fund premium, it is highly significant. However,

unlike Errunza et al. (1998) here the lagged premium is used. Significance of this

variable would indicate that investors use information about past premiums to form

expectations about future prices. The regression is of the form

Xt ¼ tþ4

t ¼ tþ1

ra, t ¼ Z0 þ Z1FFDt þ Z2TEDt þ Z3DIVYt þ ea, t (25.18)

where ra, t is the excess return on the price or NAV of an equally weighted portfolio

of developed or emerging market funds.

The results from the regressions are presented in Table 25.8. Wald tests

of no predictability, which test the hypothesis that a set of coefficients are jointly

zero, indicate that the fund factor predicts price returns for 4 funds only and it

also predicts 15 funds’ NAV returns. The predictive power of the lagged premiums

for price returns has been attributed to noise trading (see Bodurtha et al. 1995).

The fact that it predicts NAV returns may indicate that noise trading is not an

important determinant of expected returns of share prices of closed-end funds.

When global instruments are used, the Wald test of no predictability can be rejected

at the 5 % level for only five funds’ price returns and 15 funds’ NAV returns.

Overall, using all the instruments, the null hypothesis of no predictability can be

rejected for six share prices and 20 NAVs. The poor predictability of the share

prices is puzzling, since the share prices are determined in the USA and the

instruments used have been shown to predict returns in the USA.

In summary, closed-end country fund price and NAV returns exhibit

considerable predictability. The existence of predictable variation in returns is

interpreted as evidence of time-varying expected returns. The differences

between the predictability of prices and NAVs also imply that they are not priced

identically, which is further examined in the next section using time-varying

expected returns.

25.4.5 Conditional Expected Returns and Pricing of Country Funds

Table 25.9 reports the results of estimating the SDFs specified in Eqs. 25.11

and 25.12. The models in panels A and B correspond to the international

CAPM and a two-factor model, with the world market return and the regional

returns for Latin America or Asia as the factors. For both the models,
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Table 25.8 Predictability of country fund returns

Panel A: Developed market funds

Fund

Chi-squares [p-values] Chi-squares [p-values]

Fund factor

Global

instruments

All

instruments Fund factor

Global

instruments

All

instruments

AUS 0.11 1.93 1.95 8.23 3.44 9.24

[0.73] [0.38] [0.58] [0.00] [0.17] [0.02]

ITA 0.71 1.30 1.36 5.86 7.27 9.19

[0.39] [0.51] [0.71] [0.01] [0.02] [0.02]

GER 4.91 2.51 8.67 5.18 1.98 8.04

[0.02] [0.28] [0.03] [0.02] [0.37] [0.04]

GBR 0.07 1.23 2.58 3.33 5.64 5.98

[0.78] [0.53] [0.45] [0.06] [0.05] [0.11]

SHEL 1.81 1.43 2.51 0.05 1.86 1.86

[0.17] [0.48] [0.47] [0.81] [0.39] [0.60]

SPN 4.96 6.19 7.06 10.01 16.95 18.88

[0.02] [0.04] [0.06] [0.00] [0.00] [0.00]

AUT 0.02 0.01 0.03 1.86 3.25 6.03

[0.86] [0.99] [0.99] [0.17] [0.19] [0.10]

GERN 1.67 0.10 2.62 3.33 2.13 6.26

[0.19] [0.95] [0.45] [0.06] [0.34] [0.09]

GSPN 1.36 2.53 2.61 4.58 11.22 11.29

[0.24] [0.28] [0.45] [0.03] [0.00] [0.01]

GERF 0.20 0.29 1.42 3.58 2.91 5.87

[0.64] [0.86] [0.69] [0.05] [0.23] [0.11]

JPNO 7.12 3.18 8.73 13.96 5.20 19.60

[0.00] [0.20] [0.03] [0.00] [0.07] [0.00]

GERE 0.14 0.03 0.44 4.69 1.32 8.12

[0.70] [0.98] [0.93] [0.03] [0.51] [0.04]

IRL 0.00 1.93 2.15 1.80 14.56 14.58

[0.95] [0.38] [0.54] [0.17] [0.00] [0.00]

FRA 3.56 1.52 5.02 0.00 0.23 0.25

[0.05] [0.46] [0.17] [0.94] [0.89] [0.96]

SGP 0.00 2.55 2.55 11.05 1.37 11.28

[0.96] [0.27] [0.46] [0.00] [0.50] [0.01]

Panel B: Emerging market funds

Symbol

Chi-squares [p-values] Chi-squares [p-values]

Fund factor

Global

instruments

All

instruments Fund factor

Global

instruments

All

instruments

MEX 0.85 5.65 5.82 0.53 6.62 7.24

[0.35] [0.05] [0.12] [0.46] [0.03] [0.06]

KOR 0.74 1.04 2.00 4.20 8.87 13.46

[0.38] [0.59] [0.57] [0.04] [0.01] [0.00]

TWN 0.06 3.15 3.67 19.77 16.71 25.93

[0.79] [0.20] [0.29] [0.00] [0.00] [0.00]

(continued)
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the conditional restrictions are tested. As noted earlier, if expected returns vary over

time due to rational variation in risk premiums, conditional expected returns should

be used. The conditional restrictions are tested by using a set of lagged instrumental

variables TED and DIVY as predictors of excess returns. The tests use sets of

assets – two sets of four developed market funds, a set of three Latin American

funds, and two sets of three Asian funds. To ensure an adequate time series,

Table 25.8 (continued)

Panel B: Emerging market funds

Symbol

Chi-squares [p-values] Chi-squares [p-values]

Fund factor

Global

instruments

All

instruments Fund factor

Global

instruments

All

instruments

MYS 0.20 1.89 2.83 1.91 2.21 3.47

[0.64] [0.38] [0.41] [0.16] [0.33] [0.32]

THA 0.03 1.67 1.85 4.07 4.92 7.24

[0.85] [0.43] [0.60] [0.04] [0.08] [0.06]

BRA 0.03 6.34 6.99 0.32 4.90 5.39

[0.84] [0.04] [0.07] [0.56] [0.08] [0.14]

INDG 0.47 2.03 2.03 7.50 3.79 24.21

[0.49] [0.36] [0.56] [0.00] [0.15] [0.00]

RTWN 1.72 15.45 15.58 19.35 15.42 24.72

[0.18] [0.00] [0.00] [0.00] [0.00] [0.00]

CHL 0.05 4.94 6.97 1.78 7.32 7.34

[0.80] [0.08] [0.07] [0.18] [0.02] [0.06]

PRT 1.17 0.45 2.41 6.56 0.01 9.51

[0.27] [0.79] [0.49] [0.01] [0.99] [0.02]

FPHI 0.00 3.30 3.43 1.03 2.91 5.61

[0.97] [0.19] [0.32] [0.31] [0.23] [0.13]

TUR 1.37 1.11 3.45 0.35 0.34 1.42

[0.24] [0.57] [0.32] [0.55] [0.83] [0.70]

INDO 2.06 1.09 2.26 2.70 7.81 7.90

[0.15] [0.57] [0.51] [0.09] [0.02] [0.04]

JAKG 0.28 0.87 1.35 1.75 19.36 19.93

[0.59] [0.64] [0.71] [0.18] [0.00] [0.00]

THAC 0.03 4.22 4.79 1.98 2.33 3.53

[0.84] [0.12] [0.18] [0.15] [0.31] [0.31]

Table presents the Chi-squares from a Wald test to ascertain importance of the fund factor

and global instruments in predicting the 4-week ahead cumulative returns of the prices and

NAVs. The fund factor FFD is the lagged premium on an equally weighted index of all country

funds in the sample. The global instruments include the lagged spread on 90-day Eurodollar

deposits and 90-day US treasury yields (TED) and the lagged dividend yield on the S&P 500 index

(DIVY). The estimates are obtained via GMM using an exactly identified set of moment condi-

tions. The table below reports Chi-squares for a Wald test that a set of one or more instruments is

zero. The p-values are robust to heteroskedasticity. The model estimated is as follows, where

Xt ¼ tþ4

t ¼ tþ1

ra, t ¼ Z0 þ Z1FFDt þ Z2TEDt þ Z3DIVYt þ ea, t
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the funds selected are the ones listed prior to December 1989. Also, using too many

assets would result in too many moment conditions.15

The funds selected are listed in Table 25.9. After estimating a model using

GMM, its goodness-of-fit is ascertained by the J-statistic. The J-statistic is a test of

the overidentifying restrictions of the model. The p-values given below the

J-statistic indicate that none of the models are rejected for any test assets, at

conventional significance levels. This finding is consistent with the idea that for

a group of assets, there may be a number of SDFs that satisfy the pricing relation.

Also, failure to reject the conditional international CAPM even for the NAVs

indicates that while the unconditional international CAPM is not a valid model for

emerging market funds and some developed market funds, the conditional interna-

tional CAPM may be a valid model. This finding is consistent with the finding of

Buckberg (1995) who fails to reject the conditional international CAPM for a set of

emerging market indices. It must be noted that, unlike traditional conditional models,

using stochastic discount factors implies a nonlinear relation between asset returns

and the returns on the market index. Failure to reject such specifications may indicate

that nonlinear specifications perform better in explaining equity returns.

Table 25.9 also reports the results for tests of hypothesis that the coefficients of

the SDFs of the price returns and the NAV returns are identical. The p-values for the

Wald tests indicate that the null hypothesis can be rejected at all conventional levels

for a subset of the developed market funds and all the Asian funds. This is a striking

result, since it indicates that, although the same factors may be priced for the share

prices and NAVs, the factors are priced differently. In traditional asset-pricing

framework, it is equivalent to saying that the risk premiums are different.

This result is consistent with the previous finding of Harvey (1991) who reports

that for a sample of industrial markets, although the conditional international

CAPM cannot be rejected, the price of risk varies across countries. Also, De Santis

(1995) finds that stochastic discount factors that can price developed market indices

cannot price emerging market indices. The difference in the price of risk is one of the

sources of the premiums for the country funds. When the two-factor model is used,

again the tests reject the hypothesis that the coefficients are identical for the Asian

funds. However, the hypothesis of identical coefficients for the price and NAV returns

cannot be rejected for a set of developed market funds and the Latin American funds.

The above results imply that a subset of the developed markets and the Asian

market are segmented from the US market. However, a subset of the developed

markets and the Latin American markets are integrated with the US market. The

results for Latin America are not affected, when tests are conducted excluding the

time period surrounding the Mexican currency crisis. Therefore, differential risk

exposures are more important in explaining the premiums for the Latin American

markets and the developed markets that are integrated with the world market.

The results in this section clearly show that while some markets may be integrated

15Cochrane (1996) shows that iterated GMM estimates behave badly when there are too many

moment conditions (37 in his case).
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with the world capital market, others are not. If capital markets are segmented, that

is sufficient to generate the premiums on the share prices. However, if markets are

integrated, differential risk exposures may explain the premiums. This finding is

different from the existing literature on country fund pricing, which has attributed

the existence of premiums on irrational factors such as noise trading. The preceding

analysis clearly shows that differential pricing of the same factors or differential

risk exposures on the same factor may lead to premiums on the share prices.

The next section provides an analysis of the effect of time-varying expected returns

on country fund premiums.

25.4.6 Conditional Expected Returns and Time-Varying Country
Fund Premiums

Table 25.9 reports the results of regressing the premiums on the country funds on

the differences in conditional risk exposures of share price returns and NAV returns

estimated using Eqs. 25.13, 25.14, and 25.15. The conditional risk exposures are

estimated as a linear function of lagged dividend yields and the term premium. The

null hypothesis is that the coefficient of the difference in the conditional betas is

significant. The results indicate that the difference in conditional betas is highly

significant in explaining the time-varying premiums on country funds. For 24 out of

the 30 funds, the coefficient is significant. Also, the adjusted R-squares are high,

especially for the developed market funds. For many of the funds, however, the

coefficient is negative, implying that using the world market index alone is not

sufficient to explain the return-generating process and the returns on the NAVs may

reflect the local price of risk.

The adjusted R2 values are higher for the developed market funds. This result is

consistent with earlier results which show that the world market index is not an

appropriate benchmark for emerging market NAVs. Also, majority of the emerging

market funds are from Asia. The results in Table 25.9 indicated that these markets

are segmented from the world market. Therefore, different risk exposures to the

world market index do not explain much of the variation in the premiums for the

emerging markets.

This is an important finding since the existing literature on closed-end funds

has attributed the existence of premiums to irrational factors, such as noise trading.

The preceding analysis shows clearly that segmented capital markets in which risk

premiums vary over time are sufficient to generate two different prices for the same

set of cash flows. Also, the differences in prices may vary over time as expected

returns vary over time due to rational variations in expected returns. If the price of

risk is different across markets, the same security will have different expected

returns. The difference in these expected returns results in the premium on the share

price. If the expected returns vary over time because of rational variation in risk

premiums, the premiums will also vary over time as a function of the differential

expected returns (Table 25.10).
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25.5 Conclusions

Closed-end country funds are becoming an increasingly attractive source of

capital in international equity markets. This paper provides an empirical analysis

of the pricing of these funds in the context of rational asset-pricing models. The

paper finds that differential risk exposures, market segmentation, and time-varying

risk premiums play important roles in the differential pricing of the share prices and

NAVs. Based on the unconditional international CAPM, the existence of premiums

can be attributed to different risk exposures, as is the case with developed market

funds and differential pricing of the shares and NAVs, as is the case with emerging

market funds and some developed market funds.

The paper also analyzes the pricing of country funds when conditioning infor-

mation is allowed. The results indicate that, for alternate stochastic discount factors,

for majority of the funds, the pricing of country fund shares and NAVs is consistent

with the conditional international CAPM. However, tests of the estimated stochas-

tic discount factors indicate that, for a subset of the developed market funds and

all the Asian funds, closed-end country fund share prices and NAVs are priced

differently. This result indicates that the international capital markets are not fully

integrated. Finally, this paper shows that the premiums on country funds vary over

time because of time variation in expected returns.

The findings in this paper have several possible extensions. The focus of the

paper has been on rational explanations for country fund premiums based on

differential risk exposures and market segmentation effects. It will be interesting

to extend this analysis and examine the effect of other factors such as taxes,

numeraires, liquidity, and bid-ask spreads.

Appendix 1: Generalized Method of Moments (GMM)

GMM is an econometric method that was a generalization of the method of

moments developed by Hansen (1982). The moment conditions are derived

from the model. Suppose Yt is a multivariate independently and identically distrib-

uted (i.i.d) random variable. The econometric model specifies the relationship

between Zt and the true parameters of the model (y0). To use GMM there must

exist a function g(Zt, y0) so that

m y0ð Þ � E g Zt; y0ð Þ½ � ¼ 0 (25.19)

In GMM, the theoretical expectations are replaced by sample analogs:

f y;Ztð Þ ¼ 1=T
X

g Zt; yð Þ: (25.20)

The law of large numbers ensures that the RHS of above equation is the same as

E f Zt; y0ð Þ½ �: (25.21)
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Table 25.10 Time-varying closed-end country fund premiums

Panel A: Developed market funds

Fund g0 g1 Adj. R2

AUS �0.07 (�10.13)* 0.11 (5.04)* 0.08

ITA �0.07 (�13.05)* 0.10 (5.86)* 0.19

GER �0.01 (�1.55)* �0.00 (�0.29) �0.00

GBR �0.11 (�34.40)* 0.08 (8.53)* 0.22

SHEL �0.06 (�13.38)* �0.10 (�7.12)* 0.13

SPN �0.00 (�0.14) �0.18 (�4.89)* 0.19

AUT �0.03 (�3.47)* 0.21 (7.47)* 0.13

GERN �0.14 (�37.73)* 0.04 (3.45)* 0.13

GSPN �0.15 (�35.72)* 0.13 (7.13)* 0.22

GERF �0.14 (�40.05)* 0.03 (2.47)* 0.01

JPNO 0.09 (9.44)* 0.04 (3.79)* 0.05

GERE �0.15 (�39.20)* 0.04 (4.54)* 0.06

IRL �0.16 (�44.37)* �0.13 (�5.72)* 0.12

FRA �0.15 (�24.47)* �0.24 (�5.22)* 0.21

SGP �0.37 (�2.03)* �0.72 (�1.96) 0.02

Panel B: Emerging market funds

Fund g0 g1 Adj. R2

MEX �0.07 (�16.93)* 0.08 (6.66)* 0.24

KOR 0.21 (26.45)* �0.15 (�8.42)* 0.20

TWN �0.07 (�1.01) �0.26 (�2.28)* 0.01

MYS �0.03 (�6.67)* 0.02 (2.25)* 0.02

THA 0.00 (0.04) 0.08 (0.43) �0.00

BRA 0.01 (2.44)* 0.05 (4.81)* 0.09

INDG 0.00 (0.61) 0.01 (0.83) �0.00

RTWN �0.60 (�0.76) 0.00 (1.46) 0.01

CHL �0.34 (�6.76)* �0.62 (�5.14)* 0.20

PRT �0.06 (�13.60)* �0.03 (�2.47)* 0.02

FPHI �0.20 (�25.86)* 0.01 (0.83) �0.00

TUR 0.15 (11.34)* 0.10 (2.16)* 0.01

INDO 0.23 (7.85)* 0.10 (2.97)* 0.07

JAKG 0.38 (8.91)* 0.34 (7.76)* 0.27

THAC �0.22 (�4.97)* �0.24 (�3.11)* 0.03

Results from an OLS regression of premiums on country funds on the difference between

the time-varying betas on the world market index. The t-statistics robust to heteroskedasticity

are presented in the parenthesis. An asterisk (*) denotes significance at the 5 % level of signifi-

cance. The regression estimated is of the form

Premt+1 ¼ g0 + g1[bn,w(Zt) � bp,w(Zt)] + eprem,t+1

The time-varying betas are estimated using the conditional international CAPM for an index of

developed and emerging market funds price and NAV returns, using the equations

ra, tþ1 ¼ aa þ ba, wrw, tþ1 þ
X
i

ga, i rw, tþ1 � zt
� �þ ea, tþ1 a ¼ p and n

where rp,t+1 is the excess return on the share price and rn,t+1 is the excess NAV return and Prem t+1

is the premium for the time period January 1991–August 1995. rw,t+1 is the excess return on the

world market index and Zt is a set of instrumental variables DIVY and TED
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The sample GMM estimator of the parameters may be written as

(see Hansen 1982)

Y ¼ arg min 1=T
X

g Zt; yð Þ
h i0

WT1=T
X

g Zt; yð Þ
i

(25.22)

So essentially GMM finds the values of the parameters so that the

sample moment conditions are satisfied as closely as possible. In our case for the

regression model,

yt ¼ Xt
0bþ et (25.23)

The moment conditions include

E yt � Xt
0bð Þxt½ � ¼ E etxt½ � ¼ 0 for all t (25.24)

So the sample moment condition is

1=T
X

yt � Xt
0bð Þxt

and we want to select b so that this is as close to zero as possible. If we select b as

(X0X)�1(X0y), which is the OLS estimator, the moment condition is exactly

satisfied. Thus, the GMM estimator reduces to the OLS estimator and this is

what we estimate. For our case the instruments used are the same as the

independent variables. If, however, there are more moment conditions than the

parameters, the GMM estimator above weighs them. These are discussed in detail

in Greene (2008, Chap. 15). The GMM estimator has the asymptotic variance

X0Z Z0OZð Þ�1
Z0X

� ��1

(25.25)

The White robust covariance matrix may be used for O as discussed in appendix

C when heteroskedasticity is present. Using this approach, we estimate GMM with

White heteroskedasticity consistent t-stats.
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Abstract

In order to find out which risk measurement is the best indicator of efficiency in

a portfolio, this study considers three different risk measurements: the mean-

variance model, the mean absolute deviation model, and the downside risk

model. Meanwhile short selling is also taken into account since it is an important
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strategy that can bring a portfolio much closer to the efficient frontier by

improving a portfolio’s risk-return trade-off. Therefore, six portfolio rebalancing

models, including the MV model, MAD model, and the downside risk model,

with/without short selling, are compared to determine which is the most

efficient. All models simultaneously consider the criteria of return and risk

measurement. Meanwhile, when short selling is allowed, models also consider

minimizing the proportion of short selling. Therefore, multiple objective

programming is employed to transform multiple objectives into a single objec-

tive in order to obtain a compromising solution. An example is used to perform

simulation, and the results indicate that the MAD model, incorporated with

a short selling model, has the highest market value and lowest risk.

Keywords

Portfolio selection • Risk measurement • Short selling • MV model • MAD

model • Downside risk model • Multiple objective programming • Rebalancing

model • Value-at-risk • Conditional value-at-risk

26.1 Introduction

Determining how to maximize the profit and minimize the risk of a portfolio is an

important issue in portfolio selection. The mean-variance (MV) model of portfolio

selection is based on the assumptions that investors are risk averse and the return of

assets is normally distributed (Markowitz 1952). This model is regarded as the basis

of modern portfolio theory (Deng et al. 2005).

However, the MV model is limited in that it only leads to optimal decisions if the

investor’s utility functions are quadratic or if investment returns are jointly elliptically

distributed (Grootveld and Hallerbach 1999; Papahristoulou and Dotzauer 2004). Thus,

numerous researches have focused on risk, return, and diversification in the development

of investment strategies. Also, a large number of researches have been proposed to

improve the performance of investment portfolios (Deng et al. 2000; Yu and Lee 2011).

Konno and Yamazaki (1991) proposed a linear mean absolute deviation (MAD)

portfolio optimization model. The MAD model replaces the variance of objective

function in the MV model with the mean absolute deviation. The major advantage

of the MAD model is that the estimation of the covariance matrix of asset returns is

not needed. Also, it is much easier to solve large-scale problems with linear

programming than with quadratic approaches (Simaan 1997).

Portfolio selection under shortfall constraints originated from Roy’s (1952)

safety-first theory. Economists have found that investors care about downside

losses more than they care about upside gains. Therefore, Markowitz (1959)

suggested using semi-variance as a measure of risk, instead of variance, because

semi-variance measures downside losses rather than upside gains. The use of

downside risk (DSR) measures is proposed due to the problems encountered in

using a conventional mean-variance analysis approach in the presence of

non-normality in the emerging market data. Unlike the mean-variance framework,
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the downside risk measure does not assume that the return distributions of assets are

normal. In addition, the increasing emphasis of investors on limiting losses might

make the downside risk measure more intuitively appealing (Stevenson 2001; Ang

et al. 2006). The downside risk measure can help investors make proper decisions

when returns are non-normally distributed, especially for emerging market data or

for an international portfolio selection (Vercher et al. 2007).

Another type of shortfall constraint is value-at-risk (VaR), which is a percentile-

based metric system for risk measurement purposes (Jorion 1996). It is defined as the

maximum loss that a portfolio can suffer at a given level of confidence and at a given

horizon (Fusai and Luciano 2001). However, VaR is too weak to handle the situation

when losses are not “normally” distributed, as loss distribution tends to exhibit “fat tail”

or empirical discreteness. Conditional value-at-risk (CVaR) is an alternative measure

that quantifies losses that might be encountered in the tail of loss distribution

(Rockafellar and Uryasev 2002; Topaloglou et al. 2002). A confidence level is required

when employing the measurements of VaR and CVaR. The allocation of a portfolio

varies with the varying confidence level. Therefore, neither measure is included for

comparison in this chapter.

Generally, short selling has good potential to improve a portfolio’s risk-return

trade-off (White 1990; Kwan 1997) and is considered by most investors to obtain

interest arbitrage; however, it comes with high risk (Angel et al. 2003). Since high

risks should be avoided, the role of short selling is minimized in this chapter. Instead,

three kinds of portfolio models with and without short selling are compared.

Section 26.2 introduces the mean-variance, mean absolute, and downside risk

models. In Sect. 26.3, the rebalancing models with/without short selling are pro-

posed. In Sect. 26.4, the performances of three different risk measurements with/

without short selling are compared by using the historical data of 45 stocks listed in

the TSE50 index. Finally, Sect. 26.5 presents the conclusions along with sugges-

tions for future research.

26.2 Portfolio Selection Models

In this section, the mean-variance, the mean absolute deviation, and the downside

risk models are introduced separately. First, the notations are defined as follows:

n is the number of available securities.

wi is the investment portion in securities i for i ¼ 1, . . ., n.
ri is the return on securities i.
m is the expected portfolio return.

si
2 is the variance of the return on securities i.

sij
2 is the covariance between the returns of securities i and j.

rit is the return on securities i in period t for t ¼ 1, . . ., T, which is assumed to be

available through historical data.

Ri is equal to
1
T

XT
t¼1

rit.

dt is the deviation between the return and the average return.
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26.2.1 The Mean-Variance Model (MV)

The MV model uses the variance of the return as the measure of risk and formulates

the portfolio optimization problem as the following quadratic programming prob-

lem (Markowitz 1952):

Min sp ¼
Xn
i¼1

w2
i s

2
iþ
Xn
i¼1

Xn

j¼1 i6¼jð Þ
sijwiwj

s:t:
Xn
i¼1

riwi � m,

(26.1)

Xn
i¼1

wi ¼ 1, (26.2)

wi � 0, (26.3)

for i ¼ 1, . . ., n.
Constraint (26.1) expresses the requirements m of a portfolio return, and con-

straint (26.2) is the budget constraint. The model is known to be valid if an investor

is risk averse in the sense that he prefers less standard deviation of the portfolio

rather than more. Since wi � 0, a short sale is not allowed here.

26.2.2 The Mean Absolute Deviation Model (MAD)

The mean-variance model is weak in constructing a large-scale portfolio due to the

computational difficulty associated with solving a large-scale quadratic program-

ming problem with a dense covariance matrix. The MAD model (Konno and

Yamazaki 1991) replaces the variance in the objective function of the MV model

with the mean absolute deviation as follows:

Min
1

T

XT
t¼1

Xn
i¼1

rit � Rið Þwi

�����

�����

s.t. Constraints (26.1) � (26.3).

Because of the absolute deviation, the MAD model can be linearized as

following (Chang 2005):

Min
1

T

XT
t¼1

dt

s.t. Constraints (26.1) � (26.3),
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dt þ
Xn
i¼1

rit � Rið Þwi � 0, t ¼ 1, . . . , T, (26.4)

dt �
Xn
i¼1

rit � Rið Þwi � 0, t ¼ 1, . . . , T: (26.5)

If the return is lower than the average return, constraint (26.4) is a binding

constraint which means dt ¼ �
Xn
i¼1

rit � Rið Þwi for t¼ 1, . . .,T. Otherwise, constraint

(26.5) is a binding constraint which means dt ¼
Xn
i¼1

rit � Rið Þwi for t ¼ 1, . . .,T. For

more details on the reformulation, please refer to Appendix 1.

Apparently, theMADmodel does not require the covariance matrix of asset returns,

and consequently its estimation is not needed. Large-scale problems can be solved faster

and more efficiently because the MADmodel has a linear rather than quadratic nature.

26.2.3 The Downside Risk Model

Vercher et al. (2007) consider the equivalent formulation of the portfolio selection

problem (Speranza 1993) and reformulate the following linear optimization model

by considering downside risk measurement:

Min
1

T

XT
t¼1

d�t

s.t. Constraints (26.1) � (26.3),

d�t þ
Xn
i¼1

rit � Rið Þwi � 0, t ¼ 1, . . . , T (26.6)

where dt ¼ dt
+ + dt

�, dt
+, dt

� � 0.

Downside risk measurement focuses on returns falling below some critical level

(Grootveld and Hallerbach 1999). Differing from the MAD model, the downside

risk model ignores constraint (26.5). If the return is lower than the average return,

constraint (26.6) is a binding constraint. Please refer to Appendix 2 for more details.

26.3 The Proposed Model

Multiple period portfolio selection models with rebalancing mechanisms have become

attractive in the financial field in order to get desired returns in situations that are

subject to future changes (Yu et al. 2010). To reflect a changing situation in the models,

the rebalancing mechanism is adopted for multiple periods (Yu and Lee 2011).
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Six rebalancing models are introduced. These are MV, MAD, DSR, MV_S,

MAD_S, and DSR_S. The first three models lack short selling, and the other three

have short selling. The model notations are denoted as follows: wi,0
+ is the weight of

security i held in the previous period, wi,0
� is the weight of securities i sold short in

the previous period, wþ
i is the total weight of securities i bought after rebalancing,

and w�
i is the total weight of securities i sold short after rebalancing.

With each rebalancing, lþi is the weight of securities i bought in this period, l�i is

the weight of securities i sold in this period, sþi is the weight of securities i sold short
in this period, s�i is the weight of securities i repurchased in this period, ui is the
binary variable that indicates whether the securities i are selected for buying, vi is
the binary variable that indicates whether the securities i are selected for selling

short, and k is the initial margin requirement for short selling.

26.3.1 The MV Model

The conventional MV model can be regarded as a bi-objective model without short

selling, whose objective functions are the maximization of portfolio return and

minimization of portfolio risk, as measured by the portfolio variance:

Max
Xn
i¼1

Riwi

Minsp

s.t. Constraint (26.2),

wi ¼ wþ
i, 0 þ ‘þi � ‘�i , (26.7)

0:05ui � wi � 0:2ui, (26.8)

for i ¼ 1, 2, . . ., n.
Constraint (26.7) is the rebalancing constraint; it shows the current weight for

the ith security according to the previous period. Constraint (26.8) is the required

range of weights for each security in buying. For simplexity, the upper and lower

bounds of each weight are set 0.2 and 0.05, respectively.

26.3.2 The MAD Model

The objectives of the MAD model include the maximization of return and minimi-

zation of the mean absolute deviation, which is transformed into a linear deviation

as follows:

Max
Xn
i¼1

Riwi
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Min
1

T

XT
t¼1

dt

s.t. Constraints (26.2) � (26.5), (26.7), (26.8).

26.3.3 The DSR Model

The DSR model considers the objectives of maximizing the return and minimizing

the downside risk, which is transformed into a linear risk as follows:

Max
Xn
i¼1

Riwi

Min
1

T

XT
t¼1

d�t

s.t. Constraints (26.2), (26.3), (26.6), (26.7), (26.8).

When short selling is allowed, the above three models are reformulated as

follows (Yu and Lee 2011):

26.3.4 The MV_S Model

Max
Xn
i¼1

Ri w
þ
i � w�

i

� �

Minsp

Min
Xn
i¼1

w�
i

s:t:
Xn
i¼1

wþ
i þ kw�

i

� � ¼ 1,

(26.9)

wþ
i ¼ wþ

i, 0 þ ‘þi � ‘�i , (26.10)

w�
i ¼ w�

i, 0 þ sþi � s�i , (26.11)

0:05ui � wþ
i � 0:2ui, (26.12)
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0:05vi � w�
i � 0:2vi, (26.13)

ui þ vi ¼ yi, (26.14)

for i ¼ 1, 2, . . ., n.
Unlike the MV model, the MV_S model has an extra objective, namely, mini-

mizing the short selling proportion. The total budget is including the cost of buying

and short selling as shown in constraint (26.9). k is the initial margin requirement

for short selling. Constraint (26.10) indicates the current weight for the ith securities
based on the previous period. Constraint (26.11) indicates the current short selling

proportion of the ith security adjusted by the previous period. Constraints (26.12)

and (26.13) limit the upper and lower bounds, respectively, of the long and short

selling proportion for the ith security.

26.3.5 The MAD_S Model

Based on the MAD model (Konno and Yamazaki 1991), the MAD_S model

replaces the objective function of minimizing the variance in the MV_S model

(Yu and Lee 2011) with the objective of minimizing the absolute deviation of

average return, as follows:

Min
Xn
i¼1

wþ
i � w�

i

� �
rit � wþ

i � w�
i

� �
Ri

�� ��� �

The objective of the mean absolute deviation can be transformed into a linear

problem:

Min
1

T

XT
t¼1

dt

s:t: dt þ
Xn
i¼1

wþ
i � w�

i

� �
rit � wþ

i � w�
i

� �
Ri � 0, (26.15)

dt �
Xn
i¼1

wþ
i � w�

i

� �
rit � wþ

i � w�
i

� �
Ri � 0, (26.16)

for t ¼ 1, . . ., T.
The following is the MAD_S model:

Max
Xn
i¼1

Ri w
þ
i � w�

i

� �
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Min
1

T

XT
t¼1

dt

Min
Xn
i¼1

w�
i

s.t. Constraints (26.9) � (26.16).

26.3.6 The DSR_S Model

The DSR_S model focuses on the deviation when the return falls below the average

return, as follows:

Max
Xn
i¼1

Ri w
þ
i � w�

i

� �

Min
1

T

XT
t¼1

d�t

Min
Xn
i¼1

w�
i

s.t. Constraints (26.9) � (26.14),

d�t þ
Xn
i¼1

wþ
i � w�

i

� �
rit � wþ

i � w�
i

� �
Ri � 0, (26.17)

for t ¼ 1, . . ., T.
Apparently, all six models have multiple objectives. Therefore, multiple

objective programming (Zimmermann 1978, and Lee and Li 1993) is adopted to

transform the multiple objectives into a single objective. For more details, please

refer to Appendix 3. Taking the MAD_S model as an example, we can reformulate

the multiple objectives as follows:

Maxl

s:t: l � r� � rlð Þ
rg � rl
� � , (26.18)

l � s� � slð Þ
sg � sl
� � , (26.19)
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l � w� � w�
l

� �

w�
g � w�

l

� � , (26.20)

r� ¼
Xn
i¼1

Ri w
þ
i � w�

i

� �
, (26.21)

s� ¼ 1

T

XT
t¼1

d�t , (26.22)

w�� ¼
Xn
i¼1

w�
i , (26.23)

Constraints (26.9) � (26.16).

For multiple objective programming (Lee and Li 1993), r� is the return of the

portfolio, rl is the anti-ideal return of the portfolio, rg is the ideal return of the

portfolio that maximizes the objective, s� is the inherent risk of the portfolio, sl is
the anti-ideal risk of the portfolio, sg is the ideal risk of the portfolio, w�� is the
short selling proportion of the portfolio, wl is the anti-ideal short selling proportion

of the portfolio, and w�
g is the ideal short selling proportion of the portfolio.

The constraints (26.18–26.20) are the achievements for maximizing the return,

minimizing the absolute deviation and objectives minimizing the short selling

problem of the corresponding portfolio, which are less than or equal to the whole

achievement (l). The whole achievement (l) should be maximized.

In the same way, the other five multiple objective models can be reformulated in

turn as a single-objective model. The details of the transformation are introduced in

Appendix 3.

26.4 Experimental Results

Forty-five stocks listed on the Taiwan Stock Exchange were adopted and used to

compare the six models discussed above in order to determine which one is the best.

The benchmark is the Taiwan 50 Index (TSE50).

The exchange codes of the 45 stocks are listed in Table 26.1. The duration of the

analyzed data is from November 1, 2006, to November 24, 2009. The historical data

of the first 60 transaction days are used to build the initial models. For the monthly

updates, 20 transaction days are set as a sliding window. This study assumes

a budget of $1 million NTD is invested in the Taiwan Stock Market. For invest-

ments based on the weights generated by the initial models, the first transaction day

is January 25, 2007, and there are 34 rebalancing times in total. The models are

executed on an Intel Pentium Dual CPU E2200 2.20GHz and 2G RAM computer,

with Lingo11.0, an optimizing software.

From Table 26.2, it is apparent that the MAD and DSR models are more efficient

than the MV model because they both use linear transformation for problem

solving. This is much faster and more efficient when handling a large-scale
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problem. As one can see in Table 26.2, the MV model takes 9 min and 6 sec to

compute the result. However, the MAD and DSR models only take 1 min or slightly

more to solve the same data. Moreover, it is not necessary to calculate the covari-

ance matrix to set up the MAD and DSR models; this makes it very easy to update

the models when new data are added (Konno and Yamazaki 1991).

Figures 26.1, 26.2 and 26.3 show the comparisons of the MV, MAD, and DSR

models, respectively. These are the models without short selling. Figures 26.4, 26.5

and 26.6 show the comparisons of the MV_S, MAD_S, and DSR_S models,

respectively. These are the models with short selling. The TSE50 is used as the

benchmark to these models. As shown in Fig. 26.1, the market value of the MAD

Table 26.2 The running time of six portfolios

Models without short selling MV MAD DSR

00:09:06 00:01:01 00:01:01

Models with short selling MV_S MAD_S DSR_S

00:10:01 00:01:15 00:01:14
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Fig. 26.1 The market value of three risk measurements without short selling, the TSE50, and

TAIEX
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model is always greater than that of the other models and the benchmark.

Figures 26.2 and 26.3 display the expected return and risk of the portfolios

constructed with three risk measurements without short selling. Figure 26.2

shows that the expected returns of these three portfolios are almost the same.

However, Fig. 26.3 shows that the MAD model has the lowest risk under a similar

expected return to that of the others. Especially, in January 24, 2009, the risk in the

MAD model was much lower than in the other two models.

Downside risk measurement is applied when investors only take the negative

return into consideration and focus on the loss of investment. In other words, their

concern is with the real loss, not with the positive deviation of the average return in

portfolios. Therefore, in Fig. 26.3, the risk generated by the DSR model is always

higher than other measurements.

In Fig. 26.4, the market value of the MV_S, MAD_S, and DSR_S models is

compared. Since these models take short selling into consideration, the portfolio

selection is more flexible, and the risk is much lower, as Fig. 26.6 shows. Under the

same expected return, theMAD_Smodel has the lowest risk among the three models,

using the mean absolute deviation risk measure. Figure 26.4 shows that it also has the

highest market value. Even though the market value of each model is increased after

short selling is allowed, the market value of the MAD_S model is always higher than

the other models and the benchmark. Evidently, the MADmodel is suggested for use

as the best risk measurement tool with or without short sell.
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26.5 Conclusion

This chapter compares six different rebalancing models, with/without short selling, in

order to determine which is more flexible for portfolio selection. One of the advan-

tages of the MAD and DSRmodels is that they can be linearized; thus, they are faster

and more efficient than the MV model, especially with large-scale problems.

The experimental results indicate that the MAD and MAD_S models are

efficient in handling data and show higher market value than the other models;

moreover, they have lower risks in situations with/without short selling.

However, there remain important risk measurements, such as VaR and CVaR, for

future research to investigate. Thus, future studies may focus on developing

rebalancing models with the measures of VaR and CVaR. Since the rebalancing period

is fixed, the dynamic rebalancing mechanism is required for the first change environ-

ment. In addition, a portfolio selection model able to predict future returns is required.

Appendix 1

The Linearization of the MAD Model

Konno and Yamazaki (1991) assume that rit is the realization of random variable ri

during period t (t ¼ 1, . . ., T), and Ri ¼ 1
T

Xn
i¼1

rit:

The MAD model is as follows:

Max
1

T

XT
t¼1

Xn
i¼1

rit � Rið Þwi

�����

�����

s:t:
Xn
i¼1

Rixi � m,

Xn
i¼1

wi ¼ 1,

wi � 0,
for i ¼ 1, . . ., n.

Let
Xn
i¼1

rit � Rið Þwi

�����

����� ¼ dt ¼ dt
þ þ dt

�,

dt
þand dt

� � 0,

then
Xn
i¼1

rit � Rið Þwi ¼ dt
þ � dt

�,
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dt � d�t ¼
Xn
i¼1

rit � Rið Þwi þ dt
�,

dt
� ¼ 1

2
dt �

Xn
i¼1

rit � Rið Þwi

 !
� 0:

2dt
� ¼ dt �

Xn
i¼1

rit � Rið Þwi:

Similarity, perform the same process,

dt
þ ¼

Xn
i¼1

rit � Rið Þwi þ dt
�,

dt � dt
þ ¼ �

Xn
i¼1

rit � Rið Þwi þ dt
þ,

2dt
þ ¼ �

Xn
i¼1

rit � Rið Þwi þ dt,

dt
þ ¼ 1

2

Xn
i¼1

rit � Rið Þwi þ dt

 !
� 0,

dt
þ, d�t � 0:

Two constraints are added because dt
+, dt

� � 0.

Then the model can be transformed into a linear model as follows:

Min
1

T

XT
t¼1

Xn
i¼1

rit � Rið Þwi

�����

����� ¼
1

T

XT
t¼1

dt
þ þ dt

�

dt
þ ¼ 1

2

Xn
i¼1

rit � Rið Þwi þ dt

 !
� 0,

)
Xn
i¼1

rit � Rið Þwi þ dt � 0:

26 A Comparison of Portfolios Using Different Risk Measurements 723



dt
� ¼ 1

2
�
Xn
i¼1

rit � Rið Þwi þ dt

 !
� 0,

) �
Xn
i¼1

rit � Rið Þwi þ dt � 0:

where dt ¼ dt
+ + dt

�.
Therefore, the MAD model can be linearized as the following linear model:

Min
1

T

XT
t¼1

dt

s:t: dt þ
Xn
i¼1

rit � Rið Þwi � 0, t ¼ 1, . . . , T,

dt �
Xn
i¼1

rit � Rið Þwi � 0, t ¼ 1, . . . ,T,

Xn
i¼1

Rixi � m,

Xn
i¼1

wi ¼ 1,

wi � 0,

for i ¼ 1, . . . , n.

Appendix 2

The Linearization of the DSR Model

The use of variance as a measure of risk makes no distinction between gains and

losses. The following mean semi-absolute deviation risk measurement proposed by

Speranza (1993) is used to find the portfolios with minimum semi-variance:

Min

1
T

XT
t¼1

Xn
i¼1

rit � Rið Þwi

�����

������
Xn
i¼1

rit � Rið Þwi

2
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s:t:
Xn
i¼1

Rixi � m,

Xn
i¼1

wi ¼ 1,

wi � 0,

for i ¼ 1, . . . n.

Because of the absolute deviation,
Xn
i¼1

rit � Rið Þwi

�����

����� of the DSR model can be

linearized in the same manner as the MAD model:

Xn
i¼1

rit � Rið Þwi ¼ dt
þ � dt

�

Xn
i¼1

rit � Rið Þwi

�����

������
Xn
i¼1

rit � Rið Þwi

2
¼ dt

þ þ dt
� � dt

þ þ dt
�

2
¼ dt

�

dt
þ ¼ 1

2

Xn
i¼1

rit � Rið Þwi þ dt

 !
� 0,

dt
� � 0:

Then the DSR model is reformulated as follows:

Min
1

T

XT
t¼1

d�t

s:t:
Xn
i¼1

Rixi � m,

Xn
i¼1

wi ¼ 1,

wi � 0,

d�t þ
Xn
i¼1

rit � Rið Þwi � 0, t ¼ 1, . . . ,T,

dt
� � 0, t ¼ 1, . . . ,T,

for i ¼ 1, . . ., n.

26 A Comparison of Portfolios Using Different Risk Measurements 725



Appendix 3

Multiple Objective Programming

The aforementioned multiple objective models in Sect. 26.3 are solved by fuzzy

multiple objective programming (Zimmermann 1978; Lee and Li 1993) in order to

transform the multiple objective model into a single-objective model. Fuzzy mul-

tiple objective programming based on the concept of fuzzy set uses a min operator

to calculate the membership function value of the aspiration level, l, for all of the
objectives.

The following is a multiple objective programming problem (Lee and Li 1993):

MaxZ ¼ Z1; Z2; . . . ; Zl½ �T ¼ c1x, c2x, . . . , clx½ �T

MinW ¼ W1;W2; . . . ;Wl½ �T ¼ q1x, q2x, . . . , qlx½ �T

s:t: Ax�b,

x � 0,

where Ck, k ¼ 1, 2, . . .,l, cs, s ¼ 1, 2, . . .,r, and x are n-dimensional vectors; b is an

m-dimensional vector; A is an m � n matrix; and * denotes the operators �, ¼,

or � The program aimed to achieve its maximization of the achievement level for

each objective while also considering a trade-off among the conflicting objectives

or criteria. The ideal and anti-ideal solutions must be obtained in advance. This

ideal solution and anti- ideal solutions are given by the decision maker, respec-

tively, as follows:

Iþ ¼ Z�
1; Z

�
2; . . . ; Z

�
l ;W

�
1;W

�
2; . . . ;W

�
l

� �
,

I� ¼ Z�
1 ; Z

�
2 ; . . . ; Z

�
r ;W

�
1 ;W

�
2 ; . . . ;W

�
r

� �
:

The membership (achievement) functions for the objectives are defined as

follows:

mk ZKð Þ ¼ ZK xð Þ � Z�
k

Z�
k � Z�

k

, k ¼ 1, 2, . . . , l,

ms Zsð Þ ¼ W�
s �Ws xð Þ
W�

s �W�
s

, s ¼ 1, 2, . . . , r:

Then the “min” operator is used; the multiple objective programming is

formulated as follows:
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Max l

s:t: l � ZKð xð Þ � Z�
k

�
= Z�

k � Z�
k

� �
, k ¼ 1, 2, . . . , l,

l � W�
s �Ws xð ÞÞ�

= W�
s �W�

s

� �
, s ¼ 1, 2, . . . , r,

x 2 X,

where l is defined as l ¼ mini m xð Þ ¼ mink, s mk Zð Þ, ms Wsð ÞÞð .
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C.-F. Lee

Department of Finance and Economics, Rutgers Business School, Rutgers, The State University of

New Jersey, Piscataway, NJ, USA

Graduate Institute of Finance, National Chiao Tung University, Hsinchu, Taiwan

e-mail: cflee@business.rutgers.edu

K. Wang • Y. Yang (*)

Graduate Institute of Finance, National Chiao Tung University, Hsinchu, Taiwan

e-mail: lkwang@mail.nctu.edu.tw; yatingyang.iof98g@nctu.edu.tw

C.-C. Lien

Treasury Division, E.SUN Commercial Bank, Taipei, Taiwan

C.-F. Lee, J. Lee (eds.), Handbook of Financial Econometrics and Statistics,
DOI 10.1007/978-1-4614-7750-1_27,
# Springer Science+Business Media New York 2015

729

mailto:cflee@business.rutgers.edu
mailto:lkwang@mail.nctu.edu.tw
mailto:yatingyang.iof98g@nctu.edu.tw


in Taiwan have requested the banks to estimate the default probability of the

loan based on its credit classification. A proper forecasting procedure for credit

rating of the loan is crucially important in abiding the rule.

Credit rating is an ordinal scale from which the credit category of a firm can

be ranked from high to low, but the scale of the difference between them is

unknown. To model the ordinal outcomes, this study first constitutes an attempt

utilizing the ordered logit and the ordered probit models, respectively. Then, we

use ordered logit combining method to weigh different techniques’ probability

measures as described in Kamstra and Kennedy (International Journal of
Forecasting 14, 83–93, 1998) to form the combining model.

The samples consist of firms in the TSE and the OTC market and are divided

into three industries for analysis. We consider financial variables, market vari-
ables, as well as macroeconomic variables and estimate their parameters for

out-of-sample tests. By means of cumulative accuracy profile, the receiver

operating characteristics, and McFadden R2, we measure the goodness-of-fit

and the accuracy of each prediction model. The performance evaluations are

conducted to compare the forecasting results, and we find that combining

technique does improve the predictive power.

Keywords

Bankruptcy prediction • Combining forecast • Credit rating • Credit risk • Credit

risk index • Forecasting models • Logit regression • Ordered logit • Ordered

probit • Probability density function

27.1 Introduction

This study explores the credit rating forecasting techniques for firms in Taiwan. We

employ the ordered logit and the ordered probit models for rating classification and

then a combining procedure to integrate both. We then examine empirically the

performance of these alternative methods, in particular, whether the combining

forecasting performs better than any individual method.

Credit rating forecasting has long time been very important for bond classifica-

tion and loan analysis. In particular, under the Basel II environment, regulators in

Taiwan have requested the banks to estimate the default probability of the loan

based on its credit classification. A proper forecasting procedure for credit rating of

the loan is crucially important in abiding the rule.

Different forecasting models and estimation procedures have various underlying

assumptions and computational complexities. They have been used extensively by

researchers in the literature. Review papers like Hand and Henley (1997), Altman

and Sounders (1997), and Crouhy et al. (2000) have traced the developments of the

credit classification and bankruptcy prediction models over the last two decades.

Since Beaver’s (1966) pioneered work, there have been considerable researches

on the subject of the credit risk. Many of them (Altman 1968; Pinches and Mingo

1973; Altman and Katz 1976; Altman et al. 1977; Pompe and Bilderbeek 2005)
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use the multivariate discriminant analysis (MDA) which assumes normality for

the explanatory variables of the default class. Zmijewski (1984) utilizes the probit

model, and Ohlson (1980) applies the logit model in which discrete or continuous data

can be fitted.

Kaplan and Urwitz (1979), Ederington (1985), Lawrence and Arshadi (1995),

and Blume et al. (1998) show that it is a consistent structure considering credit

rating as ordinal scale instead of interval scale. That is, the different values of the

dependent variables as different classes represent an ordinal, but not necessarily

a linear scale. For instance, higher ratings are less risky than lower ratings, but we

don’t have a quantitative measure indicating how much less risky they are.

Kaplan and Urwitz (1979) conduct an extensive examination of alternative

prediction models including N-chotomous probit analysis which can explain the

ordinal nature of bond ratings. To test the prediction accuracy of various statistical

models, Ederington (1985) compares the linear regression, discriminant analysis,

ordered probit, and unordered logit under the same condition. He concludes that

the ordered probit can have the best prediction ability and the linear regression is

the worst.

In a survey paper on forecasting methods, Mahmoud (1984) concludes that

combining forecasts can improve accuracy. Granger (1989) summarizes the use-

fulness of combining forecasts. Clemen (1989) observes that combining forecasts

increase accuracy, whether the forecasts are subjective, statistical, econometric, or

by extrapolation. Kamstra and Kennedy (1998) integrate two approaches with logit-

based forecast-combining method which is applicable to dichotomous, polychoto-

mous, or ordered-polychotomous contexts.

In this paper, we apply the ordered logit and the ordered probit models in credit

rating classification for listed firms in Taiwan and then combine two rating models

with a logit regression technique. The performance of each model is then evaluated

and we find that combining technique does improve the predictive power.

27.2 Methodology

27.2.1 Ordered Probit Model

Credit rating is an ordinal scale from which the credit category of a firm can be

ranked from high to low, but the scale of the difference between them is unknown.

To model the ordinal outcomes, let the underlying response function be

Y� ¼ Xbþ e (27.1)

where Y* is the latent variable, X is a set of explanatory variables, and e is the

residual. Y* is not observed, but from which we can classify the category j:

Yi ¼ j if tj�1 < Y�
i � tj i ¼ 1, 2, . . . , n; j ¼ 1, 2, . . . , Jð Þ: (27.2)

27 Using Alternative Models and a Combining Technique in Credit Rating Forecasting 731



Maximum likelihood estimation can be used to estimate the parameters given

a specific form of the residual distribution.

For the ordered probit model, e is normally distributed with mean 0 and variance

1. The probability density function is

f eð Þ ¼ 1ffiffiffiffiffiffi
2p

p exp � e2

2

� �
(27.3)

and the cumulative density function is

F eð Þ ¼
ðe
�1

1ffiffiffiffiffiffi
2p

p exp � t2

2

� �
dt: (27.4)

27.2.2 Ordered Logit Model

For the ordered logit model, e has a logistic distribution with mean 0 and variance

p2/3. The probability density function is

l eð Þ ¼ exp eð Þ
1þ exp eð Þ½ �2 (27.5)

and the cumulative density function is

L eð Þ ¼ exp eð Þ
1þ exp eð Þ : (27.6)

27.2.3 Combining Method

To combine the ordered logit and the ordered probit models for credit forecasting,

the logit regression method as described in Kamstra and Kennedy (1998) is applied.

We first assume that firm’s credit classification is determined by an index y.
Suppose there are J rating classes, ordered from 1 to J. If y exceeds the threshold

value tj, j ¼ 1, . . ., j � 1, credit classification changes from j rating to j + 1 rating.

The probability of company i being in rating j is given by the integral of a standard

logit from tj � 1 � yi to tj� yi.
Each forecasting method is considered as producing J � 1 measures

oji ¼ tj � yi, j ¼ 1, . . ., j � 1 for each firm. These measures can be estimated as

oji ¼ ln
P1i þ � � � þ Pji

1� P1i � � � � � Pji

� �
(27.7)
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where Pji is a probability estimate for firm i in rating j. The combining method

proposed by Kamstra and Kennedy (1998) consists of finding, via MLE, an

appropriate weighted average of o’s in ordered logit and ordered probit

techniques.1

To validate the model, we use cumulative accuracy profile (CAP) and its

summary statistics, the accuracy ratio (AR). A concept similar to the CAP is the

receiver operating characteristic (ROC) and its summary statistics, the area under

the ROC curve (AUC). In addition, we also employ the McFadden’s R2 (pseudo R2)

to evaluate the performance of the credit rating model. McFadden’s R2 is defined as

1�(unrestricted log-likelihood function/restricted log-likelihood function).

27.3 Empirical Results

Data are collected from the Taiwan Economic Journal (TEJ) database for the period

between the first quarter in 2000 and the third quarter in 2005, with the last three

quarters used for out-of-sample tests. The sample consists of firms traded in the

Taiwan Security Exchange (TSE) and the OTC market.

The credit rating of the sample firms is determined by the Taiwan Corporate

Credit Risk Index (the TCRI). Among ten credit ratings, 1–4 represent the invest-

ment grade levels, 5–6 represent the low-risk levels, and 7–9 represent the high-risk

or speculative grade levels. The final rating, 10, represents the bankruptcy level.

Table 27.1 exhibits the descriptive statistics for the samples which are divided

into three industry categories. Panel A contains the in-sample observations, while

panel B shows the out-of-sample observations. There are 509 bankruptcy cases in

the traditional industry, 411 in the manufacturing sector, and 191 in the electronics

industry for in-sample data. For out-of-sample data, there are 63 in the traditional,

38 in the manufacturing, and 72 in the electronics industries, respectively.

Table 27.2 displays the frequency distributions of the credit ratings for

in-samples in these three industries.

1See Kamstra and Kennedy (1998) for the detail description.

Table 27.1 Sample numbers across the industry

Industry Non-bankruptcy observations Bankruptcy observations Total

Panel A: In-sample (2000.Q1 � 2004.Q4)

Traditional 3,993 509 4,502

Manufacturing 2,450 411 2,861

Electronics 8,854 191 9,045

Panel B: Out-of-sample (2005.Q1 � 2005.Q3)

Traditional 629 63 692

Manufacturing 432 38 470

Electronics 1,990 72 2,062
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Bonfim (2009) finds that not only the firms’ financial situation has a central role

in explaining default probabilities, but also macroeconomic conditions are very

important when assessing default probabilities over time. Based on previous studies

in the literature, 62 explanatory variables including financial ratios, market condi-

tions, and macroeconomic factors are considered. We use the hybrid stepwise

method to find the best predictors in the ordered probit and ordered logit models.

The combining technique using logit regression is then applied.

27.3.1 Model Estimates

27.3.1.1 Ordered Logit Model
Table 27.3 illustrates the in-sample estimation results under the ordered logit model

for each industry. From the likelihood ratio, score ratio, and Wald ratio, with

significant level at 1 %, we can determine the goodness-of-fit for each model.

For the traditional industry, the coefficients of Fixed Asset to Long Term Funds

Ratio (FixedAsset toEquity andLongTermLiabilityRatio), Interest Expense toSales

Ratio, and Debt Ratio are positive. It shows that firms with higher ratios will get worse

credit ratings aswell as higher default probabilities. On the other hand, the coefficients

ofAccountsReceivable TurnoverRatio,NetOperating ProfitMargin, Return onTotal

Assets (Ex-Tax, Interest Expense), Depreciation to Sales Ratio, Free Cash Flow to

Total Debt Ratio, Capital Spending to Gross Fixed Assets Ratio, Retained Earning

to Total Assets Ratio, and Ln (Total Assets/GNP price-level index) are negative so

that firms tend to have good credit qualities as well as lower default probabilities

when these ratios become higher. All these signs meet our expectation.

For the manufacturing industry, the coefficient of the dummy variable for the

Negative Net Income for the last 2 years is positive, so the losses worsen the credit

rating. On the other hand, the coefficients of Equity to Total Asset Ratio, Total

Assets Turnover Ratio, Return on Total Assets (Ex-Tax, Interest Expense),

Table 27.2 Frequency distributions of the credit ratings

Ratings Traditional Manufacturing Electronics

1 10 3 156

2 47 71 259

3 151 62 252

4 380 294 1,066

5 921 321 2,343

6 1,044 559 2,736

7 645 465 1,272

8 459 338 490

9 336 337 280

10 509 411 191

Subtotal 4,502 2,861 9,045

Note: Level 10 represents the bankruptcy class
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Table 27.3 Regression results estimated by the ordered logit. This table represents the

regression results estimated by the ordered logit model. Panel A shows the 11 explanatory vari-

ables fitted in the traditional industry. Panel B shows the nine explanatory variables fitted in the

manufacturing industry. Panel C shows the ten explanatory variables fitted in the electronics

industry

Explanatory variables

Parameters

Estimates

Standard

errors

Panel A: Traditional

X7 Fixed Asset to Long Term Funds Ratio 0.968*** (0.098)

X12 Accounts Receivable Turnover Ratio �0.054*** (0.0087)

X19 Net Operating Profit Margin �5.135*** (0.546)

X27 Return on Total Assets (Ex-Tax, Interest Expense) �5.473*** (0.934)

X29 Depreciation to Sales Ratio �6.662*** (0.537)

X30 Interest Expense to Sales Ratio 22.057*** (1.862)

X35 Free Cash Flow to Total Debt Ratio �0.971*** (0.094)

X41 Capital Spending to Gross Fixed Assets Ratio �0.746*** (0.167)

X46 Debt Ratio 4.781*** (0.305)

X47 Retained Earning to Total Assets Ratio �5.872*** (0.336)

X50 Ln (Total Assets/GNP price-level index) �6.991*** (1.024)

Panel B: Manufacturing

X2 Equity to Total Asset Ratio �7.851*** (0.317)

X15 Total Assets Turnover Ratio �0.714*** (0.172)

X27 Return on Total Assets (Ex-Tax, Interest Expense) �7.520*** (0.932)

X40 Accumulative Depreciation to Gross Fixed Assets �1.804*** (0.199)

X47 Retained Earning to Total Assets Ratio �3.138*** (0.340)

X50 Ln (Total Assets/GNP price-level index) �5.663*** (1.213)

X52 1:If Net Income was Negative for the Last Two Years

0: Otherwise

1.274*** (0.108)

X54 Ln (Age of the firm) �0.486*** (0.102)

X60 Ln (Net Sales) �1.063*** (0.065)

Panel C: Electronics

X2 Equity to Total Asset Ratio �3.239*** (0.207)

X27 Return on Total Assets (Ex-Tax, Interest Expense) �6.929*** (0.349)

X30 Interest Expense to Sales Ratio 25.101*** (1.901)

X35 Free Cash Flow to Total Debt Ratio �0.464*** (0.031)

X40 Accumulative Depreciation to Gross Fixed Assets �0.781*** (0.127)

X44 Cash Reinvestment Ratio �0.880*** (0.167)

X45 Working Capital to Total Assets Ratio �3.906*** (0.179)

X47 Retained Earning to Total Assets Ratio �3.210*** (0.174)

X49 Market Value of Equity/Total Liability �0.048*** (0.004)

X50 Ln (Total Assets/GNP price-level index) �8.797*** (0.704)

***Represents significantly different from zero at 1 % level
**Represents significantly different from zero at 5 % level
*Represents significantly different from zero at 10 % level
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Accumulative Depreciation to Gross Fixed Assets, Retained Earning to Total

Assets Ratio, Ln (Total Assets/GNP price-level index), Ln (Age of the firm), and

Ln (Net Sales) are all negative. The ratios improve the credit standings.

For the electronics industry, the coefficient of Interest Expense to Sales Ratio is

positive, and the coefficients of Equity to Total Asset Ratio, Return on Total Assets

(Ex-Tax, Interest Expense), Free Cash Flow to Total Debt Ratio, Accumulative

Depreciation to Gross Fixed Assets, Cash Reinvestment Ratio, Working Capital to

Total Assets Ratio, Retained Earning to Total Assets Ratio, Market Value of

Equity/Total Liability, and Ln (Total Assets/GNP price-level index) are negative.

In general, the matured companies like those in the traditional and the manufactur-

ing industries should focus mainly on their capabilities in operation and in liquidity.

Also, the market factors are important for the manufacturing firms. For high-growth

industry like the electronics, we should pay more attention to their market factors and

the liquidity ratios. The common explanatory variables among three industries seem

related to the operating returns, the retained earnings, and the asset size.

27.3.1.2 Ordered Probit Model
Table 27.4 shows the in-sample estimation results using the ordered probit model

for each industry.

For the traditional industry, the coefficients of Fixed Asset to Long Term Funds

Ratio, Interest Expense to Sales Ratio, and Debt Ratio are positive in the ordered

probit model, which are similar to the results from the ordered logit model. On the

other hand, the coefficients of Accounts Receivable Turnover Ratio, Net Operating

Profit Margin, Return on Total Assets (Ex-Tax, Interest Expense), Depreciation to

Sales Ratio, Operating Cash Flow to Total Liability Ratio, Capital Spending to

Gross Fixed Assets Ratio, and Retained Earning to Total Assets Ratio are negative,

also showing no big difference with the results from the ordered logit model.

For the manufacturing industry, the coefficients of Accounts Payable Turnover

Ratio and the dummy variable for the negative Net Income for the last 2 years are

positive. On the other hand, the coefficients of Equity to Total Asset Ratio, Quick

Ratio, Total Assets Turnover Ratio, Return on Total Assets (Ex-Tax, Interest

Expense), Accumulative Depreciation to Gross Fixed Assets, Cash Flow Ratio,

Retained Earning to Total Assets Ratio, and Ln (Age of the firm) are negative. The

results are also similar to those of the ordered logit model, only that the ordered logit

seems focusing more on the size factors (sales, asset), while the ordered probit

concerns more on the liquidity (quick ratio, cash flow ratio, and payables) of the firm.

For the electronics industry, the coefficients of Interest Expense to Sales Ratio is

positive and the coefficients of Free Cash Flow to Total Debt Ratio, Working

Capital to Total Assets Ratio, Retained Earning to Total Assets Ratio, Market

Value of Equity/Total Liability, LN (Total Assets/GNP price-level index), and

LN (Age) are negative.

Table 27.5 shows the threshold values estimated by the two models. Threshold

values represent the cutting points for neighboring ratings.
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Table 27.4 Regression results estimated by the ordered probit. This table represents the

regression results estimated by the ordered probit model. Panel A shows the ten explanatory

variables fitted in the traditional industry. Panel B shows the ten explanatory variables fitted in the

manufacturing industry. Panel C shows the nine explanatory variables fitted in the electronics

industry

Explanatory variables

Parameters

Estimates Standard errors

Panel A: Traditional

X7 Fixed Asset to Long Term Funds Ratio 0.442*** (0.058)

X12 Accounts Receivable Turnover Ratio �0.027*** (0.005)

X19 Net Operating Profit Margin �2.539*** (0.311)

X27 Return on Total Assets (Ex-Tax, Interest Expense) �3.335*** (0.534)

X29 Depreciation to Sales Ratio �3.204*** (0.287)

X30 Interest Expense to Sales Ratio 9.881*** (1.040)

X34 Operating Cash Flow to Total Liability Ratio �0.514*** (0.121)

X41 Capital Spending to Gross Fixed Assets Ratio �0.459*** (0.096)

X46 Debt Ratio 3.032*** (0.188)

X47 Retained Earning to Total Assets Ratio �3.317*** (0.192)

Panel B: Manufacturing

X2 Equity to Total Asset Ratio �4.648*** (0.183)

X10 Quick Ratio �0.036*** (0.009)

X11 Accounts Payable Turnover Ratio 0.021*** (0.004)

X15 Total Assets Turnover Ratio �0.742*** (0.072)

X27 Return on Total Assets (Ex-Tax, Interest Expense) �4.175*** (0.522)

X40 Accumulative Depreciation to Gross Fixed Assets �0.989*** (0.112)

X43 Cash Flow Ratio �0.190*** (0.045)

X47 Retained Earning to Total Assets Ratio �1.804*** (0.188)

X52 1:If Net Income was Negative for the Last Two Years

0: Otherwise

0.753*** (0.061)

X54 Ln (Age of the firm) �0.289*** (0.056)

Panel C: Electronics

X2 Equity to Total Asset Ratio �1.851*** (0.117)

X27 Return on Total Assets (Ex-Tax, Interest Expense) �3.826*** (0.197)

X30 Interest Expense to Sales Ratio 11.187*** (1.052)

X35 Free Cash Flow to Total Debt Ratio �0.233*** (0.017)

X45 Working Capital to Total Assets Ratio �2.101*** (0.101)

X47 Retained Earning to Total Assets Ratio �1.715*** (0.098)

X49 Market Value of Equity/Total Liability �0.027*** (0.002)

X50 Ln (Total Assets/GNP price-level index) �4.954*** (0.399)

X54 Ln (Age of the firm) �0.247*** (0.028)

***Represents significantly different from zero at 1 % level
**Represents significantly different from zero at 5 % level
*Represents significantly different from zero at 10 % level
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27.3.2 Credit Rating Forecasting

Tables 27.6 and 27.7 illustrate the prediction results of the ordered logit and the

ordered probit models. Following Blume et al. (1998), we define the most probable

rating as the actual rating or its immediate adjacent ratings. The ratio of the number

of the predicted ratings as the most probable ratings to the total number of the

ratings being predicted can assess the goodness-of-fit for the model. For out-of-

sample firms, the predictive power of the ordered logit model for each industry is

86.85 %, 81.06 %, and 86.37 %, respectively; and the predictive power of the

ordered probit model for each industry is 86.42 %, 80.21 %, and 84.87 %,

respectively. The results from two models are quite similar.

27.3.3 Estimation Results Using the Combining Method

Table 27.8 depicts the regression results using the Kamstra-Kennedy combining

forecasting technique. The coefficients are the logit estimates on o’s. These o
values are all positive and strongly significant for each industry.

Table 27.5 Threshold values estimated by the ordinal analysis. This table shows the threshold
values estimated by the ordered logit and the ordered probit models. There are nine threshold

parameters given ten credit ratings

Threshold

parameter

Ordered logit model Ordered probit model

Traditional Manufacturing Electronics Traditional Manufacturing Electronics

t1 �23.361*** �28.610*** �31.451*** �12.272*** �16.891*** �17.306***

(0.633) (0.987) (0.478) (0.332) (0.447) (0.252)

t2 �21.236*** �24.879*** �29.759*** �11.231*** �15.042*** �16.410***

(0.545) (0.766) (0.459) (0.294) (0.360) (0.243)

t3 �19.441*** �23.848*** �28.855** �10.316*** �14.446*** �15.917***

(0.519) (0.749) (0.451) (0.282) (0.352) (0.240)

t4 �17.639*** �21.657*** �26.846*** �9.339*** �13.175*** �14.797**

(0.502) (0.717) (0.436) (0.275) (0.337) (0.233)

t5 �15.389*** �20.333*** �24.451*** �8.080*** �12.411*** �13.441***

(0.484) (0.703) (0.421) (0.268) (0.331) (0.227)

t6 �13.317*** �18.309*** �21.777*** �6.918*** �11.251*** �11.937***

(0.473) (0.683) (0.407) (0.263) (0.322) (0.221)

t7 �11.584*** �16.461*** �19.715*** �5.972*** �10.207*** �10.809***

(0.465) (0.670) (0.400) (0.261) (0.314) (0.218)

t8 �9.825*** �14.738*** �18.019*** �5.049*** �9.246*** �9.929***

(0.459) (0.662) (0.397) (0.260) (0.308) (0.217)

t9 �8.231*** �12.166*** �16.010*** �4.256*** �7.860*** �9.005***

(0.457) (0.655) (0.400) (0.260) (0.301) (0.219)

***Represents significantly different from zero at 1 % level
**Represents significantly different from zero at 5 % level
*Represents significantly different from zero at 10 % level
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Table 27.6 Out-of-sample predictions by the ordered logit model

Panel A: Traditional

Predicted rating

1 2 3 4 5 6 7 8 9 10

Actual rating 1 0 0 3 0 0 0 0 0 0 0

2 0 0 0 6 5 1 0 0 0 0

3 0 0 4 8 12 0 0 0 0 0

4 0 0 4 26 34 7 0 0 0 0

5 0 0 0 14 101 41 2 0 0 0

6 0 0 0 2 53 104 29 5 0 0

7 0 0 0 0 5 24 26 11 0 0

8 0 0 0 0 0 21 26 13 2 3

9 0 0 0 0 0 1 4 15 7 10

10 0 0 0 0 0 3 2 9 15 34

Prediction ratio 86.85%

Panel B: Manufacturing

Predicted rating

1 2 3 4 5 6 7 8 9 10

Actual rating 1 0 0 0 0 0 0 0 0 0 0

2 0 3 0 4 3 2 0 0 0 0

3 0 2 2 4 2 5 0 0 0 0

4 0 0 0 7 21 24 0 1 0 0

5 0 0 0 5 29 51 5 3 0 0

6 0 0 0 8 20 68 18 3 0 0

7 0 0 1 1 0 18 38 9 3 1

8 0 0 0 0 0 4 16 5 9 1

9 0 0 0 0 0 0 9 12 10 5

10 0 0 0 0 0 0 4 5 8 21

Prediction ratio 81.06%

Panel C: Electronics

Predicted rating

1 2 3 4 5 6 7 8 9 10

Actual rating 1 0 1 2 0 15 0 0 0 0 0

2 0 0 0 5 22 2 0 0 0 0

3 0 0 0 1 36 11 2 0 0 0

4 0 2 4 13 144 42 0 0 0 0

5 0 1 1 9 279 180 15 1 0 0

6 0 0 0 11 293 303 39 2 0 0

7 0 0 0 0 16 206 79 9 0 1

8 0 0 0 0 2 50 80 26 10 2

9 0 0 0 0 0 6 11 21 22 13

10 1 0 0 0 3 2 5 12 15 34

Prediction ratio 86.37%
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Table 27.7 Out-of-sample predictions by the ordered probit model

Panel A: Traditional

Predicted rating

1 2 3 4 5 6 7 8 9 10

Actual rating 1 0 2 1 0 0 0 0 0 0 0

2 0 0 0 4 6 2 0 0 0 0

3 0 0 3 5 16 0 0 0 0 0

4 0 0 6 22 36 7 0 0 0 0

5 0 0 0 10 97 48 3 0 0 0

6 0 0 0 2 45 106 36 4 0 0

7 0 0 0 0 4 28 21 13 0 0

8 0 0 0 0 1 19 26 14 2 3

9 0 0 0 0 1 0 5 10 9 12

10 0 0 0 0 0 2 3 11 15 32

Prediction ratio 86.42%

Panel B: Manufacturing

Predicted rating

1 2 3 4 5 6 7 8 9 10

Actual rating 1 0 0 0 0 0 0 0 0 0 0

2 1 2 0 4 5 0 0 0 0 0

3 1 1 2 4 2 5 0 0 0 0

4 0 0 0 9 20 23 1 0 0 0

5 0 0 0 6 28 51 5 3 0 0

6 0 0 0 7 22 71 15 2 0 0

7 0 0 0 1 1 23 34 8 3 1

8 0 0 0 0 0 6 15 4 9 1

9 0 0 0 0 0 0 12 8 11 5

10 0 0 0 0 0 1 4 5 8 20

Prediction ratio 80.21%

Panel C: Electronics

Predicted rating

1 2 3 4 5 6 7 8 9 10

Actual rating 1 0 0 0 3 15 0 0 0 0 0

2 0 0 0 1 26 2 0 0 0 0

3 0 0 0 0 40 8 2 0 0 0

4 0 0 0 5 155 45 0 0 0 0

5 0 0 0 7 295 164 20 0 0 0

6 0 0 0 8 313 286 40 1 0 0

7 0 0 0 0 11 207 87 5 0 1

8 0 0 0 0 2 54 96 14 2 2

9 0 0 0 0 0 5 26 30 6 6

10 0 0 0 0 3 4 12 21 8 24

Prediction ratio 84.87%
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Table 27.9 shows the prediction results of the combining forecasting model. For

out-of-sample test, the predictive power of the combining model for each industry

is 89.88 %, 82.77 %, and 88.02 %, respectively, which are higher than those of the

ordered logit or ordered probit models by 2–4 %.

27.3.4 Performance Evaluation

To evaluate the performance of each model, Fig. 27.1 illustrates the ROC curves

estimated by the three models, respectively.

From these ROC curves we can distinguish the performance of each rating

model. Furthermore, we can compare the AUC and AR calculated from the ROC

and CAP (See Table 27.10).

For the traditional industry, theAUCs from the ordered logit, the ordered probit, and

the combining model are 95.32 %, 95.15 %, and 95.32 %, respectively. For the

manufacturing industry, they are 94.73 %, 93.66 %, and 95.51 %, respectively. And

for theelectronics industry, theyare92.43%,92.30%, and94.07%, respectively.These

results apparently show that the combining forecasting model performs better than any

individual one.

27.4 Conclusion

This study constitutes an attempt to explore the credit rating forecasting

techniques. The samples consist of firms in the TSE and the OTC market and

Table 27.8 Regression results estimated by the combining forecast

Threshold

parameter

Combining forecasting model

Traditional Manufacturing Electronics

t1 �13.1875 (0.3033)*** �13.6217 (0.5475)*** �11.6241 (0.1591)***

t2 �11.3484 (0.1854)*** �9.9864 (0.1918)*** �10.5484 (0.1483)***

t3 �9.8997 (0.1524)*** �9.1712 (0.1704)*** �9.973 (0.1456)***

t4 �8.3781 (0.1370)*** �7.5337 (0.1441)*** �8.7037 (0.143)***

t5 �6.4390 (0.1257)*** �6.4459 (0.1315)*** �7.0973 (0.1414)***

t6 �4.5627 (0.1137)*** �4.8259 (0.1142)*** �5.0093 (0.1364)***

t7 �3.1037 (0.1016)*** �3.3724 (0.1003)*** �3.1906 (0.1261)***

t8 �1.5619 (0.0885)*** �2.0849 (0.0913)*** �1.5682 (0.1145)***

t9 �0.0816 (0.0861) �0.1127 (0.0929) 0.3735 (0.1169)**

oLogit 1.1363 (0.0571)*** 1.2321 (0.029)*** 0.6616 (0.0528)***

oProbit �0.0825 (0.0330)* �0.1437 (0.0085)*** 0.1867 (0.0272)***

Numbers in parentheses represent the standard errors
***Represents significantly different from zero at 1 % level
**Represents significantly different from zero at 5 % level
*Represents significantly different from zero at 10 % level
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Table 27.9 Out-of-sample credit rating prediction by the combining forecast

Panel A: Traditional

Predicted rating

1 2 3 4 5 6 7 8 9 10

Actual rating 1 0 0 2 1 0 0 0 0 0 0

2 0 0 0 6 6 0 0 0 0 0

3 0 0 4 7 13 0 0 0 0 0

4 0 0 2 28 34 7 0 0 0 0

5 0 0 0 12 100 44 2 0 0 0

6 0 0 0 2 48 113 26 4 0 0

7 0 0 0 0 5 27 23 11 0 0

8 0 0 0 0 0 23 25 12 2 3

9 0 0 0 0 0 1 4 14 8 10

10 0 0 0 0 0 3 2 9 16 33

Prediction ratio 89.88%

Panel B: Manufacturing

Predicted rating

1 2 3 4 5 6 7 8 9 10

Actual rating 1 0 0 0 0 0 0 0 0 0 0

2 0 2 1 3 6 0 0 0 0 0

3 0 1 2 5 2 5 0 0 0 0

4 0 0 0 6 24 22 0 1 0 0

5 0 0 0 5 30 50 5 3 0 0

6 0 0 0 6 23 70 17 1 0 0

7 0 0 1 1 0 27 32 7 2 1

8 0 0 0 0 1 3 16 6 8 1

9 0 0 0 0 0 1 8 12 11 4

10 0 0 0 0 0 0 4 4 7 23

Prediction ratio 82.77%

Panel C: Electronics

Predicted rating

1 2 3 4 5 6 7 8 9 10

Actual rating 1 0 3 0 0 15 0 0 0 0 0

2 0 0 0 4 18 7 0 0 0 0

3 0 0 0 1 34 13 2 0 0 0

4 0 4 4 13 128 56 0 0 0 0

5 0 1 1 11 256 193 23 1 0 0

6 0 0 0 12 248 338 47 3 0 0

7 0 0 0 0 14 190 91 15 0 1

8 0 0 0 0 1 44 82 32 10 1

9 0 0 0 0 0 5 10 23 24 11

10 0 0 0 0 3 1 6 11 17 34

Prediction ratio 88.02%
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Table 27.10 Performance evaluation for each model

Traditional Manufacturing Electronics

Panel A: Ordered logit

AUC 95.32 % 94.73 % 92.43 %

AR 90.63 % 89.46 % 84.86 %

McFadden’s R-square 35.63 % 38.25 % 39.63 %

Panel B: Ordered probit

AUC 95.15 % 93.66 % 92.30 %

AR 90.30 % 87.32 % 84.60 %

McFadden’s R-square 34.45 % 40.05 % 41.25 %

Panel C: Combining forecasting

AUC 95.32 % 95.51 % 94.07 %

AR 90.63 % 91.03 % 88.15 %

McFadden’s R-square 42.34 % 43.16 % 46.28 %

CAP represents the cumulative accuracy profile, AR represents accuracy ratio. McFadden’s R2 is

defined as 1�(unrestricted log-likelihood function/restricted log-likelihood function)
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are divided into three industries, i.e., traditional, manufacturing, and electronics,

for analysis. Sixty-two explanatory variables consisting of financial, market, and

macroeconomics factors are considered. We utilize the ordered logit, the ordered

probit, and the combining forecasting model to estimate the parameters

and conduct the out-of-sample tests. The main result is that the combining

forecasting method leads to a more accurate rating prediction than that of any

single use of the ordered logit or ordered probit analysis. By means of cumula-

tive accuracy profile, the receiver operating characteristics, and McFadden R2,

we can measure the goodness-of-fit and the accuracy of each prediction model.

These performance evaluations depict consistent results that the combining

forecast performs better.

Appendix 1: Ordered Probit Procedure for Credit Rating
Forecasting2

Credit rating is an ordinal scale from which the credit category of a firm can be

ranked from high to low, but the scale of the difference between them is unknown.

To model the ordinal outcomes, we follow Zavoina and McKelvey (1975) to begin

with a latent regression

Y� ¼ Xbþ e (27.8)

where

Y� ¼
Y�
1

⋮
Y�
N

2
4

3
5,X ¼

1 X11 � � � XK1

⋮ ⋮ ⋮
1 X1N � � � XKN

2
4

3
5

b ¼
b0
⋮
bK

2
4

3
5, e ¼

e0
⋮
eN

2
4

3
5:

Here, b is a vector of unknown parameters, X is a set of explanatory variables,

and e is a random disturbance term assumed to follow the multivariate normal

distribution with mean 0 and variance-covariance matrix s2I, that is,

e � N 0,s2I
� �

: (27.9)

Y*, the dependent variable of theoretical interests, is unobserved, but from which

we can classify the category j:3

2There are detailed discussion about ordered data in Ananth and Kleinbaum (1997), McCullagh

(1980), Wooldridge (2010), and Greene (2011).
3In our case, J ¼ 10 and K ¼ 62.
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Yi ¼ j if tj�1 < Y�
i � tj i ¼ 1, 2, . . . ,N; j ¼ 1, 2, . . . , Jð Þ (27.10)

where Y is the one we do observe, an ordinal version of Y*, and the t’s are

unknown parameters to be estimated with b. We assume

that � 1 ¼ t0 � t1 � � � � � tJ ¼ + 1.

From Eqs. 27.8 and 27.10, we have

tj�1 < Y�
i � tj , tj�1 < Xibþ ei � tj

, tj�1 � Xib
s

<
ei
s
� tj � Xib

s
(27.11)

where Xi is the ith row of X.

From Eqs. 27.9 and 27.11, the probability of Yi ¼ j can be written as

Pr Yi ¼ jð Þ ¼ F
tj � Xib

s

� �
� F

tj�1 � Xib
s

� �
(27.12)

where F(.) represents the cumulative density function of standard normal distri-

bution. The model (27.12) is under-identified since any linear transformation of

the underlying scale variable Y*, if applied to the parameters and t0,. . .,tJ as well,
would lead to the same model. We will assume without loss of generality

that,t1 ¼ 0 and s ¼ 1 in order to identify the model. The model we will estimate

turns out to be

Pr Yi ¼ jð Þ ¼ F tj � Xib
� �� F tj�1 � Xib

� �
: (27.13)

Maximum likelihood estimation can be used to estimate the J + K � 1 param-

eters, t2,. . .,tJ � 1 and b0, b1,. . .,bK, in Eq. 27.13. To form the likelihood function,

first, define a dummy variable Yi,j:

Yi, j ¼ 1 if Yi ¼ j
0 otherwise

	
:

Then, for simple notation, we set Zi,j¼ tj� Xib andFi,j¼F(Zi,j). The likelihood
function, L, is

L ¼ L b0, . . . ,bK , t2, . . . , tJ�1jYð Þ ¼
Yn
i¼1

YJ
j¼1

Fi, j � Fi, j�1

� �Yi, j

: (27.14)

So, the log-likelihood function, ln L, is

ln L ¼
Xn
i¼1

XJ
j¼1

Yi, j ln Fi, j � Fi, j�1

� �
: (27.15)
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Now, we want to maximize ln L subject to t1 � t2 � . . . � tJ � 1.

Let Ni, j ¼ 1ffiffiffiffi
2p

p e�
Z2
i, j
2 for 1 � j � J and 1 � i � N, and let dl, j ¼ 1 if l ¼ j

0 if l 6¼ j

	
,

it follows that

∂Fi, j

∂bu
¼ Ni, j

∂Zi, j

∂bu
¼ �Ni, jXu, i for 0 � u � K

∂Fi, j

∂tl
¼ Ni, j

∂Zi, j

∂tl
¼ Ni, jdl, j for 2 � l � J � 1

(27.16)

and

∂Ni, j

∂bu
¼ Zi, jNi, jXu, i for 0 � u � K

∂Ni, j

∂tl
¼ �Zi, jNi, jdl, j for 2 � l � J � 1

(27.17)

By using Eqs. 27.16 and 27.17, we can calculate the J + K� 1 partial derivatives

of Eq. 27.15 with respect to the unknown parameters, b and t, respectively:

∂ln L

∂bu
¼
Xn
i¼1

XJ
j¼1

Yi, j

Ni, j�1 � Ni, j

� �
Xu, i

Fi, j � Fi, j�1

for 0 � u � K

∂ln L

∂tl
¼
Xn
i¼1

XJ
j¼1

Yi, j

Ni, jdl, j � Ni, j�1dl, j�1

� �
Xu, i

Fi, j � Fi, j�1

for 2 � l � J � 1:

(27.18)

And the elements in the (J + K � 1) � (J + K � 1) matrix of second partials are

∂2ln L

∂bu∂bV
¼
Xn
i¼1

XJ
j¼1

Yi, j

Fi, j � Fi, j�1

� �
Zi, j�1Ni, j�1 � Zi, jNi, j

� �� Ni, j�1 � Ni, j

� �2
Xu, iXv, i

Fi, j � Fi, j�1

� �2 ,

∂2ln L

∂bu∂tl
¼ ∂2ln L

∂tl∂bu
¼
Xn
i¼1

XJ
j¼1

Yi, j

Fi, j � Fi, j�1

� �
Zi, jNi, jdl, j � Zi, j�1Ni, j�1dl, j�1

� �

Fi, j � Fi, j�1

� �2
"

� Ni, j�1 � Ni, j

� �
Ni, jdl, j � Ni, j�1dl, j�1

� �

Fi, j � Fi, j�1

� �2
#
Xu, i,
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∂2ln L

∂tl∂tm
¼
Xn
i¼1

XJ
j¼1

Yi, j

Fi, j � Fi, j�1

� �
Zi, j�1Ni, j�1dm, j�1dl, j�1 � Zi, jNi, jdm, jdl, j
� �

Fi, j � Fi, j�1

� �2
"

� Ni, jdl, j � Ni, j�1dl, j�1

� �
Ni, jdm, j � Ni, j�1dm, j�1

� �

Fi, j � Fi, j�1

� �2
#
:

(27.19)

We then set the J + K � 1 equations in Eq. 27.18 to zero to get the MLE

of the unknown parameters. The matrix of second partials should be negative

definite to insure that the solution is a maximum. The computer program

NPROBIT, which uses the Newton-Raphson method, can solve the nonlinear

equations in Eq. 27.18.

Appendix 2: Ordered Logit Procedure for Credit Rating
Forecasting

Consider a latent variable model where Y* is the unobserved dependent variable, X a

set of explanatory variables, b an unknown parameter vector, and e a random

disturbance term:

Y� ¼ Xbþ e (27.20)

e is assumed to follow a standard logistic distribution, so the probability density

function of e is

l eð Þ ¼ exp eð Þ
1þ exp eð Þ½ �2 (27.21)

and the cumulative density function is

L eð Þ ¼ exp eð Þ
1þ exp eð Þ : (27.22)

Y*, the dependent variable of theoretical interests, is unobserved, but from which

we can classify the category j:

Yi ¼ j if tj�1 < Y�
i � tj i ¼ 1, 2, . . . ,N; j ¼ 1, 2, . . . , Jð Þ (27.23)

where Y is the one we do observe, an ordinal version of Y*, and the t’s are unknown
parameters satisfying t1 � . . . � tj and to be estimated with b.
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From Eqs. 27.20 and 27.22, we form the proportional odds model:

Pr Yi � jjXð Þ ¼ exp tj � Xib
� �

1þ exp tj � Xib
� � (27.24)

or equivalently

log it Pij

� � ¼ log
Pij

1�Pij

� �

log
Pr Yi � jjXið Þ
Pr Yi > jjXið Þ
� �

¼ tj � Xib
(27.25)

where Pij ¼ Pr(Yi � j). Notice that in the proportional odds model, b is assumed to

be constant and not depend on j. The validity of this assumption can be checked

based on a w2 score test. The model that relaxes the proportional odds assumption

can be represented as

log it Pij

� � ¼ tj � Xibj, (27.26)

where the regression parameter vector b is allowed to vary with j. Both models can

be fit through the procedure of maximum likelihood estimation.

Appendix 3: Procedure for Combining Probability Forecasts

To combine the ordered logit and the ordered probit models for credit forecasting,

the logit regression method as described in Kamstra and Kennedy (1998) is applied.

We first assume that firm’s credit classification is determined by an index y.
Suppose there are J rating classes, ordered from 1 to J. If y exceeds the threshold

value tj, j ¼ 1,. . . J � 1, credit classification changes from j rating to j + 1 rating.

The probability of company i being in rating j is given by the integral of a standard

logit from tj � 1 � yi to tj � yi.
Each forecasting method is considered as producing J � 1 measures,

oji ¼ tj � y, j ¼ 1, . . ., J � 1 for each firm. These measures can be estimated as

oji ¼ ln
P1i þ � � � þ Pji

1� P1i � � � � � Pji

� �
(27.27)

where Pji is a probability estimate for firm i in rating j. For firm i we have

Pji ¼

eoji

1þ eoji
for j ¼ 1

eoji

1þ eoji
� eoj�1i

1þ eoj�1i
for j ¼ 2� � �J � 1

1

1þ eoj�1i
for j ¼ J

8>>>>><
>>>>>:

: (27.28)
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In our case, there are two forecasting techniques A and B. For firm i, the
combining probability estimate is

Pji ¼

epjþpAojiAþpBojiB

1þ epjþpAojiAþpBojiB
for j ¼ 1

epjþpAojiAþpBojiB

1þ epjþpAojiAþpBojiB
� epj�1þpAoj�1iAþpBoj�1iB

1þ epj�1þpAoj�1iAþpBoj�1iB
for j ¼ 2� � �J � 1

1

1þ epj�1þpAoj�1iAþpBoj�1iB
for j ¼ J

8>>>>><
>>>>>:

:

(27.29)

This can be estimated using an ordered logit software package with the oA and

oB values as explanatory variables and the t1 and p2 parameters playing the role of

the unknown threshold values.
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Abstract

The aim of this chapter is to check whether certain playing rules, based on the

undervaluation concept arising from the CAPM, could be useful as investment

strategies, and can therefore be used to beat the Market. If such strategies work,

we will be provided with a useful tool for investors, and, otherwise, we will
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obtain a test whose results will be connected with the Efficient Market Hypoth-

esis (EMH) and with the CAPM.

The basic strategies were set out in Gómez-Bezares, Madariaga, and

Santibáñez (Análisis Financiero 68:72–96, 1996). Our purpose now is to recon-

sider them, to improve the statistical analysis, and to examine a more recent

period for our study.

The methodology used is both intuitive and rigorous: analyzing how many

times we beat the Market with different strategies, in order to check whether

beating the Market happens by chance. Furthermore, we set out to study,

statistically, when and by how much we beat it, and to analyze whether this is

significant.

Keywords

ANOVA • Approximately normal distribution • Binomial distribution • CAPM •

Contingency tables • Market efficiency • Nonparametric tests • Performance

measures

28.1 Introduction

Finance, as it is currently taught in business schools and brought together in the

most prestigious text books, places great importance on the Capital Asset Pricing

Model (CAPM)1 and on the Efficient Market Hypothesis (EMH)2. For example,

Brealey, Myers, and Allen (2008) conclude their famous book by saying that

within what we know about Finance, there are seven key ideas: the first of which

is Net Present Value (NPV), the second CAPM, and the third EMH3;

leaving aside for the moment NPV,4 we have as the two clearly outstanding

concepts the CAPM and the EMH. In our opinion, asset pricing models

(above all the CAPM) and the efficiency of the Markets are among the founda-

tions of the current paradigm which has been in vogue since the 1970s.5 And this

is perfectly logical; the financial objective of a company is to maximize its

Market value6; to this end it must make investments with a positive NPV,

and to calculate the NPV financiers require an asset pricing model such as the

CAPM; ultimately the Markets need to be efficient so that they can notice

increases in value provided by investments. We can thus see by this simple

reasoning how the three concepts highlighted by Brealey, Myers, and Allen are

interrelated.

1Sharpe (1964), Lintner (1965).
2One of its main defenders has been Fama (1970, 1991, 1998).
3There are also other four key ideas.
4A fundamental concept, predating the other two and clearly related to the CAPM and the EMH.
5See Gómez-Bezares and Gómez-Bezares (2006). Also of interest could be Dimson and

Mussavian (1998, 1999).
6The interesting work by Danielson, Heck and Shaffer (2008) is also worth looking at.
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An alternative way of viewing this is to say that Finance, as it is currently

understood, is the science of pricing; we have to valuate so that we can know which

decisions will result in the greatest added value, and to valuate we need asset

pricing models (like the CAPM). Finally, the result of our labor will be recognized

by the Market, if the Market is efficient and values more highly those stocks with

a higher intrinsic value.

The Golden Age of these two principles was the decade of the 1970s, appearing

in works such as Fama (1970), Black, Jensen, and Scholes (1972) and Fama and

MacBeth (1973): the Market correctly values the assets (the EMH) and we

have a good model of asset pricing (the CAPM). However, since then there have

been many critiques of both of these principles: the efficient Market principle has

been criticized by psychologists and behavioral economists, who question the

rationality of human beings, as well as by econometricians, who claim that prices

are susceptible to prediction (Malkiel 2003). There is ample criticism in the

literature, but the EMH also has important apologists; among the classic defenders

are the works of Fama (1991, 1998) as well as the very noteworthy and recent study

by Fama and French (2010), in which they show that portfolio managers, on

average, do not beat the Market, thereby proving that the Market is indeed efficient.

The detractors of the efficient Market hypothesis (currently, above all, psychol-

ogists and behavioral economists) underline again and again the inefficiencies

they observe. These problems with the model, when they are seen to occur

repeatedly, are termed “anomalies” (for a summary, see Malkiel 2003). Fama and

French (2008) studied different anomalies, concluding that some are more

significant than others. However, they concluded that we cannot be sure whether

to attribute abnormal returns to inefficiencies of the Market or to rewards for

risk-taking.

This brings us back to the debate regarding asset pricing models. According to the

CAPM, the expected return on an asset should be a positive linear function of its

systematic risk measured by beta, which is the sole measurement of risk.

This statement has been questioned in many ways; one very important contribution

in this respect is that of Fama and French (1992) in which they comment that the beta

can contribute little to an explanation of expected returns and, in fact, that there are

other variables that can explain a lot more. Their work gave rise to the famous Fama

and French three-factor model. The existence of variables other than the beta which

can help to explain mean returns is not in itself an argument against the efficiency of

the Market if we consider them to be risk factors: as risk is our enemy we demand

higher returns for higher risk, and we can measure this risk in terms of a range of

factors. This approach may be compatible with Arbitrage Pricing Theory (APT), but

it conflicts with the CAPM.

But we could also consider that the problem is that the Markets are inefficient,

and hence expected returns respond to variables that are not risk factors, variables to

which they should not react. Let us take as example momentum, which tells us that

recent past high (or low) returns can help to predict high (or low) returns in the near

future. Some may think that this could be used as a risk factor to explain returns

whereas others would say that it is an inefficiency of the Market. The truth is that
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the asset pricing model and efficiency are tested jointly (Fama 1970, 1991, 1998), in

such a way that, when they work, they both work,7 but when they fail we cannot

know which of them has failed.8

The CAPM tests fall far short of giving definitive results. Although some have

given it up for dead and buried because it cannot fit the data or because of

theoretical problems, one recent magnificent study by Levy (2010) rejects

the theoretical problems posed by psychologists and behavioral economists and,

based on ex ante data, says that there is experimental support for the CAPM.

Brav, Lehavy, and Michaely (2005), in an approach related to the above, set out

to test the model, not by looking at past returns (as a proxy of expected returns) but
instead at the expectations of Market analysts, on the basis that these may be

assumed to be unbiased estimates of the Market expectations. From their analysis,

they found a positive relationship between expected returns and betas.

Asset pricing models (such as the CAPM) look at the relationship between return

and risk. Recently, there has been more focus on liquidity. Liu (2006) builds an

enhanced CAPM based on two factors: the Market and liquidity – he obtains their

corresponding factorial weighting which he uses to explain the expected returns.

The model works correctly and allows him to account several anomalies; according

to Liu, his enhanced CAPM lends new support to the risk-return paradigm.

The methods most commonly used to contrast the CAPM are time-series and

cross-sectional studies, which each present different statistical problems. What we

set out to achieve in this chapter is to replicate a simple and intuitive but also

rigorous methodology that we believe is much less problematic from a statistical

point of view. The procedure was first proposed by Gómez-Bezares, Madariaga,

and Santibáñez (1996), and in this chapter we attempt to replicate it with a more

updated sample and greater statistical rigor. The basic idea is simple: an individual

who knows the CAPM calculates at the beginning of each month the return that

each stock has rendered in the past and compares it with the return it ought to have

given according to the CAPM. The stocks which gave higher returns than they

ought to have are cheap (undervalued) while those which gave lower return are

expensive (overvalued). If we assume that return levels are going to persist, the

investor should buy the cheap stocks and sell off the expensive ones in order to beat

the Market. We illustrate this line of reasoning in Fig. 28.1.

In Fig. 28.1, the betas appear on the horizontal axis and the expected return on

the vertical axis (Rf is the riskless rate; Rm is the Market return). We also show

the Security Market Line (SML), with its formula above it, which is the formula

for the CAPM. Our investor decides to buy the stocks which are cheap and

refrain from selling short the expensive stocks (due to the limitations on short

selling). Based on the data at his disposal, the stocks which have gained a value

more than that the SML indicates are undervalued, that is to say, they are above

7We refer to the situation we have described previously which occurred at the beginning of

the 1970s.
8See also Copeland, Weston, and Shastri (2005, p. 244).
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the SML. Believing that this situation will continue, he will buy all of these

stocks, trusting that he will obtain an adjusted return higher than the Market

return. If this happens (which he can find out by using Jensen’s alpha), and this

strategy consistently proves to result in abnormal returns (positive Jensen alphas,

or to put it another way, the stocks stay above the SML in the next period), he

will have found a way to beat the Market; therefore it is not efficient. Moreover,

he shall be able to predict which stocks will, in the future, outperform the

SML and therefore do not comply with the CAPM, which goes against the

CAPM. There would then be one way left to save the EMH: risk should not

be measured using the beta (i.e., the CAPM is mistaken) and therefore a positive

value for alpha is not synonymous with beating the Market (which could not be

done consistently in an efficient Market); we could also save the CAPM as

follows: risk must be measured with the beta; however, the Market fails to value

stocks accurately and hence it can be beaten; what we cannot do is to save both

the EMH and the CAPM simultaneously.

On the other hand, if our investor cannot consistently beat the Market with his

strategy but can only achieve about a 50 % success rate, more or less, we must

conclude that the portfolio assembled with the previously undervalued stocks

sometimes performs better than the SML and other times not as well, purely by

chance, and then settles down to the value it ought to have according to the

CAPM. We will not have a Market-beating strategy, and the results are compatible

with the EMH; likewise, we will see that on a random basis the portfolios perform

better than the SML at times and other times worse, which is compatible with the

CAPM (every month there may be random oscillations around the SML); therefore

two key elements of the aforementioned paradigm would be rescued.

In our research, we use Jensen’s (1968, 1969) and Treynor’s (1965) indices,

since they consider systematic risk. These indices have been very widely used in the

literature.9

9Recent studies that use these indices are, for example, Samarakoon and Hasan (2005), Abdel-

Kader and Qing (2007), Pasaribu (2009), Mazumder and Varela (2010), and Ferruz, Gómez-

Bezares, and Vargas (2010).

Rf

E(Ri)

βi

E (Ri) = Rf + [E (Rm) – Rf] βi

E(Rm) SML

1

Fig. 28.1 shows the Security

Market Line (SML). The

betas appear on the horizontal

axis, and the expected return

on the vertical axis
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One of the virtues of this method is that it is perfectly replicable, as we have

hypothesized an investor who makes decisions based on information in the public

domain whenever he makes them. Meanwhile, we feel, reasonably enough, that the

beta values and the risk premium may vary over time. We also use the most liquid

stocks (to avoid problems with lack of liquidity) and portfolios (which reduces the

measuring problems).

The results of our analysis clearly indicate that our strategy is not capable of

beating the Market consistently, and therefore it is compatible with both the CAPM

and the EMH. The result, to which we have come via different routes, which

supports the strategy’s robustness, supports the results reported by Fama and French

(2010) and Levy (2010) although they used very different methods. Doubtless, both

the CAPM and the EMH are simplifications of reality, but they help us to explain

that reality.

The rest of our chapter is organized as follows: in Sect. 28.2, we describe the

sample analyzed with information about the assets that it comprises, and we comment

on themethod used to calculate the returns and betas; in Sect. 28.3, we comment on the

method employed, with reference to the proposed strategies and how these were

formulated, we then go on to analyze the scenarios in which the strategies succeed

in beating the Market and we describe the statistical tests used for the analyses; in

Sect. 28.4, we show the results obtained by the different strategies and we analyze the

number of occasions on which we were able to beat the Market and whether these

results occur by chance. Furthermore, we analyze when and in what magnitude we

beat the Market; in Sect. 28.5, we summarize the main conclusions drawn, highlight-

ing the implications of our results in relation to the possibilities of using strategies to

beat the Market according to the CAPM, and, therefore, we set out our conclusions as

to the efficiency of theMarket and the validity of the CAPM. In addition, there is a list

of the references on which our research is based and an Appendix which contains, in

greater detail, the statistical evidence gathered during our study.

28.2 Data

Our analysis is based on the 35 securities that comprise the IBEX 35 (the official

index of the Spanish Stock Exchange Market) in each month from practically the

beginning of trading in Continuous Market in Spain (1989) up to March 2007.10 We

chose this index because it includes the 35 most liquid companies in the Spanish

Market and, taking into account that the CAPM in Sharpe-Lintner’s version is valid

for liquid companies, it would have been difficult to find such companies in Spain

outside the IBEX 35.

10We have not extended our analysis beyond March 2007 in order to exclude the period of the

global financial crisis which had a very damaging effect on major companies listed on the

IBEX 35, such as banks, as this could have distorted our results.
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The IBEX 35 is a capitalization-weighted index comprising the 35 most liquid

companies which quote in the Continuous Market in Spain. It fulfills all of the

criteria required of an indicator which aspires to be a benchmark for trading: it

is representative (almost 90 % of the trading volume in the Continuous Market and

approximately 80 % of the Market capitalization is held by the 35 firms listed on the

IBEX 35), it can be replicated (ease of replication), its computation is guaranteed, it is

widely publicized and impartial (supervised by independent experts).

The selection criteria for securities listed on the IBEX 35 are as follows:

• Securities must be included in the SIBE trading system.

• Stocks must be representative with a big Market capitalization and trading

volume.

• There must be a number of “floating” stocks which is sufficient to ensure that the

index’s Market capitalization is sufficiently widespread and allows for hedge and

arbitrage strategies in the Market for derivatives on the IBEX 35.

• The average Market capitalization of a stock measurable on the index11 must be

greater than 0.30 % of the average capitalization of the index during the

monitoring period.12

• The stock must have been traded in at least 1/3 of the sessions during the

monitoring period or be among the top 15 stocks measured in terms of Market

capitalization.

The IBEX 35 is revised on a half-yearly basis in terms of its composition and the

number of stocks considered of each firm; nevertheless, if financial operations are

carried out which affect significantly any of the listed stocks, it can be adjusted

accordingly. In general, the index is adjusted when there are increases in capital with

preemptive rights, extraordinary dividend distributions, stocks integration as a result of

increases in capital excluding preemptive rights, reductions in capital due to stocks

redemption, capital reductions against own funds with distribution of the value to the

shareholders (this is not the payment of an ordinary dividend), as well as mergers,

takeovers, and demergers. Special adjustments of the index are often carried out.

In the 6-monthly selection of the 35 most liquid stocks, there is no minimum

or maximum number of adjustments made with regard to the previous period.

No changes at all may be required, or as many adjustments as necessary may

be made, based on the results obtained when measuring the liquidity.

Having described the context in which we intend to carry out our study, we will

propose a series of strategies that will enable us to test the validity of the CAPM and

the degree to which the Market is efficient. For this we will take a hypothetical

investor who, each month, examines the 35 stocks of the IBEX 35 listed at that

moment and for which there are at least 36 monthly data available prior to that

moment.

11The average Market capitalization of a stock in the Index is the arithmetic average of the result

we obtain when multiplying the stocks allowed to be traded in each session during the monitoring

period by the closing price of the stock in each of those sessions.
12The monitoring period is the 6-month period ending prior to each ordinary meeting of the

Commission.
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The data on returns for all the stocks were obtained from Bloomberg.
In Table 28.1, we show the annual descriptive statistics from our database.

There are two panels in Table 28.1: in panel A we show the descriptive statistics

for the monthly returns of the previous period (December 1989 to November 1992).

In this period, the index did not exist as such, so we have looked at the return

of those stocks which, being included in the IBEX 35 at the beginning of

the contrasting period, provide data in the corresponding month as they then were

quoted in the Continuous Market. In panel B, we bring together the descriptive

Table 28.1 Annual descriptive statistics for the monthly returns on the stocks

PANEL A: PRECEDING PERIOD

YEAR MEAN MEDIAN MAXIMUM MINIMUM St. Dev.

DEC 1989/NOV 1990
DEC 1990/NOV 1991
DEC 1991/NOV 1992
DEC 1989/NOV 1992

0.187118
0.010761

−0.013669
0.054038

−0.002995
0.0000

−0.011575
-0.004545

11.17
0.470758
0.448602
11.17

− 0.359280
−0.288640
−0.375127
-0.375127

1,195
0.095169
0.113660
0.661538

PANEL B: CONTRASTING PERIOD

YEAR MEAN MEDIAN MAXIMUM MINIMUM St. Dev.

DEC 1992/NOV 1993
DEC 1993/NOV 1994
DEC 1994/NOV 1995
DEC 1995/NOV 1996
DEC 1996/NOV 1997
DEC 1997/NOV 1998
DEC 1998/NOV 1999
DEC 1999/NOV 2000
DEC 2000/NOV 2001
DEC 2001/NOV 2002
DEC 2002/NOV 2003
DEC 2003/NOV 2004
DEC 2004/NOV 2005
DEC 2005/NOV 2006
DEC 2006/MAR 2007
DEC 1992/MAR 2007

0.035059
0.009628
0.006480
0.022723
0.038109
0.027631

−0.001611
0.002103
0.003081

−0.005393
0.013977
0.018440
0.023066
0.029634
0.021989
0.016678

0.028576
−0.000857

0.002051
0.022042
0.034819
0.028225

−0.003229
−0.005529

0.000000
−0.002908

0.016353
0.015852
0.014685
0.022335
0.013010
0.012686

0.343220
0.510076
0.554368
0.204344
0.429381
0.432660
0.351075
0.556553
0.468603
0.369085
0.551835
0.297322
0.257841
0.372409
0.264933
0.556553

−0.237244
−0.604553
−0.220966
−0.164185
−0.308638
−0.331141
−0.223282
−0.357094
−0.282024
−0.403408
−0.347280
−0.147819
−0.110474
−0.169830
−0.285306
-0.604553

0.083789
0.101984
0.077322
0.062786
0.097809
0.120737
0.080742
0.110788
0.098028
0.104471
0.083299
0.050610
0.057863
0.062640
0.068472
0.087537

Table 28.1 reports the annual descriptive statistics for our database. In Panel A, we show the

figures for the monthly returns for the previous period and in Panel B the figures for monthly

returns for the contrasting period

For Panel B, we consider only the returns on stocks which we have included in our study, that is

to say, those stocks which were part of the IBEX 35 at a given time and which had a track record of

monthly returns of at least 36 months. For panel A, as the index as such did not yet exist, we

include those stocks listed on the IBEX 35 at the beginning of the contrasting period, for which

there is data in the corresponding previous month; for example, the stocks we included for the

month of December 1989 are those which were quoted on the IBEX 35 in December 1992 but

which also were quoted in the Continuous Market back in December 1989. For the subsequent

months the number of stocks considered in the study rises consistently since the number of stocks

quoted continued to grow
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data for the monthly returns during the contrasting period, that is, it includes the

returns on the stocks which are included in our study (namely, the stocks which

comprised the IBEX 35 at each moment and for which there were at least 36 prior

quotations).

We built the Market portfolio,13 and as a risk-free asset we took the monthly

return on the 1-month Treasury Bills.

28.3 Methods

The aim of our study is to check whether it is possible to obtain abnormal returns

using the CAPM, that is to say, whether the returns derived from the use of the

model are greater than those which could be expected according to the degree of

systematic risk undertaken.

To this end, we analyzed the period December 1989 to March 2007. The study

focuses on the 35 securities comprising the IBEX 35 at any given moment during

the said period.

From this starting point, we propose two possible strategies for testing the efficient

Market hypothesis and the validity of the CAPM: the first strategy assumes an

individual who adjusts his portfolio at the end of each month, selling those stocks he

bought at the end of the previous month and buying those he considers to be

undervalued according to the CAPM; the second strategy is similar to the first, but

with the distinction that in this case the investor does not buy all of the undervalued

stocks but just 75 % of them, namely, those which are furthest removed from

the SML.We use twomethods to calculate which securities are the most undervalued:

Jensen’s ratio and Treynor’s ratio. The reason for using a secondmethod is in response

to the critique by Modigliani (1997) of Jensen’s alpha, in which she argues that

differences in return cannot be compared when the risks are significantly different.

To conduct our analysis, we begin by dividing the overall period analyzed

in our study (December 1989 to March 2007) into two subperiods: the first

(December 1989 to November 1992) allows us to calculate the betas of the

model at the beginning of the following (we carried out this calculation with the

36 previous month data). The second subperiod (December 199214 to March 2007)

allows us to carry out the contrast.

13This has been constructed as a simple average of returns for the stocks comprising the

IBEX 35 each month, corrected for dividend distributions, splits, etc. Of course, in this case, it

is not necessary that there be at least 36 months of prior quotations for the stocks to be included in

the portfolio.
14Initially, we intended to let the beginning of the second subperiod be the launch date of the

IBEX 35 (January 1992), however, given the requirement that we set ourselves of a prior 36-month

period to compute the betas of the model, we had to move this forward to December. Likewise, it

was originally our intention that the beginning of the first subperiod be the launch date of the

Continuous Market (April 1989) but most of the securities included in our study were listed for the

first time in December 1989, so data could only be obtained from that date onward.
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So our hypothetical investor will firstly, at the end of each month, observe the

stocks that comprise the IBEX 3515 and will buy those which are undervalued

(in our second analysis method he will buy just 75 % of the stocks which are the

most undervalued). A stock is undervalued if its return is higher than what is ought

to be based on the CAPM.

To obtain this we compute the monthly betas for each stock (bi) during the

contrasting period by regressing the monthly returns on each stock16 on the returns

on the Market portfolio17 in the 36 months immediately prior to this. Then, we

calculate the mean monthly returns on stock i (Ri ), on the Market portfolio (RM )

and on the risk-free asset (RF ) during the same period as a simple average of the

corresponding 36 monthly returns. From all of the foregoing we can compute the

mean monthly return (Ri ), which, according to the CAPM, the stock ought to have

gained during this 36-month period,

Ri ¼ RF þ RM � RF

� �
bi (28.1)

We then compare it with the actual return gained (Ri ) to determine whether the

stock is undervalued.

Once we have determined which stocks are undervalued, according to our first

strategy the investor buys all of the undervalued stocks each month,18 while with

the second strategy, he disregards the first quartile and just buys 75 % of the most

undervalued stocks. The quartiles are assembled based on either Jensen’s alphas or

Treynor’s ratio.19

The next step consists in evaluating how well the CAPM functions; if the

undervalued stocks continue to be undervalued indefinitely, we would expect any

15And for which there is a minimum of 36-monthly data prior to the month analyzed so that the

beta can be calculated. In the case of companies which have recently merged, the beta is calculated

by looking at the weighted average monthly returns on the companies prior to the merger. The

weighting is proportional to the relative importance of each company involved in the merger.
16We look at the return obtained by our investor from capital gains, dividends, and the sale of

preemptive rights. The returns are also adjusted to take splits into account.
17The return on the Market portfolio is calculated based on a simple average of the returns gained

by the stocks which comprise the IBEX 35 in each month. The reason we decided to build our own

portfolio rather than relying on a stock Market index such as the IBEX 35 itself is that we wanted

to obtain an index corrected by capital gains, dividends, splits, and preemptive rights. Moreover,

an equally weighted portfolio is theoretically superior.
18Overvalued stocks are not included in our analysis as we decided to exclude short selling.
19In this second variant, although the quartiles are built based on Treynor’s ratio, we continue to

use Jensen’s index to work out whether or not a stock is undervalued. This is because of the

problems we have encountered when determining which stocks are undervalued using Treynor’s

ratio. These are related to the return premiums and the negative betas which appear in some cases

in our database. Naturally, we take on board the problems of using Treynor’s ratio to construct the

quartiles, as there could be stocks with positive alphas and low Treynor ratios which would

exclude such stocks from the analysis. This is due to the form of Treynor’s ratio as a quotient.
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portfolio assembled with them to beat the Market in a given month, but this will not

occur if in that month the CAPM operates perfectly.

Jensen’s index allows us to determine whether we have been able to beat the

Market, in which case it must yield a positive result:

ap ¼ Rp � RF

� �� bp RM � RFð Þ (28.2)

where,

bp is the beta for the portfolio, calculated as a simple average of the individual

betas20 of the stocks included in the portfolio (all of the undervalued stocks, or

alternatively the top 75 % thereof as we have outlined above).

Rp is the return on the portfolio and is calculated as the simple average of the

individual returns obtained each month for the stocks that comprise it.

RM and RF are the monthly returns on the Market portfolio and the risk-free asset

respectively, for the month in question.

ap is Jensen’s alpha for the portfolio p.

The Z-statistic, which follows an approximately normal distribution, (0.1),

allows us to determine whether the number of months in which our investor beats

the Market is due to chance:

Z ¼ Y � npð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þ

p
(28.3)

Y indicates the number of periods in which the portfolio comprising undervalued

stocks beats the Market, n represents the number of months analyzed and to p we

give a value of 0.5 as this is the probability of beating the Market if the CAPM and

the efficient Market hypothesis are fulfilled,21 and we want to find out if the

difference (Y – np) is due to chance.

A value of |Z| > 1.96 would lead us to reject the null hypothesis of a difference

due to chance, with a significance level of 5 %.

Moreover, in order to make our results more robust, we developed a series of

statistical tests which are presented in Appendix. We carried out a mean test for

each of the proposed strategies to ascertain whether we beat the Market or not, both

parametric – which means normality – as well as nonparametric (Wilcoxon’s test);

in addition we tested the hypothesis that we could beat the Market 50 % of the time,

and for this we used a binomial test. We also analyzed, on a monthly and on a yearly

basis, whether or not there were differences between the performance means

achieved in each month/year, using the ANOVA, a nonparametric test (Kruskal

and Wallis), and also the technique of contingency tables and the chi-square

20Which have been calculated with the 36 previous months’ data.
21If the CAPM and the efficient Market hypothesis are fulfilled exactly, the results of any portfolio

(adjusted for risk) should match, as an average, with those of the Market. Here we suppose that, by

pure chance, for any given month, they will end up 50 % above and 50 % below the Market

average.

28 Can We Use the CAPM as an Investment Strategy? 761



Pearson test together with the likelihood ratio. Finally, we conducted regression

analysis of the performance measurement as a dependent variable and the time

dimension (months) as an independent variable to see whether the performance

improved or worsened over time. These tests allow us to confirm our results, which

we shall see in the next section.

28.4 Results

28.4.1 Strategy 1: The Investor Buys All the Undervalued Stocks

In this first strategy, the investor observes, in a given month, the track record (for

the previous 36 months) of the 35 stocks which comprise the IBEX 35 at the

moment in question,22 and buys all those that are undervalued according to Jensen’s

index. The next step is to check whether he has managed to beat the Market with the

portfolio of undervalued stocks.

Table 28.2 shows the results of this strategy. We show for each of the 14 years in

our study and for the other 4 months the number of months (and the percentage) in

which the investor’s portfolio has beaten the Market. In addition, we show this

result for the whole period. Furthermore, and also with respect to the whole period,

we show the result for the Z-statistic.

As we can see in Table 28.2, only in 92 of the 172 months analyzed in our study

is the Market beaten, which is equal to 53.49 %23; moreover, the figure for

Z-statistic (which is below 1.96) confirms that the CAPM does not offer

a significantly better strategy than investing in the Market portfolio. In other

words, we could say that the success of the investor (in the months in which he

succeeds in beating the Market) could be due to chance. This conclusion is further

confirmed in Appendix by the mean tests which allow us to accept that the mean of

Jensen’s alphas is zero and by the binomial test which allows accepting a success

probability rate of 50 %.

If we now focus on the analysis of each year in our time frame, we can see that in

only two of the 14 years covered in our study, to be precise from December 2004 to

November 2006, the CAPM proves to be a useful tool for the investor allowing him

to use a strategy to beat the Market; in fact, in 75 % and 83.33 % of the months of

each of those 2 years our investor beats the Market, thus confirming the poor

performance of the model, or the inefficiency of the Market.

22Which have a track record of at least 36 months in the Market. If, in a given month, there is

a stock which is listed on the IBEX35 but does not have at least 36 months of prior data, this will be

included in our study in the month in which it reaches this figure, unless by that stage it has already

been deleted from the IBEX35.
23We have not included the transaction costs, which undoubtedly would be higher for the managed

portfolio and, therefore, would make that strategy less attractive.
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In the first 2 years (from December 1992 to November 1994), the opposite

happens: in just 33.33 % of the months the investor’s strategy beats the Market.

In those months it seems, therefore, that he could use the opposite strategy to beat it.

The statistical tests carried out and included in the Appendix do not provide us

with clear conclusions as to the basis for the differences in performance of the

investor’s strategy between the different months and years, because the different

tests used gave us different results. However, the regression analysis does confirm

that the performance of the portfolio improves over time, as we obtain a positive

and significant beta.

28.4.2 Strategy 2: The Investor Buys the Three Stock-Quartiles with
the Highest Degree of Undervaluation

With this strategy, which has two variants, what lets us find out whether a stock is or

is not undervalued is, just as with the previous strategy, the difference between the

mean monthly return actually achieved by the stock in a given month (using

information on the previous 36 months) and that which it ought to have achieved

according to the CAPM. However, with this second strategy, the investor disregards

the first quartile of undervalued stocks and buys the other 75 %, those that are the

most undervalued.

Table 28.2 Results of the Strategy 1 (buying all of the undervalued stocks)

YEAR No. of successful months % success

DEC 1992/NOV 1993
DEC 1993/NOV 1994
DEC 1994/NOV 1995
DEC 1995/NOV 1996
DEC 1996/NOV 1997
DEC 1997/NOV 1998
DEC 1998/NOV 1999
DEC 1999/NOV 2000
DEC 2000/NOV 2001
DEC 2001/NOV 2002
DEC 2002/NOV 2003
DEC 2003/NOV 2004
DEC 2004/NOV 2005
DEC 2005/NOV 2006
DEC 2006/MAR 2007

DEC 1992/MAR 2007

4
4
5
7
7
6
7
6
6
5
7
7
9

10
2

92

33.33%
33.33%
41.67%
58.33%
58.33%

50%
58.33%

50%
50%

41.67%
58.33%
58.33%

75%
83.33%

50%

53.49%
Z-statistic

0.91

In Table 28.2, we bring together the results of a strategy in which our hypothetical investor buys all

the undervalued stocks on the Index. To be specific, we provide for each of the 14 years in our

study as well as for the other 4 months, the number of months (and the percentage) in which the

portfolio beats the Market. We also show this result for the period as a whole. Moreover, for the

period as a whole, we show the result for the Z-statistic
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In the 1st variant of this second strategy, the ranking of the stocks (in each

month) by quartiles is done using Jensen’s index and in the 2nd variant it is done

using Treynor’s ratio.

28.4.2.1 Strategy 2, 1st Variant: The Quartiles Are Built Based on
Jensen’s Index

In Table 28.3, we show the results of this strategy:

The results, although slightly better, are not very different from those

achieved by the previous strategy, as once again the CAPM proves not to be

a useful tool for beating the Market. In only 94 of the 172 months in our study

(54.65 %) does the strategy manage to beat the Market. The value for Z-statistic

again confirms this result. And again, the mean tests show that the mean for

the alphas for the investor’s portfolio can be zero; while the binomial test

shows that the probability of success in beating the Market can be 50 %

(see Appendix).

There is also a slight improvement in the results by years in comparison with the

results achieved by the previous strategy; the CAPM proves to be a useful Market-

beating tool in 5 of the 14 years analyzed (December 1995 to November 1996,

December 1998 to November 1999, December 2002 to November 2003, December

2004 to November 2005, and December 2005 to November 2006), which implies

that the model either works badly or that the Market is inefficient since it is possible

to beat it in most months.

Table 28.3 Results of Strategy 2, 1st Variant (buying the top three quartiles of the most

undervalued stocks, constructed based on Jensen’s Index)

YEAR No. of successful months % success

DEC 1992/NOV 1993
DEC 1993/NOV 1994
DEC 1994/NOV 1995
DEC 1995/NOV 1996
DEC 1996/NOV 1997
DEC 1997/NOV 1998
DEC 1998/NOV 1999
DEC 1999/NOV 2000
DEC 2000/NOV 2001
DEC 2001/NOV 2002
DEC 2002/NOV 2003
DEC 2003/NOV 2004
DEC 2004/NOV 2005
DEC 2005/NOV 2006
DEC 2006/MAR 2007
DEC 1992/MAR 2007

3
4
5
8
6
7
8
6
5
5
9
6

10
10

2
94

25%
33.33%
41.67%
66.67%

50%
58.33%
66.67%

50%
41.67%
41.67%

75%
50%

83.33%
83.33%

50%
54.65%

Z-statistic
1.22

Table 28.3 shows the results of the strategy in which the investor disregards the first quartile of

undervalued stocks and buys the remaining 75 %, which are the stocks that are most undervalued.

The quartiles are built using Jensen’s Index
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The opposite results are obtained for the first 2 years (from December 1992 to

November 1994), in which the percentages of success (25 % and 33.33 %, respec-

tively) are the lowest.

The ANOVA, the Kruskal–Wallis test, and the contingency table with Pearson’s

chi-square-statistic and the likelihood ratio all lead us to the conclusion24 that there

are no differences between the performance means achieved by the portfolio in the

months in our analysis, so the small differences could be due to mere chance.

However, these tests do not allow us to offer conclusions when we look at the years

that comprise our sample, as different conclusions can be drawn from the different

tests used.

Moreover, the regression analysis once again allows us to confirm that, as with

the previous strategy, the performance of the portfolio improves over time.

28.4.2.2 Strategy 2, 2nd Variant: The Quartiles Are Constructed
Based on Treynor’s Ratio

In Table 28.4, we show the results of this strategy.

The conclusions are very similar to those which the two previous strategies lead

us to, thus we can see, for the whole period, a scant success rate for the strategy.

24See Appendix.

Table 28.4 Results of Strategy 2, 2nd Variant (buying the top three quartiles of the most

undervalued stocks, constructed based on Treynor’s Ratio)

YEAR No. of successful months % success

DEC 1992/NOV 1993
DEC 1993/NOV 1994
DEC 1994/NOV 1995
DEC 1995/NOV 1996
DEC 1996/NOV 1997
DEC 1997/NOV 1998
DEC 1998/NOV 1999
DEC 1999/NOV 2000
DEC 2000/NOV 2001
DEC 2001/NOV 2002
DEC 2002/NOV 2003
DEC 2003/NOV 2004
DEC 2004/NOV 2005
DEC 2005/NOV 2006
DEC 2006/MAR 2007

DEC 1992/MAR 2007

3
4
7
7
6
7
7
7
4
5
8
6

10
10

2

93

25%
33.33%
58.33%
58.33%

50%
58.33%
58.33%
58.33%
33.33%
41.67%
66.67%

50%
83.33%
83.33%

50%
54.07%

Z-statistic

1.07

Table 28.4 shows the results of the strategy in which the investor disregards the first quartile of

undervalued stocks and buys the remaining 75 %, which are the stocks that are most undervalued.

The quartiles are built using Treynor’s Ratio
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Moreover, the value for Z-statistic once again leads us to accept the hypothesis that

any possible success or failure is due to chance. Meanwhile, the tests we include

in Appendix confirm the previous results: the mean tests support the

interpretation that the mean performance of the portfolios is zero, therefore we do

not beat the Market, and the binomial test suggests that the strategy’s success rate

is 50 %.

Focusing now on the analysis by years, there are 3 years (December 2002 to

November 2003 and December 2004 to November 2006) in which we can confirm

that the Market is not efficient or the model does not work well, since in those years

the CAPM seems to be a useful Market-beating tool. However, in the first 2 years of

our study as well as in the ninth year, the lowest success rates are delivered, which

does not allow us to confirm the efficient Market hypothesis, as by using the

opposite strategy we could have beaten it.

With regard to the statistical tests to analyze the robustness of the above-

mentioned results for the various years and months in our database and those

shown in Appendix, we find that there are no significant differences between the

performance means achieved by the portfolio in the different months, so any

difference can be due to chance. Nonetheless, we cannot draw conclusions on

a yearly basis as the tests produce different results.

Finally, once again the result of the previous strategies is confirmed: the perfor-

mance of the investor’s portfolio improves over time. Overall, simply looking at the

graphics for the three strategies where we can see the Jensen alphas achieved by our

investor over time, if the reader disregards the initial data, he will see that the

adjusted line is flat.

28.5 Conclusion

The aim of our study was to analyze whether the design of strategies based on

the CAPM can enable an investor to obtain abnormal returns. We also set out

to explore this using a methodology that was both intuitive and scientifically

rigorous.

We also set out to determine whether the efficient Market hypothesis

was fulfilled and whether we could accept the validity of the CAPM, since if

strategies that can beat the Market with a degree of ease exist, we cannot

confirm either the efficiency of the Market or the workability of the CAPM, as

this defends that the only way to obtain extra returns is to accept a higher degree

of systematic risk. Conversely, we would then be in possession of a tool enabling

the investor to achieve higher returns than the Market for a given level of

systematic risk.

Analyzing the behavior of an investor who can buy the stocks comprising the

IBEX 35 at any given moment, that is, the benchmark for the Spanish stock
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Market, and who reconfigures his portfolio on a monthly basis, we find that,

regardless of the strategy used (buying all of the undervalued stocks or buying

the 75 % most undervalued stocks, either measured with Jensen’s alpha or with

Treynor’s ratio), the investor manages to beat the Market about 50 % of the time.

We opted to exclude from our calculations the transaction costs, so we in fact

overvalued the investor’s results. Therefore, we can conclude that the CAPM is

not an attractive tool for an investor who wishes to achieve abnormal returns.

It seems that undervalued stocks rapidly fit the SML, and so from another

perspective, we can confirm the efficient Market hypothesis and the workability

of the CAPM. These conclusions are backed up by a series of statistical tests

included in Appendix.

A positive aspect of our study from the point of view of its applicability is that

the behavior we have envisaged for our virtual investor is perfectly replicable as

he acts only with the information available in any given month. Meanwhile, by

focusing on the stocks that make up the IBEX 35, our study’s conclusions are

applicable to the most representative and consolidated stocks on the Spanish

Market.

Furthermore, our system possesses interesting statistical advantages: it allows

for variation of the beta and of the risk premium over time, it avoids the risk of

illiquidity, and it reduces errors in measurement. We have also considered its

robustness.

Finally, it is important to point out that at all times we have accepted implicitly

the logic of the CAPM, when measuring performance with Jensen’s index (which

implies basing ourselves on the CAPM). For this reason our results enable us to

confirm that it is the efficiency of the Market which prevents abnormally high

returns compared to those the Market itself is able to achieve, and that the CAPM

is a model that works reasonably well; hence it cannot be used as a Market-

beating tool.

Appendix

In this section, we report a series of statistical tests done using the “Stata” program,

which support the results obtained in our study, thereby, we believe, making it more

robust.25 These statistics are drawn up for each of the strategies we tried out: buying

all of the undervalued stocks, buying the top 75 % most undervalued stocks using

Jensen’s Index to select them, and buying the 75 % most undervalued stocks

according to Treynor’s Ratio.

25See Agresti (2007), Anderson et al. (2011), Conover (1999) and Newbold et al. (2009) for

a widening of the statistical processing used in this Appendix.
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Strategy 1: Investor Buys All Undervalued Stocks

1. Summary statistics
We work here, as for all of the strategies, with the Jensen values recorded for each

of the portfolios (172).

0.0213603

0.0004563
−1.397642

10.85719

Percentiles

0.0123422
0.0237416
0.0309298
0.0509601

Largest

Smallest

−0.1064671 −0.1087249
−0.0279054 −0.1064671
−0.0180511 −0.0708467

0.0389192
0.0444089
0.0509601
0.0773151

172
172−0.0077398 −0.0540319

0.001246

75%
90%
95%
99%

1%
5%

10%
25%
50% 0.0012046

.

Dev.

Obs
Sum of Wgt. 
Mean
Std.

Variance
Skewness
Kurtosis

We would point out that in this table the Jensen values are far from normality, as

can be seen in the readings for asymmetry and kurtosis.

2. Mean test

Variable Obs. Mean Std. Err. Std. Dev. [95% Conf. Interval]
jensen 172 0.001246 0.0016287 0.0213603 −0.001969 0.004461

mean = mean (jensen) t = 0.7650
Ho: mean = 0 degrees of freedom = 171

Ha: mean < 0 Ha: mean != 0 Ha: mean > 0
Pr(T < t) = 0.7773 Pr(|T| > |t|) = 0.4453 Pr(T > t) = 0.2227

From thismean test, we can accept that themean for the Jensen alphas is zero; in fact,

if we focus on the two-sided test we obtain a probability of 0.4453, higher than 5 %.

This allows us to conclude that we are not able to beat the Market with this strategy.

3. Nonparametric mean test

sign Obs. sum ranks expected
positive

negative 
zero
all

92
80
0

172

8451
6427

0
14878

7439
7439

0
14878

unadjusted variance 427742.50
adjustment for ties 0.00
adjustment for zeros 0.00

--------------
adjusted variance 427742.50

Ho: jensen = 0
z = 1.547
Prob > |z| = 0.1218
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We can see again that Wilcoxon’s nonparametric test leads to the same conclu-

sion: we cannot beat the Market with this strategy.

4. Frequencies

BEAT
NO YES Total

NO

YES

Total

0
0

92
53.49

92
53.49

80
46.51

92
53.49
172
100

80
46.51

0
0

80
46.51

BEAT

From this contingency table, we see that the proportion of months in which we

beat the Market is very similar to the proportion in which we fail to do so.

5. Probabilities test

Variable N Observed K Expected K Assumed p Observed p

Jensen 172 92 86 0.50000 0.53488

Pr(k >= 92) = 0.200842 (one-sided test)
Pr(k <= 92) = 0.839213 (one-sided test)
Pr(k <= 80 or k >= 92) = 0.401684 (two-sided test)

Weuse this binomial test to determinewhether the probability of beating theMarket

is similar to the probability of failing to beat it (50–50). If we look at the two-sided test,

we obtain a probability of 0.401684, above 5 %, and so we accept the success rate is

around 50 %, which supports the results obtained with the contingency table.

6. Fit of Jensen by month

−.1

−.05

0

.05

.1

je
ns

en

1992m1 1994m1 1996m1 1998m1 2000m1 2002m1 2004m1 2006m1 2008m1

time

28 Can We Use the CAPM as an Investment Strategy? 769



7. Linear fit

Source SS df MS Number of obs. 172

Model 0.00459285 1 0.00459285 F( 1, 170) 10.63
Residual 0.07342831 170 0.00043193 Prob > F 0.0013

Total 0.07802116 171 0.00045626 R-squared 0.0589

Adj. R-squared 0.0533
Root MSE 0.02078

jensen Coef. Std. Err. t P>|t| [95% Conf. Interval]

time

_cons

0.0001041

−0.048762

0.0000319

0.0154174

3.26

−3.16

0.001

0.002

0.0000411 0.0001671

−0.0791963 −0.0183277

From the above table we can observe that the regression slope which

connects Jensen’s index (the dependent variable) and time measured in months

(the independent variable) gives a positive and significant coefficient for

beta which allows us to conclude that this strategy gives results that improve

over time.

8. One-way analysis of Jensen by month

−.1

−.05

0

.05

.1

Ja
nu

ar
y

Fe
br

ua
ry

M
ar

ch
Apr

il
M

ay
Ju

ne Ju
ly

Aug
us

t

Sep
te

m
be

r

Octo
be

r

Nov
em

be
r

Dec
em

be
r
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9. One-way ANOVA (by month)

Model
Residual

Total

Source SS df MS

0.00607108
0.07195009
0.07802116

11
160
171

0.00055192
0.00044969
0.00045626

172
1.23
0.2729
0.0778
0.0144
0.02121

F( 11, 160)
Prob > F
R-squared
Adj R-squared
Root MSE

Number of obs

jensen Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons
1
2
3
4
5
6
7
8
9

10
11
12

0.0084177
−0.0094303
−0.0142236

0.0040468
−0.0021065
−0.0167755
−0.0049838
−0.0026922
−0.0082308
−0.0112643
−0.0092672
−0.0115344

(dropped)

0.0056675
0.0080151
0.0080151
0.0078803
0.0078803
0.0078803
0.0080151
0.0080151
0.0078803
0.0080151
0.0080151
0.0080151

1.49
−1.18
−1.77

0.51
−0.27
−2.13
−0.62
−0.34
−1.04
−1.41
−1.16
−1.44

0.139
0.241
0.078
0.608
0.79
0.035
0.535
0.737
0.298
0.162
0.249
0.152

0.0196104
0.0063987
0.0016053
0.0196097
0.0134564

−0.0012126
0.0108451
0.0131368
0.0073321
0.0045647
0.0065618

−0.0027751
−0.0252592
−0.0300526
−0.0115161
−0.0176694
−0.0323384
−0.0208128
−0.0185211
−0.0237937
−0.0270932
−0.0250961
−0.0273633 0.0042946

We carry out an ANOVA to determine whether the means for Jensen’s indices

obtained in the different months are uniform. We can see that F has a value of 1.23

and a related probability of 0.2729, above 5 %, which leads us to accept that the

means for Jensen’s indices are uniform throughout the months included in our study.

10. Kruskal-Wallis tests (Rank sums), by month

Month Obs. Rank Sum
January 

February 
March 

April
May 
June 
July 

August
September 

October 
November
December

15
15
15
14
14
14
14
14
14
14
14
15

949
1551
1310
1217
1093
1386
1270
798
1382
1025
1032
1865

chi-squared = 22.716 with 11 d.f. 
probability = 0.0194

We use the Kruskal–Wallis nonparametric test to measure the same phenome-

non as with the ANOVA, and we see that for a significance level of 1 % we would

come to the same conclusion as we did with the ANOVA, while for a significance

level of 5 %, we can rule out uniformity from month to month.
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11. Contingency table (by month)

BEAT
Month

NO YES Total
January 

February 
March 

April
May 
June 
July 

August
September 

October 
November
December

11
5
7
6
7
2
6

11
6
8
9
2

4
10

8
8
7

12
8
3
8
6
5

13

15
15
15
14
14
14
14
14
14
14
14
15

Total 80 92 172

Pearson chi2(11) = 26.3578 Pr = 0.006
likelihood-ratio chi2(11) = 28.4294 Pr = 0.003 

We use this contingency table to test the same point as with the ANOVA and the

Kruskal–Wallis test above, to determine whether there are any differences between

the months, and we find that both with Pearson’s chi-square test and with the

likelihood ratio the probability is less than 1 %, which leads us to conclude that

the chances of beating the Market are not the same month on month, so that there

will be some months in which it is easier to do so than others.

12. One-way analysis of Jensen by year

−.1

−.05

0

.05

.1

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06
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13. One-way ANOVA (by year)

168
2.2
0.0117
0.1569
0.0857
0.0206

0.01216506
0.06538048
0.07754554

13
154
167

0.00093577
0.00042455
0.00046435

0.0113553
−0.0368126
−0.0159892
−0.0088588
−0.0077928
−0.0082156
−0.0062178
−0.0102373
−0.0061693
−0.0108019
−0.0127709
−0.009494
−0.0078177

0.0003579
(dropped)

0.005948
0.0084118
0.0084118
0.0084118
0.0084118
0.0084118
0.0084118
0.0084118
0.0084118
0.0084118
0.0084118
0.0084118
0.0084118
0.0084118

1.91
−4.38
−1.9
−1.05
−0.93
−0.98
−0.74
−1.22
−0.73
−1.28
−1.52
−1.13
−0.93

0.04

0.058
0
0.059
0.294
0.356
0.33
0.461
0.225
0.464
0.201
0.131
0.261
0.354
0.966

−0.000395
−0.0534299
−0.0326065
−0.0254762
−0.0244102
−0.024833
−0.0228352
−0.0268546
−0.0227866
−0.0274192
−0.0293883
−0.0261114
−0.0244351
−0.0162595

0.0231055
−0.0201952

0.0006282
0.0077586
0.0088246
0.0084018
0.0103996
0.0063801
0.0104481
0.0058155
0.0038465
0.0071234
0.0087997
0.0169752

Model
Residual

Total

Source SS df MS

jensen Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons

13
14

1
2
3
4
5
6
7
8
9

10
11
12

Number of obs
F(13, 154) 
Prob > F
R-squared
Adj R-squared
Root MSE

We performed an ANOVA based on years, to see whether the strategy gives

similar Jensen values from year to year for those years included in our study

(we excluded 1992 and 2007 because they could provide only 1 and 3 months of

data, respectively. These years are also excluded from the other tests done based on

years). We obtained a figure F of 2.20 with a related probability of 0.0117, thus for

a significance level of 1 % we would accept that the means are uniform from one

year to another, however, for a significance level of 5 % we must rule out this

hypothesis and conclude that the Jensen values differ from one year to another.

14. Kruskal-Wallis tests (Rank sums), by year

Year Obs. Rank Sum
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006

12
12
12
12
12
12
12
12
12
12
12
12
12
12

722
661
1017
1092
1024
1083
993
1002
931
906
1019
1058
1275
1413

chi-squared = 16.527 with 13 d.f. 
probability = 0.2218
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We now use the Kruskal–Wallis test to find out the same point as we did with the

ANOVA. We see that we obtain a probability greater than 5 % which means we can

accept that the mean Jensen values are uniform from one year to another.

15. Contingency table (by year)

Year

1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006

8
9
6
5
5
6
5
6
6
7
5
5
4
1

4
3
6
7
7
6
7
6
6
5
7
7
8

11

12
12
12
12
12
12
12
12
12
12
12
12
12
12

78 90 168

Pearson chi2(13) = 15.2205  Pr = 0.294 
likelihood-ratio chi2(13) = 16.7608  Pr = 0.210

BEAT
NO YES Total

Total

The contingency table confirms the result of the previous test, namely, that there

are no differences between the Jensen values for the different years so that any

small difference can be due to chance.

Strategy 2: The Investor Buys the Most Undervalued Stocks

Strategy 2, 1st Variant: Quartiles Constructed Using Jensen’s Index
1. Summary statistics

Percentiles Smallest

172
172

0.0011871
0.0280576

0.0007872
−1.842765

11.929

Largest

1%
5%

10%
25%
50%

75%
90%
95%
99%

−0.1414719
−0.0391241
−0.0192669
−0.0103728

0.0017188

0.0154674
0.0294085
0.0390722
0.0696097

−0.1486773
−0.1414719
−0.1117398
−0.0683232

0.0545513
0.0690987
0.0696097
0.0745625

Obs.
Sum of Wgt.
Mean
Std. Dev.

Variance
Skewness
Kurtosis
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We would point out that in this table the Jensen values are far from normality, as

can be seen in the readings for asymmetry and kurtosis.

2. Mean test

jensen (Q) 172 0.001187 0.0021394 0.0280576 −0.0030359 0.0054101

mean = mean (jensen) t = 0.5549 
Ho: mean = 0 degrees of freedom = 171

Ha: mean < 0 Ha: mean != 0 Ha: mean > 0
Pr(T < t) = 0.7101 Pr(|T| > |t|) = 0.5797 Pr( T > t) = 0.2899

Variable Obs. Mean Std. Err. Std. Dev. [95% Conf. Interval]

From this mean test we assume that the mean for Jensen’s alphas is zero, in fact,

if we focus on the two-sided test we can detect a probability of 0.5797, higher than

5 %. This allows us to conclude that we are not able to beat the Market with this

strategy.

3. Nonparametric mean test

sign Obs. sum ranks expected

positive 
negative

zero

94
78
0

8567
6311

0

7439
7439

0
all 172 14878 14878

unadjusted variance   427742.50
adjustment for ties                 0.00 
adjustment for zeros             0.00

--------------
adjusted variance       427742.50
Ho: jensen = 0

z = 1.725
Prob > |z| = 0.0846

We can see again, that Wilcoxon’s nonparametric test leads to the same conclu-

sion: we cannot beat the Market with this strategy.

4. Frequencies

BEAT
BEAT

NO YES Total

NO 78
45.35

0
0

78
45.35

YES 0
0

94
54.65

94
54.65

Total 78
45.35

94
54.65

172
100
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From this contingency table, we see that the proportion of months in which we

beat the Market is very similar to the proportion of months in which we do not, with

a slightly higher probability of beating the Market.

5. Probabilities test

Variable Observed K Expected K Assumed p Observed p

Jensen (Q) 172 94 86 0.50000 0.54651

Pr(k >= 94) = 0.126331 (one-sided test) 
Pr(k <= 94) = 0.902626 (one-sided test)
Pr(k <= 78 or k >= 94) = 0.252662 (two-sided test)

N

With this binomial test we set out to find whether the probability of beating the

Market is the same as the probability of not beating it; (50–50). If we look at the

two-sided test, we get a probability of 0.252662, above 5 %, hence we can accept

that the success rate is 50 %, which backs up the results obtained with the

contingency table.

6. Fit of Jensen (quartiles) by month
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7. Linear fit

Source SS df MS Number of obs 172

Model 0.00979599 1 0.00979599 F(1, 170) 13.34

Residual 0.1248204 170 0.00073424 Prob > F 0.0003
Total 0.13461639 171 0.00078723 R-squared 0.0728

Adj R-squared 0.0673
Root MSE 0.0271

jensen (Q) Coef. Std. Err. t P>|t|

time 0.000152 0.0000416 3.65 0 0.0000699 0.0002341
_cons −0.0718465 0.0201013 −3.57 0 −0.1115268 −0.0321663

[95% Conf. Interval]

From the above table we can observe that the regression slope, which connects

Jensen’s index (the dependent variable) and time measured in months (the inde-

pendent variable), gives a positive and significant coefficient for beta which allows

us to conclude that this strategy gives results that improve over time.

8. One-way analysis of Jensen (quartiles) by month
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9. One-way ANOVA (by month)

Source SS df MS 172

Model 0.00735542 11 0.00066868 0.84

Residual 0.12726097 160 0.00079538 0.5997

Total 0.13461639 171 0.00078723 0.0546
−0.0104

Number of Obs.
F(11, 160)
Prob > F
R-squared
Adj. R-squared
Root MSE 0.0282

jensen (Q) Coef. Std. Err. t P>|t|
_cons 0.0105061 0.0075374 0.165 −0.0043796 0.0253918

1 −0.0142298 0.0106595 0.184 −0.0352813 0.0068218
2 −0.015749 0.0106595 0.142 −0.0368006 0.0053025
3 0.0028747 0.0104804 0.784 −0.017823 0.0235724
4 −0.0060897 0.0104804 0.562 −0.0267874 0.0146081
5 −0.0172233 0.0104804 0.102 −0.037921 0.0034744
6 −0.0069927 0.0106595 0.513 −0.0280443 0.0140588
7 −0.0014246 0.0106595 0.894 −0.0224761 0.019627
8 −0.014007 0.0104804 0.183 −0.0347047 0.0066907
9 −0.0143055 0.0106595 0.181 −0.035357 0.0067461

10 −0.0125205 0.0106595 0.242 −0.0335721 0.008531
11 −0.0123631 0.0106595

1.39
−1.33
−1.48

0.27
−0.58
−1.64
−0.66
−0.13
−1.34
−1.34
−1.17
−1.16 0.248 −0.0334147 0.0086884

12 (dropped)

[95% Conf.  Interval]

We perform an ANOVA to see whether the means for Jensen values obtained for

the different months are uniform. We find that F-statistic has a value of 0.84 with

a related probability of 0.5997, above 5 %, which leads us to accept that the means

for Jensen values are uniform among the months included in our sample.
10. Kruskal-Wallis tests (Rank sums), by month

1167
1428
1228
1105
1077
1451
1216
885

1385
1156
1020
1760

chi-squared = 14.369 with 11 d.f. 
probability = 0.2133

Month Obs. Rank Sum
January 

February 
March 

April
May 
June 
July 

August
September 

October 
November
December

15
15
15
14
14
14
14
14
14
14
14
15

We now use the Kruskal–Wallis test to find out the same point as we did with the

ANOVA. We come to the same conclusion as we did with the ANOVA.
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11. Contingency table (by month)

7
5
7
8
9
3
7
9
6
7
8
2

8
10
8
6
5

11
7
5
8
7
6

13
78

Pearson chi2(11) = 16.2331 Pr = 0.133 
likelihood-ratio chi2(11) = 17.3939 Pr = 0.097

BEAT
Month

NO YES Total
January 

February 
March 

April
May 
June 
July 

August
September 

October 
November
December

15
15
15
14
14
14
14
14
14
14
14
15

Total 94 172

The contingency table allows us to test the same point as above with the ANOVA

and the Kruskal–Wallis test, and leads to the same conclusions; hence, we can accept

that all months show a similar tendency in terms of beating the Market.

12. One-way analysis of Jensen (quartiles) by year
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13. One-way ANOVA (by year)

168

0.02482403 13 0.00190954 2.69

0.10923702 154 0.00070933 0.0019

0.13406105 167 0.00080276 0.1852
0.1164
0.02663

0.0076884
0.010873
0.010873
0.010873
0.010873
0.010873
0.010873
0.010873
0.010873
0.010873
0.010873
0.010873
0.010873
0.010873

1.69
−4.55
−1.76
−0.89
−0.85
−0.93
−0.61
−0.88
−0.88
−1.31
−1.45
−0.81
−0.69

0.66

0.093
0
0.08
0.374
0.398
0.355
0.544
0.383
0.38
0.193
0.148
0.421
0.49
0.513

−0.0021949
−0.0709322
−0.04061
−0.0311695
−0.0306973
−0.0315634
−0.0280978
−0.0309983
−0.031053
−0.0356825
−0.0372824
−0.0302617
−0.0290019
−0.0143528

0.0281817
−0.0279733

0.002349
0.0117894
0.0122617
0.0113956
0.0148612
0.0119607
0.0119059
0.0072764
0.0056765
0.0126972
0.013957
0.0286061

0.0129934
−0.0494527
−0.0191305
−0.00969
−0.0092178
−0.0100839
−0.0066183
−0.0095188
−0.0095735
−0.0142031
−0.0158029
−0.0087823
−0.0075224

0.0071267
(dropped)

Model
Residual

Total

Source SS df MS

jensen (Q) Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons

13
14

1
2
3
4
5
6
7
8
9

10
11
12

Number of obs.
F(13, 154) 
Prob > F
R-squared
Adj. R-squared
Root MSE

We now perform an ANOVA by years to see whether the strategy gives similar

Jensen values among the years in our sample. We obtain a value for F-statistic of

2.69 with a related probability of 0.0019; hence we conclude that the means for

Jensen values are not uniform from one year to another.

14. Kruskal-Wallis tests (Rank sums), by year

735
665
980
1042
1002
1064
1045
972
846
913
1136
1070
1353
1373

chi-squared = 17.864 with 13 d.f. 
probability = 0.1627

Year Obs. Rank Sum
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006

12
12
12
12
12
12
12
12
12
12
12
12
12
12
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Wenow use the Kruskal–Wallis nonparametric test to find out the same point as we

did with the ANOVA. We see that we obtain a probability greater than 5 % which

meanswe can accept that themean Jensen values are uniform fromone year to another.

15. Contingency table (by year)

8
9
6
4
6
5
4
6
7
7
3
6
2
2

4
3
6
8
6
7
8
6
5
5
9
6

10
10

Pearson chi2(13) = 19.9673 Pr = 0.096 
likelihood-ratio chi2(13) = 21.0731 Pr = 0.071

Year

1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006

12
12
12
12
12
12
12
12
12
12
12
12
12
12

75 93 168

BEAT
NO YES Total

Total

The contingency table confirms the result of the previous test, namely, that there

are no differences between the Jensen values for the different years so that any

small difference can be due to chance.

Strategy 2, 2nd Variant: Quartiles Built Using Treynor’s Ratio
1. Summary statistics

0.0157561
0.0285186
0.04065
0.0648316

0.0484799
0.0629996
0.0648316
0.0745625

Percentiles Smallest

172
172

0.0014829
0.0256145

0.0006561
−0.9274022

6.503481

Largest

1%
5%

10%
25%
50%

75%
90%
95%
99%

−0.0968895
−0.0382262
−0.0231222
−0.0106754

0.0023977

−0.104714
−0.0968895
−0.0940315
−0.0702515

Obs.
Sum of Wgt.
Mean
Std. Dev.

Variance
Skewness
Kurtosis

28 Can We Use the CAPM as an Investment Strategy? 781



We note that in this table the Jensen values are far from normality, as can be seen in

the readings for asymmetry and kurtosis, although this is less obvious than for the

previous strategies.

2. Mean test

Jensen (Q) 172 0.001483 0.0019531 0.0256145 −0.0023724 0.0053381

mean = mean (jensen) t = 0.7592
Ho: mean = 0 degrees of freedom = 171

Ha: mean < 0 Ha: mean != 0 Ha: mean > 0
Pr(T < t) = 0.7756 Pr(|T| > |t|) = 0.4487 Pr(T > t) = 0.2244

Variable Obs. Mean Std. Err. Std. Dev. [95% Conf. Interval]

From this mean test, we can accept that the mean for the Jensen alphas is zero; in

fact, if we focus on the two-sided test, we obtain a probability of 0.4487, which is

higher than 5 %. This allows us to conclude that we cannot beat the Market with this

strategy.

3. Nonparametric mean test

sign Obs. sum ranks expected

positive 
negative

zero

93
79
0

8460
6418

0

7439
7439

0
all 172 14878 14878

unadjusted variance   427742.50
adjustment for ties                 0.00 
adjustment for zeros             0.00

--------------
adjusted variance       427742.50
Ho: jensen = 0

z = 1.561
Prob > |z| = 0.1185

We can see again that Wilcoxon’s nonparametric test leads to the same conclu-

sion: we cannot beat the Market with this strategy.

4. Frequencies

BEAT
BEAT

NO YES Total

NO 79
45.93

0
0

79
45.93

YES 0
0

93
54.07

93
54.07

Total 79
45.93

93
54.07

172
100
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From this contingency table, we see that the proportion of months in

which we beat the Market is very similar to the proportion in which we do

not, with a slightly higher figure for those months in which we do beat the

Market.

5. Probabilities test

Pr(k >= 93) = 0.160787 (one-sided test) 
Pr(k <= 93) = 0.873669 (one-sided test)
Pr(k <= 79 or k >= 93) = 0.321574 (two-sided test)

Variable Observed K Expected K Assumed p Observed p

Jensen (Q) 172 93 86 0.50000 0.5407

N

We use this binomial test to determine whether the probability of beating the

Market is similar to the probability of failing to beat it (50–50). If we look at the

two-sided test, we obtain a probability of 0.321574, above 5 %, and so we accept

the success rate is around 50 %, which supports the results obtained with the

contingency table.

6. Fit of Jensen (quartiles) by month
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7. Linear fit

0.00721202
0.1049811
0.11219312

0.00721202
0.00061754
0.0006561

0.0001304
−0.0611824

0.0000382
0.0184347

3.42
−3.32

0.001
0.001

0.0000551 
−0.0975728 

0.0002058
−0.024792

Source SS df MS
11.68
0.0008
0.0643
0.0588
0.02485

172

Model 1
Residual 170

Total 171

Number of obs.
F(1, 170)
Prob > F
R-squared
Adj R-squared
Root MSE

jensen (Q) Coef. Std. Err. t P>|t|

time
_cons

[95% Conf. Interval]

From the above table we can observe that the regression slope which

connects Jensen’s index (the dependent variable) and time measured in months

(the independent variable) gives a positive and significant coefficient for

beta which allows us to conclude that this strategy gives results that improve

over time.

8. One-way analysis of Jensen (quartiles) by month
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9. One-way ANOVA (by month)

0.00656026
0.10563286
0.11219312

0.00059639
0.00066021
0.0006561

172
0.9
0.5387
0.0585

−0.0063
0.02569

0.0092267
−0.0125889
−0.0150679

0.003986
−0.0040562
−0.0145235
−0.0055123
−0.0003726
−0.0092886
−0.013379
−0.0120712
−0.0105584

(dropped)

0.0068671
0.0097116
0.0097116
0.0095484
0.0095484
0.0095484
0.0097116
0.0097116
0.0095484
0.0097116
0.0097116
0.0097116

1.34
−1.3
−1.55

0.42
−0.42
−1.52
−0.57
−0.04
−0.97
−1.38
−1.24
−1.09

0.181
0.197
0.123
0.677
0.672
0.13
0.571
0.969
0.332
0.17
0.216
0.279

−0.0043352
−0.0317683
−0.0342474
−0.0148711
−0.0229133
−0.0333805
−0.0246917
−0.0195521
−0.0281457
−0.0325584
−0.0312506
−0.0297378

0.0227886
0.0065906
0.0041115
0.0228431
0.0148009
0.0043336
0.0136671
0.0188068
0.0095684
0.0058005
0.0071083
0.008621

Source SS df MS

Model 11
Residual 160

Total 171

Number of Obs.
F(11, 160)
Prob > F
R-squared
Adj. R-squared
Root MSE

jensen (Q) Coef. Std. Err. t P>|t|
_cons

1
2
3
4
5
6
7
8
9

10
11
12

[95% Conf.  Interval]

We perform an ANOVA to see whether the means for the Jensen values obtained

for the different months are uniform. We find that F-statistic has a value of 0.90

with a related probability of 0.5387, above 5 %, which leads us to accept that the

means for the Jensen values are uniform among the months included in our sample.

10. Kruskal-Wallis tests (Rank sums), by month

1153
1442
1297
1107
1046
1430
1220
899

1352
1160
1044
1728

chi-squared = 12.840 with 11 d.f. 
probability = 0.3039

Month Obs. Rank Sum
January 

February 
March 

April
May 
June 
July 

August
September 

October 
November
December

15
15
15
14
14
14
14
14
14
14
14
15
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Wenowuse theKruskal–Wallis nonparametric test to find out the same point aswe

did with the ANOVA. We come to the same conclusion as we did with the ANOVA.

11. Contingency table (by month)

7
5
6
9
8
3
7

10
7
6
8
3

8
10
9
5
6

11
7
4
7
8
6

12

Pearson chi2 (11) = 15.8416 Pr=0.147 
likelihood-ratio chi2(11) = 16.5468 Pr = 0.122

79

BEAT
Month

NO YES Total
January 

February 
March 

April
May 
June 
July 

August
September 

October 
November
December

15
15
15
14
14
14
14
14
14
14
14
15

Total 93 172

The contingency table allows us to test the same point as above with the ANOVA

and the Kruskal–Wallis test, and leads to the same conclusions; hence we can accept

that all months show a similar tendency in terms of beating the Market.
12. One-way analysis of Jensen (quartiles) by year
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13. One-way ANOVA (by year)

0.0170417
0.09434205
0.11138374

0.0013109
0.00061261
0.00066697

168
2.14
0.0147
0.153
0.0815
0.02475

0.0135106
−0.041029
−0.0190657
−0.0091611
−0.0100757
−0.0077821
−0.0098938
−0.0154658
−0.0103002
−0.0158053
−0.0165104
−0.0080536
−0.0072511

0.004184

0.007145
0.0101045
0.0101045
0.0101045
0.0101045
0.0101045
0.0101045
0.0101045
0.0101045
0.0101045
0.0101045
0.0101045
0.0101045
0.0101045

1.89
−4.06
−1.89
−0.91
−1
−0.77
−0.98
−1.53
−1.02
−1.56
−1.63
−0.8
−0.72

0.41

0.061
0
0.061
0.366
0.32
0.442
0.329
0.128
0.31
0.12
0.104
0.427
0.474
0.679

−0.0006043
−0.0609904
−0.0390271
−0.0291225
−0.0300372
−0.0277435
−0.0298552
−0.0354272
−0.0302616
−0.0357667
−0.0364718
−0.028015
−0.0272125
−0.0157774

0.0276254
−0.0210676

0.0008957
0.0108003
0.0098857
0.0121793
0.0100676
0.0044956
0.0096612
0.0041561
0.003451
0.0119078
0.0127103
0.0241454

13
154
167

(dropped)

Model
Residual

Total

Source SS df MS

jensen Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons

13
14

1
2
3
4
5
6
7
8
9

10
11
12

Number of obs.
F(13, 154) 
Prob > F
R-squared
Adj. R-squared
Root MSE

We now perform an ANOVA by years to see whether the strategy gives similar

Jensen values among the years in our sample. We obtain a value for F-statistic of

2.14with a related probability of 0.0147; hencewe conclude that for a significance level

of 1%we can accept that the means for the Jensen values are the same from one year to

another, however for a significance level of 5 % we must reject this hypothesis and we

would conclude that there are differences between the Jensen values of different years.

14. Kruskal-Wallis tests (Rank sums), by year

740
679
1025
1033
1065
1022
877
1026
824
920
1166
1110
1322
1387

chi-squared = 18.336 with 13 d.f. 
probability = 0.1452

Year Obs. Rank Sum
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006

12
12
12
12
12
12
12
12
12
12
12
12
12
12
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We now use the Kruskal–Wallis test to find out the same point as we did with the

ANOVA. We see that we obtain a probability greater than 5 % which means we can

accept that the means for the Jensen values are uniform from one year to another.

15. Contingency table (by year)

8
9
4
5
6
5
6
4
8
7
4
6
2
2

4
3
8
7
6
7
6
8
4
5
8
6

10
10

Pearson chi2 (13) = 19.9908 Pr = 0.095 
likelihood-ratio chi2(13) = 21.0581 Pr = 0.072

Year

1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006

12
12
12
12
12
12
12
12
12
12
12
12
12
12

76 92 168

BEAT
NO YES Total

Total

The contingency table confirms the result of the previous test, namely, that there

are no differences between the Jensen values for the different years and that any

small difference can be due to chance.
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Abstract

To deal with today’s uncertain and dynamic business environments with differ-

ent background of decision makers in computing trade-offs among multiple

organizational goals, our series of papers adopts an analytic hierarchy process

(AHP) approach to solve various accounting or finance problems such as devel-

oping a business performance evaluation system and developing a banking

performance evaluation system. AHP uses hierarchical schema to incorporate

nonfinancial and external performance measures. Our model has a broader set of

measures that can examine external and nonfinancial performance as well as

internal and financial performance. While AHP is one of the most popular

multiple goals decision-making tools, multiple-criteria and multiple-constraint

(MC2) linear programming approach also can be used to solve group decision-

making problems such as transfer pricing and capital budgeting problems. This

model is rooted by two facts. First, from the linear system structure’s point of

view, the criteria and constraints may be “interchangeable.” Thus, like multiple

criteria, multiple-constraint (resource availability) levels can be considered.

Second, from the application’s point of view, it is more realistic to consider

multiple resource availability levels (discrete right-hand sides) than a single

resource availability level in isolation. The philosophy behind this perspective

is that the availability of resources can fluctuate depending on the decision

situation forces, such as the desirability levels believed by the different

managers. A solution procedure is provided to show step-by-step procedure to

get possible solutions that can reach the best compromise value for the multiple

goals and multiple-constraint levels.

Keywords

Analytic hierarchy process • Multiple-criteria and multiple-constraint linear

programming • Business performance evaluation • Activity-based costing sys-

tem • Group decision making • Optimal trade-offs • Balanced scorecard •

Transfer pricing • Capital budgeting
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29.1 Introduction

In this chapter, we provide an up-to-date review on our past works in AHP

and MC2 linear programming models to solve real-world problems faced by

managers in accounting and finance. These applications include developing

a business performance evaluation system using an analytic hierarchical model,

a banking performance evaluation system, capital budgeting, and transfer pricing

problems. A good performance measurement system should incorporate strategic

success factors, especially to be successful in today’s competitive environment.

Balanced scorecard is a hot topic, but it lacks linkages among different basic

units of financial and nonfinancial measures or across different levels of managers.

The model proposed in this study uses a three-level hierarchical schema to

combine financial and nonfinancial performance measures systematically. Its

emphasis is on an external as well as an internal business performance measures

such as the balanced scorecard method. This method is more likely to cover

a broader set of measures that include operational control as well as strategic

control.

The purpose of this chapter is to provide additional insight for managers who

face group decision-making problems in accounting and finance and want to find

practical solutions.

29.2 Designing a Comprehensive Performance Evaluation
System: Using the Analytic Hierarchy Process

AHP is one of the most popular multiple goals decision-making tools (Ishizaka

et al. 2011). Designing a comprehensive performance measurement system has

frustrated many managers (Eccles 1991). The traditional performance measures

enterprises have used may not well fit in for the new business environment and

competitive realities. The figures that enterprises have traditionally used are not

very useful for the information-based society we are becoming. We suspect that

firms are much more productive than these out-of-date measures.

A broad range of firms is deeply engaged in redefining how to evaluate the

performance of their businesses. New measurements for quantification are needed

to perform business evaluation. Drucker (1993) put the ever-increasing measure-

ment dilemma this way:

Quantification has been the rage in business and economics these past 50 years. Accoun-

tants have proliferated as fast as lawyers. Yet we do not have the measurements we need.

Neither our concepts nor our tools are adequate for the control of operations, or for

managerial control. And, so far, there are neither the concepts nor the tools for business

control, i.e., for economic decision making. In the past few years, however, we have

become increasingly aware of the need for such measurements.

Drucker’s message is clear: a traditional measure is not adequate for business

evaluation. A primary reason why traditional measures fail to meet new business

needs is that most measures are lagging indicators (Eccles and Pyburn 1992).
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The emphasis of accounting measures has been on historical statements of financial

performance. They are the result of management performance, not the cause of it;

i.e., they are better at measuring the consequence of yesterday’s decisions but

unlikely to provide useful indicators for future success. As a result, they easily

conflict with new strategies and current competitive business realities.

To ameliorate this accounting lag situation, researchers have frequently attempted

to provide new measuring procedures (Kaplan 1986; Wu et al. 2011). Yet most

measuring guidelines may not be well represented analytically. Managers keep

asking: What are the most important measures of performance? What are the associ-

ations among those measures? Unfortunately, we know little about how measures are

integrated into a performance measurement system regarding a particular business.

For example, is the customer service perceived as a more important measure than cost

of quality? Another question often raised is: What is the association between the

customer service and on-time delivery or manufacturing cycle time?

The current wave of dissatisfaction with traditional accounting systems has been

intensified partly because most measures have internal and financial focus. The new

measure should broaden the basis of nonfinancial performance measurement. Mea-

sures must truly predict long-term strategic success. External performance relative to

competitors such asmarket share is as of importance as internal measures. In addition,

the recent rise of global competitiveness reemphasizes the primacy of operational, i.e.,

nonfinancial, performance over financially oriented performance. Nonfinancial

measures reflect the actionable steps needed for surviving in today’s competitive

environment (Fisher 1992).

When a company uses an activity-based costing system (Campi 1992; Ayvaz and

Pehlivanli 2011) or just-in-timemanufacturing system, using nonfinancialmeasures is

inevitable. Nonfinancial measures reduce communication gap between workers and

managers; i.e., workers can better understand what they are measured by, and

managers can get timely feedback and link them to strategic decision making.

The answer proposed in this study is to use hierarchical schema to incorporate

nonfinancial and external performance measures. The model has a broader set of

measures that can examine external and nonfinancial performance as well as internal

and financial performance. On the basis of the schema, this chapter demonstrates how

Saaty’s analytic hierarchy process (e.g., see Saaty (1980) and Harker and Vargas

(1987)) can be merged with the performance measurement. The analytic hierarchy

process is a theory of measurement that has been widely applied in modeling human

judgment process. In this sense, the performance measuring method proposed in this

study is referred to as the Analytic Hierarchical Performance Model (AHPM).

While the AHP has been applied in a number of cases of capital budgeting,

auditing, preference analysis, and balanced scorecard to product planning, enter-

prise risk management, and internal control structure study (see Arrington

et al. 1984; Boucher and MacStravic 1991; Liberatore et al. 1992; Hardy and

Reeve 2000; Huang et al. 2011; Li et al. 2011), little attention is devoted to the

problem of an analytical and comprehensive business performance model to cover

a broader base of measures in the currently changing environment in accounting

information systems. Although Chan and Lynn (1991) originally investigated the
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application of the AHP in business performance evaluation, the problem of struc-

turing the decision hierarchy in an appropriate manner is yet to be explored. The

methodology proposed in this chapter will resolve this issue.

29.2.1 Hierarchical Schema for Performance Measurement

The AHP is a theory of measurement that has been extensively applied in modeling

the human judgment process (e.g., Lee 1993; Muralidhar et al. 1990). It decom-

poses a complex decision operation into a multilevel hierarchical structure. The

primary advantage of the AHP is its simplicity and the availability of the software.

Several desirable features of the AHP can help resolve issues in performance

evaluation. For example, nonfinancial and external effects can be identified and

integrated with financial and internal aspects of business performance through the

AHP. Furthermore, the AHP is a participation-oriented methodology that can aid

coordination and synthesis of multiple evaluators in the organizational hierarchy.

Participation makes a positive contribution to the quality of the performance

evaluation process. This point is further explored within the context of hierarchical

schema of performance evaluation as follows.

Performance measures have the relationship with management levels. They need

to be filtered at each superior/subordinate level in an organization; i.e., measures do

not need to be the same across management levels. Performance measures at each

level, however, should be linked to performance measures at the next level up.

Performance measurement information is tailored to match the responsibility of

each management level. For example, at the highest level, the CEO has responsi-

bility for performance of the total business. In contrast, the production manager’s

main interest may be in cost control because he or she is responsible for this. Taking

this idea into account leads to the notion that the performance measuring process

consists of different levels according to management levels.

Depending on organizational levels, therefore, a three management level model

will be suggested: top, middle, and operational. To recognize the ever-increasing

importance of nonfinancial measures, at the top management level, the hierarchy

consists of two criteria: nonfinancial and financial performance. One level lower

(middle-level management) includes performance criteria such as market share,

customer satisfaction, productivity, ROI, and profitability.

The lowest level (operational management level) includes measures that lead to

simplifications in the manufacturing process as related to high-level performance

measures. Examples are quality, delivery, cycle time, inventory turnover, asset turn-

over, and cost. Typically, the criteria at the lowest level may have several sub-criteria.

For example, quality measures may have four sub-criteria: voluntary, (appraisal and

prevention,) and failure, (internal and external,) costs. With relation to these criteria,

accounting information is controlled typicallywith respect to each product (or service)

or division (or department). As a result, product and division levels are added. One

should keep in mind that the above three-level hierarchical schema is dynamic over

time. As a company evolves, the hierarchy must be accordingly adjusted.
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Another interesting aspect is that the hierarchy is not company invariant. The

hierarchy must be adjusted depending on unique situation faced by each individual

company or division. Basically, the hierarchal schema is designed to accommodate

any number of levels and alternatives. New level or alternative can be easily added or

deleted to the hierarchy once introduced. For example, another level regarding prod-

uctsmay be added at the bottom in order to evaluate performance of different products.

29.2.2 Analytic Hierarchical Performance Model

Based on the hierarchical structure, the performance indices at each level of the

AHPM are derived by the analytic hierarchy process. The AHPM collects input

judgment in the form of matrix by pairwise comparisons of criteria. An eigenvalue

method is then used to scale weights of criteria at each level; i.e., the relative

importance of each criterion at each level is obtained. The relative importance is

defined as a performance index with respect to each alternative (i.e., criterion,

product, or division).

From now on, each step of the AHPM in obtaining the weights is explored. First,

a set of useful strategic criteria must be identified. Let nt be the total number

of criteria under consideration at the top management level. Typically,

nt ¼ 2 (nonfinancial and financial measures). The relative weight of each criteria

may be evaluated by pairwise comparison; i.e., two criteria are compared at one time

until all combinations of comparison are considered (only one pairwise comparison

is needed if nt¼ 2). The experience ofmany users of thismethod and the experiments

reported (Saaty 1980) are likely to support that the 1–9 scale for pairwise compar-

isons captures human judgment fairly well while the scale can be altered to suit each

application. The result from all of pairwise comparisons is stored in an input matrix:

At ¼ atij
� �

an nt by nt matrixð Þ:

The element atij states the importance of alternative i compared to alternative j.
For instance, if at at12 ¼ 2, then criterion 1 is twice as important as criterion 2.

Applying an eigenvalue method to At results in a vector Wt ¼ (wti) that has nt
elements.

In addition to the vector, the inconsistency ratio (g) is obtained to estimate the

degree of inconsistency in pairwise comparisons. The common guideline is that if

the ratio surpasses 0.1, a new input matrix must be generated. Generally speaking,

each element of the vector resulting from an eigenvalue method is the estimated

relative weight of the corresponding criterion of one level with respect to one level

higher; i.e., the element wti is the relative weight of the ith criteria at this level.

At the second level of hierarchy, consider the ith criterion of the top management

level. Then, we have one input matrix of pairwise comparisons of criteria (at middle

management level) that corresponds to the ith criterion of the top management

level. The result is stored in an nm by nm matrix Ai
m. Here, nm is the total number of

criteria at this level. Applying an eigenvalue method to Ai
m results in the relative
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weight for each criterion with relation to the ith criteria at one level higher. This

“local relative weight” is stored in a local weighing vector Wi
m. We need nt local

weighing vectors at this level. The “global relative weight” at this level is computed

and then stored in a vector Wm ¼ (wmi) that has the nm elements as

Wm ¼ Wt � W1
m . . .Wnt

m

� �
:

The similar computing process continues at the operational management level

until we have all global relative weights as Wo.

A prototype for the AHPMwith three-level hierarchies was built via commercial

software for the analytic hierarchy process, called Expert Choice (Forman

et al. 1985).

Above relative weights can be utilized in a number of ways for performance

measurement. Clearly, it implies the relative importance among criteria at each

level. For example, consider an automobile company where market share and ROI

are two important criteria in performance evaluation. If the AHPM generates their

weights as 0.75 and 0.25, respectively, it is reasonable to conclude that market

share affects the company’s performance three times higher than ROI. The weights

can be used as a measure for allocating future resources in products or

divisions. Assume the automobile company produces two types of autos, sedan

and minivan. If the AHPM generates global relative weights as 0.8 and 0.2,

respectively, i.e., the performance of sedans is four times higher than minivans,

then this may provide a good reason for the CEO to invest in sedans four times

higher than minivans.

One important performance control measure is the rate of performance change

that can be computed at any level. The change of performance can be measured.

This measure is useful in estimating the elasticity of the performance of any

alternative. This elasticity can aid in resource allocation decisions; i.e., further

resources may be assigned to more elastic products of divisions.

For the example of computing this elasticity, at the middle management level,

the rate is then

em ¼
Xnm

i¼1
WmiDCmi=Cmi:

Here, DCmi is the amount of change of the ith criteria. For example, if the ROI is

increased from 5% to 7 % and the market share is changed from 20% to 25 % in the

automobile company discussed above,

em ¼ 0:25� 2

5
þ 0:75� 5

20
¼ 0:2875:

We may conclude that the overall business performance has been increased by

$28.75 % with respect to middle management level. Similarly, the performance

change rates at any level can be obtained. Typically, they vary depending on levels

of the AHPM; i.e., they have different implications.
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29.2.3 An Example

The suitability of the AHPM is illustrated with a study on a hypothetical automobile

company. Nonfinancial criteria include market share, customer satisfaction, and

productivity. Financial criteria include ROI and profitability. At the operational

level, six criteria such as quality, delivery, cycle time, inventory turnover, asset

turnover, and cost are considered.

First, nonfinancial and financial criteria are compared and stored in a vector:

Wt ¼ 0:4; 0:6ð Þ:

Next, the middle management level is considered. The relative weights of

middle-level performance criteria with relation to each top-level criterion are to

be computed. First, the local relative weights were computed.

For the nonfinancial criteria,

A1
m ¼

1 2 4

1=2 1 3

1=4 1=3 1

2
4

3
5

For the sake of convenience, ROI and profitability are not listed in this compar-

ison matrix.

The lower triangle is not listed because, in the eigenvalue method, the lower

triangle is simply the reciprocity of the upper triangle. As a result,

W1
m ¼ 0:558, 0:320, 0:122ð Þ:

For each weighing computing, an inconsistency ratio was computed and checked

for acceptance; i.e., in this case, the ratio (g¼ 0.017) was accepted because g� 0.1.

For the financial criteria, ROI is estimated to be twice more important than

profitability, i.e.,

W2
m ¼ 0:667, 0:333ð Þ:

Accordingly, the global relative weights of the managerial criteria (in the order

of market share, customer satisfaction, productivity, ROI, and profitability) are then

Wm ¼ 0:4, 0:6ð Þ � 0:558 0:320 0:122 0 0

0 0 0 0:667 0:333

� �

¼ 0:223, 0:128, 0:049, 0:400, 0:200ð Þ:

Here, the global relative weights of market share, customer satisfaction, produc-

tivity, ROI, and profitability are 22.3 %, 12.8 %, 4.9 %, 40 %, and 20 %, respec-

tively. Note that these percentages are elements of the above Wm.
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Let us move down to the operational level. The following are local relative

weights of operational level criteria (in the order of quality, delivery, cycle time,

cost, inventory turnover, and asset turnover).

For the market share,

A1
0 ¼

1 2 3 3 5 7

1=2 1 2 3 4 5

1=3 1=2 1 2 4 5

1=3 1=3 1=2 1 2 3

1=5 1=4 1=4 1=2 1 2

1=7 1=5 1=5 1=3 1=2 1

2
6666664

3
7777775

For convenience, the local weights are arranged in the order of quality, cycle

time, delivery, cost, inventory turnover, and asset turnover:

W1
o ¼ 0:372, 0:104, 0:061, 0:250, 0:174, 0:039ð Þ:

Similarly,

W2
o ¼ 0:423, 0:038, 0:270, 0:185, 0:055, 0:029ð Þ;

W3
o ¼ 0:370, 0:164, 0:106, 0:260, 0:064, 0:037ð Þ;

W4
o ¼ 0:220, 0:060, 0:030, 0:4150, 0:175, 0:101ð Þ;

W5
o ¼ 0:246, 0:072, 0:065, 0:334, 0:160, 0:122ð Þ:

Consequently, we get the global relative weights of operational criteria as

Wo ¼ 0:223; 0:128; 0:049; 0:400; 0:200ð Þ

�

0:372 0:104 0:061

0:423 0:038 0:270

0:370 0:164 0:106

0:250 0:174 0:039

0:185 0:055 0:029

0:260 0:064 0:037

0:220 0:060 0:030

0:246 0:072 0:065

0:414 0:175 0:101

0:334 0:160 0:122

2
666664

3
777775

¼ 0:292; 0:074; 0:078; 0:324; 0:151; 0:079ð Þ:

Finally, the relative importance of operational level performance measures are

29.2 %, 7.4 %, 7.8 %, 32.4 %, 15.1 %, and 7.9 %, respectively. One should note that

nonfinancial measures are integrated with financial measures in the scaling process.

Our automobile company can adopt these performance measures for further

analysis. The measures serve as the basis for the rate of performance change.

In addition, they can be further used for evaluating the performance of each product

if the product level is connected to the operational management level in the AHPM.
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29.2.4 Discussions

It is too optimistic to argue that there can be one right way of measuring perfor-

mance. There are two factors to be considered. First, each business organization

requires its own unique set of measures depending on its environment. What is most

effective for a company depends upon its history, culture, and management style

(Eccles 1991). To be used for any business performance measurement, a well-

designed model must be flexible enough to incorporate a variety of measures while

retaining major aspects. Second, managers should change measures over time.

In the current competitive business environment, change is not incidental. It is

essential. Change must be managed. The AHPM is highly flexible so that managers

may adjust its structure to evolving business environments. This flexibility will

allow a company to improve its performance measurement system continuously.

Generally, a performance measurement system exists to monitor the implemen-

tation of planning of an organization and aid to motivate desirable individual

performance through a realistic communication of performance information in

related goals of business. This premise of performance measurement requires

a significant number of feedbacks and corrective actions in the practice of account-

ing information systems (Nanni et al. 1990), i.e., feedbacks between levels

and also within level. In the implementation of AHPM, these activities are

common procedures. A clean separation of levels in the hierarchy of the AHPM

is an idealization for simplifying the presentation. The flexibility of the AHPM,

however, accommodates as many feedbacks and corrective actions as possible.

Performance is monitored by group rather than by an individual because of

its ever-increasing importance of teamwork in the success of businesses. The

integrated structure of the AHPM facilitates group decision and thus increases the

chance that managers put trust in the resulting measures. This structure will

enhance more involvement of lower-level managers as well as workers

when a firm implements the AHPM. Furthermore, the hierarchy of the AHPM

corresponds to that of business organization. As a result, group decision at each

level is facilitated. For example, middle-level managers will be responsible for

determining weights for middle-level criteria while lower-level managers will be

responsible for operational level criteria.

The iterative process of weighing goals among managers, as the implementation

of AHPM progresses, will help them to understand which strategic factors are

important and how these factors are linked to other goals to be a successful

company as a group.

Information technology plays a critical role in designing a performance mea-

surement system to provide timely information to management. A computer-based

decision support system can be used to utilize this conceptual foundation in a real-

world situation. The AHPM can be easily stored in an enterprise database because

of the commercial software, Expert Choice. As a result, the AHPM can be readily

available to each management level via the network system of an enterprise.

The AHPM fits any corporate information architecture to pursue the company’s

long-term strategy.
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29.2.5 Conclusions

A well-designed performance model is a must for an enterprise to gain competitive

edges. The performance measurement model proposed in this study is the first kind

of analytical model to cover a wide variety of measures while providing operational

control as well as strategic control. With comparison to previous evaluation

methods, the model shows advantages such as flexibility, feedbacks, group evalu-

ation, and computing simplicity. A prototype was built via a personal computer so

that the model can be applied to any business situations.

The possible real-time control is of importance for the competitive business

environment we are facing today. In sum, the contribution of this study is of both

conceptual and practical importance.

29.3 Developing a Comprehensive Performance Measurement
System in the Banking Industry: An Analytic Hierarchy
Approach

The objective of this study is to design a practical model for a comprehensive

performance measurement system that incorporates strategic success factors in the

banking industry. A performance measurement system proposed in this study can

be used to evaluate top managers of a main bank or managers of a branch office.

Performance measurement should be closely tied to goal setting of an organiza-

tion because it feeds back information to the system on how well strategies are

being implemented (Chan and Lynn 1991; Eddie et al. 2001). A balanced scorecard

approach (Kaplan and Norton 1992; Tapinos et al. 2011) is a hot topic currently in

this area, but it does not provide systematic aggregation of each level as well as

different levels of managers’ performance for the overall company. In other words,

there is no systematic linkage between financial and nonfinancial measures across

different levels of management hierarchy. A traditional performance measurement

system, which focuses on financial measures such as return on assets (ROA),

however, may not serve this purpose well for middle- or lower-level managers in

the new competitive business environment either.

The model proposed in this study will have a broader set of measures that

incorporate traditional financial performance measures such as return on assets

and debt to equity ratio as well as nonfinancial performance measures such as the

quality of customer service and productivity. Using Saaty’s analytic hierarchy

process (AHP) (Saaty 1980; Harker and Vargas 1987), the model will demonstrate

how multiple performance criteria can be systematically incorporated into

a comprehensive performance measurement system. The AHP enables decision

makers to structure a problem in the form of a hierarchy of its elements according to

an organization’s structure or ranks of management levels and to capture manage-

rial decision preferences through a series of comparisons of relevant factors or

criteria. The AHP has been applied recently to several business problems (e.g.,

divisional performance evaluation (Chan and Lynn 1991), capital budgeting
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(Liberatore et al. 1992), and real estate investment (Kamath and Khaksari 1991),

marketing applications (Dyer and Forman 1991), information system project

selection (Schniederjans and Wilson 1991), activity-based costing cost driver

selection (Schniederjans and Garvin 1997), developing lean performance measures

(DeWayne 2009), and customer’s choice analysis in retail banking (Natarajan

et al. 2010)). The AHP is relatively easy to use and its commercial software is

available. This study will be an analytical and comprehensive performance evaluation

model to cover a broader base of measures in the rapidly changing environment of

today’s banking industry. The following section presents background. The third

section discusses methodology. The fourth section presents a numerical example.

The last section summarizes and concludes this chapter.

29.3.1 Background

Recent research topic guide from Institute of Management Accountants lists “per-

formance measurement” as one of top priority research issues. Therefore, this

project will be interesting to bank administrators as well as managerial accountants.

With unprecedented competitive pressure from nonbanking institutions, dereg-

ulation, and the rapid acquisition of smaller banks by large national or regional

banks, the most successful banks in the new millennium will be the ones that adapt

strategically to a changing environment (Calvert 1990). Management accounting

and finance literature have emphasized using both financial and nonfinancial

measures as performance guidelines in the new environment (e.g., Chan and

Lynn 1991; Rotch 1990). However, most studies do not propose specifically how

we should incorporate these financial and nonfinancial factors into a formal model.

The performance measurement system proposed in this study is the formal

model applied using the AHP in the banking industry to cover a wide variety of

measures while providing operational control as well as strategic control. The AHP

can incorporate multiple-subjective goals into a formal model (Dyer and Forman

1991). Unless we design a systematic performance measurement system that

includes financial as well as nonfinancial control factors, there may be incorrect

behavior by employees because they misunderstand the organization’s goals and

how they relate to their individual performance.

Comparedwith previous evaluationmethods, the model proposed in this study will

have advantages such as flexibility, continuous feedback, teamwork in goal setting,

and computational simplicity. To be used for any business performancemeasurement,

a well-designed model must be flexible enough to incorporate a variety of measures

while retainingmajor success factors. TheAHPmodel is flexible enough formanagers

to adjust its structure to a changing business environment through an iterative process

of weighing goals. This flexibility will allow a company to improve its performance

measurement systemcontinuously. Through the iterative process of goal comparisons,

management could get continuous feedback for the priority of goals and work as

a team. The possible real-time control is of importance in the competitive business

environment we are facing today.
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29.3.2 Methodology

The analytic hierarchy process (AHP) collects input judgments in the form of a matrix

by pairwise comparisons; i.e., two criteria are compared at one time. The experience of

many users of this method supports use of a 1–9 scale for pairwise comparisons to capture

human judgment while the scale can be altered to fit each application (Saaty 1980).

A simple example will be provided to explain how AHP operates. Consider the

situation where a senior executive has to decide on which of three managers to

promote to a senior position in the firm. The candidate’s profiles have been studied

and rated on three criteria: leadership, human relations skills, and financial man-

agement ability. First, the decision maker compares each of the criteria in pairs to

develop a ranking of the criteria. In this case, the comparisons would be:

1. Is leadership more important than human relations skills for this job?

2. Is leadership more important than financial management ability for this job?

3. Are human relations skills more important than financial management ability for

this job?

The response to these questions would provide an ordinal ranking of the three

criteria. By adding a ratio scale of 1–9 for rating the relative importance of one criterion

over another, a decisionmaker couldmake statements such as “leadership is four times

as important as human relations skills for this job,” “financial management ability is

three times as important as leadership,” and “financial management ability is seven

times as important as human relations skills.” These statements of pairwise compar-

isons can be summarized in a squarematrix. The preference vectors are then computed

to determine the relative rankings of the three criteria in selecting the best candidate.

For example, the preference vectors of the three criteria are 0.658 for financial

management ability, 0.263 for leadership, and 0.079 for human relations skills.

Once the preference vector of the criteria is determined, each of the candidates

can be compared on the basis of the criteria in the following manner:

1. Is candidate A superior to candidate B in leadership skills?

2. Is candidate A superior to candidate C in leadership skills?

3. Is candidate B superior to candidate C in leadership skills?

Again, rather than using an ordinal ranking, the degree of superiority of one

candidate over another can be assessed. The same procedures can be applied to

human relations skills and financial management ability. The responses to these

questions can be summarized in matrices where the preference vectors are again

computed to determine the relative ranking of the three candidates for each criterion.

Accordingly, the best candidate should be the one who ranks “high” on the “more

important” criteria. The matrix multiplication of preference vectors of candidates on

evaluation criteria and the preference vector of evaluation criteria will provide the

final ranking of the candidates. In this example, the candidates are ranked A, B,

and C. This example provides the usefulness of the AHP for setting priorities for

both qualitative and quantitative measures (Chan and Lynn 1991).

We could apply the same procedures to a bank. Based on the hierarchical

structure of a banking institution, the relative weights of criteria at each level of

managers are derived by AHP. Here the relative importance of performance
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measures can be defined as a performance index with respect to each alternative

(i.e., criterion, service, or branch office). For example, derive the relative weights of

financial and nonfinancial criteria at the highest management level through the

pairwise comparisons of criteria. Next, the relative weights of middle-level perfor-

mance criteria with relation to each top-level criterion are to be computed then enter

these relative weights into an n x n matrix format. Finally, this matrix is multiplied

by the relative weights of criteria of the top management level. The same pro-

cedures can be applied to the next lower-level management. This AHP approach

could link systematically the hierarchical structure of business performance mea-

surement between different levels of organizational structures.

Consider a local bank where market share and return on assets are two important

criteria in performance evaluation. If the AHP generates their weights as 0.4 and

0.6, respectively, it is reasonable to conclude that return on assets affects the bank’s

performance one and a half times higher than market share. The weights can be

used as a measure for allocating future resources in products or branch offices.

Assume the bank has two types of services, commercial loans and residential

mortgage loans. If the AHP generates relative weights as 0.8 and 0.2 (i.e., the

performance of commercial loans is four times higher than mortgage loans), then

this may provide a good reason for top management to invest resources in the

commercial loan market four times higher than the residential loan market.

The use of the AHP for multiple-criteria situation is superior to ad hoc weighing

because it has the advantage of forcing the decision maker to focus exclusively on the

criteria at one time and the way in which they are related to each other (Saaty 1980).

A model could be built using a microcomputer program called Expert Choice so
that the model can be applied to any bank easily.

29.3.3 A Numerical Example

This section presents a numerical example for a commercial bank. The Commercial

Omaha Bank (COB) is a local bank that specializes in commercial loans. Their head-

quarters are located in Omaha, Nebraska, and they have several branch offices through-

out rural areas of Nebraska. The top management of COB realized that the current

measurement system is not adequate for their strategic performance management and

identified the following measures based on the hierarchy of the organization for their

new performance measurement using AHP. These measures are shown in Table 29.1.

The OCB uses financial criteria such as return on assets and debt to equity and

nonfinancial criteria such as market share, productivity, and quality of service. At

the lowest management level, income to interest expense, service charges, interest

revenue, growth of deposits, default ratio, and customer satisfaction can be used.

Each computing step of the AHP is discussed as follows.

First, nonfinancial and financial criteria are computed and the result is entered in

a vector:

Wt ¼ 0:5; 0:5ð Þ:
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Next, the mid-level management is considered. The relative weight of mid-level

performance criteria with relation to each top-level criterion is to be computed.

Here, the local relative weights are computed.

For the nonfinancial criteria,

A1
m

1 3 4

1=3 1 3

1=4 1=3 1

2
4

3
5:

Here, the market share is estimated to be three times more important than produc-

tivity and four times more important than the quality of service. Productivity is

estimated to be three timesmore important than the quality of service. From this result,

W1
m ¼ 0:608; 0:272; 0:120ð Þ:

For each weight computation, an inconsistency ratio (g) was computed and

checked for the acceptance level. If g � 0.1, it is acceptable. For this example, it

is acceptable since g ¼ 0.065. If it is not acceptable, the input matrix should be

adjusted or recomputed.

For the financial criteria, ROA is estimated to be three times more important than

debt to equity ratio. Therefore,

W2
m ¼ 0:75; 0:25ð Þ:

The global relative weights of the criteria are

Wm ¼ 0:5; 0:5ð Þ � 0:608, 0:272, 0:120, 0, 0
0, 0, 0, 0:75, 0:25

� 	

¼ 0:304; 0:136; 0:060; 0:375; 0:125ð Þ:

Here the global relative weights of market share, productivity, quality of service,

ROA, and debt to equity ratio are 30.4 %, 13.6 %, 6 %, 37.5 %, and 12.5 %,

respectively.

Table 29.1 New performance measures

Level of organization High Middle Low

Financial measures Return on assets Income to interest expenses

Debt to equity Service charges

Interest revenue

Nonfinancial measures Market share Growth of deposits

Productivity Default ratio

Quality Customer satisfaction
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Let us move to the lower-level managers. Income to interest expense, service

charges, interest revenue, growth of deposits, default ratio, and customer satisfac-

tion are criteria at this level.

For market share,

A1
0 ¼

1 2 3 4 5 6

1=2 1 2 3 4 5

1=3 1=2 1 3 4 5

1=4 1=3 1=3 1 3 4

1=5 1=4 1=4 1=3 1 3

1=6 1=5 1=5 1=4 1=3 1

2
6666664

3
7777775

For simplicity of presentation, the local weights are arranged in the order of

income to interest expense, service charges, interest revenue, growth of deposits,

default ratio, and customer satisfaction:

W1
o ¼ 0:367; 0:238; 0:183; 0:109; 0:065; 0:038ð Þ:

Here the local weights with relation to market share are 36.7 %, 23.8 %, 18.3 %,

10.9 %, 6.5 %, and 3.8 %, respectively.

For other criteria at one level higher, the local weights can be calculated in the

same way. These are

W2
o ¼ 0:206; 0:163; 0:179; 0:162; 0:143; 0:146ð Þ;

W3
o ¼ 0:155; 0:231; 0:220; 0:103; 0:169; 0:122ð Þ;

W4
o ¼ 0:307; 0:197; 0:167; 0:117; 0:117; 0:094ð Þ;

W5
o ¼ 0:266; 0:133; 0:164; 0:159; 0:154; 0:124ð Þ:

For the next step, the global relative weights of lower-level management

criteria are

0:367 0:238 0:183 0:109 0:065 0:038

W0 ¼ 0:304; 0:136; 0:060; 0:375; 0:125ð Þ �

0:206 0:163 0:179 0:162 0:143 0:146

0:155 0:231 0:220 0:103 0:169 0:122

0:307 0:197 0:167 0:117 0:117 0:094

0:266 0:133 0:164 0:159 0:159 0:124

2
6664

3
7775

¼ 0:297; 0:199; 0:176; 0:125; 0:112; 0:089ð Þ:
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Finally, the relative importance of lower-level performance measures are 29.7 %,

19.9 %, 17.6 %, 12.54 %, 11.2 %, and 8.9 %, respectively. Note that financial

measures are integrated with nonfinancial measures in the scaling process. The OCB

can extend these performance measures into the next lower level of each product

using the same method.

29.3.4 Summary and Conclusions

A performance measurement system should incorporate nonfinancial as well as

financial measures to foster strategic success factors for a bank in the new envi-

ronment. Generally, a good performance measurement system should monitor

employees’ behavior in a positive way and be flexible enough to adapt to the

changing environment. To motivate employees, a bank should communicate per-

formance information of an individual employee in relation to overall business

goals. This characteristic of performance measurement requires a significant

amount of feedback both between and within levels and corrective actions in the

practice of accounting information (Nanni et al. 1990).

The AHP model proposed in this study is flexible enough to incorporate the

“continuous improvement” philosophy of today’s business environment by chang-

ing weighting values of measures. In addition, the integrated structure of AHP

allows group performance evaluation, which is a buzzword for “teamwork” in

today’s business world. The iterative process of getting input data in the AHP

procedure also helps each manager as well as employee to be aware of the

importance of strategic factors of each performance measure of the bank.

29.4 Optimal Trade-offs of Multiple Factors in International
Transfer Pricing Problems

Ever since DuPont and General Motors Corporation of the USA initiated transfer

pricing systems for the interdivisional transfer of resources among their divisions,

many large organizations, with the creation of profit centers, have used a transfer

pricing system in one way or the other. Recently, transfer pricing problems have

become more important because most corporations increase transfer of goods or

services dramatically among their divisions as a result of restructuring or

downsizing their organizations (Tang 1992). Therefore, designing a good transfer

pricing strategy should be a major concern for both top management and divisional

managers (Curtis 2010).

Transfer pricing problems have been extensively studied by a number of scholars.

Many of them have recognized that a successful transfer pricing strategy should

consider multiple criteria (objectives), such as overall profit, total market share,

divisional autonomy, performance evaluation, and utilized production capacity

(Abdel-khalik and Lusk 1974; Bailey and Boe 1976; Merville and Petty 1978;

Yunker 1983; Lecraw 1985; Lin et al. 1993). However, few developed methods
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have a capability of dealingwith all possible optimal trade-offs ofmultiple criteria in

optimal solutions of the models with involvement of multiple decision makers.

In this chapter, we propose a multiple factor model to provide managers from

different background, who are involved in transfer price decision making of

a multidivisional corporation, with a systematic and comprehensive scenario

about all possible optimal transfer prices depending on both multiple-criteria and

multiple-constraint levels (in short, multiple factors). The trade-offs of the optimal

transfer prices, which have rarely been considered in the literature, can be used as

a basis for managers of corporations to make a high-quality decision in selecting

their transfer pricing systems for business competition.

This chapter proceeds as follows. First, existing transfer pricing models will be

reviewed. Then, the methodology of formulating and solving a transfer pricing

model with multiple factors will be described. A prototype of a transfer pricing

problem in a corporation will be illustrated to explain the implications of the

multiple factor transfer pricing model. Finally, conclusions and remaining research

problems will be presented.

29.4.1 Existing Transfer Pricing Models

In the literature of transfer pricing problems, the various approaches can be

categorized into four groups: (i) market-based pricing, (ii) accounting-based pric-

ing, (iii) marginal cost pricing (or opportunity cost pricing), and (iv) negotiation-

based pricing. Market-based prices are ideal for transfer prices when external

market prices are available. Even though empirical research has found that some

corporations prefer cost-based prices to market-based prices, market-based pricing

method is recommended when the emphasis is on the motivation of divisional

managers (Borkowski 1990). Pricing intermediate goods based on the market price

will motivate the supplying division to reduce its costs to achieve efficiency and to

allow divisional autonomy for both the supplying division and the purchasing

division. Statistics show that almost a third of corporations actually use market-

based transfer pricing (Tang 1992).

However, if there is no outside market for intermediate goods or services, then

accounting-based pricing, marginal cost pricing (economic models and mathemat-

ical programming techniques), or negotiation-based pricing (behavioral approach)

is commonly recommended for finding a transfer pricing system.

In the accounting-based pricing approach, the divisional managers simply use

accounting measurements of the divisions, such as full costs or variable costs, as

their transfer prices. Thus, the transfer price of one division may differ from that of

another division. These transfer prices may not be globally optimal for the corpo-

ration as a whole (Abdel-khalik and Lusk 1974; Eccles 1983).

In marginal cost pricing approaches, Hirshleifer (1956) recommended use of an

economic model to set transfer pricing at a manufacturing division’s marginal cost

to achieve the global optimal output. A problem of this economic model is that it

can destroy the divisional manager’s autonomy, and the supplying division may not
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get the benefit of efficiencies. Moreover, the manufacturing division manager in this

case should be evaluated based on cost, not on profit. Similarly, Gould (1964) and

Naert (1973) recommended economic models based on current entry and current exit

prices. Their models also focus on global profit maximization and have the same

problems as Hirshleifer’s. Note that when the transfer price is set based on marginal

costs, the division should be either controlled as a standard cost center or merged into

a larger profit center with a division that processes the bulk of its output.

Ronen and McKinney (1970) suggested dual prices in which a subsidy is given

to the manufacturing division by the central office in addition to marginal costs.

This subsidy would not be added to the price charged to the purchasing division.

They believed that autonomy is enhanced because the corporate office is only

a transmitter of information, not a price setter, and that the supplying division has

the same autonomy as an independent supplier. However, there might be a gaming

chance where all divisions are winners but the central office is a loser. There is also

a “marginal cost plus” approach that charges variable manufacturing costs (usually

standard variable costs) and is supplemented by periodic lump-sum charges to the

transferees to cover the transferor’s fixed costs, or their fixed costs plus profit, or

some kind of subsidy. It is difficult, however, to set a fixed fee that will satisfy both

the supplying division and the purchasing division. This method enables the

purchasing division to absorb all the uncertainties caused by fluctuations in the

marketplace. Moreover, the system begins to break down if the supplying division

is operating at or above the normal capacity since variable costs no longer represent

the opportunity costs of additional transfers of goods and services (Onsi 1970).

As an alternative method to identify marginal costs as the transfer prices,

a mathematical programming approach becomes more attractive for the transfer

pricing problem because it handles complex situations in a trade setting (Dopuch

and Drake 1964; Bapna et al. 2005). The application of linear programming to the

transfer pricing problem is based on the relationship between the primal and dual

solutions in the linear programming problem. Shadow prices, which reflect

the input values of scarce resources (or opportunity cost) implied in the primal

problem, can be used as the basis for a transfer price system. However, these

transfer prices have the following limitations for decision making: (i) those transfer

prices based on dual values of a solution tend to reward divisions with scarce

resources, (ii) the linear formulation requires a great deal of local information, and

(iii) transfer prices based on shadow prices do not provide a guide for performance

evaluation of divisional managers.

Based on the mathematical decomposition algorithm developed by Dantzig and

Wolfe (1960), Baumol and Fabian (1964) demonstrated how to reduce complex

optimization problems into sets of smaller problems solvable by divisions and the

central office (corporation). Although the final analysis of output decisions is made by

the central manager, the calculation process is sufficiently localized that central

management does not have to know anything about the internal technological arrange-

ments of the divisions. However, this approach does not permit divisional autonomy.

Ruefli (1971) proposed a generalized goal decomposition model for incorporating

multiple criteria (objectives) and some behavioral aspects within a three-level
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hierarchical organization into the mathematical formulation of transfer pricing

problems. Bailey and Boe (1976) suggested another goal programming model as

a supplement of Ruefli’s model. Both models overcome the shortcoming of linear

programming in dealing with multiple criteria and the organizational hierarchy.

Merville and Petty (1978) used a dual formulation of goal programming to directly

find the shadow price as the optimal transfer price for multinational corporations.

However, the optimal solution of these models that results in the transfer prices is

determined by a particular distance (norm) function because of the mathematical

structure of goal programming. Thus, the optimal solution represents only a single

optimal trade-off of the multiple criteria, not all possible optimal trade-offs.

Watson and Bulmer (1975) and Thomas (1980) criticized the lack of behavioral

considerations in the mathematical programming approaches. They suggested

a negotiated transfer pricing to further the integration of differentiation within the

organization. The differentiation of the organization exists because, for example,

different managers can interpret the same organizational problem differently.

Generally, the negotiated transfer pricing will be successful under conditions

such as the existence of some form of outside markets for the intermediate product,

freedom to buy or sell outside, and sharing all market information among the

negotiators. Negotiated prices may require iterative exchanges of information

with the central office as a part of a mathematical programming algorithm.

29.4.2 Methodology

29.4.2.1 MC2 Linear Programming
Practically speaking, since linear programming has only a single criterion (objective)

and a single resource availability level (right-hand side), it has limitations in handling

real-world transfer pricing problems. For instance, linear programming cannot be

used to solve the problem in which a corporation tries to maximize overall profit and

the total market share simultaneously. This dilemma is overcome by a technique

called multiple-criteria (MC) linear programming (Zeleny 1974; Goicoechea

et al. 1982; Steuer 1986; Yu 1985). To extend the framework of MC linear program-

ming, Seiford and Yu (1979) and Yu (1985) formulated a model of multiple-criteria

andmultiple-constraint level (MC2) linear programming. This model is rooted by two

facts. First, from the linear system structure’s point of view, the criteria and constraints

may be “interchangeable.” Thus, like multiple criteria, multiple-constraint (resource

availability) levels can be considered. Second, from the application’s point of view, it

is more realistic to consider multiple resource availability levels (discrete right-hand

sides) than a single resource availability level in isolation. The philosophy behind this

perspective is that the availability of resources can fluctuate depending on the decision

situation forces, such as the desirability levels believed by the different managers. For

example, if the differentiation of budget amongmanagers in transfer pricing problems

(Watson and Baumler 1975) is represented by different levels of budget, then this

differentiation can be resolved by identifying some best compromise of budget levels

as the consensus budget.
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The theoretical connections between MC linear programming and MC2 linear

programming can be found in Gyetvan and Shi (1992). Decision problems related to

MC2 linear programming have been extensively studied in Lee et al. (1990), Shi

(1991), and Shi and Yu (1992). Key ideas of MC2 linear programming, a primary

theoretical foundation of this chapter, are outlined as follows.

An MC2 linear programming problem can be formulated as

Maxlt Cx

s:t: Ax � Dg

x � 0,

where C 2 Rqxn, A 2 Rmxn, and D 2 Rmxp are matrices of qxn, mxn, and mxp
dimensions, respectively; x 2Rn are decision variables; l 2Rq is called the criteria
parameter; and g 2 Rp is called the constraint level parameter. Both (g,l) are
assumed unknown.

The above MC2 problem has q criteria (objectives) and p constraint levels. If the
constraint level parameter g is known, then the MC2 problem reduces to an MC

linear programming problem (e.g., Yu and Zeleny 1975). In addition, if the criteria

parameter l is known, it reduces to a linear programming problem (e.g., Charnes

and Cooper 1961; Dantzig 1963).

Denote the index set of the basic variables {xji, . . ., xjm} for the MC2 problem by

J ¼ {j1, . . ., jm}. Note that the basic variables may contain some slack variables.

Without confusion, J is also called a basis for the MC2 problem. Since a basic

solution J depends on parameters (g, l), define that (i) a basic solution J is feasible
for the MC2 problem if and only if there exists a g0 > 0 such that J is a feasible

solution for the MC2 problem with respect to g0 and (ii) J is potentially optimal for
the MC2 problem if and only if there exist a g0 > 0 and a l0 > 0 such that J is an

optimal solution for the MC2 problem with respect to (g0, l0). Let G(J) be the

constraint level parameter set of all g such that the basis J is feasible andL(J) be the
criteria parameter set of all l that the basis J is dual feasible. Then, for a given basis

J of the MC2 problem, (i) J is a feasible solution if and only if the set G(J) is not
empty and (ii) J is potentially optimal if and only if both sets G(J) and L(J) are not
empty. For an MC2 problem, there may exist a number of potentially optimal

solutions {J} as parameters (g, l) vary depending on decision situations.

Seiford and Yu (1979) derived a simplex method to systematically locate the set

of all potentially optimal solutions {J}. The computer software of the simplex

method (called MC2 software) was developed by Chien et al. (1989). This software

consists of five subroutines in each iteration: (i) pivoting, (ii) determining primal

potential bases, (iii) determining dual potential bases, (iv) determining the effective

constraints for the primal weight set, and (v) determining the effective constraints

for the dual weight set (Chap. 8 of Yu 1985). It is written in PASCAL and operates

in a man-machine interactive fashion. The user cannot only view the tableau of each

iteration but also trace the past iterations. In the next section, the framework of

the MC2 problem, as well as its software, will be used to formulate and solve the

multiple factor transfer pricing problems.
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29.4.2.2 Multiple Factor Transfer Pricing Model
The review of existing transfer pricing models shows that two major shortcomings,

from a management point of view, need to be overcome in the previous mathemat-

ical models of transfer pricing problems. First, neither the linear programming

approach nor the goal programming approach can provide a comprehensive sce-

nario of all possible optimal trade-offs between multiple objectives under consid-

eration for a given transfer pricing problem, such as maximizing the overall profits

for a corporation and minimizing the underutilization of production capacity (Tang

1992). Transfer pricing scheme by linear programming only reflects a single objec-

tive of a corporation. As a result, the linear programming approach cannot help the

corporation seek to simultaneously achieve several objectives, some in conflict, in

business competition. The transfer price determined by the goal programming

approach is an optimal compromise (i.e., trade-off) among several objectives of

the corporation. However, it misses other possible optimal compromises of the

objectives that result from some linear combinations of objective weights. These

compromises lead to different optimal transfer prices for different decision situa-

tions that the corporation may face. Second, none of the past mathematical models

can deal with the organizational differentiation problems, as Watson and Baumler

(1975) pointed out. In real-life cases, when a corporation designs its transfer prices

for the divisions, the involved decision makers (executives or the members of the

task force) can give different opinions on the same issue, such as production

capacity and customer’s demand. In mathematical models, these different interpre-

tations can be represented by different “constraint levels.” Because both linear

programming and goal programming presume a fixed single constraint level, they

fail to mathematically describe such an organizational differentiation problem.

The MC2 linear programming framework can resolve the above shortcomings

inherent in the previous transfer pricing models. Based on Yunker (1983) and Tang

(1992), the four important objectives of transfer pricing problems in most corpora-

tions are considered: (i) maximizing the overall profit, (ii) maximizing the total

market share, (iii) maximizing the subsidiary profit (note that the subsidiary profit

maximization is used to reflect the degree of the subsidiary autonomy in decision

making. It may differ from the overall profit), and (iv) maximizing the utilized

production capacity. Even though the following model contains only these four

specific objectives, the generality of the modeling process fits in all transfer pricing

problems with multiple-criteria and multiple-constraint levels.

Let k be the number of divisions in a corporation under consideration and t be the

index number of the products that each division of the corporation produces.

Define xij as the units of the jth product made by the ith division, i ¼ 1, . . . , k;
j ¼ 1, . . . , t. For the coefficients of the objectives, let pij be the unit overall profit
generated from the jth product made by the ith division, mij be the market share value

for the jth product made by the ith division in the market, sij be the unit subsidiary

profit generated from the jth product made by the ith division, and cij be the unit

utilized production capacity of the ith division to produce the jth product. For the

coefficients of the constraints, let bij be the budget allocation rate for producing

the jth product by the ith division. For the coefficients of the constraint levels, let bij
s
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be the budget availability level believed by the sth manager (or executive) for

producing the jth product by the ith division, s ¼ 1, . . . , h; di
s be the production

capacity level believed by the sth manager for the ith division; dij
s be the production

capacity level believed by the sth manager for the ith division to produce the

jth product; and eij
s be the initial inventory level believed by the sth manager for

the ith division to hold the jth product. Then, the multiple factor transfer pricing

model is

Max Sk
i¼1 Sl

j¼1 pijxij

Max Sk
i¼1 Sl

j¼1 mijxij

Max Sk
i¼1 Sl

j¼1 sijxij

Max Sk
i¼1 Sl

j¼1 cijxij

Subject to Sk
i¼1 Sl

j¼1 bijxij � b1ij; . . . ; b
h
ij

� �

Sk
j¼1 xij � d1ij, . . . d

h
i

� �

xij � d1ij; . . . ; d
h
ij

� �

�xij þ xiþ1, j � e1ij; . . . ; e
h
ij

� �

Xij � 0, i ¼ 1, . . . , k, j ¼ 1, . . . , t:

(29.1)

In the next section, a prototype of the transfer pricing model in a corporation will

be illustrated to demonstrate the implications for decision makers.

29.4.3 Model Implications

29.4.3.1 Numerical Example
As an illustration of the multiple factor transfer pricing model, the United Chemical

Corporation has two divisions that process raw materials into intermediate or final

products. Division 1, which is located in Kansas City, manufactures two kinds of

chemicals, called Products 1 and 2. Product 1 in Division 1 is intermediate product

and cannot be sold externally. It can, however, be processed further by Division

2 into a final product. Division 2, which is located in Atlanta, manufactures Product

2 and finalizes Product 1 in Division 1. The executives (president, vice president for

production, and vice president for finance) and all divisional managers agree on the

following multiple objectives:

(i) Maximize the overall company’s profit.

(ii) Maximize the market share goal of Product 2 in Division 1 and Products 1 and

2 in Division 2.

(iii) Maximize the utilized production capacity of the company so that each

division manager can avoid any underutilization of normal production

capacity.

The data related to these objectives is given in Table 29.2.

In Table 29.2, Product 1 of Division 1 is a by-product that has no sale value

in Division 1 at all. The unit profit �$4 of this product means its production cost.
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All other products generate profits. We use a market price of each product to

maximize the market share goal. Note that the market prices of three products in

Table 29.2 are different.

In the company, besides the president, the vice presidents for production and for

finance are the main decision makers and may have different interpretations of the

same resource availability across the divisions. The vice president for production

views the constraint level based on the material, manpower, and equipment under

control, while the vice president for finance views the constraint level based on the

available cash flow. The president will make the final decision for the company’s

transfer price setting on the basis of the compromises of both vice presidents. All

divisional managers will carry out the president’s decision, although they have their

autonomy to provide the information about the divisional profits and costs for the

executives. The interpretations of the vice presidents for the resource constraint

levels are summarized in Table 29.3.

All executives and divisional managers agree on the units of resources consumed

to produce the products. The data is given in Table 29.4.

Let xij be the units of the jth product produced by the ith division, i ¼ 1, 2;

j ¼ 1, 2. Using the information in Tables 29.2, 29.3, and 29.4, the multiple factor

transfer pricing model is formulated as

Max � 4x11 þ 8x12 þ 13x21 þ 5x22
Max 40x12 þ 46:2x21 þ 38x22
Max 4x11 þ 4x12 þ 3x21 þ 2x22
Subject to � x11 þ x21 � 0; 100ð Þ

0:4x12 þ 0:4x21 þ 0:4x22 � 45; 000; 40; 000ð Þ
X12 � 38; 000; 12; 000ð Þ
X21 � 45; 000; 50; 000ð Þ
X22 � 36; 000; 10; 000ð Þ
xij � 0, i ¼ 1, 2; j ¼ 1, 2:

(29.2)

Since this multiple factor transfer pricing problem is a typical MC2 problem, the

MC2 software of Chien et al. (1989) can be used to solve the problem. Let l ¼ (l1,
l2, l3) be the weight parameter for the objectives, where l1 + l2 + l3¼ 1 and l1, l2,
l3� 0. Let g¼ (g1, g2) be the weight parameter for the constraint levels, where g1 +
g2 ¼ 1 and g1, g2 � 0. Because both weight parameters (g, l) are unknown before

design time, the solution procedure of MC2 linear programming must be used to

locate all possible potentially optimal solutions as (g, l) vary. The implications of

the potentially optimal solutions for accounting decisionmakers will be explained in

the next subsection. After putting (g, l) into the above model, it becomes

Table 29.2 Data of the objectives in the United Chemical Corporation

Division 1 Product 1 Product 2 Division 2 Product 1 Product 2

Unit profit ($) �4 8 13 5

Market price 0 40 46.2 38

Unit utilizing production capacity (h) 4 4 3 2
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Max l1 �4x11 þ 8x12 þ 13x21 þ 5x22ð Þ
þ l2 40x12 þ 46:2x21 þ 38x22ð Þ
þ l3 4x11 þ 4x12 þ 3x21 þ 2x22ð Þ

Subject to

� x11 þ x21 � 100g2
0:4x12 þ 0:4x21 þ 0:4x22 � 45, 000g1 þ 40, 000g2

x12 � 38, 000g1 þ 12, 000g2
x21 � 45, 000g1 þ 50, 000g2
x22 � 36, 000g1 þ 10, 000g2
xij � 0, i ¼ 1, 2; j ¼ 1, 2:

(29.3)

Let sq, q ¼ 1, . . . , 5, be the slack variables corresponding to the constraints. The
MC2 software yields two potentially optimal solutions {J1, J2} and their associated

values of (g, l) as shown in Table 29.5. Here, V(Ji) denotes the objective value of

potentially optimal solution Ji, which is a function of (g, l). When (g, l) are

specified, V(Ji) is the payoff of using Ji.

Table 29.5 means that if the g takes the value from G(J1) and the l takes the value

from L(J1), J1 is the optimal solution for the transfer pricing problem. In this case,

products {x11, x12, x21, x22} will be produced to achieve the objective payoff

V(J1) and the resource of x22 has the amount of s5 unused. Similarly, the

potentially optimal solution J2 can be interpreted. However, J2 is different from J1

Table 29.3 The constraint levels of the vice presidents

Vice president for production Vice president for finance

Transfer product constraint 0 100

Budget constraint ($) 45,000 40,000

Production capacity of

Product 2 in Division 1

38,000 12,000

Production capacity of

Product 1 in Division 2

45,000 50,000

Production capacity of

Product 2 in Division 2

36,000 10,000

Table 29.4 The unit consumptions of resources

Division 1 Product 1 Product 2 Division 2 Product 1 Product 2

Transfer product constraint �1.0 0 1.0 0

Budget constraint ($) 0 0.4 0.4 0.4

Production capacity of

Product 2 in Division 1

1.0

Production capacity of

Product 1 in Division 2

1.0

Production capacity of

Product 2 in Division 2

1.0
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because there is the unused budget s2 for J2 and the parameter set G(J1) _ G(J2).
Because Product 1 in Division 1 is a by-product and its unit profit is�$4, whenever
l1 < l3, both J1 and J2 are not optimal.

Let pq(Ji), q ¼ 1, . . . , 5; i ¼ 1, 2, be the shadow price of Ji for the qth constraint.

According to the marginal cost pricing approach, the optimal transfer prices of

{J1, J2} are designated as the shadow prices of {J1, J2}. These optimal transfer

prices are found in Table 29.6. Table 29.6 shows that (i) the relative transfer price

between x11 and x21 is p1(J1) ¼ 4 l1 � 4 l3; (ii) the transfer price for budget across
the divisions is p2(J1) ¼ 12.5 l1 + 95 l2 + 5 l3; (iii) the transfer price for x12 is

p3(J1) ¼ 3 l1 + 2 l2 + 2 l3; (iv) the transfer price for x21 is p4(J1) ¼ 4 l1 + 8.2 l2 +
5 l3; and (v) the transfer price for x22 is p5(J1) ¼ 0.

29.4.4 Optimal Trade-offs and Their Accounting Implications

Optimal trade-offs related to transfer prices of the multiple factor model consist of

three components: (i) trade-offs among multiple objectives, (ii) trade-offs among

multiple-constraint levels, and (iii) trade-offs between multiple objectives and

multiple-constraint levels. The trade-offs among multiple objectives imply

that all possible optimal compromises of the multiple objectives are determined

by locating all possible weights of importance of these objectives. Similarly,

Table 29.5 All potentially optimal solutions

Ji G(Ji) L(Ji) V(Ji)

J1 ¼ (x11, x12, x21, x22, s5) g1 + g2 ¼ 1, l1 + l2 + l3 ¼ 1, 856,500 736,400 g
65g1 � 280g2 � 0, l1 � l3, 4,720,000 4,234,000

g1, g2 � 0 l1, l2, l3 � 0 526,000 47,444,000

J2 ¼ (x11, x12, x21, x22, s2) g1 + g2 ¼ 1, l1 + l2 + l3 ¼ 1, 889,000 596,400 g
65g1 � 280g2 � 0, l1 � l3, 4,967,000 3,170,000

g1, g2 � 0 l1, l2, l3 � 0 539,000 41,184,000

Table 29.6 All optimal transfer prices

Ji pq(Ji)

J1 ¼ (x11, x12, x21, x22, s5) p1(J1) ¼ 4l1 � 4l3,
p2(J1) ¼ 12.5l1 + 95l2 + 5l3,
p3(J1) ¼ 3l1 + 2l2 + 2l3
p4(J1) ¼ 4l1 + 8.2l2 + 5l3
p5(J1) ¼ 0

J2 ¼ (x11, x12, x21, x22, s2) p1(J2) ¼ 4l1 � 4l3,
p2(J2) ¼ 0,

p3(J2) ¼ 8l1 + 40l2 + 4l3
p4(J2) ¼ 9l1 + 46.2l2 + 7l3
p5(J2) ¼ 5l1 + 38l2 + 2l3
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the trade-offs among multiple-constraint levels imply that all possible

optimal compromises of the multiple-constraint levels that represent the

executives’ different opinions are determined by locating all possible weights of

importance of these opinions. The trade-offs between multiple objectives and

multiple-constraint levels measure the effects on the transfer pricing problem by

the interaction of the objectives and constraint levels. These three cases of the

optimal trade-offs can be analyzed through the potentially optimal solutions of

the multiple factor model. The optimal transfer prices also result from those

solutions. In the following, three trade-off cases and accounting implications of

the corresponding optimal transfer prices are explored in detail by using the above

numerical example.

Because there are two potentially optimal solutions {J1, J2} in the example, the

optimal trade-offs should be studied in terms of both J1 and J2. For the trade-offs

among three objectives that are the overall company’s profit, the market share of the

company, and the utilized production capacity of the company:

(i) If the overall company’s profit is not considered (this implies l1¼ 0 and l3 6¼ 0),

then either J1 or J2 is not optimal since l3 < 0 (see Table 29.5).

(ii) If themarket share of the company is not considered (i.e., l2¼ 0), then both J1 and

J2 are optimal for which l1 + l3 ¼ 1, l1 � l3, and l1, l3 � 0. The graphical

representation is shown in Fig. 29.1. From Fig. 29.1, any weighting values of l1
and l3 taken from the feasible (dark) segment guarantee that the utility values of

both the overall company’s profit and the utilized production capacity of

the company are maximized. The resulting optimal transfer prices associated

with J1 are p1(J1) ¼ 4l1 � 4l3, p2(J1) ¼ 12.5l1 + 5l3, p3(J1) ¼ 3l1 + 2l3,
p4(J1) ¼ 4l1 + 5l3, and p5(J1) ¼ 0, respectively. The resulting optimal transfer

λ3

λ1 = λ3

λ1

J1

J2

0

1

1

Fig. 29.1 Optimal trade-offs

between profit (l1) and
production capacity (l3)
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prices associated with J2 are p1(J2) ¼ 4l1 � 4l3, p2(J2) ¼ 0, p3(J2) ¼ 8l1 + 4l3,
p4(J2)¼ 9l1 + 7l3, and p5(J2)¼ 5l1 + 2l3, respectively. Theweighting values of
l1 and l3 in the transfer prices for J1 and J2 are given in Fig. 29.1, because

L(J1) ¼ L(J2).
(iii) If the utilized production capacity of the company is not considered (i.e., l3¼ 0),

then both J1 and J2 are optimal for which l1 + l2 ¼ 1 and l1, l2 _ 0, where the
graphical representation is shown in Fig. 29.2. Figure 29.2 implies that any

weighted combination of l1 and l2 taken from the indicated feasible segment

maximizes the utility values of both the overall company’s profit and the market

share of the company. The resulting optimal transfer prices of J1 are

p1(J1) ¼ 4l1, p2(J1) ¼ 12.5l1 + 95l2, p3(J1) ¼ 3l1 + 2l2, p4(J1) ¼ 4l1 +

8.2l2, and p5(J1) ¼ 0, while the resulting optimal transfer prices of J2 are

p1(J2) ¼ 4l1, p2(J2) ¼ 0, p3(J2) ¼ 8l1 + 40l2, p4(J2) ¼ 9l1 + 46.2l2, and
p5(J2) ¼ 5l1 + 38l2, respectively.

For the trade-offs among two constraint levels (the different opinions of two vice

presidents), the weight of the vice president for production is g1 while that of the vice
president for finance is g2 such that g1 + g2¼ 1, g1, g2� 0. The range of g1 and g2 are
decomposed into two subsets:G(J1)¼ {g1, g2� 0 | 65g1� 280g2� 0 and g1 + g2¼ 1}

and G(J2)¼ {g1, g2 � 0 |�65g1 + 280g2 � 0 and g1 + g2 ¼ 1} (see Table 29.5). The

graphical representation of G(J1) and G(J2) is shown in Fig. 29.3. Whenever the

weighting values of g1 and g2 are taken from G(J1), the corresponding compromise

of two vice presidents will result in the optimal transfer prices of J1 in Table 29.6.

Similarly, the decision situation of constraint levels for J2 can be explained.

Finally, there are many optimal trade-off situations between three objectives and

two constraint levels involved with the transfer pricing problem. For example, two

cases are illustrated as follows:

λ2

λ1

J1

J2

0

1

1

Fig. 29.2 Optimal trade-offs

between profit (l1) and
market share (l2)
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(i) In the case that the utilized production capacity of the company is not considered

(i.e., l3¼ 0) in contrast to the weighting value of the market share and that of the

vice president for finance (i.e., 0� l2� 1 and 0� g2� 1), the optimal trade-offs

between the overall company’s profit and the constraint level believed by the vice

president for production for J1 and J2 are shown in Fig. 29.4. Here, if the values of

(g1, l1) are taken from 0� l1� 1 to .81� g1� 1, then the optimal transfer prices

γ2

γ1

J2

J1

65γ1 = 280γ2

0 1

1

Fig. 29.3 Optimal trade-offs

between V.P. for production

(g1) and V.P. for finance (g2)

λ1

γ1

J2 J1

0 1

1

.81

Fig. 29.4 Optimal trade-offs

V.P. for production (g1) and
total profit (l1)
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associated with J1 will be chosen. They are p1(J1)¼ 4l1, p2(J1)¼ 12.5l1 + 95l2,
p3(J1) ¼ 3l1 + 2l2, p4(J1) ¼ 4l1 + 8.2l2, and p5(J1) ¼ 0. Otherwise, the values

of (g1, l1) are taken from 0 � l1 � 1 to 0 � g1 � .81, and the optimal

transfer prices associated with J2, p1(J2) ¼ 4l1, p2(J2) ¼ 0, p3(J2) ¼ 8l1 + 40l2,
p4(J2) ¼ 9l1 + 46.2l2, and p5(J2) ¼ 5l1 + 38l2 will be chosen.

(ii) In the case that the weighting value of the overall company’s profit is fixed at .5

(i.e., l1 ¼ .5) and the weighting value of the market share and that of the vice

president for finance are any of 0� l2� 1 and 0� g2� 1, respectively, Fig. 29.5

shows the optimal trade-offs between the utilized production capacity of the

company and the constraint level believed by the vice president for production

for J1 and J2. In Fig. 29.5, if the values of (g1, l3) are taken from 0 � l3 � .5 to

.81� g1� 1, then the optimal transfer prices associated with J1 are p1(J1)¼ 2�
4l3, p2(J1) ¼ 6.25 + 95l2 + 5l3, p3(J1) ¼ 1.5 + 2l2 + 2l3, p4(J1) ¼ 2 + 8.2l2 +
5l3, and p5(J1)¼ 0, respectively. If the values of (g1, l3) are taken from 0� l3�
.5 to 0 � g1 � .81, then the optimal transfer prices associated with J2 are

p1(J2) ¼ 2 � 4l3, p2(J2) ¼ 0, p3(J2) ¼ 4 + 40l2 + 4l3, p4(J2) ¼ 4.5 + 46.2l2 +
7l3, and p5(J2) ¼ 2.5 + 38l2 + 2l3, respectively. Note that when the weighting

values fall in the range of .5 � l3 � 1 and 0 � g1 � 1, there is not any optimal

trade-off because both J1 and J2 are not optimal solutions (recall that this is caused

by the by-product 1 in Division 1 that has -$4 as the unit profit).
It is worth noting some important implications for accounting decision makers

from the above trade-off analysis. First, the multiple factor transfer pricing model

has a capability of systematically locating all possible optimal transfer prices

through the optimal trade-offs of multiple objectives and multiple-constraint levels.

Since the set of all possible optimal transfer prices found by this model describes

λ3

γ1

J2 J1

0 1

1

.81

.5

Fig. 29.5 Optimal trade-offs

between V.P. for production

(g1) and production

capacity (l3)
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every possible decision situation within the model framework, the optimal transfer

price obtained from either linear programming or goal programming models is

included in the subset as a special case.

Second, the multiple factor transfer pricing model can be applied to solve

transfer pricing problems not only with complex structure but also with some

organizational behavior contents, such as the organizational differentiation (see

Table 29.3 for different constraint levels). Consequently, this model can foster more

autonomous flexibility than any other mathematical programming model by

allowing central management or local managers to express their own preference

structures and weights.

Third, the proposed method facilitates decision makers’ participation that may

make a positive management achievement of organizational goals (Locke

et al. 1981). The model can aid coordination and synthesis of multiple conflicting

views. This may be quite effective in a transfer pricing situation in which many

objectives are contradictory to each other and these objectives are measured

differently by a number of decision participants.

Fourth, in most multiple-criteria solution techniques, including the goal pro-

gramming approach, if the decision makers are not satisfied with the optimal

solution obtained by using their preferred weights of importance for the multiple

objectives, then an iterative process has to be conducted for incorporating the

decision makers’ new preference on the weights and finding new solutions until

decision makers are satisfied. However, the proposed model eliminates such a time-

and cost-consuming iterative process since it already considers all possible optimal

solutions with respect to the changes of parameter (g, l). Whenever decision

makers want to change their preference on the weights, the corresponding optimal

transfer prices can be immediately identified from the results like in Table 29.6.

This model, in turn, allows the performance evaluation of optimal transfer prices.

Finally, the optimal transfer prices obtained by the multiple factor model have

a twofold significance in terms of decision characteristics. If the problem is viewed as

a deterministic decision problem, whenever the preferred weighting values of objec-

tives and constraint levels are known, the resulting optimal solutions can be identified

from the potentially optimal solutions of the model. Then, the corresponding optimal

transfer prices can be adopted to handle the business situation (recall the above trade-

off analysis). If the problem is viewed as a probabilistic decision problem, it involves

the assessment of the likelihood of (g, l) to occur at the various points of the range.
With proper assumptions, the uncertainty may be represented by random variables

with some known probability distribution. A number of known criteria such as

maximizing expected payoff, minimizing the variance of the payoff, maximin

payoff, maximizing the probability of achieving a targeted payoff, stochastic dom-

inance, probability dominance, and mean-variance dominance can be used to choose

the optimal transfer prices (see Shi 1991). In summary, the multiple factor transfer

pricing model fosters flexibility in designing the optimal transfer prices for the

corporation to cope with all possible changes of business competition. This model

is more likely to be a better aid for executives or managers to understand and deal

with their current or future transfer pricing problems.
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29.4.5 Conclusions

A multiple factor transfer pricing model has been developed to solve the transfer

pricing problems in a multidivisional corporation. This model can provide

a systematic and comprehensive scenario about all possible optimal transfer prices

depending on multiple-criteria and multiple-constraint levels. The trade-offs of

optimal transfer prices offer a broad basis for managers of a corporation to flexibly

implement the optimal transfer pricing strategy and cope with various business

situations. Furthermore, this method also aids global optimization, division auton-

omy, and performance evaluation.

There are some research problems remaining to be explored. From a practical

point of view, the framework of this model can be applied to other accounting areas

such as capital budgeting, cost allocation, audit sampling objectives, and personnel

planning for an audit corporation if the decision variables and formulation are

expressed appropriately. From a theoretical point of view, the decomposition

algorithm of linear programming (Dantzig and Wolfe 1960) can be incorporated

into the MC2-simplex method (Seiford and Yu 1979) to sharpen the multiple factor

transfer pricing model’s capability of solving the large-scale transfer pricing prob-

lem. Thus, this incorporation may result in the development of more effective

solution procedures. How to incorporate other trade-off techniques, such as the

satisficing trade-off method (Nakayama 1994), into the MC2 framework for design-

ing optimal transfer pricing strategies is another interesting research problem.

29.5 Capital Budgeting with Multiple Criteria and Multiple
Decision Makers

Capital budgeting is not a trivial task if a firm is to maintain competitive advantages

by adopting new information or manufacturing systems. A firm may implement

innovative accounting systems such as activity-based costing (ABC) or balanced

scorecard to generate more useful information for better economic decision

making in the ever-changing business environment. ABC can provide value-adding

and non-value-adding activity information about new capital investments. Invest-

ment justification in the new manufacturing environment, however, requires a

comprehensive decision-making process that involves competitive analysis, overall

firm strategy, and evaluation of uncertain cash flows (Howell and Schwartz 1994).

The challenge here is to measure cash flows as well as intangible benefits that these

new systems will bring. Furthermore, conflicts of goals, limited resources, and

uncertain risk factors may complicate the capital budgeting problem (see Hillier

(1963), Lee (1993), Karanovic et al. (2010) for details). These problems of conflicts

of goals among decision makers and limited resources in a typical organization

support the use of multiple-criteria and multiple-constraint levels (MC2) linear

programming (Seiford and Yu 1979).

While traditional techniques such as payback or accounting rate of return are

used as a secondary method, discounted cash flow (DCF) methods, including net

822 W. Kwak et al.



present value (NPV) and internal rate of return (IRR), are the primary quantitative

methods in capital budgeting (Kim and Farragher 1981). The payback method

estimates how long it will take to recover the original investment. However,

this method incorporates neither the cash flows after the payback period nor the

variability of those cash flows (Boardman et al. 1982). The accounting rate of

return method measures a return on the original cost of the investment. Both of

the above methods ignore the time value of money. DCF methods may not

be adequate to evaluate new manufacturing or information systems, because of

a bias in favor of short-term investments with quantifiable benefits (Mensah and

Miranti 1989).

A current trend in capital budgeting methods utilizes mathematical program-

ming and higher discount rates to incorporate higher risk factors (Pike 1983;

Palliam 2005). Hillier (1963) and Huang (2008) suggested useful ways to eval-

uate risky investments by estimating expected values and standard deviations of

net cash flows for each alternative investment. They showed that the standard

deviation of cash flows is easily obtainable. With this information, a complete

description of the risky investment is possible via probability distribution of the

IRR, NPV, or annual cost of the proposed investment under the assumption of the

net cash flows from the investment, which are normally distributed. Similarly,

Turney (1990) suggested a stochastic dynamic adjustment model to incorporate

greater risk premiums when significant additional funds are required in multiple

time periods. Lin (1993) also proposed a multiple-criteria capital budgeting

model under risk. His model used chance constraints of uncertain cash flows

and accounting earnings as risk factors. Pike (1988) empirically tested the

correlation between sophisticated capital budgeting techniques and decision-

making effectiveness and found that management believed that sophisticated

investment techniques improve effectiveness in the evaluation and control of

large capital projects. Weingartner (1963) introduced a mathematical program-

ming approach in the capital budgeting problem. Other researchers have extended

Weingartner’s work with different directions (e.g., Baumol and Quandt 1965;

Bernard 1969; Howe and Patterson 1985). The development of chance-

constrained programming (CCP) by Charnes and Cooper (1961) also enriched

with applications of mathematical programming models in the capital budgeting

problem. They also developed an approximation solution method to the CCP with

zero-one variables using a linear constraint.

A typical mathematical capital budgeting approach maximizes DCFs that mea-

sure a project’s desirability on the basis of its expected net present value as

a primary goal. DCF analysis, however, ignores strategic factors such as future

growth opportunities (Cheng 1993). Furthermore, management can change their

plans if operating conditions change. For example, they can change input and

output mixes or abandon the project in a multi-period situation. The increasing

involvement of stakeholders, other than shareholders, in a business organization

supports a multiple-objective approach (Bhaskar 1979). Other empirical

studies also found that firms used multiple criteria in their capital budgeting

problems (e.g., Bhaskar and McNamee 1983; Thanassoulis 1985). The goal

29 Group Decision-Making Tools for Managerial Accounting and Finance Applications 823



programming approach has been used to handle multiple-objective problems. It

emphasizes weights of importance of the multiple objectives with respect to the

decision maker’s (DM) preference (Bhaskar 1979; Deckro et al. 1985). Within the

framework of hierarchical goal optimization, several goal programming models

have been suggested to unravel multiple-objective capital budgeting problems (e.g.,

Ignizio 1976; Lee and Lerro 1974). Similarly, Santhanam et al. (1989) used a zero-

one goal programming approach for information system project selection, but their

article lacks a multiple time horizon (learning curve) effect. Choi and Levary

(1989) investigated the use of a chance-constrained goal programming

approach to reflect multiple goals for a multinational capital budgeting problem.

Reeves and Hedin (1993) suggested interactive goal programming (IGP) which

allows more flexibility for DMs in considering trade-offs and adjusting goal target

levels. However, because of the difficulties of measuring the preferences and

priorities of decision makers, Reeves and Franz (1985) developed a simplified

interactive multiple-objective linear programming (SIMOLP) method which uses

an interactive procedure for a DM to identify a preferred solution and Gonzalez

et al. (1987) applied this procedure in a capital budgeting problem (see Corner

et al. (1993) and Reeves et al. (1988) for other examples). Interactive multiple-

objective techniques such as SIMOLP or IGP can reduce the difficulty of

the solution process. Such studies suggest that most capital budgeting problems

require the analysis of multiple criteria that better reflect a real-world situation.

Thanassoulis (1985) addressed multiple objectives such as the maximization

of shareholder wealth, maximization of firm growth, minimization of financial

risk, maximization of the firm liquidity, and minimization of environmental

pollution.

However, these existing multiple-criteria approaches, including goal program-

ming, implicitly assume that there is only one decision maker setting up the

constraint (budget availability) level of a capital budgeting problem. This assump-

tion is not realistic because in most real-world capital budgeting problems, such as

constructing a major highway or shopping mall, multiple decision makers

must involve the decision of the constraint levels (see Sect. 29.5.2 for detailed

discussion). To remove this assumption of a single decision maker from models of

capital budgeting with multiple criteria, this article attempts to incorporate multiple

decision makers’ preferences using (1) the analytic hierarchy process (AHP)

approach and (2) MC2 linear programming in a capital budgeting situation.

Our approach shows its strength in quantifying strategic and nonfinancial factors

that are important in the current competitive business environment. The problem

of incommensurable units in the selection criteria, because of nonfinancial

and qualitative measures, can be resolved by using the AHP approach. The MC2

approach fosters modeling flexibility by incorporating decision makers’ prefer-

ences as multiple-constraint levels.

The rest of the article is organized as follows. Sect. 29.2 introduces the AHP

and MC2 framework. Sect. 29.3 demonstrates the managerial significance and

implications of capital budgeting problems by illustrating an example. Sect. 29.4

concludes the article with several future research avenues.
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29.5.1 AHP and MC2 Framework

In general, an organization has limited resources. Furthermore, each manager’s risk

assessments and preferences about a new project may be different. For example,

a financial manager may think that his or her company has only 50 million dollars

available for a new project and he will not approve this project unless he is sure

about substantial financial benefits. In contrast, a production manager may think his

company should have at least 60 million dollars to implement just-in-time (TIT)

manufacturing. The production manager strongly believes that this new system will

produce high-quality products with lower costs to maintain competitive advantages

against competitors. It is clear that there is a conflict of interests between managers.

Even top management’s goal may be different from other managers’. To increase

other managers’ involvement and motivation, top management should induce other

managers’ inputs. There must be trade-offs between goals of different managers in

this group decision-making process. AHP andMC2 linear programming can be used

to resolve this type of group dilemma.

29.5.1.1 Analytical Hierarchy Process (AHP)
AHP is a practical measurement technique that has been widely applied in model-

ing the human judgment process (Saaty 1980). AHP enables decision makers to

structure a complex problem in the form of a hierarchy of its elements according to

an organization’s structure or ranks of management levels. It captures managerial

decision preferences through a series of comparisons of relevant criteria. This

feature of the AHP minimizes the risk of inconsistent decisions due to incommen-

surable units in the selection criteria. Recently, AHP has been applied to several

accounting problems (e.g., capital budgeting (Liberatore et al. 1992), real estate

investment (Kamath and Khaksari 1991), and municipal government capital invest-

ment (Chan 2004)).

The preference of each manager may be analyzed through the use of AHP or

multiple attribute utility technique (MAUT). Both AHP and MAUT have their own

strengths and weaknesses. For a recent debate regarding the two methods, readers

are referred to Dyer and Forman (1991). In this article, the AHP is employed mainly

due to its capability of reducing computational complexity and availability of

software.

29.5.1.2 MC2 Linear Programming
Linear programming has been applied to capital budgeting problems such as

maximizing NPV with a single objective. However, the linear programming

approach has limitations in handling multiple conflicting real-world goals. For

instance, linear programming cannot solve the problem in which a firm ties to

maximize overall profits and total market share simultaneously. This dilemma is

overcome by a technique called multiple-criteria (MC) linear programming

(Goicoechea et al. 1982; Steuer 1986; Yu 1985; Zeleny 1974). To extend the

framework of MC linear programming, Sieford and Yu (1979) and Yu (1985)

formulated a model of MC2 linear programming. This model is based on two
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premises. First, from the linear system structure’s perspective, the criteria and

constraint levels may be interchangeable. Thus, like multiple criteria, multiple-

constraint (resource availability) levels can be considered. Second, from the appli-

cation’s perspective, it is more realistic to consider multiple resource availability

levels (discrete right-hand sides) than a single resource availability level in isola-

tion. This recognizes that the availability of resources can fluctuate depending on

the decision situation forces, such as the preferences of the different managers. The

concept of multiple resource levels corresponds to the typical characteristic of

capital budgeting situations where the decision-making process should reflect

each manager’s preference on the new project. A theoretical connection between

MC linear programming and MC2 linear programming can be found in Gyetvan and

Shi (1992) and decision problems related to MC2 linear programming have been

extensively studied (see, e.g., Lee et al. (1990), Shi (1991), and Shi and Yu (1992)).

Key ideas of MC2 linear programming, as a primary theoretical foundation of this

article, are described as follows.

An MC2 linear programming problem can be formulated as

max ltCx

s:t: Ax � Dg

x � 0

where C 2 Rqxn, A 2 Rmxn, and D 2 Rmxp are matrices of qxn, mxn, and mxp
dimensions, respectively; x 2 Rn are decision variables; l 2 Rq is called the criteria

parameter; and g 2 Rp is called the constraint level parameter. Both (g, l) are
assumed unknown.

The above MC2 problem has q criteria (objectives) and p constraint levels. If the
constraint level parameter g is known, then the MC2 problem reduces to an MC

linear programming problem (e.g., Yu and Zeleny 1975). In addition, if the criteria

parameter l is known, it reduces to a linear programming problem (e.g., Charnes

and Cooper 1961; Dantzig 1963).

Denote the index set of the basic variables {xj1, . . . , xjm} for the MC2 problem by

J ¼ {j1, . . . , jm}. Note that the basic variables may contain some slack variables.

Without confusion, J is also called a basis for the MC2 problem. Since a basic

solution J depends on parameters (g, l), define that (1) a basic solution J is feasible
for the MC2 problem if and only if there exists a g0 > 0 such that J is a feasible

solution for the MC2 problem with respect to g0 and (2) J is potentially optimal for

the MC2 problem if and only if there exist a g0 > 0 and a l0 > 0 such that J is an
optimal solution for the MC2 problem with respect to (g0, l0). For an MC2 problem,

there may exist a number of potentially optimal solutions {J} as parameters (g, l)
vary depending on decision situations. Seiford and Yu (1979) derived a simplex

method to systematically locate the set of all potentially optimal solutions {J}.
In summary, a model within the framework of AHP and MC2 is proposed

to formulate and solve the multiple-objective capital budgeting problems with
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multiple decision makers as follows. Note that because of complexity of the

problem, we employed AHP to derive weights of l and g. This solution procedure

decreases computational complexity.

29.5.1.3 A Model of MC2 Decision-Making Capital Budgeting
The linear programming approach has limitations for solving real-world problems

with multiple objectives. The goal programming or MOLP approach provides only

one optimal trade-off among several objectives of the firm. None of the past

mathematical models supports multiple decision makers in a capital budgeting

decision-making process. As discussed before, in a real-world situation, the deci-

sion makers (DMs) can have different opinions on the same issue. These different

interpretations can be represented by different constraint levels in mathematical

models. Because both linear programming and goal programming presume a fixed

single constraint level, they fail to mathematically describe such an organizational

differentiation problem.

The MC2 linear programming framework can resolve the above shortcomings in

current capital budgeting models. The framework is flexible enough to include any

objectives depending on problem situation. However, for the sake of clear presen-

tation, we address four groups of objectives that are common in capital budgeting:

(1) maximization of net present value, (2) profitability, (3) growth, and (4) flexibility

of financing. Some group objectives may have multi-time periods. Net present

value measures the expected net monetary gain or loss from a project by

discounting all expected future cash flows to the present point in time, using the

desired rate of return. If we want to incorporate risk factors, we can estimate the

standard deviation of net cash flows as Hillier (1963) suggested. Profitability can be

measured by return on investment (ROI). Growth can be measured by sales growth

or a nonfinancial measure of market share growth, each of which focuses on the

long-term success of a firm. Flexibility of financing (leverage) can be measured by

the debt to equity ratio. As a firm’s debt to equity ratio goes up, the firm’s cost of

borrowing becomes more expensive. Even though our model contains only these

four specific objective groups, the flexibility of the modeling process fits in all

capital budgeting problems with multiple-criteria and multiple-constraint levels.

This model integrates AHP with a mathematical model. The strengths of such an

integration have been shown in several areas (e.g., advertisement media choice

(Dyer and Forman 1991), R&D portfolio selection (Suh et al. 1993), and telecom-

munication hub design (Lee et al. 1995)). The use of both AHP and MC2, as we will

explore in this article, is the first in the decision-making literature.

In general, let i be the time period for a firm to consider capital budgeting and

j be the index number of the projects that the firm can select.

Define xj as the jth project that can be selected by the firm, j ¼ 1, . . . , t. For the
coefficients of the objectives, let vj be the net present value generated by the jth
project; gij be the net sales increase generated by the jth project in the ith time

period to measure sales growth, i ¼ 1, . . . , s; rij be the ROI generated from the jth
project in the ith time period; and lij be the firm’s equity to debt ratio in the ith time

period after jth project is selected to measure liquidity. Here, the optimum debt to
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equity ratio for the firm is assumed to be 1 and the inverse of debt to equity ratio is

used to measure leverage. For the coefficients of the constraints, let bij be the cash
outlay required by the jth project in the ith time period. For the coefficients of the

constraint levels, let Cki be the budget availability level believed by the kth manager

(or executive) for the firm in the ith time period, k ¼ 1, . . . , u.
In this article, for illustration, if we treat t ¼ 10, i ¼ 5, and u ¼ 5, then the

model is

max
X10
j¼1

vjXj

max
X10
j¼1

gijXj 8i ¼ 1, . . . , 5

max
X10
j¼1

rijXj 8i ¼ 1, . . . , 5

max
X10
j¼1

lijXj 8i ¼ 1, . . . , 5

subject to
X10
j¼1

bijXj � cli; . . . ; c5ið Þ 8i ¼ 1, . . . , 5

and Xj ¼ 0; 1f g

where k ¼ 1, . . . , 5, for cki, represents the five possible DMs (i.e., president,

controller, production manager, marketing manager, and engineering manager).

The weights of 16 total objectives can be expressed by (l1, . . . , l16) with

Slq ¼ 1, q ¼ 1, . . . , 16, 0 < lq < 1, and the weights of five DMs can be expressed

by (l1, . . . , l5) with Sgk ¼ 1, k ¼ 1, . . . , 5, 0 < gk < 1.

The above model is an integer MC2 problem with 16 objectives and five

constraint levels. Solving this problem by using a currently available solution

technique (Seiford and Yu 1979) is not a trivial task because of its substantial

computational complexity. To overcome this difficulty, we propose a two-phased

solution procedure as depicted in Fig. 29.6.

The first phase is referred to as the AHP phase in the sense that AHP is applied to

derive weights of l and g, which reduces the model’s complexity. The computation

of weights is effectively handled by Expert Choice (Forman et al. 1985), commer-

cial software for AHP. In this phase, we first induce preferences about objectives

from all five DMs involved. Note that each DM may have different preferences

about the four goals. The president may think maximization of ROI is

the most important goal, while the controller may think maximization of NPV is

the most important goal. AHP generates relative weights for each goal. Then,

multiple-constraint levels are incorporated using the MC2 framework. For instance,

DMs may estimate different budget availability levels for each time period. The

controller may believe that $40 million is available for the first year, while the

production manager may believe that the company can spend $50 million for this

time period. This scenario is more realistic if we consider the characteristics of
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a capital budgeting problem from the perspective of the different utility functions or

risk factors of each DM. An example using AHP to generate relative weights for the

five DMs’ constraint levels (preferences) can be found in Appendix 1.

The second phase is called the integer programming (IP) phase. After applying

the AHP phase to the model, the model is reduced to a linear IP problem, in

which the potentially optimal projects must be selected. To solve this problem,

we employ the ZOOM software (Singhal et al. 1989) that was originally introduced

for solving zero-one integer linear programming problems.

29.5.2 Model Implications

29.5.2.1 Numerical Example
A prototype of our capital budgeting model demonstrates the implications for

multiple criteria and multiple decision makers. We use a Lorie-Savage (1955)

type of problem as follows. The Lorie-Savage Corporation has ten projects under

consideration. All projects have 5-year tune periods.

The executives (president, controller, production manager, marketing manager,

and engineering manager) agree on the fallowing multiple objectives:

1. Maximize net present value of each project. Net present value is computed as the

sum of all the discounted, estimated future cash flows, using the desired rate of

return, minus the initial investment.

Initial Data

Final Solution

Accept ?

HC2

Framework IP

AHP

Weights of
λ and γ

Capital
Budgeting

Yes

No

Fig. 29.6 A two-phased

capital budgeting model
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2. Maximize the growth of the firm due to each project. Growth can bemeasured by net

sales increase from each project. This canmeasure a strategic success factor of a firm.

3. Maximize the profitability of the company. Profitability can be measured by ROI

for each time period generated by each project.

4. Maximize the flexibility of financing. The flexibility of financing (leverage) can

be measured by debt to equity ratio. If a firm’s debt to equity ratio is higher than
the industry average or the optimum level, the firm’s cost of debt financing will

become more expensive. In this example, we use the inverse of the debt to equity

ratio and assume 1 as the optimum debt to equity ratio.

The data related to these objectives is given in Table 29.7. In this example, all

projects are assumed to be independent. In Table 29.7, the firm’s cost of capital is

assumed to be known a priori and to be independent of the investment decisions.

Based on these assumptions, the net present value of each project can be defined as

the sum of the cash flows discounted by the cost of capital. Cash outlay is the

amount of expenditure required for project j, j¼ 1, 2, 3, . . . , 10, in each time period.

To measure growth, the net sales increase for each time period for each project is

estimated. These data are provided in Table 29.8.

To measure the profitability of each project, ROI is estimated after reflecting

additional income and capital expenditures from each investment for each time

period. These data are provided in Table 29.9.

To measure leverage, the inverse of debt to equity ratio is used after adopting

each project. Here, the optimum debt to equity ratio is assumed to be one for the

Lorie-Savage Corporation. These data are provided in Table 29.10.

The five key DMs in this company (president, controller, production manager,

marketing manager, and engineering manager) have different beliefs regarding

resource availability. For example, for budget availability levels, each DM may

have a different opinion. Of course, the president will make the final decision based

on the opinions of other managers. However, the DMs’ preferences of collection

process should improve the quality of the final decision. Budget availability level

data are provided in Table 29.11.

Table 29.7 Net present value data for the Lorie-Savage Corporation (in millions)

Project Net present value

Cash outlays for each period

Period 1 Period 2 Period 3 Period 4 Period 5

1 $20 $24 $16 $6 $6 $8

2 16 12 10 2 5 4

3 11 8 6 6 6 4

4 4 6 4 7 5 3

5 4 1 6 9 2 3

6 18 18 18 20 15 15

7 7 13 8 10 8 8

8 19 14 8 12 10 8

9 24 16 20 24 16 16

10 4 4 6 8 6 4
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Table 29.8 Net sales increase data for the Lorie-Savage Corporation (in millions)

Project

Net sales increase for each project

Period 1 Period 2 Period 3 Period 4 Period 5

1 $120 $130 $145 $150 $170

2 100 120 140 150 160

3 80 90 95 95 100

4 40 50 50 55 60

5 40 45 50 55 60

6 110 120 140 150 165

7 60 70 65 70 80

8 110 120 100 110 120

9 150 170 180 190 200

10 35 40 40 50 50

Table 29.9 Return on investment data for the Lorie-Savage Corporation (in percentage)

Project

Return on investment for each project

Period 1 Period 2 Period 3 Period 4 Period 5

1 10 12 14 15 17

2 10 12 18 16 17

3 12 15 15 15 18

4 8 15 10 8 12

5 15 10 8 20 18

6 12 12 10 15 15

7 8 12 10 12 12

8 14 16 13 15 16

9 12 10 9 12 12

10 10 8 9 8 12

Table 29.10 Debt to equity data for the Lorie-Savage Corporation

Project

Inverse of debt to equity ratio

Period 1 Period 2 Period 3 Period 4 Period 5

1 0.85 0.90 0.98 0.95 0.95

2 0.90 0.98 0.95 0.95 0.96

3 0.96 0.97 0.98 0.92 0.92

4 0.98 0.95 0.96 0.92 0.95

5 0.90 0.95 0.95 0.98 0.95

6 0.90 0.95 0.94 0.95 0.95

7 0.96 0.98 0.98 0.98 0.98

8 0.96 0.95 0.90 0.92 0.95

9 0.90 0.88 0.85 0.95 0.95

10 0.98 0.95 0.95 0.98 0.95
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The parameters for budget availability levels are derived by using AHP. Here,

one level of an AHP is used. The aggregated objective function also can be obtained

by using AHP. The difference here is that two levels of an AHP must be used to

provide preferences for the objective functions. The first level of this AHP corre-

sponds to the four groups of objectives. The second level corresponds to time

periods within each objective group. Note that the second level is not required for

the objective of maximizing the net present value. Hence, four pairwise comparison

matrices are required for eigenvalue computation. More detailed information about

the formulation of this problem is presented in the appendix. In sum, the objective

function aggregated from the 16 objectives is written as

Maximize 56:34x1 þ 51:74x2 þ 40:54x3 þ 25:43x4 þ 25:44x5
þ 53:63x6 þ 31:98x7 þ 50:59x8 þ 67:62x9 þ 23:17x10:

The optimum IP solution for this numerical example is selecting projects 2, 3,

4, and 8. This solution reflects the preferences of multiple DMs and satisfies budget

constraints. If the DMs are not satisfied with the solution, we have to use AHP to

assess and compute new values of weights g and l according to Fig. 29.6. This

process will terminate whenever all DMs agree to the compromise solution.

29.5.2.2 Managerial Implications
The model and solution procedure proposed in this study have several managerial

implications. First, the model integrates the multiple-objective capital budgeting

problem with multiple decision makers. The most common problem in a capital

investment decision-making situation is how to estimate cash flows and to incor-

porate the risk factors of decision makers (Hillier 1963; Lee 1993). In our model,

we allow multiple-constraint levels to incorporate each DM’s preference about

budget availability. Neither linear programming nor goal programming models can

handle these characteristics.

Second, our model can be applied to solve capital budgeting problems not only

with the representation of a complex structure but also with motivational implica-

tions. Our method facilitates DMs’ participation in order to minimize

suboptimization of overall company goals (Locke et al. 1981). The model can aid

coordination and synthesis of multiple objectives, some in conflict. This feature can

be quite effective in a capital budgeting situation, in which many objectives are

Table 29.11 Budget availability level data for the Lorie-Savage Corporation (in millions)

Decision maker

Estimate budget availability

Period 1 Period 2 Period 3 Period 4 Period 5

President $50 $30 $30 $35 $30

Controller 40 45 30 30 20

Production manager 55 40 20 30 35

Marketing manager 45 30 40 45 30

Engineering 50 40 45 30 35
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contradictory to each other and these objectives can be measured differently by

a number of decision participants. This model can foster more autonomous control

than any other mathematical programming models by allowing DMs to express

their own priority structures and weights.

Third, adoption of the AHP reduces the solution complexity of the resulting MC2

IP program. The MC2 IP is a very complex problem to solve. Real-life size MC2 IP

problems are intractable by using current computational technology. Furthermore,

the computing software for MC2 IP is still under development (Shi and Lee 1992).

Even though the use of AHP may lose some possible trade-offs among objectives

and/or DMs’ preferences, the AHP reduces MC2 IP to a traditional zero-one IP that

is much easier to be solved using currently available IF software.

Lastly, our two-phased framework (Fig. 29.6) for capital budgeting problem is

highly flexible. The DMs can reach an agreement interactively. For example,

alternative budgeting policy can be obtained by providing a different preference

matrix of objectives and/or resource availability levels. Furthermore, the

two-phased framework may be attempted iteratively until all of the DMs are

satisfied with the final budgeting policy.

29.5.3 Conclusions

A decision-making process with a multiple-criteria model has been addressed to

solve capital budgeting problems. This model can foster a high-quality decision in

capital budgeting under multiple criteria and multiple decision makers. This

decision-making strategy reflects each decision maker’s preference and limits

suboptimization of overall company goals. This method can also better handle

real-world problems that may include uncertain factors. By incorporating informa-

tion from each influential manager, our model is more likely to provide better

budgeting solutions than the previous linear programming or goal programming

approaches.

There are other research problems remaining to be explored. From a practical

point of view, the estimation of future cash flows, determining a firm’s cost of

capital, measuring intangible benefits, and measuring residual value of assets are

still important issues. Models like ours can reduce the chance of an ineffective

decision making by incorporating multiple decision makers’ preferences. This

framework can be applied to other accounting problems, such as cost allocation,

audit sampling objectives, and personnel planning for an audit, if the decision

variables and formulation are expressed appropriately.

29.6 Conclusions

We have introduced group decision-making tools that can be applied in accounting

and finance. By the nature of today’s dynamic business environment, there will be

more than one decision maker and business conditions keep changing. We showed
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AHP and MC2 applications in performance evaluation, banking performance eval-

uation, international transfer pricing, and capital budgeting. Our last paper shows

the combination of AHP and MC2 in capital budgeting to deal with multiple

objectives and multiple constraints.

Our performance evaluation model shows advantages such as flexibility,

feedbacks, group evaluation, and computing simplicity. A prototype was built via

a personal computer so that the model can be applied to any business situations. The

iterative process of getting input data in the AHP procedure helps each manager as

well as employee to be aware of the importance of strategic factors of each perfor-

mance measure of the bank from our second paper. Our transfer pricing model can

provide a systematic and comprehensive scenario about all possible optimal transfer

prices depending on multiple-criteria and multiple-constraint levels. The trade-offs

of optimal transfer prices offer a broad basis for managers of a corporation to flexibly

implement the optimal transfer pricing strategy and cope with various business

situations. Furthermore, this method also aids global optimization, division auton-

omy, and performance evaluation. Our last paper shows that our capital budgeting

model is more likely to provide better budgeting solutions than the previous

approaches by incorporating information from each influential manager.

Appendix 1

For illustrative purposes, we show how to use AHP to induce the five DMs’

preferences of budget availability and to compute the relative weights. Generally,

AHP collects input judgments of DMs in the form of a matrix by pairwise compar-

isons of criteria (i.e., their budget availability levels). An eigenvalue method is then

used to scale weights of such criteria. That is, the relative importance of each

criteria is computed. The result from all of pairwise comparison is stored in an input

matrix as follows:

President Controller Production Marketing Engineering

Manager Manager Manager

1 3 4 5 6

1 2 5 5

1 3 4

1 2

1

2
6666664

3
7777775

Applying an eigenvalue method to the above input matrix results in a vector

Wi ¼ (0.477, 0.251, 0.154, 0.070, 0.048). In addition to the vector, the inconsis-

tency ratio (g) is obtained to estimate the degree of inconsistency in pairwise

comparisons. In this example, the inconsistency ratio is 0.047. A common guideline

is that if the ratio surpasses 0.1, a new input matrix must be generated. Therefore,

this input matrix is acceptable.
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A similar computing process can be applied for the 16 objective functions.

However, two hierarchical levels are required for this case. The first level of AHP

corresponds to the four groups of objectives and the second level corresponds to the

time periods within each objective group.

Let xj be the jth project that can be selected by the firm. Using data in Tables 29.7,

29.8, 29.9, and 29.10, the model for capital budgeting with multiple criteria and

multiple DMs is formulated as

maximize 20x1 þ 16x2 þ 11x3 þ 4x4 þ 4x5
þ 18x6 þ 7x7 þ 9x8 þ 24x9 þ 4x10

maximize 120x1 þ 100x2 þ 80x3 þ 40x4 þ 40x5
þ 110x6 þ 60x7 þ 110x8 þ 150x9 þ 35x10

maximize 130x1 þ 120x2 þ 90x3 þ 50x4 þ 45x5
þ 120x6 þ 70x7 þ 120x8 þ 170x9 þ 40x10

maximize 145x1 þ 140x2 þ 95x3 þ 50x4 þ 50x5
þ 140x6 þ 65x7 þ 100x8 þ 180x9 þ 40x10

maximize 150x1 þ 150x2 þ 95x3 þ 55x4 þ 55x5
þ 150x6 þ 70x7 þ 110x8 þ 190x9 þ 50x10

maximize 170x1 þ 160x2 þ 100x3 þ 60x4 þ 60x5
þ 165x6 þ 80x7 þ 120x8 þ 200x9 þ 50x10

maximize 10x1 þ 10x2 þ 12x3 þ 8x4 þ 15x5
þ 12x6 þ 8x7 þ 14x8 þ 12x9 þ 10x10

maximize 12x1 þ 12x2 þ 15x3 þ 15x4 þ 10x5
þ 12x6 þ 12x7 þ 16x8 þ 10x9 þ 8x10

maximize 14x1 þ 18x2 þ 15x3 þ 10x4 þ 8x5
þ 10x6 þ 10x7 þ 13x8 þ 9x9 þ 9x10

maximize 15x1 þ 16x2 þ 15x3 þ 8x4 þ 20x5
þ 15x6 þ 12x7 þ 15x8 þ 12x9 þ 8x10

maximize 17x1 þ 17x2 þ 8x3 þ 12x4 þ 18x5
þ 15x6 þ 12x7 þ 16x8 þ 12x9 þ 12x10

maximize 0:85x1 þ 0:90x2 þ 0:96x3 þ 0:98x4 þ 0:90x5
þ 0:90x6 þ 0:96x7 þ 0:96x8 þ 0:90x9 þ 0:98x10
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maximize 0:90x1 þ 0:98x2 þ 0:97x3 þ 0:95x4 þ 0:95x5
þ 0:95x6 þ 0:98x7 þ 0:95x8 þ 0:88x9 þ 0:95x10

maximize 0:98x1 þ 0:95x2 þ 0:98x3 þ 0:96x4 þ 0:95x5
þ 0:94x6 þ 0:98x7 þ 0:90x8 þ 0:85x9 þ 0:95x10

maximize 0:95x1 þ 0:95x2 þ 0:92x3 þ 0:92x4 þ 0:98x5
þ 0:95x6 þ 0:98x7 þ 0:92x8 þ 0:95x9 þ 0:98x10

maximize 0:95x1 þ 0:96x2 þ 0:92x3 þ 0:95x4 þ 0:95x5
þ 0:95x6 þ 0:98x7 þ 0:95x8 þ 0:95x9 þ 0:95x10

subject to 24x1 þ 12x2 þ 8x3 þ 6x4 þ x5
þ 18x6 þ 13x7 þ 14x8 þ 16x9 þ 4x10 � 49:37

16x1 þ 10x2 þ 6x3 þ 4x4 þ 6x5
þ 18x6 þ 8x7 þ 8x8 þ 20x9 þ 6x10 � 35:30

6x1 þ 2x2 þ 6x3 þ 7x4 þ 9x5
þ 20x6 þ 10x7 þ 12x8 þ 24x9 þ 8x10 � 28:91

6x1 þ 5x2 þ 6x3 þ 5x4 þ 2x5
þ 15x6 þ 8x7 þ 10x8 þ 16x9 þ 6x10 � 33:44

8x1 þ 4x2 þ 4x3 þ 3x4 þ 3x5
þ 15x6 þ 8x7 þ 8x8 þ 16x9 þ 4x10 � 29:96

and Xj ¼ 0; 1f g for j ¼ 1, . . . , 10:
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Abstract

This study presents model-based and compensation-based approaches to

determining the price-subjective value of employee stock options (ESOs).

In the model-based approach, we consider a utility-maximizing model in

which the employees allocate their wealth among company stock, a market

portfolio, and risk-free bonds, and then we derive the ESO formulas, which

take into account illiquidity and sentiment effects. By using the method of

change of measure, the derived formulas are simply like those of the market

value with altered parameters. To calculate the compensation-based subjec-

tive value, we group employees by hierarchical clustering with a K-means

approach and back out the option value in an equilibrium competitive

employment market.

Further, we test illiquidity and sentiment effects on ESO values by running

regressions that consider the problem of standard errors in the finance panel data.

Using executive stock options and compensation data paid between 1992 and

2004 for firms covered by the Compustat Executive Compensation Database, we

find that subjective value is positively related to sentiment and negatively related

to illiquidity in all specifications, consistent with the offsetting roles of sentiment

and risk aversion. Moreover, executives value ESOs at a 48 % premium to the

Black-Scholes value and ESO premiums are explained by a sentiment level of

12 % in risk-adjusted, annualized excess return, suggesting a high level of

executive overconfidence.
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30.1 Introduction

Employee stock options (ESOs) are a popular method of compensation.

According to the Compustat Executive Compensation database, the number of

option grants increased from roughly 0.25 billion in 1992 to 1.4 billion in 2001.

Specifically, in fiscal 2001, 53 % of total pay came from granted options,

compared with 33 % in 1992.1 Moreover, executives receive averagely more

than ten thousand options after 1998. ESOs can help firms retain talent and reduce

agency costs (Jensen and Meckling 1976). They also mitigate risk-related incen-

tive problems (Agrawal and Mandelker 1987; Hemmer et al. 2000) and provide an

alternative to cash compensation, which is especially important for firms facing

1The option values are estimated by the calculation in ExecuCompustat database.
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financial constraints (Core and Guay 2001). In addition, ESOs attract highly

motivated and able employees (Core and Guay 2001; Oyer and Schaefer 2005).

All of these factors contribute to the importance of ESOs for corporate gover-

nance and finance research.

The illiquidity problem of ESOs cannot be neglected. ESOs usually have

a vesting period during which they cannot be exercised, and hence they cannot

be redeemed for a fixed period of time. Furthermore, ESOs are generally not

publicly traded and their sale is not permitted. Standard methods for valuing

options are difficult to apply to ESOs. Because of the illiquidity of ESOs, many

employees hold undiversified portfolios that include large stock options of their

own firms. Because of the impossibility of full diversification, the value per-

ceived by employees (subjective value) may be quite different from the traded

option. We consider the subjective value to be what a constrained agent would

pay for the ESOs and the market value to be the value perceived by an

unconstrained agent. Many papers address the differences between subjective

and market value, each concluding that the subjective value of ESOs should be

less than the market value (Lambert et al. 1991; Hall and Murphy 2002;

Ingersoll 2006).

If ESOs are generally worth less than market value, why do employees continue

to accept and, indeed, sometimes prefer ESO compensation? One reasonable

explanation is employee sentiment. Sentiment means positive private information

or behavioral overconfidence regarding the future risk-adjusted returns of the firm.

Simply, the employee believes that he possesses private information and can benefit

from it. Or the employee overestimates the return of the firm and believes ESOs are

valuable. Some empirical evidence supports this conjecture. Oyer and Schaefer

(2005) and Bergman and Jenter (2007) posit that employees attach a sentiment

premium to their stock options; firms exploit this sentiment premium to attract and

retain optimistic employees. Hodge et al. (2009) provide survey evidence and find

that managers subjectively value the stock option greater than its Black-Scholes

value.

Three statistics methods are applied in our ESO study (Chen and Fuh 2011;

Chang et al. 2013), including change of measure, hierarchical clustering with a

K-means approach, and estimation of standard errors in finance panel data.

We derive a solution for ESO value that is a function of both illiquidity

and sentiment in a world where employees balance their wealth between the

company’s stock, the market portfolio, and a risk-free asset. By using the method

of change of measure, we find a probability measure and then the ESO formulas are

derived easily. In addition, from the ESO pricing formulas, we are able to not only

estimate the subjective values but also study the exercise policies. Early exercise is

a pervasive phenomenon and, importantly, the early exercise effect is critical in

valuation of ESOs, especially for employees who are more risk averse and when

there are more restrictions on stock holding.

Applying a comprehensive set of executive options and compensation data,

this study empirically determines subjective value, grouping employees by

hierarchical clustering with a K-means approach and backing out the option
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value in an equilibrium competitive employment market. Specifically, we group

executives according to position, the firm’s total market value, nonoption

compensation, and the immediate exercise value of the options for each industry

by hierarchical clustering with a K-means approach. We then calculate

the empirical value of ESO that each executive places on their ESOs in order

for total compensation to be equivalent in the same cluster. Further, we model

both illiquidity and sentiment effects and test them with executive options

data. We regress the empirical ESO values on the proportion of total wealth

held in illiquid firm-specific holdings and sentiment, which is estimated

from our pricing formula or Capital Asset Pricing Model (CAPM) risk-adjusted

alpha under controlling key options pricing variables such as moneyness, time to

maturity, volatility, and dividend payout. As we know, when the residuals are

correlated across observations, the standard errors of estimated coefficients

produced by Ordinary Least Squares (OLS) may be biased and then lead to

incorrect inference. Petersen (2009) compares the different methods used in the

literature and gives researchers guidance for their use. The data we collected are

from multiple firms over several years. Hence, we consider the problem of

standard errors in finance panel data and run the regressions, including standard

errors clustered by firm, year, and both firm and year.

The remainder of this chapter is organized as follows. Section 30.2 introduces

some preliminary knowledge. Section 30.3 develops our model and addresses

the approaches to price-subjective value of ESOs. Section 30.4 presents the

simulation results. Section 30.5 shows the empirical study; Sect. 30.6 concludes

the chapter.

30.2 Preliminary Knowledge

30.2.1 Change of Measure

In our ESO study, we assume stock price follows a jump-diffusion process. Here,

we briefly introduce change of measure for a compound Poisson and Brownian

motion. Suppose that we have a probability space (O, F , ℙ) on which is defined

a Brownian motionWt. Suppose that on this same probability space there is defined

a compound Poisson process

Qt ¼
XNt

i¼0

Yi

with intensity l and jumps having density function f(y). Assume that there is

a single filtrationF t, t�0, for both the Brownian motion and the compound Poisson

process. In this case, the Brownian motion and compound Poisson process must be

independent (see Shreve 2008).
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Let el be a positive number, let ef yð Þ be another density function with

the property that ef yð Þ ¼ 0 whenever f(y) ¼ 0, and let Y(t) be an adapted process.

We define

Z1 tð Þ ¼ exp �
ðt
0

Yðu�dWu � 1

2

ðt
0

Y2 uð Þdu
� �

,

Z2 tð Þ ¼ e l�el� �
t
YNt

i¼0

elef Yið Þ
lf Yið Þ ,

Z tð Þ ¼ Z1ðt
�
Z2ðt

�
:

It can be verified that the process Z(t) is a martingale.

Lemma 30.1 Define eP Að Þ ¼
ð

A

Z Tð ÞdP for all A 2 F . Under the probability
measure ℙ, the process

eWt ¼ Wt þ
ðt
0

Y sð Þds

is a Brownian motion, Qt is a compound Poisson process with intensity el and
independent, identically distributed jump sizes having density ef yð Þ, and the pro-
cesses eWt and Qt are independent.

The proof of Lemma 30.1 is presented by Shreve (2008). This lemma is useful

for us to derive the ESO formula in Sect. 30.3.

30.2.2 Hierarchical Clustering with K-Means Approach

The main assumption of the compensation-based subjective value is that all

executives within the same group receive the same total compensation. For each

executive in the group, the implied subjective value is derived by comparing the

difference between nonoption compensation and the average compensation. Group-

ing executives appropriately is essential in the compensation-based approach.

Clustering is an unsupervised technique for analyzing data and dividing patterns

(observations, data items, or feature vectors) into groups (clusters). There are two

kind of clustering algorithms: hierarchical and partitional approaches. Hierarchical

methods produce a nested structure of partitions, whereas partitional methods

produce only one partition (Jain et al. 1999).

Hierarchical clustering algorithms repeat the cycle of either merging smaller

clusters into larger ones or dividing larger clusters to smaller ones. An agglomerative

clustering strategy uses the bottom-up approach of merging clusters into larger

ones, whereas divisive clustering strategy uses the top-down approach of splitting

larger clusters into smaller ones. Typically, the greedy approach is used in

deciding which larger/smaller clusters are used for merging/dividing. Euclidean

distance, Manhattan distance, and cosine similarity are some of the most
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commonly used metrics of similarity for numeric data. For non-numeric data,

metrics such as the Hamming distance are used. It is important to note that the

actual observations (instances) are not needed for hierarchical clustering, because

only the matrix of distances is sufficient. The user can obtain different clustering

depending on the level that is cut.

A partitional clustering algorithm obtains a single partition of the data instead

of a clustering structure. A problem accompanying the use of a partitional

algorithm is the choice of the number of desired output clusters (usually

called k). One of the most commonly used partitional clustering algorithms is

the K-means clustering algorithm. It starts with a random initial partition and

keeps reestimating cluster centers and reassigning the patterns to clusters based

on the similarity between the pattern and the cluster centers. These two steps are

repeated until a certain intra-cluster similarity objective function and inter-cluster

dissimilarity objective function are optimized. Therefore, sensible initialization

of centers is an important factor in obtaining quality results from partitional

clustering algorithms.

Hierarchical and partitional approaches each have their advantages and disad-

vantages. Therefore, we apply a hybrid approach combining hierarchical and

partitional approaches in this study.

30.2.3 Standard Errors in Finance Panel Data

In finance panel data, the residuals may be correlated across firms or across time,

and OLS standard errors can be biased. Petersen (2009) compares the different

methods used in the literature and provides guidance to researchers as to which

method should be used.

The standard regression for a panel data is

Yit ¼ Xitbþ Eit i ¼ 1, . . . ,N; t ¼ 1, . . . ,T

where there are observations on firms i across years t. X and ϵ are assumed to be

independent of each other and to have finite variance. OLS standard errors are

unbiased when the residuals are independent and identically distributed. However, it

may result in incorrect inferencewhen the residuals are correlated across observations.

In finance study, there are two general forms of dependence: time-series depen-

dence (firm effect), in which the residuals of a given firm may be correlated across

years for a given firm, and cross-sectional dependence (time effect), in which the

residuals of a given year may be correlated across different firms. Considering the

firm effect, the residuals and independent variable are specified as

Eit ¼ gi þ nit; Xit ¼ mi þ vit

Both the independent variable and the residual are correlated across observations

of the same firm but are independent across firms. Petersen (2009) shows that OLS,
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Fama-MacBeth, and Newey-West standard errors are biased, and only clustered

standard errors are unbiased as they account for the residual dependence created by

the firm effect.

Considering the time effect, the residuals and independent variable are

specified as

Eit ¼ dt þ �it; Xit ¼ zt þ nit:

OLS standard errors still underestimate the true standard errors. The clustered

standard errors aremuchmore accurate, but unlike the results with the firm effect, they

underestimate the true standard error. However, the bias in the clustered standard error

estimates declineswith the number of clusters. Because the Fama-MacBeth procedure

is designed to address a time effect, the Fama-MacBeth standard errors are unbiased.

In both firm and time effect, the residuals and independent variable are

specified as

Eit ¼ gi þ dt þ �it; Xit ¼ mi þ zt þ nit:

Standard errors clustered by only one dimension are biased downward.

Clustering by two dimensions produces less biased standard errors. However,

clustering by firm and time does not always yield unbiased estimates. We only

introduce the method we use in this study. Readers wanting to know more

methods for estimation of standard error in financial panel data should refer to

Petersen (2009).

30.3 Employee Stock Options

This section introduces two methods to price the subjective value of ESOs. We call

them the model-based approach and the compensation-based approach. To derive

the model-based subjective value, we use the technique of change of measure and

find a probability measure P* such that the option value can be generated simply. To

calculate compensation-based subjective value, we group employees by hierarchi-

cal clustering with a K-means approach and back out the option value in an

equilibrium-competitive employment market.

30.3.1 Model-Based Approach to Subjective Value

From Chen and Fuh (2011), we have a three asset economy in which the

employee allocates their wealth among three assets: company stock S, market

portfolio M, and risk-free bond B. Because of the illiquidity of ESO, the

employee is constrained to allocate a fixed fraction a of their wealth to company

stock (via some form of ESO). Define the jump-diffusion processes for the three

assets as follows:
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dS

S
¼ msdtþ ssdWm þ ndWs þ d

XNt

i¼0

Yi � 1ð Þ,
dM

M
¼ mm � dmð Þdtþ smdWm,

dB

B
¼ rdt,

8>>>>>><
>>>>>>:

(30.1)

where ms ¼ m � d � lk. m, mm, r are instantaneous expected rates of return for the

stock,market portfolio, and risk-free bond, respectively. d and dm are dividends for the
stock andmarket portfolio, respectively. The Brownianmotion processWm represents

the normal systematic risk of the market portfolio. The Brownian motion processWs

and jump processNt are the idiosyncratic risk of the company stock, whereNt captures

the jump risk of company stock and follows a Poisson distribution with average

frequency l. Yi � 1 represents the percentage of stock variation when the ith jump

occurs. Denote E(Yi � 1) ¼ k and E(Yi � 1)2 ¼ k2 for all i. ss and sm are the normal

systematic portions of total volatility for the stock and the market portfolio, respec-

tively, whereas n is the normal unsystematic volatility of the stock. The two Brownian

motions and the jump process are presumed independent. For simplicity, we assume

that CAPM holds so that the efficient portfolio is the market.

Following the idea of Ingersoll (2006), we solve the constrained optimization

problem and determine the employee’s indirect utility function. The marginal

utility is then used as a subjective state price density to value compensation. We

assume that the employee’s utility function U(·) is set as U(C) ¼ Cg/g with

a coefficient of relative risk aversion, 1 � g. The process of the employee’s

marginal utility or the pricing kernel can be derived as2:

dJW
JW

¼ �r̂ dt� ŝ dWm � 1� gð ÞandWs

þd
XNt

i¼0

a Yi � 1ð Þ þ 1½ �g�1 � 1
n o

,

(30.2)

where JW ¼ ∂J W tð Þ, t½ �
∂W tð Þ is the marginal utility, J[W(t), t] and W(t) are the

employee’s total utility and wealth at time t, r̂ ¼ r � 1� gð Þ
a2n2 þ 1

2
a2glþ alk

� �
, and ŝ ¼ mm�r

sm
.

The rational equilibrium value of the ESO at time t, F(St, t), satisfies the Euler
equation

F St; tð Þ ¼ Et JW W Tð Þ,T½ �F ST ; Tð Þf g
JW W tð Þ, t½ � , (30.3)

where F(ST, T) is the payoff at the maturity T. To easily calculate the ESO value, we

find a probability measure P* by using change of measure method and then the

second equality in the following Eq. (30.4) is satisfied.

2Because the process can be similarly derived from Chang et al. (2008), it is omitted.
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F St; tð Þ ¼ Et JW W Tð Þ,T½ �F ST ;Tð Þf g
JW W tð Þ, t½ �

¼ e�r� T�tð ÞE�
t F ST ; Tð Þ½ �,

(30.4)

where dP�
dP ¼ Z Tð Þ

Z tð Þ , Z(t) ¼ er*tJW[W(t), t], r* is subjective bond yield, and Et
* is the

expectation under P* and information at time t. Under P*, the stock process can be

expressed as

dS

S
¼ r� � d�ð Þdtþ sNdW�

t þ d
XNt

i¼0

Yi � 1ð Þ,

where

r� ¼ r � 1� gð Þðalk þ 1

2
glk2a2 þ a2n2

�

� l x� 1ð Þ,

d� ¼ d � 1� gð Þ alk þ 1

2
glk2a2 � ð1� a

�
an2

� �

� l x� 1ð Þ þ lk,

s2N ¼ s2s þ n2, l� ¼ lx, x ¼ E a Yi � 1ð Þ þ 1½ �g�1,

Wt
* is the standard Brownian motion and Nt is a Poisson process with rate l*.

A detailed explanation is given in Appendix 1.

30.3.1.1 European ESO
First, we consider the simple ESO contract, the European ESO. The price formula is

presented in Theorem 30.1.

Theorem 30.1 The value of the European ESO with strike price K and time to
maturity t, written on the jump-diffusion process in Eq. (30.1), is as follows:

CE St; tð Þ ¼
X1
j¼0

l � tð Þje�l�t

j!
C jð Þ (30.5)

where

C jð Þ ¼ Ste
�d�tE� Yj

i¼0

YiF d�1
� �

" #(

�Ke�r�tE� F d�2
� �� 	


d�1 ¼
ln St

Yj

i¼0
Yi=K

� �
þ r� � d� þ 1

2
s2N

� �
t

sN
ffiffiffi
t

p ,

d�2 ¼ d�1 � sN
ffiffiffi
t

p
:

The proof of Theorem 30.1 is in Appendix 2.
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30.3.1.2 American ESO
Suppose that the option can be exercised at n time instants. These time instants are

assumed to be regularly spaced at intervals of Dt, and denoted by ti, 0 � i � n,
where t0 ¼ 0, tn ¼ T, and ti+1 � ti ¼ Dt for all i. Denote CA as the value of the

American call option, CE as the value of the European call option, K as the strike

price, and Si ¼ Sti. The critical price at these time points is denoted by Si
*, 0� i� n,

and is the price at which the agent is indifferent between holding the option and

exercising. Denote Ei
* as the expectation under P* and information at time ti.

Theorem 30.2 (Chen and Fuh 2011) The value of the American ESO exercisable at
n time instants, when the ESO is not exercised, written on the jump-diffusion
process in Eq. (30.1) is as follows:

CA S0; Tð Þ

¼ CE S0; Tð Þ þ
Xn�1

‘¼1

e�r�‘DtE�
0

�
½S‘ 1� e�d�Dt� �

� K 1� e�r�Dt� ��I S‘�S�‘f g
�

�
Xn
j¼2

e�r�jDtE�
0

�
½CAðSj, n� jð ÞDtÞ � Sj � K

� ��I Sj�1�S�j�1f gI Sj<S�jf g
�
: (30.6)

The critical price Si
* at time ti for i ¼ 1, � � �, n is defined as the solution to the

following equation:

S�i � K

¼ CE S�i , n� ið ÞDt� �

þ
Xn�i�1

‘¼1

e�r�‘DtE�
i

�
Siþ‘ 1� e�d�Dt� ��

� K 1� e�r�Dt� �	
I Siþ‘�S�iþ‘f g

�

�
Xn�i

j¼2

e�r�jDtE�
i

�
CA Siþj, n� i� jð ÞDt� ��

� Siþj � K
� �	

I Siþj�1�S�iþj�1f gI Siþj<S�iþjf g
�
,

where CE(S0, T) and CE(Si
*, (n � i)Dt) are calculated in Theorem 30.1.

The value of the American call option, when exercise is allowed at any

time before maturity, is obtained by taking the limit as Dt tends to zero in Eq. (30.6).

30.3.1.3 Sentiment Effect
Often, the manager awarded an incentive option may have different beliefs

about the company’s prospects than the investing public does. The manager
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believes that they possess private information and can benefit from it. Or

they have behavioral overconfidence regarding future risk-adjusted return

of their firm and believe ESOs are valuable. We consider the impact of sentiment

on ESO values and the exercise decision. Now, the drift term of stock

process in Eq. 30.1 becomes ms ¼ m + s � d � lk, where sentiment level is

denoted by s. In other words, the employee overestimates or rationally adjusts the

risk-adjusted return of the company owing to inside information by s, then
the same analysis in Theorem 30.1 and 30.2 are valid with a simple adjustment

in parameters. The adjusted interest rate and dividend yield used in pricing are

r� ¼ r þ as� 1� gð Þðalk þ 1

2
glk2a2 þ a2n2

�� l x� 1ð Þ,

d� ¼ d � 1� að Þs� ð1� g
�
alk þ 1

2
glk2a2 � 1� að Þan2

� �
� l x� 1ð Þ þ lk:

30.3.2 Compensation-Based Approach to Subjective Value

The subjective value of ESOs implied by total compensation packages is calculated

using a hierarchical clustering with K-means methodology to split executives into

like groups based on industry, rank, year, the firm market value,3 nonoption

compensation, and the immediate exercise value of the options.4 The number of

groups is decided by a cubic clustering criterion and the average total compensation

is calculated. Then, assuming that all executives within the same cluster receive the

same total compensation, for each executive in this cluster, the implied subjective

value is derived by comparing the difference between nonoption compensation and

the average compensation. We then set all negative implied ESO values equal to

zero and recalculate average compensation in each cluster with these subjective

values, repeating until the relative sum of changes in subjective values in a given

cluster is less than 0.01. This eliminates some negative subjective values such that

the final number of negative or zero values is about 5.7 % of our dataset. Worth

noting is the observation that, even in the first iteration of the process, after

grouping, only about 7.9 % of our data has options with a negative or zero value,

lending credence to the stability of our groupings.

To illustrate the intuition, presume that all executives within the same cluster

receive the same compensation on average,where any differences in salaries, bonuses,

and other income should be accounted for by options. If CEOs’ average total annual

compensation in a given year is three million, a particular CEO who receives one

3Gabaix and Landier (2008) finds that total market value as a proxy for firm size has the strongest

predictive power on compensation. We, however, redo all tests using number of employees as the

size proxy and find qualitatively identical results.
4The details of hierarchical clustering with a K-means approach and its performance are presented

in Appendix 2.
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million in nonoption compensation must then value their options at two million in

order to agree to continued employment. Importantly, it may be the case that the

market value of these options is only $100,000, but the CEO subjectively values them

at $500,000 because they believe the market to have undervalued the options.

Although thismethod of calculation is clearly not perfectly precise, we tried numerous

robustness checks by using different grouping criteria, all of which arrived at quali-

tatively identical results. Some intangible sources of value, such as training, learning

opportunities, and advantageous work environments, are not controlled here but may

be relatively unimportant given that this is an executive database of listed firms.

30.4 Simulation Results

Section 30.3 provided a pricing formula for ESOs that includes illiquidity of the

options and sentiment of the employees. Moreover, from this ESO pricing formula,

we can not only estimate the subjective values but also study the exercise policies.

The exercise boundary is endogenously derived by finding the minimum stock price

such that the option value equals its intrinsic value for each time. In other words, the

employee exercises the option when the stock price is above the exercise boundary.

To illustrate our model, this section discusses factors that affect ESO values and

exercise decisions including stock holding constraint, sentiment, level of risk

aversion, moneyness, dividend, time to maturity, total volatility, and normal

unsystematic volatility. We also empirically test these effects in next section.

According to the collected data from Compustat, the model parameters stock

price S, strike price K, total volatility s, dividend yield d, interest free rate r, and
time to maturity t are set to 25, 25, 0.3, 2 %, 5 %, 10, respectively. Normal

unsystematic volatility n is two-thirds of the total volatility following calibrations

applied by Compustat and the majority of papers in the area.5 We employ the

common parameterization for the coefficient of relative risk aversion 1� g¼ 2 and

three jump size models: double exponential, bivariate jump, and Y ¼ 0 (no residual

value).6 Additionally, default intensity l ¼ 0.01, following Duffee (1999) and

Fruhwirth and Sogner (2006), which use US and German bond data, respectively.

30.4.1 Exercise Behavior

Employees exercising their ESOs earlier is a pervasive phenomenon. Considering the

exercise policies is necessary when studying American ESOs. This is an essential

departure from Chang et al. (2008), which considers European-type ESOs. A number

5See Bettis et al. (2005), Aggarwal and Samwick (2003), Ingersoll (2006), and Bryan et al. (2000).
6The parameters of double exponential are estimated by daily return data from 1992 to 2004.

A jump occurs if return goes beyond �10 %, which relates to an approximately three-standard

deviation daily return during this period.
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of papers link early exercise behavior to under-diversification of employees (Hemmer

et al. 1996; Core and Guay 2001; Bettis et al. 2005). The problem of valuing ESOs

with early exercise is often approximated in practice by simply using the expected

time until exercise in place of the actual time tomaturity (Hull andWhite 2004; Bettis

et al. 2005). The expected time until exercise is estimated from past experience.

However, Ingersoll (2006) mentions that even using an unbiased estimate of the

expected time until exercise will not give a correct estimate of the option’s value.

And this method cannot be used to determine the subjective value because it will be

smaller due to the extra discounting required to compensate the lack of diversification.

A proper calculation must recognize that the decision to exercise is endogenous.

Liao and Lyuu (2009) incorporate the exercise pattern instead of using the expected

time until exercise technique in valuation of ESOs, to which the exercise patterns

are under Chi-square distribution assumption and not derived endogenously. Inger-

soll (2006) derives the exercise boundaries endogenously, while the exercise

policies are restricted constant in time. We extend the method developed in Gukhal

(2001), with a modification to include that an agent faces a constrained portfolio

problem, and derive the time varying exercise policies endogenously.

Which factors cause employees to exercise their options early? Figure 30.1

compares the exercise boundaries for some factors. Note that exercise boundaries

are decreasing function of time in all cases, which are different from the constant

exercise policies in Ingersoll (2006). The more restrictions on the stock holding or

the more risk averse the employee, the lower the exercise boundary. In other words,

because of the impossibility of full diversification, employees who are more

restricted on the stock holding or more risk averse prefer early exercise of their

options. Employees with high sentiment will postpone the exercise timing due to the

brightening prospect of the company. The employees who receive the money-type

options also tend to exercise early. In addition, larger dividends induce employees to

exercise their options sooner. Options with shorter lifetime are more quickly

exercised. Employees do not have much time value in these options and tend to

exercise their options earlier. Employees exercise volatile options early to balance

their portfolio risk, especially for idiosyncratic risk increases. Indeed, our model

findings are consistent with several empirical studies. For instance, Hemmer

et al. (1996), Huddart and Lang (1996), and Bettis et al. (2005) show that early

exercise is a pervasive phenomenon owing to risk aversion and undiversification of

employees. Huddart and Lang (1996) find that exercise is negatively related to the

time tomaturity and positively correlatedwith themarket-to-strike ratio andwith the

stock price volatility. Hemmer et al. (1996) and Bettis et al. (2005) also find that

stock price volatility has a significant effect on exercise decisions. In high-volatility

firms, employees exercise options much earlier than in low-volatility firms.

30.4.2 Factors’ Effects on ESOs

Understanding the factors that affect ESO values and the exercise decision is

important for firms designing stock option programs. As we mentioned before,
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ESO values and exercise decisions are closely related. Factors affecting the

employees exercise policies will directly influence the valuation of ESOs. This

section discusses the impact of factors on ESOs. The results are shown in

Table 30.1, which presents the studied factors effect on ESO value, discount

ratio, and early exercise premium, where ESO value is calculated by formula

(30.6), discount ratio is defined as one minus the ratio of subjective to market

value, and early exercise premium is the difference between American and Euro-

pean ESO value.

Fig. 30.1 Exercise boundaries. This figure presents the exercise boundaries according to stock

holding constraint a, sentiment s, level of risk aversion 1 � g, moneyness In: K ¼ 20, At: K ¼ 25,

Out: K ¼ 30, where K is exercise price, dividend yield d, time to maturity t, total volatility s, and
idiosyncratic risk n, respectively
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Unlike traditional options, ESOs usually have a vesting period during which they

cannot be exercised and employees are not permitted to sell their ESOs. In this

situation, employees receive the ESOs in a very illiquid market. Table 30.1 shows

that subjective values (a 6¼ 0) are uniformly smaller than the market values (a¼ 0).

These results are consistent with Lambert et al. (1991) and Hall and Murphy (2002),

in which the subjective value is lower than market value due to the constrained

fixed holding in the underlying stock. The more risk averse the employee (more

positive 1 � g) and more restrictions on the stock holding (larger a), the more they

lean to depreciate the option values and incur the higher early exercise premium.

Note that early exercise effect on ESO values cannot be ignored in these situations.

Because of the restriction of ESOs, many employees have undiversified portfolios

with large stock options for their own firms. Therefore, a risk-averse employee

discounts the ESO values. Discount ratios increase with stock holding constraint

and the degree of risk aversion. In other words, employees who are more risk averse

and more restricted on the stock holdings need to compensate more risk premium.

Table 30.1 Factors effect on employee stock options

Panel A: ESO values and discount ratios and early exercise premiums

CA CD Premium CA CD Premium

a ¼ 0.00 9.6487 0.0000 0.1839 s ¼ �0.005 6.1495 0.3120 0.9385

a ¼ 0.25 7.5859 0.2110 0.5796 s ¼ 0.000 6.4611 0.3279 0.8592

a ¼ 0.50 6.4628 0.3278 0.8592 s ¼ 0.005 6.7632 0.3469 0.7504

a ¼ 0.75 5.7706 0.3998 0.9366 s ¼ 0.010 7.1101 0.3655 0.6661

1 � g ¼ 1 8.5661 0.1122 0.4010 sok ¼ 25/30 6.4228 0.2321 0.4413

1 � g ¼ 2 7.5859 0.2110 0.5796 sok ¼ 25/25 7.5859 0.2110 0.5796

1 � g ¼ 3 6.9702 0.2811 0.9958 sok ¼ 25/20 9.3061 0.1733 1.0268

d ¼ 0.00 8.4788 0.3557 0.3372 t ¼ 5 5.4222 0.2545 0.4084

d ¼ 0.01 7.5724 0.3260 0.8031 t ¼ 10 6.7636 0.3018 1.1608

d ¼ 0.02 6.7704 0.3054 1.1729 t ¼ 15 7.4605 0.3257 1.9932

d ¼ 0.03 6.0673 0.2941 1.4674 t ¼ 20 7.8992 0.3363 2.8481

s ¼ 0.15 5.4571 0.1800 0.0677 n ¼ 0.1 7.1077 0.2607 0.2400

s ¼ 0.30 6.5440 0.3216 0.9413 n ¼ 0.2 6.2785 0.3470 1.0146

s ¼ 0.45 7.0701 0.4378 2.1005 n ¼ 0.3 5.6321 0.4142 2.1113

s ¼ 0.60 7.2776 0.5184 3.4397 n ¼ 0.4 5.1440 0.4650 3.0637

Panel B: Vesting effect

CA CD Premium

VP ¼ 0 VP ¼ 2 VP ¼ 4 VP ¼ 0 VP ¼ 2 VP ¼ 4 VP ¼ 0 VP ¼ 2 VP ¼ 4

a ¼ 0.25 7.5859 7.5660 7.4923 0.2110 0.2125 0.2200 0.5796 0.5651 0.4898

a ¼ 0.50 6.4628 6.4029 6.2639 0.3278 0.3335 0.3479 0.8592 0.8041 0.6635

a ¼ 0.75 5.7706 5.6867 5.5299 0.3998 0.4081 0.4243 0.9366 0.8570 0.6989

This table presents the impact of factors on ESOs, including stock holding constraint a, sentiment

s, level of risk aversion 1 � g, moneyness sok, dividend yield d, time to maturity t, total volatility
s, idiosyncratic risk n, and vesting period VP. CA, CD and Premium are the ESO value, discount

ratio (1-subjective/market) and early exercise premium, respectively
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Employee sentiment enhances the option value and reduces the early exercise

premium. One would expect for options with high sentiment having higher discount

that the option value declines sharply when employees face an undiversification

problem. The moneyness of each option Sok is the stock price at issuance divided

by strike price. If the option is in (out of) the money, Sok is greater (less) than 1. In the
money options have higher values, lower discount and higher early exercise pre-

miums. Interestingly, even in the money options having less discount than out of the

money, employees still tend more to early exercise in the money options to diversify

their wealth portfolio risk. Larger dividends depreciate the option values and induce

employees to exercise their options sooner, even they have lower discount ratios.

More interestingly, the early exercise premium is not zerowhen no dividends are paid.

This is a departure from traditional option theory, although it is consistent with the

phenomenon that ESOs are exercised substantially before maturity date, even ESOs

not paying dividends, because of the lack of diversification. Options with longer

lifetime have more value; at the same time, they have higher discount ratios and

early exercise premiums. Although not reported in the table, the lifetime of option

may be negatively related to European ESO value. This is due to the longer one must

wait and the greater risk caused by undiversification affecting the ESO value.

Whereas options may provide incentives for employees to work harder, they can

also induce suboptimal risk-taking behavior. General option pricing results show

that value should increase with risk while employees need to compensate more risk

premium at the same time. It is not necessarily the case that subjective value is

positive related to risk, as is the traditional result.7 We have the usual finding that

total volatility increases the option value; however, on the contrary, with respect to

normal unsystematic volatility, the subjective value decreases with it. In the Black-

Scholes framework, this risk is eliminated under a risk-neutral measure. However,

in our model, the employee has an illiquid holding and full diversification is

impossible. Hence, a risk-averse employee depreciates the ESO values. The dis-

count and early exercise premium increasing with the volatility risk also can be

found in Table 30.1. This is intuitive, because the more volatile the stock price, the

higher the opportunity cost of not being able to exercise. Therefore, employees have

more incentives to early exercise volatile options.8

Further we examine the effect of vesting on subjective value. Panel B compares

the ESOs that vest immediately, after 2, and 4 years, respectively. Vesting obvi-

ously reduces the ESO values since it restricts the exercise timing. Discount ratio

increasing with vesting period implies that market value is affected less than the

subjective value. Because the constrained ESOs are usually exercised much earlier

than unconstrained ESOs and more tend to fall afoul of the vesting rule. While

7Nohel and Todd (2005), Ryan and Wiggins (2001), and others show that option values increase

with risk, however, they do not study the impact of increased idiosyncratic risk. Carpenter (2000)

presents examples where convex incentive structures do not imply that the manager is more

willing to take risks. The model used in Chang et al. (2008) is able to capture this result.
8While Panel A shows the results of options that vest immediately, we can also consider the

vesting effect and there is no significant qualitative difference.
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vesting has negative effect on the American ESOs, it has no effect on the European

ESOs, therefore, early exercise premium decreases with vesting.

30.4.3 Offsetting Effect of Sentiment and Risk on ESO

The level of sentiment is estimated from two perspectives. First, we consider the

sentiment effect on ESO value (SenV), and then the estimated sentiment level can be

calculated whereby subjective value with sentiment is equal to market value.

Secondly, we estimate sentiment level from the early exercise perspective (SenE),

that is, what value of sentiment such that employees exercise their options at the time

that unconstrained investors do. The sentiment level of European ESOs (SenVE) is

also calculated. Due to the limitation of European options (they are not allowed to

early exercise), the sentiment level can only be estimated from value perspective.

Estimation of sentiment is shown in Table 30.2. Here, we only list the estimated

sentiment level at the money option because there is no obvious relationship

between sentiment level and moneyness. Table 30.2 shows that sentiment estimated

from the American and European ESO formulas have similar patterns. The more

risk averse the employee and more restricted on the stock holding, the higher the

sentiment level is needed. SenVE is slight higher than SenV because of more

restrictions in the European contract.

30.5 Empirical Study

Applying a comprehensive set of executive options and compensation data, this

study empirically prices both subjective value discount created by stock holding

constraint and the risk-adjusted excess returns necessary for employees to offset the

ESO risk premium, that is, the sentiment effect.

30.5.1 Data

Data for this study are collected from the Compustat Executive Compensation

(Execucomp) database. From this database, all executive stock options issued

between 1992 and 2004 are collected with stock price at issuance S, strike price

K, maturity date T, implied volatility Vol, and dividend yield Div. While the median

option is issued at the money, the mean is in the money (Sok ¼ 1.012). Note that

virtually all options are issued at the money (Sok ¼ 1). Indeed, this is true for about

90 % of our dataset. Average values of time to maturity, implied volatility, and

dividend yield are 9.3 years,9 0.43 % and 1.37 %, respectively.

9For some issues for which there is no time stamp, we assume an issuance date of July 1, inasmuch

asthis would be the middle of the fiscal year for the vast majority of firms.
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In addition to options data, we collect total compensation data from the

Execucomp database, which includes salary, bonus, restricted stock, option, long-

term incentive pay, and other income earned by executives each year. As can be

seen in Table 30.3, the mean total annual compensation for executives in this

dataset is a bit over $2 million, with a median of just over $1 million. The mean

and median ESO compensation numbers are roughly $1.2 and $0.4 million, respec-

tively. Not surprisingly, chief executives who were also board members received

the highest compensation ($4.2 million), but options are a substantial portion of that

compensation ($2.4 million). Indeed, options compensation generally substantially

outweighs all other forms of compensation.

Following Dittmann and Maug (2007), we further define the net cash inflow

(NCash) for each year as follows:

NCash
¼ Fixed salary after taxð Þ
þ Dividend income from shares held in own company after taxð Þ
þ Value of restricted stock granted
� Personal taxes on restricted stock that vest during the year
þ Net value realized from exercising options after taxð Þ
� Cash paid for purchasing additional stock

Fixed salary is the sum of five Compustat data types: Salary, Bonus, Other

Annual, All Other Total, and long-term incentive pay (LTIP).10 The year when the

executive enters the database is denoted by tE. The executive’s cumulative wealth

for year t is then

W tð Þ ¼ NCasht þ
Xt�1

‘¼tE

NCash‘
Yt

s¼‘þ1

1þ rsf

� �
:

10For cash paid for purchasing additional stock, where direct data is unavailable, we use the change

in stock holdings times the year-end stock price to calculate this value.

Table 30.2 Estimation of sentiment

SenV SenVE SenE

R ¼ 1 R ¼ 2 R ¼ 3 R ¼ 1 R ¼ 2 R ¼ 3 R ¼ 1 R ¼ 2 R ¼ 3

a ¼ 0.25 0.0100 0.0200 0.0300 0.0100 0.0200 0.0300 0.0097 0.0180 0.0291

a ¼ 0.50 0.0199 0.0399 0.0599 0.0200 0.0400 0.0599 0.0194 0.0369 0.0585

a ¼ 0.75 0.0298 0.0598 0.0896 0.0299 0.0598 0.0897 0.0289 0.0579 0.0866

This table presents the sentiment levels necessary to offset the ESO risk premium. Sentiment levels

SenV and SenVE are calculated while the subjective value with sentiment is equal to market value

for the American and European options, respectively. SenE is the value of sentiment such that an

employee exercises their options at the time that unconstrained investors do. a and R ¼ 1 � g
represent the stock holding constraint and level of risk aversion
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In other words, assume that the executive has no wealth before entering the firm; all

NCasht are realized at the end of the fiscal year and invested at the risk-free rate rf
t+1

during the next fiscal year. Then, a is the sum of all illiquid firm-specific holdings,

including unvested restricted stocks and options, divided by total cumulative wealth.

Average a is about 35 %, implying that the illiquid firm-specific holdings account for

more than one-third of executive total wealth.11 We also calculate a by an iterated

approach that synchronizes a and subjective value simultaneously. Qualitative findings

with respect to sentiment are identical. Several proxies of sentiment are used in an

empirical study including previous year risk-adjusted CAPM alpha and Fortune mag-

azine’s list of top 100 firms to work for, and estimated from our ESO pricing formula.

30.5.2 Preliminary Findings

Substituting the subjective value implied by compensation data into our model

along with the options variables given in our dataset, we are able to back out

sentiment levels, Sen. Results are presented in Table 30.4. There are about 105,000
options issued by each firm (AvgIss) over the test period, with a total of nearly

2,700 firms and 82,000 total observations accounted for. Industry breakdowns,

while exhibiting some fluctuations in point estimates, show that results across

industries are qualitatively similar. While the mean Black-Scholes value of options,

BSOPM, is about $13.09, with some variation across industries, the mean subjective

value, Sub, is more than $19.38, reflecting a 48 % premium. That is, although

virtually all of the theoretical literature implies a subjective value discount, empir-

ical data show that executives generally value ESOs more highly than their Black-

Scholes values. Though not reported in the table, t-tests show that subjective values

11Holland and Elder (2006) find that rank-and-file employees exhibit an a close to 10 % and concur

that subjective value is decreasing in a because of risk aversion and under-diversification.

Table 30.3 Compensation summary statistics

Aggregate Mean by title

Mean Median Std Dev B&C B&NC NB&C NB&NC

Salary 365 300 234 556 481 335 286

Bonus 336 151 816 650 479 289 222

Other annual 24 0 179 44 35 22 16

All other total 70 11 540 94 131 50 45

LTIP 77 0 442 127 128 72 48

Restricted stock 163 0 803 366 220 184 101

Options 1,178 378 3,407 2,382 1,683 1,264 748

Total 2,214 1,074 4,262 4,219 3,158 2,217 1,465

This table presents summary statistics for compensation data for four categories of executives:

board & CEO (B&C), board & not CEO (B&NC), not board & CEO (NB&C), and not board & not

CEO (NB&NC). Numbers are reported in 1,000s and LTIP represents the long-term incentive pay
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are statistically significantly higher than Black-Scholes values at the 1 % level for

almost all industries and in aggregate. The only exception is the others industry,

where Sen is still significantly positive but Sub is about equal to BSOPM owing to

a particularly high a in this industry.

Given the large proportion of executive income that is attributed to illiquid, firm-

specific options holdings, this finding suggests substantial overconfidence or pos-

itive inside information regarding their firm’s future prospects. Indeed, the data

show that the average executive prices ESOs such that the firm should outperform

the market’s expectations by an average of 12 % per annum (Sen). T-tests show that

these values are significantly different from zero at the 1 % level in all industries

and in aggregate.

Table 30.5 shows the mean and median values of Rt and Sub in each subsample,

where Rt is the CAPM alpha. Top is a dummy variable taking value 1 if the

executive works for a firm listed in Fortune magazine’s top 100 companies to

work for. Results show that firms with higher previous-year return tend to have

significantly higher subjective values. This is true of both the mean and median

value. Interestingly, subsequent return momentum is not consistently present in this

data, at least as regards mean values. Firms listed in the top 100 in fact make

significantly lower risk-adjusted returns in the year in which they are so listed.

However, they enjoy substantially higher subjective value. This indicates that

sentiment may generally be independent of performance but does significantly

affect subjective value.

Figure 30.2 shows that relative subjective values are greater than one but

relatively stable over time. In contrast, the number of issuances generally increases.

Table 30.4 Summary statistics for subjective value and sentiment by industry

Sector BSOPM Sub Sen AvgCom AvgIss Obs

10 Energy 12.589 16.239 0.089 1,774.08 78.46 4,307

15 Materials 10.822 17.613 0.076 1,399.90 61.89 6,412

20 Industrials 12.569 20.305 0.115 1,591.53 70.64 12,134

25 Con. Dis. 12.177 19.799 0.106 2,030.63 98.64 15,925

30 Con. Sta. 12.053 18.121 0.076 2,405.29 111.40 4,347

35 Health care 16.290 21.098 0.115 2,338.68 105.61 8,883

40 Financials 13.440 21.770 0.066 2,892.28 99.37 10,441

45 Inf. Tec. 15.853 18.499 0.229 2,748.47 164.53 14,614

50 Tel. Ser. 12.768 22.941 0.162 5,310.29 272.27 1,324

55 Utilities 5.475 14.633 0.063 1,370.11 67.66 3,931

Others 9.487 9.583 0.208 1,360.34 111.24 56

Total 13.088 19.385 0.120 2,213.73 105.13 82,374

This table presents, by industry: Black-Scholes value BSOPM, subjective value Sub, sentiment

level Sen, average total compensation AvgCom, number of options issued AvgIss, and number of

observations by individual Obs. AvgCom and AvgIss are reported in thousands. Sen is calculated

using the European ESO formula (30.5), where the distribution of jump size follows y ¼ 0. Con.

Dis., Con. Sta., Inf. Tec., and Tel. Ser. refer to Consumer Discretionary, Consumer Staples,

Information Technology and Telecommunication Services, respectively

860 L.-j. Chen and C.-d. Fuh



The industry with the second highest subjective values (Financials) has a below-

average number of issuances. These observations highlight the importance of

looking at pricing, rather than issuance alone, as high subjective values do not

imply that ESOs will be a more popular financing tool.

30.5.3 Implications of Regression Results and Variable Sensitivities

We now shift our attention to the testable implications of our model, namely

confirming the relations between key options’ variables and subjective value.

Specifically, we apply the following regression equation:

Sub ¼ Intþ baaþ bSenSenþ bSokSok

þbttþ bVolVolþ bDivDivþ e,
(30.7)

where Int is the intercept term and all variables are defined as before. Note that for

all results presented here, the calculation of significance is via clustered standard

errors by firm, though OLS results are nearly identical.

Table 30.5 Difference tests for subjective value and sentiment

Rt � 1 > 0 Rt � 1 < 0 P-value Top ¼ 1 Top ¼ 0 P-value

mean(Rt) 0.00042 0.00041 0.4493 0.00038 0.00059 <.0001

median(Rt) 0.00031 0.00028 0.0176 0.00030 0.00044 <.0001

mean(Sub) 21.4131 15.6336 <.0001 24.7420 17.6169 0.0003

median(Sub) 14.1350 10.9487 <.0001 17.4147 10.9794 <.0001

This table shows the mean and median values of Rt and Sub in each subsample, where Rt is the

CAPM alpha at time t. Top equals 1 if the firm is listed as a top 100 firm by Fortune magazine in

a given year. The p-values measure the significance of difference tests
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Fig. 30.2 Summary AvgIss and Sub/BSOPM by year. AvgIss and Sub/BSOPM for each year are

graphed in this figure. AvgIss, BSOPM, and Sub are number of options issued, Black-Scholes

value, and subjective value, respectively. The y-axis of the histogram is on the left and that of the

line chart is on the right
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First, we apply gross subjective value Sub as the dependent variable. The first

three tests in Table 30.6 use CAPM risk-adjusted alpha from the year prior to option

issuance Rt�1 as a proxy for sentiment under the conjecture that those stocks that

performed better in the previous year generate more positive sentiment prior to

options being issued. Note that our model implies that only the risk-adjusted excess

return should be priced because the market portion of the firm’s return is eliminated

via the risk-neutral measure. Bergman and Jenter (2007), in contrast, test the gross

prior year return. Because a year’s worth of data is required to calculate these

alphas, the dataset is reduced to about 57,000 observations. We find that a is

significantly negatively related to subjective value. This matches our intuition

Table 30.6 Regression results for subjective value

Int a Sen Sok t Vol Div Obs

Sen ¼ Rt � 1

Coefficient 1.8988 �0.2126 0.0356 0.0361 �0.2813 �0.3983 �0.0783 56,602

(p-value) (<.0001) (<.0001) (<.0001) (0.2476) (0.0489) (<.0001) (<.0001)

Insider

Coefficient 1.8650 �0.3001 0.0628 0.0860 �0.2883 �0.3409 �0.0844 23,826

(p-value) (<.0001) (<.0001) (<.0001) (0.0401) (0.1712) (0.0004) (0.0017)

True sentiment

Coefficient 1.9071 �0.1252 0.0100 �0.0039 �0.2631 �0.4344 �0.0904 21,333

(p-value) (<.0001) (<.0001) (<.0001) (0.8583) (0.2858) (<.0001) (<.0001)

Sen ¼ Top

Coefficient 1.5014 �0.2244 0.0114 0.0802 �0.0560 �0.2318 �0.0807 49,090

(p-value) (<.0001) (<.0001) (0.0169) (0.6641) (0.7216) (<.0001) (<.0001)

Y ¼ 0

Coefficient 2.2013 �0.4364 0.0076 0.0424 �0.3265 �0.3872 �0.1012 82,374

(p-value) (<.0001) (<.0001) (<.0001) (0.1194) (0.3041) (<.0001) (<.0001)

Double exp

Coefficient 2.1671 �0.4270 0.0017 0.0429 �0.3056 �0.3786 �0.1005 82,374

(p-value) (<.0001) (<.0001) (<.0001) (0.1155) (0.3310) (<.0001) (<.0001)

Bivariate con

Coefficient 2.1799 �0.4267 0.0021 0.0428 �0.3075 �0.3883 �0.1023 82,374

(p-value) (<.0001) (<.0001) (<.0001) (0.1162) (0.3284) (<.0001) (<.0001)

This table presents the estimated coefficients from the following regressions:

Sub ¼ Int + baa + bSenSen + bSokSok + btt + bVolVol + bDivDiv + e
where Sub, Int, a, Sen, Sok, t, Vol, and Div refer to the subjective value, intercept term, proportion

of total wealth held in illiquid firm-specific holdings, sentiment, ratio of stock price to exercise

price, time to maturity, implied volatility, and dividend payout, respectively. In the first three tests,

Sen¼ Rt�1, the CAPM alpha. We split the data into two groups according to the sign of the product

of Rt and Sen. When Sen correctly forecasts the sign of the CAPM alpha for a given year, this is

denoted as an “insider.” When Sen and Rt do not match in sign, we denote this as “true sentiment.”

In the fourth test, Sen is a dummy variable that takes value 1 if the firm is in Fortune’s top 100 and
0 otherwise. In the next three tests, Sen is calculated from European ESO formula (30.5), with the

distribution of jump size following y ¼ 0, a double exponential, and a bivariate constant jump

model, respectively
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that the larger the proportion of one’s portfolio held in options, the less diversified

the portfolio, and the less valuable the ESO. Sen, on the other hand, is positively

related, and significantly so. In other words, positive sentiment is associated with

higher subjective value. Note that these results control for the usual options’ pricing

factors. Whereas Div is significantly negative related as expected, Sok and t are not
consistently significantly related, and Vol is negatively related. As explored more

fully later, this last negative relation is quite telling and is consistent with our model

as the sensitivity of subjective value to idiosyncratic risk is negative.

Further, the data are split into two groups according to the sign of the product of

Rt and Sen. A positive (negative) sign implies that the positive sentiment measure is

(not) accompanied by strong performance. The positive case (insider), then, can be

explained by nonsentiment-related factors. The executive may have private inside

information and hence be able to forecast future returns. They also have the ability

to affect future returns so that optimism may be self-fulfilling. The negative case

(true sentiment), on the other hand, has not such a concern inasmuch as it would

imply that positive (negative) sentiment is followed by poor (good) performance.

As it turns out, similar results are obtained in both cases: sentiment is positively

related to subjective value while a is negatively related, both significantly

so. As a result, it is not likely that insider information explains whole sentiment

effect on subjective value.

Next, the Top dummy is selected as a proxy for sentiment. Once again, sentiment

is significantly positively related to subjective value while a is significantly nega-

tively related. All other relations are as above.

We also back Sen out of the European ESO formula (30.5) under the aforemen-

tioned three different jump size assumptions.12 Because our model itself determines

the relation between subjective value and Sen, the purpose of these tests is simply to

observe the other variable relations as well as the stability of the model to the

specification of the jump process. Results are quite consistent across the three

processes tested here. All other coefficients remain qualitatively as before with

the coefficient of a, importantly, remaining significantly negative in all cases.

Finally, in order to more clearly test the difference in impact of sentiment for

insider versus true sentiment events, we interact the event identification dummy

with our sentiment proxy as follows:

Sub ¼ Intþ baaþ bInSenDInSenþ bTSenDTSenþ bSokSok þ btt

þ bVolVolþ bDivDivþ e: (30.8)

All variables are defined as before and Sen is the previous-period CAPM alpha,

also as before. DIn is a dummy variable that takes value 1 if the event is insider and

12Here, sentiment is estimated from the European option formula. It can also be calculated from

the American option formula but with more exhaustive computations. As we mentioned before,

sentiment estimated from the European and American ESO formulas have similar patterns. It may

not affect the regression results much.
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0 otherwise. By analogy, DT takes value 1 if the event is true sentiment and

0 otherwise. The results appear as in Table 30.7. Note that, while sentiment

increases subjectively value significantly in both cases, the impact of sentiment

when the event is likely to be an insider event is much larger. In other words, when

strong prior performance reveals real information regarding future performance

that may be known to managers, the impact on subjective value is strong. When

prior performance proves not to be informative, the impact on subjective value is

small. However, the impact is positive and significant in both cases.

30.5.4 Subjective Value and Risk

We now turn our attention to the sensitivity of subjective value to risk. While we

note that our model implies a positive relation between total risk and subjective

value, it further dictates that the sensitivity of subjective value to idiosyncratic risk

is negative, a notion supported by our empirical findings. This indicates that

increased levels of risk may negatively affect subjective value owing to the inability

of executives to fully diversify their holdings. In contrast, the Black-Scholes as well

as the majority of options pricing models prescribe no role to idiosyncratic risk, that

is, the sensitivity should be zero, and are generally not be able to capture the

empirical finding that subjective value is negatively related to risk.

In applying the empirical data to the formulae for the sensitivities of subjective

value to various forms of risk, our model does indeed generate a negative relation

between firm-specific risk and subjective value, a finding that is consistent also with

the empirical observations of Meulbroek (2001). This finding is particularly impor-

tant as managers can easily affect the firm’s idiosyncratic risk level through various

moral hazard-related activities.

In Table 30.8, risk sensitivities are calculated, vegas, for all options issues in our

dataset assuming there are no illiquid holdings (UV), that is, a¼ 0, and using our default

value for a (V), with and without consideration of sentiment. The first two columns find

as expected that the sensitivity with respect to total risk is positive, for both UV and V,

regardless of whether sentiment is considered or not. This is true of all jump specifica-

tions. In every case, the sensitivity is higher when sentiment is not considered. Looking

at the vegas with respect to jump frequency, UV(freq) can be either positive or negative

depending on the jump specification, while V(freq) is always negative. Interestingly,

Table 30.7 Regression results for insider versus true sentiment events

Int a DInSen DTSen Sok t Vol Div

Sen ¼ Rt�1

Coefficient 1.9070 �0.2214 0.0372 0.0044 0.0343 �0.2866 �0.3872 �0.0876

(p-value) (<.0001) (<.0001) (<.0001) (<.0001) (0.3769) (0.0876) (<.0001) (<.0001)

This table presents regression results for insider versus true sentiment events, where DIn is

a dummy variable taking value 1 if the event is insider and 0 otherwise, DT takes value 1 if it is

true sentiment and 0 otherwise, and Sen is again defined as the CAPM alpha
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UV is positive for the constant jump model but negative for the other two models,

pointing out the importance of jump specification when liquidity is not also considered.

The magnitude of UV is always smaller than that of V.

Perhaps the most interesting factor affecting our subjective value in our model is

idiosyncratic risk, for which the estimate is always negative and is significantly

larger in magnitude than the other vegas. While the jump size vega also plays a role

and is likewise always negative, the magnitude of this effect is much smaller. This

finding highlights the role of idiosyncratic risk in our model and explains why the

empirical sensitivity of subjective value to volatility is found to be negative,

contrary to generally accepted moral hazard models that dictate that option com-

pensation encourages risk taking. If agents are sufficiently under-diversified, the

risk premium from taking on excess idiosyncratic risk offsets gains from convexity

and discourages risk-taking behavior. The corresponding UVs for idiosyncratic and

jump size risk are both zero as these do not play a role in determining market value

Table 30.8 Summary statistics for vega

Panel A: Y ¼ 0

UV(total) V(total) UV(freq) V(freq) V(idio) V(size)

Without sentiment

Mean 11.237 13.715 12.787 �0.739 �24.212 �0.162

Median 9.173 11.684 10.159 �0.143 �19.611 �0.077

With sentiment

Mean 5.968 7.646 16.486 �11.222 �41.638 �0.415

Median 3.007 4.906 13.191 �2.857 �31.063 �0.144

Panel B: Double exponential jump model

UV(total) V(total) UV(freq) V(freq) V(idio) V(size)

Without sentiment

Mean 13.456 16.791 �1.039 �0.564 �25.877 �0.017

Median 10.875 14.129 �0.871 �0.449 �20.396 �0.008

With sentiment

Mean 7.397 10.063 �14.217 �1.213 �44.233 �0.042

Median 4.173 7.041 �1.823 �0.806 �32.466 �0.014

Panel C: Bivariate constant jump model

UV(total) V(total) UV(freq) V(freq) V(idio) V(size)

Without sentiment

Mean 13.366 16.792 �1.194 �0.677 �25.860 �0.017

Median 10.879 14.131 �1.015 �0.542 �20.382 �0.008

With sentiment

Mean 7.396 10.060 �15.984 �1.407 �44.231 �0.042

Median 4.173 7.037 �2.103 �0.957 �32.468 �0.014

This table presents test results for vega. In Panels A, B, and C, the distribution of jump sizes are

zero jump, double exponential jump, and bivariate constant jump, respectively. UV(total) and UV

(freq) are total risk and jump frequency risk vegas under our model when all holdings are liquid.

V(total), V(idio), V(freq), and V(size) refer to total risk vega, idiosyncratic risk vega, jump

frequency risk vega, and jump size risk vega, respectively
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when there are no under-diversified holdings. Also, the Vs are substantially more

negative when sentiment is introduced, pointing out the sharply offsetting effects of

positive sentiment and risk aversion in this model. Which piece dominates then

depends on the risk aversion parameter and a of the employee.

30.6 Conclusion

This chapter applies three statistics methods in ESO study, including change of

measure, hierarchical clustering with a K-means approach, and estimation

of standard errors in finance panel data. We use a model for employee stock options

that incorporates illiquidity of the options, a jump diffusion for the stock price

evolution that includes various jump processes, and the potential roles of employee

sentiment and insider information in a world where employees balance their wealth

among the company’s stock, the market portfolio, and a risk-free asset. Our option

contract is American type and the optimal exercise boundary is derived endoge-

nously. From the ESO pricing formula, we are able to not only estimate the

subjective values but also study the exercise policies.

The subjective value placed on ESOs implied by compensation data is calculated

by applying empirical data. Specifically, using data provided by Compustat, execu-

tives are grouped by a hierarchical clustering with a K-means approach based on

a number of firm and individual criteria. By assuming that all executives in the same

cluster receive the same total compensation, a notion that relies on the existence of

competitive labormarkets, we then back out the valuation placed by each executive on

their respective ESO. These groups include consideration of nonoption compensation,

rank, industry, year, firm size, and immediate exercise value. Though the extant

literature predicts that employees should discount the value of their options, we find

that executives in fact value their options more highly than implied by Black-Scholes,

applying an average premium of 48 %. As such, the cost of issuance for the firm is

vastly lower than the benefit perceived by employees, suggesting that ESO compen-

sation should be an even larger part of executive compensation. We then relate

subjective value to sentiment levels and generate the novel finding that executives

must expect their firm’s risk-adjusted returns to outpace that predicted by the market

by 12% in order to justify the subjective value placed on ESOs. This expectation may

be the result of private information regarding the growth prospects of the firm.

Testing subjective value and its relation to pertinent variables, subjective value is

negatively related to the proportion of wealth held in illiquid firm-specific holdings and

positively related sentiment. In other words, the larger the illiquid ESO position is, the

larger the discount risk aversion prescribed and the lower the subjective value implied in

the compensation package. On the other hand, themore positive the employee’s view of

future risk-adjusted returns, the more valuable the ESO. Interestingly, subjective value

may be negatively related to risk as the inability of executives to fully diversify their

holdingsmay lead to risk premia that outweigh the value placed on risk by the convexity

of options payouts. Note that this relation is particularly negative with regard to

idiosyncratic risk and is empirically also negative for risk associated with both jump
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frequency and size. Because these aspects of return are precisely those that may bemost

directly controlled by executives, traditional moral hazard arguments relating solely to

the convexity of the options payout may not hold.

Firms increasingly grant nontraditional employee stock options to link stock price

performance and managerial wealth and provide greater incentives to employees.

While this study focuses on the traditional employee stock option, the main intuition

can be involved in nontraditional ESOs. Premium stock option, performance-vested

stock option, repriceable stock option, purchased stock option, reload stock option,

and index stock option are the objects of future study. We can derive the option

formulas and compare the value, incentive effect, and cost per unit of subjective

incentive across the nontraditional ESOs and the traditional ones. This future study

provides a firm a proper compensation vehicle according to its characteristics.

Appendix 1: Derivation of Risk-Neutral Probability by Change of
Measure

Here we introduce the idea for deriving the ESO formulas and define using

probability measure P* by the technique of change of measure.

The process of an employee’s marginal utility or the pricing kernel is:

dJW
JW

¼ �r̂dt� ŝdWm þ n̂dWs þ Ŷ � 1
� �

dNt,

where

r̂ ¼ r � 1� gð Þ a2n2 þ 1

2
a2glk2 þ alk

� �
,

ŝ ¼ mm � r

sm
,

n̂ ¼ � 1� gð Þan,
Ŷ ¼ a Y � 1ð Þ þ 1½ �g�1,

then

JW W tð Þ, t½ � ¼ JW W 0ð Þ, 0½ �exp �r̂ � 1

2
ŝ2 � 1

2
n̂2

� �
tþ; ŝWm tð Þ þ n̂Ws tð Þ

� �YNt

i¼0

Ŷ i:

Let B(t, T) be the price of a zero coupon bond with maturity T, then

B t; Tð Þ ¼ E
JW W Tð Þ, T½ �
JW W tð Þ, t½ � B T; Tð Þ F tj g

�

¼ E exp �r̂ � 1

2
ŝ2 � 1

2
n̂2

� �
tþ ŝWm tð Þ

�
þ n̂Ws tð Þ

�YNt

i¼0

Ŷ i

( )

¼ exp �r̂ þ l x� 1ð Þ½ �tf g,
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where

t ¼ T � t, x ¼ E Ŷ
� � ¼ E a Y � 1ð Þ þ 1½ �g�1

n o
:

The bond yield

r� 	 � 1

T � t
lnB t; Tð Þ

¼ r � 1� gð Þðalk þ 1

2
glk2a2 þ a2n2

�� l x� 1ð Þ:

Let

Z tð Þ 	 er�tJW ¼ exp � 1

2
ŝ2 � 1

2
n̂2 � l x� 1ð Þtþ ŝWm tð Þ

� �
þ n̂Ws tð Þ

� �YNt

i¼0

Ŷ i ,

then Z(t) is a martingale under P, and we have

JW W Tð Þ,T½ �
JW W tð Þ, t½ � ¼ e�r� T�tð Þ Z Tð Þ

Z tð Þ :

The rational equilibrium value of the ESO at time t, F(St, t), satisfies the Euler
equation,

F St; tð Þ ¼ Et
JW W Tð Þ,T½ �
JW W tð Þ, t½ � F ST ; Tð Þ

� �

¼ e�r� T�tð ÞE�
t F ST ; Tð Þ½ �,

where dP�
dP ¼ Z tð Þ

Z 0ð Þ, and Et
* is the expectation under P* and information at time t. Under

the probability measure P*, the processes W�
m ¼ Wm � ŝt and W�

s ¼ Ws � n̂t are
Brownian motions, Nt is a Poisson process with intensity l* ¼ lx, and the jump

sizes follow density fY
*(y),

f �Y yð Þ ¼ 1

x
a y� 1ð Þ þ 1½ �g�1f Y yð Þ:

Therefore,

dS

S
¼ msdtþ ssdWm þ ndWs þ Y � 1ð ÞdNt

¼ r � d � 1� gð Þan2 � lk
� 	

dt

þ ssdW�
m þ ndW�

s þ Y � 1ð ÞdNt

	 r� � d�ð Þdtþ sNdW�
t þ ðY � 1

�
dNt,
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where

d� ¼ d � 1� gð Þ alk þ 1

2
glk2a2 � ð1� a

�
an2

� �

� l x� 1ð Þ þ lk,

s2N ¼ s2s þ n2,

sNW�
t ¼ ssW�

m þ nW�
s :

In other words,

St ¼ S0exp r� � d� � 1

2
s2N

� �
tþ sNW�

t

� �YNt

i¼0

Yi:

Appendix 2: Valuation of European ESOs

The option price at time t is

CE St;tð Þ ¼ e�r� T�tð ÞE�
t ST�K½ �þ� 


¼ e�r�tE�
t Stexp r��d��1

2
s2N

� �
tþsN W�

T�W�
t

� �h i


YNT

i¼Nt

Yi�K

( )þ( )

¼StE
�
(
exp �d��1

2
s2N

� �
tþsNW�

t

h i



YNt

i¼0

YiI W�
t�a1ð Þ

)
�Ke�r�tE� I W�

t�a1ð Þ
n o

¼Ste
�d�tE�

(
E�
(
exp �1

2
s2NtþsNW�

t

h i


YNt

i¼0

YiI W�
t�a1ð Þ

YNt

i¼0

Yi

�����

))

�Ke�r�tE� E� I W�
t�a1ð Þ

YNt

i¼0

Yi

�����

#" )(

¼Ste
�d�tE� YNt

i¼0

YiF �a1�sNtffiffiffi
t

p
� �( )

�Ke�r�tE� F � a1ffiffiffi
t

p
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¼
X1
j¼0

lxtð Þje�lxt

j!
Ste

�d�tE� Yj

i¼0

YiF d�1
� �" #(

�Ke�r�tE� F d�2
� �� 	)
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where

d�1 ¼
ln St

Yj

i¼0
Yi

� �
=K

h i
þ r� � d� þ 1

2
s2N

� �
t

sN
ffiffiffi
t

p ,

d�2 ¼ d�1 � sN
ffiffiffi
t

p
, a1 ¼ �d�2

ffiffiffi
t

p
:

Appendix 3: Hierarchical Clustering with a K-Means Approach

The compensation-based subjective value is calculated by assuming that all

executives within the same cluster receive the same total compensation. For

each executive in this cluster, the implied subjective value is derived by compar-

ing the difference between nonoption compensation and the average compensa-

tion. It is very important to group executives appropriately. We use cubic

clustering criterion to generate number of groups and split executives according

to position, the firm’s total market value, nonoption compensation, and the

immediate exercise value of the options for each industry by hierarchical cluster-

ing with a K-means approach. For each group, we calculate the average total

compensation for all executives. If all executives receive the same compensation,

on average, any differences in salaries, bonuses, and other income should be

accounted for by options.

Figure 30.3 presents box plots of the natural log of total compensation for the

two largest industries in our sample: Consumer Discretionary and Information

Technology. With the exception of some outliers, which are subsequently

removed in our main tests, the boxed areas generally do not overlap from cluster

Fig. 30.3 Natural log of total compensation. The box plots show the natural log of total

compensation for the two largest industries in our sample. Executives are grouped according to

position, the firm’s total market value, nonoption compensation, and the immediate exercise

value of the options for each industry by using a hierarchical clustering with K-means

approach
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to cluster, demonstrating the relative homogeneity of firms within each cluster

and generally distinctly separated from other clusters. As a result, we believe

that compensation characteristics within each cluster should be quite compara-

ble, lending a measure of credence to our method of calculating subjective

value.
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I(d) processes and the cointegration relationship. A structural break appears

a change in endogenous relationships. This break could be caused by a shift in

mean, variance, or a persistent change in the data property. In general, structural

change tests can be categorized into two types: one is the classical approach to

testing for structural change, which employs retrospective tests using a historical

data set of a given length; the other one is the fluctuation-type test in

a monitoring scheme, which means for given a history period for which

a regression relationship is known to be stable, we then test whether incoming

data are consistent with the previously established relationship. Several struc-

tural changes such as CUSUM squared tests, the QLR test, the prediction test,

the multiple break test, bubble tests, cointegration breakdown tests, and the

monitoring fluctuation test are discussed in this chapter, and we further illustrate

all details and usefulness of these tests.

Keywords

Cointegration breakdown test • Structural break • Long-memory process •

Monitoring fluctuation test • Boundary function • CUSUM squared test •

Prediction test • Bubble test • Unit root time series • Persistent change

31.1 Introduction

The structural break refers to the phenomenon illustrating the time series comes

across unanticipated and significantly influential shifts. Generally, most macroeco-

nomic and financial time series are subject to occasional structural breaks.

Ignoring the presence of structural breaks can lead to seriously biased estimates

and forecasts and the unreliability of models (see Clements and Hendry 1998,

1999). Since economic activities often experience rather long period, there exist

plausible possibilities that structural breaks could occur. Hence, it is very important

to monitor and modify the changes of the model characteristics. If those model

characteristics were not corrected in real time, it may lead to wrong decisions on the

policy making and investment plans for policy makers and practitioners. Conse-

quently, those wrong decisions could result in the fluctuations or crises in economy

and finance.

Examples in the real world are a large sum of financial crises ever since before

the Industrial Revolution. For instance, ten enormous bubbles took place ahead of

the twenty-first century documented by Kindleberger (2005), and the latest

subprime crisis occurred in 2008. All crises crushed the wealth of the whole

world again and again. After the first reported financial crisis – Dutch tulip bulb

bubble in 1636 – all meltdowns in the economy systems were obviously character-

ized by the deviation from steadily development.

It implies that structural breaks could happen prior to the bubbles or explosions.

Accordingly, an accurate approach to detecting structural breaks correctly can be

treated as a measurement to notice the possible incoming financial crisis or to

monitor market activities. On the other hand, developing a suitable structural
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break-testing mechanism is crucial to regulators and investors to modify decisions

in order to avoid a potential incoming crash.

The first seminal paper of the issue regarding to the structural break tests was

proposed by Chow (1960). Nowadays, structural change tests have been explored

far more than the original Chow test and developed in many different dimensions.

In this chapter, we survey various structural changes and monitoring tests for a class

of widely used time series models in economics and finance, including I(0), I(1),
I(d) processes, the cointegration breakdown test, and bubble tests. The conventional
structural change tests are categorized into three types: the mean shift, the persistent

change, and the parameter change. Since the issues of break numbers and properties

of the data-generating process (DGP) would be the main factors to affect the

performances of the structural tests, it is essential to design the structural tests

with respect to different scenarios.

The rest of this chapter is organized as follows. Section 31.2 illustrates the

changes in mean and coefficients when DGP are stationary I(0) and stationary

long-memory I(d) processes. Section 31.3 focuses on persistent change systemat-

ically. Tests of bubbles and the cointegration breakdown are discussed in Sect. 31.4.

Section 31.5 provides the monitoring tests in real time.

31.2 Structural Breaks in Parameters

Structural break has been an intriguing issue since Chow (1960) test resolves how to

detect a single structural change with known break date, and more ensuing litera-

tures expand that in different dimensions. Break numbers can be multiple while

break dates are no longer required as necessitates. Moreover, econometricians

apply research closely to reality, adjusting these models from classical stationary

process to nonstationary and long memory, which are found more likely to reflect

economic and financial data. Now, we will offer systematical analysis of these

marked developments.

31.2.1 Stationary Processes

It is the Chow (1960) test that firstly detect a potential structural break for a given

break date. Suppose the model is

yt ¼ b
0
tXt�1 þ e

0
t, (31.1)

where our null hypothesis is bt ¼ b for all t, et is a martingale difference sequence

with respect to the s� fields, and Xt is a k � 1 vector of regressor, which are here

assumed to be constant and/or I(0) with EXtXt

0 ¼ SX and, possibly, a nonzero mean.

Particularly, Xt�1 can include lagged dependent variables as long as they are

I(0) under the null. When the break date is unknown, a natural solution proposed

by Quandt (1960) calculates break date, and it is extended by Davies (1977) to

general models with parameters unidentified under the null. And Andrews (1993)
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reports asymptotic critical values of this QLR statistics. in the form of Quandt

likelihood ratio (QLR) statistic.

To the contrast of the null, the alternative hypothesis of a single break in some or

all of the coefficients is

bt ¼ b, t � r and bt ¼ bþ g, t > r, (31.2)

where r, k + 1 < r < T, is the “break date” (or “change point”) and g 6¼ 0.

When the potential break date is known, a natural test for change in b is the

Chow (1960) test, which can be implemented in asymptotically equivalent Wald,

Lagrange multiplier (LM), and LR forms. In the Wald form, the test for a break at

a fraction r/T through the sample is

FT r=Tð Þ ¼ SSR1,T � SSR1, r þ SSRrþ1,T
� �

SSR1, r þ SSRrþ1,T
� �

= T � 2kð Þ , (31.3)

where SSR1, r is the sum of squared residuals from the estimation of Eq. 31.1 on

observation 1,. . ., r, etc. For fixed r/T, FT(r/T) has an asymptotic wk
2 distribution

under the null. However, when break date is unknown, the situation can be more

complicated. An expectable idea is to estimate the break date and then compute

Eq. 31.3 for that break. But since the change point is selected by virtue of an

apparent break at the point, the null distribution of the resulting test is not the same

as if the break date were chosen without regard to the data. Thus means of

determining r/T must be further specified before the distribution of the resulting

test can be obtained. Quandt (1960) and Davies (1977) come up with another FT

statistics called Quandt likelihood ratio, thus QLR statistic:

QLR ¼ MAX
r¼r0, ..., r1

FT rð Þ (31.4)

Intuitively, it has power against a change in b even without a known break date.

Although it confuses econometricians for years to calculate its null asymptotic

distribution, Andrews (1993, Table I) reports computable critical values for it. For

more details, please see Stock (1994).

31.2.2 Multiple Breaks Case

This issue of detecting structural breaks becomes even richer after the possible

multiple breaks are considered no matter the numbers and dates of breaks are

known or not. Bai and Perron (1998) proposed a comprehensive treatment for

estimating linear models with multiple structural breaks. They set the multiple

linear regression with m breaks (m + 1 regimes) as follows:

yt ¼ x0tbþ z0dj þ ut, (31.5)

where j¼ 1, � � �,m + 1, T0¼ 0, and Tm+1¼ T; yt is the observed independent variable,
xt (p� 1), and zt(q� 1) are vectors of covariates, and b and dj (j¼ 1, � � �,m+1) are the
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corresponding vectors of coefficients; ut is the disturbance. Note this is a partial

structural change model in the sense that b is not subject to shifts and is effectively

estimated using the entire sample. When p ¼ 0, however, it is translated to a pure

structural change.Now rewrite the liner regression system inEq. 31.5 inmatrix formas

Y ¼ Xbþ Z þ U , where Y ¼ (y1, . . ., yT)
0, X ¼ (x1, . . ., xT)

0, U ¼ (u1, . . ., uT)
0,

d ¼ (d10, d2
0
, . . ., dm+1

0
)0, and Z is the matrix which diagonally partitions Z at the

m-partition (T1, . . .,Tm)s, i.e.,Z ¼ diag Z1; . . . ; Zmþ1ð ÞwithZi ¼ ZT i�1ð Þþ1; . . . ; ZTi

� �0
.

Following this, apply associated least-squares estimates of b, and d are obtained by

minimizing the sum of squared residuals. And let l̂ ¼ l̂1; . . . ; l̂mÞ ¼ T̂1=TT̂m=T
� ��

with corresponding true value l0 ¼ (l1
0, . . ., lm

0 ). Thus take the sup F type test of no

structural break (m¼ 0) versus the alternative hypothesis that there are m¼ k breaks.
Let (T1,. . ., Tk) be a partition such that Ti ¼ [Tli](i ¼ 1, . . ., k). Operationally, to test

a null of no break versus some fixed number of breaks, define

FT l1, . . . , lk; qð Þ ¼ T � k þ 1ð Þq� pð Þ
kq

d̂
0
R

0
R Z

0
MxZ

� ��1

R
0

� ��1

Rd̂

SSRk
(31.6)

where R is the conventional matrix such that (Rd) 0 ¼ (d1
0 � d2

0
, . . ., dk

0 � dk + 1

0
) and

Mx ¼ I � X(X0 X)0 X0. Here SSRk is the sum of squared residuals under the

alternative hypothesis, which depends on (T1, . . .,Tk). Define the following set for

some arbitrary small positive number ϵ: Lϵ ¼ {(l1, . . ., lk); jl(i + 1) � lij � ϵ,
l1 � ϵ, lk � 1 � ϵ}. The reason for this is to restrict each break date to be

asymptotically distinct. And apparently, it is the generation of the sup F test

considered by Andrews (1993) and others for the case k ¼ 1.

Similarly, estimated break points by testing for l versus l + 1 breaks are also

obtained by a global minimization of the sum of squared residuals. Comparing the

difference between the sum squared residuals obtained with l breaks and that

obtained with l + 1 breaks, it is advised to test each (l + 1) segment for the presence

of an additional break. This requires that the magnitude of shifts is fixed

(nonshrinking). More precisely, the test is defined by

FT lþ1 lj Þ ¼ ST T̂ 1; . . . ; T̂ l

� ��min1�i�lþ1inft2Li,�St T̂1; . . . ; T̂ i�1;t; T̂ i; . . . ; T̂ l

� �
=ŝ2,

�
(31.7)

where

Li, � ¼ t; T̂ i�1 þ T̂ i � T̂ i�1

� �
� � t � T̂ i � T̂ i � T̂ i�1

� �
�

� 	
(31.8)

and ŝ2 is a consistent estimate of s2 under the null hypothesis. Note that for i ¼ 1,

ST T̂1, . . . , T̂ i�1ð Þ,t, T̂ i, . . . , T̂ l

� �
is understood as ST t; T̂1; . . . ; T̂ l

� �
and for i ¼ l + 1

as ST T̂1; . . . ; T̂ l;t
� �

.

As well, Bai and Perron (1996) also provide a valid proof for consistency of the

estimated break fractions along with its limiting distributions. They also apply their

model to the situations where autocorrelation could happen and compare it with

sequential estimation.
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31.2.3 Prediction Tests

Prediction tests which are often applied to forecast stock and exchange rate also

lose power when potential structural change is incorporated without reasonable

adjustment. While numerical literatures explore suitable models to fit the reality,

their efforts still fail for rather long period or large forecasting sample as proven in

Welch and Goyal (2008). This means tests for structural stability are equivalently

vital in forecasting. For time series satisfying characters of stationarily I(0),

prediction tests are operated on the difference between observed variables and

predictions and only when it is before the suspected structural change could such

tests be valid. Lutkepohl (1989) proposes a prediction tests for structural stability of

univariate times series and compares its efficacy to the univariate time series

investigated by Lutkepohl (1988).

Lutkepohl (1989) assumes a multiple time series generated by a stationary vector

stochastic process yt ¼ (y1t,. . ., ykt) in autoregressive (AR) representation

yt ¼ vþ
X1
i¼0

Aiyt�i þ ui (31.9)

and moving average (MA) representation

yt ¼ mþ
X1
i¼0

Fiut�i,F0 ¼ Ik, (31.10)

Noted that Ik is the (K � K) identity matrix, v is a K-dimensional vector of

constant terms, m is the mean vector of yt, the Ai and F1 are (K � K) coefficient

matrices, and ut ¼ (u1t, . . ., uKt)
0 is K-dimensional white noise. In other words, theet

is i.i.d. multivariate normal, ut � N(0,∑ u). Although the two present models focus

on infinity, it is permitted that they can both be finite-order models. Thus the mean

squared error (MSE) h-step predictor at origin is

yt hð Þ ¼ m ¼
X1
i¼h

Fi utþh�i,

and its MSE matrix is

S hð Þ ¼
Xh�1

i¼0

FiSuF0:

Since yt is Gaussian, the forecast error vector is normally distributed,

e hð Þ ¼ ytþh � yt hð Þ 0,S hð Þð Þ: (31.11)
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Therefore, the rest statistics

T hð Þ ¼ e hð Þ0S hð Þ�1e hð Þ � w2 Kð Þ (31.12)

for h ¼ 1, 2, . . ., can be used for testing whether a structural change has occurred

after period t. As usual w2(K) denotes the chi-squared distribution with Kdf.
Besides the univariate description of this system, another test relevant for

multivariate systems is also designed by Lutkepohl (1989). Since the vector of

one-step forecast errors to h-step forecast errors is also normally distributed,

e hð Þ ¼ e 1ð Þ hð Þ½ � � N 0,S hð Þð Þ:
Here

S hð Þ ¼ Fh Ih 	 Suð ÞFh6
0, (31.13)

where 	 denotes the Kronecker product and

Fh ¼ Ik _0F1Ik _0Fh�1Fh�2
_Ik�



(31.14)

Hence,

L hð Þ ¼ e hð Þ0S hð Þ�1e hð Þ � w2 hKð Þ (31.15)

for h ¼ 1, 2, . . ., is another sequence of statistics that can be used for stability tests.

This L(h) statistics are particularly easy to compute and according to Lutkepohl

(1989), while univariate time series tests can be relevant for multivariate systems,

a structural change in a multivariate system will not be necessarily be reflected in

the univariate models for the individual variables of the system. And Lutkepohl

(1989) points that since the coefficients Fi, Ai, and Su are usually unknown so that

the statistics cannot be computed, the replacement by estimators is needed. Thus the

estimated processes T̂ hð Þ ! w2 Kð Þ and L̂ hð Þ ! w2 hKð Þ can match the null hypoth-

esis of structural change. Generally, Lutkepohl (1989) proposes a prediction test for

checking the structural stability of a system of time series. Despite the fact it lacks

power in modelling the form of the change, it serves as a useful tool without

imposing severe restrictions on the data. Another merit is that very few data are

required after the time period or the time point at which a structural change is

suspected.

31.2.4 Structural Changes in Long-Memory Processes

So far long memory has been recognized as one of most common features shared by

macroeconomic and financial time series. Let Xt be a stationary process with auto-

covariances r(k)¼ cov(Xt, Xt+k), then Xt is said to have long memory if as jkj !1,
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r kð Þ � L1 kð Þ kj j2H�2, H 2 1

2
; 1

� �

where L1(k) is a slowly varying function as jkj ! 1. That is L1(ta)/L1(t) ! 1

as t ! 1 for any a > 0. This property implies that the correlations are not

summable, and the spectral density has a pole at zero. Under suitable conditions

on L1(·), the spectral density

f xð Þ ¼ 1

2p

X1
k¼�1

r kð ÞeikxL2 xð Þ xj j1=2H

is jxj ! 0 for some L2(·) slowly varying the origin. The explanation for this

phenomenon is not elusive since these economic data always persist for a rather

long period and dependence between time thus has a lasting influence. Yet tradi-

tional wisdoms usually appear stuck in analysis of long memory, and thus need for

structural break detection requires econometricians to develop singular new esti-

mations for use. Among these manufactory efforts attempt to deal with long

dependence either invariant to time or matching the time future. Hereafter more

methods will be discussed.

31.2.4.1 Stochastic Volatility Model with Long-Memory Property
Macroeconomic and financial data often display long-run dependence between

different economic individuals. Researchers and practitioners prefer the synthe-

sized form to describing these issues, and thus data aggregation becomes another

focus in econometrics literature. Interestingly such time series often turn out

distinct from the originals, for example, the singular stock price return is normally

stationary I(0), while the index often displays long memory. The Standard Poor’s

500 index would be a supporting evidence for it. Furthermore Hsiao and Robinson

(1978) and Granger (1980) have pointed that it makes sense for contemporaneous

aggregation with stationary heterogenous autoregressive-moving average pro-

cesses. Portfolio arrangement in this sense also regards to connect its volatility

with the long-memory feature. As discussed in Zaffaroni (2000) and Kazakevicius

et al. (2004), converse results also exist in the generalized autoregressive condi-

tional heteroskedasticity (GARCH). Thus whether a long memory can be obtained

by aggregation in volatility models has attracted a lot of attentions.

Zaffaroni (2006) investigates a large class of volatility models for the memory

implications. With this aim, he selects the class of square root stochastic

autoregressive volatility (SR-SARV), which nests both GARCH and stochastic

volatility (SV) models. So the exponential SV model of Taylor (1986) and the

nonlinear moving average model (nonlinear MA) of Robinson and Zaffaroni

(1998) would be the referents. The result shows long memory is ruled out for the

former but is permitted for the latter. To put it more evidently, set a stationary square

integrable process xtwith increasing filtration Jt if xt is Jt-adapted, E(xtjJt�1)¼ 0, and

var(xtjJt�1) ¼: ft�1. And the SR – SARV(1) process then satisfies
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f t ¼ oþ gt�1 þ vt, (31.16)

where the sequence vt is assumed as E(vtjJt�1) ¼ 0. o and g are constant nonneg-

ative coefficients with g< 1. The implication means E((x)t
2)<1. It is also assumed

that oi, gi are independent identically distributed (i.i.d.), randomly drawn from

a joint distribution such that gi < 1. At each point n heterogeneous units xi,t(1) are
observed as SR-SARV(1).

31.2.4.2 Testing for a Change in the Long-Memory Parameters
The best known models representing long dependence are fractional Gaussian noise

(Mandelbrot van and Ness 1968) and fractional ARIMA (Granger and Joyeux

1980). These models are stationary with a constant long-memory parameter H.

But this assumption could not hold for some time series since the long dependence

structure might change over time. It makes sense in macroeconomic data for some

economic events persist over long period or has a lasting influence. Note that

changes of H are relevant particularly for that the rate of convergence of confidence

intervals of constants and for parameter estimates in regression with certain classes

of design matrices, e.g., polynomial regression would change if H changes. More

details are referred to Yajima (1988) and Beran (1991). There are huge sums of

literature focused on this issue, among which Beran and Terrin (1996) offer

a simple estimation by exact or approximate maximum likelihood. The method

testing such structural break consists of the alternative that H is not constant. They

make use of functional central limit theorem to compute the quadratic forms and

offer more test statistics.

Define the spectral density by a finite dimensional parameter vector

y ¼ (t, �) ¼ (t, H, �2, . . ., �m) so that

f x; yð Þ ¼ tf x; 1; �ð Þf g,
ðp
�p

log f x; 1; �ð Þf gdx ¼ 0:

By definition, t is the expected mean squared error of the best linear prediction

of Xt given Xs, s � t � 1. The long-memory behavior is characterized by H, the

additional parameters �2, . . ., �m allow for flexible modelling of short-term features.

Define

ak �ð Þ ¼
ðp
�p

eikxf�1 x; 1; �ð Þf gdx:

Given X1, X2, . . .,XN, let �̂ be the value of � that minimizes

Q �ð Þ ¼
XN
i, j¼1

ai�j �ð Þ Xi � X
� �

Xj � X
� �

:

For Gaussian processes, the asymptotic covariance matrix is the same as for the

exact maximum likelihood estimator. As proved by Beran and Terrin (1996), for

0 < t < 1,
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Q1 t; �ð Þ ¼
XNtb c

i, j¼1

ai�j �ð Þ Xi � X
� �

Xj � X
� �

,

Q2 t; �ð Þ ¼
XN

Ntb cþ1

ai�j �ð Þ Xi � X
� �

Xj � X
� �

:

Let �̂ 1ð Þ tð Þ and �̂ 2ð Þ tð Þ j ¼ 1, 2ð Þ be defined by

�̂ jð Þ tð Þ ¼ argmin Qj t; �̂ jð ÞÞ j ¼ 1, 2ð Þ,
�

and denote by Ĥ
j
tð Þ ¼ �̂ j

1 tð Þ the corresponding estimates of H. Moreover, define

k2 ¼ 2D11
� 1(�), where D is the k � k matrix with elements

Dij ¼ 2pð Þ�1

ðp
�p

∂
∂�i

log f x; 1; �ð Þf gdx:

Then the process

eZN tð Þ :¼ N
1
2k�1 t 1� tð Þf g1

2 Ĥ
1ð Þ

tð Þ � Ĥ
2ð Þ

tð Þ
n o

converges in the Skorokhod topology on D[0, 1] to the Gaussian process Z(t)
defined by

Z tð Þ ¼ t 1� tð Þf g1
2

1

t
B1 tð Þ � 1

1� t
B2 1� tð Þ

� �
(31.17)

where B1 and B2 are two independent standard Brownian motions. Based on this

distribution, the test statistics is suggested as

TN ¼ supd<t<1�d
eZN tð Þ  (31.18)

for some 0 < d < 1. Also it is implied that TN in distribution, where

Y ¼ supd<t<1�d Z tð Þj j (31.19)

and Z(t) is defined by Eq. 31.17. Note that, due to the standardization by t 1� tð Þf g1
2,

Z(t) is a standard normal random variable for each fixed t.

Comparatively, tests for a change in parameter values at a given time point are

proposed in linear regression models with long-memory errors. Hidalgo and

Robinson (1996) design a structural change test specially for I(d) data. They derive

the new test in terms of stochastic and non-stochastic regressors. Generally, their

model of form is yt ¼ b t
n

� �0
xt þ ut , where xt is a K � 1 vector of observable

regressors, the prime indicates transposition, and b(s) is a K � 1 vector such that
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b sð Þ ¼ bA, 0 � s � t

¼ bB, t < s < 1,

for a known number t between zero and one, where the unobservable error ut has
auto-covariances featuring long memory. Thus the null hypothesis is H0 : bA ¼ bB
against the alternative H1 : bA 6¼ bB.

For the case of non-stochastic regressors, a type of Wald testing procedure is

applied. For a given t, define h ¼ [tn], where [·] indicated integer part. Correspond-
ingly, let X1¼ (x1, . . ., xh)

0, X2¼ (xh+ 1, . . ., xn)
0, Y1¼ (y1, . . ., yh)

0, Y2¼ (yh+ 1, . . ., yn)
0,

and then estimate bA and B by

b̂A ¼ X
0
1X1

� ��1
X

0
1Y1,

b̂B ¼ X
0
2X2

� ��1
X

0
2Y2

Put

W ¼ X
0
1X1

� ��1
X

0
1, � X

0
2X2

� ��1
X

0
2

� �0

,

u ¼ u1; . . . ; unð Þ0 ,

Set wt the tth column of W0. Then H0 is equivalent to

b̂A � b̂B ¼ W
0
u:

Assume ut is Gaussian with zero mean, then

b̂A � b̂B � N 0;W
0

� �
(31.20)

where G is the n � n Toeplitz matrix (g(s � t) ).
When xt is stochastic but independent of ut, however, Eq. 31.20 can be translated as

W
0
GW

� ��1=2

b̂A � b̂B

� �
� N 0, Ikð Þ:

Hidalgo and Robinson (1996) also allowed for a degree of generality in the

specification of the error structure, and the test is mainly designed for liner

regression model by applying a semiparametric but a parametric model. Besides,

the change point is assumed to be already known. Yet Kuan and Hsu (1998)

point that such a test would incorporate size distortion that could lead to

a change point while there is none. This is not peculiar since according to

Kuan and Hsu (1998) when the memory parameter is in (0, 0.5), many well-

known structural changes are supposed to suggest a nonexistent change. They

also indicate a spurious change which might arise from stationary data with long
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memory while not responsible to nonstationary. They thus infer distinguishing

between long-memory series with a change would not be reliable sometimes.

More specifically, more and more financial literature illustrate that the realized

volatility, which plays a major role in forming the portfolios, displays long-

memory properties; thus, in order to avoid the loss caused by the market

fluctuations, we could use those structural break tests for long-memory processes

to detect the turning points of the realized volatility and further adjust the

portfolio.

31.3 Persistent Change in Time Series

Permanent property shifts of the time series are characters of many key macroeco-

nomic and financial variables in developed economies. Hence, correctly character-

izing the time series whether stationary or nonstationary would be very helpful to

build the accurate models. This issue has been investigated in terms of the data

property change from I(0) to I(1) or the vice versa. The change might be responsible

for portfolio adjustment especially for financial crises. Furthermore, recent studies

indicate that other than those classical structural break types, there could also exist

persistent changes in processes characterized by long memory, for example, the

long-memory parameter changes from d1 to d2 or the vice versa, where d is the

fractional differencing parameter.

31.3.1 Tests for a Change in Persistence for I(0) or I(1) Process

A normal question in testing for the persistent change is about what the process used

to be and what direction it changes to. To solve that systematically, we could set the

data-generating process (DGP) as following:

yt ¼ dt þ vt, (31.21)

vt ¼ rtvt�1 þ et, t ¼ 1, . . . T: (31.22)

Eq. 31.21 consists of the deterministic kernel dt which is a constant either plus

linear time trend or nothing. The error term et is stationary.
Within the model (31.21), there exist four possibilities. The first is that yt is all

the time I(0) as rt ¼ 1 for all t, which can be defined as H1, and the second is

denoted as H01, reflecting Yt changing from I(0) to I(1) at time bt*c, where b·c
represents the integer part. In this situation, rt ¼ r, jrj < 1 t � bt*c and rt ¼ 1 for

t > bt*c in the context of (i). Noted that the change-point proportion t* is assumed

to be unknown while set inL¼ [LL,LU], which is an interval symmetric around 0.5

and between zero and one. The third denoted as H10 is that yt is form I(1) to I(0) at

time t*.
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Extant tests to detect the above structural changes are CUSUM of squares-based

tests and regression-based tests. While the former has been improved by Leybourne

et al. (2006) as displaying no tendency to spurious over-rejection, modified tests

from regression angle by LKSN still lack the power for special structural change,

taking large sample, for instance, where tests reject H1 with probability one even

though there is no change. Owing to these reasons, we here provide the CUSUM

test according to Leybourne et al. (2006) as the ideal way in detecting this kind of

persistent change.

In order to test the null hypothesis of constant I(0) behavior H1 against a change

in persistence from I(0) to I(1), H01, a standardized CUSUM of squared subsample

OLS residuals is needed:

Kf tð Þ ¼
tT½ ��2

X tT½ �
t¼1

v̂2t, t

ŵ2
f tð Þ (31.23)

where

v̂t, t ¼ yt � y tð Þ with y tð Þ ¼ tT½ ��1
XtT½ �

t¼1

yt:

And similarly H(10) equivalent to change from I(0) to I(1) in the reversed series,
let xt 
 y(T � t + 1), occurring at time (T � [t*T]) and the reversed series can be

obtained as

Kr tð Þ ¼
T � tT½ �ð Þ�2

XT� tT½ �
t¼1

ev2t, t
ô2

r tð Þ (31.24)

where

evt, t ¼ xt � x 1� tð Þ with x 1� tð Þ ¼ T � tT½ �ð Þ�1
XT� tTb �

t¼1

xt:

Notice for both forward and reversed series, the long-run variance o is replaced

by the estimator

ô2
f tð Þ ¼ ĝ0 þ 2

Xm
s¼1

ws,mĝs, (31.25)

ĝs ¼ tTb c�1
XtTb c

t¼1

Dv̂t, tDv̂t�s, t, (31.26)

Therefore, a test against persistent change could be based on the ratio R of the

forward and reverse CUSUMs of squared statistics, i.e.,
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R t�ð Þ ¼ inf t2LK
f t�ð Þ

inf t2LK
r t�ð Þ ¼:

N

D

where L is as described before and t is assumed to be unknown. Furthermore,

denote the demeaned, written as zt ¼ 1, and de-trend, zt ¼ (1,t)0, respectively.
As T ! 1, l2/T ! 0,

R ) inf t2LL
f
x tð Þ

inf t2LL
r
x tð Þ : (31.27)

As shown in Leybourne et al. (2006), this limiting distribution of R is not

dependable on the long-run variance, thus R could still hold if it is formed by the

unstandardized ratio:

R ¼ inf t2LK
þ

inf t2LK
r
tð Þ (31.28)

where

K
þ
tð Þ ¼ tT½ ��2

XtT½ �

t¼1

v̂2t, t and K
r
tð Þ ¼ T � tT½ �ð Þ�2

XT� tT½ �

t¼1

ev2t, :

And the large sample behavior of R, N, and D under both H01 and H10 will be

provided in their Theorem 2 along with consistent estimators of t*. Additionally,
the results of R in their Theorem 2 imply a consistent test of H1 against H01 or H10,

respectively, by the left-tail and the right-tail distribution of R, while the

unstandardized form yields a consistent estimate of break date t*. What’s more,

even the direction of the change is unknown, such a test with two tails can be

appropriate against either H01 and H10. As for the limiting distribution of R under

H0, it remains available for both the demeaned and de-trend cases. Thus, we could

further know that under H0, R !p 1.

Although Leybourne et al. (2006) rule out the size distortion when applied to

process displaying constant persistence, they neglect such a test for long-memory

case could cause over-rejection, which is often very serious. Sibbertsen and Kruse

(2009) provide a solution based on simulation, by which they find despite that

critical values may need modified, estimators for break dates still hold consistently.

In this sense, the yt generated from DGP is assumed to follow an ARFIMA(p,d,q)

process, which means only the memory parameter d determine the degree of

integration of yt. Then the hypothesis should be written as

H0 : d ¼ d0 for all t,

H1 : d ¼ d1 for t ¼ 1, . . . , tT½ �
d ¼ d2 for t ¼ tT½ � þ 1, . . . ,T

Typically under H0 the memory parameter d0 is restricted to [0, 3/2), while d1 2
[0, 1/2) and d2 2 (1/2, 3/2]. It is equivalent to changes from stationary to
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nonstationary long memory at some unknown breakpoint with the vice versa also

valid. Similarly, parts constituting R statistics are thus defined by

Kf tð Þ ¼ tT½ ��2d0
XtT½ �

t¼1

v̂t, t,
r tð Þ ¼ T � tT½ �ð Þ�2d0

XT� tT½ �

t¼1

v̂t, t:

However, Sibbertsen and Kruse (2009) find that asymptotic property has

changed since the limiting distribution depends strongly on the memory parameter,

which still leads to heavy size distortion. To deal with this problem, they simulate

the adjusted critical values which are dependent on d. Although in this way

practitioners benefit as such sample size will not influence critical values as

significantly much as memory parameter, they have to decide the exact d for this

simulation.

31.3.2 Unit Root with Persistent Change

Conventional unit root tests usually seem problematic when they are applied to

nonstationary volatility, although they are proved to perform well in other situa-

tions. Breaks following a stationary Markov switching process and time-varying

conditional variances are proved not to cause significant size distortion and impact

on unit root and cointegration tests. Similarly, stationary time-varying conditional

variances including (ARCH) are also known to have no impact on unit root and

cointegration tests. Conversely, it can be different for permanent changes in

volatility (so that volatility is nonstationary), since it is easy to greatly affect unit

root inference. Hamori and Tokihisa (1997) show that a single abrupt increase in the

innovation variance increases the size of augmented Dickey and Fuller (1979,

1981) (ADF) tests when no deterministic components are present. The similar

situation happens to Kim et al. (2002) who report severe oversizing in the

constant-corrected ADF tests in the presence of an early single abrupt decrease in

the innovation variance. Cavaliere (2004) proposes a more general framework for

investigating the effects of permanent changes in volatility by showing that the

limiting null distributions of the Phillips and Perron (1988) (PP) test statistics

depend on a particular function of the underlying volatility process which can

lead to either oversizing or undersizing in the tests.

Cavaliere and Taylor (2006) consider both smooth volatility changes and mul-

tiple volatility shifts and construct a numerical solution to obtain approximate

quantiles from the asymptotic null distributions of the standard unit root statistics.

They focus onM unit root tests by Perron and Ng (1996) which is still robust when

applied to autocorrelation. Set the following model to generate the time series

process

Xt � g
0
t

� �
¼ a Xt�1 � g

0
Zt�1

� �
þ ut t ¼ 1, 2, . . . , T (31.29)
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where zt is a vector of deterministic components, thus set as zt ¼ (1, t, . . .,tp)0, while
et¼ stet, et� iid (0, 1) which is responsible for the heterogeneity. And besides X0 is

of Op(1). Furthermore, the M statistics for a given sample {Xt}0
T is defined as

MZa :¼ T�1X̂
2

T � T�1X̂
2

0 � s2AR kð Þ
2T�2

XT

t¼1
X̂
2

t�1

:

where X̂
t
are the OLS residuals from the regression of Xt on zt, t¼ 0,. . ., T and sAR

2 (k)
is an autoregressive estimator of the (non-normalized) spectral density at frequency

zero of {ut}. Specifically,

s2AR kð Þ :¼ ŝ2= 1� b̂ 1ð Þ
� �2

, b̂ 1ð Þ :¼
Xk

i¼1
b̂i,

where b̂i , i ¼ 1,. . ., k, and ŝ2 are, respectively, the OLS slope and variance

estimators from the regression equation DX̂t ¼ X̂t�1 þ
Xk

i¼1
biDX̂t�i þ et:k,

where the lag truncation parameter satisfies the following assumption. Details

about the asymptotic distribution are referred to Cavaliere and Taylor (2006).

Moreover, the Cavaliere and Taylor method performs as a general way to deal

with the persistent change in volatility. However, in real world it usually cannot be

identified easily. In other words, it smooths off structural change and hold for any

process, providing another conveniently operative way for this issue.

31.4 Tests for Special Structural Breaks

There also exist several types of structural breaks that have exclusive features

distinctly from common economic phenomena. For example, a financial bubble

being originated or bursting indicates a significant and catastrophical structural

break, which is capable of wiping out the great wealth of people as much as

possible. Additionally, the cointegration, recognized as a common relationship

between economic individuals especially in international finance and macroeco-

nomics, could be with breaks. Thus, testing a break in cointegrating relationship

correctly could be a solution of financial crises.

31.4.1 Bubble Tests

31.4.1.1 Definition of the Bubble
We first present the definition of the bubble. A bubble is always characterized as an

explosive asset price deviation from its fundamentals regardless of whether such

a deviation is positive or negative. However, investors and regulators often ignore

bubbles rather easily, because there exists no efficient methodology to monitor and

detect those. In general, a bubble could be triggered by the irrational behaviors.

Shiller (2000) conducts this conclusion by observing investors who switch their
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attentions from the specific financial asset to another and points out these behaviors

take no consideration of deviations in fundamentals. More importantly, most

historical events coincided with Shiller’s findings; thus those opinions become

more convincing. A famous example is the remark given by Greenspan, the

ex-chairman of the Federal Reserve Board, which illustrates that it would be fairly

difficult to know when irrational exuberance has unduly escalated asset values and

thus the USA experienced the bubble collapse.

Furthermore, those claims have already been proved. Kirman and Teyssiere

(2005) rebuked that the deviations from fundamental assets are not the outcome

of irrational herding but the significant shifting compositions of expectations, which

result from opinion diffusion processes. This view is backed up by an analysis of

two types of agents in financial market, which are fundamentalists and chartists.

The former denotes agents who believe asset price Pt is related to underlying

fundamental Pt, i.e., a constant P. The latter depends on the Pt which is cumulated

by historical prices. Moreover, there also exists heterogeneity between these agents.

Thus for the former,

Ef Ptþ1jItð Þ ¼ Pt þ
XMf

j¼1

vj Pt�jþ1 � Pt�j

� �
(31.30)

where vj, j ¼ 1, . . .,Mf are positive constants and Mf is the memory of the funda-

mentalists. And in return for the latter

Ec Ptþ1jItð Þ ¼
XMc

j¼0

hjPt�j (31.31)

where hj, j ¼ 1, . . .,Mc are constants, Mc is the memory of the chartists. And based

on the two opinions, the market view of prices are synthetic by the weighted

average of these forecast

Em Ptþ1 Itj Þ ¼ wtE
f Ptþ1 Itj Þ þ 1� wtð ÞEc Ptþ1 Itj Þðð�

(31.32)

where wt is the proportion of fundamentalists. Such a market view is dynamic since

contacts or meetings happen randomly between agents and often help build their

next investment plans. In this sense, consider kt as the number of fundamentalists at

time t and the remaining N � kt as chartists. Allow some fixed number M of

meetings to take place at each time. Set qt ¼ kt/N for each agents as the observation

to decide the opinion chosen by majority. And thus

qi, t ¼ qt þ ei, t, e � N 0, s2q
� �

, qi, t 2 0; 1½ �:

And it can be easily understood that wt functioned in Eq. 31.32 originates from

the following mechanism,

wt ¼ N�1
XN
i¼1

♯ i : qi; t �
1

2

� �
:
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Apparently wt varies with time as the qt process, and it is believed to be

dependable on kt reciprocally. Given the two types of agents, the market price

can be written as

Pt ¼ cEm Ptþ1 Itj Þ þ Ztð (31.33)

where c is a constant and Zt is an index of a vector of fundamental variables.

Obviously, the time-varying Wt decides the market view of the prices in the future

and thus is determinant in the real price. As theoretically proved by Kirman and

Teyssiere (2005), Wt switching from zero to one and vice versa could lead to

varying prices around the fundamental level where a change-point process in the

conditional mean definitely exist. It also helps explain that such process never herds

on the extreme and sometimes moves gradually.

Therefore the above two given opinions are agreeable in the aspect that when

prices explode there may be a change point. Accordingly, the implicit change point

is another version of structural break; thus testing for bubbles efficiently could be

viewed as a way to detect the explosive behavior in pricing.

31.4.1.2 Tests for Bubbles
According to the above explanation, many literatures propose suitable testing

mechanism for rational bubbles. As among these tests, a basic solution is based

on a unit root test. Since rational bubbles always manifest explosive characteristics

in prices, these tests such as augmented Dickey-Fuller (ADF) could find this

distinction with stationary process and unit root. Commonly regarded as expecta-

tions of prices and dividends in the future, the current price is determined sly by the

fundamental which refers to dividends if there is no bubble. This means pricing

follow the variation of dividends, and often there is cointegration relationship

between them. Conversely, if a bubble occurs in the prices, explosive behaviors

are expected regardless of what character dividends own. This implication moti-

vated Diba and Grossman (1988) to firstly look for the presence of bubble behavior

by applying unit root tests to t. However, these tests are criticized by Evans (1991)

who questions the validity of the empirical tests since none of them have much

power to detect periodically collapsing bubbles. He supports this criticism by

explaining that a periodically collapsing bubble process can behave much like an

I(1) process or even like a stationary linear autoregressive process, as a result of

which the standard unit root and cointegration tests in this context are not reliable.

Phillips et al. (2009) design a new synthetical unit root test and avoid such

problem. Such a refinery ADF test against the alternative of an explosive root(the

right-tailed) is conducted in an autoregressive specification as

xt ¼ mx þ t�1 þ
XJ
j¼1

fjt�j þ ex, t, ex, t � NID 0; s2x
� �

(31.34)

where xt stands for log stock or log dividend and the certain order of J is suggested
by Campbell and Perron (1991), while NID denotes independent and normal

distribution. Thus the unit root null hypothesis is H0 : d ¼ 1, and the right-tailed

alternative is H1 : d > 1.
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After this, a series of forward recursive regressions are applied to Eq. 31.34

repeatedly with sequential subsets of the sample data incremented by one observa-

tion at each pass. Set number of observations in the first regression as t0¼ [nr0] and
subsequent regressions employ the originating data set supplied by successive

observations giving a sample of size t¼ [nr] for r0 � r� 1. And the corresponding

t-statistic by ADFr and ADF1 corresponds to the full sample. Under the null,

ADFr )

ðr
0

WdW

ðr
0

W2

� �1=2
,

and

supr2 r0;1½ �ADF ) supr2 r0;1½ �

ðr
0

WdW

ðr
0

W2

� �1=2

where W is the standard Brownian motion. Comparing supr2 r0;1½ � ADF with the

right-tailed critical values with supr2 r0;1½ �

ðr
0

WdW

� �� ðr
0

W2

� �1=2
 !

will lead to

a unit root test for against explosiveness. And to pinpoint the structural break, the

recursive test statistics ADFr are needed against the right-tailed critical values of

the asymptotic of the standard Dickey-Fuller t-statistic. In particular, if re denotes
the origination date and rf is the collapse date of explosive behavior in the data,

estimates of these dates are as follows:

r̂ e ¼ INF
s�r0

s : ADFs > cvadfbn
, r̂ f ¼ infs�r̂ e inf s : ADFs < cvadfbn

n o
(31.35)

where cvadfbn
sð Þ denotes the right-sided critical value of ADFs corresponding to

a significant level of bn. Notice the consistent estimation of the bubble period r̂ e, r̂ f
requires the significance level bn approaching zero asymptotically and correspond-

ingly cvadfbn
sð Þ diverging to infinity in order to eliminate type I error as n!1. This

can be implemented in a convenient way employing cvadfbn
sð Þ ¼ log log nsð Þð Þ=100.

Particularly, it replaces the explicit setting for bn which is more complicated. This

test referred by Phillips et al. (2009) is advantageous for the reason that it doesn’t

allow for the possibility of periodically collapsing bubbles, which are often

observed in practical economic and financial applications.

What’s more, there are more other attempts that could avoid potential setbacks

in performance of testing for bubbles. Among them, large sums of progressing

improvement are from unit root tests for explosive characters. For example,

bootstrapping is applied to improve the power of tests, of which Paparoditis and

Politis (2003) make use for the heavy-tail problem. For DGP in Eq. 31.34, it is

assumed that
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êt ¼ yêt�1 þ et (31.36)

For a test against jyj < 1, the residual block bootstrap method is carried as

follows: for each block bootstrap series satisfying H0, set the sample k, k¼ 1,. . ., B,
and the integer b ¼ b(T) < T is employed such that 1=bþ b=

ffiffiffi
T

p ! 0 as T ! 1.

Define k¼ [T(� 1)/b] and draw with replacement k integers i0,. . ., ik�1 from the set

1,. . ., T � b, and build the bootstrap samples ej(k) as follows:

e1 kð Þ ¼ ê1, ej kð Þ ¼ ej�1 þ êimþs, j ¼ 2, . . . , l, l ¼ kbþ 1,

m ¼ j� 2ð Þ=b½ �, s ¼ j� mb� 1, k ¼ 1, . . . ,B:

Let ŷT be the least-squares (LS) estimator of y in Eq. 31.36 and eyl kð Þ
be the LS estimator of the regression of ej(k) on ej�1(k). Thus H0 would be

rejected if T ŷT � 1Þ < ql,B gð Þ
�

, where ql,B(g) is the gth quantile of the distribution

of l ey
� �

l
�ð Þ � 1

�
when the size for testing is g. Since some financial time series

might have heavy tails, the tail index a would make Pr(jetj> x)� x�a as x!1 for

some a> 0. Yet this modification of standard asymptotic theory for unit root tests is

still valid.

Horvath and Kokoszka (2003) and Jach and Kokoszka (2004) make the mild

hypothesis that the E(et) ¼ 0 and that the et are in the domain of attraction of an

a-stable law with a 2 (1, 2), while Kokoszka and Parfionovas (2004) consider the

more general case a 2 (1, 2] which then includes the Gaussian case a¼ 2. Chan and

Tran (1989) have shown that under the null hypothesis H0,

T ŷT � 1
� �

!d x :¼

ð1
0

La t�ð Þdla tð Þ
ð1
0

L2a tð Þdt
:

The purpose of the unit root and subsampling tests here is to approximate the

distribution of the unit root statistics x without knowledge of the tail index alpha
which is difficult to estimate.

Another method employing subsampling is advocated by Jach and Kokoszka

(2004) consists in constructing T � b processes which satisfies H0,

e1 kð Þ ¼ êk, . . . , eb kð Þ ¼ êk þ � � � þ êkþb�1, k ¼ 2, . . . , T � bþ 1,

where b is the size of the subsampling blocks. Let eyb kð Þ be the LS estimator of

the regression of ej(k) on ej�1(k). Then the distribution of x would be estimated by

b eyb �ð Þ � 1
� �

.

Moreover Wu and Xiao (2008) have proposed a procedure similar to

cointegration tests by Xiao and Phillips (2002) to help detect collapsible bubbles

against which Evans (1991) pointed out that unit root tests would lose the power.
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Their procedure is based on the magnitude of variation of the partial sum processes

Sk ¼
Xk

t¼1
ê of the residuals of regression (31.36). If there is no bubble, the

magnitude of fluctuation of the process Sk is proportional to k
1/2, while the presence

of a bubble makes the process Sk diverging to1. Their statistic denoted by R enjoys

the advantage of no influence from serial correlation and the correlation between

the residuals and the fundamentals under the null hypothesis. As showed below, R
converges to the supremum of a functional of Brownian motions, i.e.,

R :¼ max1�k�T
k

ôe, d
ffiffiffi
T

p k�1Sþk � T�1SþT
 !d dsup0�t�1

eV
� �

tð Þ




where eV tð Þ ¼ Wd tð Þ � tWd 1ð Þ , Wd ¼ W1 tð Þ �
ð1
0

dW1S
0

� � ð1
0

SS
0

� ��1ð

0

,

S(t) 0 ¼ (1, W2(t)), W1(t) and W2(t) are Brownian motions that are independent

of each other; ôt, d is a nonparametric long-run variance estimator.

31.4.2 Cointegration Breakdown Tests

In addition to detecting the structural breaks in a time series, tests for a breakdown

in the cointegration relationship between two nonstationary I(1) process are also of

interest. For example, correlation of global financial market becomes more obvious

as a result of rapid international capital flows, which feature I(1) processes and are

generally the linear combinations of nonstationary time series. As shown by most

empirical evidences, the existing cointegration relationship often comes to the end

prior to the finite crisis. Such a structural break is vital since it is an indicator for

finance crash. Traditional wisdom formulates the cointegration breakdown tests

always from the assumption that the post-breakdown period is relatively long, and

this is often strong and unrealistic especially for practitioners, see Hansen (1992)

and Quintos and Phillips (1993). Andrews and Kim (2003) on the contrary abandon

this assumption and introduce tests for cointegration breakdown with fixed post-

breakdown time lengthm, under the condition that the sample T +m goes to infinity.

Clearly, their implementation concentrating on end-of-sample could be conve-

niently extended to breakdown tests occurring at the beginning or in the middle

of the sample.

The data-generating process is as follows:

yt ¼ x
0
b0 þ ut for t ¼ 1, . . . ,T

x
0
bt þ ut for t ¼ T þ 1, . . . ,T þ m

�

where yt, xt 2 R and xt, b0, bt 2 Rk and the regressors for all time periods are

I(1) processes with potential deterministic and stochastic trend or other stationary

random variables. Thus the null and the alternative hypotheses are
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H0 :
bt ¼ b0 for all t ¼ T þ 1, . . . ,T þ m and

ut : t ¼ 1, . . . , T þ m are stationary and ergodic

�

H1 :
bt 6¼ b0 for some t ¼ T þ 1, . . . ,T þ m and=or
the distribution of uTþ1, . . . , uTþm differs from

the distribution of u1, . . . , um

8<
:

:

The alternative hypothesis H1 represents a break in cointegrating relationship in

systematical perspectives including (i) a shift in the vector b0 to bt and (ii) a shift in
the distribution of ut from being stationary to being a unit root random variable.

They consider a test statistics in the quadratic form of the “post-breakdown”

residuals ût : t ¼ T þ 1, . . . ,T þ m . The critical value of the test statistics is

determined via a parametric subsampling method, which if the test statistics

exceeds then the test rejects the null hypothesis.

For any 1� r� s� T +m, letYr�s

�
yr, . . . ,ys

�0
,Xr�s

�
xr, . . . ,xs

�0
,Ur�s

�
ur, . . . ,us

�0
.

And the quadratic form will be

Pj b;oð Þ ¼ ðYj� jþm�1ð Þ � Xj� jþm�1ð Þb
� �0

o ðYj� jþm�1ð Þ � Xj� jþm�1ð Þb
� �

and for j ¼ 1,. . ., T + 1. For the P tests in Andrews and Kim (2003), o is some

nonsingular m matrix and Im denotes the m dimensional identity matrix. Naturally,

an estimator of b0 denoting as b̂ is based on the least squares with observations

t ¼ r,. . ., s for 1 + m as following:

b̂r�s ¼ X
0
r�sXr�s

� ��1

X
0
r�sYr�s

Although other estimators like the fully modified estimator of Phillips and

Hansen (1990) and the ML estimator of Johansen can also be applied, the priority

for explanation is given to LS estimator.

Then the first test statistics, Pa is defined as

Pa ¼ PTþ1 b̂1�T

� �
¼
XTþm

t¼Tþ1

yt � x
0
tb̂1�T

� �2
:

Referred to as a predictive statistic, Pa is the post-breakdown sum of squared

residuals. The motivation for considering this is equivalent to the F statistics

employed to test a single change in the regression just like Chow Test (1969). Set

Pj(b) at a “leave-m-out” estimator, b̂ jð Þ as to mirror that b̂1�T is not dependent on

observations after point T, then

b̂ jð Þ ¼ estimator of b using observations indexed by t ¼ 1, . . . ,T with

t, . . . , jþ m� 1:

�
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Clearly, b̂ jð Þ by the estimators mentioned above is consistent for b0 under suitable
assumptions. Define

Pa, j ¼ Pj b̂ jð Þ
� �

for j ¼ 1, . . . , T � mþ 1:

And the empirical df of Pa,j : j ¼ 1,. . ., T � m + 1 is

F̂P að Þ,T xð Þ ¼ 1� mþ 1
XT�mþ1

t¼1

l Pa, j
� �

:

Then define the test statistic Pa to be the 1 � a sample quantile, q̂pa, 1 � a and

q̂pa, 1� a ¼ INF x 2: F̂Pa, T xð Þ � 1� a:

Thus one can reject H0 if Pa > q̂pa, 1 � a.
However, Pa test’s simulation performance is not satisfying since it often over-

rejects the null hypothesis. Instead, Pb test could have better finite-sample proper-

ties as defined by

Pb ¼ PTþ1 b̂1� Tð þ m=2d e
� �

and Pb, j ¼ Pj b̂ jð Þ
� �

for j ¼ 1, . . . ,T � mþ 1:

The Pb test supersedes the Pa for it is less variable as the estimator b̂1� Tþm=2eð Þ
depends on the observation indexed by t ¼ T + 1,. . ., T + 2e.

Moreover, a naturally less variable statistic Pc is dependent on the complete

sample estimator b̂1� Tþmð Þ:

Pc ¼ PTþ1 b̂1� Tþmð Þ
� �

Pc, j ¼ P b̂2 jð Þ
� �

for j ¼ 1, . . . ,T � mþ 1:

where

b̂2 jð Þ ¼
estimator of b using observations indexed by t ¼ 1, . . . ,T with

t 6¼ j, . . . , jþ 2e�1
�

for j ¼ 1,. . ., T � m + 1. The P tests are suitable for models where errors are

uncorrelated, and including weights in the statistics based on an estimator of the

error covariance matrix will be advantageous if the errors are correlated. Tests with

the weights are the same as Pa � Pc except that o ¼ Im is replaced by

ô1� Tþmð Þ ¼ 1þ 1
XTþ1

j¼1

Û j, jþm�1Û
0

j, jþm�1

 !�1
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where

Û j, jþm�1 ¼ Yj, jþm�1 � Xj, jþm�1b̂1� Tþmð Þ,

The estimator ô1 � T þ mð Þ is an estimator of the inverse of the m covariance

matrix of the errors o0
�1 ¼ (EU1�mU1�m

0
)�1.

As for the presence of unit root errors from t ¼ T + 1 to t ¼ T + m in a linear

regression model with i.i.d. normal errors, the locally best invariant (LBI) test

statistic is applied. According to Andrews and Kim (2003), set Am(k, l) ¼ min{k, l}
for k, l ¼ 1, . . .,m then the R tests which are aimed to solve the breakdown will be

defined as

Andrews and Kim’s (2003) tests are not consistent because m is fixed as T ! 1
while they are simultaneously asymptotically unbiased. The power of the tests is

determined by the magnitude of the breakdown and m. The former includes the

magnitude of the parameter shift and the magnitude of the unit root error variance,

and the larger is m, the greater is the power. That means failure to reject the null

hypothesis should not be interpreted as strong evidence in favor of stable cointegration.

31.5 Monitoring Structural Breaks

Foregoing tests almost deal with in-sample data, and it may be tempting to apply

them to real-time data. Under this distinct condition, however, traditional method

for detecting structural breaks mainly within a historical data set normally generates

comparatively large chance of mistaken instability, which leads to variant over-

rejection. Typically, such a test will signal a nonexistent break with probability one.

Thus due to the law of the iterated logarithm, no matter how perfectly these

methods perform as one-shot type detection, their sound performance could not

be translated to monitor out-of-sample stability. Conversely, monitoring test could

detect the break on time without these concerns. Focusing on monitoring structural

break, this section will explain how this relatively advantageous test works better

timely. Plus, it is also to provide evidence to support that the good performance still

holds even in long memory, as articulated before to some degree an ideal descrip-

tion of economy issues.

31.5.1 Monitoring in Comparably Ideal Conditions

For a linear regression Yt¼ X0bt + et, t¼ 1, 2,. . ., usually a real-time structural break

test is bounded with the assumption: bt ¼ b0 for t ¼ 1, 2, . . .,m. And the null of the

test is bt ¼ b0 for some t � m + 1. To solve this problem, Chu et al. (1996) come up

with a CUSUM monitoring procedure based on the behavior of recursive residuals

and a fluctuation monitoring procedure based on recursive estimates of parameters.

They use sequential testing to develop tests of structural stability for real-time

economic systems and widen the class of boundary functions of previous monitor-

ing tests, which is outstanding as it matches economic research more exactly.
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Let {Sn} be the partial sum process constructed from ei and assume the process ei
follows the FCLT (functional central limiting theorem) as l ! g0

�1m�1/2S[ml] )
l(l), l 2 [0, 1), where Sn ¼ ∑ i ¼ 1

n ei and s0
2 ! n�1E(Sn

2) < 1. Chu et al. (1996)

extend Robinson and Siegmund’s (1970) limiting relation as their central

mechanism

limm!1P Sn �
ffiffiffiffi
m

p
g n=mðð Þ, forsome n� 1

� 	¼ P W tð Þ � g tð Þ, for some t� 0f g

where Sn ¼ ∑ t ¼ 1
n et, W denotes a standard Brownian motion and g is a stopping

boundary satisfying some regularity conditions. This suggests a stopping function

for the monitoring test. Another limiting result similar to Eq. 31.37 is

limm!1P Snj j � ffiffiffiffi
m

p
g ðn=mð Þ, for some n � m

� 	 ¼ P W tð Þj j tð Þ, t � 1f g
(31.37)

Robinson and Siegmund (1970) give their proof for an i.i.d. ei in Eq. 31.38 could
hold for a certain class of continuous functions g(t) that satisfy t�1/2 g(t) is

ultimately nondecreasing as t ! 1 and other assumptions. Though this is useful,

yet such assumption is not applicable all the time for research. Segen and Sanderson

(1980) provide a partial resolution for they show that under the boundary function

t�1/2 g(t) is nondecreasing, stochastic sequence Sn that satisfies the FCLT continues

to hold. Yet such condition turns out more restrictive than that of Robbins and

Siegmund. Chu et al. (1996) propose a new limiting similar relation without

imposing these restrictions. Typically, the boundary function g(t) considered to

be pertinent to economy is given as

P W tð Þj j � t a2
� �þ ln tÞ
 �1=2

, for some t � 1
n o

¼ 2 1� F að Þ þ af að Þ½ �
(31.38)

P W tð Þj j � tþ 1ð Þ1=2 a2 þ ln tþ 1ð Þ
 �1=2
, some t > 0�

n o
¼ exp �a2

� �
(31.39)

where F and f stand for the cdf and pdf, respectively, of a standard normal random

variable.

A monitoring is a stopping time, determined by a detecting statistic (detector) Gn

and a threshold g(m,n), according to tg(Gn)n, Gn > g(m, n). Firstly consider the

situation where the detector is in form of CUSUM. Let

b̂ ¼
Xn

i¼1
XiX

0
i

� ��1 Xn

i¼1
XiYi

� �
be the OLS estimator at time n. Also define

recursive residuals as wk ¼ 0 and wn ¼ ê=n1=2n , nn ¼ 1 + Xn

0
(∑i¼1

n�1XiXi

0
)�1Xn,

ên ¼ Yn � X
0
nb̂n�1 , n ¼ k + 1,. . .m,. . .. Thus the nth-cumulated sum of recursive

residuals isQm
t ¼ ŝ�1

Xn

i¼k
oi ¼ ŝ�1

Xkþ em�t
 �
i¼k

oi, for n� kð Þ=em < n� kþ 1ð Þ=em,
where ŝ is a consistent if s, em ¼ m� kð Þ is the integer of emð Þt. Thus under H0,

31 Structural Change and Monitoring Tests 897



t ! em�1=2Qm
t , t 2 0;1½ Þ ) t tð Þ, t 2 0;1ð Þ (31.40)

where “)” denotes the weak convergence of the associated probability

measures. According to Chu et al. (1996), as the monitoring starts as m + 1, define

eQm

t ¼ ŝ
Xkþ em 1þtð Þ½ �

i¼mþ1
oi, t 2 [0, 1). In particular, for n/(m � k) < (n + 1)/(m � k),

eQm

n ¼ ŝ�1

Xmþn

i¼k
oi �

Xm

i¼k
oi

� �
, n � 1. It follows that t ! em�1=2eQm

n ) t !
W tþ 1ð Þ �W tð Þ½ �, t 2 [0,1). Since this is a Brownian motion, it can be written in

the form of Eq. 31.36

limm!1P Qm
n

  � ffiffiffiffiffiffiffiffiffiffiffiffi
m� k

p
g

n

m� k

� �
, for some n � 1

n o

¼ P

�
W tð Þj j � g tð Þ, for some t � 0

� :

Its mechanism can be explained as that once the path of eQm

n


 crosses the

boundary (m � k)1/2 g(n/m � k), it will reject the null hypothesis and imply that

the model suitable for historical period is no longer reliable. Moreover, an extension

of this can be applied to FL monitoring procedure as

limm!1P Qm
n

  � ffiffiffiffiffiffiffiffiffiffiffiffi
m� k

p
g

n

m� k

� �
, for some n � m

n o

¼ P

�
W tð Þj j � g tð Þ, for some t � 1

� (31.41)

It needs notice that CUSUM algorithms, except those recursive residuals, also

hold for such mechanism, e.g., LR statistics for dependent sequences. Yet LR

detector sometimes could be superfluously complex in general and leads to

a complicated computation. According to the above statement, a CUSUM moni-

toring can be implemented as follows:

Suppose (i) Yt¼ Xt

0
b0 + et, t¼ 1, . . .,m + 1, . . ., where Xt is a k� 1 random vector

such that m�1∑ t¼1
m Xt and m�1 ∑t¼1

m XtXt

0
converge in probability to b, a

non-stochastic k � 1 vector and M, a k matrix of full rank, respectively; (ii) et is
a martingale difference sequence with respect to a sequence of s-algebra Ft such

that E(e2) < 1 and E(et
2jFt�1) ¼ s0

2 for all t, where Ft is generated by. . ., (Yt�2,

Xt�1

0
), (Y�1, Xt

0
); (iii) the sequence Xtet obeys the functional central limit theorem,

then

limm!1P eQm

n


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ m� k
p

a2 þ ln
nþ m� k

m� k

� �� �1=2
, for some, n � 1

( )

¼ exp �a2=2ð Þ;
(31.42)

limm!1P eQm

n


 � ffiffiffiffiffiffiffiffiffiffiffiffi

m� k
p n

m� k

� �1=2
a2 þ ln

n

m� k

� �h i1=2
, some n

� �

¼ 2 1� F a½ � þ af að Þ½ �
(31.43)
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Additionally, by the right-handed side of Eqs. 31.42 and 31.43, the asymptotic

size control of the CUSUMmonitoring is fairly effortless. For CUSUM monitoring

based on eQm

n , the 10 % and 5 % asymptotic size correspond to a2 ¼ 4.6 and

6, respectively. Equally handily, we obtain the 10 % and 5 % asymptotical size of

the CUSUM monitoring based on Qm by setting a2 ¼ 6.25 and 7.78 in Eq. 31.43,

respectively.

Furthermore, from Eq. 31.36 we also can construct the fluctuation monitoring of

sequential parameter estimates. The key condition is that Xtet obeys the multivariate

FCLT as

l�1=2V
�1=2
0

Xml½ �

t¼1

Xtet ) l�W lð Þ, l 2 0;1½ Þ

where V0 ¼ limm!1m�1E(SmSm
0
) with Sm ¼ ∑t¼1

m Xtet, and W(l) is a k-dimensional

Wiener process. Following this, the fluctuation detector can be defined as

Ẑn ¼ nD�1=2
m b̂n � b̂m

� �
, n (31.44)

where Dm ¼ M�1
m V0 M

�1
mP

is Op(1) and uniformly positive definite such that

Xm
t¼1

XtX
0
t=m

 !
�Mm ! 0:

The essential ingredient of this FL detector is the deviation of the updated

parameter estimate b̂n from the historical parameter estimate b̂m . Then the

conclusion can be obtained as

að Þ : l�1=2ẑ ml½ � ) l ! W0 lð Þ, l 2 1;1½ Þ,

where W0(l) is a k-dimensional Brownian bridge;

bð Þ : limm!1P ẑiml½ �


 � m1=2 n� m

m

n

n� m
a2 þ In

n

n� m

� �h ih i1=2� �
,

for some � m and some ið Þ
¼ 1� 1� 2 1� F að Þ þ af að Þ½ �½ �k,

where ẑiml½ � is the ith component of Ẑ
i

ml½ � . This conclusion summarizes the

monitoring procedure based on the fluctuation of b̂n n > mð Þ relative to b̂m.

Similarly, given the number of regressors, k, and arbitrary probability of type

I error, the monitoring boundary can be calculated with a derivative a2. More

details about cases of the one-time parameter shift in both FL and CUSUM

monitoring are referred to Chu et al. (1996).
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31.6 Concluding Remarks

In this chapter, we discuss two classes of structural breaks – the retrospective tests

and the monitoring tests. From the investor’s points of view, it is crucial to use

suitable structural break tests to detect turning points of the financial and macro-

economics data accurately and further adjust the portfolios immediately. With the

increase of the data property caused by highly frequent market fluctuations, the

currently existing structural break tests could not fully detect locations of breaks

without the issue of size distortion. More precisely, more and more sophisticated

structural breaks tests with respect to any possible market performances would be

expected to be created in the near future.
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Abstract

Conditionally heteroscedastic time series models are used to describe the

volatility of stock index returns. Volatility has a long memory property in the

most general models and then the autocorrelations of volatility decay at

a hyperbolic rate; contrasts are made with popular, short memory specifications

whose autocorrelations decay more rapidly at a geometric rate.

Options are valued for ARCH volatility models by calculating the discounted

expectations of option payoffs for an appropriate risk-neutral measure. Monte

Carlo methods provide the expectations. The speed and accuracy of the calcu-

lations is enhanced by two variance reduction methods, which use antithetic and

control variables. The economic consequences of a long memory assumption

about volatility are documented, by comparing implied volatilities for option

prices obtained from short and long memory volatility processes.

Results are given for options on the S & P 100-share index, with lives up to

2 years. The long memory assumption is found to have a significant impact upon

the term structure of implied volatilities and a relatively minor impact upon

smile shapes. These conclusions are important because evidence for long mem-

ory in volatility has been found in the prices of many assets.

Keywords

ARCH models • Implied volatility • Index options • Likelihood maximization •

Long memory • Monte Carlo • Option prices • Risk-neutral pricing • Smile

shapes • Term structure • Variance reduction methods

32.1 Introduction

Long memory effects in a stochastic process are effects that decay too slowly to be

explained by stationary processes defined by a finite number of autoregressive and

moving-average terms. Long memory is often represented by fractional integration

of shocks to the process, which produces autocorrelations which decrease at

a hyperbolic rate compared with the faster geometric rate of stationary ARMA

processes.

Long memory in volatility occurs when the effects of volatility shocks decay

slowly. This phenomenon can be identified from the autocorrelations of measures

of realized volatility. Two influential examples are the study of absolute

daily returns from stock indices by Ding et al. (1993) and the investigation of

daily sums of squared 5-min returns from exchange rates by Andersen

et al. (2001b).

Stochastic volatility causes option prices to display both smile and term structure

effects. An implied volatility obtained from the Black-Scholes formula then

depends on both the exercise price and the time until the option expires. Exact

calculation of smile and term effects is only possible for special volatility processes,
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with the results of Heston (1993) being a notable example. Monte Carlo methods

are usually necessary when the volatility process has a long memory and these were

first applied by Bollerslev and Mikkelsen (1996, 1999).

This chapter documents the economic consequences of a long memory

assumption about volatility. This is achieved by comparing implied volatilities

for option prices obtained from short and long memory specifications.

It is necessary to use a long history of asset prices when applying a long memory

model and this chapter uses levels of the S & P 100 index from 1984 to 1998. For

this data it is found that a long memory assumption has a significant economic

impact upon the term structure of implied volatilities and a relatively minor impact

upon smile effects. Some related empirical results are provided by Ohanissian

et al. (2004).

Option traders have to make assumptions about the volatility process.

The effects of some assumptions are revealed by the prices of options with long

lives. Bollerslev and Mikkelsen (1999) find that the market prices of exchange

traded options on the S & P 500 index, with lives between 9 months and 3 years,

are described more accurately by a long memory pricing model than by the

short memory alternatives. Thus these option prices reflect the long memory

phenomenon in volatility, although it is found that significant biases remain

unexplained.

Three explanatory sections precede the illustrative option pricing results in

Sect. 32.5. Section 32.2 defines and characterizes long memory and then reviews

the empirical evidence for these characteristics in volatility. The empirical evidence

for the world’s major markets appears compelling and explanations for the source

of long memory effects in volatility are summarized.

Section 32.3 describes parsimonious volatility models which incorporate long

memory, either within an ARCH or a stochastic volatility framework. The former

framework is easier to use and we focus on applying the fractionally integrated

extension of the exponential GARCH model, which is known by the acronym

FIEGARCH. An important feature of applications is the unavoidable truncation

of an autoregressive component of infinite order. Empirical results are provided for

10 years of S & P 100 returns.

Section 32.4 provides the option pricing methodology. Contingent claim prices

are obtained by simulating terminal payoffs using an appropriate risk-neutral

measure. Numerical methods enhance the accuracy of the simulations and these

are described in Appendix 2.

Section 32.5 compares implied volatilities for European option prices obtained

from short and long memory volatility specifications, for hypothetical S & P

100 options whose lives range from 1 month to 2 years. Options are valued on

10 dates, one per annum from 1989 to 1998. The major impact of the long memory

assumption is seen to be the very slow convergence of implied volatilities to a limit

as the option life increases. This convergence is so slow that the limit cannot be

estimated precisely. Section 32.6 contains conclusions.
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32.2 Long Memory

32.2.1 Definitions

Definitions which categorize stochastic processes as having either a short memory

or a long memory can be found in Brockwell and Davis (1991), Baillie (1996),

Granger and Ding (1996), and Taylor (2005). The fundamental characteristic of

a long memory process is that dependence between variables separated by t time

units does not decrease rapidly as t increases.
Consider a covariance stationary stochastic process {xt} that has variance s

2 and

autocorrelations rt, spectral density f(o), and n-period variance ratios Vn defined by

rt ¼ cor xt; xtþtð Þ, (32.1)

f oð Þ ¼ s2

2p

X1
t¼�1

rt cos toð Þ, o > 0, (32.2)

Vn ¼ var xtþ1 þ . . .þ xtþnð Þ
ns2

¼ 1þ 2
Xn�1

t¼1

n� t
n

rt (32.3)

Then a covariance stationary process is here said to have a short memory if
Xn
t¼1

rt converges as n ! 1; otherwise it is said to have a long memory. A short

memory process then has

Xn
t¼1

rt ! C1, f oð Þ ! C2, Vn ! C3, as n ! 1, o ! 0, (32.4)

for constants C1, C2, C3. Examples are provided by stationary ARMA processes.

These processes have geometrically bounded autocorrelations, so that jrtj � Cft

for some C > 0 and 1 > f > 0, and hence Eq. 32.4 is applicable.

In contrast to the above results, all the limits given by Eq. 32.4 do not exist for

a typical covariance stationary long memory process. Instead, it is typical that the

autocorrelations have a hyperbolic decay, the spectral density is unbounded for low

frequencies, and the variance ratio increases without limit. Appropriate limits are

then provided for some positive d < 1
2
by

rt
t2d�1

! D1,
f oð Þ
o�2d

! D2,
Vn

n2d
! D3, as n ! 1, o ! 0, (32.5)

for positive constants D1, D2, D3. The limits given by Eq. 32.5 characterize

the stationary long memory processes that are commonly used to represent
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long memory in volatility. The fundamental parameter d can be estimated from data

using a regression, either of ln f̂ oð Þ� �
on o or of ln V̂ n

� �
on n as in, for example,

Andersen et al. (2001a)

32.2.2 Fractionally Integrated White Noise

An important example of a long memory process is a stochastic process {yt} which
requires fractional differencing to obtain a set of independent and identically

distributed residuals {et}. Following Granger and Joyeux (1980) and Hosking

(1981), such a process is defined using the filter

1� Lð Þd ¼ 1� dLþ d d � 1ð Þ
2!

L2 � d d � 1ð Þ d � 2ð Þ
3!

L3 þ . . . (32.6)

where L is the usual lag operator, so that Lyt ¼ yt�1. Then a fractionally integrated

white noise (FIWN) process {yt} is defined by

1� Lð Þdyt ¼ et (32.7)

with the et assumed to have zero mean and variance s
2

e. Throughout this chapter it is

assumed that the differencing parameter d is constrained by 0 � d < 1.

The mathematical properties of FIWN are summarized in Baillie (1996). The

process is covariance stationary if d < 1
2
and then the following results apply. First,

the autocorrelations are given by

r1 ¼
d

1� d
, r2 ¼

d d þ 1ð Þ
1� dð Þ 2� dð Þ , r3 ¼

d d þ 1ð Þ d þ 2ð Þ
1� dð Þ 2� dð Þ 3� dð Þ , :::::: (32.8)

or, in terms of the gamma function,

rt ¼
G 1� dð ÞG tþ dð Þ
G dð ÞG tþ 1� dð Þ , (32.9)

with

rt
t2d�1

! G 1� dð Þ
G dð Þ as t ! 1: (32.10)

Second, the spectral density is

f oð Þ ¼ s2e
2p

1� e�io
�� ���2d ¼ s2e

2p
2 sin

o
2

� �h i�2d
, o > 0, (32.11)
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so that

f oð Þ ffi s2e
2p

o�2d for o near 0: (32.12)

Also,

Vn

n2d
! G 1� dð Þ

1þ 2dð ÞG 1þ dð Þ as n ! 1: (32.13)

When d � 1
2
, the FIWN process has infinite variance and thus the

autocorrelations are not defined, although the process has some stationarity

properties for 1
2
� d < 1.

32.2.3 Evidence for Long Memory in Volatility

When returns rt can be represented as rt ¼ m + stut, with st representing volatility

and independent of an i.i.d. standardized return ut, it is often possible to make

inferences about the autocorrelations of volatility from the autocorrelations of

either jrt � mj or (rt � m)2; see Taylor (2005, 2008). In particular, evidence for

long memory in powers of daily absolute returns is also evidence for long memory

in volatility. Ding et al. (1993) observe hyperbolic decay in the autocorrelations of

powers of daily absolute returns obtained from US stock indices. Dacorogna

et al. (1993) observe a similar hyperbolic decay in 20-min absolute exchange rate

returns. Breidt et al. (1998) find that spectral densities estimated from the loga-

rithms of squared index returns have the shape expected from a long memory

process at low frequencies. Ohanissian et al. (2008) accept the null hypothesis of

long memory for exchange rate volatility, by assessing the long memory implica-

tion that d is invariant under temporal aggregation. Further evidence for long

memory in volatility has been obtained by fitting appropriate fractionally integrated

ARCH models and then testing the null hypothesis d ¼ 0 against the alternative

d > 0. Bollerslev and Mikkelsen (1996) use this test to support long memory

models for US stock index volatility.

Direct evidence for long memory in volatility uses high-frequency data to

construct accurate estimates of the volatility process. The estimated quadratic

variation of the logarithm of the price process during a 24-h period denoted by

t can be estimated from intraday returns rt,j by calculating

ŝ2
t ¼

XN
j¼1

r2t, j: (32.14)

The estimate ŝ2
t will be very close to the integral of the latent volatility during

the same 24-h period providing N is large but not so large that the bid-ask spread
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and other microstructure effects introduce bias into the estimate. Using 5-min

returns provides conclusive evidence for long memory effects in the estimates ŝ2
t

in four studies: Andersen et al. (2001b) for 10 years of DM/$ and Yen/$ rates;

Andersen et al. (2001b) for 5 years of stock prices for the 30 components of the

Dow-Jones index; Ebens (1999) for 15 years of the same index; and Areal and

Taylor (2002) for 8 years of FTSE-100 stock index futures prices. These papers

provide striking evidence that time series of estimates ŝ2
t display all three

properties of a long memory process: hyperbolic decay in the autocorrelations,

spectral densities at low frequencies that are proportional to o�2d, and variance

ratios whose logarithms are very close to linear functions of the aggregation

period n. It is also found that estimates of d are between 0.3 and 0.5, with most

estimates close to 0.4.

32.2.4 Explanations of Long Memory in Volatility

Granger (1980) shows that long memory can be a consequence of aggregating

short memory processes; specifically if AR(1) components are aggregated and if

the AR(1) parameters are drawn from a beta distribution, then the aggregated

process converges to a long memory process as the number of components

increases. Andersen and Bollerslev (1997) develop Granger’s theoretical results

in more detail for the context of aggregating volatility components and also

provide supporting empirical evidence obtained from only 1 year of 5-min returns.

It is plausible to assert that volatility reflects several sources of news, that the

persistence of shocks from these sources depends on the source, and hence that

total volatility may follow a long memory process. Scheduled macroeconomic

news announcements are known to create additional volatility that is very short-

lived (Ederington and Lee 1993), while other sources of news that have a longer

impact on volatility are required to explain volatility clustering effects that last

several weeks.

Gallant et al. (1999) estimate a volatility process for daily IBM returns that is the

sum of only two short memory components, yet the sum is able to mimic long

memory. They also show that the sum of a particular pair of AR(1) processes has

a spectral density function very close to that of fractionally integrated white noise

with d ¼ 0.4 for frequencies o � 0.01p. Consequently, evidence for long memory

may be consistent with a short memory process that is the sum of a small number of

components whose spectral density happens to resemble that of a long memory

process except at extremely low frequencies. Attempts to distinguish between true

long memory and short memory models which mimic long memory behavior

include Ohanissian et al. (2008) and Pong et al. (2008).

Barndorff-Nielsen and Shephard (2001) model volatility in continuous time as

the sum of a few short memory components. Their analysis of 10 years of 5-min

DM/$ returns shows that the sum of four volatility processes is able to provide an

excellent match to the autocorrelations of squared 5-min returns, which exhibit the

long memory property of hyperbolic decay.
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32.3 Long Memory Volatility Models

A general set of long memory stochastic processes can be defined by first applying

the filter (1 � L)d and then assuming that the filtered process is a stationary ARMA

(p, q) process. This defines the ARFIMA (p, d, q) models of Granger (1980), Granger

and Joyeux (1980), and Hosking (1981). This approach can be used to obtain long

memory models for volatility, by extending various specifications of short memory

volatility processes. We consider both ARCH and stochastic volatility specifications.

32.3.1 ARCH Specifications

The conditional distributions of returns rt are defined for ARCH models using

information sets It�1 which are here assumed to be previous returns {rt � i, i � 1},

conditional mean functions mt(It�1), conditional variance functions ht(It�1), and

a probability distribution D for standardized returns zt. Then the terms

zt ¼ rt � mtffiffiffiffi
ht

p (32.15)

are independently and identically distributed with distribution D and have zero

mean and unit variance.

Baillie (1996) and Bollerslev and Mikkelsen (1996) both show how to define

a long memory process for ht by extending either the GARCH models of Bollerslev

(1986) or the exponential ARCH models of Nelson (1991). The GARCH extension

cannot be recommended because the returns process then has infinite variance for

all positive values of d, which is incompatible with the stylized facts for asset

returns. For the exponential extension, however, ln(ht) is covariance stationary for

d < 1
2
; it may then be conjectured that the returns process has finite variance for

particular specifications of ht.
Like Bollerslev and Mikkelsen (1996, 1999), this chapter applies the

FIEGARCH(1, d, 1) specification:

ln htð Þ ¼ aþ 1� fLð Þ�1
1� Lð Þ�d

1þ cLð Þg zt�1ð Þ, (32.16)

g ztð Þ ¼ yzt þ g ztj j � Cð Þ, (32.17)

with a, f, d, c respectively denoting the location, autoregressive, differencing, and

moving-average parameters of ln (ht). The i.i.d. residuals g(zt) depend on

a symmetric response parameter g and an asymmetric response parameter y
which allows the conditional variances to depend on the signs of the terms zt;

these residuals have zero mean because C is defined to be the expectation of ztj j. The
EGARCH(1,1) model of Nelson (1991) is given by d ¼ 0. If f ¼ c ¼ 0 and d > 0,

then ln (ht) � a is a fractionally integrated white noise process. In general, ln (ht) is
an ARFIMA(1, d, 1) process.
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Calculations using Eq. 32.16 require truncation of a series expansion in the lag

operator L. The relevant formulae are listed in Appendix 1. We apply the following

ARMA(N, 1) approximation:

ln htð Þ ¼ aþ
XN
j¼1

bj ln ht�j

� �� a
� 	þ g zt�1ð Þ þ cg zt�2ð Þ, (32.18)

with the coefficients bj defined by Eqs. 32.31 and 32.32.

32.3.2 Estimates for the S & P 100 Index

Representative parameters are used in Sect. 32.5 to illustrate the option pricing

consequences of long memory in volatility. These parameters are estimated from

daily returns rt for the S & P 100 index, excluding dividends, calculated from index

levels pt as rt ¼ ln (pt/pt�1).

The conditional variances are evaluated for t � 1 by setting N ¼ 1,000 in

Eq. 32.18, with ln (ht�j) replaced by a and g(zt�j) replaced by zero whenever

t � j � 0. The log-likelihood function is calculated for the 2,528 trading days

during the 10-year estimation period from 3 January 1989 to 31 December 1998,

which corresponds to the times 1, 221 � t � 3, 748 for our dataset; thus the first

1,220 returns are reserved for the calculation of conditional variances before 1989

which are needed to evaluate the subsequent conditional variances.

Results are first discussed when returns have a constant conditional mean which

is estimated by the sample mean. The conditional variances are obtained recur-

sively from Eqs. 32.15, 32.17, 32.18, and 32.32. The conditional distributions are

assumed to be normal when defining the likelihood function. This assumption is

known to be false but it is made to obtain consistent parameter estimates (Bollerslev

and Wooldridge 1992). Preliminary maximizations of the likelihood showed that

a suitable value for C ¼ E[|zt|] is 0.737, compared with
ffiffiffiffiffiffiffiffi
2=p

p ffi 0:798 for the

standard normal distribution. They also showed that an appropriate value of the

location parameter a of ln (ht) is �9.56; the log-likelihood is not sensitive to minor

deviations from this level because a is multiplied by a term 1�
XN
j¼1

bj in Eq. 32.18

which is small for large N. Consequently, the results summarized in Table 32.1 are

given by maximizing the log-likelihood function over some or all of the parameters

y, g, f, c, d.
The estimates of y and g provide the usual result for a series of US stock index

returns that changes in volatility are far more sensitive to the values of negative

returns than those of positive returns, as first reported by Nelson (1991). When zt is

negative, g(zt) ¼ (g � y)( � zt) � gC, otherwise g(zt) ¼ (g + y)zt � gC. The ratio

(g � y)/(g + y) is at least 4 and hence is substantial for the estimates presented in

Table 32.1.
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The first two rows of Table 32.1 report estimates for short memory

specifications of the conditional variance. The AR(1) specification has

a persistence of 0.982 which is typical for this volatility model. The ARMA

(1,1) specification has an additional parameter and increases the log-likelihood

by 3.0. The third row shows that the fractional differencing filter alone

(d > 0, f ¼ c ¼ 0) provides a better description of the volatility process than

the ARMA(1,1) specification; with d ¼ 0.66 the log-likelihood increases by

10.9. A further increase of 7.8 is then possible by optimizing over all three

volatility parameters, d, f, and c, to give the parameter estimates1 in the fifth

row of Table 32.1.

The estimates for the most general specification identify two issues of concern.

First, d equals 0.57 for our daily data which is more than the typical estimate of 0.4

produced by the studies of higher frequency data mentioned in Sect. 32.2.3. The

same issue arises in Bollerslev and Mikkelsen (1996) with d estimated as 0.63

(standard error 0.06) from 9,559 daily returns of the S & P 500 index, from 1953 to

1990. Second, the sum d + f + c equals 1.39. As this sum equals c1 in Eqs. 32.35

and 32.36, more weight is then given to the volatility shock at time t � 2 than to the

shock at time t � 1 when calculating ln(ht). This is counterintuitive. To avoid this

outcome, the constraint d + f + c � 1 is applied and the results given in the

penultimate row of Table 32.1 are obtained. The log-likelihood is then reduced by

2.0. Finally, if d is constrained to be 0.4, then the log-likelihood is reduced by an

additional 8.3.

Table 32.1 Parameter estimates for short and long memory ARCH models

Model Constraints y g f c d RLL

AR(1) c ¼ d ¼ 0 �0.06 0.10 0.982 0.0

ARMA(1,1) d ¼ 0 �0.09 0.15 0.988 �0.44 3.0

FI(d) f ¼ c ¼ 0 �0.12 0.19 0.66 13.9

ARFI(1, d) c ¼ 0 �0.11 0.17 0.30 0.59 17.2

ARFIMA(1, d, 1) None �0.10 0.15 �0.16 0.98 0.57 21.7

ARFIMA(1, d, 1) f + c + d � 1 �0.12 0.18 �0.27 0.68 0.59 19.7

ARFIMA(1, d, 1) d ¼ 0.4, f + c � 0.6 �0.11 0.18 0.64 �0.04 0.4 11.4

Parameters are estimated by maximizing the log-likelihood of daily returns from the S & P

100 index, from 3 January 1989 to 31 December 1998. Returns are modelled as

rt ¼ mþ ffiffiffiffi
ht

p
zt,

ln htð Þ ¼ aþ 1� fLð Þ�1
1� Lð Þ�d

1þ cLð Þg zt�1ð Þ,
g ztð Þ ¼ yzt þ g ztj j � Cð Þ
The zt are assumed to be i.i.d., standard normal variables when defining the likelihood function.

The values C ¼ 0.737 and a ¼ � 9.56 are used for all likelihood calculations. The relative

log-likelihood (RLL) for a model equals the maximum log-likelihood (MLL) for that model minus

the MLL for the AR(1) model. The MLL for the AR(1) model is 8561.6

1A conservative robust standard error for our estimate of d is 0.12, using information provided by

Bollerslev and Mikkelsen (1996).
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The estimates obtained here for f and c, namely, �0.27 and 0.68 for the most

general specification, are rather different to the 0.78 and �0.68 given by

Bollerslev and Mikkelsen (1999, Table 1), although the estimates of d are similar,

namely, 0.59 and 0.65. However, the moving-average representations obtained

from these sets of parameter estimates are qualitatively similar. This is shown on

Fig. 32.1 which compares the moving-average coefficients cj defined by (32.36).

The coefficients are positive and monotonic decreasing for the four sets of

parameter values used to produce Fig. 32.1. They show the expected hyperbolic

decay when d > 0 and a geometric decay when d ¼ 0. The values of bj in
Eqs. 32.32 and 32.38 that are used to calculate the conditional variances

decay much faster. For each curve on Fig. 32.1, c10 > 0.33 and c100 > 0.07 while

0 < b10 < 0.02 and 0 < b100 < 0.0003.

The results reported in Table 32.1 are for a constant conditional mean, mt ¼ m.
Alternative specifications such as mt ¼ m + brt�1, mt ¼ m� 1

2
ht, and mt ¼ mþ l

ffiffiffiffi
ht

p
give similar values of the log-likelihood when the volatility parameters are set to

the values in the final row of Table 32.1. First, including the lagged return rt�1 is

not necessary because the first-lag autocorrelation of the S & P 100 returns

equals �0.022 and is statistically insignificant. Second, including the

adjustment �1
2
ht makes the conditional expectation of (pt � pt�1)/pt�1 constant

when the conditional distribution is normal. The adjustment reduces the

log-likelihood by an unimportant 0.3. Third, incorporating the ARCH-M

parameter l gives an optimal value of 0.10 and an increase in the

log-likelihood of 1.5. This increase is not significant using a non-robust

likelihood-ratio test at the 5 % level.
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Fig. 32.1 Moving-average coefficients for four ARFIMA(1, d, 1) processes
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32.3.3 Stochastic Volatility Specifications

Two shocks per unit time characterize stochastic volatility (SV) models, in contrast

to the single shock zt that appears in ARCH models. A general framework for long

memory stochastic volatility models is given for returns rt by

rt ¼ mþ stut (32.19)

with ln(st) following an ARFIMA(p, d, q) process. For example, with p ¼ q ¼ 1,

ln stð Þ ¼ aþ 1� fLð Þ�1
1� Lð Þ�d

1þ cLð Þvt: (32.20)

This framework has been investigated by Breidt et al. (1998), Harvey (1998),

and Bollerslev and Wright (2000), all of whom provide results for the simplifying

assumption that the two i.i.d. processes {ut} and {vt} are independent. This

assumption can be relaxed and has been for short memory applications (Taylor

1994; Shephard 1996).

Parameter estimation is difficult for SV models, compared with ARCH models,

because SV models have twice as many random innovations as observable vari-

ables. Breidt et al. (1998) describe a spectral-likelihood estimator and provide

results for a CRSP index from 1962 to 1989. For the ARFIMA(1, d, 0) specification,
they estimate d¼ 0.44 and f¼ 0.93. Bollerslev andWright (2000) provide detailed

simulation evidence about semiparametric estimates of d, related to the frequency

of the observations.

It is apparent that the ARCH specification (Eqs. 32.15–32.17) has a similar

structure to the SV specification (Eqs. 32.19–32.20). Short memory special cases of

these specifications, given by d ¼ q¼ 0, have similar moments (Taylor 1994). This

is a consequence of the special cases having the same bivariate diffusion limit when

appropriate parameter values are defined for increasingly frequent observations

(Nelson 1990; Duan 1997). It seems reasonable to conjecture that the multivariate

distributions for returns defined by (32.15–17) and (32.19–20) are similar, with the

special case of independent shocks {ut} and {vt} corresponding to the symmetric

ARCH model that has y ¼ 0 in Eq. 32.17.

32.4 Option Pricing Methodology

32.4.1 A Review of SV and ARCH Methods

The pricing of options when volatility is stochastic and has a short memory has

been studied using a variety of methods. The most popular methods commence

with separate diffusion specifications for the asset price and its volatility. These

are called stochastic volatility (SV) methods. Option prices then depend on

several parameters including a volatility risk premium and the correlation

between the differentials of the Wiener processes in the separate diffusions.
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The closed-form solution of Heston (1993) assumes that volatility follows a

square-root process and permits a general correlation and a nonzero volatility

risk premium; for applications see, for example, Bakshi et al. (1997) and for

extensions see Duffie et al. (2000).

There has been less research into option pricing for short memory ARCH

models. Duan (1995) provides a valuation framework and explicit results for

the GARCH(1,1) process that can be extended to other ARCH specifications.

Ritchken and Trevor (1999) provide an efficient lattice algorithm for GARCH

(1,1) processes and extensions for which the conditional variance depends on the

previous value and the latest return innovation. Recent innovations are provided by

Christoffersen et al. (2008, 2010).

Methods for pricing options when volatility has a long memory have been

described by Comte and Renault (1998) and Bollerslev and Mikkelsen (1996,

1999). The former authors provide analysis within a bivariate diffusion frame-

work. They replace the usual Wiener process in the volatility equation by

fractional Brownian motion. However, their option pricing formula appears to

require independence between the Wiener process in the price equation and the

volatility process which is not consistent with the empirical evidence for stock

returns.

The most practical way to price options with long memory in volatility is

probably based upon ARCH models, as demonstrated by Bollerslev and Mikkelsen

(1999). We follow the same strategy. From the asymptotic results in Duan (1997),

also discussed in Ritchken and Trevor (1999), it is anticipated that insights about

options priced from a long memory ARCH model will be similar to the insights that

can be obtained from a related long memory SV model.

32.4.2 The ARCH Pricing Framework

When pricing options it will be assumed that returns are calculated from prices

(or index levels) as rt ¼ ln (pt/pt�1) and hence exclude dividends. A constant risk-

free interest rate and a constant dividend yield will also be assumed and, to simplify

the notation and calculations, it will be assumed that interest and dividends are paid

once per trading period. Conditional expectations are defined with respect to current

and prior price information represented by It ¼ {pt�i, i � 0}.

To obtain fair option prices in an ARCH framework, it is necessary to make

additional assumptions in order to obtain a risk-neutral measureQ. Duan (1995) and
Bollerslev and Mikkelsen (1999) provide sufficient conditions to apply a risk-

neutral valuation methodology. For example, it is sufficient that a representative

agent has constant relative risk aversion and that returns and aggregate growth rates

in consumption have conditional normal distributions. Kallsen and Taqqu (1998)

derive the same solution as Duan (1995) without making assumptions about utility

functions and consumption. Instead, they assume that intraday prices are determined by

geometric Brownian motion with volatility determined once a day from a discrete-time

ARCH model.
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32.4.3 Implementation

At time t0, measured in trading periods, the fair price of a European contingent

claim which has value yt0+n(pt0+n) at the terminal time t0 + n is given by

yt0 ¼ EQ e�rnyt0þn pt0þn

� �
It0j� 	

(32.21)

with r the risk-free interest rate for one trading period. We now specify an

appropriate way to simulate pt0+n under a risk-neutral measure Q. Monte Carlo

methods are then used to estimate the conditional expectation in Eq. 32.21.

Following Duan (1995), it is assumed that the distribution of observed returns is

defined by some probability measure P, for which

rt It�1j �PN mt; htð Þ, (32.22)

with

zt ¼ rt � mtffiffiffiffi
ht

p �Pi:i:d:N 0; 1ð Þ (32.23)

It is also assumed that the distributions in a risk-neutral framework are defined

by a measure Q, with

rt It�1j �QN r� d� 1

2
ht, ht

� �
, (32.24)

and

z�t ¼
rt � r� d� 1

2
htð Þffiffiffiffi

ht
p �Qi:i:d:N 0; 1ð Þ: (32.25)

Here d is the dividend yield, which corresponds to a dividend payment of

dt ¼ (ed � 1)pt per share at time t. Then EQ[ptjIt�1] ¼ er�dpt�1 and the expected

value at time t of one share and the dividend payment is EQ[pt + dtjIt�1]¼ erpt�1, as

required in a risk-neutral framework. Note that the conditional means are different

for measures P and Q, but the functions ht(pt�1, pt�2,....) that define the conditional

variances for the two measures are identical.

Option prices depend on the specifications for mt and ht. We again follow Duan

(1995) and assume that

mt ¼ r� d� 1

2
ht þ l

ffiffiffiffi
ht

p
(32.26)

with l representing a risk premium parameter. Then the conditional expectations of

rt for measures P and Q differ by l
ffiffiffiffi
ht

p
and

zt � z�t ¼ �l: (32.27)
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Option prices are evaluated when the conditional variances are given by an

ARMA(N, 1) approximation to the FIEGARCH(1, d, 1) specification. From

Eqs. 32.18 and 32.27,

1�
XN
j¼1

bjL
j

 !
ln htð Þ � að Þ ¼ 1þ cLð Þg zt�1ð Þ ¼ 1þ cLð Þg z�t�1 � l

� �
, (32.28)

and

g ztð Þ ¼ yzt þ g ztj j � Cð Þ (32.29)

The autoregressive coefficients bj are functions of f and d, which are defined in

Appendix 1. Efficient numerical methods for simulating pt0+n are described in

Appendix 2.

32.5 Illustrative Long Memory Option Prices

32.5.1 Inputs

Many parameters and additional inputs are required to implement the FIEGARCH

option pricing methodology. To apply that methodology to value European options,

we specify 18 numbers, a price history, and a random number generator, as follows:

• Contractual parameters – time until exercise T measured in years, the exercise

price X, and whether a call or a put option.

• The current asset price S ¼ pt0 and a set of previous prices {pt, 1 � t < t 0}.
• Trading periods per annum M, such that consecutive observed prices are sepa-

rated by 1/M years and likewise for simulated prices {pt, t
0 < t � t 0 + n} with

n ¼ MT.
• Risk-free annual interest rate R, from which the trading period rate r ¼ R/M is

obtained.

• Annual dividend yield D giving a constant trading period payout rate of d¼ D/M;

both R and D are continuously compounded and applicable for the life of the

option contract.

• The risk premium l for investment in the asset during the life of the option, such

that one-period conditional expected returns aremt ¼ r� d� 1
2
ht þ l

ffiffiffiffi
ht

p
, for the

real-world measure P.
• Parameters m and l0 that define conditional expected returns during the time

period of the observed prices by mt ¼ m� 1
2
ht þ l0

ffiffiffiffi
ht

p
, again for measure P.

• Eight parameters that define the one-period conditional variances ht. The inte-

gration level d, the autoregressive parameter f, and the truncation level

N determine the terms bj in the AR(N) filter in Eq. 32.28. The mean a and the

moving-average parameter c complete the ARMA(N, 1) specification for ln(ht)
In Eq. 32.28. The values of the shocks to the ARMA(N, 1) process depend on g
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and y, which, respectively, appear in the symmetric function g( ztj j � C) and the

asymmetric function yzt whose total determines the shock term g(zt); the con-

stant C is a parameter C0 for observed prices but is
ffiffiffiffiffiffiffiffi
2=p

p
when returns are

simulated.

• K, the number of independent simulations of the terminal asset price ST ¼ pt0+n.
• A set of Kn pseudorandom numbers distributed uniformly between 0 and 1, from

which pseudorandom standard normal variates can be obtained. These numbers

typically depend on a seed value and a deterministic algorithm.

32.5.2 Parameter Selections

Option values are tabulated for hypothetical European options on the S & P

100 index. Options are valued for 10 dates defined by the last trading days of the

10 years from 1989 to 1998 inclusive. For valuation dates from 1992 onwards, the

size of the price history is set at t0 ¼ 2,000; for previous years the price

history commences on 6 March 1984 and t0 < 2,000. It is assumed that there are

M ¼ 252 trading days in 1 year and hence exactly 21 trading days in one simulated

month. Option values are tabulated when T is 1, 2, 3, 6, 12, 18, and 24 months.

Table 32.2 lists the parameter values used to obtain the main results. The

annualized risk-free rate and dividend yield are set at 5 % and 2 %, respectively.

The risk parameter l is set at 0.028 to give2 an annual equity risk premium of 6 %.

The mean return parameterm is set to the historic mean of the complete set of S & P

100 returns from March 1984 to December 1998 and l0 is set to zero.

There are two sets of values for the conditional variance process because the

primary objective here is to compare option values when volatility is assumed to

have either a short or a long memory. The long memory parameter set takes the

integration level to be d ¼ 0.4, because this is an appropriate level based upon the

high frequency reviewed in Sect. 32.2.3. The remaining variance parameters are

then based on Table 32.1; as the moving-average parameter is small, it is set to zero

and the autoregressive parameter is adjusted to retain the unit total, d + f +

c ¼ 1. The AR filter3 is truncated at lag 1,000, although the results obtained will

nevertheless be referred to as long memory results. The short memory parameters

are similar to those for the AR(1) estimates provided in Table 32.1. The parameters

g and y are both 6 % less in Table 32.2 than in Table 32.1 to ensure that selected

moments are matched for the short and long memory specifications; the uncondi-

tional mean and variance of ln(ht) are then matched for the historic measure P,
although the unconditional means differ by approximately 0.10 for the risk-neutral

measure Q as noted in Appendix 3.

2The conditional expectations of rt for measures P and Q differ by l
ffiffiffiffiffi
ht

p
and a typical average

value of
ffiffiffiffi
ht

p
is 0.00858. Assuming 253 trading days in 1 year gives the stated value of l.

3The filter coefficients sum to b1 + . . . + b1,000 ¼ 0.983. After b1 ¼ 1 and b2 ¼ � 0.12, all of the

coefficients are near zero, with b100 ¼ 0.00017 and b1,000 ¼ 7 � 10�6.

918 S.J. Taylor



Option prices are estimated from K ¼ 10, 000 independent simulations of prices

{pt, t
0 < t � t 0 + n} with n ¼ 504. Applying the antithetic and control variate

methods described in Appendix 2 then produces results for a long memory process

in about 12 min, when the processor speed is 2 GHz. Most of the time is spent

evaluating the high-order AR filter; the computation time is about 1 min for the

short memory process.

32.5.3 Comparisons of Implied Volatility Term Structures

The values of all options are reported using annualized implied volatilities rather

than prices. Each implied volatility (IV) is calculated from the Black-Scholes

formula, adjusted for continuous dividends. The complete set of IV outputs for

one set of inputs forms a matrix with rows labelled by the exercise prices X and

columns labelled by the times to expiry T; examples are given in Tables 32.5 and

32.6 and are discussed later.

Initially we only consider at-the-money options, for which the exercise price equals

the forward price F ¼ Se(R�D)T, with IV values obtained by interpolation across two

adjacent values of X. As T varies, the IV values represent the term structure of implied

volatility. Tables 32.3 and 32.4, respectively, summarize these term structures for the

short and long memory specifications. The same information is plotted on Figs. 32.2

Table 32.2 Parameter values for option price calculations

Trading periods per annum M 252

Risk-free interest rate r 0.05/M

Conditional mean

Historic intercept m 0.161/M

Historic equity risk premium term l0 0

Dividend yield d 0.02/M

Future equity risk premium term l 0.028

Conditional variance

Short memory Long memory

Integration level d 0 0.4

Truncation limit N 1,000

Mean a of EP[ln(ht)] �9.56 �9.56

Autoregressive parameter f 0.982 0.6

Moving-average parameter c 0 0

Asymmetric shock parameter y �0.056 �0.11

Symmetric shock parameter g 0.094 0.18

Historical value of EP[|z|] 0.737 0.737

Options are valued on the final trading day of ten consecutive years, from 1989 to 1998. The

returns history is drawn from the set of daily returns from the S & P 100 index from 6 March 1984

to 31 December 1998. A set of t0 ¼ 2,000 historical returns is used from 1992 onwards, and as

many as possible before then. The current level of the index is reset to S¼ 100 when option values

are determined
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and 32.3, respectively. The IV values for T ¼ 0 are obtained from the conditional

variances on the valuation dates. The standard errors of the tabulated implied volatil-

ities increase with T. The maximum standard errors for at-the-money options are,

respectively, 0.0003 and 0.0004 for the short and long memory specifications.

The ten IV term structures for the short memory specification commence

between 9.5 % (1993) and 18.8 % (1997) and converge towards the limiting

value of 14.3 %. The initial IV values are near the median level from 1989 to

1991, are low from 1992 to 1995, and are high from 1996 to 1998. Six of the term

structures slope upwards, two are almost flat, and two slope downwards. The shapes

of these term structures are completely determined by the initial IV values because

the volatility process is Markovian.

There are three clear differences between the term structures for the short and

long memory specifications that can be seen by comparing Figs. 32.2 and 32.3.

First, the long memory term structures can and do intersect because the volatility

process is not Markovian. Second, some of the term structures have sharp kinks

for the first month. This is particularly noteworthy for 1990 and 1996 when the

term structures are not monotonic. For 1990, the initial value of 14.1 % is

followed by 15.6 % at 1 month and a gradual rise to 16.2 % at 6 months and

a subsequent slow decline. For 1996, the term structure commences at 15.6 %,

Table 32.3 At-the-money implied volatilities for a short memory volatility process

Implied volatilities for options that expire after 1, 2, 3, 6, 12, 18, and 24 months

0 1 2 3 6 12 18 24

Year

1989 0.1211 0.1238 0.1267 0.1291 0.1340 0.1384 0.1404 0.1414

1990 0.1378 0.1380 0.1388 0.1395 0.1409 0.1421 0.1427 0.1431

1991 0.1213 0.1240 0.1271 0.1296 0.1339 0.1383 0.1403 0.1413

1992 0.1085 0.1129 0.1175 0.1210 0.1288 0.1356 0.1385 0.1401

1993 0.0945 0.1008 0.1069 0.1119 0.1226 0.1321 0.1363 0.1382

1994 0.1165 0.1201 0.1236 0.1263 0.1321 0.1375 0.1398 0.1411

1995 0.1118 0.1158 0.1200 0.1234 0.1304 0.1367 0.1391 0.1405

1996 0.1462 0.1449 0.1446 0.1445 0.1442 0.1438 0.1440 0.1441

1997 0.1883 0.1791 0.1730 0.1683 0.1599 0.1526 0.1500 0.1486

1998 0.1694 0.1640 0.1607 0.1581 0.1531 0.1488 0.1476 0.1469

Mean 0.1315 0.1323 0.1339 0.1352 0.1380 0.1406 0.1419 0.1425

St. dev. 0.0291 0.0243 0.0205 0.0175 0.0116 0.0063 0.0043 0.0032

The parameters of the EGARCH price process are listed in Table 32.2. The half-life of a volatility

shock is 1.8 months

European option prices are estimated from 10,000 simulations of the asset prices on the dates that

the options expire. The implied volatilities are for at-the-money options whose exercise prices

equal the forward rates for the expiry dates. The standard errors of the implied volatilities are

between 0.0001 and 0.0003

Options are valued on the final trading day of ten consecutive years. The returns history is drawn

from the set of daily returns from the S & P 100 index from 6 March 1984–31 December 1998.

A set of t0 ¼ 2,000 historical returns is used from 1992 onwards and as many as possible before

then. The column for T ¼ 0 provides the annualized volatilities on the valuation dates

920 S.J. Taylor



falls to 13.6 % after 1 month, and reaches a minimum of 12.8 % after 6 months

followed by a slow incline. The eight other term structures are monotonic and

only those for 1997 and 1998 slope downwards. Third, the term structures

approach their limiting value very slowly.4 The 2-year IVs range from 12.1 %

to 16.1 %, and it is not possible to deduce the limiting value, although

15.0–16.0 % is a plausible range.5 It is notable that the dispersion between the

ten IV values for each T decreases slowly as T increases, from 2.2 % for 1-month

options to 1.4 % for 2-year options.

There are substantial differences between the two IV values that are

calculated for each valuation date and each option lifetime. Figure 32.4

shows the differences between the at-the-money IVs for the long memory

4The results support the conjecture that IV(T)ffi a1 + a2T
2d�1 for large T with a2 determined by the

history of observed returns.
5An estimate of the constant a1 (defined in the previous footnote) is 16.0 %. An estimate of 15.0 %

follows by supposing the long memory limit is 105 % of the short memory limit, based on the limit

of ln(ht) being higher by 0.1 for the long memory process as noted in Appendix 3. The difference in

the limits is a consequence of the risk premium obtained by owning the asset; its magnitude is

mainly determined by the pronounced asymmetry in the volatility shock function g(zt).

Table 32.4 At-the-money implied volatilities for a long memory volatility process

Implied volatilities for options that expire after 1, 2, 3, 6, 12, 18, and 24 months

0 1 2 3 6 12 18 24

Year

1989 0.1194 0.1356 0.1403 0.1429 0.1467 0.1496 0.1507 0.1515

1990 0.1413 0.1556 0.1592 0.1609 0.1624 0.1624 0.1614 0.1607

1991 0.1215 0.1368 0.1416 0.1441 0.1478 0.1502 0.1510 0.1516

1992 0.1239 0.1261 0.1283 0.1301 0.1338 0.1375 0.1395 0.1409

1993 0.1080 0.1101 0.1128 0.1150 0.1195 0.1245 0.1272 0.1292

1994 0.1114 0.1189 0.1213 0.1228 0.1256 0.1284 0.1300 0.1314

1995 0.0965 0.1041 0.1067 0.1085 0.1119 0.1160 0.1187 0.1210

1996 0.1564 0.1357 0.1311 0.1295 0.1283 0.1288 0.1297 0.1308

1997 0.1697 0.1650 0.1626 0.1609 0.1574 0.1540 0.1523 0.1515

1998 0.1734 0.1693 0.1682 0.1672 0.1650 0.1623 0.1610 0.1602

Mean 0.1322 0.1357 0.1372 0.1382 0.1399 0.1414 0.1422 0.1429

St. dev. 0.0267 0.0221 0.0211 0.0204 0.0186 0.0165 0.0151 0.0141

The parameters of the FIEGARCH price process are listed in Table 32.2 and include an integration

level of d ¼ 0.4.

European option prices are estimated from 10,000 simulations of the asset prices on the dates that

the options expire. The implied volatilities are for at-the-money options whose exercise prices

equal the forward rates for the expiry dates. The standard errors of the implied volatilities are all

less than 0.0004

Options are valued on the final trading day of ten consecutive years. The returns history is drawn

from the set of daily returns from the S & P 100 index from 6 March 1984–31 December 1998.

A set of t0 ¼ 2,000 historical returns is used from 1992 onwards, and as many as possible before

then. The column for T ¼ 0 provides the annualized volatilities on the valuation dates
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specification minus the number for the short memory specification. When

T ¼ 0, these differences range from �1.9 % (1997) to 1.5 % (1992), for

3 month options from �1.5 % (1995, 1996) to 2.1 % (1990), and for 2-year

options from �1.9 % (1995) to 1.7 % (1990). The standard deviation of the ten

differences is between 1.1 % and 1.4 % for all values of T considered so it is

common for the short and long memory option prices to have IVs that differ by

more than 1 %.
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Fig. 32.2 Ten volatility term structures for a short memory process
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Fig. 32.3 Ten volatility term structures for a long memory process with d = 0.4
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32.5.4 Comparisons of Smile Effects

The columns of the IV matrix provide information about the strength of the

so-called smile effect for options prices. These effects seem to be remarkably

robust to the choice of valuation date and they are not very sensitive to the choice

between the short and long memory specifications. This can be seen by considering

the ten values of DIV¼ IV(T,X1)� IV(T,X2) obtained for the ten valuation dates, for

various values of T, various pairs of exercise prices X1, X2, and a choice of volatility

process. First, for 1-month options with S¼ 100, X1 ¼ 92, and X2 ¼ 108, the values

of DIV range from 3.0 % to 3.3 % for the short memory specification and from

3.7 % to 4.0 % for the long memory specification. Second, for 2-year options with

X1 ¼ 80 and X2 ¼ 120, the values of DIV range from 1.8 % to 2.0 % and from 1.8 %

to 1.9 %, respectively, for the short and long memory specifications.

Figure 32.5 shows the smiles for 3-month options valued using the short memory

model, separately for the ten valuation dates. As may be expected from the above

remarks, the ten curves are approximately parallel to each other. They are almost all

monotonic decreasing for the range of exercise prices considered, so that a U-shaped

function (from which the idea of a smile is derived) cannot be seen. The near

monotonic decline is a standard theoretical result when volatility shocks are nega-

tively correlated with price shocks (Hull 2000). It is also a stylized empirical fact for

US equity index options; see, for example, Rubinstein (1994) and Dumas et al. (1998).

Figure 32.6 shows the 3-month smiles for the long memory specification. The

shapes on Figs. 32.5 and 32.6 are similar, as all the curves are for the same expiry

time, but they are more dispersed on Fig. 32.6 because the long memory effect

induces more dispersion in at-the-money IVs. The minima of the smiles are

generally near an exercise price of 116. Figure 32.7 shows further long memory

smiles, for 2-year options when the forward price is 106.2. The parallel shapes are
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Fig. 32.4 Differences between ten pairs of term structures
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clear; the two highest curves are almost identical, and the third, fourth, and fifth

highest curves are almost the same.

Tables 32.5 and 32.6 provide matrices of implied volatilities for options valued

on 31 December 1998. When either the call or the put option is deep out-of-the-

money, it is difficult to estimate the option price accurately because the risk-

neutral probability q(X) of the out-of-the-money option expiring in-the-money is

small. Consequently, the IV information has not been presented when the

corresponding standard errors exceed 0.002; estimates of q(X) are less than 3 %.
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Fig. 32.5 Ten smile shapes for three-month options and a short memory process
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The standard errors of the IVs are least for options that are near to at-the-money

and most of them are less than 0.0005 for the IVs listed in Tables 32.5 and 32.6.

All the sections of the smiles summarized by Tables 32.5 and 32.6 are monotonic

decreasing functions of the exercise price. The IV decreases by approximately

4–5 % for each tabulated section.

32.5.5 Sensitivity Analysis

The sensitivity of the IV matrices to three of the inputs has been assessed for

options valued on 31 December 1998. First, consider a change to the risk parameter

l which corresponds to an annual risk premium of 6 % for the tabulated results.

From Sect. 32.4.3, option prices should be lower for large T when l is reduced to

zero. Changing l to zero reduces the at-the-money IV for 2-year options from

16.0 % to 15.4 % for the long memory inputs, with a similar reduction for the short

memory inputs. Second, consider reducing the truncation level N in the AR(N) filter
from 1,000 to 100. Although this has the advantage of a substantial reduction in the

computational time, it changes the IV numbers by appreciable amounts and cannot

be recommended; for example, the 2-year at-the-money IV then changes from

16.0 % to 14.7 %.

The smile shapes on Figs. 32.5, 32.6 and 32.7 are heavily influenced by the

negative asymmetric shock parameter y, which is substantial relative to the sym-

metric shock parameter g. The asymmetry in the smile shapes can be expected to

disappear when y is zero, which is realistic for some assets including exchange

rates. Figures 32.8 and 32.9 compare smile shapes when y is changed from the
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values used previously to zero, with g scaled to ensure the variance of ln(ht) is
unchanged for measure P. Figure 32.8 shows that the 1-month smile shapes become

U-shaped when y is zero, while Fig. 32.9 shows that the IV are then almost constant

for 1-year options.

32.6 Conclusions

The empirical evidence for long memory in volatility is strong, for both equity and

foreign exchange markets. This evidence may more precisely be interpreted as

Table 32.5 A matrix of implied volatilities for a short memory volatility process

Implied volatilities for options that expire after 1, 2, 3, 6, 12, 18, and 24 months

1 2 3 6 12 18 24

X

72 0.1705 0.1651

76 0.1744 0.1670 0.1624

80 0.1835 0.1696 0.1637 0.1600

84 0.1994 0.1911 0.1771 0.1655 0.1607 0.1577

88 0.1959 0.1876 0.1818 0.1711 0.1617 0.1579 0.1556

92 0.1845 0.1780 0.1734 0.1653 0.1579 0.1552 0.1535

96 0.1735 0.1693 0.1660 0.1599 0.1546 0.1526 0.1515

100 0.1644 0.1615 0.1593 0.1549 0.1514 0.1502 0.1496

104 0.1577 0.1550 0.1533 0.1502 0.1481 0.1479 0.1478

108 0.1537 0.1498 0.1480 0.1461 0.1452 0.1457 0.1461

112 0.1510 0.1461 0.1437 0.1422 0.1425 0.1436 0.1445

116 0.1525 0.1435 0.1407 0.1388 0.1400 0.1417 0.1429

120 0.1421 0.1384 0.1359 0.1376 0.1399 0.1415

126 0.1325 0.1345 0.1373 0.1394

132 0.1304 0.1317 0.1348 0.1374

138 0.1293 0.1328 0.1353

144 0.1272 0.1305 0.1336

150 0.1255 0.1286 0.1322

156 0.1269 0.1306

162 0.1246 0.1294

168 0.1220 0.1282

174 0.1277

180 0.1274

The parameters of the EGARCH price process are listed in Table 32.2. The half-life of a volatility

shock is 1.8 months

Options are valued on 31 December 1998. The returns history is the set of 2,000 daily returns from

the S & P 100 index from 4 February 1991 to 31 December 1998. European option prices are

estimated from 10,000 simulations of the asset prices on the dates that the options expire

Implied volatilities shown in Roman font have standard errors (s.e.) that are at most 0.0005 and

those shown in italic font have s.e. between 0.0005 and 0.0020; results are not shown when the

s.e. exceeds 0.0020, when options are either deep in- or out-of-the-money
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evidence for long memory effects, because there are short memory processes that

have similar autocorrelations and spectral densities, except at very low frequencies.

The theory of option pricing when volatility follows a discrete-time ARCH

process relies on weak assumptions about the continuous-time process followed

by prices and the numerical implementation of the theory is straightforward.

Application of the theory when the volatility process is fractionally integrated

does, however, require pragmatic approximations because the fundamental filter

(1 � L)d is an infinite order polynomial that must be truncated at some power N.
Option prices are sensitive to the truncation point N, so that large values and long

price histories from an assumed stationary process are required.

Table 32.6 A matrix of implied volatilities for a long memory volatility process

Implied volatilities for options that expire after 1, 2, 3, 6, 12, 18, and 24 months

1 2 3 6 12 18 24

X

72 0.1811 0.1765

76 0.1829 0.1783 0.1743

80 0.1895 0.1792 0.1754 0.1723

84 0.1970 0.1847 0.1760 0.1728 0.1703

88 0.1954 0.1889 0.1798 0.1729 0.1703 0.1683

92 0.1953 0.1860 0.1815 0.1750 0.1699 0.1680 0.1664

96 0.1814 0.1771 0.1746 0.1707 0.1672 0.1657 0.1645

100 0.1699 0.1691 0.1685 0.1666 0.1645 0.1635 0.1627

104 0.1611 0.1623 0.1631 0.1627 0.1617 0.1615 0.1610

108 0.1557 0.1569 0.1581 0.1593 0.1592 0.1596 0.1595

112 0.1525 0.1526 0.1538 0.1559 0.1570 0.1577 0.1579

116 0.1499 0.1505 0.1529 0.1549 0.1559 0.1564

120 0.1480 0.1480 0.1504 0.1528 0.1543 0.1550

126 0.1439 0.1469 0.1502 0.1520 0.1530

132 0.1440 0.1478 0.1497 0.1512

138 0.1421 0.1456 0.1477 0.1492

144 0.1436 0.1456 0.1473

150 0.1417 0.1438 0.1457

156 0.1402 0.1421 0.1444

162 0.1409 0.1428

168 0.1388 0.1416

174 0.1370 0.1405

180 0.1399

The parameters of the FIEGARCH price process are listed in Table 32.2 and include an integration

level of d ¼ 0.4

Options are valued on 31 December 1998. The returns history is the set of 2,000 daily returns from

the S & P 100 index from 4 February 1991 to 31 December 1998. European option prices are

estimated from 10,000 simulations of the asset prices on the dates that the options expire

Implied volatilities shown in Roman font have standard errors (s.e.) that are at most 0.0005, and

those shown in italic font have s.e. between 0.0005 and 0.0020; results are not shown when the

s.e. exceeds 0.0020, when options are either deep in- or out-of-the-money
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The term structure of implied volatility for at-the-money options can

be notably different for short and long memory ARCH specifications

applied to the same price history. Long memory term structures have more

variety in their shapes. They may have kinks for short maturity options and
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they may not have a monotonic shape. Also, term structures calculated on

different valuation dates sometimes intersect each other. None of these

possibilities occurs for a Markovian short memory specification. Long

memory term structures do not converge rapidly to a limit as the

lifetime of options increases. It is difficult to estimate the limit for the typical

value d ¼ 0.4.

Implied volatilities as functions of exercise prices have similar shapes for short

and long memory specifications. The differences in these shapes are minor in

comparison to the differences in the term structure shapes.

It is common for the short and long memory implied volatilities to differ by

more than 1 % for options on the S & P 100 index, regardless of the option

lifetime and the exercise price; if the short memory implied is at a typical level

of 14 %, then the long memory implied is often below 13 % or above 15 %.

Consequently, the economic consequences of a long memory assumption are

important.
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Appendix 1: Series Expansions and Truncation Approximations

Series expansions in the lag operator L are required to evaluate the following

conditional variance:

ln htð Þ ¼ aþ 1� fLð Þ�1
1� Lð Þ�d

1þ cLð Þg zt�1ð Þ: (32.30)

We note the results:

1� Lð Þd ¼ 1�
X1
j¼1

ajL
j, a1 ¼ d, aj ¼ j� d � 1

j
aj�1, j � 2, (32.31)

1� fLð Þ 1� Lð Þd ¼ 1�
X1
j¼1

bjL
j, b1 ¼ d þ f, bj ¼ aj � faj�1, j � 2, (32.32)

1� fLð Þ 1� Lð Þd 1þ cLð Þ�1 ¼ 1�
X1
j¼1

fjL
j,

f1 ¼ d þ fþ c,fj ¼ bj � �cð Þj þ
Xj�1

k¼1

�cð Þj�kbk, j � 2: (32.33)
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The autoregressive weights in Eqs. 32.33 can be denoted as fj (d,f,c). Also,

1� fLð Þ�1
1� Lð Þ�d

1þ cLð Þ ¼ 1þ
X1
j¼1

cjL
j, (32.34)

c1 ¼ d þ fþ c, cj ¼ �fj �d, � c, � fð Þ (32.35)

It is necessary to truncate the infinite summations when evaluating empirical

conditional variances. Truncation after N terms of the summations in Eqs. 32.35,

32.33, and 32.32, respectively, gives the MA(N), AR(N), and ARMA(N, 1)

approximations:

ln htð Þ ¼ aþ g zt�1ð Þ þ
XN
j¼1

cjg zt�j�1

� �
, (32.36)

ln htð Þ ¼ aþ
XN
j¼1

fj ln ht�j

� �� a
� 	þ g zt�1ð Þ, (32.37)

ln htð Þ ¼ aþ
XN
j¼1

bj ln ht�j

� �� a
� 	þ g zt�1ð Þ þ cg zt�2ð Þ: (32.38)

As j!1, the coefficients bj and fj converge much more rapidly to zero than the

coefficients cj. Consequently it is best to use either the AR or the ARMA

approximation.

Appendix 2: Simulation Methods

Suppose there are returns observed at times 1� t� t0, whose distributions are given
by measure P, and that we then want to simulate returns for times t > t0 using
measure Q. Then ln (ht) is calculated for 1 � t � t0 + 1 using the observed returns,

with ln (ht) ¼ a and g(zt) ¼ 0 for t < 1, followed by simulating zt
* � Q N(0,1) and

hence obtaining rt and ln (ht+1) for t > t0.
Care is required when calculating the constant C in Eq. 32.29 because the

observed conditional distributions of the terms zt are not normal while the simula-

tions assume that they are. Consequently, we define

C ¼ C0, t � t0,
¼ ffiffiffiffiffiffiffiffi

2=p
p

, t > t0,
(32.39)

for a constant C0 estimated from observed returns. An alternative method, described

by Bollerslev and Mikkelsen (1999), is to simulate from the sample distribution of

standardized observed returns.

Standard variance reduction techniques substantially enhance the accuracy of

Monte Carlo estimates of contingent claim prices. Our antithetic method uses one
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i.i.d. N(0, 1) sequence {zt
*} to define the further i.i.d. N(0, 1) sequences, {� zt

*},

{zt
•}, and {� zt

•}, with the terms zt
• chosen so that there is negative correlation

between z�t
�� �� and z	t

�� ��; this is achieved by defining F z	t
� �þ F z�t

� � ¼ 1þ 1
2
sign z�t

� �
.

The four sequences provide claim prices whose average, y say, is much less variable

than the claim price from a single sequence. An overall average ŷ is then obtained

from a set of K values yk, 1 � k � Kf g.
The control variate method makes use of an unbiased estimate ŷCV of a known

parameter yCV, such that ŷ is positively correlated with ŷCV. A suitable parameter,

when pricing a call option in an ARCH framework, is the price of a call option when

volatility is deterministic. The deterministic volatility process is defined by

replacing all terms ln(ht), t > t 0 + 1, by their expectations under P conditional on

the history It0. Then yCV is given by the obvious modification of the Black-Scholes

formula, while ŷCV is obtained by using the same 4K sequences of i.i.d. variables

that define ŷ. Finally, a more accurate estimate of the option price is then given by

~y ¼ ŷ � b(ŷCV � yCV) with b chosen to minimize the variance of ~y.

Appendix 3: Impact of a Volatility Risk Premium

On average the term structure of implied volatilities will slope upwards for the

FIEGARCH option pricing model. This occurs because the expectation of ln(ht)
depends on the measure6 when l 6¼ 0. The unconditional expectation equals a for

measure P. It is different for measure Q because

EQ g z�t � l
� �� 	 ¼ �lyþ g EQ z�t � l

�� ��� 	�
ffiffiffiffiffiffiffiffi
2=p

p� �
ffi �lyþ l2gffiffiffiffiffiffi

2p
p (32.40)

when l is small, and this expectation is in general not zero.7 For a fixed t0, as t!1,

EQ ln htð Þ It0j½ 
 ! aþ 1�
XN
j¼1

bj

 !�1

1þ cð ÞEQ g z�t � l
� �� 	

(32.41)

The difference between the P andQ expectations of ln(ht) could be interpreted as
a volatility risk premium. This premium is typically negative, because typically

l > 0, y � 0 and g > 0. Furthermore, when y is negative, the dominant term in

Eq. 32.40 is � ly, because l is always small, and then the premium reflects the

degree of asymmetry in the volatility shocks g(zt).

6The dependence of moments of ht on the measure is shown by Duan (1995, p. 19) for the GARCH

(1,1) model.
7When z � N(0,1), E z� lj j½ 
 ¼ ffiffiffiffiffiffiffiffi

2=p
p

exp �1
2
l2

� �þ l 2F lð Þ � 1ð Þ with F the cumulative distri-

bution function of z.
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The magnitude of the volatility risk premium can be important and, indeed, the

quantity defined by the limit in Eq. 32.41 becomes infinite8 as N ! 1 when d is

positive. A plausible value of l for the S & P 100 index is 0.028, obtained by assuming

that the equity risk premium is 6 % per annum. For the short memory parameter values

in the first row of Table 32.1, when d¼ 0 and N¼ 1,000, the limit of EQ[ln(ht) |It
0]� a

equals 0.10. This limit increases to 0.20 for the parameter values in the final row of

Table 32.1, when d¼ 0.4 and N¼ 1,000. The typical effect of adding 0.2 to ln(ht) is to
multiply standard deviations

ffiffiffiffi
ht

p
by 1.1 so that far-horizon expected volatilities, under

Q, are slightly higher than might be expected from historical standard deviations.
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Abstract

Australian electricity spot prices differ considerably from equity spot prices in

that they contain an extremely rapid mean-reversion process. The electricity spot

price could increase to a market cap price of AU$12,500 per megawatt hour

(MWh) and revert back to a mean level (AUD$30) within a half-hour interval.

This has implications for derivative pricing and risk management. For example,

while the Black and Scholes option pricing model works reasonably well for

equity market-based securities, it performs poorly for commodities like electric-

ity. Understanding the dynamics of electricity spot prices and demand is also
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important in order to correctly forecast electricity prices. We develop econo-

metric models for seasonal patterns in both price returns and proportional

changes in demand for electricity. We also model extreme spikes in the data.

Our study identifies both seasonality effects and dramatic price reversals in

the Australian electricity market. The pricing seasonality effects include

time-of-day, day-of-week, monthly, and yearly effects. There is also evidence

of seasonality in demand for electricity.

Keywords

Electricity • Spot price • Seasonality • Outlier • Demand • Econometric modelling

33.1 Introduction

On Monday 11th of January 2010, the temperature in the state of Victoria in

Australia peaked to 42.8 �C. This led to an increase in demand for electricity as

households turned on their air conditioning systems. During that half-hour interval,

the wholesale price of electricity surged to over $9,000 and then reverted to the

average price of around $30 in the subsequent half-hour period. Exercising a call

option around that time would have been extremely profitable. What causes the spot

price of electricity to exhibit such erratic behavior? We provide a partial explana-

tion of this behavior in this study.

Unpredictable jumps in electricity spot price are usually referred to as “spikes”

because jumps tend to happen very quickly, with equally quick reversion to mean

levels. These events create a challenge for quantitative analysts when it comes to

pricing electricity derivatives. Before one can price these derivatives, one has to be

able to effectively forecast the spot price distribution. To date, this problem remains

an unresolved matter. For instance, the Black and Scholes (1973) option pricing

model fails to adequately price an option written on the electricity spot price

because of the incidence of these pricing spikes. The Black and Scholes model

works reasonably well in the equity markets whereby the equity time series takes

a longer time to trend upwards or downwards. Given the rapid price reversals

evident in the electricity spot prices, the Black and Scholes model does not perform

particularly well. The key characteristic of non-storability of electricity partially

explains why electricity spot price increases significantly during a short-term

interval. As the possibility of storing large amounts of electricity does not exist,

this product has to be consumed and produced simultaneously. Large price swings

occur in this market mainly because supply is inelastic.

The electricity pricing literature provides clear evidence of the spikes. Thomas

et al. (2011), Huisman and Huurman (2003), and Goto and Karolyi (2004) show

non-normality manifested as positive skewness and extreme leptokurtosis; Johnson

and Barz (1999) observe mean reversion in the long run; Kaminski (1997),

Clewlow and Strickland (2000), and Eichler et al. (2012) find evidence of extreme

behavior with fast-reverting spikes; and Bunn and Karakatsani (2003) demonstrate

excessive volatility. Further, Escribano et al. (2002) show that electricity volatility
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can be time varying in a number of countries like in Argentina, New Zealand,

Norway, Sweden, and Spain.1 Other researchers devote their time to modelling the

electricity time series itself. For instance, Knittel and Roberts (2001) apply mean-

reversion, time-varying mean, jump-diffusion, time-dependent jump intensity,

ARMAX, and exponential generalized autoregressive conditional heteroske-

dasticity (EGARCH) models to hourly prices in the Californian electricity market

and conclude that forecasting performance is relatively poor. Kaminski (1997)

addresses the spiky characteristic with a random walk jump-diffusion model, but

this model ignores the persistent mean reversion, which is a feature of electricity

prices, and this avenue is explored further in Clewlow and Strickland (2000). One

of the limitations of the jump-diffusion approaches is the assumption that all shocks

affecting the price series die out at the same rate. Escribano et al. (2002) identify

two additional price components, namely, volatility clustering in the form of

GARCH effects and seasonality (emphasized by Lucia and Schwartz 2002), both

in the deterministic component of prices and the jump intensity.

The seasonal aspects recognized within the electricity market are also important.

The results observed in one geographic region cannot be applied to other areas as

the climatic conditions are different. For example, summer time occurs in different

months around the globe, and for that reason, it is important to investigate the

seasonal aspects within the Australian electricity market.

Seasonality in the electricity market is not limited to price series as seasonal

patterns in demand or system load are well documented in the literature. Harvey

and Koopman (1993) document intra-daily and intra-week effects and incorporate

them into their demand model using splines. Other early studies considered longer-

term load forecasting horizons several months into the future, using daily, weekly,

or monthly demand data (e.g., Engle et al. 1989). Pardo et al. (2002) employ daily

data in a study of Spanish electricity demand and emphasize the importance of daily

and monthly seasonal structures. More recent studies consider modelling and

forecasting demand over shorter periods using intraday data. In the Australian

context, Smith (2000) documents intraday patterns in demand in the New South

Wales electricity market and incorporates diurnal variation into a Bayesian

semiparametric regression framework to model intraday electricity load data and

obtain short-term load forecasts. We extend his analysis by testing whether sea-

sonality exists in other Australian regions.

In the early 1990s, following the release of the Hilmer Report, the Australian

electricity industry embarked on a progressive program of deregulation. The Hilmer

reforms led to the disaggregation of vertically integrated, government-owned elec-

tricity authorities into separate generation transmission and distribution and retail

sales sectors in each state. This gave rise to a wholesale market for electricity

which is currently managed by the Australian Energy Market Operator (AEMO).

AEMO is responsible for five regions, namely, VIC1 (Victoria), NSW1 (New

South Wales), QLD1 (Queensland), SA1 (South Australia), and TAS1 (Tasmania).

1See Montero et al. (2011) for further evidence in the Spanish market.
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Western Australia and the Northern Territory are geographically remote and to date

have not been integrated into the “national” market. Physical transmission of power

between regions is achieved via interconnectors that physically link the five different

states. The spot electricity market in the AEMO is where all market generators and

market customers settle their electricity sales and purchases based on a spot price.

The market participants are generally large consumers of electricity, generators, and

speculators. Large consumers of electricity like car manufacturers and supermarkets

enter this market to enjoy a lower cost of production and to hedge their positions.

Speculators, on the other hand, trade future contracts, forwards, options, caps, floors,

and swaps for profit motives.

33.2 Australian Electricity Spot Price

The half-hourly pool price data is sourced directly from AEMO (previously known

as National Electricity Market Management Company, NEMMCO) for the period

from 1 January 1999 to 31 January 2006. Prices are expressed in Australian dollars

per megawatt hour ($/MWh). The sample size is 124,224 observations for each

region except for TAS1 that joined the pool at a later stage. Figure 33.1 shows the

data series for NSW1 with evidence of considerable spiked behavior. Descriptive

statistics for the price and return series which are shown in Table 33.1 tend to

confirm these outliers.

−2000
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4000
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8000

10000
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Fig. 33.1 Electricity price series for NSW1 ($/MWh) for the period 01.01.1999–31.01.2006
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We report the range, minimum, maximum, mean, standard deviation, skewness,

kurtosis, and Jarque-Bera statistics (JB stats) for each region’s price and return

series. Mean prices vary between regions from $30.19 for VIC1 to $41.91 for SA1

and to $87.30 for TAS1 as the factor inputs (low-cost coal, high-cost gas and water)

vary from one state to another. TAS1 was at the early stage of joining the pool, and

these statistics depict and are consistent with the immature stage of the market in

this region. The standard deviation of prices is generally high, is widely dispersed

across the regions, and is broadly consistent with the pattern of means, ranging from

$103.26 for VIC1 to $367.26 for TAS1. The lowest maximum price of $7416.16 is

observed in VIC1 and the highest maximum price in TAS1 at $10,000. No prices

above $10,000 were observed as this was the market price cap during the period of

the study. This amount is smaller than other international markets like the state of

California in the United States, which recorded over US$50,000 during a period

when no market cap was in force. These extremely high values are the features that

we are looking for and are referred to as spikes in this study. These instances are

generally viewed as lucrative occurrences by arbitrageurs. The most commonly

traded call options on the Australian electricity market have exercise prices of

either $100 or $300. If we assume that market participants will exercise their rights

when the option is in the money, then VIC1 traders will exercise when the spot price

is above $340 (mean price of around $30 plus three standard deviations away) on

average. To ensure that we capture a spike, we adopt a conservative approach

whereby we define a spike as the mean plus four standard deviations. We observe

a total of 505 spikes in NSW1, QLD1, SA1, and VIC1. QLD1 exhibits the greatest

incidence of extreme price spikes by state with 173 occurrences (34 %), followed

by SA1 with 159 (31 %) and VIC1 with 96 (19 %). By day of the week, Monday

shows the highest incidence with 115 (23 %) tapering gradually to Sunday with

45 occurrences (9 %). June shows the highest incidence by month with 81 (16 %).

The highest incidences by year occur in 2002 with 147 spikes (29 %) and 2000 with

116 spikes (23 %), both markedly higher than any other full year in the study

period. It should be noted that the incidence of extreme price spikes appears to be

declining from 2003 onwards as legislation on collusive behavior was passed in

Queensland. There is evidence of a concentration of spikes occurring between the

hours 06:30 and approximately 10:00 and between 15:30 and 19:00 h, with a marked

increase in frequency concentrated at the 18:00 trading interval.

Another unique characteristic of this dataset is negative price. All five regions

exhibit negative minimum prices. As shown in Table 33.1, the negative prices

for NSW1, QLD1, SA1, VIC1, and TAS1 are �$3.10, �$156.14, �$822.45,

�$329.91, and �$332.00, respectively. To understand the possibility of such rare

and short-lived occurrence, it is important to understand how the spot price is

derived. It is a derived price per trading interval, calculated by a two-step procedure

based on the offers to supply made by generators in the pool. The trading day is

divided into 48 half-hour “trading intervals” which is then subdivided into 5-min.

“dispatch intervals.” A “dispatch price” is recorded as the marginal price of supply

to meet demand for each 5-min. interval in a given half-hour period. This marginal

price is typically the dispatch offer price of the last generator brought into

940 V. Ramiah et al.



production to meet demand at that interval. The spot price is then calculated as an

arithmetic average of the six dispatch prices in a half hour. All generators who are

called into production during a given half-hour trading interval receive this spot

price for the quantity of electricity delivered during the trading interval. A generator

may bid a negative price into the pool for its self-dispatch quantity as a tactical

move to ensure that they are among the first to be called in to generate as closing

down their operations due to not being called into production may be more costly

than producing at negative prices. The implication of a negative price is that the

standard return calculation for prices may contain this bias, and to that end, the

following return formula is used:

RETt ¼ Pt � Pt�1ð Þ
Pt�1j j : (33.1)

where RETt represents the half-hourly discrete proportionate change in price

(“return”) at time t, Pt is half-hourly price at time t, and |Pt�1| is the absolute

value of the previous half-hourly price, i.e., at time t�1. The denominator is

specified as the absolute value to allow for the presence of negative prices. We

prefer a discrete return specification over log returns because the spot market in the

AEMO trades at discrete half-hourly intervals – it is not a continuous market in the

way of most conventional financial markets. Further, a log return specification will

dampen the extreme spike effects we are attempting to capture and is incompatible

with negative prices. Descriptive statistics for the half-hourly return series are

shown in Table 33.1. Mean half-hourly returns vary widely between regions,

from 2.6 % for VIC1 to 6.1 % for QLD1. High maximum returns are observed

and are consistent with the spike behavior discussed above.

One of the clear patterns discussed so far is the spike behavior, and, based on the

earlier discussion, it is fair to say that these spikes are more likely to occur at some

specific periods like 18.00 h, Mondays, and in the year 2002. We develop a method

to test if there is seasonality in the return series with half-hourly return as the

dependent variable. The explanatory variables consist of seasonal dummy

variables, spike behavior, and negative prices. We add lagged returns to the list

of independent variables to control for serial correlation in the return series. The

model employed in this study is presented as Eq. 33.2:

RETR, t ¼ a0 þ
X5
i¼1

b1, iRETR, t�1 þ
X6
j�1

b2, jDAYj þ
X12

k¼1, 6¼9

b3, kMTHk þ
X2006

l¼1999, 6¼2001

b4, lYRl

þ
X48

m¼1, 6¼24

b5,mHHm þ
XNR, S

o¼1

b6, oSPIKER, o þ
XNR,N

p¼1

b7, pNEGR, p þ et

(33.2)

where RETR,t represents the discrete return for region R at time t, a0 represents the
constant term, and DAYj represents the dummy variable for each day of the week
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(j ¼ 1 for Monday, 2 for Tuesday, . . . , 6 for Saturday). The dummy variable for

Sunday is dropped on the basis that the returns are relatively lower on that day. We

use similar justification when it comes to discarding other periods.MTHk represents

the dummy variable for each month (k ¼ 1 for January, 2 for February, . . . , 12 for

December). The dummy variable for September is dropped; YRl represents the

dummy variable for each year included in the sample period (l ¼ 1999, . . . , 2006).
The dummy variable for 2001 is dropped; HHm represents the dummy variable for

each half-hourly trading interval (m ¼ 1 for 00:00 h, 2 for 00:30 h, . . . , 48 for

23:30 h). The dummy variable for 11:30 h is dropped; SPIKER,o represents a set of

NR,S dummy variables, one for each extreme spike as previously defined, with NR,S

representing the number of extreme returns observed in region R for the period of the

study; NEGR,N represents the dummy variable for the return associated with an

occurrence of a negative price (p ¼ 1, . . . , NR,N), with NR,N representing the number

of occurrences of a negative price for region R during for the period of the study.

The values for the trading interval at 11:30 h, Sunday, September, and the year

2001 were dropped to avoid exact collinearity and to allow comparison of these

values with the remaining seasonal coefficients for HHm, DAYj, MTHk, and YRl. The

equation was initially estimated for each region with 20 lagged returns (RETRt�1, . . . ,
RETRt�20). F-tests for redundant variables were performed for all regions, and AIC

and SBC values support the finding that lags 1 through 5 were significant. Lags

6 onwards were not found to be significant and were discarded. Standard tests and

residual diagnostics revealed no misspecification in the above model.

Results of the regression analysis are presented in Table 33.2. Coefficients and

t-statistics (t-stats) are presented for each seasonal dummy variable. The results

generated from this model are consistent with Kaminski (1997), Clewlow and

Strickland (2000) and De Jong and Huismann (2002) with regard to the seasonal

aspects and spike behavior of the price series. Seasonal effects vary between

regions, and time-of-day effects are generally more significant than other

seasonalities. Positive returns are observed at times of peak population activity in

the morning and early evening, and negative returns observed at most other times.

In general, significant negative returns are found for the small hours of the morning

between 12:30 a.m. and approximately 4:00 a.m. in all regions. NSW1 exhibits an

unexplained positive return at 1:30 a.m., reverting to negative returns for the

remainder of the early morning. The hours between 5:00 a.m. and 9:30 a.m.

inclusively exhibit significant positive effect in all regions, reverting to generally

negative returns in the late morning. Negative returns are found in SA1 during

midafternoon. Significant positive effects are observed for all regions in the early

evening, generally between the hours of 5:00 and 7:00 p.m., reverting to significant

negative effects for the remainder of the evening, until positive effects emerge in

the late evening at 10:30 p.m. and at midnight. The periods of positive return in the

morning and early evening are consistent with peaks in activity in the population.

The positive returns observed around 11:00 p.m. are consistent with increased

demand for electricity arising from off-peak hot water systems generally switching

on at 11:00 p.m.
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Table 33.2 The seasonality effects in the different regions

SA1 VIC1 NSW1 QLD1

Variable Coeff t-stats Coeff t-stats Coeff t-stats Coeff t-stats

Mon 0.0113 3.36 0.0279 4.00 0.0218 3.13 0.0154 4.05

Tues 0.0105 3.14 0.0249 3.57 0.0190 2.72 0.0137 3.61

Wed 0.0120 3.56 0.0246 3.53 0.0178 2.56 0.0118 3.09

Thurs 0.0109 3.25 0.0232 3.33 0.0213 3.05 0.0137 3.59

Fri 0.0090 2.67 0.0233 3.35 0.0176 2.52 0.0121 3.18

Sat �0.0018 �0.53 0.0137 1.97 0.0092 1.33 �0.0010 �0.26

Jan 0.0003 0.06 0.0022 0.25 0.0015 0.16 0.0172 3.42

Feb 0.0063 1.40 0.0043 0.46 0.0017 0.18 0.0102 1.99

Mar �0.0068 �1.54 �0.0008 �0.09 �0.0015 �0.16 0.0220 4.39

Apr 0.0019 0.42 0.0021 0.23 0.0012 0.13 0.0029 0.57

May 0.0039 0.87 0.0051 0.56 0.0048 0.52 0.0116 2.31

June 0.0018 0.41 0.0047 0.51 0.0064 0.70 0.0125 2.47

July 0.0089 2.01 0.0023 0.25 0.0043 0.47 0.0134 2.68

Aug 0.0074 1.67 0.0041 0.45 0.0035 0.38 0.0124 2.48

Oct 0.0016 0.37 �0.0289 �3.16 �0.0235 �2.56 0.0062 1.24

Nov 0.0048 1.07 �0.0059 �0.64 �0.0025 �0.27 �0.0020 �0.40

Dec �0.0041 �0.93 0.0005 0.06 �0.0007 �0.07 0.0110 2.20

Y1999 0.0406 12.02 �0.0128 �1.83 �0.0072 �1.03 0.0227 5.91

Y2000 0.0234 6.93 0.0043 0.61 0.0136 1.95 0.0361 9.43

Y2002 0.0043 1.29 �0.0008 �0.11 0.0085 1.22 0.0131 3.43

Y2003 0.0001 0.04 �0.0036 �0.51 0.0002 0.02 �0.0087 �2.28

Y2004 0.0012 0.37 �0.0010 �0.14 0.0041 0.58 �0.0061 �1.58

Y2005 0.0025 0.75 �0.0037 �0.54 0.0029 0.41 �0.0082 �2.14

Y2006 0.0210 2.32 0.0031 0.16 �0.0018 �0.10 �0.0080 �0.78

H0000 �0.0133 �1.51 �0.1022 �5.61 �0.1002 �5.49 �0.1598 �16.03

H0030 �0.0383 �4.36 �0.0783 �4.29 �0.0587 �3.22 �0.1123 �11.27

H0100 �0.0402 �4.58 �0.0819 �4.49 �0.0637 �3.49 �0.0930 �9.33

H0130 �0.0778 �8.85 0.1873 10.27 0.0875 4.80 �0.0335 �3.36

H0200 �0.1838 �20.93 �0.1379 �7.57 �0.1087 �5.96 �0.0922 �9.25

H0230 �0.1172 �13.34 �0.1147 �6.29 �0.0814 �4.46 �0.0716 �7.18

H0300 �0.1528 �17.41 �0.0976 �5.36 �0.0650 �3.56 �0.0577 �5.78

H0330 �0.1384 �15.76 �0.0969 �5.32 �0.0673 �3.69 �0.0511 �5.13

H0400 �0.1016 �11.58 �0.0619 �3.39 �0.0391 �2.14 �0.0417 �4.18

H0430 �0.0310 �3.54 0.0066 0.36 0.0226 1.24 �0.0096 �0.96

H0500 �0.0192 �2.19 0.0174 0.95 0.0279 1.53 �0.0051 �0.52

H0530 0.1118 12.73 0.1614 8.86 0.1441 7.90 0.0533 5.35

H0600 0.0723 8.23 0.0870 4.77 0.0769 4.22 0.0122 1.22

H0630 0.1757 20.00 0.2156 11.82 0.1587 8.70 0.0983 9.86

H0700 0.1988 22.63 0.1196 6.56 0.0752 4.12 0.1173 11.77

H0730 �0.0456 �5.19 �0.0587 �3.22 �0.0583 �3.20 0.0605 6.07

H0800 0.1350 15.37 0.1741 9.55 0.1550 8.50 0.1343 13.46

(continued)
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Table 33.2 (continued)

SA1 VIC1 NSW1 QLD1

Variable Coeff t-stats Coeff t-stats Coeff t-stats Coeff t-stats

H0830 0.1454 16.55 0.1281 7.02 0.1061 5.82 0.1089 10.91

H0900 0.0286 3.26 0.0284 1.56 0.0123 0.67 0.0371 3.72

H0930 0.0160 1.83 0.0733 4.02 0.0659 3.61 0.0588 5.89

H1000 �0.0173 �1.97 0.0023 0.13 �0.0019 �0.10 �0.0256 �2.56

H1030 �0.0396 �4.51 0.0015 0.08 �0.0015 �0.08 �0.0228 �2.29

H1100 �0.0120 �1.37 0.0150 0.82 0.0142 0.78 �0.0213 �2.13

H1200 �0.0219 �2.50 0.0067 0.37 0.0106 0.58 �0.0072 �0.72

H1230 0.0111 1.27 0.0170 0.93 0.0232 1.27 �0.0227 �2.27

H1300 �0.0020 �0.23 �0.0030 �0.17 0.0033 0.18 �0.0254 �2.55

H1330 �0.0020 �0.23 0.0432 2.37 0.0429 2.35 0.0153 1.53

H1400 �0.0051 �0.58 �0.0046 �0.25 �0.0022 �0.12 �0.0180 �1.80

H1430 �0.0402 �4.57 �0.0063 �0.35 0.0052 0.28 0.0005 0.05

H1500 �0.0277 �3.15 �0.0011 �0.06 �0.0049 �0.27 �0.0416 �4.17

H1530 �0.0373 �4.25 �0.0046 �0.25 0.0018 0.10 �0.0125 �1.26

H1600 �0.0105 �1.20 0.0160 0.88 0.0171 0.94 0.0014 0.14

H1630 �0.0403 �4.59 �0.0063 �0.34 �0.0109 �0.60 �0.0081 �0.81

H1700 �0.0002 �0.03 0.0353 1.94 0.0290 1.59 0.0436 4.37

H1730 0.0355 4.04 0.0685 3.75 0.0853 4.67 0.1127 11.30

H1800 0.1622 18.44 0.2035 11.13 0.2390 13.06 0.2770 27.69

H1830 0.0675 7.68 0.0584 3.20 0.0574 3.14 0.0789 7.91

H1900 �0.0408 �4.65 �0.0235 �1.29 �0.0237 �1.30 0.0380 3.81

H1930 �0.1043 �11.88 �0.0743 �4.07 �0.0820 �4.49 �0.1058 �10.60

H2000 �0.0473 �5.39 �0.0344 �1.89 �0.0492 �2.70 �0.0593 �5.94

H2030 �0.0698 �7.95 �0.0336 �1.84 �0.0382 �2.10 �0.1199 �12.02

H2100 �0.0858 �9.77 �0.0672 �3.69 �0.0679 �3.72 �0.0876 �8.79

H2130 �0.0493 �5.61 �0.0253 �1.39 �0.0018 �0.10 �0.0524 �5.26

H2200 �0.0994 �11.32 �0.0998 �5.47 �0.0901 �4.94 �0.0910 �9.13

H2230 0.0502 5.72 0.1401 7.69 0.1923 10.54 0.1460 14.64

H2300 �0.0635 �7.23 �0.0659 �3.62 �0.0690 �3.79 �0.0764 �7.66

H2330 0.1348 15.35 0.2989 16.40 0.1890 10.36 0.1219 12.22

C 0.0145 1.91 �0.0206 �1.31 �0.0215 �1.37 �0.0015 �0.17

Return(�1) �0.0071 �13.23 0.0006 0.34 0.0047 3.44 �0.0048 �8.25

Return(�2) �0.0078 �4.38 �0.0062 �4.54 �0.0042 �7.11

Return(�3) �0.0077 �4.34 �0.0059 �4.31 0.0003 0.47

Return(�4) �0.0009 �1.48

Return(�5) 0.0085 14.37

R-squared 0.9646 0.6119 0.7681 0.9577

Adj R-squared 0.9645 0.6114 0.7678 0.9576

aF-test was carried to exclude redundant lag returns (from lag 6 to lag 20)
bAkaike info criterion and Schwarz criterion were used to determine the optimal lags for the

different regions
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Day-of-week effects generally appeared stronger for Monday, Tuesday, and

Wednesday than other days of the week. Monthly effects are not found to be

consistent across regions, nor are yearly effects. There appears to be no clear

pattern in monthly effect across regions, although a small but significant negative

effect is noted for October in NSW1 and VIC1. Positive effects are noted for winter

months in SA1, and QLD demonstrates significant positive effects in spring and

summer months. As expected, there is considerable evidence of positive spikes in

the return series, and the evidence shows that negative prices within the Australian

electricity market cannot be ignored. Such results cast doubts on the application of

lognormal prices to the Australian electricity market.

33.3 Australian Demand for Electricity

Given the instantaneous market-clearing nature of prices in the AEMO, a logical

extension of this study is to investigate the prevalence of seasonal effects and spike

behavior in electricity demand, with a view to examining the extent to which these

effects are transmitted from demand to price and how efficiently the spot market

absorbs demand-side shocks.

33.3.1 Demand Data

The demand data used in this study are half-hourly observations of total demand.

The data is obtained from the same source as the price data and covers the same

period and regions. The basic quantity of interest in demand modelling and

forecasting is typically the periodic “total system demand” or “total demand.”

The total demand value reported by AEMO is a derived value, somewhat different

from demand (as may be represented by traded volume), as it may be understood in

conventional financial markets. Suppliers and distributors lodge schedules and

bids for the sale and purchase of electricity with AEMO at 12:30 p.m. on the day

prior to actual dispatch of electricity for each interval. AEMO compiles this data

and mates it with a short-term forecast of system demand and grid capacity

to determine an expected dispatch quantity and dispatch order of generators

(Smith 2000).

This study uses AEMO’s reported “total demand” values for each region,

expressed in megawatts (MW) by half-hour trading interval for the sample period.

Total demand is defined by AEMO as the total forecast regional demand against

which a dispatch solution is performed. For any particular interval and region, this

is determined as described by Eq. 33.3:

DT ¼
Xn
i¼1

Gi �
Xn
i¼1

Li þ NIi þ
Xn
i¼1

AILþ F Dð Þ þ ADE (33.3)
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where:

DT is total demand.

Gi is “generator initial MW (SCADA),” the sum of initial MW values for all

scheduled generation units within the region, measured at their generator termi-

nals and reported by SCADA.

Li is “load initial MW (SCADA),” the scheduled base-load generation level for the

interval.

NIi is “net interconnector initial MW into region,” the net of all interconnector flows

into and out of the region.

AIL is “total allocated interconnector losses” represented by ∑(MW losses

X regional loss allocation). “MW losses” represent actual power losses due to

physical leakage from the transmission system. Regional loss allocation is an

NEMMCO predetermined static loss factor for each interconnector.

F(D) is demand forecast, a per-interval demand adjustment that relates the demand

at the beginning of the interval to the target at the end of the interval.

ADE is “aggregate dispatch error,” an adjustment value used by the NEM to

account for disparities between scheduled and actual dispatch for all scheduled

generation units in the region.

Figure 33.2 is provided to illustrate the presence of seasonal patterns in the

intraday behavior of electricity demand in Victoria over a 10-day period in 2000.

Descriptive statistics for the demand series are shown in Table 33.3.

We report the mean, standard deviation, minimum, maximum, range, skewness,

kurtosis, Jarque-Bera statistic, and Augmented Dickey-Fuller2 statistics for each
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Fig. 33.2 Plot of VIC1 demand for the week commencing Monday 4/6/00, illustrating the regular

intraday and daily seasonal patterns in the demand series

2Additional statistics are provided for the demand series but not for the price series. This is because

the original paper on the price series reports these values.
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region’s demand series. NSW1 has the highest mean, median, and maximum demand

observations of the five regions for the period. New South Wales is Australia’s most

populous state so we would expect that demand for electric power to be highest in the

NSW1 region. The other regions follow generally in order of state population, with

VIC1 next highest, followed by QLD1, and SA1. The standard deviation and range of

demand levels are generally high, widely dispersed across the regions, and broadly

consistent with the pattern of means, ranging from 264MW for SA1 to 1,306MW for

NSW1. The distributions of demand observations are slightly positively skewed for

all regions. NSW1, QLD1, and VIC1 are slightly platykurtic, while SA1 is

leptokurtic. Jarque-Bera (JB) statistics reject the hypothesis of normal distribution

at the 1 % level of significance for all four regions, and Augmented Dickey-Fuller

statistics reject the hypothesis of a unit root at the 1 % level of significance.

33.3.2 Demand Returns

In this section, we consider the proportional changes in demand over a price

interval, which for convenience we refer to as “demand returns.” The demand

return series are of interest because there are a number of over-the-counter and

exchange-traded derivative products available for hedgers and speculators in the

Australian and overseas electricity markets. Pricing models for derivatives are

informed by the behavior of returns on the spot price. The half-hourly pool price

and its associated returns exhibit strong seasonal and outlier effects as a result of the

occurrence of price spikes. Demand is widely regarded as a major influence on price

(and therefore returns), and we are interested in investigating the extent to which

the seasonalities observed in half-hourly returns on spot price are present in the

equivalent returns on demand. Figure 33.3 shows demand and demand return

over a 10-day period and indicates that demand returns appear to exhibit some

time-of-day effects but also suggests the presence of sudden and fast-reverting

spikes in the demand return series.

Table 33.3 Descriptive statistics for demand by region, January 1999 to January 2006

Demand NSW1 QLD1 SA1 VIC1

Meana 8123.89 5197.74 1451.56 5411.02

S.D.a 1306.02 864.33 264.45 757.26

Maximuma 12884.15 8231.95 2873.03 8545.39

Minimuma 4624.03 2945.96 778.00 2726.88

Skewness 0.03 0.12 0.74 0.04

Kurtosis 2.64 2.67 4.44 2.83

JB stat 700.17 874.81 22026.19 175.72

ADFb �22.83 �17.50 �28.30 �24.77

N 124224 124224 124224 124224

aMean, standard deviation, maximum, and minimum are expressed in megawatts (MW)
bAugmented Dickey-Fuller (ADF) statistic rejects the hypothesis of a unit root at the 1 % level of

confidence
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In light of the fact that AEMO’s total demand is reported at half-hourly intervals

in discrete time, the demand return series used in this study were generated as half-

hourly discrete returns rather than log returns, according to Eq. 33.4 as follows:

RDt ¼ Dt � Dt�1ð Þ
Dt�1

(33.4)

where RDt is discrete demand return at time t, Dt is half-hourly demand at time t, and
Dt�1 is the previous half-hourly total demand, i.e., at time t�1. The results of tests for
the presence of a unit root give us confidence that the demand and return series are

stationary, and we prefer this discrete return specification over log returns, as a log

return specification will dampen the spike effects we are attempting to capture.

We define a spike in demand returns as any observed demand return greater than

four standard deviations larger than the mean. Tables 33.4 and 33.5 collates the

occurrences of spikes as defined. Panel (a) shows the occurrence of spikes by region

and in aggregate for weekday, month, and year. Panels (b) and (c) show the

occurrence of spikes by half-hourly trading interval.

Table 33.4 Panel (a) shows that in aggregate there are 208 spikes in demand

returns observed across all regions during the sample period. VIC1 shows the

highest incidence of demand spikes with 92 (44 %) of the 208 observed, followed

by NSW1 with 81 (38 %), and SA1 with 22 (10 %) spikes during the sample period.

By day of the week, Monday shows the highest incidence with 67 (32 %)

tapering gradually to Sunday with 15 occurrences (7 %). August shows the highest

incidence by month with 42 (20 %), and of these 37 occur in NSW1. The next
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Fig. 33.3 Plot of VIC1 demand and returns on demand for the week commencing 4/6/00.

Demand is in MW and returns are percentage returns
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highest incidences by month are March (38) and June (25), with spikes predomi-

nantly in VIC1 for March and in NSW1 in June. The highest incidence by year

occurs in 1999 with 101 spikes (49 %), dropping markedly in 2000 (24) and 2001

(23). The incidence of spikes appears to have settled somewhat from 2003 onwards

at around 15–16 spikes per year.3

Table 33.5 Panel (b) shows the incidence of extreme spikes in demand returns by

half-hourly trading interval. There are concentrations of spikes occurring at the 06:30

(91 spikes, of which 78 occur in NSW1) and 23:30 (80 spikes, all of which occur in

VIC1). A subperiod analysis of demand returns suggests that sharp peaks in demand

Table 33.4 Panel (a) Summary of occurrences of extreme demand spikes by region, day of week,

month, and year

Interval NSW1 QLD1 SA1 VIC1 Total

Sun 1 4 4 6 15

Mon 39 3 8 17 67

Tue 12 2 1 21 36

Wed 12 3 4 13 32

Thu 13 0 3 15 31

Fri 4 0 0 15 19

Sat 0 1 2 5 8

Jan 0 0 0 23 23

Feb 0 0 0 17 17

Mar 1 1 5 31 38

Apr 0 0 0 8 8

May 13 0 2 0 15

Jun 20 2 3 0 25

Jul 3 4 4 0 11

Aug 37 1 1 3 42

Sep 4 1 0 1 6

Oct 2 0 1 1 4

Nov 1 4 4 3 12

Dec 0 0 2 5 7

1999 15 4 4 78 101

2000 13 0 2 9 24

2001 17 0 2 4 23

2002 16 3 0 1 20

2003 10 1 0 0 11

2004 7 4 3 0 14

2005 3 1 11 0 15

2006 0 0 0 0 0

Total 81 13 22 92 208

3Sample data for 2006 only includes the month of January and is unlikely to be representative of

the full year.
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Table 33.5 Panel (b) Occurrence of extreme demand spikes by half-hourly trading interval

Interval NSW1 QLD1 SA1 VIC1 Total

H0000 0 0 1 0 1

H0030 0 0 0 0 0

H0100 0 0 0 0 0

H0130 0 0 0 0 0

H0200 0 0 0 0 0

H0230 0 0 0 0 0

H0300 0 0 0 0 0

H0330 0 0 0 0 0

H0400 0 0 0 0 0

H0430 0 0 0 0 0

H0500 0 1 0 0 1

H0530 1 0 0 2 3

H0600 0 0 0 0 0

H0630 78 7 0 6 91

H0700 0 0 5 0 5

H0730 0 1 2 0 3

H0800 0 1 1 1 3

H0830 0 0 1 0 1

H0900 1 1 2 1 5

H0930 0 0 0 0 0

H1000 0 0 0 0 0

H1030 0 0 0 0 0

H1100 0 0 0 0 0

H1130 0 0 0 0 0

H1200 0 0 0 1 1

H1230 0 0 0 0 0

H1300 0 0 1 0 1

H1330 0 0 2 0 2

H1400 0 0 0 0 0

H1430 0 0 1 0 1

H1500 0 0 0 0 0

H1530 0 0 0 0 0

H1600 0 0 0 0 0

H1630 0 0 0 0 0

H1700 0 0 0 0 0

H1730 0 1 0 0 1

H1800 1 1 1 0 3

H1830 0 0 5 1 6

H1900 0 0 0 0 0

H1930 0 0 0 0 0

H2000 0 0 0 0 0

H2030 0 0 0 0 0

(continued)
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returns are persistent throughout the sample period, as illustrated by Fig. 33.4.

Figure 33.4 shows the pattern of demand returns for VIC1 for the period

1999–2005 and is illustrative of the pattern in NSW1. The 06:30 peak in demand

appears consistent with the commencement of the morning peak in activity in the

population. We believe that the 2,330 peak coincides with the activation of off-peak

hot water systems set to take advantage of overnight off-peak retail electricity tariffs.

Descriptive statistics for the half-hourly demand return series are shown in

Table 33.6. We report the mean, standard deviation, minimum, maximum, range,

skewness, kurtosis, and Augmented Dickey-Fuller statistics for each region’s

demand return series.

Mean, standard deviation, maximum, and minimum are expressed in terms of

half-hourly percentage return and are broadly consistent across NSW1, QLD1, SA1,

and VIC1. The distributions of demand returns for all four regions demonstrate

positive skewness and high positive kurtosis. Jarque-Bera (JB) statistics reject the

null hypothesis of normal distribution at the 1 % level of significance for all four

regions. This fat-tailed character is consistent with studies on price behavior (see

Huisman and Huurman 2003; Higgs and Worthington 2005; Wolack 2000) and

appears driven by the presence of spikes in demand returns. Augmented Dickey-

Fuller (ADF) statistics robustly reject the hypothesis of a unit root at the 1 % level of

significance for all five regions, again consistent with the findings of the earlier studies.

Table 33.5 (continued)

Interval NSW1 QLD1 SA1 VIC1 Total

H2100 0 0 0 0 0

H2130 0 0 0 0 0

H2200 0 0 0 0 0

H2230 0 0 0 0 0

H2300 0 0 0 0 0

H2330 0 0 0 80 80

Victoria Intra-Day Effect (1999–2005)
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Fig. 33.4 Half-hourly demand returns for VIC1 for the period 1999–2005
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33.3.3 Modelling Seasonality in Demand for Electricity

In this section, we adapt and adjust Eq. 33.2 to model seasonality in demand return.

The equation is as follows:

RDit ¼ f0 þ b1LRt þ b2
X6

n¼1, i6¼Sun

DAYi þ b3
X11

n¼1, i 6¼Sep

MTHi þ b4
X2006

n¼1999, i6¼2001

YRi

þ b5
X47

n¼1, i6¼1, 130 hrs

HHi þ b6
XNS

n¼1

DDSPIKEi þ et

(33.5)

where RDit represents the discrete demand return for region i at time t, f0 represents

the constant term, LRit represents the lagged demand return for region i at time t,
DDSPIKEi represents the dummy variable set for each occurrence of extreme return

as previously defined, and the remaining variables are defined as in Eq. 33.2. The

trading interval at 11:30 h, Sunday, September, and the year 2001 were incorpo-

rated into the constant term a in the model as the base case for each dummy series.

These base cases were selected as the trading interval, day, month, and year, in

which demand return activity was consistently lowest in all four regions.

33.4 Empirical Results

Results of the regression analysis are presented in Tables 33.7 and 33.8. Coeffi-

cients and t-statistics are presented for each seasonal dummy variable and for

lagged returns. In view of the very large number of individual spikes in demand

returns (208 spikes identified for the sample period across all regions), coefficients

for individual spikes are not explicitly reported though results are discussed.

Table 33.6 Descriptive statistics for half-hourly demand returns, by region, January 1999 to

January 2006

Returns NSW1 QLD1 SA1 VIC1

Meana 0.05 0.04 0.05 0.04

S.D.a 3.15 2.87 3.31 2.98

Maximuma 44.50 52.64 38.41 49.52

Minimuma �26.55 �31.94 �38.97 �33.81

Skewness 1.13 0.94 0.39 1.11

Kurtosis 5.00 5.43 4.45 5.01

JB stat 47,301.83 49,025.43 14,003.32 46,573.67

ADFb �42.57 �43.29 �41.51 �41.51

N 1,24,223 1,24,223 1,24,223 1,24,223

aMean, standard deviation, maximum, and minimum are expressed as percentage values
bAugmented Dickey-Fuller (ADF) statistic rejects the hypothesis of a unit root at the 1 % level of

confidence
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We find that coefficients are relatively small for NSW1, QLD1, SA1, and VIC1.

Day-of-week effects are positive and significant for Monday in NSW1, QLD1, SA1,

and VIC1. Thursday shows significant negative effect in demand returns in SA1 only.

There is significant negative Friday effect in all regions. There appears to be no clear

pattern evident for monthly effect across regions. There is no clear pattern evident in

yearly effect, although significant negative effect is observed for 1999 in VIC1. Half-

hourly time-of-day effects offer more interesting results and are broadly more

consistent across regions than the seasonal effects previously discussed. In general,

significant negative demand returns are found for the small hours of the morning

from 12:30 a.m. until approximately 4:00–5:00 a.m. in all regions. VIC1 exhibits an

unexplained highly significant positive return at 1:30 a.m., reverting to negative

returns until for the remainder of the early morning. There is wide variation in the

pattern of demand returns during the waking day. NSW1 and VIC1 show broadly

Table 33.7 Panel (a) – Results Of regression analysis for half-hourly demand return against

seasonal dummy variables, by region for day, month, and year

NSW1 QLD1 SA1 VIC1

Coeff t-stats Coeff t-stats Coeff t-stats Coeff t-stats

C �.00603 �8.05 �.00170 �3.66 .00356 4.02 �.00228 �7.43

Mon 0.00099 7.88 0.00084 3.24 0.00091 4.57 0.00058 4.24

Tue 0.00014 1.41 0.00020 0.80 0.00011 0.70 0.00004 0.30

Wed 0.00010 0.96 0.00014 0.57 0.00005 0.34 0.00006 0.42

Thu 0.00004 0.30 �0.00020 �0.79 �0.00047 �2.36 0.00002 0.17

Fri �0.00099 �7.27 �0.00105 �4.05 �0.00092 �4.28 �0.00062 �4.58

Sat �0.00025 �1.87 �0.00033 �1.28 �0.00018 �0.85 �0.00021 �1.58

Jan �0.00018 �0.38 0.00001 0.03 0.00009 0.12 �0.00008 �0.46

Feb 0.00005 0.10 �0.00005 �0.13 0.00016 0.23 �0.00004 �0.20

Mar 0.00003 0.05 �0.00008 �0.22 0.00006 0.09 �0.00018 �0.98

Apr �0.00009 �0.19 �0.00025 �0.68 �0.00014 �0.20 �0.00011 �0.61

May 0.00009 0.20 0.00009 0.24 0.00022 0.31 0.00004 0.24

Jun 0.00003 0.07 0.00010 0.27 0.00038 0.54 0.00003 0.18

Jul 0.00011 0.23 0.00012 0.34 0.00016 0.23 0.00002 0.12

Aug �0.00003 �0.06 0.00005 0.13 0.00040 0.61 0.00000 0.00

Oct 0.00000 �0.01 0.00001 0.02 0.00009 0.14 0.00001 0.03

Nov 0.00008 0.18 0.00001 0.02 0.00013 0.19 0.00004 0.22

Dec 0.00012 0.26 �0.00010 �0.28 0.00041 0.59 0.00000 0.03

1999 �0.00009 �0.20 �0.00006 �0.24 �0.00019 �0.31 �0.00031 �2.26

2000 0.00003 0.06 0.00007 0.25 0.00002 0.03 0.00000 �0.01

2002 �0.00002 �0.05 �0.00001 �0.03 �0.00004 �0.06 0.00001 0.10

2003 0.00001 0.02 0.00001 0.03 0.00003 0.05 0.00002 0.14

2004 �0.00005 �0.12 �0.00001 �0.04 0.00004 0.07 0.00002 0.15

2005 0.00002 0.05 0.00001 0.03 0.00009 0.15 0.00003 0.18

2006 �0.00013 �0.13 �0.00008 �0.11 �0.00129 �0.86 0.00005 0.15

R2 0.87 0.83 0.82 0.82 0.87

Adj R2 0.87 0.83 0.82 0.82 0.87
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Table 33.8 Panel (b): Results of regression analysis for demand return against seasonal dummy

variables, by half�hourly trading interval by region, 0000–2,330 h

NSW1 QLD1 SA1 VIC1

Coeff t-stats Coeff t-stats Coeff t-stats Coeff t-stats

H0000 �0.013 �14.30 �0.040 �91.44 0.044 49.76 �0.055 �139.42

H0030 �0.008 �8.91 �0.057 �114.74 �0.013 �14.63 �0.017 �48.79

H0100 �0.014 �15.48 �0.047 �89.84 0.004 4.89 �0.010 �26.90

H0130 �0.014 �15.96 �0.043 �87.43 �0.062 �70.67 0.086 238.13

H0200 �0.020 �22.39 �0.036 �74.58 �0.064 �68.82 �0.066 �169.17

H0230 �0.019 �21.03 �0.029 �61.46 �0.053 �55.84 �0.023 �62.27

H0300 �0.009 �10.63 �0.019 �41.36 �0.040 �42.74 �0.012 �33.13

H0330 �0.005 �5.91 �0.010 �23.47 �0.031 �33.90 �0.006 �17.25

H0400 0.005 5.71 �0.004 �9.95 �0.023 �25.48 �0.002 �5.04

H0430 0.015 17.58 0.005 12.12 �0.013 �15.02 0.007 20.52

H0500 0.020 22.54 0.013 29.54 �0.004 �4.49 0.009 26.51

H0530 0.048 54.16 0.034 76.97 0.005 5.53 0.027 77.09

H0600 0.039 43.14 0.045 93.50 0.022 24.88 0.021 59.57

H0630 0.049 53.66 0.079 157.08 0.028 31.42 0.045 123.52

H0700 0.045 48.87 0.084 133.88 0.052 58.70 0.017 44.80

H0730 0.011 12.11 0.082 133.22 0.041 44.66 �0.022 �57.89

H0800 0.036 40.06 0.058 94.63 0.023 25.87 0.028 78.38

H0830 0.020 22.05 0.035 67.65 0.031 35.51 0.009 24.48

H0900 0.003 3.91 0.018 38.06 0.019 21.19 �0.002 �6.33

H0930 0.015 17.25 0.014 30.12 0.007 8.13 0.007 20.14

H1000 0.001 1.24 0.004 8.62 0.005 5.81 �0.001 �3.97

H1030 0.002 2.45 �0.001 �1.36 �0.002 �3.36 0.002 5.85

H1100 0.002 3.03 �0.002 �6.49 �0.001 �0.98 0.003 7.98

H1200 0.004 5.80 �0.001 �5.05 �0.001 �2.53 0.002 6.15

H1230 0.003 3.82 �0.004 �10.98 0.002 2.08 0.001 2.39

H1300 0.002 2.03 �0.005 �10.64 0.000 0.23 0.001 3.86

H1330 0.004 5.03 �0.001 �3.23 �0.002 �2.92 0.010 28.51

H1400 0.002 2.14 �0.001 �2.88 0.006 6.97 �0.005 �12.89

H1430 0.005 5.82 0.000 0.89 �0.010 �11.42 0.000 �0.61

H1500 0.005 5.44 �0.003 �6.23 �0.006 �6.46 0.002 4.52

H1530 0.007 7.57 �0.001 �1.98 �0.010 �11.66 0.003 7.70

H1600 0.011 12.34 0.004 9.22 �0.009 �9.88 0.005 14.29

H1630 0.008 8.69 0.008 17.99 �0.004 �4.93 0.002 6.33

H1700 0.019 22.22 0.016 36.28 �0.003 �3.59 0.009 23.96

H1730 0.014 15.77 0.021 46.66 0.005 5.65 0.005 13.52

H1800 0.027 30.31 0.027 58.50 0.010 11.86 0.010 28.01

H1830 �0.001 �1.18 0.013 28.47 0.015 16.97 �0.006 �16.80

H1900 �0.001 �1.01 0.006 14.25 0.002 2.06 �0.004 �10.01

H1930 �0.004 �5.07 �0.010 �21.73 �0.008 �8.85 �0.005 �13.97

H2000 �0.002 �2.52 �0.014 �32.78 �0.012 �14.03 0.002 5.10

(continued)
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similar intraday patterns, with significant positive demand returns dominating

between 04:30 and 18:00 and with minor variation reverting to negative demand

returns for the remainder of the evening. QLD1 and SA1 are broadly similar,

demonstrating significant positive effect between 04:30 and 10:30 and predominantly

negative effect from 10:30 to 15:30, reverting to positive effect from 16:00 to 19:30

when we see reversion to negative effect for the remainder of the evening. The

periods of positive return in the early morning and early evening are consistent with

peaks in activity in the population. We would expect to observe positive demand

returns arising from off-peak hot water systems generally switching on at 11:00 p.m.,

but curiously positive returns around that hour are evident only in NSW1.

33.5 Conclusions

The current literature establishes that electricity time series differ from traditional

financial data having greater incidence of spikes than is generally observed in

financial data and this results in extreme volatility. The work done overseas is of

limited practical application to the Australian market as our market structure is

different. The lesson learned from our study is that even within the same country,

variation exists as different states reflect variation in geographic differences. The

implication is that specific models must be developed for each geographic region. Our

work is innovative in that we develop an econometric time series seasonal model that

can be applied in areas where seasonality is suspected. For instance, the model was

initially applied to price and return series and then later on to demand return series.

This model has the capability to be applied in other financial time series models.

Developing models to explain and to predict electricity prices is a significant

task. This is important both for the market participants who operate in the physical

market and for those trading in electricity derivatives. Modelling electricity prices

and trading in this market is challenging, so much so that investment banks avoid

trading electricity derivatives because of the incidence of spikes. This provides

a strong incentive for this research and future research into the electricity market.

A better understanding of the time series nature of the electricity prices may help in

the development of more efficient forecasting models which will help to lower risk

Table 33.8 (continued)

NSW1 QLD1 SA1 VIC1

Coeff t-stats Coeff t-stats Coeff t-stats Coeff t-stats

H2030 �0.010 �11.60 �0.023 �51.22 �0.010 �11.32 �0.007 �20.68

H2100 �0.008 �8.61 �0.022 �48.41 �0.017 �19.81 �0.008 �23.12

H2130 0.004 4.81 �0.021 �47.15 �0.021 �23.79 �0.014 �39.32

H2200 �0.012 �13.21 �0.026 �57.72 �0.021 �24.30 �0.011 �29.98

H2230 0.028 31.77 �0.016 �35.83 �0.024 �27.00 �0.004 �10.35

H2300 �0.014 �15.49 �0.019 �42.48 0.000 �0.10 0.000 �0.52

H2330 0.000 0.14 �0.005 �11.30 �0.009 �10.29 0.085 234.83
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management costs and thus reduce the cost of managing electricity price exposures.

Electricity generators, electricity retailers, transmission and distribution network

suppliers, electricity retailer companies, and electricity consumers will all benefit

from development of more accurate models in this area.
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Abstract

Commercial timberland assets have attracted more attention in recent decades.

One unique feature of this asset class roots in the biological growth, which is

independent of traditional financial markets. Using both parametric and non-

parametric approaches, we evaluate private- and public-equity timberland

investments in the United States. Private-equity timberland returns are proxied

by the NCREIF Timberland Index, whereas public-equity timberland returns are

proxied by the value-weighted returns on a dynamic portfolio of the US publicly

traded forestry firms that had or have been managing timberlands. The results

from parametric analysis reveal that private-equity timberland investments

outperform the market and have low systematic risk, whereas public-equity

timberland investments fare similarly as the market. The nonparametric

stochastic discount factor analyses reveal that both private- and public-equity

timberland assets have higher excess returns.

Static estimations of the capital asset pricing model and Fama-French

three-factor model are obtained by ordinary least squares, whereas dynamic

estimations are by state space specifications with the Kalman filter. In estimating

the stochastic discount factors, linear programming is used.

Keywords

Alternative asset class • Asset pricing • Evaluation • Fama-French three-factor

model • Nonparametric analysis • State space model • Stochastic discount factor •

Timberland investments • Time series • Time-varying parameter

34.1 Introduction

Timberland investments have been unprecedentedly active in the United States

the past 30 years. A number of factors have motivated public attention toward

timberland assets. On the supply side, because of the internal subsidies from

timber divisions to processing mills, timberland properties managed by traditional

vertically integrated forest products firms have been undervalued by the Wall

Street. To fix this mispricing, these firms began divesting their timberlands as

a strategic move. For example, International Paper, a global leading forest products

firm, has disposed of most of its timberlands and focused on its core business of

paper and packaging products manufacturing in recent decades. Currently, almost

no forest products firms in the United States still own timberlands (Harris

et al. 2010). On the demand side, institutional investors, e.g., organizations with

fiduciary obligations such as pension funds, university endowments, foundations,

and trusts, have diversified into nonfinancial asset classes such as commercial

timberlands on the passage of Employee Retirement Income Security Act

(ERISA) in 1974.
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There are several ways to invest in commercial timberlands. High-net-wealth

families and individuals can participate in commingled (pooled) funds, or they can

own and manage timberlands directly. Others can buy stocks and bonds of

publicly traded forestry firms that focus on timberland business. Most institutional

investors hold timberland properties via timberland investment management

organizations (TIMOs). TIMOs manage their institutional assets in either sepa-

rately managed accounts (individually managed accounts) or pooled funds.

A separately managed account holds timberland properties of one investor in

a single portfolio, whereas a pooled fund collects capital from a number of

investors and allocates it to a portfolio of timberland properties. Investors tend to

have more discretion with separate accounts than pooled funds (Zinkhan

and Cubbage 2003). In 2008, there were about 30 TIMOs in the United

States, and the total value of their timberland assets exceeded $35 billion

(Zinkhan 2008).

Since the public recognition of commercial timberland as an alternative asset

class, a number of studies have been conducted to assess the financial performance

of timberland investments. The major findings of previous research can be summa-

rized as follows. (1) Timberland has countercyclical returns or low (even negative

in some cases) correlation with the financial assets (Binkley et al. 1996; Cascio and

Clutter 2008; Redmond and Cubbage 1988; Washburn and Binkley 1990; Zinkhan

1988). (2) Timberland can be an effective hedge against unexpected inflation

(Fortson 1986; Washburn and Binkley 1993). (3) If timberland investors can exploit

the biological growth of timber thus time the market, they can get higher and better

returns (Caulfield 1998; Conroy and Miles 1989; Haight and Holmes 1991).

(4) Relative inefficiency tends to exist in timberland markets (Caulfield 1998),

although this situation has been alleviated through time (Washburn 2008; Zinkhan

2008). (5) Among a variety of forestry-related investment vehicles, institutional

timberland investments and timberland limited partnerships have low-risk levels

but excess returns (Sun and Zhang 2001). (6) In the long run, timber and/or

timberland returns are cointegrated with other nontimber financial instruments

(Heikkinen 2002; Liao et al. 2009).

Almost all of the above studies are based on the single-period capital asset

pricing model (CAPM). Sun and Zhang (2001) extended the literature in timberland

investments by employing the arbitrage pricing theory (APT), and Heikkinen

(2002) and Liao et al. (2009) expanded the literature by using cointegration

analysis. Nevertheless, all those methods are parametric in nature. This study has

several contributions. First, timberland assets are considered separately in private

and public markets, and their returns are compared. Second, supplementary to

the ordinary least squares (OLS) estimation of the CAPM and the Fama-French

three-factor model, a state space model with the Kalman filter is employed to

examine the time-varying risk-adjusted excess return (a) and systematic risk (b).
Finally, the nonparametric stochastic discount factor (SDF) approach is introduced

for pricing timberland returns.

34 Pricing Commercial Timberland Returns in the United States 959



The major results are that private-equity timberland investments have

significant excess returns but low systematic risk, whereas public-equity timberland

investments fare similarly as the market, and that intertemporal consumption

decisions affect the intertemporal marginal rate of substitution of timberland

investors and thus impact the rational pricing of timberland assets. These results

can further our understanding of the financial aspects of commercial timberland

assets in the United States. The next two sections describe the methodologies and

the data. Section 34.4 explains the empirical results, and the last section makes

some concluding remarks.

34.2 Methods

For the parametric method, an explicit model is needed. Two candidate models

prevalent in the finance literature are the CAPM and the Fama-French three-factor

model. The parametric method is often criticized for the “joint hypothesis tests”

problem, i.e., testing the asset pricing model and the abnormal performance (market

efficiency) simultaneously. The nonparametric method does not require such an

explicit model specification and is therefore not subject to these critiques. The SDF

approach is a general, nonparametric asset pricing approach and is complement to

the parametric approaches.

34.2.1 CAPM

Built on Markowitz’s (1952) groundwork of mean-variance efficient portfolio,

Sharpe (1964) and Lintner (1965) developed its economy-wide implications – the

CAPM. The CAPM states that the expected return on an asset or a portfolio E[Ri]

equals a risk-free rate Rf plus a premium that depends on the asset’s bi and the

expected risk premium on the market portfolio E[Rm] � Rf, i.e.,

E Ri½ � ¼ Rf þ bi E Rm½ � � Rf

� �
: (34.1)

In empirical regression analysis, the CAPM is estimated in the excess return

form

Ri � Rf ¼ ai þ bi Rm � Rf

� �þ mi, (34.2)

where ex post realized returns Ri and Rm rather than ex ante expected returns E[Ri]

and E[Rm] are used. The intercept ai is called Jensen’s (1968) alpha. A positive a
suggests that the individual asset outperforms the market and earns a higher than

risk-adjusted return, whereas a negative a suggests that the individual asset

underperforms the market and earns a lower than risk-adjusted return. Therefore,

Jensen’s alpha has become a commonly used measure of abnormal performance,

and testing whether it is zero has been widely used in the empirical asset pricing

literature.
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34.2.2 Fama-French Three-Factor Model

Given the empirical evidence that small size stocks outperform large size stocks,

and value (high book-to-market) stocks outperform growth (low book-to-market)

stocks on average, Fama and French (1993) develop a model that includes these

extra two factors to adjust for risk:

E Ri½ � � Rf ¼ bRMRF, iE RRMRF½ � þ bSMB, iE RSMB½ � þ bHML, iE RHML½ �, (34.3)

where RRMRF ¼ Rm� Rf is the same market factor as in the CAPM, representing the

market risk premium; RSMB¼ Rsmall� Rbig is the size factor, representing the return

difference between a portfolio of small stocks and a portfolio of large stocks (SMB

stands for “small minus big”); RHML ¼ RhighBM � RlowBM is the book-to-market

factor, representing the return difference between a portfolio of high book-to-

market stocks and a portfolio of low book-to-market stocks (HML stands for

“high minus low”); and b’s are called factor loadings, representing each asset’s

sensitivity to these factors. When estimating Fama-French three-factor model, ex

post realized returns are used, as in the case of the CAPM, and an intercept is added

to capture the abnormal performance,

Ri � Rf ¼ ai þ bRMRF, iRRMRF þ bSMB, iRSMB þ bHML, iRHML þ ei: (34.4)

34.2.3 CAPM and Fama-French Three-Factor Model Under the State
Space Framework

The CAPM (Eq. 34.2) and the Fama-French three-factor model (Eq. 34.4) are

usually estimated by OLS, possibly with some correction for the autocorrelations

in the errors. One restrictive nature of the OLS method is that the coefficients in the

regression are imposed to be constant. This condition may be unrealistic in real

asset pricing modeling. For instance, one would suspect that both a’s and b’s should
be time varying. To solve this problem, we can estimate the CAPM and the Fama-

French three-factor model in the state space framework with the Kalman filter

(Appendix 1). Using the CAPM as an example, in the state space framework, the

system of equations is specified as

Ri, t � Rf , t ¼ ai, t þ bi, t Rm, t � Rf , t
� �þ mi, t

ai, tþ1 ¼ ai, t þ xt
bi, tþ1 ¼ bi, t þ tt

(34.5)

where mi,t, xt, and tt are normally and independently distributed mean-zero

error terms. In the state space model, the first equation in (34.5) is called

the observation or measurement equation, and the second and third equations are

called the state equations. In this particular case, each state variable follows

a random walk.
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One advantage of the state space approach with time-varying parameters is that

it can incorporate external shocks, such as policy and regime shifts, economic

reforms, and political uncertainties, into the system, especially when the shocks

are diffuse in nature (Sun 2007). This approach has been applied to a variety of

issues, including demand systems (e.g., Doran and Rambaldi 1997), aggregate

consumptions (e.g., Song et al. 1996), policy analysis (e.g., Sun 2007), and price

modeling and forecasting (e.g., Malaty et al. 2007).

34.2.4 Stochastic Discount Factor Approach

The single-period asset pricing models ignore the consumption decisions. In effect,

investors make their consumption and portfolio choices simultaneously in an

intertemporal setting. In the framework of an exchange economy in which an

investor maximizes the expectation of a time-separable utility function (Lucas

1978), it can be proved that (Appendix 2)

Et 1þ Ri, tþ1

� �
Mtþ1

� � ¼ 1, (34.6)

where Ri,t+1 is the return on asset i in the economy and Mt+1 is known as the

stochastic discount factor, or intertemporal marginal rate of substitution, or pricing

kernel (e.g., Campbell et al. 1997).

Hansen and Jagannathan (1991) demonstrated how to identify the SDF from

a set of basis assets, i.e., the derivation of the volatility bounds. These bounds

are recognized as regions of admissible mean-standard deviation pairs of the

SDF. Their major assumptions are the law of one price and the absence of arbitrage

opportunities. Accordingly, there are two particular solutions for the SDF: the law

of one price SDF and the no-arbitrage SDF. The process of retrieving the reverse-

engineered law of one price SDF is equivalent to the following constrained

optimization problem:

Min
Mt

sMt
¼ 1

T � 1

XT
t¼1

Mt � vð Þ
" #1=2

s:t:
1

T

XT
t¼1

Mt ¼ v

1

T

XT
t¼1

Mt 1þ Ri, t
� � ¼ 1

(34.7)

for a range of selected v (mean of Mt) and for all assets i ¼ 1,2,� � �,N. Under the
stronger condition of no arbitrage, another positivity constraint on Mt is needed.

Therefore, the only difference between the law of one price SDF and the

no-arbitrage SDF is whether Mt is allowed to be negative. In this study,

no-arbitrage SDF is used. Following Hansen and Jagannathan (1991),
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nonnegativity instead of positivity restriction Mt � 0 is added to retrieve the

no-arbitrage SDF. Last, sample size T should be sufficiently large such that the

time-series version of law of large numbers applies; that is, the sample moments on

a finite record converge to their population counterparts as the sample size becomes

large (Hansen and Jagannathan 1991).

Provided the existence of a risk-free asset, it can be shown that

Et Ri, tþ1 � Rf

� �
Mtþ1

� � ¼ 0: (34.8)

This equation presents the basis for testing the risk-adjusted performance of

a portfolio (Chen and Knez 1996). Namely, one can test whether

ai ¼ Et ai, t
� � ¼ Et Ri, tþ1 � Rf

� �
Mtþ1

� � ¼ 0: (34.9)

Ahn et al. (2003) pointed out that this measure generalizes Jensen’s alpha

and does not count on a specific asset pricing model. Based on this method,

they reassess the profitability of momentum strategies and found that their non-

parametric risk adjustment explains almost half of the anomalies.

34.3 Data

34.3.1 Timberland Returns

Returns for both private- and public-equity timberland investments are analyzed.

Although TIMOs have become the major timberland investment management

entities for institutional investors as well as high-net-wealth families and individ-

uals, their financial data are rarely publicly available. To provide a performance

benchmark, several TIMOs, together with National Council of Real Estate

Investment Fiduciaries (NCREIF) and the Frank Russell Company, initiated the

NCREIF Timberland Index in early 1992 (Binkley et al. 2003) (Appendix 3).

NCREIF members can be divided into data contribution members, professional

members, and academic members. Data contribution members include investment

managers and plan sponsors who own or manage real estate in a fiduciary setting.

Professional members include providers of accounting, appraisal, legal, consulting,

or other services to the data contribution members. Academic members include

full-time professors of real estate. Data contribution members submit their data on

a quarterly basis for computation of the NCREIF Property Index. Regarding

the NCREIF Timberland Index, it is some TIMOs that are the major data

contribution members. The quarterly NCREIF Timberland Index is reported at

both regional (the South, the Northeast, and the Pacific Northwest) and national

levels, and extends back to 1987. In this study, the national-level NCREIF

Timberland Index (1987Q1–2010Q4) is used as a return proxy for the US

private-equity timberland investments.
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Returns on public-equity timberland investments are proxied by the value-

weighted returns on a dynamic portfolio of the US publicly traded forestry firms

that had or have been managing timberlands. These firms include Deltic Timber,

the Timber Co, IP Timberlands Ltd., Plum Creek, Pope Resources, Potlatch,

Rayonier, and Weyerhaeuser. Deltic Timber and Pope Resources are natural

resources companies focused on the ownership and management of timberland;

the Timber Co and IP Timberlands Ltd. are subsidiaries of Georgia-Pacific and

International Paper that track the value and performance of their timberland prop-

erties; Plum Creek, Potlatch, and Rayonier are publicly traded real estate invest-

ment trusts (REITs) that are engaged in timberland management; and

Weyerhaeuser is a forest products firm that has a significant portion of its business

in timberlands. The market value of each firm is calculated as the product of stock

price and total shares outstanding at the end of each quarter. Financial data for these

forestry firms are obtained from the Center for Research in Security Prices (CRSP).

To be consistent with the NCREIF Timberland Index, the sample spans from

1987Q1 to 2010Q4.

34.3.2 Basis Assets

To mimic the complete investment opportunity set that is available to investors,

a parsimonious set of basis assets needs to be specified. King (1966) proved that

industry groupings maximize intragroup correlation and minimize intergroup cor-

relation and concluded that market and industry factors capture most of the com-

mon variation in stock returns. Following Hansen and Jagannathan (1991), we

construct the reference set by forming industry portfolios according to SIC code.

In this study, two sets of basis assets are chosen – one is the five-industry portfolios

plus long-term treasury bonds, and the other is the ten-industry portfolios plus long-

term treasury bonds. The industry groups are derived from stocks listed on NYSE,

AMEX, and NASDAQ based on their four-digit SIC codes. The five industries are

classified as consumer goods, manufacturing, Hi-Tech, healthcare, and others,

whereas the ten industries are classified as consumer nondurables, consumer dura-

bles, manufacturing, energy, Hi-Tech, telephone and television transmission,

shops, healthcare, utilities, and others. Value-weighted returns on the industry

portfolios are obtained from Kenneth R. French’s website, and returns on the

portfolio of long-term treasury bonds are obtained from CRSP. Presuming that

the basis assets are rationally priced, the SDF can be retrieved.

34.3.3 Other Indices

Market returns are approximated by the value-weighted returns on all NYSE,

AMEX, and NASDAQ stocks from CRSP. Risk-free rate, as approximated by the

1-month treasury bill rate from Ibbotson Associates, Inc., and Fama-French factors

are available on Kenneth R. French’s website.
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34.4 Empirical Results

34.4.1 Estimation of the CAPM and the Fama-French
Three-Factor Model

Panel A of Table 34.1 presents the OLS estimation of the CAPM and the Fama-

French three-factor model using the quarterly NCREIF Timberland Index after

adjustment for the seasonality. A significant positive a from the CAPM suggests

that private-equity timberland investments have a risk-adjusted excess return of

about 8.20 % (2.05 % � 4) per year. This excess return is slightly larger

after accounting for Fama-French factors. Market b’s from both models are insig-

nificantly different from zero, but significantly less than one. This means that

private-equity timberland investments are not only weakly correlated with the

market but also less risky than the market. The small magnitudes with high

p-values of the coefficients for SMB and HML signify that these two extra factors

add limited explanatory power to the CAPM in pricing private-equity timberland

returns.

In contrast, the CAPM and the Fama-French three-factor model fit the returns

on the dynamic portfolio of forestry firms much better, as implied by the higher R2

values (Panel A of Table 34.2). This is within our expectation since these forestry

firms are publicly traded and are more exposed to the market. However, a’s
are insignificant albeit positive, indicating no abnormal performance. Market b’s
are significantly different from zero, but not from one. In addition, b’s for SMB

and HML in Fama-French three-factor model are significant at the 5 % level or

better, meaning these factors capture some variations in the portfolio returns that

are not explained by the market premium. As a result, the abnormal performance (a)
has dropped by 53 %. The magnitudes of b’s indicate that the dynamic portfolio is

dominated by mid-large firms with middle book-to-market ratios.

34.4.2 State Space Estimation of the CAPM and the Fama-French
Three-Factor Model

Panel B of Table 34.1 presents the state space estimation of the CAPM and the

Fama-French three-factor model using the NCREIF Timberland Index. Those OLS

coefficient estimates are used as the starting values. Only a is specified as a state

variable (stochastic level) in that little time variation is observed in b, and both AIC
and SBC favor the deterministic-bmodel. Back to the model specification in system

(Eq. 34.5), this is equivalent to restrict tt ¼ 0. The AIC and SBC are marginal-

ly larger than those for the OLS estimation because of the relatively small sample

size. Figure 34.1 depicts the evolution of the risk-adjusted excess returns of the

NCREIF Timberland Index estimated from the CAPM. For most time in the last

22 years, the NCREIF Timberland Index has achieved positive abnormal returns

with an average of 10.20 % per year (calculated from the estimated a series).

Nevertheless, in certain years (2001–2003), the a is low and even negative,
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indicating no abnormal performance. Although not reported here, the time-varying

a’s estimated from Fama-French three-factor model exhibit similar patterns.

For the dynamic portfolio, however, only b is specified to be stochastic since

little time variation is observed in a, and both AIC and SBC favor the deterministic-

a model. The time-varying b of the dynamic portfolio of forestry firms is plotted in

Fig. 34.2. Overall, there is a decreasing trend in the market b. The average b over

the sample period is 1.05, which is not significantly different from the market risk.

34.4.3 Abnormal Performance Measured by the SDF Approach

The mean of the no-arbitrage SDFMt is specified in the selected range of [0.9750, 1]

with an increment step of 0.0025. When the five-industry portfolios plus

the long-term treasury bonds are used as the basis assets, the global minimum

variance of Mt is identified at v ¼ 0.9800; when the ten-industry portfolios plus

Table 34.1 Estimation of the CAPM and the Fama-French three-factor model using the NCREIF

Timberland Index (1987Q1–2010Q4)

CAPM FF3

Coefficient Estimate p-value Coefficient Estimate p-value

Panel A: OLS estimation

a 2.05 0.001 a 2.11 0.001

b 0.01 0.773 bRMRF 0.02 0.675

bSMB �0.04 0. 634

bHML �0.05 0.318

H0: b ¼ 1 0.000 H0: bRMRF ¼ 1 0.000

R2 0.14 R2 0.15

Log likelihood �251.24 Log likelihood �250.59

S.E. of regression 3.78 S.E. of regression 3.82

Durbin-Watson stat. 1.94 Durbin-Watson stat. 1.96

Akaike info. criterion 5.53 Akaike info criterion 5.56

Schwarz criterion 5.61 Schwarz criterion 5.69

F-stat. 7.09 F-stat. 3.82

Panel B: State space estimation

a 0.54 0.692 a 0.79 0.549

b �0.02 0.919 bRMRF 0.01 0.856

bSMB �0.11 0.263

bHML �0.05 0.581

H0: b ¼ 1 0.000 H0: bRMRF ¼ 1 0.000

Log likelihood �275.00 Log likelihood �273.59

Akaike info. criterion 5.86 Akaike info criterion 5.80

Schwarz criterion 5.94 Schwarz criterion 5.94

(1) OLS estimates after correction for the fourth-order autocorrelation in the residuals. (2) Only a
is specified stochastic under the state space framework, while b is specified deterministic due to its

lack of variation and AIC criterion
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the long-term treasury bonds are used instead, the global minimum variance ofMt is

identified at v ¼ 0.9750.

The SDF performance measures for both the NCREIF Timberland Index, and the

returns on the dynamic portfolio of publicly traded timber firms are reported in

Table 34.3. The a values for both return indices have increased, and the latter has

become marginally significant. This indeed implies that intertemporal consumption

decisions play a key role in pricing timberland assets. In a word, there is clear

evidence of statistically as well as economically significant excess returns for the

NCREIF Timberland Index, but only some evidence of economically significant

excess returns for the portfolio of publicly traded timber firms.

34.5 Conclusion

Using both parametric and nonparametric techniques, in this study, we reexamined

the financial performance of timberland investments. Private-equity timberland

Table 34.2 Estimation of the CAPM and the Fama-French three-factor model using returns on

a dynamic portfolio of publicly traded forestry firms in the United States (1987Q1–2010Q4)

CAPM FF3

Coefficient Estimate p-value Coefficient Estimate p-value

Panel A: OLS estimation

a 0.59 0.521 a 0.28 0.750

b 0.95 0.000 bRMRF 0.87 0.000

bSMB 0.39 0.031

bHML 0.31 0.001

H0: b ¼ 1 0.330 H0: bRMRF ¼ 1 0.249

R2 0.48 R2 0.54

Log likelihood �344.00 Log likelihood �337.27

S.E. of regression 8.80 S.E. of regression 8.29

Durbin-Watson stat. 2.19 Durbin-Watson stat. 2.24

Akaike info. criterion 7.21 Akaike info criterion 7.11

Schwarz criterion 7.26 Schwarz criterion 7.22

F-stat. 85.16 F-stat. 36.58

Panel B: State space estimation

a 0.59 0.500 a 0.24 0.786

b 0.95 0.000 bRMRF 0.84 0.000

bSMB 0.39 0.021

bHML 0.32 0.001

H0: b ¼ 1 0.390 H0: bRMRF ¼ 1 0.446

Log likelihood �355.38 Log likelihood �348.61

Akaike info. criterion 7.47 Akaike info criterion 7.37

Schwarz criterion 7.55 Schwarz criterion 7.50

Only b is specified stochastic under the stochastic framework, while a is specified deterministic

due to its lack of variation and AIC criterion
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Fig. 34.1 Evolution of a over time from the state space estimation of the CAPM using the

NCREIF Timberland Index (1987Q1–2010Q4). Note: The time-varying a estimated from Fama-

French three-factor model exhibits similar patterns, thus is not shown separately. The graph is

available from the authors upon request
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The time-varying b estimated from Fama-French three-factor model exhibits similar patterns, thus

is not shown separately. The graph is available from the authors upon request
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returns are approximated by the NCREIF Timberland Index, whereas public-equity

timberland returns are approximated by the value-weighted returns on a dynamic

portfolio of the US publicly traded timber firms. The parametric analyses reveal that

private-equity timberland assets outperform the market but have low systematic

risk, whereas public-equity timberland assets perform similarly as the market.

Therefore, inclusion of private-equity timberland properties can improve the effi-

cient frontier, albeit such potential is limited for public-equity timberland proper-

ties. Unlike the parametric methods, the nonparametric SDF approach does not rely

on any specific asset pricing models and hence are not subject to the “joint

hypothesis test” criticisms. The results from the SDF approach suggest higher

excess returns for both private- and public-equity timberland investments, which

in turn signify the important role of intertemporal consumption decisions in rational

pricing of timberland assets.

The positive a of private-equity timberland returns may be associated with the

patience of institutional investors toward embedded strategic options for timber-

lands (Zinkhan 2008). If a timberland property has potential for higher and better

use such as residential or commercial development opportunities, or if it is suitable

for conservation easements, or if it has mineral or gas opportunities, it may have

extra income sources, and the land value can be dramatically higher. The positive a
may also be related to the liquidity risk that institutional investors bear since

a typical TIMO has an investment time horizon of 10–15 years or even longer. In

contrast, stocks of publicly traded timber firms can be easily traded on the stock

exchanges. Moreover, initiation of a TIMO-type separately managed account

usually requires a capital commitment of $25–$50 million, while participation in

a TIMO-type pooled fund generally requires a minimum capital commitment of

$1–$3 million (Zinkhan and Cubbage 2003). The large capital amount may enable

the investors to achieve some degree of diversification.

The lower excess returns of the NCREIF Timberland Index around 2001–2003

may be associated with its relative weak performance during that time. In 2001Q4,

Table 34.3 Performance measures of timberland returns by the nonparametric SDF approach

(1987Q1–2010Q4)

Mean of Mt (v) S.D. of Mt sMt
ð Þ

Performance measure (a) p-value (one tail)

(1) (2) (1) (2)

Panel A: Five-industry portfolios plus long-term T-bonds

0.9775 0.199 2.63 1.59 0.000 0.119

0.9800 0.176 2.60 1.36 0.000 0.156

0.9825 0.217 2.57 1.13 0.000 0.202

Panel B: Ten-industry portfolios plus long-term T-bonds

0.9725 0.244 2.76 2.03 0.000 0.056

0.9750 0.237 2.75 1.82 0.000 0.082

0.9775 0.255 2.77 1.60 0.000 0.116

Column (1) is for the NCREIF Timberland Index, and Column (2) is for the returns on a dynamic

portfolio of the US publicly traded forestry firms that had or have been managing timberlands
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the NCREIF Timberland Index fell by 6.5 %, the largest drop it ever had, which was

primarily caused by the capital loss from the shrinking timberland values. In the

same period, the S&P 500 index went up by 7.8 %. The overall decreasing trend in

b for the dynamic portfolio of forestry firms may be related to the massive

restructurings of these firms. For instance, Plum Creek, Potlatch, and Rayonier

have converted themselves into timber REITs in recent years. With improved tax

efficiency and increased concentration on timberland management, these timber

REITs are expected to be less risky.

Another interesting fact noted in this study is that, despite the current economic

downturn triggered by the subprime residential mortgage blowup, private-equity

timberland returns remain relatively strong. While the CRSP market index went

down 39 % in 2008, the NCREIF Timberland Index achieved a 9 % return, or on the

risk-adjusted basis, an excess return of 10 % (calculated using the estimated a series
in 2008). In contrast, the portfolio value of publicly traded timber firms fell 39 %

just like the market. However, it should be noted that most of those forestry firms do

have non-timberland business, such as paper and lumber mills, which may be more

sensitive to the overall economic conditions. A close examination of the three

publicly traded timber REITs reveals that they were less affected by the gloomy

market. Looking ahead, global economic crisis will last for some time, multiple

factors will affect timberland returns, and the net effect on timberland properties

has yet to be observed (Washburn 2008).

It should be noted that there have been some concerns about the data and method

consistency of the NCREIF Timberland Index. As pointed out by Binkley

et al. (1996), there are no standardized appraisal and valuation practice in forestry,

so heterogeneity may exist in the data. In addition, due to lack of quarterly

appraisals for many properties in the NCREIF Timberland Index, quarterly return

series may be less useful than the annual ones. Finally, the NCREIF Timberland

Index is a composite performance measure of a very large pool of commercial

forestland properties acquired in the private market for investment purposes.

Hence, individual investors should use cautions when interpreting the NCREIF

Timberland Index.

Appendix 1: State Space Model with the Kalman Filter

The multivariate time-series model can be represented by the following state space

form:

yt ¼ Ztat þ et, et � NID 0;Htð Þ (34.10)

atþ1 ¼ Ttat þ Rt�t, �t � NID 0;Qtð Þ (34.11)

for t ¼ 1, � � �, N, where yt is p � 1 vector of observed values at time t, Zt is
a p�mmatrix of variables, at is m� 1 state vector, Tt is called the transition matrix

of order m� m, and Rt is an m� r selection matrix with m� r. The first equation is
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called the observation or measurement equation, and the second is called state

equation. The parameters at, Ht, and Qt in the system of equations can be estimated

jointly by the maximum likelihood method with the recursive algorithm Kalman

filter. The intention of filtering is to update the information of the system each time

a new observation yt is available, and the filtering equations are

vt ¼ yt � Ztat,
Ft ¼ ZtPtZ

0
t þ Ht,

Kt ¼ TtPtZ
0
tF

�1
t ,

Lt ¼ Tt � KtZt,

atþ1 ¼ Ttat þ Ktvt,
Ptþ1 ¼ TtPtL

0
t þ RtQtR

0
t,

(34.12)

For t ¼ 1, � � �, N. The mean vector a1 and the variance matrix P1 are known for

the initial state vector a1 (Durbin and Koopman 2001; Harvey 1989).

Appendix 2: Heuristic Proof of Equation 34.6

In a pure exchange economy with identical consumers, a typical consumer wishes

to maximize the expected sum of time-separable utilities

Max
Ct

Et

X1
i¼0

biU Ctþið Þ
" #

s:t:
XN
j¼1

xjtp
j
t þ Ct ¼ Wt þ

XN
j¼1

xjt�1 pjt þ djt

� � (34.13)

where xjt is the amount of security j purchased at time t, pjt is the price of security j at
time t, Wt is the individual’s endowed wealth at time t, Ct is the individual’s

consumption at time t, djt is the dividend paid by security j at time t, and b is time

discount. Express Ct in terms of xjt, and differentiate the objective function with

respect to xjt, then we can get the following first-order condition:

Et U
0 Ctð Þpjt

h i
¼ Et bU

0 Ctþ1ð Þ pjtþ1 þ djtþ1

� �h i
(34.14)

for all j. After rearranging the terms, we can reach Eq. 34.6, where

Mt ¼ bU0 Ctþ1ð Þ
U0 Ctð Þ

Rtþ1 ¼
pjtþ1 þ djtþ1

pjt
� 1:

(34.15)
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Appendix 3: NCREIF Timberland Index

The NCREIF Timberland Index has two components, the income return and the

capital return. The income return is also known as EBITDDA return, which

represents earnings before interest expenses, income taxes, depreciation, depletion,

and amortization. The capital return is derived from land appreciation. The formu-

las to calculate these returns are

IRt ¼ EBITDDAt

MVt�1 þ 0:5 CIt � PSt þ PPt � EBITDDAtð Þ (34.16)

CRt ¼ MVt �MVt�1 � CIt þ PSt � PPt

MVt�1 þ 0:5 CIt � PSt þ PPt � EBITDDAtð Þ (34.17)

where IRt and CRt are the income return and capital return, respectively; EBITDDAt

equals the net operating revenue obtained from the tree farm (primarily from timber

sales); CIt equals the capitalized expenditures on the tree farm (e.g., forest regen-

eration and road construction); PSt equals the net proceeds from sales of land from

the tree farm; PPt equals the gross costs of adding land to the tree farm; and MVt

equals the market value of the tree farm (Binkley et al. 2003).

Appendix 4: EViews Code for Estimating the CAPM and the
Fama-French Three-Factor Model

Texts after the single quotation marks are notations.

’ Specify the file location
CD "C:\Mei Bin\Publication\Handbook of FES"

’ Create a workfile in EViews and read in quarterly data
1987Q1-2010Q4

Workfile Timberland_Jul2011 q 1987 2010
’ 7 is the total number of series to be read in
Read(t ¼ dat, s) quarterly.csv 7
’ Group the 7 series
group quarterly NCREIF MktRf SMB HML RF port
’ Estimate the CAPM for NCREIF, adjusted for autocorrelation
’ LS means OLS. Equation given by dependent variable

followed by a list of independent variables
’ In excess returns
equation CAPM1.LS (NCREIF-RF) C MktRf AR(4)
’ Estimate the Fama-French three-factor model for the

NCREIF Timberland Index
equation FF31.LS (NCREIF-RF) C MktRf SMB HML AR(4)
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’ Estimate the CAPM for the portfolio, AR(4) term dropped
due to its insignificance.

equation CAPM2.LS (port-RF) C MktRf
’ Estimate the Fama-French three-factor model for the

portfolio
equation FF32.LS (port-RF) C MktRf SMB HML

’ State space estimation of time-varying parameters for
the CAPM

’ Define a state space model for the NCREIF Timberland Index
sspace KFcapm1
’ Signal equation, the CAPM
’ Define alpha to be time-varying (state variable)
KFcapm1.append @signal (NCREIF-RF) ¼ sv1 + c(1)*MktRf +

[var ¼ exp(c(2))]
’ State equation as a random walk
KFcapm1.append @state sv1 ¼ sv1(-1) + [var ¼ exp(c(3))]
’ Starting values for the state space model. Values come

the OLS estimation
KFcapm1.append @param c(1) 0.01 c(2) 0 c(3) 0
’ Maximum likelihood estimation
KFcapm1.ml(showopts, m ¼ 500, c ¼ 0.0001, m)
Show KFcapm1.output
’ Save the time-varying alphas and its RMSEs
KFcapm1.makestates(t ¼ filt) CAPM1filt*
KFcapm1.makestates(t ¼ filtse) CAPM1filtse*

’ Generate the graph of time-varying alphas with the 95 %
confidence intervals

series CAPM1_a_bandplus ¼ CAPM1filtsv1 + 2*CAPM1filtsesv1
series CAPM1_a_bandminus¼ CAPM1filtsv1 - 2*CAPM1filtsesv1
’ Group the series to be shown in a graph
Group CAPM1_a_curves CAPM1filtsv1 CAPM1_a_bandplus

CAPM1_a_bandminus

’ State space model for the portfolio of public forest
products firms

sspace KFcapm2
’ Define beta to be time-varying (state variable)
KFcapm2.append @signal (port-RF) ¼ c(1) + sv1*MktRf +

[var ¼ exp(c(2))]
KFcapm2.append @state sv1 ¼ sv1(-1) + [var ¼ exp(c(3))]
KFcapm2.append @param c(1) 0.59 c(2) 4.3 c(3) -30
KFcapm2.ml(showopts, m ¼ 500, c ¼ 0.0001, m)
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Show KFcapm2.output

KFcapm2.makestates(t ¼ filt) CAPM2filt*
KFcapm2.makestates(t ¼ filtse) CAPM2filtse*
series CAPM2_b_bandplus ¼ CAPM2filtsv1 + 2*CAPM2filtsesv1
series CAPM2_b_bandminus¼ CAPM2filtsv1 - 2*CAPM2filtsesv1

Group CAPM2_b_curves CAPM2filtsv1 CAPM2_b_bandplus
CAPM2_b_bandminus

sspace KFff1
’ Time-varying alpha in the Fama-French three-factor

model
KFff1.append @signal (NCREIF-RF)¼ sv1 + c(1)*MktRf + c(2)

*SMB + c(3)*HML + [var ¼ exp(c(4))]
KFff1.append @state sv1 ¼ sv1(-1) + [var ¼ exp(c(5))]
KFff1.append @param c(1) 0.02 c(2) -0.04 c(3) -0.05 c(4) 0

c(5) 0
KFff1.ml(showopts, m ¼ 500, c ¼ 0.0001, m)
Show KFff1.output

sspace KFff2
’ Time-varying beta in the Fama-French three-factor model
KFff2.append @signal (port-RF) ¼ c(1) + sv1*MktRf + c(2)

*SMB + c(3)*HML + [var ¼ exp(c(4))]
KFff2.append @state sv1 ¼ sv1(-1) + [var ¼ exp(c(5))]
KFff2.append @param c(1) 0 c(2) 0 c(3) 3 c(4) 3 c(5) 0
KFff2.ml(showopts, m ¼ 500, c ¼ 0.0001, m)
Show KFff2.output
’ Save the workfile
wfsave Timberland_Jul2011

Appendix 5: Steps for the SDF Approach Using Excel Solver

First, choose minimizing the standard deviation of the SDFs as the objective

function.

Second, set the mean of the SDFs equal to a predetermined value. This is

constraint No.1.

Third, for each basis asset (industry group) in the industry portfolio, add

one constraint according to
1

T

XT
t¼1

Mt 1þ Ri, t
� � ¼ 1 . That is, add five more

constraints when using the five-industry portfolio, whereas add ten more constraints
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when using the ten-industry portfolio. Fourth, specify the solutions to be nonneg-

ative and solve for the SDFs. Fifth, use the SDFs to price timberland returns

according to Eq. 34.9. Repeat steps 1–5 with a different value as the given mean of

the SDFs.
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Abstract

Optimal orthogonal portfolios are a central feature of tests of asset pricing models

and are important in active portfolio management problems. The portfolios com-

bine with a benchmark portfolio to form ex ante mean variance efficient portfolios.

This paper derives and characterizes optimal orthogonal portfolios in the presence

of conditioning information in the form of a set of lagged instruments. In this

setting, studied by Hansen and Richard (1987), the conditioning information is

used to optimize with respect to the unconditional moments. We present an
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empirical illustration of the properties of the optimal orthogonal portfolios. From

an asset pricing perspective, a standard stock market index is far from efficient

when portfolios trade based on lagged interest rates and dividend yields. From an

active portfolio management perspective, the example shows that a strong tilt

toward bonds improves the efficiency of equity portfolios.

The methodology in this paper includes regression and maximum likelihood

parameter estimation, as well as method of moments estimation. We form

maximum likelihood estimates of nonlinear functions as the functions evaluated

at the maximum likelihood parameter estimates. Our analytical results also

provide economic interpretation for test statistics like the Wald test or multivar-

iate F test used in asset pricing research.

Keywords

Asset pricing tests • Conditioning information • Minimum-variance efficiency •

Optimal portfolios • Predicting returns • Portfolio management • Stochastic

discount factors • Generalized method of moments • Maximum likelihood •

Parametric bootstrap • Sharpe ratios

35.1 Introduction

The optimal orthogonal portfolio, also known as the most mispriced portfolio or the

active portfolio, is a central concept in asset pricing tests and in modern portfolio

management. In asset pricing problems, it represents the difference between the

performance of a benchmark portfolio and the maximum potential performance in

a sample of assets (Jobson and Korkie 1982). In modern portfolio management, it

shows how to actively tilt away from a given benchmark portfolio to achieve

portfolio efficiency (Gibbons et al. 1989; Grinold and Kahn 1992).

Optimal orthogonal portfolios are studied by Roll (1980), MacKinlay (1995),

Campbell et al. (1987), and others. However, these studies restrict the analysis to

a setting where the portfolio weights are fixed over time. In contrast, studies in asset

pricing use predetermined variables to model conditional expected returns, corre-

lations, and volatility. Portfolio weights may be functions of the predetermined

variables, and they will generally vary over time. Quantitative portfolio managers

routinely use conditioning information in optimized portfolio strategies. Therefore,

it is important to understand optimal orthogonal portfolios in a conditional setting.

This paper derives, characterizes, and illustrates optimal orthogonal portfolios in

a conditional setting. The setting is one where the conditional means and variances

of returns are time varying and optimal time-varying portfolio weights achieve

unconditional mean variance efficiency with respect to the information, as

described by Hansen and Richard (1987) and Ferson and Siegel (2001).1 Ferson

1An alternative is to study conditional efficiency, where the weights minimize the conditional

variance. This may be handled by simply reinterpreting the classical analysis.
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and Siegel (2001) argue that this setting is interesting from the perspective of active

portfolio management, where the client cannot observe the information that

a portfolio manager may have. Ferson and Siegel (2003, 2009) show that this

setting is also interesting from the perspective of testing asset pricing models, but

they do not develop the optimal orthogonal portfolio.

We show that the optimal orthogonal portfolio has time-varying weights, and

we derive the weights in a closed form. The portfolio weights for unconditionally

efficient portfolios in the presence of conditioning information are derived by

Ferson and Siegel (2001). They consider the case with no risk-free asset and the

case with a fixed risk-free asset whose return is constant over time. We generalize

these solutions to the case with a “conditionally” risk-free asset whose return is

known at the beginning of the period and is thus included in the lagged condi-

tioning information and may vary over time. We derive solutions for the optimal

orthogonal portfolios with conditioning information, including cases where there

is no risk-free asset, a constant risk-free rate, or a time-varying conditionally risk-

free rate. We show that a “law of conservation of squared Sharpe ratios” holds,

implying that the optimal orthogonal portfolio’s squared unconditional Sharpe

ratio is the difference between that of the benchmark portfolio and the maximum

unconditional squared Sharpe ratio that is possible using the assets and condi-

tioning information. Empirical examples illustrate the performance of the optimal

orthogonal portfolios with conditioning information and the behavior of the

portfolio weights.

Section 35.2 briefly reviews optimal orthogonal portfolios in the classical case

with no conditioning information. Section 35.3 describes the setting for our analysis

with conditioning information. Section 35.4 presents the main theoretical results,

and Sect. 35.5 presents our empirical examples. Section 35.6 concludes. Appendix 1

includes the proofs of the main results, and Appendix 2 describes the methodology

of our empirical examples in detail, including a general description of the

parametric bootstrap.

35.2 Optimal Orthogonal Portfolios: The Classical Case

In the classical case, portfolio weights are fixed constants over time, and there is no

conditioning information. Optimal orthogonal portfolios are tied to mean variance

efficiency. Mean variance efficient portfolios maximize the expected return, given

the variance of the return. Since Markowitz (1952) and Sharpe (1964), such

portfolios have been at the core of financial economics.

The mean variance efficiency of a given portfolio can be described using a system

of time-series regressions. If rt ¼ Rt � g0 is the vector of N excess returns at time t,
measured in excess of a given risk-free or zero-beta return, g0, and rpt ¼ Rpt � g0 is
the excess return on a benchmark portfolio, the regression system is

rt ¼ aþ brpt þ ut; t ¼ 1, . . . ,T, (35.1)
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where T is the number of time-series observations, b is the N-vector of regression
slopes or betas, and a is the N-vector of intercepts or alphas. The tested portfolio

rpt is represented among the returns in rt, so the covariance matrix of the residuals

in Eq. 35.1 is singular (rpt might be included explicitly or might be a fixed-weight

portfolio of the assets in rt). The portfolio rp is minimum-variance efficient

and has the given zero-beta return only if a ¼ 0.2 The mean variance

efficiency of a given portfolio is of normative investment interest, as an efficient

portfolio maximizes a concave utility function defined solely over the

mean and variance of the portfolio return, as would follow from normally

distributed returns in a single-period model, for example. Equation 35.1

may be interpreted as referring to multiple factor portfolios, where rp is

a K-vector and b is an N � K matrix. Then, the benchmark portfolio is

a linear combination of the K returns in the vector rp (e.g., Shanken 1987;

Gibbons et al. 1989).

Definition The most mispriced (or optimal orthogonal) portfolio with respect to rp,
when there is no conditioning information, has excess return rc ¼ x0cr, where the
weights xc satisfy.

xc ¼ Arg Max
x

x
0
a

� �2
Var x0rð Þ : (35.2)

It is clear from the definition in Eq. 35.2 why the portfolio is referred to as the

most mispriced. The vector a captures the “mispricing” of the tested asset returns in

Eq. 35.1 when evaluated using the benchmark rp, and the portfolio xc has the largest
squared alpha relative to its variance. This interpretation also reveals why the

portfolio is of central interest in active portfolio management. Given a benchmark

portfolio rp, an active portfolio manager places bets by deviating from the portfolio

weights that define the benchmark. The manager is rewarded for bets that deliver

higher returns and penalized for increasing the volatility. The portfolio in

(2) describes the active bets that achieve the largest amount of extra return for the

variance. Thus, the solution is also referred to as the active portfolio by Gibbons

et al. (1989). (See Grinold and Kahn (1992) for an in-depth treatment of modern

portfolio management.)

In the classical case of fixed portfolio weights, the solution to Eq. 35.2 is given

by xc ¼ 1
0
V�1a

� ��1
V�1a , where 1 is an N-vector of ones and V ¼ Cov(r), the

covariance matrix of the returns. Using this solution, several well-known properties

2Note the distinction between minimum variance efficient portfolios, which minimize the variance

for the given mean return, and mean variance efficient, which maximize the mean return given its

variance. The latter set of portfolios is a subset of the former, typically depicted as the positively

sloped portion of the minimum variance efficient boundary when graphed with mean return on the

y-axis and standard deviation or variance of return on the x-axis. The portfolio rp is mean variance

efficient when a¼ 0 and E(rp) exceeds the expected excess return of the global minimum variance

portfolio.
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of the optimal orthogonal portfolio follow.3 For example, a combination of the

portfolio rc and the benchmark portfolio rp is optimal, that is, minimum-variance

efficient (Jobson and Korkie 1982). The portfolio is orthogonal to the benchmark

portfolio in the sense that Cov(xc
0
r, rp) ¼ 0.

The optimal orthogonal portfolio is central for the interpretation of tests of

portfolio efficiency. Classical test statistics for the hypothesis that a ¼ 0 in

Eq. 35.1 can be written in terms of squared Sharpe ratios (e.g., Jobson and Korkie

1982). Consider the Wald statistic:

W ¼ Tâ
0
Cov âð Þ½ ��1â ¼ T

Ŝ
2
Rð Þ � Ŝ

2
Rp

� �

1þ Ŝ
2
Rp

� �
 !

_�w2 Nð Þ (35.3)

where â is the OLS or maximum likelihood (ML) estimator of a (after removing rp
or another asset from the vector r to avoid singularity of the covariance matrix) and

Cov(â) is its asymptotic covariance matrix. Upper case R’s refer to gross returns, and
lower case r’s refer to returns in excess of the zero-beta rate. The term Ŝ2(Rp) is the

sample value of the squared Sharpe ratio of Rp when the zero-beta rate is g0 so that

S2(Rp) ¼ [E(rp)/s(rp)]
2. The term Ŝ2(R) is the sample value of the maximum squared

Sharpe ratio that can be obtained by portfolios of the assets in R (including Rp):

S2 Rð Þ ¼ max
x

E x
0
r

� �� �2
Var x0rð Þ

( )
: (35.4)

The Wald statistic has an asymptotic chi-squared distribution with N degrees of

freedom, under the null hypothesis that Rp is efficient with the given zero-beta

return. Scaled with a degrees of freedom adjustment, the statistic has an

F distribution under normally distributed returns (Gibbons et al. 1989).

It can be shown that the squared Sharpe ratios can be decomposed using the optimal

orthogonal portfolio as S2(R) ¼ S2(Rp) + S2(Rc). A similar decomposition holds at the

sample values. This decomposition, a “law of conservation of squared Sharpe ratios,” is

used by Jobson and Korkie (1982) to derive the second equality in (35.3). Since the

Sharpe ratio is the slope of a line in the mean-standard deviation space, Eq. 35.3

suggests a graphical representation for the statistic in the sample mean-standard

deviation space. It measures the distance between the sample mean-standard deviation

frontier and the location of the tested portfolio, inside the frontier. This distance is

proportional to the squared Sharpe ratio of the optimal orthogonal portfolio. Kandel

(1984), Roll (1985), Gibbons et al. (1989), and Kandel and Stambaugh (1987, 1989)

further develop this interpretation.

3See Roll (1980), Gibbons et al. (1989), MacKinlay (1995), and Campbell et al. (1987) for

analyses of optimal orthogonal portfolios in the classical case with no conditioning information.
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35.3 The Conditional Setting

We use conditioning information in a setting similar to that of Hansen and Richard

(1987) and Ferson and Siegel (2001), where minimum-variance efficiency is defined

in terms of the unconditional means and variances of the portfolios that result from

the use of conditioning information. Ferson and Siegel (2009) refer to this as

efficiency with respect to the information, Z. This setting has proven useful in asset

pricing tests (Ferson and Siegel 2003, 2009; Bekaert and Liu 2004), in forming

hedging portfolios (Ferson et al. 2006), and in portfolio management problems

(Ahkbar et al. 2007; Chiang 2012). We study the optimal orthogonal portfolio in

this setting. The distinction betweenmean variance efficiency andminimum-variance

efficiency, as in the classical setting, applies in this setting as well.

Consider a portfolio of N assets with gross returns, Rt+1, where the weights that

determine the portfolio at time t are functions of the information, Zt. The gross

return on such a portfolio with weight x(Zt) is x0(Zt)Rt+1. The restrictions on the

portfolio weight function are that the weights must sum to 1 (almost surely in Zt),
and that the unconditional expected value and second moments of the portfolio

return are well defined. Consider now all portfolio returns that may be formed, for

a given set of asset returns Rt+1 and given conditioning information, Zt, with well-

defined first and second moments. This set determines a mean-standard deviation

frontier, as shown by Hansen and Richard (1987). This frontier depicts the uncon-
ditionalmeans versus the unconditional standard deviations of the portfolio returns.
A portfolio is defined to be efficient with respect to the information Zt if and only if
it is on this mean-standard deviation frontier.

Ferson and Siegel (2001) derive solutions for efficient-with-respect-to-Z portfolios

in closed form. They consider the case with no risk-free asset and the case with a fixed

risk-free asset whose return is constant over time. In Theorem 1 of Appendix 1, we

derive the solution for the case with a risk-free asset whose return is known at the

beginning of the period and is thus included in the information Z and may vary over

time. In this case the variation in the risk-free rate over time affects the unconditional

variance of the portfolio return.

Ferson and Siegel (2001) argue that efficiency with respect to the information

is especially relevant in a portfolio management context. It is reasonable to

assume that the portfolio manager has more information about asset returns than

the client. Assume that the client desires an unconditionally mean-variance

efficient portfolio. The manager observes conditioning information that is rele-

vant about future returns, and by conditioning on this information, he or she can

expand the investor’s opportunity set. The manager maximizes the investor’s

mean variance opportunity set by using his information to maximize the uncon-

ditional mean for a given unconditional variance. The efficient-with-respect-to-

Z strategy is therefore the strategy that the investor would wish the portfolio

manager to use.

Ferson and Siegel (2009) show how asset pricing theories make statements about

portfolios that are efficient with respect to information Z and develop tests of the

hypothesis that a portfolio is efficient with respect to Z. The optimal orthogonal
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portfolio with respect to information Z is a useful concept in these portfolio efficiency

tests. We begin the analysis with a result from Hansen and Richard (1987).

Proposition 1 (Hansen and Richard 1987, Corollary 3.1.) Given N asset gross

returns, Rt+1, a given portfolio with gross return Rp,t+1 isminimum-variance efficient
with respect to the information Zt if and only if Eq. 35.5 is satisfied (equivalently,

there exists constants g0 and g1 such that Eq. 35.6 is satisfied) for all x(Zt) such thatx
0
Ztð Þ

1 ¼ 1 almost surely, where the relevant unconditional expectations exist and are finite:

Var Rp, tþ1

� � � Var x
0
Ztð ÞRtþ1

h i
if E Rp, tþ1

� � ¼ E x
0
Ztð ÞRtþ1

h i
(35.5)

E x
0
Ztð ÞRtþ1

h i
¼ g0 þ g1 Cov x

0
Ztð ÞRtþ1,Rp, tþ1

h i
: (35.6)

Equation 35.5 is the definition of efficiency with respect to Z. It states that Rp, t+1

is on the minimum-variance boundary formed by all possible portfolios that use the

assets in R and the conditioning information. Equation 35.6 states that the familiar

expected return-covariance relation from Fama (1973) and Roll (1977) must hold

with respect to the efficient portfolio. In Eq. 35.6, the coefficients g0 and g1 are fixed
scalars that do not depend on the functions x(�) or the realizations of Zt.

35.4 The Main Results

The optimal orthogonal portfolio with conditioning information plays roles

analogous to the classical setting with no conditioning information. Thus, for exam-

ple, restricting the maximization in Eq. 35.4 to fixed-weight portfolios where x is

a constant vector, we obtain efficiency in the classical case. In contrast, an efficient

portfolio with respect to the information Z maximizes the squared Sharpe ratio over

all portfolio weight functions, x(Z). Maximizing over a larger set of weights expands

the investment opportunity set and produces a larger maximum Sharpe ratio.

With conditioning information, the optimal orthogonal portfolio’s weight

function is time varying, and we derive this portfolio weight for three cases. First,

with no risk-free asset in which case a fixed unconditional “zero-beta” rate g0 is

arbitrarily chosen. By varying the zero-beta rate, the solutions can describe any

point on the efficient-with-respect-to-Z frontier. Second, we consider

a conditionally time-varying risk-free asset whose return Rf ¼ Rf (Z ) is measureable

and thus known as part of the information set Z so that Var[Rf (Z )|Z ]¼ 0, but which

is unconditionally risky in the sense that Var[Rf (Z )] > 0. Here, we again choose an

arbitrary zero-beta rate g0 to describe the frontier. In the third case, there exists an

unconditional risk-free asset with fixed return Rf¼g0. In this case, the efficient-

with-respect-to-Z frontier becomes a line passing through g0 (at risk zero) and the

point representing the mean and standard deviation of a particular portfolio

strategy’s return.
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We consider portfolios formed from the risky assets using weights xq ¼ xq(Z)
where the weights must sum to 1 (for all Z) when there is no risk-free asset. This

constraint is relaxed when there is a conditional or unconditional risk-free asset

(where the implicit weight in the risk-free asset is then set at 1 minus the sum of the

weights in the risky assets). When there is no risk-free asset, the portfolio return

is Rq,t+1 ¼ xq
0
(Zt)Rt+1, and when there is a risk-free asset, the portfolio return is

Rq, tþ1 ¼ Rf Ztð Þ þ x
0
q Ztð Þ Rtþ1 � Rf Ztð Þ1� �

whether or not Rf (Z) is constant. In either

case, we denote the (unconditional) portfolio mean mq ¼ E(Rq) and variance

sq
2 ¼ Var(Rq). When there exists a conditional time-varying risk-free asset, the

portfolio takes advantage of the ability to adapt both the percentage invested in

risky assets and their portfolio weights in response to the information Z. This may

be interpreted as “market timing” and security selection, respectively. We define

the optimal orthogonal portfolio with respect to a given benchmark portfolio

P formed from the risky assets using (possibly) time-varying weights xp ¼ xp(Z).

Definition The most mispriced (or optimal orthogonal) portfolio, Rc, with respect
to the benchmark portfolio Rp and conditioning information Z, with portfolio

weight denoted xc(Z), uses the conditioning information to maximize ac
2/sc

2 where

the unconditional variance of Rc is sc
2, the unconditional mean is mc ¼ E(Rc), the

unconditional alpha of Rc with respect to Rp is ac ¼ mc � [g0 + (mp � g0)scp/sp
2], the

zero-beta rate is g0, and the unconditional covariance is scp ¼ Cov(Rc, Rp).

Proposition 2 The unique most mispriced (or optimal orthogonal) portfolio Rc with

respect to a given benchmark portfolio Rp (with weights xp and expected return mp),
conditioning information Z and given zero-beta rate, g0, has the following portfolio
weight in each of the following cases. If there is no risk-free rate, then the weights

conditionally sum to 1 as defined by

xc Zð Þ ¼ A
L1

1
0
L1

þ cþ 1ð Þms þ b½ � L� L11
0
L

1
0
L1

 !
m Zð Þ

( )
þ Bxp, (35.7)

Rf (Z) (which may be either constant or time varying, but if constant,4 then we must

choose g0 ¼ Rf along with any ms 6¼ Rf), then the solution is

xc Zð Þ ¼ A cþ 1ð Þms þ b� Rf

� �
Q m Zð Þ � Rf 1
� �þ Bxp, (35.8)

where

A ¼ ms � g0ð Þ=s2s
ms � g0ð Þ=s2s � mp � g0

� �
=s2p

, (35.9)

4Equation 35.11 cannot be used to determine ms when Rf (Z) is almost surely constant due to

division by zero, and, in this case, every choice ms 6¼ Rf uses the same (rescaled) portfolio of risky

assets Q m Zð Þ � Rf 1
� �

in the formation of an efficient portfolio xs(Z).
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B ¼ � mp � g0
� �

=s2p
ms � g0ð Þ=s2s � mp � g0

� �
=s2p

, (35.10)

ms ¼ � aþ bg0ð Þ= bþ cg0ð Þ, (35.11)

s2s ¼ aþ 2bms þ cm2s , (35.12)

Q ¼ Q Zð Þ � E R� Rf 1
� �

R� Rf 1
� �0 ����Z

� �	 
�1

¼ m Zð Þ � Rf 1
� �

m Zð Þ � Rf 1
� �0 þ =Se Zð Þ

	 
�1

,

(35.13)

L ¼ L Zð Þ � E RR
0 ��Z

h in o�1

¼ m Zð Þm0
Zð Þ þ =Se Zð Þ

h i�1

: (35.14)

The constants a, b, and c are defined in Appendix 1 in Theorem 1 (when there

exists a risk-free rate) and in Theorem 2 (when there is no risk-free rate).

Proof: See Appendix 1.

The term ms represents the unconditional expected return of the efficient-with-

respect-to-Z portfolio, Rs, that maximizes the squared unconditional Sharpe ratio in

Eq. 35.4 over all portfolio weight functions with respect to the given value of g0.
When there exists a risk-free rate Rf (Z) (that may be time varying because its value is

included in the information set Z at the beginning of the period), the conditional mean

variance boundary, the tangency intercept Rf (Z), and thus the location of the condi-

tionally mean variance efficient portfolio may vary over time as Rf (Z) varies. When

there is no risk-free rate, or when the risk-free rate is time varying, we use the

parameter g0 to determine a fixed location on the (curved) unconditionally efficient-

with-respect-to-Z boundary; however, when there is a fixed risk-free rate, this

boundary is a degenerate hyperbola, and every portfolio on the upper line is efficient.

We next show that the optimal orthogonal portfolio Rc can be formed by combining

the benchmark portfolio Rpwith the efficient-with-respect-to-Z portfolio Rs, and from

this result, it then follows that Rp and Rc can be combined to produce the efficient-

with-respect-to-Z portfolio Rs.

Proposition 3 The most mispriced or optimal orthogonal portfolio Rc may be found

as a fixed linear combination of the benchmark portfolio Rp and the efficient-with-

respect-to-Z portfolio, Rs (that maximizes the squared Sharpe ratio for the given

zero-beta rate, g0), as follows:
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Rc ¼
ms � g0ð Þ=s2s

� �
Rs � mp � g0

� �
=s2p

h i
Rp

ms � g0ð Þ=s2s
� �� mp � g0

� �
=s2p

h i (35.15)

Or

Rc ¼
s2pRs � spsRp

s2p � sps
¼ ARs þ BRpwith Aþ B ¼ 1, (35.16)

where we assume that Rs and Rp are not perfectly correlated and that sp
2 6¼ ssp.

Proof: See Appendix 1.

Propositions 2 and 3 extend the concept of the active or optimal orthogonal

portfolio to the setting of efficiency with respect to conditioning information. Given

a benchmark portfolio Rp, its optimal orthogonal portfolio with respect to Z shows

how to tilt away from the benchmark weights to obtain efficiency with respect to Z.
The portfolio Rc has weights that depend on Z. Thus, the optimal tilt away from

a benchmark uses the manager’s information Z in a dynamic way.

Equation 35.16 shows how the optimal orthogonal portfolio Rc can be formed by

combining an efficient-with-respect-to-Z portfolio Rs with Rp. The portfolio Rc is

the regression error of Rs projected on Rp, normalized so that the weights sum to

1, as can be seen by solving Eq. 35.16 for Rs. Thus, the portfolio Rc is uncorrelated

with Rp.

We defined the most mispriced portfolio with conditioning information as

maximizing the squared alpha relative to the unconditional variance of Rc. Since

Rc is orthogonal to Rp, its residual variance in regression (Eq. 35.1) is the same as its

total variance. Thus, we can think of the optimal orthogonal portfolio as maximiz-

ing alpha given its residual variance among all orthogonal portfolios.

Given a benchmark portfolio with return Rp, the optimal orthogonal portfolio

with conditioning information is useful for active portfolio management. It might

seem natural for a manager with information Z to simply reinterpret the classical

analysis, where all the moments are the conditional moments given Z. This, in fact,
is the interpretation that much of the literature on active portfolio management has

used (e.g., Jorion 2003; Roll 1982). This approach produces conditionally mean

variance efficient portfolios given Z. However, as shown by Dybvig and Ross

(1985), a conditionally efficient portfolio is likely to be seen as inefficient from

the (unconditional) perspective of a client without access to the information Z.
The optimal orthogonal portfolio describes the active portfolio bets that deliver

optimal performance from the client’s perspective.

Let S2(R) be the maximum squared Sharpe ratio obtained by the efficient-with-

respect-to-Z portfolio and let Rc be the optimal orthogonal portfolio with respect to

Rp and information Z.

Proposition 4 Law of conservation of squared Sharpe ratios. For a given zero-beta

or risk-free rate, if Ss
2 ¼ S2(R) is the maximum squared Sharpe ratio obtained by
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portfolios x(Z) and Rc is the optimal orthogonal portfolio with respect to Rp and

information Z at that zero-beta rate, then Ss
2 ¼ Sp

2 + Sc
2, where Si

2 denotes the squared

Sharpe ratio of portfolio i.
Proof: See Appendix 1.

Proposition 4 shows that if we test the hypothesis that a portfolio is efficient with

respect to Z using versions of the test statistic in Eq. 35.3, as developed in Ferson

and Siegel (2009), then the role of the optimal orthogonal portfolio with informa-

tion Z is analogous to the role of the optimal orthogonal portfolio in the case of the

classical test statistics. The Sharpe ratio of the optimal orthogonal portfolio with

conditioning information indicates how far the tested benchmark portfolio is from

the efficient-with-respect-to-Z frontier. The squared Sharpe ratio of the optimal

orthogonal portfolio is the numerator of the test statistic. This numerator and thus

the test statistic is zero only if the tested portfolio is efficient in the sample, and it

grows larger as the tested portfolio is further from efficiency.

35.5 Empirical Examples

We present empirical examples using data on portfolios of common stocks, where

the firms are grouped according to conventional criteria. We use the returns of

common stocks sorted according to market capitalization and book-to-market

ratios, focusing on value-weighted decile portfolios of small capitalization stocks,

value stocks (high book/market), and growth stocks (low book/market), as provided

on Ken French’s website. We also include a long-term government bond return,

splicing the Ibbotson Associates 20-year US government bond return series for

1931–1971, with the CRSP greater than 120 month US government bond return

after 1971. The market portfolio, measured as the CRSP value-weighted stock

return index, is the benchmark or tested portfolio, Rp. The risk-free return is the

return from rolling over 1-month Treasury bills from CRSP. We use its sample

average, 3.8 % per year, as the fixed zero-beta rate in all of the examples. As

conditioning information in Z, its return is lagged by 1 year. All of the returns are

discretely compounded annual returns, and the sample period is 1931–2007.

The lagged instruments, Z, are the lagged Treasury return and the log of the

market price/dividend ratio at the end of the previous year. In calculating the

price/dividend ratio, the stock price is the real price of the S & P 500 Index, and

the dividend is the real dividends accruing to the index over the past year. These

data are from Robert Shiller’s website.

We treat the risk-free asset in three distinctly different ways to highlight the three

different versions of our solutions for the optimal orthogonal portfolios. In the first

case, the risk-free rate is assumed to be a fixed constant. Here, we do not include the

Treasury return as a lagged instrument, and we set g0 ¼ 3.8 % to be the

average Treasury return during the sample. The target mean ms of the efficient-

with-respect-to-Z portfolio is set equal to the sample mean return of the market

index in this case, which determines the amount of leverage the portfolio uses at

the fixed risk-free rate.
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In the second case, no risk-free asset exists. Here, we again set g0¼ 3.8 % to pick

a point on the mean variance boundary, and we do not allow the portfolio to take

a position in a risk-free asset. We do allow the lagged Treasury return as condi-

tioning information in Z, which highlights the information in lagged Treasury

returns about the future risky asset returns. In the third case, there is

a conditionally risk-free return that is contained in Z. Here, we use the lagged

Treasury return in the conditioning information, and we allow the portfolio to trade

the subsequent Treasury return in addition to the other risky assets. The subsequent

Treasury return is not really known ex ante as the formula assumes, but its

correlation with the lagged return is 0.92 during our sample, and this allows us to

implement the time-varying risk-free rate example in a somewhat realistic way.

(In reality, there is no ex ante risk-free asset given the importance of inflation risk.)

In practical terms, this example highlights the effects of “market timing,” or

varying the amount of “cash” in the portfolio, in addition to varying the allocation

among the risky assets.

Table 35.1 summarizes the results. The rows show results for the benchmark

index (Market), three equity portfolios, and the government bond return. The

CAPM a refers to the intercept in the regression (1), of the portfolio returns in

excess of the Treasury bill returns, on the excess return of the market index. The

small stock portfolio has the largest alpha, at 3.95 % per year, while the growth

stock portfolio has a negative alpha. The symbol su refers to the standard deviation

of the regression residuals. The small stock portfolio has the largest su or

nonmarket risk, at more than 25 % per year.

The bottom four rows of Panel A summarize the optimal orthogonal portfo-

lios when the market index is the benchmark. The fixed-weight portfolio Rc uses

no conditioning information. Its alpha is larger than any of the separate assets, at

4.66 % per year, and its residual standard deviation is also relatively large, at

16.5 % per year. Since the portfolio is orthogonal to the market index, its

residual standard deviation is the same as its total standard deviation, or vola-

tility of return. The ratio of the alpha to the residual volatility is known as the

appraisal ratio (Treynor and Black 1973) or the information ratio (Grinold and

Kahn 1992). Optimal orthogonal portfolios try to maximize the square of this

ratio. The fixed-weight portfolio Rc delivers an information ratio of 0.282,

substantially larger than those of the small stock or value portfolios, at 0.155

and 0.177, respectively, and also larger than the bond portfolio, which has an

information ratio of 0.183 by virtue of its relatively small volatility.

Table 35.1 summarizes performance statistics for the optimal orthogonal port-

folios with conditioning information. There are three versions with (1) a fixed risk-

free rate, (2) no risk-free rate, and (3) a time-varying conditional risk-free rate. The

information ratios in all three cases are larger than those of the individual assets or

the fixed-weight active portfolio, which illustrates the potential value of using

conditioning information explicitly in a portfolio management context (see also,

Chiang 2009). The improvement over fixed weights is modest for the case with no

risk-free asset. However, the information ratio is about three times as large, at

0.955, in the example with a time-varying risk-free rate. This illustrates the
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potential usefulness of interest rate information and the ability to hold “cash” as

a function of market conditions, in a portfolio management context.

The averages over time of the optimal orthogonal portfolios’ weights on the

risky assets are shown in the right-hand columns of Panel A. The weights are

normalized to sum to 1.0. The weights xc of the optimal orthogonal portfolios

combine with the benchmark (whose weights, xp, are 100 % in the market index)

to determine an efficient portfolio. The overall efficient portfolio weights xs
therefore vary over time and depend on how xc and xp are combined, which is

determined by the coefficients A and B in Eqs. 35.9 and 35.10. The estimated

weights are as follows. In the fixed risk-free rate case, xs¼ 0.60 xc + 0.40 xp. In the
no risk-free rate case, xs ¼ 0.23 xc + 0.77 xp. In the time-varying risk-free rate

case, xs ¼ 0.44 xc + 0.56 xp. Thus, the efficient portfolio is formed as a convex

combination of the benchmark and the active portfolio, with reasonable weights

in each case.

The four right-hand columns of Panel A show that two of the active portfolios

take short positions in the market benchmark, indicating an optimal tilt away from

the market index. The fixed-weight portfolio Rc takes an extreme short

position of �126 %, while on average the portfolio using the conditioning

information but no risk-free asset takes a position of �21 % in the market index.

These short positions finance large long positions in the US government bond and

also long positions (in most cases) in small stocks, value stocks, and growth stocks.

It is interesting that all the portfolios tilt positively, although by small amounts, into

growth stocks even though growth stocks have negative CAPM alphas. This occurs

because of the correlations among the asset classes.

All the versions of the optimal orthogonal portfolio suggest strong tilts into

government bonds. The bond tilt is the most extreme for the fixed-weight solution,

at 141 %, and is relatively modest, at 43.2 %, for the portfolio assuming a time-

varying conditional risk-free rate. This makes sense, as that portfolio can hold

short-term Treasuries in addition to government bonds. The large weights in bonds

reflect various features of the data and the value of the zero-beta rate. With larger

values for the zero-beta rate, provided that the rate remains below the mean of the

global minimum-variance portfolio of risky assets, the optimal orthogonal portfo-

lios become more aggressive as the target expected return of the efficient-with-

respect-to-Z portfolio increases.

The squared Sharpe ratios in Panel B of Table 35.1 indicate how far the stock

market index is from efficiency. The squared Sharpe ratio for the market is 0.189,

measured relative to the fixed zero-beta rate of 3.8 %. The market portfolio’s

squared Sharpe ratio is slightly smaller, at 0.182, for returns measured in excess

of a time-varying risk-free rate. This is because the negative covariance between the

risk-free rate and stock returns increases the variance of the excess return. For the

fixed-weight orthogonal portfolio Rc, the squared Sharpe ratio is 0.079, and for

the portfolios using conditioning information, it varies between 0.088 and 0.909.

According to the law of conservation of squared Sharpe ratios in Proposition 4,

the sum of the index and optimal orthogonal portfolios’ squared Sharpe ratios is

the squared slope of the tangency from the given zero-beta rate to the relevant
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mean variance frontier. The sum is 0.267 when no conditioning information is

used and is 0.304–1.091 when the information is used. With a fixed risk-free rate,

we condition only on the lagged dividend yield, which is a relatively weak

predictor for stock returns (see Ferson et al. 2003). However, in the case with

no risk-free rate, the portfolio is not allowed to hold short-term Treasuries, which

substantially weakens the performance. In the time-varying risk-free rate case, the

portfolio strategy is allowed to “market time” by holding short-term Treasuries. In

the other two cases, we use the information in the lagged Treasury rate, which is

a relatively strong predictor, and the efficient-with-respect-to-Z boundary is far

above the mean variance boundary that ignores the conditioning information.

(Ferson and Siegel 2009, present an analysis of the statistical significance of

differences like these.)

Table 35.1 suggests that the portfolio weights of the fixed-weight Rc portfolio are

extreme and would not be realistic in practical portfolio management settings. This

reflects well-known issues with mean classical variance optimal solutions in practice

(e.g., Michaud 1989; Siegel and Woodgate 2007). To obtain practical portfolio

weights in the classical mean variance problem, it is generally necessary to constrain

the weights (e.g., Frost and Savarino 1988) or shrink them toward a benchmark e.g.,

Jorion (2003) or Jagannathan and Ma (2003). In this context, note that the optimal

orthogonal portfolios using Z take less extreme positions on average than the fixed-

weight solution, yet still are able to generate larger information ratios.

Figures 35.1 and 35.2 present time-series plots of the weights for the optimal

orthogonal portfolios using Z. Like the fixed-weight Rc case, the weights in the case

with a fixed risk-free rate assumption appear too volatile and noisy to be of practical

interest, likely reflecting the poor predictive ability based solely on the dividend

yield. We do not plot them here to save space. The weights in the other two examples

are shown in Figs. 35.1 and 35.2. They generally vary relatively smoothly over time,

suggesting that they would not involve prohibitive trading costs in practice.

Figure 35.1 depicts the weights for the optimal orthogonal portfolio in the case

with no risk-free asset. The market index weights are negative through much of the
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sample and near �25 %, indicating that the overall efficient-with-respect-to-Z
portfolio keeps about 71 % of its money in the market index for much of the

sample, computed as (0.23)(�0.25) + 0.77 using the estimated weights for the no

risk-free rate case, xs ¼ 0.23 xc + 0.77 xp, as reported earlier. Starting in the

mid-1990s, the market weights decrease to around �50 % for the optimal orthog-

onal portfolio weight and 66 % for the overall efficient-with-respect-to-Z portfolio.

The weight of this optimal orthogonal portfolio in small stocks is positive for much

of the sample, but turns slightly negative in the early 1970s, then positive again in

the early 1990s. The strategy shorts value stocks in the 1930s and 1940s, but holds

positive positions through most of the rest of the sample. The government bond gets

the largest weight, starting near 80 % and growing sharply in the 1990s to near

100 % in the latter parts of the sample.

Figure 35.2 depicts the weights for the optimal orthogonal portfolio in the case

with a time-varying, conditional risk-free rate. This strategy keeps positive weights

in the market index until 1999, then it holds small short positions for most of the rest

of the sample. The weight in small stocks is positive for much of the sample, turning

slightly negative in the early 1970s and then positive again in the early 1990s. The

strategy holds value stocks long until the early 2000s and shorts growth stocks

during much of the 1980s. The government bond again gets the largest weight,

starting at 32 % and growing to almost 70 % at the end of the sample.

35.6 Conclusions

This chapter derives, characterizes, and illustrates optimal orthogonal portfolios in

the presence of conditioning information in the form of a set of lagged instruments.

Optimal orthogonal portfolios combine with a benchmark portfolio to form mean

variance efficient portfolios. We generalize previously published solutions for
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optimal orthogonal portfolios with information to include the case of a time-

varying, but conditionally known, risk-free asset return.

In a portfolio management context, it is reasonable to assume that the portfolio

manager has more information about asset returns than the client. The manager

observes information about future returns and, by conditioning on this information,

can expand the investor’s opportunity set. Starting from a given benchmark port-

folio, the optimal orthogonal portfolio with conditioning information describes the

active portfolio bets that, when combined with the benchmark, deliver mean

variance optimal performance from the uninformed client’s perspective.

We present empirical examples using a broad stock market index as the bench-

mark and portfolios featuring small capitalization, value and growth stocks, and

a long-term US government bond return. We examine three versions of the optimal

orthogonal portfolio with (1) a fixed risk-free rate, (2) no risk-free rate, and (3) a

time-varying conditional risk-free rate. The optimal orthogonal portfolios with

conditioning information have larger information ratios than the orthogonal port-

folio that does not use the conditioning information. At the same time, they take less

extreme positions than the fixed-weight solution.

From an asset pricing perspective, a standard stock market index is far from

efficient when portfolios trade based on lagged interest rates and dividend yields.

From an active portfolio management perspective, the example shows that a strong

tilt toward bonds improves the efficiency of equity portfolios. Our results should be

useful in future asset pricing and portfolio management applications.

Appendix 1: Theorems and Proofs

Efficient Portfolio Solutions

Portfolio weights for efficient portfolios in the presence of conditioning information

are derived by Ferson and Siegel (2001). They consider the case with no risk-free

asset and the case with a fixed risk-free asset whose return is constant over time.

In Theorem 1, we generalize to consider the case with a risk-free asset whose return

is known at the beginning of the period, and thus is included in the information Z,
and may vary over time. We then, in Theorem 2, reproduce the case with no risk-

free asset from Ferson and Siegel (2001) for future reference.

Consider N risky assets with returns R. In N� 1 column vector notation, we have

R ¼ m Zð Þ þ e:

The noise term e is assumed to have conditional mean zero given Z and

nonsingular conditional covariance matrix =Se Zð Þ. The conditional expected return

vector is m(Z)¼ E(R|Z). Let the 1 � N row vector x0(Z)¼ (x1(Z), . . . , xN(Z)) denote
the portfolio share invested in each of the N risky assets, investing (or borrowing) at

the risk-free rate the amount 1� x
0
Zð Þ1, where 1 � (1 ,. . .,1)0 denotes the column

vector of ones. We allow for a conditional risk-free asset returning Rf ¼ Rf (Z).
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The return on the portfolio is Rs ¼ Rf þ x
0
Zð Þ R� Rf 1
� �

, with unconditional

expectation and variance as follows:

ms ¼ E Rf

� �þ E x
0
Zð Þ m Zð Þ � Rf 1
� �n o

,

s2s ¼ E R2
s

� �� m2s ¼ E E R2
s Zj Þ� �� m2s ,

�

s2s ¼ E R2
f

� �
þ E x

0
Zð ÞQ�1x Zð Þ

h i
þ 2E Rf x

0
Zð Þ m Zð Þ � Rf 1
� �n o

� m2s , (35.17)

where we have defined the N � N matrix

Q ¼ Q Zð Þ � E R� Rf 1
� �

R� Rf 1
� �0 ���Z

h in o�1

¼ m Zð Þ � Rf 1
� �

m Zð Þ � Rf 1
� �0 þ =Se Zð Þ

n o�1

:

Also, define the constants:

z � E m Zð Þ � Rf 1
� �0

Q m Zð Þ � Rf 1
� �n o

,

’ � E Rf m Zð Þ � Rf 1
� �0

Q m Zð Þ � Rf 1
� �n o

,

and

c � E R2
f m Zð Þ � Rf 1
� �0

Q m Zð Þ � Rf 1
� �n o

:

Theorem 1 Given a target unconditional expected return ms, N risky assets, instru-

ments Z, and a conditional risk-free asset with rate Rf ¼ Rf (Z) that may vary over

time, the unique portfolio having minimum unconditional variance is determined

by the weights

xs Zð Þ ¼ ms � E Rf

� �þ ’

z
� Rf

 �
Q m Zð Þ � Rf 1
� �

¼ cþ 1ð Þms þ b� Rf

� �
Q m Zð Þ � Rf 1
� �

,

(35.18)

and the optimal portfolio variance is

s2s ¼ aþ 2bms þ cm2s

where a ¼ E R2
f

� �
þ E Rfð Þ�’½ �2

z � c, b ¼ ’�E Rfð Þ
z , and c ¼ 1

z � 1. When the risk-free

asset return is constant, then these formulas simplify to Theorem 2 of Ferson and

Siegel (2001) with
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xs Zð Þ ¼ ms � Rf

z
Q m Zð Þ � Rf 1
� �

and with optimal portfolio variance s2s ¼ 1�z
z ms � Rf

� �2
.

Proof Our objective is to minimize, over the choice of xs(Z), the portfolio variance
Var(Rs) subject to E(Rs) ¼ ms, where Rs ¼ Rf þ x

0
Zð Þ R� Rf 1
� �

and the variance is

given by Eq. 35.17. We form the Lagrangian:

L x Zð Þ½ � ¼ E x
0
Zð ÞQ�1x Zð Þ� �þ 2E Rf x

0
Zð Þ m Zð Þ � Rf 1
� �� �

þ2lE ms � Rf � x
0
Zð Þ m Zð Þ � Rf 1
� �� �

and proceed using a perturbation argument. Let q(Z) ¼ x(Z) + dy(Z), where x(Z) is
the conjectured optimal solution, y(Z) is any regular function of Z, and d is a scalar.
Optimality of x(Z) follows when the partial derivative of L[q(Z)] with respect to d is
identically zero when evaluated at d ¼ 0. Thus,

0 ¼ E y
0
Zð Þ Q�1x Zð Þ þ Rf � l

� �
m Zð Þ � Rf 1
� �� �� �

for all functions y(Z), which implies that Q�1x Zð Þ þ Rf � l
� �

m Zð Þ � Rf 1
� � ¼ 0

almost surely in Z. Solve this expression for x(Z) to obtain Eq. 35.18, where the

Lagrange multiplier l is evaluated by solving for the target mean, ms. The expression
for the optimal portfolio variance follows by substituting the optimal weight function

into Eq. 35.17. Formulas for fixed Rf then follow directly. QED.

When the risk-free asset’s return is time varying and contained in the informa-

tion set Z at the beginning of the portfolio formation period, the conditional mean

variance efficient boundary varies over time with the value of Rf (Z) along with the

conditional asset means and covariances . In this case, a zero-beta parameter, g0,
may be chosen to fix a point on the unconditionally efficient-with-respect-to-

Z boundary. The choice of the zero-beta parameter corresponds to the choice of

a target unconditional expected return ms. For a given value of g0, the target mean

maximizes the squared Sharpe ratio (ms � g0)
2/ss

2 along the mean variance bound-

ary, which implies ms ¼ � (a + bg0)/(b + cg0).
When there is a risk-free asset that is constant over time, the unconditionally

efficient-with-respect-to-Z boundary is linear (a degenerate hyperbola) and reaches

the risk-free asset at zero risk. In this case, we use g0 ¼ Rf and can obtain any ms
larger or smaller than Rf, levering the efficient portfolio up or down with positions

in the risk-free asset.

When there is no risk-free asset, we define portfolio s by letting x0 ¼ x0(Z)¼ [x1(Z),
. . ., xN(Z)] denote the shares invested in each of the N risky assets, with the

constraint that the weights sum to 1.0 almost surely in Z. The return on this

portfolio, Rs ¼ x0(Z)R, has expectation and variance as follows:

ms ¼ E x
0
Zð Þm Zð Þ

h i
,

s2s ¼ E x
0
Zð ÞL�1x Zð Þ

n o
� m2s ,
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where we have defined the N � N matrix

L ¼ L Zð Þ � E RR
0 ��Z

h in o�1

¼ m Zð Þm0
Zð Þ þ =Se Zð Þ��1

:
h

Also, define the constants:

d1 ¼ E
1

1
0
L1

 �
,

d2 ¼ E
1

0
Lm Zð Þ
10L1

 !
,

and

d3 ¼ E m
0
Zð Þ L� L11

0
L

1
0
L1

 !
m Zð Þ

" #
:

Theorem 2 (Ferson and Siegel 2001, Theorem 3) Given N risky assets and no risk-

free asset, the unique portfolio having minimum unconditional variance and uncon-

ditional expected return ms is determined by the weights:

x
0
s Zð Þ ¼ 1

0
L

1
0
L1

þ ms � d2
d3

m
0
Zð Þ L� L11

0
L

1
0
L1

 !

¼ 1
0
L

1
0
L1

þ cþ 1ð Þms þ b½ �m0
Zð Þ L� L11

0
L

1
0
L1

 !
, (35.19)

and the optimal portfolio variance is

s2s ¼ aþ 2bms þ cm2s ,

where a ¼ d1 + d2
2/d3, b ¼ � d2/d3, and c ¼ (1 � d3)/d3.

The efficient-with-respect-to-Z boundary is formed by varying the value

of the target mean return ms in Eq. 35.19. Note that the second term on

the right-hand side of Eq. 35.19 is proportional to the vector of weights of

an excess return, or zero net investment portfolio (post multiplying that term

by a vector of ones implies that the weights sum to zero). The first

term in Eq. 35.19 is the weight of the global minimum conditional second

moment portfolio. Thus, Eq. 35.19 illustrates two-fund separation: any
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efficient-with-respect-to-Z portfolio can be found as a combination of the

global minimum conditional second moment portfolio and some weight on

the unconditionally efficient excess return described by the second term.

Proofs of Propositions

Proof of Propositions 2 and 3

We begin with Proposition 3. To see that Eqs. 35.15 and 35.16 are equivalent, use

the fact that efficiency of Rs implies that mp ¼ g0 þ sps
s2s

ms � g0ð Þ and thus
ms�g0
s2s

¼ mp�g0
sps

. Next, given any portfolio Rq 6¼ Rc, we will show that aq
2/sq

2 < ac
2/sc

2.

Beginning with Eq. 35.16, we compute:

scs ¼
s2ps

2
s � s2ps

s2p � sps

and

s2c ¼
s2p s2ps

2
s � s2ps

� �

s2p � sps
� �2 :

The efficiency of Rs implies that mc ¼ g0 þ scs
s2s

ms � g0ð Þ, mp ¼ g0 þ sps
s2s

ms � g0ð Þ,
and mq ¼ g0 þ sq s

s2s
ms � g0ð Þ. Substituting these expressions and using the fact that

scp ¼ 0, which follows from (35.16), we compute:

a2c
s2c

� a2q
s2q

¼ mc � go þ mp � go
� �

scp=sp2
� �� �2

s2c
� mq � go þ mp � go

� �
sqp=sp2

� �� �2
s2q

¼ ms � g0ð Þ2 s2cs
s4ss2c

�
sqss2p � spssqp
� �2

s4ss4ps2q

0
B@

1
CA

¼ ms � g0ð Þ2 s2ps
2
s � s2ps
s4ss2p

�
s2qss

4
p þ s2pss

2
qp � 2sqss2pspssqp

� �

s4ss4ps2q

0
@

1
A

¼ ms � g0ð Þ2
s4ss4ps2q

s4ps
2
ss

2
q � s2ps

2
qs

2
ps � s2qss

4
p � s2pss

2
qp þ 2s2psqsspssqp

� �
:

We now use the fact that ssp
2 < ss

2sp
2 (because, by assumption, Rp and Rs are not

perfectly correlated) to see that
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a2c
s2c

� a2q
s2q

	 ms � g0ð Þ2
s4ps2qs4s

s4ps
2
qs

2
s � s2ps

2
qs

2
sp � s4ps

2
qs � s2qp s2ss

2
p

� �
þ 2s2psqssqpsps

h i

¼ ms � g0ð Þ2
s2ps2qs4s

s2ps
2
qs

2
s � s2qs

2
sp � s2ps

2
qs � s2qps

2
s þ 2sqssqpsps

� �
	 0

where the final inequality follows from recognizing that the variance-covariance

terms in parentheses are equal to the determinant of the (necessarily nonnegative

definite) covariance matrix of (Rp,Rq,Rs). This establishes the maximal property of Rc.

To show uniqueness, note further that the inequality will be strict (and we will have

ac
2/sc

2 � aq
2/sq

2 > 0) unless we have both of the following conditions corresponding to

the two inequalities in the final calculation: (1) sqp ¼ 0 so that Rq and Rp are

orthogonal, and (2) the covariance matrix of (Rp,Rq,Rs) is singular so that Rq is

a linear combination of Rp and Rs. However, there is only one portfolio orthogonal

to Rp that can be formed as a linear combination lRp + (1 � l)Rs, and this solution

is Rc. This establishes Proposition 3, which holds in the case of both Theorem 1 and

Theorem 2, that is, whether or not there is a conditionally risk-free asset.

The expressions in Proposition 2 for the optimal weights, xc(Z), follow from

substituting portfolio weights from Theorem 1 (if there exists a conditional risk-free

asset that may be time varying) or Theorem 2 (otherwise) into Eq. 35.15 and noting

that the constants A and B represent the combining portfolio weights implied by

(35.15) as Rc ¼ ARs + BRp. Substituting, we see that Eq. 35.15 implies that the

portfolio weight function Axs(Z) + Bxp(Z) generates returns Rc, completing the

proof of Proposition 2. QED.

Proof of Proposition 4

Let Rs denote the efficient-with-respect-to-Z portfolio corresponding to zero-beta

rate g0. The efficiency of Rs implies that we may substitute mp � g0 ¼ ms � g0ð Þ spss2s
and mc � g0 ¼ ms � g0ð Þ scss2s

to find

S2p þ S2c ¼
mp � g0
� �2

s2p
þ mc � g0ð Þ2

s2c
¼ ms � g0ð Þ2

s4s

s2ps
s2p

þ s2cs
s2c

 !
:

Next, substituting for scs and sc
2 from the above expressions, we verify that this

expression reduces to Ss
2. QED.

Appendix 2: Methodology

We estimate the conditional mean functions, m(Z), by ordinary least squares

regressions of the returns on the lagged values of the conditioning variables. On

the assumption that the conditional mean returns are linear functions of Z, these
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are the optimal generalized method of moments (GMM, see Hansen 1982)

estimators. The covariance matrix of the residuals is used as the estimate of

=Se Zð Þ , which is assumed to be constant. These are the maximum likelihood

estimates (MLE) under joint normality of (R,Z). In general, the conditional

covariance matrix of the returns given Z will be time varying as a function

of Z, as in conditional heteroskedasticity. Ferson and Siegel (2003) model

conditional heteroskedasticity in alternative ways and find using parametric

bootstrap simulations that this increases the tendency of the efficient-with-

respect-to-Z portfolio weights to behave conservatively in the face of extreme

realizations of Z.
The optimal orthogonal portfolio weights in Table 35.1 and Fig. 35.1 are

estimated from Eqs. 35.7 to 35.8 in the text where, in the time-varying risk-free

rate case, the Treasury bill return is assumed to be conditionally risk-free in

Eq. 35.8. The benchmark portfolio xp is a vector with a 1.0 in the place of the

market index and zeros elsewhere. The matrix Q is estimated by using the MLE

estimates of m(Z) and =Se Zð Þ in the function given by Eq. 35.13. The parameter mp is
estimated as the sample excess return on the market index, and g0 is the sample

mean of the Treasury return, 3.8 %.

The Parametric Bootstrap

The parametric bootstrap is a special case of the simple, or nonparametric, boot-

strap, itself an example of a resampling scheme. Introduced by Efron (1979), the

bootstrap is useful when we wish to conduct statistical inferences, but when we

either don’t have an analytical formula for the sampling variation of a statistic,

don’t wish to assume normality or some other convenient distribution that allows

for an analytical formula or have a sample too small to trust asymptotic distribution

theory. The basic idea is to build a sampling distribution by resampling from the

data at hand. In the simplest example, we have some statistic that we have estimated

from a sample, and we want to know its sampling distribution. We resample from

the original data, randomly with replacement, to generate an artificial sample of the

same size, and we compute the statistic on the artificial sample. Repeating this

many times, the histogram of the statistics computed on the artificial samples is an

estimate of the sampling distribution for the original statistic. This distribution can

be used to estimate standard errors, confidence intervals, etc. We can think of the

bootstrap samples as being related to the original sample as the original sample is to

the population. There are many variations on the bootstrap, and a good overview is

provided by Efron and Tibshirani (1993).

In the simple, or nonparametric, bootstrap, no assumptions are made about the

form of the distribution. It is assumed, however, that the sample accurately reflects

the underlying population distribution, and this is critical for reliable inferences.

For example, suppose that the true distribution was a uniform on [0,M]. In a sample

drawn from this distribution, the maximum value is likely to be smaller than M, so

that the bootstrap will likely understate the true variability of the data. This problem
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is obviously worse if the original sample has fewer observations. If the data are

contaminated with measurement errors, in contrast, the extent of the true variability

can be overstated. Even with large sample sizes, the bootstrap can be unreliable. For

example, if the true distribution has infinite variance, the bootstrap distribution for

the sample mean is inconsistent (Athreya 1987).

With a parametric bootstrap, we can sometimes do better than with

a nonparametric bootstrap, where “do better” means, for example, obtain more

accurate confidence intervals (e.g., Andrews et al. 2006). The idea of the parametric

bootstrap is to use some of the parametric structure of the data. This might be as

simple as assuming the form of the probability distribution. For example, assuming

that the data are independent and normally distributed, we can generate artificial

samples from a normal distribution using the sample mean and variance as the

parameters. This is not exactly the right thing to do, because we should be sampling

from a population with the true parameter values, not their estimated values. But, if

the estimates of the mean and variance are good enough, we should be able to

obtain reliable inferences.

To illustrate and further suggest the flexibility of the parametric bootstrap,

consider an example, similar to the setting in our paper, where we have

a regression of stock returns on a vector of lagged instruments, Z, which are highly
persistent over time. Obviously, sampling from the Z’s randomly with replacement

would destroy their strong time-series dependence. Time-series dependence can be

accommodated in a nonparametric way by using a block bootstrap. Here, we sample

randomly a block of consecutive observations, where the block length is set to

capture the extent of memory in the data.

In order to capture the time-series dependence of the lagged Z in a parametric

bootstrap, we can model the lagged instruments as vector AR(1), for example,

retaining the estimator of the AR(1) coefficient and the model residual, which we

call the shocks, Uz. Regressing the future stock returns on the lagged instruments,

we retain the regression coefficient and the residuals, which we call the shocks, Ur.

We generate a sample of artificial data, with the same length as the original sample,

as follows. We concatenate the shocks as v ¼ (Uz,Ur). Resampling rows from v,
randomly with replacement, retains the covariances between the stock return

shocks and the instrument Z shocks. This can be important for capturing features

like the lagged stochastic regressor bias described by Stambaugh (1999). Drawing

an initial row from v, we take the Uz shock and add it to the initial value of the

Z (perhaps, drawn from the unconditional sample distribution) to produce the first

lagged instrument vector, Zt–1. We draw another row from v and construct the first

observation of the remaining data as follows. The stocks’ returns are formed by

adding theUr shock to bzt–1, where b is the “true” regression coefficient that defines

the conditional expected return. The contemporaneous values of the Zs are formed

by multiplying the VAR coefficient by Zt–1 and adding the shock, Uz. The next

observation is generated by taking the previous contemporaneous value of the Z as

Zt–1 and repeating the process. In this way, the Z values are built up recursively,

which captures their strong serial correlation.
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Abstract

This paper uses a multifactor, multi-indicator approach to test the capital asset

pricing model (CAPM) and the arbitrage pricing theory (APT). This approach is

able to solve the measuring problem in the market portfolio in testing CAPM;

and it is also able to directly test APT by linking the common factors to the

macroeconomic indicators. Our results from testing CAPM support
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Stambough’s (Journal of Financial Economics, 10, 237–268, 1982) argument

that the inference about the tests of CAPM is insensitive to alternative market

indexes.

We propose a MIMIC approach to test CAPM and APT. The beta estimated

from the MIMIC model by allowing measurement error on the market portfolio

does not significantly improve the OLS beta, while the MLE estimator does

a better job than the OLS and GLS estimators in the cross-sectional regressions

because the MLE estimator takes care of the measurement error in beta. There-

fore, the measurement error problem on beta is more serious than that on the

market portfolio.

Keywords

Capital asset pricing model, CAPM • Arbitrage pricing theory • Multifactor

multi-indicator approach • MIMIC • Measurement error • LISREL approach •

Ordinary least square, OLS • General least square, GLS • Maximum-likelihood

estimation, MLE

36.1 Introduction

Roll (1977) has shown that the capital asset pricing model (CAPM) can never be

tested unless the market portfolio is capable of being measured and identified.

However, the market portfolio is actually unobservable. Stated differently, since

the market portfolio is subject to measurement error, Sharpe (1964), Lintner

(1965), and Mossin’s (1966) type of CAPM can never be tested directly. In contrast,

the test of Ross’s (1976, 1977) arbitrage pricing theory (APT) does not rely upon the

identifications of the market portfolio or the true factors. Nevertheless, Shanken

(1982) argues that Ross’s contention that APT is inherently more easily tested is

questionable. If we can directly link these unobservable factors to some observable

indicators, the Shanken criticism of the test of APT can be avoided or reduced.

Fortunately, a multiple indicators and multiple causes (MIMIC) model, pro-

posed by Zellner (1970), Goldberger (1972a, b), Joreskog and Goldberger (1975),

and others, is an attractive methodology in dealing with the problem of

unobservable variables. Goldberger (1972b) conceptually described that structural

equation model is a combination of factor analysis and econometrics model.

Goldberger (1972b) and Joreskog and Goldberger (1975) develop a structural

equation model with multiple indicators and multiple causes of a single latent

variable, MIMIC model, and obtain maximum likelihood estimates of parameters.

The MIMIC model displays a mixture of econometric and factor analysis themes.

This concept has successfully been used to test economic models, such as the

structure of price expectation and inflationary expectation (see Turnovsky 1970;

Lahiri 1976). In addition, structural equation model has also been used in finance-

related studies. Titman and Wessels (1988), Chang et al. (2009), and Yang

et al. (2009) apply structural equation models (e.g., LISREL approach and

MIMIC model) in determining capital structure decision. Maddala and
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Nimalendran (1996) use structural equation model to examine the effect of earnings

surprises on stock prices, trading volumes, and bid-ask spread. However, the

structural equation model, especially MIMIC model, has not been used in capital

asset pricing determination.

The purpose of this paper is twofold: (i) to use the MIMIC model to reexamine

CAPM and (ii) to use the MIMIC model to investigate the relationship between the

factors in APT and the macroeconomic indicators directly. APT is attractive to both

academicians and practitioners, because the model allows more than one factor.

However, to date the practical applications of APT are still limited since previous

studies in testing the model do not directly link the factors to the indicators. If the

linkage between the factors and the indicators can be derived, practical applications

will be much improved.

The outline of this paper is as follows. In Sect. 36.2, the MIMIC model is

reviewed and CAPM and APT in terms of the MIMIC model are demonstrated.

Section 36.3 shows how MIMIC can be used to test CAPM, and Sect. 36.4

investigates the MIMIC applied to test APT. Finally, a brief summary is contained

in Sect. 36.5.

36.2 The MIMIC Model and the Tests of CAPM and APT

36.2.1 The MIMC Model

Suppose that a system has k unobservable latent variables z¼ (z1, . . .,zk)
0, p observable

exogenous indicators x ¼ (x1,. . ., xp)
0, and m observable endogenous variables

y ¼ (y1,. . ., ym)
0.1 The specification of this extended MIMIC model of Jöreskog and

Goldberger (1975) is as follows. The latent factors z are linearly determined, subject to

disturbances e¼ (e1, . . .,ek)
0, by observable exogenous indicators x:2

z ¼ axþ e, (36.1)

where

a ¼

a11, � � �, a1p
� � �
� � �
� � �

ak1, � � �, akp

2
66664

3
77775

is a k � p matrix:

1Fogler et al. (1981) and Chen et al. (1983) indirectly link the factors extracted from the APT to

economic indicators. Jöreskog and Goldberger (1975) have shown that this kind of indirect

estimation method is not as efficient as the direct estimation method to be explored in this section.
2Here, we use different terminologies in defining the factors and indicators compared with those

used in traditional MIMIC model.
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In addition, the latent factors z linearly determine the components of endogenous

variables y subject to disturbances u ¼ (u1, . . . ,um)
0:

y ¼ bzþ u, (36.2)

where

b ¼

b11, � � �, b1k
� � �
� � �
� � �

bm1, � � �, bmk

2
66664

3
77775

is an m� k matrix:

The disturbances are assumed to be mutually independent and normally

disturbed with mean zero, namely, e � N(0,S), u � N(0,y2), where S ¼ diag(s21,
. . .,s2k) and y2 ¼ diag(y21, . . .,y

2
m). For convenience, all variables are taken to have

mean zero. The system of Eqs. 36.1 and 36.2 are shown in Fig. 36.1.

Solving the equation systems of Eqs. 36.1 and 36.2, we have the following

reduced form connecting the observable variables:

y ¼ baxþ beþ u ¼ hxþ v, (36.3)

where the reduced-form coefficient matrix is

h ¼ ba: (36.4)

The reduced-form disturbance matrix is

v ¼ beþ u, (36.5)

which has a covariance matrix of

O ¼ E vv0ð Þ ¼ E beþ uð Þ beþ uð Þ0� � ¼ bSb0 þ y2, (36.6)

where E presents expectation operator.

Fig. 36.1 Multiple causes

and indicators of

unobservable variables. This

figure shows the path diagram

illustrating MIMIC model of

the structural equation

system. In this figure,

observable variables

X1, . . . ,XP are causes of the

latent variables Z1, . . . ,Zk,
while Y1, . . . ,Ym are

indicators of Z1, . . . ,Zk
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There are two types of restrictions on the reduced form: (i) the m � p regression
coefficient matrix h has rank k, the m� p components of h being expressed in terms

of kp + mk elements of a and b, and (ii) the m � m residual covariance matrix Ω
satisfies a factor analysis model with k common factors, the m(m + 1)/2 distinct

elements of Ω being expressed in terms of the k + km + m elements of s2, b, and y2.
The first restriction, which is the same as the simultaneous equation model, is

familiar to econometricians. The second restriction, which is the same as the factor

analysis model, is familiar to psychometricians. In Eq. 36.5, e, b, and u are regarded
as the common factors, the factor loadings, and the unique disturbances in the factor

analysis model, respectively.

We observe that the reduced-form parameters remain unchanged, when any

column, say j, of b is multiplied by a scalar and the j th row of a and sj are both

divided by the same scalar. To remove this indeterminacy of the model, we can

normalize the model through (i) s2, or (ii) b, or (iii) a. After normalization, the

maximum likelihood estimation (MLE) procedure can be used to obtain consistent

estimators of the elements in parameters a, b, and y2 (see Attfield 1983; Chen 1981;
Joreskog and Goldberger 1975; and others). In the following, we demonstrate how

to apply the MIMIC model to test CAPM and APT.

36.2.2 The Testing Model of CAPM by the MIMIC Approach

The CAPM can be rewritten, in terms of MIMIC model, as follows:

eri ¼ bier�m þ eui
er�m ¼ erm þ eem, i ¼ 1, . . . ,N, (36.7)

where

eri ¼ the realized excess return (total return less risk-free rate) on security i in
a deviation form

erm ¼ the realized excess return of the NYSE Composite Index

er�m ¼ the unobservable excess return on the market portfolio

In this special one-factor case, we remove the indeterminacy by setting

the coefficient on erm equal to one. Equation 36.7 is a simultaneous equation

model, in which there are N equations linking the individual security

(or portfolio) return to the unobservable true market return and one equation linking

the unobservable true market portfolio return to the realized return of the NYSE

composite index. After obtaining the estimated betas from simultaneous equation

system of (36.7), a cross-sectional regression of the security return against its risk

(b) will be used to test CAPM or to estimate the riskless rate and the market risk

premium as follows:

rit ¼ â0t þ â1tbi, (36.8)
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where

rit ¼ the excess return on security i at time t
â0t ¼ the estimate of the intercept which is supposed to be zero

â1t ¼ the estimate of the market risk premium

Four different estimation procedures will be used to estimate Eq. 36.8. They are:

(i) stationary OLS, (ii) nonstationary OLS, (iii) GLS, and (iv) MLE.3

36.2.3 The Testing Model of APT by the MIMIC Approach

The testing model of APT, in terms of the MIMIC model, can be rewritten as

follows:

eri ¼ bi1ef 1 þ . . .þ bikef k þ eui, i ¼ 1, . . . ,Nð Þ
ef j ¼ aj1eI1 þ . . .þ ajpeIp þ eej, j ¼ 1, . . . , kð Þ , (36.9)

where
ef j ¼ the jth unobservable factor
eIh ¼ the hth macroeconomic indicator, h ¼ 1, � � � ,p

For convenience and easy explanation, each factor ef is assumed to have

different set of explained indicators eI ’s. Note that there are N return equations

plus k factor equations in the simultaneous equation system (36.9). The LISREL

computer program of Jöreskog and Sörbon (1981) is used to estimate the parame-

ters, a and b, in Eq. 36.9. A cross-sectional regression is also used to test APT and to

estimate the riskless rate and the factor risk premia by regressing the security return

against its risks, b’s. The a’s coefficients in Eq. 36.9 can be used to explain the

relationship between factors and indicators.

36.3 Test of CAPM

This section tests CAPM using the market model and the MIMIC model described in

Sect. 36.2. The objective is to investigate whether the MIMIC method yields

a different inference from the market model. Nineteen industry common stock

portfolios are formed with the same manner used by Schipper and Thompson

(1981), and Stambough (1982).4 The return on a portfolio is the arithmetic average

of returns for firms on the CRSP monthly tape with the appropriate two-digit SEC

code for the given month. The tests use returns from the period 1963–1982, and this

total period is divided into two equal subperiods: (i) subperiod 1, 1963–1972 and

3The terminologies stationary OLS and nonstationary OLS have been used by Friend and West-

field (1980). The GLS and MLE methods have been discussed by Litzenberger and

Ramaswamy (1979).
4See Chen (1981).
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(ii) subperiod 2, 1973–1982. Portfolios are formed primarily because they provide

a convenient way to limit the computational dimensions of the MIMIC method. As

mentioned by Stambough (1982), industry portfolios also allow rejection of CAPM

due to the presence of additional industry-related variables in the risk-return relation.

Table 36.1 indicates the number of securities in each portfolio, the SEC codes,

and betas calculated from the market model and also from the MIMIC model. When

the MIMIC model was used to estimate betas by the portfolio excess returns in

subperiod 1, convergent problems were encountered during minimization so that

the result is inappropriate. Consequently, raw returns in deviation form on the

portfolios are used to estimate betas for subperiod 1. The betas estimated from

the MIMIC model are very close to those from the market model in both periods.

This evidence supports Stambough’s discovery that inferences about CAPM are

very insensitive to alternative market indexes.

Table 36.2 presents return-risk trade-off from the cross-sectional relationship in

which the average monthly excess portfolio returns (monthly portfolio returns less

monthly return on 3-month Treasury bills) is regressed on a beta estimated either

from the MIMIC model or the market model from two different 120-month periods.

Four different estimation procedures are used to estimate the intercepts and the

market risk premia. The OLS method presents two sets of t-statistics shown in

the parentheses under the same relevant regression coefficients. The first set

(denoted S) assumes that the regression coefficients are constant or stationary

over each 120-month period. The second set (denoted NS) of the OLS t-statistics
allows the nonstationarities of the regression coefficients by computing the

cross-sectional regression coefficients in each month and deriving the appropriate

standard errors from the time series 120 estimates of the OLS regression coeffi-

cients. The GLS and MLE methods also permit the nonstationary coefficients.

Thus, their t-statistics are derived from the same procedure in the OLS

(NS) method. Although the OLS and the GLS estimators are biased and inconsistent

due to measurement error in beta (see Litzenberger and Ramaswamy 1979), the

maximum likelihood estimators are consistent simply because MLE takes care of

measurement error in beta.

In Table 36.2, the coefficients in the NS regression of OLS, GLS, and MLE are

obviously characterized by much larger standard errors so that they lose any

significance shown in the stationary OLS regression.5

However, different estimated betas cause little changes in return-risk relation-

ships. From the results of the OLS stationary method, there exists a significant

return-risk relationship in subperiod 1, but not in subperiod 2 in both MIMIC and

market models. The poor return-risk relationship in subperiod 2 may be due to the

poor performance of CAPM in determining a pricing relation. In the next section,

APT will be used to examine an alternative pricing relationship. Even though the

null hypothesis of CAPM that a0 ¼ 0 cannot be rejected at the 5 % level in all four

cases, all coefficients are positive. In addition, the intercept in subperiod 2, about

5The similar results were also found in the Friend and Westfield’s (1980) study of co-skewness.
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4.3 % annual rate, is too high. This is consistent with prior tests of the traditional

version of CAPM.

All nonstationary estimates of a0 and a1 in OLS, GLS, and MLE in Table 36.2

are insignificant. Because of the low test power for all nonstationary procedures

(the standard errors are too high), in the following, only the magnitudes of the

estimated coefficients are discussed. The MLE and GLS estimates of a0 are much

lower and much closer to zero than the corresponding OLS estimates in all four cases.

In addition, the MLE estimates of a1 is greater than the corresponding GLS estimates

and is closer to the realized market risk premia in all four cases. The realized market

risk premia are 0.751 % and 0.636 % monthly for periods 1 and 2, respectively.

Table 36.1 Industry portfolio SEC codes, number of firms, and estimated betas

Portfolio description SEC code # of firms Estimated betas

Period 1 Period 2

1972 1982

Market

model

MIMC

model

Market

model

MIMC

model

1. Mining 10–14 56 71 1.056 1.009 0.922 0.916

2. Food and beverages 20 75 51 0.894 0.841 0.803 0.803

3. Textile and apparel 22,23 58 45 1.264 1.220 1.081 1.082

4. Paper products 26 30 30 1.030 1.029 0.910 0.909

5. Chemical 28 87 83 0.949 0.947 0.847 0.846

6. Petroleum 29 28 22 0.706 0.792 0.745 0.740

7. Stone, clay, glass 32 43 31 1.050 1.106 1.045 1.045

8. Primary metals 33 56 49 1.136 1.193 0.932 0.930

9. Fabricated metals 34 45 46 1.145 1.155 1.102 1.102

10. Machinery 35 93 104 1.234 1.231 1.104 1.104

11. Appliance and

elec. equip.

36 87 82 1.384 1.401 1.179 1.180

12. Transport. equip. 37 64 50 1.209 1.275 1.150 1.151

13. Misc. manufactrng. 38,39 64 59 1.375 1.314 1.197 1.198

14. Railroads 40 18 11 1.294 1.229 0.899 0.895

15. Other transport. 41, 42, 44

45, 47

34 35 1.335 1.447 1.203 1.203

16. Utilities 49 138 152 0.443 0.467 0.564 0.562

17. Department stores 53 35 28 1.149 1.104 1.125 1.125

18. Other retail trades 50–52,

54–59

103 97 1.144 1.088 1.123 1.124

19. Banking, finance,

real estate

60–67 184 240 0.968 1.021 1.069 1.068

This table presents the number of firms and betas in each industry portfolio. The numbers of firms

are obtained in the end of 1972 and the end of 1982. The betas shown in the first column are

estimated from the market model, while those in the second column are estimated from the MIMIC

model. Period 1 represents the sample period from 1963 to 1972 and period 2 represents the sample

period from 1973 to 1982
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This evidence proves that the MLE estimator in the return-risk cross-sectional

regressions is more appropriate than OLS or GLS estimator in testing CAPM.

In sum, we have proposed an alternative estimator of betas by the MIMIC model

in which measurement error in a market portfolio is allowed. Nevertheless, this

reasonable alternative method does not gain much from the traditional OLS

estimator. However, some interesting results have surfaced. This evidence supports

Stambough’s conclusion that the tests of CAPM are insensitive to different market

indexes. In return-risk cross-sectional regressions, our evidence shows that the

MLE estimator is more appropriate than the OLS or GLS estimator due to

measurement error in beta. From these two interesting results, we conclude that

measurement error on beta is more serious than measurement error on the market

portfolio in testing CAPM.

Table 36.2 Return-risk cross-sectional relationships of CAPM: 1963–1982

Panel A: MIMC model Panel B: Market model

Procedure a0 a1 R
2

a0 a1 R
2

Period 1: 1963–1972

OLS-S 0.159 0.539 0.258 0.187 0.516 0.243

(0.71) (2.70)* (0.85) (2.61)*

OLS-NS 0.159 0.539 0.258 0.187 0.516 0.243

(0.41) (1.03) (0.48) (1.02)

GLS 0.029 0.660 0.095 0.599

(0.06) (1.29) (0.19) (1.22)

MLE �0.106 0.793 �0.082 0.770

(�0.24) (1.29) (�0.13) (1.22)

Period 2: 1973–1982

OLS-S 0.370 0.266 �0.004 0.363 0.273 �0.001

(1.33) (0.97) (1.29) (0.99)

OLS-NS 0.370 0.266 �0.004 0.363 0.273 �0.001

(0.60) (0.31) (0.59) (0.32)

GLS 0.106 0.532 0.107 0.531

(0.24) (0.71) (0.24) (0.71)

MLE 0.081 0.556 0.081 0.556

(0.17) (0.71) (0.17) (0.71)

This table presents return-risk trade-off from the cross-sectional relationship in which the average

monthly excess portfolio returns are regressed on a beta estimated either from the MIMC model or

the market model from two different 120-month periods. For different estimation procedures,

stationary OLS, nonstationary OLS, GLS, and MLE, are used to estimate the intercepts

and the market risk premia. The stationary OLS version corresponds to the regression Ri � Rf

¼ a0 þ a1bi þ eei, (i¼1,� � �,N). The other versions correspond to the regression Ri � Rf ¼ a0 þ a1
bi þ eei, (i ¼ 1,� � �,N; and t ¼ 1,� � �T. The monthly returns are multiplied by 100 before regressing.

The reported coefficients are arithmetic average of the time series, while t-statistics are in

parentheses under each relevant coefficient. *represents significant at the 5 % level
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36.4 Tests of APT by MIMIC Approach

This section tests APT using the MIMIC model demonstrated in Sect. 36.2. The

objective is to investigate that (i) the proper number of factors is used to explain the

data and (ii) the relationships between factors and indicators which are measured by

macroeconomic variables. The same 19 industry portfolios described in previous

section are used here. The macroeconomic variables are selected from those most

likely related to common stock returns. In the following, the indicators selected in

this study will be discussed.

36.4.1 Macroeconomic Variables as the Indicators

In early 1970s, several studies attempt to employ economic methods to investigate

the relationship between money supply and aggregated common stock prices. Models

developed by Keran (1971), Homa and Jaffee (1971), and Hamburger and Kochin

(1972) appear to have met with considerable success in explaining the behavior of

Standard and Poor’s Composite Index. However, Pesando (1974) reexamines above

models using different periods. He finds that the extraordinary success of these

methods in tracking the behavior of stock prices during the sample period may be

illusory. We believe that the above spurious regression phenomenon results from

ignoring the autocorrelated errors in time series regression equations as pointed out

by Granger and Newbold (1974). Gargett (1978) used a qualitative method to study

the relationship between these two variables. He discovered that the Dow Jones

Industrial Index follows changes in money supply with a lag of 3 months.

The relationship between stock returns and inflation has been extensively

studied. In particular, Bodie (1976), Nelson (1976), and Fama and Schwert

(1977) all present evidence that monthly returns to NYSE Composite Index are

negatively related to the inflation rate as indicated by the consumer price index

(CPI) since 1953. Cohn and Lessard (1981), Gultekin (1983), and Solnik (1983)

also find that stock prices are negatively related to nominal interest rate and

inflation in a number of countries. Fama (1981) suggests a reason why the stock

market reaction to unexpected inflation is weak. He argues that unexpected inflation

is contemporaneously correlated with unexpected movements in important “real”

variables, such as capital expenditures or real GNP, so that the correlation between

stock returns and unexpected inflation is spurious. After extensively reexamining

the relationship between the stock returns and inflation, Geske and Roll (1983)

conclude that only Nelson’s (1979) and Fama’s (1981) money demand explanation

is logically consistent, but it seems unable to fully explain all of the empirical

phenomena. Geske and Roll (1983) therefore propose the fiscal and monetary

explanation. They argue that the basic underlying relation is between stock returns

and changes in inflationary expectations.

In exploring the common stocks as hedges against the investment opportunity

sets, Schipper and Thompson (1981) select two candidates for state variables.
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They are price level as measured by consumer price index (CPI) and the real gross

national product less corporate profit (GNP). They find that hedge portfolios offer

meaningful hedging potential in portfolio-formation period. In addition, CAPM or

the market model indicates that the return on a security or a portfolio most likely

co-move with the return on the market portfolio.

In summary, the variables most likely correlated with a stock return would be

classified as five categories: (1) money supply, (2) real production, (3) inflation,

(4) interest rate, and (5) market return. Further, Brigham (1982) decomposes a risk

premium into maturity risk premium and default risk premium. Thus, these two

indicators are also included in our study. According to the above discussion, the

following 11 variables are selected as the indicators.

1. Return on the market portfolio (RM): the return on NYSE common stock

composite index.

2. Transaction volume (VL): the change rate in the transaction volume (shares)

for all of the NYSE common stocks.

3. Real riskless rate (RF): the real interest rate on 3-month Treasury bills.

4. Maturity risk premium (MP): the difference between the real interest rates on

long-term Treasury bonds (10 or more years) and on 3-month Treasury bills.

5. Default risk premium (DP): the difference between the real interest rates on

new AA corporate bonds and on 3-month Treasury bills.

6. Consumer price index inflation rate (CPI): the change rate in urban consumer

price index for all items.

7. Money supply (M2): the real change rate in money stock as measured by M2

(M1 + time deposits).

8. Velocity of money supply (PI/M2): the ratio of personal income to money

supply M2. This is an alternative measure of money supply.

9. Real industrial production (IP): the change rate in real total industrial

productions.

10. Real auto production (IPA): the change rate in real automotive products.

11. Real home production (IPH): the change rate in real home goods.

Since the automobile and housing industries generally lead the rest of the

economy, the last two indicators, IPA and IPH, are used to catch up the first two

biggest industries. The reason to select industrial production instead of GNP in this

study is that all other indicators are published monthly while GNP is published

quarterly. Since the industrial production is a very good proxy for GNP, we sacrifice

GNP measure to gain the number of time periods.

36.4.2 Empirical Results

After carefully selecting the indicator candidates, the time lag or leading problem

needs to be solved. The correlation coefficients between the market portfolio

return and the other indicators with lags and leadings of zero to 5 months for both

periods were examined. All indicators are contemporaneously correlated with the
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market portfolio except three real production indicators. The real production

indicators follow the market portfolio return with a lag of 2 or 3 months.

Therefore, in this study, all indicators are contemporaneous except three real

production indicators which is a 2-month lag.

Before APT is directly tested by the MIMIC model, factor analysis is prelimi-

narily used to determine the number of factors in both periods. Table 36.3 shows the

eigenvalues as a percentage of the first eigenvalue. Clearly, it is only one factor in

period 1, while it is perhaps two factors in period 2 by “scree” test described in

Chapter 4 of Wei (1984).6 Consequently, at most a two-factor model is enough to

explain the historical data. Three alternative MIMIC models are proposed to test

APT: (i) one-factor 11-indicator model, (ii) one-factor six-indicator model, and

(iii) two-factor six-indicator model. When the two one-factor models are used to

test APT in period 1, there is little difference between 11-indicator and six-indicator

model. Thus, only six indicators are used in the two-factor model to save the

computer time.7

The structural coefficients of APT in the MIMIC model for period 1 are reported

in Table 36.4a. In both one-factor models, only the stock market-related variables,

Table 36.3 Eigenvalue as a percentage of the first eigenvalue for 19 industry portfolios:

1963–1982

Factor PRC ALP SCF ULS

Panel A: Period: 1963–1972

1 100 % 100 % 100 % 100 %

2 3.8 4.4 3.9 2.9

3 3.1 1.5 2.6 1.7

4 2.1 1.0 2.3 0.8

5 1.9 0.7 2.0 0.7

6 1.6 0.6 1.9 0.6

Panel B: Period: 1973–1982

1 100 % 100 % 100 % 100 %

2 7.9 6.9 7.1 7.2

3 2.1 2.8 2.9 1.8

4 1.3 1.0 1.9 0.9

5 1.0 0.6 1.6 0.5

6 1.0 0.4 1.4 0.4

This table shows the eigenvalues as a percentage of the first eigenvalue. Four methods are used to

determine the number of factors in APT model. They are principal component analysis (PRC),

alpha factor analysis (ALP), simple common factor analysis (SCF), and unweighted least squares

method (ULS)

6In his dissertation, Wei (1984) has shown that the “scree” test is a powerful test in identifying the

number of relevant factors in the APT. By using simulation study, Wei has shown that Roll and

Ross’s (1980) ML method in estimating factors are inferior to methods listed in Table 36.3.
7It is very expensive to run LISREL program, especially for more than two factor models.
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the market return (RM), and the transaction volume (VL) are significant at the 5 %

level. From this evidence, if the pricing relation in period 1 is a one-factor APT, this

common factor would be most likely related to only the stock market-related

indicators, namely, the market portfolio return and the transaction volume. Other

indicators may be correlated with this single common factor, but they are obviously

not as important as the stock market-related indicators. Now, let us closely examine

other indicators with an absolute t-value of greater than one for 11-indicator model.

The real riskless interest rate (RF), CPI inflation rate (CPI), and the real auto

production (IPA) are negatively correlated with this common factor, while the

velocity of money supply (PI/M2) is positively related to this common factor.

If we regard this common factor as a proxy of market portfolio because most of

the weight is on the market portfolio, then, except for real auto production, this

evidence supports previous studies done on the relationship between common stock

returns and other indicators (Keran 1971; Homa and Jaffee 1971; Hamburger and

Kochin 1972; Pesando 1974; Bodie 1976; Nelson 1976; Fama and Schwert 1977;

and others). However, there is no previous study which examines the relationship

between stock returns and the real auto production.

Some might argue that weak relationship between non-stock market indicators

and the common factor is due to multicollinearities among the indicators. There-

fore, six of the 11 indicators are selected to represent each category indicator. They

are the market portfolio return (RM), the transaction volume (VL), real riskless

interest rate (RF), CPI inflation rate (CPI), money supply (M2), and the real total

industrial production (IP). This is the one-factor six-indicator model. The result of

this model is shown in Table 36.4a column 2. The result of this one-factor

six-indicator model is very close to that of the one-factor 11-indicator model. As

mentioned before, only the stock market-related indicators are significantly corre-

lated with the common factor. Real riskless interest rate, inflation, money supply,

and real production are all negatively but insignificantly related to the common

factor. For factor equation, the 11-indicator model has only a little high R-square
than the six-indicator model. They are 0.5611 and 0.5412, respectively. Comparing

the betas of these two one-factor models in Table 36.4a, they are very highly

correlated with a correlation coefficient of about 1.000. In addition, the average

R-square of each return equation in both one-factor models is the same with a value

of 0.811. Up to this point, there is not much difference between the one-factor

11-indicator and the one-factor six-indicator models. Later on, the cross-sectional

regression will be used to double check this result.

Even though we have already discussed that the appropriate model is a one-factor

model for period 1 by the scree test of factor analysis, we want to use a two-factor

model to double check whether the second factor is significant or not.

A predetermined two-factor six-indicator model will be used to test APT. Factor

analysis is employed to classify these six indicators into two groups. The first group

includes the market portfolio and the transaction volume, while the second group

includes other four indicators: real riskless interest rate (RF), inflation rate (CPI),

money supply (M2), and real total industrial production (IP). The two-factor result

shown in Table 36.4a columns 3 and 4 displays that only the first factor is
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significantly related to RM and VL, whereas the second factor is very insignifi-

cantly correlated with the second group indicators. This is also evident by exam-

ining from the second betas in the table. All of the second betas are insignificant.

Furthermore, the first beta coefficient is very highly correlated with the betas in both

one-factor models with both correlation coefficients of 0.996. This is further

Table 36.4 Structural coefficients of APT in the MIMIC model

Period 1: 1963–1972

a’s Coefficients

One-factor 11-indicator One-factor 6-indicator Two-factor 6-indicator

Indicator f1 f1 f 1 f 2

RM 0.908(8.08)* 0.925(7.55)* 0.923(8.85)*

VL 0.040(2.55)* 0.043(2.60)* 0.040(2.28)*

RF �17.24(�1.2) �3.451(�0.76) �0.300(–)

MP �15.84(�0.90)

DP 1.693(0.12)

CPI �16.51(�1.2) �4.596(�1.1) �0.119(�0.12)

M2 0.039(0.03) �0.344(�0.31) 0.458(0.58)

PI/M2 22.23(1.29)

IP 0.141(0.20) �0.469(�1.1) �0.054(�0.06)

IPA �0.078(�1.3)

IPH 0.189(0.92)

R-square 0.5611 0.5412 0.5912 0.0774

b’s Coefficients

One-factor 11-indicator One-factor 6-indicator Two-factor 6-indicator

Industry f 1 f 1 f 1 f 2

1 1.000(–) 0.974(12.1)* 1.000(–) 0.410( 0.06)

2 0.834(16.5)* 0.812(13.6)* 0.857(16.3)* �0.555(�0.06)

3 1.210(16.2)* 1.178(13.4)* 1.211(16.1)* 0.390(�0.06)

4 1.020(14.7)* 0.993(12.5)* 1.059(14.4)* �1.075(�0.06)

5 0.939(17.4)* 0.914(14.1)* 0.942(17.4)* 0.270( 0.06)

6 0.785(10.5)* 0.764(9.62)* 0.831(10.3)* �1.575(�0.06)

7 1.097(15.3)* 1.068(12.9)* 1.122(15.2)* �0.555(�0.06)

8 1.183(15.8)* 1.151(13.2)* 1.190(15.7)* 0.120( 0.05)

9 1.146(18.1)* 1.115(14.4)* 1.126(17.6)* 1.205(0.06)

10 1.221(18.2)* 1.188(14.5)* 1.192(17.4)* 1.670(0.06)

11 1.389(16.6)* 1.352(13.6)* 1.335(15.0)* 2.875(0.06)

12 1.264(17.7)* 1.231(14.2)* 1.236(17.0)* 1.675(0.06)

13 1.302(17.2)* 1.268(13.9)* 1.268(16.2)* 1.995(0.06)

14 1.218(13.2)* 1.186(11.5)* 1.215(13.0)* 0.485(0.06)

15 1.435(14.0)* 1.396(12.1)* 1.405(13.5)* 1.760(0.06)

16 0.463(7.66)* 0.450(7.30)* 0.527(7.33)* �2.340(�0.06)

17 1.094(14.1)* 1.065(12.2)* 1.112(14.1)* �0.265(�0.06)

18 1.078(16.5)* 1.050(13.6)* 1.094(16.4)* �0.180(�0.06)

19 1.012(14.7)* 0.985(12.5)* 1.056(14.3)* �1.260(�0.06)

(continued)
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Table 36.4 (continued)

Period 2: 1973–1982

a’s Coefficients

One-factor 11-indicator Two-factor 6- indicator

Indicator f 1 f 1 f 2

RM 0.859(6.38)* 1.000(6.67)*

VL 0.073(3.34)* 0.075(2.83)*

RF �5.586(�1.1) �5.600(–)

MP �2.254(�0.40)

DP �7.417(�0.70)

CPI �9.786(�1.6)* 1.566(0.32)

M2 �1.820(�1.2) 1.810(0.72)

PI/M2 28.60(1.16)

IP �0.290(�0.42)

IPA �0.142(�1.6)* �0.368(�1.7)*

IPH 0.065(0.20)

R-square 0.5811 0.5525 0.1836

b’s Coefficients

One-factor 11-indicator Two-factor 6-indicator

Industry f 1 f 1 f 2

1 0.845(8.85)* 0.993(7.86)* 0.502(1.95)*

2 0.786(13.4)* 0.724(8.39)* �0.184(�1.7)*

3 1.073(13.3)* 0.948(7.98)* �0.379(�1.9)*

4 0.884(13.2)* 0.850(14.4)* �0.081(�1.0)

5 0.829(13.5)* 0.804(8.81)* �0.054(�0.77)

6 0.676(7.96)* 0.797(7.41)* 0.408(1.93)*

7 1.026(14.2)* 0.948(8.62)* �0.218(�1.7)*

8 0.898(12.4)* 0.896(8.67)* 0.029(0.38)

9 1.083(14.8)* 1.026(8.97)* �0.146(�1.4)

10 1.082(14.5)* 1.054(9.11)* �0.053(�0.63)

11 1.171(14.7)* 1.098(8.87)* �0.192(�1.6)

12 1.139(14.4)* 1.058(8.72)* �0.222(�1.7)*

13 1.188(14.7)* 1.115(8.86)* �0.208(�1.6)

14 0.850(11.0)* 0.869(8.33)* 0.089(0.99)

15 1.186(13.0)* 1.088(8.21)* �0.288(�1.7)*

16 0.534(9.76)* 0.506(7.32)* �0.076(�1.2)

17 1.122(12.8)* 0.961(7.55)* �0.506(�2.0)*

18 1.113(14.3)* 1.001(8.40)* �0.341(�1.9)*

19 1.042(13.1)* 0.959(8.29)* �0.242(�1.7)*

This table presents the structural coefficients of the APT in the MIMIC model for period 1 and

period 2. The structural model is written as

er i ¼ bi1ef 1 þ bi2ef 2 þ eui, i ¼ 1, . . . , 19
ef j ¼ aj1 RMð Þ þ aj2 VLð Þ þ aj3 RFð Þ þ aj4 MPð Þ þ aj5 DPð Þ þ aj6 CPIð Þ þ aj7 M2ð Þ

þ aj8 PI=M2ð Þ þ aj9 IPð Þ þ aj10 IPAð Þ þ aj11 IPHð Þ þ eej, j ¼ 1 or 1, 2:

Variables used as indicators in the structural model are the market return (RM), transaction volume

(VL), real risk interest rate (RF), maturity risk premium (MP), default risk premium (DP), CPI inflation
rate (CPI), money supply (M2), velocity of money supply (PI/M2), real total industrial production (IP),
real auto production (IPA), and real home production (IPH). *represents significant at the 5 % level
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supported by the R-square criteria. The average R-square of each return equation in
the one-factor model is 0.811, while 0.844 in the two-factor model. If the adjusted

R-square is used as the criteria, the increase in R-square will be insignificant. Thus,
a one-factor APT is good enough to explain the first period data. We will reconfirm

this argument by the cross-sectional regression.

Table 36.5 Panel A reports the return-risk cross-sectional relationship in period 1

for APT in the MIMIC model. Both one-factor models have a very similar result.

Their adjusted R-squares are the same of 0.258. The intercepts are both insignifi-

cantly different from zero but positive (recall that the LHS variable is excess return).

The factor risk premia for both one-factor models are positive and significant. This is

exactly the result that should have been concluded from APT. On the other hand, the

intercept in the two-factor model is much higher than those in the one-factor model,

and the two factor risk premia are both insignificant.8 The adjusted R-square is a little
lower than those in the one-factor models. From the results of the MIMIC model and

the cross-sectional regressions, it is probable that one-factor APT with the market

portfolio and the transaction volume as the determinants of the single factor is the

appropriate pricing model for period 1. Comparing the MIMIC CAPM and CAPM in

Table 36.2 with this one-factor model, the MIMIC CAPM is closer to the one-factor

model. In addition, the factor risk premium is closer to the realized market risk

premium than that in the MIMIC CAPM model.

Now, let us examine APT in period 2. The structural coefficients of APT in the

MIMIC model for period 2 are represented in Table 36.4b. Because six indicators

do not make much difference from 11 indicators in the one-factor model in period 1,

only the 11-indicator model is used to test APT for the one-factor model in period 2

in order to save the computer time. From the one-factor model, the result is similar

to that in period 1. The stock market return and the transaction volume are the most

significant indicators. However, inflation and the real auto production are also

significant even just at the marginal level. This reinforces our suspicion that there

may be more than one factor in period 2.

Let us closely examine the indicators with an absolute t-value greater than one.

Real interest riskless rate, inflation, money supply, and real auto production are all

negatively correlated with the common factor, while the velocity of money supply is

positively correlated with this common factor. Overall, this result again supports

previous studies. Now, let us turn to the two-factor six-indicator model. Follow the

same procedures done for period 1. The result is displayed in Table 36.4b columns

2 and 3. The market portfolio (RM) and the transaction volume (LV) are significantly

related to the first factor. However, the real auto production is significantly correlated

with the second factor; this time even only at the marginal level. Comparing other

indicators with those in period 1, real riskless interest rate is again negatively related

to the second factor, but inflation rate and money supply are positively related to the

second factor in the period. From the result of the relationship between the factors

and the indicators, the second factor is still important even though less important than

8The loss of the significance of the first factor risk premium is due to the multicollinearity problem.

1018 C.-F. Lee et al.



the first factor for period 2. This can also be checked by the significance of betas in

Table 36.4b. Ten out of the 19 s factor betas are significant although the relationship

is not as strong as those in the first factor betas. Because the first factor is correlated

with stock market-related indicator, this factor can be regarded as a proxy of the

market portfolio. The correlation coefficient between the beta in the first factor and

the beta in the MIMIC CAPM is very high with a coefficient of 0.923. Further, the

average R-square of each return equation in the one-factor model is 0.818, while

0.885 in the two-factor model. When the adjusted R-square is used as a criteria, the

increase in R-square should not be trivial and will be significant. In addition, the

R-square for the second factor equation is as high as 0.1836. All of these results

indicate that the second factor should be important. We further check whether the

second factor is important or not by the cross-sectional regression.

The risk-return cross-sectional relationship of APT in the MIMIC model for

period 2 is shown in Table 36.5 Panel B. For the one-factor model, both the

intercept and the factor risk premium are insignificant. The intercept is too high

with an annual rate of 4.3 %, while the factor risk premium is far below the realized

market risk premium with a monthly rate of 0.636 %. The adjusted R-square is

negative. On the other hand, the intercept for the two-factor model is insignificant

and very near to zero, while the two factor premia are significant with the first factor

premium very close to the realized market risk premium. The adjusted R-square is
as high as 0.215. The results of APT in the MIMIC model confirm the scree test of

the factor analysis and the poor performance of CAPM in previous section for

period 2. Furthermore, comparing the result in Table 36.5 Panel A with that in

Table 36.2, we can conclude that the two-factor APT outperforms the one-factor

APT, the MIMIC CAPM, and CAPM in period 2. But the one-factor APT does

Table 36.5 Return-risk cross-sectional relationships of APT in the MIMIC model: 1963–1982

â0 â1 â2 R
2

Model Panel A: Period 1, 1963–1972

One-factor 0.159 0.543* 0.258

11-indicator (0.710) (2.693)

One-factor 0.159 0.558* 0.258

6-indicator (0.710) (2.692)

Two-factor 0.507 0.206 0.071 0.257

6-indicator (1.219) (0.529) (1.221)

Panel B: Period 2, 1973–1982

One-factor 0.370 0.285 �0.002

11-indicator (1.328) (0.967)

Two-factor 0.040 0.684* 0.362* 0.215

6-indicator (0.150) (2.377) (2.066)

This table presents the return-risk cross-sectional relationship for the APT in the MIMIC model.

The cross-sectional relationship between return and risk can be written as Ri ¼ â0 þ â1b1 þ â2b2
þeei, i¼1,. . .,19. Panel A reports the relationship in period 1 and Panel B reports the relationship in

period 2. The average monthly returns are multiplied by 100 before regressing. *represents

significant at the 5 % level
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a better job than the two-factor APT in period 1, and there is not much difference

among the one-factor APT, the MIMIC CAPM, and CAPM. This evidence supports

Ross’s argument that APT is more general than CAPM because APT allows more

than one factor in the pricing relation.

It will be interesting to see what will happen if market variables (the market

portfolio and transaction volume) are excluded from the model. Table 36.6 shows

the structural coefficients of the one-factor APT without market variables.9 The

b coefficients (factor loadings) shown in Table 36.6 for both periods are very close

to those estimated from the one-factor APT with market variables shown in

Tables 36.4a and 36.4b, respectively.10 However, the results from the factor

equation have dramatically changed.

For period 1, the R-square is only 0.0611 which is much lower than 0.5611 from

the one-factor APT with market variables. This result indicates that the market

variables play the major role in the pricing behavior during period 1. When the

market variables excluded from the model, among nine indicators, only the two

money supply variables, M2 and PI/M2, are positively related to the unique

common factor at the marginal level. For period 2, the R-square of the factor

equation for the model without market variables is 0.3915 which is higher than

the one in period 1. This evidence denotes that, in addition to the market variables,

some other macroeconomic indicators play a relatively important role in the pricing

behavior during period 2. Among the nine nonmarket variables, real risk-free rate

(RF), default risk premium (DF), and inflation (CPI) are significantly negatively

related to the common factor, while the velocity of money supply (PI/M2) and the

real auto production (IPA) are significantly positively related to the common factor.

All of the relationships are as we expect. The results from the model without market

variables also confirm our previous evidence that the 1963–1972 data can be

described by a one-factor APT with the market variables as its indicators, while

the 1973–1982 data should be explained by more than one-factor APT.

36.5 Concluding Remarks

This paper bases on parts ofWei’s (1984) dissertation using a MIMIC approach to test

CAPM and APT. The results support the conclusion that APT outperforms CAPM,

especially for the period from 1973 to 1982. The beta estimated from the MIMIC

model by allowing measurement error on the market portfolio does not significantly

improve the OLS beta. However, the MLE estimator does a better job than the OLS

and GLS estimators in the cross-sectional regressions because the MLE estimator

takes care of the measurement error in beta. Therefore, the measurement error problem

9Only the one-factor APT is used to investigate the difference between the models shown in

Table 36.4 and in Table 36.6.
10If we normalize the one-factor 11-indicator model for period 2 shown in Table 36.4b by setting

b1 ¼ 1.00, it is easily seen that the b coefficients of one-factor model shown in Tables 36.4b and

36.6 column 2 are very similar.

1020 C.-F. Lee et al.



on beta is more serious than that on the market portfolio. This evidence supports

Stambough’s (1982) argument that the inference about the tests of CAPM is insensi-

tive to alternative market indexes. When the one-factor APT with market variables is

compared with the model without market variables, we found that themarket variables

Table 36.6 Structural coefficients of the one-factor APT in the MIMIC model without market

variables: 1963–1982

a’s Coefficients

Indicator 1963–1972 1973–1982

RF �25.541(�1.26) �18.666(�3.39)*

MP �26.061(�1.18) �1.067(�0.17)

DP �4.350(�0.23) �30.745(�2.68)*

CPI �25.989(�1.32) �23.l46(�3.52)*

M2 3.652(1.85)* �1.630(�0.98)

PI/M2 45.126(1.91)* 110.380(4.22)*

IP �0.932(�0.97) 0.124(0.16)

I PA 0.046(0.57) 0.214(2.18)*

IPH 0.298(1.06) �0.120(�0.33)

R-square 0.0611 0.3915

b’s Coefficients

Industry 1963–1972 1973–1982

1 1.000(–) 1.000(–)

2 0.833(16.45)* 0.930(10.10)*

3 1.209(16.20)* 1.270(10.03)*

4 1.019(14.70)* 1.045(9.99)*

5 0.939(17.43)* 0.981(10.11)*

6 0.785(10.53)* 0.800(9.64)*

7 1.097(15.33)* 1.214(10.41)*

8 1.183(15.79)* 1.063(9.64)*

9 1.146(18.11)* 1.283(10.63)*

10 1.221(18.25)* 1.282(10.53)*

11 1.389(16.58)* 1.386(10.60)*

12 1.265(17.74)* 1.349(10.50)*

13 1.302(17.16)* 1.407(10.63)*

14 1.218(13.19)* 1.006(8.96)*

15 1.436(14.05)* 1.404(9.92)*

16 0.463(7.66)* 0.632(8.23)*

17 1.094(14.13)* 1.329(9.84)*

18 1.078(16.46)* 1.318(10.47)*

19 1.012(14.70)* 1.233(9.95)*

This table shows estimated coefficients of the one-factor APT in the MIMIC model without market

variables. The structural model is shown as follows. *represents significant at the 5 % level

er i ¼ bi1ef 1 þ bi2ef 2 þ eui, i ¼ 1, . . . , 19
ef j ¼ a1 RFð Þ þ a2 MPð Þ þ a3 DPð Þ

þ a4 CPIð Þ þ a5 M2ð Þ þ a6 PI=M2ð Þ þ a7 IPð Þ
þ a8 IPAð Þ þ a9 IPHð Þ þ eej,

36 Multifactor, Multi-indicator Approach to Asset Pricing 1021



play a major role in pricing behavior. Therefore, we conclude that it is inappropriate

for the study of the relationship between the common factors extracted from APT and

the macroeconomic variables without including the market variables.
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Abstract

This chapter will first demonstrate how Microsoft Excel can be used to

create the decision trees for the binomial option pricing model. At the same

time, this chapter will discuss the binomial option pricing model in a less

mathematical fashion. All the mathematical calculations will be taken care by

the Microsoft Excel program that is presented in this chapter. Finally, this

chapter also uses the decision tree approach to demonstrate the relationship

between the binomial option pricing model and the Black–Scholes option

pricing model.
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37.1 Introduction

The binomial option pricing model derived by Rendleman and Barter (1979)

and Cox et al. (1979) is one the most famous models used to price options. Only

the Black–Scholes model (1973) is more famous. One problem with learning the

binomial option pricing model is that it is computationally intensive. This results in

a very complicated formula to price an option.

The complexity of the binomial option pricing model makes it a challenge to

learn the model. Most books teach the binomial option model by describing

the formula. This is not very effective because it usually requires the learner to

mentally keep track of many details, many times to the point of information

overload. There is a well-known principle in psychology that the average number

of things that a person can remember at one time is seven.

This chapter will first demonstrate the power of Microsoft Excel. It will do this

by demonstrating that it is possible to create large decision trees for the

binomial pricing model using Microsoft Excel. A ten-period decision tree would

require 2,047 call calculations and 2,047 put calculations. This chapter will also

show the decision tree for the price of a stock and the price of a bond, each requiring

2,047 calculations. Therefore, there would be 2,047 * 4 ¼ 8,188 calculations for

a complete set of ten-period decision trees.

Secondly, this chapter will present the binomial option model in a less mathe-

matical matter. It will try to make it so that the reader will not have to keep track of

many things at one time. It will do this by using decision trees to price call and put

options.

Finally, this chapter will show the relationship between the binomial option

pricing model and the Black–Scholes option pricing model.

This chapter uses a Microsoft Excel workbook called binomialBS_OPM.xls
that contains the VBA code to create the decision trees for the binomial option

pricing model. The VBA code is published in Appendix 1. The password for the

workbook is bigsky for those who want to study the VBA code. E-mail me at

JohnLeeExcelVBA@gmail.com and indicate that the password is “bigsky” to get

a copy of this Microsoft Excel workbook.

Section 37.2 discusses the basic concepts of call and put options. Section 37.3

demonstrates the one-period call and put option pricing models. Section 37.4

presents the two-period option pricing model. Section 37.5 demonstrates how to

use the Microsoft Excel workbook binomialBS_OPM.xls to create the decision trees
for an n-period binomial option pricing model. Section 37.6 demonstrates the use
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of the Black–Scholes model. Section 37.7 shows the relationship between the

binomial option pricing model and the Black–Scholes option pricing model.

Section 37.8 demonstrates how to use the Microsoft Excel workbook

binomialBS_OPM.xls to demonstrate the relationship between the binomial option

pricing model and the Black–Scholes option pricing model.

37.2 Call and Put Options

A call option gives the owner the right but not the obligation to buy the

underlying security at a specified price. The price in which the owner can buy the

underlying price is called the exercise price. A call option becomes valuable when

the exercise price is less than the current price of the underlying stock price.

For example, a call option on an AMZN stock with an exercise price of $200
when the stock price of an Amazon stock is $250 is worth $50. The reason

it is worth $50 is because a holder of the call option can buy the AMZN stock at

$200 and then sell the AMZN stock at the prevailing price of $250 for a profit of

$50. Also, a call option on an AMZN stock with an exercise price of $300 when the
stock price of an AMZN stock is $150 is worth $0.

A put option gives the owner the right but not the obligation to sell the

underlying security at a specified price. A put option becomes valuable when the

exercise price is more than the current price of the underlying stock price.

For example, a put option on an AMZN stock with an exercise price of $200
when the stock price of an AMZN stock is $150 is worth $50. The reason it is

worth $50 is because a holder of the put option can buy the AMZN stock at the

prevailing price of $150 and then sell the AMZN stock at the put price of $200
for a profit of $50. Also, a put option on an AMZN stock with an exercise price of

$200 when the stock price of the AMZN stock is $250 is worth $0.
Figures 37.1 and 37.2 are charts showing the value of call and put options of the

above GE stock at varying prices.

0
100
200
300
400
500
600
700
800
900

0 200 300 400 500 600 700 800 900 1000
Va

lu
e

Strike Price

Value of AMZN Call Option Strike Price = $200Fig. 37.1 Value of AMZN

call option
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37.3 One-Period Option Pricing Model

What should be the value of these options? Let’s look at a case where we are only

concerned with the value of options for one period. In the next period, a stock price

can either go up or go down. Let’s look at a case where we know for certain that an

AMZN stock with a price of $200 will either go up 5 % or go down 5 % in the next

period and the exercise after one period is $200. Figures 37.3, 37.4, and 37.5 show

the decision tree for the AMZN stock price, the AMZN call option price, and the

AMZN put option price, respectively.

Let’s first consider the issue of pricing an AMZN call option. Using a one-period

decision tree, we can illustrate the price of an AMZN stock if it goes up 5 % and the

price of a stock AMZN if it goes down 5 %. Since we know the possible ending

values of the AMZN stock, we can derive the possible ending values of a call

option. If the stock price increases to $210, the price of the AMZN call option will

then be $10 ($210 � $200). If the AMZ stock price decreases to $190, the value of
the call option will worth $0 because it would be below the exercise price of $200.
We have just discussed the possible ending value of an AMZN call option in

period 1. But what we are really interested in is what the value is now of the

AMZN call option knowing the two resulting values of the AMZN call option.

To help determine the value of a one-period AMZN call option, it’s useful to

know that it is possible to replicate the resulting two states of the value of the

AMZN call option by buying a combination of stocks and bonds. Below is the

formula to replicate the situation where the price increases to $210. We will assume

that the interest rate for the bond is 3 %:

210Sþ 1:03B ¼ 10

190Sþ 1:03B ¼ 0

We can use simple algebra to solve for both S and B. The first thing that we need

to do is to rearrange the second equation as follows:

1:03B ¼ �190S

0
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With the above equation, we can rewrite the first equation as

210Sþ �190Sð Þ ¼ 10

20S ¼ 10

S ¼ 0:5

We can solve for B by substituting the value 0.05 for S in the first equation:

210 0:5ð Þ þ 1:03B ¼ 10

105þ 1:03B ¼ 10

1:03B ¼ �95

B ¼ �92:23

Therefore, from the above simple algebraic exercise, we should at period 0 buy

0.05 shares of AMZN stock and borrow 9.223 at 3 % to replicate the payoff

of the AMZN call option. This means the value of an AMZN call option should

be 0.5 * 200 � 92.23 ¼ 7.77.

If this were not the case, there would then be arbitrage profits. For example, if

the call option were sold for $30, there would be a profit of 22.23. This would result
in the increase in the selling of the AMZN call option. The increase in the supply of

AMZN call options would push the price down for the call options. If the call option

were sold for $5, there would be a saving of $2.77. This saving would result in the

increase demand for the AMZN call option. This increase demand would result in

the price of the call option to increase. The equilibrium point would be $7.77.

Period 0 Period 1

210

200

190

Fig. 37.3 AMZN stock price

Period 0 Period 1

10

??

0
Fig. 37.4 AMZN call option

price

Period 0 Period 1

0

??

10
Fig. 37.5 AMZN put option

price
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Using the above mentioned concept and procedure, Benninga (2000) has derived

a one-period call option model as

C ¼ quMax S 1þ uð ÞX, 0½ � þ qdMax S 1þ dð Þ � X, 0½ � (37.1)

where

qu ¼
i� d

1þ ið Þ u� dð Þ
qd ¼

u� i

1þ ið Þ u� dð Þ
u ¼ increase factor

d ¼ down factor

i ¼ interest rate

If we let i ¼ r, p ¼ (r � d)/(u � d), 1 � p ¼ (u � r)/(u � d), R ¼ 1/(1 + r),
Cu ¼ Max[S(1 + u) � X, 0], and Cd ¼ Max[S(1 + d) � X, 0], then we have

C ¼ pCu þ 1� pð ÞCd½ �=R, (37.2)

where

Cu ¼ call option price after increase

Cd ¼ call option price after decrease

Equation 37.2 is identical to Eq. 6B.6 in Lee et al. (2000, p. 234).1

Below calculates the value of the above one-period call option where the strike

price, X, is $200 and the risk-free interest rate is 3 %. We will assume that the price

of a stock for any given period will either increase or decrease by 5 %:

X ¼ $200

S ¼ $200

u ¼ 1:05

d ¼ 0:95

R ¼ 1þ r ¼ 1þ 0:03

p ¼ 1:03� 0:95ð Þ= 1:05� 0:95ð Þ
C ¼ 0:8 10ð Þ þ 0:2 0ð Þ½ �=1:03 ¼ $7:77

Therefore, from the above calculations, the value of the call option is $7.77.
Figure 37.6 shows the resulting decision tree for the above call option.

1Please note that in Lee et al. (2000, p. 234) u ¼ 1 + percentage of price increase and

d ¼ 1 – percentage of price increase.
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Like the call option, it is possible to replicate the resulting two states of the value

of the put option by buying a combination of stocks and bonds. Below is the

formula to replicate the situation where the price decreases to $190:

210Sþ 1:03B ¼ 0

190Sþ 1:03B ¼ 10

We will use simple algebra to solve for both S and B. The first thing we will do is

to rewrite the second equation as follows:

1:03B ¼ 10� 190S

The next thing to do is to substitute the above equation to the first put option

equation. Doing this would result in the following:

210Sþ 10� 190S ¼ 0

The following solves for S:

20S ¼ �10

S ¼ �0:5

Now let us solve for B by putting the value of S into the first equation. This is

shown below:

210 �0:5ð Þ þ 1:03B ¼ 0

1:03B ¼ 105

B ¼ 101:94

From the above simple algebra exercise, we have S ¼ �0.5 and B ¼ 101.94.

This tells us that we should in period 0 lend $101.94 at 3 % and sell 0.5 shares of

stock to replicate the put option payoff for period 1. And the value of the AMZN put

option should be 200(�0.5) + 101.94 ¼ 1.94.

Using the same arbitrage argument that we used in the discussion of the call

option, 0.194 has to be the equilibrium price of the put option.

As with the call option, Benninga (2000) has derived a one-period put option

model as

P ¼ quMax X � S 1þ uð Þ, 0½ � þ qdMax X � S 1þ dð Þ, 0½ � (37.3)

Period 0 Period 1

10.000

7.770

0

Fig. 37.6 Call option price
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where

qu ¼
i� d

1þ ið Þ u� dð Þ
qd ¼

u� i

1þ ið Þ u� dð Þ
u ¼ increase factor

d ¼ down factor

i ¼ interest rate

If we let i ¼ r, p ¼ (r � d)/(u � d), 1 � p ¼ (u � r)/(u � d), R ¼ 1/(1 + r),
Pu ¼ Max[X � S(1 + u), 0], and Pd ¼ Max[X � S(1 + d), 0], then we have

P ¼ pPu þ 1� pð ÞPd½ �=R, (37.4)

where

Pu ¼ put option price after increase

Pd ¼ put option price after decrease

Below calculates the value of the above one-period put option where the strike

price, X, is $20 and the risk-free interest rate is 3 %:

P ¼ 0:8 0ð Þ þ 0:2 10ð Þ½ �=1:03 ¼ $1:94

From the above calculation, the put option pricing decision tree would look like

the following.

Figure 37.7 shows the resulting decision tree for the above put option.

There is a relationship between the price of a put option and the price of all call

option. This relationship is called the put-call parity. Equation 37.5 shows the

relationship between the price of a put option and the price of a call option:

P ¼ Cþ X=R� S (37.5)

where

C ¼ call price

X ¼ strike price

R ¼ 1 + interest rate

S ¼ stock price

Period 0 Period 1

0

1.940

10
Fig. 37.7 AMZN put option

price
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The following uses the put-call parity to calculate the price of the AMZN put

option:

P ¼ $7:77þ $200= 1:03ð Þ � $200

¼ 7:77þ 194:17� 200

¼ 1:94

37.4 Two-Period Option Pricing Model

We now will look at pricing options for two periods. Figure 37.8 shows the

stock price decision tree based on the parameters indicated in the last section.

This decision tree was created based on the assumption that a stock price will either

increase by 5 % or decrease by 5 %.

How do we price the value of a call and put option for two periods?

The highest possible value for our stock based on our assumption is $220.5.
We get this value first by multiplying the stock price at period 0 by 105 % to get the

resulting value of $210 of period 1. We then again multiply the stock price in

period 1 by 105 % to get the resulting value of $220.5. In period two, the value

of a call option when a stock price is $220.5 is the stock price minus the exercise

price, $220.5� $200, or $20.5. In period two, the value of a put option when a stock
price is $220.5 is the exercise price minus the stock price, $200 � $220.5,
or �$20.5. A negative value has no value to an investor so the value of the put option

would be $0.
The lowest possible value for our stock based on our assumptions is $180.5.

We get this value first by multiplying the stock price at period 0 by 95 %

(decreasing the value of the stock by 5 %) to get the resulting value of $190 of

period 1. We then again multiply the stock price in period 1 by 95 % to get the

resulting value of $180.5. In period two, the value of a call option when a stock

price is $180.5 is the stock price minus the exercise price, $180.5 � $200, or
�$19.5. A negative value has no value to an investor so the value of a call option

would be $0. In period two, the value of a put option when a stock price is $18.05 is
the exercise price minus the stock price, $200� $180.5, or $19.5. We can derive the

call and put option values for the other possible values of the stock in period 2 in

the same fashion.

Figures 37.9 and 37.10 show the possible call and put option values for period 2.

We cannot calculate the value of the call and put options in period 1 the

same way we did in period 2 because it’s not the ending value of the stock.

In period 1, there are two possible call values. One value is when the stock price

increased, and one value is when the stock price decreased. The call option decision

tree shown in Fig. 37.9 shows two possible values for a call option in period 1. If we

just focus on the value of a call option when the stock price increases from period

one, we will notice that it is like the decision tree for a call option for one period.

This is shown in Fig. 37.11.
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Fig. 37.8 AMZN stock price
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0.0Fig. 37.9 AMZN call option
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19.5
Fig. 37.10 AMZN put

option

Period 0 Period 1 Period 2

20.5000

0

0

0
Fig. 37.11 AMZN call

option
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Using the same method for pricing a call option for one period, the price of a call

option when stock price increases from period 0 will be $15.922. The resulting

decision tree is shown in Fig. 37.12.

In the same fashion, we can price the value of a call option when a stock

price decreases. The price of a call option when a stock price decreases from

period 0 is $0. The resulting decision tree is shown in Fig. 37.13.

In the same fashion, we can price the value of a call option in period 0.

The resulting decision tree is shown in Fig. 37.14.

Period 0 Period 1 Period 2

20.5000

15.9220

0

0

0

Fig. 37.12 AMZN call

option

Period 0 Period 1 Period 2

20.5000

15.9220

0

0

0

0
Fig. 37.13 AMZN call

option

Period 0 Period 1 Period 2

20.5000

15.9220

0.0000

12.3670

0.0000

0.0000

0.0000
Fig. 37.14 AMZN call

option
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We can calculate the value of a put option in the same manner as we did

in calculating the value of a call option. The decision tree for a put option is

shown in Fig. 37.15.

37.5 Using Microsoft Excel to Create the Binomial Option Trees

In the previous section, we priced the value of a call and put option by pricing

backwards, from the last period to the first period. This method of pricing call and

put options will work for any n-period. To price the value of a call option for

two periods required seven sets of calculations. The number of calculations

increases dramatically as n increases. Table 37.1 lists the number of calculations

for specific number of periods.

After two periods, it becomes very cumbersome to calculate and create the

decision trees for a call and put option. In the previous section, we saw that

calculations were very repetitive and mechanical. To solve this problem,

this chapter will use Microsoft Excel to do the calculations and create the

Period 0 Period 1 Period 2

0.0000

0.0970

0.5000

0.8860

0.5000

4.1750

19.5000

Fig. 37.15 AMZN put

option

Table 37.1 Periods Calculations

1 3

2 7

3 17

4 31

5 63

6 127

7 255

8 511

9 1,023

10 2,047

11 4,065

12 8,191
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decision trees for the call and put options. We will also use Microsoft Excel to

calculate and draw the related decision trees for the underlying stock and bond.

To solve this repetitive and mechanical calculation of the binomial option

pricing model, we will look at a Microsoft Excel file called binomialBS_OPM.
xls. We will use this Microsoft Excel workbook to produce four decision trees

for the GE stock that was discussed in the previous sections. The four decision

trees are:

1. Stock price

2. Call option price

3. Put option price

4. Bond price

This section will demonstrate how to use the binomialBS_OPM.xls Excel file to
create the four decision trees. Figure 37.16 shows the Excel file binomialBS_OPM.
xls after the file is opened. Pushing the button shown in Fig. 37.16 will get the

dialog box shown in Fig. 37.17.

The dialog box shown in Fig. 37.17 shows the parameters for the binomial
option pricing model. These parameters are changeable. The dialog box in

Fig. 37.17 shows the default values.

Fig. 37.16 Excel file BinomialBS_OPM.xls
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Pushing the calculate button shown in Fig. 37.17 will produce the four decision

trees shown in Figs. 37.18, 37.19, 37.20, and 37.21.

The table at the beginning of this section indicated 31 calculations were required

to create a decision tree that has four periods. This section showed four decision

trees. Therefore, the Excel file did 31 * 4 ¼ 121 calculations to create the four

decision trees.

Benninga (2000, p. 260) has defined the price of a call option in a binomial

option pricing model with n-periods as

C ¼
Xn
i¼0

n
i

� �
qiuq

n�i
d max S 1þ uð Þi 1þ dð Þn�i

, 0
h i

(37.6)

and the price of a put option in a binomial option pricing model with n-periods as

P ¼
Xn
i¼0

n
i

� �
qiuq

n�i
d max X � S 1þ uð Þi 1þ dð Þn�i

, 0
h i

(37.7)

Lee et al. (2000, p. 237) have defined the pricing of a call option in a binomial

option pricing model with n-period as

C ¼ 1

Rn

Xn
k¼0

n!

k! n� k!ð Þp
k 1� pð Þn�k

max 0, 1þ uð Þk 1þ dð Þn�k
, S� X

h i
(37.8)

Fig. 37.17 Dialog box

showing parameters for the

binomial option pricing

model
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The definition of the pricing of a put option in a binomial option pricing model

with n-period would then be defined as

P ¼ 1

Rn

Xn
k¼0

n!

k! n� kð Þ! p
k 1� pð Þn�k

max 0,X � 1þ uð Þk 1þ dð Þn�k
, S

h i
(37.9)

Stock Price
Decision Tree
Price = 200, Exercise = 200, U = 1.0500, D = 0.9500, N = 4, R = 0.03
Number of calculations: 31

243.1012

231.5250

219.9487

220.5000

219.9487

209.4750

199.0012

210.0000

219.9487

209.4750

199.0012

199.5000

199.0012

189.5250

180.0487

200.0000

219.9487

209.4750

199.0012

199.5000

199.0012

189.5250

180.0487

190.0000

199.0012

189.5250

180.0487

180.5000

180.0487

171.4750

162.9012

Fig. 37.18 Stock price

decision tree
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37.6 Black–Scholes Option Pricing Model

The most famous option pricing model is the Black–Scholes option pricing model.

In this section, we will demonstrate the usage of the Black–Scholes option pricing

model. In latter sections, we will demonstrate the relationship between the binomial

option pricing model and the Black–Scholes pricing model. The Black–Scholes

Call Option Pricing
Decision Tree
Price = 200, Exercise = 200, U = 1.0500, D = 0.9500, N = 4, R = 0.03
Number of calculations: 31
Binomial Call Price = 22.9454

43.1012

37.3502

19.9487

32.0184

19.9487

15.4941

0.0000

27.2054

19.9487

15.4941

0.0000

12.0343

0.0000

0.0000

0.0000

22.9454

19.9487

15.4941

0.0000

12.0343

0.0000

0.0000

0.0000

9.3470

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Fig. 37.19 Call option

pricing decision tree
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Put Option Pricing
Decision Tree
Price = 200, Exercise = 200, U = 1.0500, D = 0.9500, N = 4, R = 0.03
Number of calculations: 31
Binomial Put Price: 0.6428

0.0000

0.0000

0.0000

0.0377

0.0000

0.1939

0.9988

0.2338

0.0000

0.1939

0.9988

1.0535

0.9988

4.6498

19.9513

0.6428

0.0000

0.1939

0.9988

1.0535

0.9988

4.6498

19.9513

2.3754

0.9988

4.6498

19.9513

8.0192

19.9513

22.6998

37.0988

Fig. 37.20 Put option

pricing decision tree
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Bond Pricing
Decision Tree
Price = 200, Exercise = 200, U = 1.0500, D = 0.9500, N = 4, R = 0.03
Number of calculations: 31

1.1255

1.0927

1.1255

1.0609

1.1255

1.0927

1.1255

1.0300

1.1255

1.0927

1.1255

1.0609

1.1255

1.0927

1.1255

1.0000

1.1255

1.0927

1.1255

1.0609

1.1255

1.0927

1.1255

1.0300

1.1255

1.0927

1.1255

1.0609

1.1255

1.0927

1.1255

Fig. 37.21 Bond pricing

decision tree
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model prices European call and put options. The Black–Scholes model for

a European call option is

C ¼ SN d1ð Þ � Xe�rTN d2ð Þ (37.10)

where

C ¼ call price

S ¼ stock price

r ¼ risk-free interest rate

T ¼ time to maturity of option in years

N ¼ standard normal distribution

s ¼ stock volatility

d1 ¼
ln S=Xð Þ þ r þ s2

2

� �
T

s
ffiffiffi
T

p

d2 ¼ d1� s
ffiffiffi
T

p

Let’s manually calculate the price of a European call option in terms of Eq. 37.10

with the following parameter values, S ¼ 200, X ¼ 200, r ¼ 3 %, T ¼ 4, and

s ¼ 20 %.

Solution

d1 ¼
ln S=Xð Þ þ r þ s2

2

� �
T

s
ffiffiffi
T

p ¼
ln 200=200ð Þ þ :03þ :22

2

� �
4ð Þ

:2
ffiffiffi
4

p ¼ :03þ :02ð Þ � 4
:4

¼ :2

:4
¼ :5,

d2 ¼ :5� :2
ffiffiffi
4

p
¼ :1

N d1ð Þ ¼ 0:69146, N d2ð Þ ¼ 0:5398, e�rT ¼ 0:8869

C ¼ 200ð Þ � 0:69146ð Þ � 200ð Þ � 0:8869ð Þ � 0:5398
¼ 138:292� 95:74972 ¼ 42:5422

The Black–Scholes put-call parity equation is

P ¼ C� Sþ Xe�rT

The put option value for the stock would be

P ¼ 42:54� 200þ 200 0:8869ð Þ
¼ 42:54� 200þ 177:38 ¼ 19:92
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37.7 Relationship Between the Binomial OPM
and the Black–Scholes OPM

We can use either the binomial model or Black–Scholes to price an option. They

both should result in similar numbers. If we look at the parameters in both models,

we will notice that the binomial model has an Increase Factor (U), a Decrease
Factor (D), and n-period parameters that the Black–Scholes model does not have.

We also notice that the Black–Scholes model has the s and T parameters that the

binomial model does not have. Benninga (2008) suggests the following translation

between the binomial and Black–Scholes parameters:

Dt ¼ T=n R ¼ erDt U ¼ es
ffiffiffiffi
Dt

p
D ¼ e�s

ffiffiffiffi
Dt

p

In the Excel program, shown in Appendix 1, we use Benninga’s (2008) Increase
Factor and Decrease Factor definitions. They are defined as follows:

qU ¼ R� D

R U� Dð Þ , qD ¼ U� R

R U� Dð Þ

where

U ¼ 1 + percentage of price increase

D ¼ 1 � percentage of price increase

R ¼ 1 + interest rate

Fig. 37.22 Dialog box

showing parameters for the

binomial option pricing

model
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Call Option Pricing
Decision Tree
Price = 200, Exercise = 200, U = 1.2214, D = 0.8187, N = 4, R = 0.03
Number of calculations: 31
Binomial Call Price = 40.6705
Black-Scholes Call Price = 42.5356, d1 = 0.5000, d2 = 0.1000, N(d1) = 0.6915, N(d2) = 0.5398

245.1082

170.3347

98.3650

110.0120

98.3650

50.1915

0.0000

67.9201

98.3650

50.1915

0.0000

25.6106

0.0000

0.0000

0.0000

40.6705

98.3650

50.1915

0.0000

25.6106

0.0000

0.0000

0.0000

13.0680

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Fig. 37.23 Decision tree approximation of Black–Scholes call pricing
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Put Option Pricing
Decision Tree
Price = 200, Exercise = 200, U = 1.2214, D = 0.8187, N = 4, R = 0.03
Number of calculations: 31
Binomial Put Price: 18.0546
Black-Scholes Put Price: 19.9197

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

6.4258

0.0000

0.0000

0.0000

13.9635

0.0000

30.3430

65.9360

18.0546

0.0000

0.0000

0.0000

13.9635

0.0000

30.3430

65.9360

32.1081

0.0000

30.3430

65.9360

54.2889

65.9360

84.3268

110.1342

Fig. 37.24 Decision

tree approximation of

Black–Scholes put pricing
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37.8 Decision Tree Black–Scholes Calculation

We will now use the BinomialBS_OPM.xls Excel file to calculate the binomial and

Black–Scholes call and put values illustrated in Sect. 37.5. Notice that in Fig. 37.22

the Binomial Black–Scholes Approximation check box is checked. Checking this

box will cause T and Sigma parameters to appear and will adjust the Increase
Factor – u and Decrease Factor – d parameters. The adjustment was done as

indicated in Sect. 37.7.

Notice in Figs. 37.23 and 37.24 that the binomial option pricing model value

does not agree with the Black–Scholes option pricing model. The binomial OPM

value will get very close to the Black–Scholes OPM value once the binomial

parameter n gets very large. Benninga (2008) demonstrated that the

binomial value will be close to the Black–Scholes when the binomial n parameter

gets larger than 500.

37.9 Summary

This chapter demonstrated, with the aid of Microsoft Excel and decision trees, the

binomial option model in a less mathematical fashion. This chapter allowed the

reader to focus more on the concepts by studying the associated decision trees,

which were created by Microsoft Excel. This chapter also demonstrates that using

Microsoft Excel releases the reader from the computation burden of the binomial

option model.

This chapter also published the Microsoft Excel Visual Basic for Application

(VBA) code that created the binomial option decision trees. This allows for those

who are interested in studying the many advance Microsoft Excel VBA program-

ming concepts that were used to create the decision trees. One major computer

science programming concept used by the Excel VBA program in this chapter is

recursive programming. Recursive programming is the ideal of a procedure

calling itself many times. Inside the procedure, there are statements to decide

when not to call itself.

This chapter also used decision trees to demonstrate the relationship between the

binomial option pricing model and the Black–Scholes option pricing model.

Appendix 1: Excel VBA Code: Binomial Option Pricing Model

It is important to note that the thing that makes Microsoft Excel powerful is

that it offers a powerful professional programming language called Visual

Basic for Applications (VBA). This section shows the VBA code that
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generated the decision trees for the binomial option pricing model. This code is

in the form frmBinomiaOption. The procedure cmdCalculate_Click is the first

procedure to run.

’/**************************************************
’/ Relationship Between the Binomial OPM
’/ and Black-Scholes OPM:
’/ Decision Tree and Microsoft Excel Approach
’/
’/ by John Lee
’/ JohnLeeExcelVBA@gmail.com
’/ All Rights Reserved
’/**************************************************
Option Explicit
Dim mwbTreeWorkbook As Workbook
Dim mwsTreeWorksheet As Worksheet
Dim mwsCallTree As Worksheet
Dim mwsPutTree As Worksheet
Dim mwsBondTree As Worksheet
Dim mdblPFactor As Double
Dim mBinomialCalc As Long
Dim mCallPrice As Double ’jcl 12/8/2008
Dim mPutPrice As Double ’jcl 12/8/2008
’/**************************************************
’/Purpose: Keep track the numbers of binomial calc
’/**************************************************
Property Let BinomialCalc(l As Long)
mBinomialCalc ¼ l
End Property
Property Get BinomialCalc() As Long
BinomialCalc ¼ mBinomialCalc
End Property
Property Set TreeWorkbook(wb As Workbook)
Set mwbTreeWorkbook ¼ wb
End Property
Property Get TreeWorkbook() As Workbook
Set TreeWorkbook ¼ mwbTreeWorkbook
End Property
Property Set TreeWorksheet(ws As Worksheet)
Set mwsTreeWorksheet ¼ ws
End Property
Property Get TreeWorksheet() As Worksheet
Set TreeWorksheet ¼ mwsTreeWorksheet
End Property
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Property Set CallTree(ws As Worksheet)
Set mwsCallTree ¼ ws
End Property
Property Get CallTree() As Worksheet
Set CallTree ¼ mwsCallTree
End Property
Property Set PutTree(ws As Worksheet)
Set mwsPutTree ¼ ws
End Property
Property Get PutTree() As Worksheet
Set PutTree ¼ mwsPutTree
End Property
Property Set BondTree(ws As Worksheet)
Set mwsBondTree ¼ ws
End Property
Property Get BondTree() As Worksheet
Set BondTree ¼ mwsBondTree
End Property
Property Let CallPrice(dCallPrice As Double)
’12/8/2008
mCallPrice ¼ dCallPrice
End Property
Property Get CallPrice() As Double
Let CallPrice ¼ mCallPrice
End Property
Property Let PutPrice(dPutPrice As Double)
’12/10/2008
mPutPrice ¼ dPutPrice
End Property
Property Get PutPrice() As Double
’12/10/2008
Let PutPrice ¼ mPutPrice
End Property
Property Let PFactor(r As Double)
Dim dRate As Double
dRate ¼ ((1 + r) - Me.txtBinomialD) / (Me.txtBinomialU -

Me.txtBinomialD)
Let mdblPFactor ¼ dRate
End Property
Property Get PFactor() As Double
Let PFactor ¼ mdblPFactor
End Property
Property Get qU() As Double
Dim dblDeltaT As Double
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Dim dblDown As Double
Dim dblUp As Double
Dim dblR As Double
dblDeltaT ¼ Me.txtTimeT / Me.txtBinomialN
dblR ¼ Exp(Me.txtBinomialr * dblDeltaT)
dblUp ¼ Exp(Me.txtSigma * VBA.Sqr(dblDeltaT))
dblDown ¼ Exp(-Me.txtSigma * VBA.Sqr(dblDeltaT))
qU ¼ (dblR - dblDown) / (dblR * (dblUp - dblDown))
End Property
Property Get qD() As Double
Dim dblDeltaT As Double
Dim dblDown As Double
Dim dblUp As Double
Dim dblR As Double
dblDeltaT ¼ Me.txtTimeT / Me.txtBinomialN
dblR ¼ Exp(Me.txtBinomialr * dblDeltaT)
dblUp ¼ Exp(Me.txtSigma * VBA.Sqr(dblDeltaT))
dblDown ¼ Exp(-Me.txtSigma * VBA.Sqr(dblDeltaT))
qD ¼ (dblUp - dblR) / (dblR * (dblUp - dblDown))
End Property
Private Sub chkBinomialBSApproximation_Click()
On Error Resume Next
’Time and Sigma only BlackScholes parameter
Me.txtTimeT.Visible ¼ Me.chkBinomialBSApproximation
Me.lblTimeT.Visible ¼ Me.chkBinomialBSApproximation
Me.txtSigma.Visible ¼ Me.chkBinomialBSApproximation
Me.lblSigma.Visible ¼ Me.chkBinomialBSApproximation
txtTimeT_Change
End Sub
Private Sub cmdCalculate_Click()
Me.Hide
BinomialOption
Unload Me
End Sub
Private Sub cmdCancel_Click()
Unload Me
End Sub
Private Sub txtBinomialN_Change()
’jcl 12/8/2008
On Error Resume Next
If Me.chkBinomialBSApproximation Then
Me.txtBinomialU ¼ Exp(Me.txtSigma * Sqr(Me.txtTimeT /

Me.txtBinomialN))
Me.txtBinomialD ¼ Exp(-Me.txtSigma * Sqr(Me.txtTimeT /

Me.txtBinomialN))
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End If
End Sub
Private Sub txtTimeT_Change()
’jcl 12/8/2008
On Error Resume Next
If Me.chkBinomialBSApproximation Then
Me.txtBinomialU ¼ Exp(Me.txtSigma * Sqr(Me.txtTimeT /

Me.txtBinomialN))
Me.txtBinomialD ¼ Exp(-Me.txtSigma * Sqr(Me.txtTimeT /

Me.txtBinomialN))
End If
End Sub
Private Sub UserForm_Initialize()
With Me
.txtBinomialS ¼ 20
.txtBinomialX ¼ 20
.txtBinomialD ¼ 0.95
.txtBinomialU ¼ 1.05
.txtBinomialN ¼ 4
.txtBinomialr ¼ 0.03
.txtSigma ¼ 0.2
.txtTimeT ¼ 4
Me.chkBinomialBSApproximation ¼ False
End With
chkBinomialBSApproximation_Click
Me.Hide
End Sub
Sub BinomialOption()
Dim wbTree As Workbook
Dim wsTree As Worksheet
Dim rColumn As Range
Dim ws As Worksheet
Set Me.TreeWorkbook ¼ Workbooks.Add
Set Me.BondTree ¼ Me.TreeWorkbook.Worksheets.Add
Set Me.PutTree ¼ Me.TreeWorkbook.Worksheets.Add
Set Me.CallTree ¼ Me.TreeWorkbook.Worksheets.Add
Set Me.TreeWorksheet ¼ Me.TreeWorkbook.Worksheets.Add
Set rColumn ¼ Me.TreeWorksheet.Range("a1")
With Me
.BinomialCalc ¼ 0
.PFactor ¼ Me.txtBinomialr
.CallTree.Name ¼ "Call Option Price"
.PutTree.Name ¼ "Put Option Price"
.TreeWorksheet.Name ¼ "Stock Price"
.BondTree.Name ¼ "Bond"
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End With
DecisionTree rCell:¼rColumn, nPeriod:¼Me.txtBinomialN

+ 1, _
dblPrice:¼Me.txtBinomialS, sngU:¼Me.txtBinomialU, _
sngD:¼Me.txtBinomialD
DecitionTreeFormat
TreeTitle wsTree:¼Me.TreeWorksheet, sTitle:¼"Stock

Price "
TreeTitle wsTree:¼Me.CallTree, sTitle:¼"Call Option

Pricing"
TreeTitle wsTree:¼Me.PutTree, sTitle:¼"Put Option

Pricing"
TreeTitle wsTree:¼Me.BondTree, sTitle:¼"Bond Pricing"
Application.DisplayAlerts ¼ False
For Each ws In Me.TreeWorkbook.Worksheets
If Left(ws.Name, 5) ¼ "Sheet" Then
ws.Delete
Else
ws.Activate
ActiveWindow.DisplayGridlines ¼ False
ws.UsedRange.NumberFormat¼ "#,##0.0000_);(#,##0.0000)"
End If
Next
Application.DisplayAlerts ¼ True
Me.TreeWorksheet.Activate
End Sub
Sub TreeTitle(wsTree As Worksheet, sTitle As String)
wsTree.Range("A1:A5").EntireRow.Insert (xlShiftDown)
With wsTree
With.Cells(1)
.Value ¼ sTitle
.Font.Size ¼ 20
.Font.Italic ¼ True
End With
With.Cells(2, 1)
.Value ¼ "Decision Tree"
.Font.Size ¼ 16
.Font.Italic ¼ True
End With
With.Cells(3, 1)
.Value ¼ "Price ¼ " & Me.txtBinomialS & _
",Exercise ¼ " & Me.txtBinomialX & _
",U ¼ " & Format(Me.txtBinomialU, "#,##0.0000") & _
",D ¼ " & Format(Me.txtBinomialD, "#,##0.0000") & _
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",N ¼ " & Me.txtBinomialN & _
",R ¼ " & Me.txtBinomialr
.Font.Size ¼ 14
End With
With.Cells(4, 1)
.Value ¼ "Number of calculations: " & Me.BinomialCalc
.Font.Size ¼ 14
End With
If wsTree Is Me.CallTree Then
With.Cells(5, 1)
.Value ¼ "Binomial Call Price¼ " & Format(Me.CallPrice,

"#,##0.0000")
.Font.Size ¼ 14
End With
If Me.chkBinomialBSApproximation Then
wsTree.Range("A6:A7").EntireRow.Insert (xlShiftDown)
With.Cells(6, 1)
.Value ¼ "Black-Scholes Call Price¼ " & Format(Me.

BS_Call, "#,##0.0000") _
& ",d1¼" & Format(Me.BS_D1, "#,##0.0000") _
& ",d2¼" & Format(Me.BS_D2, "#,##0.0000") _
& ",N(d1)¼" & Format(WorksheetFunction.NormSDist

(BS_D1), "#,##0.0000") _
& ",N(d2)¼" & Format(WorksheetFunction.NormSDist

(BS_D2), "#,##0.0000")
.Font.Size ¼ 14
End With
End If
ElseIf wsTree Is Me.PutTree Then
With.Cells(5, 1)
.Value ¼ "Binomial Put Price: " & Format(Me.PutPrice,

"#,##0.0000")
.Font.Size ¼ 14
End With
If Me.chkBinomialBSApproximation Then
wsTree.Range("A6:A7").EntireRow.Insert (xlShiftDown)
With.Cells(6, 1)
.Value ¼ "Black-Scholes Put Price: " & Format(Me.BS_PUT,

"#,##0.0000")
.Font.Size ¼ 14
End With
End If
End If
End With
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End Sub
Sub BondDecisionTree(rPrice As Range, arCell As Variant,

iCount As Long)
Dim rBond As Range
Dim rPup As Range
Dim rPDown As Range
Set rBond ¼ Me.BondTree.Cells(rPrice.Row, rPrice.

Column)
Set rPup ¼ Me.BondTree.Cells(arCell(iCount - 1).Row,

arCell(iCount - 1).Column)
Set rPDown ¼ Me.BondTree.Cells(arCell(iCount).Row,

arCell(iCount).Column)
If rPup.Column ¼ Me.TreeWorksheet.UsedRange.Columns.

Count Then
rPup.Value ¼ (1 + Me.txtBinomialr) ^ (rPup.Column - 1)
rPDown.Value ¼ rPup.Value
End If
With rBond
.Value ¼ (1 + Me.txtBinomialr) ^ (rBond.Column - 1)
.Borders(xlBottom).LineStyle ¼ xlContinuous
End With
rPDown.Borders(xlBottom).LineStyle ¼ xlContinuous
With rPup
.Borders(xlBottom).LineStyle ¼ xlContinuous
.Offset(1, 0).Resize((rPDown.Row - rPup.Row), 1). _
Borders(xlEdgeLeft).LineStyle ¼ xlContinuous
End With
End Sub
Sub PutDecisionTree(rPrice As Range, arCell As Variant,

iCount As Long)
Dim rCall As Range
Dim rPup As Range
Dim rPDown As Range
Set rCall ¼ Me.PutTree.Cells(rPrice.Row, rPrice.Column)
Set rPup ¼ Me.PutTree.Cells(arCell(iCount - 1).Row,

arCell(iCount - 1).Column)
Set rPDown ¼ Me.PutTree.Cells(arCell(iCount).Row,

arCell(iCount).Column)
If rPup.Column ¼ Me.TreeWorksheet.UsedRange.Columns.

Count Then
rPup.Value ¼ WorksheetFunction.Max(Me.txtBinomialX -

arCell(iCount - 1), 0)
rPDown.Value ¼ WorksheetFunction.Max(Me.txtBinomialX -

arCell(iCount), 0)
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End If
With rCall
’12/10/2008
If Not Me.chkBinomialBSApproximation Then
.Value ¼ (Me.PFactor * rPup + (1 - Me.PFactor) * rPDown) /

(1 + Me.txtBinomialr)
Else
.Value ¼ (Me.qU * rPup) + (Me.qD * rPDown)
End If
Me.PutPrice ¼.Value ’12/8/2008
.Borders(xlBottom).LineStyle ¼ xlContinuous
End With
rPDown.Borders(xlBottom).LineStyle ¼ xlContinuous
With rPup
.Borders(xlBottom).LineStyle ¼ xlContinuous
.Offset(1, 0).Resize((rPDown.Row - rPup.Row), 1). _
Borders(xlEdgeLeft).LineStyle ¼ xlContinuous
End With
End Sub
Sub CallDecisionTree(rPrice As Range, arCell As Variant,

iCount As Long)
Dim rCall As Range
Dim rCup As Range
Dim rCDown As Range
Set rCall ¼ Me.CallTree.Cells(rPrice.Row, rPrice.

Column)
Set rCup ¼ Me.CallTree.Cells(arCell(iCount - 1).Row,

arCell(iCount - 1).Column)
Set rCDown ¼ Me.CallTree.Cells(arCell(iCount).Row,

arCell(iCount).Column)
If rCup.Column ¼ Me.TreeWorksheet.UsedRange.Columns.

Count Then
With rCup
.Value ¼ WorksheetFunction.Max(arCell(iCount - 1) - Me.

txtBinomialX, 0)
.Borders(xlBottom).LineStyle ¼ xlContinuous
End With
With rCDown
.Value ¼ WorksheetFunction.Max(arCell(iCount) - Me.

txtBinomialX, 0)
.Borders(xlBottom).LineStyle ¼ xlContinuous
End With
End If
With rCall
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If Not Me.chkBinomialBSApproximation Then
.Value ¼ (Me.PFactor * rCup + (1 - Me.PFactor) * rCDown) /

(1 + Me.txtBinomialr)
Else
.Value ¼ (Me.qU * rCup) + (Me.qD * rCDown)
End If
Me.CallPrice ¼.Value ’12/8/2008
.Borders(xlBottom).LineStyle ¼ xlContinuous
End With
rCup.Offset(1, 0).Resize((rCDown.Row - rCup.Row), 1). _
Borders(xlEdgeLeft).LineStyle ¼ xlContinuous
End Sub
Sub DecitionTreeFormat()
Dim rTree As Range
Dim nColumns As Integer
Dim rLast As Range
Dim rCell As Range
Dim lCount As Long
Dim lCellSize As Long
Dim vntColumn As Variant
Dim iCount As Long
Dim lTimes As Long
Dim arCell() As Range
Dim sFormatColumn As String
Dim rPrice As Range
Application.StatusBar ¼ "Formatting Tree.. "
Set rTree ¼ Me.TreeWorksheet.UsedRange
nColumns ¼ rTree.Columns.Count
Set rLast ¼ rTree.Columns(nColumns).EntireColumn.

SpecialCells(xlCellTypeConstants, 23)
lCellSize ¼ rLast.Cells.Count
For lCount ¼ nColumns To 2 Step -1
sFormatColumn ¼ rLast.Parent.Columns(lCount).

EntireColumn.Address
Application.StatusBar ¼ "Formatting column " &

sFormatColumn
ReDim vntColumn(1 To (rLast.Cells.Count / 2), 1)
Application.StatusBar ¼ "Assigning values to array for

column " & _
rLast.Parent.Columns(lCount).EntireColumn.Address
vntColumn ¼ rLast.Offset(0, -1).EntireColumn.Cells(1).

Resize(rLast.Cells.Count / 2, 1)
rLast.Offset(0, -1).EntireColumn.ClearContents
ReDim arCell(1 To rLast.Cells.Count)
lTimes ¼ 1
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Application.StatusBar ¼ "Assigning cells to arrays.
Total number of cells: " & lCellSize

For Each rCell In rLast.Cells
Application.StatusBar ¼ "Array to column " &

sFormatColumn & " Cells " & rCell.Row
Set arCell(lTimes) ¼ rCell
lTimes ¼ lTimes + 1
Next
lTimes ¼ 1
Application.StatusBar ¼ "Formatting leaves for column "

& sFormatColumn
For iCount ¼ 2 To lCellSize Step 2
Application.StatusBar ¼ "Formatting leaves for cell "

& arCell(iCount).Address
If rLast.Cells.Count <> 2 Then
Set rPrice ¼ arCell(iCount).Offset(-1 * ((arCell

(iCount).Row - arCell(iCount -1).Row) / 2), -1)
rPrice.Value ¼ vntColumn(lTimes, 1)
Else
Set rPrice ¼ arCell(iCount).Offset(-1 * ((arCell

(iCount).Row - arCell(iCount -1).Row) / 2), -1)
rPrice.Value ¼ vntColumn
End If
arCell(iCount).Borders(xlBottom).

LineStyle ¼ xlContinuous
With arCell(iCount - 1)
.Borders(xlBottom).LineStyle ¼ xlContinuous
.Offset(1, 0).Resize((arCell(iCount).Row - arCell

(iCount - 1).Row), 1). _
Borders(xlEdgeLeft).LineStyle ¼ xlContinuous
End With
lTimes ¼ 1 + lTimes
CallDecisionTree rPrice:¼rPrice, arCell:¼arCell,

iCount:¼iCount
PutDecisionTree rPrice:¼rPrice, arCell:¼arCell,

iCount:¼iCount
BondDecisionTree rPrice:¼rPrice, arCell:¼arCell,

iCount:¼iCount
Next
Set rLast ¼ rTree.Columns(lCount - 1).EntireColumn.

SpecialCells(xlCellTypeConstants, 23)
lCellSize ¼ rLast.Cells.Count
Next ’ / outer next
rLast.Borders(xlBottom).LineStyle ¼ xlContinuous
Application.StatusBar ¼ False

37 Binomial OPM, Black–Scholes OPM, and Their Relationship 1057



End Sub
’/**************************************************
’/Purpse: To calculate the price value of every state

of the binomial
’/ decision tree
’/**************************************************
Sub DecisionTree(rCell As Range, nPeriod As Integer, _
dblPrice As Double, sngU As Single, sngD As Single)
Dim lIteminColumn As Long
If Not nPeriod ¼ 1 Then
’Do Up
DecisionTree rCell:¼rCell.Offset(0, 1), nPeriod:¼

nPeriod - 1, _
dblPrice:¼dblPrice * sngU, sngU:¼sngU, _
sngD:¼sngD
’Do Down
DecisionTree rCell:¼rCell.Offset(0, 1), nPeriod:¼

nPeriod - 1, _
dblPrice:¼dblPrice * sngD, sngU:¼sngU, _
sngD:¼sngD
End If
lIteminColumn ¼ WorksheetFunction.CountA(rCell.

EntireColumn)
If lIteminColumn ¼ 0 Then
rCell ¼ dblPrice
Else
If nPeriod <> 1 Then
rCell.EntireColumn.Cells(lIteminColumn + 1) ¼ dblPrice
Else
rCell.EntireColumn.Cells(((lIteminColumn + 1) * 2) -

1) ¼ dblPrice
Application.StatusBar ¼ "The number of binomial calcs are

: " & Me.BinomialCalc _ & " at cell " & rCell.EntireColumn.
Cells(((lIteminColumn + 1) * 2) - 1).Address

End If
End If
Me.BinomialCalc ¼ Me.BinomialCalc + 1
End Sub
Function BS_D1() As Double
Dim dblNumerator As Double
Dim dblDenominator As Double
On Error Resume Next
dblNumerator ¼ VBA.Log(Me.txtBinomialS / Me.

txtBinomialX) + _
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((Me.txtBinomialr + Me.txtSigma ^ 2 / 2) * Me.txtTimeT)
dblDenominator ¼ Me.txtSigma * Sqr(Me.txtTimeT)
BS_D1 ¼ dblNumerator / dblDenominator
End Function
Function BS_D2() As Double
On Error Resume Next
BS_D2 ¼ BS_D1 - (Me.txtSigma * VBA.Sqr(Me.txtTimeT))
End Function
Function BS_Call() As Double
BS_Call ¼ (Me.txtBinomialS * WorksheetFunction.

NormSDist(BS_D1)) _
- Me.txtBinomialX * Exp(-Me.txtBinomialr * Me.txtTimeT) * _
WorksheetFunction.NormSDist(BS_D2)
End Function
’Used put-call parity theorem to price put option
Function BS_PUT() As Double
BS_PUT ¼ BS_Call - Me.txtBinomialS + _
(Me.txtBinomialX * Exp(-Me.txtBinomialr * Me.txtTimeT))
End Function
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Abstract

The analyses of dividends paid by firms and decisions to repurchase their own

shares require an econometric approach because of the complex dynamic

interrelationships. This chapter begins by, first, highlighting the importance

of developing comprehensive econometric models for these interrelation-

ships. It is common in finance research to spell out “specific hypotheses”

and conduct empirical research to investigate validity of the hypotheses.

However, such an approach can be misleading in situations where variables

are simultaneously determined as is often the case in financial applications.

Second, financial and accounting databases such as Compustat are complex

and contain useful longitudinal information on variables that display

considerable heterogeneity across the firms. Empirical analyses of financial

databases demand the use of econometric and computational methods in

order to draw robust inferences. For example, using longitudinal data on the

same US firms, it was found that dividends were neither “disappearing”

nor “reappearing” but were relatively stable in the period 1992–2007

Bhargava (Journal of the Royal Statistical Society A, 173, 631–656, 2010).
Third, the econometric methodology tackled the dynamics of relationships

and investigated endogeneity of certain explanatory variables. Identification

of the model parameters is achieved in such models by exploiting the

cross-equations restrictions on the coefficients in different time periods.

Moreover, the estimation entails using nonlinear optimization methods

to compute the maximum likelihood estimates of the dynamic random

effects models and for testing statistical hypotheses using likelihood ratio

tests. For example, share repurchases were treated as endogenous

explanatory variable in the models for dividend payments, and dividends

were treated as endogenous variables in the models for share repurchases.

The empirical results showed that dividends are decided quarterly at the

first stage, and higher dividends payments lowered share repurchases

by firms that are made at longer intervals. These findings cast

some doubt on evidence for the simple “substitution” hypothesis

between dividends and share repurchases. The appendix outlines some of

the econometric estimation techniques and tests that are useful for research

in finance.

Keywords

Compustat database • Corporate policies • Dividends • Dynamic random effects

models • Econometric methodology • Endogeneity • Maximum likelihood •

Intangible assets • Model formulation • Nonlinear optimization • Panel data •

Share repurchases
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38.1 Introduction and Background

The proximate determinants of dividends payments by firms are of interest to

researchers in economics and finance. From a historical perspective, Tinbergen

(1939) proposed a model for predicting stock prices based on firms’ earnings and

dividends per share. Later, Lintner (1956) proposed a partial adjustment scheme for

dividends and represented it by a first-order autoregressive (“dynamic”) model where

dividends per share in the current time period were a function of the previous levels.

Such models were also employed in the economics literature to reflect “habit

persistence” in the consumption function (Duesenberry 1949), i.e., current consump-

tion depends on the past consumption. The work by Lintner (1956) was extended to

data on US firms by Fama and Babiak (1968). However, the methods used in the

early research for estimation of model parameters were rather elementary.

While data on macroeconomic variables such as consumption and income

typically span for long periods and facilitate the estimation of econometric models

(Koopmans 1950), the estimation of models using firm level data presents addi-

tional complications. For example, the large amount of heterogeneity across firms

needs to be taken into account. Such issues are important for finance research

because the neglect of unobserved between-firm differences can vitiate the consis-

tency properties of the estimated model parameters. Moreover, financial databases

such as (Compustat 2008) contain elaborate information at the firm level and

several variables affecting dividend payments by firms need to be accounted for

in the econometric models.

Further, shares repurchase, where firms purchase their own shares from stock

holders and place them in “Treasury stock,” have become popular since the 1980s

in the United States and in the European Union (von Eije and Megginson 2008).

Share repurchases reduce the numbers of shares held by investors (“common shares

outstanding”), thereby increasing share values and hence are a form of payment to

stock holders. It has also become popular for executives and employees of firms to

receive part of their remuneration as options to purchase company stock at the

current price in the future. The longitudinal information in financial data sets such

as Compustat can facilitate the investigation of substantive issues such as the

proximate determinants of dividend payments and the interrelationships between

dividends and share repurchases by firms (e.g., Jagannathan et al. 2000; Fama and

French 2001; Grullon and Michaely 2002; De Angelo et al. 2006; Skinner 2008;

Bhargava 2010; Jones and Wu 2010).

Further, while analyses of the Compustat data can provide useful insights,

methodological aspects are critical. For example, most previous analyses have

not exploited the longitudinal (“panel”) nature of the Compustat data. Instead,

cross-sectional regressions have been estimated in different time periods for

modeling firms’ chances of paying dividends, i.e., dependent variables take the

values 0 or 1 (Jagannathan et al. 2000; Fama and French 2001; De Angelo

et al. 2006). In applications where longitudinal analyses were conducted for

dividends payments (Skinner 2008), the model parameters were likely to be incon-

sistently estimated because the appropriate estimators for dynamic models were not
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employed. This chapter discusses several difficulties in the previous literature and

presents findings on the interrelationships between dividends and share repurchases

by over 2,000 US industrial firms (see Bhargava 2010).

First, it is essential to model the time structure of the interrelationships between

dividends and share repurchases using longitudinal data on firms. While Lintner

(1956) argued that firms may be reluctant to alter dividend rates, firms often adjust

dividends per share to the market circumstances. Thus, classification of firms

between dividend “payers” and “non-payers” is not a concrete one since a majority

of firms may pay dividends during some periods. For example, using eight 2-yearly

averages of dividends paid by a panel of 3,154 US industrial firms in the period

1992–2007 (i.e., for 1992–1993, 1994–1995, 1996–1997, 1998–1999, 2000–2001,

2002–2003, 2004–2005, 2006–2007), Bhargava (2010) found that 42 % of the firms

never paid dividends, 33 % paid dividends in all 8 periods, and 25 % paid dividends

in 1–7 periods. Moreover, dividends per share ranged from $0.00 to $67.61 so that it

is appropriate to model the payments via continuous random variables (Fama and

Babiak 1968). Similarly, firms’ share repurchase are continuous variables and can be

defined using the variables “Treasury stock,” “purchase of common stock,” and “sale

of common stock.” Using longitudinal data on 2,907 firms in 8 periods, 20 % of firms

made no repurchases, 5 % repurchased shares in all 8 periods, and 75 % made 1–7

repurchases (Bhargava 2010). Thus, models with continuous dependent variables for

dividends and share repurchases are suitable for analyses of payout decisions.

Moreover, it is essential to use longitudinal data on the same firms for analyzing

the interrelationships between dividends and share repurchases.

Second, from a methodological standpoint, the estimation of dynamic models

from longitudinal data covering large number of firms observed for a few time

periods requires the treatment of lagged dependent variables as “endogenous”

variables that are correlated with firm-specific random effects (Anderson and

Hsiao 1981; Bhargava and Sargan 1983); this issue will be discussed below and

in the Appendix. Despite the popularity of Lintner (1956) type models in finance

literature, such issues have seldom been addressed by researchers and critically

affect consistency properties of the estimated model parameters. Moreover, it is

informative to model the actual magnitudes of dividends and share repurchases,

since these are likely to be related to firm characteristics such as size, earnings, and

debt. It would also be useful to consider their joint determination; models for

continuous dependent variables using longitudinal data can handle situations

where some explanatory variables are correlated with errors affecting the models

(Bhargava and Sargan 1983; Bhargava 1991).

Third, there has been a discussion in the finance literature regarding possible

“substitution” between dividends payments and share repurchases by firms. While

some researchers have argued that these payout methods may not be substitutes

(e.g., John and Williams 1985), substitution of dividends by share repurchases

(or vice versa) are consistent with certain economic formulations (Miller and

Modigliani (1961). For example, Grullon and Michaely (2002) interpreted negative

correlations between forecasting errors in changes in dividends and share

repurchases as evidence of substitution. However, these issues demand an
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econometric approach for addressing the possible asymmetries and endogeneity in

the relationships. For example, using the Compustat data on 2,800 industrial firms

in the eight time periods noted above, bivariate correlations between dividends per

share and repurchases were 0.11, 0.11, 0.08, 0.07, 0.11, 0.03, 0.05, and 0.06,

respectively. These positive correlations were statistically significant; similar

results were obtained for correlations between total dividend payments and share

repurchases. Thus, investigation of possible substitution between dividends and

share repurchases demands a comprehensive econometric framework (see below).

This chapter outlines a comprehensive analysis of the interrelationships between

dividends and share repurchases using longitudinal Compustat data at 2-year inter-

vals on over 2,000 US firms for the period 1992–2007 (Bhargava 2010). A brief

discussion of issues arising in econometric methodology that is important for formu-

lation of models and testing hypotheses in finance research is presented in Sect. 38.2.

The analytical framework for dividends and share repurchase interrelationships is

developed in Sect. 38.3, and econometric models embodying various hypotheses are

outlined. In Sect. 38.4, Compustat variables are described and construction of the

longitudinal data set is explained. For example, 2-yearly averages for variables are

well suited for the analyses because share repurchases occur roughly at 2-year

intervals (e.g., Stephens and Weisbach 1998); averaging also reduces the impact of

missing values. The comprehensive econometric models for dividends and share

repurchase relationships are outlined in Sect. 38.5. The econometric framework is

outlined in Sect. 38.6 and it yields consistent and efficient estimates of model

parameters; diagnostic tests for model adequacy and certain steps in the applications

of the methods are outlined in the Appendix. The descriptive results from the

Compustat data are in Sect. 38.7; results from estimating simple dynamic models

for dividends and share repurchases are in Sect. 38.8. In Sect. 38.9, the results from

estimating comprehensive dynamic econometric models for dividends and share

repurchases are discussed. It is emphasized that one can draw robust conclusions

from the estimated parameters of models that capture salient aspects of the various

relationships. The conclusions are summarized in Sect. 38.10.

38.2 Specific Hypotheses, Financial Databases, and the
Formulation of Econometric Models

It would be useful to discuss the role of conceptual aspects in the formulation of

econometric models for finance relationships especially in the context of interrela-

tionships between dividends and share repurchases. First, note that in biomedical

sciences, randomized controlled trials are designed to investigate “specific hypoth-

eses.” The design of experiments is influenced by previous findings that are treated

as assumptions in the trial (Cox 1958) and enable the investigation of specific

hypotheses under consideration (Bhargava 2008). The validity of specific hypoth-

eses is investigated using the emerging data from control and treatment groups of

the trial. In contrast, finance researchers often spell out hypotheses that are

influenced by economic postulates and investigate the support for the hypotheses
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using existing databases such as Compustat for the United States. However, the

hypotheses driving the economic and finance investigation are often based on

untested assumptions and/or “stylized facts” (Granger 1992). By contrast, assump-

tions invoked in biomedical sciences reflect the knowledge accumulated from

previous experimental studies, and hypotheses are tested using the new data.

Further, in social sciences research, most phenomena being explained result

from the interactions between economic and social factors. Because different

dimensions of the relationships merit different emphasis depending on the context,

social science researchers are forced to address several hypotheses simultaneously.

Typically, this is done via formulation of comprehensive models where, for exam-

ple, the systematic part of the relationships incorporates the relevant variables. The

stochastic properties of the dependent variable and error terms are also tackled in

the formulation of comprehensive econometric models.

The analyses of databases such as Compustat entail the modeling of accounting,

finance, and economic variables so that financial research often demands econo-

metric modeling of variables that are jointly determined. Moreover, economic

theory is helpful in identifying variables and often implies restrictions on certain

model parameters. Thus, investigation of hypotheses in finance applications entails

the development of comprehensive econometric models within which several

hypotheses can be embedded and tested using the estimated model parameters.

This is in contrast with the approach in biomedical sciences where trials are

designed to investigate specific hypotheses, and researchers are not concerned

with interdependence between the variables. Thus, the currently popular approach

in finance of spelling out a few specific hypotheses needs to be augmented by

development of comprehensive econometric models reflecting the hypotheses. It is

only after the estimation of comprehensive econometric models from databases

such as Compustat that investigators can satisfactorily test the validity of specific

hypotheses using statistical procedures.

As an illustration of the importance of methodological aspects for drawing infer-

ences, it would be helpful to reappraise the work by Grullon and Michaely (2002)

claiming empirical support for the “substitution” hypothesis between

dividend payments and share repurchases. First, as noted in the Introduction, the

correlations between dividend payments and share repurchases estimated from

Compustat data were positive so the interrelationships are likely to be complex.

Second, if dividends and share repurchases are substitutes, then they are likely to be

simultaneously determined; modeling the interrelationships would require the use of

econometric methods for handling endogenous explanatory variables in longitudinal

analyses. Also, longitudinal data need to cover the same firms over time in order to

shed light on the interrelationships. While such issues were not considered by Grullon

and Michaely (2002), the authors explained forecasting errors in changes in dividends

based on share repurchases and interpreted negative correlations as evidence for

substitution hypothesis. However, dividends are announced quarterly, whereas share

repurchases are made at 2–3-yearly intervals. Thus, the stochastic properties of vari-

ables cast doubt on adequacy of the models that explain a higher frequency variable

such as dividends by the slowly changing share repurchases. In fact, it is likely that
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dividend payments that are made on a quarterly basis affect share repurchases but not

vice versa. As shown below, firms’ share repurchases are constrained by dividend

payments and repurchases are relatively flexible (Bhargava 2010). Overall, from

a methodological standpoint, it is important in financial analyses to develop compre-

hensive models prior to the testing of specific hypotheses.

38.3 Analytical Framework for Modeling the Dividends and
Share Repurchases Interrelationships

38.3.1 Background Issues

The earliest dynamic model for dividends is given by Lintner (1956):

Di t ¼ ai t þ b Pi t þ d Di t�1 þ ui t i ¼ 1, 2, . . . , H; t ¼ 2, 3, . . . , Tð Þ (38.1)

For firm i in time period t, Di t is the dividend payment, Pi t is profit or earnings,

and ui t is a random error term; it is assumed that there are H firms in the sample that

are observed in T time periods. The subsequent work by Fama and Babiak (1968)

expressed dividends and earnings in per share terms. An important feature of these

models is that the short-run effect of a unit increase in profit is given by b, while the

long-run equilibrium impact is [b/(1 � d)] with |d| < 1.

Explanatory variables such as firms’ debt, assets, and investments can be

included in Eq. 38.1. However, the estimation methods employed in previous

research (Lintner 1956; Fama and Babiak 1968; Lee et al. 1987) were appropriate

for time series data on a single firm rather than for a panel of firms. Because firms in

Compustat and other databases are heterogeneous, it is important to include firm-

specific “random” or “fixed” effects in the model. For example, treating the

unobserved between-firm differences as randomly distributed variables, error

terms ui t can be decomposed as:

ui t ¼ di þ vi t (38.2)

where, di are firm-specific random effects that follow some distribution (e.g., normal)

with zero mean and constant variance, and vi t are distributed with zero mean and

constant variance (Anderson and Hsiao 1981; Bhargava and Sargan 1983). More-

over, one can invoke the general assumption that ui t’s are drawings from

a multivariate distribution with a symmetric and positive definite dispersion matrix.

38.3.2 Some Conceptual Aspects of Dividends and Share
Repurchase Interrelationships

From a conceptual standpoint, one would expect comprehensive models for

dividends or dividends per share to resemble the dynamic model in Eq. 38.1,

with additional explanatory variables such as firms’ assets, debt, and
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investments (Bhargava 2010). Similar models can be developed for share

repurchases that have become popular following the 1986 Tax Reform Act in

the United States. However, there are likely to be asymmetries in the interrela-

tionships between dividend payments and share repurchases. For example, firms

regularly paying dividends may be reluctant to lower dividends in order to

increase share repurchases since that might send ambiguous signals to investors.

Thus, higher dividend payments are likely to lower firms’ ability to make

repurchases, i.e., in a model for repurchases, dividend payments are likely to

be estimated with a negative coefficient. By contrast, decisions to make

repurchases may be influenced by firms’ unexpectedly large cash holdings

(Guay and Harford 2000; Brav et al. 2005; Chen and Wang 2012) so that in

a model for dividends, coefficient of share repurchases need not be statistically

significant. These conceptual aspects can be embedded in a simultaneous equa-

tion model taking into account endogeneity of dividend payments and share

repurchases (Sect. 38.5, below).

38.4 Processing the Compustat Database from the
United States

Databases such as Compustat compile detailed information on accounting and

finance variables for large numbers of firms listed on stock exchanges. However,

many firms merge or exit after some years and are removed from the database. Cross-

sectional studies analyzing data on firms for different years are therefore likely to

include many firms that will be dropped in subsequent periods. From the standpoint

of modeling the proximate determinants of dividends and share repurchases, this

raises several issues. First, firms staying on the stock market for only a few time

periods may typically pay small or no dividends. Also, the interrelationships between

dividend payments and share repurchases require a longer time frame since dividends

per share are announced on a quarterly basis, while share repurchases are made

roughly at 2-year intervals. Thus, while cross-sectional analyses can provide insights,

the interrelationships between dividend payments and share repurchases require that

the same firms are observed for a certain number of years.

Second, there are trade-offs between analyzing longitudinal data that span long

versus short time periods. If, for example, the data cover long periods of (say) over

30 years, then the number of firms in the sample is likely to be small and mainly the

well-established firms will be included. By contrast, if one analyzes longitudinal

data for only 5 years, then many firms included in the sample will be dropped from

the stock exchange in later periods. In view of the fact that share repurchase

decisions are made roughly at 2-year intervals, a reasonable approach would be

to analyze data covering around 15 years. Moreover, one can create 2-yearly

averages so that if observations were missing for a firm in one of the years, the

firm could still be included in the sample. Since the data on executive compensation

are available from 1992 (ExecuComp 2008), the sample period 1992–2007 is

appealing (Bhargava 2011).
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Third, even when the same firms are retained in the sample, there is large intra-

and interfirm variation in financial variables. In the context of dividends, some

problems can be tackled by expressing variables in per share terms (Fama and

Babiak 1968). However, as recognized in the early statistical literature by Pearson

(1897) and Neyman (1952), transforming variables into ratios can induce spurious

correlations. Such practices were criticized by Kronmal (1993), Bhargava (1994)

developed a likelihood ratio statistic for testing the restrictions on coefficients that

enable expressing variables as ratios in empirical models. While research in finance

often expresses variables in ratio forms, such transformation can affect the magni-

tudes and signs of estimated regression coefficients. It is important to conduct

robustness check to ensure that transformation of variables do alter the conclusions.

Finally, there is often high inter- and intra-firm variation in variables such as

share repurchases, assets, and debt that are measured in millions of dollars in the

Compustat database. Transformations to natural logarithms can reduce internal varia-

tion in the data. For example, share repurchase can be expressed in dollars and then

transformed into natural logarithms with zero dollar values set equal to one. This

procedure facilitates the estimation of model parameters using numerical optimization

techniques and obviates the need for arbitrarily truncating large values of variables

(Bhargava 2010).

38.5 Comprehensive Empirical Models for Dividends and Share
Repurchase Interrelationships

A dynamic random effects model for dividends per share adjusted for “stock splits”

using cumulative adjustment factor (#27), with Compustat item numbers next to the

variables, can be written as (Bhargava 2010):

Dividends per share; #26, #27ð Þi t ¼ a0 þ a1 Earnings; #18, #17ð Þi t þ a2 ln Total assets; #6ð Þi t
þ a3 Market-to-book value; #199, #25, #60ð Þi t þ a4 ln Long� term debt; #9ð Þi t
þ a5 ln Short-term investments; #193ð Þi t þ a6 Time dummy period 3ð Þi t
þ a7 Time dummy period 4ð Þi t þ a8 Time dummy period 5ð Þi t
þ a9 Time dummy period 6ð Þi t þ a10 Time dummy period 7ð Þi t
þ a11 Time dummy period 8ð Þi t þ a12 Dividends per share; #26, #27ð Þi t�1

þ ui t i ¼ 1, 2, . . . , H; t ¼ 2, 3, . . . , 8ð Þ
(38.3)

In the empirical model in Eq. 38.3, it is recognized that firms sometimes split

their shares especially if share prices are high. Earnings are defined as “income

before extraordinary items” (#18) minus 0.6 times “special items” (#17), measured

in million of dollars (Skinner 2008). Income before extraordinary items is the firms’

incomes taking into account all expenses, while special items reflect adjustments
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for debts and losses. “Total assets” (#6), “long-term debt” (#9), and “short-term

investments” (#193) were expressed in dollars and then converted into natural

logarithms. The “market-to-book value” variable was constructed by multiplying

“share price” (#199) by number of “common shares outstanding” (#25) and

dividing this product by “common equity total” (#60). “Dividends per share” in

period (t�1) will be referred to as “lagged dependent variable.” Models of the type in

Eq. 38.3 were also estimated for dividends expressed as ratios to firms’ book values,

while dropping the explanatory variable market-to-book value from Eq. 38.3.

It is assumed in Eq. 38.3 that 8-time observations at 2-yearly intervals

{1992–1993, 1994–1995, 1996–1997, 1998–1999, 2000–2001, 2002–2003,

2004–2005, 2006–2007} were available on H firms. Moreover, as explained in

Sect. 38.6 and the Appendix, initial values of the dependent variable in time period 1

were modeled using a “reduced form” equation that includes a separate coefficient,

c0, for the constant term. Thus, the model in Eq. 38.3 includes separate coefficients

of the constant term for each of the 8-time periods. This formulation allows the

variables in the model to have different means in the 8-time periods and is useful if

there are trends in the dependent variables in the observation period.

Further, ui t’s are error terms that can be decomposed in the simple random effect

fashion as in Eq. 38.2. The variance of vi t is the “within” (or intra-) firm variance, and

[var (di)/var (vit)] is the “between-to-within” variance ratio that can be estimated when

errors are decomposed as in Eq. 38.2. In another version of the model in Eq. 38.3,

firms’ intangible assets (Compustat item #33) were included in the model, though

greater numbers of observations were missing for this variable. Also, firms’ share

repurchases were introduced as potentially endogenous explanatory variables to test if

they influenced dividend payments. Last, static versions of the model in Eq. 38.3 that

excluded the lagged dividends were estimated to assess robustness of the results.

The model for share repurchases was similar to that in Eq. 38.3 except that

dividends per share were included as a potentially endogenous explanatory variable:

ln Share repurchases;#226,#115,#108ð Þi t ¼ b0þb1 Earnings;#18,#17ð Þi t
þb2 ln Total assets;#6ð Þi tþb3 Market-to-book value;#199,#25,#60ð Þi t
þb4 ln Long-termdebt;#9ð Þi tþb5 ln Short-term investments;#193ð Þi t
þb6 Time dummyperiod 3ð Þi tþb7 Time dummyperiod 4ð Þi tþb8 Timedummyperiod 5ð Þi t
þb9 Time dummyperiod 6ð Þi tþb10 Time dummyperiod 7ð Þi tþb11 Time dummyperiod 8ð Þi t
þb12 Dividends per share;#26,#27ð Þi tþb13 ln Share repurchases;#226,#115,#108ð Þi t�1

þu2 i t i¼ 1,2, . . . ,H; t¼ 2,3, . . . ,8ð Þ
(38.4)

Note that share repurchases were defined as the change in “Treasury stock”

(#226), and if this was less than or equal to zero for the firm, the nonnegative

difference between “purchase of common stock” (#115) and “sale of common

stock” (#108) was used (Fama and French 2001). This definition covered the
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situation where firms “retire” shares from Treasury stock so that when the change in

Treasury stock was less than or equal to zero, nonnegative difference between

purchase of common stock and sale of common stock was used as the measure of

repurchases. Banyi et al. (2008) have advocated the use of purchase of common stock

as a measure of repurchases, and this variable was also modeled to assess robustness

of the results. Finally, alternative models for share repurchases were estimated with

intangible assets included as an explanatory variable, and also where dividends per

share was replaced by dividends expressed as ratios to firms’ book values.

38.6 The Econometric Framework for Addressing Simultaneity
and Between-Firm Heterogeneity

The methodology used for estimation of dynamic and static random effect models,

where some explanatory variables are endogenous, was developed in Bhargava and

Sargan (1983) and Bhargava (1991). Let the dynamic model be given by:

yi t ¼
Xm
j¼1

zi jgj þ
Xn1
j¼1

x1 i j tbj

þ
Xn

j¼n1þ1

x2 i j tbj þ a yi t�1 þ ui t i ¼ 1, 2, . . . , H; t ¼ 2, 3, . . . , Tð Þ

(38.5)

where z’s are time-invariant variables, x1 and x2 are, respectively, n1 exogenous and

n2 endogenous time-varying variables (n1 + n2 ¼ n). In the model for share

repurchases, for example, dividends per share is potentially an endogenous time-

varying variable; unobserved factors affecting share repurchases, reflected in firm-

specific random effects (di) in Eq. 38.2, can influence dividend payments. For

exposition purposes, first assuming that all time-varying variables are exogenous

so that n2 ¼ 0 and subscripts on the x variables can be dropped, the dynamic model

can be written in a simultaneous equations framework by defining a “reduced form”

equation for initial observations that do not include any endogenous explanatory

variables, and a “triangular” system of (T-1) “structural” equations for the

remaining periods (Bhargava and Sargan 1983):

yi 1 ¼
Xm
j¼1

zi jzjþ
Xn
j¼1

XT
k¼1

uj kxi j k þ ui 1 i ¼ 1, . . . , Hð Þ (38.6)

And

T� 1ð Þ
B

xT TxH
Y

0

Tð
þ
� 1Þ

Cz

x m mx
Z
0
H

þ
T�ð 1Þ

Cx

x nT nT
X

0

xH
¼
Tð � 1Þ

U
0

xH (38.7)
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Here, Y, Z, and X are, respectively, matrices containing observations on the

dependent, time-invariant, and time-varying explanatory variables; dimensions of

the matrices are written below the respective symbols. B is a (T�1) x T lower

triangular matrix of coefficients:

Bi i ¼ a, Bi, iþ1 ¼ �1, Bi j ¼ 0 otherwise i ¼ 1, . . . , T� 1; j ¼ 1, . . . , Tð Þ
(38.8)

where a is the coefficient of lagged dependent variable. Matrices Cz and Cx contain

coefficients of time-invariant and time-varying regressors, respectively; U contains

the error terms.

Note that in the reduced form Eq. 38.6, all T realizations of the n exogenous

time-varying variables appear as explanatory variables for modeling the systematic

or predicted part of yi 1. Because maximum likelihood or instrumental variable

methods treat {yi 1, yi 2, . . ., yi T} as jointly determined variables, it is essential to

explain the reduced form Eq. 38.6 using all exogenous variables in the model. The

estimation of model parameters and certain econometric tests are described in the

Appendix.

38.7 Descriptive Statistics from the Annual Compustat
Database

The Compustat annual data on firms for the period 1992–2007 were processed for

the analyses (Bhargava 2010). As is customary in the dividends literature, financial

firms with Standard Industry Classification (SIC) codes between 6,000 and 6,999

and utility firms with SIC codes between 4,900 and 4,949 were dropped since there

are regulations on dividend payments by such firms (Fama and French 2001).

Moreover, observations were retained on firms that were in the Compustat database

for at least 14 years, and 2-yearly averages were created at 8-time points, i.e., for

{1992–1993, 1994–1995, 1996–1997, 1998–1999, 2000–2001, 2002–2003,

2004–2005, 2006–2007}. An alternative data set created 3-yearly averages at

5-time points, i.e.,{1992–1994, 1995–1997, 1998–2000, 2001–2003, 2004–2006},

though the analyses of the 2-yearly averages led to more robust parameter estima-

tion. Averaging over 2 years led to a sample of 3,290 industrial firms observed in

8-time periods. Also, estimation of dynamic models requires “balanced” panels,

i.e., where firms are included at all eight time points. While it is possible to analyze

“unbalanced” panels using static models in software packages such as Stata (2008),

it is difficult to address endogeneity issues in the analyses.

The sample means and standard deviations of 2-year averages of variables are

reported in Table 38.1 for some of the years with Compustat annual item numbers

noted next to the variables. The mean dividends per share were approximately

$0.32 for the period 1992–1999, and declined slightly to $0.27 for 2000–2003, and

increased to $0.39 in 2006–2007. While a simple paired t-test on the set of firms’

observations showed significant (P< 0.05) increase in dividends per share between
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1992–1993 and 2006–2007, the pattern over time was more complex partly because

of tax changes in 2003. Mean share repurchases increased from $10 million in

1992–1993 to $175 million in 2006–2007.

Figure 38.1 plots the sample means (in $ millions) of Treasury stock, purchase

of common stock, sale of common stock, dividends, and share repurchases.

There were upward trends in Treasury stock, share repurchases, and purchases

of common stock. There was an increase in dividends in the period from 2002–2003

to 2006–2007, where dividends increased from $63 million to $113 million.

This could be due to reductions in 2003 in tax rates on dividends (Julio and

Ikenberry 2004).

Further, focusing on 2,880 firms with non-missing observations on dividends

and share repurchases, percentages of firms paying dividends and making share

repurchases in the 8-time periods, were {36.5, 39.9, 40.6, 40.8, 39.6, 39.9, 43.7,

44.0} and {26.3, 30.7, 38.2, 49.8, 48.1, 37.9, 38.1, 43.5}, respectively. While

percentages of firms making share repurchases increased from 26.3 in 1992–1993

to 43.5 in 2006–2007, the peak of 49.8 % was reached in the 1998–1999 period.

The mean share repurchases in 1998–1999 were 44.44 million, while they
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Fig. 38.1 Sample means of dividends and components of share repurchases by US industrial

firms for 1992–2007. Share repurchases were calculated as the change in Treasury stock (#226),

and if this was less than or equal to zero, the nonzero difference between purchase of common

stock (#115) and sale of common stock (#108) was used (Source: Bhargava 2010)
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amounted to $174.77 million in 2006–2007 so that share repurchases were

significantly higher in 2006–2007 after adjusting for the price level. The other

salient feature of the Compustat data was that the mean intangible assets increased

from $99.9 million in 1992–1993 to $980.2 million in 2006–2007 constituting

a tenfold increase.

38.8 Results from Simple Dynamic Models for Dividends and
Share Repurchase Controlling for Between-Firm
Heterogeneity

The results from estimating simple dynamic random effects models for dividends

per share are in Table 38.2 for the sample of 3,113 industrial firms (Bhargava 2010).

The results are presented for the cases where firms paid nonzero dividends at least

in one of the eight time periods and where firms paid dividends in all 8-time periods.

The results for ratios of dividends to book value of firms are presented in the last

column of Table 38.2. A set of six dummy variables for time periods 3–8 was

included to account for differences in dividend payments in the 8-time periods. The

models were estimated by maximum likelihood and provide consistent and efficient

estimates of the parameters.

For the pooled sample, coefficients of the dummy variables in the model for

dividends per share were positive and significant (P < 0.05) in time periods 7 and

8 corresponding to 2004–2005 and 2006–2007, respectively. The positive coeffi-

cients were consistent with reported increases in dividends following reduction in

tax rates in 2003. Coefficients of the dummy variables were qualitatively similar for

the reduced sample of 1,827 firms that paid dividends at least in one of the eight

periods and in the case where 1,035 firms paid dividends in all eight periods.

Moreover, coefficients of the dummy variables for time periods 7 and

8 corresponding to 2004–2005 and 2006–2007, respectively, were approximately

twice as large for firms paying dividends than for firms that never paid dividends.

Thus, reduction in tax rates on dividends in 2003 appeared to have increased

dividends per share. These results also show the robustness of dynamic models in

situations where firms decide against paying dividends in some time periods, i.e., to

zero values of the dependent variables. This is not surprising since one is modeling

the deviations of dividends per share from an overall mean.

The coefficients of the lagged dependent variables for the first three cases

presented in Table 38.2 were close to 0.28. Moreover, the ratios of between-to-

within variances for the three cases, i.e., pooled sample, firms paying nonzero

dividends at least once, and firms paying dividends in all 8 periods were, 0.38,

0.33, and 0.45, respectively. These estimates were close despite reduction in sample

size from 3,113 firms in the pooled sample to 1,035 in the case of firms paying

nonzero dividends in all 8 periods. The within firm variances for the three cases

were 0.52, 0.88, and 1.07, respectively. Finally, in the last column, the results for

the ratio of dividends to firms’ book values were similar to those for the pooled

sample for dividends per share. While the estimated coefficient of lagged dependent
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variable was very close (0.29), the estimated between-to-within variance ratio was

0.016 that was lower than the corresponding estimate (0.38) in the model for

dividends per share.

The results from simple dynamic models for logarithms of US firms’ share

repurchases are in Table 38.3 for the three cases, i.e., pooled sample, firms making

at least one repurchase, and firms making repurchase in all 8-time periods. For the

pooled sample of 2,907 firms, coefficients of dummy variables for five of the time

periods were positive and statistically significant; coefficient of the dummy variable

for time period six corresponding to 2002–2003 was not significant. The results

were very similar for the case where 2,329 firms made repurchases at least once.

The dummy variables were generally insignificant in the third case for firms making

repurchases in all 8 periods; there were 127 firms in this group which was a small

sample size for estimating dynamic models.

The coefficients of lagged dependent variables in the three cases were 0.36, 0.35,

and 0.75, respectively; these estimates were significantly less than unity thereby

indicating that share repurchase series were stationary. The between-to-within

variance ratios for the three cases were 0.15, 0.07, and 0.18, respectively; within

Table 38.3 Maximum likelihood estimates of simple dynamic models for 2-yearly averages of

share repurchases of US industrial firms in 1992–2007

Dependent variable: ln (share repurchases $) (using Compustat

items #226, #115, #108)

All firms

Firms making

nonzero repurchases

at least once

Firms making

nonzero

repurchases in all

8 periods

Explanatory variables Coefficient SE Coefficient SE Coefficient SE

Constant 3.216 0.061 4.057 0.153 4.376 0.587

Time period 3 dummy variable 1.008* 0.122 1.262* 0.205 �0.054 0.192

Time period 4 dummy variable 2.428* 0.117 3.048* 0.200 0.067 0.193

Time period 5 dummy variable 1.426* 0.126 1.818* 0.208 �0.128 0.197

Time period 6 dummy variable �0.095 0.117 �0.083 0.203 �0.540* 0.183

Time period 7 dummy variable 0.738* 0.122 0.938* 0.208 �0.017 0.192

Time period 8 dummy variable 1.730* 0.123 2.180* 0.205 0.171 0.194

Lagged dependent variable 0.362* 0.008 0.354* 0.009 0.754* 0.038

(between-to-within) variance

ratio

0.153* 0.010 0.066* 0.008 0.184* 0.092

Within variance 39.176 – 48.341 – 1.841 –

2 x (maximized log-likelihood

function)

�88,260.15 – �73,671.73 – �886.97

Number of firms 2,907 2,329 127

Dependent variable share repurchases were calculated from Compustat items #226, #115, and

#108 and expressed in dollars and transformed into natural logarithms with zero value assigned to

zero purchases (source: Bhargava 2010); 8-time observations at 2-yearly intervals on the firms in

1992–2007 were used; slope coefficients and standard errors are reported
*P < 0.05
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firm variances were quite large in these models. The higher coefficient of lagged

dependent variable in the model where 127 firms made repurchases in all 8 periods

may be due to the small sample size. Moreover, such firms may have been less

heterogeneous in some respects and had a smooth pattern of share repurchases.

Such issues can be systematically investigated by controlling for firm characteris-

tics and are addressed below.

38.9 Results from Comprehensive Dynamic Models for
Dividends and Share Repurchases

The results from empirical models for dividends per share and share repurchases,

outlined in Eqs. 38.3 and 38.4, are presented in this section. Dynamic and static

random effects models were estimated and the results are initially presented for the

pooled samples and for the case where firms paid dividends or made repurchases at

least once during 8-time periods.

38.9.1 Results from Dynamic and Static Models for Firms’ Dividends
per Share

Table 38.4 presents the results from dynamic and static models for dividends per

share paid by US industrial firms; a set of six dummy variables for time periods was

included in the models though the coefficients are not reported (Bhargava 2010).

The firms’ total assets, long-term debt, and short-term investments were expressed

in dollars and converted to natural logarithms. Because firms’ earnings were

defined as the difference between income before extraordinary items and special

items, this variable sometimes assumed negative values and was not transformed

into logarithms.

For the dynamic model estimated using the pooled sample, coefficient of

earnings was estimated with a positive coefficient that was statistically significant.

The coefficients of earnings and total assets were also significant in the static model

for the pooled sample and in dynamic and static models for the subsample where

firms paid dividends at least once during the 8-time periods. These results provide

evidence that earnings and total assets of US firms were positively and significantly

associated with dividends per share. By contrast, Skinner (2008, Table 8) found

these variables to be generally insignificant predictors of the ratio of dividends to

total payout (dividends plus repurchases) using cross-sectional regressions and data

on 345 US firms. When some of the coefficients were statistically significant, they

were positive for some years and negative for others. The contradictory findings

were likely to be due to combining dividends and share repurchases into a single

variable and using estimation methods that are appropriate for cross-sectional

analyses. The results in Table 38.4, however, were consistent with evidence from

the European Union (von Eije and Megginson 2008), where static random effects

models were estimated using unbalanced panel data on approximately 3,000 firms.
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The variable market-to-book value was not statistically significant in the

dynamic and static models estimated from the pooled or disaggregated samples.

Because market-to-book value is a composite variable based on Compustat items

price, common shares outstanding, and common equity total, it may be difficult to

unscramble the effects on dividend payments. Coefficients of long-term debt were

not statistically significant in the four cases reported in Table 38.4. Because firms

may be reluctant to frequently alter dividend policy, it is likely that long-term debt

might influence share repurchases rather than dividends. Coefficients of short-term

investments were positively and significantly associated with dividends per share in

the dynamic and static models estimated using the subsample of firms that paid

dividends at least once.

The coefficients of lagged dependent variables from the pooled sample and the

subsample of firms paying dividends at least once were 0.20 and 0.19, respectively.

These coefficients implied that the long-run effects of explanatory variables were

1.25 times the respective short-run effects reported in Table 38.4. Moreover, the

ratios of between-to-within variance in the two dynamic models were 0.13 and

0.11, respectively. While these ratios were smaller than those reported in Table 38.2

for simple dynamic models for dividends per share (0.38 and 0.33, respectively),

the estimates suggest that some heterogeneity across firms could not be accounted

for by explanatory variables in the models. The within firm variances in the two

dynamic models were 0.61 and 0.98. Overall, the results in Table 38.4 supported the

view that larger firms paid higher dividends per share.

38.9.2 Results from Dynamic and Static Models for Firms’ Share
Repurchases

The results for logarithms of share repurchases by US industrial firms are in

Table 38.5 for the pooled sample and for firms making repurchases at least once in

the sample period. As in the results from the model for dividends per share, firms’

earnings and total assets were estimated with significant positive coefficients in

dynamic and static models for the pooled sample and for the subsample of firms

making repurchases at least once. Coefficients of the logarithm of total assets in

dynamic models were the short-run “elasticities” of share repurchases with respect to

total assets, i.e., 0.61 and 0.78, respectively, for the pooled sample and subsample of

firms making repurchases. Because coefficients of lagged dependent variables were

approximately 0.40 in this model, the long-run effects were about 1.67 times the

respective short-run effects. For example, the long-run elasticity of share repurchases

with respect to total assets was 1.02 and this was larger than the point estimate (0.70)

from the static model for the pooled sample. Similarly, short- and long-run elasticities

of share repurchases with respect to total assets for firms making repurchases at least

once were 0.78 and 1.33, respectively. Thus, the size of the firm was an important

determinant of magnitudes of share repurchases. However, there were no nonlinear-

ities apparent with respect to firms’ earnings and total assets, i.e., squared terms of

these variables were not significant predictors of share repurchases.

1080 A. Bhargava
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In all the models in Table 38.5, firms’ market-to-book value ratio was estimated

with negative and significant coefficients in the dynamic and static models using the

pooled and disaggregated samples. Thus, firms with higher market-to-book value

ratio made lower share repurchases. Also, firms’ long-term debt was estimated with

negative and significant coefficients in dynamic models from the pooled sample and

from the subsample of firms making repurchases at least once. The short-run

elasticity from the pooled sample was �0.02, while the long-run elasticity was

�0.03. Doubling of firms’ long-term debt predicted a 3 % decline in long-run share

repurchases. The coefficients of short-term investments were not significant in any

of the models in Table 38.5.

An important aspect of the results in Table 38.5 was that the estimated coeffi-

cients of dividends per share were negative and statistically significant in the

dynamic and static models for the pooled sample and for the subsample of firms

that made at least one repurchase. Thus, controlling for factors such as earnings and

size of the firm, firms paying higher dividends per share made significantly lower

share repurchases. The short-run effects of dividends per share on share repurchases

were �0.20 and �0.18, respectively, for the pooled sample and subsample of firms

making repurchases; the respective long-run effects were �0.33 and �0.30. The

relatively large magnitudes of these effects indicated that firms with higher divi-

dend payments were likely to make smaller share repurchases.

Last, exogeneity hypotheses for dividends per share were accepted at the 5 %

level using test statistics that were distributed as Chi-square variables with 8� of

freedom (5 % critical limit of Chi-square (8) ¼ 15.5). The values of Chi-square

statistics around 12 in Table 38.5 indicated that there might be some dependence in

the unobserved components of firms’ decisions to pay dividends and make share

repurchases though it was not significant at the 5 % level. Such hypotheses will be

tested below for the effects of share repurchases on firms’ dividend payments.

38.9.3 Results from Dynamic and Static Models for Dividends
per Share with Share Repurchases and Intangible Assets
Included as Explanatory Variables

The results from models for dividends per share and ratios of dividends to firms’

book value, with share repurchases included as a potentially endogenous explana-

tory variable, are in Table 38.6; firms’ intangible assets were included in these

models. Because short-term investments were not significant predictors of share

repurchases in Table 38.5, this variable was dropped from the models for dividends

and share repurchases in Tables 38.6 and 38.7, respectively. There were greater

number of missing observations on intangible assets and sample sizes in Table 38.6

were lower than sample sizes in Table 38.4.

The noteworthy feature of the results for dividends per share in Table 38.6 was

that coefficients of share repurchases was estimated with a small negative coeffi-

cient (�0.004) in the dynamic model that reached statistical significance at the 5 %

level. However, this coefficient from the static model was 0.0002 and was not

1082 A. Bhargava
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significant. Also, coefficients of share repurchases in the model for the ratio of

dividends to book value were statistically not different from zero. Exogeneity

hypotheses for share repurchases could not be rejected using the Chi-square statis-

tics in dynamic and static models for dividends per share and for the ratio of

dividends to firms’ book value. Because share repurchases in the comprehensive

models generally did not affect dividend payments, it seems likely that firms

decided their dividends payments at an earlier stage than share repurchases. By

contrast, dividends per share were significant predictors of share repurchases in

Table 38.5.

Another important finding in Table 38.6 was that intangible assets were esti-

mated with negative and significant coefficients in dynamic and static models for

dividends per share. The results for other explanatory variables were similar to

those presented in Table 38.4, thereby showing robustness of the estimates to

changes in model specification and to reductions in sample sizes due to greater

number of missing observations on intangible assets.

38.9.4 Results from Dynamic and Static Models for Share
Repurchases with Intangible Assets Included as
Explanatory Variables

Table 38.7 presents the results for logarithms of share repurchases with intangible

assets included as explanatory variables in the models; in Specification 2, dividends

per share were replaced by the ratio of dividends to firms’ book values. The results

in Table 38.7 showed that intangible assets were positively and significantly

associated with share repurchases. This was in contrast with the results in Table 38.6

where intangible assets were negatively associated with dividends per share. Thus,

firms possessing higher intangible assets paid lower dividends per share and made

greater share repurchases; these results indicate the inappropriateness of modeling

the ratio of dividend payments to total payouts (Skinner 2008). Furthermore, while

intangible assets have received attention in the literature (Lev 2001), their effects on

dividends and share repurchases have not been rigorously investigated. For example,

it has been suggested that information technology firms may pay low (or zero)

dividends and make frequent repurchases in part because they have higher invest-

ments in research and development. A dummy variable was created using SIC

codes for information technology firms in manufacturing, transportation, and com-

munications sectors. However, the estimated coefficient was not significantly

different from zero. Thus, the reported coefficients in Table 38.7 appear not to

suffer from biases due to omission of such variables.

Further, dividends per share and the ratio of dividends to book value were

negatively and significantly associated with share repurchases, with large magni-

tudes of the estimated coefficients. Thus, the models with intangible assets as an

explanatory variable again showed that firms paying higher dividends made smaller

share repurchases. Also, exogeneity hypothesis for dividends-to-book value ratio

was close to rejection using the Chi-square statistic at 5 % level in the static model.
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The rejection of the null indicated that there was some dependence in the

unobserved factors affecting the firms’ decisions to pay dividends and make share

repurchases. For example, if firms made “unexpectedly” large share repurchases,

then such decisions in turn can affect dividend payments.

Finally, in view of the literature on choice of measures for share repurchases

(Banyi et al. 2008), the variable “purchase of common stock” was used as a proxy

for share repurchases, and dynamic and static models were estimated. The results

from modeling purchase of common stock were similar to those reported in

Tables 38.5 and 38.7 using the more complex definition of share repurchases.

However, greater numbers of observations were missing on purchase of common

stock variable and these were reduced in the more complex definition because

changes in Treasury stock were often positive so that the purchase of common stock

variable was not utilized. Overall, the results indicated that these two measures for

share repurchases yield similar results, perhaps because the models captured many

salient features of the interrelationships.

38.10 Conclusion

This chapter presented a detailed analysis of the interrelationships between divi-

dend payments and share repurchases by US industrial firms and modeled the

proximate determinants of the payout methods (Bhargava 2010). The usefulness

of analyzing longitudinal Compustat data on large number of firms and of appro-

priate econometric estimators was underscored. The empirical results provided

several insights that can be summarized as follows. First, the magnitudes of

dividends per share and dividend payments were broadly stable over the period of

1992–2007 using the data on the same firms. Moreover, simple dynamic models

showed that dividends were higher in the period 2003–2007, following reduction in

tax rates in 2003. These results were in some contrast with previous cross-sectional

findings where entry and exit by firms in the Compustat database affected the

numbers of firms paying dividends and magnitudes of dividend payments. For

example, dividends were not seen to be “disappearing” (Fama and French 2001)

and, apart from the effects of the tax cut in 2003, dividends were not “reappearing”

(Julio and Ikenberry 2004). The simple dynamic models for share repurchases

indicated steady increases in the period 1992–2007.

Second, the analytical and econometric frameworks led to comprehensive

dynamic models for dividends per share and repurchases. The empirical results

showed that variables such as firms’ earnings, total assets, and investments were

positively and significantly associated with dividends per share. Similar results

were found for share repurchases, though firms’ long-term debt was negatively and

significantly associated with repurchases but was significantly associated with

dividends only in a few models. Moreover, while dividends per share were nega-

tively and significantly associated with share repurchases, coefficients of share
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repurchases were generally insignificant in the models for dividends. Exogeneity

hypotheses for dividends per share were accepted in most models for repurchases,

and exogeneity of share repurchases was also accepted in the models for dividends.

These results suggest that firms’ decisions to pay dividends at particular rates are

taken prior to the decisions to repurchase shares that are more strongly influenced

by the firms’ current financial situations. For example, while firms can adjust

repurchases given their debt levels, it may be more difficult to alter dividend

payments. Thus, interpreting negative correlations between dividend forecasting

errors and share repurchases as evidence of “substitution” between payment forms

(Grullon and Michaely 2002) seems inconsistent with the elaborate two stage

decision process documented by econometric analyses of the longitudinal

Compustat database.

Third, the effects of firms’ intangible assets on dividends per share were negative

and significant, while these coefficients were positive and significant in the models

for share repurchases. Such findings indicate that it is appropriate to model the two

payout methods via separate models rather than combining them into a single

variable. These results support the insights of Pearson (1897) and Neyman (1952)

cautioning against employing ratios of variables in applied work. Such problems are

exacerbated in longitudinal data analyses because stochastic properties of variables

combined can evolve differently over time. It might have been useful to disaggregate

intangible assets into components such as goodwill since they may differentially

affect dividends and repurchase decisions. Because of missing observations on such

variables in the Compustat database, further analyses were not pursued.

Finally, while econometric methods were useful for modeling the dynamic

interactions between dividend payments and share repurchases, it is important in

future research to investigate the role played by executive remuneration or com-

pensation in making such allocations. Options to purchase company stock at some

point in the future are regularly granted to the top executives and other employees

of US firms and these may have potentially increased firms’ share repurchases. If

such decisions in turn reduce funds available for investment and research and

development, then tax policies should discourage excessive repurchase activity.

The ExecuComp (2008) database contains information on salary, bonus, and stock

options granted to top executives of approximately 1,500 US firms from 1992.

A recent analysis of the merged ExecuComp and Compustat databases in fact

showed that beyond certain thresholds, share repurchases lower firms’ expenditures

on research and development and investments and should be discouraged

(Bhargava 2012).

Appendix

The concentrated or “profile” log-likelihood functions of the model in Eq. 38.3 was

computed by a FORTRAN program and was optimized using the numerical scheme
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E04 JBF from Numerical Algorithm Group (1991). Note that the data were read

firm-by-firm and several second moment matrices were created. Thus, there was no

limit on the number of firms in the sample. The profile likelihood function, which

depends only on the structural form parameters of interest, was computed using the

second moment matrices. FORTRAN programs for the computations of the likeli-

hood functions are available on request from the author.

The likelihood functions were separately computed for the case where the

variance-covariance matrix of the errors was unrestricted and where the errors

were decomposed in a random effect fashion, as in Eq. 38.2. Likelihood ratio

tests were applied to discriminate between these two alternative formulations.

Assuming that the number of firms (H) is large but the number of time observations

is fixed, asymptotic standard errors of the parameters were obtained by approxi-

mating second derivatives of the functions at the maximum.

Further, assuming that n1 and n2 time-varying variables are exogenous and

endogenous, respectively, as in Eq. 38.5, one can tackle the correlation between

the errors u’s and x2’s. It is reasonable to assume in short panels that a variable such

as dividends per share in Eq. 38.5 may be correlated only with firm-specific random

effects di. Thus, the correlation pattern can be decomposed as:

x2 i j t ¼ lj di þ x�2i j t (38.9)

where x*2 i j t are uncorrelated with di, and di are randomly distributed variables

with zero mean and finite variance as in Eq. 38.2. This correlation pattern was

invoked by Bhargava and Sargan (1983) and has the advantage that deviations of

x2 i j t’s from their time means:

xþ2 i j t ¼ x2 i j t � x�2 i j t ¼ 2, . . . , T; j ¼ n1 þ 1, . . . , n; i ¼ 1, . . . , Hð Þ
(38.10)

Where

x�2 i j ¼
XT
t¼1

x2 i j t=T j ¼ n1 þ 1, . . . n; i ¼ 1, . . . , Hð Þ (38.11)

can be used as additional [(T � 1) n2] instrumental variables to facilitate identifi-

cation and estimation of parameters. Because the T deviations from means (x+2 i j t)

in Eq. 38.10 will sum to zero for every firm, one time observation per variable needs

to be omitted so that the (T�1) instrumental variables are linearly independent. The

reduced form Eq. 38.6 for y1 is modified in this case as:

yi 1 ¼
Xm
j¼1

zi j zjþ
Xn1
j¼1

XT
k¼1

uj k x1i j kþ
Xn2
j¼1

XT
k¼2

mj kx
þ
2i j k þ ui1 i ¼ 1, . . . , Hð Þ

(38.12)
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Further, likelihood ratio tests can be applied to test for exogeneity of time means

of the n2 endogenous variables (x2) in Eq. 38.11 by testing if correlations between

the T errors (ui t) affecting the dependent variables and n2 time means in Eq. 38.11

are zero. For example, given 8-time observations (T ¼ 8), likelihood ratio statistic

for testing zero correlation between errors affecting share repurchases in Eq. 38.4

(n2 ¼ 1) and time means of dividends per share is distributed for large H as

a Chi-square variable with 8 degrees of freedom.

The identification of parameters is achieved via the n1 time-varying exogenous

variables in the model (e.g., Sargan 1958). For example, in the system representing

(T�1) time periods in Eq. 38.7, only the exogenous explanatory variables in time

period t explain the dependent variable in period t. The remaining (T�1) n2 vari-

ables are excluded from the t th equation and are used in the set of instrumental

variables for identifying the coefficients of endogenous variables. Sufficient con-

ditions for identification, exploiting the time structure of longitudinal models, were

developed in Bhargava and Sargan (1983). For example, each exogenous time-

varying variable in the model for share repurchases in Eq. 38.4 effectively provides

eight exogenous variables of which seven are excluded from the equations. The null

hypothesis that dividends per share do not affect share repurchases can be tested

using the estimated coefficient b12 of dividends per share in Eq. 38.4. Also, one can

test if share repurchases affect dividends per share by including repurchases as

a potentially endogenous variable in Eq. 38.3.

For static version of the models not containing lagged dependent variables, one

can use stepwise estimation procedures with equality restrictions on coefficients

across time periods (Bhargava 1991). Efficient instrumental variables estimators

were used to estimate model parameters of Eq. 38.4, assuming the correlation

patterns for x2 i j t as in Eq. 38.9 and without restricting variance-covariance

matrices of the errors, i.e., the T x T dispersion matrix was assumed to be symmetric

and positive definite but not of the simple random effects form as in Eq. 38.2. This

formulation has the advantage that the errors vi t in Eq. 38.2 may be serially

correlated which was likely to be the case in static models since the lagged

dependent variables were omitted. Exogeneity hypotheses can be tested in the

stepwise estimation procedures via Chi-square tests that are asymptotically equiv-

alent to likelihood ratio tests.

Finally, while one can use “fixed” effects estimators (with dummy variables for

each firm) to circumvent certain endogeneity problems, increase in the number of

parameters with sample size leads to the problem of “incidental parameters”

(Neyman and Scott 1948). For example, coefficient of the lagged dependent variable

cannot be consistently estimated due to the incidental parameters in fixed effects

models unless the number of time observation is large. Moreover, from a modeling

standpoint, the use of random effects models obviates the need for estimating the

coefficients of large numbers of dummy variables for firms thereby enhancing the

efficiency of estimates. Exogeneity hypotheses for variables such as dividends per

share can be tested in the model for share repurchases. If the null were rejected, then

the models were estimated under the appropriate assumption that dividends per share

were correlated with errors affecting the models for share repurchases.
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Abstract

In this chapter, we illustrate some recent developments in the yield curve

modeling by introducing a latent factor model called the dynamic Nelson-Siegel

model. This model not only provides good in-sample fit, but also produces

superior out-of-sample performance. Beyond Treasury yield curve, the model

can also be useful for other assets such as corporate bond and volatility.

Moreover, the model also suggests generalized duration components

corresponding to the level, slope, and curvature risk factors.

The dynamic Nelson-Siegel model can be estimated via a one-step procedure,

like the Kalman filter, which can also easily accommodate other variables of

interests. Alternatively, we could estimate the model through a two-step process

by fixing one parameter and estimating with ordinary least squares. The model is

flexible and capable of replicating a variety of yield curve shapes: upward
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sloping, downward sloping, humped, and inverted humped. Forecasting the yield

curve is achieved through forecasting the factors and we can impose either

a univariate autoregressive structure or a vector autoregressive structure on the

factors.

Keywords

Term structure • Yield curve • Factor model • Nelson-Siegel curve • State-space

model

39.1 Introduction

There have been major advances in theoretical term structure models, as well as

their econometric estimation. Two popular approaches to term structure modeling

are no-arbitrage models and equilibrium models. The no-arbitrage tradition focuses

on eliminating arbitrage opportunities by perfectly fitting the term structure at

a point in time, which is important for pricing derivatives; see Hull and White

(1990) and Health et al. (1992), among others. The equilibrium tradition models the

dynamics of the instantaneous rate typically through affine models so that yields at

other maturities can be derived under various assumptions about the risk premium

(e.g., Vasicek 1977; Cox et al. 1985; Duffie and Kan 1996).

Formany finance questions, such as bond portfoliomanagement, derivatives pricing,

and riskmanagement, it is crucial to both produce accurate estimates of the current term

structure as well as forecast future interest rate dynamics. One class of models that has

one potential satisfactory answer to these questions is that of the Nelson-Siegel class of

models (see, Nelson and Siegel 1987). Here, we survey some recent developments of

this model. This model not only provides good in-sample fit, but also produces superior

out-of-sample performance. Moreover, the model also suggests generalized duration

components corresponding to the level, slope, and curvature risk factors.

39.2 Modeling the Term Structure

Let Pt(t) be the date t price of a zero-coupon riskless bond that pays $1 in t periods.
Then,

Pt tð Þ ¼ exp �tyt tð Þð Þ: (39.1)

In practice, yield curves, discount curves, and forward curves are not observed.

Instead, they must be estimated from observed bond prices. A popular approach is

to estimate forward rates at the observed maturities, and then, construct

unsmoothed yields by averaging appropriate estimated forward rates. These yields

exactly price the included bonds (see Fama and Bliss 1987).

The original Nelson and Siegel (1987) framework is a convenient and parsimo-

nious three-component exponential approximation. They work with the forward
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rate, which can be viewed as a constant plus a Laguerre function. Diebold and

Li (2006) made it dynamic, and thus, the corresponding yield curve is

yt tð Þ ¼ b1t þ b2t
1� e�lt

lt

� �
þ b3t

1� e�lt

lt
� e�lt

� �
þ et, (39.2)

and call it DNS hereafter. b1 changes all yields uniformly, and it can be called the

level factor (Lt). b2 loads the short rate more heavily, its loading decays to zero as

maturity lengthens, and it can be called the slope factor (St). b3 loads the medium

term more heavily, its loading starts at zero and decays back to zero as maturity

increases, and it can be called the curvature factor (Ct). In Fig. 39.1, we plot the

factor loadings for a specific value of l. l determines the maturity at which the

medium-term (or the curvature factor) loading achieves its maximum, which effec-

tively controls the location of the hump of the curve. The DNS model is different

from the factor analysis, in which one estimates both the unobserved factors and

factor loadings. Here, the framework imposes structure on the factor loadings.

39.3 Fitting the Yield Curve

39.3.1 Data Construction

The standard way of measuring the term structure is by means of the spot rate curve

(or equivalently the yield-to-maturity) on zero-coupon bonds.1 The problem with

1
β1 Loadings

β2 Loadings

β3 Loadings

0.8
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in
gs 0.6
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0
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τ (Maturity, in Months)
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Fig. 39.1 Factor loadings.

This figure plots the factor

loadings when l is prefixed

at 0.0609

1Zero coupon bonds are chosen to limit the “coupon effect,” which implies that two bonds that are

identical in every respect except for bearing different coupon rates can have a different yield-to-

maturity.
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zero-coupon yields is that these are not usually directly observed. For example, the

US Treasury Bills do not bear coupon, but they are only available for maturities of

1-year or less, and the longer maturity zero-coupon yields need to derived from

coupon bearing Treasury Notes and Bonds. A popular approach to resolve such an

issue is the bootstrapping procedure by Fama and Bliss (1987), which sequentially

extracts forward rates from bond prices with successively longer maturities and

then takes advantages of the interchangeable nature of the spot rate curve, discount

curve, and forward rate curve.

39.3.2 Estimation Procedure

Because of the structure the model imposes, estimation can be achieved with high

precision. There are two popular approaches: the one-step and two-step procedures.

The one-step procedure can be achieved in two ways. One method is simply to

estimate the model by nonlinear least squares for each month t. The other way is to
transform the system into a state-space representation and estimate l and the factors
via a Kalman filter. Alternatively, for a two-step procedure, Diebold and Li (2006)

advocate prefixing the l, and estimating the factors via ordinary least squares (OLS).

The appendix provides more discussion of these two approaches.

As we can see in Fig. 39.2, the model is flexible and is capable of replicating

a variety of yield curve shapes: upward sloping, downward sloping, humped, and

inverted humped. Figure 39.3 displays the autocorrelations of the estimated factors

and residuals. The level factor displays high persistence and is, of course, positive.

In contrast, the slope and curvature factors are less persistent and assume both

positive and negative values.

39.4 Forecasting the Yield Curve

Forecasting the yield curve can be achieved through forecasting the factors. We can

impose either a univariate autoregressive structure or a vector autoregressive

structure on the factors.

The yield forecasts based on underlying univariate AR(1) factor specifications

are

ŷtþh=t tð Þ ¼ b1, tþh=t þ b2, tþh=t

1� e�ltt

ltt

� �
þ b3, tþh=t

1� e�ltt

ltt
� e�ltt

� �
, (39.3)

where b forecasts are made by the following:

b̂1, tþh=t ¼ ĉ1 þ ĝ1b̂1t

b̂2, tþh=t ¼ ĉ2 þ ĝ2b̂2t

b̂3, tþh=t ¼ ĉ3 þ ĝ3b̂3t

(39.4)
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The yield forecasts based on an underlying multivariate autoregressive specifi-

cation (Vector AR(1)) are

ŷtþh=t tð Þ ¼ b1, tþh=t þ b2, tþh=t

1� e�ltt

ltt

� �
þ b3, tþh=t

1� e�ltt

ltt
� e�ltt

� �
, (39.5)

where

b̂tþh=t ¼ ĉ þ ĝb̂t, (39.6)

and b ¼ {b1,b2,b3,}0.
The random walk model,

ŷtþh=t tð Þ ¼ yt tð Þ, (39.7)

is a no-change forecast model, which is used as the benchmark.2

2Diebold and Li (2006) conduct a more extensive comparisons with competing models.
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Fig. 39.2 Selected fitted yield curves. This figure presents fitted yield curve for selected dates,

together with actual yields (Source: Diebold and Li 2006)
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We define forecast errors at t + h as ytþh tð Þ � ŷtþh tj tð Þ. Table 39.1 reports the

root mean-squared errors of the out-of-sample performance of the DNS model

versus the random walk model. An error of 0.235 indicates a mean-squared error

of 23.5 basis points in the yield prediction. For 1 month ahead, the random walk is
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Fig. 39.3 Autocorrelation and residual autocorrelation. This figure presents sample autocorrela-

tions of the level, slope, and curvature factors, as well as the sample autocorrelations of AR

(1) models t to the three estimated factors, along with Barletts approximate 95 condence bands

(Source: Diebold and Li 2006)
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hard to beat, but matters improve dramatically. The DNS model with an AR

(1) specification produces smaller errors, so it clearly has advantages (see Diebold

and Li 2006 for more details). Remember here, we only illustrate the point forecast,

and it can be extended easily to interval forecasting since they are useful for risk

management.

39.5 Other Applications

Beyond the US Treasury yield curve, the Nelson-Siegel model has also shown

success in fitting and forecasting other assets and global yield curves (see Krishnan

et al. 2010; Diebold et al. 2008; Hua 2010). Since the model produces three factors

that capture the information in the entire term structure, we can analyze the

dynamic relationship among them. For example, Hua (2010) analyzes the dynamic

interaction between the credit spread term structure and equity option implied

volatility term structure.

Moreover, the DNS framework can be easily augmented with other variables

of interest. We could also analyze how macroeconomic variables are linked

with the interest rate term structure; see Auroba et al. (2006). This can be done

easily in a state-space framework. Frequently, yield variation reacts to

macrovariables, and macrovariables can also be impacted by the yields. Poten-

tially, we can improve our forecasts of one by incorporating information from

the other.

Table 39.1 Out-of-sample forecasting results

3-month 1-year 2-year 3-year 5-year 10-year 30-year

1 month a head

Random walk 0.235 0.259 0.290 0.300 0.288 0.257 0.211

Unrestricted VAR 0.213 0.261 0.307 0.302 0.310 0.314 0.419

Univariate AR 0.248 0.282 0.315 0.301 0.311 0.314 0.418

6 months ahead

Random walk 0.910 0.904 0.938 0.857 0.813 0.655 0.570

Unrestricted VAR 0.909 1.050 1.078 0.999 0.949 0.796 0.717

Univariate AR 0.694 0.890 0.908 0.881 0.827 0.651 0.486

1 years ahead

Random walk 1.552 1.505 1.343 1.190 1.065 0.858 0.622

DNS Unrestricted VAR 1.643 1.731 1.641 1.483 1.338 1.123 0.979

DNS Univariate AR 1.383 1.445 1.338 1.182 1.041 0.819 0.615

This table presents the results of out-of-sample forecasts using VAR and univariate AR specifi-

cations of the DNS factors. I estimate all models recursively from 1987:1 to the time the forecast

is made, beginning in 1997:1 and extending through 2002:12. I define forecast errors at t + h as

ytþh tð Þ � ŷtþh=t tð Þ and report the root mean-squared errors versus random walk.

39 Term Structure Modeling and Forecasting Using the Nelson-Siegel Model 1099



39.6 Generalized Duration Measure

Traditional interest rate risk management focuses on duration and duration man-

agement, which only considers parallel shifts of the yield curve. However, in

practice, nonparallel shifts do exist and these are a significant source of risk. The

DNS model presents a generalized duration component that corresponds to the

level, slope, and curvature risk factors.

We can define a bond duration measure as follows. Let the cash flows from bond

be C1,C2, . . .,CI, and define the associated maturities to be t1,t2,. . .,tI. We assume

that the yield curve is linear in some arbitrary factors f1, f2, and f3,

yt tð Þ ¼ B1 tð Þf 1t þ B2 tð Þf 2t þ B3 tð Þf 3t: (39.8)

This is consistent with the DNS setup. Since the price of the bond can be

expressed as,

P ¼
XI
i¼1

Cie
�tiyt tið Þ, (39.9)

for an arbitrary change of the yield curve, the price change is

dP ¼
XI
i¼1

∂P
∂yt tið Þdyi tið Þ ¼

XI
i¼1

Cie
�tiyt tið Þ �tið Þ

h i
dyt tið Þ, (39.10)

Where yt(ti) are treated as independent variables. Rearranging terms, we can

express the percentage change in bond price as a function of changes in the factors

� dP

P
¼
X3
j¼1

XI
i¼1

1

P
Cie

�tiyt tið Þti

� �
Bj tið Þ

( )
df it ¼

X3
j¼1

XI
i¼1

witiBj tið Þ
( )

df it,

(39.11)

where wi is the weight associated with Ci.

Since we have decomposed the bond price changes into risk factor changes, the

duration component associated with each risk factor is, for j ¼ 1,2,3,

Dj ¼
XI
i¼1

witiBj tið Þ: (39.12)
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Moreover, based on the dynamic Nelson-Siegel model, the vector duration is

D1 ¼
XI
i¼1

witi

D2 ¼
XI
i¼1

wi
1� e�lti

l

D3 ¼
XI
i¼1

wi
1� e�lti

l
� tie�lti

� �
:

(39.13)

The vector duration measure has the following properties:

• D1, D2, and D3 increase with maturity t.
• D1, D2, and D3 decrease with coupon rate.

• D1, D2, and D3 decrease with yield-to-maturity.

Note that D1 is exactly the tradition Macaulay duration.

Diebold et al. (2006) apply this vector duration measure as immunization tools in

a practical bond portfolio management context. They report that hedging based on

the vector duration outperforms hedging based on Macaulay duration in almost all

samples and all holding periods. Moreover, it also outperforms polynomial vector

duration during unusual market situations such as the monetary regime of the early

80s. Therefore, the vector duration measure seems to be an appealing risk

management tool.

39.7 Summary

We have presented the DNS model as a capable and flexible model that can fit the

term structure of interest rates in-sample and predict them out-of-sample. It can

easily be extended to a different asset class or accommodate other variables into the

specifications. Given the advantages of the dynamic Nelson-Siegel model in many

dimensions, it is gaining in popularity. Recently, the Board of Governors of the

Federal Reserve System has started publishing the daily estimated factors of the

Treasury yield curve on their website.3

One potential drawback of the DNS model is that it does not rule out arbitrage

opportunities. Recently, an arbitrage free version of the model has been developed;

see Christensen et al. (2009, 2011).

Appendix 1: One-Step Estimation Method

We illustrate the one-step method to estimate the DNS model. If the dynamics of

betas (factors) follow a vector autoregressive process of first order, the model

3The data can be found at http://www.federalreserve.gov/econresdata/researchdata.htm
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immediately forms a state-space system since ARMA state vector dynamics of any

order may be transformed into a state-space form. Thus, the transition equation is

b1, t � mb1
b2, t � mb2
b3, t � mb3

0
@

1
A ¼

a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A

b1, t�1 � mb1
b2, t�1 � mb2
b3, t�1 � mb3

0
@

1
Aþ

�1, t
�2, t
�3, t

0
@

1
A, (39.14)

t ¼ 1, . . ., T. The measurement equation, which relates N yields to the three

unobserved factors, is

yt t1ð Þ
yt t2ð Þ
⋮

yt tNð Þ

0
BB@

1
CCA ¼

1
1� et1l
t1l

1� e�t1l

t1l
� e�t1l

1
1� et2l
t2l

1� e�t2l

t2l
� e�t2l

⋮ ⋮ ⋮

1
1� et1l
tNl

1� e�tN l

tNl
� e�tN l

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

b1, t
b2, t
b3, t

0
@

1
Aþ

e1, t
e2, t
⋮
eN, t

0
BB@

1
CCA, (39.15)

t ¼ 1, . . ., T. In matrix notation, we rewrite the state-space system as measure-

ment equation,

yt ¼ Gft þ et; (39.16)

state equation,

ft � mð Þ ¼ A ft�1 � mð Þ þ �t: (39.17)

For optimality of the Kalman filter, we assume that the white noise transaction

and measurement errors be orthogonal to each other.

�t
et

� �
� WN

0

0

� �
;

Q 0

0 H

� �� �
, (39.18)

E f0�
0
t

� �
¼ 0, (39.19)

E f0e
0
t

� �
¼ 0: (39.20)

The state-space set up with the application of the Kalman filter delivers maximum-

likelihood estimates and smoothed underlying factors, where all parameters are

estimated simultaneously. Such representation also allows for heteroskedasticity,

missing data, or heavy-tailed measurement errors. Moreover, other useful variables,

such as macroeconomic variables, can be augmented into the state equation to

understand the dynamic interactions between the yield curve and the macroeconomy.
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Appendix 2: Two-Step Estimation Method

The estimation for the two-step procedure requires us to choose a l value first. Once
the l is fixed, the values of the two regressors (factor loadings) can be computed, so

ordinary least squares can be applied to estimate the betas (factors) at each period t.
Doing so is not only simple and convenient, but also eliminates the potential for

numerical optimization challenges. The question is: What is the appropriate value

of l. Recall that l determines the maturity at which the loading achieves its

maximum. For example, for Treasury data, 2 or 3 years are commonly considered

medium term, so a simple average of the two is 30-month. The l value that

maximizes the loadings on the medium-term factor at exactly 30-month is

0.0609. For a different market, the medium maturity could be different, so the

corresponding l value could be different as well.
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Abstract

The literature has so far focused on the risk-return trade-off in equity markets

and ignored alternative risky assets. This paper examines the presence and

significance of an intertemporal relation between expected return and risk in

the foreign exchange market. The paper provides new evidence on the

intertemporal capital asset pricing model by using high-frequency intraday

data on currency and by presenting significant time variation in the risk aversion

parameter. Five-minute returns on the spot exchange rates of the US dollar

vis-à-vis six major currencies (the euro, Japanese yen, British pound sterling,

Swiss franc, Australian dollar, and Canadian dollar) are used to test the existence

and significance of a daily risk-return trade-off in the FX market based on the
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GARCH, realized, and range volatility estimators. The results indicate a positive

but statistically weak relation between risk and return on currency.

Our empirical analysis relies on the maximum likelihood estimation of the

GARCH-in-mean models as described in Appendix 1. We also use the seem-

ingly unrelated (SUR) regressions and panel data estimation to investigate the

significance of a time-series relation between expected return and risk on

currency as described in Appendix 2.

Keywords

GARCH • GARCH-in-mean • Seemingly unrelated regressions (SUR) • Panel

data estimation • Foreign exchange market • ICAPM • High-frequency data •

Time-varying risk aversion • High-frequency data • Daily realized volatility

40.1 Introduction

Merton’s (1973) intertemporal capital asset pricing model (ICAPM) indicates that

the conditional expected excess return on a risky market portfolio is a linear

function of its conditional variance plus a hedging component that captures the

investor’s motive to hedge for future investment opportunities. Merton (1980)

shows that the hedging demand component becomes negligible under certain

conditions and the equilibrium relation between risk and return is defined as

Et Rtþ1ð Þ ¼ b � Et s2tþ1

� �
(40.1)

where Et(Rt+1) and Et(st+1
2 ) are, respectively, the conditional mean and variance of

excess returns on a risky market portfolio and b > 0 is the risk aversion parameter

of market investors. Equation 40.1 establishes the dynamic relation that investors

require a larger risk premium at times when the market is riskier.

Many studies investigate the significance of an intertemporal relation between

expected return and risk in the aggregate stock market. However, the existing

literature has not yet reached an agreement on the existence of a positive risk-

return trade-off for stock market indices.1 Due to the fact that the conditional mean

and volatility of the market portfolio are not observable, different approaches,

different data sets, and different sample periods used by previous studies in

estimating the conditional mean and variance are largely responsible for the

contradictory empirical evidence.

The prediction of Merton (1973, 1980) that expected returns should be related to

conditional risk applies not only to the stock market portfolio but also to any risky

portfolio. However, earlier studies have so far focused on the risk-return trade-off in

1See French et al. (1987), Campbell (1987), Nelson (1991), Campbell and Hentschel (1992), Chan

et al. (1992), Glosten et al. (1993), Scruggs (1998), Harvey (2001), Goyal and Santa-Clara (2003),

Brandt and Kang (2004), Ghysels et al. (2005), Bali and Peng (2006), Christoffersen and Diebold

(2006), Guo and Whitelaw (2006), Lundblad (2007), and Bali (2008).
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equity markets and ignored other risky financial assets. Although there are a few

studies testing the significance of a time-series relation between risk and return

in international equity markets, the focus is generally on the US stock market. It is

also important to note that earlier studies assume a constant risk-return trade-off and

ignore time variation in the risk aversion parameter b.2 This paper examines the

intertemporal relation between expected return and risk in currency markets. The

paper not only investigates ICAPM in the foreign exchange market but examines

the significance of time-varying risk aversion as well.

The foreign exchange market includes the trading of one currency against

another between large banks, central banks, currency speculators, multinational

corporations, governments, and other financial markets and institutions. The

FX market is an interbank or inter-dealer network first established in 1971 when

many of the world’s major currencies moved towards floating exchange rates. It is

considered an over-the-counter (OTC) market, meaning that transactions are

conducted between two counterparties that agree to trade via telephone or elec-

tronic network. Because foreign exchange is an OTC market where brokers/dealers

negotiate directly with one another, there is no central exchange or clearing house.3

The FX market has grown rapidly since the early 1990s. According to the

triennial central bank surveys conducted by the Bank for International Settlements

(BIS), the April 2007 data show an unprecedented rise in activity in traditional

foreign exchange markets compared to 2004. As shown in Table 40.1, average daily

turnover rose to US $3.1 trillion in April 2007, an increase of 69 % (compared to

April 2004) at current exchange rates and 63 % at constant exchange rates.4 Since

April 2001, average daily turnover in foreign exchange markets worldwide

(adjusted for cross-border and local double-counting and evaluated at April 2007

exchange rates) increased by 58 % and 69 % between two consecutive triennial

surveys. Comparing the average daily turnovers of US $500 billion in 1988 and US

$3.1 trillion in 2007 indicates that trading volume in FX markets increased by more

than five times over the past two decades.

The FX market has become the world’s largest financial market, and it is not

uncommon to see over US $3 trillion traded each day. By contrast, the New York

Stock Exchange (NYSE) – the world’s largest equity market with daily trading

volumes in the US $60–80 billion dollar range – is positively dwarfed when

compared to the FX market. Daily turnover in FX markets is now more than ten

times the size of the combined daily turnover on all the world’s equity markets.

2A few exceptions are Chou et al. (1992), Harvey (2001), and Lettau and Ludvigson (2010).
3As FX trading has evolved, several locations have emerged as market leaders. Currently, London

contributes the greatest share of transactions with over 32 % of the total trades. Other trading

centers – listed in order of volume – are New York, Tokyo, Zurich, Frankfurt, Hong Kong, Paris,

and Sydney. Because these trading centers cover most of the major time zones, FX trading is a true

24-h market that operates 5 days a week.
4In addition to “traditional” turnover of US $3.1 trillion in global foreign exchange market, US

$2.1 trillion was traded in currency derivatives.
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Even when combining the US bond and equity markets, total daily volumes still do

not come close to the values traded on the currency market.

The FX market is unique because of its trading volumes; the extreme liquidity

of the market; the large number of, and variety of, traders in the market; its

geographical dispersion; its long trading hours (24 h a day except on weekends);

the variety of factors that affect exchange rates; the low margins of profit compared

with other markets of fixed income (but profits can be high due to very large trading

volumes); and the use of leverage.

Earlier studies have so far focused on the US stock market when investigating

the ICAPM. However, with an average daily trading volume of US $3 trillion per

day, Forex is far and away the most enormous financial market in the world,

dwarfing the trading volumes of other markets. We contribute to the existing

literature by examining for the first time the significance of an intertemporal

relation between expected return and risk on currency. We also test whether

aggregate risk aversion in the FX market changes through time.

We utilize 5-min returns on the spot exchange rates of the US dollar vis-à-vis six

major currencies (the euro, Japanese yen, British pound sterling, Swiss franc,

Australian dollar, and Canadian dollar) to construct the daily returns, realized

volatility, and range volatility estimators. Then, using the intraday data-based

daily returns as well as the GARCH, realized, and range-based volatility measures,

we test for the presence and significance of a risk-return trade-off in the FX market.

By sampling the return process more frequently, we improve the accuracy of

the conditional volatility estimate and measure the risk-return relationship at the

daily level. When we assume a constant risk-return trade-off in currency

markets, we find a positive but statistically weak relation between expected return

and risk on currency.

Table 40.1 Reported foreign exchange market turnover by currency paira (Daily averages in
April, in billions of US dollars and percent)

2001 2004 2007

Amount % share Amount % share Amount % share

US dollar/euro 354 30 503 28 840 27

US dollar/yen 231 20 298 17 397 13

US dollar/British pound 125 11 248 14 361 12

US dollar/Australian dollar 47 4 98 5 175 6

US dollar/Swiss franc 57 5 78 4 143 5

US dollar/Canadian dollar 50 4 71 4 115 4

US dollar/other 195 17 295 16 628 21

Euro/yen 30 3 51 3 70 2

Euro/sterling 24 2 43 2 64 2

Euro/Swiss franc 12 1 26 1 54 2

Euro/other 21 2 39 2 112 4

Other currency pairs 26 2 42 2 122 4

All currency pairs 1,173 100 1,794 100 3,081 100

aAdjusted for local and cross-border double-counting
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We estimate the dependence of expected returns on the lagged realized variance

over time using rolling regressions. This also allows us to check whether our results

are driven by a particular sample period. Two different rolling regression

approaches provide strong evidence on the time variation of risk aversion

parameters for all currencies considered in the paper. However, the direction

of a relationship between expected return and risk is not clear for the entire FX

market.

The paper is organized as follows. Section 40.2 provides the descriptive statistics

for the daily and 5-min returns on exchange rates as well as the daily realized and

range-based volatility measures. Section 40.3 explains the estimation methodology.

Section 40.4 presents the empirical results on a constant risk-return trade-off in

the FX market. Section 40.5 examines the significance of time-varying risk

aversion. Section 40.6 investigates whether the covariances of individual

exchange rates with the FX market are priced in currency market. Section 40.7

concludes the paper.

40.2 Data

To test the significance of a risk-return trade-off in currency markets, we use daily

returns on the spot exchange rates of the US dollar vis-à-vis six major currencies:

the euro (EUR), Japanese yen (JPY), British pound sterling (GBP), Swiss franc

(CHF), Australian dollar (AUD), and Canadian dollar (CAD). According to the BIS

(2007) study, on the spot market the most heavily traded currency pairs were

EUR/USD (27 %), JPY/USD (13 %), GBP/USD (12 %), AUD/USD (6 %),

CHF/USD (5 %), and CAD/USD (4 %). As reported in Table 40.2, the US dollar

has been the dominant currency in both the spot and the forward and the swap

transactions. Specifically, the US currency was involved in 88.7 % of transactions,

followed by the euro (37.2 %), the Japanese yen (20.3 %), the pound sterling

(16.9 %), the Swiss franc (6.1 %), Australian dollar (5.5 %), and Canadian

dollar (4.2 %). The sum of the six major currencies (EUR, JPY, GBP, CHF,

AUD, CAD) accounts for a market share approximately equal to that of the US

dollar (90.2 %).5

The raw 5-min data on six exchange rates (EUR/USD, JPY/USD, GBP/USD,

CHF/USD, AUD/USD, and CAD/USD) are obtained from Olsen and Associates.

The full sample covers 2,282 days, from January 1, 2002 to March 31, 2008.

Following Bollerslev and Domowitz (1993) and Andersen et al. (2001b), we define

the day as starting at 21:05 pm on one night and ending at 21:00 pm the next night.

The total number of 5-min observations for each exchange rate is therefore equal to

2,282 � 288 ¼ 657,216. However, we are not able to use all of these observations

5Note that volume percentages should add up to 200 %; 100 % for all the sellers and 100 % for all

the buyers. As shown in Table 40.2, the market shares of seven major currencies add up to 180 %.

The remaining 20 % of the total (200 %) market turnover has been accounted by other currencies

from Europe and from other parts of the world.
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because the trading activity in FX markets slows down substantially during the

weekends and the major US official holidays. Following Andersen et al. (2001b),

along with the weekends, we removed the following holidays from our sample:

Christmas (December 24–26), New Year’s (December 31–January 2), July 4th,

Good Friday, Easter Monday, Memorial Day, Labor Day, Thanksgiving Day, and

the day after. In addition to official holidays and weekends, we removed 3 days

(March 4, 2002, April 14, 2003, and January 30, 2004) from our sample as these

days contained the longest zero or constant 5-min return sequences that might

contaminate the daily return and variance estimates. As a result, we end up with

a total of 1,556 daily observations.

Panel A of Table 40.3 presents the mean, median, maximum, minimum,

standard deviation, skewness, kurtosis, and autoregressive of order one, AR(1),

statistics for daily returns on the six exchange rates. The standard errors of the

skewness and kurtosis estimates provide evidence that the empirical distributions of

returns on exchange rates are generally symmetric and fat tailed. More specifically,

the skewness measures are statistically insignificant for all currencies, except for

the Japanese yen. The kurtosis measures are statistically significant without any

exception. The Jarque-Bera, JB ¼ n[(S2/6) + (K–3)2/24], is a formal statistic

with the Chi-square distribution for testing whether the returns are normally

distributed, where n denotes the number of observations, S is skewness, and K is

kurtosis. The JB statistics indicate significant departures from normality for

the empirical return distributions of six exchange rates. As expected, daily

returns on exchange rates are not highly persistent, as shown by the negative AR

(1) coefficients which are less than 0.10 in absolute value. Although the

economic significance of the AR(1) coefficients is low, they are statistically

significant at the 5 % or 1 % level for all currencies, except for the British pound

and Australian dollar.

The daily intertemporal relation between expected return and risk on

currency is tested using the daily realized variance of returns on exchange rates.

In very early work, the daily realized variance of asset returns is measured

Table 40.2 Most traded

currencies: currency

distribution of reported FX

market turnover

Currency Symbol % daily share

US dollar USD ($) 88.7 %

Euro EUR (€) 37.2 %

Japanese yen JPY (¥) 20.3 %

British pound sterling GBP (£) 16.9 %

Swiss franc CHF (Fr) 6.1 %

Australian dollar AUD ($) 5.5 %

Canadian dollar CAD ($) 4.2 %

Swedish krona SEK (kr) 2.3 %

Hong Kong dollar HKD ($) 1.9 %

Norwegian krone NOK (kr) 1.4 %

Other 15.5 %

Total 200 %
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by the squared daily returns, where the asset return is defined as the natural

logarithm of the ratio of consecutive daily closing prices. A series of papers by

Andersen et al. (2001a, b, 2003, 2004) indicate that these traditional measures are

poor estimators of day-by-day movements in volatility, as the idiosyncratic

component of daily returns is large. They demonstrate that the realized volatility

measures based on intraday data provide a dramatic reduction in noise and a radical

improvement in temporal stability relative to realized volatility measures based on

daily returns. Andersen et al. (2003) show formally that the concept of realized

variance is, according to the theory of quadratic variation and under suitable

conditions, an asymptotically unbiased estimator of the integrated variance, and

thus it is a canonical and natural measure of daily return volatility.

Following the recent literature on integrated volatility, we use the high-

frequency intraday data to construct the daily realized variance of exchange

rates. To set forth notation, let Pt denote the time t (t � 0) exchange rate with the

unit interval t corresponding to 1 day. The discretely observed time-series process

of logarithmic exchange rate returns with q observations per day, or a return horizon
of 1/q, is then defined by

R qð Þ, t ¼ ln Pt � ln Pt�1=q (40.2)

where t ¼ 1/q, 2/q, . . . . We calculate the daily realized variance of exchange rates

using the intraday high-frequency (5-min) return data as

VARrealized
t ¼

Xqi�1

i¼0

R2
qð Þ, t�i=q (40.3)

where qi,t is the number of 5-min intervals on day t and Ri,t is the logarithmic

exchange rate return in 5-min interval i on date t.
On a regular trading day, there are 288 5-min intervals. The exchange rate of the

most recent record in a given 5-min interval is taken to be the exchange rate of that

interval. A 5-min return is then constructed using the logarithmic exchange rate

difference for a 5-min interval. With 1,556 days in our full sample, we end up with

using a total of 1,556 � 288 ¼ 448,128 5-min return observations to calculate daily

return and variance estimates.

Panel B of Table 40.3 presents the summary statistics of the daily realized-

variances of exchange rate returns. The average daily realized variance is 6 � 10�5

for AUD/USD, 4.31� 10�5 for CHF/USD, 4.07� 10�5 for JPY/USD, 3.60� 10�5

for CAD/USD, 3.47 � 10�5 for EUR/USD, and 2.77 � 10�5 for GBP/USD. These

measures correspond to an annualized volatility of 12.30 % for AUD/USD, 10.42 %

for CHF/USD, 10.13 % for JPY/USD, 9.52 % for CAD/USD, 9.35 % for

EUR/USD, and 8.35 % for GBP/USD. A notable point in Panel B is that the daily

realized variances are highly persistent, as shown by the AR(1) coefficients which

are in the range of 0.49–0.64. Consistent with Andersen et al. (2001a, b), the

distributions of realized variances are skewed to the right and have much thicker

tails than the corresponding normal distribution.
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Market microstructure noises in transaction data such as the bid-ask bounce may

influence our risk measures based on the realized volatility and GARCH volatility

forecasts, even though the data we use contain very liquid financial time series

and thus are least subject to biases created by market microstructure effects.

An alternative volatility measure that utilizes information contained in the high-

frequency intraday data is Parkinson’s (1980) range-based estimator of the daily

integrated variance:

VARrange
t ¼ 0:361 ln Pmax

t

� �� ln Pmin
t

� �� �2
(40.4)

where Pt
max and Pt

min are the maximum and minimum values of the exchange rate on

day t. Alizadeh et al. (2002) and Brandt and Diebold (2006) show that the

range-based volatility estimator is highly efficient, approximately Gaussian, and

robust to certain types of microstructure noise such as bid-ask bounce. In addition,

range data are available for many assets over a long sample period.

Panel C of Table 40.3 presents the summary statistics of the daily range variances

of exchange rate returns. The average daily range variance is 4.20 � 10�5 for

AUD/USD, 3.56� 10�5 for CHF/USD, 3.15� 10�5 for JPY/USD, 2.63� 10�5 for

CAD/USD, 2.76 � 10�5 for EUR/USD, and 2.0 � 10�5 for GBP/USD. These

measures correspond to an annualized volatility of 10.29 % for AUD/USD, 9.47 %

for CHF/USD, 8.91 % for JPY/USD, 8.14 % for CAD/USD, 8.34 % for EUR/USD,

and 7.61 % for GBP/USD. These results indicate that the daily realized volatility

estimates are somewhat higher than the daily range volatilities. Another notable

point in Panel C is that the daily range variances are less persistent than the daily

realized variances. Specifically, the AR(1) coefficients are in the range of 0.09–0.34

for the daily range variances. Similar to our findings for the daily realized variances,

the distributions of range variances are skewed to the right and have much thicker

tails than the corresponding normal distribution.

40.3 Estimation Methodology

The following GARCH-in-mean process is used with the conditional normal density

to model the intertemporal relation between expected return and risk on currency:

Rtþ1 � aþ b � s2tþ1 tj þ etþ1 (40.5)

etþ1 ¼ ztþ1 � stþ1 tj , ztþ1 � N 0; 1ð Þ,E etþ1ð Þ ¼ 0 (40.6)

E e2tþ1jOt

� � ¼ s2tþ1 tj ¼ g0 þ g1e
2
t þ g2s

2
t , (40.7)

f Rtþ1; mtþ1jt; stþ1jt
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2tþ1jt

q exp � 1

2

Rtþ1 � mtþ1jt
stþ1jt

	 
2
" #

(40.8)
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where Rt+1 is the daily return on exchange rates for period t+1, mt+1|t � a + b � st+1|t2 is

the conditional mean for period t + 1 based on the information set up to time t,
et+1 ¼ zt+1 � st+1|t is the error term with E(et+1) ¼ 0, st+1|t, is the conditional standard
deviation of daily returns on currency, and zt+1 � N(0,1) is a random variable drawn

from the standard normal density and can be viewed as information shocks in the

FX market. st+1|t
2 is the conditional variance of daily returns based on the

information set up to time t denoted by Ot. The conditional variance, st+1|t
2 , follows

a GARCH(1,1) process as defined by Bollerslev (1986) to be a function of the last

period’s unexpected news (or information shocks), zt, and the last period’s variance,

st
2. f(Rt+1;mt+1|t,st+1|t) is the conditional normal density function of Rt+1 with the

conditional mean of mt+1|t and conditional variance of st+1|t
2 . Our focus is

to examine the magnitude and statistical significance of the risk aversion parameter

b in Eq. 40.5.

Campbell (1987) and Scruggs (1998) point out that the approximate relationship

in Eq. 40.1 may be misspecified if the hedging term in ICAPM is important. To

make sure that our results from estimating Eq. 40.5 are not due to model misspeci-

fication, we added to the specifications a set of control variables that have been used

in the literature to capture the state variables that determine changes in the

investment opportunity set. Several studies find that macroeconomic variables

associated with business cycle fluctuations can predict the stock market.6 The

commonly chosen variables include Treasury bill rates, federal funds rate, default

spread, term spread, and dividend-price ratios. We study how variations in the fed

funds rate, default spread, and term spread affect the intertemporal risk-return

relation.7 Earlier studies also control for the lagged return in the conditional mean

specification.

We obtain daily data on the federal funds rate, 3-month Treasury bill, 10-year

Treasury bond yields, and BAA-rated and AAA-rated corporate bond yields from

the H.15 database of the Federal Reserve Board. The federal funds (FED) rate is the
interest rate at which a depository institution lends immediately available funds

(balances at the Federal Reserve) to another depository institution overnight. It is

a closely watched barometer of the tightness of credit market conditions in the

banking system and the stance of monetary policy. In addition to the fed funds rate,

we use the term and default spreads as control variables. The term spread (TERM) is

calculated as the difference between the yields on the 10-year Treasury bond and

the 3-month Treasury bill. The default spread (DEF) is computed as the difference

between the yields on the BAA-rated and AAA-rated corporate bonds. We test the

significance of the risk aversion parameter, b, after controlling for macroeconomic

variables and lagged return:

6See Keim and Stambaugh (1986), Chen et al. (1986), Campbell and Shiller (1988), Fama and

French (1988, 1989), Campbell (1987, 1991), Ghysels et al (2005), and Guo and Whitelaw (2006).
7We could not include the aggregate dividend yield (or the dividend-price ratio) because the data

on dividends are available only at the monthly frequency while our empirical analyses are based on

the daily data.
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Rtþ1 � aþ b � s2tþ1jt þ l1 � FEDt þ l2 � DEFt þ l3 � TERMt þ l4 � Rt þ etþ1

Rtþ1 � aþb �s2tþ1jtþl1 �FEDtþl2 �DEFþl3 �TERMtþl4 �Rtþ etþ1 (40.9)

etþ1 ¼ ztþ1 � stþ1jt, ztþ1 � N 0; 1ð Þ,E etþ1ð Þ ¼ 0 (40.10)

E e2tþ1jOt

� � ¼ s2tþ1jt ¼ g0 þ g1e
2
t þ g2s

2
t (40.11)

Earlier studies that investigate the daily risk-return trade-off generally rely on

the GARCH-in-mean methodology. In risk-return regressions, it is not common to

use the realized variance measures obtained from the intraday data. In this paper,

we first generate the daily realized variance based on the 5-min returns on exchange

rates and then estimate the following risk-return regression:

Rtþ1 ¼ aþ b � Et VAR
realized
tþ1

� �þ etþ1 (40.12)

where Rt+1 is the 1-day ahead return on exchange rate and Et[VARt+1
realized] is proxied

by the lagged realized variance measure, i.e., Et[VARt+1
realized]¼VARt

realized defined in

Eq. 40.3. As reported in Panel B of Table 40.3, VARt
realized has significant

persistence measured by the first-order serial correlation that makes VARt
realized

a reasonable proxy for the 1-day ahead expected realized variance. The slope

coefficient b in Eq. 40.12, according to Merton’s (1973) ICAPM, is the relative

risk aversion coefficient which is expected to be positive and statistically

significant.

To control for macroeconomic variables and lagged returns that may

potentially affect the fluctuations in the FX market, we estimate the risk aversion

coefficient, b, after controlling for the federal funds rate, term spread, default

spread, and lagged return:

Rtþ1 � aþ b � VARrealized
t þ l1 � FEDt þ l2 � DEFt þ l3 � TERMt þ l4 � Rt þ etþ1

(40.13)

and test the statistical significance of b.
In addition to the GARCH-in-mean and realized volatility models, we use the

range-based volatility estimator with and without control variables to test the

significance of risk aversion b:

Rtþ1 ¼ aþ b � VARrange
t þ etþ1 (40.14)

Rtþ1 � aþ b � VARrange
t þ l1 � FEDt þ l2 � DEFt þ l3 � TERMt þ l4 � Rt þ etþ1

(40.15)

where VARt
range is the Parkinson’s (1980) range-based estimator of the daily inte-

grated variance defined in Eq. 40.4.
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The uncovered interest rate parity indicates that the appreciation

(or depreciation) rate of a currency is related to the interest rate differential of

two countries.8 Therefore, the hedging demand component of the ICAPM is

proxied by the short-term interest rates of the two countries. Specifically, the

intertemporal relation is tested based on the GARCH-in-mean, realized, and

range volatility estimators along with the London Interbank Offer Rate (LIBOR)

for the US and the corresponding foreign country:

Rtþ1 � aþb �s2tþ1jtþl1 �LIBORUS
t þl2 �LIBORforeign

t þl3 �Rtþ etþ1 (40.16)

Rtþ1 � aþb �VARrealized
t þl1 �LIBORUS

t þl2 �LIBORforeign
t þl3 �Rtþ etþ1 (40.17)

Rtþ1 � aþb �VARrange
t þl1 �LIBORUS

t þl2 �LIBORforeign
t þl3 �Rtþ etþ1 (40.18)

where LIBORt
US and LIBORt

foreign are the LIBOR rates for the US and the

corresponding foreign country. To control for a potential first-order serial correla-

tion in daily returns on exchange rates, we include the lagged return (Rt) to the

conditional mean specifications.

40.4 Empirical Results

Table 40.4 presents the maximum likelihood parameter estimates and the t-statistics

in parentheses for the GARCH-in-mean model. The risk aversion parameter (b) is
estimated to be positive for all currencies considered in the paper, but the parameter

estimates are not statistically significant, except for the British pound and

the Canadian dollar. Specifically, b is estimated to be 5.18 for the euro, 4.42 for

the Japanese yen, 29.07 for the British pound, 0.87 for the Swiss franc, 11.04 for

the Australian dollar, and 22.40 for the Canadian dollar. Based on the Bollerslev-

Wooldridge (1992) heteroscedasticity consistent covariance t-statistics reported in

Table 40.4, the risk aversion coefficient has a t-statistic of 1.83 for the Canadian

dollar and t-statistic of 1.77 for the British pound. Although we do not have

a strong statistical significance, we can interpret this finding as a positive risk-

return trade-off in the US/Canadian dollar and US dollar/lb exchange rate markets.

Overall, these results indicate a positive but statistically weak relation between

expected return and risk on currency.

8Assuming that the interest rate is 5 % per annum in the US and 2 % per annum in Japan, the

uncovered interest rate parity predicts that the US dollar would depreciate against the Japanese yen

by 3 %.
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Another notable point in Table 40.4 is the significance of volatility clustering. For

all currencies, the conditional volatility parameters (g1, g2) are positive, between zero
and one, and highly significant. The results indicate the presence of rather extreme

conditionally heteroskedastic volatility effects in the exchange rate process because

the GARCH parameters, g1 and g2, are found to be not only highly significant, but

also the sum (g1 + g2) is close to one for all exchange rates considered in the paper.

This implies the existence of substantial volatility persistence in the FX market.

Table 40.5 reports the daily risk aversion parameter estimates and their statistical

significance for each currency after controlling for macroeconomic variables and

lagged return. The risk-return coefficient estimates are similar to our earlier findings

in Table 40.4. The relationship between expected return and conditional risk is

positive but statistically weak for all exchange rates, except for the British pound

and the Canadian dollar where we have a risk aversion parameter of 36.51 with

t-stat. ¼1.89 for the British pound and 27.86 with t-stat. ¼ 2.15 for the Canadian

dollar. These results indicate that controlling for the hedging demand component of

the ICAPM does not alter our findings.

Table 40.4 Daily risk-return trade-off in foreign exchange markets based on the GARCH-in-

mean model

Parameters EUR JPY GBP CHF AUD CAD

a �0.0005 �0.0002 �0.0009 �0.0003 �0.0008 �0.0008

(�1.46) (�0.30) (�2.25) (�0.72) (�2.26) (�2.70)

b 5.1772 4.4206 29.065 0.8693 11.042 22.399

(0.47) (0.28) (1.77) (0.08) (1.28) (1.83)

g0 1.09 � 10�7 1.69 � 10�6 3.37 � 10�7 2.60 � 10�7 6.97 � 10�7 2.45 � 10�7

(0.65) (1.76) (2.32) (1.00) (0.92) (2.21)

g1 0.0301 0.0587 0.0430 0.0331 0.0541 0.0420

(4.25) (4.57) (4.51) (4.24) (3.81) (4.82)

g2 0.9672 0.8922 0.9443 0.9617 0.9318 0.9502

(116.10) (35.85) (73.13) (107.35) (50.04) (93.08)

The following GARCH-in-mean process is used with conditional normal density to model the

intertemporal relation between expected return and risk on currency

Rtþ1 � aþ b � s2tþ1jt þ etþ1

etþ1 ¼ ztþ1 � stþ1jt, ztþ1 � N 0; 1ð Þ,E etþ1ð Þ ¼ 0

E e2tþ1 Otj� � ¼ s2tþ1jt ¼ g0 þ g1e
2
t þ g2s

2
t

where Rt+1 is the daily return on exchange rates for period t+1, mt+1|t� a+b � st+1|t2 is the conditional

mean for period t+1 based on the information set up to time t denoted byOt, et+1¼ zt+1 � st+1|t is the
error term with E(et+1)¼ 0, st+1|t is the conditional standard deviation of daily returns on currency,
and zt+1 � N(0,1) is a random variable drawn from the standard normal density and can be viewed

as information shocks in FX markets. st+1|t
2 is the conditional variance of daily returns based on the

information set up to time t denoted by Ot. The conditional variance, st+1|t
2 , follows a GARCH(1,1)

process defined as a function of the last period’s unexpected news (or information shocks), zt, and
the last period’s variance, st

2. The table presents the maximum likelihood parameter estimates and

the t-statistics in parentheses
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Table 40.5 shows that the slope coefficient (l4) on the lagged return is negative

for all currencies, but it is statistically significant only for the euro (with

t-stat. ¼ –2.04) and the Swiss franc (with t-stat. ¼ –2.48).9 We find a negative

but insignificant first-order serial correlation for the Japanese yen, British pound,

Australian dollar, and Canadian dollar.

Table 40.6 presents the parameter estimates and their Newey and West (1987)

adjusted t-statistics from the risk-return regressions with realized daily variance.

Panel A reports results without the control variables and tests whether the realized

variance obtained from the sum of squared 5-min returns can predict 1-day ahead

returns on exchange rates. The risk aversion parameter (b) is estimated to be

positive for five out of six currencies considered in the paper, but only two of

these parameter estimates are statistically significant at the 10 % level. Specifically,

b is estimated to be 11.39 for the euro, 7.91 for the Japanese yen, 7.91 for the British

pound, 13.78 for the Swiss franc, –1.09 for the Australian dollar, and 11.89 for the

Canadian dollar. Based on the Newey-West (1987) t-statistics reported in

Table 40.6, the Swiss franc has a risk aversion parameter of 13.78 (t-stat. ¼ 2.21)

and the euro has a risk aversion coefficient of 11.39 (t-stat. ¼ 1.77). These results

indicate that the daily realized variance measures obtained from intraday data

positively predict future returns on exchange rates, but the link between risk and

return is generally statistically insignificant.

Panel B of Table 40.6 presents the risk aversion coefficient estimates after

controlling for the federal funds rate, term spread, default spread, and lagged return.

Similar to our findings in Panel A, the risk aversion parameter is estimated to be

18.76 with t-stat. ¼ 2.42 for the euro, 8.77 with t-stat. ¼ 1.80 for the Japanese yen,

and 18.89 with t-stat. ¼ 2.70 for the Swiss franc, indicating a positive and

significant link between the realized variance and the 1-day ahead returns on the

US dollar/euro, US dollar/yen, and US dollar/Swiss franc exchange rates. There

is also a positive but statistically weak relation for the British pound and the

Canadian dollar.

Table 40.7 reports the parameter estimates and their Newey-West t-statistics

from the risk-return regressions with the daily range variance of Parkinson (1980).

As shown in both panels, with and without control variables, the risk aversion

parameter (b) is estimated to be positive but statistically insignificant, except for

the marginal significance of b for the Canadian dollar in Panel B. These results

provide evidence that the daily range volatility obtained from the intraday data

positively predict future returns on exchange rates, but there is no significant

relation between risk and return on currency.

The estimates in Tables 40.6 and 40.7 present a negative and significant

autocorrelation for the euro, Japanese yen, Swiss franc, and Canadian dollar.

The first-order autocorrelation coefficient is negative but statistically insignificant

for the British pound and the Australian dollar.

9Jegadeesh (1990), Lehmann (1990), and Lo and MacKinlay (1990) provide evidence for the

significance of short-term reversal (or negative autocorrelation) in short-term stock returns.
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An interesting observation in Tables 40.5, 40.6, and 40.7 is that the slope

coefficients (l1, l2, l3) on the lagged macroeconomic variables are found to be

statistically insignificant, except for some marginal significance for the term spread

in the regressions with the Swiss franc. Although one would think that unexpected

news in macroeconomic variables could be viewed as risks that would be rewarded in

the FX market, we find that the changes in federal funds rate and term and default

spreads do not affect time-series variation in daily exchange rate returns. Our inter-

pretation is that it would be very difficult for macroeconomic variables to explain daily

variations in exchange rates. If we examined the risk-return trade-off at lower fre-

quency (such as monthly or quarterly frequency), wemight observe significant impact

of macroeconomics variables on monthly or quarterly variations in exchange rates.

Panel A of Table 40.8 presents the maximum likelihood parameter estimates and

the t-statistics in parentheses for the GARCH-in-mean model with LIBOR rates for

the US and the corresponding foreign country. The risk aversion parameter (b) is
estimated to be positive for all currencies, but the parameter estimates are

Table 40.6 Daily risk-return trade-off in foreign exchange markets based on the realized

variance

Panel A. Daily risk-return trade-off without control variables

Parameters EUR JPY GBP CHF AUD CAD

a �0.00073 �0.00040 �0.00042 �0.00088 �0.00027 �0.00068

(�2.84) (�1.59) (�1.77) (�2.90) (�0.77) (�2.25)

b 11.393 7.9064 7.9145 13.777 �1.0895 11.885

(1.77) (1.61) (1.07) (2.21) (�0.21) (1.38)

Panel B. Daily risk-return trade-off with control variables

Parameters EUR JPY GBP CHF AUD CAD

a 0.00124 0.00257 0.00080 0.00169 0.00030 �0.00074

(0.82) (1.58) (0.57) (0.96) (0.17) (�0.49)

b 18.759 8.7656 10.429 18.886 �0.0858 13.608

(2.42) (1.80) (1.30) (2.70) (�0.01) (1.55)

l1 �0.00028 �0.00035 �0.00025 �0.00033 4.4 � 10�6 �0.00007

(�0.99) (�1.06) (�0.90) (�1.03) (0.01) (�0.25)

l2 �0.00051 �0.00112 0.00013 �0.00076 �0.00059 0.00041

(�0.72) (�1.33) (0.18) (�0.91) (�0.63) (0.60)

l3 �0.00054 �0.00054 �0.00041 0.00065 �0.00004 �0.00012

(�1.54) (�1.36) (�1.19) (1.67) (�0.07) (�0.37)

l4 �0.068 �0.048 �0.013 �0.077 �0.017 �0.071

(�2.81) (�1.81) (�0.49) (�3.00) (�0.56) (�2.88)

The following regression is estimated with and without control variables to test the significance of

the intertemporal relation between expected return and risk on currency

Rt+ 1 � a + b � VARt
realized + l1 � FEDt + l2 � DEFt + l3 � TERMt + l4 � Rt + et+1

where VARt
realized is the daily realized variance computed as the sum of squared 5-min returns on

exchange rates. The table presents the parameter estimates and their Newey and West (1987)

t-statistics in parentheses
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statistically significant only for the British pound, Australian dollar, and

Canadian dollar. Specifically, b is estimated to be 30.87 for the British pound,

17.75 for the Australian dollar, and 32.90 for the Canadian dollar. Based on

the Bollerslev-Wooldridge heteroscedasticity consistent covariance t-statistics

reported in Table 40.8, the risk aversion coefficient has a t-statistic of 1.82 for the

British pound, 1.84 for the Australian dollar, and 2.36 for the Canadian dollar.

Although we do not have a strong statistical significance, we can interpret this finding

as a positive risk-return trade-off in the US dollar/British pound, US/Australian dollar,

and US/Canadian dollar markets. Overall, the results indicate a positive but statisti-

cally weak relation between expected return and risk on currency.

Another point worth mentioning in Panel A is that the slope coefficients on

the US LIBOR rate are estimated to be positive and statistically significant at the

5 % level for the euro, Japanese yen, and Swiss franc and significant at the 10 %

level for the Canadian dollar. As expected, the slope coefficients on the

LIBOR rates of the corresponding foreign country turn out to be negative but

statistically insignificant.

Table 40.7 Daily risk-return trade-off in foreign exchange markets based on the range volatility

Panel A. Daily risk-return trade-off without control variables

Parameters EUR JPY GBP CHF AUD CAD

a �0.00051 �0.00022 �0.00038 �0.00053 �0.00053 �0.00048

(�2.54) (�1.11) (�2.15) (�2.28) (�2.15) (�2.67)

b 6.6224 4.6907 7.8004 6.8730 4.4630 8.4727

(1.32) (1.15) (1.31) (1.56) (1.05) (1.61)

Panel B. Daily risk-return trade-off with control variables

Parameters EUR JPY GBP CHF AUD CAD

a 0.00179 0.00250 0.00088 0.00238 0.00042 �0.00053

(1.22) (1.57) (0.65) (1.40) (0.23) (�0.37)

b 8.6053 5.0792 8.3969 7.3411 5.3794 9.2256

(1.58) (1.24) (1.36) (1.52) (1.14) (1.69)

l1 �0.00036 �0.00030 �0.00026 �0.00045 �0.00010 �0.00005

(�1.26) (�0.95) (�0.93) (�1.41) (�0.25) (�0.16)

l2 �0.00041 �0.00106 0.00015 �0.00049 �0.00038 0.00033

(�0.57) (�1.29) (0.22) (�0.59) (�0.42) (0.48)

l3 �0.00056 �0.00049 �0.00040 0.00070 �0.00019 �0.00009

(�1.59) (�1.25) (�1.18) (1.81) (�0.40) (�0.28)

l4 �0.067 �0.051 �0.012 �0.078 �0.026 �0.067

(�2.77) (�1.89) (�0.45) (�3.13) (�0.87) (�2.71)

The following regression is estimated with and without control variables to test the significance of

the intertemporal relation between expected return and risk on currency

Rt+1 � a + b � VARt
range + l1 � FEDt + l2 � DEFt + l3 � TERMt + l4 � Rt + et+1

where VARt
range ¼ 0.361[ln(Pt

max) � ln(Pt
min)]2 is Parkinson’s (1980) range-based estimator of the

daily integrated variance. The table presents the parameter estimates and their Newey-West (1987)

t-statistics in parentheses
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Table 40.8 Daily risk-return trade-off in foreign exchange markets with LIBOR interest rates

Panel A. GARCH-in-mean

Parameters EUR JPY GBP CHF AUD CAD

a �0.0004 �0.0011 �0.0019 �0.0004 �0.0004 0.0006

(�0.62) (�1.82) (�1.97) (�0.31) (�0.27) (0.58)

b 6.7962 13.422 30.871 18.036 17.753 32.898

(0.66) (0.84) (1.82) (1.33) (1.84) (2.36)

l1 2.16 � 10�4 2.86 � 10�4 1.41 �
10�5

3.30 � 10�4 2.57 � 10�4 1.95 � 10�4

(1.97) (2.53) (0.12) (2.19) (1.47) (1.66)

l2 �2.61 � 10�4 �8.94 �
10�4

1.83 �
10�4

�3.44 �
10�4

�3.35 �
10�4

�4.81 �
10�4

(�1.10) (�1.32) (0.78) (�1.13) (�0.78) (�1.73)

l3 �0.055 �0.042 �0.008 �0.062 �0.010 �0.039

(�2.22) (�1.62) (�0.31) (�2.46) (�0.36) (�1.48)

g0 1.15 � 10�7 1.64 � 10�6 3.11 �
10�7

2.64 � 10�7 7.35 � 10�7 2.44 � 10�7

(1.22) (1.30) (2.25) (0.73) (0.99) (2.13)

g1 0.0300 0.0575 0.0408 0.0338 0.0563 0.0424

(4.44) (4.49) (4.51) (3.72) (3.93) (4.87)

g2 0.9672 0.8946 0.9476 0.9608 0.9287 0.9498

(96.57) (32.83) (77.50) (79.92) (50.57) (92.31)

Panel B. Realized variance

Parameters EUR JPY GBP CHF AUD CAD

a �0.00074 �0.00108 �0.00150 �0.00171 �0.00118 �0.00024

(�1.08) (�2.52) (�1.61) (�2.86) (�0.77) (�0.37)

b 17.558 10.272 10.499 18.730 �0.708 15.199

(2.24) (1.95) (1.31) (2.63) (�0.11) (1.69)

l1 2.5 � 10�4 3.1 � 10�4 �3.14 �
10�6

4.5 � 10�4 4.6 � 10�6 1.4 � 10�4

(2.39) (2.47) (�0.03) (2.96) (0.026) (1.00)

l2 �3.3 �
10�4

�1.6 �
10�3

2.2 � 10�4 �6.5 �
10�4

1.6 � 10�4 �3.0 �
10�4

(�1.81) (�2.01) (0.90) (�2.19) (0.42) (�1.03)

l3 �0.069 �0.048 �0.013 �0.078 �0.016 �0.073

(�2.85) (�1.79) (�0.51) (�3.10) (�0.53) (�2.91)

Panel C. Range variance

Parameters EUR JPY GBP CHF AUD CAD

a �0.00015 �0.00079 �0.00136 �0.00090 �0.00079 �0.00018

(�0.26) (�2.13) (�1.49) (�1.86) (�0.52) (�0.28)

b 8.181 5.558 8.416 7.400 5.249 9.761

(1.49) (1.29) (1.37) (1.51) (1.03) (1.77)

l1 1.9 � 10�4 2.8 � 10�4 �1.1 �
10�5

3.5 � 10�4 7.26� 10�5 9.5 � 10�5

(�1.92) (2.32) (�0.09) (2.51) (0.46) (0.68)

(continued)
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Panel B of Table 40.8 reports the parameter estimates and their Newey-West

adjusted t-statistics from the risk-return regressions with daily realized variance

after controlling for the LIBOR rates and the lagged return. The results indicate

a positive and significant link between the realized variance and the 1-day ahead

returns on the euro, Japanese yen, Swiss franc, and Canadian dollar. There is also

a positive but statistically weak relation for the British pound.

Panel C of Table 40.8 shows the parameter estimates and their Newey-West

t-statistics from the risk-return regressions with the daily range variance of

Parkinson (1980). With LIBOR rates and the lagged return, the risk aversion

parameter (b) is estimated to be positive for all currencies but statistically signif-

icant only for the Canadian dollar. Overall, the results provide evidence that after

controlling for the interest rate differential of two countries, there is a positive but

statistically weak relation between risk and return on currency.

Similar to our earlier findings from the GARCH-in-mean model, Panels B and

C of Table 40.8 show that the slope coefficients on the US LIBOR rate are generally

positive, whereas the slopes on the corresponding foreign LIBOR rates are negative

with a few exceptions.

Many studies fail to identify a statistically significant intertemporal relation

between risk and return of the stock market portfolios. French et al. (1987) find

that the coefficient estimate is not significantly different from zero when they use

past daily returns to estimate the monthly conditional variance.10 Chan et al. (1992)

employ a bivariate GARCH-in-mean model to estimate the conditional variance,

Table 40.8 (continued)

Panel C. Range variance

Parameters EUR JPY GBP CHF AUD CAD

l2 �3.4 �
10�4

�1.3 �
10�3

2.1 � 10�4 �6.3 �
10�4

1.08� 10�6 �1.9 �
10�4

(�1.86) (�1.84) (0.88) (�2.20) (0.003) (�0.63)

l3 �0.068 �0.051 �0.012 �0.080 �0.025 �0.067

(�2.82) (�1.87) (�0.47) (�3.22) (�0.85) (�2.71)

The following regressions with GARCH-in-mean, realized variance, and range variance are

estimated to test the significance of the intertemporal relation between expected return and risk

on currency

Rtþ1 � aþ b � s2tþ1jt þ l1 � LIBORUS
t þ l2 � LIBORforeign

t þ l3 � Rt þ etþ1,

Rtþ1 � aþ b � VARrealized
t þ l1 � LIBORUS

t þ l2 � LIBORforeign
t þ l3 � Rt þ etþ1,

Rtþ1 � aþ b � VARrange
t þ l1 � LIBORUS

t þ l2 � LIBORforeign
t þ l3 � Rt þ etþ1,

where LIBORt
US and LIBORt

foreign are the LIBOR rates for the US and the corresponding foreign

country

10When testing monthly risk-return trade-off, French et al. (1987) use the monthly realized

variance obtained from the sum of squared daily returns within a month.
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and they also fail to obtain a significant coefficient estimate for the United States.

Campbell and Hentchel (1992) use the quadratic GARCH (QGARCH) model of

Sentana (1995) to determine the existence of a risk-return trade-off within an

asymmetric GARCH-in-mean framework. Their estimate is positive for one

sample period and negative for another sample period, but neither is statistically

significant. Glosten et al. (1993) use monthly data and find a negative but statisti-

cally insignificant relation from two asymmetric GARCH-in-mean models. Based

on semi-nonparametric density estimation and Monte Carlo integration, Harrison

and Zhang (1999) find a significantly positive risk and return relation at a 1-year

horizon, but they do not find a significant relation at shorter holding periods such as

1 month. Using a sample of monthly returns and implied and realized volatilities for

the S and P 500 index, Bollerslev and Zhou (2006) find an insignificant

intertemporal relation between expected return and realized volatility, whereas

the relation between return and implied volatility turns out to be significantly

positive.

Several studies find that the intertemporal relation between risk and return is

negative (e.g., Campbell 1987; Breen et al. 1989; Turner et al. 1989; Nelson 1991;

Glosten et al. 1993; Harvey 2001; Brandt and Kang 2004). Some studies do provide

evidence supporting a positive and significant relation between expected return and

risk on stock market portfolios (e.g., Bollerslev et al. 1988; Scruggs 1998;

Ghysels et al. 2005; Bali and Peng 2006; Guo and Whitelaw 2006; Lundblad

2007; Bali 2008).

Merton’s (1973) ICAPM provides a theoretical model that gives a positive

equilibrium relation between the conditional first and second moments of excess

returns on the aggregate market portfolio. However, Abel (1988), Backus and

Gregory (1993), and Gennotte and Marsh (1993) develop models in which

a negative relation between expected return and volatility is consistent with equi-

librium. As summarized above, there has been a lively debate on the existence and

direction of a risk-return trade-off, and empirical studies are still not in agreement

for the stock market portfolios. The empirical results presented in Tables 40.4, 40.5,

40.6, 40.7, and 40.8 indicate that the intertemporal relation between expected return

and risk on currency is positive but in most cases statistically insignificant. Hence,

our findings from the FX market are in line with some of the earlier studies that

investigated the significance of a risk-return trade-off for the stock market.

40.5 Time-Varying Risk Aversion in the Foreign Exchange
Market

Chou et al. (1992), Harvey (2001), and Lettau and Ludvigson (2010) suggest that

the risk-return relation for the stock market may be time varying. In the existing

literature, there is no study investigating the presence and significance of time-

varying risk aversion in the FX market. We have so far assumed a constant

risk-return trade-off in currency markets and found a positive but statistically

insignificant relation between expected return and risk on exchange rates.
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We now estimate the dependence of expected returns on the lagged realized

variance over time using rolling regressions. This also allows us to check whether

our results are driven by a particular sample period. We estimate the risk-return

relation specified in Eqs. 40.12 and 40.13 for the six exchange rates with rolling

samples. We used two different rolling regression approaches. The first one uses

a fixed rolling window of 250 business days (i.e., approximately 1 year), whereas

the second one starts with the in-sample period of 250 business days and then

extends the sample by adding each daily observation to the estimation while

keeping the start date constant.

Figure 40.1 plots the estimated relative risk aversion parameters (b) and their

statistical significance over time from the fixed rolling window of 250 days.11

Specifically, the first 250 daily return observations of exchange rates and their

realized variances (from 1/3/2002 to 1/8/2003) are used for estimation of the

relative risk aversion parameter for 1/8/2003. The sample is then rolled forward

by removing the first observation of the sample and adding one to the end, and

another 1-day ahead risk-return relationship is measured. This recursive estimation

procedure is repeated until the sample is exhausted on March 31, 2008. The

estimated relative risk aversion parameter over the fixed rolling sample period

represents the average degree of risk aversion over that sample period. Computation

of the relative risk aversion parameters using a rolling window of data allows us to

observe the time variation in an investors’ average risk aversion.

A common observation in Fig. 40.1 is that there is a strong time-series variation

in the risk aversion estimates for all currencies considered in the paper. The first

panel in Fig. 40.1 indicates that in the US dollar/euro FX market, the aggregate risk

aversion is generally positive with some exceptions in the second half of 2006 and

from May to August 2007. For the out-of-sample period of January 2003 to March

2008, only 208 out of 1,306 daily risk aversion estimates are negative. Based on the

Newey-West adjusted t-statistics, all of these negative risk aversion estimates are

statistically insignificant. 143 (291) out of 1,098 positive risk aversion estimates

turn out to be statistically significant at least at the 5 % level (10 % level). These

results indicate a positive but statistically insignificant time-varying risk aversion in

the US dollar/euro market.

The second panel in Fig. 40.1 displays that in the Japanese yen market, the

aggregate risk aversion is generally positive, but there are quite a lot of days in

which we observe a negative relation between expected return and risk in the

US dollar/yen market. 431 out of 1,306 daily risk aversion estimates are negative,

but about one third is statistically significant at the 10 % level. 185 (314) out of

875 positive risk aversion estimates turn out to be statistically significant at least at

the 5 % level (10 % level). These results indicate that there is a positive but not

strong time-varying risk aversion in the US dollar/yen exchange rate market.

11Since the time-varying risk aversion coefficients from estimating Eqs. 40.12 and 40.13 with and

without control variables turn out to be very similar, we only report results from the full

specification of Eq. 40.13. Time-varying risk aversion estimates obtained from the parsimonious

specification of Eq. 40.12 are available from the authors upon request.
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Third panel in Fig. 40.1 shows that in the US dollar/lb sterling market, the risk

aversion is generally positive, but there is a long period of time in which we

observe a negative relation between expected return and risk in the US dollar/lb

market. Specifically, 872 out of 1,306 daily risk aversion estimates are positive, but

only 5 out of 872 are marginally significant. Similarly, only 46 out of 434 negative

risk aversion estimates turn out to be statistically significant at the 10 % level.

These results provide evidence that although there is a significant time variation in

the aggregate risk aversion, it is not clear whether the currency trade

generates a larger or smaller risk premium at times when the US dollar/lb FX

market is riskier.

The fourth panel in Fig. 40.1 indicates that in the Swiss franc market, the risk

aversion is estimated to be positive throughout the sample period (2002–2008),

except for a few months in 2006. Only 71 out of 1,306 daily risk aversion

estimates are negative, but none of them is statistically significant. 353 (467) out

of 1,235 positive risk aversion estimates turn out to be statistically significant at

least at the 5 % level (10 % level). These results indicate a positive and relatively

strong time-varying risk aversion, implying that the currency trade generates

a larger risk premium at times when the US dollar/Swiss franc trade becomes

riskier.

The fifth panel in Fig. 40.1 indicates that in the Australian dollar market

736 out of 1,306 daily risk aversion estimates are positive, but none of them is

statistically significant. Only 65 out of 570 negative risk aversion estimates

turn out to be marginally significant at the 10 % level. The figure indicates

a strong time-varying risk aversion, but there is no significantly positive or

negative relation between risk and return in the US/Australian dollar exchange

rate market.

The last panel in Fig. 40.1 demonstrates that in the US/Canadian dollar market,

for slightly more than half of the sample, the risk aversion is estimated to be

positive and slightly less than half of the sample it turns out to be negative.

However, based on the t-statistics of these risk aversion estimates, there is no

evidence for a significantly positive or negative link between expected return and

risk on currency. Only 35 out of 757 positive risk aversion coefficients and

only 46 out of 549 negative risk aversion parameters are found to be significant

at the 10 % level. Although there is a significant time-series variation in the

aggregate risk aversion, trading in the US/Canadian dollar FX market does not

provide clear evidence for a larger or smaller risk premium at times when the

market is riskier.

Figure 40.2 plots the estimated relative risk aversion parameters (b) and their

statistical significance over time from the rolling regressions with a fixed starting

date. Specifically, the first 250 daily return observations of exchange rates and

their realized variances (from 1/3/2002 to 1/7/2003) are used for estimation of the

relative risk aversion parameter for 1/8/2003. The sample is then extended by

adding one observation to the end (from 1/3/2002 to 1/8/2003), and the 1-day

ahead risk-return relation is measured for 1/9/2003. This recursive estimation

procedure is repeated until March 31, 2008.
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Similar to our findings from the fixed rolling window regressions, Fig. 40.2

provides evidence for a significant time variation in the risk aversion estimates for

all currencies considered in the paper. The first panel in Fig. 40.2 shows that in the

US dollar/euro market, the aggregate risk aversion is positive with a few exceptions

in January 2003. Only 16 out of 1,306 risk aversion estimates are negative, but none

of these estimates is statistically significant based on the Newey-West t-statistics.

795 (870) out of 1,290 positive risk aversion estimates turn out to be statistically

significant at least at the 5 % level (10 % level). These results indicate a positive and

strong time-varying risk aversion in the US dollar/euro market.
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Fig. 40.1 Rolling regression estimates from the fixed length window of 250 days

1128 T.G. Bali and K. Yilmaz



The second panel in Fig. 40.2 shows that in the US dollar/yen FX market, the

aggregate risk aversion is positive with a few exceptions from March to June 2004.

Only 68 out of 1,306 risk aversion estimates are negative and all of them are

statistically insignificant. 129 out of 1,238 positive risk aversion estimates turn

out to be marginally significant at the 10 % level. These results imply a positive but

statistically weak time-varying risk aversion in the US dollar/yen market.

The third panel in Fig. 40.2 depicts that in the pound sterling market, the risk

aversion is positive throughout the sample, except for a short period of time in 2003.

Only 90 out of 1,306 risk aversion estimates are negative, but they are not

statistically significant. Although there is a significant time variation in the risk
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aversion and most of the risk-return coefficients are positive, only 41 out of 1,216

positive risk aversion estimates turn out to be significant at the 10 % level.

Therefore, it is not clear whether the currency trade generates a larger or smaller

risk premium at times when the US dollar/lb market is riskier.

The fourth panel in Fig. 40.2 provides evidence that in the Swiss franc market,

the risk aversion is estimated to be positive throughout the sample period

(2002–2008), except for a few days in January 2003. Only 20 out of 1,306 risk

aversion estimates are negative but statistically insignificant. 816 (934) out of 1,286

positive risk aversion estimates turn out to be statistically significant at least at the

5 % level (10 % level). These results suggest a positive and strong time-varying risk

aversion, implying that the currency trade generates a larger risk premium at times

when the US dollar/Swiss franc exchange rate market is riskier.

The fifth panel in Fig. 40.2 shows that in the Australian dollar market only

138 out of 1,306 risk aversion estimates are negative with no statistical significance

even at the 10 % level. Only 106 out of 1,168 positive risk aversion coefficients are

found to be marginally significant at the 10 % level. Although there is significant

time variation in the aggregate risk aversion, the results do not suggest a strong

positive or negative link between expected return and risk in the US/Australian

dollar market.

The last panel in Fig. 40.2 demonstrates that in the US/Canadian dollar market,

the risk aversion is estimated to be positive, except for a few days in May, October,

and November 2003. Similar to our earlier findings, only 41 out of 1,308 risk

aversion estimates are negative with very low t-statistics. However, based on the

statistical significance of positive risk aversion estimates, there is no evidence for

a strong positive link between expected return and risk on currency either.

Only 276 out of 1,265 positive risk aversion coefficients are found to be significant

at the 10 % level. Although there is a significant time-series variation in the

aggregate risk aversion, trading in the US/Canadian dollar FX market does not

provide clear evidence for a larger or smaller risk premium at times when the

market is riskier.

40.6 Testing Merton’s (1973) ICAPM in Currency Market

Merton’s (1973) ICAPM implies the following equilibrium relation between risk

and return for any risky asset i:

mi � r ¼ A � sim þ B � six, (40.19)

where r is the risk-free interest rate, mi � r is the expected excess return on the risky
asset i, sim denotes the covariance between the returns on the risky asset i and the

market portfolio m, and six denotes a (1 � k) row of covariances between the

returns on risky asset i and the k state variables x. A denotes the average relative risk

aversion of market investors, and B measures the market’s aggregate reaction to

shifts in a k-dimensional state vector that governs the stochastic investment
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opportunity. Equation 40.19 states that in equilibrium, investors are compensated in

terms of expected return for bearing market risk and for bearing the risk of

unfavorable shifts in the investment opportunity set.

Merton (1980) shows that the intertemporal hedging demand component (B � six)
is economically and statistically smaller than the market risk component (A � sim) of
ICAPM. While testing the significance of A and B at daily frequency, Bali and

Engle (2010) provide supporting evidence for Merton (1980) that the conditional

covariances of individual stocks with the market portfolio have positive and

statistically significant loading, whereas the innovations in state variables are not

priced in the stock market. That is, the conditional covariances of stock returns with

the unexpected news in state variables have insignificant loadings.

We examine Merton’s (1973) ICAPM based on the following system of

equations:

Ri, tþ1 ¼ Ci þ A � sim, t þ ei, tþ1

Rm, tþ1 ¼ Cm þ A � s2m, t þ em, tþ1
(40.20)

where the expected conditional covariance of individual exchange rates with the

currency market, Et(sim,t+1), is represented by the 1-day lagged realized covariance,
i.e., Et(sim,t+1) ¼ sim,t. Similarly, the expected conditional variance of the

currency market, Et(sm,t+1
2), is represented by the 1-day lagged realized variance,

i.e., Et(sm,t+1
2) ¼ sm,t

2.12

The currency market portfolio is measured by the “value-weighted” average

returns on EUR, JPY, GBP, CHF, AUD, and CAD. The weights are obtained from

the “US Dollar Index.” Just as the Dow Jones Industrial Average reflects the general

state of the US stock market, the US Dollar Index (USDX) reflects the general

assessment of the US dollar. USDX does it through exchange rates averaging of US

dollar and six most tradable global currencies. The weights are 57.6 % for EUR,

13.6 % for JPY, 11.9 % for GBP, 9.1 % CAD, 4.2 % for AUD, and 3.6 % for CHF. In

our empirical analysis, daily returns on the currency market, Rm,t+1, are calculated by

multiplying daily returns on the six exchange rates by the aforementioned weights.

We estimate the system of Eq. 40.20 using an ordinary least square (OLS) as

well as a weighted least square method that allows us to place constraints on

coefficients across equations. We constrain the slope coefficient (A) on the lagged

realized variance-covariance matrix (sim,t, sm,t
2) to the same value across all the

currencies for cross-sectional consistency. We allow the intercepts (Ci, Cm) to differ

across all the currencies. Under the null hypothesis of the ICAPM, the intercepts

should be jointly zero, and the common slope coefficient (A) should be positive and
statistically significant. We use insignificant estimates of A and the deviations from

zero of the intercept estimates as a test against the validity and sufficiency of

12Daily realized covariances between the exchange rates and the currency market and daily

realized variance of the currency market are computed using 5-min returns in a day.
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the ICAPM. In addition to the OLS panel estimates, we compute the t-statistics of
the parameter estimates accounting for heteroskedasticity and autocorrelation as

well as contemporaneous cross-correlations in the error terms. This estimation

methodology for the system of Eq. 40.20 can be regarded as an extension of the

seemingly unrelated regression (SUR) method.

Table 40.9 presents the OLS and SUR panel regression estimates of the

currency-specific intercepts, common slope coefficients on the lagged realized

variance-covariance matrix, and their t-statistics. The parameters and their

t-statistics are estimated using the daily returns on the currency market and the

six exchange rates. The last row reports the Wald statistics with p-values from

testing the joint hypothesis that all intercepts equal zero: H0:

C1 ¼ C2 ¼ . . . ¼ C6 ¼ Cm ¼ 0. A notable point in Table 40.9 is that the common

slope coefficient (A) is positive and statistically significant. Specifically, the risk

aversion coefficient on the realized variance-covariance matrix is estimated to be

23.33 with a t-statistic of 5.40. After correcting for heteroscedasticity, autocorrela-

tion, and contemporaneous cross-correlations, the SUR estimate of the risk aversion

coefficient turns out to be 15.80 with t-stat. ¼ 2.57. These results indicate

a positive and significant relation between risk and return on the currency market.

Another notable point in Table 40.9 is that for both the OLS and SUR estimates,

the Wald statistics reject the hypothesis that all intercepts equal zero. This implies

that the market risk alone cannot explain the entire time-series variation in

exchange rates.

According to the original ICAPM of Merton (1973), the relative risk aversion

coefficient (A) is restricted to the same value across all risky assets, and it is

positive and statistically significant. The common slope estimates in Table 40.9

provide empirical support for the positive risk-return trade-off.

We now test whether the slopes on (sim, sm
2) are different across currencies.

We examine the sign and statistical significance of different slope coefficients

(Ai, Am) on (sim, sm
2) in the following system of equations:

Ri, tþ1 ¼ Ci þ Ai � sim, t þ ei, tþ1,

Rm, tþ1 ¼ Cm þ Am � s2m, t þ em, tþ1
(40.21)

To determine whether there is a common slope coefficient (A) that corresponds
to the average relative risk aversion, we first estimate the currency-specific

slope coefficients (Ai, Am) and then test the joint hypothesis that H0:

A1 ¼ A2 ¼ . . . ¼ A6 ¼ Am.

Table 40.10 presents the OLS and SUR parameter estimates using daily returns

on the six exchange rates and the value-weighted currency market index. As

compared to Eq. 40.20, we have additional six-slope coefficients to estimate in

Eq. 40.21. As shown in Table 40.10, all of the slope coefficients (Ai, Am) are

estimated to be positive and highly significant without any exception. These

results indicate a positive and significant intertemporal relation between risk and

return on the currency market. We examine the cross-sectional consistency of the

intertemporal relation by testing the equality of slope coefficients based on the

Wald statistics. As reported in Table 40.10, the Wald statistics, from testing
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the joint hypothesis that H0: A1 ¼ A2 ¼. . . ¼ A6 ¼ Am, is 1.41 for OLS and 5.24

for SUR, which fail to reject the null hypothesis. These results indicate the

equality of positive slope coefficients across all currencies, which empirically

validates the ICAPM.

40.7 Conclusion

There is an ongoing debate in the literature about the intertemporal relation between

stock market risk and return and the extent to which expected stock returns are

related to expected market volatility. Recently, some studies have provided evi-

dence for a significantly positive link between risk and return in the aggregate stock

market, but the risk-return trade-off is generally found to be insignificant and

sometimes even negative. This paper is the first to investigate the presence and

significance of an intertemporal relation between expected return and risk in the

foreign exchange market. The paper provides new evidence on the ICAPM by

using high-frequency intraday data on currency and by presenting significant time

variation in the risk aversion parameter. We utilize daily and 5-min returns on the

spot exchange rates of the US dollar vis-à-vis six major currencies (the euro, Japanese

yen, British pound sterling, Swiss franc, Australian dollar, and Canadian dollar)

Table 40.9 Testing Merton’s (1973) ICAPM with a common slope coefficient

OLS panel regression SUR panel regression

Intercept t-stat. Intercept t-stat.

AUD 0.00076 4.69 0.00063 3.15

EUR 0.00097 5.24 0.00077 3.53

GBP 0.00062 3.82 0.00049 2.95

CAD �0.00049 �3.24 �0.00041 �2.77

CHF �0.00085 �4.72 �0.00066 �2.98

JPY �0.00045 �2.79 �0.00032 �1.79

Market �0.00078 �4.50 �0.00061 �3.35

Risk aversion Slope t-stat. Slope t-stat.

23.33 5.40 15.80 2.57

H0: Intercepts ¼ 0 Wald p-value Wald p-value

52.20 0.00 17.98 0.0121

Entries report the OLS and SUR panel regression estimates based on the following system of

equations

Ri, tþ1 ¼ Ci þ A � sim, t þ ei, tþ1,

Rm, tþ1 ¼ Cm þ A � s2m, t þ em, tþ1,

where sim,t is the 1-day lagged realized covariance between the exchange rate and the currency

market. sm,t
2 is the 1-day lagged realized variance of the currency market. A is a common slope

coefficient on the lagged realized variance-covariance matrix. (Ci, Cm) denotes currency-specific

intercepts for AUD, EUR, GBP, CAD, CHF, JPF, and the currency market. The last row reports the

Wald statistics with p-values from testing the joint hypothesis that all intercepts equal zero: H0:

C1 ¼ C2 ¼ . . . ¼ C6 ¼ Cm ¼ 0
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and test the existence and significance of a risk-return trade-off in the FX market

using the GARCH, realized, and range-based volatility measures. The maximum

likelihood parameter estimates of the GARCH-in-mean model and the risk-return

regressions with daily realized and range volatility estimators indicate that the

intertemporal relation between risk and return is generally positive but statistically

weak in the FX market.

We provide strong evidence on the time variation of risk aversion parameters for

all currencies considered in the paper. However, the direction of a relationship

between expected return and risk is not clear. The results indicate a positive but

not strong time-varying risk aversion in the US dollar/euro exchange rate market.

The risk-return regressions with realized variance provide evidence for a positive

but statistically weak risk aversion estimates in the US dollar/yen market.

Although there is a significant time variation in risk aversion estimates for the

British pound, it is not clear whether the currency trade generates a larger or smaller

risk premium at times when the US dollar/lb market is riskier. The risk aversion

parameter is estimated to be positive but marginally significant throughout the

sample period for the Swiss franc, implying that the currency trade generally yields

a larger risk premium at times when the US dollar/Swiss franc market is riskier. For

most of the sample, the risk-return coefficients are estimated to be positive but

statistically insignificant for the Canadian dollar, suggesting that the intertemporal

relation between risk and return is flat for the US/Canadian dollar market.

Appendix 1: Maximum Likelihood Estimation of GARCH-in-Mean
Models

Modeling and estimating the volatility of financial time series has been high on

the agenda of financial economists since the early 1980s. Engle (1982) put forward

the Autoregressive Conditional Heteroskedastic (ARCH) class of models for

conditional variances which proved to be extremely useful for analyzing financial

return series. Since then an extensive literature has been developed for modeling the

conditional distribution of stock prices, interest rates, exchange rates, and futures

prices. Following the introduction of ARCH models by Engle (1982) and their

generalization by Bollerslev (1986), there have been numerous refinements of this

approach to estimating conditional volatility. Most of the refinements have been

driven by empirical regularities in financial data.

Engle (1982) introduces ARCH(p) model:

Rtþ1 � aþ etþ1 (40.22)

etþ1 ¼ ztþ1 � stþ1 tj , ztþ1 � N 0; 1ð Þ,
E etþ1ð Þ ¼ 0

(40.23)

E e2tþ1 Otj� � ¼ s2tþ1 tj ¼ g0 þ g1e
2
t þ g2e

2
t�1 þ . . .þ gpe

2
t�p (40.24)
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f Rtþ1; m; stþ1 tj
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2tþ1 tj
q exp � 1

2

Rtþ1 � m
stþ1jt

	 
2
" #

(40.25)

where Rt+1 is the daily return for period t+1, m¼ a is the constant conditional mean,

et+1 ¼ zt+1 � st+1|t is the error term with E(et +1)¼ 0, st+1|t is the conditional standard
deviation of daily returns, and zt+1 � N(0,1) is a random variable drawn from the

standard normal density and can be viewed as information shocks or unexpected

news in the market. st+1|t
2 is the conditional variance of daily returns based on the

information set up to time t denoted by Ot. The conditional variance, st+1|t
2, follows

an ARCH(p) process which is a function of the last period’s unexpected news

(or information shocks). f(Rt+1;m,st+1|t) is the conditional normal density function of

Rt+1 with the conditional mean of m and conditional variance of st+1|t
2.

Given the initial values of et and, the parameters in Eqs 40.22 and 40.24 can be

estimated by maximizing the log-likelihood function over the sample period.

The conditional normal density in Eq. 40.25 yields the following log-likelihood

function:

LogLARCH ¼ � n

2
ln 2pð Þ � n

2
lnstþ1jt � 1

2

Xn
t¼1

Rtþ1 � m
stþ1jt

	 
2

(40.26)

Bollerslev (1986) extends the original work of Engle (1982) and defines the

current conditional variance as a function of the last period’s unexpected news as

well as the last period’s conditional volatility:

Rtþ1 � aþ etþ1 (40.27)

etþ1 ¼ ztþ1 � stþ1jt, ztþ1 � N 0; 1ð ÞE etþ1ð Þ ¼ 0 (40.28)

E e2tþ1 Otj� � ¼ s2tþ1jt ¼ g0 þ g1e
2
t þ g2s

2
t (40.29)

where the conditional variance, st+1|t
2, in Eq. 40.29 follows a GARCH(1,1) process

as defined by Bollerslev (1986) to be a function of the last period’s unexpected

news (or information shocks), zt, and the last period’s variance, st
2. The parameters

in Eqs. 40.27, 40.28, and 40.29 are estimated by maximizing the conditional

log-likelihood function in Eq. 40.26.

Engle et al. (1987) introduce the ARCH-in-mean model in which the conditional

mean of financial time series is defined as a function of the conditional variance. In

our empirical investigation of the ICAPM for exchange rates, we use the following

GARCH-in-mean process to model the intertemporal relation between expected

return and risk on currency

Rtþ1 � aþ b � s2tþ1jt þ etþ1 (40.30)

etþ1 ¼ ztþ1 � stþ1jt; ztþ1 � N 0; 1ð Þ;
E etþ1ð Þ ¼ 0

(40.31)

E e2tþ1 Otj� � ¼ s2tþ1jt ¼ g0 þ g1e
2
t þ g2s

2
t (40.32)
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f Rtþ1; mtþ1jt; stþ1jt
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2tþ1jt

q exp � 1

2

Rtþ1 � mtþ1jt
stþ1jt

	 
2
" #

(40.33)

where Rt+1 is the daily return on exchange rates for period t+1, mt+1|t � a + b � st+1|t2 is

the conditional mean for period t+1 based on the information set up to time t,
et+1 ¼ zt+1 � st+1|t is the error term with E(et+1) ¼ 0, st+1|t is the conditional standard
deviation of daily returns on currency, and zt+1 � N(0,1) is a random variable drawn

from the standard normal density and can be viewed as information shocks in the FX

market. st+1|t
2 is the conditional variance of daily returns based on the information set

up to time t denoted by Ot. The conditional variance, st+1|t
2 , follows a GARCH(1,1)

process as defined by Bollerslev (1986) to be a function of the last period’s

unexpected news (or information shocks), zt, and the last period’s variance,

st
2. f(Rt+1;mt+1|t,st+1|t) is the conditional normal density function of Rt+1 with the

conditional mean of mt+1|t and conditional variance of st+1|t
2 .

Given the initial values of et and, the parameters in Eqs. 40.30 and 40.32 can be

estimated by maximizing the log-likelihood function over the sample period. The

conditional normal density in Eq. 40.33 yields the following log-likelihood function

LogLARCH ¼� n

2
ln 2pð Þ � n

2
lnstþ1jt

� 1

2

Xn
t¼1

Rtþ1 � mtþ1jt
stþ1jt

	 
2 (40.34)

where the conditional mean mt+1|t � a + b � st+1|t2 has two parameters and the

conditional variance st+1|t
2 ¼ g0 + g1et

2 + g2st
2 has three parameters. Maximizing

the log-likelihood in Eq. 40.34 yields the parameter estimates (a, b, g0, g1, g2).
The interested reader may wish to consult Enders (2009), Chap. 3, and Tsay

(2010), Chap. 3, for comprehensive analysis of ARCH/GARCH models and their

maximum likelihood estimation. Chapter 3 in Enders (2009) provides a detailed

coverage of the basic ARCH and GARCH models, as well as the GARCH-in-mean

processes and multivariate GARCH in some detail. Chapter 3 in Tsay (2010) pro-

vides a detailed coverage of the ARCH, GARCH, GARCH-M, the exponential

GARCH, and Threshold GARCH models.

Appendix 2: Estimation of a System of Regression Equations

Consider a system of n equations, of which the typical ith equation is

yi ¼ Xibi þ ui (40.35)

where yi is a N� 1 vector of time-series observations on the i th dependent variable,
Xi is a N� kimatrix of observations of ki independent variables, bi is a ki� 1 vector
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of unknown coefficients to be estimated, and ui is a N � 1 vector of random

disturbance terms with mean zero. Parks (1967) proposes an estimation procedure

that allows the error term to be both serially and cross-sectionally correlated.

In particular, he assumes that the elements of the disturbance vector u follow an

AR(1) process

uit ¼ riuit�1 þ eit; ri < 1 (40.36)

where eit is serially independently but contemporaneously correlated:

Cov eitejt
� � ¼ sij,8i, j, and Cov eitejs

� � ¼ 0, for s 6¼ t (40.37)

Equation 40.35 can then be written as

yi ¼ Xibi þ Piei, (40.38)

with

Pi ¼

1� r2i
� ��1=2

0 0 . . . 0

ri 1� r2i
� ��1=2

1 0 . . . 0

r2i 1� r2i
� ��1=2 ri 0 . . . 0

:
:
:

rN�1
i 1� r2i
� ��1=2 rN�2

i rN�3
i . . . 1

2
66666666664

3
77777777775

(40.39)

Under this setup, Parks presents a consistent and asymptotically efficient three-

step estimation technique for the regression coefficients. The first step uses single

equation regressions to estimate the parameters of autoregressive model. The

second step uses single equation regressions on transformed equations to estimate

the contemporaneous covariances. Finally, the Aitken estimator is formed using the

estimated covariance,

b̂ ¼ XTO�1X
� ��1

XTO�1y (40.40)

Where O � E[uuT] denotes the general covariance matrix of the innovation. In

my application, I use the aforementioned methodology with the slope coefficients

restricted to be the same for all portfolios. In particular, we use the same three-step

procedure and the same covariance assumptions as in Eqs. 40.36, 40.37, 40.38,

40.39, and 40.40 to estimate the covariances and to generate the t-statistics for the
parameter estimates.

The interested reader may wish to consult Wooldridge (2010), Chaps. 10.4, 10.5,

and 10.6 for recent developments on panel data estimation. Chapter 10 in
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Wooldridge (2010) presents Basic Linear Unobserved Effects Panel Data

Models, Chap. 10.4 provides Random Effects Methods, Chap. 10.5 contains

Fixed Effects Methods, and Chap. 10.6 First Differencing Methods. Bali (2008)

and Bali and Engle (2010) follow SUR estimation to investigate the

empirical validity of the conditional intertemporal capital asset pricing models

(ICAPM).
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Abstract

This paper studies quantile regression (QR) estimation of Value at Risk (VaR).

VaRs estimated by the QR method display some nice properties. In this paper,

different QR models in estimating VaRs are introduced. In particular, VaR
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estimations based on quantile regression of the QAR models, copula models,

ARCH models, GARCH models, and the CaViaR models are systematically

introduced. Comparing the proposed QR method with traditional methods based

on distributional assumptions, the QR method has the important property in that

it is robust to non-Gaussian distributions. Quantile estimation is only influenced

by the local behavior of the conditional distribution of the response near the

specified quantile. As a result, the estimates are not sensitive to outlier observa-

tions. Such a property is especially attractive in financial applications since

many financial data like, say, portfolio returns (or log returns) are usually not

normally distributed. To highlight the importance of the QR method in estimat-

ing VaR, we apply the QR techniques to estimate VaRs in International Equity

Markets. Numerical evidence indicates that QR is a robust estimation method

for VaR.

Keywords

ARCH • Copula • GARCH • Non-normality • QAR • Quantile regression • Risk

management • Robust estimation • Time series • Value at risk

41.1 Introduction

The Value at Risk (VaR) is the loss in market value over a given time horizon that is

exceeded with probability t, where t is often set at 0.01 or 0.05. In recent years,

VaR has become a popular tool in the measurement and management of financial

risk. This popularity is spurred both by the need of various institutions for managing

risk and by government regulations (see Blankley et al., 2000; Dowd 1998, 2000;

Saunders 1999). VaR is an easily interpretable measure of risk that summarizes

information regarding the distribution of potential losses. In requiring publicly

traded firms to report risk exposure, the Securities and Exchange Commission

(SEC) lists VaR as a disclosure method “expressing the potential loss in future

earnings, fair values, or cash flows from market movements over a selected period

of time and with a selected likelihood of occurrence.”

Estimation of VaR has attracted much attention from researchers (Duffie and

Pan (1997);Wu andXiao (2002); Guo et al. (2007)).Many existingmethods of VaR

estimation in economics and finance are based on the assumption that financial

returns have normal (or conditional normal) distributions (usually with ARCH or

GARCH effects). Under the assumption of a conditionally normal return distribu-

tion, the estimation of conditional quantiles is equivalent to estimating conditional

volatility of returns. The massive literature on volatility modeling offers a rich

source of parametric methods of this type. However, there is accumulating evidence

that financial time series and return distributions are not well approximated by

Gaussian models. In particular, it is frequently found that market returns display

negative skewness and excess kurtosis. Extreme realizations of returns can

adversely affect the performance of estimation and inference designed for Gaussian

conditions; this is particularly true of ARCH and GARCH models whose
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estimation of variances is very sensitive to large innovations. For this reason,

research attention has recently shifted toward the development of more robust

estimators of conditional quantiles.

There is also growing interest in nonparametric estimation of conditional quantiles.

However, nearest neighbor and kernel methods are somewhat limited in their ability

to cope with more than one or two covariates. Other approaches to estimating VaR

include the hybrid method and methods based on extreme value theory.

Quantile regression as introduced by Koenker and Bassett (1978) is well suited

to estimating VaR. Value at Risk, as mandated in many current regulatory contexts,

is a conditional quantile by definition. This concept is intimately linked to quantile

regression estimation.

Quantile regression has now become a popular robust approach for statistical

analysis. Just as classical linear regression methods based on minimizing sums of

squared residuals enable one to estimate models for conditional mean, quantile

regression methods offer a mechanism for estimating models for the conditional

quantiles. These methods exhibit robustness to extreme shocks and facilitate

distribution-free inference. In recent years, quantile regression estimation for time-

series models has gradually attracted more attention. Koenker and Zhao (1996)

extended quantile regression to linear ARCH models and estimate conditional

quantiles by a linear quantile regression. Engle andManganelli (1999) have suggested

a nonlinear dynamic quantile model where conditional quantiles themselves follow an

autoregression, and they call this a Conditional Autoregressive Value at Risk

(CaViaR) specification. Computation of the CaViaR model is challenging and grid

searching is conventionally used in practice. Koenker and Xiao (2006) investigate

quantile autoregressive processes that can capture systematic influences of condition-

ing variables on the location, scale, and shape of the conditional distribution of the

response and therefore constitute a significant extension of classical time-series

models in which the effect of conditioning is confined to a location shift. Xiao and

Koenker (2009) recently studied quantile regression estimation of GARCH models.

GARCH models have proven to be highly successful in modeling financial data and

are arguably the most widely used class of models in financial applications. However,

quantile regression GARCH models are highly nonlinear and thus complicated to

estimate. The quantile estimation problem in GARCH models corresponds to

a restricted nonlinear quantile regression, and conventional nonlinear quantile regres-

sion techniques are not directly applicable, adding an additional challenge to the

already complicated estimation problem. Koenker andXiao (2009) propose a two-step

approach for quantile regression on GARCH models. The proposed method is

relatively easy to implement compared to other nonlinear estimation techniques in

quantile regression and has good sampling performance in our simulation experiments.

VaRs estimated by the quantile regression approach display some nice properties.

For example, they track VaRs estimated from GARCH volatility models well during

normal market conditions. However, during market turmoils when large market price

drops are followed by either further drops or rebounds, GARCH volatility models

tend to predict implausibly high VaRs. This is due to the fact that volatility and VaRs

are not synonymous. While large positive and negative return shocks indicate
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higher volatility, only large negative return shocks indicate higher Value at Risk.

GARCHmodels treat both large positive and negative return shocks as indications of

higher volatility. VaRs estimated by the ARCH/GARCH quantile regression model,

while predicting higher volatility in the ARCH/GARCH component, assign a much

bigger weight to the large negative return shock than the large positive return shock.

The resulting estimated VaRs seem to be closer to reality.

In this chapter, we study quantile regression estimation of VaR. Different quantile

models in estimating VaR are introduced in this paper. In particular, Value at Risk

analysis based on quantile regression of the QAR models, copula models, ARCH

models, GARCH models, and the CaViaR models is systematically introduced. To

highlight the importance of quantile regression method in estimating VaR, we apply

the quantile regression techniques to estimate VaR in International Equity Markets.

Numerical evidence indicates that quantile regression is a robust estimation method

for VaR.

This chapter is organized as follows. We introduce the traditional VaR estima-

tion methods and quantile regression in Sect. 41.2. The quantile autoregression

(QAR) models are given in Sect. 41.3; nonlinear QAR models based on copula and

the CaViaR models are also introduced. Section 41.4 introduces quantile regression

estimation on ARCH and GARCH models. Section 41.5 contains an empirical

application of quantile regression estimation of VaRs. Section 41.6 concludes.

41.2 Traditional Estimation Methods of VaR

For a time series of returns on an asset, {rt}t¼1
n , the t (or 100t%) VaR at time t,

denoted by VaRt, is defined by

Pr rt < �VaRt F t�1jð Þ ¼ t (41.1)

where F t�1 denotes the information set at time t�1, including past values of returns

and possibly the value of some covariates Xt.

If we assume that the time series of returns are modeled by

rt ¼ mt þ stet,

where rt is the return of an asset at time t andmt, st2F t�1. The random variables et are
martingale difference sequences. The Conditional Value at Risk of rt given F t�1 is

VaRt tð Þ ¼ mt þ stQe tð Þ,

where Qe(t) denotes the Unconditional Value at Risk of the error term et. Assuming

conditional normality, the 5 % VaR at time t can be computed as

VaRt 0:05ð Þ ¼ mt þ 1:65st

where mt and st are the conditional mean and conditional volatility for rt.
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RiskMetrics takes a simple and pragmatic approach to modeling the conditional

volatility. The forecast for time t variance in RiskMetrics method is a weighted

average of the previous forecast, using weight l, and of the latest squared innova-

tion, using weight (1�l):

s2t ¼ ls2t�1 þ 1� lð Þr2t�1 (41.2)

where the parameter l is called the decay factor (1> l> 0). Conceptually l should
be estimated using a maximum likelihood approach. RiskMetrics simply set it

optimally at 0.94 for daily data and 0.97 for monthly data. Our analysis is on

weekly data and we set l at 0.95.

There are extensive empirical evidences supporting the use of ARCH and

GARCH models in conditional volatility estimation. Bollerslev et al. (1992) pro-

vide a nice overview of the issue. Sarma et al. (2000) showed that at the 5 % level,

an AR(1)-GARCH(1,1) model is a preferred model under the conditional normality

assumption. The AR(1)-GARCH(1,1) model is specified:

rtþ1 ¼ a0 þ a1rt þ 2tþ1 2tþ1 It � N 0; s2t
� ���

s2t ¼ o0 þ o1s2t�1 þ o222
t : (41.3)

The conditional mean equation is modeled as an AR(1) process to account for

the weakly autoregressive behavior of returns.

41.3 Quantile Regression

Quantile regression was introduced by Koenker and Bassett (1978) and has

received a lot of attention in econometrics and statistics research in the past two

decades. The quantile function of a scalar random variable Y is the inverse of its

distribution function. Similarly, the conditional quantile function of Y given X is the

inverse of the corresponding conditional distribution function, i.e.,

QY t Xj Þ ¼ F�1
Y t Xj Þ ¼ inf y : FY y Xj Þ � tð g,fð�

where FY(yjX) ¼ P(Y � yjX). By definition, the t VaR at time t is the t-th
conditional quantile of rt giving information at time t�1.

Consider a random variable Y characterized by its distribution function F(y), the
t-th quantile of Y is defined by

QY tð Þ ¼ inf y F yð Þ � tj g:f
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If we have a random sample {y1, . . ., yn} from the distribution F, the t-th sample

quantile can be defined as

Q̂Y tð Þ ¼ inf y F̂ yð Þ � t
�� �

,
�

where F̂ is the empirical distribution function of the random sample. Note that the

above sample quantile may be found by solving the following minimization

problem:

min
b2<

X
t2 t:yt�bf g

t yt � bj j þ
X

t2 t:yt<bf g
1� tð Þ yt � bj j

2
4

3
5: (41.4)

Koenker and Bassett (1978) studied the analogue of the empirical quantile

function for the linear models and generalized the concept of quantiles to the

regression context.

If we consider the linear regression model

Yt ¼ b
0
Xt þ ut, (41.5)

where ut are iid mean zero random variables with quantile function Qu(t) and Xt are

k-by-1 vector of regressors including an intercept term and lagged residuals, then,

conditional on the regressor Xt, the t-th quantile of Y is a linear function of Xt:

QYt
t Xtjð Þ ¼ b0Xt þ Qu tð Þ ¼ b tð Þ0Xt

where b(t)0 ¼ (b1 + Qu(t), b2, � � �, bk). Koenker and Bassett (1978) show that the

t-th conditional quantile of Y can be estimated by an analogue of Eq. 41.4:

Q̂Yt
tjXtð Þ ¼ X

0
tb̂ tð Þ

where

b̂ tð Þ ¼ arg min
b2<k

X
t2 t:yt�xtbf g

t yt � x
0
tb

�� ��þ
X

t2 t:yt<xtbf g
1� tð Þ yt � x

0
tb

�� ��
2
4

3
5 (41.6)

is called as the regression quantiles. Let rt(u) ¼ u(t�I(u < 0)), then

b̂ tð Þ ¼ arg min
b2<k

X
t

rt yt � x
0
tb

� �
:

Quantile regression method has the important property that it is robust to

distributional assumptions. This property is inherited from the robustness property

of the ordinary sample quantiles. Quantile estimation is only influenced by the local
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behavior of the conditional distribution of the response near the specified quantile.

As a result, the estimated coefficient vector ŷ tð Þ is not sensitive to outlier obser-

vations. Such a property is especially attractive in financial applications since many

financial data like, say, portfolio returns (or log returns) are usually heavy tailed and

thus not normally distributed.

The quantile regression model has a mathematical programming representation

which facilitates the estimation. Notice that the optimization problem (Eq. 41.6)

may be reformulated as a linear program by introducing “slack” variables to

represent the positive and negative parts of the vector of residuals (see Koenker

and Bassett (1978) for a more detailed discussion). Computation of the regression

quantiles by standard linear programming techniques is very efficient. It is also

straightforward to impose the nonnegativity constraints on all elements of g.
Barrodale and Roberts (1974) proposed the first efficient algorithm for L1-
estimation problems based on modified simplex method. Koenker and d’Orey

(1987) modified this algorithm to solve quantile regression problems. For very

large quantile regression problems, there are some important new ideas which

speed up the performance of computation relative to the simplex approach under-

lying the original code. Portnoy and Koenker (1997) describe an approach that

combines some statistical preprocessing with interior point methods and achieves

faster speed over the simplex method for very large problems.

41.4 Autoregressive Quantile Regression Models

41.4.1 The QAR Models

In many finance applications, the time-series dynamics can be more complicated

than the classical autoregression where past information (Yt�j) influences only the

location of the conditional distribution of Yt. For example, it is well known that

the correlations tend to be larger in bear than in bull markets. Recognizing that the

correlation is asymmetric is important for risk management and other

financial applications. Any attempt to diagnose or forecast series of this type

requires that a mechanism be introduced to capture the empirical features of

the series.

An important extension of the classical constant coefficient time-series model is

the quantile autoregression (QAR) model (Koenker and Xiao 2006). Given a time

series {Yt}, let F t be the s-field generated by {Ys, s � t}; {Yt} is a p-th order QAR

process if

QYt
t F t�1j Þ ¼ y0 tð Þ þ y1 tð ÞYt�1 þ � � � þ yp tð ÞYt�p;
�

(41.7)

this implies, of course, that the right-hand side of Eq. 41.7 is monotonically

increasing in t. In the above QAR model, the autoregressive coefficients may be

t-dependent and thus can vary over different quantiles of the conditional
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distribution. Consequently, the conditioning variables not only shift the location of

the distribution of Yt but also may alter the scale and shape of the conditional

distribution. The QAR models play a useful role in expanding the modeling

territory of the classical autoregressive time-series models, and the classical

AR(p) model can be viewed as a special case of QAR by setting yj(t) (j ¼ 1, . . ., p)
to constants.

Koenker and Xiao (2006) studied the QAR model. The QAR model can be

estimated by

ŷ tð Þ ¼ min
y

X
t

rt Yt � y>Xt

� �
, (41.8)

where Xt ¼ (1, Yt�1, . . ., Yt�p)
> and y(t)¼ (y0(t), y1(t), . . ., yp(t))

>; they show that

under regularity assumptions, the limiting distribution of the QAR estimator is

given by

ffiffiffi
n

p
ŷ tð Þ � y tð Þ
� �

) N 0, t 1� tð ÞO�1
1 O0O

�1
1

� �
,

where O0 ¼ E(XtXt
>) and O1 ¼ lim n�1 ∑t¼1

n ft�1[Ft�1
�1 (t)]XtXt

>.
The QAR models expand the modeling options for time series that display

asymmetric dynamics and allow for local persistency. The models can capture

systematic influences of conditioning variables on the location, scale, and shape

of the conditional distribution of the response and therefore constitute a significant

extension of classical constant coefficient linear time-series models.

Quantile varying coefficients indicate the existence of conditional heteroske-

dasticity. Given the QAR process (Eq. 41.7), let y0¼ E[y0(Ut)], y1¼ E[y1(Ut)], . . . ,
yp ¼ E[yp(Ut)], and

Vt ¼ y0 Utð Þ � Ey0 Utð Þ þ y1 Utð Þ � Ey1 Utð Þ½ �Yt�1 þ � � � þ yp Utð Þ � Eyp Utð Þ
 �
Yt�p;

the QAR process can be rewritten as

Yt ¼ y0 þ y1Yt�1 þ � � � þ ypYt�p þ Vt (41.9)

where Vt is martingale difference sequence. The QAR process is a weak sense AR

process with conditional heteroskedasticity.

What’s the difference between a QAR process and an AR process with ARCH

(or GARCH) errors? In short, the ARCH type model only focuses on the first two

moments, while the QAR model goes beyond the second moment and allows for

more flexible structure in higher moments. Both models allow for conditional

heteroskedasticity and they are similar in the first two moments, but they can be

quite different beyond conditional variance.
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41.4.2 Nonlinear QAR and Copula-Based Quantile Models

More complicated functional forms with nonlinearity can be considered for the

conditional quantile function if we are interested in the global behavior of the time

series. If the t-th conditional quantile function of Yt is given by

QYt
t F t�1j Þ ¼ H Xt; y tð Þð Þ,ð

where Xt is the vector containing lagged Ys, we may estimate the vector of

parameters y(t) (and thus the conditional quantile of Yt) by the following nonlinear
quantile regression:

min
y

X
t

rt Yt � H Xt, yð Þð Þ: (41.10)

Let ett ¼ yt � H xt, y tð Þð Þ, _Hy xt; yð Þ ¼ @H xt; yð Þ=@y; we assume that

Vn tð Þ ¼ 1

n

X
t

f t QYt
tjXtð Þ� �

_Hy Xt, y tð Þð Þ _Hy Xt, y tð Þð Þ> !P V tð Þ,

On tð Þ ¼ 1

n

X
t

_Hy Xt, y tð Þð Þ _Hy Xt, y tð Þð Þ> !P O tð Þ,

and

1ffiffiffi
n

p
X
t

_Hy xt, y tð Þð ÞYt ettð Þ ) N 0, t 1� tð ÞO tð Þð Þ,

where V(t) and O(t) are non-singular; then under appropriate assumptions, the

nonlinear QAR estimator ŷ tð Þ defined as solution of Eq. 41.10 is root-n consistent

and

ffiffiffi
n

p
ŷ tð Þ � y tð Þ
� �

) N 0, t 1� tð ÞV tð Þ�1O tð ÞV tð Þ�1
� �

: (41.11)

In practice, one may employ parametric copula models to generate nonlinear-in-

parameters QAR models (see, e.g., Bouyé and Salmon 2008; Chen et al. 2009).

Copula-based Markov models provide a rich source of potential nonlinear

dynamics describing temporal dependence and tail dependence. If we consider,

for example, a first-order strictly stationary Markov process, {Yt}t¼1
n , whose

probabilistic properties are determined by the joint distribution of Yt�1 and Yt,
say, G*(yt�1, yt), and suppose that G*(yt�1, yt) has continuous marginal distribution

function F*(·), then by Sklar’s Theorem, there exists a unique copula function

C*(·, ·) such that

G� yt�1, ytð Þ 	 C� F� yt�1ð Þ, F� ytð Þð Þ,
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where the copula function C*(·, ·) is a bivariate probability distribution function

with uniform marginals. Differentiating C*(u, v) with respect to u and evaluating at
u ¼ F*(x), v ¼ F*(y), we obtain the conditional distribution of Yt given Yt�1 ¼ x:

Pr Yt < yjYt�1 ¼ x½ � ¼ @C� u; vð Þ
@u

����
u¼F� xð Þ, v¼F� yð Þ

	 C�
1 F� xð Þ,F� yð Þð Þ:

For any t 2 (0, 1), solving t ¼ Pr[Yt < y|Yt�1 ¼ x] 	 C1
�(F�(x), F�(y)) for

y (in terms of t), we obtain the t-th conditional quantile function of Yt given
Yt�1 ¼ x:

QYt
t xj Þ ¼ F��1 C��1

1 t;F� xð Þð Þ� �
,

�

where F*�1(·) signifies the inverse of F*(·) and C1
��1(�;u) is the partial inverse of

C1
�(u,v) with respect to v ¼ F*(yt).
In practice, neither the true copula function C*(·, ·) nor the true marginal

distribution function F*(·) of {Yt} is known. If we model both parametrically by

C(·, ·; a) and F(y; b), then the t-th conditional quantile function of Yt, QYt
t xjð Þ ,

becomes a function of the unknown parameters a and b, i.e.,

QYt
t xj Þ ¼ F�1 C�1

1 t;F x; bð Þ, að Þ,b� �
:

�

Denoting y ¼ (a0, b0)0 and h(x, a, b) 	 C1
�1(t; F(x, b), a), we will write

QYt
t xj Þ ¼ F�1 h x; a; bð Þ,bð Þ 	 H x; yð Þ:�

(41.12)

For example, if we consider the Clayton copula:

C u; v; að Þ ¼ u�a þ v�a � 1½ ��1=a
, where a > 0,

one can easily verify that the t-th conditional quantile function of Ut given ut�1 is

QUt
t ut�1j Þ ¼ t�a= 1það Þ � 1

� �
u�a
t�1 þ 1

h i�1=a
:

�

See Bouyé and Salmon (2008) for additional examples of copula-based condi-

tional quantile functions.

Although the quantile function specification in the above representation assumes

the parameters to be identical across quantiles, we may permit the estimated

parameters to vary with t, thus extending the original copula-based QAR models

to capture a wide range of systematic influences of conditioning variables on the

conditional distribution of the response. By varying the choice of the copula

specification, we can induce a wide variety of nonlinear QAR(1) dependence, and
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the choice of the marginal enables us to consider a wide range of possible tail

behavior as well. In many financial time-series applications, the nature of the

temporal dependence varies over the quantiles of the conditional distribution.

Chen et al. (2009) studied asymptotic properties of the copula-based nonlinear

quantile autoregression.

41.4.3 The CaViaR Models

Quantile-based method provides a local approach to directly model the dynamics of

a time series at a specified quantile. Engle and Manganelli (2004) propose the

Conditional Autoregressive Value at Risk (CaViaR) specification for the t-th
conditional quantile of ut:

Qut t F t�1jð Þ ¼ b0 þ
Xp

i¼1

biQut�i
t F t�i�1jð Þ þ

Xq

j¼1

aj‘ Xt�j

� �
, (41.13)

where Xt�j 2F t�j,F t�j is the information set at time t�j. A natural choice of Xt�j is

the lagged u. When we choose Xt�j ¼ jut�jj, we obtain GARCH-type CaViaR

models:

Qut t F t�1jð Þ ¼ b0 þ
Xp

i¼1

biQut�i
t F t�i�1jð Þ þ

Xq

j¼1

aj ut�j

�� ��:

If Xt�j ¼ 0, we obtain an autoregressive model for the VaRs:

Qut t F t�1jð Þ ¼ b0 þ
Xp

i¼1

biQut�i
t F t�i�1jð Þ:

Engle and Manganelli (2004) discussed many choices of ‘(Xt�j), leading to

different specifications of the CaViaR model.

41.5 Quantile Regression of Conditional Heteroskedastic
Models

41.5.1 ARCH Quantile Regression Models

ARCH and GARCH models have proven to be highly successful in modeling

financial data. Estimators of volatilities and quantiles based on ARCH and

GARCH models are now widely used in finance applications. Consider the follow-

ing linear ARCH(p) process:

ut ¼ st � et,st ¼ g0 þ g1 ut�1j j þ � � � þ gp ut�p

�� ��, (41.14)

41 Quantile Regression and Value at Risk 1153



where 0 < g0 <1, g1, . . ., gp � 0 and et are iid(0,1) random variables with pdf f (·)
and CDF F (·). Let Zt ¼ (1,jut�1j, . . .,jut�qj)> and g(t) ¼ (g0F

�1(t), g1F
�1(t), . . .,

gqF
�1(t))>; the conditional quantiles of ut is given by

Qut tjF t�1ð Þ ¼ g0 tð Þ þ g1 tð Þ ut�1j j þ � � � þ gp tð Þ ut�p

�� �� ¼ g tð Þ>Zt

and can be estimated by the following linear quantile regression of ut on Zt:

min
g

X
t

rt ut � g>Zt

� �
, (41.15)

where g ¼ (g0, g1, � � �, gq)
>. The asymptotic behavior of the above quantile

regression estimator is given by Koenker and Zhao (1996). In particular,

suppose that ut is given by model (Eq. 41.14), f is bounded and continuous, and

f(F�1(t)) > 0 for any 0 < t < 1. In addition, if Ejutj2+d < 1, then the regression

quantile ĝ tð Þ of Eq. 41.15 has the following Bahadur representation:

ffiffiffi
n

p
ĝ tð Þ � g tð Þð Þ ¼ S�1

1

f F�1 tð Þ� � 1ffiffiffi
n

p
Xn
t¼1

Z>
t yt ettð Þ þ op 1ð Þ

where S1 ¼ EZtZt
0
/st and ett ¼ et�F�1(t). Consequently,

ffiffiffi
n

p
ĝ tð Þ � g tð Þð Þ ¼ N 0,

t 1� tð Þ
f F�1 tð Þ� �2 S�1

1 S0S�1
1

 !
, with S0 ¼ EZtZ

0
t:

In many applications, conditional heteroskedasticity is modeled on the residuals

of a regression. For example, we may consider the following AR-ARCH model:

Yt ¼ a
0
Xt þ ut (41.16)

where Xt ¼ (1, Yt�1, . . .,Yt�p)
>, a ¼ (a0, a1, . . ., ap)

>, and ut is a linear ARCH(p)
process given by model (Eq. 41.14). The conditional quantiles of Yt is then given by

QYt
tjF t�1ð Þ ¼ a

0
Xt þ g tð Þ>Zt: (41.17)

One way to estimate the above model is to construct a joint estimation of

a and g(t) based on nonlinear quantile regression. Alternatively, we may consider

a two-step procedure that estimates a in the first step and then estimates g(t)
based on the estimated residuals. The two-step procedure is usually less efficient

because the preliminary estimation of a may affect the second-step estimation

of g(t), but it is computationally much simpler and is widely used in empirical

applications.
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41.5.2 GARCH Quantile Regression Models

ARCH models are easier to estimate, but cannot parsimoniously capture the

persistent influence of long past shocks comparing to the GARCH models. How-

ever, quantile regression GARCH models are highly nonlinear and thus compli-

cated to estimate. In particular, the quantile estimation problem in GARCH models

corresponds to a restricted nonlinear quantile regression, and conventional

nonlinear quantile regression techniques are not directly applicable.

Xiao and Koenker (2009) studied quantile regression estimation of the following

linear GARCH(p, q) model:

ut ¼ st � et, (41.18)

st ¼ b0 þ b1st�1 þ � � � þ bpst�p þ g1 ut�1j j þ � � � þ gq ut�q

�� ��: (41.19)

Let F t�1 represents information up to time t�1; the t-th conditional quantile of

ut is given by

Qut tjF t�1ð Þ ¼ y tð Þ>Zt, (41.20)

where Zt ¼ (1, st�1, . . .,st�p,jut�1j, . . .,jut�qj)> and y(t)> ¼ (b0, b1, . . ., bp,
g1, . . ., gq)F

�1(t).
Since Zt contains st�k(k ¼ 1,� � �, q) which in turn depends on unknown

parameters y ¼ (b0, b1, . . ., bp, g1, . . ., gq), we may write Zt as Zt(y) to emphasize

the nonlinearity and its dependence on y. If we use the following nonlinear quantile
regression

min
y

X
t

rt ut � y>Zt yð Þ� �
, (41.21)

for a fixed t in isolation, consistent estimate of y cannot be obtained since it ignores
the global dependence of the st�k’s on the entire function y(·). If the dependence

structure of ut is characterized by (1) and (1), we can consider the following

restricted quantile regression instead of Eq. 41.21:

p̂, ŷ
� �

¼ arg minp, y
X

i

X
t
rti ut � p>i Zt yð Þ� �

s:t: pi ¼ y tið Þ ¼ yF�1 tið Þ:

(

Estimation of this global restricted nonlinear quantile regression is complicated.

Xiao and Koenker (2009) propose a simpler two-stage estimator that both

incorporates the global restrictions and also focuses on the local approximation

around the specified quantile. The proposed estimation consists of the following

two steps: (i) The first step considers a global estimation to incorporate the global

dependence of the latent st�k’s on y. (ii) Then, using results from the first step, we
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focus on the specified quantile to find the best local estimate for the conditional

quantile. Let

A Lð Þ ¼ 1� b1L� � � � � bpL
p, B Lð Þ ¼ g1 þ � � � þ gqL

q�1;

under regularity assumptions ensuring that A(L) is invertible, we obtain an

ARCH(1) representation for st:

st ¼ a0 þ
X1
j¼1

aj ut�j

�� ��: (41.22)

For identification, we normalize a0 ¼ 1. Substituting the above ARCH(1)

representation into (1) and (1), we have

ut ¼ a0 þ
X1
j¼1

aj ut�j

�� ��
 !

et, (41.23)

and

Qut t F t�1jð Þ ¼ a0 tð Þ þ
X1
j¼1

aj tð Þ ut�j

�� ��,

where aj tð Þ ¼ ajQet tð Þ, j ¼ 0, 1, 2, . . ..
Let m ¼ m(n) be a truncation parameter; we may consider the following

truncated quantile autoregression:

Qut t F t�1jð Þ 
 a0 tð Þ þ a1 tð Þ ut�1j j þ � � � þ am tð Þ ut�mj j:

By choosing m suitably small relative to the sample size n, but large

enough to avoid serious bias, we obtain a sieve approximation for the GARCH

model.

One could estimate the conditional quantiles simply using a sieve approximation:

ˆˆ ˆQut 
(t |Ft−1) = a0(t ) + a1(t ) | ut−1 | + ⋅⋅⋅ + am (t ) | ut−m |,

∨

where âj tð Þ are the quantile autoregression estimates. Under regularity assumptions

Qut 
(t |Ft−1) = Qut 

(t |Ft−1) + Op (m /  n ).
∨

However, Monte Carlo evidence indicates that the simple sieve approximation

does not directly provide a good estimator for the GARCHmodel, but it serves as an

adequate preliminary estimator. Since the first step estimation focuses on the global

model, it is desirable to use information over multiple quantiles in estimation.
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Combining information over multiple quantiles helps us to obtain globally coherent

estimate of the scale parameters.

Suppose that we estimate the m-th order quantile autoregression

ea tð Þ ¼ arg min
a

Xn
t¼mþ1

rt ut � a0 �
Xm
j¼1

aj ut�j

�� ��
 !

(41.24)

at quantiles (t1, . . . , tK) and obtain estimates ea tkð Þ, k ¼ 1, . . . , K. Let ea0 ¼ 1 in

accordance with the identification assumption. Denote

a ¼ a1; . . . ; am; q1; . . . ; qK½ �>, p ¼ ea t1ð Þ>, . . . ,ea tKð Þ>
h i>

,

where qk ¼ Qet tkð Þ, and

f að Þ ¼ g� a ¼ q1, a1q1, . . . , amq1, . . . , qK, a1qK , . . . , amqK½ �>,

where g ¼ [q1, . . ., qK]
> and a ¼ [1, a1, a2, . . ., am]

>; we consider the following

estimator for the vector a that combines information over the K quantile estimates

based on the restrictions aj tð Þ ¼ ajQet tð Þ:

ea ¼ arg min
a

p � f að Þð Þ>An p � f að Þð Þ, (41.25)

where An is a (K(m + 1)) � (K(m + 1)) positive definite matrix. Denoting ea ¼
ea0; . . . ;eamð Þ, st can be estimated by

est ¼ ea0 þ
Xm
j¼1

eaj ut�j

�� ��:

In the second step, we perform a quantile regression of ut on

eZt ¼ 1, est�1, . . . est�p, ut�1j j, . . . , ut�q

�� ��� �>
by

min
y

X
t

rt ut � y>eZt

� �
; (41.26)

the two-step estimator of y(t)> ¼ (b0(t), b1(t), . . ., bp(t), g1(t), . . ., gq(t)) is then

given by the solution of Eq. 41.26, y
_

tð Þ, and the t-th conditional quantile of ut can
be estimated by

Q̂ut t F t�1jð Þ ¼ ŷ tð Þ>eZt:

Iteration can be applied to the above procedure for further improvement.
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Letea tð Þbe the solution of Eq. 41.24; then under appropriate assumptions, we have

eak tð Þ � a tð Þ 2
 ¼ Op m=nð Þ, (41.27)

and for any l 2 Rm+1,

ffiffiffi
n

p
l> ea tð Þ � a tð Þð Þ

sl
) N 0; 1ð Þ,

where sl
2 ¼ fe(Fe

�1(t))�2l>Dn
�1 ∑n(t)Dn

�1l, and

Dn ¼ 1

n

Xn
t¼mþ1

xtx
>
t

st

" #
,Sn tð Þ ¼ 1

n

Xn
t¼mþ1

xtx
T
t Y

2
t uttð Þ,

where xt ¼ (1,jut�1j, . . ., jut�mj)>.
Define

G ¼ @f að Þ
@a>

����
a¼a0

¼ _f a0ð Þ ¼ g� Jm⋮IK � a0½ �, g0 ¼
Qet t1ð Þ
� � �

Qet tKð Þ

2
4

3
5,

where g0 and a0 are the true values of vectors g ¼ [q1, . . ., qK]
> and a ¼ [1, a1, a2,

. . ., am]
>, and

Jm ¼
0 � � � 0

1 � � � 0

⋮ ⋱ ⋮
0 � � � 1

2
664

3
775

is an (m + 1)� mmatrix and IK is a K-dimensional identity matrix; under regularity

assumptions, the minimum distance estimator ea solving (Eq. 41.25) has the

following asymptotic representation:

ffiffiffi
n

p
â � a0ð Þ ¼ G>AnG


 ��1
G>An

ffiffiffi
n

p
p � pð Þ þ op 1ð Þ

where

ffiffiffi
n

p
p � pð Þ ¼ � 1ffiffiffi

n
p

Xn
t¼mþ1

D�1
n xt

yt1 utt1ð Þ
f e F�1

e t1ð Þ� �
 !

� � �
D�1

n xt
ytm uttmð Þ

f e F�1
e tmð Þ� �

 !

2
6666664

3
7777775
þ op 1ð Þ,
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and the two-step estimator ŷ tð Þ based on Eq. 41.26 has asymptotic representation:

ffiffiffi
n

p
ŷ tð Þ � y tð Þ
� �

¼ � 1

f e F�1
e tð Þ� �O�1 1ffiffiffi

n
p
X
t

Ztyt uttð Þ
( )

þ O�1G
ffiffiffi
n

p ea � að Þ þ op 1ð Þ,

where a ¼ [a1, a2, . . ., am]
>, O ¼ E[ZtZt

>/st], and

G ¼
Xp

k¼1

ykCk,Ck ¼ E ut�k�1j j; . . . ; ut�k�mj jð Þ Zt

st

� �
:

41.6 An Empirical Application

41.6.1 Data and the Empirical Model

In this section, we apply the quantile regression method to five major world equity

market indexes. The data used in our application are the weekly return series, from

September 1976 to June 2008, of five major world equity market indexes: the US

S&P 500 Composite Index, the Japanese Nikkei 225 Index, the UK FTSE

100 Index, the Hong Kong Hang Seng Index, and the Singapore Strait Times

Index. The FTSE 100 Index data are from January 1984 to June 2008. Table 41.1

reports some summary statistics of the data.

The mean weekly returns of the five indexes are all over 0.1 % per week, with the

Hang Seng Index producing an average return of 0.23 % per week, an astonishing

Table 41.1 Summary statistics of the data

S&P 500 Nikkei 225 FTSE 100 Hang Seng Singapore ST

Mean 0.0015 0.0010 0.0017 0.0023 0.0012

Std. Dev. 0.0199 0.0253 0.0237 0.0376 0.0291

Max 0.1002 0.1205 0.1307 0.1592 0.1987

Min �0.1566 �0.1289 �0.2489 �0.5401 �0.4551

Skewness �0.4687 �0.2982 �1.7105 �3.0124 �1.5077

Excess kurtosis 3.3494 2.9958 12.867 9.8971 19.3154

AC(1) �0.0703 �0.0306 0.0197 0.0891 0.0592

AC(2) 0.0508 0.0665 0.0916 0.0803 0.0081

AC(3) 0.0188 0.0328 �0.0490 �0.0171 0.0336

AC(4) �0.0039 �0.0418 �0.0202 �0.0122 0.0099

AC(5) �0.0189 �0.0053 �0.0069 �0.0386 0.0519

AC(10) �0.0446 �0.0712 0.0138 �0.0345 �0.0227

This table shows the summary statistics for the weekly returns of five major equity indexes of the

world. AC(k) denotes autocorrelation of order k. The source of the data is the online data service

Datastream
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increase in the index level over the sample period. In comparison, the average

return of Nikkei 225 index is only 0.1 %. The Hang Seng’s phenomenal rise does

not come without risk. The weekly sample standard deviation of the index is

3.76 %, the highest of the five indexes. In addition, over the sample period the

Hang Seng suffered four larger than 15 % drop in weekly index level, with

maximum loss reaching 35 %, and there were 23 weekly returns below �10 %!

As has been documented extensively in the literature, all five indexes display

negative skewness and excess kurtosis. The excess kurtosis of Singapore Strait

Times Index reached 19.31, to a large extent driven by the huge 1 week loss of

47.47 % during the 1987 market crash. The autocorrelation coefficients for all five

indexes are fairly small. The Hang Seng Index seems to display the strongest

autocorrelation with the AR(1) coefficient equal to 0.0891.

We consider an AR-linear ARCH model in the empirical analysis. Thus, the

return process is modeled as

rt ¼ a0 þ a1rt�1 þ � � � þ asrt�s þ ut, (41.28)

where

ut ¼ stet,st ¼ g0 þ g1 ut�1j j þ � � � þ gq ut�q

�� ��,

and the t Conditional VaR of ut is given by

Qut t F t�1jð Þ ¼ g tð Þ0Zt

g tð Þ0 ¼ g0 tð Þ, g1 tð Þ, . . . , gq tð Þ� �
, and Zt ¼ 1; ut�1j j; . . . ; ut�q

�� ��� �0
:

For each time series, we first conduct model specification analysis and choose the

appropriate lags for the mean equation and the quantile ARCH component. Based on

the selectedmodel, we use Eq. 41.28 to obtain a time series of residuals. The residuals

are then used in the ARCH VaR estimation using a quantile regression.

41.6.2 Model Specification Analysis

We conduct sequential tests for the significance of the coefficients on lags. The

inference procedures we use here are asymptotic inferences. For estimation of the

covariance matrix, we use the robust HAC (Heteroskedastic and Autocorrelation

Consistent) covariance matrix estimator of Andrews (1991) with the data-

dependent automatic bandwidth parameter estimator recommended in that paper.

First of all, we choose the lag length in the autoregression,

rt ¼ a0 þ a1rt�1 þ � � � þ asrt�s þ ut,

1160 Z. Xiao et al.



using a sequential test of significance on lag coefficients. The maximum lag length

that we start with is s ¼ 9, and the procedure is repeated until a rejection occurs.

Table 41.2 reports the sequential testing results for the S&P 500 index. The

t-statistics of all the coefficients are listed for nine rounds of the test. We see that

the t-statistic of the coefficient with the maximum number of lags does not become

significant until s¼ 1, the ninth round. The preferred model is an AR(1) model. The

selected mean equations for all five indexes are reported in Table 41.4.

Our next task is to select the lag length in the ARCH effect

ut ¼ g0 þ g1 ut�1j j þ � � � þ gq ut�q

�� ��� �
et:

Again, a sequential test is conducted. To calculate the t-statistic, we need to

estimate o2 ¼ t(1 � t)/f(F�1(t))2. There are many studies on estimating f(F�1(t)),
including Siddiqui (1960), Bofinger (1975), Sheather and Maritz (1983), and Welsh

(1987). Notice that

dF�1 tð Þ
dt

¼ 1

f F�1 tð Þ� � ; (41.29)

following Siddiqui (1960), we may estimate (Eq. 41.29) by a simple difference

quotient of the empirical quantile function. As a result,

f dF�1 tð Þ
� �

¼ 2hn

F̂
�1

tþ hnð Þ � F̂
�1

t� hnð Þ (41.30)

where F̂
�1

tð Þ is an estimate of F�1(t) and hn is a bandwidth which goes to zero as

n!1. A bandwidth choice has been suggested by Hall and Sheather (1988) based

on Edgeworth expansion for studentized quantiles. This bandwidth is of order n�1/3

and has the following representation:

hH S ¼ z2=3a 1:5s tð Þ=s00 tð Þ
h i1=3

n�1=3,

where za satisfies F(za) ¼ 1 � a/2 for the construction of 1�a confidence intervals.
In the absence of additional information, s(t) is just the normal density. Starting

with qmax ¼ 10, a sequential test was conducted and results for the 5 % VaR model

of the S&P 500 Index are reported in Table 41.3. We see that in the fourth round,

the t-statistic on lag 7 becomes significant. The sequential test stops here, and it

suggests that ARCH(7) is appropriate.

Based on the model selection tests, we decide to use the AR(1)-ARCH(7)

regression quantile model to estimate 5 % VaR for the S&P 500 index. We also

conduct similar tests on the 5 % VaR models for other four indexes. To conserve

space we do not report the entire testing process in the paper. Table 41.4 provides

a summary of the selected models based on the tests. The mean equations
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generally have one or two lags, except the Hang Seng Index, which has a lag of

3 and displays more persistent autoregressive effect.

For the ARCH equations, at least six lags are needed for the indexes.

41.6.3 Estimated VaRs

The estimated parameters for the mean equations for all five indexes are reported in

Table 41.5. The constant term for the five indexes is between 0.11 % for the Nikkei

and 0.24 % for the Hang Seng. As suggested by Table 41.1, the Hang Seng seems to

display the strongest autocorrelation, and this is reflected in the four lags chosen by

the sequential test. Table 41.6 reports the estimated quantile regression ARCH

parameters for the 5 % VaR model:

USA – S&P 500 Index. The estimated 5 % VaRs generally range between 2.5 %

and 5 %, but during very volatile periods they could jump over 10 %, as what

happened in October 1987. During high-volatility periods, there is high variation

in estimated VaRs.

Table 41.4 ARCH VaR models selected by the sequential test

Index Mean Lag 5 % ARCH Lag

S&P 500 1 6

Nikkei 225 1 7

FTSE 100 1 6

Hang Seng 3 6

Singapore ST 2 7

This table summarizes the preferred ARCH VaR models for the five global market indexes. The

number of lags in the mean equation and the volatility component of the ARCH model is selected

according to the test

Table 41.3 5 % VaR model ARCH specification test for the S&P 500 Index

Round 1st 2nd 3rd 4th

g0 �16.856 �15.263 �17.118 �15.362

g1 2.9163 3.1891 3.2011 3.1106

g2 1.9601 2.658 2.533 2.321

g3 1.0982 1.0002 0.9951 1.0089

g4 0.6807 0.8954 1.1124 1.5811

g5 0.7456 0.8913 0.9016 0.9156

g6 0.3362 0.3456 0.4520 0.3795

g7 1.9868 2.0197 1.8145 2.1105

g8 0.4866 0.4688 1.5631

g9 1.2045 1.0108

g10 1.1326

This table reports the test results for the 5 % VaR model specification for the S&P 500 Index. The

number of lags in the volatility component of the ARCH model is selected according to the test.

The table reports the t-statistic for the coefficient with the maximum lag in the ARCH equation
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Japan – Nikkei 225 Index. The estimated VaR series is quite stable and remains at

the 4 % and the 7 % level from 1976 till 1982. Then the Nikkei 225 Index took

off and appreciated about 450 % over the next 8 years, reaching its highest level

at the end of 1989. This quick rise in stock value is accompanied by high risk,

manifested here by the more volatile VaR series. In particular, the VaRs fluctu-

ated dramatically, ranging from a low of 3 % to a high of 15 %. This volatility in

VaR may reflect both optimistic market outlook at times and worry about high

valuation and the possibility of a market crash. That crash did come in 1990, and

Table 41.5 Estimated mean equation parameters

Round S&P 500 Nikkei 225 FTSE 100 Hang Seng Singapore ST

a0 0.0019 0.0011 0.0022 0.0024 0.0014

(0.0006) (0.0006) (0.0008) (0.001) (0.0009)

a1 �0.0579 �0.0827 0.0617 0.1110 0.0555

(0.0233) (0.0305) (0.0283) (0.0275) (0.0225)

a2 0.0796 0.0751

(0.0288) (0.0288)

a3 �0.0985

(0.0238)

This table reports the estimated parameters of the mean equation for the five global equity indexes.

The standard errors are in parentheses under the estimated parameters

Table 41.6 Estimated ARCH equation parameters for the 5 % VaR model

Parameter S&P 500 Nikkei 225 FTSE 100 Hang Seng Singapore ST

g0 0.0351 0.0421 0.0346 0.0646 0.0428

(0.0016) (0.0023) (0.0013) (0.0031) (0.0027)

g1 0.2096 0.0651 0.0518 0.1712 0.1119

(0.0711) (0.0416) (0.0645) (0.0803) (0.0502)

g2 0.1007 0.1896 0.0588 0.0922 0.1389

(0.0531) (0.0415) (0.0665) (0.0314) (0.0593)

g3 �0.0101 0.1109 0.0311 0.2054 0.0218

(0.0142) (0.0651) (0.0242) (0.0409) (0.0379)

g4 0.1466 0.0528 0.0589 0.0671 0.1102

(0.0908) (0.0375) (0.0776) (0.0321) (0.0903)

g5 0.0105 0.0987 �0.0119 0.0229 0.1519

(0.0136) (0.0448) (0.0123) (0.0338) (0.0511)

g6 0.0318 0.0155 0.0876 0.0359 0.0311

(0.0117) (0.0297) (0.0412) (0.0136) (0.0215)

g7 0.2323 0.1123

(0.0451) (0.0517)

This table reports the estimated parameters of the ARCH equation for the 5 % VaR model for the

five global indexes. The standard errors are in parentheses under the estimated parameters
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10 years later, the Nikkei 225 Index still hovers around at a level which is about

half off the record high in 1989. The 1990s is far from a rewarding decade for

investors in the Japanese equity market. Average weekly 5 % VaR is about 5 %,

and the variation is also very high.

UK – FTSE 100 Index. The 5 % VaR is very stable and averages about 3 %. They

stay very much within the 2–4 % band, except on a few occasions, such as the

1987 global market crash.

Hong Kong –Hang Seng Index. The Hang Seng Index produces an average return
of 0.23 % per week. The Hang Seng’s phenomenal rise does not come without

risk. We mentioned above that the weekly sample standard deviation of the

index is 3.76 %, the highest of the five indexes. In addition, the Hong Kong stock

market has had more than its fair share of the market crashes.

Singapore – Strait Times Index. Interestingly, the estimated VaRs display a pattern

very similar to that of the UK FTSE 100 Index, although the former is generally

larger than the latter. The higher risk in the Singapore market did not result in

higher return over the sample period. Among the five indexes, the Singapore

market suffered the largest loss during the 1987 crash, a 47.5 % drop in a week.

The market has since recovered much of the loss. Among the five indexes, the

Singapore market only outperformed the Nikkei 225 Index over this period.

41.6.4 Performance of the ARCH Quantile Regression Model

In this section we conduct an empirical analysis to compare VaRs estimated by

RiskMetrics and regression quantiles and those by volatility models with the

conditional normality assumption. There are extensive empirical evidences

supporting the use of the GARCH models in conditional volatility estimation.

Bollerslev et al. (1992) provide a nice overview of the issue. Therefore, we compare

VaR estimated based on RiskMetrics and GARCH(1,1) model and quantile regres-

sion based on ARCH.

To measure the relative performance more accurately, we compute the percent-

age of realized returns that are below the negative estimated VaRs. The results are

reported in Table 41.7. The top panel of the table presents the percentages for the

VaRs estimated by the ARCH quantile regression model, the middle panel for the

VaRs estimated by the GARCH model with the conditional normal return distribu-

tion assumption, and the bottom panel for the VaRs estimated by the RiskMetrics

method. We estimate VaRs using these methods at 1 %, 2 %, 5 %, 10 %. Now we

have a total of four percentage levels. The regression quantile method produces the

closest percentage in general. Both the RiskMetrics method and the GARCH

method seem to underestimate VaRs for the smaller percentages and overestimate

VaRs for the larger percentages.

The five indexes we analyzed are quite different in their risk characteristics as

discussed above. The quantile regression approach seems to be relatively robust and

can consistently produce reasonably good estimates of the VaRs at different
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percentage (probability) levels. The GARCHmodel with the normality assumption,

being a good volatility model, is not able to produce good VaR estimates. The

quantile regression model does not assume normality and is well suited to hand

negative skewness and heavy tails.

41.7 Conclusion

Quantile regression provides a convenient and powerful method of estimating

VaR. The quantile regression approach not only provides a method of estimating

the conditional quantiles (VaRs) of existing time-series models; it also substantially

expands the modeling options for time-series analysis. Estimating Value at Risk

using the quantile regression does not assume a particular conditional distribution

for the returns. Numerical evidence indicates that the quantile-based methods have

better performance than the traditional J. P. Morgan’s RiskMetrics method and

other methods based on normality. The quantile regression based method provides

an important tool in risk management.

There are several existing programs for quantile regression applications. For

example, both parametric and nonparametric quantile regression estimations can be

implemented by the function rq() and rqss() in the package quantreg in the

computing language R, and SAS now has a suite of procedures modeled closely

on the functionality of the R package quantreg.

Table 41.7 VaR model performance comparison

% VaR 1 % 2 % 5 % 10 %

Quantile regression

S&P 500 1.319 1.925 5.3108 9.656

Nikkei 225 1.350 2.011 5.7210 10.56

FTSE 100 0.714 1.867 5.6019 9.016

Hang Seng 0.799 2.113 4.9011 9.289

GARCH

S&P 500 1.3996 1.7641 4.0114 7.6151

Nikkei 225 1.4974 1.7927 4.3676 8.4098

FTSE 100 1.1980 1.6133 3.3891 6.7717

Hang Seng 1.8962 2.8658 3.6653 7.6439

RiskMetrics

S&P 500 0.3790 0.5199 1.1180 3.2563

Nikkei 225 0.5877 0.9814 1.358 4.1367

FTSE 100 0.2979 0.5796 0.9984 3.5625

Hang Seng 0.7798 0.9822 1.4212 4.1936

This table reports the coverage ratios, i.e., the percentage of realized returns that is below the

estimated VaRs. The top panel reports the performance of the VaRs estimated by the quantile

regression model. The middle panel reports the results for VaRs estimated by the GARCH model

based on the conditionally normal return distribution assumption. The bottom panel reports the

results for VaRs estimated by the RiskMetrics method
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affecting earnings quality. I find that the negative association between separation

K.-W. Lee

Division of Accounting, Nanyang Business School, Nanyang Technological University,

Singapore, Singapore

e-mail: akwlee@ntu.edu.sg

C.-F. Lee, J. Lee (eds.), Handbook of Financial Econometrics and Statistics,
DOI 10.1007/978-1-4614-7750-1_42,
# Springer Science+Business Media New York 2015

1169

mailto:akwlee@ntu.edu.sg


of control rights from cash flow rights and earnings quality varies systematically

with board structure. I find that the negative association between separation of

control rights from cash flow rights and earnings quality is less pronounced in

firms with high equity ownership by outside directors. I also document that in

firms with high separation of control rights from cash flow rights, those firms

with higher proportion of outside directors on the board have higher earnings

quality. Overall, my results suggest that outside directors’ equity ownership and

board independence are associated with better financial reporting outcome,

especially in firms with high expected agency costs arising from misalignment

of control rights and cash flow rights.

The econometric method employed is regressions of panel data. In a panel

data setting, I address both cross-sectional and time-series dependence. Gow

et al. (2010, The Accounting Review 85(2), 483–512) find that in the presence of
both cross-sectional and time-series dependence, the two-way clustering method

which allows for both cross-sectional and time-series dependence produces

well-specified test statistics. Following Gow et al. (2010, The Accounting
Review 85(2), 483–512), I employ the two-way clustering method where the

standard errors are clustered by both firm and year in my regressions of panel

data. Johnston and DiNardo (1997, Econometrics method. New York: Mc-Graw

Hill) and Greene (2000, Econometrics analysis. Upper Saddle River: Prentice-

Hall) are two econometric textbooks that contain a detailed discussion of the

econometrics issues relating to panel data.

Keywords

Earnings quality • Board structure • Corporate ownership structure • Panel data

regressions • Cross-sectional and time-series dependence • Two-way clustering

method of standard errors

42.1 Introduction

In Asia, corporate ownership concentration is high, and many listed firms are

mainly controlled by a single large shareholder (La Porta et al. 1999; Claessens

et al. 2000). Asian firms also show a high divergence between control rights and

cash flow rights, which allows the largest shareholder to control a firm’s opera-

tions with a relatively small direct stake in its cash flow rights. Control is often

increased beyond ownership stakes through pyramid structures, cross-holdings

among firms, and dual class shares (Claessens et al. 2000). It is argued that

concentrated ownership facilitates transactions in weak property rights environ-

ment by providing the controlling shareholders the power and incentive to nego-

tiate and enforce contracts with various stakeholders (Shleifer and Vishny 1997).

As a result of concentrated ownership, the main agency problem in listed firms

in Asia is the conflict of interest between the controlling shareholder and

minority shareholder. Specifically, controlling shareholder has incentives to
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expropriate the wealth of minority shareholders by engaging in rent-seeking

activities and to mask their private benefits of control by supplying low-quality

financial accounting information. Empirical evidence also shows that the quality

and credibility of financial accounting information are lower in firms with

high separation of control rights and cash flow rights (Fan and Wong 2002;

Haw et al. 2004).

An important question is how effective are corporate governance mechanisms

in mitigating the agency problems in Asia firms, especially in improving corporate

transparency in firms with concentrated ownership. Controlling shareholders in

Asia typically face limited disciplinary pressures from the market for corporate

control because hostile takeovers are infrequent (La Porta et al. 1999; Fan and

Wong 2002). Furthermore, controlling shareholders face little monitoring pres-

sure from analysts because analysts are less likely to follow firms with potential

incentives to withhold or manipulate information, such as when the family/

management group is the largest control rights blockholder (Lang et al. 2004).

In these environments, external corporate governance mechanisms, in particular

the market for corporate control and analysts’ scrutiny, exert limited disciplinary

pressure on controlling shareholders. Consequently, internal corporate gover-

nance mechanisms such as the board of directors may be important to mitigate

the agency costs associated with the ownership structure of Asian firms. Thus, the

primary research questions in this paper are: (1) Do board of directors play

a corporate governance role over the financial reporting process in listed firms

in Asia? (2) How does the board of director affect financial reporting quality in

firms with high expected agency costs arising from the separation of control rights

and cash flow rights?

Specifically, this paper examines the relation among outside directors’ equity

ownership, board independence, and separation of control rights from cash flow

rights of controlling shareholder in affecting earnings quality. My empirical

strategy is as follows: First, I examine the main effect between earnings quality

and (i) outside directors’ equity ownership, (ii) the proportion of outside directors

on the board, and (iii) the separation of control rights from cash flow rights of

the largest ultimate shareholder. This sheds light on my first research question

on whether the board of directors plays a corporate governance role over the

financial reporting process in listed firms in Asia. Second, I examine the

(i) interaction between outside directors’ equity ownership and the separation of

control rights from cash flow rights and (ii) interaction between the proportion of

outside directors on the board and the separation of control rights from cash flow

rights, in shaping earnings quality. This addresses the second research question on

the effect of board structure (in particular, board independence and equity own-

ership of outside directors) on financial reporting quality in firms with high

expected agency costs arising from the separation of control rights and cash

flow rights.

In this paper, I focus on two important attributes of board monitoring – outside

directors’ equity ownership and board independence – and their association

with financial reporting quality. These attributes are important for two reasons.
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First, prior research generally finds that in developed economies such as the United

States and the United Kingdom, there is a positive association between board

independence and earnings quality (Dechow et al. 1996; Klein 2002; Peasnell

et al. 2005). However, there is limited evidence on the effect of board independence

on the financial accounting process in Asia. My paper attempts to fill this gap.

Second, recent research on the monitoring incentives of the board suggests that

equity ownership of outside directors plays an important role in mitigating mana-

gerial entrenchment (Perry 2000; Ryan and Wiggins 2004). An implication of this

stream of research is that even in firms with high board independence, entrenched

managers can weaken the monitoring incentives of outside directors by reducing

their equity-based compensation. In other words, board independence that is not

properly augmented with incentive compensation may hamper the monitoring

effectiveness of independent directors over management.

My sample consists of 2,875 firm-year observations during the period

2004–2008 in five Asian countries comprising Indonesia, Malaysia, the Philippines,

Singapore, and Thailand. These countries provide a good setting to test the

governance potential of the board of directors because shareholders in these

countries typically suffer from misaligned managerial incentives, ineffective legal

protection, and underdeveloped markets for corporate control (La Porta et al. 1999;

Claessens et al. 2000; Fan and Wong 2002).

I measure earnings quality with three financial reporting metrics:

(i) discretionary accruals, (ii) mapping of accruals to cash flow, and (iii) informa-

tiveness of reported earnings. My results are robust across alternative earnings

quality metrics. I find that earnings quality is higher when outside directors have

higher equity ownership. This result suggests that internal monitoring of the quality

and credibility of accounting information is improved through aligning share-

holders’ and directors’ incentives. Consistent with the monitoring role of outside

directors (Fama and Jensen 1983), I also find that earnings quality is positively

associated with the proportion of outside directors on the board. This result supports

the notion that outside directors have incentives to be effective monitors in order to

maintain the value of their reputational capital. Consistent with prior studies

(Fan and Wong 2002; Haw et al. 2004), I also document that earnings quality is

negatively associated with the separation of control rights from cash flow rights of

the largest ultimate shareholder.

More importantly, I document that the negative association between separation

of control rights from cash flow rights and earnings quality is less pronounced in

firms with high equity ownership by outside directors. This result suggests equity

ownership improves the incentives and monitoring intensity of outside directors in

firms with high expected agency costs arising from the divergence of control rights

from cash flow rights. Furthermore, my result indicates the negative association

between separation of control rights from cash flow rights and earnings quality is

mitigated by the higher proportion of outside directors on the board. This result

provides evidence supporting the corporate governance role of outside directors in
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constraining managerial discretion over financial accounting process in firms with

high levels of misalignment between control rights and cash flow rights. Collec-

tively, my results suggest that strong internal governance structures can alleviate

agency problems between the controlling shareholder and minority shareholders.

More generally, my results highlight the interplay between board structure and

corporate ownership structure in shaping earnings quality.

I perform several robustness tests. My results are robust across different

economies. In addition, year-by-year regressions yield qualitatively similar results,

suggesting my inferences are not time-period specific. I also include additional

country-level institutional variables such as legal origin, country investor protec-

tion, and enforcement of shareholder rights. My results are qualitatively similar.

Specifically, after controlling for country-level legal institutions, firm-specific

internal governance mechanisms, namely – outside directors’ equity ownership

and board independence – continue to be important in mitigating the negative

effects of the divergence between control rights and cash flow rights on earnings

quality.

My study has several contributions. First, prior studies find that the divergence of

control rights from cash flow rights reduces the informativeness of reported earn-

ings (Fan and Wong 2002) and induces earnings management (Haw et al. 2004).

I extend these studies by demonstrating two specific channels at the firm

level – equity ownership by outside directors and proportion of outside directors

on the board – that mitigate the negative association between earnings quality and

divergence of control rights from cash flow rights. This result suggests that the

board of directors play an important corporate governance role to alleviate agency

problems in firms with entrenched insiders. My findings also complement Fan and

Wong’s (2005) result that given concentrated ownership, a controlling owner may

introduce some monitoring or bonding mechanisms that limit his ability to expro-

priate minority shareholders and hence mitigate agency conflicts. In the Fan and

Wong’s study, high-quality external auditors alleviate agency problems in firms

with concentrated ownership, whereas in my study, strong board of directors

augmented with proper monitoring incentives mitigate agency problems in firms

with concentrated ownership.

Second, my results suggest that there is an incremental role for firm-specific

internal governance mechanisms, beyond country-level institutions, in improving

the quality of financial information. Haw et al. (2004) find that earnings manage-

ment that is induced by the divergence between control rights and cash flow rights is

less pronounced in countries where (i) legal institutions protect minority share-

holder rights (such as legal tradition, minority shareholder rights, efficiency of

judicial system, or disclosure system) and (ii) in countries with effective extralegal

institutions (such as the effectiveness of competition law, diffusion of the press, and

tax compliance). My study shows that after controlling for both country-level legal

and extralegal institutions, firm-specific internal governance mechanisms, namely,

outside directors’ incentive compensation and board independence, continue to be
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important in constraining management opportunism over the financial reporting

process in firms with high expected agency costs arising from the divergence

between control rights and cash flow rights. To the extent that changes in

country-level legal institutions are relatively more costly and more difficult than

changes in firm-level governance mechanisms, my result suggests that improve-

ment in firm-specific governance mechanisms can be effective to reduce private

benefits of control. My results complement finding in prior studies (Johnson

et al. 2000; La Porta et al. 1998; Lang et al. 2004) that firms in countries with

weak legal protection substitute with strong firm-level internal governance mech-

anisms to attract investors. My results also extend the finding in Leuz et al. (2003)

that firms located in countries with weaker investor protection have higher

earnings management. An important question is what factors may constrain

managerial opportunism when country-level investor protection is weak?

Because my sample consists of countries with generally weak investor protection,

I shed light on this question by documenting that firm-level governance

structures matter in improving earnings quality in countries with weak investor

protection.

The rest of the paper proceeds as follows. Section 42.2 develops the

hypotheses and places my paper in the context of related research. Section 42.3

describes the sample and method. Section 42.4 presents my results. I conclude the

paper in Sect. 42.5.

42.2 Prior Research and Hypotheses Development

42.2.1 Equity Ownership of Outside Directors

Recent research examines the compensation structure of outside directors, who play

an important monitoring role over management’s actions. The central theme in this

body of research is that incentive compensation leading to share ownership

improves the outside directors’ incentives to monitor. Mehran (1995) finds firm

performance is positively associated with the proportion of directors’ equity-based

compensation. Perry (2000) finds that the likelihood of CEO turnover following

poor performance increases when directors receive higher equity-based compensa-

tion. Shivdasani (1993) finds that probability of a hostile takeover is negatively

associated with the percentage of shares owned by outside directors in target firms.

He interprets this finding as suggesting that board monitoring may substitute for

monitoring from the market of corporate control. Hermalin and Weisbach (1988)

and Gillette et al. (2003) develop models where incentive compensation for

directors increases their monitoring efforts and effectiveness. Ryan and Wiggins

(2004) find that directors in firms with entrenched CEOs receive a significantly

smaller proportion of compensation in the form of equity-based awards. Their

result suggests that entrenched CEOs use their position to influence directors’
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compensation, which results in contracts that provide directors with weaker

incentives to monitor management.

Internal monitoring is improved through aligning shareholders’ and directors’

incentives. If higher equity-based compensation contracts provide outside directors

with stronger incentives to act in the interests of shareholders, I predict that

managerial opportunism over the financial reporting process is reduced when

outside directors have higher equity-based compensation. My first hypothesis is:

H1 Earnings quality is positively associated with the outside directors’ equity

ownership.

42.2.2 Board Independence

There is considerable literature on the role of outside directors in reducing agency

problems between managers and shareholders. Fama and Jensen (1983) argue that

outside directors have strong incentives to be effective monitors in order to main-

tain their reputational capital. Prior studies support the notion that board effective-

ness in protecting shareholders’ wealth is positively associated with the proportion

of outside directors on the board (Weisbach 1988; Rosenstein and Wyatt 1990).

In the United States, Klein (2002) finds that firms with high proportion of outside

directors on the board have lower discretionary accruals. Using a sample of

listed firms in the United Kingdom, Peasnell et al. (2005) document that the

greater the board independence, the lower the propensity of managers making

income-increasing discretionary accruals to avoid reporting losses and earnings

reductions. Using US firms subjected to SEC enforcement action for alleged

earnings manipulation, Dechow et al. (1996) and Beasley (1996) find that the

probability of financial reporting fraud is negatively associated with the proportion

of outside directors on the board.

In contrast, in emerging markets, conventional wisdom suggests that the agency

conflicts between controlling owners and the minority shareholders may be difficult to

mitigate through conventional corporate control mechanisms such as boards of direc-

tors (La Porta et al. 1998; Claessens et al. 2000; Fan and Wong 2005; Lee 2007; Lee

et al. 2009). However, since the Asian economic crisis in 1997, many countries in Asia

took steps to improve their corporate governance environment such as implementing

country-specific code of corporate governance. For example, the Stock Exchange of

Thailand Code of Best Practice for Directors of Listed Companies was implemented in

1998, the Code of Proper Practices for Directors for the Philippines was implemented

in 2000, the Malaysian Code of Corporate Governance was implemented in 2000, and

the Singapore Code of Corporate Governance was implemented in 2001. Among the

key provisions of the code of corporate governance in these countries is the recom-

mendation to have sufficient independent directors on the board to improve monitoring

of management. For example, the 2001 Code of Corporate Governance for Singapore

stated that there should be a strong and independent element on the board, which is able

to exercise objective judgment on corporate affairs independently from management.
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Although compliance with the code of corporate governance is not legally mandatory,

listed companies are required to explain deviations from the recommendations of the

code of corporate governance.1

I posit that in the waves of corporate governance reform in emerging markets in

the early 2000s and the guidelines of country-specific code of corporate governance

in emphasizing the importance of board independence, there is heightened aware-

ness among outside directors on their increased monitoring responsibilities. To the

extent that outside directors in listed firms in Asia perform a corporate governance

role, I predict that:

H2 Earnings quality is positively associated with the proportion of outside direc-

tors on the board.

42.2.3 Equity-Based Compensation of Outside Directors and
Control Divergence

The preceding discussion suggests that higher equity-based incentive compensation

for outside directors improves their monitoring efforts. Greater monitoring from

outside directors reduces managerial discretion over the financial reporting process

(Lee et al. 2008). The benefits of more effective monitoring arising from

higher equity ownership are likely to be concentrated in firms with high agency

problems arising from the separation of control rights from cash flow rights. Thus,

I predict that:

H3 The negative association between separation of control rights from cash flow

rights and earnings quality is less pronounced in firms with high equity ownership

by outside directors.

42.2.4 Board Independence and Control Divergence

Outside directors play an important corporate governance role in resolving

agency problems between managers and shareholders. Following prior studies

(Beasley 1996; Dechow et al. 1996; Klein 2002; Lee et al. 2007), higher proportion

of outside directors on the board is associated with higher constraints on manage-

ment discretion over the financial reporting process. I extend this notion to posit that

the greater monitoring efforts from a high proportion of outside directors on the

1To illustrate, the Singapore Exchange Listing Rules require “listed companies to describe in the

annual reports their corporate governance practices with specific reference to the principles of the

Code, as well as disclose and explain any deviation from any guideline of the Code. Companies are

also encouraged to make a positive confirmation at the start of the corporate governance section of

the annual report that they have adhered to the principles and guidelines of the Code, or specify

each area of non-compliance. Many of these guidelines are recommendations for companies to

disclose their corporate governance arrangements.”
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board are likely to mitigate the negative effects of the separation of control rights

from cash flow rights on earnings quality. Thus, I predict that:

H4 The negative association between separation of control rights from cash flow

rights and earnings quality is mitigated by the proportion of outside directors.

42.3 Data

I begin with the Worldscope database to identify listed firms in five Asian

countries comprising Indonesia, Malaysia, the Philippines, Singapore, and Thai-

land during the period 2004–2008. I exclude financial institutions because of their

unique financial structure and regulatory requirements. I eliminate observations

with extreme values of control variables such as return-on-assets and leverage.

I obtain stock price data from the Datastream database. I obtain annual reports for

the period 2004–2008 from the Global Report database and company websites.

The sample consists of 617 firms for 2,875 firm-year observations during the

period 2004–2008 in five Asian countries comprising Indonesia, Malaysia, the

Philippines, Singapore, and Thailand.

I collect data on the board characteristics such as board size, the number of

independent directors, and equity ownership of directors from the annual report.

I also examine the annual report to trace the ultimate owners of the firms.

The procedure of identifying ultimate owners is similar to the one used in La

Porta et al. (1999).2 In this study, I measure earnings quality with three financial

reporting metrics: (i) discretionary accruals, (ii) mapping of accruals to cash flow,

and (iii) informativeness of reported earnings.

Appendix 1 contains detailed description on the econometric method.

42.4 Results

42.4.1 Descriptive Statistics

Table 42.1 presents the descriptive statistics. Mean absolute discretionary accrual as

a proportion of lagged assets is 0.062. Mean equity ownership of outside directors

(computed as common stock and stock options held by outside directors divided by

2In summary, an ultimate owner is defined as the shareholder who has the determining voting

rights of the company and who is not controlled by anyone else. If a company does not have an

ultimate owner, it is classified as widely held. To economize on the data collection task, the

ultimate owner’s voting right level is set at 50 % and not traced any further once that level exceeds

50 %. Although a company can have more than one ultimate owner, we focus on the largest

ultimate owner. We also identify the cash flow rights of the ultimate owners. To facilitate the

measurement of the separation of cash flow and voting rights, the maximum cash flow rights level

associated with any ultimate owner is also set at 50 %. However, there is no minimum cutoff level

for cash flow rights.
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number of ordinary shares outstanding in the firm) is 2.04 %. The mean board size

and proportion of outside directors on the board are 7 and 0.489, respectively. CEO

chairs the board in 40 % of the firms. Consistent with Fan and Wong’s (2002) study

of East Asian economies, the firms in my sample also have high divergence of

control rights from cash flow rights (mean VOTE ¼ 1.198).

42.4.2 Discretionary Accruals

Table 42.2 presents the estimates of regressions of unsigned discretionary accruals

on equity-based compensation, proportion of outside directors on the board, and the

separation of control right from cash flow right. Following Gow et al. (2010),

I employ the two-way clustering method where the standard errors are clustered

by both firm and year in my regressions. In column (1), I document a negative

association between the absolute value of discretionary accruals and the equity

ownership of outside directors. Results also indicate that firms with higher propor-

tion of outside directors on the board have lower discretionary accruals. I find that

Table 42.1 Descriptive statistics. The sample consists of 617 firms for 2,875 firm-year

observations during the period 2004–2008 in five Asian countries comprising Indonesia, Malaysia,

the Philippines, Singapore, and Thailand

Mean 25th percentile Median 75th percentile Standard deviation

DISCAC 0.062 0.009 0.038 0.085 0.053

AQ 0.068 0.029 0.035 0.063 0.037

EBC (%) 2.041 0.837 1.752 2.663 1.035

OUTDIR 0.489 0.206 0.385 0.520 0.217

VOTE 1.198 1.000 1.175 1.326 0.638

BOARDSIZE 7 5 8 10 3

CEODUAL 0.405 0 0 1 –

LNASSET 11.722 9.867 11.993 13.078 2.115

MB 1.851 0.582 1.272 2.195 0.833

LEV 0.261 0.093 0.211 0.335 0.106

ROA 0.086 0.027 0.0705 0.109 0.071

DISCAC ¼ absolute value of discretionary accruals estimated based on the modified Jones model

AQ ¼ accrual quality measured by Dechow and Dichev’s (2002) measure of mapping of accruals

to past, present, and future cash from operations

DIROWN ¼ common stock and stock options held by outside directors divided by number of

ordinary shares outstanding in the firm

OUTDIR ¼ proportion of outside directors on the board

VOTECASH ¼ voting rights divided by cash flow rights of the largest controlling shareholder

CEODUAL ¼ a dummy variable that equals 1 if the CEO is chairman of board and 0 otherwise

BOARDSIZE ¼ number of directors on the board

LNASSET ¼ natural logarithm of total assets

MB ¼ market value of equity divided by book value of equity

LEV ¼ long-term debt divided by total assets

ROA ¼ net profit after tax divided by total assets
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earnings management (as proxied by absolute discretionary accruals) increases as

the separation between control rights and cash flow rights of controlling share-

holders increases. This result is consistent with the finding in Haw et al. (2004).

In column (2), I test whether the positive association between discretionary accruals

and the separation between control rights and cash flow rights of controlling

shareholder is mitigated by the equity ownership of outside directors. The coeffi-

cient on the interaction term between the separation of control rights from cash flow

rights and the equity ownership of outside directors (VOTE* DIROWN) is negative

and significant at the 1 % level, supporting the hypothesis that in firms with high

separation of control rights from cash flow rights, earnings management is reduced

when outside directors have higher equity ownership. This finding suggests that

greater equity-based compensation increases the monitoring effectiveness of out-

side directors over the financial reporting process in firms with agency conflicts

arising from their control rights from cash flow rights. In addition, the coefficient on

the interaction term between the separation of control rights from cash flow rights

and the proportion of outside directors (VOTE*OUTDIR) is negative and signifi-

cant at the 5 % level, supporting the hypothesis that in firms with high separation of

control rights from cash flow rights, earnings management is reduced in firms with

high proportion of outside directors on the board. This result is consistent with the

monitoring role of independent directors to improve the credibility of accounting

information in firms with agency problems arising from their concentrated corpo-

rate ownership structure.

Table 42.2 Regressions of unsigned discretionary accruals. The sample consists of 617 firms

for 2,875 firm-year observations during the period 2004–2008 in five Asian countries comprising

Indonesia, Malaysia, the Philippines, Singapore, and Thailand. The dependent variable is absolute

discretionary accruals computed based on the modified Jones model. All variables are defined in

Table 42.1. The t-statistics (in parentheses) are adjusted based on standard errors clustered by firm

and year (Petersen 2009). The symbols *, **, and *** denote statistical significance at the 10 %,

5 %, and 1 % levels (two-tailed), respectively

Predicted sign 1 2

EBC � �0.2513 (�3.07)*** �0.2142 (�2.86)***

OUTDIR � �0.1862 (�2.41)** �0.1053 (�2.19)**

VOTE + 0.8173 (2.85)*** 0.9254 (2.94)***

VOTE *EBC � �0.4160 (�2.73)***

VOTE * OUTDIR � �0.1732 (�2.29)**

BOARDSIZE +/� 0.0359 (1.57) 0.0817 (1.42)

CEODUAL + 0.4192 (1.61) 0.2069 (1.45)

LNASSET � �0.5311 (�8.93)*** �0.5028 (�8.01)***

MB + 0.1052 (4.25)*** 0.2103 (3.02)***

LEV + 1.2186 (5.38)*** 1.1185 (5.19)***

ROA +/� �3.877 (�4.83)*** �4.108 (�4.72)***

Adjusted R2 12.5 % 14.1 %
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I partition the sample into two groups based on the sign of the firms’ discretion-

ary accruals. Table 42.3 column (1) presents the results using the subsample of

firms with income-increasing discretionary accruals. Results indicate firms with

higher equity ownership by outside directors, higher board independence, and

lower divergence of control rights from cash flow rights, have lower income-

increasing discretionary accruals. More importantly, I find that outside directors’

equity ownership and proportion of outside directors mitigate the propensity of

firms with high separation of control rights from cash flow rights to make higher

income-increasing discretionary accruals. Table 42.3 column (2) presents the

results using the subsample of firms with income-decreasing discretionary accruals.

I find firms with higher equity ownership, higher board independence, and lower

divergence of control rights from cash flow rights, have lower income-decreasing

discretionary accruals. Furthermore, I find that equity ownership by outside direc-

tors and proportion of outside directors mitigate the propensity of firms with high

separation of control rights from cash flow rights to make higher income-decreasing

discretionary accruals.

In summary, when outside directors have equity ownership and when board

independence is high, firms have both lower income-increasing and income-

decreasing discretionary accruals, apparently mitigating earnings management

Table 42.3 Regressions of signed discretionary accruals. The sample consists of 617 firms for

2,875 firm-year observations during the period 2004–2008 in five Asian countries comprising

Indonesia, Malaysia, the Philippines, Singapore, and Thailand. In column (1), the sample consists

of firms with income-increasing discretionary accruals, and the dependent variable is positive

discretionary accruals. In column (2), the sample consists of firms with income-decreasing

discretionary accruals, and the dependent variable is negative discretionary accruals. All variables

are defined in Table 42.1. All regressions contain dummy control variables for country, year, and

industry. The t-statistics (in parentheses) are adjusted based on standard errors clustered by firm

and year (Petersen 2009). The symbols *, **, and *** denote statistical significance at the 10 %,

5 %, and 1 % levels (two-tailed), respectively

(1) (2)
Positive DISCAC Negative DISCAC

EBC �0.1865 (�2.21)** �0.2017 (�2.09)**

OUTDIR �0.1172 (�2.08)** �0.1302 (�2.11)**

VOTE 0.8103 (3.25)*** 0.6735 (2.23)**

VOTE *EBC �0.3952 (�2.49)*** �0.3064 (�2.05)**

VOTE * OUTDIR �0.1732 (�2.13)** �0.1105 (�2.01)**

BOARDSIZE 0.0533 (1.27) 0.0681 (1.09)

CEODUAL 0.1860 (1.32) 0.1562 (1.26)

LNASSET �0.7590 (�5.22)*** �0.4463 (�6.12)***

MB 0.2019 (2.08)** 0.1085 (1.93)**

LEV 0.9781 (3.20)*** 0.7701 (2.10)**

ROA �3.087 (�4.13)*** �4.253 (�3.62)***

Adjusted R2 13.8 % 12.4 %
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both on the upside and downside. For firms with greater separation of control

rights from cash flow rights of controlling shareholders, those with high

equity ownership by outside directors and those with high proportion of outside

directors have lower income-increasing and lower income-decreasing discretionary

accruals.

42.4.3 Accrual Quality

Table 42.4 presents regressions of accrual quality on corporate ownership structure

and board characteristics. Following Gow et al. (2010), I employ the two-way

clustering method where the standard errors are clustered by both firm and year

in my regressions. In column (1), the coefficient EBC is positive and significant,

suggesting that that firms whose directors receive higher equity ownership have

higher accrual quality. Firms with high proportion of outside directors have higher

accrual quality. The coefficient on VOTE is negative and significant, indicating the

firms with high misalignment between control rights and cash flow rights have

lower accrual quality. In column (2), the interaction term VOTE*DIROWN is

positive and significant at the 1 % level. This finding suggests that firms with

Table 42.4 Regressions of accrual quality. The sample consists of 617 firms for 2,875 firm-

year observations during the period 2004–2008 in five Asian countries comprising Indonesia,

Malaysia, the Philippines, Singapore, and Thailand. The dependent variable is AQ measured by

Dechow and Dichev’s (2002) measure of mapping of accruals to past, present, and future cash

from operations with higher values of AQ denoting better accrual quality. All variables are defined

in Table 42.1. All regressions contain dummy control variables for country, year, and industry. The

t-statistics (in parentheses) are adjusted based on standard errors clustered by firm and year

(Petersen 2009). The symbols *, **, and *** denote statistical significance at the 10 %, 5 %,

and 1 % levels (two-tailed), respectively

Predicted sign 1 2

EBC + 0.3725 (3.11)*** 0.2133 (3.26)***

OUTDIR + 0.2049 (2.15)** 0.1557 (2.86)***

VOTE � �0.5108 (�3.74)*** �0.4352 (�3.05)***

VOTE *EBC + 0.1751 (2.80)***

VOTE * OUTDIR + 0.1163 (2.09)**

BOARDSIZE +/� 0.1003 (1.29) 0.0642 (1.17)

CEODUAL +/� �0.1890 (�0.83) �0.2173 (�1.56)

LNASSET + 3.2513 (5.11)*** 2.8764 (4.82)***

OPERCYCLE � �3.2941 (�4.75)*** �3.0185 (�5.01)***

NETPPE + 1.1802 (3.35)*** 0.9926 (3.72)***

STDCFO � �1.2981 (�2.83)*** �1.8344 (�3.32)***

STDSALE � �1.0203 (�2.77)*** �0.7845 (�2.09)**

NEGEARN � �0.8306 (�2.02)** �1.0345 (�1.77)*

Adjusted R2 9.2 % 10.5 %
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higher equity ownership by outside directors have a less pronounced negative

association between accrual quality and the separation of control rights from cash

flow rights of controlling shareholders. I then test whether board independence

attenuates the negative association between accrual quality and the separation of

control rights from cash flow rights of controlling shareholders. The interaction

term VOTE*OUTDIR is positive and significant at the 5 % level. Hence, for firms

with high separation of control rights from cash flow rights of controlling share-

holder, those with higher proportion of outside directors have higher accrual

quality. Collectively, my results suggest that stronger directors’ equity ownership

and higher board independence are associated with better financial reporting out-

come, especially in firms with high expected agency costs arising from

misalignment of control rights and cash flow rights.

42.4.4 Earnings Informativeness

Table 42.5 presents the regression results on earnings informativeness. The coeffi-

cient EARN* DIROWN is positive and significant, indicating the greater the equity

ownership by outside directors, the higher informativeness of reported earnings.

The coefficient EARN*OUTDIR is positive and significant, implying that firms

Table 42.5 Regressions of returns on earnings. The sample consists of 617 firms for 2,875

firm-year observations during the period 2004–2008 in five Asian countries comprising Indonesia,

Malaysia, the Philippines, Singapore, and Thailand. The dependent variable (RET) is 12-month

cumulative raw return ending 3 months after the fiscal year-end. All regressions contain dummy

control variables for country, year, and industry. The t-statistics (in parentheses) are adjusted based

on standard errors clustered by firm and year (Petersen 2009). The symbols *, **, and *** denote

statistical significance at the 10 %, 5 %, and 1 % levels (two-tailed), respectively

Predicted sign 1 2

EARN + 1.1735 (3.85)*** 1.2811 (3.62)***

EARN *EBC + 0.3122 (2.87)*** 0.2983 (2.80)***

EARN * OUTDIR + 0.1094 (2.13)** 0.1105 (2.08)**

EARN * VOTE � �0.6817 (�3.72)*** �0.7019 (�3.50)***

EARN * VOTE *EBC + 0.2602 (2.83)***

EARN * VOTE * OUTDIR + 0.1925 (2.15)**

EARN * BOARDSIZE +/� �0.0836 (�1.50) �0.0801 (�1.22)

EARN * CEODUAL +/� �0.0405 (�1.42) �0.0215 (�1.30)

EARN * LNASSET + 0.2011 (2.89)*** 0.3122 (3.07)***

EARN * MB + 0.1573 (1.80)* 0.1806 (1.81)*

EARN * LEV � �0.7814 (�2.03)** �0.6175 (�2.84)***

N 3,172 3,172

Adjusted R2 11.8 % 13.3 %
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with higher proportion of outside directors have higher informativeness of reported

earnings. Consistent with prior studies (Fan and Wong 2002), the coefficient

EARN*VOTE is negative and significant, indicating that the separation of control

rights from cash flow rights of controlling shareholder reduces the informativeness

of reported earnings.

In column (2), I examine the interaction between effectiveness of board

monitoring and the divergence of control rights from cash flow rights in affecting

earnings informativeness. The interaction term EARN*VOTE* DIROWN is

positive and significant at the 1 % level. In firms with high misalignment between

control rights from cash flow rights, the informativeness of earnings is higher when

outside directors have higher equity ownership. The interaction term

EARN*VOTE*OUTDIR is positive and significant at the 5 % level. The negative

association between earnings informativeness and the separation between

control rights from cash flow rights controlling shareholder is less pronounced

in firms with higher proportion of outside directors. In other words, in firms

with high misalignment between control rights from cash flow rights, the

informativeness of earnings is higher in firms with higher proportion of outside

directors.

42.4.5 Robustness Tests

As a sensitivity analysis, I repeat all my tests at the economy level. The economy-

by-economy results indicate that earnings quality is positively associated with

equity ownership by outside directors and board independence and negatively

associated with the separation of cash flow rights from control rights. More

importantly, the mitigating effects of equity ownership and board independence

on the association between separation of cash flow rights from control rights and

earnings quality are not concentrated in any given economy. Year-by-year regres-

sions yield qualitatively similar results, suggesting my inferences are not time-

period specific.

As a robustness test, I follow Haw et al. (2004) to include legal institutions

that protect minority shareholder rights (proxied by legal tradition, minority

shareholder rights, efficiency of judicial system, or disclosure system) and extrale-

gal institutions (proxied by the effectiveness of competition law, diffusion of the

press, and tax compliance) in my tests. I continue to document firm-specific internal

governance mechanisms, namely, outside directors’ equity ownership and board

independence, still matter in constraining management opportunism over the finan-

cial reporting process, especially in firms with high expected agency costs arising

from the divergence between control rights and cash flow rights. Thus, my results

suggest that there is an incremental role for firm-specific internal governance

mechanisms, beyond country-level institutions, in improving the quality of finan-

cial information by mitigating insiders’ entrenchment.
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42.5 Conclusion

Publicly reported accounting information, which measures a firm’s financial

position and performance, can be used as important input information in

various corporate governance mechanisms such as managerial incentive plans.

Whether and how reported accounting information is used in the governance

of a firm depends on the quality and credibility of such information. I provide

evidence that board of directors plays an important corporate governance role

in improving the quality and credibility of accounting information in firms

with high agency conflicts arising from their concentrated ownership structure.

I examine the relation among outside directors’ equity ownership, board

independence, separation of control rights from cash flow rights of controlling

shareholder, and earnings quality. I measure earnings quality with three financial

reporting metrics: (i) discretionary accruals, (ii) mapping of accruals to cash flow,

and (iii) informativeness of reported earnings. I find that earnings quality is

positively associated with outside directors’ equity ownership and the proportion

of outside directors on the board. I document that firms with higher agency

problems arising from the separation of control rights from cash flow rights of

controlling shareholders have lower earnings quality. The negative association

between separation of control rights from cash flow rights and earnings quality is

less pronounced in firms with higher equity ownership by outside directors. This

finding suggests that equity ownership that aligns outside directors’ and share-

holders’ interest is associated with more effective monitoring of managerial

discretion on reported earnings. In addition, the low earnings quality induced by

the separation of control rights from cash flow rights is mitigated by the

proportion of outside directors on the board. Overall, my results suggest that

directors’ equity ownership and board independence are associated with better

financial reporting outcomes, especially in firms with high expected agency costs

arising from misalignment of control rights and cash flow rights.

Appendix 1: Discretionary Accruals

My first proxy for earnings quality is discretionary accruals. A substantial stream

of prior studies uses absolute discretionary accruals as a proxy for earnings

management (Ashbaugh et al. 2003; Warfield et al. 1995; Klein 2002; Kothari

et al. 2005). Absolute discretionary accruals reflect corporate insiders’ propensity to

inflate reported income to conceal private benefits of control and to understate

income in good performance years to create reserves for poor performance in the

future. Accruals are estimated by taking the difference between net income and

cash flow from operations. I employ the modified cross-sectional Jones

(1991) model to decompose total accruals into non-discretionary accruals and
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discretionary accruals. Specifically, I estimate the following model for each country

in each year at the one-digit SIC industry:

ACC ¼ g1 1=LAG1ASSETð Þ þ g2 CHGSALE� CHGRECð Þ þ g3 PPEð Þ (42.1)

where:

ACC ¼ total accruals, which are calculated as net income minus operating cash

flows scaled by beginning-of-year total assets.

LAG1ASSET ¼ total assets at beginning of the fiscal year.

CHGSALE ¼ sales change, which is net sales in year t less net sales in year

t � 1, scaled by beginning-of-year-t total assets.
CHGREC ¼ change in accounts receivables scaled by beginning-of-year-t total

assets.

PPE ¼ gross property, plant, and equipment in year t scaled by beginning-of-year-t
total assets.

I use the residuals from the annual cross-sectional country-industry regression

model in (A1) as the modified Jones model discretionary accruals.

I use the following regression model to test the association between discretion-

ary accruals and board structure:

DISCAC ¼ b0 þ b1EBCþ b2OUTDIRþ b3VOTEþ b4VOTE � EBC
þ b5VOTE � OUTDIRþ b6BOARDSIZEþ b7CEODUAL
þ b8LNASSETþ b9MBþ b10LEVþ b11ROA
þ Year controlsþ Country Controls (42.2)

where:

DISCAC ¼ absolute value of discretionary accruals estimated based on the

modified Jones model (see Eq. 42.1).

DIROWN ¼ common stock and stock options held by outside directors divided by

number of ordinary shares outstanding in the firm.

OUTDIR ¼ proportion of outside directors on the board.

VOTE ¼ control rights divided by cash flow rights of the largest controlling

shareholder.

BOARDSIZE ¼ number of directors on the board.

CEODUAL ¼ a dummy variable that equals 1 if the CEO is chairman of board and

0 otherwise.

LNASSET ¼ natural logarithm of total assets.

MB ¼ market value of equity divided by book value of equity.

LEV ¼ long-term debt divided by total assets.

ROA ¼ net profit after tax divided by total assets.

Country Controls ¼ a set of country dummy variables.

Year Controls ¼ a set of year dummy variables.
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If high equity ownership for outside directors improves the board monitoring of

managerial discretion over the financial accounting process, I predict the coefficient

b1 to be negative. Similarly, a negative coefficient for b2 suggests that board

independence curtails managerial opportunism on financial reporting. A positive

coefficient b3 indicates greater separation of control rights from cash flow rights of

the largest controlling shareholder induces greater earnings management. I predict

the positive association between absolute discretionary accruals and the separation

of control rights from cash flow rights to be less pronounced in firms with high

equity ownership by outside directors. Thus, I expect coefficient b4 to be negative.

Furthermore, I predict the positive association between absolute discretionary

accruals and the separation of control rights from cash flow rights to be less

pronounced in firms high proportion of outside directors on the board. Thus,

I expect coefficient b5 to be negative.

Other board characteristics include the total number of directors (BOARDSIZE)

and CEO-chairman duality (CEODUAL). The evidence is mixed on whether board

size and CEO duality impairs board effectiveness. Thus, ex ante, there is no

prediction on the sign on both variables. The model controls for the effects of

firm size, growth opportunities, and leverage on discretionary accruals. Large firms

have greater external monitoring, have more stable operations and stronger control

structures, and hence report smaller abnormal accruals (Dechow and Dichev 2002).

Firm size (LNASSET) is measured based on book value of total assets. Because

discretionary accruals are higher for firms with higher growth opportunities,

I employ the market-to-book equity (MB) ratio to control for the effect of growth

opportunities on discretionary accruals (Kothari et al. 2005). I also include financial

leverage (LEV), defined as long-term debt divided by total assets, to control for the

managerial discretion over the financial accounting process to mitigate constraints

of accounting-based debt covenants (Smith and Watts 1992). To control for the

effect of firm performance on discretionary accruals, I include firm profitability

(ROA), defined as net income divided by total assets. Finally, I include

country dummy variables to capture country-specific factors that may affect the

development of capital markets and financial accounting quality. I include dummy

variables for years and industries to control for time effect and industry effects,

respectively.

Appendix 2: Accruals Quality

My second proxy for earnings quality is accruals quality. Dechow and Dichev

(2002) propose a measure of earnings quality that captures the mapping of current

accruals into last-period, current-period, and next-period cash flows. Francis

et al. (2005) find that this measure (which they term accrual quality) is associated

with measures of cost of equity capital. My measure of accrual quality is based on

Dechow and Dichev’s (2002) model relating current accruals to last-period,

current-period, and next-period cash flows:
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TCAj, t

Assets
¼ g0, j þ g1j

CFOj, t�1

Assets
þ g2j

CFOj, t

Assets
þ g2j

CFOj, tþ1

Assets
þ ej, t (42.3)

where:

TCAj,t ¼ firm j’s total current accruals in year t ¼ DCAj,t – DCLj,t – DCASHj,t

+ DSTDj,t

Assets ¼ firm j’s average total assets in year t � 1 and year t

CFOj,t ¼ cash flow from operations in year t is calculated as net income less total

accruals (TA) where:

TAj,t ¼ DCAj,t – DCLj,t – DCASHj,t + DSTDj,t – DEPNj,t where

DCAj,t ¼ firm j’s change in current assets between year t � 1 and year t

DCLj,t ¼ firm j’s change in current liabilities between year t � 1 and year t

DCASHj,t ¼ firm j’s change in cash between year t � 1 and year t

DSTDj,t ¼ firm j’s change in debt in current liabilities between year t � 1 and

year t

DEPNj,t ¼ firm j’s change in depreciation and amortization expense in year t

I estimate Eq. 42.3 for each one-digit SIC industry for each country-year

combination. These estimations yield firm- and year-specific residuals, ejt, which

form the basis for the accrual quality metric. AQ is the standard deviation of firm j’s

estimated residuals multiplied by�1. Hence, large values of AQ correspond to high

accrual quality.

I employ the following model to test the association between accrual quality and

board characteristics:

AQ ¼ b0 þ b1EBCþ b2OUTDIRþ b3VOTEþ b4VOTE � DIROWN

þ b5VOTE � OUTDIRþ b6CEODUALþ b7BOARDSIZE
þ b8LNASSETþ b9OPERCYCLEþ b10NETPPEþ b11STDSALE
þ b12STDCFO þ b13NEGEARNþ Country controls

þ Industry Controlsþ Year Controls:

(42.4)

where:

AQ ¼ the standard deviation of firm j’s residuals from a regression of

current accruals on lagged, current, and future cash flows from operations.

I multiply the variable by �1 so that higher AQ measure denotes higher accrual

quality.

OPERCYCLE ¼ log of the sum of the firm’s days accounts receivable and days

inventory.

NETPPE ¼ ratio of the net book value of PP&E to total assets.

STDCFO ¼ standard deviation of the firm’s rolling 5-year cash flows from

operations.

STDSALE ¼ standard deviation of the firm’s rolling 5-year sales revenue.

NEGEARN ¼ the firm’s proportion of losses over the prior 5 years.

All other variables are previously defined.
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If high equity ownership for outside directors improves the board monitoring of

managerial discretion over the financial accounting process, I predict coefficient b1
to be positive. Similarly, a positive coefficient for b2 suggests that higher board

independence is associated with higher accrual quality. If greater agency costs arise

from the higher separation of control rights from cash flow rights of the largest

controlling shareholder, coefficient b3 should be negative. I predict that the nega-

tive association between accrual quality and the separation of control rights from

cash flow rights is mitigated in firms with high equity ownership by outside

directors. Thus, I expect coefficient b4 to be positive. Furthermore, the negative

effect of the separation of control rights from cash flow on rights accrual quality

should be attenuated in firms with high proportion of outside directors on the board.

Thus, I expect coefficient b5 to be positive.

In Eq. 42.4, the control variables include innate determinants of accrual quality.

Briefly, Dechow and Dichev (2002) find that accrual quality is positively associated

with firm size and negatively associated with cash flow variability, sales variability,

operating cycle, and incidence of losses. Firm size is measured by the natural

logarithm of total assets (LNASSET). Operating cycle (OPERCYCLE) is the log

of the sum of the firm’s days accounts receivable and days inventory. Capital

intensity, NETPPE, is proxied by the ratio of the net book value of PP&E to total

assets. Cash flow variability (STDCFO) is the standard deviation of the firm’s

rolling 5-year cash flows from operations. Sales variability (STDSALE) is the

standard deviation of the firm’s rolling 5-year sales revenue. Incidence of negative

earnings realizations, NEGEARN, is measured as the firm’s proportion of losses

over the prior 5 years.

Appendix 3: Earnings Informativeness

My third proxy of earnings quality is earnings informativeness, measured by the

earnings response coefficients (Warfield et al. 1995; Fan and Wong 2002; Francis

et al. 2005). The following model is adopted to investigate the relation between

earnings informativeness and equity-based compensation, board independence, and

separation of control rights from cash flow rights:

RET ¼ b0 þ b1EARNþ b2EARN � DIROWNþ b3EARN � OUTDIR
þ b4EARN � VOTEþ b5EARN � VOTE � EBC
þ b6EARN � VOTE � OUTDIRþ b7EARN � BOARDSIZE
þ b8 � EARN � CEODUAL þ b9EARN � LNASSET
þ b10EARN �MBþ b11EARN � LEVþ b12EARN � ROA
þ Year controlsþ Country Controlsþ Industry Controlsþ e

(42.5)

where:

RET ¼ 12-month cumulative raw return ending 3 months after the fiscal year-end.

EARN¼ net income for year t, scaled by themarket value of equity at the end of t� 1.
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All other variables are as previously defined.

The estimated coefficient on b1 reflects the earnings response coefficient.

A positive estimate on b2 will be consistent with the notion that equity ownership

for outside directors is associated with more informative earnings. A positive

estimate on b3 indicates that the greater proportion of outside directors on the

board, the greater the informativeness of earnings. From Fan and Wong (2002),

I expect coefficient b4 to be negative, indicating that the reported earnings are less

informative when the ultimate shareholder’s control rights exceed his cash flow

rights. If high equity ownership for outside directors improves their monitoring of

management, the negative effects of the divergence of control rights from cash flow

rights should be mitigated in firms with high equity-based compensation. I expect

coefficient b5 to be positive. If monitoring intensity is positively associated with the

proportion of outside directors on the board, the reduced informativeness of

reported earnings in firm with high divergence of control rights from cash flow

rights should be mitigated in firms with higher board independence. I expect

coefficient b6 to be positive.

Appendix 4: Adjusting for Standard Errors in Panel Data

Gow et al. (2010) examine several approaches to address issues of cross-sectional

and time-series dependence in accounting research. They identified a number of

common approaches: Fama-MacBeth, Newey-West, the Z2 statistic, and standard

errors clustered by firm, industry, or time. Gow et al. (2010) review each of these

approaches and discuss the circumstances in which they produce valid inferences.

This section is drawn heavily from Gow et al. (2010). Correcting for cross-

sectional and time-series dependence in accounting research. The Accounting

Review 85(2), 483–512. Reader should refer to the paper for details.

(i) OLS and White Standard Errors
OLS standard errors assume that errors are both homoskedastic and

uncorrelated across observations. While White (1980) standard errors are

consistent in the presence of heteroskedasticity, both OLS and White produce

misspecified test statistics when either forms of dependence is present.

(ii) Newey-West
Newey and West (1987) generalize the White (1980) approach to yield

a covariance matrix estimator that is robust to both heteroskedasticity and

serial correlation. Gow et al. (2010) find that the Newey-West procedure

produces slightly biased estimates of standard errors when time-series depen-

dence alone is present. However, Gow et al. (2010) find that, in the presence of

both cross-sectional and time-series dependence, Newey and West method

produces misspecified test statistics with even moderate levels of cross-

sectional dependence.

(iii) Fama-MacBeth
The Fama-MacBeth approach (Fama and MacBeth 1973) is designed to

address concerns about cross-sectional correlation. The Fama-MacBeth
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approach (FM-t) involves estimating T cross-sectional regressions (one for

each period) and basing inferences on a t-statistic calculated as

t ¼ b
se bð Þ , where b ¼ 1

T

XT
t¼1

b̂t (42.6)

and se(b) is the standard error of the coefficients based on their empirical

distribution. When there is no cross-regression (time-series) dependence, this

approach yields consistent estimates of the standard error of the coefficients as

T goes to infinity.

Two common variants of the Fama-MacBeth approach appear in the

accounting literature. The first variant, FM-i, involves estimating firm- or

portfolio-specific time-series regressions with inferences based on the

cross-sectional distribution of coefficients. This modification of the Fama-

MacBeth approach is appropriate if there is time-series dependence but not

cross-sectional dependence. However, FM-i is frequently used when cross-

sectional dependence is likely, such as when returns are the dependent

variable.

The second common variant of the FM-t approach, FM-NW, is intended to

correct for serial correlation in addition to cross-sectional correlation. FM-NW

modifies FM-t by applying a Newey-West adjustment in an attempt to correct

for serial correlation.

Gow et al. (2010) suggest two reasons to believe that FM-NW may not

correct for serial correlation. First, FM-NW involves applying Newey-West to

a limited number of observations, a setting in which Newey-West is known to

perform poorly. Second, FM-NW applies Newey-West to a time-series of

coefficients, whereas the dependence is in the underlying data.

(iv) Z2 Statistic
The Z2-t (Z2-i) statistic is calculated using t-statistics from separate cross-

sectional (time-series) regressions for each time period (cross-sectional unit)

and is given by the expression:

Z2 ¼ t

se tð Þ , where t ¼
1

T

XT
t¼1

t̂ t, (42.7)

se(t) is the standard error of the t-statistics based on their empirical distribu-

tion, and T is the number of time periods (cross-sectional units) in the sample.

Gow et al. (2010) suggest Z2 may suffer from cross-regression dependence

in the same way as the Fama-MacBeth approach does.

(v) One-Way Cluster-Robust Standard Errors
A number of studies in our survey use cluster-robust standard errors, with

clustering either along a cross-sectional dimension (e.g., analyst, firm, indus-

try, or country) or along a time-series dimension (e.g., year); we refer to

the former as CL-i and the latter as CL-t. Cluster-robust standard errors
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(also referred to as Huber-White or Rogers standard errors) were proposed by

White (1980) as a generalization of the heteroskedasticity-robust standard

errors of White (1980). With observations grouped into G clusters of Ng
observations, for g in {1,. . .,G}, the covariance matrix is estimated using the

following expression:

V̂ B̂
� � ¼ X

0
X

� ��1

B̂ X
0
X

� ��1

, B̂ ¼
XG
g¼1

X
0
gugu

0
gXg, (42.8)

where Xg is the Ng � K matrix of regressors, and ug is the Ng-vector of
residuals for cluster g.
While one-way cluster-robust standard errors allow for correlation of unknown

form within cluster, it is assumed that errors are uncorrelated across clusters.

For example, clustering by time (firm) allows observations to be cross-

sectionally (serially) correlated but assumes independence over time

(across firms). While some studies consider both CL-i and CL-t separately,

separate consideration of CL-t and CL-i does not correct for both cross-

sectional and time-series dependence. Gow et al. (2010) find that t-statistics
for CL-t are inflated in the presence of time-series dependence and t-statistics
for CL-i are inflated in the presence of cross-sectional dependence. Thus, when

both forms of dependence are present, both CL-t and CL-i produce overstated

t-statistics.
(vi) Two-Way Cluster-Robust Standard Errors

An extension of cluster-robust standard errors is to allow for clustering along

more than one dimension. In contrast to one-way clustering, two-way cluster-

ing (CL-2) allows for both time-series and cross-sectional dependence. For

example, two-way clustering by firm and year allows for within-firm (time-

series) dependence and within-year (cross-sectional) dependence (e.g., the

observation for firm j in year t can be correlated with that for firm j in year

t + 1 and that for firm k in year t). To estimate two-way cluster-robust standard

errors, the expression in (A4) is evaluated using clusters along each dimension

(e.g., clustered by industry and clustered by year) to yield V1 and V2. Then the
same expression is calculated using the “intersection” clusters (in the example,

observations within an industry-year) to yield VI. The two-way cluster-robust

estimator V is calculated as V¼ V1 + V2� VI. Standard econometric software

packages (e.g., Stata and SAS) contain routines for calculating one-way

cluster-robust standard errors, making it relatively straightforward to imple-

ment two-way cluster-robust standard errors. Gow et al. (2010) find that in the

presence of both cross-sectional and time-series dependence, the two-way

clustering method (by year and by firm) which allows for both cross-sectional

and time-series dependence produces well-specified test statistics. Johnston

and DiNardo (1997) and Greene (2000) are two econometric textbooks

that contain a detailed discussion of the econometrics issues relating to

panel data.

42 Earnings Quality and Board Structure: Evidence from South East Asia 1191



Acknowledgment I appreciate the research funding provided by Institute of Certified

Public Accountants of Singapore. I would like to dedicate this paper to my late father,

Yew-Ming Lee.

References

Ashbaugh, H., LaFond, R., & Mayhew, B. W. (2003). Do nonaudit services compromise auditor

independence? Further evidence. The Accounting Review, 78(3), 611–639.
Beasley, M. S. (1996). An empirical analysis of the relation between the board of director

composition and financial statement fraud. The Accounting Review, 71, 443–465.
Claessens, S., Djankov, S., & Lang, L. H. P. (2000). The separation of ownership and control in

East Asian corporations. Journal of Financial Economics, 58, 81–112.
Claessens, S., Djankov, S., Fan, J. P. H., & Lang, L. H. P. (2002). Disentangling the incentive and

entrenchment effects of large shareholdings. Journal of Finance, 57(2), 2741–2771.
Dechow, P. M., & Dichev, I. (2002). The quality of accruals and earnings: The role of accrual

estimation errors. The Accounting Review, 77, 35–59.
Dechow, P. M., Sloan, R. G., & Sweeney, A. P. (1996). Causes and consequences of earnings

manipulation: An analysis of firms subject to enforcement actions by the SEC. Contemporary
Accounting Research, 13, 1–36.

Fama, E., & Jensen, M. (1983). Agency problems and residual claims. Journal of Law and
Economics, 26, 327–349.

Fama, E., & MacBeth, J. (1973). Risk, return, and equilibrium: Empirical tests. The Journal of
Political Economy, 81(3), 607–636.

Fan, J., & Wong, T. J. (2002). Corporate ownership structure and the informativeness of account-

ing earnings in East Asia. Journal of Accounting & Economics, 33, 401–425.
Fan, J., & Wong, T. J. (2005). Do external auditors perform a corporate governance role in

emerging markets? Journal of Accounting Research, 43(1), 35–72.
Francis, J., Lafond, R., Olsson, P., & Schipper, K. (2005). The market pricing of accrual quality.

Journal of Accounting & Economics, 39, 295–327.
Gillette, A., Noe, T., & Rebello, M. (2003). Corporate board composition, protocols and voting

behavior: Experimental evidence. Journal of Finance, 58, 1997–2032.
Gow, I. D., Ormazabal, G., & Taylor, D. J. (2010). Correcting for cross-sectional and time series

dependence in accounting research. The Accounting Review, 85(2), 483–512.
Greene, W. (2000). Econometrics analysis. Upper Saddle River: Prentice-Hall.
Haw, I., Hu, B., Hwang, L., &Wu,W. (2004). Ultimate ownership, income management, and legal

and extra-legal institutions. Journal of Accounting Research, 42, 423–462.
Hermalin, B., & Weisbach, M. (1988). The determinants of board composition. Rand Journal of

Economics, 19, 589–606.
Johnson, S., Boone, P., Breach, A., & Friedman, E. (2000). Corporate governance in the Asian

financial crisis. Journal of Financial Economics, 58, 141–186.
Johnston, J., & DiNardo, J. (1997). Econometrics method. New York: Mc-Graw Hill.

Klein, A. (2002). Audit committee, board of director characteristics, and earnings management.

Journal of Accounting and Economics, 33(3), 375–400.
Kothari, S. P., Leone, A. J., & Wasley, C. E. (2005). Performance matched discretionary accruals.

Journal of Accounting and Economics, 39, 163–197.
La Porta, R., Lopez-de-Silanes, F., Shleifer, A., & Vishny, R. (1998). Law and finance. Journal of

Political Economy, 106, 1113–1155.
La Porta, R., Lopez-De-Silanes, F., & Shleifer, A. (1999). Corporate ownership around the world.

Journal of Finance, 54, 471–518.
Lang, M., Lins, K., & Miller, D. (2004). Concentrated control, analyst following, and valuation:

Do analysts matter most when investors are protected least? Journal of Accounting Research,
42(3), 589–623.

1192 K.-W. Lee



Lee, K. W. (2007). Corporate voluntary disclosure and the separation of cash flow rights from

control rights. Review of Quantitative Finance and Accounting, 28, 393–416.
Lee, K. W., Lev, B., & Yeo, H. H. (2007). Organizational structure and earnings management.

Journal of Accounting, Auditing and Finance, 22(2), 293–391.
Lee, K. W., Lev, B., & Yeo, H. H. (2008). Executive pay dispersion, corporate governance and

firm performance. Review of Quantitative Finance and Accounting, 30, 315–338.
Lee, C. F., Lee, K. W., & Yeo, H. H. (2009). Investor protection and convertible debt design.

Journal of Banking and Finance, 33(6), 985–995.
Leuz, C., Nanda, D., & Wysocki, P. (2003). Earnings management and investor protection: An

international comparison. Journal of Financial Economics, 69, 505–527.
Mehran, H. (1995). Executive compensation structure, ownership, and firm performance. Journal

of Financial Economics, 38(2), 163–184.
Morck, R., Shleifer, A., & Vishny, R. W. (1988). Management ownership and market valuation:

An empirical analysis. Journal of Financial Economics, 20, 293–315.
Newey, W., & West, D. (1987). A simple, positive semi-definite, heteroskedasticity and autocor-

relation consistent covariance matrix. Econometrica, 55(3), 703–708.
Peasnell, K., Pope, P., & Young, S. (2005). Board monitoring and earnings management:

Do outside directors influence abnormal accruals? Journal of Business Finance & Accounting,
32(7/8), 1311–1345.

Perry, T. (2000). Incentive compensation for outside directors and CEO turnover. Working paper,

Arizona State University.

Petersen, M. (2009). Estimating standard errors in finance panel data sets: Comparing approaches.

Review of Financial Studies, 22(1), 435–480.
Rosenstein, S., &Wyatt, J. (1990). Outside directors, board independence, and shareholder wealth.

Journal of Financial Economics, 26, 175–192.
Ryan, H., & Wiggins, R. (2004). Who is whose pocket? Director compensation, board indepen-

dence, barriers to effective monitoring. Journal of Financial Economics, 73, 497–524.
Shivdasani, A. (1993). Board composition, ownership structure, and hostile takeovers. Journal of

Accounting & Economics, 16, 167–188.
Shleifer, A., & Vishny, R. (1997). A survey of corporate governance. Journal of Finance,

52, 737–783.
Smith, C., & Watts, R. (1992). The investment opportunity set and corporate financing, dividend

and compensation policies. Journal of Financial Economics, 32, 263–292.
Warfield, T., Wild, J. J., & Wild, K. (1995). Managerial ownership, accounting choices, and

informativeness of earnings. Journal of Accounting and Economics, 20, 61–91.
Weisbach, M. (1988). Outside directors and CEO turnover. Journal of Financial Economics,

20, 431–460.
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for

heteroskedasticity. Econometrica, 48(4), 817–838.

42 Earnings Quality and Board Structure: Evidence from South East Asia 1193



Rationality and Heterogeneity of Survey
Forecasts of the Yen-Dollar Exchange
Rate: A Reexamination

43

Richard Cohen, Carl S. Bonham, and Shigeyuki Abe

Contents

43.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196

43.2 Background: Testing Rationality in the Foreign Exchange Market . . . . . . . . . . . . . . . . . . . 1199

43.2.1 Why Test Rational Expectations with Disaggregated Survey

Forecast Data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200

43.2.2 Rational Reasons for the Failure of the Rational Expectations Hypothesis

Using Disaggregated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201

43.3 Description of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202

43.4 Empirical Tests of Rationality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203

43.4.1 Joint Tests of Unbiasedness and Weak Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204

43.4.2 Pretests for Rationality: The Stationarity of the Forecast Error . . . . . . . . . . . . . 1212

43.4.3 Univariate Tests for Unbiasedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218

43.4.4 Unbiasedness Tests Using Error Correction Models . . . . . . . . . . . . . . . . . . . . . . . . . 1222

43.4.5 Explicit Tests of Weak Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1228

43.5 Micro-homogeneity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230

43.5.1 Ito’s Heterogeneity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239

43.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1241

Appendix 1: Testing Micro-homogeneity with Survey Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1244

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245

R. Cohen

University of Hawaii Economic Research Organization and Economics, University of Hawaii at

Manoa, Honolulu, HI, USA

e-mail: afrc2@cbpp.uaa.alaska.edu

C.S. Bonham (*)

College of Business and Public Policy, University of Alaska Anchorage, Anchorage, AK, USA

e-mail: bonham@hawaii.edu

S. Abe

Faculty of Policy Studies, Doshisha University, Kyoto, Japan

e-mail: sabe@mail.doshisha.ac.jp

C.-F. Lee, J. Lee (eds.), Handbook of Financial Econometrics and Statistics,
DOI 10.1007/978-1-4614-7750-1_43,
# Springer Science+Business Media New York 2015

1195

mailto:afrc2@cbpp.uaa.alaska.edu
mailto:bonham@hawaii.edu
mailto:sabe@mail.doshisha.ac.jp


Abstract

This chapter examines the rationality and diversity of industry-level forecasts of

the yen-dollar exchange rate collected by the Japan Center for International

Finance. In several ways we update and extend the seminal work by Ito (1990,

American Economic Review 80, 434–449). We compare three specifications for

testing rationality: the “conventional” bivariate regression, the univariate regres-

sion of a forecast error on a constant and other information set variables, and an

error correction model (ECM). We find that the bivariate specification, while

producing consistent estimates, suffers from two defects: first, the conventional

restrictions are sufficient but not necessary for unbiasedness; second, the test has

low power. However, before we can apply the univariate specification, we must

conduct pretests for the stationarity of the forecast error. We find a unit root in

the 6-month horizon forecast error for all groups, thereby rejecting unbiasedness

and weak efficiency at the pretest stage. For the other two horizons, we find

much evidence in favor of unbiasedness but not weak efficiency. Our ECM

rejects unbiasedness for all forecasters at all horizons. We conjecture that these

results, too, occur because the restrictions test sufficiency, not necessity.

We extend the analysis of industry-level forecasts to a SUR-type structure

using an innovative GMM technique (Bonham and Cohen 2001, Journal of
Business & Economic Statistics, 19, 278–291) that allows for forecaster cross-
correlation due to the existence of common shocks and/or herd effects. Our

GMM tests of micro-homogeneity uniformly reject the hypothesis that fore-

casters exhibit similar rationality characteristics.

Keywords

Rational expectations • Unbiasedness • Weak efficiency • Micro-homogeneity •

Heterogeneity • Exchange rate • Survey forecasts • Aggregation bias • GMM •

SUR

43.1 Introduction

This chapter examines the rationality of industry-level survey forecasts of the

yen-dollar exchange rate collected by the Japan Center for International Finance

(JCIF). Tests of rationality take on additional significance when performed on asset

market prices, since rational expectations is a necessary condition for market

efficiency. In the foreign exchange market, tests of forward rate unbiasedness

simultaneously test a zero risk premium in the exchange rate; hence this joint

hypothesis is also called the risk-neutral efficient market hypothesis (RNEMH).

The practical significance of such a hypothesis is that if the forward rate is indeed an

unbiased predictor of the future spot rate, then exchange risk can be costlessly

hedged in the forward market. However, the RNEMH has been rejected nearly

universally. Since the risk premium is unobservable, insight into the reason for the

rejection of the RNEMH can be gained by separately testing for rationality using

survey data on expectations. Because forecasters cannot be assumed to have
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identical information sets, we must use individual survey forecasts to avoid the

aggregation bias inherent in the use of mean or median forecasts.

We use data from the same source as Ito (1990), the seminal study recognizing

the importance of using individual data to test rationality hypotheses about the

exchange rate. To achieve stationarity of the realizations and forecasts (which each

have a unit root), Ito (1990) followed the conventional specification at the time of

subtracting the current realization from each. These variables are then referred to as

being in “change” form. To test unbiasedness he regressed the future rate of

depreciation on the forecasted return and tested the joint restrictions that the

intercept equalled zero and the slope coefficient equalled one. At the industry

level he found approximately twice as many rejections (at the 1 % level) at the

longest horizon (6 months) than at the two shorter horizons (1 and 3 months).

We extend Ito’s analysis in two principal respects: the specification of unbiased-

ness tests and inference in tests for micro-homogeneity of forecasters. One problem

with the change specification of unbiasedness tests is that, since there is much more

variation in the change in the realization than in the forecast, there is a tendency to

under-reject the part of the joint hypothesis that the coefficient on the forecast

equals one. This is precisely what we would expect in tests of variables which are

near random walks.

Second, and more fundamentally, Ito’s (1990) bivariate (joint) regression test of

unbiasedness is actually a test of sufficiency, not necessity as well as sufficiency.

Following Holden and Peel (1990), the necessary and sufficient condition for

unbiasedness is a mean zero forecast error. This is tested in a univariate regression

by imposing a coefficient of unity on the forecast and testing the restriction that the

intercept equals zero. This critique applies whether or not the forecast and realiza-

tion are integrated in levels. However, when the realization and forecast are

integrated in levels, we must conduct a pretest to determine whether the forecast

error is stationary. If the forecast and realization are both integrated and

cointegrated, then a necessary and sufficient condition for unbiasedness is that

intercept and slope in the cointegrating regression (using levels of the realization

and forecast) are zero and one, respectively. We test this hypothesis using Liu and

Maddala’s (1992) method of imposing the (0, 1) vector, then testing the “restricted”

cointegrating residual for stationarity.1,2

Third, we use the result from Engle and Granger (1987) that cointegrated vari-

ables have an error correction representation. First, we employ the specification and

unbiasedness restrictions originally proposed by Hakkio and Rush (1989). How-

ever, the unbiasedness tests using the ECM specification produce more rejections

over industry groups and horizons than the univariate or bivariate specifications.

1If in addition the residuals from the cointegrating regression are white noise, this supports a type

of weak efficiency.
2Pretesting the forecast error for stationarity is a common practice in testing the RNMEH, but the

only study we know of that applies this practice to survey forecasts of exchange rates is Osterberg

(2000), and he does not test for a zero intercept in the cointegrating regression.
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We conjecture that one possible explanation for this apparent anomaly is that,

similar to the joint restrictions in the bivariate test, the ECM restrictions test

sufficient conditions for unbiasedness, while the univariate restriction only tests

a necessary and sufficient condition. Thus, the ECM has a tendency to over-reject.

We then respecify the ECM, so that only the necessary and sufficient conditions are

tested. We compare our results to those obtained using the sufficient conditions

represented by the joint restrictions as well as the necessary and sufficient condition

represented by the univariate restriction.

The second direction in which we extend Ito’s (1990) analysis has to do with

testing for differences among forecasters’ ability to produce rational predictions.3

We recognize, as does Ito, that differences among forecasters over time indicate

that at least some individuals form biased forecasts. (The converse does not

necessarily hold, since a failure to reject micro-homogeneity could conceivably

be due to the same degree of irrationality of each individual in the panel.) Ito’s

heterogeneity test is a single-equation test of deviations of individual forecasts from

the mean forecast, where the latter may or may not be unbiased. In contrast, we test

for differences in individual forecast performance using a micro-homogeneity test,

i.e., testing for equal coefficients across the system of individual univariate

rationality equations.

In our tests for micro-homogeneity, we expect cross-forecaster error correlation

due to the possibility of common macro shocks and/or herd effects in expectations.

To this end, we incorporate two innovations not previously used by investigators

studying survey data on exchange rate expectations. First, in our micro-

homogeneity tests, we use a GMM system with a variance-covariance matrix that

allows for cross-sectional as well as moving average and heteroscedastic errors.

Here we follow the widely used practice of modeling the individual regression

residuals as an MA process of order h-1, where h is the number of periods in the

forecast horizon. However, no other researchers have actually tested whether an

MA process of this length is required to model the cross-sectional behavior of

rational forecast errors. Thus, second, to investigate the nature of the actual MA

processes, we use Pesaran’s (2004) CD test to examine the statistical significance of

the cross-sectional dependence of forecast errors, both contemporaneous and

lagged.

The organization of the rest of the chapter is as follows: in Sect. 43.2 we review

some fundamental issues in testing rationality in the foreign exchange market. In

Sects. 43.3 and 43.4, we conduct various rationality tests on the JCIF data.

Section 43.5 contains our micro-homogeneity tests. Section 43.6 summarizes and

discusses areas for future research.

3Market microstructure theories assume that there is a minimum amount of forecaster (as well as

cross-sectional forecast) diversity. Also, theories of exchange rate determination that depend upon

the interaction between chartists (or noise traders) and fundamentalists by definition require

a certain structure of forecaster heterogeneity.
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43.2 Background: Testing Rationality in the Foreign
Exchange Market

The Rational Expectations Hypothesis (REH) assumes that economic agents know

the true data-generating process (DGP) for the forecast variable. This implies that

the market’s subjective probability distribution of the variable is identical to the

objective probability distribution, conditional on a given information set, Ft.

Equating first moments of the market, Em stþh Ftj Þ,ð and objective, E stþh Ftj Þ,ð
distributions,

Em stþh Ftj Þ ¼ E stþh Ftj Þ,ðð (43.1)

where the right-hand side can be shortened to Et(st+h).
It follows that the REH implies that forecast errors have both unconditional and

conditional means equal to zero. A forecast is unbiased if its forecast error has an

unconditional mean of zero. A forecast is efficient if its error has a conditional mean

of zero. The condition that forecast errors be serially uncorrelated is a subset of the

efficiency condition where the conditioning information set consists of past values

of the realization and current as well as past values of the forecast.4

In this chapter we focus on testing whether forecasters can form rational

expectations of future depreciation. If not, then at least part of the explanation for

the failure of the RNEMH is due to the failure of the REH. There are two related

interest parity conditions. Covered interest parity, an arbitrage condition, holds if

ft,h � st ¼ it � i�t , i.e., the forward premium is equal to the interest differential

between domestic and foreign risk-free assets. Uncovered interest parity holds if

st+ h � set ¼ it � i�t . Because uncovered interest parity assumes both unbiased

expectations and risk neutrality, some authors view it as equivalent to the

RNEMH (see Phillips and Maynard 2001).

The ability to decompose deviations from UIP into time-varying risk premium

and systematic forecast error components also has implications for policymakers.

Consider first the possibility of a violation of the risk neutrality hypothesis.

According to the portfolio balance model, if a statistically significant time-varying

risk premium component is found, this means that it � i�t is time-varying, which in

turn implies that foreign and domestic bonds are not perfect substitutes; changes in

relative quantities (which are reflected in changes in current account balances) will

affect the interest rate differential. In this way, sterilized official intervention can

have significant effects on exchange rates. Second, consider the possibility of

a violation of the REH. If a statistically significant expectational error of the

destabilizing (e.g., “bandwagon”) type is found, and policymakers are more rational

than speculators, a policy of “leaning against the wind” could have a stabilizing

4It is important to note that the result from one type of rationality test does not have implications

for the results from any other types of rationality tests. In this chapter we test for unbiasedness and

weak efficiency, leaving the more stringent tests of efficiency with respect to publicly available

information for future analysis.
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effect on exchange rate movements. (See Cavaglia et al. 1994.) More generally,

monetary models of the exchange rate (in which the UIP condition is embedded),

which assume model-consistent (i.e., rational) expectations with risk neutrality,

generally have not performed well empirically, especially in out-of-sample fore-

casting. (See, e.g., Bryant 1995.) One would like to be able to attribute the model

failure to some combination of a failure of the structural assumptions (including

risk neutrality) and a failure of the expectational assumption.

43.2.1 Why Test Rational Expectations with Disaggregated Survey
Forecast Data?

Beginning with Frankel and Froot (1987) and Froot and Frankel (1989), much of

the literature examining exchange rate rationality in general, and the decomposition

of deviations from the RNEMH in particular, has employed the representative agent

assumption to justify using the mean or median survey forecast as a proxy for the

market’s expectation. In both studies, Frankel and Froot found significant evidence

of irrationality. Subsequent research has found mixed results. Liu and Maddala

(1992, p. 366) articulate the mainstream justification for using aggregated forecasts

in tests of the REH. “Although . . .data on individuals are important to throw light

on how expectations are formed at the individual level, to analyze issues relating to

market efficiency, one has to resort to aggregates.” In fact, Muth’s (1961, p. 316)

original definition of rational expectations seemed to allow for the possibility

that rationality could be applied to an aggregate (e.g., mean or median) forecast.

‘. . . [E]xpectations of firms (or, more generally, the subjective probability distri-

bution of outcomes) tend to be distributed, for the same information set, about the
predictions of the theory (or the “objective” probability distribution of outcomes).’

(Emphasis added.)

However, if individual forecasters have different information sets, Muth’s def-

inition does not apply. To take the simplest example, the (current) mean forecast is

not in any forecaster’s information set, since all individuals’ forecasts must be made

before a mean can be calculated. Thus, current mean forecasts contain private

information (see MacDonald 1992) and therefore cannot be tested for rationality.5

Using the mean forecast may also result in inconsistent parameter estimates.

Figlewski and Wachtel (1983) were the first to show that, in the traditional bivariate

5A large theoretical literature relaxes Muth’s assumption that all information relevant for forming

a rational forecast is publicly available. Instead, this literature examines how heterogeneous

individual expectations are mapped into an aggregate market expectation, and whether the latter

leads to market efficiency. (See, e.g., Figlewski 1978, 1982, 1984; Kirman 1992; Haltiwanger and

Waldman 1989.) Our paper focuses on individual rationality but allows for the possibility of

synergism by incorporating not only heteroscedasticity and autocorrelation consistent standard

errors in individual rationality tests but also cross-forecaster correlation in tests of micro-

homogeneity. The extreme informational requirement of the REH led Pesaran and Weale (2006)

to propose a weaker form of the REH that is based on the (weighted) average expectation using

only publicly available (i.e., common) information.
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unbiasedness equation, the presence of private information variables in the mean

forecast error sets up a correlation with the mean forecast. This inconsistency

occurs even if all individual forecasts are rational. In addition, Keane and Runkle

(1990) pointed out that, when some forecasters are irrational, using the mean

forecast may lead to false acceptance of the unbiasedness hypothesis, in the

unlikely event that offsetting individual biases allow parameters to be consistently

estimated. See also Bonham and Cohen (2001), who argue that, in the case of

cointegrated targets and predictions, inconsistency of estimates in rationality tests

using the mean forecast can be avoided if corresponding coefficients in the indi-

vidual rationality tests pass a test for micro-homogeneity.6 Nevertheless, until the

1990s, few researchers tested for the rationality of individual forecasts, even when

those data were available.

43.2.2 Rational Reasons for the Failure of the Rational Expectations
Hypothesis Using Disaggregated Data

Other than a failure to process available information efficiently, there are numerous

explanations for a rejection of the REH. One set of reasons relates to measurement

error in the individual forecast. Researchers have long recognized that forecasts of

economic variables collected from public opinion surveys should be less informed

than those sampled from industry participants. However, industry participants,

while relatively knowledgeable, may not be properly motivated to devote the

time and resources necessary to elicit their best responses. The opposite is also

possible.7 Having devoted substantial resources to produce a forecast of the price of

a widely traded asset, such as foreign exchange, forecasters may be reluctant to

reveal their true forecast before they have had a chance to trade for their own

account.8

Second, some forecasters may not have the symmetric quadratic loss function

embodied in typical measures of forecast accuracy, e.g., minimum mean

squared error. (See Zellner 1986; Stockman 1987; Batchelor and Peel 1998.)

In this case, the optimal forecast may not be the MSE. In one scenario, related to

6The extent to which private information influences forecasts is more controversial in the foreign

exchange market than in the equity or bond markets. While Chionis and MacDonald (1997)

maintain that there is little or no private information in the foreign exchange market, Lyons

(2002) argues that order flow explains much of the variation in prices. To the extent that one agrees

with the market microstructure emphasis on the importance of the private information embodied in

dealer order flow, the Figlewski-Wachtel critique remains valid in the returns regression.
7Elliott and Ito (1999) show that, although a randomwalk forecast frequently outperforms the JCIF

survey forecasts using an MSE criterion, survey forecasts generally outperform the random walk,

based on an excess profits criterion. This supports the contention that JCIF forecasters are properly

motivated to produce their best forecasts.
8To mitigate the confidentiality problem in this case, the survey typically withholds individual

forecasts until the realization is known or (as with the JCIF) masks the individual forecast by only

reporting some aggregate forecast (at the industry and total level) to the public.
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the incentive aspect of the measurement error problem, forecasters may have

strategic incentives involving product differentiation.9

In addition to strategic behavior, another scenario in which forecasters may

deviate from the symmetric quadratic loss function is simply to maximize trading

profits. This requires predicting the direction of change, regardless of MSE.10

Third, despite their best efforts, forecasters may find it difficult to distinguish

between a temporary and permanent shift in the DGP. This difficulty underlies at

least three theories of rational forecast errors: the peso problem, learning about past

regime changes, and bubbles.

Below we conduct tests for structural change in estimated unbiasedness coeffi-

cients. When unbiasedness cannot be rejected, the structural change test may show

certain subperiods in which unbiasedness did not hold. In the obverse case, when

unbiasedness can be rejected, the structural change test may show certain sub-

periods in which unbiasedness cannot be rejected. Either situation would lend some

support to the theories attributing bias to the difficulty of distinguishing temporary

from permanent shifts.

43.3 Description of Data

Every2weeks, theJCIFinTokyoconducts telephonesurveysofyen/dollarexchangerate

expectations from 44 firms. The forecasts are for the future spot rate at horizons of

1 month, 3 months, and 6 months. Our data cover the period May 1985 to March 1996.

This data set has very few missing observations, making it close to a true panel. For

reporting purposes, the JCIF currently groups individual firms into four industry catego-

ries: (1)banksandbrokers, (2) insuranceand tradingcompanies, (3)exporters, and(4) life

insurance companies and importers. On the day after the survey, the JCIF announces

overall and industry average forecasts. (For further details concerning the JCIF database,

see the descriptions in Ito (1990, 1994), Bryant (1995), and Elliott and Ito (1999).)

Figure 43.1 shows that, over the sample period (one of flexible exchange rates and

no capital controls), the yen appreciated dramatically relative to the dollar, from

a spot rate of approximately 270 yen/dollar in May 1985 to approximately

90 yen/dollar in March 1996. The path of appreciation was not steady, however.

In the first 2 years of the survey alone, the yen appreciated to about 140 per dollar.

9Laster et al. (1999) called this practice “rational bias.” Prominent references in this growing

literature include Lamont (2002), Ehrbeck and Waldmann (1996), and Batchelor and Dua

(1990a, b, 1992). Because we have access only to forecasts at the industry average level, we

cannot test the strategic incentive hypotheses.
10See Elliott and Ito (1999), Boothe and Glassman (1987), LeBaron (2000), Leitch and Tanner

(1991), Lai (1990), Goldberg and Frydman (1996), and Pilbeam (1995). This type of loss function

may appear to be relevant only for relatively liquid assets such as foreign exchange, but not for

macroeconomic flows. However, the directional goal is also used in models to predict business

cycle turning points. Also, trends in financial engineering may lead to the creation of derivative

contracts in macroeconomic variables, e.g., CPI futures.
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The initial rapid appreciation of the yen is generally attributed to the Plaza meeting in

September 1985, in which the Group of Five countries decided to let the dollar

depreciate, relative to the other currencies. At the Louvre meeting in February 1987,

the Group of Seven agreed to stabilize exchange rates by establishing soft target

zones. These meetings may well be interpreted as unanticipated regime changes,

since, as we will see below, forecasters generally underestimated the rapid appreci-

ation following the Plaza meeting, then overestimated the value of the yen following

the Louvre meeting. Thus, forecasts during these periods may have been subject to

peso and learning problems. The period of stabilization lasted until about 1990, when

yen appreciation resumed and continued through the end of the sample period.

43.4 Empirical Tests of Rationality

Early studies of the unbiasedness aspect of rationality regressed the level of the

realization on the level of the forecast, testing the joint hypothesis that the intercept

equalled zero and the slope equalled one.11 However, since many macroeconomic

variables have unit roots, and realizations and forecasts typically share a common

stochastic trend, a rational forecast will be integrated and cointegrated with the target

series. (See Granger 1991, pp. 69–70.) According to the modern theory of regressions

11The efficiency aspect of rationality is sometimes tested by including additional variables in the

forecaster’s information set, with corresponding hypotheses of zero coefficients on these variables.

See, e.g., Keane and Runkle (1990) for a more recent study using the level specification and

Bonham and Cohen (1995) for a critique of Keane and Runkle’s integration accounting.
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with integrated processes (see, inter alia Banerjee et al. 1993), conventional OLS

estimation and inference produce a slope coefficient that is biased toward one and,

therefore, a test statistic that is biased toward accepting the null of unbiasedness. The

second generation studies of unbiasedness addressed this inference problem by

subtracting the current realization from the forecast as well as the future realization,

transforming the levels regression into a “changes” regression. In this specification of

stationary variables, unbiasedness was still tested using the same (0, 1) joint hypothesis

as in the levels regression. (Ito (1990) is an example of this methodology.)However, an

implication of Engle and Granger (1987) is that the levels regression is now interpreted

as a cointegrating regression, with conventional t-statistics following nonstandard

distributions which depend on nuisance parameters. After establishing that the reali-

zation and forecast are integrated and cointegrated, we perform two types of rationality

tests. The first is a “restricted cointegration” test due to Liu andMaddala (1992). This is

a cointegration test imposing the (0, 1) restriction on the levels regression.

It is significant that, if realization and forecast are cointegrated, Liu and

Maddala’s (1992) technique is equivalent to regressing a stationary forecast error

on a constant and then testing whether the coefficient equals zero (to test unbiased-

ness) and/or whether the residuals are white noise (to test a type of weak efficiency).

Pretests for unit roots in the realization, forecast, and forecast error are required for

at least three reasons. First, univariate tests of unbiasedness are invalid if the

forecast error is not stationary. Second, following Holden and Peel (1990), we

show below (in Sect. 43.4.1.1) that nonrejection of the joint test in the bivariate

regression is sufficient but not necessary for unbiasedness, since the joint test is also

an implicit test of weak efficiency with respect to the lagged forecast error. A zero

intercept in the (correctly specified) univariate test is a necessary as well as

sufficient condition for unbiasedness. Third, the Engle and Granger (1987) repre-

sentation theorem proves that a cointegrating regression such as the levels joint

regression (Eq. 43.2 below) has an error correction form that includes both

differenced variables and an error correction term in levels. Under the joint null,

the error correction term is the forecast error. While the change form of the bivariate

regression, is not, strictly speaking, misspecified (since the regressor subtracts st,
not set�1, from st

e), the ECM specification may produce a better fit to the data and,

therefore, a more powerful test of the unbiasedness restrictions. We conduct such

tests using a form of the ECM due to Hakkio and Rush (1989).

43.4.1 Joint Tests of Unbiasedness and Weak Efficiency

43.4.1.1 The Lack of Necessity Critique
Many, perhaps most, empirical tests of the “unbiasedness” of survey forecasts are

conducted using the bivariate regression equation

stþh � st ¼ ai, h þ bi, h sei, t, h � st

� �
þ ei, t, h: (43.2)

It is typical for researchers to interpret their nonrejection of the joint

null (ai,h, bi,h) ¼ (0, 1) as a necessary condition for unbiasedness. However,
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Holden and Peel (1990) show that this result is a sufficient, though not a necessary,

condition for unbiasedness. The intuition for the lack of necessity comes

from interpreting the right-hand side of the bivariate unbiasedness regression

as a linear combination of two potentially unbiased forecasts: a constant

equal to the unconditional mean forecast plus a variable forecast, i.e.,

st+ h � st ¼ (1 � bi,h) � E(sei;t;h � st) + bi,h(sei;t;h � st) + ei,t,h. Then the intercept is

ai,h ¼ (1 � bi,h) � E(sei;t;h � st). The necessary and sufficient condition for

unbiasedness is that the unconditional mean of the subjective expectation

E[sei;t;h � st] equal the unconditional mean for the objective expectation

E[st+h � st]. However, this equality can be satisfied without ai,h being equal to

zero, i.e., bi,h ¼ 1.

Figure 43.2 shows that an infinite number of ai,h, bi,h estimates are

consistent with unbiasedness. The only constraint is that the regression line inter-

sects the 45� ray from the origin where the sample mean of the forecast and target

are equal. Note that, in the case of differenced variables, this can occur at the origin,

so that ai,h ¼ 0, but bi,h is unrestricted (see Fig. 43.3). It is easy to see why

unbiasedness holds: in Figs. 43.2 and 43.3 the sum of all horizontal deviations

from the 45� line to the regression line, i.e., forecast errors, equal zero. However,

when ai,h 6¼ 0, and ai,h 6¼ (1 � bi,h) � E(sei;t;h � st), there is bias regardless of the

value of bi,h. See Fig. 43.4, where the bias, E(st+ h � sei;t;h), implies systematic

underforecasts.

se
i,t,h−st

E(se
i,t,h−st)

E(st+h − st)

45�

0

0

st+h − stFig. 43.2 Unbiasedness with

a 6¼ 0, b 6¼ 1

43 Rationality and Heterogeneity of Survey Forecasts 1205



se
i,t,h−st

E(se
i,t,h−st)

E(st+h − st)

45�

0

0

st+h − stFig. 43.3 Unbiasedness with

a ¼ 0, b 6¼ 1

bias

se
i,t,h−st

E(se
i,t,h−st)

E(st+h − st)

45�

0

0

st+h − st

Fig. 43.4 Bias with a 6¼ 0,

b ¼ 1

1206 R. Cohen et al.



To investigate the rationality implications of different values for ai,h and bi,h, we
follow Clements and Hendry (1998) and rewrite the forecast error in the bivariate

regression framework of Eq. 43.2 as

�i, t, h ¼ stþh � sei, t, h ¼ ai, h þ bi, h � 1
� �

sei, t, h � st

� �
þ ei, t, h (43.3)

A special case of weak efficiency occurs when the forecast and forecast error are

uncorrelated, i.e.,

E �i, t, h sei, t, h � st

� �h i
¼ 0 ¼ ai, hE sei, t, h � st

� �
þ bi, h � 1
� �

E sei, t, h � st

� �2

þ E ei, t, h sei, t, h � st

� �h i

(43.4)

Thus, satisfaction of the joint hypothesis (ai,h, bi,h)¼ (0,1) is also sufficient forweak

efficiencywith respect to the current forecast. However, it should be noted that Eq. 43.4

may still hold even if the joint hypothesis is rejected. Thus, satisfaction of the joint

hypothesis represents sufficient conditions for both unbiasedness and this type of weak

efficiency, but necessary conditions for neither.

If bi,h ¼ 1, then, whether or not ai,h ¼ 0, the variance of the forecast error equals

the variance of the bivariate regression residual, since then var(�i,t,h) ¼
(bi, h � 1)2var(sei;t;h � st) + var(ei,t,h) + 2(bi,h � 1)cov[(sei;t;h � st),ei,t,h] ¼ var(ei,t,h).
Figure 43.4 illustrates this point. Mincer and Zarnowitz (1969) required only that

bi, h¼ 1 in their definition of forecast efficiency. If in addition tobi,h¼ 1, ai,h¼ 0, then

the mean square forecast error also equals the variance of the forecast. Mincer and

Zarnowitz emphasized that as long as the loss function is symmetric, as is the case

with a minimum mean square error criterion, satisfaction of the joint hypothesis

implies optimality of forecasts.

43.4.1.2 Empirical Results of Joint Tests
Since Hansen and Hodrick (1980), researchers have recognized that, when data are

sampled more frequently than the forecast horizon (h), forecast errors may follow

an h-1 period moving average process. The typical procedure has been to use

a variance-covariance matrix which allows for generalized serial correlation.

Throughout this chapter, we use the Newey-West (1987) procedure, with the

number of lagged residuals set to h-1. To ensure a positive semi-definite VCV

matrix, we use a Bartlett window (see Hamilton 1994, pp. 281–84).

In Tables 43.1, 43.2, and 43.3 we report results for the joint unbiasedness tests.

We reject the joint hypothesis (ai,h, bi,h)¼ (0, 1) at the 5 % significance level for all

groups except banks and brokers at the 1-month horizon (indicating the possible

role of inefficiency with respect to the current forecast), but only for the exporters at

the 3- and 6-month horizons.

Now consider the results of the separate tests of the joint hypothesis. The

significance of the ai,h’s in the joint regressions (Eq. 43.2) generally deteriorates
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with horizon. There are only two rejections at the 5 % level for each of the two

shorter horizons. However, the ai,h’s are all rejected at the 6.7 % significance level

for the 6-month horizon. The test results for the bi,h’s follow the opposite pattern

with respect to horizon. The null that bi,h ¼ 1 is rejected for all groups at the

1-month horizon, but only for the exporters at the 3-month horizon. There are no

rejections at the 6-month horizon. Thus, it appears that the pattern of rejection of the

joint hypothesis is predominantly influenced by tests of whether the slope coeffi-

cient equals one. In particular, tests of the joint hypothesis at the 1-month horizon

are rejected due to failure of this type of weak efficiency, not simple unbiasedness.

For this reason, Mincer and Zarnowitz (1969) and Holden and Peel (1990)

suggest that, if one begins by testing the joint hypothesis, rejections in this first

stage should be followed by tests of the simple unbiasedness hypothesis in a second

stage. Only if unbiasedness is rejected in this second stage should one conclude that

forecasts are biased. For reasons described below (in Sect. 43.4.2), our treatment

eliminates the first stage, so that unbiasedness and weak efficiency are separately

assessed using the forecast error as the dependent variable.

Finding greater efficiency at the longer horizon is unusual, because forecasting

difficulty is usually thought to increase with horizon. However, the longer horizon

result may not be as conclusive as the bi,h statistics suggest. For all tests at all

horizons, in only one case can the null hypothesis that bi,h equals zero not be rejected.
Thus, for the longer two horizons (with just the one exception for exporters at the

Table 43.1 Joint unbiasedness tests (1-month forecasts)

Individual regressions

st+ h � st ¼ ai,h + bi,h(sei;t;h � st) + ei,t,h for h ¼ 2 (43.2)

Degrees of freedom ¼ 260

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and

brokers

Insurance and

trading companies Export industries

Life insurance and

import companies

ai,h �0.003 �0.004 �0.007 �0.006

t (NW) �1.123 �1.428 �2.732 �1.903

p-value 0.262 0.153 0.006 0.057

bi,h 0.437 0.289 �0.318 0.008

t (NW) 1.674 1.382 �1.237 �0.038

R2 0.014 0.008 0.007 0.000

H0 : bi,h ¼ 1, for i ¼ 1,2,3,4

w2 4.666 4.666 4.666 4.666

p-value 0.031 0.001 0.000 0.000

Unbiasedness tests: H0 : ai,h ¼ 0, bi,h ¼ 1, for i ¼ 1,2,3,4

w2(NW) 4.696 11.682 29.546 19.561

p-value 0.096 0.003 0.000 0.000

MH tests H0 : ai,h ¼ aj,h, bi,h ¼ bj,h for all i, j 6¼ i

w2(GMM) 9.689

p-value 0.138

See Appendix 1 for structure of GMM variance-covariance matrix
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3-month horizon), hypothesis testing cannot distinguish between the null hypotheses

that bi,h equals one or zero. Therefore, we cannot conclude that weak efficiency with
respect to the current forecast holds while unbiasedness may not. The failure to

precisely estimate the slope coefficient also produces R2s that are below 0.05 in all

regressions.12 The conclusion is that testing only the joint hypothesis has the potential

to obscure the difference in performance between the unbiasedness and weak effi-

ciency tests. This conclusion is reinforced by an examination of Figs. 43.5, 43.6, and

43.7, the scatterplots, and regression lines for the bivariate regressions.13 All three

scatterplots have a strong vertical orientation. With this type of data, it is easy to find

the vertical midpoint and test whether it is different from zero. Thus, (one-parameter)

tests of simple unbiasedness are feasible. However, it is difficult to fit a precisely

12As we report in Sect. 43.5, this lack of power is at least consistent with the failure to reject micro-

homogeneity at all three horizons.
13Note that, for illustrative purposes only, we compute the expectational variable as the four-group

average percentage change in the forecast. However, recall that, despite the failure to reject micro-

homogeneity at any horizon, the Figlewski-Wachtel critique implies that these parameter esti-

mates are inconsistent in the presence of private information. (See the last paragraph in this

subsection.)

Table 43.2 Joint unbiasedness tests (3-month forecasts)

Individual regressions

st+ h � st ¼ ai,h + bi,h(sei;t;h � st) + ei,t,h for h ¼ 6 (43.2)

Degrees of freedom ¼ 256

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and

brokers

Insurance and

trading companies Export industries

Life insurance and

import companies

ai,h �0.013 �0.011 �0.017 �0.014

t (NW) �1.537 �1.362 �2.060 �1.517

p-value 0.124 0.173 0.039 0.129

bi,h 0.521 0.611 0.082 0.484

t (NW) 1.268 1.868 0.215 1.231

R2 0.018 0.026 0.001 0.016

H0 : bi,h ¼ 1, for i ¼ 1, 2, 3, 4

w2 1.362 1.415 5.822 1.728

p-value 0.243 0.234 0.016 0.189

Unbiasedness tests: H0 : ai,h ¼ 0, bi,h ¼ 1, for i ¼ 1, 2, 3, 4

w2(NW) 2.946 2.691 11.156 3.023

p-value 0.229 0.260 0.004 0.221

MH tests H0 : ai,h ¼ aj,h, bi,h ¼ bj,h for all i, j 6¼ i

w2(GMM) 5.783

p-value 0.448

See Appendix 1 for structure of GMM variance-covariance matrix
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estimated regression line to this scatter, because the small variation in the forecast

variable inflates the standard error of the slope coefficient. This explains why the

bi,h’s are so imprecisely estimated that the null hypotheses that bi,h ¼ 1 and 0 are

simultaneously not rejected. This also explains why the R2s are so low. Thus,

examination of the scatterplots also reveal why bivariate regressions are potentially

misleading about weak efficiency as well as simple unbiasedness. Therefore, in

contrast to both Mincer and Zarnowitz (1969) and Holden and Peel (1990), we prefer

to separate tests for unbiasedness from tests for (all types of) weak efficiency at the

initial stage. This obviates the need for a joint test. In the next section, we conduct

such tests, making use of cointegration between forecast and realization where

it exists.14

More fundamentally, the relatively vertical scatter of the regression observations

around the origin is consistent with an approximately unbiased forecast of a random

14However, in the general case of biased and/or inefficient forecasts, Mincer and Zarnowitz (1969,

p. 11) also viewed the bivariate regression ‘as a method of correcting the forecasts . . . to improve

[their] accuracy . . . Theil (1966, p. 33) called it the “optimal linear correction.”’ That is, the

correction would involve (1) subtracting ai,h and then (2) multiplying by 1/bi,h. Graphically, this is
a translation of the regression line followed by a rotation, until the regression line coincides with

the 45� line.

Table 43.3 Joint unbiasedness tests (6-month forecasts)

Individual regressions

st+ h � st ¼ ai,h + bi,h(sei;t;h � st) + ei,t,h for h ¼ 12 (43.2)

Degrees of freedom ¼ 256

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and

brokers

Insurance and

trading companies Export industries

Life insurance and

import companies

ai,h �0.032 �0.032 �0.039 �0.034

t (NW) �1.879 �1.831 �2.099 �1.957

p-value 0.060 0.067 0.036 0.050

bi,h 0.413 0.822 0.460 0.399

t (NW) 0.761 1.529 0.911 �0.168

R2 0.01 0.044 0.021 0.012

H0 : bi,h ¼ 1, for i ¼ 1, 2, 3, 4

w2 1.166 0.110 1.147 1.564

p-value 0.280 0.740 0.284 0.211

Unbiasedness tests: H0 : ai,h ¼ 0, bi,h ¼ 1, for i ¼ 1, 2, 3, 4

w2(NW) 4.332 3.5 7.899 5.006

p-value 0.115 0.174 0.019 0.082

MH tests H0 : ai,h ¼ aj,h, bi,h ¼ bj,h for all i, j 6¼ i

w2(GMM) 7.071

p-value 0.314

See Appendix 1 for structure of GMM variance-covariance matrix
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walk-in exchange rate levels.15 In Figs. 43.8, 43.9, and 43.10, we observe

a corresponding time series pattern of variation between the forecasts and realiza-

tions in return form. As Bryant lamented in reporting corresponding regressions

using a shorter sample from the JCIF, “the regression. . .is. . .not one to send home

proudly to grandmother” (Bryant 1995, p. 51). He drew the conclusion that “ana-

lysts should have little confidence in a model specification [e.g., uncovered interest

parity] setting [the average forecast] exactly equal to the next-period value of the

model. . .[M]odel-consistent expectations. . .presume a type of forward-looking

behavior [e.g., weak efficiency] that is not consistent with survey data on

expectations” (Bryant 1995, p. 40).

43.4.2 Pretests for Rationality: The Stationarity of the Forecast Error

To test the null hypothesis of a unit root, we estimate the augmented Dickey-Fuller

(1979) (ADF) regression

Dytþ1 ¼ aþ byt þ gtþ
Xp

k¼1

ykDytþ1�k þ etþ1 (43.5)

15Other researchers (e.g., Bryant 1995) have found similar vertical scatters for regressions where

the independent variable, e.g., the forward premium/discount ft,h � st, the “exchange risk pre-

mium” ft,h � st+h, or the difference between domestic and foreign interest rates (i � i*), exhibits
little variation.
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where y is the level and first difference of the spot exchange rate, the level and first

difference of each group forecast, the residual from the (unrestricted) cointegrating

regression, and the forecast error (i.e., the residual from the “restricted”

cointegrating equation). The number of lagged differences to include in Eq. 43.5
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is chosen by adding lags until a Lagrange multiplier test fails to reject the null

hypothesis of no serial correlation (up to lag 12). We test the null hypothesis of

a unit root (i.e., b ¼ 0) with the ADF t and z tests. We also test the joint null

hypothesis of a unit root and no linear trend (i.e., b ¼ 0 and g ¼ 0).

As can be seen in Tables 43.4, 43.5, and 43.6, we fail to reject the null of

a unit root in the log of the spot rate in two of the three unit root tests (the

exception being the joint null), but we reject the unit root in the h th difference for
all three horizons. We conclude that the log of the spot rate is integrated of order

one. Similarly, we conclude that the log of the forecast of each spot rate is

integrated of order one. Thus, we can conduct cointegration tests on the

spot rate and each corresponding forecast. The null of a unit root in the

(unrestricted) residual in the “cointegrating regression” is rejected at the 10 %

level or less for all groups and horizons except group three (exporters) at the

6-month horizon. Thus, we can immediately reject unbiasedness for the latter

group and horizon. Next, since a stationary forecast error is a necessary condition

for unbiasedness, we test for unbiasedness (as well as) and weak efficiency in

levels using Liu and Maddala’s (1992) method of “restricted cointegration.” This

specification imposes the joint restriction ai,h ¼ 0, bi,h ¼ 1 on the bivariate

regression

stþh ¼ ai, h þ bi, hs
e
i, t, h þ ei, t, h (43.6)

and tests whether the residual (the forecast error) is nonstationary. In a bivariate

regression, any cointegrating vector is unique. Therefore, if we find that the forecast
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errors are stationary, then the joint restriction is not rejected, and (0, 1) must be the

unique cointegrating vector.16 The advantage of the one-step restricted

cointegration is that if the joint hypothesis is true, then tests which impose this

cointegrating vector have greater power than those which estimate a cointegrating

vector. See, e.g., Maynard and Phillips (2001).

Note that the Holden and Peel (1990) critique does not apply in the I(1) case,

because the intercept cannot be an unbiased forecast of a nonstationary variable.

Thus, the cointegrating regression line of the level realization on the level forecast

16It is also possible to estimate the cointegrating parameters and jointly test whether they are zero

and one. A variety of methods, such as those due to Saikkonen (1991) or Phillips and Hansen

(1990), exist that allow for inference in cointegrated bivariate regressions.

Table 43.4 Unit root tests (1-month forecasts h ¼ 2)

Dyt ¼ a + byt�1 + gt + ∑p
k¼1ytDyt�k + et for h ¼ 2 (43.5)

Lags ADF t test ADF z test Joint test

Log of spot rate (n ¼ 276) 0 �2.828 �9.660 6.820**

Hth difference log spot rate 12 �4.306*** �167.473*** 9.311***

Group 1 Banks and brokers

Log of forecast 0 �2.274* �5.072 6.327**

Hth difference log forecast 0 �7.752*** �96.639*** 30.085***

Forecast error

Restricted CI eq. 1 �11.325*** �249.389*** 64.676***

Unrestricted CI eq. 1 65.581***

Group 2 Insurance and trading companies

Log of forecast 0 �2.735* �5.149 6.705***

Hth difference log forecast 0 �7.895*** �94.986*** 31.252***

Forecast error

Restricted CI eq. 1 �11.624*** �270.302*** 68.053***

Unrestricted CI eq. 1 �11.750***

Group 3 Export industries

Log of forecast 1 �2.372 �4.806 5.045**

Hth difference log forecast 0 �8.346*** �111.632*** 34.889***

Forecast error

Restricted CI eq. 1 �10.324*** �211.475*** 53.757***

Unrestricted CI eq. 1 �10.392***

Group 4 Life insurance and import companies

Log of forecast 0 �2.726* �5.009 6.438**

Hth difference log forecast 1 �5.216*** �52.911*** 3.630***

Forecast error

Restricted CI eq. 1 �10.977*** �231.837*** 60.820***

Unrestricted CI eq. 1 �10.979***

*Rejection at 10 % level
**Rejection at 5 % level
***Rejection at 1 % level
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must have both a ¼ 0 and b ¼ 1 for unbiasedness to hold. This differs from

Fig. 43.3, the scatterplot in differences, where ai,h ¼ 0 but bi,h 6¼ 1. Intuitively,

the reason for the difference in results is that the scatterplot in levels must lie in the

first quadrant, i.e., no negative values of the forecast or realization.

At the 1-month horizon, the null of a unit root in the residual of the restricted

cointegrating regression (i.e., the forecast error) is rejected at the 1 % level for all

groups. We find nearly identical results at the 3-month horizon; the null of a unit

root in the forecast error is rejected at the 5 % level for all groups. Thus, for these

regressions we can conduct rationality tests by regressing the forecast error on

a constant (hypothesized equal to zero for unbiasedness) and other information set

variables (whose coefficients are hypothesized equal to zero for efficiency). (Recall

just above that we failed to reject the null of a unit root in the unrestricted residual

Table 43.5 Unit root tests (3-month forecasts h ¼ 6)

Dyt ¼ a + byt�1 + gt + ∑p
k¼1ytDyt�k + et for h ¼ 6 (43.5)

Lags ADF t test ADF z test Joint test

Log of spot rate (n ¼ 276) 0 �2.828 �9.660 6.820**

Hth difference log spot rate 2 �4.760*** �49.769*** 11.351***

Group 1 Banks and brokers

Log of forecast 0 �2.840* �4.852 7.610***

Hth difference log forecast 0 �5.092*** �48.707*** 12.990***

Forecast error

Restricted CI eq. 6 �3.022** �29.429*** 4.673**

Unrestricted CI eq. 6 �3.343*

Group 2 Insurance and trading companies

Log of forecast 0 �2.778* �4.533 8.858***

Hth difference log forecast 0 �6.514*** �71.931*** 21.588***

Forecast error

Restricted CI eq. 6 �3.068** �31.038*** 4.956**

Unrestricted CI eq. 2 �4.539***

Group 3 Export industries

Log of forecast 0 �3.105** �4.549 9.090***

Hth difference log forecast 1 �4.677*** �41.524*** 10.944***

Forecast error

Restricted CI eq. 6 �3.317** �31.207*** 5.659**

Unrestricted CI eq. 5 �5.115***

Group 4 Life insurance and import companies

Log of forecast 0 �2.863* �4.400 8.161***

Hth difference log forecast 1 �4.324*** �39.870*** 9.352***

Forecast error

Restricted CI eq. 5 �4.825*** �118.586*** 11.679***

Unrestricted CI eq. 4 �5.123***

*Rejection at 10 % level
**Rejection at 5 % level
***Rejection at 1 % level
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for the 6-month forecasts of exporters.) Now, in the case of the restricted residual,

the other three groups failed to reject a unit root at the 10 % level in two out of three

of the unit root tests.17 (See Figs. 43.11, 43.12, and 43.13.) Thus, in contrast to the

results for the two shorter horizons, at the 6-month horizon, the evidence is clearly

in favor of a unit root in the forecast error for all four groups. Therefore, we reject

the null of simple unbiasedness because a forecast error with a unit root cannot be

mean zero. In fact, given our finding of a unit root in the forecast errors, rationality

tests regressing the forecast error on a constant and/or other information set

variables would be invalid.

17As expected, exporters failed to reject at the 10 % level in all three tests.

Table 43.6 Unit root tests (6-month forecasts h ¼ 12)

Dyt ¼ a + byt�1 + gt + ∑p
k¼1ytDyt�k + et for h ¼ 12 (43.5)

Lags ADF t test ADF z test Joint test

Log of spot rate (n ¼ 276) 0 �2.828 �9.660 6.820**

Hth difference log spot rate 17 �3.189** �26.210*** 5.500**

Group 1 Banks and brokers

Log of forecast 0 �2.947** �4.254 9.131***

Hth difference log forecast 0 �4.772*** �44.018*** 11.389***

Forecast error

Restricted CI eq. 1 �2.373 �13.577* 2.947

Unrestricted CI eq. 7 �3.285**

Group 2 Insurance and trading companies

Log of forecast 0 �2.933** �4.004 9.531***

Hth difference log forecast 0 �6.007*** �64.923*** 18.044***

Forecast error

Restricted CI eq. 1 �2.114 �11.464* 2.399

Unrestricted CI eq. 1 �2.684*

Group 3 Export industries

Log of forecast 0 �3.246** �4.059 10.704***

Hth difference log forecast 12 �4.961*** �44.532*** 12.331***

Forecast error

Restricted CI eq. 12 �1.515 �5.601 1.466

Unrestricted CI eq. 0 �2.931

Group 4 Life insurance and import companies

Log of forecast 0 �3.133** �4.196 9.549***

Hth difference log forecast 0 �4.795*** �44.062*** 11.537***

Forecast error

Restricted CI eq. 2 �2.508 �14.535** 3.148

Unrestricted CI eq. 1 �2.851*

*Rejection at 10 % level
**Rejection at 5 % level
***Rejection at 1 % level
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43.4.3 Univariate Tests for Unbiasedness

The unbiasedness equation is specified as

�i, t, h ¼ stþh � sei, t, h ¼ ai, h þ ei, t, h, (43.7)

where �i,t,h is the forecast error of individual i, for an h-period-ahead forecast made

at time t. The results are reported in Tables 43.7 and 43.8. For the 1-month horizon,

unbiasedness cannot be rejected at conventional significance levels for any group.

For the 3-month horizon, unbiasedness is rejected only for exporters (at a p-value of
0.03). As we saw in the previous subsection, rationality is rejected for all groups at

the 6-month horizon, due to nonstationary forecast errors.18

In these unbiasedness tests, as well as all others, it is possible that coefficient

estimates for the entire sample are not stable over subsamples. The lower panels of

Tables 43.7 and 43.8 contain results of the test for equality of intercepts in four

equal subperiods, each consisting of approximately 75 biweekly forecasts:

�i, t, h ¼ stþh � sei, t, h ¼ ai, h, 1 þ ai, h, 2 þ ai, h, 3 þ ai, h, 4 þ ei, t, h: (43.8)

18The direction of the bias for exporters is negative; that is, they systematically underestimate the

value of the yen, relative to the dollar. Ito (1990) found the same tendency using only the first two

years of survey data (1985–1987). He characterized this depreciation bias as a type of “wishful

thinking” on the part of exporters.
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For both 1- and 3-month horizons, all four forecaster groups undervalued the yen

in the first and third subperiods. This is understandable, as both these subperiods

were characterized by overall yen appreciation. (See Fig. 43.1.) Evidently, fore-

casters underestimated the degree of appreciation. Exporters were the only group to

undervalue the yen in the last subperiod as well, although that was not one of overall

yen appreciation. This is another perspective on the “wishful thinking” of

exporters.19

The main difference between the two horizons is in the significance of the test

for structural breaks. For the 1-month horizon, the estimates of the individual break

dummies generally do not reach statistical significance, and the test for their

19Ito (1994) conducted a similar analysis for the aggregate of all forecasters, but without an

explicit test for structural breaks.

Table 43.7 Simple unbiasedness tests on individuals (1-month forecasts)

st+ h � sei;t;h ¼ ai,h + ei,t,h (43.7)

h ¼ 2, degrees of freedom ¼ 261

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and

brokers

Insurance and

trading companies

Export

industries

Life insurance and

import companies

ai,h 0.000 0.001 �0.002 0.002

t (NW) 0.115 0.524 �0.809 0.720

p-value 0.909 0.600 0.418 0.472

MH tests H0 : ai,h ¼ aj,h, for all i, j 6¼ i

w2(GMM) 41.643 p-value 0.000

st+ h � sei;t;h ¼ ai,h,1 + ai,h,2 + ai,h,3 + ai,h,4 + ei,t,h (43.8)

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

1985:05:29–1988.03:16

Banks and

brokers

Insurance and

trading companies

Export

industries

Life insurance and

import companies

ai,h,1 �0.007 �0.005 �0.013 �0.003

p-value 0.213 0.353 0.017 0.573

1988:03:30–1991:01:16

ai,h,2 0.009 0.008 0.010 0.010

p-value 0.134 0.164 0.090 0.114

1991:01:29–1993:11:16

ai,h,3 �0.002 �0.001 �0.004 �0.001

p-value 0.598 0.810 0.374 0.757

1993:11:30–1996:10:15

ai,h,4 0.002 0.004 �0.001 0.003

p-value 0.675 0.433 0.814 0.519

Structural break tests H0 : ai,h,1 ¼ ai,h,2 ¼ · · · ¼ ai,h,4
w2 4.245 3.267 8.425 2.946

p-value 0.236 0.352 0.038 0.400

See Appendix 1 for structure of GMM variance-covariance matrix
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equality rejects only for the exporters. Thus, the exporters’ bias was not constant

throughout the sample. In contrast, for the 3-month horizon, the test for no struc-

tural breaks is rejected at the 5 % level for all groups, even though unbiasedness

itself is rejected for the full sample only for exporters. Even setting aside the bias

and variability of exporters’ forecasts, our structural break tests allow us to con-

clude that there is considerably more variation around roughly zero mean forecast

errors at the longer horizon. This probably reflects the additional uncertainty

inherent in longer-term forecasts.20

20This is consistent with the finding of nonstationary forecast errors for all groups at the 6-month

horizon.

Table 43.8 Simple unbiasedness tests on individuals (3-month forecasts)

st+h � sei;t;h ¼ ai,h + ei,t,h (43.7)

h ¼ 6, degrees of freedom ¼ 257

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and

brokers

Insurance and

trading companies

Export

industries

Life insurance and

import companies

ai,h �0.01 �0.008 �0.019 �0.01

t (NW) �1.151 �0.929 �2.165 �1.121

p-value 0.25 0.353 0.03 0.262

MH tests H0 : ai,h ¼ aj,h, for all i, j 6¼ i

w2(GMM) 40.16 p-value 0.000

st+h � sei;t;h ¼ ai,h,1 + ai,h,2 + ai,h,3 + ai,h,4 + ei,t,h (43.8)

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

1985:05:29–1988.02:24

Banks and

brokers

Insurance and

trading companies

Export

industries

Life insurance and

import companies

ai,h,1 �0.040 �0.039 �0.057 �0.039

p-value 0.005 0.007 0.000 0.008

1988:03:16–1990:12:11

ai,h,2 0.023 0.025 0.022 0.021

p-value 0.169 0.111 0.187 0.229

1990:12:25–1993:09:28

ai,h,3 �0.020 �0.018 �0.029 �0.020

p-value 0.064 0.125 0.023 0.094

1993:10:12–1996:0730

ai,h,4 0.000 0.001 �0.013 0.001

p-value 0.994 0.941 0.466 0.970

Structural break test H0 : ai,h,1 ¼ ai,h,2 ¼ · · · ¼ ai,h,4
w2 9.319 9.925 13.291 7.987

p-value 0.025 0.019 0.004 0.046

See Appendix 1 for structure of GMM variance-covariance matrix
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43.4.4 Unbiasedness Tests Using Error Correction Models

As mentioned at the beginning of the previous subsection, the Error Correction

Model provides an alternate specification for representing the relationship between

cointegrated variables:

stþh � st ¼ ai, h st � gi, hs
e
i, t�h, h

� �
þ bi, h sei, t, h � sei, t�h, h

� �

þ di lags of stþh � stð Þ þ �i lags of sei, t, h � sei, t�h, h

� �
þ ei, t, h

(43.9)

According to this specification of the ECM, the change in the spot rate is

a function of the change in the forecast, interpreted as a short-run effect, and the

current forecast error, interpreted as a long-run adjustment to past disequilibria. ai,h,
the coefficient of the error correction term, represents the fraction of the forecast

error observed at t-h that is corrected by time t. A negative coefficient indicates

a stabilizing adjustment of expectations. This formulation of the ECM has the

advantage that the misspecification (due to omitted variable bias) of the regression

of the differenced future spot rate on the differenced current forecast can be gauged

by the statistical significance of the error correction term.21

The regressors include the smallest number of lagged dependent variables

required such that we do not reject the hypothesis that the residuals are white

noise. We impose gi,h ¼ 1 when “restricted” cointegration of st+ h and sei;t;h is not

rejected. Recall that 1- and 3-month forecast errors were found to be stationary, so it

was for these two horizons that estimation of the simple unbiasedness equation was

possible. Although it would be valid to estimate the ECM at the 6-month horizon

using the (unrestricted) stationary cointegrating residual (i.e., for all groups but

exporters), we elect not to, because the nonstationarity of the forecast error itself

implies a failure of the unbiasedness restrictions.22

Then, as first asserted by Hakkio and Rush (1989), the unbiasedness restriction is

represented by the joint hypothesis that� ai,h ¼ bi,h ¼ 1 and all d and � coefficients
equal zero.23 (The hypothesized coefficient on the error correction term of �1

21Zacharatos and Sutcliffe (2002) note that the inclusion of the contemporaneous spot forecast

(in their paper, the forward rate) as a regressor assumes that the latter is weakly exogenous; that is,

deviations from unbiasedness are corrected only by movements in the realized spot rate. These

authors prefer a bivariate ECM specification, in which the change in the future spot rate and the

change in the contemporaneous forecast are functions of an error correction term and lags of the

dependent variables. However, Zivot (2000) points out that if the spot rate and forecast are

contemporaneously correlated, then our single-equation specification does not make any assump-

tions about the weak exogeneity of the forecast.
22Our empirical specification of the ECM also includes an intercept. This will help us to determine

whether there are structural breaks in the ECM.
23Since we include an intercept, we also test the restriction that the intercept equals zero – both

individually and as part of the joint unbiasedness hypothesis.
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reflects the unbiasedness requirement that the entire forecast error is corrected

within the forecast horizon h.) We also test unbiasedness without including lagged

dependent variables but incorporating robust standard errors which allow for

generalized serial correlation and heteroscedasticity. This allows comparison with

the univariate and bivariate unbiasedness equations.

First, we compare the ECM results to the joint unbiasedness restrictions in the

change regressions, using robust standard errors in both cases. Although the esti-

mated coefficient of the error correction term is generally negative, indicating a stable

error correction mechanism,24 the coefficient does not reach a 5 % significance level

in any of the regressions. Thus, there is little evidence that the error correction term

plays a significant role in the long-run dynamics of exchange rate changes. The ECM

test results are nearly identical to the joint unbiasedness test results in Table 43.9. In

both specifications, unbiasedness is rejected for three of four groups at the 1-month

horizon and not rejected for three of four groups at the 3-month horizon. However,

even though the EC term is not (individually) significant in the ECMs, it does provide

explanatory power, relative to the joint unbiasedness specification. The R2s in the

ECM, while never more than 0.044, still are greater than in the joint unbiasedness

specification, typically by factors of three to five (Tables 43.10, 43.11, and 43.12).

Second, we compare the ECM results to the univariate simple unbiasedness

regressions, again using robust standard errors in both cases. The ECM unbiased-

ness restrictions are rejected at a 5 % level more often than in the simple unbiased-

ness tests. Whereas the only rejection of simple unbiasedness at the shorter two

horizons is for exporters at the 3-month horizon, the ECM restrictions are rejected

for three out of four groups at the 1-month horizon as well as for exporters at the

3-month horizon.

While it is uncontroversial that, for testing unbiasedness, the ECM is preferred to

the conventional bivariate specification in returns, it is not at all clear that the ECM

is preferred to the simple univariate test of unbiasedness. Can the more decisive

rejections of unbiasedness using the ECM versus the simple univariate specification

be reconciled?25

One way to proceed is to determine whether the unbiasedness restrictions

imposed on the ECM are necessary as well as sufficient, as is the case for the

simple unbiasedness test, or just sufficient, as is the case for the bivariate unbiased-

ness test. Thus, it is possible that the stronger rejections of unbiasedness in the ECM

specification are due to the implicit test of weak efficiency with respect to the

current forecast. That is, the Holden and Peel (1990) critique applies to the Hakkio

and Rush (1989) test in Eq. 43.9, as well as the joint unbiasedness test in the returns

regression. Setting bi,h, the coefficient of the contemporaneous differenced forecast,

equal to one produces an ECM in which the dependent variable is the forecast error:

24The only exception is for exporters at the 1-month horizon.
25The standard errors in the univariate regression are about the same as those for the ECM.

(By definition, of course, the R2s for the univariate regression equal zero.)
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Table 43.9 Error correction models (1-month forecasts)

Group 1 Banks and brokers

st+h � st ¼ ci + ai(st � gisei;t�h;h) + bi(sei;t;h � sei;t�h;h) + ei,h (43.9)

With robust standard errors (R2¼ 0.0195) Coeff w2(n) n p-value

Constant �0.002 0.377 1 0.539

ai,h ¼ 0 �0.465 2.884 1 0.089

ai,h ¼ �1 �0.465 3.813 1 0.051

bi,h ¼ 1 0.491 3.847 1 0.050

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 3.910 3 0.271

With whitened residuals (R2 ¼ 0.605) Coeff F(n,d f) n p-value

Constant �0.001 0.238 1 0.627

ai,h ¼ �1 �0.025 14.696 1 0.000

bi,h ¼ 1 0.453 4.895 1 0.028

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 6.790 3 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1

and all lags of realizations and

forecasts ¼ 0

51.115 12 0.000

st+h � sei;t;h ¼ di + (1 + ai,h)(st � sei;t�h;h) (43.10)

bi,h ¼ 1 imposed, robust standard errors Coeff w2(n) n p-value

Constant 0.002 0.293 1 0.582

ai,h ¼ �1 �0.991 0.015 1 0.903

Constant ¼ 0 and ai,h ¼ �1 0.294 2 0.863

Group 2 Insurance and trading companies

st+h � st ¼ ci + ai(st � gisei;t�h;h) + bi(sei;t;h � sei;t�h;h) + ei,h (43.9)

With robust standard errors (R2 ¼ 0.009) Coeff w2(n) n p-value

Constant �0.003 1.168 1 0.280

ai,h ¼ 0 �0.262 1.111 1 0.292

ai,h ¼ �1 �0.262 8.807 1 0.003

bi,h ¼ 1 0.278 10.703 1 0.001

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 10.965 3 0.012

With whitened residuals (R2 ¼ 0.596) Coeff F(n,d f) n p-value

Constant �0.002 0.563 1 0.454

ai,h ¼ �1 �0.036 13.614 1 0.000

bi,h ¼ 1 0.207 12.639 1 0.001

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 6.792 3 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1

and all lags of realizations and

forecasts ¼ 0

54.557 11 0.000

st+h � sei;t;h ¼ di + (1 + ai,h)(st � sei;t�h;h) (43.10)

bi,h ¼ 1 imposed, robust standard errors Coeff w2(n) n p-value

Constant 0.003 0.787 1 0.3751

ai,h ¼ �1 �1.026 0.113 1 0.7368

Constant ¼ 0 and ai,h ¼ �1 1.052 2 0.591
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Table 43.10 Error correction models (1-month forecasts)

Group 3 Export industries

st+h � st ¼ ci + ai(st � gisei;t�h;h) + bi(sei;t;h � sei;t�h;h) + ei,h (43.9)

With robust standard errors (R2 ¼ 0.009) Coeff w2(n) n p-value

Constant �0.006 4.202 1 0.040

ai,h ¼ 0 0.305 1.335 1 0.248

ai,h ¼ �1 0.305 24.402 1 0.000

bi,h ¼ 1 �0.256 20.516 1 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 27.207 3 0.000

With whitened residuals (R2 ¼ 0.602) Coeff F(n, d f) n p-value

Constant �0.002 0.632 1 0.428

ai,h ¼ �1 0.107 18.043 1 0.000

bi,h ¼ 1 �0.055 17.987 1 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 8.455 3 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1

and all lags of realizations and

forecasts ¼ 0

55.054 10 0.000

st+h � sei;t;h ¼ di + (1 + ai,h)(st � sei;t�h;h) (43.10)

bi,h ¼ 1 imposed, robust standard errors Coeff w2(n) n p-value

Constant �0.001 0.082 1 0.7749

ai,h ¼ �1 �0.887 2.321 1 0.1277

Constant ¼ 0 and ai,h ¼ �1 2.578 2 0.276

Group 4 Life Insurance and import companies

st+h � st ¼ ci + ai(st � gisei;t�h;h) + bi(sei;t;h � sei;t�h;h) + ei,h (43.9)

With robust standard errors (R2 ¼ 0.003) Coeff w2(n) n p-value

Constant �0.004 1.734 1 0.188

ai,h ¼ 0 �0.066 0.083 1 0.773

ai,h ¼ �1 �0.066 16.501 1 0.000

bi,h ¼ 1 0.112 16.086 1 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 17.071 3 0.001

With whitened residuals (R2 ¼ 0.607) Coeff F(n, d f) n p-value

Constant �0.002 0.392 1 0.532

ai,h ¼ �1 �0.026 20.268 1 0.000

bi,h ¼ 1 0.226 12.020 1 0.001

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 10.794 3 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1

and all lags of realizations and

forecasts ¼ 0

57.702 11 0.000

st+h � sei;t;h ¼ di + (1 + ai,h)(st � sei;t�h;h) (43.10)

bi,h ¼ 1 imposed, robust standard errors Coeff w2(n) n p-value

Constant 0.003 1.254 1 0.2629

ai,h ¼ �1 �0.949 0.481 1 0.4879

Constant ¼ 0 and ai,h ¼ �1 1.628 2 0.443
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Table 43.11 Error correction models (3-month forecasts)

Group 1 Banks and brokers

st+h � st ¼ ci + ai(st � gisei;t�h;h) + bi(sei;t;h � sei;t�h;h) + ei,h (43.9)

Tests with robust standard errors (R2 ¼ 0.036) Coeff w2(n) n p-value

Constant �0.010 1.306 1 0.253

ai,h ¼ 0 �0.377 0.590 1 0.443

ai,h ¼ �1 �0.377 1.604 1 0.205

bi,h ¼ 1 0.501 1.268 1 0.260

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 2.348 3 0.503

Tests with whitened residuals (R2 ¼ 0.863) Coeff F(n, d f) n p-value

Constant �0.008 4.173 1 0.044

ai,h ¼ �1 0.233 56.755 1 0.000

bi,h ¼ 1 �0.178 51.113 1 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 28.974 3 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1

and all lags of realizations and forecasts ¼ 0

121.851 14 0.000

st+h � sei;t;h ¼ di + (1 + ai,h)(st � sei;t�h;h) (43.10)

bi,h ¼ 1 imposed, robust standard errors Coeff w2(n) n p-value

Constant �0.006 0.556 1 0.456

ai,h ¼ �1 �0.889 0.896 1 0.344

Constant ¼ 0 and ai,h ¼ �1 1.330 2 0.514

Group 2 Insurance and trading companies

st+h � st ¼ ci + ai(st � gisei;t�h;h) + bi(sei;t;h � sei;t�h;h) + ei,h (43.9)

Tests with robust standard errors (R2 ¼ 0.044) Coeff w2(n) n p-value

Constant �0.008 0.874 1 0.350

ai,h ¼ 0 �0.556 2.061 1 0.151

ai,h ¼ �1 �0.556 1.310 1 0.252

bi,h ¼ 1 0.663 0.965 1 0.326

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 1.833 3 0.608

Tests with whitened residuals (R2 ¼ 0.844) Coeff F(n, d f) n p-value

Constant �0.005 1.400 1 0.239

ai,h ¼ �1 0.080 31.425 1 0.000

bi,h ¼ 1 �0.167 40.346 1 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 23.551 3 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1

and all lags of realizations and forecasts ¼ 0

148.338 10 0.000

st+h � sei;t;h ¼ di + (1 + ai,h)(st � sei;t�h;h) (43.10)

bi,h ¼ 1 imposed, robust standard errors Coeff w2(n) n p-value

Constant �0.005 0.291 1 0.589

ai,h ¼ �1 �0.897 0.773 1 0.379

Constant ¼ 0 and ai,h ¼ �1 0.945 2 0.623
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Table 43.12 Error correction models (3-month forecasts)

Group 3 Export industries

st+h � si,t,h ¼ ci + ai(st � gisei;t�h;h) + bi(sei;t;h � sei;t�h;h) + ei,h
Tests with robust standard errors (R2 ¼ 0.026) Coeff w2(n) n p-value

Constant �0.013 2.303 0 0.129

ai,h ¼ 0 �0.253 0.393 1 0.531

ai,h ¼ �1 �0.253 3.422 1 0.064

bi,h ¼ 1 0.411 2.102 1 0.147

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 7.663 3 0.054

Tests with whitened residuals (R2 ¼ 0.856) Coeff F(n, d f) n p-value

Constant �0.003 0.840 1 0.361

ai,h ¼ �1 �0.006 29.512 1 0.000

bi,h ¼ 1 �0.205 40.582 1 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 16.290 3 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1

and all lags of realizations and forecasts ¼ 0

182.912 10 0.000

st+h � sei;t;h ¼ di + (1 + ai,h)(st � sei;t�h;h) (43.10)

bi,h ¼ 1 imposed, robust standard errors Coeff w2(n) n p-value

Constant �0.012 1.971 1 0.160

ai,h ¼ �1 �0.775 3.791 1 0.052

Constant ¼ 0 and ai,h ¼ �1 6.337 2 0.042

Group 4 Life insurance and import companies

st+h � si,t,h ¼ ci + ai(st � gisei;t�h;h) + bi(sei;t;h � sei;t�h;h) + ei,h
Tests with robust standard errors (R2 ¼ 0.038) Coeff w2(n) n p-value

Constant �0.009 0.993 1 0.319

ai,h ¼ 0 �0.478 1.250 1 0.264

ai,h ¼ �1 �0.478 1.488 1 0.223

bi,h ¼ 1 0.604 0.919 1 0.338

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 2.451 3 0.484

Tests with whitened residuals (R2 ¼ 0.845) Coeff F(n, d f) n p-value

Constant �0.003 0.510 1 0.477

ai,h ¼ �1 0.050 32.000 1 0.000

bi,h ¼ 1 0.062 32.469 1 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1 21.673 3 0.000

Constant ¼ 0 and ai,h ¼ �1 and bi,h ¼ 1

and all lags of realizations and forecasts ¼ 0

169.286 9 0.000

st+h � sei;t;h ¼ di + (1 + ai,h)(st � sei;t�h;h) (43.10)

bi,h ¼ 1 imposed, robust standard errors Coeff w2(n) n p-value

Constant �0.006 0.455 1 0.500

ai,h ¼ �1 �0.865 1.405 1 0.236

Constant ¼ 0 and ai,h ¼ �1 1.726 2 0.422
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st � sei, t, h ¼ 1þ ai, h
� �

st � sei, t�h, h

� �
(43.10)

Thus, in the ECM the necessary and sufficient condition for unbiasedness

is that ai,h equals �1.26 Table 43.9 contains tests of this conjecture. Here the

joint hypothesis that the intercept equals zero and ai,h equals minus one produces

exactly the same results as in the simple unbiasedness tests.27 It is interesting that,

even when we can decouple the test for weak efficiency with respect to the current

forecast from the unbiasedness test, the test of unbiasedness using this

ECM specification still requires weak efficiency with respect to the current

forecast error.28

43.4.5 Explicit Tests of Weak Efficiency

The literature on rational expectations exhibits even less consensus as to the

definition of efficiency than it does for unbiasedness. In general, an efficient

forecast incorporates all available information – private as well as public. It follows

that there should be no relationship between forecast error and any information

variables known to the forecaster at the time of the forecast. Weak efficiency

commonly denotes the orthogonality of the forecast error with respect to functions

of the target and prediction. For example, there is no contemporaneous relationship

between forecast and forecast error which could be exploited to reduce the error.

Strong efficiency denotes orthogonality with respect to the remaining variables

in the information set. Below we perform two types of weak efficiency tests.

In the first type, we regress each group’s forecast error on three sets of weak

efficiency variables29:

26Since we estimate the restricted ECM with an intercept, unbiasedness also requires the intercept

to be equal to zero.
27Since the intercept in Eq. 43.10 is not significant in any regression, the simple hypothesis that ai,h
equals one also fares the same as the simple unbiasedness tests.
28For purposes of comparison with both the bivariate joint and simple unbiasedness restrictions,

we have used the ECM results using the robust standard errors. In all cases testing the ECM

restrictions using F-statistics based on whitened residuals produces rejections of all restrictions,

simple and joint, except a zero intercept. Hakkio and Rush (1989) found similarly strong rejections

of Eq. 43.9, where the forecast was the forward rate.
29Notice that the first two sets of weak efficiency variables include the mean forecast, rather than

the individual group forecast. Our intention is to allow a given group to incorporate information

from other groups’ forecasts via the prior mean forecast. This requires an extra lag in the

information set variables, relative to a contemporaneously available variable such as the realized

exchange rate depreciation.
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1. Single and cumulative lags of the mean forecast error (lagged one period):

stþh � sei, t, h ¼ ai, h þ
Xhþ7

k¼hþ1

bi, tþh�k stþh�k � sem, tþh�k, h

� �
þ ei, t, h (43.11)

2. Single and cumulative lags of mean expected depreciation (lagged one period):

stþh � sei, t, h ¼ ai, h þ
Xhþ7

k¼hþ1

bi, tþh�k sem, tþh�k, h � st�k

� �
þ ei, t, h (43.12)

3. Single and cumulative lags of actual depreciation:

stþh � sei, t, h ¼ ai, h þ
Xhþ6

k¼h

bi, tþh�k stþh�k � st�kð Þ þ ei, t, h (43.13)

For each group and forecast horizon, we regress the forecast error on the

most recent seven lags of the information set variable, both singly and

cumulatively. We use a Wald test of the null hypothesis ai,h ¼ bi,t+ h�k ¼ 0 and

report chi-square test statistics, with degrees of freedom equal to the number of

regressors excluding the intercept. If we were to perform only simple regressions

(i.e., on each lag individually), estimates of coefficients and tests of significance

could be biased toward rejection due to the omission of relevant variables. If we

were to perform only multivariate regressions, tests for joint significance could be

biased toward nonrejection due to the inclusion of irrelevant variables. It is also

possible that joint tests are significant but individual tests are not. This will be the

case when the linear combination of (relatively uncorrelated) regressors spans the

space of the dependent variable, but individual regressors do not.

In the only reported efficiency tests on JCIF data, Ito (1990) separately regressed

the forecast error (average, group, and individual firm) on a single lagged forecast

error, lagged forward premium, and lagged actual change. He found that, for the

51 biweekly forecasts between May 1985 and June 1987, rejections increased from

a relative few at the 1- or 3-month horizons to virtual unanimity at the 6-month

horizon. When he added a second lagged term for actual depreciation, rejections

increased “dramatically” for all horizons.

The second type of weak efficiency tests uses the Breusch (1978)-Godfrey

(1978) LM test for the null of no serial correlation of order k ¼ h or greater, up

to order k ¼ h + 6, in the residuals of the forecast error regression, Eq. 43.11.

Specifically, we estimate

êi, t, h ¼ ai, h þ
Xh�1

k¼1

bi, k stþh�k � sei, t�k, h

� �
þ
Xhþ6

l¼h

fi, lêi, t�l, h þ �i, t, h (43.14)
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and test the null hypothesis H0 : bi,h ¼ . . . ¼ bi,h+ 6 ¼ 0 for h ¼ 2,6.30,31 Results for

all efficiency tests for the 1- and 3-month horizons are presented in Tables 43.13,

43.14, 43.15, 43.16, 43.17, 43.18, 43.19, and 43.20. (Recall that the nonstationarity

of the forecast errors at the 6-month horizon is an implicit rejection of weak

efficiency.) For each group, horizon, and variable, there are seven individual

tests, i.e., on a single lag, and six joint tests, i.e., on multiple lags. These 13 tests

are multiplied by four groups times two horizons times three weak efficiency

variables for a total of 312 efficiency tests.

Using approximately nine more years of data than Ito (1990), we find many

rejections. In some cases, nearly all single lag tests are rejected, yet few, if any, joint

tests are rejected. (See, e.g., expected depreciation at the 3-month horizon.) In other

cases, nearly all joint tests are rejected, but few individual tests. (See, e.g., actual

depreciation at the 3-month horizon.) Remarkably, all but one LM test for serial

correlation at a specified lag produces a rejection at less than a 10 % level, with

most at less than a 5 % level. Thus, it appears that the generality of the alternative

hypothesis in the LM test permits it to reject at a much greater rate than the

conventional weak efficiency tests, in which the variance-covariance matrix incor-

porates the Newey-West-Bartlett correction for heteroscedasticity and serial corre-

lation. Finally, unlike Ito (1990), we find no strong pattern between horizon length

and number of rejections.

43.5 Micro-homogeneity Tests

In addition to testing the rationality hypotheses at the individual level, we are

interested in the degree of heterogeneity of coefficients across forecasters. Demon-

strating that individual forecasters differ systematically in their forecasts (and

forecast-generating processes) has implications for the market microstructure

research program. As Frankel and Froot (1990, p. 182) noted, “the tremendous

volume of foreign exchange trading is another piece of evidence that reinforces

the idea of heterogeneous expectations, since it takes differences among market

participants to explain why they trade.”

Micro-homogeneity should have implications for rationality as well. Intuitively,

if all forecasters pass rationality tests, then their corresponding regression coeffi-

cients should be equal. However, the converse is not necessarily true: if all fore-

casters have equal regression coefficients, they will not satisfy rationality

conditions if they are all biased or inefficient to the same degree with respect to

30This is a general test, not only because it allows for an alternative hypothesis of higher-order

serial correlation of specified order but also because it allows for serial correlation to be generated

by AR, MA, or ARMA processes.
31We use the F-statistic because the w2 test statistics tend to over-reject, while the F-tests have

more appropriate significance levels (see Kiviet 1987).
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the same variables. For the univariate unbiasedness regressions, the null of micro-

homogeneity is given by H0: aih ¼ ajh, for all i, j 6¼ i. Before testing for homoge-

neous intercepts in Eq. 43.7, we must specify the form for our GMM system

variance-covariance matrix. Keane and Runkle (1990) first accounted for cross-

sectional correlation (in price level forecasts) using a GMM estimator on pooled

data. Bonham and Cohen (2001) tested the pooling specification by replacing

Zellner’s (1962) SUR variance-covariance matrix with a GMM counterpart

that incorporates the Newey-West single-equation corrections (used in our

individual equation tests above) plus allowances for corresponding

cross-covariances, both contemporaneous and lagged. Bonham and Cohen (2001)

Table 43.13 Weak efficiency tests (1-month forecasts)

st+h � sei;t;h ¼ ai,h + ∑hþ6
p¼hbi,t+h�p(st+h�p �sem;tþh�p;h) + ei,t,h for h ¼ 2 (43.11)

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and brokers

Insurance and trading

companies Export industries

Life insurance and

import companies

Lags w2 p-value w2 p-value w2 p-value w2 p-value

Single

2 0.132 0.895 0.139 0.709 1.871 0.171 0.334 0.563

3 �0.914 0.361 1.971 0.160 0.027 0.869 0.186 0.667

4 0.160 0.689 0.006 0.938 1.634 0.201 0.714 0.398

5 0.450 0.502 0.050 0.823 1.749 0.186 1.180 0.277

6 0.046 0.831 0.104 0.747 0.686 0.408 0.188 0.665

7 0.002 0.967 0.282 0.595 0.069 0.793 0.001 0.970

8 0.091 0.763 0.436 0.509 0.022 0.883 0.300 0.584

Cum.

3 0.765 0.682 1.778 0.411 1.746 0.418 0.585 0.746

4 4.626 0.201 3.463 0.326 8.763 0.033 5.349 0.148

5 4.747 0.314 4.382 0.357 7.680 0.104 5.081 0.279

6 5.501 0.358 5.592 0.348 7.652 0.176 5.768 0.329

7 6.252 0.396 6.065 0.416 8.879 0.180 6.677 0.352

8 5.927 0.548 5.357 0.617 8.390 0.299 6.087 0.530

Selected micro-homogeneity tests

H0 : ai,h ¼ aj,h, bi,t+h�p ¼ bj,t+h�p for all i, j 6¼ i

w2(GMM) p-value n

Single

2 122.522 0.000 6

8 43.338 0.000 6

Cum.

3 136.830 0.000 9

8 201.935 0.000 24

See Appendix 1 for structure of GMM VCV matrix incorporating Newey-West correction for

serial correlation w2 statistics for mean forecast error regressions (p-value underneath)
Degrees of freedom (n) represent number of regressors, excluding intercept (n ¼ 1 for single lag,

n ¼ max. lag �2 for cumulative lags)
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constructed a Wald statistic for testing the micro-homogeneity of individual

forecaster regression coefficients in a system.32

Keane and Runkle (1990) provided some empirical support for their modeling of

cross-sectional correlations, noting that the average covariance between a pair of

32Elliott and Ito (1999) used single-equation estimation that incorporated a White correction for

heteroscedasticity and a Newey-West correction for serial correlation. (See the discussion below

of Ito’s tests of forecaster heterogeneity.)

Table 43.14 Weak efficiency tests (1-month forecasts)

st+h � sei;t;h ¼ ai,h + ∑hþ6
p¼hbi,t+h�p(s

e
m;tþh�p;h�st�p) + ei,t,h for h ¼ 2 (43.12)

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and brokers

Insurance and

trading companies

Export

industries

Life insurance and

import companies

Lags w2 p-value w2 p-value w2 p-value w2 p-value

Single

2 �2.325 0.020 5.641 0.018 3.658 0.056 7.011 0.008

3 4.482 0.106 3.519 0.061 3.379 0.066 5.877 0.015

4 3.162 0.075 2.580 0.108 2.805 0.094 4.911 0.027

5 3.956 0.047 2.993 0.084 3.102 0.078 7.467 0.006

6 6.368 0.012 4.830 0.028 5.952 0.015 9.766 0.002

7 8.769 0.003 6.786 0.009 7.755 0.005 12.502 0.000

8 5.451 0.020 4.114 0.043 4.417 0.036 7.564 0.006

Cum.

3 5.592 0.061 6.138 0.046 4.116 0.128 7.508 0.023

4 5.638 0.131 5.896 0.117 4.283 0.232 7.888 0.048

5 5.189 0.268 4.964 0.291 3.784 0.436 8.009 0.091

6 6.025 0.304 5.068 0.408 4.847 0.435 8.401 0.136

7 7.044 0.317 5.746 0.452 5.940 0.430 9.434 0.151

8 10.093 0.183 8.494 0.291 7.919 0.340 12.530 0.084

Selected micro-homogeneity tests

H0 : ai,h ¼ aj,h, bi,t+h�p ¼ bj,t+h�p for all i, j 6¼ i

w2(GMM) p-value n

Single

2 40.462 0.000 6

8 30.739 0.000 6

Cum.

3 42.047 0.000 6

8 46.124 0.004 24

See Appendix 1 for structure of GMM VCV matrix incorporating Newey-West correction

for serial correlation w2 statistics for mean forecast error regressions (p-value underneath)
Degrees of freedom (n) represent number of regressors, excluding intercept (n ¼ 1 for single lag,

n ¼ max. lag �2 for cumulative lags)
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forecasters is 58 % of the average forecast variance. In contrast, we use Pesaran’s

(2004) CD (cross-sectional dependence) test to check for lagged as well as

contemporaneous correlations of forecast errors among pairs of forecasters:

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2T

N N � 1ð Þ

s XN�1

i¼1

XN
j¼iþ1

r̂ij, (43.15)

where T is the number of time periods, N¼ 4 is the number of individual forecasters,

and r̂ij is the sample correlation coefficient between forecasters i and j, i 6¼ j.

Table 43.15 Weak efficiency tests (1-month forecasts)

st+h � sei;t;h ¼ ai,h + ∑hþ6
p¼hbi,t+h � p(st+h�p � st�p) + ei,t,h for h ¼ 2 (43.13)

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and brokers

Insurance and

trading companies

Export

industries

Life insurance and

import companies

Lags w2 p-value w2 p-value w2 p-value w2 p-value

Single

2 �0.328 0.743 0.639 0.424 1.249 0.264 0.023 0.879

3 1.621 0.203 3.060 0.080 0.000 0.993 0.550 0.458

4 0.002 0.964 0.335 0.562 0.819 0.366 0.146 0.702

5 0.086 0.770 0.042 0.837 1.001 0.317 0.344 0.557

6 0.165 0.685 0.916 0.339 0.029 0.864 0.095 0.758

7 0.850 0.357 1.861 0.172 0.329 0.566 1.152 0.283

8 0.597 0.440 1.088 0.297 0.317 0.574 1.280 0.258

Cum.

3 1.978 0.372 3.169 0.205 1.940 0.379 1.132 0.568

4 3.304 0.347 3.501 0.321 5.567 0.135 3.318 0.345

5 3.781 0.436 4.248 0.373 5.806 0.214 3.598 0.463

6 3.651 0.601 4.646 0.461 5.756 0.331 3.819 0.576

7 4.493 0.610 5.609 0.468 6.608 0.359 5.040 0.539

8 5.619 0.585 6.907 0.439 7.907 0.341 6.521 0.480

Selected micro-homogeneity tests

H0 : ai,h ¼ aj,h, bi,t+h�p ¼ bj,t+h�p for all i, j 6¼ i

w2(GMM) p-value n

Single

2 150.698 0.000 6

8 45.652 0.000 6

Cum.

3 161.950 0.000 9

8 214.970 0.000 24

See Appendix 1 for structure of GMM VCV matrix incorporating Newey-West correction

for serial correlation

w2 statistics for mean forecast error regressions (p-value underneath)
Degrees of freedom (n) represent number of regressors, excluding intercept (n ¼ 1 for single lag,

n ¼ max. lag �2 for cumulative lags)

43 Rationality and Heterogeneity of Survey Forecasts 1233



Under the null hypothesis of no cross-correlation, CD�a N 0; 1ð Þ.33 See Table 43.21
for CD test results. We tested for cross-correlation in forecast errors from lag zero up

to lags four and eight for the 1 and 3-month forecast horizons, respectively.

(The nonstationarity of the 6-month forecast error precludes using the CD test at

that horizon.) At the 1-month horizon, cross-correlations from lags zero to four are

each significant at the 5 % level. Since rational forecasts allow for (individual)

serial correlation of forecast errors at lags of h-1 or less, and h ¼ 2 for the 1-month

horizon, the cross-correlations at lags two through four indicate violations of weak

efficiency. Similarly, at the 3-month horizon, where h-1 ¼ 5, there is significant

cross-correlation at lag six.34 However, it should be noted that, for many

lags shorter than h, one cannot reject the null hypothesis that there are no

cross-correlated forecast errors.

33Unlike Breusch and Pagan’s (1980) LM test for cross-sectional dependence, Pesaran’s (2004)

CD test is robust to multiple breaks in slope coefficients and error variances, as long as the

unconditional means of the variables are stationary and the residuals are symmetrically distributed.
34There are three instances of statistically significant negative test statistics for lags greater than

h-1, none for lags less than or equal to h-1. Thus, some industries produce relatively high forecast

errors several periods after others produce relative low forecast errors, and this information is not

fully incorporated in some current forecasts.

Table 43.16 LM test for serial correlation (1-month forecasts)

H0 : bi,h ¼ . . . ¼ bi,h+6 ¼ 0, for h ¼ 2

in êi, t, h ¼ ai, h þ
Xh�1

k¼1
bi, k stþh�k � sei, t�k, h

� �
þ
Xhþ6

l¼h
fi, l ê i, t�l, h þ �i, t, h,

where e is generated from

st+h � sei;t;h ¼ ai,h + ∑ h�1
k¼1bi,k(st+h�k � sei;t�k;h) + ei,t,h

Cum. lags (k) 2 3 4 5 6 7 8

n � k 219 205 192 179 166 153 144

i ¼ 1

Banks and brokers

F(k, n � k) 29.415 18.339 14.264 11.180 9.699 7.922 6.640

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

i ¼ 2

Insurance and trading companies

F(k, n � k) 30.952 19.506 15.372 11.661 9.695 8.120 7.050

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

i ¼ 3

Export industries

F(k, n � k) 32.387 20.691 16.053 12.951 10.628 9.418 7.520

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

i ¼ 4

Life insurance and import companies

F(k, n � k) 29.694 18.606 14.596 11.093 9.586 9.154 7.937

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Nevertheless, in our micro-homogeneity tests, we follow Bonham and Cohen

(2001), allowing for an MA(h-1) residual process, both individually and among

pairs of forecast errors. (See the Appendix 1 for details.) By more accurately

describing the panel’s residual variance-covariance structure, we expect this sys-

tems approach to improve the consistency of our estimates. Consider first the four

bivariate regressions in Tables 43.1, 43.2, and 43.3. Recall that we rejected the joint

hypothesis (ai,h, bi,h) ¼ (0, 1) at the 5 % significance level for all groups at the

1-month horizon (indicating the possible role of inefficiency with respect to the

Table 43.17 Weak efficiency tests (3-month forecasts)

st+h � sei;t;h ¼ ai,h + ∑hþ6
p¼hbi,t+h�p(st+h�p � sem;tþh�p;h) + ei,t,h for h ¼ 6 (43.11)

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and

brokers

Insurance and trading

companies Export industries

Life insurance and

import companies

Lags w2 p-value w2 p-value w2 p-value w2 p-value

Single

6 0.667 0.414 0.954 0.329 4.493 0.034 1.719 0.190

7 0.052 0.820 0.071 0.789 1.434 0.231 0.268 0.605

8 0.006 0.940 0.010 0.921 0.382 0.537 0.001 0.976

9 0.055 0.814 0.043 0.836 0.140 0.708 0.060 0.806

10 0.264 0.607 0.278 0.598 0.001 0.980 0.432 0.511

11 0.299 0.585 0.381 0.537 0.020 0.888 0.598 0.439

12 0.172 0.678 0.336 0.562 0.011 0.918 0.633 0.426

Cum.

7 8.966 0.011 11.915 0.003 19.663 0.000 12.350 0.002

8 12.288 0.006 16.263 0.001 23.290 0.000 15.146 0.002

9 11.496 0.022 15.528 0.004 22.417 0.000 14.778 0.005

10 8.382 0.136 12.136 0.033 16.839 0.005 12.014 0.035

11 11.596 0.072 18.128 0.006 23.782 0.001 15.330 0.032

12 11.527 0.117 15.983 0.025 21.626 0.003 13.038 0.071

Selected micro-homogeneity tests

H0 : ai,h ¼ aj,h, bi,t+h�p ¼ bj,t+h�p for all i, j 6¼ i

w2(GMM) p-value n

Single

6 188.738 0.000 6

12 63.364 0.000 6

Cum.

7 217.574 0.000 9

12 229.567 0.000 24

See Appendix 1 for structure of GMM VCV matrix incorporating Newey-West correction

for serial correlation

w2 statistics for mean forecast error regressions (p-value underneath)
Degrees of freedom (n) represent number of regressors, excluding intercept

(n ¼ 1 for single lag, n ¼ max. lag �2 for cumulative lags)
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current forecast), but only for the exporters at the 3- and 6-month horizons.

However, there are no rejections of micro-homogeneity for any horizon.35

The micro-homogeneity test results are very different for both the 1- and 3-month

systems of univariate unbiasedness regressions in Tables 43.7 and 43.8. (Recall that

35The nonrejection of micro-homogeneity in bivariate regressions does not, however, mean that one

can avoid aggregation bias by using the mean forecast. Even if the bivariate regressions were

correctly interpreted as joint tests of unbiasedness and weak efficiency with respect to the current

forecast, and even if the regressions had sufficient power to reject a false null, the micro-homogeneity

tests would be subject to additional econometric problems. According to the Figlewski-Wachtel

(1983) critique, successfully passing a pretest for micro-homogeneity does not ensure that estimated

coefficients from such consensus regressions will be consistent. See Sect. 43.2.1.

Table 43.18 Weak efficiency tests (3-month forecasts)

st+h � sei;t;h ¼ ai,h + ∑hþ6
p¼hbi,t+h�p(s

e
m,t+h�p,h � st�p) + ei,t,h for h ¼ 6 (43.12)

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and brokers Insurance and trading

companies

Export industries Life insurance and

import companies

Lags w2 p-value w2 p-value w2 p-value w2 p-value

Single

6 3.457 0.063 2.947 0.086 3.470 0.062 3.681 0.055

7 4.241 0.039 3.834 0.050 4.390 0.036 4.370 0.037

8 5.748 0.017 5.177 0.023 5.410 0.020 6.053 0.014

9 6.073 0.014 5.843 0.016 5.968 0.015 6.474 0.011

10 8.128 0.004 7.868 0.005 7.845 0.005 8.521 0.004

11 8.511 0.004 8.004 0.005 8.308 0.004 8.429 0.004

12 6.275 0.012 6.691 0.010 6.635 0.010 6.079 0.014

Cum.

7 4.717 0.095 4.985 0.083 4.954 0.084 4.928 0.085

8 5.733 0.125 5.209 0.157 5.045 0.168 6.736 0.081

9 5.195 0.268 5.411 0.248 5.112 0.276 6.053 0.195

10 7.333 0.197 9.245 0.100 9.456 0.092 7.872 0.163

11 8.539 0.201 6.658 0.354 7.488 0.278 7.955 0.241

12 8.758 0.271 6.747 0.456 7.796 0.351 8.698 0.275

Selected micro-homogeneity tests

H0 : ai,h ¼ aj,h, bi,t+h�p ¼ bj,t + h�p for all i, j 6¼ i

w2(GMM) p-value n

Single

6 57.130 0.000 6

12 58.230 0.000 6

Cum.

7 63.917 0.000 9

12 126.560 0.000 24

See Appendix 1 for structure of GMM VCV matrix incorporating Newey-West correction

for serial correlation

w2 statistics for mean forecast error regressions (p-value underneath)
Degrees of freedom (n) represent number of regressors, excluding intercept

(n ¼ 1 for single lag, n ¼ max. lag �2 for cumulative lags)
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unbiasedness was rejected for all groups at the 6-month horizon due to the

nonstationarity of the forecast error.) Despite having only one failure of unbiasedness

at the 5 % level for the two shorter horizons, micro-homogeneity is rejected at a level

of virtually zero for both horizons. The rejection of micro-homogeneity at the

1-month horizon occurs despite the failure to reject unbiasedness for any of the

industry groups. We hypothesize that the consistent rejection of micro-homogeneity

regardless of the results of individual unbiasedness tests is the result of sufficient

variation in individual bias estimates as well as precision in these estimates.

According to these tests, aggregation of individual forecasts into a mean forecast is

invalid at all horizons.

Table 43.19 Weak efficiency tests (3-month forecasts)

st+h � sei;t;h ¼ ai,h + ∑hþ6
p¼hbi,t+h � p(st+h�p � st�p) + ei,t,h for h ¼ 6 (43.13)

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and brokers Insurance and trading

companies

Export industries Life insurance and

import companies

Lags w2 p-value w2 p-value w2 p-value w2 p-value

Single

6 0.268 0.604 0.450 0.502 3.657 0.056 1.065 0.302

7 0.055 0.814 0.037 0.848 0.599 0.439 0.003 0.957

8 0.331 0.565 0.305 0.581 0.029 0.864 0.230 0.632

9 0.513 0.474 0.482 0.488 0.022 0.883 0.577 0.448

10 1.038 0.308 1.077 0.299 0.318 0.573 1.344 0.246

11 1.335 0.248 1.532 0.216 0.563 0.453 1.872 0.171

12 1.184 0.276 1.620 0.203 0.616 0.433 1.979 0.159

Cum.

7 6.766 0.034 8.767 0.012 15.683 0.000 10.052 0.007

8 8.752 0.033 11.784 0.008 18.330 0.000 11.162 0.011

9 8.654 0.070 11.588 0.021 18.929 0.001 11.309 0.023

10 9.421 0.093 12.890 0.024 19.146 0.002 12.275 0.031

11 9.972 0.126 13.137 0.041 19.597 0.003 13.003 0.043

12 8.581 0.284 11.823 0.107 17.670 0.014 11.431 0.121

Selected micro-homogeneity tests

H0 : ai,h ¼ aj,h, bi,t+h�p ¼ bj,t+h�p for all i, j 6¼ i

w2(GMM) p-value n

Single

6 151.889 0.000 6

12 66.313 0.000 6

Cum.

7 164.216 0.000 9

12 193.021 0.000 24

See Appendix 1 for structure of GMM VCV matrix incorporating Newey-West correction

for serial correlation

w2 statistics for mean forecast error regressions (p-value underneath)
Degrees of freedom (n) represent number of regressors, excluding intercept

(n ¼ 1 for single lag, n ¼ max. lag �2 for cumulative lags)
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In addition to testing the weak efficiency hypothesis at the individual level, we

are interested in the degree of heterogeneity of coefficients across forecasters. Here

the null of micro-homogeneity is given by H0: fil¼ fjl, for l¼ h, . . . h + 6, for all i,
j 6¼ i. As explained in the section on efficiency tests, there are 312 tests (not 468, due
to a nonstationary forecast error for all four groups at the 6-month horizon)/four

groups ¼ 83 micro-homogeneity tests. The null hypothesis of equal coefficients is

H0 : ai,h¼ aj,h, bi,t+h�k¼ bj,t+h�k for all i, j 6¼ i. As with the micro-homogeneity tests

for unbiasedness, our GMM variance-covariance matrix accounts for serial corre-

lation of order h-1 or less, generalized heteroscedasticity, and cross-sectional

correlation or order h-1 or less. We report w2(n) statistics, where n is the number

of coefficient restrictions, with corresponding p-values. Rather than perform all

83 micro-homogeneity tests, we choose a sample consisting of the shortest and

longest lag for which there are corresponding individual and joint tests (i.e., for the

k ¼ h + 1st and k ¼ h + 6th lag). Thus, there are four tests (two individual and two

corresponding joint tests) times two horizons times three variables for a total of

24 tests. Every one of the micro-homogeneity tests are rejected at the 0 % level. As

pointed out by Bryant (1995), a finding of micro-heterogeneity in unbiasedness and

weak efficiency tests also casts doubt on the assumption of a rational representative

agent commonly used in macroeconomic and asset-pricing models (Table 43.22).

Table 43.20 LM test for serial correlation (3-month forecasts)

H0 : bi,h ¼ . . . ¼ bi,h+6 ¼ 0, for h ¼ 6

in êi, t, h ¼ ai, h þ
Xh�1

k¼1
bi, k stþh�k � sei, t�k, h

� �
þ
Xhþ6

l¼h
fi, l ê i, t�l, h þ �i, t, h,

where e is generated from

stþh � sei, t, h ¼ ai, h þ
Xh�1

k¼1
bi, k stþh�k � sei, t�k, h

� �
þ ei,t,h

Cum. lags (k) 6 7 8 9 10 11 12

n � k 126 117 108 99 94 89 84

i ¼ 1

Banks and brokers

F(k, n � k) 3.452 2.856 3.023 2.951 2.599 2.652 2.921

p-value 0.003 0.009 0.004 0.004 0.008 0.006 0.002

i ¼ 2

Insurance and trading companies

F(k, n � k) 3.499 2.850 3.408 2.907 2.492 2.584 2.341

p-value 0.003 0.009 0.002 0.004 0.011 0.007 0.012

i ¼ 3

Export industries

F(k, n � k) 4.687 3.956 4.409 3.572 2.928 2.819 2.605

p-value 0.000 0.001 0.000 0.001 0.003 0.003 0.005

i ¼ 4

Life insurance and import companies

F(k, n � k) 2.352 2.482 2.501 2.168 1.866 1.794 1.811

p-value 0.035 0.021 0.016 0.031 0.060 0.067 0.059
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43.5.1 Ito’s Heterogeneity Tests

In Table 43.23, we replicate Ito’s (1990) and Elliott and Ito’s (1999) test for

forecaster “heterogeneity.” This specification regresses the deviation of the indi-

vidual forecast from the cross-sectional average forecast on a constant. Algebrai-

cally, Ito’s regression can be derived from the individual forecast error regression

by subtracting the mean forecast error regression. Thus, because it simply replaces

the forecast error with the individual deviation from the mean forecast, it does not

suffer from aggregation bias (c.f. Figlewski and Wachtel (1983)) or pooling bias

(c.f. Zarnowitz 1985) (Table 43.24).36, 37

sei, t, h � sem, t, h ¼ ai, h � am
� �þ ei, t, h � em, t

� �
(43.16)

As above, we use the Newey-West-Bartlett variance-covariance matrix.

One may view Ito’s “heterogeneity” tests as complementary to our micro-

homogeneity tests. On the one hand, one is not certain whether a single (or pair

of?) individual rejection(s) of, say, the null hypothesis of a zero mean deviation in

Ito’s test would result in a rejection of micro-homogeneity overall. On the other

hand, a rejection of micro-homogeneity does not tell us which groups are the most

significant violators of the null hypothesis. It turns out that Ito’s mean deviation test

produces rejections at a level of 6 % or less for all groups at all horizons except for

36Recall that our group results are not entirely comparable to Ito’s (1990), since our data set, unlike

his, combines insurance companies and trading companies into one group and life insurance

companies and import-oriented companies into another group.
37Chionis and MacDonald (1997) performed an Ito-type test on individual expectations data from

Consensus Forecasts of London.

Table 43.21 CD tests for

cross-sectional
st+h � sei;t;h ¼ ai,h + ei,t,h (43.7)

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2T
N N�1ð Þ

q XN�1

i¼1

XN

j¼iþ1
r̂ij �a N 0; 1ð Þ

(43.15)

Lag length CD p-value

3-month horizon

0 31.272 0.000

1 2.461 0.014

2 0.387 0.699

3 2.322 0.020

4 1.594 0.111

h � 1 ¼ 5 1.461 0.144

6 �5.887 0.000

7 0.340 0.734

8 1.456 0.145

N¼ 24, T¼ 276, r̂ ij is the sample correlation coefficient between

forecasters i and j, i 6¼ j

43 Rationality and Heterogeneity of Survey Forecasts 1239



Table 43.22 Ito tests (1-month forecasts)

Individual regressions

sei;t;h � sem;t;h ¼ (ai,h � am) + (ei,t,h � em,t) for h ¼ 2

Degrees of freedom ¼ 263

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and

brokers

Insurance and trading

companies

Export

industries

Life insurance and import

companies

ai,h 0 �0.001 0.003 �0.002

t (NW) 0.173 �2.316 5.471 �3.965

p-value 0.863 0.021 0 0

MH tests H0 : ai,h ¼ aj,h, for all i, j 6¼ I

w2(GMM) 40.946

p-value 0

Table 43.23 Ito tests (3-month forecasts)

Individual regressions

sei;t;h � sem;t;h ¼ (ai,h � am) + (ei,t,h � em,t) for h ¼ 6

Degrees of freedom ¼ 263

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and

brokers

Insurance and trading

companies

Export

industries

Life insurance and import

companies

ai,h �0.002 �0.003 0.008 �0.002

t (NW) �2.307 �3.986 5.903 �1.883

p-value 0.021 0 0 0.06

MH tests H0 : ai,h ¼ aj, for all i, j 6¼ I

w2(GMM) 37.704

p-value 0

Table 43.24 Ito tests (6-month forecasts)

Individual regressions

sei;t;h � sem;t;h ¼ (ai,h � am) + (ei,t,h � em,t) for h ¼ 12

Degrees of freedom ¼ 263

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Banks and

brokers

Insurance and trading

companies

Export

industries

Life insurance and import

companies

ai,h �0.004 �0.003 0.01 0

t (NW) �3.52 �2.34 4.549 �0.392

p-value 0 0.019 0 0.695

MH tests H0 : ai,h ¼ aj,h, for all i, j 6¼ I

w2(GMM) 23.402

p-value 0.001
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banks and brokers at the 1-month horizon and life insurance and import companies

at the 6-month horizon.38 Since Ito’s regressions have a similar form (though not

a similar economic interpretation) to the tests for univariate unbiasedness in

Tables 43.7 and 43.8, it is not surprising that micro-homogeneity tests on the

four-equation system of Ito equations produce rejections at a level of virtually

zero for all three horizons.

43.6 Conclusions

In this chapter, we undertake a reexamination of the rationality and diversity of

JCIF forecasts of the yen-dollar exchange rate. In several ways we update and

extend the seminal paper by Ito (1990). In particular, we have attempted to explore

the nature of rationality tests on integrated variables. We show that tests based on

the “conventional” bivariate regression in change form, while correctly specified in

terms of integration accounting, have two major shortcomings. First, following

Holden and Peel (1990), they are misspecified as unbiasedness tests, because

rejection of the (0, 1) restriction on the slope and intercept is a sufficient, not

a necessary, condition for unbiasedness. Only a zero restriction on the intercept in

a regression of the forecast error on a constant is both necessary and sufficient for

unbiasedness. Second, tests using the bivariate specification suffer from a lack of

power. Yet, this is exactly what we would expect in an asset market whose price is

a near random walk: the forecasted change is nearly unrelated to (and varies much

less than) the actual change.

In contrast, we conduct pretests for rationality based on determining whether the

realization and forecast are each integrated and cointegrated. In this case, following

Liu and Maddala (1992), a “restricted” cointegration test, which imposes a (0, 1)

restriction on the cointegrating vector, is necessary for testing unbiasedness.

(We show that the Holden and Peel (1990) critique does not apply if the regressor

and regressand are cointegrated.) If a unit root in the restricted residual is rejected,

then the univariate test which regresses the forecast error on a constant is equivalent

to the restricted cointegration test. Testing this regression for white noise residuals

is one type of weak efficiency test. Testing other stationary regressors in the

information set for zero coefficients produces additional efficiency tests.

In the univariate specification, we find that, for each group, the ability to

produce unbiased forecasts deteriorates with horizon length: no group rejects

unbiasedness at the 1-month horizon, but all groups reject at the 6-month horizon,

because the forecast errors are nonstationary. Exporters consistently perform worse

than the other industry groups, with a tendency toward depreciation bias.

38Elliott and Ito (1999), who have access to forecasts for the 42 individual firms in the survey, find

that, for virtually the same sample period as ours, the null hypothesis of a zero deviation from the

mean forecast is rejected at the 5 % level by 17 firms at the 1-month horizon, 13 firms for the

3-month horizon, and 12 firms for the 6-month horizon. These authors do not report results by

industry group.
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Using only 2 years of data, Ito (1990) found the same result for exporters,

which he described as a type of “wishful thinking.”

The unbiasedness results are almost entirely reversed when we test the

hypothesis using the conventional bivariate specification. That is, the joint

hypothesis of zero intercept and unit slope is rejected for all groups at the

1-month horizon, but only for exporters and the 3- and 6-month horizons. Thus,

in stark contrast to the univariate unbiasedness tests, as well as Ito’s (1990)

bivariate tests, forecast performance does not deteriorate with increases in

the horizon.

Also, since Engle and Granger (1987) have showed that cointegrated variables

have an error correction representation, we impose joint “unbiasedness” restrictions

first used by Hakkio and Rush (1989) on the ECM. However, we show that these

restrictions also represent sufficient, not necessary, conditions, so these tests could

tend to over-reject. We then develop and test restrictions which are both necessary

and sufficient conditions for unbiasedness. The test results confirm that the greater

rate of rejections of the joint “unbiasedness” restrictions in the ECM is caused by

the failure of the implicit restriction of weak efficiency with respect to the lagged

forecast. When we impose the restriction that the coefficient of the forecast equals

one, the ECM unbiasedness test results mimic those of the simple univariate

unbiasedness tests. For this data set, at least, it does not appear that an ECM

provides any value added over the simple unbiasedness test. Furthermore, since

the error correction term is not statistically significant in any regressions, it is

unclear whether the ECM provides any additional insight into the long-run adjust-

ment mechanism of exchange rate changes.

The failure of more general forms of weak efficiency is borne out by two types of

explicit tests for weak efficiency. In the first type, we regress the forecast error on

single and cumulative lags of mean forecast error, mean forecasted depreciation, and

actual depreciation. We find many rejections of weak efficiency. In the second type,

we use the Godfrey (1978) LM test for serial correlation of order h through h + 6 in the

residuals of the forecast error regression. Remarkably, all but one LM test at a specified

lag length produces a rejection at less than a 10 % level, with most at less than a 5 %

level. (As in the case of the univariate unbiasedness test, all weak efficiency tests at the

6-month horizon fail due to the nonstationarity of the forecast error.)

Whereas Ito (1990) and Elliott and Ito (1999) measured diversity as

a statistically significant deviation of an individual’s forecast from the cross-

sectional average forecast, we perform a separate test of micro-homogeneity for

each type of rationality test – unbiasedness as well as weak efficiency – that we first

conducted at the industry level. In order to conduct the systems estimation and

testing required for the micro-homogeneity test, our GMM estimation and inference

make use of an innovative variance-covariance matrix that extends the Keane and

Runkle (1990) counterpart from a pooled to an SUR-type structure. Our variance-

covariance matrix takes into account not only serial correlation and heterosce-

dasticity at the individual level (via a Newey-West-Bartlett correction) but also

forecaster cross-correlation up to h-1 lags. We document the statistical significance

of the cross-sectional correlation using Pesaran’s (2004) CD test.
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In the univariate unbiasedness tests, we find that, irrespective of the ability to

produce unbiased forecasts at a given horizon, micro-homogeneity is rejected at

virtually a 0 % level for all horizons. We find this result to be somewhat counter-

intuitive, in light of our prior belief that micro-homogeneity would be more likely

to obtain if there were no rejections of unbiasedness. Evidently, there is sufficient

variation in the estimated bias coefficient across groups and/or high precision of

these estimates to make the micro-homogeneity test quite sensitive. Micro-

homogeneity is also strongly rejected in the weak efficiency tests.

In contrast to the results with the univariate unbiasedness specification, micro-

homogeneity is not rejected at any horizon in the bivariate regressions. We conjec-

ture that the imprecise estimation of the slope coefficient makes it difficult to reject

joint hypotheses involving this coefficient.

In conclusion, we recommend that all rationality tests be undertaken using

simple univariate specifications at the outset (rather than only if the joint bivariate

test is rejected, as suggested by Mincer and Zarnowitz (1969) and Holden and Peel

(1990) and employed by Gavin (2003)). Before conducting such tests, one should

test the restricted cointegrated regression residuals, i.e., the forecast error, for

stationarity. Clearly, integration accounting and regression specification matter

for rationality testing.

While our rationality tests do not attempt to explain cross-sectional dispersion,

the widespread rejection of micro-homogeneity in different specifications of unbi-

asedness and weak efficiency tests39 provides more motivation for the classification

of forecasters into types (e.g., fundamentalist and chartist/noise traders) than for

simply assuming a representative agent (with rational expectations).

There are characteristics of forecasts other than rationality which are of intrinsic

interest. Given our various rejections of rational expectations, it is natural to

explore what expectational mechanism the forecasters use. Ito (1994) tested the

mean JCIF forecasts for extrapolative and regressive expectations, as well as

a mixture of the two.40 Cohen and Bonham (2006) extend this analysis using

individual forecast-generating processes and additional learning model specifica-

tions. And, much of the literature on survey forecasts has analyzed the accuracy of

predictions, typically ranking forecasters by MSE. One relatively unexplored issue

is the statistical significance of the ranking, regardless of loss function. However,

other loss functions, especially nonsymmetric ones, are also reasonable. For

example, Elliott and Ito (1999) have ranked individual JCIF forecasters using

a profitability criterion. As mentioned in Sect. 43.2.2, the loss function may

incorporate strategic considerations that result in “rational bias.” Such an explora-

tion would require more disaggregated data than the JCIF industry forecasts to

which we have access.

39We put less weight on the results of the weaker tests for micro-homogeneity in the bivariate

regressions.
40He also included regressors for adaptive expectations and the forward premium.
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Appendix 1: Testing Micro-homogeneity with Survey Forecasts

The null hypothesis of micro-homogeneity is that the slope and intercept coeffi-

cients in the equation of interest are equal across individuals. This chapter considers

the case of individual unbiasedness regressions such as Eq. 43.2 in the text, repeated

here for convenience,

stþh � st ¼ ai, h þ bi, h sei, t, h � st

� �
þ ei, t, h (43.17)

and tests H0 : a1 ¼ a2 ¼ . . . ¼ aN and b1 ¼ b2 ¼ . . . ¼ bN.
Stack all N individual regressions into the Seemingly Unrelated Regression system

S¼ Fyþ e (43.18)

where S is the NT � 1 stacked vector of realizations, st+ h, and F is an NT � 2N
block diagonal data matrix:

F5
F1

⋱
FN

2
4

3
5: (43.19)

EachFi¼ [i sei;t;h] is a T� 2matrix of ones and individual i’s forecasts, y¼ [a1 b1 . . .
aN bN]0, and e is an NT � 1 vector of stacked residuals. The vector of restrictions,

Ry ¼ r, corresponding to the null hypothesis of micro-homogeneity is normally

distributed, with Ry � r � N[0, R(F0F)�1F0OF(F0F)�1R0], where R is the 2(N � 1)

� 2N matrix

R ¼
1 0 �1 0 . . . 0

0 1 0 �1 0 ⋮
⋮ 0 ⋱ ⋱ ⋱ 0

0 . . . 0 1 0 �1

2
664

3
775, (43.20)

and r is a 2(N � 1) � 1 vector of zeros. The corresponding Wald test statistic,

Rŷ � r
� �0

R F0Fð Þ�1F
0
ÔF F

0
F

� ��1
R

0
h i

Rŷ � r
� �

, is asymptotically distributed as

a chi-square random variable with degrees of freedom equal to the number of

restrictions, 2(N � 1).

For most surveys, there are a large number of missing observations. Keane and

Runkle (1990), Davies and Lahiri (1995), Bonham and Cohen (1995, 2001), and to

the best of our knowledge all other papers whichmake use of pooled regressions in tests

of the REH have dealt with the missing observations using the same approach. The

pooled or individual regression is estimated by eliminating the missing data points in

both the forecasts and the realization. The regression residuals are then padded

with zeros in place of missing observations to allow for the calculation of own and
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cross-covariances. As a result, many individual variances and cross-covariances are

calculated with relatively few pairs of residuals. These individual cross-covariances are

then averaged. In Keane and Runkle (1990) and Bonham and Cohen (1995, 2001) the

assumption of 2(k + 1) second moments, which are common to all forecasters, is made

for analytical tractability and for increased reliability. In contrast to the forecasts from

the Survey of Professional Forecasters used in Keane and Runkle (1990) and Bonham

and Cohen (1995, 2001), the JCIF data set contains virtually no missing observations.

As a result, it is possible to estimate each individual’s variance-covariance matrix

(and cross-covariance matrix) rather than average over all individual variances and

cross-covariance pairs as in the aforementioned papers.

We assume that for each forecast group i,

E ei, t, hei, t, h
� � ¼ s2i, 0 for all i, t,

E ei, t, hei, tþk

� � ¼ s2i, k for all i, t, k such that 0 < k � h,

E ei, t, hei, tþk

� � ¼ 0 for all i, t, k such that k > h,

(43.21)

Similarly, for each pair of forecasters i and j, we assume

E ei, t, hej, t
� � ¼ di, j 0ð Þ 8i, j, t,

E ei, t, hej, tþk

� � ¼ di, j kð Þ 8i, j, t, k such that k 6¼ 0, and� h � k � h:

E ei, t, hej, tþk

� � ¼ 0 8i, j, t, k such that k > hj j:
(43.22)

Thus, each pair of forecasters has a different T � T cross-covariance matrix:

Pi, j ¼

di, j 0ð Þ di, j �1ð Þ . . . di, j �hð Þ 0

di, j 1ð Þ di, j 0ð Þ di, j �1ð Þ . . . 0

⋮ ⋱ ⋱ ⋱ ⋮
. . . di, j 1ð Þ di, j 0ð Þ di, j �1ð Þ

0 di, j hð Þ . . . di, j 1ð Þ di, j 0ð Þ

2
6666664

3
7777775
, (43.23)

Finally, note that Pi,j 6¼ Pj,i, rather P
0
i;j ¼ Pj,i. The complete variance-covariance

matrix, denoted O, has dimension NT � NT, with matrices Qi on the main diagonal

and Pi,j off the diagonal.

The individual Qi, variance-covariances matrices are calculated using the

Newey and West (1987) heteroscedasticity-consistent, MA(j)-corrected form. The

Pi,j matrices are estimated in an analogous manner.
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Abstract

The behavior of financial asset price data when observed intraday is quite

different from these same processes observed from day to day and longer

sampling intervals. Volatility estimates obtained from intraday observed data

can be badly distorted if anomalies and intraday trading patterns are not

accounted for in the estimation process.

In this paper I consider conditional volatility estimators as special cases of

a general stochastic volatility structure. The theoretical asymptotic distribution

of the measurement error process for these estimators is considered for particular
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features observed in intraday financial asset price processes. Specifically,

I consider the effects of (i) induced serial correlation in returns processes,

(ii) excess kurtosis in the underlying unconditional distribution of returns, (iii)

market anomalies such as market opening and closing effects, and (iv) failure to

account for intraday trading patterns.

These issues are considered with applications in option pricing/trading strat-

egies and the constant/dynamic hedging frameworks in mind. Empirical exam-

ples are provided from transactions data sampled into 5-, 15-, 30-, and 60-min

intervals for heavily capitalized stock market, market index, and index futures

price processes.

Keywords

ARCH • Asymptotic distribution • Autoregressive parameters • Conditional var-

iance estimates • Constant/dynamic hedging • Excess kurtosis • Index futures •

Intraday returns • Market anomalies • Maximum likelihood estimates • Mis-

specification • Mis-specified returns • Persistence • Serial correlation •

Stochastic volatility • Stock/futures • Unweighted GARCH • Volatility

co-persistence

44.1 Introduction

One issue considered in Nelson (1990a) is whether it is possible to formulate an

ARCH data generation process that is similar to the true process, in the sense that

the distribution of the sample paths generated by the ARCH structure and the

underlying diffusion process becomes “close” for increasingly finer discretizations

of the observation interval. Maximum likelihood estimates are difficult to obtain

from stochastic differential equations of time-varying volatility common in the

finance literature. If the results in Nelson hold for “real-time” data when ARCH

structures approximate a diffusion process, then these ARCH structures may be

usefully employed in option pricing equations. In this paper I consider the ARCH

structure as a special case of a general stochastic volatility structure. One advantage

of an ARCH structure over a general stochastic volatility structure lies in compu-

tational simplicity. In the ARCH structure, it is not necessary for the underlying

processes to be stationary or ergodic. The crucial assumption in an option pricing

context is that these assumed processes approach a diffusion limit. These assumed

diffusion limits have been derived for processes assumed to be observed from

day-to-day records. Given that market anomalies such as market opening and

market closing effects exist, any volatility structure based on observations sampled

on a daily basis will provide different volatility estimates. Evidence of these

intraday anomalies and effects on measures of constant volatility is reported in

Edwards (1988) and Duffie et al. (1990). Brown (1990) argues that the use of

intraday data in estimating volatility within an option pricing framework leads to

volatility estimates that are too low. This can be overcome by rescaling, assuming

the anomalies are accounted for.
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Better estimates of volatility may then be obtained by employing intraday

observations and allowance made for anomalies and trading activity within condi-

tional volatility equations. However, mis-specifications in either or both first- and

second-moment equations may mitigate against satisfying the conditions for an

approximate diffusion limit. Then it is important to investigate cases where the

diffusion limit is not attainable and identify the factors which help explain the

behavior of the process. If these factors can be accounted for in the estimation

process then these formulations can be successfully employed in options pricing

and trading strategies.

The specific concern in this paper is the effect on the asymptotic distribution

of the measurement error process and on parameter estimates, obtained from the

Generalized ARCH (GARCH(1,1)) equations for the conditional variance, as

the observation interval approaches transactions records (d!0). Three issues are

considered for cases where the diffusion limit may not be achieved at these

observation intervals. The first issue is the effect of mis-specifying the dynamics

of the first-moment-generating equation on resultant GARCH(1,1) parameter

estimates. The second issue is the effect on measures of persistence obtained

from the GARCH structure when increasing kurtosis is induced in the underly-

ing unconditional distribution as d!0. This leads to a third issue which is

concerned with evaluating effects of inclusion of weighting (mixing) variables

on parameter estimates obtained from these GARCH(1,1) equations. If these

mixing variables are important then standard, GARCH equation estimates will

be seriously distorted. These mixing variables may proxy the level of activity

within particular markets or account for common volatility of assets trading in

the same market.

Sampling the process too finely does result in induced positive or negative serial

correlation in return processes. The main distortion to the basis change is generated

from cash index return equations. However, the dominant factor distorting

unweighted GARCH estimates is induced excess kurtosis in unconditional distri-

butions of returns. Many small price changes are dominated by occasional large

price changes. This effect leads to large jumps in the underlying distribution

causing continuity assumptions for higher derivatives of the conditional variance

function to break down.

These observations do not directly address issues related to intraday market

trading activity and possible contemporaneous volatility effects transmitted to

and from underlying financial asset price processes. This effect was considered

within the context of a structural Simultaneous Volatility (SVL) model in Gannon

(1994). Further results for the SVL model are documented, along with results of

parameter estimates, in Gannon (2010). In this paper the intraday datasets on cash

index and futures price processes from Gannon (2010) are again employed to

check the effects on parameter estimates obtained from GARCH and weighted

GARCH models. A set of intraday sampled stock prices are also employed in

this paper. The relative importance of mis-specification of the second-moment

equation dynamics over mis-specification of first-moment equation dynamics is

the most important issue. If intraday trading effects are important, this has
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implications for smoothness and continuity assumptions necessary in deriving

diffusion limit results for the unweighted GARCH structure.

If these effects are severe then an implied lower sampling boundary needs to be

imposed in order to obtain sensible results. This is because the measure of persis-

tence obtained from GARCH structures may approach the Integrated GARCH

(IGARCH) boundary and become explosive or conditional heteroskedasticity

may disappear. This instability can be observed when important intraday anomalies

such as market opening and closing effects are not accounted for within the

conditional variance specifications. Distortions to parameter estimates are most

obvious when conditional second-moment equations are mis-specified by failure to

adequately account for observed intraday trading patterns. These distortions can be

observed across a wide class of financial assets and markets.

If these financial asset price processes have active exchange traded options

contracts written on these “underlying assets,” it is important to study the intraday

behavior of these underlying financial asset price processes. If systematic features

of the data series can be identified then it is possible to account for these features in

the estimation process. Then intraday estimates of volatility obtained from condi-

tional variance equations, which incorporate structural effects in first and/or con-

ditional second-moment equations, can be usefully employed in option pricing

equations. Identifying intraday anomalies and linking trading activity to contem-

poraneous volatility effects mean the improved estimator can be employed within

a trading strategy. This can involve analysis of the optimal time to buy options

within the day to minimize premium cost. Alternatively, optimal buy or sell

straddle strategies based on comparison of estimated volatility estimates relative

to market implied volatility can be investigated. In this paper I focus on theoretical

results which can explain the empirically observed behavior of these estimators

when applied to intraday financial asset price processes. I start by summarizing

relevant results which are currently available for conditional variance structures as

the observation interval reduces to daily records (h!0). These results are modified

and extended in order to accommodate intraday observation intervals. The alterna-

tive first-moment-generating equations are described and the basis change defined

and discussed within the context of the co-persistence structure. I then focus on the

general GARCH structure and state some further results for specific cases of the

GARCH and weighted GARCH (GARCH-W) structure.

44.2 Stochastic Volatility and GARCH

Nelson and Foster (1994) derive and discuss properties for the ARCH process as the

observation interval reduces to daily records (h!0) when the underlying process is

driven by an assumed continuous diffusion process. Nelson and Foster (1991)

generalized a Markov process with two state variables, hXt and hst
2, only one of

which hXt is ever directly observable. The conditional variance hst
2 is defined

conditional on the increments in hXt per unit time and conditional on an information

set hBt. Modifying the notation from h to d (to account for intraday discretely
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observed data), and employing the notation d!0 to indicate reduction in the

observation interval from above, when their assumptions 2, 3, and 10 hold, when
d is small, dXt, j(dst

2)) is referred to as a near diffusion if for any T, 0 � T � 1,

(dXt, j (dst
2))0�t�T ) (Xt, j(st

2))0�t�T.

If we assume these data-generating processes are near diffusions, then the

general discrete time stochastic volatility structure, defined in Nelson and Foster

(1991), may be described using the following modified notation:

dX kþ1ð Þd

j ds2
kþ1ð Þd

� �

2
64

3
75 ¼

dXkd

j ds2
kd

� �

2
64

3
75þ d :

m dXkd;skdð Þ

l dXkd; dskdð Þ

2
64

3
75

þ d1=2
ds2

kd

Lj, x dXkd; dskdð Þ

Lj, x dXkd; dskdð Þ

L2
dXkd; dskdð Þ

2
64

3
75

1
2

dZ1, kd

dZ2, kd

2
64

3
75

(44:1)

where (dZ1,kd,d Z2,kd)k¼0,1 is i.i.d. with mean zero and identity covariance matrix.

In Eq. 44.1 d is the size of the observation interval, X may describe the asset price

return, and s2 the volatility of the process. It is not necessary to assume the data-

generating processes are stationary or ergodic, but the crucial assumption is that the

data-generating processes are near diffusions.

In the ARCH specification, dZ2,kd is a function of dZ1,kd so that dskd
2 (dhkd) can be

inferred from past values of the one observable process dXkd. This is not true for

a general stochastic volatility structure where there are two driving noise terms.

For the first-order Markov ARCH structure, a strictly increasing function of

estimates ds
∧2

t dh
∧
t

� �
of the conditional variance process dst

2(dht) is defined as f(s
2),

and estimates of the conditional mean per unit of time of the increments in X and

f(s2) are defined as m
∧

x, s
∧

� �
and k

∧
x, s

∧
� �

. Estimates of dskd
2 are updated by the

recursion:

f ds
∧2

kþ1ð Þd

� �
¼ s ds

∧2

kd

� �
þ d k

∧
dXkd; ds

∧
kd

� �

þ d1=2a dXkd; ds
∧
kd

� �
g dZ1, kd; dX

∧
kd, ds

∧2

kd

� � (44:2)

where k
∧

:ð Þ, a :ð Þ, m∧ :ð Þ , and g(.) are continuous on bounded (j(s2), x) sets and

g(z1, x.s
2) assumed continuous everywhere with the first three derivatives of g with

respect to z1 well defined and bounded. The function g(dZ1,kd,.) is normalized to

have mean zero and unit conditional variance. Nonzero drifts in f ds2
kd

� �
are

allowed for in the k
∧

:ð Þ term and non-unit conditional variances accounted for

in the a(.) term. The second term on the right measures the change in f ds2
kd

� �
forecast by the ARCH structure while the last term measures the surprise change.
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The GARCH(1,1) structure is obtained by setting f s2ð Þ¼ s2, k
∧

x;sð Þ¼ o�ys2
� �

,

g z1ð Þ¼ z21�1
� �

=SD z21
� �

, and a(x,s) ¼ a . s2 . SD(z1
2). The parameters o, y, and a

index a family ofGARCH(1,1) structures. In a similarmanner the EGARCHvolatility

structure can be defined. That is, by selectingf :ð Þ, k∧ :ð Þ,g :ð Þ, and a(.), various “filters”
can be defined within this framework.

Other conditions in Nelson and Foster (1991) define the rate at which the

normalized measurement error process dQt mean reverts relative to (dXt,dst
2). It

becomes white noise as d!0 on a standard time scale but operates on a faster

time scale mean-reverting more rapidly. Asymptotically optimal choice of a(.)

and f(.) given g(.) can be considered with respect to minimizing the asymptotic

variance of the measurement error. This is considered on a faster time scale

(T + t) than T. The asymptotically optimal choice of g(.) depends upon the

assumed relationship between Z1 and Z2. In the ARCH structure, Z2 is a function

of Z1 so that the level driving dst
2 can be recovered from shocks driving dXt

2.

Without further structure in the equation specified for st
2, we are unable to

recover information about changes in st
2. Their discussion is strictly in terms

of constructing a sequence of optimal ARCH filters which minimize the asymp-

totic variance of the asymptotic distribution of the measurement errors. This

approach is not the same as choosing an ARCH structure that minimizes the

measurement error variance for each d.

The asymptotic distribution of the measurement error process, for large t and

small d,

ds
∧2

Tþtd1=2 � ds2
Tþtd

1=2 dQT ; ds
2
T ; dXT

� ���
	 


¼ q; s2; x
� �

with derivatives evaluated as f0
ds2

T

� �
, j0 (dsT

2), etc. and the notation simplified as

f0 and j0 is approximately normal with mean

d1=2
2s2j0ð Þ k

∧
d=j0 � a2j

00
=2 j0ð Þ3 � ld=f0 þ L2f03

h i
þ 2as: md � m

∧
d

h i
:E gz½ �

a :E Z1 : gz½ �
(44:3)

and variance

d1=2
2s2f0ð Þ : a2=f0ð � þ l2= j0½ �2 � 2aL:Cov Z2; gð Þ= s0½ � j0½ �

a:E Z1:gz½ � : (44:4)

General results in Nelson and Foster (1991, 1994) for the GARCH(1,1)

structure are that GARCH(1,1) can be more accurately measured firstly

the less variable and the smaller is dst
2, second the thinner the tails of Z1, and

third the more the true data-generating mechanism resembles an ARCH
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structure as opposed to a stochastic volatility structure. If the true data-

generating process is GARCH(1,1), then Corr (Z1
2, Z2) ¼ 1.

As d!0, the first result will generally hold, and the second can be

checked from the unconditional distribution of the returns process. The latter

result is the most difficult to evaluate. Now reconsider some assumptions

necessary to obtain these results and reasons these assumptions may not hold

when d!0.

(i) Mis-specification of the difference between the estimated and true drift in

mean, dm
∧
t � dmt

h i
, is assumed fixed as d!0 so that effects of mis-specifying

this drift has an effect that vanishes at rate d1/2 and is negligible asymptot-

ically. These terms do not appear in the expression for the variance of the

asymptotic distribution of the measurement error. As d!0, the effect of

bid/ask bounce and order splitting in futures price processes and

non-trading-induced effects on market indices becomes more severe.

Mis-specification of the drift in the mean is not constant. Whether this effect

transfers to estimates of conditional variances is an empirical issue.

(ii) The conditional variance of the increments in dst
2 involves the fourth moment of

dZ1,kd so that the influence of this fourth moment remains as the diffusion limit is

approached. Excess kurtosis is a feature of intraday financial price changes.

(iii) Values ofk
∧
d and ld are considered fixed as d!0 so that effects of mis-specifying

the drift in s2 has an effect that also vanishes at rate d1/2. As well, although these

drift terms enter the expression for the asymptotic bias of the measurement error,

these also do not appear in the expression for the asymptotic variance. The term

gz represents part of the “surprise” change in the recursion defined in Eq. 44.2 and

is directly linked to departures from normality observed in point (ii). These

departures from normality can be generated by extremes in Z1 induced by large

jumps in the underlying distribution. In this case first and second derivatives of f
may be discontinuous throughout the sample space as well. Then the expression

for the bias in this asymptotic distribution of the measurement errors may be

explosive.

(iv) The ARCH specification of the drift in mean and variance only enters the 0p(d
1/2)

terms of the measurement error. Asymptotically, the differences in the condi-

tional variance specifications are more important, appearing in the 0p(d
1/4) terms.

If the conditional variance specification is not correct then the measurement error

variance is affected. This is because matching the ARCH and true variance of the

variance cannot proceed.

I will consider these issues further by generalizing a theoretical framework in

which to address each in the above order. Firstly I consider the relationship

between serial correlation in returns on the market index, the index futures, and

basis change as d!0. Second, these effects are considered in the context of

the co-persistence structure for the basis change. Finally, I consider effects on

conditional variance parameter estimates when mixing and weighting variables

are included in the equations for the conditional variance.

44 Stochastic Volatility Structures and Intraday Asset Price Dynamics 1255



44.3 Serial Correlation in Returns

Consider a first-order autoregressive process for the spot asset price return

(an AR(D) representation):

st ¼ r1st�1 þ et (44:5)

where st is the return on the asset (the difference in the natural logarithm of the spot

asset price levels or the difference in the spot asset price levels) between time t and

t�1, r1 is the first-order serial correlation coefficient between s at time t and t�1 and

et is an assumed homoskedastic disturbance term, se
2 and�1< r1< 1. This equation

provides an approximation to the time-series behavior of the spot asset price return.
An alternative specification to Eq. 44.5 is a simple autoregressive equation for

the level of the spot asset price S (or natural logarithm of the levels) at time t and

t�1, (an AR(L) representation)

St ¼ r1St�1þtat (44:6)

where at is an assumed homoskedastic disturbance term, sa
2, and the value of f1

may be greater or less than one.

The assumed bid/ask bounce in futures price changes is approximated by a MA

(1) process in Miller et al. (1994). For the index futures price, this specification is

f t ¼ at þ y1at�1, (44:7)

where ft is the index futures price change and at is an assumed mean zero, serially

uncorrelated shock variable with a homoskedastic variance, sa
2, and �1 < y1 < 0.

The basis change is defined as

bt ¼ f t � it, (44:8)

where f and i are the index futures return and index portfolio return, respectively.

Whether shocks generated from Eqs. 44.5 or 44.6 generate differences in

parameter estimates and measures of persistence obtained from conditional

second-moment equations is an issue. Measures of persistence for the basis change

may be badly distorted from employing index futures and index portfolio changes.

Measures of persistence for index futures and index portfolios may be badly

distorted by employing observed price changes.

The simplest GARCH structure derived from Eq. 44.1 for the conditional

variance is the GARCH(1,1):

ht ¼ oþ a1e2t�1 þ b1ht�1 (44:9)

where ht(st
2) is the conditional variance at time t and et�1

2 are squared unconditional

shocks generated from any assumed first-moment equation and 0 � a1, b1 � 1 and
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a1 + b1 � 1. This parameterization is a parsimonious representation of an ARCH

(p0) process where a geometrically declining weighting pattern on lags of e2 is

imposed. This is easily seen by successive substitution for ht�j(j ¼ 1, . . . , J) as
J ! 1,

ht ¼ o 1þ b1 þ � � � þ bJ1
� �þ a1 e2t�1 þ b1e

2
t�2 þ � � � þ bJ1e

2
t�J�1

� �þ Remainder:

(44:10)

Now consider Eq. 44.6, with f1 fixed at 1, as representing one mis-specified

spot asset price process, Eq. 44.5 representing the mis-specified

differenced autoregressive process, and Eq. 44.7 representing the

mis-specified differenced moving average process. Taking expected values,

then the unconditional variance when Eq. 44.6 is the mis-specified representa-

tion and f1 set equal to one is

E s2t
� � ¼ E a2t

� �
: (44:11)

When Eq. 44.7 is the moving average (MA) representation, the unconditional

variance relative to shocks generated via Eq. 44.11 is

E s2t
� �

MA
¼ E 1þ y2

� �
a2t

� �
, (44:12)

and when Eq. 44.5 is the autoregressive (AR) representation, the unconditional

variance relative to shocks generated via Eq. 44.11 is

E s2t
� �

AR
¼ E

1� r1
1þ r1

� �
a2t
� �	 


: (44:13)

The conditional variance from a GARCH(1,1) structure for Eq. 44.11 can be

rewritten as

ht sð Þ ¼ o 1þ b1 þ � � � þ bJ1
� �þ a1 a2t�1 þ b1a

2
t�2 þ � � � þ bJ1a

2
t�J�1

� �
þ Remainder: (44:14)

If Eq. 44.7 is the representation, then, relative to the conditional variance

equation from Eq. 44.11,

ht sð ÞMA ¼ o 1þ b1 þ � � � þ bJ1
� �þ a1 1þ y2

� �
a2t�1 þ b 1þ y2

� �
a2t�2

þ � � �bJ1 1þ y2
� �

a2t�J�1

�þ Remainder, (44:15)
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and if Eq. 44.5 is the representation, then, relative to the conditional variance

equation from Eq. 44.11,

ht sð ÞAR ¼ o 1þ b1 þ � � � þ bJ1
� �

þ a1
1� r1
1þ r1

� �
a2t�1 þ b1

1� r1
1þ r1

� �
a2t�2 þ � � �bJ1

1� r1
1þ r1

� �
a2t�J�1

� �
þRemainder:

(44:16)

If o, a1, and b1 were equivalent in Eqs. 44.14, 44.15, and 44.16, when the

conditional variance is driven by Eq. 44.7 with y1 negative, then ht(s)MA > ht(s),

and when the conditional variance is driven by Eq. 44.5 with r1 negative, then

ht(s)AR > ht(s) and with r1 positive then ht(s)AR< ht(s). However, given the scaling

factor in Eq. 44.15 relative to Eq. 44.16, the potential for distortions to GARCH

parameter estimates is greater when the underlying process is driven by Eq. 44.5

relative to Eq. 44.7.

44.4 Persistence, Co-Persistence, and Non-Normality

Now define et as shocks from any of the assumed first-moment equations

from Sect. 3 with the following simplified representation of a GARCH(1,1)

structure obtained from Eq. 44.1 where ht(st
2) represents the conditional variance

and zt(dZ1 ,kd) the stochastic part:

et ¼
ffiffiffi
h

p
t zt zt � NID 0; 1ð Þ: (44:17)

In the univariate GARCH(1,1) structure, ht converges and is strictly stationary if
E[1n(b1 + a1zt�i

2 )]< 0. Then∑i¼1,kd1n(b1 + a1zt�i
2 ) is a random walk with negative

drift which diverges to �1 as the observation interval reduces.

Now consider the co-persistence structure in the context of the constant hedging

model. Defining the true processes for the differences in the natural logarithm of the

spot index price and the natural logarithm of the futures price as

it ¼ g1xt þ �it
f t ¼ g2xt þ �ft,

(44:18)

the common “news” factor xt is IGARCH, in the co-persistence structure, while the
idiosyncratic parts are assumed jointly independent and independent of xt and not

IGARCH. The individual processes have infinite unconditional variance. If a linear

combination is not IGARCH, then the unconditional variance of the linear combi-

nation is finite and a constant hedge ratio (defined below) leads to substantial

reduction in portfolio risk.

A time-varying hedge ratio can lead to greater reduction in portfolio risk under

conditions discussed in Ghose and Kroner (1994) when the processes are
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co-persistent in variance. From a practical perspective, account needs to be taken of

the rebalancing costs of portfolio adjustment.

A nonoptimal restricted linear combination is the basis change defined as the

difference between the change in the log of the index futures price and change in

the log of the spot index level. This implied portfolio is short 1 unit of the spot for

every unit long in the futures. For the futures and spot price processes reported in

McCurdy and Morgan (1987), the basis change is co-persistent in variance.

If there are “news factors” xf t 6¼ xi t, then the constant hedge ratio may not exist.

Define these processes as

it ¼ g1xi t þ �i t
f t ¼ g2xf t þ �f t

(44:19)

then the estimated constant hedge ratio which is short g units of the spot for every

1 unit long in the futures is

g
∧ ¼ cov

∧
f; ið Þ

var
∧

ið Þ

" #

tj
¼ g

∧
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
∧

xf½ � var∧ xi½ �
q

var
∧

xi½ �

2
4

3
5þ var Z

∧
i

� �2
4

3
5

tj

(44:20)

where r
∧
is the correlation between xft and xit.

When both xf and xi follow IGARCH processes and no common factor structure

exists, then the estimated constant hedge diverges. Ghose and Kroner (1994)

investigate this case.

When xft follows an IGARCH process but xit is weak GARCH, then the

estimated constant hedge ratio cannot be evaluated. There are two problems:

(a) The estimated sample variance of xf in Eq. 44.20 is infinite as T ! 1.

(b) p ¼ c ov xf
� �∧	 


=
ffiffiffi
v

p
a
∧
r xf
� �

var
∧

xi½ �
	 


tj so that there is no linear combination

of xf and xi which can provide a stationary unconditional variance.

This last observation has a direct parallel from the literature for cointegration in

the means of two series.

If xf is an approximate I(1) process and xi is I(0), then there is no definable linear
combination of xf and xi.

When observing spot index and futures prices over successively finer intervals,

the co-persistence structure may not hold for at least two further reasons. This

argument relates directly to the horizon t+kd for the hedging strategy. This argu-

ment also relates directly to distortions possibly induced onto a dynamic hedging

strategy, as d!0.

Perverse behavior can be observed in spot index level changes as oversampling

becomes severe. The smoothing effect due to a large proportion of the portfolio

entering the non- and thin-trading group generates a smoothly evolving process

with short-lived shocks generated by irregular news effects.
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General results assume that the zt
0s are drawn from a continuous distribution.

When sampling futures price data at high frequency, then the discrete nature of the

price recording mechanism guarantees that there are discontinuities in return-

generating processes. The distribution of the zt
0s can become extremely peaked due

to multiple small price changes and can have very long thin tails due to abrupt shifts

in the distribution. As d ! 0, � 1 < E[1n(b1 + a1zt�i
2 )] < +1 for a large range of

values for 0 � a1, b1 � 1 and a1 + b1 < 1, and this depends on the distribution

induced by oversampling and resultant reduction in (a1 + b1). In the limit E[ (zt)
4]/[E

(zt
2)]2!1. Then even-numbered higher moments of zt are unbounded as d!0. This

oversampling can lead to two extreme perverse effects generated by bid/ask bounce

or zero price changes. The effect depends upon liquidity in the respective markets.

44.4.1 Case 1

a1 ! 1, a1 þ b1 > 1 and E ln b1 þ a1z2t�i

� �� �
> 0:

The intuitive explanation for this result relies on oversampling (not

overdifferencing) in highly liquid markets. The oversampling approaches analysis

of transactions. At this level bid/ask bounce and order splitting require an appro-

priate model. Any arbitrary autoregressive model, for unconditional first moments,

generates unconditional shocks relating predominantly to behavior of the most

recent shock. These effects carry through to conditional squared innovations.

44.4.2 Case 2

Oversampling can produce many zero price changes in thin markets. In this latter

case as d!0 then a1 + b1 ! 0.

This explanation can apply to relatively illiquid futures (and spot asset) price

changes. That is, conditional heteroskedasticity disappears as oversampling

becomes severe.

The effect on the basis change when there is a relatively illiquid futures market

and oversampling may be badly distorted. As well, failure to account for anomalies

in conditional variance equations can severely distort estimates.

44.5 Weighted GARCH

Recall from Eq. 44.1 that k
∧
is a function defining the estimated drift in f ds2

t

� �� �
so

that l is a function defining true drift in {j(dst
2)}. In the ARCH structure, the drift

in ht(st
2) in the diffusion limit is represented byk

∧
=f0 � a2f

00
=2 f0ð Þ3, whereas for the

stochastic differential equation defined from assumptions 2, 3, and 10 in Nelson and
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Foster (1991, 1994), this diffusion limit is l/j0 + L2j00/2 (j0)3. The effect on the

expression for the bias in the asymptotic distribution of the measurement error

process can be explosive if derivatives in the terms a2f
00
=2 f0ð Þ3 � L2j

00
=2 j0ð Þ3

cannot be evaluated because of discontinuities in the process. This can happen when

important intraday effects are neglected in the conditional variance equation speci-

fication. As well, the bias can diverge as d!0 if the dZ1,kd terms are badly distorted.

Occasional large jumps in the underlying distribution contribute large Op(1) move-

ments while the near diffusion components contribute small Op(d
1/2) increments.When

sampling intraday financial data, there are often many small price changes which tend

to be dominated by occasional large shifts in the underlying distribution.

Failure to account for intraday effects (large shocks to the underlying distribu-

tion) can lead to a mixture of Op(1) and Op(d
1/2) effects in the process. One

approach is to specify this mixed process as a jump diffusion. An alternative is to

account for these effects by incorporating activity measures in the specification of

conditional variance equations.

It follows that failure to account for these Op(1) effects can lead to an explosive

measurement error dh
∧

t�dht

	 

. However, in empirical applications this measure-

ment error is unobservable since dht is unobservable. Failure to account for these

jumps in the underlying distribution imply that the unweighted GARCH(1,1)

structure cannot satisfy the necessary assumptions required to approximate

a diffusion limit.

44.6 Empirical Examples

The first issue is the effect of possible mis-specification of the first-moment

equation dynamics and resultant effect on estimates of persistence of individual

processes as d ! 0. If the effect is not important (mean irrelevance) then the focus

of attention is on the estimates from the co-persistence structure and implications

for a constant hedge ratio.

The second issue is the effect of inclusion of variables to proxy intraday activity

on measures of persistence. However, it is still important to consider possible

effects from mis-specifying the first-moment equation on parameter estimates

obtained from conditional variance equations as d ! 0. If there is strong condi-

tioning from measures of activity onto the market price processes, the conditioning

should be independent of specification of the dynamics of the first-moment

equation (mean irrelevance).

44.6.1 Index Futures, Market Index, and Stock Price Data

The data has been analyzed for the common trading hours for 1992 from the ASX

and SFE, i.e., from 10.00 a.m. to 12.30 p.m. and from 2.00 p.m. to 4.00 p.m.
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This dataset was first employed in examples reported in Gannon (1994) and

a similar analysis undertaken in Gannon (2010) for the SVL models as is

undertaken in this paper for the GARCH and GARCH-W models. Further details

of the sampling and institutional rules operating in these markets are

briefly reported in the Appendix of this paper. Transactions for the Share Price

Index futures (SPI) were sampled from the nearest contract 3 months to expira-

tion. The last traded price on the SPI levels and stock price levels were then

recorded for each observation interval. The All Ordinaries Index (AOI) is the

recorded level at the end of each observation interval. During these common

trading hours, the daily average number of SPI futures contracts traded 3 months

to expiration was 816. As well, block trades were extremely rare in this series.

Transactions on the heavily capitalized stock prices were extremely dense within

the trading day.

These seven stocks were chosen from the four largest market capitalized group-

ings according to the ASX classification code in November 1991, i.e., general

industrial, banking, manufacturing, and mining. The largest capitalized stocks

were chosen from the first three categories as well as the four largest capitalized

mining stocks. This selection provides for a diversified portfolio of very actively

traded stocks which comprised 32.06 % of total company weights from the

300 stocks comprising the AOI.

All datasets were carefully edited in order to exclude periods where the

transaction capturing broke down. The incidence of this was rare. As well, lags

were generated and therefore the effects of overnight records removed. A natural

logarithmic transformation of the SPI and AOI prices is undertaken prior to

analysis.

Opening market activity for the SPI is heaviest during the first 40 min of

trading. Trade in the SPI commences at 9.50 a.m. but from 10.30 a.m. onwards

volume of trade tapers off until the lunchtime close. During the afternoon

session, there is a gradual increase in volume of trade towards daily market

close at 4.10 p.m. Excluding the market opening provides the familiar U-shaped

pattern of intraday trading volume observed on other futures markets. SPI price

volatility is highest during the market opening period with two apparent reverse

J-shaped patterns for the two daily trading sessions (small J effect in afternoon

session). The first and last 10 min of trade in the SPI are excluded from this

dataset.

Special features govern the sequence at which stocks open for trade on the

ASX. Individual stocks are allocated a random opening time to within plus or

minus 30 s of a fixed opening time. Four fixed opening times, separated by 3-min

intervals starting at 10.00 a.m., operated throughout 1992. Four alphabetically

ordered groups then separately opened within the first 10 min of trading time.

The last minute of trading on the ASX is also subject to a random closing time

between 3.59 p.m. and 4.00 p.m. The effect of these institutional procedures on

observed data series can be potentially severe.

Both of these activity effects in market opening prices of trading on the SFE, and

ASX should be accounted for in the estimation process.
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44.6.2 Estimates of the Autoregressive Parameters

In Table 44.1 the first-order autoregressive parameter estimate is reported for the

observed differenced series for the SPI (f), AOI (i), and basis change (b). In the top

panel, these parameter estimates are from observations for the full (synchronized)

trading day. These equations include dummy variables to account for institutional

market opening effects. In the following tables of results, SING refers to singular-

ities in the estimation process.

For the SPI futures price process, low first-order negative serial correlation is

initially detected in the log of the price change. As the sampling interval is reduced,

low first-order positive serial correlation can be detected in the series. This feature

of the data accords with order splitting and non-trading-induced effects.

Low positive first-order serial correlation can be detected in differences of the

log of the market index and serial correlation increases. Positive serial correlation is

high at 15-min intervals for the opening excluded set. When sampling the market

index at 5-min intervals, substantial positive first-order serial correlation is detected

Table 44.1 Autoregressive parameter estimates for SPI, AOI, and basis change

Interval ft it bt

Full day

30 min �0.0324 0.0909 �0.1699

(�1.54) (4.33) (�8.19)

15 min �0.0497 0.0953 �0.1348

(�3.45) (6.42) (�9.15)

05 min 0.0441 0.3317 �0.0137

(5.14) (41.2) (�1.60)

Excluding market open

30 min �0.0299 0.1213 �0.1947

(�1.34) (5.48) (�8.89)

15 min �0.0301 0.2531 �0.2145

(�1.91) (16.6) (�13.9)

05 min 0.0532 0.3284 �0.0968

(5.84) (38.2) (�10.7)

Asymptotic t-statistics in brackets

ft ¼ Ft – Ft is the difference in the observed log level of the SPI

it ¼ It – I is the difference in the observed log level of the AOI

Equation 44.5, i.e., an autoregressive specification for the differences, an [AR(D)], is estimated for

both data series with one lag only for the autoregressive parameter

Dummy variables are included, for the first data series, in order to account for market opening

effects for the SPI, institutional features governing market opening on the ASX and therefore

effects transmitted to the basis change. Two separate dummy variables are included for the first

pair of 5-min intervals

This form for the basis change is bt ¼ ft – it
In the lower panel, results are reported from synchronized trading from 10.30 a.m. That is, the first

40 min and first 30 min of normal trade in the SPI and AOI, respectively, is excluded
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in the log of the price change process. Miller et al. (1994) demonstrate that thin

trading and non-trading in individual stocks induce a positive serial correlation in

the observed spot index price change process. However, the smoothing effect from

non-trading in individual stocks, averaging bid/ask bounce effects in heavily traded

stocks, and under-differencing the aggregate process also contribute.

Of interest is the reduction in serial correlation of the basis spread as d ! 0. As

the log futures price change moves into the order splitting/non-price change region,

positive serial correlation is induced in the log of the futures price change. This, in

part, helps offset the increasing positive serial correlation induced in the log of the

spot index.

44.6.3 Conditional Variance Estimates

Allowing for and excluding market open/closing effects in first-moment equations

make little difference to GARCH parameter estimates. This observation holds for

alternative specifications of the dynamics for the first-moment equation at 30- and

15-min intervals. However, mis-specifying the first-moment equation dynamics is

important in the conditional second-moment equations for the AOI at 5-min intervals.

The GARCH(1,1) estimates for the SPI, AOI, and basis are generated from

Eq. 44.6, i.e., an autoregressive specification of the levels AR(L) and Eq. 44.5 the

AR(D), respectively (Table 44.2).

Opening dummy variables are incorporated in both first-moment and conditional

second-moment equations for the full-day data series. Two dummy variables,

corresponding to the first- two 5-min intervals, are included in both first and condi-

tional second-moment equations for the full-day data series. Results in the lower

panel are obtained from excluding all trade in the SPI and AOI prior to 10.30 a.m.

At 5-min sampling intervals, a transient effect is introduced into the

unconditional distributions which carries through to the conditional variance

estimates. Values for a1 and b1 differ both within the same data series for

alternative first-moment equations and across data series for the same form of

first-moment equation. For one extreme case (with exclusion of market open-

ing), the GARCH parameter estimates for the AOI and therefore the basis

change do depend on the mis-specification of the first-moment equation.

From the first set of results (full day), it would appear as if the SPI is persistent in

variance, the AOI is not and neither is the basis change persistent in variance.

A second extreme case occurs at 30- and 15-min intervals (with exclusion

of market opening). In this case GARCH parameter estimates are almost identical

for alternative specifications of the dynamics of the first-moment equation. How-

ever, for the AOI the sum of the GARCH parameter estimates is near the IGARCH

boundary, and the same feature is observed in the basis change.

It would appear that, given anomalies are adequately accounted for,

mis-specification of the (weak) dynamic structure of price changes in these processes

is only relevant for estimating these GARCH equations for the AOI at 5-min intervals.

The important issue is the correct specification of the market opening effects.

1264 G.L. Gannon



These preliminary results have been obtained from observations sampled for all

four futures contracts and a continuous series constructed for 1992. The AOI is not

affected by contract expiration. In Table 44.3, GARCH(1,1) estimates for the

separate SPI futures contracts, 3 months to expiration, and synchronously sampled

observations on the AOI are recorded. The full data series corresponding to

synchronized trading on the SFE and ASX is employed.

The same form of dummy variable set was imposed in both first and second-

moment equations. As well, a post-lunchtime dummy is included to account for the

Table 44.2 GARCH estimates for the SPI (Ft), AOI (It), and basis change (Bt) for AR(L) and

AR(D) specifications

Ft It Bt

Full day

30 min

a1 0.0527 0.0517 0.1019 0.1002 0.0904 0.0741

(7.84) (7.58) (7.23) (6.91) (9.04) (7.70)

b1 0.9266 0.9284 0.0196 0.0227 0.0204 0.0251

(115) (111) (2.09) (2.24) (2.06) (2.31)

15 min

a1 0.0602 0.0592 0.1922 0.1514 0.1050 0.1000

(14.7) (14.5) (13.2) (11.4) (13.6) (13.6)

b1 0.9151 0.9167 0.0893 0.1100 0.0852 0.1186

(224) (225) (9.89) (10.9) (5.45) (7.17)

05 min

a1 0.0358 0.0362 0.3540 0.2338 0.1705 0.1685

(34.0) (34.6) (35.8) (27.9) (39.6) (38.5)

b1 0.9535 0.9530 0.2074 0.2428 0.4345 0.4469

(1075) (1087) (26.8) (29.3) (43.3) (45.6)

Excluding market open

30 min

a1 0.0448 0.0444 0.0668 0.0693 0.0684 0.0631

(8.31) (8.12) (8.71) (9.22) (11.5) (10.5)

b1 0.9473 0.9478 0.9074 0.9050 0.9114 0.9172

(155) (150) (92.9) (93.3) (114) (109)

15 min

a1 0.0385 0.0394 0.0867 0.0835 0.0310 0.0403

(14.8) (14.5) (12.9) (13.2) (12.9) (18.8)

b1 0.9551 0.9564 0.8832 0.8872 0.9499 0.9537

(382) (369) (113) (115) (232) (374)

05 min

a1 5.8E-5 0.0329 0.3326 0.2229 4.6E-5 0.0236

(33.7) (30.3) (37.5) (33.6) (27.4) (35.9)

b1 1.000 0.9638 0.4470 0.5795 1.000 0.9742

SING (906) (35.2) (46.4) SING (1353)

Asymptotis t-statistics in brackets
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break in daily market trade at the SFE during 1992. The log of levels is specified for

the first-moment equations.

There is some instability within this set of parameter estimates. However,

a similar pattern emerges within the set of futures and the set of market index

estimates as was observed for the full-day series for 1992. The futures conditional

variance parameter estimates are close to the IGARCH boundary while the index

conditional variance estimates are not. This again implies that these processes

cannot be co-persistent in variance for these samples and observation intervals.

In order to obtain further insight into the, seemingly, perverse results for the

market index, a similar analysis was undertaken on seven of the largest market

capitalized stocks which comprised the AOI during 1992.

Relevant market opening and closing dummy variables were included in both

first and conditional second-moment equations accordingly. These effects were not

systematic in the first-moment equations and are not reported. The stock price

processes have not been transformed to natural logarithmic form for these estima-

tions. This is because the weighted levels of the stock prices are employed in

construction of the market index.

As the observation interval is reduced for these stock prices:

(i) The autoregressive parameter estimates for the price levels equation

converges to a unit root.

(ii) The first-order serial correlation coefficient for the price difference equation

moves progressively into the negative region.

Table 44.3 GARCH estimates for the SPI and AOI 3 months to expiration

MAR JUN SEP DEC

Ft It Ft It Ft It Ft It

30 min

a1 0.042 0.026 0.145 0.015 0.019 0.089 0.060 0.147

(2.37) (0.94) (3.95) (0.76) (2.96) (3.65) (3.24) (3.70)

b1 0.933 0.054 0.116 0.004 0.977 0.021 0.918 0.037

(35.6) (2.05) (0.56) (0.21) (118) (1.12) (35.0) (1.30)

15 min

a1 0.028 0.186 SING 0.107 0.037 0.183 0.036 0.195

(3.11) (5.85) (4.75) (4.96) (6.84) (6.08) (5.80)

b1 0.958 0.108 0.998 0.035 0.956 0.055 0.958 0.102

(72.6) (6.65) (3235) (2.11) (120) (3.75) (114) (3.67)

05 min

a1 0.051 0.240 SING 0.307 0.174 0.378 0.039 0.409

(7.86) (12.4) (14.8) (22.2) (17.0) (11.0) (19.3)

b1 0.881 0.231 0.999 0.118 0.649 0.161 0.956 0.259

(52.9) (12.1) (21170) (7.16) (38.5) (10.6) (247) (16.9)

GARCH(1,1) parameter estimates for the 3 months corresponding to expiration of the March,

June, September, and December contracts for 1992. Full-day data series are employed with

opening and post-lunchtime dummy variables in both first and conditional second-moment

equations. An AR(L) specification of the (log) mean equation is employed for these results
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If these were the only stocks comprising the construction of the index, then we

might expect to see increasing negative serial correlation in the index. But this

observation would only apply if these processes were sampled from a continuous

process which was generated by a particular form of ARMA specification. Only in

the case of data observed from a continuous process could the results on temporal

aggregation of ARMA processes be applied.

These results should not be surprising as the combination of infrequent price

change and “price bounce” from bid/ask effects starts to dominate the time series.

As well, these bid/ask boundaries can shift up and down. When these processes are

aggregated, the effects of price bounce can cancel out. As well, the smoothing

effect of thinly and zero traded stocks within the observation intervals dampens and

offsets individual negative serial correlation observed in these heavily traded stocks

(Table 44.4).

Some of these autoregressive parameter estimates are quite high for the

AR(D) specifications. However, it is apparent that there is almost no difference in

GARCH(1,1) estimates from either the AR(L) or AR(D) specifications at each

observation interval for any stock price. In some instances estimation breaks

down at 5 min intervals.

If the conditional variances of these stock price movements contain common

news and announcement effects, then it should not be surprising that the

weighted aggregated process is not persistent in variance. This can happen

when news affects all stocks in the same market. As well, smoothing effects

from thin-traded stocks help dampen volatility shocks observed in heavily traded

stocks. These news and announcement effects may be irrelevant when observing

these same processes at daily market open to open or close to close. These news

and announcement effects may be due to private information filtering onto the

market prior to and following market open. It is during this period that overnight

information effects can be observed in both price volatility and volume. As well,

day traders and noise traders are setting positions. However, the ad hoc applica-

tion of dummy variables is not sufficient to capture the interaction between

volatility and volume. In the absence of specific measures of these news “vari-

ables,” the effects cannot be directly incorporated into a structural model.

However, these effects are often captured in the price volatility and reflected in

increased trading activity.

44.6.4 Weighted GARCH Estimates

Weighted GARCH estimates for the futures (log) price process with the accumu-

lated number of futures contracts traded within the interval t to t�1 are reported in

Table 44.5. This choice ensures that volume measures are recorded within the

interval that actual prices define.

The weighting variable employed in the index (log) price process is the squared

shock from the futures price mean equation within the interval t to t�1. There is no

natural “volume” of trade variable available for the market index. The form of mean
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Table 44.4 Unconditional mean and GARCH(1,1) estimates: Australian stock prices

Interval

AR(L) AR(D) AR(L) AR(D)

p1 r1 a1 b1 a1 b1
NAB

60 min 0.999 �0.160 0.125 0.762 0.122 0.774

(17.2) (39.2) (16.4) (40.1)

30 min 0.999 �0.135 0.086 0.862 0.081 0.876

(25.3) (123) (24.4) (135)

15 min 0.999 �0.199 0.226 0.627 0.220 0.629

(22.5) (70.0) (22.2) (61.1)

05 min 1.00 �0.287 2.4E-5 0.042 2.3E-5 0.049

(0.94) (0.28) (0.53) (0.24)

BHP

60 min 1.00 �0.034 0.096 0.843 0.098 0.839

(9.26) (45.6) (9.14) (44.2)

30 min 1.00 �0.087 0.067 0.898 0.066 0.899

(14.2) (129) (13.7) (128)

15 min 1.00 �0.104 0.054 0.923 0.054 0.924

(20.5) (281) (20.2) (279)

05 min 1.00 �0.123 0.132 0.795 0.130 0.799

(66.0) (361) (61.9) (363)

BTR

60 min 0.995 �0.035 0.194 SING 0.196 SING

(9.68) (SING) (9.68) (SING)

30 min 0.998 �0.109 0.232 0.294 0.231 0.297

(14.3) (7.36) (13.9) (7.55)

15 min 0.999 �0.109 0.136 0.615 0.131 0.626

(17.6) (31.5) (17.5) (32.8)

05 min 1.00 �0.074 0.076 0.831 0.074 0.835

(45.9) (231) (45.5) (233)

WMC

60 min 1.00 0.052 0.015 0.981 0.015 0.981

(6.58) (368) (6.54) (363)

30 min 1.00 0.016 0.272 0.234 0.265 0.251

(13.7) (5.39) (13.70 (5.85)

15 min 1.00 �0.008 0.185 0.594 0.186 0.597

(19.6) (33.7) (19.3) (34.0)

05 min 1.00 �0.065 0.013 0.003 SING SING

CRA

60 min 0.999 0.031 0.332 0.058 0.333 0.074

(13.0) (1.52) (12.5) (1.88)

30 min 0.999 0.008 0.231 0.456 0.231 0.458

(10.2) (5.89) (9.98) (5.69)

15 min 1.00 0.003 0.132 0.687 0.132 0.688

(24.0) (58.8) (23.8) (58.5)

(continued)
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equation is the same as the generated corresponding results for Table 44.3, i.e., an

AR(L). However, the results are almost identical when alternative forms for the

mean equation are employed, i.e., AR(L) and AR(D).

The specifications generating the reported stock price estimates are augmented

to include a measure of trade activity within the observation interval. These

measures are the accumulated number of stocks traded in each individual stock

within the interval t to t�1. The estimates are reported in Table 44.6. The condi-

tional variance parameter estimates are almost identical from the AR(L) and

AR(D) specifications of the mean equation. The logarithmic transformation has

not been taken for these stock prices.

Direct comparison of these GARCH parameter estimates (a1 and b1) with those

from the unweighted GARCH(1,1) estimates demonstrates the importance of this

measure of activity. The change in GARCH parameter estimates is striking.

Table 44.4 (continued)

Interval

AR(L) AR(D) AR(L) AR(D)

p1 r1 a1 b1 a1 b1
05 min 1.00 0.006 0.087 0.840 0.087 0.841

(84.1) (433) (80.1) (437)

MIM

60 min 0.998 �0.015 0.016 0.979 0.037 0.934

(5.22) (227) (6.47) (94.4)

30 min 0.999 �0.090 0.166 0.279 .160 0.281

(25.30) (123) (24.4) (135)

15 min 1.00 �0.091 0.151 0.612 0.150 0.614

(23.9) (40.9) (23.5) (40.9)

05 min 1.00 �0.084 0.001 0.841 0.001 0.814

(2.66) (9.86) (2.35) (9.46)

CML

60 min 1.00 �0.033 0.088 0.867 0.085 0.873

(8.88) (52.1) (9.02) (56.2)

30 Min 1.00 �0.045 0.037 0.953 0.039 0.950

(14.4) (52.1) (14.4) (269)

15 Min 1.00 �0.056 0.196 0.647 0.189 0.658

(28.2) (62.4) (27.3) (64.6)

05 min 1.00 �0.078 0.095 0.844 0.110 0.846

(74.6) (456) (75.90 (471)

Asymptotic t-statistics in brackets

Column 1 contains the observation interval

Column 2 contains the autoregressive parameter from an AR(L) specification of the price levels

equation

Column 3 contains the first-order autoregressive parameter estimate from an AR(D) specification

of the price change

Columns 4 and 5 contain the GARCH(1,1) parameter estimates from an AR(L) specification of the

price levels equation

Columns 6 and 7 contain the corresponding estimates from anAR(D) specification of the price changes
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The measures of persistence from these weighted estimates are never near the

IGARCH boundary. These effects are summarized in Table 44.7.

These results are generated from an AR(L) specification of the first-moment

equation. By adequately accounting for contemporaneous intraday market activity,

the time persistence of volatility shocks becomes less relevant. It follows that

deviations of the estimated conditional variance from the true (unobservable)

conditional variance are reduced (Table 44.8).

44.6.5 Discussion

In this section some empirical evidence is documented on the behavior of uncon-

ditional first and conditional second-moment effects for the market index, futures

contracts written on the market index, and for heavily traded stock prices. These

results are for Australian financial assets sampled on an intraday basis as the

observation interval approaches transactions time d ! 0.

The specific empirical findings were:

1. The autoregressive parameter estimate from a difference equation for the log of

the index futures is initially negative but moves into the positive region. This can

be attributed to bid/ask bounce being dominated by order splitting and

non-trading effects.

2. The autoregressive parameter estimate from a difference equation for the log of

the market index displays increasing positive serial correlation. This can be

attributed to non-trading smoothing effects in low capitalized stocks, averaging

of bid/ask bounce effects, and under-differencing the aggregated index.

Table 44.5 Weighted GARCH estimates for the SPI and AOI 3 months to expiration

March June September December

Ft It Ft It Ft It Ft It

30 min

a1 0.093 0.040 0.134 0.027 SING 0.079 0.030 0.007

(2.07) (1.51) (4.58) (1.10) (2.73) (1.01) (0.40)

b1 0.014 0.039 SING 0.068 SING 0.033 SING 0.025

(0.24) (1.62) (2.74) (1.91) (1.24)

15 min

a1 0.052 0.185 0.175 0.022 0.039 0.042 0.076 0.058

(1.84) (3.97) (6.67) (1.50) (2.47) (2.35) (2.89) (3.04)

b1 0.004 0.086 0.000 0.163 0.000 0.106 0.001 0.136

(0.19) (3.82) (0.00) (7.61) (0.00) (4.99) (0.01) (5.67)

05 min

a1 0.000 0.156 0.095 0.170 0.004 0.162 0.030 0.128

(4.04) (8.34) (7.79) (9.55) (32.1) (9.58) (8.32) (7.30)

b1 0.000 0.238 SING 0.232 0.000 0.270 0.000 0.327

(5.06) (11.9) (11.8) (0.12) (16.0) (7.79) (17.8)
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3. The basis change between the log futures price change and the log index level

change displayed two surprising effects:

(i) The autoregressive parameter for the basis change is initially negative, but

the strength of this effect weakens. This can be attributed to the log of the

Table 44.6 Weighted GARCH estimates: Australian stock prices

Stock Interval

AR(L) AR(D)

a1 b1 X a1 b1 X

NAB 60 min 0.147 0.028 3.0E-9 0.144 0.027 3.0E-9

(11.7) (2.89) (36.9) (11.1) (2.35) (36.2)

30 min 0.168 0.143 2.8E-9 0.171 0.139 2.9E-9

(11.4) (12.9) (47.0) (11.6) (11.6) (46.8)

15 min 0.140 0.135 3.1E-9 0.131 0.142 3.1E-9

(15.7) (17.1) (114) (15.6) (16.80 (112)

BHP 60 min 0.125 0.053 9.4E-9 0.124 0.057 9.5E-9

(8.97) (2.94) (27.7) (8.49) (3.22) (28.2)

30 min 0.108 0.133 8.7E-9 0.095 0.137 8.9E-9

(10.8) (11.2) (32.8) (9.95) (12.8) (34.1)

15 min 0.132 0.110 9.9E-9 0.121 0.113 10E-9

(13.9) (13.9) (56.6) (13.2) (12.6) (58/8)

BTR 60 min 0.045 0.024 7.8E-9 0.042 0.011 8.0E-9

(3.06) (1.29) (19.0) (2.85) (0.64) (19.2)

30 min 0.116 0.051 8.0E-10 0.106 0.056 8E-10

(9.74) (3.94) (24.8) (9.46) (4.34) (25.3)

15 min 0.070 0.023 1.9E-9 0.058 0.026 1.9E-9

(14.0) (5.28) (38.80 (11.60 (5.45) (38.9)

WMC 60 min 0.110 0.040 1.9E-9 0.110 0.040 1.9E-9

(5.68) (2.18) (25.3) (5.67) (2.22) (25.5)

30 min 0.107 0.008 1.9E-9 0.108 0.009 1.9E-9

(8.35) (0.65) (30.8) (8.39) (0.76) (30.7)

15 min 0.078 0.053 1.8E-9 0.074 059 1.8E-9

(14.6) (6.47) (38.0) (14.2) (7.21) (38.1)

CRA 60 min 0.116 0.020 4.3E-8 0.116 0.015 4.3E-8

(7.04) (2.06) (26.8) (7.07) (1.69) (26.7)

30 min 0.056 0.023 5.4E-8 0.054 0.024 5.5E-8

(8.30) (4.95) (38.4) (8.11) (5.14) (38.4)

15 min 0.000 0.000 2.9E-7 0.000 0.000 2.9E-7

(0.0) (4.04) (207) (1.02) (6.88) (208)

MIM 60 min 0.074 SING 6.4E-10 0.077 0.000 6.E-10

(5.36) (21.7) (5.24) (0.00) (21.6)

30 min 0.071 0.074 6.1E-10 0.070 0.087 6.E-10

(5.84) (4.13) (24.6) (6.28) (4.90) (25.0)

15 min 0.040 0.068 8.7E-10 0.030 0.074 9.E-10

(6.67) (9.29) (40.0) (4.98) (9.68) (40.5)

(continued)
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futures price change behavior where the autoregressive parameter moved

into the positive region and price change became less frequent.

(ii) The unweighted log of the futures price change was close to the IGARCH

boundary. For the full-day data series, the log of the market index change

was not close to the IGARCH boundary and neither was the basis change.

When market opening trade was excluded, the log of the futures price

change, the log of the market index price change, and the basis change

were close to the IGARCH boundary although this effect dissipated as

d ! 0. However, volume of trade on both the SFE and ASX is heaviest

within this excluded interval. It follows that any conclusions concerning

the co-persistence structure would be misleading from this intraday data.

4. The autoregressive parameter from a levels equation for the stock prices con-

verges to a unit root. This can be attributed to small and zero price change

effects.

5. The autoregressive parameter from a difference equation for the stock prices

displays increasing tendency towards and into the negative serial correlation

region. This can be attributed to price bounce effects where the boundaries are

tight and relatively stable.

6. GARCH(1,1) or weighted GARCH conditional variance parameter estimates do

not depend on the specification of the dynamics of first-moment equation for

30- and 15-min intervals of these futures, market index, and stock price processes.

Table 44.6 (continued)

Stock Interval

AR(L) AR(D)

a1 b1 X a1 b1 X

CML 60 min 0.125 SING 1.9E-8 0.122 SING 1.9E-8

(5.92) (17.8) (5.81) (17.8)

30 min 0.108 0.029 2.5E-8 0.101 0.034 2.6E-8

(8.65) (3.44) (30.8) (8.27) (4.16) (31.1)

15 min 0.056 0.000 4.0E-8 0.057 SING 4.4E-8

(16.3) (0.00) (56.2) (17.4) (59.2)

Asymptotic t-statistics in brackets

Columns 3 and 4 contain the weighted GARCH parameter estimates from an AR(L) specification

of the price levels equation with the volume parameter estimate in column 5

Columns 6–8 contain the corresponding estimates from an AR(D) specification of the price changes

Estimates are quite unstable at 5-min intervals

Table 44.7 Measures of persistence from GARCH(1,1) and weighted GARCH equations for the

SPI 3 months to expiration

Interval

G G-W G G-W G G-W G G-W

March June September December

30 min 0.975 0.107 0.261 SING 0.996 SING 0.978 SING

15 min 0.986 0.056 SING 0.175 0.993 0.039 0.994 0.077

05 min 0.932 0.000 SING SING 0.823 0.004 0.995 0.030
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The GARCH(1,1) parameter estimates for the AOI at 5-min intervals were

different when alternative forms of first-moment equations were specified. There

was no perceivable difference in the other processes at this sampling frequency. It

would then appear that increasing positive serial correlation (smoothing) in the

observed returns process has a greater distorting effect on GARCH(1,1) parameter

estimates than increasing negative serial correlation (oscillation) in observed

returns processes. The most important effect is mis-specification of the conditional

variance equations from failure to adequately account for the interaction between

market activity and conditional variance (volatility).

Some implications of these results are:

7. When aggregating stock prices, which may be close to the IGARCH boundary,

persistence in variance can be low for the market index because (i) there is

common persistence present in heavily traded stock prices which when aggre-

gated do not display persistence in variance because heavily traded stock prices

react to market specific news instantaneously, (ii) the smoothing effect of less

heavily traded stocks dampens the volatility clustering which is often observed

in other financial assets such as exchange rates, and (iii) high volatility and

volume of trade effects within these markets following opening is better mea-

sured by employing relevant measures of activity than an ad hoc approach.

8. There is a strong and quantifiable relationship between activity in these markets

and volatility.

44.7 Conclusion

The behavior of financial asset price data observed intraday is quite different from

these data observed at longer sampling intervals such as day to day. Market

anomalies which distort intraday observed data mean that volatility estimates

Table 44.8 Measures of persistence from GARCH(1,1) and weighted GARCH equations for

Australian stock price processes

NAB BHP BTR WMC

60 min 0.887 0.175 0.939 0.178 SING 0.069 0.996 0.150

30 min 0.948 0.311 0.965 0.241 0.526 0.167 0.506 0.115

15 min 0.853 0.275 0.977 0.242 0.751 0.093 0.779 0.131

CRA MIM CML

60 min 0.390 0.136 0.995 SING 0.995 SING

30 min 0.687 0.079 0.445 0.145 0.990 0.137

15 min 0.819 0.000 0.763 0.108 0.843 0.056

An AR(L) specification has been employed to generate these results

The measure of persistence is the calculated as a+b from the conditional variance equations

G represents persistence obtained from a GARCH(1,1) specification

G-W represents persistence obtained from a weighted GARCH specification

SING indicates that one or more of these GARCH parameters could not be evaluated due to

singularities
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obtained from data observed from day-to-day trades will provide different volatility

estimates. This latter feature then depends upon when the data is sampled within the

trading day. If these anomalies and intraday trading patterns are accounted for in the

estimation process, then better estimates of volatility are obtainable by employing

intraday observed data. However, this is dependent on a sampling interval that is

not so fine that these estimators break down.

The specific results indicate that serial correlation in returns processes can

distort parameter estimates obtainable from GARCH estimators. However,

induced excess kurtosis may be a more important factor in distortions to esti-

mates. The most important factor is mis-specification of the conditional variance

(GARCH) equation from omission of relevant variables which explain the

anomalies and trading patterns observed in intraday data. Measures of activity

do help explain systematic shifts in the underlying returns distribution and in

this way help explain “jumps” in the volatility process. This effect can be

observed in the likelihood function and in asymptotic standard errors of

weighting (mixing) variables. One feature is that the measure of volatility

persistence observed in unweighted univariate volatility estimators is reduced

substantially with inclusion of weighting variables.

Appendix

At the time the ASX data were collected, the exchange had just previously moved

from floor to screen trading with the six main capital city exchanges linked via

satellite and trade data streamed to trading houses and brokers instantaneously via

a signal G feed. The SFE maintained Pit trading for all futures and options on

futures contracts at the time.

Legal restrictions on third party use and development of interfaces meant the

ASX had a moratorium on such usage and development. The author was required to

obtain special permission from the ASX to capture trade data from a live feed from

broking house Burdett, Buckeridge, and Young (BBY). There was a further delay in

reporting results of research following the legal agreement obtained from the ASX.

Trade data for stock prices and volume of trade were then sampled into 5-min files

and subsequently into longer sampling interval files. The market index was refreshed

at 1-min intervals and the above sampling scheme repeated. Futures price trades were

supplied in two formats via feed: Pit (voice recorded) data and Chit data. Although

the Pit data provides an instantaneous record of trade data during the trading day,

some trades are lost during frantic periods of activity. The Chit records are of every

trade (price, volume, buyer, seller, time stamped to the nearest second, etc.).

The recorded Chits are placed in a wire basket on a carriageway and transferred up

the catwalk where recorders on computers enter details via a set of simplified

keystrokes. The average delay from trade to recording is around 30 s for the Chit

trades. These are then fed online to trading houses and brokers. At the end of the

trading day, these recorded trades are supplemented with a smaller set of records that
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were submitted to the catwalk late, e.g., morning trades that may have gone to lunch

in a brokers pocket and submitted during the afternoon session and also some late

submitted trades.

We created the intraday sampled files from both the Pit and Chit records.

However, we employed the Chit trades for analysis in this paper so as to have the

correct volume of trade details for each trading interval. All trades were reallocated

using the time stamps to the relevant time of trade, including trades not submitted

on time but supplied as an appendix to the trading day data. In this study the average

number of late Chits were not a high proportion of daily trades. These futures price

records were then sampled into relevant 5-min records and longer sampling frames

generated in the same manner as was employed for the stock prices.

For all series the first price and last price closest to the opening and closing nodes

for each sampling interval were recorded with volume of trade the accumulated

volume of trade within the interval defined by first and last trade.

References

Brown, S. (1990). Estimating volatility. In S. Figlewski et al. (Eds.), Financial options: From
theory to practice (pp. 516–537). Homewood: Business One Irwin.

Duffee, G., Kupiec, P., & White, A. P. (1990). A primer on program trading and stock price
volatility: A survey of the issues and evidence (Working Paper No. 109). FEDS Board of

Governors of the Federal Reserve System.

Edwards, F. R. (1988). Futures trading and cash market volatility: Stock index and interest rate

futures. Journal of Futures Markets, 8, 421–439.
Gannon, G. L. (1994). Simultaneous volatility effects in index futures. Review of Futures Markets,

13, 1027–1066.
Gannon, G. L. (2010). Simultaneous volatility transmissions and spillovers: Theory and evidence.

Review of Pacific Basin Financial Markets and Policies, 13, 127–156.
Ghose, D., & Kroner, K. F. (1994). Common persistence in conditional variances: Implications for

optimal hedging. Paper presented at the 1994 Meeting of the Australasian Econometric

Society.

McCurdy, T., & Morgan, I. G. (1987). Tests of the martingale hypothesis for foreign currency

futures with time varying volatility. International Journal of Forecasting, 3, 131–148.
Miller, M. H., Muthuswamy, J., & Whaley, R. E. (1994). Mean reversion of standard and poor’s

500 index basis changes: Arbitrage-induced or statistical illusion? Journal of Finance, 49,
479–513.

Nelson, D. B. (1990a). ARCHmodels as diffusion approximations. Journal of Econometrics, 45, 7–38.
Nelson, D. B. (1990b). Stationarity and persistence in the GARCH(1,1) model. Econometric

Reviews, 6, 318–334.
Nelson, D. B., & Foster, D. P. (1991). Estimating conditional variances with misspecified ARCH

models: Asymptotic theory. Graduate School of Business, University of Chicago, mimeo.

Nelson, D. B., & Foster, D. P. (1994). Asymptotic filtering theory for univariate ARCH models.

Econometrica, 62, 1–41.

44 Stochastic Volatility Structures and Intraday Asset Price Dynamics 1275



Optimal Asset Allocation Under VaR
Criterion: Taiwan Stock Market 45
Ken Hung and Suresh Srivastava

Contents

45.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1278

45.2 Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279

45.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281

45.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288

Appendix 1: Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288

Appendix 2: Optimal Portfolio Under a VaR Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290

Abstract

Value at risk (VaR) measures the worst expected loss over a given time horizon

under normal market conditions at a specific level of confidence. These days,

VaR is the benchmark for measuring, monitoring, and controlling downside

financial risk. VaR is determined by the left tail of the cumulative probability

distribution of expected returns. Expected probability distribution can be

generated assuming normal distribution, historical simulation, or Monte

Carlo simulation. Further, a VaR-efficient frontier is constructed, and an

asset allocation model subject to a target VaR constraint is examined.

This paper examines the riskiness of the Taiwan stock market by determining

the VaR from the expected return distribution generated by historical simulation.

Our result indicates the cumulative probability distribution has a fatter left tail,

compared with the left tail of a normal distribution. This implies a riskier market.
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We also examined a two-sector asset allocation model subject to a target VaR

constraint. The VaR-efficient frontier of the TAIEX traded stocks recommended

mostly a corner portfolio.

Keywords

Value at risk • Asset allocation • Cumulative probability distribution • Normal

distribution • VaR-efficient frontier • Historical simulation • Expected return

distribution • Two-sector asset allocation model • Delta • Gamma • Corner

portfolio • TAIEX

45.1 Introduction

Risk is defined as the standard deviation of unexpected outcomes, also known as

volatility. Financial market risks are of four types: interest rate risk, exchange rate

risk, equity risk, and commodity risk. For a fixed-income portfolio, the linear

exposure to the interest rate movement is measured by duration. Second-order

exposure is measured by convexity. In the equity market, linear exposure to market

movement is measured by the systematic risk or beta coefficient. In the derivative

markets, the first-order sensitivity to the value of underlying asset is measured by

delta, and second-order exposure is measured by gamma. Innovations in the

financial markets have introduced complicated portfolio choices. Hence, it is

becoming more difficult for managers to get useful and practical tools of market

risk measurement. The simple linear considerations such as Basis Point Value, or

first- or second-order volatility, are inappropriate. They can’t accurately reflect risk

at the time of dramatic price fluctuation.

VaR (value at risk) has become a popular benchmark for the downside risk

measurement.1 VaR converts the risks of different financial products into one

common standard: potential loss, so it can estimate market risk for various kinds

of investment portfolio. VaR is used to estimate the market risk of financial assets.

Special concern of the market risk is the downside risk of portfolio values resulting

from the fluctuation of interests, exchange rates, stock prices, or commodity prices.

VaR is consistent in estimating the financial risk estimation. It indicates risk of

dollar loss of portfolio value. Now the risks exposure of different investment

portfolios (such as equity and fixed income) or different financial products

(such as interest rate swaps and common stock) have a common basis for direct

comparison. For decision makers, VaR is not only a statistical summary; it can also

be used as a management and risk control tool to decide capital adequacy,

asset allocation, synergy-based salary policy, and so on.

1Extensive discussion of value at risk can be found in Basak and Shapiro (2001), Beder (1995),

Dowd (1998), Fong and Vasicek (1997), Hendricks (1996), Hoppe (1999), Jorion (1997, 1997),

Schachter (1998), Smithson and Minton (1996a, b), and Talmor (1996).
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VaR is a concept widely accepted by dealers, investors, and legislative authorities.

J.P. Morgan has advocated VaR and incorporated it in RiskMetrics (Morgan 1996).

RiskMetrics contain most of the data and formulas used to estimate daily VaR,

including daily updated fluctuation estimations for hundreds of bonds, securities,

currencies, commodities, and financial derivatives. Regulatory authorities and central

bankers from various countries at Basel Committee meetings agreed to use VaR as the

risk-monitoring tool for the management of capital adequacy. VaR has also been

widely accepted and employed by securities corporations, investment banks, com-

mercial banks, retirement funds, and nonfinancial institutions. Risk managers have

employed VaR in ex-post evaluation, that is, to estimate and justify the current market

risk exposure.2 Confidence-based risk measure was first proposed by Roy (1952).

The inclusion of VaR into the asset allocation model means the inclusion of

downside risk into model constraints. Within the feasible scope of investment

portfolio that meets shortfall constraints, the optimal investment portfolio is

decided by maximum expected return. The definition of shortfall constraint is that

the probability of investment portfolio value dropping to a certain level is set as the

specific disaster probability. The asset allocation framework that takes VaR as one

of its constraints has increased the importance of VaR and has employed VaR as an

ex-ante control tool of market risk.

45.2 Value at Risk

One difficulty in estimating VaR is the choice of various VaR methods

and corresponding hypotheses. There are three major methods to estimate

VaR: variance-covariance analysis, historical simulation, and Monte Carlo simulation.

Variance-covariance analysis assumes that market returns for financial products are

normally distributed, and VaR can be determined from market return’s variance and

covariance. The normal distribution hypothesis of variance-covariance analysis makes

it easy to estimate VaR at different reliability and different holding period

(see Appendix 1). Its major disadvantage is that the return in the financial market is

usually not in normal distribution and has fat tails. This means the probability of

extreme loss is more frequent than estimated by variance-covariance analysis.

Historical simulation assumes the future market return of the investment port-

folio is identical to the past returns; hence, the attributes of current market can be

used to simulate the future market return (Hendricks 1996; Hull and White 1998).

Historical simulation approach does not suffer from the tail-bias problem, for it

does not assume normal distribution. It relies on actual market return distribution,

and the estimation reflects what happened during the past sample period. It has

another advantage over variance-covariance analysis: it can be used for nonlinear

products, such as commodity derivatives. However, the problem with historical

2Institutional use of VaR can be found in Basel (1995, 1998a, b, c, 1999), Danielsson et al. (1998),

and Danielsson Hartmann and de Vries (1998).
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simulation is its sensitivity to sample data. Many scholars pointed out that if

October 1987 is included into the observation period, then it would make great

difference to the estimation of VaR. Another problem with historical simulation is

that the left tail of actual return distribution is at zero stock prices. In other words, it

would not be accurate to assume a zero probability of loss that is greater than the

past loss. Lastly, the estimation of historical simulation is more complicated than

that of variance-covariance analysis. The VaR needs to be reestimated every time

the level of reliability or holding period changes.

Monte Carlo simulation can be used to generate future return distribution

for a wide range of financial products. It is done in two steps. First, a stochastic

process is specified for each financial variable along with appropriate parameters.

Second, simulated prices are determined for each variable, and portfolio loss is

calculated. This process is repeated 1,000 times to produce a probability distribu-

tion of losses. Monte Carlo simulation is the most powerful tool for generating

the entire probability distribution function and can be used to calculate VaR

for a wide range of financial products. However, it is time consuming and

expensive to implement.

Modern investment portfolio theories try to achieve optimal asset allocation via

maximizing the risk premium per unit risk, also known as the Sharpe ratio (Elton

and Gruber 1995). Within the framework of mean-variance, market risk is defined

as the expected probable variance of investment portfolio. To estimate risk with

standard deviation implies investors pay the same attention to the probabilities of

negative and positive returns. Yet investors have different aversion to investment’s

downside risk than to capital appreciation. Some investors may use semi-variance

to estimate the downside risk of investment. However, semi-variance has not

become popular.

Campbell et al. (2001) have developed an asset allocation model that takes VaR

as one of its constraints. This model takes the maximum expected loss preset by

risk managers (VaR) as a constraint to maximize expected return. In other words,

the optimal investment portfolio deduced from this model meets the constraint of

VaR. This model is similar to the mean-variance model that generates

the Sharpe index. If the expected return is a normal distribution, then this model

is identical with mean-variance model. Details of this model are presented in

the Appendix.

Other researchers have examined four models to introduce VaR for ex-ante

asset allocation of optimal investment portfolio: mean-variance (MV) model,

mini-max (MM) model, scenario-based stochastic programming (SP) model, and

a model that combines stochastic programming and aggregation/convergence

(SP-A). The investment portfolio constructed using the SP-A model has a higher

return in all empirical and simulation tests. Robustness test indicates that VaR

strategy results in higher risk tolerance than risk assessment that takes severe loss

into consideration. Basak and Shapiro (2001) pointed out that the drawback of risk

management lies in its focus on loss probability instead of loss severity. Although

loss probability is a constant, when severe loss occurs, it has greater negative

consequence than non-VaR risk management.
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Lucas and Klaassen (1998) pointed out the importance of correctly assessing the

fat-tailed nature of return distribution. If the real return is not in normal distribution,

the asset allocation under the hypothesis of normal distribution will result in

non-efficiency or non-feasibility. An excellent discussion of VaR and risk

measurements is presented by Jorion (2001).

45.3 Empirical Results

In July 1997, financial crisis broke out in Southeast Asian nations and then prolifer-

ated to other Asian regions and led to a series of economic problems. Taiwan had also

been attacked by financial crisis in late 1998. Domestic financial markets fluctuated.

Corporations and individuals greatly suffered. The proliferation of financial crisis

within or among countries makes it impossible for corporations and individuals to

ignore market risk. Risk measurement is the first thing to do before investment.

The Taiwan market general weighted stock index, individual weighted stock price

indexes, and interbank short loan interest rate used in this research paper are obtained

from the data base of AREMOS. We divide the historical period into two groups,

from 1980 to 1999 and from 1991 to 1999, so as to analyze the impact of violent stock

market fluctuation on VaR estimation, such as the New York stock market collapse in

October 1987 and Taiwan stock market dramatic uprising from 1988 to 1990. The

first period is rather long and can indicate the nature of dramatic stock fluctuation.

The second period is rather short and can reflect the change of stock market tendency.

This paper employs historical simulation to reproduce the daily fluctuations of

returns for electrical machinery, cement, food, pulp and paper, plastics and

petroleum, and textile and fiber stocks trading in the Taiwan stock market during

the periods of 1980–1999 and 1991–1999. We estimate their VaRs under reliability

levels of 95 %, 97.5 %, and 99 %. The expected return of investment portfolio in

1999 is the sum of annual mean returns of various stocks multiplied with their

respective weights. We use this expected return to estimate year 1999 optimal stock

holding proportion and analyze the impact of different historical simulation periods

on optimal asset allocation.

Table 45.1 presents the summary of TSE general weighted stock index

(daily data) and estimated VaR for periods 1980–1999 and 1991–1999. Table 45.2

presents cumulative probability distributions of TSE daily index return for the

1980–1999 period and daily returns under the assumption of normality. It shows

that at confidence level lower than 95.8 % (e.g., 90 %), the left-tail probability for

Table 45.1 Summary of Taiwan Stock Exchange (TSE) daily index

Period Mean return Standard deviation Kurtosis VaR*

1980–1999 0.06 % 1.67 % 2.735 0.0263

1991–1999 0.04 % 1.60 % 2.464 0.0249

Annualized return for the two periods is 23.64 % and 11.87 %, respectively. VaR* is the maximum

expected return loss for 1-day holding period at a reliability level of 95 %

45 Optimal Asset Allocation Under VaR Criterion: Taiwan Stock Market 1281



historical distribution is higher than the normal return probability (4.2 %). Hence,

under the normal distribution assumption, the VaR is overestimated, and this leads

to an overcautious investment decision. At confidence level higher than 95.8 %

(e.g., 97.5 %), the left-tail probability for historical distribution is lower than the

normal return probability (4.2 %). Hence, under the normal distribution assump-

tion, the VaR is underestimated, and this leads to an overactive investment decision.

Figure 45.1 is the graphical presentation of the data in Table 45.2. The solid blue

line represents cumulative probability distributions of TSE daily index return, and the

dashed red line represents the normal distribution. The bottom panel is the enlarged

view of the left tail. This graph also indicates that VaR estimated using extreme

values of historical distribution will lead to an overactive investment decision.

Table 45.3 reports annualized returns and standard deviations for TSE daily

index and six selected industries: cement, electrical machinery, food, pulp and

paper, plastics and petroleum, and textile and fiber. For the 1980–1999 period,

the food industry had the greatest risk with a standard deviation of 53.47 % and

15.13 % annual return, whereas the overall market had a standard deviation of

50.80 % with 23.22 % annual return. Textile and fiber was the least risky industry

with a standard deviation of 41.21 % and 12.78 % annual return. For the 1991–1999

period, the electrical machinery industry had the greatest risk with a standard

Table 45.2 Cumulative probability distribution of TSE daily index

Taiwan index Historical data Normal distribution
Return (%) Cumulative probability Cumulative probability

�7 0 1.20946E-05

�6 0.004723 0.000144816

�5 0.01102 0.001236891

�4 0.021165 0.007577989

�3 0.038482 0.033571597

�2.9 0.040581 0.0382868

�2.8 0.042855 0.043528507

�2.7 0.045828 0.049334718

�2.5 0.054749 0.062791449

�2.3 0.066993 0.078949736

�2 0.082736 0.108825855

�1 0.185062 0.262753248

0 0.477873 0.485257048

1 0.775407 0.712585369

2 0.905895 0.876745371

3 0.960994 0.960522967

4 0.982158 0.990731272

5 0.992304 0.998424485

6 0.995977 0.999807736

7 1 0.999983254

Period: 1980–1999
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Fig. 45.1 Cumulative probability distribution of Taiwan daily stock index. Period: 1980–1999.

Left tail of the cumulative probability of Taiwan weighted daily stock index. Period 1980–1999.

Lower panel shows a fat left tail

Table 45.3 TSE index and selected industry’s returns and standard deviations

Period 1980–1998 1991–1998

Industry

Annual return

(%)

Standard deviation

(%)

Annual return

(%)

Standard deviation

(%)

TSE index 23.22 50.80 9.40 36.58

Cement 12.48 48.37 0.45 24.92

Electrical

machinery

19.49 46.76 26.12 42.26

Food 15.13 53.47 9.55 32.29

Pulp and paper 8.50 45.78 4.64 39.41

Plastics and

petroleum

13.32 43.99 11.39 36.26

Textile and fiber 12.78 41.21 7.88 36.62

45 Optimal Asset Allocation Under VaR Criterion: Taiwan Stock Market 1283



deviation of 42.267 % and 26.12 % annual return, whereas the overall market had

a standard deviation of 36.58 % with 9.40 % annual return. The cement industry

was the least risky industry with a standard deviation of 24.92 % and 0.45 % annual

return. Next we constructed a two-industry optimal portfolio subject to VaR

constraint. The optimal asset allocation for the two-industry portfolio is obtained

by maximizing S(p) (derivation discussed in Appendix). The resulting

VaR-efficient frontiers are plotted in Fig. 45.2. The upper panel in Fig. 45.2 refers
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Fig. 45.2 VaR-efficient frontier. The upper figure refers to investment portfolio of electrical

machinery and plastics and petroleum stocks, and the lower figure refers to investment portfolio of

cement and food stocks. VaR is set at reliability level of 95 %. Expected return and VaR are

estimated from TSE industry indexes from 1980 to 1998

1284 K. Hung and S. Srivastava



to VaR-efficient portfolios of electrical machinery and plastics and petroleum

stocks, and the lower panel in Fig. 45.2 refers to VaR-efficient portfolios of cement

and food stocks. VaR is set at the 95 % confidence level. Table 45.4 presents

portfolio weights for different combinations of industry stocks at different levels of

confidence. Asset allocations for most of the industry combinations represent

corner solutions, i.e., 100 % investment in one industry. For example, when

electrical machinery stocks are combined with stocks from any other industry, the

optimal portfolio is 100 % investment in electrical machinery stocks, for both the

time periods and the three confidence levels. Asset allocation for cement stocks is

dominated by the other five industry stocks. Allocations of food stocks dominate

all other stock weights except electrical machinery. The general nature of

asset allocation is the same for both time periods and the confidence levels.

Suppose an investor selects the VaR constraint for maximizing S(p) at

a specified level of confidence (say 95 %) and the actual VaR(c, p*) is at a higher

level (97.5 %); then VaR(portfolio) will be greater that target VaR*. In this case

investors will have to invest a portion of the fund in T-bills (B > 0, defined in

Appendix). This will make investment VaR(c, p*) equal to the VaR* in the preset

Table 45.4 Optimal asset allocation for the two-industry portfolio obtained by maximizing S(p)
at different level of confidence

Confidence level

Portfolio choices 95 % 97.5 % 99 %

Electrical machinery cement {1,0}; {1,0}a {1,0}; {1,0} {1,0}; {1,0}

Electrical machinery food {1,0}; {1,0} {1,0}; {1,0} {1,0}; {1,0}

Electrical machinery pulp and paper {1,0}; {1,0} {1,0}; {1,0} {1,0}; {1,0}

Electrical machinery plastics and

petroleum

{1,0}; {1,0} {1,0}; {1,0} {1,0}; {1,0}

Electrical machinery textile and fiber {1,0}; {1,0} {1,0}; {1,0} {1,0}; {1,0}

Cement food {0,1}; {0,1} {0,1}; {0,1} {0,1}; {0,1}

Cement pulp and paper {0,1}; {0,1} {0,1}; {0,1} {0,1}; {0,1}

Cement plastics and petroleum {0.12, 0.88};

{0,1}

{0.04, 0.96};

{0,1}

{0.17, 0.83};

{0,1}

Cement textile and fiber {0.67, 0.33};

{0,1}

{0.6, 0.4}; {0,1} {0.15, 0.85};

{0,1}

Food pulp and paper {1,0}; {1,0} {1,0}; {1,0} {0.98, 0.02};

{0,1}

Food plastics and petroleum {1,0}; {1,0} {1,0}; {1,0} {1,0}; {1,0}

Food textile and fiber {1,0}; {1,0} {1,0}; {1,0} {1,0}; {1,0}

Pulp and paper plastics and petroleum {0,1}; {0,1} {0,1}; {0,1} {0,1}; {0,1}

Pulp and paper textile and fiber {0,1}; {0,1} {0,1}; {0,1} {0,1}; {0,1}

Plastics and petroleum textile and fiber {0.99, 0.01};

{1,0}

{0.89, 0.11};

{1,0}

{1,0}; {1,0}

First set {x, y} refers to the historical simulation for period 1980–1998, and second set {x, y} refers

to the historical simulation for period 1991–1998
a{1, 0} represents 100 % investment in electrical machinery industry and 0 % investment in

cement industry
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constraint. In opposite case, the VaR* constraint is specified at a higher level than

the portfolio VaR(c, p*); then investors will borrow money to invest in risky assets

(B < 0). Tables 45.5 and 45.6 list examples of investment in two-industry stocks

and T-bills for periods 1980–1999 and 1991–1999, respectively. In each case, the

target VaR* in the preset constraint is at a 95 % level of confidence, and 1,000 yuan

is invested in the portfolio. In the first panel of Table 45.5, 1,000 yuan is invested in

Table 45.5 Optimal allocation for two-industry portfolio (historical simulation, period

1980–1998)

Confidence

level (%)

Cement

(%)

Food

(%)

Portfolio VaR

(c, p*)

Lending,

B yuan VaR*

Cement

(%)

Food

(%)

Cash

(%)

95 100 0 31.12 0 31.12 100 0 0

97.5 100 0 42.57 121 31.12 87.9 0 12.1

99 100 0 53.92 216 31.12 78.4 0 21.6

95 0 100 27.49 0 27.49 0 100 0

97.5 0 100 40.22 139 27.49 0 86.1 13.9

99 0 100 56.27 267 27.49 0 73.3 26.7

95 12 88 27.52 0 27.52 12 88 0

97.5 4 96 41.99 154 27.52 3.4 81.2 15.4

99 17 83 53.42 246 27.52 12.8 62.6 24.6

Confidence

level (%)

Pulp and

paper

(%)

Textile

and fiber

(%)

Portfolio

VaR(c,

p*)

Lending,

B yuan VaR*

Pulp and

paper

(%)

Textile

and fiber

(%)

Cash

(%)

95 0 100 29.58 0 29.58 0 100 0

97.5 0 100 41.97 132 29.58 0 86.8 13.2

99 0 100 53.85 230 29.58 0 77 23

Confidence

level (%)

Cement

(%)

Textile

and fiber

(%)

Portfolio

VaR(c, p*)

Lending,

B yuan VaR*

Cement

(%)

Textile

and fiber

(%)

Cash

(%)

95 67 33 25.86 0 25.86 12 88 0

97.5 60 40 41.97 172 25.86 49.7 33.1 17.2

99 15 85 52.51 256 25.86 11.2 63.2 25.6

Confidence

level (%)

Plastics

and

petroleum

(%)

Textile

and fiber

(%)

Portfolio

VaR

(c, p*)

Lending,

B yuan VaR*

Plastics

and

petroleum

(%)

Textile

and fiber

(%)

Cash

(%)

95 99 1 28.43 0 28.43 99 1 0

97.5 89 11 41.35 139 28.43 76.6 9.5 13.9

99 100 0 55.50 253 28.43 74.7 0 25.3

Confidence

level (%)

Food

(%)

Textile and

fiber (%)

Portfolio

VaR(c, p*)

Lending,

B yuan VaR*

Food

(%)

Textile and

fiber (%)

Cash

(%)

95 100 0 27.49 0 27.49 100 0 0

97.5 100 0 40.22 121 27.49 87.9 0 12.1

99 100 0 56.27 267 27.49 73.3 0 26.7

Two-industry portfolio with initial investment of 1,000 yuan

Allocations for other industry combinations are available to interested readers
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electrical machinery stocks and 0 in cement stocks. These allocations are from

Table 45.4. Portfolio VaR(c, p*) is 31.12, 42.57, and 53.92 yuan at 95 %, 97.5 %,

and 99 % respectively. This leads to the lending of 0, 121, and 216 yuan to meet the

target VaR of 31.12. Thus, a 97.5 % portfolio consists of 87.9 % in electrical

machinery stocks, 0 in cement stocks, and 21.1 % in T-bills.

Table 45.6 Optimal allocation for two-industry portfolio (historical simulation, period

1991–1998)

Confidence

level (%)

Cement

(%)

Food

(%)

Portfolio VaR

(c, p*)

Lending,

B yuan VaR*

Cement

(%)

Food

(%)

Cash

(%)

95 100 0 30.55 0 30.55 100 0 0

97.5 100 0 42.57 128 30.55 87.2 0 12.8

99 100 0 53.92 221 30.55 77.9 0 22.1

95 0 100 24.57 0 24.57 0 100 0

97.5 0 100 34.68 117 24.57 0 88.3 11.7

99 0 100 48.41 238 24.57 0 76.2 23.8

95 0 100 27.19 0 27.19 0 100 0

97.5 0 100 35.95 100 27.19 0 90 10

99 0 100 48.59 213 27.19 0 78.7 21.3

Confidence

level (%)

Pulp and

paper

(%)

Textile

and fiber

(%)

Portfolio

VaR(c,

p*)

Lending,

B yuan VaR*

Pulp and

paper

(%)

Textile

and fiber

(%)

Cash

(%)

95 0 100 27.75 0 27.75 0 100 0 %

97.5 0 100 38.98 124 27.75 0 87.6 12.4

99 0 100 49.06 212 27.75 0 78.8 21.2

Confidence

level (%)

Cement

(%)

Textile

and fiber

(%)

Portfolio

VaR(c, p*)

Lending,

B yuan VaR*

Cement

(%)

Textile

and fiber

(%)

Cash

(%)

95 0 100 27.75 0 27.75 0 100 0

97.5 0 100 38.98 124 27.75 0 87.6 12.4

99 0 100 49.06 212 27.75 0 78.8 21.2

Confidence

level (%)

Plastics

and

petroleum

(%)

Textile

and

fiber

(%)

Portfolio

VaR(c, p*)

Lending,

B yuan VaR*

Plastics

and

petroleum

(%)

Textile

and

fiber

(%)

Cash

(%)

95 100 0 27.19 0 27.19 0 100 0

97.5 100 0 35.95 100 27.19 0 90 10

99 100 0 48.59 213 27.19 0 78.7 21.3

Confidence

level (%)

Food

(%)

Textile and

fiber (%)

Portfolio

VaR(c, p*)

Lending,

B yuan VaR*

Food
(%)

Textile and

fiber (%)

Cash

(%)

95 100 0 24.57 0 24.57 100 0 0

97.5 100 0 34.68 117 24.57 88.3 0 11.7

99 100 0 48.41 238 24.57 76.2 0 23.8

Two-industry portfolio with initial investment of 1,000 yuan

Allocations for other industry combinations are available to interested readers
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45.4 Conclusion

TSE daily index was found to be riskier than the market risk under the assumption of

normal distribution for market returns. This resulted in the left tail of cumulative return

distribution being fatter and a higher value at risk, indicating an overactive investment

activity. For asset allocation model under a constrained VaR framework, most of the

optimal portfolios have predominant investment in stocks from one industry. Hence, it

will be inappropriate to comment on the optimal allocation of future investment

portfolio based on the past stock performance of this unique period studied.

Appendix 1: Value at Risk

LetW0 be the initial investment and R be the rate of return of a portfolio. The value

of the portfolio at the end of the target horizon will beW ¼W0(1 + R). Let m and s
be the expected return and standard deviation of R. The lowest portfolio value at the
confidence level c is defined as W* ¼ W0 (1 + R*). The relative VaR is the dollar

loss relative to the mean:

VaR meanð Þ ¼ E Wð Þ �W� ¼ �W0 R� � mð Þ (45.1)

The absolute VaR is the dollar loss relative to zero:

VaR zeroð Þ ¼ W0 �W� ¼ �W0R
� (45.2)

W* and R* are minimum value and cutoff return, respectively. In this paper we are

discussing absolute VaR. The general form of VaR can be derived from the probability

distribution of the future portfolio value f(w). For a given confidence level c, the worst

possible portfolio value W* is such that probability of exceeding W* is c:

c ¼
ð1
W�

f wð Þdw (45.3)

The probability of a value lower than W*, p ¼ P(w � W*) is 1–c:

p ¼ P w � W�ð Þ ¼ 1� c ¼
ðW�

�1
f wð Þdw (45.4)

Typical confidence level c is 95 %. This computation of VaR does not require

estimation of variance-covariance matrix.

When portfolio returns are normally distributed, then distribution f(w) can be

translated into a standard normal distribution F(e), where e has mean zero and

standard deviation of one. VaR can be determined from the tables of the cumulative

standard normal distribution:
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VaR ¼ N 1� cð Þ ¼
ð1�c

�1
’ eð Þde (45.5)

and the cutoff return R* ¼ � zs + m. This Appendix is based on Jorion (2001).

Details of normal distribution can be found in Johnson and Wichern (2007).

Appendix 2: Optimal Portfolio Under a VaR Constraint

We present an asset allocation model under a value-at-risk constraint. This model

sets maximum expected loss not to exceed the VaR for a selected investment

horizon, T at a given confidence level. Then asset proportions are allocated across

the portfolio such that the wealth at the end of investment horizon is maximized.

SupposeW0 is the investor’s initial wealth and B is the amount that the investor can

borrow (B> 0) or lend (B< 0) at the risk-free interest rate rf. Let n be the number of

risky assets, gi be the fraction invested in risky asset i, and P(i, t) be the price of

asset I at time t. Then the initial value of the portfolio

W0 þ B ¼
Xn
i¼1

giP i; 0ð Þ (45.6)

represents the budget constraint.

Let VaR* be the target VaR consistent with investor’s risk aversion and WT be

the wealth at the end of the holding period, T. The downside risk constraint can be

written as

Pr W0 �WTð Þ � VaR�f g � 1� cð Þ (45.7)

where Pr {.} denotes the expected probability conditioned on information available

at time, t ¼ 0, and c is the confidence level. Equation 45.2 can be written as

Pr WT � W0 � VaR�ð Þf g � 1� cð Þ (45.8)

Let rp be the total portfolio return at the end of the holding period and T then the

expected wealth at the end of holding period; T can be written as

E WTð Þ ¼ W0 þ Bð Þ 1þ rp
� �� B 1þ rfð Þ (45.9)

Investor’s constrained wealth maximizing objective can be written as

Max: E WTð Þ
s:t: Pr WT � W0 � VaR�ð Þf g � 1� cð Þ (45.10)

Performance measure S(p) and borrowed amount can be deduced from Eq. 45.5.

Let p* be the maximizing portfolio and q(c, p) defines the quantile that corresponds
to probability (1 � c) which can be obtained from portfolio return’s cumulative

density function. Maximizing portfolio p* is defined as
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p� : max
p S pð Þ ¼ rp � rf

W0rf �W0q c; pð Þ (45.11)

Initial wealth in the denominator of Eq. 45.6 is a scale constant and does not

affect the asset allocation. Let VaR(c, p) denote portfolio p’s VaR, and then the

denominator of Eq. 45.6 can be written as

F c; pð Þ ¼ W0rf � VaR c; pð Þ (45.12)

If we consider rf as the benchmark return, then F(c, p) represents potential for
portfolio losses at the confidence level c. Performance measure S(p) represents

Sharpe-like reward-risk ratio, and optimization problem becomes

Optimal portfolio:

p� : max
p

S pð Þ ¼ rp � rf
F c; pð Þ

Optimal portfolio allocation is independent of the initial wealth. It is also

independent of the target VaR*. Risk measure F(c, p*) depends on VaR(c, p*)

and not on VaR*. Investors first allocates the wealth among risky assets and then

decides borrowing or lending depending on the value of {VaR* � VaR(c, p*)}.

Borrowed amount B can be written as

B ¼ W0 VaR� � VaR c; p�ð Þð Þ
F0 c, p0ð Þ

If {VaR* � VaR(c, p*)} is positive, then there is an opportunity to increase the

portfolio return by borrowing at the risk-free rate and invest it in risky asset. If

{VaR* � VaR(c, p*)} is negative, then the portfolio risk needs to be reduced by

investing a portion of the initial wealth in the risk-free asset. In either case

the relative proration of funds invested in risky assets remains the same.

Since VaR(c, p*) depends on the choice of holding period, confidence level, VaR

estimation technique, and the assumption regarding the expected return distribution,

the borrowing (B> 0) or lending (B< 0) will also change. This Appendix is based on

Campbell et al. (2001).
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Abstract

Themost common valuation model is the dividend growth model. The growth rate

is found by taking the product of the retention rate and the return on equity. What

is less well understood are the basic assumptions of this model. In this paper, we

demonstrate that the model makes strong assumptions regarding the financing mix

of the firm. In addition, we discuss several methods suggested in the literature on

estimating growth rates and analyze whether these approaches are consistent with

the use of using a constant discount rate to evaluate the firm’s assets and equity.

This chapter is a slightly revised version of Chapter 64 of Encyclopedia of Finance, 2nd Edition
and Brick et al. (2014).
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The literature has also suggested estimating growth rate by using the average

percentage change method, compound-sum method, and/or regression methods.

We demonstrate that the average percentage change is very sensitive to extreme

observations. Moreover, on average, the regression method yields similar but

somewhat smaller estimates of the growth rate compared to the compound-sum

method. We also discussed the inferred method suggested by Gordon and Gordon

(1997) to estimate the growth rate. Advantages, disadvantages, and the interrela-

tionship among these estimation methods are also discussed in detail.

Keywords

Growth rate • Discount cash flow model • Internal growth rate • Sustainable

growth rate • Compound sum method

46.1 Introduction

One of the more highly used valuation models is that developed by Gordon and

Shapiro (1956) and Gordon (1962) known as the dividend growth model. In security

analysis and portfolio management, growth rate estimates of earnings, dividends, and

price per share are important factors in determining the value of an investment or

a firm. These publications demonstrate that the growth rate is found by taking the

product of the retention rate and the return on equity. What is less well understood are

the basic assumptions of this model. In this paper, we demonstrate that the model

makes strong assumptions regarding the financing mix of the firm.

In addition, we will also discuss several methods suggested in the literature on

estimating growth rates. We will analyze whether these approaches are consistent

with the use of using a constant discount rate to evaluate the firm’s assets and

equity. In particular, we will demonstrate that the underlying assumptions of the

internal growth rate model (whereby no external funds are used to finance growth)

is incompatible with the constant discount rate model of valuation.

The literature has also suggested estimating growth rate by taking the average of

percentage change of dividends over a sample period, taking the geometric average

of the change in dividends or using regression analysis to estimate the growth rate

(e.g., Lee et al. 2009; Lee et al. 2012; Lee et al. 2000; and Ross et al. 2010). Gordon

and Gordon (1997) suggest first using the Capital Asset Pricing Model (CAPM) to

determine the cost of equity of the firm and then using the dividend growth model to

infer the growth rate. Advantages, disadvantages, and the interrelationship among

these estimation methods are also discussed in detail.

This paper is organized as follows. In Sect. 46.2 we present the Gordon and

Shapiro model (1956). We discuss the inherent assumptions of the model and its

implied method to estimate the growth rate. Section 46.3 analyzes the internal

growth rate and sustainable growth rate models. Section 46.4 describes leading

statistical methods for estimating firm’s growth rates. We will also present the
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inferred method suggested by Gordon and Gordon (1997) to estimate the growth

rate. Concluding remarks appear in Sect. 46.5.

46.2 The Discounted Cash Flow Model and the Gordon
Growth Model

The traditional academic approach to evaluate a firm’s equity is based upon the

constant discount rate method. One approach uses the after-tax weighted average

cost of capital as a discount rate. This model is expressed as:

Value of Equity ¼
X1
t¼1

CFut

1þ ATWACOCð Þt � Debtt, (46:1)

where CFut is the expected unlevered cash flow of the firm at time t and Debtt is the
market value of debt outstanding. ATWACOC equals L(1 � t)Rd + (1 � L)r where
L is the market value proportion of debt, t is the corporate tax rate, Rd is the cost of

debt and r is the cost of equity. The first term on the right hand side of Eq. 46.1 is the

value of the assets. Subtracting out the value of debt yields the value of equity. The

price per share is therefore the value of equity divided by the number of shares

outstanding. Alternatively, the value of equity can be directly found by discounting

the dividends per share by the cost of equity, or more formally:

Value of Common Stock P0ð Þ ¼
X1
t¼1

dt

1þ rð Þt, (46:2)

where dt is the dividend per share at time t. Boudreaux and Long (1979), and

Chambers et al. (1982) demonstrate the equivalence of these two approaches

assuming that the level of that the level of debt is a constant percentage of the

value of the firm.1 Accordingly:

X1
t¼1

Xt

1þ ATWACOCð Þt � Debtt

#of Shares Outstaning
¼
X1
t¼1

dt

1þ rð Þt (46:3)

If we assume that dividends per share grow at a constant rate g, then Eq. 46.2 is

reduced to the basic dividend growth model2:

P0 ¼ d1
r � gð Þ : (46:4)

1See Brick and Weaver (1984, 1997) concerning the magnitude of error in the valuation using

a constant discount rate when the firm does not maintain a constant market based leverage ratio.
2Gordon and Shapiro’s (1956) model assume that dividends were paid continuously and hence

P0 ¼ d1/(r � g).
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Gordon and Shapiro (1956) demonstrates that if b is the fraction of earnings

retained within the firm, and r is the rate of return the firm will earn on all new

investments, then g ¼ br. Let It denote the level of new investment at time t.
Because growth in earnings arises from the return on new investments, earnings can

be written as:

Et ¼ Et�1 þ rIt�1, (46:5)

where Et is the earnings in period t.
3 If the firm’s retention rate is constant and used

in new investment, then the earnings at time t is

Et ¼ Et�1 þ rbEt�1 ¼ Et�1 1þ rbð Þ: (46:6)

Growth rate in earnings is the percentage change in earnings and can be

expressed as

gE ¼ Et � Et�1

Et�1

¼ Et�1 1þ rbð Þ � Et�1

Et�1

¼ rb: (46:7)

If a constant proportion of earnings is assumed to be paid out each year, the

growth in earnings equals the growth in dividends, implying g ¼ br. It is worth-
while to examine the implication of this model for the growth in stock prices over

time. The growth in stock price is

gP ¼ Ptþ1 � Pt

Pt
: (46:8)

Recognizing that Pt and Pt+1 can be defined by Eq. 46.4, while noting that dt+2 is
equal to dt+1(1 + br) then:

gP ¼
dtþ2

k � rb
� dtþ1

k � rb
dtþ1

k � rb

¼ dtþ2 � dtþ1

dtþ1

¼ dtþ1 1þ brð Þ � dtþ1

dtþ1

¼ br: (46:9)

Thus, under the assumption of a constant retention rate, for a one-period model,

dividends, earnings, and prices are all expected to grow at the same rate.

The relationship between the growth rate, g, the retention rate, b, and the return

on equity, r, can be expanded to a multi-period setting as the following numerical

example illustrates. In this example, we assume that the book value of the firm’s

assets equal the market value of the firm. We will assume that the growth rate of the

firm sales and assets is 4 % and the tax rate is equal to 40 %. The book value of the

3Earnings in this model are defined using the cash-basis of accounting and not on an accrual basis.
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assets at time 0 is $50 and we assume a depreciation rate of 10 % per annum. The

amount of debt outstanding is $12.50 and amount of equity outstanding is $37.50.
We assume that the cost of debt, Rd, is 12 % and the cost of equity, r, is 25 %,

implying an ATWACOC of 20.55 %. The expected dividend at t ¼ 1, d1, must

satisfy Eq. 46.4. That is, 37.50 ¼ d1/(0.25 � 0.04).

The unlevered cash flow is defined as Sales less Costs (excluding the depreci-

ation expense) less Investment less the tax paid. Tax paid is defined as the tax rate

(which we assume to be 40 %) times Sales minus Costs minus the Depreciation

Expense. Recognizing that the value of the firm is given by CFu1/(ATWACOC� g),
if firm value is $50, g ¼ 4 % and ATWACOC is 20.55 %, then the expected

unlevered cash flow is at time 1 is $8.28. We assume that the asset turnover ratio

is 1.7. Hence, if assets at time 0 is $50, the expected sales at time 1 is $85. To obtain
the level of investment, note that the depreciation expense at time 1 is $5. If the
book value of assets equals $52, then the firm must invest $7. To obtain an expected
unlevered cash flow at t ¼ 1 of $8.28, the Gross Profit Margin is assumed to be

approximately 26.03 %, resulting in expected costs at time 1 of $62.88. The interest
expense at time 1, is the cost of debt times the amount of debt outstanding at time

zero, or $1.50. The Earnings Before Taxes (EBT) is defined as Sales – Costs –

Interest Expense – Depreciation Expense, which equals $15.63 at time 1. 40 % of

EBT is the taxes paid or $6.25 resulting in a net income (NI) of $9.38. ROE, which
equals Net Income/Book Value of Equity at the beginning of the period is 25 %.

Since the aggregate level of dividends at time 1 is $7.88, then the dividend payout

ratio (1 � b) is 84 %. Note that b is therefore equal to 16 % and b � ROE ¼ 4%.4

Further note that the firm will increase its book value of equity via retention of

NI by $1.50 (RE in the table). In order to maintain a leverage ratio of 25 %, the firm

must increase the level of debt from time 0 to time 1 by $0.50. The entries for time

periods 2–5 follow the logical extension of the above discussion, and as shown in

the table, the retention rate b is 16 % and ROE ¼ 25 % for each period. Again the

product of b and ROE results in the expected growth rate of 4 %. Further note, that

g ¼ 4 % imply that sales, costs, book value of asset, depreciation, unlevered cash

flow, cash flow to stockholders, value of debt and value of equity to increase by 4 %

per annum.

Investors may use a one-period model in selecting stocks, but future profitability

of investment opportunities plays an important role in determining the value of the

firm and its EPS and dividend per share. The rate of return on new investments can

be expressed as a fraction, c (perhaps larger than 1), of the rate of return security

holders require (r):

k ¼ cr: (46:10)

4Generally, practioners define ROE as the ratio of the Net Income to the end of year Stockholders

Equity. Here we are defining ROE as the ratio of the Net Income to the beginning of the year

Stockholders Equity. Brick et al. (2012) demonstrate that the practitioner’s definition is one of the

sources for the Bowman Paradox reported in the Organization Management literature.
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Substituting this into the well-known relationship that r ¼ d1
P0
þ g and

rearranging, we have

k ¼ 1� bð ÞE1

1� cbð ÞP0

: (46:11)

If a firm has no extraordinary investment opportunities (r ¼ k), then c ¼ 1 and

the rate of return that security holders require is simply the inverse of the stock’s

price to earnings ratio. In our example of Table 46.1, NI at time 1 is $9.38 and the

value of equity at time 0 is $37.50. The ratio of these two numbers (which is

equivalent to EPS/P) is ROE or 25 %.

On the other hand, if the firm has investment opportunities that are expected to

offer a return above that required by the firm’s stockholders (c > 1), the earnings to

price ratio at which the firm sells will be below the rate of return required by

investors. To illustrate consider the following example whereby market value of the

Table 46.1 The book value of the firm’s assets equal the market value of the firm (growth rate

is 4 %)

0 1 2 3 4 5

Assets $50.00 $52.00 $54.08 $56.24 $58.49 $60.83

Debt $12.50 $13.00 $13.52 $14.06 $14.62 $15.21

Equity $37.50 $39.00 $40.56 $42.18 $43.87 $45.62

Rd 0.12 0.12 0.12 0.12 0.12 0.12

r 0.25 0.25 0.25 0.25 0.25 0.25

ATWACOC 0.2055 0.2055 0.2055 0.2055 0.2055 0.2055

Asset turnover 1.7 1.7 1.7 1.7 1.7

GPM 0.26029 0.26029 0.26029 0.26029 0.26029

Sales $85.00 $88.40 $91.94 $95.61 $99.44

Cost $62.88 $65.39 $68.01 $70.73 $73.55

Depreciation $5.00 $5.20 $5.41 $5.62 $5.85

Interest exp. $1.50 $1.56 $1.62 $1.69 $1.75

EBT $15.63 $16.25 $16.90 $17.58 $18.28

Tax $6.25 $6.50 $6.76 $7.03 $7.31

NI $9.38 $9.75 $10.14 $10.55 $10.97

DIV $7.88 $8.19 $8.52 $8.86 $9.21

New debt $.50 $0.52 $0.54 $0.56 $0.59

CFu $8.28 $8.61 $8.95 $9.31 $9.68

Firm value $50.00 $52.00 $54.08 $56.24 $58.49 $60.83

Investment $7.00 $7.28 $7.57 $7.87 $8.19

Vequity $37.50 $39.00 $40.56 $42.18 $43.87 $45.62

RE $1.50 $1.56 $1.62 $1.69 $1.75

ROE 0.25 0.25 0.25 0.25 0.25

1-b 0.84 0.84 0.84 0.84 0.84

g 0.04 0.04 0.04 0.04 0.04
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firm and equity is greater than its book value. This example is depicted in

Table 46.2. The basic assumptions of the model is as follows: We will assume

that the growth rate of the firm sales and book value of the assets is 4 %. The book

value of the assets at time 0 is again $50 and we assume a depreciation rate of 10 %

per annum. However, note that the market value of the firm is $60. The entries for
Debt and Equity represent market values. The amount of debt outstanding is $12.50
and amount of equity outstanding is now $47.50. We assume that the cost of debt,

Rd, is 12 % and the cost of equity, r, is 25 %, implying an ATWACOC of 21.29 %.

For the valuation of the firm to be internally consistent, the unlevered cash flow at

time 1 is $10.38. Similarly, the value of equity to be internally consistent, the

expected dividends at t ¼ 1 is $9.98. Note that net income is $11.88 implying

a dividend payout ratio of 84 % and a retention rate of 16 %. The book value based
ROE, k, is found by taking the net income divided by the book value of equity. In

our example, implied book value of equity is $37.50. Hence, k¼ 31.68 %, implying

Table 46.2 The market value of the firm and equity is greater than its book value

0 1 2 3 4 5

Assets $50.00 $52.00 $54.08 $56.24 $58.49 $60.83

Firm value $60.00 $62.40 $64.90 $67.49 $70.19 $73.00

Debt $12.50 $13.00 $13.52 $14.06 $14.62 $15.21

Equity $47.50 $49.40 $51.38 $53.43 $55.57 $57.79

Rd 0.12 0.12 0.12 0.12 0.12 0.12

r 0.25 0.25 0.25 0.25 0.25 0.25

ATWACOC 0.2129 0.2129 0.2129 0.2129 0.2129 0.2129

Asset turnover 1.7 1.7 1.7 1.7 1.7

GPM 0.3093 0.3093 0.3093 0.3093 0.3093

Sales $85.00 $88.40 $91.94 $95.61 $99.44

Cost $58.71 $61.06 $63.50 $66.04 $68.68

Depreciation $5.00 $5.20 $5.41 $5.62 $5.85

Interest exp. $1.50 $1.56 $1.62 $1.69 $1.75

EBT $19.79 $20.58 $21.41 $22.26 $23.15

Tax $7.92 $8.23 $8.56 $8.91 $9.26

NI $11.88 $12.35 $12.84 $13.36 $13.89

DIV $9.98 $10.37 $10.79 $11.22 $11.67

New debt $.50 $0.52 $0.54 $0.56 $0.59

CFu $10.38 $10.79 $11.22 $11.67 $12.14

Firm value $60.00 $62.40 $64.90 $67.49 $70.19 $73.00

Investment $7.40 $7.70 $8.00 $8.32 $8.66

Vequity $47.50 $49.40 $51.38 $53.43 $55.57 $57.79

RE $1.90 $1.98 $2.06 $2.14 $2.22

Market based ROE 0.25 0.25 0.25 0.25 0.25

1-b 0.84 0.84 0.84 0.84 0.84

g 0.04 0.04 0.04 0.04 0.04
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that the book value ROE is greater than the cost of equity which is the required rate

of return. But g is given by the market value based ROE which is defined as Net

Income over market value of equity. That is r ¼ 25 %. Note again, br is 4 %.

An investor could predict next year’s dividends, the firm’s long-term growth

rate, and the rate of return stockholders require (perhaps using the CAPM to

estimate r) for holding the stock. Equation 46.4 could then be solved for the

theoretical price of the stock that could be compared with its present price. Stocks

that have theoretical prices above actual price are candidates for purchase; those

with theoretical prices below their actual price are candidates for sale or for

short sale.

46.3 Internal Growth Rate and Sustainable Growth Rate Models

The internal growth rate model assumes that the firm can only finance its growth by

its internal funds. Consequently, the cash to finance growth must come from only

retained earnings. Therefore, retained earnings can be expressed as

Retained Earnings ¼ Earnings� Dividends

¼ Profit Margin� Total Sales-Dividends

¼ p Sþ DSð Þ � p Sþ DSð Þ 1� bð Þ
¼ pb Sþ DSð Þ,

(46:12)

where

p ¼ the profit margin on all sales;

S ¼ annual sales; and

DS ¼ the increase in sales during the year.

Because retained earnings is the only source of new funds, the use of cash

represented by the increase in assets must equal the retained earnings:

Uses of Cash ¼ Sources of Cash

Increases in Assets ¼ Retained earnings

DST ¼ p Sþ DSð Þb
¼ pbSþ pbDS,

DS T � pb½ � ¼ pSb,

DS
S

¼ pb

T � pb
, (46:13)

where T ¼ the ratio of total assets to sales. If we divide both numerator and

denominator of Eq. 46.13 by T and make rearrange the terms, then we can show

that the internal growth rate is:

1300 I.E. Brick et al.



g ¼ DS
S

¼ pb=T

1� pb=T
¼ b� ROA

1� b� ROA
, (46:14)

where ROA is the return on assets. The internal growth rate is the maximum growth

rate that can be achieved without debt or equity kind of external financing. But note

this assumption of not issuing new debt or common stock to finance growth is

inconsistent with the basic assumption of the constant discount rate models that the

firm maintains a constant market based leverage ratio. Hence, this model cannot be

used to estimate the growth rate and be employed by the Gordon Growth Model.

Higgins (1977, 1981, 2008) has developed a sustainable growth rate under

assumption that firms can generate new funds by using retained earnings or issuing

debt, but not issuing new shares of common stock. Growth and its management

present special problems in financial planning. From a financial perspective, growth

is not always a blessing. Rapid growth can put considerable strain on a company’s

resources, and unless management is aware of this effect and takes active steps to

control it, rapid growth can lead to bankruptcy. Assuming a company is not raising

new equity, the cash to finance growth must come from retained earnings and new

borrowings. Further, because the company wants to maintain a target debt-to-equity

ratio equal to L, each dollar added to the owners’ equity enables it to increase its

indebtedness by $L. Since the owners’ equity will rise by an amount equal to

retained earnings, the new borrowing can be written as:

New Borrowings ¼ Retained Earnings� Target Debt-to-Equity Ratio

¼ pb Sþ DSð ÞL:

The use of cash represented by the increase in assets must equal the two sources

of cash (retained earnings and new borrowings)5:

Uses of Cash ¼ Sources of Cash

Increases in Assets ¼ Retained Earningsþ New Borrowing

DST ¼ pb Sþ DSð Þ þ pbðSþ DS
�
L

¼ pb 1þ Lð ÞSþ pb 1þ Lð ÞDS

DS T � pb 1þ Lð Þ½ � ¼ pb 1þ Lð ÞS

g ¼ DS
S

¼ pb 1þ Lð Þ
T � pb 1þ Lð Þ : (46:15)

5Increased in Assets is the net increase in assets. The total investment should also include the

depreciation expense as can be seen in our examples delineated in Tables 46.1 and 46.2. But

depreciation expense is also a source of funding. Hence, it is netted out in the relationship between

increases in assets and retained earnings and new borrowings.
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In Eq. 46.15 the DS/S or g is the firm’s sustainable growth rate assuming no

infusion of new equity. Therefore, a company’s growth rate in sales must equal the

indicated combination of four ratios, p, b, L, and T. In addition, if the company’s

growth rate differs from g, one or more of the ratios must change. For example,

suppose a company grows at a rate in excess of g, then it must either use its assets

more efficiently, or it must alter its financial policies. Efficiency is represented by the

profit margin and asset-to-sales ratio. It therefore would need to increase its profit

margin (p) or decrease its asset-to-sales ratio (T) in order to increase efficiency. Financial
policies are represented by payout or leverage ratios. In this case, a decrease in its payout

ratio (1-b) or an increase in its leverage (L) would be necessary to alter its financial

policies to accommodate a different growth rate. It should be noted that increasing

efficiency is not always possible and altering financial policies are not always wise.

If we divide both numerator and denominator of Eq. 46.15 by T and rearrange

the terms, then we can show that the sustainable growth rate can be shown as

g ¼ DS
S

¼ pb 1þ Lð Þ=T
1� pb 1þ Lð Þ=T ¼ b� ROE

1� b� ROE
: (46:16)

Please note that, in the framework of internal growth rate and sustainable growth

rate presented above, the source of cash are taken from the end of period values of

assets and assumed that the required financing occurs at the end of the period.

However, Ross et al. (2010) show that if the source of cash is from the beginning of

the period, the relationship between the use and the source of cash can be expressed

for the internal growth rate model as DST¼ pSb and for the sustainable growth rate

model, DST ¼ pbS + pbSL . Such relationship will result an internal growth rate of

b � ROA and a sustainable growth rate of b � ROE. For example, Table 46.3

assumes identical assumptions to that of Table 46.1, but now we will assume

a growth rate of 4.1667 % and use total asset, total equity, and total debt from the

beginning of the period balance sheet to calculate the net income. Recall that ROE
is the net income divided by stockholders’ equity at the beginning of the period.

Note that the product of ROE and b will yield 4.1667 %.

Note that the intent of the Higgins’ sustainable growth rate allows only internal

source and external debt financing. Chen et al. (2013) incorporate Higgins (1977)

and Lee et al. (2011) frameworks, allowing company use both external debt and

equity, and derive a generalized sustainable growth rate as

g tð Þ ¼ b� ROE

1� b� ROE
þ l � Dn � P=E
1� b� ROE

, (46:17)

where

l ¼ degree of market imperfection;
Dn ¼ number of shares of new equity issued;
P ¼ price per share of new equity; and
E ¼ total equity:
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Comparing Eq. 46.17, the generalized sustainable growth rate has an additional

positive term,
l�Dn�p=E

1� 1�Dð ÞROE , when the new equity issue is taken into account.

Therefore, Chen et al. (2013) show that Higgins’ (1977) sustainable growth rate

is underestimated because of the omission of the source of the growth related to new

equity issue.

46.4 Statistical Methods

Instead of relying on financial ratios to estimate firm’s growth rates, one may use

statistical methods to determine firm’s growth rates. A simple growth rate can be

estimated by calculating the percentage change in earnings over a time period, and

taking the arithmetic average. For instance, the growth rate in earnings over one

period can be expressed as:

Table 46.3 The book value of the firm’s assets equal the market value of the firm (sustainable

growth rate is 4.1667 %)

0 1 2 3 4 5

Assets $50.00 $52.08 $54.25 $56.51 $58.87 $61.32

Value $50.00 $52.08 $54.25 $56.51 $58.87 $61.32

Debt $12.50 $13.02 $13.56 $14.13 $14.72 $15.33

Equity $37.50 $39.06 $40.69 $42.39 $44.15 $45.99

R 0.12 0.12 0.12 0.12 0.12 0.12

Re 0.25 0.25 0.25 0.25 0.25 0.25

ATWACOC 0.2055 0.2055 0.2055 0.2055 0.2055 0.2055

Asset turnover 1.7 1.7 1.7 1.7 1.7

GPM 0.26029 0.26029 0.26029 0.26029 0.26029

Sales $85.00 $88.54 $92.23 $96.07 $100.08

Cost $62.88 $65.49 $68.22 $71.07 $74.03

Depreciation $5.00 $5.21 $5.43 $5.65 $5.89

Interest exp. $1.50 $1.56 $1.63 $1.70 $1.77

EBT $15.63 $16.28 $16.95 $17.66 $18.40

Tax $6.25 $6.51 $6.78 $7.06 $7.36

NI $9.38 $9.77 $10.17 $10.60 $11.04

DIV $7.81 $8.14 $8.48 $8.83 $9.20

New debt $7.60 $7.92 $8.25 $8.59 $8.95

CFu $8.19 $8.53 $8.89 $9.26 $9.64

Value $50.00 $52.08 $54.25 $56.51 $58.87 $61.32

Investment $7.08 $7.38 $7.69 $8.01 $8.34

RE $1.56 $1.63 $1.70 $1.77 $1.84

ROE 0.25 0.25 0.25 0.25 0.25

(1-b) 0.833333 0.833333 0.833333 0.833333 0.833333

g 0.041667 0.041667 0.041667 0.041667 0.041667
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gt ¼
Et � Et�1

Et�1

: (46:18)

The arithmetic average is given by

g ¼ 1

n

Xn
t¼1

gt: (46:19)

A more accurate estimate can be obtained by solving for the compounded

growth rate:

Xt ¼ X0 1þ gð Þt, (46:20)

or

g ¼ Xt

X0

� �1=t

� 1, (46:21)

where

X0 ¼ measure in the current period (measure can be sales, earnings, or

dividends); and

Xt ¼ measure in period t.
This method is called the discrete compound sum method of growth-rate esti-

mation. For this approach to be consistent with the dividend growth model, the

duration of each period (e.g., quarterly or yearly) must be consistent with the

compounding period used in the dividend growth model.

Another method of estimating the growth rate uses the continuous compounding

process. The concept of continuous compounding process can be expressed math-

ematically as

Xt ¼ X0e
gt: (46:22)

Equation 46.21 describes a discrete compounding process and Eq. 46.22

describes a continuous compounding process. The relationship between

Eqs. 46.21 and 46.22 can be illustrated by using an intermediate expression such as:

Xt ¼ X0 1þ g

m

� �mt
, (46:23)

where m is the frequency of compounding in each year. If m ¼ 4, Eq. 46.23 implies

a quarterly compounding process; if m ¼ 365, it describes a daily process; and if

m approaches infinity, it describes a continuous compounding process. Thus

Eq. 46.22 can be derived from Eq. 46.23 based upon the definition
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lim
m!1 1þ 1

m

� �m

¼ e: (46:24)

Then the continuous analog for Eq. 46.20 can be rewritten as

lim
m!1Xt ¼ lim

m!1X0 1þ g

m

� �mt
¼ X0 lim

m!1 1þ 1

m=g

� � m
gð Þgt

¼ X0e
gt: (46:25)

Therefore, the growth rate estimated by continuous compound-sum method can

be expressed by

g ¼ 1

t
ln

Xt

X0

: (46:26)

If you estimate the growth rate via Eq. 46.26, you are implicitly assuming the

dividends are growing continuously and therefore the dividend growth model. In

this case, according to Gordon and Shapiro’s (1956) model, P0 ¼ d0/(r � g).
To use all the information available to the security analysts, two regression

equations can be employed. These equations can be derived from Eqs. 46.20 and

46.22 by taking the logarithm (ln) on both sides of equation:

lnXt ¼ lnX0 þ tln 1þ gð Þ: (46:27)

If Eq. 46.27 can be used to estimate the growth rate, then the antilog of the

regression slope estimate would equal the growth rate. For the continuous

compounding process,

lnXt ¼ lnX0 þ gt: (46:28)

Both Eqs. 46.27 and 46.28 indicate that Xn is linearly related to t; and the growth
rate can be estimated by the ordinary least square (OLS) regression. For example,

growth rates for EPS and DPS can be obtained from an OLS regression by using

ln
EPSt

EPS0

� �
¼ a0 þ a1T þ e1t, (46:29)

and

ln
DPSt

DPS0

� �
¼ b0 þ b1T þ e2t, (46:30)

where EPSt and DPSt are earnings per share and dividends per share, respectively,

in period t, and T is the time indicators (i.e., T¼ 1, 2, . . ., n). We denote â1 and b̂1 as
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the estimated coefficients for Eqs. 46.29 and 46.30. The estimated growth rates for

EPS and DPS, therefore, are exp â1ð Þ � 1 and exp b̂1
� �� 1 in terms of discrete

compounding process and â1 and b̂1 in terms of continuous compounding process.6

Table 46.4 provides dividends per share of Pepsico and Wal-Mart during the

period from 1981 to 2010. Using the data in Table 46.4 for companies Pepsico and

Wal-Mart, we can estimate the growth rates for their respective dividend streams.

Table 46.5 presents the estimated the growth rates for Pepsico and Wal-Mart by

arithmetic average method, geometric average method, compound-sum method,

and the regression method in terms of discrete and continuous compounding

processes. Graphs of the regression equations for Pepsico and Wal-Mart are

shown in Fig. 46.1.

The slope of the regression for Pepsico shows an estimated coefficient for the

intercept is 0.56. The estimated intercept for Wal-Mart is 7.04. The estimated

growth rates for Pepsico and Wal-Mart, therefore, are 0.56 % and 7.29 % in

terms of discrete compounding process. Figure 46.1 also shows the true DPS and

predicted DPS for Pepsico and Wal-Mart. We find that the regression method, to

some extent, can estimate the growth rate for Wal-Mart more precisely than for

Pepsico. Comparing to the geometric average method, the regression method yields

a similar value of the estimated growth rate for Wal-Mart, while not for Pepsico.

There are some complications to be aware of when employing the arithmetic

average, the geometric average, and regression model in estimating the growth rate.

The arithmetic average is quite sensitive to extreme values. The arithmetic average,

therefore, has an upward bias that increases directly with the variability of the data.

6If the earnings (or dividend) process follows Eq. 46.27, we can get same results from the

non-restricted model as Eqs. 46.29 and 46.30.

Table 46.4 Dividend behavior of firms Pepsico and Wal-Mart in dividends per share (DPS)

Year T PEP WMT Year T PEP WMT

1981 1 3.61 1.73 1996 16 0.72 1.33

1982 2 2.4 2.5 1997 17 0.98 1.56

1983 3 3.01 1.82 1998 18 1.35 1.98

1984 4 2.19 1.4 1999 19 1.4 1.25

1985 5 4.51 1.91 2000 20 1.51 1.41

1986 6 1.75 1.16 2001 21 1.51 1.49

1987 7 2.30 1.59 2002 22 1.89 1.81

1988 8 2.90 1.11 2003 23 2.07 2.03

1989 9 3.40 1.48 2004 24 2.45 2.41

1990 10 1.37 1.9 2005 25 2.43 2.68

1991 11 1.35 1.14 2006 26 3.42 2.92

1992 12 1.61 1.4 2007 27 3.48 3.17

1993 13 1.96 1.74 2008 28 3.26 3.36

1994 14 2.22 1.02 2009 29 3.81 3.73

1995 15 2.00 1.17 2010 30 3.97 4.2
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Consider the following situation. Dividends in years 1, 2 and 3 are $2, $4 and $2.
The arithmetic average of growth rate is 25 % but the true growth rate is 0 %. The

difference in the two average techniques will be greater when the variability of the

data is larger. Therefore, it is not surprising that we find differences in the estimated

growth rates using arithmetic average and geometric average methods for Pepsico

and Wal-Mart in Table 46.5.

Table 46.5 Estimated dividend growth rates for Pepsico and Wal-Mart

Pepsico (%) Wal-Mart (%)

Arithmetic average 4.64 8.99

Geometric average 0.99 5.45

Compound-sum method 0.99 5.30

Regression method (continuous) 0.56 7.04

Regression method (discrete) 0.56 7.29

0
0.2
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0.6
0.8
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1.6
1.8

2
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0.4
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1

1.2

1.4

0 10 20 30

D
PS

Time

Wal-Mart

True DPS
Predicted DPS

ln
DPSt 0.1947
DPS0 (0.0056) (0.0113)

T + εt= − 0.6236 +

ln
DPSt 0.0704
DPS0 (0.1286) (0.0075)

T + εt= − 0.9900 +Fig. 46.1 Regression models

for Pepsico and Wal-Mart
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The regression method uses more available information than the geometric

average, discrete compounding and continuous compounding methods in that it

takes into account the observed growth rates between the first and last period of the

sample. A null hypothesis test can be used to determine whether the growth rate

obtained from the regression method is statistically significantly different from zero

or not. However, logarithms cannot be taken with zero or negative numbers. Under

this circumstance the arithmetic average will be a better alternative.

We further randomly select 50 companies from S&P 500 index firms, which paid

dividends during 1981–2010, to estimate their dividend growth rates by arithmetic

average method, geometric average method, compound-sum method, and the

regression method in terms of discrete and continuous compounding processes.

Table 46.6 shows averages of estimated dividend growth rates for 50 random

companies by different methods. As we discussed before, the arithmetic average

is sensitive to extreme values and has an upward bias. We, therefore, find a larger

average of the estimated dividend growth rate using the arithmetic average method.

We also find that on average, the geometric, and compound sum methods yield

relatively smaller growth rate estimates as compared to the estimates obtained using

the regression methods to estimate growth rate. However, it appears that estimates

obtained using the geometric, compound sum and regression methods are very

similar.

Finally, Gordon and Gordon (1997) suggest that one can infer the growth rate

using the dividend growth model. In particular, the practitioner can use regression

analysis to calculate the beta of the stock and use the CAPM to estimate the cost of

equity. Since

P0 ¼ d0 1þ gð Þ
r � gð Þ (46:31)

and the price of the stock is given by the market, the cost of equity is obtained using

the CAPM, and d0 and the current dividend is known, one can infer the growth rate

using Eq. 46.31. If the inferred growth rate is less than the practitioner’s estimate,

then the recommendation will be to buy the stock. On the other hand, if the inferred

Table 46.6 Estimated dividend growth rates for 50 randomly selected companies

50 Firms (%)

Firms with positive growth

(35 firms) (%)

Firms with negative growth

(15 firms) (%)

Arithmetic average 4.95 7.27 �0.47

Geometric average 0.93 3.00 �3.88

Compound-sum

method

0.83 2.91 �4.02

Regression method

(continuous)

0.66 2.32 �3.22

Regression method

(discrete)

0.71 2.37 �3.15
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growth is greater than the practitioner’s estimate, the recommendation will be to

sell the stock. However, it should be noted that the explanatory power of the CAPM
to explain the relationship between stock returns and risk has been extensively

questioned in the literature. See for example, Fama and French (1992).

46.5 Conclusion

The most common valuation model is the dividend growth model. The growth rate

is found by taking the product of the retention rate and the return on equity. What is

less well understood are the basic assumptions of this model. In this paper, we

demonstrate that the model makes strong assumptions regarding the financing mix

of the firm. In addition, we discuss several methods suggested in the literature on

estimating growth rates and analyze whether these approaches are consistent with

the use of using a constant discount rate to evaluate the firm’s assets and equity. In

particular, we demonstrate that the underlying assumptions of the internal growth

rate model (whereby no external funds are used to finance growth) are incompatible

with the constant discount rate model of valuation. The literature has also suggested

estimating growth rate by using the average percentage change method, compound-

sum method, and/or regression methods. We demonstrate that the average percent-

age change is very sensitive to extreme observations. Moreover, on average, the

regression method yields similar but somewhat smaller estimates of the growth rate

compared to the compound-sum method. We also discussed the inferred method

suggested by Gordon and Gordon (1997) to estimate the growth rate. Advantages,

disadvantages, and the interrelationship among these estimation methods are also

discussed in detail. Choosing an appropriate method to estimate firm’s growth rate

can yield a more precise estimation and be helpful for the security analysis and

valuation. However, all of these methods use historical information to obtain

growth estimates. To the extent that the future may differ from the past, will

ultimately determine the efficacy of any of these methods.
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Abstract

A security is liquid to the extent that an investor can trade significant quantities of
the security quickly, at or near the current market price, and bearing low transac-

tion costs. As such, liquidity is a multidimensional concept. In this chapter,

I review several widely used econometrics or statistics-based measures that

researchers have developed to capture one or more dimensions of a security’s

liquidity (i.e., limited dependent variable model (Lesmond, D. A. et al. Review of
Financial Studies, 12(5), 1113–1141, 1999) and autocovariance of price changes

(Roll, R., Journal of Finance, 39, 1127–1139, 1984). These alternative proxies

have been designed to be estimated using either low-frequency or high-frequency
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data, so I discuss four liquidity proxies that are estimated using low-frequency data

and two proxies that require high-frequency data. Low-frequency measures permit

the study of liquidity over relatively long time horizons; however, they do not

reflect actual trading processes. To overcome this limitation, high-frequency

liquidity proxies are often used as benchmarks to determine the best

low-frequency proxy. In this chapter, I find that estimates from the effective tick

measure perform best among the four low-frequency measures tested.

Keywords

Liquidity • Transaction costs • Bid-ask spread • Price impact • Percent effective

spread • Market model • Limited dependent variable model • Tobin’s model •

Log likelihood function • Autocovariance • Correlation analysis

47.1 Introduction

A security is liquid to the extent that an investor can trade significant quantities of

the security quickly, at or near the current market price, and bearing low transaction

costs. A security’s liquidity is an important characteristic variable, relevant in asset

pricing studies, studies of market efficiency, and even corporate finance. In the asset

pricing literature, researchers have considered whether liquidity is a priced risk

factor (e.g., Amihud and Mendelson 1986; Brennan and Subrahmanyam 1996;

Amihud 2002; Pastor and Stambaugh 2003). In corporate finance, researchers

have found that liquidity is related to capital structure, mergers and acquisitions,

and corporate governance (e.g., Lipson 2003; Lipson and Mortal 2007, 2009;

Bharath 2009; Chung et al. 2010).

In these and many other studies, researchers have chosen from a variety of

liquidity measures that have been developed. In turn, the variety of available

liquidity measures reflects the multidimensional aspect of liquidity. Note that the

definition of liquidity given above features four dimensions of liquidity: trading

quantity, trading speed, price impact, and trading cost. Some extant measures focus

on a single dimension of liquidity, while others encompass several dimensions.

For instance, the bid-ask spread measure in Amihud and Mendelson (1986), the

estimator of the effective spread in Roll (1984), and the effective tick estimator in

Goyenko et al. (2009) relate to the trading cost dimension. The turnover measure of

Datar et al. (1998) captures the trading quantity dimension. The measures in

Amihud (2002) and Pastor and Stambaugh (2003) are relevant to price impact.

The number of zero trading volume days in Liu (2006) emphasizes trading speed.

Finally, and different from the others, the measure in Lesmond et al. (1999) encom-

passes several dimensions of liquidity.

Among the available measures, this chapter focuses on six liquidity proxies,

including four that are commonly estimated using low-frequency data (i.e., daily

closing prices) and two that are commonly estimated using high-frequency

data (i.e., intraday trades and quotes). The low-frequency measures are in

Roll (1984), Goyenko et al. (2009), Lesmond et al. (1999), and Amihud (2002).
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The high-frequency measures are the percent quoted spread and the percent

effective spread. The low-frequency proxies are advantageous because they are

more amenable to the study of liquidity over relatively long time horizons and

across countries. However, they are limited because they do not directly reflect

actual trading processes, while the high-frequency measures do. Thus, high-

frequency liquidity proxies are often used as benchmarks to determine the best

low-frequency proxy. This is not a universal criterion, however, because each

measure captures a different dimension of liquidity and may lead to different

results in specific cross-sectional or time-series applications.

The remainder of this chapter is organized as follows. In Sects. 47.2 and 47.3,

I introduce and briefly discuss each of the low-frequency and high-frequency

liquidity measures, respectively. Section 47.4 provides an empirical analysis of

these liquidity measures, including the aforementioned test of the best

low-frequency measure. Section 47.5 concludes.

47.2 Low-Frequency Liquidity Proxies

Below I describe four widely used measures of liquidity: the Roll (1984) measure;

effective tick; the Amihud (2002) measure; and the Lesmond et al. (1999) measure.

47.2.1 The Roll Measure

Roll (1984) develops a measure of the effective bid-ask spread. He assumes that the

true value of a stock follows a random walk and that Pt, the observed closing price

on day t, is equal to the stock’s true value plus or minus half of the effective spread.

He also assumes that a security trades at either the bid price or the ask price, with

equal frequency. This relationship can be expressed as follows:

Pt ¼ P�t þ Qt

s

2

Qt � IID
þ1 with probability 1=2 buyer initiatedð Þ
�1 with probability 1=2 seller initiatedð Þ
�

where Qt is an order-type indicator variable, indicating whether the transaction at

time t is at the ask (buyer-initiated) or at the bid (seller-initiated) price. His

assumption that P�t is the fundamental value of the security implies that E

[Qt] ¼ 0; hence, Pr(Qt ¼ 1) ¼ Pr(Qt ¼ �1) ¼ 1/2. Also, there are no changes in

the fundamental value of the security (i.e., over a short horizon).

It follows that the process for price changes DPt is

DPt ¼ DP�t þ Qt � Q t�1ð Þ
� � s

2
¼ Qt � Q t�1ð Þ
� � s

2
:
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Under the assumption that Qt is IID, the variance and covariance of DPt can be

easily calculated:

var DPt½ � ¼ s2

2
:

cov DPt;DPt�1½ � ¼ � s2

4
:

cov DPt;DPt�1½ � ¼ cov
s

2
Qt � Qt�1ð Þ, s

2
Qt�1 � Qt�2ð Þ

h i

¼ s2

4
cov Qt � Qt�1ð Þ, cov Qt�1 � Qt�2ð Þ½ �

¼ s2

4
cov Qt;Qt�1ð Þ � cov Qt�1;Qt�1ð Þ½

þcov Qt�1;Qt�2ð Þ � cov Qt;Qt�2ð Þ�

¼ s2

4
�var Qt�1ð Þ½ � ¼ � s2

4

1

2
1� 0ð Þ2 þ 1

2
�1� 0ð Þ2

� �
¼ � s2

4

cov DPt;DPk�1½ � ¼ 0, k > 1:

Solving for S yields Roll’s effective spread estimator:

S ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Cov DPt;;DPt�1

� �q
:

Roll’s measure is simple and intuitive: If P* is fixed so that prices take only two

values, bid or ask, and if the current price is the bid, then the change between

current price and previous price must be either 0 or –s and the price change between

current price and next price must be either 0 or s. Analogous possible price changes

apply when the current price is the ask.

The Roll measure S is generally estimated using daily data on price changes.

Roll (1984) and others have found that for some individual stocks, the

autocovariance that defines S is positive, rather than negative, so that S is undefined.

In this case, researchers generally choose one of three solutions: (1) treat the

observation as missing, (2) set the Roll spread estimate to zero, or (3) multiply

the covariance by negative one, calculate S, and multiply this estimate by negative

one to produce a negative spread estimate. In my empirical analysis to follow, I find

that results are insensitive to the alternative solutions, so I only report results of

setting S to zero when the observed autocovariance is positive.

47.2.2 Effective Tick

Goyenko et al. (2009) and Holden (2009) develop an effective tick measure that is

based on price clustering and changes in tick size. Below I describe the effective

tick measure in Goyenko et al. (2009), which is elegant in its simplicity.
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Consider four possible bid-ask spreads for a stock: $1/8, $1/4, $1/2, and $1. If the
spread is $1/4, the authors assume that bid and ask prices are associated with only

even quarters. Thus, if an odd-eighth transaction price shows up, it is instead

inferred that the spread is $1/8. The number of quotes that occur at $1/8 spread is

given by N1. The number of quotes at odd-quarter fractions ($1/8 and $1/4) is N2.

The number of quotes at odd-half ($1/8, $1/4, and $1/2) is N3. Finally, the number

of whole dollar quotes is given by N4. The following is the proportion of each price

fraction observed during the day:

Fi ¼ NiXI

i¼1
Ni

for i ¼ 1, . . . , I:

Next, suppose that the unconstrained probability of the effective ith estimated

spread is

2Fi
U ¼ 2Fi � Fi�1

Fi � Fi�1

i ¼ 1

i ¼ 2, . . . , i
i ¼ I:

The effective tick is a simply probability-weighted average of effective spread

size divided by average price in a given time interval:

Effective Tickit ¼
XI

i¼1
a � Si
P

,

where the probability a is constrained to be nonnegative and to be no more than

1 minus the probability of a finer spread, S is the spread, and P is the average price

in the time interval.

To obtain estimates of effective tick in this chapter, I must deal with changes in

minimum tick size that were instituted over time in the US equity markets. For

NYSE, AMEX, and NASDAQ stocks from 1/93 to 5/97, I used a fractional grid

accounting for price increments as small as $1/8. For NYSE and AMEX

(NASDAQ) stocks from 6/97 to 1/01 (6/97 to 3/01), I used a minimum tick size

increment of $1/16. Thereafter, I used a decimal grid for all stocks.

47.2.3 Amihud (2002)

The measures in Amihud (2002) and Pastor and Stambaugh (2003) both purport to

capture the price impact dimension of liquidity. Goyenko et al. (2009) show that the

Amihud (2002) measure performs well in measuring price impact while the Pastor

and Stambaugh (2003) measure is dominated by other measures. Pastor and

Stambaugh (2003, p. 679) also caution against their measure as a liquidity measure

for individual stocks, reporting large sampling errors in individual estimates.
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Referring also to Hasbrouck (2009), I do not discuss the Pastor and Stambaugh

(2003) measure. The Amihud (2002) measure is a representative proxy for price

impact, i.e., the daily price response associated with one dollar of trading volume:

Amiit ¼ Retitj j
Volit

,

where Retit is the stock i’s return on day t and Volit is the stock i’s dollar volume on

day t. The average is calculated over all positive-volume days, since the ratio is

undefined for zero volume days.

47.2.4 Lesmond, Ogden, and Trzcinka (LOT 1999)

The Lesmond et al. (LOT 1999) liquidity measure is based on the idea that an

informed trader observing a mispriced stock will execute a trade only if the

difference between the current market price and the true price exceeds the

trader’s transaction costs; otherwise, no trade will occur. Therefore, they

argue that a stock with high transaction costs will have less frequent price

movements and more zero returns than a stock with low transaction costs.

Based on this relationship, they develop a measure of the marginal trader’s

effective transaction costs for an individual stock. Their measure utilizes the

limited dependent variable regression model of Tobin (1958) and Rosett (1959)

applied to the “market model.”

47.2.4.1 Market Model
The basic market model is a regression of the return,R�

it on security i and period t, on

the contemporaneous market return, Rmt:

R�
it ¼ ai þ biRmt þ eit (47.1)

The market model implies that a security’s return reflects the effect of new

information on the value of the stock, which can be divided into two components:

contemporaneous market-wide information (biRmt) and firm-specific information eit.
In an ideal market without frictions such as transaction costs, new information

will be immediately reflected into the security’s price, so R�
it is the true return on

security i.

47.2.4.2 Relationship Between Observed and True Returns
In the presence of transaction costs, investors will trade only when the marginal

profits exceed the marginal transaction costs. In this context, transaction costs

would include various dimensions such as bid-ask spread, commissions, and price

impact, as well as taxes or short-selling costs, because investors make trading

decisions after considering overall transaction costs. Transaction costs inhibit

informative trades and therefore drive a wedge between observed returns and true
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returns. In the presence of transaction costs, Lesmond et al. (1999) propose the

following relationship between observed and true returns:

Rit ¼ R�
it � mSi, (47.2)

where mSi is the spread adjustment for security i, Rit is the observed return, andR
�
it is

true return.

Specifically, the relationship is as follows:

Rit ¼ R�
it � a1i if R�

it < a1i
Rit ¼ 0 if a1i < R�

it < a2i
Rit ¼ R�

it � a2i if R�
it > a2i

(47.3)

where a1i< 0 and a2i> 0. a1i is the transaction costs for the marginal investor when

information has a negative shock (selling), and a2i is the transaction costs for the

marginal investor when information has a positive shock (buying). Consequently,

the difference between a1i and a2i is a measure of round-trip transaction costs.

If the true return exceeds transaction costs, the marginal investor will continu-

ously trade, and the market price will respond until, for the next trade, marginal

profit is equal to marginal transaction costs. If the transaction costs are greater than

true returns, then the marginal investors will not trade, price will not move, and

consequently the zero returns will occur. Therefore, in this model the frequency of

zero returns is a simple alternative measure of transaction costs. The relationship

between observed returns and true returns is illustrated in Fig. 47.1.

Region2

Region3

Region1

Observed Return (Rit)

True Return (R*it)

Fig. 47.1 This figure illustrates the relationship between the observed return on a stock in the

presence of transaction costs that inhibit trading, Rit, and its true return in the absence of transaction

costs, R*it, where the latter reflects the true effects of new market-wide or firm-specific information.

The relationship can be divided into three regions: (1) Region 1, where the value of new information

is negative and exceeds transaction costs; (2) Region 2, where the transaction costs exceed the value

of new information regardless of the direction of the value of information; and (3) Region 3, where

the value of new information is positive and exceeds transaction costs
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47.3 High-Frequency Liquidity Proxies

Next I describe two well-known spread proxies that can be estimated using high-

frequency data. These are the percent quoted spread and percent effective spread.

47.3.1 Percent Quoted Spread

The ask (bid) quotation is the price at which shares can be purchased (sold) with

immediacy. The difference, known as the percent quoted spread, is the cost of

a round-trip transaction and is generally expressed as a proportion of the average of

the bid and ask prices:

Percent quoted spreadit ¼
Askit � Bidit

Mit

:

In the empirical analysis in the next section, I estimate percent quoted spreads

using high-frequency data. Following convention, for each stock and trading day,

I find the highest bid and lowest ask prices over all venues at every point during the

day, denoting these “inside” ask and bid prices as Askit and Bidit, respectively. Mit

is then the average of, or midpoint between, Askit and Bidit. I then calculate the

average percent quoted spread for a stock and day as the time-weighted average of

all spreads observed for that stock during the day. Finally, percent quoted spread
for each stock is calculated by averaging the daily estimates across all trading days

within a given month.

47.3.2 Percent Effective Spread

Some trades occur within the range of inside bid and ask quotes, as when simulta-

neous buy and sell market orders are simply crossed. Thus, the inside bid-ask spread

may overestimate the realized amount of this component of transaction costs.

Hasbrouck’s (2009) measure of percent effective spread attempts to adjust for

this bias. For a given stock, percent effective spread is computed for all trades

relative to the prevailing quote midpoint:

Percent effective spreadit ¼ 2Dit

Pit �Mit

Mit

� �
,

where, for stock i, Dit is the buy-sell indicator variable which takes a value of 1 (–1)

for buyer-initiated (seller-initiated) trades, Pit is the transaction price, and Mit is the

midpoint of the most recently posted bid and ask quotes. The average percent

effective spread for each day is a trade-weighted average across all trades during

the day. The monthly percent effective spread for each security is calculated by

averaging across all trading days within a given month.
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47.4 Empirical Analysis

47.4.1 Data

I estimate liquidity measures for NYSE, AMEX, and NASDAQ common stocks

over the years 1993–2008. I estimate the low-frequency measures using daily data

from the Center for Research in Security Prices (CRSP) database. I estimate the

high-frequency measures using the New York Stock Exchange Trades and Auto-

mated Quotes (TAQ) database. TAQ data is available only since 1993, which is

therefore the binding constraint in terms of staring year. In order to be included in

the sample, a stock must have at least 60 days of past return data. I discard

certificates, American Depositary Receipts (ADRs), shares of beneficial interest,

units, companies incorporated outside United States, American Trust components

closed-end funds, preferred stocks, and Real Estate Investment Trusts (REITs).

Regarding estimating the high-frequency measures, I determine the highest bid

and lowest ask across all quoting venues at every point during the day (NBBO

quotes) and then follow filters referring to Huang and Stoll (1997) and Brownless

and Gallo (2006). To reduce errors and outliers, I remove (1) quotes if either the bid

or ask price is negative; (2) quotes if either the bid or ask size is negative; (3) quotes

if bid-ask spread is greater than $5 or negative; (4) the quotes if transaction price is

negative; (5) quotes before-the-open and after-the-close trades and quotes;

(6) quotes if the bid, ask, or trade price differ by more than 20 % from the previous

quote or trade price; (7) quotes originating in market other than the primary

exchange because regional quotes tend to closely follow the quotes posted by the

primary exchange; and (8) %effective spread/%quoted spread>4.0.

47.4.2 Empirical Results

Table 47.1 reports correlations among the various liquidity estimates. In this table,

observations are pooled across all stocks and all months. All correlations are

reliably positive and substantial in magnitude, ranging from 0.382 to 0.971. The

two high-frequency measures, percent effective spread and percent quoted spread,

are very highly correlated (0.971). Using percent effective spread as our high-

frequency “benchmark,” its correlations with the low-frequency measures are 0.742

(Roll), 0.757 (effective tick), 0.621 (Amihud), and 0.586 (LOT). Based on the

aforementioned criterion, these results indicate that the effective tick and Roll

measures are the “best” low-frequency measures, as they have the highest correla-

tion with percent effective spread.

Table 47.2 presents the time-series means of monthly correlations of percent

effective spread with each of the low-frequency measures for the full sample period

as well as subperiods 1993–2000 (pre-decimalization) and 2001–2008 (post-

decimalization). For three of the four low frequencies measured, the correlation

with percent effective spread is higher in the first subperiod than the second

subperiod, which may reflect differential effects of decimalization on the various
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dimensions of liquidity. For the full period as well as the first subperiod, effective

tick has the correlation with percent effective spread, while for the second period

the Amihud measure has the highest correlation with percent effective spread.

Table 47.3 shows stock-by-stock time-series correlations between the high-

frequency measure percent effective spread and each of the low-frequency

measures, using the full-period data but also breaking the observations down by

the exchange on which a stock trades. For the full sample as well as every exchange,

the Amihud and effective tick estimates have relatively high correlations with

percent effective spread, while the correlations are relatively low for the Roll and

LOT measures.

Table 47.2 Average cross-sectional correlations with percent effective spread, monthly

estimates

Roll Eff. tick Ami LOT

1993–2008 0.662 0.685 0.684 0.561

1993–2000 0.748 0.754 0.662 0.670

2001–2008 0.576 0.615 0.706 0.452

For each month, I estimate the cross-sectional correlation between the liquidity proxies from the

low-frequency data and percent effective spread from TAQ. This table presents the average cross-

sectional correlations across all months. A stock is excluded only if it trades for less than 60 days

prior to an observation or if liquidity estimates are missing

Table 47.3 Summary statistics for stock-by-stock time-series correlations

N Roll Eff. tick Ami LOT

Full 13,374 0.319 0.578 0.603 0.308

NYSE 3,137 0.180 0.694 0.690 0.201

AMEX 1,597 0.231 0.517 0.643 0.310

NASDAQ 9,870 0.353 0.534 0.567 0.335

For each stock, I estimate the time-series correlation between the estimated liquidity measure and

percent effective spread from TAQ. The table presents the average time-series correlation across

all stocks. Observations are dropped if there are fewer than 60 days observations for the firm or if

a spread estimate is missing

Table 47.1 Pooled correlations

ES QS Roll Eff. tick Ami LOT

ES 1

QS 0.971 1

Roll 0.742 0.744 1

Eff. tick 0.757 0.760 0.638 1

Ami 0.621 0.631 0.512 0.472 1

LOT 0.586 0.562 0.710 0.541 0.382 1

This table presents correlations among the liquidity estimates based on the pooled sample of

monthly time-series and cross-sectional observations. Observation can be dropped if there are

fewer than 60 days observations for the firm or if liquidity estimates are missing
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Overall, based on the suggested criteria of correlation with a high-frequency

measure, the effective tick measure is best among the low-frequency measures

tested, as it exhibits higher correlations with percent effective spread based on time-

series, cross-sectional, and pooled tests. Again, though, I caution that, since each

liquidity measure captures only part of the multidimensional nature of liquidity, it is

difficult to judge which measure is best.

47.5 Conclusions

This chapter discusses several popular measures of liquidity that are based on

econometric approaches and compares them via correlation analysis. Among the

four low-frequency liquidity proxies, I find that the effective tick measure is

generally more highly correlated with the high-frequency measure (i.e., percent

effective spread). Thus, by this criterion the effective tick measure is the

“best” low-frequency measure of liquidity. However, since each liquidity measure

captures only part of the multidimensional nature of liquidity, it is difficult to judge

which measure is best. Consequently, from among the available measures of

liquidity, a researcher should choose the measure that is consistent with their

research purpose or perhaps consider employing several of them.

Appendix 1: Solution to LOT (1990) Model

To estimate transaction costs based on their model in Eq. 47.3, Lesmond

et al. (1999) introduce the limited dependent variable regression model of Tobin

(1958) and Rosett (1959). Tobin’s model specifies that data are available for the

explanatory variable, x, for all the observation while data are only partly observable

for the dependent variable, y, and for the other unobservable region, the information

is given whether or not data are above a certain threshold.
Considering this aspect of Tobin’s model, the limited dependent variable model is

an appropriate econometric method for the LOT model because a nonzero observed

return occurs only when marginal profit exceeds marginal transaction costs.

Assuming that market model is correct in the presence of transaction costs,

Lesmond et al. (1999) estimate transaction costs on the basis of Eqs. 47.1 and 47.3.

The equation system is

R�
it ¼ bitRmt þ eit,

where

Rit ¼ R�
it � a1i if R�

it < a1i
Rit ¼ 0 if a1i < R�

it < a2i
Rit ¼ R�

it � a2i if R�
it > a2i

(47.4)
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The solution to this limited dependent regression variable model requires

a likelihood function to be maximized with respect to a1i, a2i, bi, and si.

L a1i,a2i, bi,si=Rit, Rmtð Þ¼
Y
1

Ø
Rit þ a1i � biRmt

si

� �

Y
2

F
Rit þ a2i � biRmt

si

� �
� F

Rit þ a1i � biRmt

si

� �� �

Y
3

Ø
Rit þ a2i � biRmt

si

� �
,

(47.5)

where Ø refers to the standard normal density function and F refers to the

cumulative normal distribution. The product is over the Region 1, 2, and 3 of

observations for which R*it< a1i, a1i< R*it< a2i, and R*it> a2i, respectively. The
log likelihood function is

log L ¼ S1log
1

2psi2ð Þ 1
2

2
64

3
75� 1

2si
2
S1 Rit þ a1i � biRmtð Þ2 þ S2log F2 � F1½ �

þ S3log
1

2psi2ð Þ
1

2

2
664

3
775� 1

2si
2
S3 Rit þ a2i � biRmtð Þ2:

(47.6)

Given Eq. 47.6, a1i, a2i, bi, and si can be estimated. The difference between a2i
and a1i is the proxy of a round-trip transaction cost in the LOT model.
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Abstract

We present the first empirical evidence for the validity of the ARMA-GARCH

model with tempered stable innovations to estimate 1-day-ahead value at risk

in futures markets for the S&P 500, DAX, and Nikkei. We also provide

empirical support that GARCH models based on normal innovations

appear not to be as well suited as infinitely divisible models for predicting

financial crashes. The results are compared with the predictions based on

data in the cash market. We also provide the first empirical evidence on

how adding trading volume to the GARCH model improves its forecasting

ability.

In our empirical analysis, we forecast 1 % value at risk in both spot and

futures markets using normal and tempered stable GARCH models following

a quasi-maximum likelihood estimation strategy. In order to determine

the accuracy of forecasting for each specific model, backtesting using Kupiec’s

proportion of failures test is applied. For each market, the model with

a lower number of violations is preferred. Our empirical result indicates the

usefulness of classical tempered stable distributions for market risk management

and asset pricing.

Keywords

Infinitely divisible models • Tempered stable distribution • GARCH models •

Value at risk • Kupiec’s proportion of failures test • Quasi-maximum likelihood

estimation strategy

48.1 Introduction

Predicting future financial market volatility is crucial for risk management of

financial institutions. The empirical evidence suggests that a suitable market

risk model must be capable of handling the idiosyncratic features of volatility,

that is, daily returns time variant amplitude and volatility clustering. There is a

well-developed literature in financial econometrics that demonstrates how

autoregressive conditional heteroskedastic (ARCH) and generalized ARCH

(GARCH) models – developed by Engle (1982) and Bollerslev (1986),

respectively – can be employed to explain the clustering effect of volatility1.

Moreover, the selected model should consider the stylized fact that asset return

distributions are not normally distributed, but instead have been shown to exhibit

patterns of leptokurtosis and skewness.

1For a description of ARCH and GARCH modeling, see Chap. 8 in Rachev et al. (2007). The

chapter of the same reference describes ARCH and GARCH modeling with infinite variance

innovations. Engle et al. (2008) provide the basics of ARCH and GARCH modeling with

applications to finance.
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Taking a different tact than the ARCH/GARCH with normal innovations

approach for dealing with the idiosyncratic features of volatility, Kim

et al. (2010) formulate an alternative model based on subclasses of the infinitely

divisible (ID) distributions. More specifically, for the S&P 500 return, they empir-

ically investigate five subclasses of the ID distribution, comparing their results to

that obtained using GARCH models based on innovations that are assumed to

follow a normal distribution. They conclude that, due to their failure to focus on

the distribution in the tails, GARCH models based on the normal innovations may

not be as well suited as ID models for predicting financial crashes.

Because of its popularity, most empirical studies have examined value at risk

(VaR) as a risk measure. These studies have focused on stock indices. For example,

Kim et al. (2011), and Asai and McAleer (2009) examine the S&P 500, DAX

30, and Nikkei 225 stock indices, respectively. A few researchers have studied this

risk measure for stock index futures contracts: Huang and Lin (2004) (Taiwan stock

index futures) and Tang and Shieh (2006) (S&P 500, Nasdaq 100, and Dow Jones

stock index futures). As far as we know, there are no empirical studies comparing

VaR spot and futures indices. For this reason, we compare the predictive perfor-

mance of 1-day-ahead VaR forecasts in these two markets.

We then introduce trading volume into the model, particularly, within the

GARCH framework. There are several studies that relate trading volume and

market volatility for equities and equity futures markets. Studies by Epps and

Epps (1976), Smirlock and Starks (1985), and Schwert (1989) document

a positive relation between volume and market volatility. Evidence that supports

the same relation for futures is provided by Clark (1973), Tauchen and Pitts (1983),

Garcia et al. (1986), Ragunathan and Peker (1997), and Gwilym et al. (1999).

Collectively, these studies clearly support the theoretical prediction of a positive

and contemporaneous relationship between trading volume and volatility. This

result is a common empirical finding for most financial assets, as Karpoff (1987)

showed when he summarized the results of several studies on the positive relation

between price changes and trading volume for commodity futures, currency futures,

common stocks, and stock indices.

Foster (1995) concluded that not only is trading volume important in determining

the rate of information (i.e., any news that affects the market), but also lagged volume

plays a role. Although contemporary trading volume is positively related to volatility,

lagged trading volume presents a negative relationship. Empirically, investigating

daily data for several indices such as the S&P 500 futures contract, Wang and Yau

(2000) observe that there is indeed a negative link between lagged trading volume

and intraday price volatility. This means that an increase in trading volume today

(as a measure of liquidity) will imply a reduction in price volatility tomorrow. In their

study of five currency futures contracts, Fung and Patterson (1999) do in fact find

a negative relationship between return volatility and past trading volume. In their

view, the reversal behavior of volatility with trading volume is generally consistent

with the overreaction hypothesis (see Conrad et al. 1994) and supports the sequential

information hypothesis (see Copeland 1976), which explains the relationship

between return volatility and trading volume.
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Despite the considerable amount of research in this area, there are no studies that

use trading volume in an effort to improve the capability of models to forecast

1-day-ahead VaR. Typically, in a VaR context, trading volume is only employed as

a proxy for “liquidity risk” – the risk associated with trying to close out a position.

In this paper, in contrast to prior studies, we analyze the impact of introducing

trading volume on the ability to enhance performance in forecasting VaR 1 day

ahead. We empirically test whether the introduction of trading volume will

reduce the number of violations (i.e., the number of times when the observed loss

exceeds the estimated one) in the spot and futures equity markets in the USA,

Germany, and Japan.

The remainder of this paper is organized as follows. ARMA-GARCH models

with normal and tempered stable innovations are reviewed in Sect. 48.2. In

Sect. 48.3, we discuss parameter estimation of the ARMA-GARCH models and

forecasting daily return distributions. VaR values and backtesting of the ARMA-

GARCH models are also reported in Sect. 48.2, along with a comparison of the

results for (1) the spot and futures markets and (2) the normal and tempered stable

innovations. Trading volume is introduced into the ARMA-GARCH model with

tempered stable innovations in Sect. 48.4. VaR and backtesting of the ARMA-

GARCH with different variants of trading volume are presented and compared to

the results for models with and without trading volume. We summarize our

principal findings in Sect. 48.5.

48.2 ARMA-GARCH Model with Normal and Tempered
Stable Innovations

In this section, we provide a review of the ARMA-GARCH models with normal

and tempered stable innovations. For a more detailed discussion, see Kim

et al. (2011).

Let (St)t�0 be the asset price process and (yt)t�0 be the return process of (St)t�0

defined by yt ¼ log St
St�1

. The ARMA(1,1)-GARCH(1,1) model is

yt ¼ ayt�1 þ bst�1et�1 þ stet þ ct
s2t ¼ a0 þ a1s2t�1e2t�1 þ b1s

2
t�1

�
: (48.1)

where e0 ¼ 0 and a sequence (et)tcN ¼ 0 of independent and identically distributed

(iid) real random variables. The innovation et is assumed to follow the standard

normal distribution. This ARMA(1,1)-GARCH(1,1) model is referred to as the

“normal-ARMA-GARCH model.”

If the ets are assumed to be tempered stable innovations, then we obtain

a new ARMA(1,1)-GARCH(1,1) model. In this paper, we will consider the

standard classical tempered stable (denoted by stdCTS) distributions. This

ARMA(1,1)-GARCH(1,1) model is defined as follows: CTS-ARMA-GARCH
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model, et � stdCTS(a, l+, l_). This distribution does not have a closed-form

solution for its probability density function. Instead, it is defined by its character-

istic function as follows: Let a 2 (0,2)\{1},C, l+, l_ > 0, and m ∈ ℝ. Then

a random variable X is said to follow the classical tempered stable (CTS) distribu-

tion if the characteristic function of X is given by

fx uð Þ ¼ fCTS u : a, C, lþ, l�,m
� �

¼ exp
�
ium� iuCT 1� að Þ la�1

þ �la�1
�

� �

þ CG �að Þ lþ � iuð Þa � laþ þ l� � iuð Þa � la�
� ��

,

(48.2)

and we denote X � CTS(a, C, l+, l_, m).
The cumulants of X are defined by

Cn Xð Þ ¼ 1

in
∂n

∂un
log E eiuX

� �
u ¼ 0, n ¼ 1, 2, 3, . . . : :j

For the tempered stable distribution, we have E[X] ¼ c1(X) ¼ m. The cumulants

of the tempered stable distribution for n ¼ 2, 3, . . . are

cn Xð Þ ¼ CG n� að Þ la�n
þ þ �1ð Þnla�n

�
� �

:

By substituting the appropriate value for the two parameters m and C into the

three tempered stable distributions, we can obtain tempered stable distributions

with zero mean and unit variance. That is, X � CTS(a, C, l+, l�, 0) has zero mean

and unit variance by substituting

C ¼ G 2� að Þ la�2
þ þla�2

�
� �� ��1

: (48.3)

The random variable X is referred to as the standard CTS distribution with

parameters (a, l+, l_) and denoted by X � stdCTS(a, l+, l_).

48.3 VaR for the ARMA-GARCH Model

In this section, we discuss VaR for the ARMA-GARCH model with normal and

tempered stable innovations.

48.3.1 VaR and Backtesting

The definition of VaR for a significance level � is

VaR� Xð Þ ¼ �inf x 2 ℝ Pj X � xð Þ > �f g:
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If we take the ARMA-GARCH model described in Sect. 48.2, we can define

VaR for the information until time t with significance level � as2

VaRt, � ytþ1

� � ¼ �inf x 2 ℝ Pt ytþ1 � x
� �

> �
��� 	

,

where Pt(A) is the conditional probability of a given event A for the information

until time t.
Two models are considered: normal-ARMA(1,1)-GARCH(1,1) and

stdCTS-ARMA(1,1)-GARCH(1,1). For both models, the parameters have been

estimated for the time series between December 14, 2004 and December

31, 2008. For each daily estimation, we worked with 10 years of historical daily

performance for the S&P 500, DAX 30, and Nikkei 225 spot and futures indices.

More specifically, we used daily returns calculated based on the closing price of

those indices. In the case of futures indices, we constructed a unique continuous

time series using the different maturities of each futures index following the

methodology proposed by Carchano and Pardo (2009).3 Then, we computed

VaRs for both models.

The maximum likelihood estimation method (MLE) is employed to

estimate parameters of the normal-ARMA(1,1)-GARCH(1,1) model. For the CTS

distribution, the parameters are estimated as follows4:

1. Estimate parameters a0, a1, b1, a, b, c with normal innovations by the

MLE. Volatility clustering is captured by the GARCH model.

2. Extract residuals using those parameters. The residual distribution still presents

fat tail and skewness.

3. Fit the parameters of the innovation distribution (CTS) to the extracted residuals

using MLE. The fat tailed and skewed features of the residual distribution are

captured.

In order to determine the accuracy of VaR for the two models, backtesting using

Kupiec’s proportion of failures test (Kupiec 1995) is applied. We first calculate the

number of violations. Then, we compare the number of violations with the

conventional number of exceedances at a given significance level. In Table 48.1 the

number of violations and p-values for Kupiec’s backtest for the three stock indices

over the 41-year periods are reported. Finally, we sum up the number of violations

and their related p-values for 1 % VaRs for the normal and CTS-ARMA-GARCH

models.

2VaR on the CTS distribution is described in the Appendix.
3Thus, the last trading day of the front contract is chosen as the rollover date. Then, the return of

the day after the rollover date is calculated as the quotient between the closing price of the

following contract and the previous closing price of such contract. By doing so, all the returns

are taken from the same maturity.
4A quasi-MLE strategy is followed because the ARMA-GARCH CTS model has too many

parameters. If all the parameters are estimated at once, then the GARCH parameters go to zero.

This strategy is also followed in Kim et al. (2009, 2010, 2011). For a discussion of the quasi- MLE

methodology, see Rachev et al. (2007, pp. 292–293) or Verbeek (2004, pp. 182–184).
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Based on Table 48.1, we conclude the following for the three stock indices. First,

a comparison of the normal and tempered stable models indicates that there are no

cases using the tempered stable model at the 5% significance level, whereas the normal

model is rejected five times. This evidence is consistent with the findings of Kim

et al. (2011). Second, a comparison of the spot and futures indices indicates that spot

data provide less than or the same number of violations than futures data. One potential

explanation is that futures markets are more volatile, particularly, when the market

falls.5 This overreaction to bad news could cause the larger number of violations.

Table 48.1 Normal-ARMA-GARCH versus CTS-ARMA-GARCH

Model

1 year (255 days)

Dec. 14, 2004 Dec. 16, 2005 Dec. 21, 2006 Dec. 28, 2007

� Dec. 15, 2005 � Dec. 20, 2006 � Dec. 27, 2007 � Dec. 31, 2008

N(p-value) N(p-value) N(p-value) N(p-value)

S&P 500 spot

Normal-ARMA-

GARCH

1(0.2660) 3(0.7829) 8(0.0061) 10(0.0004)

CTS-ARMA-GARCH 0 2(0.7190) 6(0.0646) 4(0.3995)

S&P 500 futures

Normal-ARMA-

GARCH

3(0.7829) 3(0.7829) 7(0.0211) 9(0.0016)

CTS-ARMA-GARCH 1(0.2660) 3(0.7829) 4(0.3995) 5(0.1729)

DAX 30 spot

Normal-ARMA-

GARCH

4(0.3995) 4(0.3995) 3(0.7829) 6(0.0646)

CTS-ARMA-GARCH 4(0.3995) 4(0.3995) 3(0.7829) 4(0.3995)

DAX 30 futures

Normal-ARMA-

GARCH

3(0.7829) 5(0.1729) 6(0.0646) 6(0.0646)

CTS-ARMA-GARCH 3(0.7829) 4(0.3995) 6(0.0646) 3(0.7829)

Nikkei 225 spot

Normal-ARMA-

GARCH

2(0.7190) 4(0.3995) 5(0.1729) 5(0.1729)

CTS-ARMA-GARCH 1(0.2660) 3(0.7829) 4(0.3995) 5(0.1729)

Nikkei 225 futures

Normal-ARMA-

GARCH

2(0.7190) 2(0.7190) 7(0.0211) 5(0.1729)

CTS-ARMA-GARCH 5(0.1729) 5(0.1729) 6(0.0646) 6(0.0646)

The number of violations (N) and p-values of Kupiec’s proportion of failures test for

the S&P 500, DAX 30, and Nikkei 225 spot and futures indices data has been shown.

Normal-ARMA-GARCH and CTS-ARMA-GARCH compared

5We compared the spot and futures series when the markets discount bad news (negative returns).

We find that for the three stock indices, futures volatility is significantly greater than spot volatility

at a 5 % significance level. Moreover, for all three stock indices, the minimum return and the 1 %

percentile return are also lower for futures data than spot data.
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48.4 Introduction of Trading Volume

In the previous section, we showed the usefulness of the tempered stable model for

stock index futures. Motivated by the vast literature linking trading volume and

volatility, for the first time we investigate whether the introduction of trading

volume in the CTS model could improve its ability to forecast 1-day-ahead VaR.

Let (St)t�0 be the asset price process and (yt)t�0 be the return process of (St)t�0

defined by yt ¼ log St
St�1

. We propose the following ARMA(1,1)-GARCH(1,1) with

trading volume model:

yt ¼ ayt�1 þ bst�1et�1 þ stet þ c
s2t ¼ a0 þ a1s2t�1e2t�1 þ b1s

2
t�1 þ g1Volt�1,

�
(48.4)

where e0¼ 0 and a sequence (et)tcN¼ 0 of iid real random variables. The innovation

et is assumed to be the tempered stable innovation. We will consider the standard

classical tempered stable distributions. This new ARMA(1,1)-GARCH(1,1)-V

model is defined as follows:

CTS-ARMA-GARCH-V model : et � stdCTS a, lþ, l�ð Þ:

The inclusion of lagged volume as an independent variable along with lagged

volatility into the model may cause a problem of multicollinearity. In order to

determine the seriousness of the problem, we calculated the model without volume,

extracted the GARCH series, and determined the degree of collinearity between

both variables. The most recommended measure in the literature is to calculate the

condition index following Belsley et al. (1980) and observe if the index exceeds

20, in which case collinearity is considered to be grave. In our case, the calculated

value was 4.9268, 3.2589, and 4.5569 for the S&P, DAX, and Nikkei, respectively.

Therefore, we concluded that collinearity is a minor problem.

Moreover, the ARMA-GARCH model is only affected in the GARCH frame-

work, particularly the equation coefficients (i.e., the volume variable can appear

insignificant when it is indeed significant), but not the numerical estimation of the

variance; neither is the forecast power of the global model. As our objective is to

forecast the VaR, we believe that the multicollinearity problem can be ignored

because the results will not be affected.

48.4.1 Different Variants of Trading Volume

For the S&P 500 cash and futures markets, we test the following versions of trading

volume in order to determine which one would be the most appropriate:

• Lagged trading volume in levels: V(t � 1)

• Logarithm of lagged trading volume: log [V(t � 1)]

• Relative change of lagged trading volume: log [V(t � 1)/V(t � 2)]
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The spot series trading volume is in dollars; for the futures series, the trading value

is in number of contracts.We can calculate the volume of the futures market in dollars

too. The tick value of the S&P 500 futures contract is 0.1 index points or $25.

Multiplying the number of contracts by the price and finally by $250 (the contract’s

multiple), we obtain the trading volume series for the futures contract in dollars. Thus,

for the futures contract we get three new versions of trading volume to test:

• Lagged trading volume in dollars: V$(t � 1)

• Logarithm of trading volume in dollars: log [V$(t � 1)]

• Relative change of lagged trading volume in dollars: log [V$(t � 1)/V$(t � 2)]

By doing that, we can determine which series (in dollars or in contracts) seems to

be more useful for the futures index.

In Table 48.2 we report the number of violations and p-values of Kupiec’s backtest
for the different versions of the CTS-ARMA-GARCH-V model for the S&P 500 spot

Table 48.2 CTS-ARMA-GARCH with lagged volume

Model

1 year (255 days)

Dec. 14, 2004 Dec. 16, 2005 Dec. 21, 2006 Dec. 28, 2007

� Dec. 15, 2005 � Dec. 20, 2006 � Dec. 27, 2007 � Dec. 31, 2008

N(p-value) N(p-value) N(p-value) N(p-value)

S&P 500 spot

CTS-ARMA-GARCH-

V(t � 1)

16(0.0000) 10(0.0004) 23(0.0000) 26(0.0000)

CTS-ARMA-GARCH-

log [V(t � 1)]

1(0.2660) 4(0.3995) 10(0.0004) 6(0.0646)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

0 2(0.7190) 6(0.0646) 5(0.1729)

S&P 500 futures

CTS-ARMA-GARCH-

V(t � 1)

1(0.2660) 11(0.0001) 4(0.3995) 6(0.0646)

CTS-ARMA-GARCH-

log [V(t � 1)]

1(0.2660) 3(0.7829) 4(0.3995) 5(0.1729)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

1(0.2660) 3(0.7829) 3(0.7829) 5(0.1729)

CTS-ARMA-GARCH-

V$(t � 1)

0 1(0.2660) 15(0.0000) 3(0.7829)

CTS-ARMA-GARCH-

log [V$(t � 1)]

3(0.7829) 3(0.7829) 4(0.3995) 5(0.1729)

CTS-ARMA-GARCH-

ln [V$(t � 1)/V$(t � 2)]

2(0.7190) 0 8(0.0061) 8(0.0061)

The number of violations (N) and p-values of Kupiec’s proportion of failures test for the

S&P 500 spot and futures indices with the different variants of volume using the stdCTS-

ARMA(1,1)-GARCH(1,1) model has been shown. V(t � 1), log [V(t � 1)], and ln [V(t � 1)/

V(t � 2)] stand for levels, logarithm, and relative change of the lagged trading volume, respec-

tively. V$(t � 1), log [V$(t � 1)], and ln [V$(t � 1)/V$(t � 2)] stand for levels, logarithm, and

relative change of the lagged trading volume in dollars, respectively
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and futures indices. We count the number of violations and the corresponding

p-values for 1 %-VaRs of both markets. From Table 48.2, we conclude the following:

• The model with the lagged trading volume in level is rejected at the 1 %

significance level in all 4 years for the S&P 500 spot, and for the second period

(2005–2006) for the S&P 500 futures.

• The logarithm of trading volume in the model is rejected at the 5 % significance

level for the spot market for the third period (2006–2007), but it is not rejected in

any period for the futures market.

• The relative change of the lagged volume is not rejected at the 5 % significance

level in any period in either market. Of the three versions of trading volume tests,

this version seems to be the most useful for both spot and futures markets.

• The results for trading volume in contracts and the trading volume in dollars in the

futures market indicate that the former is rejected at the 1 % significance level only

for the lagged trading volume in level in the second period (2005–2006). Trading

volume in dollars is rejected three times, for the lagged trading volume in levels

for the third period (2006–2007) and for the lagged relative trading volume change

in the last two periods (2006–2007 and 2007–2008). These findings suggest that

the trading volume in contracts is the preferred measure.

48.4.2 Lagged Relative Change of Trading Volume

As we have just seen, the variant of trading volume that seems more useful

for forecasting 1-day-ahead VaR using CTS-ARMA-GARCH is the relative change

of trading volume. Next, we compare the original CTS-ARMA-GARCH model

with the new CTS-ARMA-GARCH-V model where V is the lagged relative change

of trading volume. Table 48.3 shows the number of violations and p-values of

Kupiec’s backtest for the two models for the three stock indices and both markets.

We sum up the number of violations and the corresponding p-values for 1 %VaRs for

each case.

Our conclusions from Table 48.3 are as follows. For the spot markets, the

introduction of trading volume does not mean a reduction in the number of

violations in any period for any index. However, for the futures markets, the

numbers of violations are the same or lower for the model with trading

volume than with the original model. Thus, by introducing trading volume, we

get a slightly more conservative model, increasing the VaR forecasted for futures

equity markets.

48.4.3 Lagged Trading Volume or Forecasting Contemporaneous
Trading Volume

Although there is some evidence which supports the relationship between lagged

trading volume and volatility, the literature is not as extensive as the studies

that establish a strong link between volatility and contemporaneous trading

1334 O. Carchano et al.



volume. As there are countless ways to try to forecast trading volume, we begin by

introducing contemporaneous trading volume relative change in the model as

a benchmark to assess whether it is worthwhile to forecast trading volume.

In Table 48.4 we show the number of violations and p-values of Kupiec’s

backtest for the CTS-ARMA-GARCH with contemporaneous and lagged

relative change of trading volume for the three stock indices for both markets.

We count the number of violations and the corresponding p-values for 1 %VaRs for

the six indices.

Our conclusions based on the results reported in Table 48.4 are as follows.

First, with the exception of the S&P 500 futures, the introduction of the contem-

poraneous relative change of trading volume in the model is rejected at the 1 %

significance level for the last period analyzed (2007–2008). In the case of the S&P

Table 48.3 CTS-ARMA-GARCH versus CTS-ARMA-GARCH-V

Model

1 year (255 days)

Dec. 14, 2004 Dec. 16, 2005 Dec. 21, 2006 Dec. 28, 2007

� Dec. 15, 2005 � Dec. 20, 2006 � Dec. 27, 2007 � Dec. 31, 2008

N(p-value) N(p-value) N(p-value) N(p-value)

S&P 500 spot

CTS-ARMA-GARCH 0 2(0.7190) 6(0.0646) 4(0.3995)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

0 2(0.7190) 6(0.0646) 5(0.1729)

S&P 500 futures

CTS-ARMA-GARCH 1(0.2660) 3(0.7829) 4(0.3995) 5(0.1729)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

1(0.2660) 3(0.7829) 3(0.7829) 5(0.1729)

DAX 30 spot

CTS-ARMA-GARCH 4(0.3995) 4(0.3995) 3(0.7829) 4(0.3995)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

5(0.1729) 4(0.3995) 3(0.7829) 5(0.1729)

DAX 30 futures

CTS-ARMA-GARCH 3(0.7829) 4(0.3995) 6(0.0646) 3(0.7829)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

3(0.7829) 4(0.3995) 5(0.1729) 3(0.7829)

Nikkei 225 spot

CTS-ARMA-GARCH 1(0.2660) 3(0.7829) 4(0.3995) 5(0.1729)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

3(0.7829) 3(0.7829) 4(0.3995) 5(0.1729)

Nikkei 225 futures

CTS-ARMA-GARCH 5(0.1729) 5(0.1729) 6(0.0646) 6(0.0646)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

4(0.3995) 4(0.3995) 6(0.0646) 6(0.0646)

The number of violations (N) and p-values of Kupiec’s proportion of failures test for the S&P

500, DAX 30, and Nikkei 225 spot and futures indices has been reported. CTS-ARMA-GARCH

and CTS-ARMA-GARCH with lagged relative change of trading volume compared
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500 futures, it is rejected at the significance level of 5 % for the third period

(2006–2007). Second, the model with lagged relative change of trading volume is

not rejected for any stock index or market. It seems to be more robust than

contemporaneous trading volume (although, in general, there are fewer violations

when using it).

Table 48.4 CTS-ARMA-GARCH with contemporaneous volume versus CTS-ARMA-GARCH

with lagged volume

Model

1 year (255 days)

Dec. 14, 2004 Dec. 16, 2005 Dec. 21, 2006 Dec. 28, 2007

� Dec. 15, 2005 � Dec. 20, 2006 � Dec. 27, 2007 � Dec. 31, 2008

N(p-value) N(p-value) N(p-value) N(p-value)

S&P 500 spot

CTS-ARMA-GARCH-

ln [V(t)/V(t � 1)]

0 3(0.7829) 3(0.7829) 8(0.0061)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

0 5(0.1729) 6(0.0646) 5(0.1729)

S&P 500 futures

CTS-ARMA-GARCH-

ln [V(t)/V(t � 1)]

0 1(0.2660) 7(0.0211) 6(0.0646)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

1(0.2660) 3(0.7829) 3(0.7829) 5(0.1729)

DAX 30 spot

CTS-ARMA-GARCH-

ln [V(t)/V(t � 1)]

0 1(0.2660) 3(0.7829) 11(0.0001)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

5(0.1729) 4(0.3995) 3(0.7829) 5(0.1729)

DAX 30 futures

CTS-ARMA-GARCH-

ln [V(t)/V(t � 1)]

1(0.2660) 1(0.2660) 2(0.7190) 8(0.0061)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

3(0.7829) 4(0.3995) 5(0.1729) 3(0.7829)

Nikkei 225 spot

CTS-ARMA-GARCH-

ln [V(t)/V(t � 1)]

3(0.7829) 5(0.1729) 7(0.0211) 8(0.0061)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

3(0.7829) 3(0.7829) 4(0.3995) 5(0.1729)

Nikkei 225 futures

CTS-ARMA-GARCH-

ln [V(t)/V(t � 1)]

1(0.2660) 1(0.2660) 3(0.7829) 11(0.0001)

CTS-ARMA-GARCH-

ln [V(t � 1)/V(t � 2)]

4(0.3995) 4(0.3995) 6(0.0646) 6(0.0646)

The number of violations (N) and p-values of Kupiec’s proportion of failures test for the S&P

500, DAX 30, and Nikkei 225 spot and futures indices has been shown. CTS-ARMA-GARCH

with the relative change of trading volume and CTS-ARMA-GARCH with lagged relative change

of trading volume compared

1336 O. Carchano et al.



Our results suggest that it is not worth making an effort to predict contemporane-

ous trading volume because the forecasts will be flawed and two variables

would have to be predicted (VaR and contemporaneous trading volume). Equiva-

lently, the lagged trading volume relative change appears to be more robust because it

is not rejected in any case, although it provides a poor improvement to the model.

48.5 Conclusions

Based on an empirical analysis of spot and futures trading for the S&P 500, DAX

30, and Nikkei 225 stock indices, in this paper we provide empirical evidence

about the usefulness of using classical tempered stable distributions for predicting

1-day-ahead VaR. Unlike prior studies that investigated CTS models in the

cash equity markets, we analyzed their suitability for both spot markets and

futures markets. We find in both markets the CTS models perform better in forecast-

ing 1-day-ahead VaR than models that assume innovations follow the normal law.

Second, we introduced trading volume into the CTS model. Our empirical

evidence suggests that lagged trading volume relative change provides a slightly

more conservative model (i.e., reduces the number of violations) to predict

1-day-ahead VaR for stock index futures contracts. We cannot state the same

for the cash market because the results are mixed depending on the index. After

that, we introduced contemporaneous trading volume to try to improve the forecast-

ing ability of the model, but in the end, it did not seem to be worth the effort. That is,

trading volume appeared not to offer enough information to improve forecasts.

Finally, we compared the number of violations of the estimated VaR in the spot

and futures equity markets. For the CTS model without volume, in general, we find

fewer violations in the spot indices than in the equivalent futures contracts.

In contrast, our results suggest that the number of violations in futures markets

is less in the case of the CTS model with trading volume in comparison to the

CTS model that ignores trading volume. But if we contrast spot and futures equity

markets, violations are still greater for futures than in spot markets. A possible

reason is that futures markets demonstrate extra volatility or an overreaction when

the market falls with respect to their corresponding spot markets.

Appendix: VaR on the CTS Random Variable

Let X be a CTS random variable. Since the CTS random variable is continuous and

infinitely divisible, we obtain VaR�(X) ¼ �FX(�), where the cumulative distribu-

tion function FX of X is provided by the following proposition.

Proposition Let X be an infinitely divisible random variable and fx(u) be the

characteristic function of X. If there is a r > 0 such that jfx(Z)j < 1 for all the

complex z with ℑ(z) ¼ r, then
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FX xð Þ ¼ exr

p
ℜ

ð/
0

e�ixu fX uþ irð Þ
r� ui

du


 �
, for x 2 ℝ (48.5)

where ℜ(z) is the real part of a complex number z.

Proof By the definition of the cumulative density function, we have

FX xð Þ ¼ P X � xð Þ ¼
ðx
�1

f X tð Þdt,

where fX(x) is the density function of X. The probability density function fX(t) can be
obtained from the characteristic function fX by the complex inverse formula (see

Doetsch 1970); that is,

f X tð Þ ¼ 1

2p

ð1þir

�1þir
e�itzfX zð Þdz,

and we have

FX xð Þ ¼
ðx
�1

1

2p

ð1þip

�1þip

e�itzfX zð Þdzdt

¼ 1

2p

ð1þip

�1þip

ðx
�1

e�itzdtfX zð Þdz:

Note that if r > 0, then

lim
t!�1 e�it aþirð Þ�� �� ¼ lim

t!1 e
it aþirð Þ
���

��� ¼ lim
t!1 e�rt ¼ 0, a 2 ℝ,

and hence

ðx
�1

e�itzdt ¼ � 1

iz
e�itz
� �x

�1 ¼ � 1

iz
e�ixz

where z ∈ ℂ with ℑ(z) ¼ r Thus, we have

FX xð Þ ¼ � 1

2p

ð1þip

�1þip

1

iz
e�ixzfX zð Þdz

¼ � 1

2p

ð1
�1

1

i uþ irð Þ e
�ix uþirð Þfx uþ irð Þdu

¼ exr

2p

ð1
�1

e�ixu fX uþ irð Þ
r� iu

du:
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Let

gr uð Þ ¼ fX uþ irð Þ
r� iu

:

Then we can show that gr �uð Þ ¼ gr uð Þ with u ∈ ℝ and hence we have

ð1
�1

e�ixugr uð Þdu ¼ 2ℜ
ð1
0

e�ixugr uð Þdu

 �

:

Therefore, we obtain Eq. 48.5.
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Abstract

Securities trading is one of the fewbusiness activitieswhere a fewsecondsprocessing

delay can cost a company big fortune. The growing competition in the market

exacerbates the situation and pushes further towards instantaneous trading even in

split second. The key lies on the performance of the underlying information system.

Following the computing evolution in financial services, it was a centralized process

tobeginwithandgraduallydecentralized intoadistributionof actual application logic

across service networks. Financial services have tradition of doingmost of its heavy-

duty financial analysis in overnight batch cycles. However, in securities trading it

cannot satisfy the need due to its ad hoc nature and requirement of fast response. New

computing paradigms, such grid and cloud computing, aiming at scalable and

virtually standardized distributed computing resources, are well suited to the chal-

lenge posedby the capitalmarket practices.Both consolidate computing resources by

introducing a layer ofmiddleware to orchestrate the use of geographically distributed

powerful computers and large storages via fast networks. It is nontrivial to harvest the

most of the resources from this kind of architecture. Wiener process plays a central

role inmodern financialmodeling. Its scaled randomwalk feature, in essence, allows

millions of financial simulation to be conducted simultaneously. The sheer scale can

only be tackled via grid or cloud computing. In this study the core computing

competence for financial services is examined. Grid and cloud computing will be

briefly described. How the underlying algorithm for financial analysis can take

advantage of grid environment is chosen and presented. One of the most popular

practiced algorithms Monte Carlo simulation is used in our case study for option

pricing and risk management. The various distributed computational platforms are

carefully chosen to demonstrate the performance issue for financial services.

Keywords

Financial service • Grid and cloud computing • Monte Carlo simulation • Option

pricing • Risk management • Cyberinfrastructure • Random number generation •

High-end comptuing • Financial simulation • Information technology

49.1 Introduction

49.1.1 Information Technology (IT) for Financial Services

The finance services industry involves a broad range of organizations such as banks,

credit card companies, insurance companies, consumer finance companies, stock

brokerages, investment funds, and some government-sponsored enterprises. The

industry represents a significant share of the global market. Information technology

(IT) in the financial service industry is considered as an indispensable tool for

productivity as well as competitiveness in the market. The IT spending in financial

service industry grows constantly across different industry verticals (banking,

insurance, and securities and investments). The impact directly from the use of

advanced IT brings on financial services industry on the rise.
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The structure of the industry has changed significantly in the last two decades as

companies, which are not traditionally viewed as financial service providers, have

taken advantage of opportunities created by technology to enter the market. New

technology-based services keep emerging. These changes are direct result of the

interaction of technology with the industrial environment, such as economic atmo-

sphere, societal pressures, and the legal/regulatory environment in which the

financial service industry operates. The effects of IT on the internal operations,

the structure, and the types of services offered by the financial service industry have

been particularly profound (Phillips et al. 1984; Hauswald and Marquez 2003;

Griffiths and Remenyi 2003). IT technology has been and continues to be both

a motivator and facilitator of change in the financial service industry, which

ultimately leads to competitiveness of the industry. The change is in particular

radical after 1991 when the World Wide Web was invented by Tim Berners-Lee

and his group for information sharing in the community of high energy physics. It

was later introduced to the rest of the world, which subsequently changed the face

of how people doing business today.

Informational considerations have long been recognized to determine not only the

degree of competition but also the pricing and profitability of financial services and

instruments. Recent technological progress has dramatically affected the production

and availability of information, thereby changing the nature of competition in such

informationally sensitive markets. Hauswald and Marquez (2003) investigate how

advances in information technology (IT) affect competition in the financial services

industry, particularly credit, insurance, and securities markets. Two aspects of

improvement in IT are focused: better processing and easier dissemination of infor-

mation. In other words, two dimensions of technology progress that affect competi-

tion in financial services can be defined as advances in the ability to process and

evaluate information and in the ease of obtaining information generated by compet-

itors. While better technology may result in improved information processing, it

might also lead to low cost or even free access to information through, for example,

informational spillovers. They show that in the context of credit screening, better

access to information decreases interest rates and the returns from screening. On the

other hand, an improved ability to process information increases interest rates and

bank profits. Hence predictions regarding financial claims’ pricing hinge on the

overall effect ascribed to technological progress. Their results conclude that in

general financial market informational asymmetries drive profitability.

The viewpoint of Hauswald and Marquez is adopted in this work. Assuming

competitors in the dynamics of financial market possess similar capacity, the infor-

mational asymmetries can be created sometimes only between seconds and now are

possible to be achieved through the outperformance of underlying IT platforms.

49.1.2 Competitiveness Through IT Performance

Following the computing evolution in financial services, it was a centralized pro-

cess to begin with and gradually decentralized into a distribution of practical
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trading application logic across service networks. Financial services have tradition

of doing most of its heavy lifting financial analysis in overnight batch cycles.

However, in securities trading it cannot satisfy the need due to its ad hoc nature

and requirement of fast response.

New computing paradigms, grid computing and cloud computing were subse-

quently emerged in the last decade. The grid computing was initially incorporated

into the core context of a well-referenced Atkins’ report of National Science Board

of the United States, namely, “Revolutionizing Science and Engineering Through

Cyberinfrastructure” (Atkins et al. 2003), which lays down a visionary path for

future IT platform development of the world. One may observe this trend from

statistics from Google Trend regarding the global Search Volume and global News

Reference Volume of key phrases of “cluster computing,” “grid computing,”

“cloud computing,” and “Big Data” (Fig. 49.1), which represents four main stream

computing paradigms in high-end quantitative analysis.

Cluster computing is a group of coupled computers that work closely together so

that in many respects they can be viewed as though they are a single computer.

They are connected with high-speed local area networks and the purpose is usually

to gain more compute cycles with better cost performance and higher availability.

The grid computing aims at virtualizing scalable geographically distributed com-

puting and observatory resources to maximize compute cycles and data transaction

rates with minimum cost. Cloud computing is more of recent development owing to

the similar technology used in global information services providers, such as

Google and Amazon. The cloud is referred to as a subset of Internet if to be

explained in a simplest fashion. Within the cloud the computers also talk with

servers instead of communicating with each other similarly to that of peer-to-peer

computing (Milojicic et al. 2002). There are no definitive definitions for the above

cluster computing

Search Volume index

0

0

2004

News reference volume

2005 2006 2007 2008 2009 2010 2011 2012

Google Trends

grid computing cloud computing big data

F

Fig. 49.1 The trend history from Google Trend according to global Search Volume and global

News Reference Volume, in which the alphabetic letters represent the specific events that relate to

each curve
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terminology. However, people tend to view clusters as one of foundational com-

ponents of grids, or grids as a meta-cluster on wide area networks. This is also

known as horizontal integration. The cloud virtualizes further the compute, store,

and network in a utility sense and provides an interface between users and grids. We

refer to Foster et al. (2008) and Yelick et al. (2011) for a comparison. This

perspective considers grids as a backbone of cyberinfrastructure to support the

clouds. Similarly, in early days of development of grids, there is a so-called

“@HOME” style PC grids (Korpela et al. 2001), which are exactly working on at

least ten of thousands of PCs, in which owners of PCs donate their CPU times when

their machines are in idle. The PC grids can be specifically categorized as clouds.

Figure 49.1 shows that there is a gradual drop in the curve of search volume for grid

computing and cluster computing, and many surges, grows but a recent quick drop on

cloud computing since its introduction in mid-2007. The new rising technology is Big

Data (Bughin et al. 2010), which implies a paradigm shift from compute centric,

network centric gradually to data-centric computing. However, the size of the search

volume strongly relates to the degree of maturity of each computing paradigm. This is

obvious in cluster computing. Clusters are the major market products, either in

supercomputers from big vendors, such as IBM, HP, SGI, and NEC, or from aggre-

gation of PCs in university research laboratories. Figure 49.1 also implies constant

market need for high-end computing. The performance and security issues are funda-

mental to general distributed and parallel computing, which also remain as a challenge

to cluster, grid, cloud, and Big Data (Lauret et al. 2010; Ghoshal et al. 2011;

Ramakrishnan et al. 2011). Performance models in compute-based grid, which is

also cloud-like, environment, are adopted in this work. The general definitions of grid

and cloud computing will be introduced and briefly compared. To tackle the core

performance issue, grids are chosen to demonstrate how fundamental financial calcu-

lations can be improved, hence leverage the financial service.

Grid computing, following by cloud computing as shown in Fig. 49.1, has been

matured to serve as a production environment for finance services in recent years.

Grid computing is well suited to the challenge posed by the capital market prac-

tices. In this study the core computing competence for financial services will be

examined and how underlying algorithms for financial analysis can take advantage

of grid environment scrutinized. One of the most popular practiced algorithms is

Monte Carlo simulation (MCS), and it will be specifically used in our case study for

calculations of option pricing and for value at risk (VaR) in risk management.

Three grid platforms are carefully chosen to exploit the performance issue for

financial services. The first one is traditional grid platform with heterogeneous and

distributed resources. Usually digital packets are connected via optical fibers.

For long distance, depending on network traffics, it will produce approximately

150-300 microseconds (mm) latency across the Pacific Ocean. This is the

physical constrain of light speed when traveling through the fiber channels. There-

fore, even in split-second packets can still travel to anywhere in the world. The

Pacific Rim Applications and Grid Middleware Assembly (PRAGMA) grid is

a typical example, which linked with 14 countries and 36 sites. The system

is highly heterogeneous. The computer nodes mounted to PRAGMA grid range
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from usual PC clusters to high-end supercomputers. The second one is a special

Linux, or DRBL, PC cluster. It converts system into a homogenous Linux system

and exploits the compute cycles of the cluster. The intention is to provide dynamic

and flexible resources to cope better with uncertainty of the traders’ cycle demand.

Finally, PC grid is chosen to demonstrate finance services that can be effectively

conducted through a cloud-based computing. The usefulness of PC grid is based on

the fact that 90 % of CPUs time of PCs were in idled status.

49.2 Performance Enhancement

In this section two types of grid systems, compute intensive and data intensive,

respectively, are introduced. The classification of the types is based on various grid

applications. Traditionally, the grid systems provide a general platform to harvest or to

scavenge, if used only in idle status, compute cycles for a collection of resources

across boundaries of institutional administration. In realworldmost applications are in

fact data centric. For example, in a trading center, it collects tick-by-tick volume data

from all related financial markets and is driven by informational flows, hence typical

data centric. However, as noted in Sect. 49.3.2.1, the core competence still lies on the

performance enhancement of the IT system. The following two subsections will give

more details of compute intensive aswell as data-intensive grid systems by a survey of

current development of grids specifically for financial services. In some cases, e.g.,

high-frequency data with real-time analysis, two systems have to work together to get

better performance. Our emphasis will be more on compute intensive grid system.

49.2.1 High-End Computing Technology

49.2.1.1 Definitions of High-End Computing
Grid was coined by Ian Foster (Foster and Kessleman 2004) who gave the essence

of the definitions as below:

The sharing that we are concerned with is not primarily file exchange but rather direct

access to computers, software, data, and other resources, as is required by a range of

collaborative problem solving and resource-brokering strategies emerging in industry,

science, and engineering. This sharing is, necessarily, highly controlled, with resource

providers and consumers defining clearly and carefully just what is shared, who is allowed

to share, and the conditions under which sharing occurs. A set of individuals and/or

institutions defined by such sharing rules form what we call a virtual organization.

The definition is centered on the concept of virtual organization, but it is not

explicit enough to explain what the grid is. Foster then provides additional checklist

as below to safeguard the possible logic pitfalls of the definition. Hereby, grid is

a system that:

1. Coordinates resources that are not subject to centralized control.

A grid integrates and coordinates resources and users that live within different

control domains – for example, the user’s desktop vs. central computing, different
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administrative units of the same company, or different companies – and addresses

the issues of security, policy, payment, membership, and so forth that arise in these

settings. Otherwise, we are dealing with a local management system.

2. Using standard, open, general-purpose protocols and interfaces.

A grid is built from multipurpose protocols and interfaces that address such

fundamental issues as authentication, authorization, resource discovery, and

resource access. As I discuss further below, it is important that these protocols

and interfaces be standard and open. Otherwise, we are dealing with an appli-

cation specific system.

3. To deliver nontrivial qualities of service.
A grid allows its constituent resources to be used in a coordinated fashion to

deliver various qualities of service, relating, for example, to response time,

throughput, availability, and security, and/or co-allocation of multiple resource

types to meet complex user demands, so that the utility of the combined system

is significantly greater than that of the sum of its parts.

The definition of grid thus far is well accepted and has been stably used up to

now. The virtual organization (VO) has strong implication of community driven

and collaborative sharing of distributed resources. The advance of development of

optical fiber network in recent years plays a critical role of why grids can be

a reality. It is also the reason why now the computing paradigm shifts to distrib-

uted/grid computing.

Additionally, perhaps the most generally useful definition is that a grid consists
of shared heterogeneous computing and data resources networked across admin-
istrative boundaries. Given such a definition, a grid can be thought of as both an

access method and a platform, with grid middleware being the critical software that

enables grid operation and ease of use.

The term “cloud computing” has been used to refer to different concepts,

models, and services over the last few years. The definition for cloud computing

provided by the National Institute of Standards and Technology (NIST) is well

received in the IT community, which defines cloud computing as a model for
enabling convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort
service provider interaction (Mell and Grance 2011). The model gains popularity

in the industry for its emphasis on pay-as-you-go and elasticity, the ability to

quickly expand and collapse the utilized service as demand requires. Thus new

approaches to distributed computing and data analysis have also emerged in

conjunction with the growth of cloud computing. These include models like

MapReduce (Dean and Ghemawat 2004) and scalable key-value stores like Big

Table (Chang et al. 2006).

From the high-end computing perspective, cloud computing technology allows

users to have the ability to get on-demand access to resources to replace or

supplement existing systems, as well as the ability to control the software environ-

ment. Yet the core competence still lies on the performance of financial calculation

and further of the transactions of financial processes. This work will focus on the
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core competence in financial calculation based on grid environment. Grid comput-

ing technology will be used to explain how the core financial calculations can be

significantly accelerated in various distributed and parallel computing environ-

ments. The calculation models in this work can be easily migrated to pure cloud

environments.

49.2.1.2 Essence of IT Technology
To realize the above goal, it needs to handle technically interoperability of middleware

that is capable of communicating between heterogeneous computer systems across

institutional boundaries. The movement of grid began in 1996 by Ian Foster and

Kessleman (2004). Before their development, another branch of high-performance

computing that focuses on connecting geographically distributed supercomputers to

achieve one single grand task had been developed by Smarr and Catlett (1992). They

coined such a methodology as metacomputing and their query has been how we can

have infinite computing power under the physical limit, such as Moore’s Law.

However, it remains to be less useful because its limit goal onpursuing top performance

without noticing practical use in real world. The idea lives on and generatesmany tools

dedicated to high-performance/high-throughput computing, such as Condor (Litzkow

et al. 1988), Legion (Grimshaw andWulf 1997), andUNICORE (Almond and Snelling

1999). Condor, as suggested by the name of the project, is devised to scavenge a large

cluster of idle workstations. Legion is closer to the development of worldwide virtual

computer. The goal of UNICORE is evenmuch simpler and practical. It was developed

when Germany government decided to consolidate their five national supercomputer

centers into a virtual one to reduce the management cost and needed a software tool to

integrate them, hence the UNICORE. These tools were successful under their devel-

opment scope. However they fail to meet the first and the second items in Foster’s

checklist in the previous section.

The emergency of grids follows the similar path as that of Condor and Legion at the

first place, in which its development aims at resources sharing in high-performance

computing. However, its vision in open standards and the concept of virtual organiza-

tion allows its development go far beyond merely cluster supercomputers together. It

gives a broader view of resources sharing, in which it is not only limited to the sizable

computing cycles and storage space to be shared but also extended virtually to

calculable machines that are able to hook up to the Internet, such as sensors and sensor

loggers, storage servers, and computers. Since 1996, Foster and his team have been

developing software tools to achieve the purpose. Their software Globus Toolkit

(Foster and Kessleman 2004) is now a de facto middleware for grids. However, the

ambitious development is still considered insufficient to meet the ever-growing com-

plexity of grid systems.

As mentioned earlier that grid is based on open specifications and standards, they

allow all stakeholders within the virtual organization/grid to communicate with each

other with ease and enable ones more to focus on integrated value creation activities.

The open specifications and standards are made by the community of Open Grid

Forum (OGF), which plays as a standard body and made, discussed, and announced

new standards during regular OGF meetings. Grid Specifications and Standards
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include architecture, scheduling, resource management, system configuration, data,

data movement, security, and grid security infrastructure. In 2004, OGF announced

Globus Toolkit version, which adopts both the open standard of grid, Open Grid

Services Architecture (OGSA), and the more widely adopted World Wide Web

standard, web services resource framework (WSRF), which ultimately enable grids

to tackle issues of both scalability and complexity of very large grid systems.

49.2.2 Compute Intensive IT Systems

The recent development of computational finance based on grids is hereby scruti-

nized and remarks given. Our major interest is to see if the split-second perfor-

mance is well justified under the grid architecture. Also, real-time issue with real

market parametric data should be used as input for practical simulation. In addition,

issues of intersystem, interdisciplinary and geographically distribution of resources,

and the degree of virtualization are crucial to the success of such a grid. The chosen

projects are reviewed and discussed as follows:

1. PicsouGrid

This is a French grid project for financial service. It provides a general

framework for computation finance and targets on applications of option trading,

option pricing, Monte Carlo simulation, aggregation of statistics, etc. (Stokes-

Rees et al. 2007). The key for this development is the implementation of the

middleware ProActive. ProActive is an in-house Java library for distributed

computing developed by INRIA Sophia Antipolis, France. It provides transpar-

ent asynchronous distributed method calls and is implemented on top of Java

RMI. It is also used in commercial applications. It also provides fault tolerance

mechanism. The architecture is shown in Fig. 49.2, which is very similar to most

of grid applications apart from the software stack used. The option pricing was

tested in an approximately 894 CPUs. The underlying computer systems are

heterogeneous. The system is used for metacomputing. As a result, the system

has to specifically design to orchestrate and to synchronize and re-synchronize

the whole distributed processes for one calculation. Once the grid system

requires synchronization between processes, which implies stronger coupling

of algorithm of interest, the performance will be seriously affected. There is no

software treatment to solve such problems and should be tackled by physical

infrastructure, e.g., optical fiber network with Layer 2 light path.

2. FinGrid

FinGrid stands for Financial Information Grid. Its study includes components

of bootstrapping, sentimental analysis, and multi-scale analysis, which focuses

on information integration and analysis, e.g., data mining. It takes advantage of

the huge collection of numerical and textual data simultaneously to emphasize

the study of societal issues (Amad et al. 2004; Ahmad et al. 2005; Gillam

et al. 2005). The architecture of FinGrid is shown in Fig. 49.3. It is a typical 3-

tier system, in which the first tier facilitates the client in sending a request to one

of the services: Text Processing Service or Time Series Service; the second tier
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facilitates the execution of parallel tasks in the main cluster and is distributed to

a set of slave machines (nodes), and the third tier comprises the connection of the

slave machines to the data providers. This work focuses on small scale and

dedicated grid system. It pumps in real and live numerical and textual data from

say Reuters and performs real-time sophisticated data mining analysis. This is

a good prototype for financial grid. However, it will encounter similar problem

as that of PicsouGrid if it is to scale up. The model is more successful in

automatically combining real data and the analysis.

3. IBM Japan collaborates with life insurance company and adopts PC grids

concept to scavenge more compute cycles (Tanaka 2003):

In this work an integrated risk management system (see Fig. 49.4) is modi-

fied, in which the future scenarios of red circle of Fig. 49.4 are send via grid

middleware to a cluster of PCs. According to the size of the given PCs, the
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Fig. 49.2 Architecture of PicsouGrid for option pricing based on Monte Carlo simulation

(Stokes-Rees et al. 2007)
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number scenarios are then divided in a work balanced manner for each PC. This

is the most typical use of compute intensive grid systems and a good practice for

production system. However, the key issues that discussed in the above two

cases cannot be answered in this study. Similar architecture can also be found in

EGrid (Leto et al. 2005).

4. UK e-Science developed a grid service discovery in the financial market sector

focusing on integration of different knowledge flows (Bell and Ludwig 2005).

From application’s viewpoint, business and technical architecture of financial

service applications may be segmented by product, process, or geographic con-

cerns. Segmented inventories make inter silo reuse difficult. The service integration

model is adopted and a loosely coupled inventory – containing differing explicit
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Fig. 49.4 Architecture of Integrated Risk Management System (Tanaka 2003)
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capability knowledge. Three use cases were specifically chosen in this work to

explore the use of semantic searching:

Use case 1 – Searching for trades executed with a particular counterparty

Use case 2 – Valuing a portfolio of interest rate derivative products

Use case 3 – Valuing an option-based product

The use cases were chosen to provide examples of three distinct patterns of use –

aggregation, standard selection, and multiple selection. The architecture (see

Fig. 49.5) is bound specifically with the user cases. The advantage for grid in this

case is that it can be easily tailored into specific user need to integrate different

applications, which is a crucial strength of using grid.

49.2.3 Data-Intensive IT Systems

Grid in financial services from the perspective of web services towards financial

services industry. The perspective is more on transactional side. Once the bottle-

neck of compute cycle is solved, the data-centric nature will play the key role again.
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The knowledge flows back to the customized business logic should provide the best

path for users to access the live data of interest. There is no strong focus of

development on this data-intensive grid system. Even in FinGrid, which claims in

streaming live data for real-time analysis, the data issue remains part of compute

grids. However, the need for dynamic data management is obvious as mentioned in

Amad et al. (2004). Hereby, we like to introduce and implement a dynamic data

management software Ring Buffer Network Bus (RBNB) DataTurbine to serve

such a purpose.

RBNB DataTurbine was used recently to support global environmental obser-

vatory network, which involves linking with ten of thousand of sensors and is able

to obtain the observed data online. It meets grid/cyberinfrastructure

(CI) requirements with regard to data acquisition, instrument management, and

state-of-health monitoring including reliable data capture and transport, persistent

monitoring of numerous data channels, automated processing, event detection and

analysis, integration across heterogeneous resources and systems, real-time tasking

and remote operations, and secure access to system resources. To that end, stream-

ing data middleware provides the framework for application development and

integration.

Use cases of RBNB DataTurbine include adaptive sampling rates, failure detec-

tion and correction, quality assurance, and simple observation (see Tilak

et al. 2007). Real-time data access can be used to generate interest and buy-in

from various stakeholders. Real-time streaming data is a natural model for many

applications in observing systems, in particular event detection and pattern recog-

nition. Many of these applications involve filters over data values, or more gener-

ally, functions over sliding temporal windows. The RBNB DataTurbine

middleware provides a modular, scalable, robust environment while providing

security, configuration management, routing, and data archival services. The

RBNB DataTurbine system acts as an intermediary between dissimilar data mon-

itoring and analysis devices and applications. As shown in Fig. 49.6, a modular

architecture is used, in which a source or “feeder” program is a Java application that

acquires data from an external live data sources and feeds it into the RBNB server.

Additional modules display and manipulate data fetched from the RBNB server.

This allows flexible configuration where RBNB serves as a coupling between

relatively simple and “single purpose” suppliers of data and consumers of data,

both of which are presented a logical grouping of physical data sources. RBNB

supports the modular addition of new sources and sinks with a clear separation of

design, coding, and testing (ref. Fig. 49.6). From the perspective of distributed

systems, the RBNB DataTurbine is a “black box” from which applications and

devices send data and receive data. RBNB DataTurbine handles all data manage-

ment operations between data sources and sinks, including reliable transport,

routing, scheduling, and security. RBNB accomplishes this through the innovative

use of memory and file-based ring buffers combined with flexible network objects.

Ring buffers are a programmer-configurable mixture of memory and disk, allowing

system tuning to meet application-dependent data management requirements. Net-

work bus elements perform data stream multiplexing and routing. These elements
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combine to support seamless real-time data archiving and distribution over existing

local and wide area networks. Ring buffers also connect directly to client applica-

tions to provide streaming-related services including data stream subscription,

capture, rewind, and replay. This presents clients with a simple, uniform interface

to real-time and historical (playback) data.

49.3 Distributed and Parallel Financial Simulation

In the previous sections, we address issues of incorporating IT technology for

financial competitiveness and derive that the core lies on the performance of IT

platform, providing the competitors in the market have similar capacity and are
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equally informed. Grid technology, as the leading IT development in high-

performance computing, is introduced as the cutting-edge IT platform to meet our

goal. Many companies have adopted similar technology of grids with success as

mentioned in Sect. 49.1. There are also increasing research interests, which result in

the work discussed in Sect. 49.2.3. Better performance, however, cannot be

achieved by merely using a single architecture as observed in the cases of

Sect. 49.2.3. The architecture obviously has to be specifically chosen for the

analysis of interest. Simultaneously, the analysis procedures have to be tailored

into the chosen architecture for performance fine-tune.

In this section, we will introduce and discuss analysis procedures of financial

simulation and how to tailor the analysis procedures into grid architectures by

distribution and parallelism. The popular calculations for option pricing and for

value at risk (VaR) in trading practice are used to serve the purpose. The calculation

is based on Monte Carlo simulation, which is chosen not only because it is a well-

received approach due to the absence of straightforward closed-form solutions for

many financial models but also a numerical method intrinsically suited to mass

distribution and mass parallelism. The success of Monte Carlo simulation lies on

the quality of random number generator, which will be discussed in details at the

end of the section.

49.3.1 Financial Simulation

There are wide variety of sophisticated financial models developed, to name a few,

ranging from analysis in time series, fractals, nonlinear dynamics, and agent-based

modeling to applications in optional pricing, portfolio management, and market risk

measure, etc. (Schmidt 2005), in which option pricing and VaR calculations of

market risk measure can be considered crucial and one of the most practiced

activities in market trading.

49.3.1.1 Option Pricing
An option is an agreement between two parties to buy or sell an asset at a certain

time in the future for a certain price. There are two types of options:

Call Option: A call option is a contract that gives the right to its holder (i.e., buyer)

without creating an obligation, to buy a prespecified underlying asset at

a predetermined price. Usually this right is created for a specific time period,

e.g., 6 months or more. If the option can be exercised only at its expiration (i.e.,

the underlying asset can be purchased only at the end of the life of the option),

the option is referred to as a European-style Call Option (or European Call). If it

can be exercised any date before its maturity, the option is referred to as an

American-style Call Option (or American Call).

Put Option: A put option is a contract that gives its holder the right without creating

the obligation to sell a prespecified underlying asset at a predetermined price. If

the option can be exercised only at its expiration (i.e., the underlying asset can be

sold only at the end of the life of the option), the option is referred to as
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a European-style Put Option (or European Put). If it can be exercised any date

before its maturity, the option is referred to as an American-style Put Option

(or American Put).

To price options in computational finance, we use the following notation: K is

the strike price; T is the time to maturity of the option; St is the stock price at time t;
r is the risk-free interest rate; m is the drift rate of the underlying asset (a measure of

the average rate of growth of the asset price); s is the volatility of the stock; and

V denotes the option value. Here is an example to illustrate the concept of option

pricing. Suppose an investor enters into a call option contract to buy a stock at price

K after 3 months. After 3 months, the stock price is St. If St > K then one

can exercise one’s option by buying the stock at price K and by immediately

selling in the market to make a profit of ST � K. On the other hand, if he

ST � K to be buy the stock. Hence, we see that a call option to buy the stock at

time T at price K will get payoff (ST � K)+, where (ST � K)+ � max(ST � K, 0)
(Schmidt 2005; Hull 2003).

49.3.1.2 Market Risk Measurement Based on VaR
Market risks are the prospect of financial losses or gains, due to unexpected changes

in market prices and rates. Evaluating the exposure to such risks is nowadays of

primary concern to risk managers in financial institutions. Until the late 1980s

market risk was estimated through gap and duration analysis (interest rates),

portfolio theory (securities), sensitivity analysis (derivatives), or scenarios analysis.

However, all these methods could be either applied only to very specific assets or

relied on subjective reasoning.

Since the early 1990s a commonly used market risk estimation methodology has

been the value at risk (VaR). A VaR measure is the highest possible loss L incurred

from holding the current portfolio over a certain period of time at a given confi-

dence level (Dowd 2002):

P L > VaRð Þ � 1� c (49.1)

where c is the confidence level, typically 95 %, 97.5 %, or 99 %, and P is

cumulative distribution function. By convention, L ¼ �DX(t), where DX(t) is the
relative change (return) in portfolio value over the time horizon t. Hence, large
values of L correspond to large losses (or large negative returns).

The VaR figure has two important characteristics: (1) it provides a common

consistent measure of risk across different positions and risk factors and (2) it takes

into account the correlations or dependencies between different risk factors.

Because of its intuitive appeal and simplicity, it is no surprise that in a few years

value at risk has become the standard risk measure used around the world.

However, VaR has a few deficiencies, among them the non-subadditivity –

a sum of VaR’s two portfolios can be smaller than the VaR of the combined

portfolio. To cope with these shortcomings, Artzner et al. proposed an alternative

measure that satisfies the assumptions of a coherent risk measure. The expected
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shortfall (ES), also called expected tail loss (ETL) or conditional VaR, is the

expected value of the losses in excess of VaR:

ES ¼ E L L > VaRj Þð (49.2)

It is interesting to note that although new to the finance industry – expected

shortfall has been familiar to insurance practitioners for a long time. It is very

similar to the mean excess function which is used to characterize claim size

distribution; see (Cizek et al. 2011).

The essence of the VaR and ES computations is estimation of low quantiles in the

portfolio return distributions. Hence, the performance of market risk measurement

methods depends on the quality of distribution assumptions on the underlying risk

factors. Many of the concepts in theoretical and empirical finance developed over

the past decades, including the classical portfolio theory, the Black-Scholes-Merton

option pricing model, and even the RiskMetrics variance-covariance approach to

VaR rest upon the assumption that asset returns follow a normal distribution. The

assumption is not justified by real market data. Our interest is more on the calcula-

tion side. For interested readers we refer further to (Weron 2004).

49.3.2 Monte Carlo Simulations

49.3.2.1 Monte Carlo and Quasi-Monte Carlo Methods
In general, Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods are applied

to estimate the integral of function f(x) over [0, 1]d unit hypercube where d is the

dimension of the hypercube:

I ¼
ð

0;1½ �d
f xð Þdx (49.3)

In MC methods, I is estimated by evaluating f(x) at N independent points

randomly chosen from a uniform random distribution over [0, 1]d and then evalu-

ating average

Î ¼ 1

N

XN
i¼1

f xið Þ (49.4)

From the law of large numbers, Î ! I as N ! 1. The standard deviation is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

f xið Þ � Ið Þ2
vuut (49.5)

Therefore, the error of MC methods is proportional to N� 1/2.
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QMC methods compute the above integral based on low-discrepancy

(LD) sequences. The elements in a LD sequence are “uniformly” chosen from [0, 1]d

rather than “randomly.” The discrepancy is a measure to evaluate the uniformity of

points over [0, 1]d. Let {qn} be a sequence in [0, 1]
d; the discrepancyDN

* of qn is defined
as follows, using Niederreiter’s notation (Niederreiter 1992):

D�
N qnð Þ ¼ sup

B 2 0; 1Þ½ d
A B; qnð Þ

N
� vd Bð Þ

����
���� (49.6)

where B is a subcube of [0, 1]d containing the origin, A(B, qn) is the number of

points in qn that fall into B, and Vd(B) is the d-dimensional Lebesgue measure of B.
The elements of qn are said uniformly distributed if its discrepancy DN

* ! 0 as

N ! 1. From the theory of uniform distribution sequences (Kuipers and

Niederreiter 1974), the estimate of the integral using a uniformly distributed

sequence {qn} is Î ¼ 1
N

XN
n¼1

f qnð Þ, as N ! 1 then Î ! I . The integration error

bound is given by the Koksman-Hlawka inequality:

I � 1

N

XN
n¼1

f qnð Þ
�����

����� � V fð ÞD�
N qnð Þ (49.7)

where V(f) is the variation of the function in the sense of Hardy and Krause (see

Kuipers and Niederreiter 1974), which is assumed to be finite.

The inequality suggests a smaller error can be obtained by using sequences

with smaller discrepancy. The discrepancy of many uniformly distributed

sequences satisfies O((log N)d/N). These sequences are called low-discrepancy

(LD) sequences (Chen et al. 2006). Inequality (49.7) shows that the estimates

using a LD sequence satisfy the deterministic error bound O((log N)d/N).

49.3.2.2 Monte Carlo Simulations for Option Pricing
Under the risk-neutral measure, the price of a fairly valued European call option is

the expectation of the payoff E[e� rT(ST � K)+]. In order to compute the expecta-

tion, Black and Scholes (1973) modeled the stochastic process generating the price

of a non-dividend-paying stock as geometric Brownian motion:

dSt ¼ mStdtþ sStdWt (49.8)

where W is a standard Wiener process, also known as Brownian motion. Under the

risk-neutral measure, the drift m is set to m ¼ r.
To simulate the path followed by S, suppose the life of the option has been

divided into n short intervals of length Dt(Dt ¼ T/n), the updating of the stock price
at t + Dt from t is (Hull 2003):

StþDt � St ¼ rStDtþ sStZ
ffiffiffiffiffi
Dt

p
(49.9)

1358 F.-P. Lin et al.



where Z is a standard random variable, i.e., Z�(0,1). This enables the value of SDt to
be calculated from initial value St at time Dt, the value at time 2Dt to be calculated

from SDt, and so on. Hence, a completed path for S has been constructed.

In practice, in order to avoid discretization errors, it is usual to simulate lnS
rather than S. From It ô’s lemma, the process followed by of Eq. 49.9 is (Bratley and

Fox 1988)

dlnS ¼ r � s2

2

� �
dtþ sdz (49.10)

so that

lnStþDt � lnSt ¼ r � s2

2

� �
dtþ sZ

ffiffiffiffiffi
Dt

p
(49.11)

or equivalently

StþDt ¼ Stexp r � s2

2

� �
dtþ sZ

ffiffiffiffiffi
Dt

p� �
(49.12)

Substituting independent samples Zi, � � �, Zn from the normal distribution into

(Eq. 49.12) yields independent samples ST
(i), i ¼ 1, � � �, n, of the stock price at

expiry time T. Hence, the option value is given by

V ¼ 1

n

Xn
i¼1

Vi ¼ 1

n

Xn
i¼1

e�rTmax ST
ið Þ � K, 0

h i
(49.13)

The QMC simulations follow the same steps as the MC simulations, except that

the pseudorandom numbers are replaced by LD sequences. The basic LD sequences

known in literature are Halton (1960), Sobol (1967), and Faure (1982). Niederreiter

(1992) proposed a general principle of generating LD sequences. In finance, several

examples have shown that the Sobol sequence is superior to others. For example,

Galanti and Jung (1997) observed that the Sobol sequence outperforms the Faure

sequence, and the Faure marginally outperforms the Halton sequence. In this

research, we use Sobol sequence in our experiments. The generator used for

generating the Sobol sequence comes from the modified algorithm 659 of Joe and

Kuo (2003).

49.3.2.3 Monte Carlo Bootstrap for VaR
Monte Carlo simulation is applicable with virtually any model of changes in risk

factors and any mechanism for determining a portfolio’s value in each market

scenario. But revaluing a portfolio in each scenario can present a substantial

computational burden, and this motivates research into ways of improving the

efficiency of Monte Carlo methods for VaR.
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The bootstrap (Efon 1981; Efron and Tibshirani 1986) is a simple and straight-

forward method for calculating approximated biases, standard deviations, confi-

dence intervals, and so forth, in almost any nonparametric estimation problem.

Method is a keyword here, since little is known about the bootstrap’s theoretical

basis, except that (a) it is closely related to the jackknife in statistic inferring;

(b) under reasonable condition, it gives asymptotically correct results; and (c) for

some simple problems which can be analyzed completely, for example, ordinary

linear regression, the bootstrap automatically produces standard solutions.

The bootstrap method is straightforward. Suppose we observe returns Xi ¼ xi,
i¼ 1, 2, � � �, n, where the Xi are independent and identically distributed (iid) according

to some unknown probability distribution F. The Xi may be real valued and

two-dimensional or take values in a more complicated space. A given parameter y(F),
perhaps the mean, median, correlation, and so forth, is to be estimated, and we agree

to use the estimate ŷ ¼ y F̂
� 	

, where F̂ is the empirical distribution function putting

mass 1/n at each observed value xi. We wish to assign some measure of accuracy to ŷ.
Let s(F) be some measure of accuracy that we would use if F were known, for

example, s Fð Þ ¼ SDF ŷ

 �

, the standard deviation of ŷ when X1, X2, � � �, Xn� F(idd).

The bootstrap estimate of accuracy ŝ ¼ s F̂
� 	

is the nonparametric maximum

likelihood estimate of s(F). In order to calculate ŝ it is usually necessary to employ

numerical methods. (a) A bootstrap sample X1
*, X2

*, � � �, Xn
* is drawn from F̂, in which

each Xi
* independently takes value xj with probability 1/n, j ¼ 1, 2, � � �, n. In

other words, X1
*, X2

*, � � �, Xn
* is an independent sample of size n drawn with replace-

ment from the set of observations {x1,x2, � � �, xn}. (b) This gives a bootstrap empirical

distribution function F̂
�
, the empirical distribution of the n values X1

*, X2
*, � � �, Xn

*,

and a corresponding bootstrap value ŷ
� ¼ y F̂

�
 �
. (c) Steps (a) and (b) are

repeated, independently, in a large number of times, say N, giving bootstrap values

ŷ
�1
, ŷ

�2
, � � �, ŷ�N . (d) The value of ŝ is approximated, in the case where s(F) is the

standard deviation by the sample standard deviation of the ŷ
�
values, where

m̂ ¼
Xn

j¼1
ŷ
�j

N
(49.14)

and

ŝ2 ¼
Xn

j¼1
ŷ
�j � m̂


 �2

N � 1
(49.15)

49.3.3 Distribution and Parallelism Based on Random Number
Generation

Financial variables, such as prices and returns, are random time-dependent

variables. Wiener process plays the central role in modeling. As shown in
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Eqs. 49.8 and 49.9 for approximating the underlying prices St+Dt, or the boot-

strap samples of return Xi
*, the solution methods involve basic market parame-

ters, drift m, volatility s, and risk-free interest rate r, current underlying price

S or return X, strike price K, and Wiener process, which is related to time to

maturity Dt and standard random variable Z, i.e., DW ¼ Z
ffiffiffiffiffi
Dt

p
. Monte Carlo

methods simulate this nature of the Brownian motion directly. It follows Wiener

process and approximates the standard random variable Z by introducing pseudo

iid random number into each Wiener process. When the simulation number is

large enough, e.g., if n in Eq. 49.13 is large enough, the mean value will

approach the exact solution. The large number for n also implies the perfor-

mance problems are the key problems for Monte Carlo methods. One the other

hand, the iid property of the random number Z shows possible solution to tackle

the performance problem through mass distribution and/or parallelism. The

solution method centers on the random number generation.

The techniques of random number generation can be developed in a simple form

through the approximation of a d-dimensional integral, e.g., (Eq. 49.3). Mass

distribution and parallelism required solutions of for large dimension. However,

most modern techniques in random number generation have limitations. In this

study, both tradition pseudorandom number generation and high-dimensional

low-discrepancy random number generator are considered.

Following Sect. 49.3.2.1 better solution can be achieved by making use of Sobol

sequences, which were proposed by Sobol (1967). A computer implementation

in Fortran 77 was subsequently given by Bratley and Fox (1988) as Algorithm 659.

Other implementations are available as C, Fortran 77, or Fortran 90 routines in the

popular Numerical Recipes collection of software. However, as given, all these

implementations have a fairly heavy restriction on the maximum value of

d allowed. For Algorithm 659, Sobol sequences may be generated to approximate

integrals in up to 40 dimensions, while the Numerical Recipes routines allow the

generation of Sobol sequences to approximate integrals in up to six dimensions

only. The FinDer software of Paskov and Traub (1995) provides an implementation

of Sobol sequences up to 370 dimensions, but it is licensed software. As computers

become more powerful, there is an expectation that it should be possible to

approximate integrals in higher and higher dimensions. Integrals in hundreds of

variables arise in applications such as mathematical finance (e.g., see Paskov and

Traub (1995)). Also, as new methods become available for these integrals, one

might wish to compare these new methods with Sobol sequences. Thus, it would be

desirable to extend these existing implementations such as Algorithm 659 so they

may be used for higher-dimensional integrals. We remark that Sobol sequences are

now considered to be examples of (t, d)-sequences in base 2. The general theory of
these low-discrepancy (t, d)-sequences in base b is discussed in detail in

Niederreiter (1992). The generation of Sobol sequences is clearly explained in

Bratley and Fox (1988). We review the main points so as to show what extra data

would be required to allow Algorithm 659 to generate Sobol sequences to approx-

imate integrals in more than 40 dimensions. To generate the j th component of the
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points in a Sobol sequence, we need to choose a primitive polynomial of some

degree sj in the field ℤ2, that is, a polynomial of the form

xsj þ a1, jx
sj�1 þ � � � þ asj�1, jxþ 1, (49.16)

where the coefficients a1, j_� � �_asj�1, j are either 0 or 1.

We use these coefficients to define a sequence {m1, j, m2, j, � � �} of positive

integers by the recurrence relation

mk, j ¼ a1, jmk�1, j 	 22a2, jmk�2, j 	 � � �
	2sj�1asj�1, jmk�sjþ1, j 	 2sjasj, jmk�sj, j 	 mk�sj, j

(49.17)

for k 
 sj + 1, where 	 is the bit-by-bit exclusive-OR operator. The initial values

m1, j,m2, j, � � �,msj, j can be chosen freely provided that each Mk,j, 1 � k � sj is odd

and less than 2k. The “direction numbers” {v1,j,v2,j, � � �} are defined by

v1, j � mk, j

2k
(49.18)

Then xi,j, the j th component of the ith point in a Sobol sequence, is given by

xi, j ¼ b1v1, j 	 b2v2, j 	 � � � (49.19)

Where bl is the lth bit from the right when i is written in binary, that is, (� � �b2b1)2
is the binary representation of i. In practice, a more efficient Gray code implemen-

tation proposed by Antonov and Saleev (1979) is used; see Bratley and Fox (1988)

for details. We then see that the implementation in Bratley and Fox (1988) may be

used to generate Sobol sequences to approximate integrals in more than 40 dimen-

sions by providing more data in the form of primitive polynomials and direction

numbers (or equivalently, values of m1, j,m2, j, � � �,msj, j ). When generating such

Sobol sequences, we need to ensure that the primitive polynomials used to generate

each component are different and that the initial values of the mk,j’s are chosen

differently for any two primitive polynomials of the same degree. The error bounds

for Sobol sequences given in Sobol (1967) indicate we should use primitive poly-

nomials of as low a degree as possible. We discuss how additional primitive

polynomials may be obtained in the next section. After these primitive polynomials

have been found, we need to decide upon the initial values of the mk,j for 1�k�sj.
As explained above, all we require is that they be odd and that mk,j <2k. Thus, we
could just choose them randomly, subject to these two constraints. However, Sobol

and Levitan (1976) introduced an extra uniformity condition known as Property A.

Geometrically, if the cube [0, 1]d is divided up by the planes xj¼ 1/2 into 2d equally

sized subcubes, then a sequence of points belonging to [0, 1]d possesses Property

A if, after dividing the sequence into consecutive blocks of 2d points, each one of
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the points in any block belongs to a different subcube. Property A is not that useful

to have for large d because of the computational time required to approximate an

integral using 2d points. Also, Property A is not enough to ensure that there are no

bad correlations between pairs of dimensions. Nevertheless, Property A would

seem a reasonable criterion to use in deciding upon a choice of the initial mk,j.

The numerical results for Sobol sequences given in Sect. 49.4 suggest that the

direction numbers obtained here are indeed reasonable. Other ways of obtaining the

direction numbers are also possible. For example, in Cheng and Druzdzel (2000),

the initial direction numbers are obtained by an interesting technique of minimizing

a measure of uniformity in two dimensions. This technique may alleviate the

problem of bad correlations between pairs of dimensions that was mentioned

above. Sobol (1967) showed that a Sobol sequence used to approximate

a d-dimensional integral possesses Property A if and only if

det Vdð Þ ¼ 1 mod2ð Þ, (49.20)

where Vd is the d � d binary matrix defined by

Vd ¼
v1, 1, 1 v2, 1, 1
v1, 2, 1 v2, 2, 1

� � � vd, 1, 1
vd, 2, 1

⋮ ⋱ ⋮
v1, d, 1 v2, d, 1 � � � vd, d, 1

2
664

3
775 (49.21)

With vk,j,1 denoting the first bit after the binary point of vk,j,. The primitive

polynomials and direction numbers used in Algorithm 659 are taken from Sobol

and Levitan (1976), and a subset of this data may be found in Sobol (1967). Though

it is mentioned in Sobol (1967) that Property A is satisfied for d � 16, that is,

det(Vd) ¼ 1 (mod 2) for all d � 16, our calculations showed that Property A is

actually satisfied for d � 16. As a result, we change the values of the mk,j for 21 �
j � 40, but keep the primitive polynomials. For j 
 41, we obtain additional

primitive polynomials. The number of primitive polynomials of degree

s is f(2s � 1)/s, where f is Euler’s totient function. Including the special case for

j ¼ 1 when all the Mk,j are 1, this allows us to approximate integrals in up to

dimension d ¼ 1,111 if we use all the primitive polynomials of degree 13 or less.

We then choose values of the Mk,j so that we can generate Sobol sequences

satisfying Property A in dimensions d up to 1,111. This is done by generating

some values randomly, but these are subsequently modified so that the condition

det(Vd) ¼ 1 (mod 2) is satisfied for all d up to 1,111. This process involves

evaluating values of the vk,j,1’s to obtain the matrix Vd and then evaluating the

determinant of Vd. A more detailed discussion of this strategy is given in the next

section. It is not difficult to produce values to generate Sobol’s points for approx-

imating integrals in even higher dimensions.

The following figures are the two-dimensional plots of high-dimensional Sobol

sequences of Joe and Kuo with d¼ 1,000. It is compared with pseudorandom number
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generation. The number of sampling points is 3,000. In Fig. 49.7 pseudorandom

number is plotted in comparison with that of quasi-random number of Sobol. The

leading dimensions 1 and 2 of Sobol sequences are used. The improvement is

immense. In order to understand more of the nature of Sobol sequences, we chose

prime dimensional numbers 499, 503, 991, and 997, respectively, as suggested by Joe

1
Pseudo Random Number

Comparison of Randomness

0.8

0.6

0.4

0.2

10.80.60.40.2
0

0

1
Sobol Seq dimension 1:2

Comparison of Randomness

0.8

0.6

0.4

0.2

10.80.60.40.2
0

0

Fig. 49.7 Pseudorandom number plot comparing with quasi-random number of Sobol for

dimensions 1 and 2
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and Kuo. The results are plotted in Figs. 49.8 and 49.9. It is found that there are

stronger correlations between Sobol sequences of nonadjacent dimensions in the

fashion of the dimensional comparison of their randomness. Larger numbers of

sampling points, e.g., 10,000, are also tested and the patterns persist. It implied the

1
Sobol Seq dimension 498:501

Comparison of Randomness

0.8

0.6

0.4

0.2

10.80.60.40.2
0

0

1
Sobol Seq dimension 990-997

Comparison of Randomness

0.8

0.6

0.4

0.2

10.80.60.40.2
0

0

Fig. 49.8 Comparison of adjacent dimensions in quasi-random number Sobol sequence. The

dimensions are chosen according to prime numbers. There is a high discrepancy found in higher

dimensions of Sobol sequence modified by Joe and Kuo (2003)
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violation of idd assumption and may incur problems in mass distribution and paral-

lelism, in which each process the random number is generated independently without

knowing what other processes are doing. The dependency may deteriorate the quality

of randomness. Nevertheless, in our numerical experiments, there are no significant

differences found thus far (Figs. 49.10 and 49.11).

1

Sobol Seq dimension 2:498

Comparison of Randomness

0.8

0.6

0.4

0.2

10.80.60.40.2
0

0

1
Sobol Seq dimension 2:990

Comparison of Randomness

0.8

0.6

0.4

0.2

10.80.60.40.2
0

0

Fig. 49.9 Comparison of nonadjacent dimensions. High discrepancy is found in their correlations

and forms clusters of islands in the distribution
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49.4 Case Study and Discussions

49.4.1 Case Study

49.4.1.1 Asian Options and Rainbow Options
To demonstrate what the grid computing can contribute to the financial service in

a significant manner, two kinds of popular options, Asian options and rainbow

options, are chosen for Monte Carlo pricing model. Asian options have payoffs that

depend on the average price of the underlying asset such as stocks, commodities, or

financial indices. However, there is no exact closed-form formula existed for these

popular options. Rainbow options, also known as basket options, are referred to as

an entire class of options which consist of more than one underlying asset. Rainbow

options usually call or put on the best or worst of the underlying assets, or options

which pay the best or worst of the assets. They are excellent tools for hedging risk

of multiple assets. The rainbow options are therefore used for our bootstrap

calculations of VaR.

49.4.1.2 Parallelization, Distribution, and Message Passing
Interface (MPI)

MPI is a library specification for message passing, proposed and developed as

a standard by a broadly based committee of vendors, developers, and users (Snir

et al. 1996). MPI was designed for high performance on both massively parallel
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Fig. 49.10 The distribution of probability in directional vector vi,j of Sobol sequences at

i ¼ 3,000 with j ∈ {1, � � �,1000}. The mean of the distribution is 0.491357, which approaches

the mean of the normal distribution 0.5
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Fig. 49.11 The convergence history of the mean value of Asian option pricing with risk-free

interest rate r¼ 0.1, underlying asset spot price S¼ 100, strike price X¼ 100, duration to maturity

T¼ 1, and volatility s¼ 0.3: The comparison is based on a single dimension of the extended high-

dimensional Sobol sequences. The quasi-random number generator (QRNG) outperforms pseu-

dorandom number generator. The test also is conducted to compare the convergence history

between different dimensions in Sobol sequences and found that all perform consistently as

shown in the right figure, in which the low dimension and high dimension are chosen for the

comparison
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machines and on distributed clusters. The MPI standard is nowadays widely

accepted and used in the community of high-performance computing.

The basic MPI functions are point-to-point pair-wise message passing for send

and for receive. Collective communications are also provided for ease of use as well

as better performance. These communication methods, when used in supercom-

puters, do facilitate the parallelization of numerical methods that require both heavy

compute cycles and stronger dependency between parallel processes.

Recent development of supercomputer, affected by the popularity of cluster

computing in PCs, tends to be designed hierarchically scalable. Further extension

of clusters of supercomputers can be regarded as initial concept of grids (see Sect.

49.2). The use of MPI is straightforward in this kind of hardware architecture and

interlink of networks. There is always an obvious physical limitation in this

architecture, which is also proportional to the limitation of the investment of

governmental research funding. People tend to use mass distribution of computers,

mostly PCs, which linked loosely in the Internet cloud. The terminology cloud is

often used in networking community to show that in the Internet there is no specific

network path from one computer to another. MPI working in such an environment

is expected to be inefficient and unstable, e.g., high network latency induced packet

lost in long-distance real-time communication. In the following sections three

specific platforms, including local clusters, geographically distributed large clus-

ters, and PC grids with ten of thousand of PCs connected in the cloud, will be used

for the financial calculations to demonstrate benefits in using grids.

49.4.1.3 Empirical Study for Data Grid System
In order to demonstrate the usefulness of grid system, in particular in data-intensive

application, the real market data are used, including daily from iShares (Morgan

Stanley Capital International) MSCI Taiwan Index (ETF) and Taiwan Stock

Exchange Center (TSEC) weighted index, extracted specifically from May

31, 2005, to May 31, 2008, and 30 days tick-by-tick trading data from Taiwan

Futures Exchange Center (TAIFEX).

49.4.2 Grid Platforms Tests

The various grid platforms are carefully chosen to demonstrate the performance

issue in finance services, which include a small diskless remote boot Linux (DBRL)

PC clusters, large-scale and geographically widely distributed test-bed the Pacific

Rim Applications and Grid Middleware Assembly (PRAGMA) compute grid, and

a densely distributed at-home style PC grid, which resembles the clouding

computing.

49.4.2.1 Diskless Remote Boot Linux (DRBL) Cluster
DRBL is an in-house program of National Center for High-Performance Computing

(NCHC) and was an original software product developed by Steven Shiau and his

group under the auspice of National Knowledge Innovation Grid (KING) of
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Taiwan. It was developed initially as a centralized system management tool aiming

at small and median size of PC clusters. It is nowadays recognized internationally as

one of the most advanced mass backup solutions. Here DRBL is used as an

alternative scavenger for compute cycles of spare clusters. When needed, it con-

verts systems of PC clusters into an aggregated and homogenous Linux system,

simultaneously with a mass backup of the original systems, and recovered back the

original systems once the need was satisfied. The most popular use is to convert

a PC classroom into a compute Linux cluster. In such a case, compute cycles of the

clusters can be fully exploited. In a grid environment, this is a perfect case to

resources scaleup when in contingent need and once the situation relieved resources

will be released correspondingly. Such a dynamic feature can be beneficial for the

financial services.

The schematic of DRBL system can be shown in Fig. 49.12, where DRBL

duplicates image files of an operational system, e.g., Linux kernel, via network to
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Fig. 49.12 The schematic of DRBL system: DRBL duplicates image files of operational system

via network to the clients, in which the clients’ original operational systems are untouched.

Therefore, the clients are temporarily turned into dedicated compute resources, which also provide

additional security to financial data
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the clients. The clients’ original operational systems are not used. The clients are

therefore temporarily turned into dedicated compute resources, which also provide

additional security to financial data.

The test case here involves Monte Carlo simulations on Asian option pricing,

on rainbow option pricing and on a bootstrap VaR calculation, respectively

(see Sect. 49.3.2). The market parameters are given as risk-free interest rate

r ¼ 0.1, underlying asset spot price S ¼ 100, strike price X ¼ 100, duration

to maturity T ¼ 125, and volatility s ¼ 0.3. For the rainbow options a linear

weighted combination of 4 underlying assets is assumed with underlying prices of

Si¼ 100, 110, 120, and 130 and the corresponding weightings of volatility si¼ 0.3,

0.4, 0.5, and 0.6. The correlation matrix is taken to be

rij ¼
0:5 0:4 0:5
0:4 0:3 0:4
0:5 0:4 0:6

0
@

1
A

The calculation of the VaR uses the same 4-dimensional rainbow options with

additional expectation of return 0.07, 0.08, 0.09, and 0.10, respectively. They are

calculated in DRBL cluster as well as benchmarked with two cluster-based super-

computers in NCHC. The results are shown in Tables 49.1 and 49.2.

In Table 49.1, instead of giving a total wall clock time of the calculation with

some given numbers of Monte Carlo simulations or paths, a more useful averaged

single Monte Carlo simulation based on 1,000,000 simulations is used to demon-

strate the performance when different system architectures are used. The results

show that the traditional big irons, i.e., supercomputers, still outperform the cluster.

Table 49.1 Comparison of performance between DRBL-based PC platform with 32 nodes,

FORMOSA II of NCHC with a batch job of 32 nodes and IBM Cluster 1350 with a batch job of

32 nodes. The PCs are 20 XEON 2.6 GHz and 4GB RAM

DRBL cluster FORMOSA II IBM cluster 1350

Asian option pricing (AOP) 81 49 24

Rainbow option pricing (ROP) 329 197 98

VaR calculation (based on ROP

with bootstrap)

322 194 97

Unit: micro-secs per Monte Carlo path. Averaged from 1000,000 Monte Carlo paths

Table 49.2 Comparison of speedup ratios based on the calculations in Table 49.1

DRBL cluster FORMOSA II IBM cluster 1350

Asian option pricing (AOP) 28.68 29.46 30.16

Rainbow option pricing (ROP) 27.31 28.59 29.34

VaR calculation (based on ROP

with bootstrap)

27.20 28.10 29.10

Unit: speedup ratio: CPU(nonparallel single node)/CPU(parallel single node)
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Yet, considering there is no extra cost invested in the computing resources and still

obtains compute cycle in a sizable manner, the approach is appealing to be further

developed in to a fully operational production system.

49.4.2.2 Pacific Rim Applications and Grid Middleware Assembly
(PRAGMA) Grid

The Pacific Rim Applications and Grid Middleware Assembly (PRAGMA),

founded in 2002, is an open international organization that focuses on a variety of

practical issues of building international scientific collaborations in a number of

application areas. PRAGMA grid is established by the resources and data comput-

ing working group as a global grid test-bed for benchmarking the interoperability of

grid middleware and the usability and productivity of grids. The PRAGMA grid

consists of physical resources as well as system administration supports from

29 institutions across 5 continents and 14 countries. It is an instantiation of

a useful, interoperable, and consistently available grid system that is neither

dictated by the needs of a single science domain nor funded by a single national

agency. It does not have uniform yet robust infrastructure management and sup-

ports a wide range of scientific applications. The software stack of the system is

shown in (Fig. 49.13).

The PRAGMA grid successfully tackles the issues of distance and time

zone differences among sites, lack of infrastructure tools for heterogeneous global

grid, nonuniform system and network environments, and diverse application

requirements. For more technical details both in theory and practice we refer to

(Abramson et al. 2006)

Following the similar test case in Sect. 49.4.2.2, but extended the platform with

a collection of clusters across institute boundaries, the common job submission is

executed via a homogeneous middleware Globus Toolkit. We demonstrate

the usefulness of the platform by grouping compute resources across

national boundaries and still achieve good performance. The results are shown in

Tables 49.3 and 49.4.

49.4.2.3 At-Home Style PC Grid
With the continued penetration of personal computers and the remarkable improve-

ment of CPU processing speed, 80–90 % of most PCs’ processing power is

untapped, according to a study. This does not mean that many PCs remain turned

off, but that the capacity of the CPU, the brain of the PC, is not fully utilized. In case

the CPU is more extensively used when a task requiring an enormous number of

operations, such as three-dimensional graphical processing, is assigned, it sits idle

most of the time during word processing and Internet browsing because CPU

processing speeds are much faster than the speeds of input from the keyboard or

the communication line.

This fact led to the idea of virtually gathering the power of idle CPUs to use as

a computer resource. In other words, this means networking numerous computers to

make them work like a single high-performance computer and assigning complex

processing tasks to it. The assigned task will be divided into a myriad of small tasks
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and allocated to individual computers on the grid-like network. Even with increas-

ingly faster CPUs, the power of PCs is not comparable to those of supercomputers,

but in a networked environment where individual PCs simply process complex task

in parallel, PCs can deliver surprisingly high performance. This is the core concept

of CP grid computing, and it came into a reality several years ago (Table 49.5).

The commoditization and the increased processing speed of PCs lead the growth

of idle CPU power. This will facilitate the construction of PC grid computing

system along with improvement of communication environment by broadband

connectivity (Chen et al. 2006). In practice, a PC grid platform Korea@Home

(or K@H) is used in our study. Its architecture is shown in Fig. 49.14. It is based on

MS Windows. Asian option pricing is used to demonstrate the performance of the

Table 49.4 Comparison of speedup ratios based on the calculations in Table 49.3

Group A Group B

Asian option pricing (AOP) 25.24 107.58

Rainbow option pricing (ROP) 25.81 110.34

VaR calculation (based on ROP with bootstrap) 25.63 110.09

Unit: seconds/per Monte Carlo path. CPU(nonparallel single node)/CPU(parallel single node)

Applications

Globus (required)

Local job scheduler (require one)

Application Middleware Infrastructure Middleware

TDDFT QM/MD

Ninf-G

SGE PBS LSF SQMS ...

Nimrod/G Mpich-g2 Gfarm SCMSWeb MOGAS

CCAM mpiBLAST iGAP ...

Fig. 49.13 Software stack developed in the PRAGMA grid

Table 49.3 Comparison of performance between Group A, which consists of 13 nodes from

NCHC and 15 from UCSD, and Group B, which consists of 122 nodes collectively from UCSD,

AIST, NCHC, and Osaka University. The details of resources are referred to (http://pragma-goc.

rocksclusters.org/pragma-doc/resources.html)

Group A Group B

Asian option pricing (AOP) 68 56

Rainbow option pricing (ROP) 278 234

VaR calculation (based on ROP with bootstrap) 271 229

Unit: seconds/per Monte Carlo path. Averaging from 1000,000 Monte Carlo paths
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system, in which the number of iterations is taken to be 1,000,000. The duration to

maturity is further divided by 10,000 periods, which push the system to run on the

mass parallel system of K@H. To tackle this scale, or even larger scale for all kinds

of possible scenarios in real trading practice, an off-line distributed and parallel

approach is adopted. The total number of Monte Carlo simulation is 1,000,000 �
10,000. It was divided into 10,000 jobs and each job consists of 1,000,000 Monte

Carlo simulations. The market parameters are given as above.

The results demonstrated here are not as good as expected (see Table 49.1). It shows

that the speedup ratio is only 3.79. In this test, K@H further divides the jobs into ten

groups. Each group was send and run in a sequential fashion, which causes the low

speedup ratio. However, if one looks into the executed CPU time for each job, our

assumption is still valid. We simulated the result in a small cluster with the

same scenario and Monte Carlo paths. The result shows 90 % speedup can be

easily achieved.

Table 49.5 Summary of the case for the PC grid calculations

Asian option pricing Statistics

Number of Monte Carlo path 1,000,000 � 10.000

The running period (1) (wall clock time) 28 h 51 m (104,911 s)

Number of jobs 10,000

CPU time per job 28 � 30 s

Total running time (2) (wall clock time) 4 days 14 h 31 m (397,919 s)

Speedup ratio
2ð Þ
1ð Þ 3.79

Secure/Intelligent
P2P Agent Technology Agent

Agent

Agent

Agent

Cooperation

Cooperation

Subscription

[Resource
Management] Korea@Home Server

[Large-scale Application]
[6T Application Filed]
Application Provider

Cooperation

Distribution

job request

result
transmission

Distribution

Internet

Distribution

Distribution

Distribution

Fig. 49.14 The architecture of Korea@Home, a specific @Home style PC grid used in our case

study (Jun-Weon Yoon 2008)
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49.4.2.4 RBNB Data Grid
RBNB DataTurbine in market data streaming is implemented here (see Fig. 49.15),

in which the real data from iShares MSCI Taiwan Index (ETF) and TSEC weighted

index from May 31, 2005, to May 31, 2008, and 30 days tick-by-tick trading data

from Taiwan Futures Exchange Center (TAIFEX) are used and open in different

file-based online channels from the RBNB DataTurbine. The purpose is to dynam-

ically manage the high-frequency market data and connect the data with analysis

applications on the fly. The system implemented up-to-date large-scale dynamic

and static data management.

49.5 Conclusions

Securities trading is one of the few business activities where a few seconds

processing delay can cost a company big fortune. The growing competitive in the

market exacerbates the situation and pushes further towards instantaneous trading

even in split second. The key lies on the performance of the underlying information

system. Following the computing evolution in financial services, it was

a centralized process to begin with and gradually decentralized into a distribution

of actual application logic across service networks. Financial services have tradi-

tion of doing most of its heavy lifting financial analysis in overnight batch cycles.

However, in securities trading it cannot satisfy the need due to its ad hoc nature and

requirement of immediate response. A new computing paradigm, grid computing,

aiming at virtualizing scale-up distributed computing resources, is well suited to the

challenge posed by the capital market practices.

In this study we revisit the theoretical background of how performance will

affect the market competition. The core concept lies on information asymmetry.

Due to the advance of IT, even in split second, it will be a matter of win or lose in

real market practice. After establishing the motivation, we review recent grid

development specifically used for finance service. Monte Carlo simulations are

chosen not only because of its popularity in real world but also because of its nature

so-called “fine grain” or mass parallelism approach. The success of Monte Carlo

simulations lies on better random number generators. The well-recognized Sobol

sequences as a quasi-random number generator are carefully studied to ensure the

quality of Monte Carlo simulations when employed for mass parallelism. Then

some popular basic option pricing models, collectively Asian option pricing,

rainbow option pricing, and VaR calculation with constant market parameters,

are introduced as drivers to introduce more details of grids for better finance

service. Finally, we test various grid platforms, based on the methodology of

mass parallelism and mass distribution, with the drivers. The real market data are

also used, but at this stage they are only used to demonstrate the dynamic data

management, in which grids can offer better.

During this study, we encountered system architect Koschnick from Z€urcher
Kantonalbank of Switzerland (Koschnick 2008). Coincidentally, the system they

plan to migrate from big irons is the similar system to that of DRBL with additional

49 Computer Technology for Financial Service 1375



Fig. 49.15 RBNB DataTurbine streaming open for data channels of iShares MSCI Taiwan Index

(ETF) and TSEC weighted index from May 31, 2005, to May 31, 2008, and 30 days tick-by-tick

trading data from Taiwan Futures Exchange Center (TAIFEX) (Real data plot in collaboration

with Strandell et al. 2007)
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virtual local area networks (VLAN) for security. The system is used for overnight

batch job as well as real-time trading practice. It is confirmed that for the years to

come, financial services providers will adopt more grid or grid-based technology to

enhance their competitiveness.

Our future work will be following the current work, continuously using the

current grid platforms and extending them to the use high-frequency real market

data. Along the track of this development, we will also develop sophisticated Monte

Carlo-based option pricing and risk management based on tick-by-tick daily market

information.
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Abstract

This article introduces the long-run stock return methodologies and their statis-

tical inference. The long-run stock return is usually computed by using a holding

strategy more than 1 year but up to 5 years. Two categories of long-run return

methods are illustrated in this article: the event-time approach and calendar-time

approach. The event-time approach includes cumulative abnormal return,

buy-and-hold abnormal return, and abnormal returns around earnings announce-

ments. In former two methods, it is recommended to apply the empirical

distribution (from the bootstrapping method) to examine the statistical inference,

whereas the last one uses classical t-test. In addition, the benchmark selections in

the long-run return literature are introduced. Moreover, the calendar-time

approach contains mean monthly abnormal return, factor models, and Ibbotson’s
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RATS, which could be tested by time-series volatility. Generally, calendar-time

approach is more prevailing due to its robustness, yet event-time method is still

popular for its ease of implementation in the real world.

Keywords

Long-run stock return • Buy-and-hold return • Factor model • Event time •

Calendar time • Cumulative abnormal • Return • Ibbotson’s RATS • Conditional

market model • Bootstrap • Zero-investment portfolio

50.1 Introduction

The long-run stock return has been an important facet of the stock performance

of firms since the 1990s. Ritter (1991) starts the line of long-run return studies

by investigating the initial public offering (IPO) cases. He finds that the post-IPO

stock performance is poor in the long run. His paper is then followed by many

scholars who study other important corporate events and asset pricing anomalies.1

Fama (1998) reviews these papers which engage in long-run event studies. Hence,

the long-run return method is nowadays a standard way for the stock performance

of firms.

I review the methodologies about the long-run stock abnormal return in this

article. Since the mid-1990s, some papers started to be aware of the properties of

long-term stock performance and suggested various ways to calculate the long-run

abnormal return. Therefore, Barber and Lyon (1997), Kothari and Warner (1997),

and Lyon et al. (1999) review and compare long-run return methods in the late

1990s. Based on these methodology papers, I update recent developments about

the new methods that are not mentioned in these two papers, such as the earnings

announcement abnormal return applications (La Porta et al. 1997), conditional

market model method (Eberhart et al. 2004; Petkova and Zhang 2005), Ibbotson’s

RATS (Ibbotson 1975; Agrawal et al. 1992; Peyer and Vermaelen 2009), and zero-

investment portfolio method (Daniel and Titman 1997; Eberhart et al. 2004). I also

make a clearer categorization on these long-run stock return methodologies given

that the long-run return methodologies nowadays are much more mature than in the

late 1990s.

Two main categories of the long-run stock performance illustrated in this paper

are event-time and calendar-time approaches. The event-time approach includes

cumulative abnormal return (CAR), buy-and-hold abnormal return (BHAR),

rebalanced buy-and-hold abnormal return (RBHAR), and abnormal returns around

1For corporate events, papers have studied seasoned equity offerings, mergers, dividend initiations

and omissions, quarterly earnings announcements, share repurchases, proxy flights, stock splits

and spinoffs, and other corporate events for their long-run stock performance. For asset pricing

anomalies, papers investigate value premium, momentum profit, research and development profit,

accrual effect, asset growth, net share issuance, and other anomalies in terms of the long-term

impact.
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earnings announcements. The calendar-time approach contains mean monthly

abnormal return (MMAR), Ibbotson’s RATS, and factor models. The factor

model has various specifications, in which Fama and French (1993) three-factor

model and Carhart (1997) four-factor model are most prevailing two.

In addition, to estimate the abnormal return, the benchmark is vital because

a misspecification of the matching procedure yields an incorrect statistical infer-

ence and leads to the statistical type I or type II error. For event-time approach,

either a matching firm or a matching portfolio can control for the firm characteristic

effect (Daniel and Titman 1997). Yet, the more relevant problems are how

we should select the weighting scheme and what the matching criterion should

be. On one hand, the selection of the weighting scheme determines the degree of

the abnormal return and involves in different magnitude of transaction costs

from the rebalancing problem. On the other hand, different matching methods

may result in a superior or an inferior statistical inference, particularly the skewness

of the long-run return estimation.

For MMAR of the calendar-time approach, the benchmark selection problem is

similar to what we may face in the event-time approach. Yet, the family of factor

models has a simpler benchmark problem because the only issue is the factor model

specification (e.g., a three-factor or a four-factor model). The same situation applies

the Ibbotson’s RATS that we only pay attention to the market model setting,

namely, adding more independent variables in the market model. Nevertheless,

few complicated modifications for the factor models are employed in the long-run

return studies, such as conditional market model and the zero-investment

portfolio method in factor model. The former deals with the time-varying system-

atic risk loadings in the market model, whereas the later is to combine the

factor model method with the matching methods in the event-time approach.

In general, the robustness of calendar-time approach raises its popularity in recent

finance studies.

The rest of this paper is organized as follows. Section 50.2 introduces the long-

run return estimation in event-time approach. Section 50.3 states the calendar-time

method applied in the long-run stock return estimation. Finally, Sect. 50.4

concludes this review paper.

50.2 Long-Run Return Estimation in Event-Time Approach

To estimate the long-run stock return, it is nature to identify an event to track the

stock performance of a firm. Figure 50.1a shows a general time line for the long-run

return estimation. For any specific event and its event day noted by day 0, we can

start a holding strategy by purchasing the stock from event day 0 to 251th day (for

1-year return), to 503th day (for 2-year return), 755th day (for 3-year return), to

1,007th day (for 4-year return), or to 1,259th day (for 5-year return). Papers usually

compute the long-run stock return up to 5 years (Ritter 1991). As indicated in

Fig. 50.1a, an accounting reporting lag is required between the event date and the

previous fiscal year-end with at least 4 months.
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For the asset pricing study, we usually do not have a specific event day for

tracking the compounding daily returns. As suggested in Fama and French (1992,

1993), a general investment strategy starts the return formation from 1 July of each

year by exerting the accounting information in the previous fiscal year-end with at

least 6 months reporting lag. Figure 50.1b shows the time line for asset pricing

studies. Because asset pricing papers start from 1st July, the long-run returns are

estimated based on compounded monthly returns. Basically, 1-year return includes

12 monthly returns, while 5-year return is computed upon 60 monthly returns.

50.2.1 Return Estimations: CAR, BHAR, and Earnings
Announcement Returns

The cumulative abnormal return (CAR) is estimated as follows. For a given bench-

mark E(Ri,t), the abnormal return ARi,t ¼ Ri,t – E(Ri,t). The average of estimations

for CAR is

CAR ¼
XT
t¼1

XN
i¼1

ARi, t

N
, (50.1)

Fiscal 
Year 

End -1 

Fiscal
Year 
End 0

Fiscal 
Year 

End +1 
Event Day

Stock Returns (one to five years)

Reporting lag varies from 4
to 15 months  

Fiscal 
Year 

End -1 

Fiscal
Year 
End 0

Fiscal 
Year 

End +1 

Return 
Formation

Day 
(July 1st)

Stock Returns (one to five years) 

Reporting lag varies from 6
to 17 months  

a

b

Fig. 50.1 (a) time line of general event study. (b) time line of asset pricing study
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in which the Nt is for number of observations at time t and T for the holding period

(252 for a year if the return is computed based on daily returns; 12 for a year if the

return is computed based on monthly returns).

The buy-and-hold abnormal return is defined as

BHAR ¼
XN
i¼1

YT
t¼1

1þ Ri, t
� �" #

� 1

N
�
XN
i¼1

YT
t¼1

1þ E Ri, t
� �� �" #

� 1

N
: (50.2)

Thus, we can use classical t-test or other methods (will be illustrated in later

section) to carry out the statistical inference for CAR and BHAR. One modification

on BHAR is the rebalanced buy-and-hold abnormal return (RBHAR), which comes

from the combination of rebalanced return (Rreb) and BHAR. Given the rebalanced

return as

Rreb ¼
YT
t¼1

1þ

XN
i¼1

Ri, t

N

0
BBBB@

1
CCCCA

� 1, (50.3)

the RBHAR is to calculate buy-and-hold return for a certain period (e.g., a year) and

rebalance the portfolio equally for every specific period. Taking the 1-year

rebalanced BHAR as the example, we should compute 1-year BHAR for each

event year (i.e., first to fifth event year) and obtain the average BHAR for every

event year. Finally, we obtain compounding return for this average rebalanced

BHAR with yearly rebalancing. Because BHAR has inflated compounding return,

which results in many outliers in the long-run return estimation, RBHAR with

rebalancing every year is able to reduce the impact from extreme values (Ikenberry

et al. 1995; Chan et al. 2010). In general, RBHAR could be described as

RBHAR ¼
Yyear5

year1

1þ
XN
i¼1

YT
j¼1

1þ Ri, j
� �

" #
� 1

N

8>>>><
>>>>:

9>>>>=
>>>>;

�
Yyear5

year1

1þ
XN
i¼1

YT
j¼1

1þ E Ri, j
� �� �" #

� 1

N

8>>>><
>>>>:

9>>>>=
>>>>;

(50.4)

Note that T stands for 252 days as an event year, and year 1 to year 5 represent

the first event year to the fifth event year.
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Distinct from CAR and BHAR, the quarterly earnings announcement return is

the estimate of the long-term stock performance by successive short-term quarterly

announcement returns (La Porta et al. 1997; Denis and Sarin 2001; Chan

et al. 2004). In other words, we can use the 2-day or 3-day abnormal returns

around quarterly announcement dates, and the successive earnings surprises should

be aligned with the long-run stock abnormal return. The benchmark selection

determines the long-run abnormal return estimation because of its statistical

property (will be discussed in next section), so the results may be changed

when benchmark settings are altered. This sensitive outcome driven from the

benchmark problem leads to an inconclusive long-run abnormal return. Yet, the

short-run return is not sensitive to the selection of benchmarks. For example, given

10 % and 20 % of market index returns, the 3-day market index returns are

expected to be 0.12 % and 0.24 % only. When an event occurs, the 3-day

announcement return could be generally above 1 %, which significantly exceeds

any selected benchmark returns. Therefore, if a corporate event is followed by

profitability improvements that are not observed by investors, then there should be

successive earnings surprises following the event date, and the short-term

announcement abnormal returns around the earnings announcement dates

should be positive. To capture the long-run abnormal return, papers usually study

12–20 quarters (for 3–5 years) for the quarterly earnings announcement abnormal

return. Generally, the quarterly earnings announcement abnormal returns capture

about 25–40 % of the long-run stock return of a firm (Bernard and Thomson 1989;

Sloan 1996).

50.2.2 Benchmark Problem

Long-run stock return has some issues regarding the calculation and testing when

we select the benchmarks for the expected return of the firm. Namely, the conven-

tional methodologies for the long-run stock return might be biased if the chosen

matching procedure is inappropriate. First, some long-term return measures have

the rebalancing and new-listing biases problems. Second, long-run stock return is

positive skewed, thus the traditional t-test is inappropriate for the long-run return.

Although I will review the skewness-adjusted t-statistics and empirical p-value in

the next section, matching firm method is another way to alleviate the skewness

concern in the long-run return studies.

The first benchmark for the expected return is the CRSP equal-weighted

index return, which includes whole stocks in CRSP database and computes the

simple average of stock returns. However, this approach involves rebalancing

problem, which ignores the transaction costs from broker’s fee and tax to

the government. To maintain the weights on stocks equally, investors must sell

profitable stocks and buy stocks with loss. This rebalancing leads to huge transac-

tion costs that are not considered in the CRSP equal-weighted index return, making

the abnormal return underestimated. In fact, CAR per se also has this rebalancing

problem because of its average in cross section.
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The second benchmark is the CRSP value-weighted index return, which also

comes from CRSP database. This index return uses firm value (equal to the price

timing shares outstanding) as the weighted scheme to compute the weighted

average of stock returns. Most importantly, it is a rebalance-free benchmark and

accordingly has no transaction cost during the holding period (except the beginning

and end). Therefore, recent papers tend to use CRSP value-weighted index return

instead of CRSP equal-weighted index return as the benchmark return.

The third benchmark is the reference portfolio return. Before constructing the

reference portfolio, we may need matching criterions. As the important pricing

factors, size and book-to-market (BM) ratio are the two most important in deter-

mining the expected return (Fama and French 1992, 1993, 1996; Lakonishok

et al. 1994; Daniel and Titman 1997). In particular, we have to determine

the matching pool, which includes stocks that are irrelevant to the sample firm.

We form 50 size and book-to-market portfolios (ten size portfolios and five book-

to-market portfolios in each size decile) where the size and book-to-market cutoff

points are obtained from stock in NYSE exchange. We then are able to compute

either equal-weighted or value-weighted portfolio return as the expected return.

The last one is the matching firm method. Because the long-run stock return is

positive skewed, we may take the long-run return of the matching firm as the

expected return. The skewed return of the sample firm and skewed return of the

matching firm offset each other and make the abnormal return symmetric (Barber

and Lyon,1997). In addition, matching firm method avoids the new-listing bias and

rebalancing problem. In general, the matching criterions of the matching firm are

similar to the reference portfolio. Within each reference portfolio, a matching firm

could be selected by minimizing the book-to-market difference between the sample

firm and the matching firm (Ikenberry et al. 1995). Sometimes, papers use few

matching firms but not single matching firm as the benchmark to avoid few outlier

impacts (e.g., Lee 1997) or use different matching variable (e.g., Ikenberry and

Ramnath 2002; Eberhart et al. 2004). Generally, various matching methods under

size and book-to-market effect controls do not largely change the results.

50.2.3 Statistical Inference

The most important statistical problem for the long-run abnormal return is the

skewness. The minimum loss of a long-term stock investment is �100 % while

the maximum potential gain approaches infinite. Thus, the distribution of the long-

run stock return is positive skewed. If we test the long-run stock return by a standard

normal distribution, then we tend to reject the null hypothesis (that suggests

no abnormal return) for negative returns and accept the null for positive returns.

This misspecification leads to a type I error in the distributional left tail but causes

a type II error in the distributional right tail.

To solve the skewness problem, Barber and Lyon (1997) suggest the matching

firm method because abnormal stock return is the return difference between the

sample firm and matching firm, making the skewness from matching firm and
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sample firm offset by each other. In addition, there are two ways to alleviate the

testing problem under the skewness, one is the skewness-adjusted t-statistic and the
other is the empirical p-value, suggested by Ikenberry et al. (1995) and Lyon

et al. (1999).

Given an abnormal return ARi, the skewness-adjusted t-statistic illustrated by

Lyon et al. (1999) is tested as follows:

tsa ¼
ffiffiffiffi
N

p
Sð Þ þ 1

3
ĝS2 þ 1

6N
ĝ,

where

S ¼ AR

s ARið Þ , and ĝ ¼

XN
i¼1

ARi � AR
� �3

Ns ARið Þ3 : (50.5)

Note that the S is the conventional t-statistic and ĝ is the coefficient for the

skewness adjustment.

The second suggested statistical inference method is the empirical p-value. This

approach uses bootstrapping method to construct an empirical distribution with

general long-term return features. We use bootstrapping method to select the

pseudo-sample firm. Thus, we are able to compare sample firm and pseudo-sample

firm as the base of the empirical p-value. In fact, it is possible that we may face

moment conditions (higher than third moment condition) in the long-term return

estimation, and the skewness-adjusted t-statistic is not enough to capture the return

characteristic. Also, the strong cross-sectional correlations among sample observa-

tions in BHARs can lead to poorly specified test statistics (Fama 1998; Lyon

et al. 1999; Brav 2000). Under the empirical distribution, we can examine the

statistical inference without a parametric distribution but are able to capture more

unknown statistical features.

As mentioned above, the empirical p-value is generated from the empirical

distribution from bootstrapping, and the empirical distribution well controls the

skewness and time-dependent properties of the long-run stock returns (Ikenberry,

et al. 1995; and Lyon et al. 1999; Chan et al. 2004). In addition, this empirical

p-value also solves the statistical inference problem in RBHAR because we may

have too few observations in times series for computing standard deviation.2

To construct the empirical distribution, we need to find pseudo-sample firms that

share similar firm characteristics as the sample firm but do not have the interested

corporate events. Next, we construct 25 size and book-to-market portfolios (five

size portfolios and five book-to-market portfolios in each size quintile) from all

2For example, if we compute a 5-year RBHAR, then we have five averages of BHARs in five event

years only.
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nonevent firms. The nonevent firm selection criterions are similar to the matching

firm selection. Then, we randomly sample one pseudo-sample firm out of the

corresponding portfolio for each sample firm. For example, if an event firm is

with the second size quintile and third book-to-market quintile, then we

randomly choose a pseudo firm that is also with the second size quintile and third

book-to-market quintile. Hence, we are able to obtain N pseudo firms for N sample

firms. Upon these pseudo-sample firms, we calculate the long-run return by CAR,

BHAR, or RBHAR method. Finally, we repeat the sampling and long-run return

estimation for 1,000 times and obtain 1,000 averages of long-run returns for pseudo-

sample firms. The empirical distribution is plotted according to the frequency

distribution diagram of those 1,000 average returns of pseudo-sample firms.

If the long-run return is larger than the (1�a) percentile of the 1,000 average

pseudo-sample firm returns, then we obtain the p-value as a for testing the

positive average abnormal return. Similarly, if the long-run return is smaller than

a percentile of the 1,000 average pseudo-sample firm returns, then we obtain the

p-value as a for testing the negative average abnormal return.

Figures 50.2a–50.2d are empirical distributions for 1-year to 4-year long-run

returns upon size/book-to-market controlled pseudo-sample firms of US repurchase

firms during 1980–2008. I collect the repurchase data from SDC database as the

example for the empirical distribution construction. For those empirical distribu-

tions, it is obvious that 4-year return has more outliers than 1-year return. Moreover,

the 4-year return figure has lower kurtosis and is more positive skewed. Obviously,

the shape of long-run returns does not obey normal distribution, and the empirical

p-value is more relevant to the long-run abnormal return testing.

I also show the specification (statistical size) for different long-run return methods

in Table 50.1, which is obtained from Table 5 of Barber and Lyon (1997) and Table 3

of Lyon et al. (1999). They show the percentage of 1,000 random samplings from

200 firms rejecting the null hypothesis that suggests no abnormal return in terms of

CAR, BHAR, and RBHAR with different benchmark and testing methods. First, the

CAR with matching portfolio as the benchmark has type I error in left tail when

measuring the abnormal return in 5 years. Second, the matching firm method yields

good specification no matter how we focus on size control, BM control, or

a combination control for both size and BM ratio. Third, skewness-adjusted t-statistics
has type I error, implying that skewness is not the only statistical feature that we

should address. Forth, empirical p-value method performs well even when adopting

the reference portfolio as the benchmark, at least for 10 % significance level.

Figure 50.3 shows the testing power of alternative tests by using BHAR as the

primary method, and this figure is originally plotted in Fig. 1 of Lyon et al. (1999).

The empirical distribution performs better in testing power than classical t-test,
no matter what the standard empirical distribution or the bootstrapped skewness-

adjusted t-statistic is employed.

In sum, in the event-time approach, the BHAR is suggested. Matching firm

is a better matching method than other approaches. In statistical testing, the

empirical p-value could be the best way due to its well statistical size control and

testing power.
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Table 50.1 Specification (size) for alternative statistical tests

A: Specification (size) for CAR with different benchmarks

Two-tailed theoretical significant level (%) 1 5 10

Theoretical cumulative density function (%) 0.5 99.5 2.5 97.5 5.0 95.0

Description of return benchmark Mean Skew

Panel C: 60-month CARs

Size deciles 0 2.4* 0.6 8.0* 1.2 14.7* 3.45 1.11

Book-to-market deciles 0.1 0.7 1.9 4.4* 2.6 7.6* 1.47 1.24

Fifty size/book-to-market portfolio 0.2 1.3* 0.9 5.5* 2.2 10.0* 2.10 1.21

Equally weighted market index 0.0 5.5* 0.2 17.3* 0.5 25.1* 6.27 1.11

Size-matched control firm 0.6 0.3 2.1 2.2 5.2 4.3 �0.59 �0.14

Book-to-market-matched control firm 0.4 0.8 2.9 3.1 5.2 5.4 0.00 �0.01

Size-/book-to-market-matched control firm 0.2 0.4 2.4 2.3 4.3 4.3 �0.63 0.07

Fama-French three-factor model a 0.5 0.3 2.1 2.3 4.9 5.1 �0.94 �1.76

B: Specification (size) for BHAR with different benchmarks

Statistic Benchmark Two-tailed theoretical significance level

1 % 5 % 10 %

Theoretical cumulative

density function (%)

0.5 99.5 2.5 97.5 5 95

t-Statistic Rebalanced size/book-to-

market portfolio

11.7* 0.0 23.7* 0.0 33.2* 0.2

t-Statistic Buy-and-hold size/book-to-

market portfolio

2.4* 0.0 6.1* 0.5 10.5* 1.6

Skewness-adjusted

t-statistic
Buy-and-hold size/book-to-

market portfolio

1.4* 0.4 4.4* 1.7 8.2* 4.8

t-Statistic Size/book-to-market control

firm

0.1 0.1 3.0 1.9 5.4 3.9

Bootstrapped

skewness-adjusted

t-statistic

Buy-and-hold size/book-to-

market portfolio

0.6 1.2* 2.2 3.1 5.0 5.7

Empirical p-value Buy-and-hold size/book-to-

market portfolio

0.2 1.5* 2.7 3.7* 4.9 6.3

This table is from Table 5 of Barber and Lyon (1997, p. 363) and Table 3 of Lyon

et al. (1999, p. 179). The numbers presented represent the percentage of 1,000 random samples

of 200 firms that reject the null hypothesis of 5-year CAR (Panel A) and buy-and-hold abnormal

return (Panel B) at the theoretical significance levels of 1 %, 5 %, or 10 % in favor of the

alternative hypothesis of a significantly negative abnormal return (i.e., calculated p-value is less

than 0.5 % at the 1 % significance level) or a significantly positive abnormal return (calculated

p-value is greater than 99.5 % at the 1 % significance level). The alternative statistics and

benchmarks are described in detail in the main text. * indicates the percentage is significantly

different from the theoretical significance level at the 5 % (Panel A) and 1 % level (Panel B),

one-sided binomial test statistic
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50.3 Long-Run Return Estimation in Calendar-Time Approach

A potential problem in the event-time return estimations is the cross-sectional

dependence. For example, buy-and-hold return is computed over a long horizon;

it is possible that many sample firms’ returns overlap with each other, making

strong cross-sectional correlations among long-horizon returns. This cross-

sectional dependence is even more profound when we have repeating events by

the same firm, such as repurchase, SEO, merger, and stock splits. In addition,

buy-and-hold returns also enlarge the long-run abnormal return because of the

inflated returns stemming from the compounding effect. Therefore, the long-run

return results might disappear if we apply other methodologies to compute the

long-run abnormal return (Mitchell and Stafford 2000). Fama (1998) also

documents that the long-run stock return should be examined by the value-weighted

factor model since the buy-and-hold return usually uses an equal-weighted

scheme that is related to the ignored transaction costs. Although Loughran and

Ritter (2000) suggest that the value-weighted factor model is the least powerful test

for long-run returns, the calendar-time method could be always a robust check for

our long-run return estimation.
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Fig. 50.3 Power of alternative tests in random ample. This figure is from Fig. 1 of Lyon

et al. (1999, p. 180). The percentage of 1,000 random samples of 200 firms rejecting the null

hypothesis of no annual buy-and-hold abnormal return at various induced levels of abnormal

return (horizontal axis) based on control firm method, bootstrapped skewness-adjusted t-statistic,
and empirical p-values
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To estimate the abnormal return in calendar time, we need to form a monthly

portfolio for each calendar month. The portfolio return could be generated by an

equal-weighted, value-weighted, or a log-value-weighted method (Ikenberry

et al. 2000). Upon these monthly returns in calendar time, we are able to carry

out the mean monthly abnormal return or factor model analysis.

50.3.1 Return Estimations: Mean Monthly Return and Factor Models

The first method in the calendar-time approach is the mean monthly abnormal

return (MMAR). We can start from a 5-year holding strategy on a corporate event.

For any given calendar month (e.g., June 2002), we need to include a stock if it had

the corporate event in the past 60 months (e.g., looking backward at a period of May

2002–June 1997). We then need to form a monthly portfolio for this specific calendar

month, and the portfolio return could be computed upon equal-weighted, value-

weighted or log-value-weighted scheme. Next, we repeat the abovementioned step

for all calendar months throughout the sample period, and then the mean monthly

return is the time-series average of monthly portfolio returns.

Similar to the benchmark problem in event-time approach, we need to select the

CRSP market index return, reference portfolio, or the matching firm as the bench-

mark for the MMAR. For any benchmark E(Ri), the MMAR is

MMAR ¼

XT
t¼1

RP
t � RM

t

� �

T
,

where

RP
t ¼

XNt

i¼1

wi, tRi, t

Nt
, and RM

t ¼

XNt

i¼1

wi, tE Ri, t
� �

Nt
: (50.6)

T is for calendar month in this setting; RP
t is the monthly portfolio return of

sample firms; RM
t is the monthly portfolio return of benchmarks; and Nt is the

number of observations in each calendar month. The statistical inference can be

either classical t-statistic or the Newey and West (1987) estimation.

As suggested by Fama (1998), Mitchell and Stafford (2000), and Schultz (2003),

factor model is a robust method in estimating the long-run stock abnormal return.

The standard Fama and French three-factor and Carhart four-factor models could be

described as

RP
t � rf , t ¼ aþ b rm, t � rf , t

� �þ sSMBt þ hHMLt þ et, (50.7)

RP
t � rf , t ¼ aþ b rm, t � rf , t

� �þ sSMBt þ hHMLt þ mMOMENTUMt þ et,

(50.8)

50 Long-Run Stock Return and the Statistical Inference 1393



where RP
t is the sample firm portfolio return for each calendar month, and could

be obtained from the equal-weighted, value-weighted, or log-value-weighted

average. This average return in calendar is similar to what we compute in the

MMAR. rf is the risk-free rate, usually the short-term Treasury bill rate; rm is

usually computed as CRSP value-weighted index return; SMB is small firm

portfolio return minus big-firm portfolio return; HML is the high book-to-market

portfolio return minus low book-to-market portfolio return; MOMENTUM is

the winner portfolio return minus loser portfolio return where winner and

loser portfolios are identified by past 1-year return. SMB, HML, and MOMENTUM
are applied to control size and book-to-market and momentum effects,

respectively (Fama and French 1992, 1993; Jegadeesh and Titman 1993;

Lakonishok et al. 1994; Carhart 1997). The abnormal return is the regression

intercept and can be tested based on the t-values or Newey and West (1987)

estimator.

Next, I introduce a modification of the factor model analysis: the zero-

investment portfolio method. Daniel and Titman (1997) and Eberhart et al.

(2004) study the long-run return by using the zero-investment portfolio approach

to control for both risk and firm characteristic effects. To form the factor

model under a zero-investment portfolio strategy, we have to buy sample stocks

and short-sell matching stocks. Taking Carhart (1997) four-factor model as the

example, we have

RP
t � RM

t ¼ aP � aM
� �þ bP � bMð Þ rm, t � rf , t

� �þ sP � sMð ÞSMBt

þ hP � hMð ÞHMLt þ mP � mMð ÞMOMENTUMt þ et, (50.9)

and we use (aP–aM) as the abnormal return controlling for both risks and

firm characteristics. It is also the hedging portfolio return controlled for the

common risk factors. The matching firm selection criterions can apply the steps

in benchmark problem section. For other modifications of the factor model analysis,

Eberhart et al. (2004) provide more examples in their Table 3.

50.3.2 Conditional Market Model and Ibbotson’s RATS

One major challenge to the standard market model is that the risk loadings

are assumed to be unchanged. To estimate the factor loadings, we usually need

long time series to obtain the estimated risk loadings, and the fixed risk

loading over time is naturally assumed in the OLS analysis. Yet, the magnitude

of the risk of a firm could be changed; in particular many corporate events

change the risk of the firm (e.g., R&D increases could be followed by risk increases,

and share repurchase could be followed by risk decreases). Accordingly it is

needed to introduce the conditional market model to address the time-varying

market model.
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There are at least two ways to address the time-varying risks in the regression

model as the conditional market model. To simplify the problem, I use the CAPM

as the first example. First, the systematic risk could change along with some

firm characteristics and macroeconomic variables. Petkova and Zhang (2005) use

the following regression analysis to estimate abnormal return:

RP
t � rf , t ¼ aþ b0 þ b1DIVt þ b2DEFt þ b3TERMt þ b4TBtð Þ rm, t � rf , t

� �þ et:

(50.10)

(b0 + b1DIVt + b2DEFt + b3TERMt + b4TBt) is the bt that accommodates

to the time-varying risk loading. They assume that the risk changes with the

dividend yield (DIV), the default spread (DEF), the term spread (TERM), and the

short-term Treasury bill rate (TB). Again, the abnormal return is the intercept a.
The second method is the rolling regression, as suggested by Petkova and Zhang

(2005) and Eberhart et al. (2004). If we have a sample period from January 1990,

then we can use the portfolio returns in the first 60 months (i.e., January

1990–December 1994) to carry out the Carhart (1997) four-factor regression.

We substitute the estimated factor loadings from these 60 monthly returns into

the equity premiums in 61th month (i.e., January 1995) and then obtain the

expected portfolio return for 61th month. Thus, the abnormal return for 61th

month is from the portfolio return of the sample firm minus the expected portfolio

return. Next, we need to repeat the abovementioned steps for every month by

rolling return windows. Finally, we estimate the abnormal return as the average

of abnormal returns across time and use the time-series volatility to test the

statistical significance.

The final method relating to the time-varying risk is the Ibbotson (1975) RATS

though it is not under the family of the factor model analysis. The original setting of

Ibbotson RATS is designed for the long-run return estimation, yet recent papers

use this method combining the factor model analysis to measure the long-run

abnormal return (e.g., Peyer and Vermaelen 2009). Based on Carhart (1997)

four-factor model, we regress the security excess return on the Carhart (1997)

four factors for each month in the event time. Given a 60-month holding

strategy, we have to carry out this regression for 1st month to 60th month following

the corporate event date. Then, the abnormal return for month t is the intercept of
this four-factor regression:

Ri, t � rf , t ¼ at þ bt rm, t � rf , t
� �þ stSMBt þ htHMLt þ mtMOMENTUMt þ et:

(50.11)

The regression analysis is similar to what I introduce in Eq. 50.8; however,

the regression is examined every event month t. For every event month or event

year, we can obtain the average abnormal return as the average of the intercepts

(at), which is obtained from a model allowing time-varying risks.

50 Long-Run Stock Return and the Statistical Inference 1395



50.4 Conclusion

The long-run return studies have been investigated for many corporate events and

asset pricing studies in the past two decades. I introduce the long-run stock return

methodologies and their statistical inference adopted in recent papers. Two cate-

gories of long-run return methods are illustrated: the event-time approach and

calendar-time approach. Under the event-time category, we have methods includ-

ing cumulative abnormal return, buy-and-hold abnormal return, and abnormal

returns around earnings announcements. Although the event-time approach is

able to be implemented as an investment strategy in real world, it also raises

more benchmark and statistical inference problems. Under the calendar-time cate-

gory, we have mean monthly abnormal return, factor models, and Ibbotson’s

RATS. Generally, calendar-time approach is more popular due to its robustness

and variety. For any long-run return study, I may suggest that combining works on

those methodologies could be necessary.
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Abstract

This study utilizes the parametric approach (GARCH-based models) and the

semi-parametric approach of Hull and White (Journal of Risk 1: 5–19, 1998)

(HW-based models) to estimate the Value-at-Risk (VaR) through the accuracy

evaluation of accuracy for the eight stock indices in Europe and Asia stock markets.

The measure of accuracy includes the unconditional coverage test by Kupiec

(Journal of Derivatives 3: 73–84, 1995) as well as two loss functions, quadratic

loss function, and unexpected loss. As to the parametric approach, the parameters of

generalized autoregressive conditional heteroskedasticity (GARCH) model are

estimated by the method of maximum likelihood and the quantiles of asymmetric

distribution like skewed generalized student’s t (SGT) can be solved by composite

trapezoid rule. Sequentially, the VaR is evaluated by the framework proposed by

Jorion (Value at Risk: the new benchmark for managing financial risk. New York:

McGraw-Hill, 2000). Turning to the semi-parametric approach of Hull and White

(Journal of Risk 1: 5–19, 1998), before performing the traditional historical

simulation, the raw return series is scaled by a volatility ratio where the volatility

is estimated by the same procedure of parametric approach. Empirical results show

that the kind of VaR approaches is more influential than that of return distribution

settings on VaR estimate. Moreover, under the same return distributional setting,

the HW-based models have the better VaR forecasting performance as compared

with the GARCH-based models. Furthermore, irrespective of whether the GARCH-

based model or HW-based model is employed, the SGT has the best VaR forecast-

ing performance followed by student’s t, while the normal owns the worst VaR

forecasting performance. In addition, all models tend to underestimate the real

market risk in most cases, but the non-normal distributions (student’s t and SGT)

and the semi-parametric approach try to reverse the trend of underestimating.

Keywords

Value-at-Risk • Semi-parametric approach • Parametric approach • Generalized

autoregressive conditional heteroskedasticity • Skewed generalized student’s t •

Composite trapezoid rule • Method of maximum likelihood • Unconditional

coverage test • Loss function

51.1 Introduction

Over the last two decades, a number of global and national financial disasters have

occurred due to failures in risk management procedures. For instance, US Savings and

Loan crisis of 1989–1991, Japanese asset price bubble collapse of 1990, Black

Wednesday of 1992–1993, 1994 economic crisis in Mexico, 1997 Asian Financial

Crisis, 1998 Russian financial crisis, financial crisis of 2007–2010, followed by the

late 2000s recession, and the 2010 European sovereign debt crisis. The crises caused

many enterprises to be liquidated and many countries to face near depressions in

their economies. These painful experiences once again underline the importance

of accurately measuring financial risks and implementing sound risk management
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policies. Hence, Value-at-Risk (VaR) is a widely used risk measure of the risk of loss

on a specific portfolio of financial assets because it is an attempt to summarize the

total risk with a single number. For example, if a portfolio of stocks has a 1-day 99 %

VaR of US$1,000, there is a 1 % probability that the portfolio will fall in value by

more than US$1,000 over a 1-day period. In other words, we are 99 % certain that we

will not lose more than US$1,000 in the next 1 day, where 1 day is the time horizon,

99 % is the confidence level, and the US$1,000 is the VaR of the portfolio.

VaR estimates are currently based on either of three main approaches: the

historical simulation, the parametric method, and the Monte Carlo simulation.

The Monte Carlo simulation is a class of computational algorithms that rely on

repeated random sampling to compute their results. That is, this approach allows for

an infinite number of possible scenarios you are exposing yourself to huge model

risks in determining the likelihood of any given path. In addition, as you had more

and more variables that could possibly alter your return paths, model complexity

and model risks also increase in scale. Like historical simulation, however, this

methodology removes any assumption of normality and thus, if modeled accu-

rately, probably would give the most accurate measure of the portfolio’s true

VaR. Besides, little research such as Vlaar (2000) had applied this approach to

estimate the VaR. The parametric method is also known as variance/covariance

approach. This method is popular because the only variables you need to do the

calculation are the mean and standard deviation of the portfolio, indicating the

simplicity of the calculations. The parametric method assumes that the returns of

the portfolios are normally distributed and serially independent. In practice, this

assumption of return normality has proven to be extremely risky. Indeed, this was

the biggest mistake that LTCM made gravely underestimating their portfolio

risks. Another weakness with this method is the stability of the standard deviation

through time as well as the stability of the variance/covariance matrix in your

portfolio. However, it is easy to depict how correlations have changed over

time particularly in emerging markets and through contagion in times of

financial crisis. Additionally, numerous studies focused on the parametric approach

of generalized autoregressive conditional heteroskedasticity (GARCH) family

variance specifications (i.e., risk metrics, asymmetric power ARCH (APARCH),

exponential GARCH (EGARCH), threshold GARCH (TGARCH), integrated

GARCH (IGARCH), and fractional IGARCH (FIGARCH)) to estimate the VaR

(see Vlaar (2000), Giot and Laurent (2003a, b), Gencay et al. (2003), Cabedo and

Moya (2003), Angelidis et al. (2004), Huang and Lin (2004), Hartz et al. (2006), So

and Yu (2006), Sadeghi and Shavvalpour (2006), Bali and Theodossiou (2007),

Bhattacharyya et al. (2008), Lee et al. (2008), Lu et al. (2009), Lee and Su (2011),

and so on). Lately, in the empirical study of parametric VaR approach, several

researches have utilized the other type of volatility specifications besides GARCH

family such as the ARJI-GARCH-based model (hereafter ARJI) of Chan and

Maheu (2002) which combines the GARCH specification of volatility and

autoregressive jump intensity (ARJI) in jump intensity (see Su and Hung (2011)

Chang et al. (2011), and so on). Moreover, the other types of long memory volatility

specifications such as fractional integrated APARCH (FIAPARCH) and hyperbolic
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GARCH (HYGARCH) besides FIGARCHmentioned above are also used to estimate

the VaR (see Aloui andMabrouk (2010), Degiannakis et al. (2012)). As to distribution

setting, some special distributions like the Weibull distribution (see Gebizlioglu

et al. (2011)), the asymmetric Laplace distribution (see Chen et al. (2012)), and the

Pearson type-IV distribution (see Stavroyiannis et al. (2012)) are also employed to

estimate VaR.

The historical simulation assumes that the past will exactly replicate the future.

The VaR calculation of this approach is literally ranking all of your past historical

returns in terms of lowest to highest and computing with a predetermined confi-

dence rate what your lowest return historically has been.1 In addition, several

studies such as Vlaar (2000), Gencay et al. (2003), Cabedo and Moya (2003), and

Lu et al. (2009) had applied this approach to estimate the VaR. Even though it is

relatively easy to implement, there is a couple of shortcomings of this approach, and

first of all is that it imposes a restriction on the estimation assuming asset returns are

independent and identically distributed (iid) which is not the case. From empirical

evidence, it is known that asset returns are clearly not independent as they exhibit

volatility clustering.2 Therefore, it can be unrealistic to assume iid asset returns.

Second restriction relates to time. Historical simulation applies equal weight to all

returns of the whole period, and this is inconsistent with the nature where there is

diminishing predictability of data that are further away from the present.

These two shortcomings of historical simulation lead this paper to use the

approach proposed by Hull and White (1998) (hereafter, HW method) as

a representative of the semi-parametric approach. This semi-parametric approach

combines the abovementioned parametric approach of GARCH-based variance

specification with the weighted historical simulation. The weighted historical

simulation applies decreasing weights to returns that are further away from

the present, which overcomes the inconsistency of historical simulation with

diminishing predictability of data that are further away from the present. Hence,

this study utilizes the parametric approach (GARCH-N, GARCH-T, and GARCH-

SGT models) and the semi-parametric approach of Hull and White (1998) (HW-N,

HW-T, and HW-SGT models), totaling six models, to estimate the VaR for the

eight stock indices in Europe and Asia stock markets, then uses three accuracy

measures: one likelihood ratio test (the unconditional coverage test (LRuc)

of Kupiec (1995)) and two loss functions (the average quadratic loss function

(AQLF) of Lopez (1999) and the unexpected loss (UL)) to compare the forecasting

ability of the aforementioned models in terms of VaR.

Our results show that the kind of VaR approaches is more influential than that

of return distribution settings on VaR estimate. Moreover, under the same return

distributional setting, the HW-based models have the better VaR forecasting

1This means if you had 200 past returns and you wanted to know with 99 % confidence what’s the

worst you can do, you would go to the 2nd data point on your ranked series and know that 99 % of

the time you will do no worse than this amount.
2Large changes tend to be followed by large changes, of either sign, and small changes tend to be

followed by small changes.
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performance as compared with the GARCH-based models. Furthermore, irrespective

of whether the GARCH-based model or HW-based model is employed, the skewed

generalized student’s t (SGT) has the best VaR forecasting performance followed

by student’s t, while the normal owns the worst VaR forecasting performance.

In addition, all models tend to underestimate the real market risk in most cases, but

the non-normal distributions (student’s t and SGT) and the semi-parametric approach

try to reverse the trend of underestimating.

The remainder of this paper is organized as follows. Section 51.2 describes

the methodology of two dissimilar VaR approaches (the parametric and semi-

parametric approaches) and the VaR calculations using these approaches.

Section 51.3 provides criteria for evaluating risk management, and Sect. 51.4

reports on and analyzes the empirical results of the out-of-sample VaR forecasting

performance. The final section makes some concluding remarks.

51.2 Empirical Methodology

In this paper, there are two approaches of calculating VaR to be introduced, that is, the

parametric method and the semi-parametric approach. Here, we use the GARCH(1,1)

model with three conditional distributions, namely, the normal, student’s t, and SGT

distributions, to estimate the corresponding volatility in terms of different stock

indices then employ the framework of Jorion (2000) to evaluate the VaR of paramet-

ric approach whereas utilizing the weighting scheme of volatility proposed by Hull

and White (1998) (hereafter, HW method) which is a straightforward extension of

traditional historical simulation to calculate the VaR of semi-parametric VaR.

51.2.1 Parametric Method

Many time series data of financial assets appear to exhibit autocorrelated and vola-

tility clustering. Bollerslev et al. (1992) showed that the GARCH(1,1) specification

works well in most applied situations. Furthermore, the unconditional distribution of

those returns displays leptokurtosis and a moderate amount of skewness. Hence,

this study thus considers the applicability of the GARCH(1,1) model with three

conditional distributions, namely, the normal, student’s t, and SGT distributions, to

estimate the corresponding volatility in terms of different stock indices and use the

GARCH model as an official delegate of the VaR model.

51.2.1.1 GARCH Model with Normal Distribution
Let rt ¼ (ln Pt � ln Pt � 1) � 100, where Pt denotes the stock price and rt denotes the

continuously compounded daily returns of the underlying assets on time t. TheGARCH

(1,1) model with SGT distribution (GARCH-SGT) can be expressed as follows:

rt ¼ mþ et, et ¼ etst, � et � IID SGT 0; 1; k; l; nð Þ (51.1)
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s2
t ¼ oþ ae2t�1 þ bs2

t�1 (51.2)

where et is the current error and m and st
2 are the conditional mean and

variance of return, respectively. Moreover, the variance parameters o, a, and b
are the parameters to be estimated and obey the constraints o, a, b > 0 and

a + b < 1. IID denotes that the standardized errors et are independent and

identically distributed. Since et is drawn from the standard normal distribution,

the probability density function for et is

f etð Þ ¼ 1ffiffiffiffiffiffi
2p

p exp � e2t
2

� �
, (51.3)

and the log-likelihood function of GARCH-N model thus can be written as

L cð Þ ¼ ln f rt Ot�1;cjð Þ ¼ �0:5 ln 2pþ ln s2
t þ rt � mð Þ2=s2

t

� �
(51.4)

where c¼ [m, o, a, b] is the vector of parameters to be estimated andOt � 1 denotes

the information set of all observed returns up to time t� 1. Under the framework of

the parametric techniques (Jorion 2000), the 1-day-ahead VaR based on GARCH-N

model can be calculated as

VaRN
tþ1 tj ¼ mþ Fc etð Þ � ŝtþ1 tj (51.5)

where Fc(et) is the left-tailed quantile at c% for the standardized normal distribu-

tion. ŝtþ1 tj is the one-step-ahead forecasts of the standard deviation of the returns

conditional on all information upon the time t.

51.2.1.2 GARCH Model with Student’s t Distribution
Since the characteristics of many financial data are non-normal, the student’s t

distribution is most commonly employed to capture the fat-tailed properties of their

empirical distributions. Moreover, Bollerslev (1986) argued that using the student’s

t distribution as the conditional distribution for GARCH model is more satisfactory

since it exhibits thicker tail and larger kurtosis than normal distribution. Under

the same specifications of mean and variance equation as the GARCH-N model,

the probability density function for the standardized student’s t distribution can be

represented as follows:

f etð Þ ¼ G 0:5 nþ 1ð Þð Þ
G 0:5 nð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p n� 2ð Þp 1þ e2t
n� 2

� ��nþ1
2

(51.6)

where G(•) is the gamma function and n is the shape parameter. Hence, the

log-likelihood function of the GARCH-T model can be expressed as
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L cð Þ ¼ ln f rt Ot�1;cjð Þ ¼ ln
G 0:5 nþ 1ð Þð Þ

G 0:5nð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p n� 2ð Þp

" #

�lnst � nþ 1

2
ln 1þ rt � m

st

� �2

n� 2ð Þ�1

" # (51.7)

wherec¼ [m,o, a, b, n] is the vector of parameters to be estimated. The 1-day-ahead

VaR based on GARCH-T model can be obtained as

VaRT
tþ1 tj ¼ mþ Fc et; nð Þ � ŝtþ1 tj (51.8)

where Fc(et ; n) denotes the left-tailed quantile at c% for standardized student’s

t distribution with shape parameter n.

51.2.1.3 GARCH Model with Skewed Generalized Student’s
t Distribution

This study also employs the SGT distribution of Theodossiou (1998) which allows

return innovation to follow a flexible treatment of both skewness and excess kurtosis in

the conditional distribution of returns. Under the same specifications of mean and

variance as the GARCH-Nmodel, the probability density function for the standardized

SGT distribution is derived by Lee and Su (2011) and can be represented as follows:

f etð Þ ¼ C 1þ et þ dj jk
1þ sign et þ dð Þl½ �kyk

� ��nþ1
k

(51.9)

where y ¼ 1
S lð ÞB

1
k ;

n
k

	 
1
2B 3

k ;
n�2
k

	 
�1
2, S lð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3l2 � 4A2l2

p
,

A ¼ B 2
k ;

n�1
k

	 

B 1

k ;
n
k

	 
�0:5
B 3

k ;
n�2
k

	 
�0:5
, d ¼ 2lA

S lð Þ, C ¼ k
2yB

1
k ;

n
k

	 
�1

where k, n, and l are scaling parameters and C and y are normalizing constants

ensuring that f(•) is a proper p.d.f. The parameters k and n control the height and tails

of density with constraints k > 0 and n > 2, respectively. The skewness parameter l
controls the rate of descent of the density around the mode of et with�1 < l < 1. In

the case of positive (resp. negative) skewness, the density function skews toward the

right (resp. left). Sign is the sign function, and B(•) is the beta function. The

parameter n has the degrees of freedom interpretation in case l ¼ 0 and

k¼ 2. The log-likelihood function of the GARCH-SGT model thus can be written as

L cð Þ ¼ ln f rt Ot�1;cjð Þ ¼ lnC� lnst � nþ 1

k
ln 1þ rt � m

st

þ d

����
����
k�

1þ sign
rt � m
st

þ d
� �

l
� �k

y�k
� (51.10)
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where c¼ [m, o, a, b, k, l, n] is the vector of parameters to be estimated, andOt � 1

denotes the information set of all observed returns up to time t � 1.

Under the framework of the parametric techniques (Jorion 2000), the 1-day-ahead

VaR based on GARCH-SGT model can be calculated as

VaRSGT
tþ1 tj ¼ mþ Fc et; k; l; nð Þ � ŝtþ1 tj (51.11)

where Fc(et; k, l, n) denotes the left-tailed quantile at c% for standardized SGT

distribution with shape parameters k, l, and n and can be evaluated by a numerical

integral method (composite trapezoid rule).3 Particularly, the SGT distribution

generates the student’s t distribution for l ¼ 0 and k ¼ 2. Moreover, the SGT

distribution generates the normal distribution for l ¼ 0, k ¼ 2, and n ¼ 1.

51.2.2 Semi-parametric Method

In this paper, we use the approach proposed by Hull andWhite (1998) (hereafter, HW

method) as a representative of the semi-parametric approach. The HW method is

a straightforward extension of traditional historical simulation. Instead of using the

actual historical percentage changes in market variables for the purposes of calculat-

ing VaR, we use historical changes that have been adjusted to reflect the ratio of the

current daily volatility to the daily volatility at the time of the observation and assume

that the variance of each market variable during the period covered by the historical

data is monitored using a GARCH model. The methodology is explained in the

following three steps: First, use a raw return series, {r1, r2, r3,......, rt¼T}, to fit the

GARCH(1,1) models with alternative distributions expressed as in Sect. 51.2.1. Thus,

a series of daily volatility estimates, {s1, s2, s3,......, st¼T}, are obtained where T is

the number of estimated samples. Second, the modified return series are obtained by

the raw return series multiplied by the ratio of the current daily volatility to the daily

volatility at the time of the observation, sT/si. That is, the modified return series are

expressed as {r1
*, r2

*, r3
*,......, rt¼T

*}, where ri
* ¼ ri(sT/si). Finally, sort the returns

ascendingly to achieve the empirical distribution. Thus, VaR is the percentile that

corresponds to the specified confidence level.

The HW-GARCH-SGT model (simply called HW-SGT) implies that the

standardized residual return of the GARCH-SGT model is applied by the HW

approach to estimate the VaR so are HW-N and HW-T models.

51.3 Evaluation Methods of Model-Based VaR

Many financial institutions have been required to hold capital against their market risk

exposure, while the market risk capital requirements are based on the VaR estimates

3See Faires and Burden (2003) for more details.
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generated by the financial institutions’ own risk management models. Explicitly, the

accuracy of these VaR estimates is of concern to both financial institutions and their

regulators. Hence, model accuracy is important to all VaR model users. To compare

the forecasting ability of the aforementioned models in terms of VaR, this study

considers three accuracy measures: the unconditional coverage test of Kupiec (1995)

which are quite standard in the literatures. Moreover, the quadratic loss function and

the unexpected loss are introduced and used for determining the accuracy of model-

based VaR measurements.

51.3.1 Log-Likelihood Ratio Test

Before performance competition of alternative VaR models, with regard to two

models, we can use the log-likelihood ratio test to compare which one model has the

better matching ability of between actual data and empirical model. This can be

regarded as the preliminary analysis. The log-likelihood ratio test is a statistical test

used to compare the fit of two models, one of which, the null model, is a special

case of the other, the alternative model. The test is based on the likelihood ratio,

which expresses how many times more likely the data are under one model than the

other. This log-likelihood ratio can then be used to compute a p-value, or compared

to a critical value, to decide whether to reject the null model in favor of the

alternative model.

The log-likelihood ratio test LRN (LRT), used to test the null hypothesis that

log-returns are normally (student’s t) distributed against the alternative hypothesis,

is given by

LRN or LRT ¼ �2 LRr � LRuð Þ � w2 mð Þ (51.12)

where LRr and LRu are, respectively, the maximum value of the log-likelihood

values under the null hypothesis of the restricted model and the alternative

hypothesis of the unrestricted model and m is the number of the restricted

parameters in the restricted model. For example, LRN for GARCH-SGT model

could be used to test the null hypothesis that log-returns are normally distributed

against the alternative hypothesis that they are SGT distributed. The null hypoth-

esis for testing normality is H0:k ¼ 2, l ¼ 0 and n!1, and the alternative

hypothesis is H1:k∊R+, n > 2 and |l| < 1. Restate, LRN ¼ �2(LRr � LRu) �
w2(3) where LRr and LRu are, respectively, the maximum value of the

log-likelihood values under the null hypothesis of restricted model (GARCH-N

model) and the alternative hypothesis of unrestricted model (GARCH-SGT

model) and m is the number of the restricted parameters in the restricted model

(k ¼ 2, l ¼ 0 and n!1) and equal to 3 in this case. At the same inference, LRN

for GARCH-T model follows the w2(1) distribution with one degree of freedom.

Moreover, LRT for GARCH-SGT model follows the w2(2) distribution with two

degrees of freedom.
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51.3.2 Binary Loss Function or Failure Rate

If the predicted VaR is not able to cover the realized loss, this is termed a violation.

A binary loss function (BLF) is merely the reflection of the LR test of unconditional

coverage test and gives a penalty of one to each exception of the VaR. The BLF for

long position can be defined as follows:

BLtþ1 ¼ 1 if rtþ1 < VaRtþ1 tj ,
0 if rtþ1 � VaRtþ1 tj :

�
(51.13)

where BLt+1 represents the 1-day-ahead BLF for long position. If a VaR model truly

provides the level of coverage defined by its confidence level, then the average

binary loss function (ABLF) or the failure rate over the full sample will equal c for

the (1 � c)th percentile VaR.

51.3.3 Quadratic Loss Function

The quadratic loss function (QLF) of Lopez (1999) penalizes violations differently

from the binary loss function and pays attention to the magnitude of the violation.

The QLF for long position can be expressed as

QLtþ1 ¼ 1þ rtþ1 � VaRtþ1 tj
	 
2

if rtþ1 < VaRtþ1 tj ,
0 if rtþ1 � VaRtþ1 tj :

�
(51.14)

where QLt+1 represents the 1-day-ahead QLF for long position. The quadratic term

in Eq. 51.14 ensures that large violations are penalized more than the small

violations which provides a more powerful measure of model accuracy than the

binary loss function.

51.3.4 The Unconditional Coverage Test

Kupiec (1995) proposes the unconditional coverage test which is a likelihood

ratio test for testing the model accuracy which is identical to a test of the null

hypothesis that the probability of failure for each trial (p̂) equals the specified model

probability (p). The likelihood ratio test statistics is given by

LRuc ¼ �2ln pn1 1� pð Þn0 p̂�n1 1� p̂ð Þ�n0ð Þ � w2 1ð Þ (51.15)

where p̂ ¼ n1
n0þn1

is the maximum likelihood estimate of p, n1 denotes a Bernoulli

random variable representing the total number of VaR violations, and n0 + n1
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represents the full sample size. The LRuc test can be employed to test whether the

sample point estimate is statistically consistent with the VaR model’s prescribed

confidence level or not.

51.3.5 Unexpected Loss

The unexpected loss (UL) will equal the average magnitude of the violation over

the full sample. The magnitude of the violation for long position is given by

Ltþ1 ¼ rtþ1 � VaRtþ1 tj if rtþ1 < VaRtþ1 tj ,
0 if rtþ1 � VaRtþ1 tj :

�
(51.16)

where Lt+1 is the 1-day-ahead magnitude of the violation for long position.

51.4 Empirical Results

The study data comprises daily prices of the following eight stock indices: the

Austria ATX (6/29/1999–8/10/2009), the Belgium Brussels (10/19/1999–

8/10/2009), the France CAC40 (10/22/1999–8/10/2009) and the Switzerland

Swiss (9/8/1999–8/10/2009) in Europe, the India Bombay (7/8/1999–8/10/2009),

the Malaysia KLSE (6/23/1999–8/10/2009), the South Korea KOSPI (6/21/1999–

8/10/2009), and the Singapore STRAITS (8/24/1999–8/10/2009) in Asia, where the

numbers in parentheses are the start and end dates for our sample. Daily closing

spot prices for the study period, totaling 2,500 observations, were obtained from

http://finance.yahoo.com. The stock returns are defined as the first difference in the

logarithms of daily stock prices then multiplied by 100.

51.4.1 Data Preliminary Analysis

Table 51.1 summarizes the basic statistical characteristics of return series for both

the estimation and forecast periods. Notably, the average daily returns are all

negative (resp. positive) for forecast (resp. estimation) period and very small

compared with the variable standard deviation, indicating high volatility. Except

the Brussels of estimation period and the CAC40, Swiss and Bombay of forecast

period, all returns series almost exhibit negative skewness for both the estimation

and forecast periods. The excess kurtosis all significantly exceeds zero at the 1 %

level, indicating a leptokurtic characteristic. Furthermore, J-B normality test statis-

tics are all significant at the 1 % level and thus reject the hypothesis of normality

and confirm that neither return series is normally distributed. Moreover, the

Ljung-Box Q2(20) statistics for the squared returns are all significant at the 1 %
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level and thus indicate that the return series exhibit linear dependence and strong

ARCH effects. Therefore, the preliminary analysis of the data suggests the use of

a GARCH model to capture the fat-tails and time-varying volatility found in these

stock indices return series.

Descriptive graphs (levels of spot prices, density of the daily returns against

normal distribution) for each stock index are illustrated in Fig. 51.1a–h. As shown

in Fig. 51.1, all stock indices have experienced a severe slide in price levels and

display pictures of volatile bear markets for forecast period. Moreover, comparing

density graphs against the normal distribution shows that each return distribution of

data employed exhibits non-normal characteristics. This provides evidence in favor

of some of skewed, leptokurtic, and fat-tailed return distributions. These results are

in line with those of Table 51.1.

51.4.2 Estimation Results for Alternate VaR Models

This section estimates the GARCH(1,1) model with alternative distributions

(normal, student’s t, and SGT) for performing VaR analysis. For each data series,

three GARCH models are estimated with a sample of 2,000 daily returns, and the

estimation period is then rolled forwards by adding one new day and dropping the

Table 51.1 Descriptive statistics of daily return

Mean Std. dev. Max. Min. Skewness Kurtosis J-B Q2(20)

Panel A. Estimation period (2,000 observations)

ATX 0.0675 0.9680 4.6719 �7.7676 �0.6673c 4.4547c 1,802.17c 547.23c

Brussels 0.0179 1.1577 9.3339 �5.6102 0.2607c 6.0567c 3,079.66c 1,479.84c

CAC40 0.0090 1.4012 7.0022 �7.6780 �0.0987a 2.9924c 749.48c 2,270.73c

Swiss 0.0086 1.1602 6.4872 �5.7803 �0.0530 4.5084c 1,694.78c 1,985.51c

Bombay 0.0648 1.5379 7.9310 �11.8091 �0.5632c 4.2350c 1,600.43c 707.26c

KLSE 0.0243 0.9842 5.8504 �6.3422 �0.3765c 6.2537c 3,306.35c 5,54.16c

KOSPI 0.0397 1.8705 7.6971 �12.8046 �0.4671c 3.6010c 1,153.39c 365.29c

STRAITS 0.0239 1.1282 4.9052 �9.0949 �0.5864c 4.8254c 2,055.03c 239.53c

Panel B. Forecast period (500 observations)

ATX �0.1352 2.6532 12.0210 �10.2526 �0.0360 2.4225c 122.37c 735.66c

Brussels �0.1195 1.9792 9.2212 �8.3192 �0.0888 3.1545c 207.97c 581.42c

CAC40 �0.0907 2.1564 10.5945 �9.4715 0.2209b 4.4068c 408.65c 353.15c

Swiss �0.0704 1.8221 10.7876 �8.1077 0.2427b 4.4101c 410.10c 502.59c

Bombay �0.0101 2.6043 15.9899 �11.6044 0.2529b 3.4248c 249.70c 57.24c

KLSE �0.0166 1.2040 4.2586 �9.9785 �1.1163c 9.8218c 2,113.64c 17.87c

KOSPI �0.0327 2.1622 11.2843 �11.1720 �0.4177c 4.3977c 417.47c 343.50c

STRAITS �0.0594 2.0317 7.5305 �9.2155 �0.1183 2.3827c 119.45c 219.52c

Notes: 1. a, b, and c denote significantly at the 10%, 5 %, and 1 % levels, respectively. 2. J-B statistics

are based on Jarque and Bera (1987) and are asymptotically chi-squared distributed with 2 degrees of

freedom. 3. Q2(20) statistics are asymptotically chi-squared distributed with 20 degrees of freedom
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Fig. 51.1 (continued)
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Fig. 51.1 The stock index in level and daily return density (versus normal) forwhole sample (a) ATX,
(b) Brussels, (c) CAC40, (d) Swiss, (e) Bombay, (f) KLSE, (g) KOSPI, (h) STRAITS stock indices
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most distant day. In this procedure, according to the theory of Sect. 51.2, the

out-of-sample VaR is computed for the next 500 days.

Table 51.2 lists the estimation results4 of the GARCH-N, GARCH-T, and

GARCH-SGT models for the ATX, Brussels, CAC40, and Swiss stock indices in

Europe and the Bombay, KLSE, STRAITS, and KOSPI stock indices in Asia during

the first in-sample period. The variance coefficients o, a, and b are all positive and

significant almost at the 1 % level. Furthermore, the sums of parameters a and b for

these three models are less than one thus ensuring that the conditions for stationary

covariance hold. As to the fat-tail parameters in student’s t distribution, the fat-tail

parameter (n) ranges from 4.9906 (KLSE) to 14.9758 (CAC40) for GARCH-T

model. All these shape parameters are all significant at 1 % level and obey the

constraint n > 2 and thereby implying that the distribution of returns has larger,

thicker tails than the normal distribution. Turning to the shape parameters in SGT

distribution, the fat-tail parameter (n) ranges from 4.9846 (KLSE) to 21.4744

(KOSPI), and the fat-tail parameter (k) is between 1.5399 (KOSPI) and 2.3917

(Bombay). The skewness parameter (l) ranges from �0.1560 (Bombay) to

�0.0044(KLSE). Moreover, these three coefficients are almost significant at the

1 % level and thereby these negative skewness parameters imply that the distribu-

tion of returns has a leftward tail. Therefore, both fat-tails and skewness cannot be

ignored in modeling these stock indices returns. The Ljung-Box Q2(20) statistics

for the squared returns are all not significant at the 10 % level and thus indicate that

serial correlation does not exist in standard residuals, confirming that the GARCH

(1,1) specification in these models is sufficient to correct the serial correlation of

these eight return series in the conditional variance equation.

Moreover, as shown in Table 51.2, the LRN statistics for both GARCH-T and

GARCH-SGT models are all significant at the 1 % level, indicating that the null

hypothesis of normality for either stock index is rejected. These results thus imply that

both the student’s t and SGT distributions closely approximate the empirical return

series as compared with the normal distribution. Furthermore, except for ATX and

KLSE stock indices, the LRT statistics of GARCH-SGT model are all significant,

implying that the SGT distribution more closely approximates the empirical return

series than the student’s t does. To sum up, the SGT distribution closely approximates

the empirical return series followed by student’s t and normal distributions.

51.4.3 The Results of VaR Performance Assessment

In this paper, we utilize the parametric approach (GARCH-N, GARCH-T, and

GARCH-SGT models) and the semi-parametric approach (HW-N, HW-T, and

HW-SGT models), totaling six models, to estimate the VaR.; thereafter, it was

compared with the observed return, and both results were recorded. This section

4The parameters are estimated by QMLE (quasi-maximum likelihood estimation; QMLE) and the

BFGS optimization algorithm, using the econometric package of WinRATS 6.1.
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Table 51.2 Estimation results for alternative models (estimation period)

ATX Brussels CAC40 Swiss

Panel A. GARCH(1,1) with normal distribution

m 0.1007c(0.0202) 0.0760c(0.0177) 0.0537b(0.0227) 0.0488c(0.0187)

o 0.0612c(0.0124) 0.0239c(0.0032) 0.0143c(0.0029) 0.0243c(0.0057)

a 0.1146c(0.0158) 0.1470c(0.0090) 0.0799c(0.0100) 0.1184c(0.0136)

b 0.8209c(0.0227) 0.8354c(0.0034) 0.9132c(0.0105) 0.8632c(0.0150)

Q2(20) 16.147 14.731 22.333 19.883

LL �2648.73 �2649.75 �3156.40 �2748.86

Panel B. GARCH(1,1) with student’s t distribution

m 0.0998c(0.0178) 0.0775c(0.0162) 0.0622c(0.0216) 0.0589c(0.0167)

o 0.0623c(0.0160) 0.0179c(0.0049) 0.0118c(0.0043) 0.0177c(0.0052)

a 0.0986c(0.0188) 0.1319c(0.0177) 0.0785c(0.0110) 0.1078c(0.0151)

b 0.8324c(0.0292) 0.8560c(0.0180) 0.9166c(0.0109) 0.8799c(0.0153)

n 7.3393c(1.0609) 9.4946c(1.7035) 14.9758c(4.0264) 9.6205c(1.6621)

Q2(20) 17.334 19.676 21.719 18.712

LL �2610.15 �2626.31 �3146.96 �2724.27

LRN 77.16c 46.88c 18.88c 49.18c

Panel C. GARCH(1,1) with SGT distribution

m 0.0875c(0.0177) 0.0691c(0.0158) 0.0525b(0.0217) 0.0479c(0.0175)

o 0.0626c(0.0173) 0.0175c(0.0044) 0.0115c(0.0043) 0.0172c(0.0048)

a 0.0952c(0.0189) 0.1277c(0.0163) 0.0774c(0.0103) 0.1086c(0.0148)

b 0.8343c(0.0323) 0.8590c(0.0161) 0.9170c(0.0106) 0.8787c(0.0150)

n 7.8001c(2.4847) 6.9261c(1.7169) 13.3004b(6.3162) 7.8987c(2.1709)

l �0.0660b(0.0290) �0.1019c(0.0346) �0.1175c(0.0335) �0.1175c(0.0323)

k 1.9710c(0.2290) 2.3745c(0.2782) 2.1219c(0.2220) 2.2601c(0.2519)

Q2(20) 17.779 20.509 21.803 18.791

LL �2608.01 �2621.51 �3140.58 �2717.94

LRN (LRT) 81.44c(4.28) 56.48c(9.6c) 31.64c(12.76c) 61.84c(12.66c)

Bombay KLSE KOSPI STRAITS

Panel A. GARCH(1,1) with normal distribution

m 0.1427c(0.0262) 0.0453c(0.0164) 0.1212c(0.0318) 0.0623c(0.0196)

o 0.0906c(0.0201) 0.0077c(0.0029) 0.0214c(0.0082) 0.0143c(0.0042)

a 0.1438c(0.0167) 0.0998c(0.0174) 0.0799c(0.0146) 0.1031c(0.0134)

b 0.8189c(0.0206) 0.8989c(0.0165) 0.9177c(0.0141) 0.8938c(0.0123)

Q2(20) 19.954 27.905 11.214 15.574

LL �3453.18 �2490.05 �3843.01 �2895.36

Panel B. GARCH(1,1) with student’s t distribution

m 0.1583c(0.0250) 0.0351b(0.0142) 0.1377c(0.0302) 0.0652c(0.0192)

o 0.0863c(0.0222) 0.0116b(0.0050) 0.0163b(0.0078) 0.0135c(0.0049)

a 0.1417c(0.0198) 0.1116c(0.0254) 0.0639c(0.0128) 0.0806c(0.0136)

b 0.8225c(0.0234) 0.8848c(0.0248) 0.9332c(0.0127) 0.9119c(0.0139)

n 8.3410c(1.3143) 4.9906c(0.5782) 7.2792c(1.1365) 6.7643c(0.9319)

(continued)
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then uses three accuracy measures: one likelihood ratio test (the unconditional

coverage test (LRuc) of Kupiec (1995)) and two loss functions (the average qua-

dratic loss function (AQLF) of Lopez (1999) and the unexpected loss (UL)) to

compare the forecasting ability of the aforementioned models in terms of VaR.

Figure 51.2 graphically illustrates the long VaR forecasts of the GARCH-N,

GARCH-T, and GARCH-SGT models at alternate levels (95 %, 99 %, and 99.5 %)

for all stock indices. Tables 51.3, 51.4 and 51.5 provide the failure rates and the results

of the prior three accuracy evaluation tests (LRuc, AQLF, and UL) for the aforemen-

tioned six models at the 95 %, 99 %, and 99.5 % confidence levels, respectively. As

observed in Tables 51.3, 51.4 and 51.5, we find that, except for a few cases at the 99%

and 99.5 % confidence levels, all models tend to underestimate real market risk

because the empirical failure rate is higher than the theoretical failure rate in most

cases. The abovementioned exceptional cases emerge at the GARCH-SGT model

of 99 % level (CAC40); both the GARCH-T and GARCH-SGT models of 99.5 %

level (KLSE and STRAITS); the HW-N (KLSE), HW-T (KLSE), and HW-SGT

(KLSE and STRAITS) models of 99 % level; and the HW-N (STRAITS), HW-T

(ATX and STRAITS), and HW-SGT (ATX, KLSE, and STRAITS) models of 99.5 %

level, where the stock indices in parentheses behind the models are the exceptional

cases. Moreover, the empirical failure rate of the above exceptional cases is

lower than the theoretical failure rate, indicating that the non-normal distributions

(student’s t and SGT) and the semi-parametric approach try to reverse the trend of

underestimating real market risk, especially at the 99.5 % level.

Table 51.2 (continued)

Bombay KLSE KOSPI STRAITS

Q2(20) 19.980 24.477 11.304 16.554

LL �3420.18 �2412.82 �3801.67 �2838.34

LRN 66.0c 154.46c 82.68c 114.04c

Panel C. GARCH(1,1) with SGT distribution

m 0.1266c(0.0261) 0.0341b(0.0147) 0.1021c(0.0285) 0.0516c(0.0185)

o 0.0836c(0.0201) 0.0116b(0.0049) 0.0167b(0.0077) 0.0132c(0.0045)

a 0.1350c(0.0196) 0.1117c(0.0242) 0.0613c(0.0133) 0.0785c(0.0135)

b 0.8282c(0.0228) 0.8847c(0.0240) 0.9345c(0.0135) 0.9138c(0.0136)

n 6.2282c(1.3602) 4.9846c(1.0922) 21.4744(15.8310) 6.2641c(1.4297)

l �0.1560c(0.0303) �0.0044(0.0281) �0.1006c(0.0266) �0.0745b(0.0296)

k 2.3917c(0.2801) 2.0016c(0.2450) 1.5399c(0.1513) 2.1194c(0.2256)

Q2(20) 21.167 24.455 11.067 16.595

LL �3408.46 �2412.81 �3791.66 �2835.52

LRN (LRT) 89.44c(23.44c) 154.48c(0.02) 102.7c(20.02c) 119.68c(5.64a)

Notes: 1.a, b andc denote significantly at the 10 %, 5 %, and 1 % levels, respectively. 2. Numbers in

parentheses are standard errors. 3. LL indicates the log-likelihood value. 4. The critical value of the

LRN test statistics at the 1 % significance level is 6.635 for GARCH-T and 11.345 for GARCH-SGT

model. 5. The critical value of the LRT test statistics at the 10 %, 5 %, and 1 % significance level is

4.605, 5.991, and 9.210 for GARCH-SGTmodel, respectively. 6. Q2(20) statistics are asymptotically

chi-squared distributed with 20 degrees of freedom
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alternate levels
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Swiss index: VaR at
alternate levels
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Date

R
et

u
rn

2008 2009
−20

−15

−10

−5

0

5

10

15

−20

−15

−10

−5

0

5

10

15

KLSE index: VaR at
alternate levels

Date

R
et

u
rn

R
etu

rn

2008 2009
−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

Fig. 51.2 (continued)
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As to the back-testing, the back-testing is a specific type of historical

testing that determines the performance of the strategy if it had actually been

employed during the past periods and market conditions. In this paper, the

unconditional coverage tests (LRuc) proposed by Kupiec (1995) is employed to

test whether the unconditional coverage rate is statistically consistent with the

VaR model’s prescribed confidence level and thus is applied as the back-testing

to measure the accuracy performance of these six VaR models. To interpret

the result of accepting back-testing in Tables 51.3, 51.4 and 51.5, there is

an illustration in the following. In Table 51.3, the VaR estimates based on

GARCH-N, GARCH-T, and GARCH-SGT models, respectively, have a total

of 2 (KLSE and STRAITS), 2 (KLSE and STRAITS), and 5 (Brussels, Bombay,

KLSE, STRAITS, and KOSPI) acceptances for the LRuc test when applying to all

stock indices returns under 95 % confidence level, where the stock indices in

parentheses behind the number are the acceptance cases. For 99 % confidence

level, Table 51.4 shows that the GARCH-N, GARCH-T, and GARCH-SGT

models pass the LRuc tests with a total of 1, 5, and 8 stock indices, respectively;

for 99.5 % confidence level, Table 51.5 gives that the GARCH-N, GARCH-T,

and GARCH-SGT models pass the LRuc tests with a total of 3, 7, and 7 stock

indices, respectively. Hence, under all confidence levels, there is a total of 6, 14,

and 20 acceptances for GARCH-N, GARCH-T, and GARCH-SGT models

(the parametric approach), respectively. On the contrary, for 95 % confidence
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GARCH_N 95%

GARCH_T 95%

GARCH_SGT 95%

GARCH_N 99%
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STRAITS index: VaR at
alternate levels
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Fig. 51.2 Long VaR forecasts at alternative level for the normal, student’s t, and SGT distribu-

tion. (a) ATX, (b) Brussels, (c) CAC40, (d) Swiss, (e) Bombay, (f) KLSE, (g) KOSPI,

(h) STRAITS stock indices
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Table 51.3 Out-of-sample long VaR performance at the 95 % confidence level

GARCH HW-GARCH

Failure rate (LRuc) AQLF UL Failure rate (LRuc) AQLF UL

Panel A. ATX
N 0.0960(17.75) 0.30360 –0.10151 0.0960(17.75) 0.30642 –0.10308
T 0.0960(17.75) 0.32058 –0.10865 0.0920(15.04) 0.30342 –0.10384
SGT 0.0900(13.75) 0.29877 –0.10212 0.0980(19.18) 0.32263 –0.10858

Panel B. Brussels
N 0.0780(7.10) 0.20246 –0.07099 0.0680(3.08*) 0.18374 –0.06673
T 0.0720(4.51) 0.19494 –0.07020 0.0620(1.41*) 0.16978 –0.06268
SGT 0.0660(2.45*) 0.18178 –0.06602 0.0620(1.41*) 0.17067 –0.06262

Panel C. CAC40
N 0.0740(5.31) 0.21446 –0.06485 0.0700(3.76*) 0.20928 –0.05844
T 0.0800(8.07) 0.22598 –0.06887 0.0720(4.51) 0.19510 –0.05617
SGT 0.0760(6.18) 0.21146 –0.06281 0.0700(3.76*) 0.19390 –0.05600

Panel D. Swiss
N 0.0760(6.18) 0.18567 –0.06181 0.0620(1.41*) 0.15104 –0.05088
T 0.0740(5.31) 0.18729 –0.06345 0.0600(0.99*) 0.14222 –0.04694
SGT 0.0740(5.31) 0.17506 –0.05698 0.0560(0.36*) 0.13928 –0.04697

Panel E. Bombay
N 0.0780(7.10) 0.34428 –0.10214 0.0800(8.07) 0.33643 –0.09967
T 0.0820(9.11) 0.35999 –0.10617 0.0780(7.10) 0.33182 –0.09639
SGT 0.0700(3.76*) 0.31488 –0.09366 0.0800(8.07) 0.33629 –0.09824

Panel F. KLSE
N 0.0560(0.36*) 0.20084 –0.04595 0.0740(5.31) 0.23255 –0.05623
T 0.0600(0.99*) 0.21827 –0.05152 0.0700(3.76*) 0.23146 –0.05276
SGT 0.0580(0.64*) 0.21375 –0.05007 0.0640(1.90*) 0.22378 –0.05306

Panel G. STRAITS
N 0.0580(0.64*) 0.21980 –0.06233 0.0640(1.90*) 0.24194 –0.06675
T 0.0640(1.90*) 0.25978 –0.07222 0.0620(1.41*) 0.23921 –0.06511
SGT 0.0620(1.41*) 0.24670 –0.06736 0.0560(0.36*) 0.23035 –0.06428

Panel H. KOSPI
N 0.0740(5.31) 0.27949 –0.08826 0.0600(0.99*) 0.24267 –0.07816
T 0.0760(6.18) 0.32360 –0.09624 0.0620(1.41*) 0.25234 –0.07522
SGT 0.0672(2.82*) 0.27616 –0.08236 0.0620(1.41*) 0.24475 –0.07531

Notes: 1. *Indicates that the model passes the unconditional coverage test at the 5 % significance

level and the critical value of the LRuc test statistics at the 5 % significance level is 3.84. 2. The red
(resp. blue) font represents the lowest (resp. highest) AQLF and unexpected loss when the

predictive accuracies of three different innovations with the same VaR method are compared.

3. The delete-line font represents the lowest AQLF and unexpected loss when the predictive

accuracies of two different VaR methods with the same innovation are compared. 4. The model

acronyms stand for the following methods:HW-GARCH non-parametric method proposed by Hull

and White (1998), GARCH parametric method of GARCH model, N the standard normal distri-

bution, T the standardized student’s t distribution, SGT the standardized SGT distribution proposed

by Theodossiou (1998)
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Table 51.4 Out-of-sample long VaR performance at the 99 % confidence level

GARCH HW-GARCH
Failure rate (LRuc) AQLF UL Failure rate (LRuc) AQLF UL

Panel A. ATX
N 0.0300(13.16) 0.20577 –0.02704 0.0160(1.53*) 0.06164 –0.01770
T 0.0200(3.91) 0.19791 –0.01986 0.0160(1.53*) 0.04977 –0.01551
SGT 0.0160(1.53*) 0.17702 –0.01725 0.0160(1.53*) 0.05279 –0.01626

Panel B. Brussels
N 0.0260(8.97) 0.13491 –0.02538 0.0180(2.61*) 0.03685 –0.01726
T 0.0180(2.61*) 0.11962 –0.01947 0.0160(1.53*) 0.03465 –0.01559
SGT 0.0160(1.53*) 0.11033 –0.01711 0.0160(1.53*) 0.03536 –0.01596

Panel C. CAC40
N 0.0200(3.91) 0.14794 –0.01913 0.0160(1.53*) 0.07472 –0.01808
T 0.0100(0.00*) 0.14325 –0.01494 0.0100(0.00*) 0.05628 –0.01436
SGT 0.0060(0.94*) 0.13144 –0.01354 0.0140(0.71*) 0.05992 –0.01466

Panel D. Swiss
N 0.0260(8.97) 0.12387 –0.01967 0.0180(2.61*) 0.03938 –0.01353
T 0.0160(1.53*) 0.11943 –0.01516 0.0140(0.71*) 0.03528 –0.01341
SGT 0.0140(0.71*) 0.10151 –0.01244 0.0140(0.71*) 0.03512 –0.01338

Panel E. Bombay
N 0.0300(13.16) 0.23811 –0.03748 0.0120(0.18*) 0.04961 –0.01751
T 0.0220(5.41) 0.22706 –0.02822 0.0120(0.18*) 0.04539 –0.01586
SGT 0.0180(2.61*) 0.19232 –0.02152 0.0120(0.18*) 0.04504 –0.01617

Panel F. KLSE
N 0.0160(1.53*) 0.16522 –0.01892 0.0080(0.21*) 0.07681 –0.01341
T 0.0100(0.00*) 0.16891 –0.01585 0.0060(0.94*) 0.08114 –0.01425
SGT 0.0100(0.00*) 0.16278 –0.01551 0.0060(0.94*) 0.07965 –0.01384

Panel G. STRAITS
N 0.0240(7.11) 0.16096 –0.01848 0.0120(0.18*) 0.09107 –0.01763
T 0.0100(0.00*) 0.17606 –0.01568 0.0100(0.00*) 0.07477 –0.01403
SGT 0.0100(0.00*) 0.16258 –0.01406 0.0080(0.21*) 0.07278 –0.01361

Panel H. KOSPI
N 0.0220(5.41) 0.18050 –0.02675 0.0200(3.91) 0.03799 –0.01639
T 0.0200(3.91) 0.20379 –0.02199 0.0180(2.61*) 0.04722 –0.01942
SGT 0.0163(1.68*) 0.15465 –0.01563 0.0180(2.61*) 0.04487 –0.01941

Note: 1. *indicates that the model passes the unconditional coverage test at the 5 % significance

level and the critical value of the LRuc test statistics at the 5 % significance level is 3.84. 2. The red
(resp. blue) font represents the lowest (resp. highest) AQLF and unexpected loss when the

predictive accuracies of three different innovations with the same VaR method are compared.

3. The delete-line font represents the lowest AQLF and unexpected loss when the predictive

accuracies of two different VaR methods with the same innovation are compared. 4. The model

acronyms stand for the following methods: HW-GARCH non-parametric method proposed by

Hull and White (1998), GARCH parametric method of GARCH model, N the standard normal

distribution, T the standardized student’s t distribution, SGT the standardized SGT distribution

proposed by Theodossiou (1998)
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Table 51.5 Out-of-sample long VaR performance at the 99.5 % confidence level

GARCH HW-GARCH

Failure rate (LRuc) AQLF UL Failure rate (LRuc) AQLF UL

Panel A. ATX
N 0.0960(17.75) 0.30360 –0.10151 0.0960(17.75) 0.30642 –0.10308
T 0.0960(17.75) 0.32058 –0.10865 0.0920(15.04) 0.30342 –0.10384
SGT 0.0900(13.75) 0.29877 –0.10212 0.0980(19.18) 0.32263 –0.10858

Panel B. Brussels
N 0.0780(7.10) 0.20246 –0.07099 0.0680(3.08*) 0.18374 –0.06673
T 0.0720(4.51) 0.19494 –0.07020 0.0620(1.41*) 0.16978 –0.06268
SGT 0.0660(2.45*) 0.18178 –0.06602 0.0620(1.41*) 0.17067 –0.06262

Panel C. CAC40
N 0.0740(5.31) 0.21446 –0.06485 0.0700(3.76*) 0.20928 –0.05844
T 0.0800(8.07) 0.22598 –0.06887 0.0720(4.51) 0.19510 –0.05617
SGT 0.0760(6.18) 0.21146 –0.06281 0.0700(3.76*) 0.19390 –0.05600

Panel D. Swiss
N 0.0760(6.18) 0.18567 –0.06181 0.0620(1.41*) 0.15104 –0.05088
T 0.0740(5.31) 0.18729 –0.06345 0.0600(0.99*) 0.14222 –0.04694
SGT 0.0740(5.31) 0.17506 –0.05698 0.0560(0.36*) 0.13928 –0.04697

Panel E. Bombay
N 0.0780(7.10) 0.34428 –0.10214 0.0800(8.07) 0.33643 –0.09967
T 0.0820(9.11) 0.35999 –0.10617 0.0780(7.10) 0.33182 –0.09639
SGT 0.0700(3.76*) 0.31488 –0.09366 0.0800(8.07) 0.33629 –0.09824

Panel F. KLSE
N 0.0560(0.36*) 0.20084 –0.04595 0.0740(5.31) 0.23255 –0.05623
T 0.0600(0.99*) 0.21827 –0.05152 0.0700(3.76*) 0.23146 –0.05276
SGT 0.0580(0.64*) 0.21375 –0.05007 0.0640(1.90*) 0.22378 –0.05306

Panel G. STRAITS
N 0.0580(0.64*) 0.21980 –0.06233 0.0640(1.90*) 0.24194 –0.06675
T 0.0640(1.90*) 0.25978 –0.07222 0.0620(1.41*) 0.23921 –0.06511
SGT 0.0620(1.41*) 0.24670 –0.06736 0.0560(0.36*) 0.23035 –0.06428

Panel H. KOSPI
N 0.0740(5.31) 0.27949 –0.08826 0.0600(0.99*) 0.24267 –0.07816
T 0.0760(6.18) 0.32360 –0.09624 0.0620(1.41*) 0.25234 –0.07522
SGT 0.0672(2.82*) 0.27616 –0.08236 0.0620(1.41*) 0.24475 –0.07531

Note: 1.*Indicates that the model passes the unconditional coverage test at the 5 % significance

level and the critical value of the LRuc test statistics at the 5 % significance level is 3.84. 2. The red
(resp. blue) font represents the lowest (resp. highest) AQLF and unexpected loss when the

predictive accuracies of three different innovations with the same VaR method are compared.

3. The delete-line font represents the lowest AQLF and unexpected loss when the predictive

accuracies of two different VaR methods with the same innovation are compared. 4. The model

acronyms stand for the following methods:HW-GARCH non-parametric method proposed by Hull

and White (1998), GARCH parametric method of GARCH model, N the standard normal distri-

bution, T the standardized student’s t distribution, SGT the standardized SGT distribution proposed

by Theodossiou (1998)
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level, Table 51.3 describes that the HW-N, HW-T, and HW-SGT models pass the

LRuc tests with a total of 5, 5, and 6 stock indices, respectively. Moreover, for

99 % confidence level, Table 51.4 depicts that the HW-N, HW-T, and HW-SGT

models pass the LRuc tests with a total of 7, 8, and 8 stock indices, respectively;

for 99.5 % confidence level, Table 51.5 illustrates that the HW-N, HW-T, and

HW-SGT models pass the LRuc tests with a total of 7, 8, and 8 stock indices,

respectively. Hence, under all confidence levels, there is a total of 19, 21, and

22 acceptances for HW-N, HW-T, and HW-SGT models (the semi-parametric

approach), respectively.

From the abovementioned results, we can find the following two important

phenomena: First, under the same return distributional setting, the number of

acceptance of the HW-based models is greater or equal than those of the

GARCH-based models, irrespective of whether the case of individual level

(95 %, 99 %, or 99.5 %) or all levels (95 %, 99 %, and 99.5 %) is considered.

For example, with regard to all levels, the number of acceptance of the HW-N

model (19) is greater than those of the GARCH-N models (6). These results reveal

that the HW-based models (semi-parametric approach) have the better VaR fore-

casting performance as compared with GARCH-based models (parametric

approach). Second, the number of acceptance of the SGT distribution is the greatest

followed by the student’s t and normal distributions, irrespective of whether the

GARCH-based model (parametric) or HW-based model (semi-parametric

approach) is employed. For instance, with regard to all levels, the number of

acceptance of the GARCH-SGT model (20) is the greatest followed by the

GARCH-T model (14) and GARCH-N model (6). These results indicate that

the SGT has the best VaR forecasting performance followed by student’s t while

the normal owns the worst VaR forecasting performance.

Turning to the other two accuracy measures (i.e., AQLF and UL), the two loss

functions (the average quadratic loss function (AQLF) and the unexpected loss

(UL)) reflect the magnitude of the violation which occur as the observed return

exceeds the VaR estimation. The smaller the AQLF and UL are generated,

the better the forecasting performance of the models is. As observed in

Tables 51.3, 51.4 and 51.5, we can also find the following two important phe-

nomena which are similar as those of the back-testing as was mentioned above:

First, under the same return distributional setting, the AQLF and UL generated by

the HW-based models are smaller than those generated by the GARCH-based

models, irrespective of whether the 95 %, 99 %, or 99.5 % level is considered.

These results reveal that the HW-based models (semi-parametric approach)

significantly have the better VaR forecasting performance as compared with

GARCH-based models (parametric approach), which is in line with the results

of the back-testing. Second, for all confidence levels, the GARCH-SGT

model yields the lowest AQLF and UL for most of the stock indices.

Moreover, for most of the stock indices, the GARCH-N model produces the

highest AQLF and UL for both 99 % and 99.5 % levels, while the GARCH-T

model gives the highest AQLF and UL for 95 % level. These results indicate

that the GARCH-SGT model significantly owns the best out-of-sample VaR

51 Valuet-isk Estimation via a Semi-rametric Approach 1421



performance, while the GARCH-N model appears to have the worst out-of-

sample VaR performance. On the contrary, for all confidence levels, the HW-N

model bears the highest AQLF and UL for most of the stock indices, while the

HW-SGT model gives the lowest AQLF and UL for half of the stock indices,

indicating that the HW-N model significantly owns the worst out-of-sample VaR

performance, while the HW-SGT model appears to bear the highest out-of-

sample VaR performance. Consequently, it seems reasonable to conclude that

the SGT has the best VaR forecasting performance followed by student’s t, while

the normal owns the worst VaR forecasting performance, which appears to be

consistent with the results of back-testing.

To sum up, according to the three accuracy measures, the HW-based models

(semi-parametric approach) have the better VaR forecasting performance as com-

pared with GARCH-based models (parametric approach), and the SGT has the best

VaR forecasting performance followed by student’s t, while the normal owns the

worst VaR forecasting performance. In addition, the kind of VaR approach is more

influential than that of return distribution setting on VaR estimate.

51.5 Conclusion

This study utilizes the parametric approach (GARCH-N, GARCH-T, and GARCH-

SGT models) and the semi-parametric approach of Hull and White (1998) (HW-N,

HW-T, and HW-SGT models), totaling six models, to estimate the VaR for the

eight stock indices in Europe and Asia stock markets, then uses three accuracy

measures: one likelihood ratio test (the unconditional coverage test (LRuc) of

Kupiec (1995)) and two loss functions (the average quadratic loss function

(AQLF) of Lopez (1999) and the unexpected loss (UL)) to compare the forecasting

ability of the aforementioned models in terms of VaR.

The empirical findings can be summarized as follows. First, according to the

results of the log-likelihood ratio test, the SGT distribution closely approximates

the empirical return series followed by student’s t and normal distributions.

Second, in terms of the failure rate, all models tend to underestimate the real market

risk in most cases, but the non-normal distributions (student’s t and SGT) and

the semi-parametric approach try to reverse the trend of underestimating real

market risk, especially at the 99.5 % level. Third, the kind of VaR approaches is

more influential than that of return distribution settings on VaR estimate.

Moreover, under the same return distributional setting, the HW-based models

(semi-parametric approach) have the better VaR forecasting performance as com-

pared with the GARCH-based models (parametric approach). Finally, irrespective

of whether the GARCH-based model (parametric) or HW-based model (semi-

parametric approach) is employed, the SGT has the best VaR forecasting perfor-

mance followed by student’s t, while the normal owns the worst VaR forecasting

performance.
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Appendix 1: The Left-Tailed Quantiles of the Standardized SGT

The standardized SGT distribution was derived by Lee and Su (2011) and expressed

as follows:

f etð Þ ¼ C 1þ et þ dj jk
1þ sign et þ dð Þl½ �kyk

� ��nþ1
k

(51.17)

where y ¼ 1
S lð ÞB

1
k ;

n
k

	 
1
2B 3

k ;
n�2
k

	 
�1
2, S lð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3l2 � 4A2l2

p
,

A ¼ B 2
k ;

n�1
k

	 

B 1

k ;
n
k

	 
�0:5
B 3

k ;
n�2
k

	 
�0:5
, d ¼ 2lA

S lð Þ, C ¼ k
2yB

1
k ;

n
k

	 
�1

where k, n, and l are scaling parameters and C and y are normalizing constants

ensuring that f(•) is a proper p.d.f. The parameters k and n control the height and tails

of density with constraints k > 0 and n > 2, respectively. The skewness parameter l
controls the rate of descent of the density around the mode of et with� 1< l < 1. In

the case of positive (resp. negative) skewness, the density function skews toward the

right (resp. left). Sign is the sign function, and B(•) is the beta function. The parameter

n has the degrees of freedom interpretation in case l ¼ 0 and k ¼ 2. Particularly, the

SGT distribution generates the student’s t distribution for l¼ 0 and k¼ 2.Moreover,

the SGT distribution generates the normal distribution for l ¼ 0, k ¼ 2, and n ¼ 1.

As observed from Table 51.2, the shape parameters in SGT distribution, the

fat-tail parameter (n) ranges from 4.9846 (KLSE) to 21.4744 (KOSPI), and

the fat-tail parameter (k) is between 1.5399 (KOSPI) and 2.3917 (Bombay). The

skewness parameter (l) ranges from �0.1560 (Bombay) to �0.0044 (KLSE).

Therefore, the left-tailed quantiles of the SGT distribution with various combinations

of shape parameters (�0.15� l� 0.05; 1.0� k� 2.0; n¼ 10) at alternate levels are

obtained by the composite trapezoid rule and are listed in Table 51.6. Moreover,

Fig. 51.3 depicts the left-tailed quantiles surface of SGT (versus normal) distribution

with various combinations of shape parameters (�0.25 � l � 0.25; 0.8 � k � 2.0;

n¼ 10 and 20) at 10%, 5%, 1%, and 0.5% levels. Notably, Fc(et;k¼ 2,l¼ 0, n¼1)

where c¼ 0.1, 0.05, 0.01, and 0.005 in Fig. 51.3 represents the left-tailed quantiles of

normal distribution at 10 %, 5 %, 1 %, and 0.5 % levels, which is �1.28155,

�1.64486, �2.32638, and �2.57613, respectively.

Appendix 2: The Procedure of Parametric VaR Approach

The parametric method is very popular because the only variables you need to do

the calculation are the mean and standard deviation of the portfolio, indicating the

simplicity of the calculations. Moreover, from the literatures’ review mentioned

above, numerous studies focused on the parametric approach of the GARCH family

51 Valuet-isk Estimation via a Semi-rametric Approach 1423
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variance specifications to estimate the VaR. Furthermore, numerous time series

data of financial assets appear to exhibit autocorrelated and volatility clustering,

and the unconditional distribution of those returns displays leptokurtosis and

a moderate amount of skewness. This study thus considers the applicability of the

GARCH(1,1) model with three conditional distributions (the normal, student’s t,

and SGT distributions) to estimate the corresponding volatility in terms of different

stock indices, then employs the framework of Jorion (2000) to evaluate the VaR of

parametric approach. We take an example of the GARCH-SGT model. The meth-

odology of parametric VaR approach is based on a rolling window procedure. The

window size is fixed at 2,000 observations. More specifically, the procedure is

conducted in the following manner:

Step 1: For each data series, using the econometric package of WinRATS 6.1, the

parameters are estimated with a sample of 2,000 daily returns by quasi-maximum

likelihood estimation (QMLE) of log-likelihood function such as Eq. 51.10 and by

the BFGS optimization algorithm. Thus, with c ¼ [m, o, a, b, k, l, n], the vector
of parameters is estimated. The empirical results of GARCH-SGTmodel are listed

in Table 51.2 for all stock indices surveyed in this paper. As to the empirical

results of GARCH-N and GARCH-T models, they are also provided by the

same approach.

Step 2: Based on the framework of the parametric techniques (Jorion 2000), the

1-day-ahead VaR based on GARCH-SGT model can be calculated by Eq. 51.11.

Then the one-step-ahead VaR forecasts are compared with the observed returns, and

the comparative results are recorded for subsequent evaluation using statistical tests.

Step 3: The estimation period is then rolled forwards by adding one new day and

dropping the most distant day. By replicating step 1 and step 2, the vector of

Quantiles of SGT distribution with various combinations (κ,λ) at 0.5%
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parameters is estimated, and then the 1-day-ahead VaR can be calculated for the

next 500 days.

Step 4: For the out-sample period (500 days), via the comparable results between

the one-step-ahead VaR forecasts and the observed returns, the 1-day-ahead

BLF, QLF, and UL can be calculated by using Eqs. 51.13, 51.14 and 51.16. On

the other hand, the unconditional coverage test, LRuc, is evaluated by employing

Eq. 51.15. Thereafter, with regard to the GARCH-based models with alternate

distributions (GARCH-N, GARCH-T, and GARCH-SGT), the unconditional

coverage test (LRuc) and three loss functions (failure rate, AQLF, and UL) are

obtained and are reported in the left panel of Tables 51.3, 51.4 and 51.5 for 95 %,

99 %, and 99.5 % levels.

Appendix 3: The Procedure of Semi-parametric VaR Approach

In this paper, we use the approach proposed by Hull and White (1998) as

a representative of the semi-parametric approach. This method mainly couples

a weighting scheme of volatility with the traditional historical simulation. Hence,

it can be regarded as a straightforward extension of traditional historical simulation.

The weighting scheme of volatility is expressed as follows. Instead of using the

actual historical percentage changes in market variables for the purposes of calcu-

lating VaR, we use historical changes that have been adjusted to reflect the ratio of

the current daily volatility to the daily volatility at the time of the observation and

assume that the variance of each market variable during the period covered by the

historical data is monitored using a GARCH-based models. We take an example of

the HW-SGT model. This methodology is explained in the following five steps:

Step 1: For each data series, using the econometric package of WinRATS 6.1, the

parameters are estimated with a sample of 2,000 daily returns by quasi-

maximum likelihood estimation (QMLE) of log-likelihood function such as

Eq. 51.10 and by the BFGS optimization algorithm. Thus, with c ¼ [m, o, a,
b, k, l, n], the vector of parameters is estimated. This step is the same as the first

step of parametric approach. Consequently, a series of daily volatility estimates,

{s1, s2, s3,......, st¼T}, are obtained where T is the number of estimated samples

and equals 2,000 in this study.

Step 2: The modified return series are obtained by the raw return series multiplied

by the ratio of the current daily volatility to the daily volatility at the time of the

observation, sT/si. That is, the modified return series are expressed as {r1
*, r2

*,

r3
*,......, rt¼T

*}, where ri
* ¼ ri(sT/si).

Step 3: Resort this modified return series ascendingly to achieve the empirical

distribution. Thus, VaR is the percentile that corresponds to the specified

confidence level. Then the one-step-ahead VaR forecasts are compared with

the observed returns, and the comparative results are recorded for subsequent

evaluation using statistical tests.

Step 4: The estimation period is then rolled forwards by adding one new day and

dropping the most distant day. By replicating steps 1–3, the vector of parameters
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is estimated, and then the 1-day-ahead VaR can be calculated for the next

500 days. This step is the same as the third step of parametric approach.

Step 5: For the out-sample period (500 days), via the comparable results between

the one-step-ahead VaR forecasts and the observed returns, the 1-day-ahead

BLF, QLF, and UL can be calculated by using Eqs. 51.13, 51.14, and 51.16.

On the other hand, the unconditional coverage test, LRuc, is evaluated by

employing Eq. 51.15. Thereafter, with regard to HW-based models with

alternate distributions (HW-N, HW-T, and HW-SGT), the unconditional

coverage test (LRuc) and three loss functions (failure rate, AQLF, and UL)

are obtained and are reported in the right panel of Tables 51.3, 51.4 and 51.5

for 95 %, 99 %, and 99.5 % levels.
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Abstract

We illustrate a framework to model joint distributions of multiple asset returns

using a time-varying Student’s t copula model. We model marginal distributions

of individual asset returns by a variant of GARCH models and then use

a Student’s t copula to connect all the margins. To build a time-varying structure

for the correlation matrix of t copula, we employ a dynamic conditional corre-

lation (DCC) specification. We illustrate the two-stage estimation procedures for

the model and apply the model to 45 major US stocks returns selected from nine
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sectors. As it is quite challenging to find a copula function with very flexible

parameter structure to account for difference dependence features among all

pairs of random variables, our time-varying t copula model tends to be a good

working tool to model multiple asset returns for risk management and

asset allocation purposes. Our model can capture time-varying conditional

correlation and some degree of tail dependence, while it also has limitations

of featuring symmetric dependence and inability of generating high tail

dependence when being used to model a large number of asset returns.

Keywords

Student’s t copula • GARCH models • Asset returns • US stocks • Maximum

likelihood • Two-stage estimation • Tail dependence • Exceedance correlation •

Dynamic conditional correlation • Asymmetric dependence

52.1 Introduction

There have been a large number of applications of copula theory in financial

modeling. The popularity of copula mainly results from its capability of

decomposing joint distributions of random variables into marginal distributions

of individual variables and the copula which links the margins. Then the task of

finding a proper joint distribution becomes to find a copula form which features

a proper dependence structure given that marginal distributions of individual vari-

ables are properly specified. Among many copula functions, Student’s t copula is

a good choice, though not perfect, for modeling multivariate financial data as an

alternative to a normal copula, especially for a very large number of assets.

The t copula models are very useful tools to describe joint distributions of multiple

assets for risk management and asset allocation purposes. In this chapter,

we illustrate how to model the joint distribution of multiple asset returns under a

Copula-GARCH framework. In particular, we show how we can build and estimate

a time-varying t copula model for a large number of asset returns and how well

the time-varying t copula accounts for some dependence features of real data.

There are still two challenging issues when applying copula theory to multiple

time series. The first is how to choose a copula that best describes the data. Different

copulas feature different dependence structure between random variables. Some

copulas may fit one particular aspect of the data very well but do not have a very

good overall fit, while others may have the opposite performance. What criteria to

use when we choose from copula candidates is a major question remaining to be

fully addressed. Secondly, how to build a multivariate copula which is sufficiently

flexible to simultaneously account for the dependence structure for each pair of

random variables in joint distributions is still quite challenging. We hope to shed

some light on those issues by working through our time-varying t copula model.

Under a Copula-GARCH framework, we first model each asset return with

a variant of GARCH specification. Based on different properties of asset returns,

we choose a proper GARCH specification to formulate conditional distributions of
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each return. Then, we choose a proper copula function to link marginal distributions

of each return to form the joint distribution. As in marginal distributions of each

return, the copula parameters can also be specified as being dependent on previous

observations to make the copula structure time varying for a better fit of data. In this

chapter, we have an AR(1) process for the conditional mean and a GJR-GARCH

(1,1) specification for the conditional volatility for each return. We employ

a Student’s t copula with a time-varying correlation matrix (by a DCC specification)

to link marginal distributions. Usually the specified multivariate model contains

a huge number of parameters, and the estimation by maximum likelihood estimator

(MLE) can be quite challenging. Therefore, we pursue a two-stage procedure,

where all the GARCH models for each return are estimated individually first and

copula parameters are estimated in the second stage with estimated cumulative

distribution functions from the first stage.

We apply our model to modeling log returns of 45 major US stocks selected from

nine sectors with a time span ranging from January 3, 2000 to November 29, 2011.

Our estimation results show that AR(1) and GJR-GARCH(1,1) can reasonably well

capture empirical properties of individual returns. The stock returns possess fat tails

and leverage effects. We plot the estimated conditional volatility on selected stocks

and volatility spikes which happened during the “Internet Bubbles” in the early

2000s and the financial crisis in 2008.We estimate a DCC specification for the time-

varying t copula and also a normal copula for comparison purposes. The parameter

estimates for time-varying t copula are statistically significant, which indicates a

significant time-varying property of the dependence structure. The time-varying

t copula yields significantly higher log-likelihood than normal copula. This improve-

ment of data fitness results from flexibility of t copula (relative to normal copula) and

its time-varying correlation structure.

We plot the time-varying correlation parameter for selected pairs of stocks under

the time-varying t copula model. The correlation parameters fluctuate around

certain averages, and they spike during the 2008 crisis for some pairs. For

45 asset returns, the estimated degree-of-freedom (DoF) parameter of the t copula
is around 25. Together with the estimated correlation matrix of the t copula, this
DoF leads to quite low values of tail dependence coefficients (TDCs). This may

indicate the limitation of t copulas in capturing possibly large tail dependence

behavior for some asset pairs when being used to model a large number of asset

returns. Nevertheless, the time-varying Student’s t copula model has a relatively

flexible parameter structure to account for the dependence among multiple asset

returns and is a very effective tool to model the dynamics of a large number of asset

returns in practice.

This chapter is organized as follows. Section 52.2 gives a short literature review

on recent applications of copulas to modeling financial time series. Section 52.3

introduces our copula model where we introduce copula theory, Copula-GARCH

framework, and estimation procedures. In particular, we elaborate on how to

construct and estimate a time-varying t copula model. Section 52.4 documents

the data source and descriptive statistics for the data set we use. Section 52.5 reports

estimation results and Sect. 52.6 concludes.
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52.2 Literature Review

Copula-GARCH models were previously proposed by Jondeau and Rockinger

(2002) and Patton (2004, 2006a).1 To measure time-varying conditional depen-

dence between time series, the former authors use copula functions with time-

varying parameters as functions of predetermined variables and model marginal

distributions with an autoregressive version of Hansen’s (1994) GARCH-type

model with time-varying skewness and kurtosis. They show for many market

indices, dependency increases after large movements and for some cases it

increases after extreme downturns. Patton (2006a) applies the Copula-GARCH

model to modeling the conditional dependence between exchange rates. He

finds that mark-dollar and yen-dollar exchange rates are more correlated

during depreciation against dollar than during appreciation periods. By a similar

approach, Patton (2004) models the asymmetric dependence between “large cap”

and “small cap” indices and examines the economic and statistical significance of

the asymmetries for asset allocations in an out-of-sample setting. As in above

literature, copulas are mostly used in capturing asymmetric dependence and tail

dependence between times series. Among copula candidates, Gumbel’s copula

features higher dependence (correlation) at upper side with positive upper tail

dependence, and rotated Gumbel’s copula features higher dependence

(correlation) at lower side with positive lower tail dependence. Hu (2006) studies

the dependence structure between a number of pairs of major market indices by

a mixed copula approach. Her copula is constructed by a weighted sum of three

copulas–normal, Gumbel’s, and rotated Gumbel’s copulas. Jondeau and Rockinger

(2006) model the bivariate dependence between major stock indices by a Student’s

t copula where the parameters are assumed to be modeled by a two-state Markov

process.

The task of flexibly modeling dependence structure becomes more challenging

for n-dimensional distributions. Tsafack and Garcia (2011) build up a complex

multivariate copula to model four international assets (two international

equities and two bonds). In his model, he assumes that the copula form has

a regime-switching setup where in one regime he uses an n-dimensional normal

copula and in the other he uses a mixed copula of which each copula component

features the dependence structure of two pairs of variables. Savu and Trede (2010)

develop a hierarchical Archimedean copula which renders more flexible parameters

to characterize dependency between each pair of variables. In their model,

each pair of closely related random variables is modeled by a copula of a

particular Archimedean class, and then these pairs are nested by copulas as

well. The nice property of Archimedean family easily leads to the validity of the

1Alternative approaches are also developed, such as in Ang and Bekaert (2002), Goeij and

Marquering (2004), and Lee and Long (2009), to address non-normal joint distributions of asset

returns.
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joint distribution constructed by this hierarchical structure. (Trivedi and

Zimmer 2006) apply trivariate hierarchical Archimedean copulas to model

sample selection and treatment effects with applications to the family health-care

demand.

Statistical goodness-of-fit tests can provide some guidance for selecting copula

models. Chen et al. (2004) propose two simple goodness-of-fit tests for multivariate

copula models, both of which are based on multivariate probability integral trans-

form and kernel density estimation. One test is consistent but requires the estima-

tion of the multivariate density function and hence is suitable for a small number of

random variables, while the other may not be consistent but requires only kernel

estimation of a univariate density function and hence is suitable for a large number

of assets. Berg and Bakken (2006) propose a consistent goodness-of-fit test for

copulas based on the probability integral transform, and they incorporate in their

test a weighting functionality which can increase influence of some specific areas of

copulas.

Due to their parameter structure, the estimation of Copula-GARCH models

also suffers from “the curse of dimensionality”.2 The exact maximum likelihood

estimator (MLE) works in theory.3 In practice, however, as the number of time

series being modeled increases, the numerical optimization problem in MLE will

become formidable. Joe and Xu (1996) propose a two-stage procedure, where in the

first stage only parameters in marginal distributions are estimated by MLE and then

the copula parameters are estimated by MLE in the second stage. This two-stage

method is called inference for the margins (IFM) method. Joe (1997) shows that

under regular conditions the IFM estimator is consistent and has the property of

asymptotic normality and Patton (2006b) also shows similar estimator properties

for the two-stage method. Instead of estimating parametric marginal distributions in

the IFM method, we can estimate the margins by using empirical distributions,

which can avoid the problem of mis-specifying marginal distributions. This method

is called canonical maximum likelihood (CML) method by Cherubini et al. (2004).

Hu (2006) uses this method and she names it as a semi-parametric method. Based

on Genest et al. (1995), she shows that CML estimator is consistent and has

asymptotical normality. Moreover, copula models can also be estimated under

a nonparametric framework. Deheuvels (1981) introduces the notion of empirical

copula and shows that the empirical copula converges uniformly to the underlying

true copula. Finally, Xu (2004) shows how the copula models can be estimated

with a Bayesian approach. The author shows how a Bayesian approach can be

used to account for estimation uncertainty in portfolio optimization based on

a Copula-GARCH model, and she proposes to use a Bayesian MCMC algorithm

to jointly estimate the copula models.

2For a detailed survey on the estimation of Copula-GARCH model, see Chap. 5 of Cherubini

et al. (2004).
3See Hamilton (1994) and Greene (2003) for more details on maximum likelihood estimation.
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52.3 The Model

52.3.1 Copula

We introduce our Copula-GARCH model framework by first introducing the

concept of copula. A copula is a multivariate distribution function with uniform

marginal distributions as its arguments, and its functional form links all the margins

to form a joint distribution of multiple random variables.4 Copula theory is mainly

based on the work of Sklar (1959), and we state the Sklar’s theorem for continuous

marginal distributions as follows.

Theorem 52.1 Let F1(x1), . . ., Fn(xn) be given marginal distribution functions and
continuous in x1,. . . , xn, respectively. Let H be the joint distribution of (x1,. . . , xn).
Then there exists a unique copula C such that

H x1; . . . ; xnð Þ ¼ C F1 x1ð Þ, . . . ,Fn xnð Þð Þ, 8 x1; . . . ; xnð Þ 2 ℝ
n
: (52.1)

Conversely, if we let F1(x1), . . ., Fn(xn) be continuous marginal distribution
functions and C be a copula, then the function H defined by Eq. 52.1 is a joint
distribution function with marginal distributions F1(x1), . . ., Fn(xn).

The above theory allows us to decompose a multivariate distribution function

into marginal distributions of each random variable and the copula form linking the

margins. Conversely, it also implies that to construct a multivariate distribution, we

can first find a proper marginal distribution for each random variable and then

obtain a proper copula form to link the margins. Depending on which dependence

measure used, the copula function mainly, not exclusively, governs the dependence

structure between individual variables. Hence, after specifying marginal distribu-

tions of each variable, the task of building a multivariate distribution solely

becomes to choose a proper copula form which best describes the dependence

structure between variables.

Differentiating Eq. 52.1 with respect to (x1,. . . , xn) leads to the joint density

function of random variables in terms of copula density. It is given as

h x1; . . . ; xnð Þ ¼ c F1 x1ð Þ, . . . ,Fn xnð Þð Þð
Yn
i¼1

f i xið Þ, 8 x1; . . . ; xnð Þ 2 ℝ
n
, (52.2)

where c(F1(x1), . . ., Fn(xn)) is the copula density and fi(xi) is the density function for
variable i. Equation 52.2 implies that the log-likelihood of the joint density can be

decomposed into components which only involve each marginal density and

a component which involves copula parameters. It provides a convenient structure

for a two-stage estimation, which will be illustrated in details in the following

sections.

4See Nelsen (1998) and Joe (1997) for a formal treatment of copula theory, and Bouye

et al. (2000), Cherubini et al. (2004), and Embrechts et al. (2002) for applications of copula theory

in finance.

1436 L. Kang



To better fit the data, we usually assume the moments of distributions of random

variables are time varying and depend on past variables. Therefore, the distribution

of random variables at time t becomes a conditional one, and then the above copula

theory needs to be extended to a conditional case. It is given as follows.5

Theorem 52.2 Let Ot�1 be the information set up to time t, and let F1(x1,tjOt�1),

. . ., Fn(xn,tjOt�1) be continuous marginal distribution functions conditional on
Ot�1. Let H be the joint distribution of (x1,. . . , xn) conditional on Ot�1. Then
there exists a unique copula C such that

H x1, . . . , xn Ot�1j Þ ¼ C F1 x1 Ot�1j Þ, . . . ,Fn xn Ot�1j Þ Ot�1j Þ, 8 x1; . . . ; xnð Þ 2 ℝ
n
:

����

(52.3)

Conversely, if we let F1(x1,tjOt�1), . . ., Fn(xn,tjOt�1) be continuous conditional
marginal distribution functions and C be a copula, then the function H defined by
Eq. 52.3 is a conditional joint distribution function with conditional marginal
distributions F1(x1,tjOt�1), . . ., Fn(xn,tjOt�1).

It is worth noting that for the above theorem to hold, the information setOt�1 has

to be the same for the copulas and all the marginal distributions. If different

information sets are used, the conditional copula form on the right side of

Eq. 52.3 may not be a valid distribution. Generally, the same information set

used may not be relevant for each marginal distributions and the copula. For

example, the marginal distributions or the copula may be only conditional on

a subset of the universally used information set. At the very beginning of estimation

of the conditional distributions, however, we should use the same information set

based on which we can test for insignificant explanatory variables so as to stick to

a relevant subset for each marginal distribution or the copula.

52.3.2 Modeling Marginal Distributions

Before building a copula model, we need to find a proper specification for marginal

distributions of individual asset returns, as mis-specified marginal distributions

automatically lead to a mis-specified joint distribution. Let xi,t be asset i return at

time t, and its conditional mean and variance are modeled as follows:

xi, t ¼ a0, i þ a1, ixi, t�1 þ ei, t, (52.4)

ei, t ¼
ffiffiffiffiffiffiffi
hi, t

p
�i, t, (52.5)

hi, t ¼ b0, i þ b1, ihi, t�1 þ b2, ie
2
i, t�1 þ b3, ie

2
i, t�11 ei, t�1 < 0

� �
: (52.6)

5See Patton (2004).
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As shown in Eqs. 52.4, 52.5 and 52.6, we model the conditional mean as an

AR(1) process and the conditional variance as a GJR(1,1) specification.6

We have parameter restrictions as b0,i > 0, b1,i � 0, b2,i � 0, b2,i + b3,i � 0, and

b1, i þ b2, i þ 1
2
b3, i < 1 . 1(ei,t�1 < 0) is an indicator function, which equals one

when ei,t�1 < 0 and zero otherwise. We believe that our model specifications can

capture the features of the individual stock returns reasonably well. It is worth

noting that Eqs. 52.4, 52.5 and 52.6 can include more exogenous variables to better

describe the data. Alternative GARCH specifications can be used to describe the

time-varying conditional volatility. We assume �i,t is i.i.d. across time and follows

a Student’s t distribution with DoF vi.
Alternatively, to model the conditional higher moments of the series, we can

follow Hansen (1994) and Jondeau and Rockinger (2003) who assume a skewed

t distribution for the innovation terms of GARCH specifications and find that the

skewed t distribution fits financial time series better than normal distribution.

Accordingly, we can assume �i,t� Skewed T(�i,tjvi,t,li,t) with zero mean and unitary

variance where vi,t is DoF parameter and li,t is skewness parameter. The two

parameters are time varying and depend on lagged values of explanatory variables

in a nonlinear form. For illustration purposes, however, we will only use Student’s

t distribution for �i,t in this chapter.

52.3.3 Modeling Dependence Structure

Normal copula and Student’s t copula are two copula functions from elliptical

families, which are frequently used in modeling joint distributions of random

variables. In this chapter, we also estimate a normal copula model for comparison

purposes. LetF�1 denote the inverse of the standard normal distributionF andF∑,n

be n-dimensional normal distribution with correlation matrix ∑. Hence, the

n-dimensional normal copula is

C u;Sð Þ ¼ FS,N F�1 u1ð Þ, . . . ,F�1 unð Þ� �
, (52.7)

and its density form is

c u;Sð Þ ¼ fS, n F�1 u1ð Þ, . . . ,F�1 unð Þ� �
Yn
i¼1

f F�1 uið Þ� � , (52.8)

where f and f∑,n are the probability density functions (pdfs) of F and F∑,n,

respectively. It can be shown via Sklar’s theorem that normal copula generates

standard joint normal distribution if and only if the margins are standard normal.

6See Glosten et al. (1993).
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On the other hand, let Tv
�1 be the inverse of standard Student’s t distribution Tv

with DoF parameter7 v > 2 and TR,v be n-dimensional Student’s t distribution with

correlation matrix R and DoF parameter v. Then n-dimensional Student’s t copula is

C u;R; nð Þ ¼ TR, n T�1
n u1ð Þ, . . . , T�1

n unð Þ� �
, (52.9)

and its density function is

c u1; . . . ; unð Þ ¼ tR, n T�1
v u1ð Þ, . . . ,T�1

v unð Þ� �
Yn
i¼1

tn T�1
v uið Þ� � ,

where tv and tR,v are the pdfs of Tv and TR,v, respectively.
Borrowing from the dynamic conditional correlation (DCC) structure of

multivariate GARCH models, we can specify a time-varying parameter structure

in the t copula as follows.8 For a t copula, the time-varying correlation matrix is

governed by

Qt ¼ 1� a� bð ÞSþ a Bt�1B
0
t�1

� �þ bQt�1, (52.10)

where S is the unconditional covariance matrix of Bt ¼ (Tn
�1(u1,t), . . ., Tn

�1(un,t))
0

and a and b are nonnegative and satisfy the condition a + b < 1. We assign

Q0 ¼ S and the dynamics of Qt is given by Eq. 52.10. Let qi,j,t be the i,j element

of the matrix Qt, and the i,j element of the conditional correlation matrix Rt can be

calculated as

ri, j, t ¼
qi, j, tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qi, i, tqj, j, t
p : (52.11)

Moreover, the specification of Eq. 52.10 guarantees that the conditional

correlation matrix Rt is positive definite.

Proposition 52.1 In Eqs. 52.10 and 52.11, if
(a) a � 0 and b � 0,

(b) a + b < 1,

(c) All eigenvalues of S are strictly positive, then the correlation matrix Rt is
positive definite.

7In contrast to the previous standardized Student’s t distribution, the standard Student’s

t distribution here has variance as v/(v�2).
8Please see Engle and Sheppard (2001) and Engle (2002) for details on the multivariate

DCC-GARCH models.
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Proof First, (a) and (b) guarantee the system for BtBt
0
is stationary and S exists. With

Q0 ¼ S, (c) guarantees Q0 is positive definite. With (a) to (c), Qt is the sum of
a positive definite matrix, a positive semi-definite matrix, and a positive definite
matrix both with nonnegative coefficients and then is positive definite for all t.
Based on the proposition Eq. 52.1 in Engle and Sheppard (2001), we prove that Rt

is positive definite.

52.3.4 Estimation

We illustrate the estimation procedure by writing out the log-likelihoods for

observations. LetY¼ {y,g1, . . .,gn} be the set of parameters in the joint distribution

where y is the set of parameters in the copula and gt is the set of parameters in

marginal distributions for asset i. Then the conditional cumulative distribution

function (cdf) of n asset returns at time t is given as

F x1, t, . . . , xn, t X
��

t�1
,Y

� �
¼ C u1, t, . . . , un, t X

��
t�1

, y
� �

(52.12)

whereXt�1 is a vector of previous observations,C(�|Xt�1,y) is the conditional copula,
and ui,t ¼ Fi(xi,t|Xt�1,gi) is the conditional cdf of the margins. Differentiating both

sides with respect to x1t,. . . . , xn,t leads to the density function as

f x1, t, . . . , xn, t X
��

t�1
,Y

� �
¼ c u1, t, . . . , un, t X

��
t�1

, y
� �Yn

i¼1

f i xi, t X
��

t�1
, gi

� �
,

(52.13)

where c(�| Xt�1,y) is the density of the conditional copula and fi(xi,t| Xt�1,gi) is the
conditional density of the margins. Accordingly, the log-likelihood of the sample is

given by

L Yð Þ ¼
XT
t¼1

log f x1, t, . . . , xn, t Xt�1,Y
�� �

:
�

(52.14)

With Eq. 52.13, the log-likelihood can be written as

L y; g1; . . . ; gnð Þ ¼
XT
t¼1

log c u1, t, . . . , un, t X
��

t�1
, y

� �
þ
XT
t¼1

Xn
i¼1

f i xi, t X
��

t�1
, gi

� �
:

(52.15)

From Eq. 52.15, we observe that the copula and marginal distributions are

additively separate. Therefore, we can estimate the model by a two-stage MLE

procedure. In the first stage, the marginal distribution parameters for each asset are

estimated by MLE, and then with estimated cdf of each asset, we estimate the

copula parameters by MLE. Based on Joe (1997) and Patton (2006b), this two-stage

estimator is consistent and asymptotically normal.
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With our model specifications, we first estimate the univariate GJR-GARCH

(1,1) with an AR(1) conditional mean and Student’s t distribution by MLE. In the

second stage, we need to estimate the parameters for the constant normal copula

and the time-varying Student’s t copula. Let xt ¼ (F� 1(u1,t), . . ., F
� 1(un,t))

0, and
we can analytically derive the correlation matrix estimator Ŝ which maximizes the

log-likelihood of the normal copula density as

Ŝ ¼ 1

T

XT
t¼1

xtx
0
t : (52.16)

As there is no analytical solution for MLE of Student’s t copula, the numerical

maximization problem is quite challenging. Following Chen et al. (2004), however,

with Bt ¼ (Tn
�1(u1,t), . . ., Tn

�1(un,t))
0, we can calculate the sample covariance matrix

of Bt as Ŝ, which is a function of DoF parameter v. By setting Q0¼Ŝ, we can express
Qt and Rt for all t in terms of a, b, and v using Eq. 52.10. Then we can estimate a, b,
and v by maximizing the log-likelihood of t copula density. In the following

sections, we apply our estimation procedure to the joint distribution of 45 selected

major US stock returns.

52.4 Data

We apply our model to modeling log returns of 45 major US stocks from nine

sectors: Consumer Discretionary, Consumer Staples, Energy, Financials, Health

Care, Industrials, Technology, Materials, and Utilities. Table 52.1 shows stock

symbols and company names of the selected 45 companies. We select five major

companies from each sector to form the stock group. The time span ranges from

January 3, 2000 to November 29, 2011 with 2990 observations. We download data

from yahoo finance (http://finance.yahoo.com/). The log returns are calculated from

daily close stock prices adjusted for dividends and splits.

To save space, we only plot and calculate descriptive statistics of nine stocks

with each from one sector. Figure 52.1 plots the log returns of those nine selected

stocks, and there are two periods of volatility clusterings due to “Internet Bubbles”

in the early 2000s and the financial crisis in 2008, respectively. We observe that

during the financial crisis in 2008, major banks, such as Citigroup, incurred huge

negative and positive daily returns. Table 52.2 shows the calculated mean, standard

deviation, skewness, and kurtosis for the nine stocks. The average returns for

the nine stocks are close to zero. Major banks, represented by Citigroup, have

significantly higher volatility. Most of the stocks are slightly positively skewed, and

only two have slight negative skewness. All the stocks have kurtosis greater than

three indicating fat tails, and again major banks have significantly fatter tails.

All the descriptive statistics indicate that the data property of individual returns

needs to be captured by a variant of GARCH specification.
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52.5 Empirical Results

52.5.1 Marginal Distributions

We briefly report estimation results for marginal distributions of 45 stock returns.

For convenience, we only show the estimates and standard errors (in brackets) for

nine selected stocks with each from one sector in Table 52.3. The star indicates

statistical significance at a 5% level. Consistent with our observations in Table 52.2,

all the nine stocks have low values of DoF indicating fat tails. The parameter b3,i is

Table 52.1 Symbols and names of 45 selected stocks from nine sectors

Sector Consumer discretionary Consumer Staples Energy

Stock symbol MCD: McDonald’s WMT: Wal-Mart Stores

Inc.

XOM: Exxon Mobil Corp.

HD: Home Depot PG: Procter & Gamble

Co.

CVX: Chevron Corp.

DIS: Walt Disney Co. KO: Coca-Cola Co. COP:

CONOCOPHILLIPS.

TGT: Target WAG: Walgreen Co. DVN: Devon

Energy Corp.

LOW: Lowe’s MO: Altria Group Inc. SLB: Schlumberger

Limited

Sector Financials Health Care Industrials

Stock symbol C: Citigroup Inc. JNJ: Johnson &

Johnson

GE: General Electric Co.

BAC: Bank of

America Corp.

PFE: Pfizer Inc. UNP: Union Pacific Corp.

JPM: JPMorgan Chase &

Co.

ABT: Abbott

Laboratories

UTX: United

Technologies Corp.

USB: U.S. Bancorp MRK: Merck &

Co. Inc.

MMM: 3 M Co.

WFC: Wells Fargo & Co. AMGN: Amgen Inc. BA: Boeing Co.

Sector Technology Materials Utilities

Stock symbol T: AT&T Inc. NEM: Newmont

Mining Corp.

EXC: Exelon Corp.

MSFT: Microsoft Corp. DD: E.I. DuPont de

Nemours & Co.

FE:

FirstEnergy Corp.

IBM: International Business

Machines Corp.

DOW: Dow Chemical Co. PPL: PPL

Corporation

CSCO: Cisco Systems Inc. FCX: Freeport-McMoRan

Copper & Gold Inc.

D: Dominion

Resources, Inc.

HPQ: Hewlett-Packard Co. PX: Praxair Inc. DUK: Duke

Energy Corp.
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Fig. 52.1 The log returns of the nine of our 45 selected stocks with each from one sector have

been plotted
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statistically significant at a 5 % level for eight of the nine stocks indicating

significant leverage effects for stock returns. The parameters in conditional mean

are statistically significant for some stocks and not for others. In Fig. 52.2, we

plot estimated conditional volatility for the stocks MCD, WMT, XOM, and

C. Consistent with Fig. 52.1, we observe MCD and WMT have significant high

volatility in the early 2000s and 2008, while XOM and C have their volatility hikes

mainly in 2008 with C, representing Citigroup, having the highest conditional

volatility during the 2008 crisis.

52.5.2 Copulas

We report estimation results for the time-varying t copula parameters in Table 52.4.

All the three parameters a, b, and v are statistically significant. The estimate a is

close to zero and the estimate for b is close to one. The estimate for v is about 25. As
our estimation is carried out on the joint distribution of 45 stock returns, the

estimate for v shed some light on how much Student’s t copula can capture tail

dependence when used to fit a relatively large number of variables. We also report

the log-likelihood for time-varying Student’s t copula and normal copula in

Table 52.4. As the correlation matrix in normal copula is estimated by its sample

correlation, we did not report it here. We find that time-varying t copula has

significantly higher log-likelihood than normal copula, which results from the

more flexible parameter structure of t copula and the time-varying parameter

structure.

52.5.3 Time-Varying Dependence

Our time-varying t copula features a time-varying dependence structure among all

the variables. The DoF parameter, together with the correlation parameters, governs

the tail dependence behavior of multiple variables. We plot the estimated

Table 52.2 Descriptive statistics (mean, standard deviation, skewness, and kurtosis) for the nine

of our 45 selected stocks with each from each sector

Stock

symbol MCD WMT XOM C JNJ GE T NEM EXC

Mean 3.73E-

04

7.21E-

06

3.15E-

04

�8.05E-

04

1.96E-

04

�2.89E-

04

1.23E-

05

3.65E-

04

4.48E-

04

Std. dev. 0.017 0.017 0.017 0.037 0.013 0.022 0.019 0.027 0.018

Skewness �0.21 0.13 0.02 �0.48 �0.53 0.04 0.12 0.34 0.05

Kurtosis 8.25 7.72 12.52 35.55 17.83 9.99 8.68 8.22 10.58

# obs. 2,990 2,990 2,990 2,990 2,990 2,990 2,990 2,990 2,990
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conditional correlation parameters of t copula for four selected pairs of stock returns
in Fig. 52.3. For those four pairs, the conditional correlation parameter fluctuates

around certain positive averages. The two pairs, MCD-WMT and NEM-EXC,

experienced apparent correlation spikes during the 2008 financial crisis. Moreover,

Fig. 52.4 shows the estimated TDCs for the four pairs. We find that with the DoF

around 25, the TDCs for those pairs of stock returns are very low, though some pairs

do exhibit TDC spikes during the 2008 crisis. The low values of TDCs indicate

possible limitations of t copula to account for tail dependence when being used to

model a large number of variables.

Table 52.4 The estimates and standard errors for time-varying Student’s t copula. Values in

brackets are standard errors. The star indicates the statistical significance at a 5 % level. We also

report the log-likelihood for time-varying t copula and normal copula

Time-varying t copula Normal copula

Parameter estimates

a 0.0031* (0.0002)

b 0.984* (0.0016)

v 25.81* (1.03)

Log-likelihood of copula component

Log-likelihood 40,445.44 38,096.36
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Fig. 52.2 The estimated time-varying conditional volatility for four selected stocks has been

plotted
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Fig. 52.3 The estimated time-varying correlation parameters in t copula for four selected pairs of

stock returns have been plotted
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returns has been plotted
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52.6 Conclusion

We illustrate an effective approach (Copula-GARCH models) to model the dynam-

ics of a large number of multiple asset returns by constructing a time-varying

Student’s t copula model. Under a general Copula-GARCH framework, we specify

a proper GARCH model for individual asset returns and use a copula to link the

margins to build the joint distribution of returns. We apply our time-varying

Student’s t copula model to 45 major US stock returns, where each stock return is

modeled by an AR(1) and GJR-GARCH(1,1) specification and a Student’s t copula
with a DCC dependence structure is used to link all the returns. We illustrate how

the model can be effectively estimated by a two-stage MLE procedure, and our

estimation results show time-varying t copula model has significant better fitness of

data than normal copula models.

As it is quite challenging to find a copula function with very flexible parameter

structure to account for difference dependence features among all pairs of random

variables, our time-varying t copula model tends to be a good working tool to model

multiple asset returns for risk management and asset allocation purposes. Our

model can capture time-varying conditional correlation and some degree of tail

dependence, while it also has limitations of featuring symmetric dependence and

inability of generating high tail dependence when being used to model a large

number of asset returns. Nevertheless, we hope that this chapter provides

researchers and financial practitioners with a good introduction on the Copula-

GARCH models and a detailed illustration on constructing joint distributions of

multiple asset returns using a time-varying Student’s t copula model.
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Abstract

To evaluate the performance of the prospects X and Y, financial professionals are
interested in testing the equality of their Sharpe ratios (SRs), the ratios of the

excess expected returns to their standard deviations. Bai et al. (Statistics and

Probability Letters 81, 1078–1085, 2011d) have developed the mean-variance-

ratio (MVR) statistic to test the equality of their MVRs, the ratios of the excess

expected returns to its variances. They have also provided theoretical reasoning

to use MVR and proved that their proposed statistic is uniformly most powerful

unbiased. Rejecting the null hypothesis infers that X will have either smaller
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variance or larger excess mean return or both leading to the conclusion that X is

the better investment. In this paper, we illustrate the superiority of the MVR test

over the traditional SR test by applying both tests to analyze the performance of

the S&P 500 index and the NASDAQ 100 index after the bursting of the Internet

bubble in the 2000s. Our findings show that while the traditional SR test

concludes the two indices being analyzed to be indistinguishable in their per-

formance, the MVR test statistic shows that the NASDAQ 100 index

underperformed the S&P 500 index, which is the real situation after the bursting

of the Internet bubble in the 2000s. This shows the superiority of the MVR test

statistic in revealing short-term performance and, in turn, enables investors to

make better decisions in their investments.

Keywords

Mean-variance ratio • Sharpe ratio • Hypothesis testing • Uniformly most

powerful unbiased test • Internet bubble • Fund management

53.1 Introduction

Internet stocks obtained huge gains in the late 1990s, followed by huge losses from

early 2000. In just 2 years from 1998 to early March 2000, prices of Internet stocks

rose by sixfold and outperformed the S&P 500 by 482 %. Technology stocks

generally showed a similar trend based on the fact that NASDAQ 100 index

quadrupled in value over the same period and outperformed the S&P 500 index

by 268 %. On the other hand, NASDAQ 100 index dropped by 64.28 % in value

during the Internet bubble crash and underperformed the S&P 500 index by

173.87 %.

The spectacular rise and fall of Internet stocks in the late 1990s has stimulated

research into the causes of the Internet stock bubble. Theories had been developed

to explain the Internet bubble. For example, Baker and Stein (2004) develop

a model of market sentiment with irrationally overconfident investors and short-

sale constraints. Ofek and Richardson (2003) provide circumstantial evidence that

Internet stocks attract mostly retail investors who are more prone to be

overconfident about their ability to predict future stock prices than institutional

investors. Perkins and Perkins (1999) suggest that during the Internet boom,

investors were confidently betting on the continued rise of Internet stocks because

they knew that high demand and limited equity float implies substantial upside

returns. Moreover, Ofek and Richardson (2003) provide indirect evidence that

Internet stock prices were supported by a combination of factors such as limited

float, short-sale constraints, and aggressive trend chased by retail investors, whereas

Statman (2002) shows that this asymmetric payoff must have made Internet stocks

appear to be an extremely attractive gamble for risk seekers. On the other hand,

Fong et al. (2008) use stochastic dominance methodology (Fong et al. 2005; Broll

et al. 2006; Chan et al. 2012; Lean et al. 2012) to identify dominant types of risk

preferences in the Internet bull and bear markets. They conclude that investor risk
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preferences (Wong and Li 1999; Wong and Chan 2008) have changed over this

cycle, and the change is related to utility theory (Wong 2007; Sriboonchitta

et al. 2009) and behavioral finance (Lam et al. 2010, 2012).

In this paper, we apply both the mean-variance ratio (MVR) test and the Sharpe

ratio (SR) test to examine the performance of the NASDAQ 100 index and the S&P

500 index during the bursting of the Internet bubble in the 2000s. The tests are

relied on the theory of the mean-variance (MV) portfolio optimization (Markowitz

1952; Bai et al. 2009a, b). The Markowitz efficient frontier also provides the basis

for many important financial economics advances, including the Sharpe-Lintner

capital asset pricing model (CAPM, Sharpe 1964; Lintner 1965) and the well-

known optimal one-fund theorem (Tobin 1958). Originally motivated by the MV

analysis, the optimal one-fund theorem, and the CAPM model, the Sharpe ratio,

the ratio of the excess expected return to its volatility or standard deviation, is

one of the most commonly used statistics in the MV framework. The SR is now

widely used in many different areas in Finance and Economics, from the evalua-

tion of portfolio performance to market efficiency tests (see, e.g., Ofek and

Richardson 2003).

Jobson and Korkie (1981) develop a SR statistic to test for the equality of two

SRs. The test statistic has been modified and improved by Cadsby (1986) and

Memmel (2003). Lo (2002) carries out a more thorough study of the statistical

property of the SR estimator. Using standard econometric methods with several

different sets of assumptions imposed on the statistical behavior of the returns

series, Lo derives the asymptotic statistical distribution for the SR estimator and

shows that confidence intervals, standard errors, and hypothesis tests can be com-

puted for the estimated SRs in much the same way as regression coefficients such as

portfolio alphas and betas are computed.

The SR test statistic developed by Jobson and Korkie (1981) and others provides

a formal statistical comparison of performance among portfolios. One deficiency of

the SR statistic is that it has only an asymptotic distribution. Hence, the SR test has

its statistical properties only for large samples, but not for small samples. Never-

theless, the performance of assets is often compared by using small samples,

especially when markets undergo substantial changes resulting from changes in

short-term factors and momentum. Under these circumstances, it is more meaning-

ful to use limited data to predict the assets’ future performance. In addition, it is not

meaningful to measure SRs for extended periods when the means and standard

deviations of the underlying assets are found empirically to be nonstationary and/or

to possess structural breaks. For small samples, the main difficulty in developing

the SR test is that it is impossible to obtain a uniformly most powerful unbiased

(UMPU) test to check for the equality of SRs. To circumvent this problem, Bai

et al. (2011d) propose to use an alternative statistic, the MVR tests to compare

performance of assets. They also discuss the evaluation of the performance of assets

for small samples by providing a theoretical framework and then invoking both

one-sided and two-sided UMPU MVR tests. Moreover, Bai et al. (2012) further

extend the MVR statistics to compare the performance of prospects after the effect

of the background risk has been mitigated.
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Applying the traditional SR test, we fail to reject the possibility of having any

significant difference between the performance of the S&P 500 index and the

NASDAQ 100 index during the bursting of the Internet bubble in the 2000s. This

finding implies that the two indices being analyzed could be indistinguishable in

their performance during the period under the study. However, we conjecture that

this conclusion is most likely to be inaccurate as the lack of sensitivity of the SR test

in analyzing small samples. Thus, we propose to use the MVR test in the analysis.

As expected, the MVR test shows that the MVR of the weekly return on S&P

500 index is different from that on the NASDAQ 100 index. We conclude that the

NASDAQ 100 index underperformed the S&P 500 index during the period under

the study. The proposed MVR test can discern the performance of the two indices

and hence is more informative than tests using the SR statistics for investors to

decide on their investments.

The rest of the paper is organized as follows: Section 53.2 discusses the

data while Sect. 53.3 provides the theoretical framework and discusses the

theory for both one-sided and two-sided MVR tests. In Sect. 53.4, we demonstrate

the superiority of the MVR tests over the traditional SR tests by applying both tests

to analyze the performance of the S&P 500 index and the NASDAQ 100 index

during the bursting of the Internet bubble in the 2000s. This is followed by

Sect. 53.4 which summarizes our conclusions and shares our insights.

53.2 Data

The data used in this study consists of weekly returns on two stock indices: the S&P

500 and the NASDAQ 100 index. We use the S&P 500 index to represent

non-technology or “old economy” firms. Our proxy for the Internet and technology

sectors is the NASDAQ 100 index. Firms represented in the NASDAQ 100 include

those in the computer hardware and software, telecommunications, and biotech-

nology sectors. The NASDAQ 100 index is value weighted.

Our sample period is from January 1, 2000 to December 31, 2002, to study

the effect of the crash in the Internet bubble. Before 2000, there is a clear upward

trend in technology stock prices emerging from around that period and this

period spans a period of intense IPO and secondary market activities for Internet

stocks. Schultz and Zaman (2001) report that 321 Internet firms went public

between January 1999 and March 2000, accounting for 76 % of all new Internet

issues since the first wave of Internet IPOs began in 1996. Ofek and Richardson

(2003) find that the extraordinary high valuations of Internet stocks between the

early 1998 and February 2000 were accompanied by very high trading volume and

liquidity. The unusually high volatility of technology stocks is only partially

explained by the rise in the overall market volatility. Our interest centers on the

bear market from January 1, 2000 to December 31, 2002. All data for this study

are from datastream.
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53.3 Methodology

Let Xi and Yi (i ¼ 1, 2,� � � �, n) be independent excess returns drawn from the

corresponding normal distributions N(m, s2) and N(�, t2) with joint density p(x, y)
such that

p x; yð Þ ¼ k � exp
m
s2
X

xi � 1

2s2
X

x2i þ
�

t2
X

yi �
1

2t2
X

y2i

� �
(53.1)

Where k ¼ 2ps2ð Þ�n=2
2pt2ð Þ�n=2

exp � nm2

2s2

� �
exp � n�2

2t2

� �

To evaluate the performance of the prospects X and Y, financial professionals are
interested in testing the hypotheses

H�
0 :

m
s
� �

t
versus H�

1 :
m
s
>

�

t
(53.2)

to compare the performance of their corresponding SRs, m
s and �

t, the ratios of the

excess expected returns to their standard deviations.

If the hypothesis H�
0 is rejected, it infers that X is the better investment

prospect with larger SR because X has either larger excess mean return or

smaller standard deviation or both. Jobson and Korkie (1981) and Memmel

(2003) develop test statistics to test the hypotheses in Eq. 53.2 for large

samples but their tests would not be appropriate for testing small samples as the

distribution of their test statistics is only valid asymptotically but not valid for

small samples. However, it is especially relevant in investment decisions to test

the hypotheses in Eq. 53.2 for small samples to provide useful investment infor-

mation to investors. Furthermore, as it is impossible to obtain any UMPU test

statistic to test the inequality of the SRs in Eq. 53.2 for small samples, Bai

et al. (2011d) propose to use the following hypothesis to test for the inequality of

the MVRs:

H01 :
m
s2

� �

t2
versus H11 :

m
s2

>
�

t2
: (53.3)

In addition, they develop the UMPU test statistic to test the above hypotheses.

Rejecting the hypothesis H0 infers that X will have either smaller variance or larger

excess mean return or both leading to the conclusion that X is the better investment.

As sometimes investors conduct the two-sided test to compare the MVRs, the

following hypotheses are included in our study:
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H02 :
m
s2

¼ �

t2
versus H12 :

m
s2

6¼ �

t2
: (53.4)

One may argue that the MVR test is that SR test is scale invariant, whereas the

MV ratio test is not. To support the MVR test to be an acceptable alternative test

statistic, Bai et al. (2011d) show the theoretical justification for the use of the MVR

test statistic in the following remark:

Remark 53.1 One may think that the MVR can be less favorable than the SR as the
former is not scale invariant while the latter is. However, in some financial
processes, the mean change in a short period of time is proportional to its variance
change. For example, many financial processes can be characterized by the fol-
lowing diffusion process for stock prices formulated as

dYt ¼ mP Ytð Þdtþ s Ytð ÞdWP
t ,

where mP is an N-dimensional function, s is an N � N matrix and WP
t is an

N-dimensional standard Brownian motion under the objective probability measure
P. Under this model, the conditional mean of the increment dYt given Yt is m

P(Yt)dt
and the covariance matrix is s(Yt)s

T(Yt)dt. When N ¼ 1, the SR will be close to
0 while the MVR will be independent of dt. Thus, when the time period dt is small,
the MVR will be advantageous over the SR.

To further support for the use of MVR, Bai et al. (2011d) document the MVR in

the context of Markowitz MV optimization theory as follows: suppose that there is

p-branch of assets S ¼ (s1,� � � �, sp)T whose returns are denoted by r ¼ (r1,� � �∙, rp)T
with mean m ¼ (m1,� � � �, mp)T and covariance matrix S ¼ (sij). In addition, we

suppose that investors will invest capital C on the p-branch of securities S such that

they solve for their optimal investment plans c ¼ (c1,� � �∙, cp)T to allocate their

investable wealth on the p-branch of securities to obtain maximize return subject at

a given level of risk.

The above maximization problem can be formulated as the following optimiza-

tion problem:

max R ¼ cTm, subject to cTSc � s20 (53.5)

where s20 is a given risk level. We call R satisfying Eq. 53.5 the optimal return and

c be its corresponding allocation plan. One could easily extend the separation

theorem and the mutual fund theorem to obtain the solution of Eq. 53.51 from the

following lemma:

1We note that Bai et al. (2009a, b, 2011c) have also used the same framework as in 53.5.
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Lemma 53.1 For the optimization setting displayed in Eq. 53.5, the optimal return,
R, and its corresponding investment plan, c, are obtained as follows:

R ¼ s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mTS�1m

q

and

c ¼ s0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mTS�1m

p S�1m: (53.6)

From Lemma 53.1, the investment plan, c, is proportional to the MVR when S
is a diagonal matrix. Hence, when the asset is concluded as superior in performance

utilizing the MVR test, its corresponding weight could then be computed based on

the corresponding MVR test value. Thus, another advantage of using the MVR test

over the SR test is that it not only allows investors to compare the performance of

different assets, but it also provides investors with information of the assets weight.

The MVR test enables investors to compute the corresponding allocation for the

assets. On the other hand, as the SR is not proportional to the weight of the

corresponding asset, an asset with the highest SR would not infer that one should

put highest weight on this asset as compared with our MVR. In this sense, the test

proposed by Bai et al. (2011d) is superior to the SR test.

Bai et al. (2011d) have also developed both one-sided UMPU test and two-sided

UMPU test of equality of the MVRs in comparing the performances of different

prospects with hypotheses stated in Eqs. 53.3 and 53.4, respectively. We first state

the one-sided UMPU test for the MVRs as follows:

Theorem 53.1 Let Xi and Yi (i¼ 1, 2,� � � �, n) be independent random variables with
joint distribution function defined in Eq. 53.1. For the hypotheses setup in Eq. 53.3,
there exists a UMPU level-a test with the critical function f(u, t) such that

f u; tð Þ 1, when u � C0 tð Þ
0, when u < C0 tð Þ

�
(53.7)

where C0 is determined by
ð1
C0

f �n, t uð Þ du ¼ K1; (53.8)

with

f �n, t uð Þ ¼ t2 � u2

n

� �n� 1

2
� 1

t3 � t1 � uð Þ2
n

 !n� 1

2
� 1

,

K1 ¼ a
ð

O
f �n, t uð Þ du;

in which
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U ¼
Xn
i¼1

Xi, T1 ¼
Xn
i¼1

Xiþ
Xn
i¼1

Yi,

T2 ¼
Xn
i¼1

X2
i , T3 ¼

Xn
i¼1

Y2
i , T ¼ T1; T2; T3ð Þ;

with O ¼ u max � ffiffiffiffiffiffi
nt2

p
, t1 � ffiffiffiffiffiffi

nt3
pð Þ � u � min

ffiffiffiffiffiffi
nt2

p
, t1 þ ffiffiffiffiffiffi

nt3
pð Þj gf to be the

support of the joint density function of (U, T).
We call the statistic U in Theorem 53.1 the one-sided MVR test statistic or

simply the MVR test statistic for the hypotheses setup in Eq. 53.3 if no confusion

arises. In addition, Bai et al. (2011d) have introduced the two-sided UMPU test

statistic as stated in the following theorem to test for the equality of the MVRs listed

in Eq. 53.4:

Theorem 53.2 Let Xi and Yi (i¼ 1, 2,� � � �, n) be independent random variables with
joint distribution function defined in Eq. 53.1. Then, for the hypotheses setup in Eq.
53.4, there exists a UMPU level-a test with critical function

f u; tð Þ ¼ 1, when u � C1 tð Þ or � C2ðt
�

0, when C1 tð Þ < u < C2ðt
�

�
(53.9)

in which C1 and C2 satisfy

ðC2

C1

f �n, t uð Þ du ¼ K2

ðC2

C1

uf �n, t uð Þ du ¼ K3

8>>><
>>>:

, (53.10)

where

K2 ¼ 1� að Þ
ð

O
f �n, t uð Þ du,

K3 ¼ 1� að Þ
ð

O
u f �n, t uð Þ du:

The terms f�n;t(u), Ti (i ¼ 1, 2, 3) and T are defined in Theorem 53.1.

We call the statistic U in Theorem 53.2 the two-sided MVR test statistic or

simply the MVR test statistic for the hypotheses setup in Eq. 53.4 if no confusion

arises. To obtain the critical values C1 and C2 for the test, readers may refer to

Bai et al. (2011d, 2012).

53.4 Illustration

In this section, we demonstrate the superiority of the MVR tests over the traditional

SR tests by illustrating the applicability of the MVR tests to examine the Internet

bubble during January 2000 and December 2002. For simplicity, we only
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demonstrate the two-sided UMPU test.2 The data for this study consists of weekly

returns on two stock indices: the S&P 500 and the NASDAQ 100 index. The sample

period covers from January 2000 to December 2002 in which the data from the first

week of November 2000 to the last week of January 2001 (3 months) are used to

compute the MVR in January 2001, while the data from the first week of December

2000 to the last week of February 2001 are used to compute the MVR in February

2001, and so on. However, if the period used to compute the SRs is too short, the

result would not be meaningful as discussed in our previous sections. Thus, we

utilize a longer period from the first week of February 2000 to the last week of

January 2001 (12 months) to compute the SR ratio in January 2001, from the first

week of March 2000 to the last week of February 2001 to compute the SR ratio in

February 2001, and so on.

Let X with mean mX and variance s2X be the weekly return on S&P 500 while

Y with mean mY and variance s2Y be the weekly return on the NASDAQ 100 index.

We test the following hypotheses:

H0 :
mX
s2X

¼ mY
s2Y

versus H1 :
mX
s2X

6¼ mY
s2Y

: (53.11)

To test the hypotheses in Eq. 53.11, we first compute the values of the test

functionU for the MVR statistic shown in Eq. 53.9, then compute the critical values

C1 and C2 under the test level of 5 % for the pair of indices and display the values in

Table 53.1.

For comparison, we also compute the corresponding SR statistic developed by

Jobson and Korkie (1981) and Memmel (2003) such that

z ¼ ŝY m̂X � ŝX m̂Yffiffiffî
y

p , (53.12)

which follows standard normal distribution asymptotically with

y ¼ 1

T
2s2Xs

2
Y � 2sXsYsX, Y þ 1

2
m2Xs

2
Y þ 1

2
m2Ys

2
X � mXmY

sXsY
s2X, Y

� �

to test for the equality of the SRs for the funds by setting the following hypotheses

such that

H�
0 :

mX
sX

¼ mY
sY

versus H�
1 :

mX
sX

6¼ mY
sY

: (53.13)

2The results of the one-sided test which draw a similar conclusion are available on request.
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Instead of using a 2-month data to compute the values of our proposed statistic,

we use the overlapping 12-month data to compute the SR statistic. The results are

also reported in Table 53.1.

The limitation of applying the SR test is that it would usually conclude indis-

tinguishable performances between the indices, which may not be the situation in

reality. In this aspect, looking for a statistic to evaluate the difference between

indices for short periods is essential. The situation in reality is that the Internet

stocks registered large gains in the late 1990s, followed by large losses from 2000.

As we mentioned before, the NASDAQ 100 index comprises 100 of the largest

domestic and international technology firms including those in the computer hard-

ware and software, telecommunications, and biotechnology sectors, while the S&P

Table 53.1 The results of the mean-variance ratio test and Sharpe ratio test for NASDAQ and

S&P 500, from January 2001 to December 2002

Date month/year

MVR test SR test

U C1 C2 Z

01/2001 �0.0556 �0.1812 0.1267 1.0906

02/2001 �0.0636 �0.1843 0.1216 1.8765

03/2001 �0.1291 �0.2291 0.0643 1.1787

04/2001 �0.0633 �0.2465 0.1633 0.9590

05/2001 0.0212 �0.1937 0.2049 0.8313

06/2001 0.0537 �0.1478 0.1983 0.8075

07/2001 �0.0421 �0.1399 0.1132 0.6422

08/2001 �0.1062 �0.1815 0.0886 0.6816

09/2001 �0.1623* 0.1665 0.2728 1.0125

10/2001 �0.1106 �0.3507 0.1742 0.5931

11/2001 0.0051 �0.2386 0.2825 0.1898

12/2001 0.1190 0.0165 0.2041 �0.1573

01/2002 0.0316 �0.0744 0.1389 0.0157

02/2002 �0.0067 �0.1389 0.1013 0.0512

03/2002 �0.0216 �0.1349 0.0853 �0.1219

04/2002 �0.0444 �0.1739 0.0848 0.1885

05/2002 �0.0588 �0.1766 0.1094 0.0446

06/2002 �0.1477 �0.2246 0.0267 0.3408

07/2002 �0.2167* �0.0101 0.0578 0.0984

08/2002 �0.1526* 0.0452 0.1242 0.1024

09/2002 �0.2121* �0.0218 0.0551 �0.6304

10/2002 0.0416 �0.1249 0.2344 �0.0361

11/2002 0.0218 �0.1056 0.2150 0.0008

12/2002 0.1265 �0.0015 0.2417 0.3908

Note: The MVR test statisticU is defined in Eq. 53.9 and its critical values C1 and C2 are defined in

Eqs. 53.10, respectively. The SR test statistic Z is defined in Eq. 53.12. The level is a ¼ 0.05, and

“*” means significant at levels 5 %. Here, the sample size of the MVR test is 3 months, while the

sample size of the SR test 12 months. Recall that � z0.025 	 �1.96
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500 index represents non-technology or “old economy” firms. After the bursting of

the Internet bubble in the 2000s, as shown in Fig. 53.1, the NASDAQ 100 declined

much more and underperformed the S&P 500. From Table 53.1, we find that the

MVR test statistic does not disappoint us in that it does pick up significant

differences in performances between the S&P 500 and the NASDAQ 100 index

in September 2001, July 2002, August 2002, and September 2002, but SR test does

not conclude any distinguishable performances between the indices. Further to

say, from Table 53.1, we observe that m̂X > m̂Y in September 2001, July 2002,

August 2002, and September 2002. This infers that the MVR test statistics can

detect the real situation that the NASDAQ 100 index underperformed the S&P

500 index, but the traditional SR test cannot detect any difference. Thus, we

conclude that investors could be able to profiteer from the Internet bubble if they

apply the MVR test.

53.5 Concluding Remarks

In this paper, we employ the MVR test statistics developed by Bai et al. (2011d) to

examine the performances between the S&P 500 index and the NASDAQ

100 index during Internet bubble from January 2000 to December 2002. We

illustrate the superiority of the MVR test over the traditional SR test by applying

both tests to analyze the performance of the S&P 500 index and the NASDAQ

100 index after the bursting of the Internet bubble in the 2000s. Our findings show

that while the traditional SR test concludes the two indices being analyzed to be

indistinguishable in their performance, the MVR test statistic shows that the

NASDAQ 100 index underperformed the S&P 500 index, which is the real situation
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Fig. 53.1 Weekly indices of NASDAQ and S&P 500 from January 3, 2000 to December 31, 2003
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after the bursting of the Internet bubble in the 2000s. This shows the superiority of

the MVR test statistic in revealing short-term performance and, in turn, enables the

investors to make better decisions about their investments.

There are two basic approaches to the problem of portfolio selection under

uncertainty. One approach is based on the concept of utility theory (Gasbarro

et al. 2007; Wong et al. 2006, 2008). Several stochastic dominance (SD) test statistics

have been developed; see, for example, Bai et al. (2011a) and the references therein

for more information. This approach offers a mathematically rigorous treatment for

portfolio selection, but it is not popular among investors since investors would have

to specify their utility functions and choose a distributional assumption for the returns

before making their investment decisions.

The other approach is the mean-risk (MR) analysis that has been discussed in

this paper. In this approach, the portfolio choice is made with respect to two

measures – the expected portfolio mean return and portfolio risk. A portfolio is

preferred if it has higher expected return and smaller risk. These are convenient

computational recipes and they provide geometric interpretations for the trade-off

between the two measures. A disadvantage of the latter approach is that it is derived

by assuming the Von Neumann-Morgenstern quadratic utility function and that

returns are normally distributed (Hanoch and Levy 1969). Thus, it cannot capture

the richness of the former approach. Among the MR analyses, the most popular

measure is the SR introduced by Sharpe (1966). As the SR requires strong assump-

tions that the returns of assets being analyzed have to be iid, various measures for

MR analysis have been developed to improve the SR, including the Sortino ratio

(Sortino and van der Meer 1991), the conditional SR (Agarwal and Naik 2004), the

modified SR (Gregoriou and Gueyie 2003), value at risk (Ma and Wong 2010),

expected shortfall (Chen 2008), and the mixed Sharpe ratio (Wong et al. 2012).

However, most of the empirical studies, see, for example, Eling and Schuhmacher

(2007), find that the conclusions drawn by using these ratios are basically the same

as that drawn by the SR. Nonetheless, Leung and Wong (2008) have developed

a multiple SR statistic and find that the results drawn from the multiple Sharpe ratio

statistic can be different from its counterpart pair-wise SR statistic comparison,

indicating that there are some relationships among the assets that have not being

revealed using the pair-wise SR statistics. The MVR test could be the right

candidate to reveal these relationships.

One may claim that the limitation of the MVR test statistic is that it can only

draw conclusion for investors with quadratic utility functions and for normal-

distributed assets. Wong (2006), Wong and Ma (2008), and others have shown

that the conclusion drawn from the MR comparison is equivalent to the comparison

of expected utility maximization for any risk-averse investor, not necessarily with

only quadratic utility function, and for assets with any distribution, not necessarily

normal distribution, if the assets being examined belong to the same location-scale

family. In addition, one can also apply the results from Li and Wong (1999) and

Egozcue and Wong (2010) to generalize the result so that it will be valid for any

risk-averse investor and for portfolios with any distribution if the portfolios

being examined belong to the same convex combinations of (same or different)
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location-scale families. The location-scale family can be very large, containing

normal distributions as well as t-distributions, gamma distributions, etc. The stock

returns could be expressed as convex combinations of normal distributions,

t-distributions, and other location-scale families; see, for example, Wong and

Bian (2000) and the references therein for more information. Thus, the conclusions

drawn from the MVR test statistics are valid for most of the stationary data

including most, if not all, of the returns of different portfolios.

Last, we note that to improve the effectiveness of applying the MVR test in

evaluating financial assets performance, one may incorporate other techniques/

approaches/models, for example, fundamental analysis (Wong and Chan 2004),

technical analysis (Wong et al. 2001, 2003), behavioral finance (Matsumura

et al. 1990), prospect theory (Broll et al. 2010; Egozcue et al. 2011), and advanced

econometrics (Wong and Miller 1990; Bai et al. 2010, 2011b), to measure the

performance of different financial assets and assist investors to make wiser decisions.
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information on the interdependency of risk factors. Given a stressful situation for

one market participant, one likes to measure how this stress affects other factors.

The CoVaR (Conditional VaR) framework has been developed for this purpose.

The basic technical elements of CoVaR estimation are two levels of quantile

regression: one on market risk factors; another on individual risk factor.

Tests on the functional form of the two-level quantile regression reject the

linearity. A flexible semiparametric modeling framework for CoVaR is pro-

posed. A partial linear model (PLM) is analyzed. In applying the technology to

stock data covering the crisis period, the PLM outperforms in the crisis time,

with the justification of the backtesting procedures. Moreover, using the data on

global stock markets indices, the analysis on marginal contribution of risk

(MCR) defined as the local first order derivative of the quantile curve sheds

some light on the source of the global market risk.

Keywords

CoVaR • Value-at-Risk • Quantile regression • Locally linear quantile regression •

Partial linear model • Semiparametric model

54.1 Introduction

Sufficiently accurate risk measures are needed not only in crisis times. In the last

two decades, the world has gone through several financial turmoils, and the

financial market is getting riskier and the scale of loss soars. Beside marginal

extremes that can shock even a well-diversified portfolio, the focus of intensified

research in the recent years has been on understanding the interdependence of risk

factors and their conditional structure.

The most popular risk measure is the Value-at-Risk (VaR), which is defined as the

t-quantile of the return distribution at time t + d conditioned on the information setF t:

VaRt
tþd ¼def inf x 2 ℝ : P Xtþd � xjF tð Þ � tf g: (54.1)

Here Xt denotes the asset return and t is taking values such as 0.05, 0.01 or 0.001
to reflect negative extreme risk.

Extracting information in economic variables to predict VaR brings quantile

regression into play here, since VaR is the quantile of the conditional asset return

distribution. Engle and Manganelli (2004) propose the nonlinear Conditional

Autoregressive Value-at-Risk (CaViaR) model, which uses (lag) VaR and lag returns.

Chernozhukov and Umantsev (2001) propose linear and quadratic time series models

for VaR prediction. Kuan et al. (2009) propose the Conditional AutoRegressive

Expectile (CARE) model, and argue that expectiles are more sensitive to the scale

of losses. These studies and many others apply quantile regression in a prespecified,

often linear functional form. In a more nonparametric context, Cai and Wang (2008)

estimate the conditioned cdf by a double kernel local linear estimator and find the
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quantile by inverting the cdf. Schaumburg (2011) uses the same technique together

with extreme value theory for VaR prediction. Taylor (2008) proposes Exponentially

Weighted Quantile Regression (EWQR) for estimating VaR time series.

The aforementioned studies focus mainly on the VaR estimation for single assets

and do not directly take into account the escalated spillover effect in crisis periods.

This risk of joint tail events of asset returns has been identified and studied. Further,

Brunnermeier and Pedersen (2008) show that the negative feedback effect of a “loss

spiral” and a “margin spiral” leads to the joint depreciation of assets prices. It is

therefore important to develop risk measures which can quantify the contagion effects

of negative extreme event.

Acharya et al. (2010) propose the concept of marginal expected shortfall (MES),

whichmeasures the contribution of individual assets to the portfolio expected shortfall.

Via an equilibrium argument, the MES is shown to be a predictor to a financial

institution’s risk contribution. Brownlees and Engle (2012) demonstrate that the

MES can be written as a function of volatility, correlation, and expectation conditional

on tail events. Huang et al. (2012) propose the distress insurance premium (DIP),

a measure similar to MES but computed under the risk-neutral probability. This

measure can therefore be viewed as the market insurance premium against the event

that the portfolio loss exceeds a low level. Adams et al. (2012) construct financial

indices on return of insurance companies, commercial banks, investment banks, and

hedge funds, and use a linearmodel for theVaRs of the four financial indices to forecast

the state-dependent sensitivity VaR (SDSVaR). The risk measures proposed above

have some shortcomings though: The computation of DIP is demanding since this

involves the simulation of rare events. MES suffers from the scarcity of data because it

conditions on a rare event.

In Adrian and Brunnermeier (2011) (henceforth AB), the CoVaR concept of

conditional VaR is proposed, which controls the effect of the negative extreme event

of some systemically risky financial institutions. Formally, letC(Xi,t) be some event of

a asset i return Xi,t at time t and take Xj,t as another asset return (e.g., the market index).

The CoVaRj|i,t
t is defined as the t-quantile of the conditional probability distribution:

P Xj, t � CoVaRt
jji,t
���C Xi,t
� �

,Mt

n o
¼ t, (54.2)

where Mt is a vector of market variables defined in Sect. 54.2.1. The standard

CoVaR approach is to set C Xi, t
� � ¼ Xi, t ¼ VaRt

Xi, t

n o
. In AB, Xj,t is the weekly

return which is constructed from a vast data set comprised of all publicly traded

commercial banks, broker dealers, insurance companies, and real estate companies

in the USA. Further, AB propose DCoVaR (measure of marinal risk contribution) as

the difference between CoVaRt1
jji, t and CoVaR

t2
jji, t, where t1 ¼ 0.5 is associated with

the normal state and t2 ¼ 0.05 is associated with the financial distress state.

The formulation of this conditional risk measure has several advantages. First, the

cloning property: After dividing a systemically risky firm into several clones, the

value of CoVaR conditioned on the entire firm does not differ from the one condi-

tioned on one of the clones. Second, the conservativeness. The CoVaR value is more
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conservative than VaR, because it conditions on an extreme event. Third, CoVaR is

endogenously generated and adapted to the varying environment of the market.

The recipe of AB for CoVaR construction is as follows: In the first step, one predicts

the VaR of an individual asset Xi, t through a linear model on market variables:

Xi, t ¼ ai þ gΤi Mt�1 þ ei, t, (54.3)

where gi
Τ means the transpose of gi and Mt is a vector of the state variables

(see Sect. 54.2.1). This model is estimated with quantile regression of Koenker

and Bassett (1978) to get the coefficients âi; ĝið ÞwithF�1
ei, t tjMt�1ð Þ ¼ 0. The VaR of

asset i is predicted by

dVaRi, t ¼ âi þ ĝΤi Mt�1: (54.4)

In the second step, one models the asset j return as a linear function of asset

return i and market variables Mt:

Xj, t ¼ ajji þ bjjiXi, t þ gΤjjiMt�1 þ ej, t, (54.5)

Again one employs quantile regression and obtains coefficients âj ij ; b̂j ij ; ĝj ij
� �

.

The CoVaR is finally calculated as:

dCoVaRAB
j ij , t ¼ âj ij þ b̂j ij dVaRi, t þ ĝΤj ij Mt�1: (54.6)

In Eq. 54.5, the variable Xi,t influences the return Xj,t in a linear fashion.

However, the linear parametric model may not be flexible enough to capture the

tail dependence between i and j. The linearity of the conditioned quantile curves of

Xj on Xi is challenged by the confidence bands of the nonparametric quantile curves,

as shown in Fig. 54.1. The left tail quantile from linear parametric quantile

regression (red) lies well outside the confidence band (gray dashed curve) of Hardle

and Song (2010). This motivates empirically that a linear model is not flexible

enough for the CoVaR question at hand.

Nonparametric models can be used to account for the nonlinear structure of the

conditional quantile, but the challenge for using such models is the curse of dimension-

ality, as the quantile regression inCoVaRmodeling often involvesmany variables. Thus,

we resort to semiparametric partial linearmodel (PLM)which preserves some flexibility

of the nonparametric model while suffers little from the curse of dimensionality.

As an illustration, the VaR/CoVaR of Goldman Sachs (GS) returns are shown,

given the returns of Citigroup (C) and S&P500 (SP). S&P500 index return is used

as a proxy for the market portfolio return.

Choosing market variables is crucial for the VaR/CoVaR estimation. For the

variables representing market states, we follow the most popular choices such as

VIX, short-term liquidity spread, etc. In particular, the variable we use for real

estate companies is the Dow Jones U.S. real estate index. The daily data date from

August 4, 2006 to August 4, 2011.
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To see if the estimated VaRs/CoVaRs are accurate, we utilize the backtesting

procedures described in Berkowitz et al. (2011). We compare three (Co)VaR estimat-

ing methods in this study: VaR computed by linear quantile regression on market

variables; CoVaR; PLM CoVaR proposed here. The VaR is one-sided interval predic-

tion, the violations (the asset return exceeds estimated VaR/CoVaR) should happen

unpredictably if the VaR algorithm is accurate. In other words, the null hypothesis is

that the series of violations of VaR is a martingale difference, given all the past

information. Furthermore, if the time series is autocorrelated, we can reject the null

hypothesis of martingale difference right away; therefore, autocorrelation tests can be

utilized in this context. The Ljung-Box test is not the most appropriate approach here

since it has a too strong null hypothesis (i.i.d. sequence). Thus, we additionally apply

the Lobato test. The CaViaR test, which is inspired by the CaViaR model, is proposed

and shown to have the best overall performance byBerkowitz et al. (2011) amongother

alternative tests with an exclusive desk-level data set. To illustrate the VaR/CoVaR

performances in the crisis time,we separately apply the CaViaR test to the violations of

the whole sample period and to the financial crisis period.

The results show that during the financial crisis period frommid-2008 to mid-2009,

the PLM CoVaR of GS given C performs better than that constructed from the

technique of AB and the PLM CoVaR given SP. In particular, these results suggest

that with appropriate modeling techniques (accounting for nonlinearity), the CoVaR of

GS calculated from conditioning on C reflects some structurally risk which is not

reflected from conditioning on market returns such as SP during financial crisis.

In contrast to DCoVaR, we use a mathematically more intuitive way to analyze

the marginal effect by taking the first order derivative of the quantile function.

0.0 0.5

−0.5

0.0

0.0 0.5

−0.5

0.0

Fig. 54.1 Goldman Sachs (GS) and Citigroup (C) weekly returns 0.05(left) and 0.1(right)
quantile functions. The y-axis is GS daily returns and the x-axis is the C daily returns.

The blue curve are the locally linear quantile regression curves (see Appendix 1). The locally

linear quantile regression bandwidth are 0.1026 and 0.0942. The red lines are the linear parametric

quantile regression line. The antique white dashed curves are the asymptotic confidence band

(see Appendix 2) with significance level 0.05. The sample size N ¼ 546
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We call it “marginal contribution of risk” (MCR). Bae et al. (2003) and many others

have pointed out the phenomenon of financial contagion across national borders. This

motivates us to consider the stock indices of a few developed markets and explore

their risk contribution to the global stock market. MCR results show that when the

global market condition varies, the source of global market risk can be different. To

be more specific, when the global market return is bad, the risk contribution from the

USA is the largest. On the other hand, during financially stable periods, Hong Kong

and Japan are more significant risk contributors than the USA to the global market.

This study is organized as follows: Sect. 54.2 introduces the construction and

the estimation of the PLM model of CoVaR. The backtesting methods and our

risk contribution measure are also introduced in this section. Section 54.3 presents

the Goldman Sachs CoVaR time series and the backtesting procedure results.

Section 54.4 presents the conclusion and possible further studies. Appendices

describe the detailed estimation and statistical inference procedures used in

this study.

54.2 Methodology

Quantile regression is a well-established technique to estimate the conditional quantile

function. Koenker and Bassett (1978) focus on the linear functional form. An extension

of linear quantile regression is the PLM quantile regression. A partial linear model for

the dynamics of assets return quantile is constructed in this section. The construction is

justified by a linearity test based on a conservative uniform confidence band proposed

in Hardle and Song (2010). For more details on semiparametric modeling and PLM, we

refer to Härdle et al. (2004) and Härdle et al. (2000).

The backtesting procedure is done via the CaViaR test. Finally, the methodology

of MCR is introduced, which is an intuitive marginal risk contribution measure. We

will apply the method to a data set of global market indices in developed countries.

54.2.1 Constructing Partial Linear Model (PLM) for CoVaR

Recall how the CoVaR is constructed:

dVaRi, t ¼ âi þ ĝiMt�1,

dCoVaRAB

jji, t ¼ âjji þ b̂jjidVaRi, t þ ĝΤjjiMt�1:

where âi; ĝið Þ and âjji; b̂jji; ĝjji
� �

are estimated from a linear model using standard

linear quantile regression.

We have motivated the need for more general functional forms for the quantile

curve. We therefore relax the model to a non- or semiparametric model. The market
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variableMt is multidimensional, and the data frequency here is daily. The following

key variables are entering our analysis:

1. VIX: Measuring the model-free implied volatility of the market. This index is

known as the “fear gauge” of investors. The historical data can be found in the

Chicago Board Options Exchange’s website.

2. Short-term liquidity spread: Measuring short-term liquidity risk by the differ-

ence between the 3-month treasury repo rate and the 3-month treasury bill rate.

The repo data is from the Bloomberg database and the treasury bill rate data is

from the Federal Reserve Board H.15.

3. The daily change in the 3-month treasury bill rate: AB find that the changes have

better explanatory power than the levels for the negative tail behavior of asset returns.

4. The change in the slope of the yield curve: The slope is defined by the difference

of the 10-year treasury rate and the 3-month treasury bill rate.

5. The change in the credit spread between 10 years BAA-rated bonds and the

10 years treasury rate.

6. The daily Dow Jones U.S. Real Estate index returns: The index reflects the

information of lease rates, vacancies, property development, and transactions of

real estates in the USA.

7. The daily S&P500 index returns: The approximate of the theoretical market

portfolio returns.

The variables 3, 4, 5 are from the Federal Reserve Board H.15 and the data of

6 and 7 are from Yahoo Finance.

First we conduct a statistical check of the linearity between GS return and the

market variables using the confidence band as constructed in Appendix 2. As shown

in Fig. 54.2, except for some ignorable outsiders, the linear quantile regression line

lies in the LLQR asymptotic confidence band.

On the other hand, there is nonlinearity between two individual assets Xi and Xj.

To illustrate this, we regress Xj on Mt, and then take the residuals and regress them

on Xi. Again the Xj,t is GS daily return and Xi is C daily return. The result is shown

in Fig. 54.3. The linear QR line (red) lies well outside the LLQR confidence band

(magenta) when the C return is negative. The linear quantile regression line is fairly

flat. The risk of using a linear model is obvious in this figure: The linear regression

can “average out” the humped relation of the underlying structure (blue), and

therefore imply a model risk in estimation.

Based on the results of the linearity tests above, we construct a PLM model:

Xi, t ¼ ai þ gΤi Mt�1 þ ei, t, (54.7)

Xj, t ¼ âjji þb̂
Τ
jjiMt�1 þ ljji Xi, t

� �þ ej, t, (54.8)

where Xi,t, Xj,t are asset returns of i, j firms.Mt is a vector of market variables at time

t as introduced before. If i ¼ S&P500, Mt is set to consist of the first 6 market

variables only. Notice the variable Xi,t enter the Eq. 54.8 nonlinearly.

54 Quantile Regression in Risk Calibration 1473



Applying the algorithm of Koenker and Bassett (1978) to Eq. 54.7 and the

process described in Appendix 3 to Eq. 54.8, we get âi; ĝif g and âjji, b̂i, l̂ �ð Þ
n o

with F�1
ei, t tjMt�1ð Þ ¼ 0 for Eq. 54.7 and F�1

ei, t tjMt�1,Xi, t
� � ¼ 0 for Eq. 54.8. Finally,

we estimate the PLM CoVaRjji,t by

0.1 0.3 0.5 0.7

−0.3

0.0

0.2

VIX

−1.5 −1.0 −0.5 0.0 0.5

−0.4

0.0

Liquidity Spread

−0.5 0.0 0.5

−0.3

0.0

0.2

Change in yields of 3 mon. TB

0.00 0.01 0.02 0.03 0.04

−0.2

0.0

0.2

Slope of yield curve

−0.001 0.001 0.003

−0.3

0.0

0.2

Credit Spread

−0.05 0.00 0.05 0.10

−0.3

0.0

0.2

S&P500 Index Returns

−0.2 −0.1 0.0 0.1 0.2

−0.2

0.0

0.2

DJUSRE Index Returns

Fig. 54.2 The scatter plots of GS daily returns to the seven market variables with the LLQR

curves. The bandwidths are selected by the method described in Appendix 1. The LLQR band-

widths are 0.1101, 0.1668, 0.2449, 0.0053, 0.0088, 0.0295 and 0.0569. The data period is from

August 4, 2006, to August 4, 2011. N ¼ 1260. t ¼ 0.05

1474 S.-K. Chao et al.



dVaRi, t ¼ âi þ ĝΤi Mt�1, (54.9)

dCoVaRPLM

jji, t ¼ êajji þ êb
Τ

j Mt�1 þ l̂ jji dVaRi, t

� �
: (54.10)

54.2.2 Backtesting

The goal of the backtesting procedure is to check if the VaR/CoVaR is accurate

enough so that managerial decisions can be made based on them. The VaR forecast

is a (one-sided) interval forecast. If the VaR algorithm is correct, then the violations

should be unpredictable, after using all the past information. Formally, if we define

the violation time series as

It ¼ 1, if Xt < dVaRt
t ;

0, otherwise:

�

where dVaRt
t can be replaced by dCoVaRt

t in the case of CoVaR. It should form

a sequence of martingale difference.

There is a large literature on martingale difference tests. We adopt

Ljung-Box test, Lobato test, and the CaViaR test. The Ljung-Box test and Lobato

test aim to check whether the time series is autocorrelated. If the time series is

autocorrelated, then we reject of course the hypothesis that the time series is a

martingale difference.

Particularly, let r̂k be the estimated autocorrelation of lag k of the sequence

of violation {It} and n be the length of the time series. The Ljung-Box test

statistics is

−0.15 −0.10 −0.05 0.00 0.05 0.10

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Fig. 54.3 The nonparametric part l̂GSjC �ð Þ of the PLM estimation. The y-axis is the GS daily

returns. The x-axis is the C daily returns. The blue curve is the LLQR quantile curve. The red line
is the linear parametric quantile line. The magenta dashed curves are the asymptotic confidence

band with significance level 0.05. The data is from June 25, 2008, to December 23, 2009.

378 observations. Bandwidth ¼ 0.1255. t ¼ 0.05
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LB mð Þ ¼ n nþ 2ð Þ
Xm
k¼1

r̂2
k

n� k
!L w mð Þ, (54.11)

as n ! 1.

This test is too strong though in the sense that the asymptotic distribution is

derived based on the i.i.d. assumption. A modified Box-Pierce test is proposed by

Lobato et al. (2001), who also consider the test of no autocorrelation, but their test

is more robust to the correlation of higher (greater than the first) moments.

(Autocorrelation in higher moments does not contradict with the martingale differ-

ence hypothesis.) The test statistics is given by

L mð Þ ¼ n
Xm
k¼1

r̂2
k

v̂kk
!L w mð Þ,

as n ! 1, where

v̂kk ¼
1
n

Xn�k

i¼1
yi � yð Þ2 yiþk � y

� �2

1
N

Xn

i¼1
yi � yð Þ2

n o2
:

The CaViaR test, proposed by Berkowitz et al. (2011), is based on the idea that if

the sequence of violation is a martingale difference, there ought to be no correlation

between any function of the past variables and the current violation. One way to test

this uncorrelatedness is through a linear model. The model is

It ¼ aþ b1It�1 þ b2VaRt þ ut,

where VaRt can be replaced by CoVaRt in the case of conditional VaR. The residual

ut follows a Logistic distribution since It is binary. We get the estimates of the

coefficients b̂1; b̂2

� �Τ
. Therefore, the null hypothesis is b̂1 ¼ b̂2 ¼ 0 . This

hypothesis can be tested by Wald’s test.

We set m ¼ 1 or 5 for the Ljung-Box and Lobato tests. For the CaViaR test, two

data periods are considered separately. The first is the overall data from August

4, 2006, to August 4, 2011. The second is the data from August 4, 2008, to August

4, 2009, the period when the financial market reached its bottom. By separately

testing the two periods, we can gain more insights into the PLM model.

54.2.3 Risk Contribution Measure

The risk contribution of one firm to the market is one of the top concerns among

central bankers. The regulator can restrict the risky behaviors of the financial

institution with high-risk contribution to the market, and reduce the

institution’s incentive to take more risk. AB propose the idea of DCoVaR, which
is defined by
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DCoVaRt
jji, t ¼ CoVaRt

jji, t � CoVaR0:5
jji, t: (54.12)

where CoVaRjji,t
t is defined as in the introduction. j, i represent the financial system

and an individual asset. t ¼ 0.5 corresponds to the normal state of the individual

asset i. This is essentially a sensitivity measure quantifying the effect to the

financial system from the occurrence of a tail event of asset Xi.

In this study, we adopt a mathematically intuitive way to measure the marginal

effect by searching the first order derivative of the quantile function. Because the

spillover effect from stock market to stock market has already got much attention, it

is important to investigate the risk contribution of a local market to the global stock

market. The estimation is conducted as follows:

First, one estimates the following model nonparametrically:

Xj, t ¼ f 0:05j Xtð Þ þ ej, (54.13)

The quantile function fj
0.05(�) is estimated with local linear quantile regression

with t¼ 0.05, described with more details in Appendix 1. Xj is the weekly return of

the stock index of an individual country and X is the weekly return of the global

stock market.

Second, with f̂
0:05

j �ð Þ, we compute the “marginal contribution of risk” (MCR) of

institution j by

MCRt
j ¼

@ f̂
0:05

j xð Þ
@x

������x ¼ F̂
�1

x tkð Þ, (54.14)

where F̂
�1

tkð Þ is a consistent estimator of the tk quantile of the global market return,

and it can be estimated by regressing Xt on the time trend. We put k ¼ 1, 2 with

t1 ¼ 0.5 and t2 ¼ 0.05. The quantity Eq. 54.14 is similar to the MES proposed by

Acharya et al. (2010) in the sense that the conditioned event belongs to the

information set of the market return, but we reformulate it in the VaR framework

instead of the expected shortfall framework.

There are some properties of the MCR to be described further. First, tk deter-
mines the condition of the global stock market. This allows us to explore the risk

contribution from the index j to the global market, given different global market

status. Second, the higher the value of MCR, the more risk factor j imposes on the

market in terms of risk. Third, since the function fj
0.05(�) is estimated by LLQR, the

quantile curve is locally linear, and therefore, the local first order derivative is

straightforward to compute.

We choose indices j¼ S&P500, NIKKEI225, FTSE100, DAX30, CAC40, Hang

Seng as the approximate of the market returns of each developed country or market.

The global market is approximated by the MSCI World (developed countries)

market index. The data is weekly from April 11, 2004, to April 11, 2011, and

t ¼ 0.05.
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54.3 Results

54.3.1 CoVaR Estimation

The estimation results of VaR/CoVaR are shown in this section. We compute three

types of VaR/CoVaR of GS, with a moving window size of 126 business days and

t ¼ 0.05.

First, the VaR of GS is estimated using linear quantile regression:

dVaRGS, t ¼ âGSþĝΤGSMt�1, (54.15)

Mt 2 ℝ7 is introduced in Sect. 54.2.1.

Second, the CoVaR of GS given C returns is estimated:

dVaRC, t ¼ âCþĝΤCMt�1; (54.16)

dCoVaRAB
GSjC, t ¼ âGSjC þ b̂GSjCdVaRC, t þ ĝΤGSjCMt�1: (54.17)

If the SP replaces C, the estimates are generated from

dVaRSP, t ¼ âSP þ ĝΤSP eMt�1; (54.18)

dCoVaRAB
GSjSP, t ¼ âGSjSP þ b̂GSjSPdVaRSP, t þ ĝΤGSjSP eMt�1, (54.19)

where eMt 2 ℝ6 is the vector of market variables without the market portfolio return.

Third, the PLM CoVaR is generated:

dVaRC, t ¼ âC þ ĝΤCMt�1; (54.20)

dCoVaRPLM
GSjC, t ¼ êaGSjC þ êb

Τ

GSjCMt�1 þ l̂GSjC dVaRC, t

� �
: (54.21)

If SP replaces C:

dVaRSP, t ¼ âSP þ ĝΤSP eMt�1; (54.22)

dCoVaRPLM
GSjSP, t ¼ êaGSjSP þ êb

Τ

GSjSP eMt�1 þ l̂GSjSP dVaRSP, t

� �
: (54.23)

The coefficients in Eqs. 54.15–54.20, and 54.22 are estimated from the linear

quantile regression and those in Eqs. 54.21 and 54.23 are estimated from the

method described in Appendix 3.

Figure 54.4 shows the dVaRGS, t sequence. The VaR forecasts (red) seem to form

a lower cover of the GS returns (blue). This suggests that the market variables Mt
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have some predictive power for the left tail quantile of the GS return distribution.

Figure 54.5 shows the sequences dCoVaRAB
GSjSP, t (cyan) and dCoVaRPLM

GSjC, t (light

green). As the time series of the estimates is too volatile, we smooth it further by the

median LLQR. The two estimates are similar as the market state is stable, but

during the period of financial instability (from mid-2008 to mid-2009), the two

estimates have different behavior. The performances of these estimates are

evaluated by backtesting procedure in Sect. 54.3.2.

Table 54.1 shows the summary statistics of the VaR/CoVaR estimates. The first

three rows show the summary statistics of dVaRGS, t , dVaRC, t , and dVaRSP, t . The

dVaRGS, t has lower mean and higher standard deviation than the other two. Partic-

ularly during 2008–2009, the standard deviation of the GS VaR is twice as much as

the other two. The mean and standard deviation of the dVaRC, t and dVaRSP, t
are rather similar. The last four rows show the summary statistics of dCoVaRPLM

GSjC, t,

2007 2008 2009 2010 2011

−0.2

0.0

0.2Fig. 54.4 The dVaRGS, t. The

red line is the dVaRGS, t and

blue stars are daily returns of

GS. The dark green curve is
the median smoother of the

dVaRGS, t curve with h ¼ 2.75.

t ¼ 0.05. The window size is

252 days

2007 2008 2009 2010 2011

−0.2

0.0

0.2

Fig. 54.5 The CoVaR of GS given the VaR of C. The gray dotsmark the daily returns of GS. The

light green dashed curve is the dCoVaRPLM
GSjC, t. The dark blue curve is the median LLQR smoother of

the light green dashed curve with h¼ 3.19. The cyan dashed curve is the dCoVaRAB
GSjC, t. The purple

curve is the median LLQR smoother of the cyan dashed curve with h ¼ 3.90. The red curve is the
dVaRGS, t. t ¼ 0.05. The moving window size is 126 days
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dCoVaRAB
GSjC, t , dCoVaRPLM

GSjSP, t , and dCoVaRAB
GSjSP, t . This shows that the CoVaR

obtaining from the AB model has smaller mean and greater standard deviation

than the CoVaR obtaining from PLM model.

Figure 54.6 shows the bandwidth sequence of the nonparametric part of the

PLM estimation. The bandwidth varies with time. Before mid-2007, the bandwidth

sequence is stably jumping around 0.2. After that the sequence becomes very

volatile. This may have something to do with the rising systemic risk.

54.3.2 Backtesting

For the evaluation of the CoVaR models, we resort to the backtesting procedure

described in Sect. 54.2.2. In order to perform the backtesting procedure,

the sequences {It} (defined in Sect. 54.2.2) have to be computed for all

VaR/CoVaR estimates. Figure 54.7 shows the timings of the violations

{t : It ¼ 1} of dCoVaRPLM
GSjC, t, dCoVaRAB

GSjC, t and dVaRGS, t. This figure shows the total

number of violations of PLM CoVaR and CoVaR is similar, whiledVaRGS, t has more

violations than the both. The dVaRGS, t has a few clusters of violations in both

financial stable and unstable periods. This may result from the failure dVaRGS, t to

adapt for the negative shocks. The violations of dCoVaRPLM
GSjC, t are more evenly

distributed. The violations of dCoVaRAB
GSjC, t have large clusters during financially

stable period, while the violation during financial crisis period is meager. This

contrast suggests that dCoVaRAB
GSjC, t tend to overreact, as it is slack during the stable

period but is too tight during the unstable period.

Figure 54.8 shows the timings of the violations {t : It ¼ 1} of dCoVaRPLM
GSjSP, t ,

dCoVaRAB
GSjSP, t, and dVaRGS, t. The overall number of violations of dCoVaRPLM

GSjSP, t is
more than that of dVaRGS, t , and it has many clusters. dCoVaRPLM

GSjSP, t behaves

differently from dCoVaRPLM
GSjC, t. The SP may not be more informative than C, though

Table 54.1 VaR/CoVaR summary statistics. The overall period is from August 4, 2006, to

August 4, 2011. The crisis period is from August 4, 2008, to August 4, 2009. The numbers in

the table are scaled up by 102

mean-overall sd-overall mean-crisis sd-crisis

dVaRGS, t �3.66 3.08 �7.43 4.76

dVaRC, t �2.63 1.67 �4.62 2.25

dVaRSP, t �2.09 1.57 �3.88 2.24

dCoVaRPLM
GSjC, t �4.26 3.84 �8.79 5.97

dCoVaRAB
GSjC, t �4.60 4.30 �10.36 6.32

dCoVaRPLM
GSjSP, t �3.86 3.30 �8.20 4.69

dCoVaRAB
GSjSP, t �5.81 4.56 �12.65 5.56
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the efficient market hypothesis suggests so. The violation of dCoVaRAB
GSjSP, t is fewer

than the other two measures, and the clustering is not significant.

The backtesting procedure is performed separately for each sequence of {It}.Thenull
hypothesis is that each sequence of {It} forms a series of martingale difference. Six

different tests areappliedforeach{It}:Ljung-Box testswith lags1and5,Lobato testwith
lags 1 and 5, and finally the CaViaR test with two data periods: overall and crisis period.

The result is shown in Table 54.2. First, in Panel 1 of Table 54.2, the dVaRGS, t is

rejected by the LB(5) test and the two CaViaR tests. This shows that a linear

quantile regression on the seven market variables may not give accurate estimates,

in the sense that the violation {It} of dVaRGS, t does not form a martingale sequence.

Next we turn to the dCoVaRAB
GSjSP, t and dCoVaRPLM

GSjSP, t. In Panel 2, the low p-values of
the two CaViaR tests show that both the AB model and PLM model conditioned on

SP are rejected, though the p-value of the AB model almost reaches the 5 %

significant level. In particular, the dCoVaRPLM
GSjSP, t is rejected by the L(5) and LB

(5) tests. Both the parametric and semiparametric models fail with this choice of

variable. This suggests that the market return does not provide enough information

in risk measurement.

We therefore need more informative variables. Panel 3 of Table 54.2 illustrates

this by using C daily returns, which may contain information not revealed in the

2007 2008 2009 2010 2011

Fig. 54.7 The timings of

violations {t : It ¼ 1}. The top
circles are the violations of
the dCoVaRPLM

GSjC, t, totally
95 violations. The middle
squares are the violations of
dCoVaRAB

GSjC, t, totally
98 violations. The bottom
stars are the violations of
dVaRGS, t, totally

109 violations. Overall data

N ¼ 1260

2007 2008 2009 2010 2011

0.1

0.4

Fig. 54.6 LLQR bandwidth in the daily estimation of ^CoVaRPLM
GSjC, t . The average bandwidth is

0.24
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market and improve the performance of the estimates. The dCoVaRAB
GSjC, t is rejected

by the two CaViaR tests and the LB(1) test with 0.1 % and 5 % significant level.

However, dCoVaRPLM
GSjC, t is not rejected by the CaViaR-crisis test. This implies that

the nonparametric part in the PLM model captures the nonlinear effect of C returns

to GS returns, which can lead to better risk-measuring performance.

54.3.3 Global Risk Contribution

In this section, we present the MCR (defined in Sect. 54.2.3), which measures the

marginal risk contribution of risk factors. We choose t1 ¼ 0.5, associated to the

Table 54.2 Goldman Sachs VaR/CoVaR backtesting p-values. The overall period is from August

4, 2006, to August 4, 2011. The crisis period is from August 4, 2008, to August 4, 2009. LB(1) and

LB(5) are the Ljung-Box tests of lags 1 and 5. L(1) and L(5) are the Lobato tests of lags 1 and

5. CaViaR-overall and CaViaR-crisis are two CaViaR tests described in Sect. 2.2 applied on the

two data periods

Measure LB(1) LB(5) L(1) L(5) CaViaR-overall CaViaR-crisis

Panel 1

dVaRGS, t 0.3449 0.0253* 0.3931 0.1310 1.265 � 10�6*** 0.0024**

Panel 2

dCoVaRAB
GSjSP, t 0.0869 0.2059 0.2684 0.6586 8.716 � 10�7*** 0.0424*

dCoVaRPLM
GSjSP, t 0.0518 0.0006*** 0.0999 0.0117* 2.2 � 10�16*** 0.0019**

Panel 3

dCoVaRAB
GSjC, t 0.0489* 0.2143 0.1201 0.4335 3.378 � 10�9*** 0.0001***

dCoVaRPLM
GSjC, t 0.8109 0.0251* 0.8162 0.2306 2.946 � 10�9*** 0.0535

*, ** and *** denote significance at the 5 %, 1 % and 0.1 % levels

2007 2008 2009 2010 2011

Fig. 54.8 The timings of

violations {t : It ¼ 1}. The top
circles are the violations of
dCoVaRPLM

GSjSP, t, totally
123 violations. The middle
squares are the violations of
dCoVaRAB

GSjSP, t, totally
39 violations. The bottom
stars are the violations of
dVaRGS, t, totally

109 violations. Overall data

N ¼ 1,260
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normal (median) state and t2 ¼ 0.05, associated to an negative extreme state.

Figure 54.9 shows the MCRt1
j from local markets j to the global market. When

the MSCI World is at its normal state, the Hang Seng index in normal times

contributes the most risk to the MSCI World at all times. The NIKKEI225 places

second; the contribution from S&P500 varies most with the time; the risk contri-

bution from DAX30 is nearly zero. The contributions from CAC40 and FTSE100

are negative.

Assuming that the MSCI World is at its bad state (t2 ¼ 0.05), theMCRt2
j differs

from MCRt1
j , see Fig. 54.10. One sees that the S&P500 imposes more pressure on

the world economy than the other countries, especially during the financial crisis of

2008 and 2009. The contribution from Hang Seng is no longer of the same

significance. The three European markets are relatively stable.

This analysis suggests that the risk contribution from individual stock market

varies a lot with the state of global economy.

2005 2006 2007 2008 2009 2010 2011

−0.2

0.0

0.2

0.4

0.6

Fig. 54.9 The MCRt1
j ,

t ¼ 0.5. j:CAC, FTSE, DAX,
Hang Seng, S&P500 and

NIKKEI225. The global

market return is approximated

by MSCI World

2005 2006 2007 2008 2009 2010 2011

0.0

0.5

1.0

1.5

Fig. 54.10 The MCRt2
j ,

t ¼ 0.05. j:CAC, FTSE,
DAX, Hang Seng, S&P500

and NIKKEI225. The global

market return is approximated

by MSCI World
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54.4 Conclusion

In this study, we construct a PLM model for the CoVaR, and we compare it to the

AB model by backtesting. Results show that PLM CoVaR is preferable, especially

during a crisis period. The study of the MCR reveals the fact that the risk from each

country can vary with the state of global economy.

As an illustration, we only study the Goldman Sachs conditional VaR with

Citigroup and S&P500 as conditioned risk sources. In practice, we need to choose

variables. In Hautsch et al. (2011), the Least Absolute Shrinkage and Selection

Operator (LASSO) techniques are used to determine the most relevant systemic risk

sources from a pool of financial institutions. A VAR (Vector Autoregression) model

may be also suitable for capturing the asset dynamics, but the estimation may be

more involved. We may include other firm-specific variables such as corporate

bond yields as these variables can bear other information which is not included in

the stock returns or stock indices.

Appendix 1: Local Linear Quantile Regression (LLQR)

Let {(Xi,Yi)}i ¼ 1
n �ℝ2 be independently and identically distributed (i.i.d.) bivariate

random variables. Denote by FY|x(u) the conditional cumulative distribution func-

tion (cdf) and l(x) ¼ FY|x
�1(t) the conditional quantile curve to level t, given

observations {(xi, yi)}i ¼ 1
n , one may write this as

yi ¼ l xið Þ þ ei,

with Fe|x
�1(t) ¼ 0. A locally linear kernel quantile estimator (LLQR) is estimated as

l̂ x0ð Þ ¼ â0 from:

â0; b̂0
� � ¼ argmin

a0, b0f g

Xn
i¼1

K
xi � x0

h

� �
(54.24)

rt yi � a0 � b0 xi � x0ð Þf g, (54.25)

where h is the bandwidth, K(·) is a kernel, and rt(·) is the check function given by

rt uð Þ ¼ t� 1 u<0f g
� �

u (54.26)

Figure 54.11 illustrates the check functions. Different loss functions give differ-

ent estimates. u2 corresponds to the conditional mean. rt(u) corresponds to the

conditional tth quantile.

It is shown by Fan et al. (1994) that the locally linear kernel estimator is asymptot-

ically efficient in a minimax sense. It also possesses good finite sampling

property which is adaptive to a variety of empirical density g(x) and has good boundary
property.
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Next, we describe the method to compute the bandwidths. The approach used

here follows Yu and Jones (1998). The bandwidth is chosen by

ht ¼ hmean t 1� tð Þ’ F�1 tð Þ� 	�2
h i1=5

, (54.27)

where hmean is the locally linear mean regression bandwidth, which can be com-

puted by the algorithm described in Ruppert and Wand (1995) or Ruppert

et al. (1995). ’(·) and F(·) are the pdf and cdf of the standard normal distribution.

Since we discuss the case for VaR, t is usually small. ht needs to be enlarged to

allow for more smoothing (usually taking 1.5ht or 2ht).
The approach is acceptable but not so flexible, because it is based on assuming the

quantile functions are parallel. A more flexible approach was developed by Spokoiny

et al. (2011). In order to stabilize the bandwidth choice, we first regress yi on the rank
of the corresponding xi and then rescale the resulted estimated values to the original

x space. Carroll and Hardle (1989) show that this local bandwidth estimator and the

global bandwidth estimator are asymptotically equivalent.

Appendix 2: Confidence Band for Nonparametric Quantile
Estimator

The uniform confidence band of the quantile estimator is based on the Theorem 2.2

and Corollary 2.1 presented in Hardle and Song (2010). The details are as follows.

−2 −1 0 1 2

0.0

0.5

1.0

1.5
Fig. 54.11 This figure

presents the check function.

The dotted line is u2. The
dashed and solid lines are
check functions rt(u) with
t ¼ 0.5 and 0.9 respectively
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Let {(Xi,Yi)}i ¼ 1
n be as in Appendix 1. Define Kh(u) ¼ h�1 K(u/h) and similar to

Eq. 54.25 let ln(x) and l(x) are zeros (w.r.t. y) of the functions:

eHn y; xð Þ ¼def n�1
Xn
i¼1

Kh x� Xið Þrt Yi � yð Þ;

eH y; xð Þ ¼def
ð

ℝ
f x; yð Þrt y� yð Þdy,

where rt(·) is the check function defined as Eq. 54.26.

Theorem 1 Let h ¼ n�d, 1
5
< d < 1

3
, l(K) ¼ Ð

� A
A K2(u)du, where K(·) is

supported on [�A, A]. J ¼ [0, 1]. Define c1(K) ¼ {K2(A) + K2(�A)}/2l(K), c2(K) ¼Ð
� A
A {K0(u)}2du/2l(K) and

dn ¼
2d lognð Þ1=2 þ ð2d logn��1=2 log c1 Kð Þf g

p1=2


 	þ 1
2
logdþ loglognf g�,

if c1ðK
�
> 0;

2d lognð Þ1=2 þ ð2d logn��1=2log c2 Kð Þf g
2p g, otherwise:

8>><
>>:

Then

P 2d lognð Þ1=2 sup
x2J

r xð Þ ln xð Þ � l xð Þj j
l Kð Þ1=2

� dn

( )
< z

" #

! exp �2exp �zð Þf g,

as n ! 1, with

r xð Þ ¼ nhð Þ1=2f l xð Þjxf g f X xð Þ=t 1� tð Þf g1=2,

where fX(·) is the marginal pdf for X and f(·|x) is the conditional pdf of Y on X ¼ x.
The corollary followed by the theorem explicitly indicates how a uniform

confidence interval can be constructed.

Corollary 1 An approximate (1 � a) � 100 % confidence band is

ln 	 nhð Þ�1=2 t 1� tð Þl Kð Þ=f̂ X tð Þ
n o1=2

f̂
�1

lðt�� ��t g � dn þ c að Þð2d logn��1=2
n o

,

where c(a) ¼ log 2 � log|log(1 � a)| and f̂ X tð Þ, f̂ l tð Þjtf g are consistent estimates
for fX(t), f{l(t)|t}.
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Figure 54.1 is done by the techniques introduced in Appendices 1 and 2. Another

illustration with right tail quantiles is in Fig. 54.12. We plot the LLQR curve for 0.9

and 0.95 quantile. Both the two linear quantile regression lines lie outside the LLQR

confidence band as the Citigroup returns are positive.

Appendix 3: PLM Model Estimation

For the PLM estimation, we adopt the algorithm described in Song et al. (2012).

Given data {(Xt,Yn)}n ¼ 1
T bivariate and {Mt}n ¼ 1

T multivariate random variables.

The PLM is:

Yt ¼ aþ bΤMt�1 þ l Xtð Þ þ et:

Let an denote an increasing sequence of positive integers and set bn ¼ an
�1.

For given n, dividing the interval [0, 1] into an subintervals Int, t ¼ 1,. . ., an with
equal length bn. On each Int, l(·) can approximately be taken as a constant.

The PLM estimation procedure is:

1. Inside each partition Int, a linear quantile regression is performed to get b̂i, then

their weighted mean gives b̂. Formally, let rt(·) be the check function defined as
Eq. 54.26, l1, . . . , lan are constants,

0.0 0.5

0.0

0.5

0.0 0.5

0.0

0.5

Fig. 54.12 GS and C weekly returns 0.90(left) and 0.95(right) quantile functions. The y-axis is
GS daily returns and the x-axis is the C daily returns. The blue curves are the LLQR curves (see

Appendix 1). The LLQR bandwidths are 0.0942 and 0.1026. The red lines are the linear parametric

quantile regression line. The antique white curves are the asymptotic confidence band (see

Appendix 2) with significance level 0.05. N ¼ 546
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b̂ ¼ argmin
b

min
l1, ..., lan

Xn
t¼1

rt Xj, t � a� bTMt�1�
Xan
m¼1

lm1 Xi, t 2 Int
� �

)(

2. Computing the LLQR nonparametric quantile estimates of l(·) as outlined in

Appendix 1 from Xi, t,Xj, t � â � b̂
Τ
Mt�1

� �n on

t¼1
.
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Abstract

We explore via simulations the impacts of managerial overconfidence on the

optimal strike prices of executive incentive options. Although it has been shown

that, optimally, managerial incentive options should be awarded in-the-money,

in practice most firms award them at-the-money. We show that the optimal strike

prices of options granted to overconfident executive are directly related to their

overconfidence level and that this bias brings the optimal strike prices closer to

the institutionally prevalent at-the-money prices. Our results thus support the

viability of the common practice of awarding managers with at-the-money

incentive options. We also show that overoptimistic CEOs receive lower com-

pensation than their realistic counterparts and that the stockholders benefit from
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their managers bias. The combined welfare of the firm’s stakeholders is, how-

ever, positively related to managerial overconfidence.

The Monte Carlo simulation procedure described in Sect. 55.3 uses

a Mathematica program to find the optimal effort by managers and the optimal

(for stockholders) contract parameters. An expanded discussion of the simula-

tions, including the choice of the functional forms and the calibration of the

parameters, is provided in Appendix 1.

Keywords

Overconfidence • Managerial effort • Incentive options • Strike price • Simula-

tions • Behavioral finance • Executive compensation schemes • Mathematica

optimization • Risk aversion • Effort aversion

55.1 Introduction

The optimal structure of executive compensation has intrigued academic researchers

as well as practitioners for a long time. Most principal-agent models dealing with this

issue yield rather complex payment schedules, making it quite challenging to test

their predictions. In practice there is a widespread use of simple compensation

schemes such as linear or piecewise linear (stock option) contracts. An important

question that arises in this case is what are the optimal parameters for these simple

schemes? In particular what are the optimal strike prices for incentive option

schemes? Unfortunately, this important issue has received only little attention.

Institutional and tax factors could be to blame for this neglect. Before the 2006

changes in the US tax rules, the “intrinsic value” of executive options was taxed, and

this discouraged firms from granting their executives in-the-money options. Granting

out-of-the-money options seemed unfair and there is no empirical or theoretical

evidence for advantages to such practice (Mahajan 2002). Indeed, only a very

small fraction of firms used such strike prices.1 The virtual monopoly of at-the-money

strike prices, their institutional appeal, or some other unknown factors might have

discouraged academics from studying the merits and demerits of this practice.

In their landmark paper, Hall and Murphy (2000, 2002) attribute the pervasive-

ness of granting at-the-money options to their property of being the most sensitive

to changes in the stock price. Palmon et al. (2008), however, have shown that

issuing the most sensitive options is not necessarily optimal when managers are risk

and effort averse.2 Within a model explicitly considering the choice of the contract

parameters by stockholders and the resulting effort chosen by risk-averse and

effort-averse managers, they show for a wide range of parameters that well describe

1According to Mahajan (2002), less than 1 % of firms used out-of-the-money strike prices.

Furthermore, in his study firms did not benefit from awarding such options to their managers.
2Hall and Murphy (2000) did not show that at-the-money strike prices are optimal, just that they

possess the highest sensitivity to stock prices. They did not assume effort aversion by managers

either.
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managers’ risk and effort aversion, that in-the-money options provide are optimal.

Such options provide managers a better risk-return trade-off and ultimately consti-

tute a better form of compensation than either out-of-the-money or at-the-money

options.3 Palmon et al. further argue that the asymmetric tax treatment of options

under the old (prior to 2006) tax system, which penalized the issuance of

in-the-money options, may have driven firms to use at-the-money options.

Whereas most studies of the issue of optimal incentive contracts assumed

that managers as well as stockholders are rational, there exists extensive literature

that documents that managers often are overconfident. Of the few studies that

explore the effect of cognitive biases on managerial compensation, none however

explores the effect of overconfidence on the optimal strike prices for the incentive

options. Gervais et al. (2011) investigate the optimal form of managerial

compensation under overconfidence but define overconfidence in the sense of

too-high-precision-of-estimates (calibration), and the managers in their model

exert effort to obtain better information on the investment parameters. There is an

abundant literature however that indicates the pervasiveness of overconfidence in

the optimism or “better than average” sense rather than in the calibration interpre-

tation (see, e.g., Malmendier and Tate 2005a, b, 2008; Roll 1986; Suntheim 2012).4

Oyer and Schaefer (2005) and Bergman and Jenter (2007) also consider the effect of

optimism, and other sentiments, on managerial compensation, but they do not

consider the effect of these sentiments on the optimal strike prices or on the

managers’ effort.

In this paper we investigate the hitherto unexplored question of the effect of

overconfidence on the optimal strike prices for risk-averse and effort-averse man-

agers. We show that overconfidence leads to higher optimal strike prices of

managerial incentive schemes, and that awarding overconfident CEOs at-the-

money options mitigates the stockholders’ vs. managers’ agency problem, leading

to higher managers’ productivity. Our results thus provide support for the viability

of the ubiquitous yet seemingly unoptimal practice of awarding CEOs with

at-the-money incentive options.

Whereas the main focus of the paper is the interaction between overconfidence

and the strike prices of managerial incentive options, it also sheds light on the effect

of overconfidence on the firm’s stakeholders (stockholders and managers). We

predict, as empirically shown by Otto (2011), that overoptimistic CEOs receive

lower compensation than their realistic counterparts. However, the stockholders

benefit from their managers bias since they pay less and enjoy the productivity of

the higher effort the overconfident manager exerts. We construct a measure of the

combined welfare of managers and stockholders and demonstrate that it is

3Dittman et al. (2010) found that for a range of parameterizations, a principal-agent model with

loss-averse agents generates convex compensation contract but did not investigate the parameters

of the options to be used in the compensation package. Recently, however, Dittman and Yu (2011)

found that in-the-money options are optimal.
4Glaser and Weber (2007) note that only overconfidence in the better than average sense affects

trading.
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positively related to managerial overconfidence, a result helping explain the per-

sistence of this bias.5

The paper is constructed as follows. In Sect. 55.2 we present the model. In

Sect. 55.3 we explain the simulation method, and in Sect. 55.4 we present the

simulations’ results. Section 55.5 concludes.

55.2 Overconfidence and the Optimal Exercise Prices of
Executive Incentive Options

We consider a one-period Holmstrom (1979)-type model where a risk-neutral firm

employs an overconfident, risk-averse, and effort-averse manager.6 The cash

flows, X, of the firm depend on the manager’s effort and on exogenous stochastic

factors. The manager is assumed to provide some effort which is the minimum

necessary to run the firm and hence may be considered observable, but can provide

also unobservable extra effort. The more extra effort the manager exerts, the higher

will be the expected cash flows. Because stockholders cannot observe managers’

extra effort, managerial compensation may depend on the firm’s cash flows (which

depend on effort), but cannot be determined directly based on extra effort.

We assume that the cash flows of the firm, X, are lognormally distributed with

the following distribution function:

f Xð Þ ¼ exp �0:5 log Xð Þ � m Yð Þ½ �=sf g2
n o

= Xs
ffiffiffiffiffiffi
2p

p� �
(55.1)

where Y denotes the managerial extra effort (a managerial choice variable) and

m(Y) and s denote, respectively, the mean and the standard deviation of the

underlying normal distribution of the natural logarithm of X. We assume that

managerial effort increases cash flows and that overconfident managers

overestimate the impact of their effort on cash flows. Formally, we use the follow-

ing specification:

m Yð Þ ¼ Ln m0 þ 500lYð Þ � s2=2, (55.2)

where l denotes the degree of overconfidence. We assume that stockholders have

realistic expectations, which are represented by l ¼ 1, and that managers use

l > 1 to form their expectations. Thus, f(X) can be written as f(X, l), where
f(X, l ¼ 1) represents the realistic cash flow distribution, while f(X, l > 1)

5Palmon and Venezia (2012) explore the effect of managerial overconfidence on the firm’s

stockholders and show that overconfidence may improve welfare. However, that study does not

investigate the optimal strike price of managerial incentive options.
6In our model we assume symmetry of information between the manager and the firm regarding

the distribution of cash flows of the firm except for the different view of the effect of the manager’s

effort on cash flows.
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represents the cash flow distribution as viewed by overconfident managers. For

notation brevity, we suppress the l in f(X, l). By the known properties of the

lognormal distribution, the mean and variance of X equal e m Yð Þþ0:5s2½ � and

e 2m Yð Þþs2½ � es
2 � 1

� �h i
, respectively. Thus, it follows from Eq. 55.2 that a person

with a l overconfidence measure believes that the mean of the cash flows X is

em Yð Þþ0:5s2 ¼ m0 þ 500lY and that their coefficient of variation is approximately s.7

Since managers and stockholders differ in their perception of the distributions of cash

flows, one must be careful in their use. In what follows we refer to the distribution of

cash flows as seen by stockholders as the realistic distribution, and will make a

special note whenever the manager’s overconfident beliefs are used.

Except for her overconfidence, the manager is assumed to be rational and to

choose her extra effort so as to maximize the expected value of the following utility

function which exhibits constant relative risk aversion (CRRA) with respect to

compensation:

U I;Yð Þ ¼ 1

1� g
NYb þ 1

1� g
I1�g (55.3)

In Eq. 55.3, I denotes the manager’s monetary income, g denotes the constant

relative risk aversion measure, N is a scaling constant representing the importance

of effort relative to monetary income in the manager’s preferences, and the positive

parameter b is related to the convexity of the disutility of effort.

Since stockholders cannot observe the manager’s extra effort, they propose

compensation schemes that depend on the observed cash flows, but not on

Y. Stockholders, which we assume to be risk neutral, strive to make the compen-

sation performance sensitive in order to better align the manager’s incentives with

their own. Stockholders offer the manager a compensation package that includes

two components: a fixed wage (W) that she will receive regardless of her extra

effort and of the resulting cash flows and options with a strike price (K) for

a fraction (s) of the equity of the firm. We assume that stockholders offer the

contract that maximizes the value of their equity.

The following timeline of decisions is assumed. At the beginning of the period,

the firm chooses the parameters of the compensation contract (K, W, and s) and

offers this contract to the manager. Observing the contract parameters, and taking

into account the effects of her endeavors on firm cash flows and hence on her

compensation, the manager determines the extra-effort level Y that maximizes her

expected utility. At the end of the period, X is revealed, and the firm distributes the

cash flows to the manager and to the stockholders and then dissolves. The priority of

payments is as follows. The firm first pays the wages or only part of them if the cash

flows do not suffice. If the cash flows exceed the wage, W, but not (K +W), then the

7More precisely the square of the coefficient of variation is es
2 � 1

h i
which can be approximated

by s2 since for any small z, ez�1 is close to z.
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managers just receive their fixed wage. The managers are paid the value of the

options s(X�K�W), in addition toW if X exceeds K +W. The manager therefore

receives the cash flows I(X) defined by

I xð Þ ¼
X

W

Wþ s X�W� Kð Þ

8<
:

9=
; when

X � W

W � X � Wþ K

Wþ K � X

8<
:

9=
; (55.4)

The shareholders get the residual cash flows.

In the above cash flow formula, the first range covers the case where cash flows

do not suffice to pay the entire wage. The second range covers the case where the

options expire out-of-the-money, and the manager gets the promised wage. The

third range represents cash flows that are large enough so that the options expire

in-the-money. In addition to the wage, the manager receives a proportion, s, of the

value of the firm above the threshold value of K. The expected utility of the

manager E{U[I(X),Y]} which governs her behavior, and her expected compensa-

tion E[I(X)], can be obtained by integrating her utility U[I(X),Y] given in Eq. 55.3

and her compensation I(X), given in Eq. 55.4, respectively. We note that the

manager chooses the effort level so as to maximize the expected utility using her

perception of the distribution of the firm’s final cash flows, while stockholders

choose the parameters of the compensation contract using the realistic cash flow

distribution to calculate the expected cash flows and managerial compensation.

Shareholders receive all cash flows that are not received by the manager. Since

stockholders are risk neutral and rational, stockholders’ equity value (SEV) is the

expected value of these payments, using the realistic distribution function, and

hence,8

SEV ¼ E Cashflowsð Þ � E I Xð Þ½ � ¼
ð1
0

Xf Xð ÞdX� E I Xð Þ½ � (55.5)

While the derivation of the optimal contract for any set of exogenous parameters

is conceptually straightforward, unfortunately, closed form solutions cannot be

obtained in our integrative model. Hence, following Hall and Murphy (2000), we

resort to simulations to evaluate the optimal contracts and analyze their properties.

In addition, we cannot use the Black-Scholes model to evaluate the executive stock

options since this model takes the values of the underlying asset as given, whereas

a crucial aspect of the managerial incentive scheme of our model is that managerial

extra effort and firm value are endogenously determined. We therefore introduce

a model that simultaneously simulates the manager’s optimal extra-effort level as

well as the expected values of the executive stock options and shareholders’ equity

8Discounting the cash flows by an appropriate risk-adjusted discount rate would yield a linear

transformation of equity values. To simplify the presentation, and as is common in the literature,

we abstract from that.
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for each compensation package. We check the robustness of our results by using

alternative parameters for the manager’s utility function and the distribution func-

tions of the cash flows.

55.3 The Simulation Procedures

We assume that managers have external employment opportunities and that stock-

holders offer managerial compensation packages that provide the managers with

a comparable expected utility.9 Without loss of generality (i.e., by an appropriate

definition of the wage units), we assume that these external employment opportu-

nities provide the manager an expected utility that equals the level of utility that is

obtained from a fixed compensation of 100 in the absence of any extra effort. Thus,

in all the simulations, we set the manager’s expected utility to correspond to the

level obtained from a fixed compensation of 100 (wage¼ 100 and no option grants)

and no extra effort (which is the optimal extra-effort choice when no options are

granted).10 We then search over a grid of strike prices (using four-digit accuracy)

and find for each strike price the percentage of options that should be awarded so

that the manager’s expected utility equals the expected utility target when the

manager chooses the optimal extra-effort level. We identify the strike price that

is associated with the highest equity level and refer to this contract as the optimal

contract for the given set of parameters.

In calibrating the other parameters for the simulations, we try to approximately

conform to Hall and Murphy (2000) and Hall and Liebman (1998); to studies that

simulate decisions with effort aversion, such as Bitler et al. (2005); and to studies that

explore the effect of overconfidence on corporate decisions, such as Malmendier and

Tate (2005a, b, 2008).11 Accordingly, we set the parameters in our base case as

follows. The coefficient of variation, s, equals 0.3, and thus, the standard deviation is
0.3E(X). Since the expected cash flows serve as numeraire, the volatility is deter-

mined solely by the coefficient of variation. In our base case, we set the managerial

wage to equal 50.12 The expected cash flows as viewed by an overconfident manager

with an overconfidence measure of l are E(X)¼ 45,000 + 500lY (i.e., m0¼ 45,000).

The risk aversion and effort aversion parameters are g ¼ 4 and b ¼ 3, respectively.

9See Appendix 1 for more details.
10When the manager is overconfident, this expected utility is calculated according to the man-

ager’s expectations.
11See Appendix 1 for the explanation for the calibration of our model. To be on the safe side and in

stride with explanations for the risk premium puzzle, we use higher values for the risk aversion

parameter.
12It should be noted that although the wage level in our base case equals half of the fixed

compensation that corresponds to the utility target, it equals only about 11 % of the expected

compensation under the optimal contract when managers are realistic. When managers are

overconfident, a wage of 50 consists of less than 11 % of total compensation according to the

manager’s expectations but more than 11 % according to the realistic expectations.
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We consider overconfidence levels between l¼ 1 (no overconfidence) and l¼ 2.5 in

0.5 increments.

We examine the robustness of the results to deviations from the base case

combination of parameters by simulating with several alternative sets of exogenous

parameters. We repeat the analysis for many alternative sets of the exogenous

parameters: the manager’s risk and extra-effort aversion, g and b, as well as the
volatility measure of cash flows, s.13

55.4 Results and Discussion

In Table 55.1 we present the impact of overconfidence on the strike price that

stockholders choose to offer: the moneyness, the percentage of the firm given as

options, the effort choice of managers, the stockholders’ equity value, and the

expected managerial compensation. The expected compensation is calculated

both under the realistic distribution and under the subjective distribution of the

manager.

One observes from Table 55.1 that the strike price, the options’ moneyness, the

optimal managerial effort, the value of the stockholders’ equity, and the expected

compensation according to the managers’ expectations are directly related to

overconfidence. The optimal strike price (in thousands of dollars; strike prices

will be denoted in thousands of dollars in the rest of the study) for a rational

manager is 40.71, with a 0.60 moneyness (which can be described as deep-in-the-

money), but it rises to 63.74 with a 0.89 moneyness (closer to at-the-money) when

l ¼ 2.5.14 Managers also work harder the more overconfident they are

(Y increases from around 47 when they are realistic to around 52 when

l ¼ 2.5). Consequently, in order to hold the managers’ expected utility fixed,

their subjective expected monetary compensation must increase with

overconfidence to compensate for the extra risk resulting from the higher strike

price and for the additional effort they exert. The expected compensation the

stockholders perceive they pay according to the realistic expectation, however, is

inversely related to the overconfidence measure as they take advantage of

managers’ unrealistic expectations. The SEVs of the optimal contracts increase

as managerial overconfidence increases (see column 5, the SEV rises from 68,099

when l ¼ 1 to 70,958 when l ¼ 2.5, an increase of about 6 %). That is, the

stockholders benefit from the managers overestimating their powers.

This analysis suggests that stockholders are able to induce overconfident man-

agers to exert higher effort levels even though the objective contract parameters

they offer them are less favorable (the managers work harder but receive lower

13Because of scaling there is no need to conduct robustness checks for the expected cash flows.
14The moneyness measure depends on the strike price and the value of equity, which in turn

depends on effort. Thus, the moneyness measure varies with overconfidence because effort varies

with overconfidence, even when the strike price remains constant.
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expected compensation). In particular the optimal strike prices of the options that

stockholders award overconfident managers are increasing with their

overconfidence. While realistic managers estimate that there is a substantial prob-

ability that options with an at-the-money strike price will be worthless regardless of

their effort, overconfident managers may believe that their efforts will enhance the

values of such options making them valuable.

In practice executive options usually are provided with at-the-money strike

prices. When overconfidence or some other behavioral biases are not present,

theory has shown (see, e.g., Dittmann et al. 2010; Dittmann and Yu 2011; Palmon

et al. 2008), contrary to Hall and Murphy, that at-the-money prices are not optimal.

Hall and Murphy argue that at-the-money prices are optimal because they provide

maximum sensitivity to stock prices, but their argument does not hold when the

managers are risk averse and effort averse. Managers must be adequately compen-

sated for their efforts and for risk taking, and a balance must be reached between

their efforts, risk taking, and their pay. As Palmon et al. have shown, the optimal

balance is reached by issuing in-the-money options which do not necessarily

provide maximum sensitivity to stock prices. If managers are overconfident, how-

ever, that makes them more amenable for stock price sensitivity, and hence, they

will prefer higher strike prices which are closer to the at-the-money options usually

awarded in practice.

We also note in Table 55.1 that managerial overconfidence increases stock-

holders’ equity value. Given that the compensation is determined so as to equate

the manager’s expected utility to the target expected utility, it follows from

Table 55.1 that consistent with the results of Palmon and Venezia (2012), the

total welfare of both the managers and the stockholders improves with increased

managerial overconfidence. The fixed-level expected utility of the manager is

determined according to their subjective, overoptimistic perception. However,

when evaluated according to the realistic view, expected managerial compensa-

tion falls with overconfidence. We note that, nonetheless, the difference between

the monetary expected compensations according to the overoptimistic and real-

istic expectations is smaller than the monetary gains to stockholders from

overconfidence, so that the sum of realistic compensation and SEV rises with

overconfidence (see column 8). Thus, also in terms of realistic monetary values,

the welfare of the stakeholders (stockholders and managers) increases with

overconfidence.

In Table 55.2 we provide sensitivity analysis examining the effect of each of the

parameters on the behavior of stockholders and managers. We present the results of

only one or two changes in each of the exogenous parameters, but we conduct many

other simulations, and all provide the same qualitative results.15 In all the panels,

higher overconfidence measure is associated with higher strike prices, moneyness

levels, optimal managerial effort, value of the stockholders’ equity, and expected

compensation according to the managers’ expectations. They also are associated

15The results of these simulations can be obtained from the authors upon request.
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with lower expected managerial compensation according to the realistic expecta-

tion. This indicates that the qualitative results obtained from the base case prevail

also for a host of other parameters.

In panels A and B, we examine the effect of the fixed wages on the results.

A higher wage level implies a lower value for the option component of the compen-

sation. Imposing the use of lower-valued options, stockholders choose options that

are more responsive to cash flow changes. This is obtained by an increase in the

ownership percentage and in the strike price. In panels C and D, we set the coefficient

of variation, s, which equals 0.3 in the base case, to 0.2 and 0.4, respectively. We

observe in panel D that facing a higher coefficient of variation, managers prefer

a compensation that is less sensitive to firm cash flows, which is achieved by selecting

a contract specifying a smaller ownership fraction and a lower strike price. Finally, in

panels E and F, we observe the effects of varying risk aversion and in panels G and

H those of varying effort aversion. Overall, higher risk aversion levels are associated

with less risky compensations as they induce optimal contracts with a smaller option

ownership percentage and a lower strike price. Higher effort aversion results in lower

SEV and also in lower total monetary welfare.

The above sensitivity analysis shows that the effect of changing the parameters

quite conforms to intuition, adding to the robustness of our results. We also note

that regardless of the parameters considered, the effect of overconfidence on the

qualitative behavior is the same as that observed from the base case. In particular,

the higher the overconfidence, the higher the optimal strike prices and the closer

they are to the at-the-money levels.

55.5 Conclusion

Our study suggests an explanation for the puzzling questions of why most incentive

stock options are issued with at-the-money strike prices. This practice seems

arbitrary and beyond its institutional appeal and its expired tax advantages; its

main theoretical backing is that it provides the highest sensitivity to stock price.

Several studies however have shown that in many cases it is inferior to awarding

in-the-money options. Our analysis demonstrates that the optimal strike prices of

incentive stock options when managers are overconfident are higher than the

corresponding strike prices when managers are realistic, and are closer to the

at-the-money strike prices awarded in practice. This makes at-the-money options

more attractive to overconfident managers, and hence, given the ubiquity of

overconfident managers, it provides support for the popularity of awarding such

options. We also show that overoptimistic CEOs receive lower compensation than

their realistic counterparts and that the stockholders benefit from their managers’

bias. The combined welfare of the firm’s stakeholders however is positively related

to managerial overconfidence, hence providing support to the survival of manage-

rial overconfidence.

Assef and Santos (2005) interpret the strike price as an intermediate instrument

(between wages and stocks) in the incentive schemes for managers. Similarly one

55 Strike Prices of Options for Overconfident Executives 1503



can interpret an in-the-money strike price as an intermediate instrument between

a stock (zero strike price) and an at-the-money option. Since in practice, because of

institutional reasons or inertia, firms are constrained to choose options with

at-the-money strike price, they achieve their instrumental in-the-money strike

price by choosing an appropriate weight of options relative to stock grants in

their compensation contract. According to such an interpretation and from our

results showing that higher overconfidence implies higher strike prices, it follows

that the observable weight of options in the compensation contract may serve as

a proxy for an unobservable degree of confidence.

Appendix 1

In this appendix we expand on the simulations we conduct. These simulations are

intended to identify the contracts that yield the highest stockholders’ equity value

subject to manager’s incentive compatibility and participation constraints. That is,

the managers choose their effort optimally, and their resulting expected utility

equals a predetermined level representing their alternative opportunities. Because

we are studying the impact of overconfidence on the strike price, our calculations

focus on the trade-off between the strike price and the fraction of the company that

is awarded as options. For simplicity, we consider contracts that include only

a fixed wage and options.

The first step in our simulation is the selection of the appropriate distribution of

the company’s cash flow as a function of managerial effort and the manager’s utility

as a function of managerial effort and compensation. In accordance with conven-

tional assumptions in the options literature, we assume that the firms’ cash flows, X,

are lognormally distributed with the distribution function (55.1) where Y denotes

the managerial extra effort (a managerial choice variable) and m(Y) and s denote,

respectively, the mean and the standard deviation of the underlying normal distri-

bution of the natural logarithm of X. We assume that managerial effort increases

cash flows, that overconfident managers overestimate the impact of their effort on

cash flows, and that the impact of effort on the mean of the natural logarithm of X is

presented in Eq. 55.2.

We refer to Hek (1999) and Bitler et al. (2005) for the choice of the parameters

and the shape of the manager’s utility function that depends also on leisure.16

We start with a base case of parameters and repeat the analysis for a large set of

parameters around the base case. We chose the base case so that these parameters

and the deviations around them that we also analyze cover the equivalent param-

eters used in similar studies. These simulations help verify that our results are

robust to the choice of parameter values. They also are used to examine to what

16We found additional estimates of effort disutility (leisure utility) in the following papers: Dowell

(1985), Kiker and Mendes de Oliveira (1990), and Prasch (2001). These estimates varied in the

functional form as well as in the level of effort aversion.
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extent the effects of changes in the parameter values on the outcomes coincide with

economic intuition.

The parameter m0 serves as a numeraire for the other cash flows related param-

eters, and is chosen, without loss of generality, to equal 45,000. That, in the absence

of managerial extra effort, the expected value of the company’s cash flows is

45,000. Since the expected cash flows serve as numeraire, the ratio of the standard

deviation of the cash flows per share to their expected value is a surrogate for the

standard deviation of stock returns. Since Hall and Murphy (2000) used a standard

deviation of 0.3, we chose this value also for our base case coefficient of variation.

The appropriate measure of risk aversion is harder to agree upon. Early estimates

of risk aversion put this variable at around two (see, e.g., Mehra and Prescott 1985),

but they are based on aggregate data and not on CEO compensation data.17 In our

study, in line with more advanced econometric methods (see, e.g., Campbell

et al. 1996), we prefer using a base case risk aversion measure of four, slightly

higher than the measure of three suggested by Malmendier and Tate (2008) and

Hall and Liebman (1998). Our simulations (see, e.g., Glasserman 2003) and

sensitivity analysis, of course, cover these parameters as well.

The next step in the simulation process is to identify, for each overconfidence

level, the executive options’ strike price that is optimal for stockholders. All the

simulations were conducted using Mathematica. Because it is not possible to

express the equity value as an explicit function of the strike price, we search for

the optimal strike price by calculating the equity values that are associated with

a set of discrete strike prices. Our search was facilitated by assuming that the

stockholders know the manager’s reservation expected utility. We assume that

reservation utility to equal the utility obtained from a fixed salary of 100 with no

extra effort.

For any given wage, the strike price and the fraction of the company awarded to

the manager (which is a continuous variable representing the number of options

the manager receives; we will henceforth use the latter expression) determine the

value of the options to the managers and their cost to the stockholders. For each

strike price and number of options, we then find the effort that the manager chooses

to apply in order to maximize his/her expected utility Eq. 55.3. For each given

strike price, the stockholders, well aware of the managers’ reactions, will offer them

the number of options that yield their reservation utility. We calculate the value of

the stockholders’ equity for each strike price (in thousands of dollars, using two

digits beyond the decimal point) and identify the strike price that yields a maximum

for stockholders’ equity.

For each set of parameters for the cash flow distribution function and the

managerial utility function, as well as for the several values of fixed salary

(50 for the base case, 25 and 75 for the presented robustness simulations), we

obtain the optimal effort, stockholders’ equity value, and the expected managerial

17Similar estimates are provided in other contexts by Carpenter (2000), Constantinides

et al. (2002), Epstein and Zin (1991), Friend and Blume (1975), and Levy (1994).
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compensation according to the manager’s overconfident view and the stockholders’

realistic expectations. We repeat these simulations for several values of the

overconfidence measure l. Presented here however are just four such values:

1 for the realistic expectations and 1.5, 2, and 2.5 for increasing levels of

overconfidence. We used quite a few simulations but choose to present a subset

of the results as all showed the same qualitative results. In addition to verifying the

robustness of the results to the choice of the parameter values, they also help

examine to what extent the effects of changes in the parameter values on the

outcomes coincide with economic intuition.
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Abstract

The technique of using densities and conditional distributions to carry out

consistent specification testing and model selection amongst multiple diffusion

processes has received considerable attention from both financial theoreticians

and empirical econometricians over the last two decades. In this chapter, we

discuss advances to this literature introduced by Corradi and Swanson

(J Econom 124:117–148, 2005), who compare the cumulative distribution

(marginal or joint) implied by a hypothesized null model with corresponding

empirical distributions of observed data. We also outline and expand upon
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further testing results from Bhardwaj et al. (J Bus Econ Stat 26:176–193, 2008)

and Corradi and Swanson (J Econom 161:304–324, 2011). In particular, para-

metric specification tests in the spirit of the conditional Kolmogorov test of

Andrews (Econometrica 65:1097–1128, 1997) that rely on block bootstrap

resampling methods in order to construct test critical values are first discussed.

Thereafter, extensions due to Bhardwaj et al. (J Bus Econ Stat 26:176–193,

2008) for cases where the functional form of the conditional density is unknown

are introduced, and related continuous time simulation methods are introduced.

Finally, we broaden our discussion from single process specification testing to

multiple process model selection by discussing how to construct predictive

densities and how to compare the accuracy of predictive densities derived

from alternative (possibly misspecified) diffusion models. In particular, we

generalize simulation steps outlined in Cai and Swanson (J Empir Financ

18:743–764, 2011) to multifactor models where the number of latent variables

is larger than three. We finish the chapter with an empirical illustration of model

selection amongst alternative short-term interest rate models.

Keywords

Multifactor diffusion process • Specification test • Out-of-sample forecasts •

Conditional distribution • Model selection • Block bootstrap • Jump process

56.1 Introduction

The last three decades have provided a unique opportunity to observe numerous

interesting developments in finance, financial econometrics, and statistics. For

example, although starting as a narrow subfield, financial econometrics has recently

transformed itself into an important discipline, equipping financial economic

researchers and industry practitioners with immensely helpful tools for estimation,

testing, and forecasting. One of these developments has involved the development

of “state-of-the-art” consistent specification tests for continuous time models,

including not only the geometric Brownian motion process used to describe the

dynamics of asset returns (Merton (1973)) but also a myriad of other diffusion

models used in finance, such as the Ornstein-Uhlenbeck process introduced by

Vasicek (1977); the constant elastic volatility process applied by Beckers (1980);

the square root process due to Cox et al. (1985); the so-called CKLS model by Chan

et al. (1992); various three-factor models proposed Chen (1996); stochastic vola-

tility processes such as generalized CIR of Andersen and Lund (1997); and the

generic class of affine jump diffusion processes discussed in Duffle et al. (2000).1

The plethora of available diffusion models allow decision makers to be flexible

when choosing a specification to be subsequently used in contexts ranging from

equity and option pricing, to term structure modeling and risk management.

1For complete details, see Sect. 56.2.2.
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Moreover, the use of high-frequency data when estimating such model, in contin-

uous time contexts, allows investors to continuously update their dynamic trading

strategies in real time.2 However, for statisticians and econometricians, the vast

number of available models has important implications for formalizing model

selection and specification testing methods. This has led to several key papers

that have recently been published in the area of parametric and nonparametric

specification testing. Most of the papers focus on the ongoing “search” for correct

Markov and stationary models that “fit” historical data and associated dynamics. In

this literature, it is important to note that correct specification of a joint distribution

is not the same as that of a conditional distribution, and hence the recent focus on

conditional distributions, given that most models have an interpretation as condi-

tional models. In summary, the key issue in the construction of model selection and

specification tests of conditional distributions is the fact that knowledge of the

transition density (or conditional distribution) in general cannot be inferred from

knowledge of the drift and variance terms of a diffusion model. If the functional

form of the density is available parametrically, though, one can test the hypothesis

of correct specification of a diffusion via the probability integral transform

approach of Diebold et al. (1998); the cross-spectrum approach of Hong (2001),

Hong and Li (2005), and Hong et al. (2007); the martingalization-type Kolmogorov

test of Bai (2003); or the normality transformation approaches of Bontemps and

Meddahi (2005) and Duan (2003). Furthermore, if the transition density is

unknown, one can construct a nonparametric test by comparing a kernel density

estimator of the actual and simulated data, for example, as in Altissimo and Mele

(2009) and Thompson (2008), or by comparing the conditional distribution of the

simulated and the historical data, as in Bhardwaj et al. (2008). One can also use the

methods of Aı̈t-Sahalia (2002) and Aı̈t-Sahalia et al. (2009), in which they compare

closed form approximations of conditional densities under the null, using data-

driven kernel density estimates.

For clarity and ease of presentation, we categorize the above literature into two

areas. The first area, initiated by the seminal work of Aı̈t-Sahalia (1996) and later

followed by Pritsker (1998) and Jiang (1998), breaks new ground in the continuous

time specification testing literature by comparing marginal densities implied by

hypothesized null models with nonparametric estimates thereof. These sorts of

tests examine one-factor specifications. The second area of testing, as initiated in

Corradi and Swanson (2005), does not look at densities. Instead, they compare

cumulative distributions (marginal, joint, or conditional) implied by a hypothesized

null model with corresponding empirical distributions. A natural extension of these

sorts of tests involves model selection amongst alternative predictive densities

associated with competing models. While Corradi and Swanson (2005) focus on

cases where the functional form of the conditional density is known, Bhardwaj

et al. (2008) use simulation methods to examine testing in cases where the func-

tional form of the conditional density is unknown. Corradi and Swanson (2011) and

2For further discussion, see Duong and Swanson (2010, 2011).
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Cai and Swanson (2011) take the analysis of Bhardwaj et al. (2008) on Step further

and focus on the comparison of out-of-sample predictive accuracy of possibly

misspecified diffusion models, when the conditional distribution is not known in

closed form (i.e., they “choose” amongst competing models based on predictive

density model performance). The “best” model is selected by constructing tests that

compare both predictive densities and predictive conditional confidence intervals

associated with alternative models.

In this chapter, we primarily focus our attention on the second area of the model

selection and testing literature.3 One feature of all the tests that we shall discuss is

that, given that they are based on the comparison of CDFs, they obtain parametric

rates. Moreover, the tests can be used to evaluate single and multiple factor and

dimensional models, regardless of whether or not the functional form of the

conditional distribution is known.

In addition to discussing simple diffusion process specification tests of Corradi

and Swanson (2005), we discuss tests discussed in Bhardwaj et al. (2008) and

Corradi and Swanson (2011) and provide some generalizations and additional

results. In particular, parametric specification tests in the spirit of the conditional

Kolmogorov test of Andrews (1997) that rely on block bootstrap resampling

methods in order to construct test critical values are first discussed. Thereafter,

extensions due to Bhardwaj et al. (2008) for cases where the functional form of the

conditional density is unknown are introduced, and related continuous time simu-

lation methods are introduced. Finally, we broaden our discussion from single

dimensional specification testing to multiple dimensional selection by discussing

how to construct predictive densities and how to compare the accuracy of predictive

densities derived from alternative (possibly misspecified) diffusion models as in

Corradi and Swanson (2011). In addition, we generalize simulation and testing

procedures introduced in Cai and Swanson (2011) to more complicated multifactor

and multidimensional models where the number of latent variables is larger than

three. These final tests can be thought of as continuous time generalizations of the

discrete time “reality check” test statistics of White (2000), which are widely used

in empirical finance (see, e.g., Sullivan et al. (1999, 2001)). We finish the chapter

with an empirical illustration of model selection amongst alternative short-term

interest rate models, drawing on Bhardwaj et al. (2008), Corradi and Swanson

(2011) and Cai and Swanson (2011).

Of the final note is that the test statistics discussed here are implemented via use

of simple bootstrap methods for critical value simulation. We use the bootstrap

because the covariance kernels of the (Gaussian) asymptotic limiting distributions

of the test statistics are shown to contain terms deriving from both the contribution

of recursive parameter estimation error (PEE) and the time dependence of data.

Asymptotic critical value thus cannot be tabulated in a usual way. Several methods

can easily be implemented in this context. First one can use block bootstrapping

procedures, as discussed below. Second one can use the conditional p-value

3For a recent survey on results in the first area of this literature, see Aı̈t-Sahalia (2007).

1512 D. Duong and N.R. Swanson



approach of Corradi and Swanson (2002) which extends the work of Hansen (1996)

and Inoue (2001) to the case of nonvanishing parameter estimation error. Third is

the subsampling method of Politis et al. (1999), which has clear efficiency “costs,”

but is easy to implement. Use of the latter two methods yields simulated

(or subsample based) critical values that diverge at rate equivalent to the block

size length under the alternative. This is the main drawback to their use in our

context. We therefore focus on use of a block bootstrap that mimics the contribution

of parameter estimation error in a recursive setting and in the context of time series

data. In general, use of the block bootstrap approach is made feasible by

establishing consistency and asymptotic normality of both simulated generalized

method of moments (SGMM) and nonparametric simulated quasi-maximum like-

lihood (NPSQML) estimators of (possibly misspecified) diffusion models, in

a recursive setting, and by establishing the first-order validity of their bootstrap

analogs.

The rest of the paper is organized as follows. In Sect. 56.2, we present our

setup and discuss various diffusion models used in finance and financial economet-

rics. Section 56.3 outlines the specification testing hypotheses, presents the

cumulative distribution-based test statistics for one-factor and multiple-

factor models, discusses relevant procedures for simulation and estimation, and

outlines bootstrap techniques that can be used for critical value tabulation.

In Sect. 56.4, we present a small empirical illustration. Section 56.5 summarizes

and concludes.

56.2 Setup

56.2.1 Diffusion Models in Finance and Financial Econometrics

For the past two decades, continuous time models have taken center stage in the

field of financial econometrics, particularly in the context of structural modeling,

option pricing, risk management, and volatility forecasting. One key advantage of

continuous time models is that they allow financial econometricians to use the full

information set that is available. With the availability of high-frequency data and

current computation capability, one can update information, model estimates, and

predictions in milliseconds. In this section, we will summarize some of the standard

models that have been used in asset pricing as well as term structure modeling.

Generally, assume that financial asset returns follow Ito-semimartingale processes

with jumps, which are the solution to the following stochastic differential equation

system:

X t�ð Þ ¼
ðt
0

b X s�ð Þ, y0ð Þds� l0t
ð
Y

yf yð Þdy

þ
ðt
0

s X s�ð Þ, y0ð ÞdW sð Þ þ
XJt
j¼1

yj,
(56:1)
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where X(t�) is a cadlag process (right continuous with left limit) for t 2ℜ+ and is an

N-dimensional vector of variables,W(t) is an N-dimensional Brownian motion, b(·)
is N-dimensional function of X(t�), and s(·) is an N � N matrix-valued function of

X(t�), where y0 is an unknown true parameter. Jt is a Poisson process with intensity
parameter l0, l0 finite, and the N-dimensional jump size, yj, is i.i.d. with marginal

distribution given by f. Both Jt and yj are assumed to be independent of the driving

Brownian motion, W(t).4 Also, note that
Ð

Yyf(y)dy denotes the mean jump size,

hereafter denoted by m0. Over a unit time interval, there are on average l0 jumps, so

that over the time span [0, t], there are on average l0t jumps. The dynamics of X(t�)
is then given by

dX tð Þ ¼ b X t�ð Þ, y0ð Þ � l0my, 0
� �

dt

þ s X t�ð Þ, y0ð ÞdW tð Þ þ
ð

Y

yp dy; dtð Þ, (56:2)

where p(dy, dt) is a random Poisson measure giving point mass at y if a jump occurs

in the interval dt and b(·), s(·) are the “drift” and “volatility” functions defining the

parametric specification of the model. Hereafter, the same (or similar) notation is

used throughout when models are specified.

Through not an exhaustive list, we review some popular models. Models are

presented with the “true” parameters.

56.2.1.1 Diffusion Models Without Jumps
Geometric Brownian Motion (Log Normal Model)
In this setup, b(X(t�), y0) ¼ b0X(t) and s(X(t�), y0) ¼ s0X(t).

dX tð Þ ¼ b0X tð Þdtþ s0X tð ÞdW tð Þ,

where b0 and s0 are constants and W(t) is a one-dimensional standard Brownian

motion. (Below, other constants such as a0, b0, l0, g0, d0, �0, k0, and O0 are also

used in model specifications.)

This model is popular in the asset pricing literature. For example, one can model

equity prices according to this process, especially in the Black-Scholes option setup

or in structured corporate finance.5 The main drawback of this model is that the

return process (log(price)) has constant volatility and is not time varying. However,

it is widely used as a convenient “first” econometric model.

Vasicek (1977) and Ornstein-Uhlenbeck Process: The process is used to model

asset prices, specifically in term structure modeling, and the specification is

dX tð Þ ¼ a0 þ b0X tð Þð Þdtþ s0dW tð Þ,

4Hereafter, X(t�) denotes the cadlag, while Xt denotes discrete skeleton for t ¼ 1, 2, . . . .
5See Black and Scholes (1973) for details.
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where W(t) is a standard Brownian motion and a0, b0, and s0 are constants. b0 is
negative to ensure the mean reversion of X(t).

Cox et al. (1985) use the following square root process to model the term

structure of interest rates:

dX tð Þ ¼ k a0 � X tð Þð Þdtþ s0
ffiffiffiffiffiffiffiffiffi
X tð Þ

p
dW tð Þ,

where W(t) is a standard Brownian motion, a0 is the long-run mean of X(t), k
measures the speed of mean reversion, and s0 is a standard deviation parameter and

is assumed to be fixed. Also, non-negativity of the process is imposed, as 2kb0> s0
2.

Wong (1964) points out that in the CIR model, X(t) with the dynamics evolving

according to

dX tð Þ ¼ a0 � l0ð Þ � X tð Þð Þdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a0X tð Þ

p
dW tð Þ, (56:3)

a0 > 0 and a0 � l0 > 0,

belongs to the linear exponential (or Pearson) family with a closed form cumulative

distribution. a0 and l0 are fixed parameters of the model.

The constant elasticity of variance or CEV model is specified as follows:

dX tð Þ ¼ a0X tð Þdtþ s0X tð Þb0=2dW tð Þ,

where W(t) is a standard Brownian motion and a0, s0, and b0 are fixed constants.

Of note is that the interpretation of this model depends on b0, i.e., in the case of

stock prices, if b0 ¼ 2, then the price process X(t) follows a lognormal diffusion; if

b0 < 2, then the model captures exactly the leverage effect as price and volatility

are inversely correlated.

Amongst other authors, Beckers (1980) used this CEV model for stocks, Marsh

and Rosenfeld (1983) apply a CEV parametrization to interest rates, and Emanuel

and Macbeth (1982) utilize this setup for option pricing.

The generalized constant elasticity of variance model is defined as follows:

dX tð Þ ¼ a0X tð Þ� 1�b0ð Þ
�

þ l0X tð Þ
�
dtþ s0X tð Þb0=2dW tð Þ,

where the notation follows the CEV case. l0 is another parameter of the model. This

process nests log diffusion when b0 ¼ 2 and nests square root diffusion when

b0 ¼ 1.

Brennan and Schwartz (1979) and Courtadon (1982) analyze the model:

dX tð Þ ¼ a0 þ b0X tð Þð Þdtþ s0X tð Þ2dW tð Þ,

where a0, b0, s0 are fixed constants and W(t) is a standard Brownian motion.
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Duffie and Kan (1996) study the specification:

dX tð Þ ¼ a0 þ X tð Þð Þdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ g0X tð Þ

p
dW tð Þ,

where W(t) is a standard Brownian motion and a0, b0, and g0 are fixed parameters.

Aїt-Sahalia (1996) looks at a general case with general drift and CEV diffusion:

dX tð Þ ¼ a0 þ b0X tð Þ þ g0X tð Þ2 þ �0=X tð Þ
� �

dtþ s0X tð Þb0=2dW tð Þ:

In the above expression, a0, b0, g0, �0, s0, and b0 are fixed constants and W(t) is
again a standard Brownian motion.

56.2.1.2 Diffusion Models with Jumps
For term structure modeling in empirical finance, the most widely studied class of

models is the family of affine processes, including diffusion processes that incor-

porate jumps.

Affine JumpsDiffusionModel:X(t�) is defined to follow an affine jumpdiffusion if

dX tð Þ ¼ k0 a0 � X tð Þð Þdtþ O0

ffiffiffiffiffiffiffiffiffi
D tð Þ

p
dW tð Þ þ dJ tð Þ,

where X(t�) is an N-dimensional vector of variables of interest and is a cadlag

process, W(t) is an N-dimensional independent standard Brownian motion, k0 and
O0 are square N � N matrices, a0 is a fixed long-run mean, and D(t) is a diagonal
matrix with ith diagonal element given by

dii tð Þ ¼ y0i þ d0
0iX tð Þ:

In the above expressions, y0i and d0i0 are constants. The jump intensity is

assumed to be a positive, affine function of X(t), and the jump size distribution

is assumed to be determined by its conditional characteristic function. The attrac-

tive feature of this class of affine jump diffusions is that, as shown in Duffie

et al. (2000), it has an exponential affine structure that can be derived in closed

form, i.e.,

F X tð Þð Þ ¼ exp a tð Þ þ b tð Þ0X tð Þ� �
,

where the functions a(t) and b(t) can be derived from Riccati equations.6

Given a known characteristic function, one can use either GMM to estimate the

6For details, see Singleton (2006), p. 102.
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parameters of this jump diffusion, or one can used quasi-maximum likelihood

(QML), once the first two moments are obtained. In the univariate case without

jumps, as a special case, this corresponds to the above general CIR model with

jumps.

56.2.1.3 Multifactor and Stochastic Volatility Model
Multifactor models have been widely used in the literature, particularly in

option pricing, term structure, and asset pricing. One general setup has (X(t),
V(t))0 ¼ (X(t), V1(t), . . ., Vd(t))0 where only the first element, the diffusion

process Xt, is observed while V(t) ¼ (V1(t), . . ., Vd(t))dx10 is latent. In addition,

X(t) can be dependent on V(t). For instance, in empirical finance, the most

well-known class of the multifactor models is the stochastic volatility model

expressed as

dX tð Þ
dV tð Þ

 !
¼

b1 X tð Þ, y0ð Þ
b2 V tð Þ, y0ð Þ

 !
dtþ

s11 V tð Þ, y0ð Þ
0

 !
dW1 tð Þ

þ
s12 V tð Þ, y0ð Þ
s22 V tð Þ, y0ð Þ

 !
dW2 tð Þ,

(56:4)

where W1(t)1�1 and W2(t)1�1 are independent standard Brownian motions and V(t)
is latent volatility process. b1(·) is a function of X(t) and b2(·), s11(·), s22(·), and
s22(·) are general functions of V(t), such that system of Eq. 56.4 is well defined.

Popular specifications are the square root model of Heston (1993), the GARCH

diffusion model of Nelson (1990), lognormal model of Hull and White (1987), and

the eigenfunction models of Meddahi (2001). Note that in this stochastic volatility

case, the dimension of volatility is d ¼ 1. More general setup can involve d driving
Brownian motions in V(t) equation.

As an example, Andersen and Lund (1997) study the generalized CIR model

with stochastic volatility, specifically

dX tð Þ ¼ kx0 x0 � X tð Þð Þdtþ
ffiffiffiffiffiffiffiffiffi
V tð Þ

p
dW1 tð Þ,

dX tð Þ ¼ kv0 v0 � V tð Þð Þdtþ sv0
ffiffiffiffiffiffiffiffiffi
V tð Þ

p
dW2 tð Þ,

where X(t) and V(t) are price and volatility processes, respectively, kx0, kv0 > 0 to

ensure stationarity, x0 is the long-run mean of (log) price process, and v0 and sv0 are
constants. W1(t) and W2(t) are scalar Brownian motions. However, W1(t) and W2(t)
are correlated such that dW1(t)dW2(t) ¼ rdt where the correlation r is some

constant r 2 [�1, 1]. Finally, note that volatility is a square root diffusion process,

which requires that kv0v0 > s2v0.
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Stochastic Volatility Model with Jumps (SVJ): A standard specification is

dX tð Þ ¼ kx0 x0 � X tð ÞÞdtþ ffiffiffiffiffiffiffiffiffi
V tð Þp

dW1 tð Þ þ Judqu � Jddqd,
�

dV tð Þ ¼ kv0 v0 � V tð Þð Þdtþ sv0
ffiffiffiffiffiffiffiffiffi
V tð Þ

p
dW2 tð Þ,

where qu and qd are Poisson processes with jump intensity parameters lu and ld,
respectively, and are independent of the Brownian motions W1(t) and W2(t).
In particular, lu is the probability of a jump-up, Pr(dqu (t) ¼ 1) ¼ lu, and ld is

the probability of a jump-down, Pr(dqd(t) ¼ 1) ¼ ld. Ju and Jd are jump-up

and jump-down sizes and have exponential distributions: f Juð Þ ¼ 1
Bu
exp � Ju

Bu

� �

and f Jdð Þ ¼ 1
Bd
exp � Jd

Bd

� �
, where Bu, Bd > 0 are the jump magnitudes, which are

the means of the jumps, Ju and Jd.
Three-Factor Model (CHEN): The three-factor model combines various features

of the above models, by considering a version of the oft examined three-factor

model due to Chan et al. (1992), which is discussed in detail in Dai and Singleton

(2000). In particular,

dX tð Þ ¼ kx0 y tð Þ � X tð Þð Þdtþ ffiffiffiffiffiffiffiffiffi
V tð Þp

dW1 tð Þ,
dV tð Þ ¼ kv0 v� V tð Þð Þdtþ sv0

ffiffiffiffiffiffiffiffiffi
V tð Þp

dW2 tð Þ,
dy tð Þ ¼ ky0 y tð Þ � y tð Þ� �

dtþ sy0
ffiffiffiffiffiffiffiffi
y tð Þp

dW3 tð Þ,
(56:5)

where W1(t), W2(t) W3(t) are independent Brownian motions and V and y are the

stochastic volatility and stochastic mean of X(t), respectively. kx0, kv0, ky0, v0 , y0 ,
sv0, sy0 are constants. As discussed above, non-negativity for V(t) and y(t) requires
that 2kv0v0 > s2v0 and 2ky0y0 > s2y0.

Three-Factor Jump Diffusion Model (CHENJ): Andersen et al. (2004) extend the
three-factor Chen (1996) model by incorporating jumps in the short rate process,

hence improving the ability of the model to capture the effect of outliers and to

address the finding by Piazzesi (2004, 2005) that violent discontinuous movements

in underlying measures may arise from monetary policy regime changes. The

model is defined as follows:

dX tð Þ ¼ kx0 y tð Þ � X tð Þð Þdtþ
ffiffiffiffiffiffiffiffiffi
V tð Þ

p
dW1 tð Þ þ Judqu � Jddqd,

dV tð Þ ¼ kv0 v0 � V tð ÞÞdtþ sv0
ffiffiffiffiffiffiffiffiffi
V tð Þ

p
dW2 tð Þ,

�

dy tð Þ ¼ ky0 y0 � y tð ÞÞdtþ sy0
ffiffiffiffiffiffiffiffi
y tð Þ

p
dW3 tð Þ

� (56:6)

where all parameters are similar as in Eq. 56.5; W1(t), W2(t), and W3(t) are

independent Brownian motions; and qu and qd are Poisson processes

with jump intensities lu0 and ld0, respectively, and are independent of the

Brownian motions Wr(t), Wv(t), and Wy(t). In particular, lu0 is the
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probability of a jump-up, Pr(dqu (t)¼ 1)¼ lu0, and ld0 is the probability of a jump-

down, Pr(dqd(t) ¼ 1) ¼ ld0. Ju and Jd are jump-up and jump-down sizes and have

exponential distributions f Juð Þ ¼ 1
Bu0

exp � Ju
Bu0

� �
and f Jdð Þ ¼ 1

Bd0
exp � Jd

Bd0

� �
, where

Bu0, Bd0 > 0 are the jump magnitudes, which are the means of the jumps Ju and Jd.

56.2.2 Overview on Specification Tests and Model Selection

The focus in this chapter is specification testing and model selection. The “tools”

used in this literature have been long established. Several key classical contribu-

tions include the Kolmogorov-Smirnov test (see, e.g., Kolmogorov (1933) and

Smirnov (1939)), various results on empirical processes (see, e.g., Andrews

(1993) and the discussion in Chap. 19 of van der Vaart (1998) on the contributions

of Glivenko, Cantelli, Doob, Donsker, and others), the probability integral trans-

form (see, e.g., Rosenblatt (1952)), and the Kullback–Leibler information criterion

(see, e.g., White (1982) and Vuong (1989)). For illustration, the empirical distri-

bution mentioned above is crucial in our discussion of predictive densities because

it is useful in estimation, testing, and model evaluation. Let Yt is a variable of

interest with distribution F and parameter y0. The theory of empirical distributions

provides a result that

1ffiffiffi
T

p
XT
t¼1

1 Yt � uf g � F ujy0ð Þð Þ

satisfies a central limit theorem (with a parametric rate) if T is large (i.e., asymp-

totically). In the above expression, 1{Yt � u} is the indicator function which takes

value 1 if Yt � u and 0 otherwise. In the case where there is parameter estimation

error, we can use more general results in Chap. 19 of van der Vaart (1998). Define

PT fð Þ ¼ 1

T

XT
i¼1

f Yið Þ and P fð Þ ¼
ð
fdP,

where P is a probability measure associated with F. Here, Pn( f ) converges to P( f )
almost surely for all the measurable functions f for which P( f ) is defined. Suppose
one wants to test the null hypothesis that P belongs to a certain family

Py0 : y0 2 Yf g , where y0 is unknown; it is natural to use a measure of the

discrepancy between Pn and Pŷ for a reasonable estimator ŷt of y0. In particular,

if ŷt converges to y0 at a root-T rate,
1ffiffiffi
T

p PT � Pŷt

� �
has been shown to satisfy

a central limit theorem.7

With regard to dynamic misspecification and parameter estimation error, the

approach discussed for the class of tests in this chapter allows for the construction

7See Theorem 19.23 in van der Vaart (1998) for details.
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of statistics that admit for dynamic misspecification under both hypotheses. This

differs from other classes of tests such as the framework used by Diebold

et al. (1998), Hong (2001), and Bai (2003) in which correction dynamic specifica-

tion under the null hypothesis is assumed. In particular, DGT use the probability

integral transform to show that Ft Yt ℑt�1; y0jð Þ ¼
ðYt

�1
f t y ℑt�1; y0jð Þdy is identically

and independently distributed as a uniform random variable on [0; 1], where Ft(·)

and ft(·) are a parametric distribution and density with underlying parameter y0, Yt is
again our random variable of interest, and ℑt is the information set containing all

“relevant” past information. They thus suggest using the difference between the

empirical distribution ofFt Yt ℑt�1; ŷt:
			

��
and the 45� line as a measure of “goodness

of fit,” where ŷt is some estimator of y0. This approach has been shown to be very

useful for financial risk management (see, e.g., Diebold et al. (1999)), as well as for

macroeconomic forecasting (see, e.g., Diebold et al. (1998) and Clements and

Smith (2000, 2002)). Similarly, Bai (2003) develops a Kolmogorov-type test of

Ft(Yt|ℑt�1, y0) on the basis of the discrepancy betweenFt Yt ℑt�1; ŷt:
			

��
and the CDF

of a uniform on [0; 1]. As the test involves estimator ŷt , the limiting distribution

reflects the contribution of parameter estimation error and is not nuisance

parameter-free. To overcome this problem, Bai (2003) proposes a novel approach

based on a martingalization argument to construct a modified Kolmogorov test

which has a nuisance parameter-free limiting distribution. This test has power

against violations of uniformity but not against violations of independence. Hong

(2001) proposes another related interesting test, based on the generalized spectrum,

which has power against both uniformity and independence violations, for the case

in which the contribution of parameter estimation error vanishes asymptotically. If

the null is rejected, Hong (2001) also proposes a test for uniformity robust to

nonindependence, which is based on the comparison between a kernel density

estimator and the uniform density. Two features differentiate the tests surveyed in

this chapter from the tests outlined in the other papers mentioned above. First, the

tests discussed here assume strict stationarity. Second, they allow for dynamic

misspecification under the null hypothesis. The second feature allows us to obtain

asymptotically valid critical values even when the conditioning information set

does not contain all of the relevant past history. More precisely, assume that we are

interested in testing for correct specification, given a particular information set

which may or may not contain all of the relevant past information. This is important

when a Kolmogorov test is constructed, as one is generally faced with the problem

of defining ℑt�1. If enough history is not included, then there may be dynamic

misspecification. Additionally, finding out how much information (e.g., how many

lags) to include may involve pre-testing, hence leading to a form of sequential test

bias. By allowing for dynamic misspecification, such pre-testing is not required.

Also note that critical values derived under correct specification given ℑt�1 are not

in general valid in the case of correct specification given a subset of ℑt�1. Consider

the following example. Assume that we are interested in testing whether
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the conditional distribution of Yt|Yt�1 follows normal distribution N(a1Yt�1, s1).
Suppose also that in actual fact the “relevant” information set has ℑt�1

including both Yt�1 and Yt�2, so that the true conditional model is

Ytjℑt � 1 ¼ YtjYt�1, Yt�2 ¼ N(a1Yt�1 + a2Yt�2, s2). In this case, correct specification

holdswith respect to the information contained inXt�1; but there is dynamicmisspeci-

fication with respect to Yt�1 and Yt�2. Even without taking account of parameter

estimation error, the critical values obtained assuming correct dynamic specification

are invalid, thus leading to invalid inference. Stated differently, tests that are designed

to have power against both uniformity and independence violations (i.e., tests that

assume correct dynamic specification under the null) will reject an inference which is

incorrect, at least in the sense that the “normality” assumption is not false. In summary,

if one is interested in the particular problem of testing for correct specification for

a given information set, then the approach of tests in this chapter is appropriate.

56.3 Consistent Distribution-Based Specification Tests
and Predictive Density-Type Model Selection
for Diffusion Processes

56.3.1 One-Factor Models

In this section, we outline the setup for the general class of one-factor jump

diffusion specifications. All analyses carry through to the more complicated case

of multifactor stochastic volatility models which we will elaborate upon in the next

subsection. In the presentation of the tests, we follow a view that all candidate

models, either single or multiple dimensional ones, are approximations of reality

and can thus be misspecified. The issue of correct specification (or misspecification)

of a single model and the model selection test for choosing amongst multiple

competing models allow for this feature.

To begin, fix the time interval [0, T] and consider a given single one-factor

candidate model the same as Eq. 56.1, with the true parameters y0, l0, m0 to be

replaced by its pseudo true analogs y{, l, m, respectively, and 0 � t � T:

X t�ð Þ ¼
ðt
0

b X s�ð Þ, y{� �
ds� lt

ð

Y

yf yð Þdyþ
ðt
0

s X s�ð Þ, y{� �
dW sð Þ þ

XJt
j¼1

yj,

or

dX t�ð Þ ¼ b X t�ð Þ, y{� �� lm
� �

dt:

þ s X t�ð Þ, y{� �
dW tð Þ þ

ð

Y

yp dy; dtð Þ, (56:7)

where variables are defined the same as in Eqs. 56.1 and 56.2. Note that as the above

model is the one-factor version of Eqs. 56.1 and 56.2 where the dimension of X(t�)
is 1� 1,W(t) is a one-dimensional standard Brownian motion and jump size, and yj
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is one-dimensional variable for all j. Also note both Jt and yj are assumed to be

independent of the driving Brownian motion.

If the single model is correctly specified, then b(X(t�), y{) ¼ b0(X(t�), y0),
s(X(t�), y{) ¼ s0(X(t�), y0), l ¼ l0, m ¼ m0, and f ¼ f0 where b0(X(t�), y0),
s0(X(t�), y0), l0, m0, f0 are unknown and belong to the true specification.

Now consider a different case (not a single model) wherem candidate models are

involved. For model k with 1 � k � m, denote its corresponding specification to be

(bk(X(t�), yk
{), sk(X(t�), yk

{), lk, mk, fk). Two scenarios immediate arise. Firstly, if

the model k is correctly specified, then bk(X(t�), yk
{) ¼ b0(X(t�), y0), sk(X(t�),

yk
{) ¼ s0(X(t�), y0), lk ¼ l0, mk ¼ m0, and fk ¼ f0 which are similar to the case of

a single model. In the second scenario, all the models are likely to be misspecified

and modelers are faced with the choice of selecting the “best” one. This type of

problem is well fitted into the class of accuracy assessment tests initiated earlier by

Diebold and Mariano (1995) or White (2000).

The tests discussed hereafter are Kolmogorov-type tests based on the construc-

tion of cumulative distribution functions (CDFs). In a few cases, the CDF is known

in closed form. For instance, for the simplified version of the CIR model as in

Eq. 56.3, X(t) belongs to the linear exponential (or Pearson) family with the gamma

CDF of the form8

F u; a; lð Þ ¼

ðu
0

l
2

� ��2 1�a=lð Þ�1

exp �x= l
2

� �� �
dx

G 2 1� a=lð Þð Þ (56:8)

where G(x) ¼ Ð1
0
txexp(�t)dt, and a, l are constants.

Furthermore, if we look at the pure diffusion process without jumps

dX tð Þ ¼ b X tð Þ, y{� �
dtþ s X tð Þ, y{� �

dW tð Þ, (56:9)

where b(·) and s ¼ s(·) are drift and volatility functions, it is known that the

stationary density, say f(x, y{), associated with the invariant probability measure

can be expressed explicitly as9

f x; y{
� � ¼ c y{

� �

s2 x; y{
� � exp

ðx 2b u; y{
� �

s2 u; y{
� � du

 !
,

where c(y{) is a constant ensuring that f integrates to one. The CDF, say F(u,y{)
¼ Ð

uf(x,y{) dx, can then be obtained using available numerical integration

procedures.

However, in most cases, it is impossible to derive the CDFs in closed form. To

obtain a CDF in such cases, a more general approach is to use simulation. Instead of

8See Wong (1964) for details.
9See Karlin and Taylor (1981) for details.
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estimating the CDF directly, simulation techniques estimate the CDF indirectly

utilizing its generated sample paths and the theory of empirical distributions. The

specification of a specific diffusion process will dictate the sample paths and

thereby corresponding test outcomes.

Note that in the historical context, many early papers in this literature are probability

density based. For example, in a seminal paper, Ait-Sahalia (1996) compares the

marginal densities implied by hypothesized null models with nonparametric estimates

thereof. Following the same framework of correct specification tests, Corradi and

Swanson (2005) and Bhardwaj et al. (2008), however, do not look at densities. Instead,

they compare the cumulative distribution (marginal or joint) implied by a hypothesized

null model with the corresponding empirical distribution.While Corradi and Swanson

(2005) focus on the known unconditional distribution, Bhardwaj et al. (2008) look at

the conditional simulated distributions. Corradi and Swanson (2011) make extensions

to multiple models in the context of out-of-sample accuracy assessment tests. This

approach is somewhat novel to this continuous time model testing literature.

Now suppose we observe a discrete sample path X1, X2, . . ., XT (also referred as

skeletons).10 The corresponding hypotheses can be set up as follows:

Hypothesis 1 Unconditional Distribution Specification Test of a Single Model
H0 : F(u,y

{) ¼ F0(u,y0), for all u, a.s.
HA : Pr(F(u,y{) � F0(u,y0) 6¼ 0) > 0, for some u 2 U, with nonzero Lebesgue

measure.

where F0(u, y0) is the true cumulative distribution implied by the above density,

i.e., F0(u,y0)¼ Pr(Xt� u).F u; y{
� � ¼ Pr Xy{

t � u
� �

is the cumulative distribution of

the proposed model. Xy{
t is a skeleton implied by model (56.7).

Hypothesis 2 Conditional Distribution Specification Test of a Single Model
H0 : Ft(u|Xt, y

{) ¼ F0,t(u|Xt, y0), for all u, a.s.
HA : Pr(Ft(u|Xt, y

{) � F0,t(u|Xt, y0) 6¼ 0) > 0, for some u 2 U, with nonzero

Lebesgue measure.

where Ft u Xt;j y{
� � ¼ Pr Xy{

tþt � u Xy{
t ¼ Xt

			
� �

is t-step ahead conditional

distributions and t ¼ 1, . . . , T � t. F0,t(u|Xt, y0) is t-step ahead true conditional

distributions.

Hypothesis 3 Predictive Density Test for Choosing Amongst Multiple
Competing Models

The null hypothesis is that no model can outperform model 1 which is the

benchmark model.11

10As mentioned earlier, we follow Corradi and Swanson (2005) by using notation X(·) when

defining continuous time processes and Xt for a skeleton.
11See White (2000) for a discussion of a discrete time series analog to this case, whereby point

rather than density-based loss is considered; Corradi and Swanson (2007b) for an extension of

White (2000) that allows for parameter estimation error; and Corradi and Swanson (2006) for an

extension of Corradi and Swanson (2007b) that allows for the comparison of conditional distri-

butions and densities in a discrete time series context.
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H0:

max
k¼2, ...,m

EX F
X
y{
1

1, tþt Xtð Þ
u2ð Þ � F

X
y{
1

1, tþt Xtð Þ
u1ð Þ

 ! 

� F0 u2 Xtjð Þ � F0 u1 Xtjð Þð Þ
!2

� EX F
X
y{
k

k, tþt Xtð Þ
u2ð Þ � F

X
y{
k

k, tþt Xtð Þ
u1ð Þ

 ! 

� F0 u2 Xtjð Þ � F0 u1 Xtjð Þð Þ
!2

:

HA: negation of H00
where

F
X
y{
k

k, tþt Xtð Þ
uð Þ ¼ Ft

k u
		Xt; y

{
k

� �
¼ Pt

y{
k

X
y{
k

k, tþt � u
		Xy{

k
t ¼ Xt

� �
,

which is the conditional distribution of Xt+t, given Xt, and evaluated at u under the

probability law generated by model k. X
y{
k

k, tþt Xtð Þ with 1 � t � T � t is the

skeleton implied by model k, parameter yk
{, and initial value Xt. Analogously, define

Ft
0 u Xt; y0jð Þ ¼ Pt

y0 Xtþt � u Xtjð Þ to be the “true” conditional distribution.

Note that the three hypotheses expressed above apply exactly the same to

the case of multifactor diffusions. Now, before moving to the statistics

description section, we briefly explain the intuitions in facilitating construction of

the tests.

In the first case (Hypothesis 1), Corradi and Swanson (2005) construct a

Kolmogorov-type test based on comparison of the empirical distribution and the

unconditional CDF implied by the specification of the drift, variance, and jumps.

Specifically, one can look at the scaled difference between

F u; y{
� � ¼ Pr Xy{

t � u
� �

¼
ðu
f x; y{
� �

dx

and estimator of the true F0(u|Xt, y0), the empirical distribution of Xt defined as

1

T

XT
t¼1

1 Xt � uf g,

where 1{Yt � u} is indicator function which takes value 1 if Yt � u and 0 otherwise.
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Similarly for the second case of conditional distribution (Hypothesis 2), the test

statistic VT can be a measure of the distance between the t-step ahead conditional

distribution of Xy{
tþt, given Xy{

t ¼ Xt, as

Ft u Xt; y
{

		� � ¼ Pr Xy{
tþt � u Xy{

t

			 ¼ Xt

� �
,

to an estimator of the true F0,t(u|Xt,y0), the conditional empirical distribution of Xt+t

conditional on the initial value Xt defined as

1

T � t

XT�t

t¼1

1 Xtþt � uf g,

In the third case (Hypothesis 3), model accuracy is measured in terms of a

distributional analog of mean square error. As is commonplace in the out-of-sample

evaluation literature, the sample of T observations is divided into two subsamples,

such that T ¼ R + P, where only the last P observations are used for predictive

evaluation. A t-step ahead prediction error under model k is 1{u1 � Xt+t � u2} �
(Fk

t(u2|Xt, yk
{) � Fk

t(u1|Xt, yk
{)) where 2 � k � m and similarly for model 1 by

replacing index kwith index 1. Suppose we can simulate P� t paths of t-step ahead
skeleton12 using Xt as starting values where t ¼ R, . . ., R + P � t, from which we

can construct a sample of P � t prediction errors. Then, these prediction errors can
be used to construct a test statistic for model comparison. In particular, model 1 is

defined to be more accurate than model k if

F
Ft
1 u2 Xt; y

{
1

			
� �

� Ft
1 u1 Xt; y

{
1

			
� �� �

� Ft
1 u2 Xt; y0jð Þ � Ft

1 u1 Xt; y0jð Þ� �
 !2

0
@

1
A

< E
Ft
k ut2 Xt; y

{
1

			
� �

� Ft
k ut1 Xt; y

{
k

			
� �� �

� Ft
0 u2 Xt; y0jð Þ � Ft

0 u1 Xt; y0jð Þ� �
 !2

0
@

1
A,

where E(·) is an expectation operator and E(1{u1 � Xt+t � u2}jXt)

¼ F0
t(u2jXt,y0) � F0

t(u1jXt,y0). Concretely, model k is worse than model 1 if on

average t-step ahead prediction errors under model k is larger than that of model 1.

Finally, it is important to point out some main features characterized by all the

three test statistics. Processes X(t) hereafter are required to satisfy the regular

conditions, i.e., assumptions A1–A8 in Corradi and Swanson (2011). Regarding

model estimation (in Sect. 56.3.3), y{ and y
{

k are unobserved and need to be

estimated. While Corradi and Swanson (2005) and Bhardwaj et al. (2008) utilize

(recursive) simulated generalized method of moments (SGMM), Corradi and

Swanson (2011) make extension to (recursive) nonparametric simulated

12See Sect. 56.3.3.1 for model simulation details.
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quasi-maximum likelihood (NPSQML). For the unknown distribution and condi-

tional distribution, it will be pointed out in Sect. 56.3.3.2 that F(u,y{), Ft(u|Xt, y
{),

andF
X
y{
k

k, tþt Xtð Þ
uð Þcan be replaced by their simulated counterparts using the (recursive)

SGMM and NPSQML parameter estimators. In addition, test statistics converge to

functional of Gaussian processes with covariance kernels that reflect time depen-

dence of the data and the contribution of parameter estimation error (PEE). Limiting

distributions are not nuisance parameter-free, and critical values thereby cannot be

tabulated by the standard approach. All the tests discussed in this chapter rely on the

bootstrap procedures for obtaining the asymptotically valid critical values, which we

will describe in Sect. 56.3.4.

56.3.1.1 Unconditional Distribution Tests
For one-factor diffusions, we outline the construction of unconditional test

statistics in the context where CDF is known in closed form. In order to test the

Hypothesis 1, consider the following statistic:

V2
T,N, h ¼

ð

U

V2
T,N, h uð Þp uð Þ,

where

VT,N, h ¼ 1ffiffiffi
T

p
XT
t¼1

1 Xt � uf g � F u; ŷT,N, h

� �� �
:

In the above expression, U is a compact interval and

ð

U

p uð Þdu ¼ 1, 1 Xt � uf g is

again the indicator function which returns value 1 if Xt � u and 0 otherwise. Further,
as defined in Sect. 56.3.3, ŷT,N, h hereafter is a simulated estimator where T is sample

size and h is the discretization interval used in simulation. In addition, with the abuse

of notation, N is a generic notation throughout this chapter, i.e., N ¼ L, the length of

each simulation path for (recursive) SGMM, and N ¼ M, the number of random

draws (simulated paths) for (recursive) NPQML estimator.13 Also note in our nota-

tion that as the above test is in sample specification test, the estimator and the

statistics are constructed using the entire sample, i.e., ŷT,N, h.
It has been shown in Corradi and Swanson (2005) that under regular conditions

and if the estimator is estimated by SGMM, the above statistics converges

to a functional of Gaussian process.14 In particular, pick the choice T, N ! 1,

h ! 0, T/N ! 0, and Th2 ! 0.

13M is often chosen to coincide with S, the number of simulated paths used when simulating

distributions.
14For details and the proof, see Theorem 1 in Corradi and Swanson (2005).
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Under the null,

V2
T,N, h !

ð

U

Z2 uð Þp uð Þ,

where Z is a Gaussian process with covariance kernel. Hence, the limiting distri-

bution of VT,N,h
2 is a functional of a Gaussian process with a covariance kernel that

reflects both PEE and the time series nature of the data. As ŷT,N, h is root-T

consistent, PEE does not disappear in the asymptotic covariance kernel.

Under HA, there exists an e > 0 such that

lim
T!1

Pr
1

T
V2
T,N, h > e

� �
¼ 1:

For the asymptotic critical value tabulation, we use the bootstrap procedure. In

order to establish validity of the block bootstrap under SGMM with the presence of

PEE, the simulated sample size should be chosen to grow at a faster rate than the

historical sample, i.e., T/N ! 0.

Thus, we can follow the steps in appropriate bootstrap procedure in Sect. 56.3.4.

For instance, if the SGMM estimator is used, the bootstrap statistic is

V2�
T,N, h ¼

ð

U

V2�
T,N, h uð Þp uð Þdu,

where

V2�
T,N, h ¼

1ffiffiffi
T

p
XT
t¼1

1 X�
t � u


 �� 1 Xt � uf g� ��

� F u; ŷ
�
T,N, h

� �
� F u; ŷT,N, h

� �� ��
:

In the above expression, ŷ
�
T,N, h is the bootstrap analog of ŷ

�
T,N, h and is estimated

by the bootstrap sample X1
*, . . ., XT

* (see Sect. 56.3.4). With appropriate conditions,

Corradi and Swanson (2005) show that under the null, VT,N,h
2* has a well-defined

limiting distribution which coincides with that of VT,N,h
2

. We then can straightfor-

wardly derive the bootstrap critical value by following Steps 1–5 in Sect. 56.3.4. In

particular, in Step 5, the idea is to perform B bootstrap replications (B large) and

compute the percentiles of the empirical distribution of the B bootstrap statistics.

Reject H0 if VT,N,h
2 is greater than the (1�a)th percentile of this empirical distribu-

tion. Otherwise, do not reject H0.

56.3.1.2 Conditional Distribution Tests
Hypothesis 2 tests correct specification of the conditional distribution, implied by

a proposed diffusion model. In practice, the difficulty arises from the fact that the

functional form of neither t-step ahead conditional distributions Ft(u|Xt, y
{) nor

F0,t(u|Xt, y0) is unknown in most cases. Therefore, Bhardwaj et al. (2008) develop
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bootstrap specification test on the basis of simulated distribution using the

SGMM estimator.15 With the important inputs leading to the test such as simulated

estimator, distribution simulation, and bootstrap procedures to be presented in the

next section,16 the test statistic is defined as

ZT ¼ sup
u�v2U�V

ZT u; vð Þj j,
where

ZT u; vð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

1

S

XS

s¼1
1 X

ŷT,N, h
s, tþt � u

n o

� 1 Xtþt � uf gð Þ

0
@

1
A,

with U and V compact sets on the real line. ŷT,N, h is the simulated estimator using

entire sample X1, . . . , XT, and S is the number of simulated replications used in the

estimation of conditional distributions as described in Sect. 56.3.3. If SGMMestimator

is used (similar to unconditional distribution case and the same as in Bhardwaj et al.

(2008)), then N ¼ L, where L is the simulation length used in parameter estimation.

The above statistic is a simulation-based version of the conditional Kolmogorov

test of Andrews (1997), which compare the joint empirical distribution:

1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

1 Xtþt � uf g1 Xt � vf g,

with its semi-empirical/semi-parametric analog given by the product of

1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

F0, t u Xt; y0jð Þ1 Xt � vf g:

Intuitively, if the null is not rejected, the metric distance between the two should

asymptotically disappear. In the simulation context with parameter estimation

error, the asymptotic limit of ZT however is a nontrivial one. Bhardwaj et al.

(2008) show that with the proper choice of T, N, S, h, i.e., T, N, S, T2/S ! 1
and h, T/N, T/S, Nh, h2T ! 0, then

ZT !d sup
u�v2U�V

Z u; vð Þj j,

where Z(u, v) is a Gaussian process with a covariance kernel that characterizes

(1) long-run variance we would have if we knew F0,t(u|Xt, y0)), (2) the contribution

15In this chapter, we assume that X(·) satisfies the regularity conditions stated in Corradi and

Swanson (2011), i.e., assumptions A1–A8. Those conditions also reflect requirements A1–A2 in

Bhardwaj et al. (2008). Note that the SGMM estimator used in Bhardwaj et al. (2008) satisfies the

root-N consistency condition that Corradi and Swanson (2011) impose on their parameter estima-

tor (see Assumption 4).
16See Sects. 56.3.3 and 56.3.4 for further details.
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of parameter estimation error, and (3) The correlation between the first two.

Furthermore, under HA, there exists some e > 0 such that

lim
P!1

Pr
1ffiffiffi
T

p ZT > e
� �

¼ 1:

As T/S! 0, the contribution of simulation error is asymptotically negligible. The

limiting distribution is not nuisance parameter-free and hence critical values cannot

be tabulated directly from it. The appropriate bootstrap statistic in this context is

Z�
T ¼ sup

u�v2U�V
Z�
T u; vð Þ		 		,

where

Z�
T ¼ u; vð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

XT�t

t¼1

1 X�
t � v


 �

� 1

S

XS
s¼1

1 X
ŷ
�
T,N, h

s, tþt � u

� 
� 1 X�

tþt
� u

n o !

� 1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

1 Xt � vf g

� 1

S

XS
s¼1

1 X
ŷ
�
T,N, h

s, tþt � u

� 
� 1 Xtþt � uf g

 !
:

In the above expression, ŷ
�
T,N, h is the bootstrap parameter estimated using the

resampled data Xt
* for t¼ 1, . . . , T� t.X

ŷ
�
T,N, h

s, tþt , s¼ 1, . . . , S and t¼ 1, . . . , T� t is

the simulated date under ŷ
�
T,N, h and Xt

*; t ¼ 1, . . ., T � t is a resampled series

constructed using standard block bootstrap methods as described in Sect. 56.3.4.

Note that in the original paper, Bhardwaj et al. (2008) propose bootstrap SGMM

estimator for conditional distribution of diffusion processes. Corradi and Swanson

(2011) extend the test to the case of simulated recursive NPSQML estimator.

Regarding the generation of the empirical distribution of ZT
* (asthmatically the

same as ZT), follow Steps 1–5 in the bootstrap procedure in Sect. 56.3.4. This

yields B bootstrap replications (B large) of ZT
*. One can then compare ZT with the

percentiles of the empirical distribution of ZT
*, and reject H0 if ZT is greater than the

(1 � a)th percentile. Otherwise, do not reject H0. Tests carried out in this manner

are correctly asymptotically sized and have unit asymptotic power.

56.3.1.3 Predictive Density Tests for Multiple Competing Models
In many circumstances, one might want to compare one (benchmark) model

(model 1) against multiple competing models (models k, 2 � k � m). In this case,

recall in the null in Hypothesis 3 that no model can outperform the benchmark

model. In testing the null, we first choose a particular interval, i.e., (u1, u2) 2 U � U,

56 Density and Conditional Distribution-Based Specification Analysis 1529



where U is a compact set so that the objective is evaluation of predictive densities for

a given range of values. In addition, in the recursive setting (not full sample is used to

estimate parameters), if we use the recursive NPSQML estimator, say ŷ1:t,N, h and

ŷk:t,N, h, for models 1 and k, respectively, then the test statistic is defined as

DMax
k,P, S u1; u2ð Þ ¼ max

k¼2, ...,m
Dk,P, S u1; u2ð Þ,

where

Dk,P, S u1; u2ð Þ ¼ 1ffiffiffi
P

p
XT�t

t¼R

1

S

XS
i¼1

1 u1 � X
ŷ1, t,N, h
1, i, tþt Xtð Þ � u2

n o" 

� 1 u1 � Xtþt � u2f g
#2

� 1

S

XS
i¼1

1 u1 � X
ŷk, t,N, h
k, i, tþt Xtð Þ � u2

n o" 

� u1 � Xtþt � u2f g
#21
A:

All notations are consistent with previous sections where S is the

number of simulated replications used in the estimation of conditional distributions.

X
ŷ1, t,N, h
1, i, tþt Xtð Þ and X

ŷk, t,N, h
k, i, tþt , i ¼ 1, . . ., S, t ¼ 1, . . ., T � t, are the ith simulated path

under ŷ1, t,N, h and ŷk, t,N, h . If models 1 and k are nonnested for at least one, k ¼
2, . . ., m. Under regular conditions and if P, R, S, h are chosen such as P, R, N!1
and h, P/N, h2P ! 0, P/R ! p where p is finite then

max
k¼2, ...,m

Dk,P,N u1; u2ð Þ � mk u1; u2ð Þ� �! max
k¼2, ...,m

Zk u1; u2ð Þ:

where, with an abuse of notation, mk(u1, u2) ¼ m1(u1, u2) � mk(u1, u2), and

mj u1; u2ð Þ ¼ E
F
X
y{
j

j, tþt Xtð Þ
u2ð Þ � F

X
y{
j

j, tþt Xtð Þ
u1ð Þ

 !

� F0 u2 Xtjð Þ � F0 u1 Xtjð Þð Þ

0
B@

1
CA

20
B@

1
CA,

for j ¼ 1,. . ., m, and where (Z1(u1, u2), . . ., Zm(u1, u2)) is an m-dimensional Gaussian

random variable the covariance kernels that involves error in parameter estimation.

Bootstrapstatisticsare thereforerequiredtoreflect thisparameterestimationerror issue.17

In the implementation, we can obtain the asymptotic critical value using a

recursive version of the block bootstrap. The idea is that when forming block

17See Corradi and Swanson (2011) for further discussion.

1530 D. Duong and N.R. Swanson



bootstrap samples in the recursive setting, observations at the beginning of the

sample are used more frequently than observations at the end of the sample. We can

replicate Steps 1–5 in bootstrap procedure in Sect. 56.3.4. It should be stressed

that the resampling in the Step 1 is the recursive one. Specifically, begin

by resampling b blocks of length l from the full sample, with lb ¼ T. For any
given t, it is necessary to jointly resample Xt, Xt+1, . . ., Xt+t. More precisely, let

Zt,t ¼ (Xt, Xt+1, . . ., Xt + t), t ¼ 1, . . ., T � t. Now, resample b overlapping blocks of

length l from Zt,t. This yields Zt, � ¼ X�
t
;X�

tþ1
; . . . ;X�

tþt

� �
, t¼ 1,. . ., T� t. Use these

data to construct bootstrap estimator ŷk, t,N, h. Recall that N is chosen in Corradi and

Swanson (2011) as the number of simulated series used to estimate the parameters

(N ¼ M ¼ S) and such as N/R, N/P ! 1. Under this condition, simulation error

vanishes and there is no need to resample the simulated series.

Corradi and Swanson (2011) show that

1ffiffiffi
P

p
XT
t¼R

ŷ
�
k, t,N, h � ŷk, t,N, hÞ

�

has the same limiting distribution as

1ffiffiffi
P

p
XT
t¼R

ŷk, t,N, h � y{kÞ,
�

conditional on all samples except a set with probability measure approaching zero.

Given this, the appropriate bootstrap statistic is

D�
k,P, S u1; u2ð Þ ¼ 1ffiffiffi

P
p

XT�t

t¼R

1

S

XS
i¼1

1 u1 � X
ŷ1, t,N, h
1, i, tþt X�

t

� � � u2

n o" (

� 1 u1 � X�
tþt � u2


 �#2

� 1

T

XT
j¼1

1

S

XS
i¼1

1 u1 � X
ŷ1, t,N, h
1, i, tþt X�

j

� �
� u2

n o" 

� 1 u1 � Xjþt � u2

 �

#2

� 1

S

XS
i¼1

1 u1 � X
ŷk, t,N, h
k, i, tþt X�

t

� � � u2

n o" 

� 1 u1 � X�
tþt � u2


 �
#2

� 1

S

XS
i¼1

1

S

XS
i¼1

1 u1 � X
ŷk, t,N, h
k, i, tþt Xj

� � � u2

n o" 

�1 u1 � Xjþt � u2

 �

#21
A
1
A
9=
;:
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As the bootstrap statistic is calculated from the last P resampled observations, it

is necessary to have each bootstrap term recentered around the (full) sample mean.

This is true even in the case there is no need to mimic PEE, i.e., the choice of P, R is

such that P/R! 0. In such a case, above statistic can be formed using ŷk, t,N, h rather
than ŷ

�
k, t,N, h.

For any bootstrap replication, repeat B times (B large) bootstrap replications

which yield B bootstrap statistics Dk,P,S
* . Reject H0 if Dk,P,S is greater than the

(1 � a)th percentile of the bootstrap empirical distribution. For numerical imple-

mentation, it is of importance to note that in the case where P/R! 0, P, T, R!1,

there is no need to re-estimate ŷ
�
1, t,N, h ŷ

�
k, t,N, h

� �
. Namely, ŷ1, t,N, h ŷk, t,N, h

� �
can be

used in all bootstrap experiments.

Of course, the above framework can also be applied using entire simulated

distributions rather than predictive densities, by simply estimating parameters

once, using the entire sample, as opposed to using recursive estimation

techniques, say, as when forming predictions and associated predictive

densities.

56.3.2 Multifactor Models

Now, let us turn our attention to multifactor diffusion models of the form

(X(t), V(t))0 ¼ (X(t), V1(t), . . ., Vd(t))0, where only the first element, the diffusion

process Xt, is observed while V(t) ¼ (V1(t), . . ., Vd(t))0 is latent. The most

popular class of the multifactor models is stochastic volatility model expressed as

below:

dX tð Þ
dV tð Þ

� �
¼ b1 X tð Þ,y{� �

b2 V tð Þ,y{� �
 !

dtþ s11 V tð Þ,y{� �

0

 !
dW1 tð Þþ s12 V tð Þ,y{� �

s22 V tð Þ,y{� �
 !

dW2 tð Þ,

(56:10)

where W1(t)1�1 and W2(t)1�1 are independent Brownian motions.18 For instance,

many term structure models require the multifactor specification of the above form

(see Dai and Singleton (2000)). In a more complicated case, the drift function can

also be specified to be a stochastic process which poses even more challenges to

testing. As mentioned earlier, the hypotheses (Hypothesis 1, 2, 3) and the test

18Note that the dimension of X(·) can be higher and we can add jumps to the above specification

such that it satisfies the regularity conditions outlined in the one-factor case. In addition, Corradi

and Swanson (2005) provide a detailed discussion of approximation schemes in the context of

stochastic volatility models.
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construction strategy for multifactor models are the same as for one-factor model.

All theory essentially applies immediately to multifactor cases. In implementation,

the key difference is in the simulated approximation scheme facilitating parameter

and CDF estimation. X(t) cannot simply be expressed as a function of d + 1 driving

Brownian motions but instead involves a function of (Wjt,
Ð t
0
WjsdWis), i, j ¼ 1, . . . ,

d + 1 (see, e.g., Pardoux and Talay (1985, pp. 30–32) and Corradi and Swanson

(2005)).

For illustration, we hereafter focus on the analysis of a stochastic volatility

model (56.10) where drift and diffusion coefficients can be written as

b ¼ b1 X tð Þ, y{� ��
b2 V tð Þ, y{� ��

 !

s ¼ s11 V tð Þ, y{� �
s12 V tð Þ, y{� �

0 s22 V tð Þ, y{� �
 !

We also examine a three-factor model (i.e., the Chen model as in Eq. 56.5) and

a three-factor model with jumps (i.e., CHENJ as in Eq. 56.6). By presenting two-

and three-factor models as an extension of our above discussion, we make it clear

that specification tests of multiple factor diffusions with d � 3 can be easily

constructed in similar manner.

In distribution estimation, the important challenge for multifactor models lies in

the missing variable issue. In particular, for simulation of Xt, one needs initial

values of the latent processes V1, . . . , Vd, which are unobserved. To overcome this

problem, it suffices to simulate the process using different random initial values for

the volatility process; then construct the simulated distribution using those initial

values and average them out. This allows one to integrate out the effect of

a particular choice of volatility initial value.

For clarity of exposition, we sketch out a simulation strategy for a general model

of d latent variables in Sect. 56.3.3. This generalizes the simulation scheme of

three-factor models in Cai and Swanson (2011). As a final remark before moving to

the statistic presentation, note that the class of multifactor diffusion processes

considered in this chapter is required to match the regular conditions as in previous

section (assumption from A1 to A8 in Corradi and Swanson (2011) with A4 being

replaced by A40).

56.3.2.1 Unconditional Distribution Tests
Following the above discussion on test construction, we specialize to the case of

two-factor stochastic volatility models. Extension to general multidimensional and

multifactor models follows similarly. As the CDF is rarely known in closed form for

stochastic volatility models, we rely on simulation technique. With the simulation

scheme, estimators, simulated distribution, and bootstrap procedures to be presented

in the next sections (see Sects. 56.3.3 and 56.3.4), the test statistics for Hypothesis 1
turns out to be
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SVT, S, h ¼ 1ffiffiffi
T

p
XT
t¼1

1 Xt � uf g
�

� 1

S

XS
t¼1

1 X
ŷT,N, L, h
t, h � u

� ��
:

In the above expression, recall that S is the number of simulation paths used in

distribution simulation; ŷT,N, L, h is a simulated estimator (see Sect. 56.3.3). N is

a generic notation throughout this chapter, i.e., N ¼ L, the length of each simulation

path for SGMM, and N ¼ M, the number of random draws (simulated paths) for

NPQML estimator. h is the discretization interval used in simulation. Note that

ŷT,N,L, h is chosen in Corradi and Swanson (2005) to be SGMM estimator using

full sample and therefore N ¼ L ¼ S.19 To put it simply, one can write

ŷT, S, h ¼ ŷT,N, L, h.
Under the null, choose T, S to satisfy T, S ! 1, Sh ! 0, T/S ! 0, then

SV2
T, S, h !

ð

U

SV2 uð Þp uð Þ,

where Z is a Gaussian process with covariance kernel that reflects both PEE and the

time-dependent nature of the data. The relevant bootstrap statistic is

SV2�
T, S, h ¼

1ffiffiffi
T

p
XT
t¼1

1 X�
t � u


 �� 1 Xt � uf g� �

� 1ffiffiffi
T

p
XT
t¼1

1

S

XS
t¼1

1 X
ŷT,N, L, h
t, h � u

� �
� 1 X

ŷT,N,L, h
t, h � u

� �� �
,

where ŷ
�
T, S, h is the bootstrap analog of ŷT, S, h . Repeat Steps 1–5 in the bootstrap

procedure in Sect. 56.3.4 to obtain critical values which are the percentiles of

the empirical distribution of ZT
*. Compare SVT,S,h with the percentiles of the

empirical distribution of the bootstrap statistic and reject H0 if SVT,S,h is greater

than the (1�a)th percentile thereof. Otherwise, do not reject H0.

56.3.2.2 Conditional Distribution Tests
To test Hypothesis 2 for the multifactor models, first we present the test statistic

for the case of the stochastic volatility model (Xt, Vt) in Eq. 56.10 (i.e., for

two-factor diffusion), and then we discuss testing with the three-factor model

(Xt, Vt
1, Vt

2) as in Eq. 56.5. Other multiple factor models can be tested analogously.

19As seen in assumption A40 in Corradi and Swanson (2011) and Sect. 56.3.3 of this chapter,

ŷT,N, L, h can be other estimators such as the NPSQML estimator. Importantly, ŷT,N, L, h satisfies

condition A40 in Corradi and Swanson (2011).
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Note that for illustration, we again assume use of the SGMM estimator ŷT,N,L, h,
as in the original work of Bhardwaj et al. (2008) (namely, ŷT,N,L, h is the

simulated estimator described in Sect. 56.3.3). Specifically, N is chosen as

the length of sample path L used in parameter estimation. The associated test

statistic is

SZT ¼ sup
u�v2U�V

SZT u, vð Þj j

SZT u, vð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

1 Xt � vf g

� 1

NS

XN
j¼1

XS
i¼1

1 X
ŷT,N, L, h
j, i, tþt � u

n o
� 1 Xtþt � uf g

 !
,

whereX
ŷT,N, L, h
j, i, tþt is t-step ahead simulated skeleton obtained by simulation procedure

for multifactor model in Sect. 56.3.3.1.

In a similar manner, the bootstrap statistic analogous to SZT is

SZ�
T ¼ sup

u�v2U�V
SZ�

T u; vð Þ		 		,

SZ�
T u; vð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

XT�t

t¼1

1 X�
t � v


 �

� 1

NS

XN
j¼1

XS
i¼1

1 X
ŷ
�
T,N, L, h

j, i, tþt � u

� 
� 1 X�

tþt � u

 � !

� 1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

1 Xt � vf g

1

NS

XN
j¼1

XS
i¼1

1 X
ŷT,N,L, h
j, i, tþt � u

n o
� 1 Xtþt � uf g

 !

where ŷ
�
T,N,L, h is the bootstrap estimator described in Sect. 56.3.4. For the three-

factor model, the test statistic is defined as

MZT ¼ sup
u�v2U�V

MZT u; vð Þj j,

MZT u; vð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

1 Xt � vf g

� 1

L2S

XL
j¼1

XL
k¼1

XS
i¼1

1 X
ŷT,N,L, h
s, tþt � u

n o
� 1 Xtþt � uf g

 !
,

and bootstrap statistics is
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MZ�
T u; vð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

XT�t

t¼1

1 Xt � vf g

� 1

L2S

XL
j¼1

XL
k¼1

XS
i¼1

1 X
ŷ
�
t,N,L, h

s, tþt � u

� 
� 1 X�

tþt � u

 � !

� 1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

1 Xt � vf g

� 1

L2S

XL
j¼1

XL
k¼1

XS
i¼1

1 X
ŷ t,N, L, h
s, tþt � u

n o
� 1 Xtþt � uf g

 !

where X
ŷT,N,L, h
s, tþt ¼ X

ŷT,N, L, h
s, tþt Xt;V

1, ŷT,N, L, h
j ;V

2, ŷT,N, L, h
k

� �
and X

ŷ
�
t,N, L, h

s, tþt ¼

X
ŷ
�
t,N,L, h

s, tþt Xt;V
1, ŷ

�
t,N, L, h

j ;V
2, ŷ

�
t,N,L, h

k

� �
.

The first-order asymptotic validity of inference carried out using bootstrap

statistics formed as outlined above follows immediately from Bhardwaj

et al. (2008). For testing decision, one compares the test statistics SZT,S,h and

MZT,S,h with the percentiles or the empirical distributions of SZT
* and MZT,S,h

* ,

respectively. Then, reject H0 if the actual statistic is greater than the (1 � a)th
percentile of the empirical distribution of the bootstrap statistic, as in Sect. 56.3.4.

Otherwise, do not reject H0.

56.3.2.3 Predictive Density Tests for Multiple Competing Models
For illustration, we present the test for the stochastic volatility model (two-factor

model). Again, note that extension to other multifactor models follows immediately.

In particular, all steps in the construction of the test in the one-factor model case carry

through immediately to the stochastic volatility case with the statistic defined as

DVP,L, S ¼ max
k¼2, ...,m

DVk,P, L, S u1; u2ð Þ,

where

DVk,P, L, S u1; u2ð Þ ¼ 1ffiffiffi
P

p
XT�t

t¼R

1

SL

XL
j¼1

XS
i¼1

1 u1 � X
ŷ1, t,N,L, h
1, tþt, i, j Xt;V

ŷ1, t,N,L, h
1, j

� �
� u2

n o
� 1 u1 � Xtþt � u2f g

 ! 2

� 1

SL

XL
j¼1

XS
i¼1

1 u1 � X
ŷk, t,N,L, h
k, tþt, i, j Xt;V

ŷk, t,N,L, h
k, j

� �
� u2

n o
�1 u1 � Xtþt � u2f g

!2
0
@

1
A:
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Critical values for these tests can be obtained using a recursive version of the

block bootstrap. The corresponding bootstrap test statistic is

DV�
P, L, S ¼ max

k¼2, ...,m
DV�

k,P, L, S u1; u2ð Þ

where

DV�
k,P,L,S u1;u2ð Þ¼ 1ffiffiffi

P
p
XT�t

t¼R

1

SL

XL
j¼1

XS
i¼1

1 u1�X
ŷ
�
1,t,N,L,h

1,tþt,i,j X�
t ;V

ŷ
�
1,t,N,L,h

1,j

� �
�u2

� 
�1 u1�X�

tþt�u2

 �

" #20
@

8<
:

�1

T

XT
l¼1

1

SL

XL
j¼1

XS
i¼1

1 u1<X
ŷ1,t,N,L,h
1,tþt,i,j Xl;V

ŷ1,t,N,L,h
1,j

� �
�u2

n o
�1 u1�Xlþt�u2f g

" #21
A

� 1

SL

XL
j¼1

XS
i¼1

1 u1�X
ŷ
�
k,t,N,L,h

k,tþt,i,j X�
t ;V

ŷ
�
k,t,N,L,h

k,j

� �
�u2

� 
�1 u1�X�

tþt�u2

 �

" #20
@

�1

T

XT
l¼1

1

SL

XL
j¼1

XS
i¼1

1 u1�X
ŷk,t,N,L,h
k,tþt,i,j Xl;V

ŷk,t,N,L,h
k,j

� �
�u2

n o
�1 u1�Xlþt�u2f g

" #21
A
9=
;

Of note is that we follow Cai and Swanson (2011) by adopting the recursive

NPSQML estimator ŷ1, t,N,L, h and ŷk, t,N,L, h for model 1 and k, respectively, as
introduced in Sect. 56.3.3.4 with the choice N¼M¼ S. ŷ

�
1, t,N,L, h and ŷ

�
k, t,N, L, h are

bootstrap analogs of ŷ1, t,N,L, h and ŷk, t,N, L, h , respectively (see Sect. 56.3.4). In

addition, we do not need to resample the volatility process, although volatility is

simulated under both ŷk, t,N,L, h and ŷ
�
k, t,N, L, h, k ¼ 1, . . ., m.

Repeat Steps 1–5 in the bootstrap procedure in Sect. 56.3.4 to obtain critical

values. Compare DVP, L, S with the percentiles of the empirical distribution of

DVP, L, S
* , and reject H0 if DVP, L, S is greater than the (1 � a)th percentile.

Otherwise, do not reject H0. Again, in implementation, there is no need to

re-estimate ŷ
�
k, t,N,L, h for each bootstrap replication if P/R ! 0, P, T, R ! 1, as

parameter estimation error vanishes asymptotically in this case.

56.3.3 Model Simulation and Estimation

56.3.3.1 Simulating Data
Approximation schemes are used to obtain simulated distributions and simulated

parameter estimators, which are needed in order to construct the test statistics

outlined in previous sections. We therefore devote the first part of this section to
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a discussion of the Milstein approximation schemes that have been used in

Corradi and Swanson (2005), Bhardwaj et al. (2008), and Corradi and Swanson

(2011). Let L be the length of each simulation path and h be the discretization

interval, L ¼ Qh, and y be a generic parameter in simulation expression. We

consider three cases:

The pure diffusion process as in Eq. 56.9:

Xy
qh � Xy

q�1ð Þh ¼ b Xy
q�1ð Þh; y

� �
hþ s Xy

q�1ð Þh; y
� �

ϵqh � 1

2
s Xy

q�1ð Þh; y
� �

0s Xy
q�1ð Þh; y

� �
h

þ 1

2
s Xy

q�1ð Þh; y
� �

0s Xy
q�1ð Þh; y

� �
ϵ2qh,

where

Wqh �W q�1ð Þh
� � ¼ ϵqh 	iid N 0; hð Þ,

q¼ 1, . . . ,Q, with ϵqh 	iid N 0; hð Þ, and where s0 is the derivative of s(
) with respect
to its first argument. Hereafter, Xqh

y denotes the values of the diffusion at time qh,
simulated under generic y, and with a discrete interval equal to h, and so is a

fine-grain analog of Xt,h
y .

The pure jump diffusion process without stochastic volatility as in Eq. 56.1:

Xy
qþ1ð Þh � Xy

qh ¼ b Xy
qh; y

� �
hþ s Xy

qh; y
� �

ϵ qþ1ð Þh � 1

2
s Xy

qh; y
� �0

s Xy
qh; y

� �
h

þ 1

2
s Xy

qh; y
� �0

s Xy
qh; y

� �
ϵ2qþ1ð Þh � lmyh

þ
XJ
j¼1

yj1 qh � U j � qþ 1ð Þh
 �
:

(56:11)

The only difference between this approximation and that used for the pure diffusion

is the jump part. Note that the last term on the right-hand side (RHS) of Eq. 56.11

is nonzero whenever we have one (or more) jump realization(s) in the interval

[(q � 1)h, qh]. Moreover, as neither the intensity nor the jump size is state

dependent, the jump component can be simulated without any discretization

error, as follows. Begin by making a draw from a Poisson distribution with intensity

parameter l̂t , say J . This gives a realization for the number of jumps over the

simulation time span. Then draw J uniform random variables over [0, L], and sort

them in ascending order so that U1 � U2 � . . . � UJ . These provide realizations

for the J independent draws from f, say y1, . . . , yJ .
SV models without jumps as in Eq. 56.4 (using a generalized Milstein scheme):
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Xy
qþ1ð Þh ¼ Xy

qh þ eb1 Xy
qh; y

� �
hþ s11 Vy

qh; y
� �

ϵ1, qþ1ð Þh þ s12 Vy
qh; y

� �
ϵ2, qþ1ð Þh

þ 1

2
s22 Vy

qh; y
� � @s12, k Vy

qh; y
� �

@V
ϵ22, qþ1ð Þh þ s22 Vy

qh; y
� � @s11 Vy

qh; y
� �

@V

�
ð qþ1ð Þh

qh

ðs
qh

dW1, t

� �
dW2:s,

(56:12)

Vy
qþ1ð Þh ¼ Vy

qh þ eb2 Vy
qh; y

� �
hþ s22 Vy

qh; y
� �

ϵ2, qþ1ð Þh

þ 1

2
s22 Vy

qh; y
� � @s22 Vy

qh; y
� �

@V
ϵ22, qþ1ð Þh,

(56:13)

where h� 1/2ϵi,qh 	 N(0,1), i ¼ 1, 2,E ϵ1, qhϵ2, q0h
� � ¼ 0 for all q 6¼ q0, and

eb V; yð Þ ¼ eb1 V; yð Þ
eb2 V; yð Þ

� �
¼

b1 V; yð Þ � 1

2
s22 V; yð Þ @s12 V; yð Þ

@V

b2 V; yð Þ � 1

2
s22 V; yð Þ @s22 V; yð Þ

@V

0
B@

1
CA:

The last terms on the RHS of Eq. 56.12 involve stochastic integrals and

cannot be explicitly computed. However, they can be approximated up to an

error of order o(h) by (see, e.g., Eq. 3.7, pp. 347 in Kloeden and Platen (1999))

ð qþ1ð Þh

qh

ðs
qh

dW1, t

� �
dW2, s � h

1

2
x1x2 þ

ffiffiffiffiffi
rp

p
m1, px2 � m2, px1
� �� �

þ h

2p

Xp

r¼1

1

r
B1, r

ffiffiffi
2

p
x2 þ �2, r

� ��
� B2, r

ffiffiffi
2

p
x1 þ � 1, r

� ��
,

where for j ¼ 1, 2, xj, mj, p, Bj, r, �j, r are i.i.d. N(0, 1) random variables, rp ¼ 1
12

� 1
2p2

Xp

r¼1

1

r2
, and p is such that as h ! 0, p ! 1.

Stochastic Volatility with Jumps
Simulation of sample paths of diffusion processes with stochastic volatility and

jumps follows straightforwardly from the previous two cases. Whenever both

intensity and jump size are not state dependent, a jump component can be simulated

and added to either X(t) or the V(t) in the same manner as above. Extension to

general multidimensional and multifactor models both with and without jumps also

follows directly.
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56.3.3.2 Simulating Distributions
In this section, we sketch out methods used to construct t-step ahead simulated

conditional distributions using simulated data. In applications, simulation tech-

niques are needed when the functional form conditional distribution is unknown.

We first illustrate the technique for one-factor models and then discuss multifactor

models.

One-factor Models
Consider the one-factor model as in Eq. 56.7. To estimate the simulated CDFs:

Step 1: Obtain ŷT,N, h (using the entire sample) or ŷt,N, h (recursive estimator) where

ŷT,N, h and ŷt,N, h are estimators as discussed in Sects. 56.3.3.3 and 56.3.3.4.

Step 2: Under ŷT,N, h or ŷt,N, h,
20 simulate S paths of length t, all having the same

starting value, Xt. In particular, for each path i ¼ 1, . . ., S of length t, generate

X
ŷT,N, h
i, tþt Xtð Þ according to a Milstein schemes detailed in previous section, with

y ¼ ŷT,N, h or ŷt,N, h. The errors used in simulation are eqh e
iid

N 0; hð Þ, and Qh ¼ t.
eqh is assumed to be independent across simulations, so that E(ei,qhej,qh) ¼ 0, for

all i 6¼ j and E(ei,qhei,qh)¼ h, for any i, j. In addition, as the simulated diffusion is

ergodic, the effect of the starting value approaches zero at an exponential rate,

as t ! 1.

Step 3: If ŷT,N, h ŷt,N, h
� �

is used, an estimate for the distribution, at time t + t,

conditional on Xt, with estimator ŷT,N, h ŷt,N, h
� �

, is defined as

F̂t u Xt; ŷT,N, h
			

� �
¼ 1

S

XS
i¼1

1 X
ŷT,N, h
i, tþt Xtð Þ � u

n o
:

Bhardwaj et al. (2008) show that if the model is correctly specified, then

1
S

XS

i¼1
1 X

ŷT,N, h
iþtþt Xtð Þ � u

n o
provides a consistent of the conditional distribution

Ft(u|Xt, y
{) ¼ Pr(Xt+t

y{ � u|Xt
y{ ¼ Xt).

Specifically, assume that T, N, S ! 1. Then, for the case of SGMM estimator,

if h ! 0, T/N ! 0, and h2T ! 0, T2/S ! 1, the following result holds for any

Xt, t � 1, uniformly in u

F̂t u Xt; ŷT,N, h
			

� �
� Ft u Xt; yj {

� �
!pr 0,

20Note that N ¼ L for the SGMM estimator while N ¼ M ¼ S for NSQML estimator.
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In addition, if the model is correctly specified (i.e., if m(,) ¼ m0(,) and

s(,) ¼ s0(,)), then

F̂t u Xt; ŷT,N, h
			

� �
� F0, t u Xtj , y0ð Þ!pr 0:

Step 4: Repeat Steps 1–3 for t ¼ 1, . . ., T � t. This yields T � t conditional

distributions that are t-steps ahead which will be used in the construction of the

specification tests.

The CDF simulation in the case selection test of multiple models with recursive

estimator is similar. For model k, let ŷk, t,N, h be the recursive estimator of “pseudo

true” yk
{ computed using all observations up to varying time t. Then, X

ŷk, t,N, h
k, i, tþt Xtð Þ is

generated according to a Milstein schemes as in Sect. 56.3.3.1, with y ¼ ŷk, t,N, h
and the initial value Xt, Qh ¼ t. The corresponding empirical distribution of the

simulated series X
ŷk, t,N, h
k, i, tþtX tð Þ can then be constructed. Under some regularity

conditions,

1

S

XS
i¼1

1 u1 � X
ŷk, t,N,h
k, i, tþt Xtð Þ � u2

n o
!pr F

X
y{
k

k, tþt Xtð Þ
u2ð Þ � F

X
y{
k

k, tþt Xtð Þ
u1ð Þ, t¼ R, . . . ,T � t,

where F
X
y{
k

k, tþt Xtð Þ
uð Þ is the marginal distribution of X

y{
k
tþt Xtð Þ implied by k model (i.e.,

by the model used to simulate the series), conditional on the (simulation) starting

value Xt. Furthermore, the marginal distribution ofXy{
tþt Xtð Þ is the distribution of Xt+t

conditional on the values observed at time t. Thus, F
Xy{
kþtþt Xtð Þ uð Þ ¼ FT

k u Xt;y
{
k

			
� �

.

Of important note is that in the simulation ofX
ŷk, t,N, h
k, i, tþt Xtð Þ, i¼ 1, . . ., S, for each t,

t ¼ R, . . ., T � t, we must use the same set of randomly drawn errors and similarly

the same draws for numbers of jumps, jump times, and jump sizes. Thus, we

only allow for the starting value to change. In particular, for each i ¼ 1, . . ., S,

we generate X
ŷk,R,N, h
k, i,Rþt XRð Þ, . . . ,Xŷk, T�t,N, h

k, i, t XT�tð Þ . This yields an S � P matrix

of simulated values, where P ¼ T � R � t + 1 refers to the length of the out-of-

sample period. X
ŷk,Rþj,N, h
k, i,Rþjþt XRþj

� �
(at time R + j + t) can be seen as t periods

ahead value “predicted” by model k using all available information up to

time R + jR+j, j ¼ 1, . . ., P (the initial value XR+j and ŷk,Rþj,N, h estimated using

X1, . . ., XR+j). The key feature of this setup is that it enables us to compare

“predicted” t periods ahead values (i.e., X
ŷk,Rþj,N, h
k, i,Rþjþt XRþj

� �
) with actual values

that are t periods ahead (i.e., XR+j+t), for j ¼ 1, . . ., P. In this manner,

simulation-based tests under ex-ante predictive density comparison framework

can be constructed.
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Multifactor Model
Consider the multifactor model with a skeleton (Xt, Vt

1, . . .,Vt
d)0 (e.g., stochastic

mean, stochastic volatility models, stochastic volatility of volatility) where only the

first element Xt is observed. For simulation of the CDF, the difficulty arises as we do

not know the initial values of latent variables (Vt
1, . . .,Vt

d)0 at each point in time. We

generalize the simulation plan of Bhardwaj et al. (2008) and Cai and Swanson

(2011) to the case of d dimensions. Specifically, to overcome the initial value

difficulty, a natural strategy is to simulate a long path of length L for each latent

variable Vt
1, . . ., Vt

d and use them to construct Xt+t and the corresponding simulated

CDF of Xt+t; and finally, we average out the volatility values. Note that there are L
d

combinations of the initial values Vt
1, . . ., Vt

d. For illustration, consider the case of

stochastic volatility (d ¼ 1) and the Chen three-factor model as in Eq. 56.5 (d ¼ 2),

using recursive estimators.

For the case of stochastic volatility (d ¼ 1), i.e., (Xt, Vt)
0, the steps are as

follows:

Step 1: Estimate ŷt,N, L, h using recursive SGMM or NSQML estimation methods.

Step 2: Using the scheme in Eq. 56.13 with y ¼ ŷt,N,L, h, generate the path V
ŷ t,N,L, h
qh

for q ¼ 1/h, . . ., Qh with Qh ¼ L and hence obtain V
ŷ t,N, L, h
j j ¼ 1, . . . L.

Step 3: Using schemes in Eqs. 56.12, 56.13, simulate L� S paths of length t, setting
the initial value for the observable state variable to be Xt. For the initial values of

unobserved volatility, use V
ŷ t,N, L, h
j, qh j ¼ 1,. . ., L as retrieved in Step 2. Also,

keep the simulated random innovations (i.e., e1,qh,. e1,qh,
Ð
qh
(q+1)h(

Ð
qh
s dW1,t)dW2,s)

to be constant across each j and t. Hence, for each replication i, using

initial values Xt and V
ŷT,N, h
j, qh , we obtain X

ŷ t,N, L, h
j, i, tþt Xtð Þ which is a t-step ahead

simulated value.

Step 4: Now the estimator of Ft(u|Xt,y
{) is defined as

F̂t u Xt; ŷt,N,L, h
			

� �
¼ 1

LS

XL
j¼1

XS
i¼1

1 X
ŷ t,N, h
j, i, tþt Xtð Þ � u

n o
:

Note that by averaging over the initial value of the volatility process, we have

integrated out its effect. In other words,
1

S

XS

i¼1
1 X

yt,N, h
j, i, tþt Xtð Þ � u

n o
is an

estimate of Ft u
			Xt;V

ŷ t,N, h
j, h , y{

� �
.

Step 5: Repeat Steps 1–4 for t ¼ 1, . . ., T � t. This yields T � t conditional

distributions that are t-steps ahead which will be used in the construction of the

specification tests.

For three-factor model (d ¼ 2), i.e., (Xt, Vt
1, Vt

2), consider model (56.5), where

Wt ¼ (Wt
1, Wt

2, Wt
3) are mutually independent standard Brownian motions.

Step 1: Estimate ŷt,N, L, h using SGMM or NSQML estimation methods.
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Step 2: Given the estimated parameter ŷt,N, L, h , generate the paths V
1, ŷ t,N,L, h
qh and

V
2, ŷ t,N, L, h
ph for q, p ¼ 1/h, . . ., Qh with Qh ¼ L, and hence, obtain V

1, ŷT,N, L, h
j ,

V
2, ŷT,N, L, hj
k , k ¼ 1, . . ., L.

Step 3: Given the observable Xt and the L� L simulated latent paths (V
1, ŷ t,N,L, h
j and

V
2, ŷ t,N, L, h
k j, k ¼ 1, . . ., L) as the start values, we simulate t-step ahead X

ŷ t,N, L, h
tþt

Xt;V
1, ŷ t,N,L, h
j ;V

2, ŷ t,N,L, h
k

� �
. Since the start values for the two latent variables are

L � L length, so for each Xt we have N2 path. Now to integrate out

the initial effect of latent variables, form the estimate of conditional

distribution as

F̂t, s u Xtŷ
			

� �
¼ 1

L2

XL
j¼1

XL
k¼1

1 X
ŷ t,N,L, h
s, tþt Xt;V

1, ŷ t,N, L, h
j ;V

2, ŷ t,N,L, h
k

� �
� u

n o
,

where s denotes the sth simulation.

Step 4: Simulate X
ŷ t,N, L, h
s, tþt S times, that is, repeat Step 3 S times, i.e., s ¼ 1, . . ., S.

The estimate of Ft(u|Xt,y
{) is

F̂t u Xtŷ
			

� �
¼ 1

S

XS
i¼1

F̂t, s u Xt; ŷT,N, h
			

� �
:

Step 5: Repeat Steps 1–4 for t ¼ 1, . . ., T � t. This yields T � t conditional

distributions that are t-steps ahead which will be used in the construction of the

specification tests.

As a final remark, for the case of multiple competing models, we can

proceed similarly. In addition, in the next two subsections, we present the

exactly identified simulated (recursive) general method of moments and recursive

nonparametric simulated quasi-maximum likelihood estimators that can be used

in simulating distributions as well as constructing test statistics described in

Sect. 56.3.2. The bootstrap analogs of those estimators will be discussed

in Sect. 56.3.4.

56.3.3.3 Estimation: (Recursive) Simulated Generalized Method
of Moments (SGMM) Estimators

Suppose that we observe a discrete sample (skeleton) of T observations, say

(X1, X2, . . ., XT)
0, from the underlying diffusion in Eq. 56.7. The (recursive)

SGMM estimator ŷt,L, h with 1 � t � T is specified as
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ŷt, L, h ¼ argmin
y2Y

1

t

Xt
j¼1

g Xj

� �� 1

L

XL
j¼1

g Xy
j, h

� � !0

�W�1
t

1

t

Xt
j¼1

g Xj

� �� 1

L

XL
j¼1

g Xy
j, h

� � !

¼ argmin
y2Y

Gt, L, h yð Þ0WtGt,L, h yð Þ,

(56:14)

where g is a vector of p moment conditions, Y � ℜp (so that we have as many

moment conditions as parameters), and Xj,h
y ¼ X[Qjh/L]

y , with L¼ Qh is the simulated

path under generic parameter y and with discrete interval h. Xj,h
y is simulated using

the Milstein schemes.

Note that in the above expression, in the context of the specification test, ŷt, L, h is
estimated using the whole sample, i.e., t ¼ T. In the out-of-sample context, the

recursive SGMM estimator ŷt, L, h is estimated recursively using the using sample

from 1 up to t.
Typically, the p moment conditions are based on the difference between sample

moments of historical and simulated data or between sample moments and model

implied moments, whenever the latter are known in closed form. Finally, Wt is the

heteroskedasticity and autocorrelation (HAC) robust covariance matrix estimator,

defined as

W�1
t ¼ 1

t

Xlt
n¼�lt

wn

Xt�lt

j¼nþ1þlt

g Xj

� �� 1

t

Xt
j¼1

g Xj

� �
 !

g Xj�n
� �� 1

t

Xt
j¼1

g Xj

� �
 !0

,

(56:15)

where wv ¼ 1 � v/(lT + 1). Further, the pseudo true value, y{, is defined to be

y{ ¼ arg min
y2Y

G1 yð Þ0W0G1 yð Þ,

where

G1 yð Þ0W0G1 yð Þ ¼ p lim
L,T!1, h!0

GT, L, h yð Þ0WTGT, L, h yð Þ,

and where y{ ¼ y0 if the model is correctly specified.

In the above setup, the exactly identified case is considered rather than the

overidentified SGMM. This choice guarantees that G1(y{) ¼ 0 even under

misspecification, in the sense that the model differs from the underlying DGP. As

pointed out by Hall and Inoue (2003), the root-N consistency does not hold for

overidentified SGMM estimators of misspecified models. In addition,
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∇yG1 y{
� �0

W{G1 y{
� � ¼ 0:

However, in the case for which the number of parameters and the number of

moment conditions are the same, ∇yG1(y{)0W{ is invertible, and so the first-order

conditions also imply that G1(y{) ¼ 0.

Also note that other available estimation methods using moments include the

efficient method of moments (EMM) estimator as proposed by Gallant and Tauchen

(1996, 1997), which calculates moment functions by simulating the expected value

of the score implied by an auxiliary model. In their setup, parameters are then

computed by minimizing a chi-square criterion function.

56.3.3.4 Estimation: Recursive Nonparametric Simulated
Quasi-maximum Likelihood Estimators

In this section, we outline a recursive version of the NPSQML estimator of

Fermanian and Salanié (2004), proposed by Corradi and Swanson (2011). The

bootstrap counterpart of the recursive NPSQML estimator will be presented in

the next section.

One-Factor Models
Hereafter, let f(Xt|Xt�1, y

{) be the conditional density associated with the above

jump diffusion. If f is known in closed form, we can just estimate y{ recursively,
using standard QML as21

ŷt ¼ argmax
y2Y

1

t

Xt
j¼2

ln f Xj Xj�1; y
		� �

, t ¼ R, . . .Rþ P� 1: (56:16)

Note that, similarly to the case of SGMM, the pseudo true value y{ is optimal in

the sense:

y{ ¼ argmax
y2Y

E lnf Xt Xt�1; yjð Þð Þ: (56:17)

For the case f is not known in closed form, we can follow Kristensen and Shin

(2008) and Cai and Swanson (2011) to construct the simulated analog f̂ of f and then
use it to estimate y{. f̂ is estimated as function of the simulated sample paths

Xt,i
y (Xt � 1), for t ¼ 2, . . ., T � 1, i ¼ 1, . . ., M. First, generate T � 1 paths of length

one for each simulation replication, using Xt�1 with t ¼ 1, . . ., T as starting values.

Hence, at time t and simulation replication i, we obtain skeletons Xt,i
y (Xt � 1), for

t ¼ 2, . . ., T � 1; i ¼ 1,. . .M whereM is the number of simulation paths (number of

random draws or Xt,j
y (Xt�1) and Xt,l

y (Xt�1) are i.i.d.) for each simulation replication.

21Note that as model k is, in general, misspecified, ∑ t¼1
T�1fk(Xt|Xt�1,yk) is a quasi-likelihood and

fk(Xt|Xt � 1,yk
{) is not necessarily a martingale difference sequence.
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M is fixed across all initial values. Then the recursive NPSQML estimator is defined

as follows:

ŷt,M, h ¼ argmax
y2Y

1

t

Xt
i¼2

lnf̂ M, h Xi Xi�1; yjð ÞtM � f̂ M, h Xi Xi�1; yjð Þ� �
, t � R,

where

f̂ M, h Xt Xt�1; yjð Þ ¼ 1

MxM

XM
i¼1

K
Xy
t, i, h Xt�1ð Þ � Xt

xM

 !
:

Note that with abuse of notation, we define ŷt,L, h for SGMM and ŷt,M, h for

NPSQML estimators where L and M have different interpretations (L is the length

of each simulation path and M is number of random draws).

The function tM f̂ M, h Xt Xt�1; yjð Þ� �
is a trimming function. It has some

characteristics such as positive and increasing, tM f̂ M, h Xt;Xt�1; yð Þ� � ¼ 0, if f̂ M, h
Xt;Xt�1; yð Þ < xdM and tM f̂ M, h Xt;Xt�1; yð Þ� � ¼ 1 if f̂ M, h Xt;Xt�1; yð Þ > 2xdM , for

some d> 0.22 Note that when the log density is close to zero, the derivative tends to

infinity and thus even very tiny simulation errors can have a large impact on the

likelihood. The introduction of the trimming parameter into the optimization

function ensures the impact of this case to be minimal asymptotically.

Multifactor Models
Since volatility is not observable, we cannot proceed as in the single-factor case

when estimating the SV model using NPSQML estimator. Instead, let Vj
y be

generated according to Eq. 56.13, setting qh ¼ j, and j ¼ 1, . . ., L. The idea is to

simulate L different starting values for unobservable volatility, construct the sim-

ulated likelihood functions accordingly, and then average them out. For each

simulation replication at time t, we simulate L different values of Xt(Xt�1, Vj
y) by

generating L paths of length one, using fixed observable Xt�1 and unobservable Vj
y,

j ¼ 1, . . . , L as starting values. Repeat this procedure for any t ¼ 1, . . . , T � 1 and

for any set j, j ¼ 1, . . . , L of random errors e1,t + (q + 1)h,j and e2,t+(q+1)h,j, q ¼ 1, . . . ,
1/h. Note that it is important to use the same set of random errors e1,t+(q+1)h,j and
e2, t+(q+1)h,j across different initial values for volatility. Denote the simulated value

22Fermanian and Salanie (2004) suggest using the following trimming function:

tN xð Þ ¼ 4 x� aNð Þ3
a3N

� 3 x� aNð Þ4
a4N

,

for aN � x � 2aN.
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at time t and simulation replication i, under generic parameter y, using Xt�1, Vj
y as

starting values as Xt,i,h
y (Xt�1, Vj

y). Then

f̂ M,L, h Xt Xt�1; yjð Þ ¼ 1

L

XL
j¼1

1

MxM

XM
i¼1

K
Xy
t, i, h Xt�1;V

y
j

� �
� Xt

xM

0
@

1
A,

and note that by averaging over the initial values for the unobservable volatility, its

effect is integrated out. Finally, define23

ŷt,M, L, h ¼ argmin
y2Y

1

t

Xt
s¼2

ln f̂ M,L, h Xs Xs�1; yjð ÞtM � f̂ M,L, h Xs Xs�1; yjð Þ� �
, t � R:

Note that in this case, Xt is no longer Markov (i.e., Xt and Vt are jointly

Markovian, but Xt is not). Therefore, even in the case of true data generating

process, the joint likelihood cannot be expressed as the product of the conditional

and marginal distributions. Thus, ŷt,M, L, h is necessarily a QML estimator. Further-

more, note that ∇yf(Xt|Xt�1,y
{) is no longer a martingale difference sequence;

therefore, we need to use HAC robust covariance matrix estimators, regardless of

whether the model is the “correct” model or not.

56.3.4 Bootstrap Critical Value Procedures

The test statistics presented in Sects. 56.3.1 and 56.3.2 are implemented

using critical values constructed via the bootstrap. As mentioned earlier, motivation

for using the bootstrap is clear. The covariance kernel of the statistic limiting

distributions contains both parameter estimation error and the data-related

time-dependence components. Asymptotic critical value cannot thus be tabulated

in a usual way. Several methods have been proposed to tackle this issue.

One is the block bootstrap procedures which we discuss. Others have been

mentioned above.

With regard to the validity of the bootstrap, note that, in the case of dependent

observations without PEE, we can tabulate valid critical value using a simple

empirical version of the K€unsch (1989) block bootstrap. Now, the difficulty in

our context lies in accounting for parameter estimation error. Goncalves and White

(2002) establish the first-order validity of the block bootstrap for QMLE

(or m-estimator) for dependent and heterogeneous data. This is an important result

23For discussion of asymptotic properties of ŷk, t,M, L, h , as well as of regularity conditions, see

Corradi and Swanson (2011).
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for the class of SGMM and NSQML estimators surveyed in this chapter and allows

Corradi and Swanson in CS (2011) and elsewhere to develop asymptotically valid

version of the bootstrap that can be applied under generic model misspecification,

as assumed throughout this chapter.

For the SGMM estimator, as shown in Corradi and Swanson (2005), the first-

order validity of the block bootstrap is valid in the exact identification case, and

when T/S ! 0. In this case, SGMM is asymptotically equivalent to GMM, and

consequently, there is no need to bootstrap the simulated series. In addition, in the

exact identification case, GMM estimators can be treated the same way that QMLE

estimators are treated. For the NSQML estimator, Corradi and Swanson (2011)

point out that the NPSQML estimator is asymptotically equivalent to the QML

estimator. Thus, we do not need to resample the simulated observations as the

negligible contribution of simulation errors.

Also note that critical values for these tests can be obtained using a recursive

version of the block bootstrap. When forming block bootstrap samples in the

recursive case, observations at the beginning of the sample are used more

frequently than observations at the end of the sample. This introduces

a location bias to the usual block bootstrap, as under standard resampling with

replacement, all blocks from the original sample have the same probability of

being selected. Also, the bias term varies across samples and can be either

positive or negative, depending on the specific sample. A first-order valid

bootstrap procedure for nonsimulation-based m-estimators constructed using

a recursive estimation scheme is outlined in Corradi and Swanson (2007a).

Here we extend the results of Corradi and Swanson (2007a) by establishing

asymptotic results for cases in which simulation-based estimators are

bootstrapped in a recursive setting.

Now the details of bootstrap procedure for critical value tabulation can be

outlined in 5 steps as follows:

Step 1: Let T¼ bl, where b denotes the number of blocks and l denotes the length of
each block. We first draw a discrete uniform random variable, I1, that can take

values 0, 1, . . ., T � l with probability 1/(T � l + 1). The first block is given by

XI1þ1, . . . ,XI1þl. We then draw another discrete uniform random variable, say I2,
and a second block of length l is formed, say XI2þ1, . . . ,XI2þl . Continue in the

same manner, until you draw the last discrete uniform, say Ib, and so the

last block is XIbþ1, . . . ,XIbþl . Let’s call the Xt
* the resampled series, and note

that X1
*, X2

*, . . ., XT
* corresponds to XI1þ1,XI1þ2, . . . ,XIbþl . Thus, conditional

on the sample, the only random element is the beginning of each block.

In particular,

X�
1, . . . ,X

�
l ,X

�
lþ1, . . . ,X

�
2l,X

�
T�lþ1, . . . ,X

�
T ,

conditional on the sample, can be treated as b i.i.d. blocks of discrete uniform

random variables. Note that it can be shown that except a set of probability

measure approaching zero,
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E� 1

T

XT
t¼1

X�
t

 !
¼ 1

T

XT
t¼1

Xt þ O�
P l=Tð Þ (56:18)

Var � 1

T1=2

XT
t¼1

X�
t

 !
¼ 1

T

XT�l

t¼l

Xl
i¼�l

Xt� 1

T

XT
t¼1

Xt

 !
Xtþi� 1

T

XT
t¼1

Xt

 !
þOP� l2=T

� �
,

(56:19)

where E* and Var* denote the expectation and the variance operators with

respect to P* (the probability law governing the resampled series or the proba-

bility law governing the i.i.d. uniform random variables, conditional on the

sample) and where OP*(l/T)(OP*(l
2/T)) denotes a term converging in probability

P* to zero, as l/T ! 0(l2/T ! 0).

In the case of recursive estimators, we proceed the bootstrap similarly as

follows. Begin by resampling b blocks of length l from the full sample, with

lb¼ T. For any given t, it is necessary to jointly resample Xt, Xt+1, . . ., Xt+t. More

precisely, let Zt,t ¼ (Xt, Xt+1, . . ., Xt+t), t ¼ 1,. . ., T � t. Now, resample

b overlapping blocks of length l from Zt,t. This yields Zt,* ¼ (Xt
*, Xt+1

* , . . .,
Xt+t
* ), t ¼ 1, . . ., T � t.

Step 2: Re-estimate ŷ
�
t,N, h ŷ

�
T,N, L, h

� �
using the bootstrap sample Zt,* ¼ (Xt

*, Xt+1
* ,

. . .,Xt+t
* ), t¼ 1, . . ., T� t (or full sample X1

*, X2
*, . . ., XT

*). Recall that if we use the

entire sample for the estimation, as the specification test in Corradi and Swanson

(2005) and Bhardwaj et al. (2008), then ŷ
�
t,N, h is denoted as ŷ

�
T,N, h. The bootstrap

estimators for SGMM and NPSQML are presented below:

Bootstrap (Recursive) SGMM Estimators
If the full sample is used in the specification test as in Corradi and Swanson

(2005) and Bhardwaj et al. (2008), the bootstrap estimator is constructed

straightforward as

ŷ
�
T,N, h ¼ argmin

y2Y

1

T

XT
j¼1

g X�
j

� �
� 1

L

XL
i¼1

g Xy
j, h

� � !0

�W��1
T

1

T

XT
j¼1

g X�
j

� �
� 1

L

XL
i¼1

g Xy
j, h

� � !
,

where WT
�1 and g(.) are defined in Eq. 56.15 and L is the length of each

simulation path.

Note that it is convenient not to resample the simulated series as the

simulation error vanishes asymptotically. In implementation, we do not

mimic its contribution to the covariate kernel.

In the case of predictive density-type model selection where recursive

estimators are needed, define the bootstrap analog as
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ŷ
�
t, L, h ¼ argmin

y2Y

1

t

Xt
j¼1

g X�
j

� �
� 1

T

XT

j0¼1

g Xj0
� �

0
@

1
A

0
@

0
@

� 1
L

XL
i¼1

g Xy
j, h

� �
� 1

L

XL
i¼1

g X
ŷ t,L, h
j, h

� � !!!0

� O��1
t

1

t

Xt
j¼1

g X�
j

� �
� 1

T

XT

j0¼1

g Xj0
� �

0
@

1
A

0
@

0
@

� 1

L

XL
i¼1

g Xy
j, h

� �
� 1

L

XL
i¼1

g X
ŷ t,L, h
j, h

� � !!!

¼ argmin
y2Y

G�
t, L, h yð Þ0O��1

t G�
t, L, h yð Þ,

where

O��1
t ¼ 1

t

Xlt
n¼�lt

wn, t
Xt�lt

j¼nþ1þlt

g X�
j

� �
� 1

T

XT

j0¼1

g Xj0
� �

2
4

3
5 g X�

j�n

� �
� 1

T

XT

j0¼1

g Xj0
� �

2
4

3
5:

Note that each bootstrap term is recentered around the (full) sample mean.

The intuition behind the particular recentering in bootstrap recursive

SGMM estimator is that it ensures that the mean of the bootstrap moment

conditions, evaluated at ŷt,L, h, is zero, up to a negligible term. Specifically,

we have

E � 1

t

Xt
j¼1

g X�
j

� �
� 1

T

XT

j0¼1

g Xj0
� �

0
@

1
A

0
@

� 1

L

XL
i¼1

g X
ŷ
�
t,L, h

j, h

� �
� 1

L

XL
i¼1

g X
ŷ t,L, h
j, h

� � !!

¼ E � g X�
j

� �� �
� 1

T

XT

j0¼1

g Xj0
� �

¼ O l=Tð Þ, with l ¼ o T1=2
� �

,

where the O(l/T) term is due to the end block effect (see Corradi and Swanson

(2007b) for further discussion).
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Bootstrap Recursive NPSQML Estimators
Let Zt,* ¼ (Xt

*, Xt+1
* , . . ., Xt+t

* ), t ¼ 1, . . ., T � t. For each simulation

replication, generate T � 1 paths of length one, using X1
*, . . ., XT�1

* as starting

values, and so obtaining Xt,j
y (Xt�1

* ) for t¼ 2, . . ., T� 1, i¼ 1,..,M. Further, let:

f̂
�
M, h X�

t X�
t�1

		 , y
� � ¼ 1

MxM

XM
i¼1

K
Xy
t, i, h X�

t�1

� �� X�
t

xM

 !
,

Now, for t ¼ R, . . ., R + P � 1, define

ŷ
�
t,M, h ¼ argmax

y2Y

1

t

Xt
l¼2

ln f̂ M, h X�
l X�

l�1; y
		� �

tM

� f̂ M, h X�
l X�

l�1

		 , y
� �� �

�y0
1

T

XT

l0¼2

∇y f̂ M, h Xl0 Xl0�1; yjð Þ
f̂ M, h X�

l0 jX�
t�l0y

� � y¼ŷt,M, h

			
 

�tM f̂ M, h Xl0 Xl0�1; ŷt,M, h
			

� �� �

þt0
M f̂ M, h Xl0 Xl0�1; ŷt,M, h

			
� �� �

�∇y f̂ M, h Xl0 Xl0�1; yjð Þ ŷt,M, h

			

�lnf̂ M, hðXl0 jXl0�1ŷt,M, hÞ
!
,

where tM0 (
) denotes the derivative of tM(
) with respect to its argument. Note

that each term in the simulated likelihood is recentered around the (full)

sample mean of the score, evaluated at ŷt,M, h. This ensures that the bootstrap
score has mean zero, conditional on the sample. The recentering term requires

computation of ∇y f̂ M, h Xl0 Xl0�1; ŷt,M, h
			

� �
, which is not known in closed

form. Nevertheless, it can be computed numerically, by simply taking the

numerical derivative of the simulated likelihood.

Bootstrap Estimators for Multifactor Model
The SGMM and the bootstrap SGMM estimators in the case of multifactor

model are similar as in one-factor model. The difference is that the simulation

schemes (56.12) and (56.13) are used instead of Eq. 56.11.

For recursive NPSQML estimators, to construct the bootstrap counterpart

ŷ
�
t,M, L, h of ŷt,M, L, h , since M/T ! 1 and L/T ! 1, the contribution of

simulation error is asymptotically negligible. Hence, there is no need to resample

the simulated observations or the simulated initial values for volatility. Define
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f̂ M, L, h X�
t X�

t�1

		 , y
� � ¼ 1

L

XL
j¼1

1

MxM

XM
i¼1

K
Xy
t, i, h X�

t�1;V
y
j

� �
� X�

t

xM

0
@

1
A:

Now, for t ¼ R, . . ., R + P � 1, define

ŷ
�
t,M, L, h ¼ argmax

y2Y

1

t

Xt
l¼2

logf̂ t,M,L, h X�
l X�

l�1

		 , y
� �

tM f̂ t,M, L, h X�
l X�

l�1

		 , y
� �� � 

�y0
1

T

XT

l0¼2

∇y f̂ t,M,L, h Xl0 Xl0�1; yjð Þ
f̂ t,M,L, h X�

l0 X
�
t�l0 ; y

		� � yt,M, L, h
		

 

�tM ¼ f̂ t,M,L, h Xl0 Xl0�1; ŷt,M, L, h
			

� �� �

þt0
M f̂ t,M, L, h Xl0 Xl0�1; ŷt,M, L, h

			
� �� �

�∇y f̂ t,M, L, h Xl0 Xl0�1; yjð Þ ŷt,M, L, h

			

�lnf̂ t,M,L, hðXl0 Xl0�1j , ŷt,M, L, hÞ
!!

,

where tM0 (
) denotes the derivative with respect to its argument.

Of note is that each bootstrap term is recentered around the (full) sample

mean. This is necessary because the bootstrap statistic is constructed using

the last P resampled observations, which in turn have been resampled from

the full sample. In particular, this is necessary regardless of the ratio, P/R. In
addition, in the case P/R ! 0, so that there is no need to mimic parameter

estimation error, the bootstrap statistics can be constructed using ŷt,M, L, h
instead of ŷ

�
t,M,L, h.

Step 3: Using the same set of random variables used in the construction of the

actual statistics, construct X
ŷ
�
t,N, h

i, tþt, � or X
ŷ
�
t,N, h

k, i, tþt, �, i ¼ 1, . . ., S and t ¼ 1,. . ., T � t.
Note that we do not need resample the simulated series (as L/T ! 1,

simulation error is asymptotically negligible). Instead, simulate the

series using bootstrap estimators and using bootstrapped values as starting

values.

Step 4: Corresponding bootstrap statistics VT,N,h
2* (or ZT,N,h

* , Dk,P,S
* , SVT,N,h

2 * , SZT,N,h
* ,

SDk,P,S
* depending on the types of tests) which are built on ŷ

�
t,N, h ŷ

�
t,N, L, hÞ

�
then

are followed correspondingly. For the numerical implementation, again, of

important note is that in the case where we pick the choice P/R ! 0, P, T,
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R!1, there is no need to re-estimate ŷ
�
t,N, h ŷ

�
t,N, L, h

� �
. ŷ

�
t,N, h ŷ

�
t,N, L, h

� �
can be

used in all the bootstrap replications.

Step 5: Repeat the bootstrap Steps 1–4 B times, and generate the empirical

distribution of the B bootstrap statistics.

56.4 Summary of Empirical Applications of the Tests

In this section, we briefly review some empirical applications of the methods

discussed above. We start with unconditional distribution test, as in Corradi

and Swanson (2005) and then give a specific empirical example using the

conditional distribution test from Bhardwaj et al. (2008). Finally, we briefly

discuss on conditional distribution specification test applied to multiple

competing models. The list of the diffusion models considered is provided in

Table 56.1.

Note that specification testing of the first model – a simplified version of

the CIR model (we refer to this model as Wong) – is carried out using the

unconditional distribution test. With the cumulative distribution function

known in closed form as in Eq. 56.8, the test statistic can be straightforwardly

calculated. It is also convenient to use GMM estimation in this case as the first two

moments are known in closed form, i.e., a� l and a/2(a�b), respectively. Corradi
and Swanson (2005) examine Hypothesis 1 using simulated data. Their Monte

Carlo experiments suggest that the test is useful, even for samples as small as

400 observations.

Hypothesis 2 is tested in Bhardwaj et al. (2008) and Cai and Swanson (2011).

For illustration, we focus on the results in Bhardwaj et al. (2008) where CIR, SV,

and SVJ models are empirically tested using the 1-month Eurodollar deposit rate

(as a proxy for short rate) for the sample period January 6, 1971–September

30, 2005, which yields 1,813 weekly observations. Note that one might apply

these tests to other datasets including the monthly federal funds rate, the weekly

3-month T-bill rate, the weekly US dollar swap rate, the monthly yield on zero-

coupon bonds with different maturities, and the 6-month LIBOR. Some of these

variables have been examined elsewhere, for example, in Ait-Sahalia (1999),

Andersen et al. (2004), Dai and Singleton (2000), Diebold and Li (2006), and

Piazzesi (2001).

The statistic needed to apply the test discussed in Sect. 56.3.1.2 is

ZT ¼ sup
v2V

ZT vð Þj j,
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where

ZT vð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

1 Xt � vf g

� 1

S

XS
s¼1

1 u � X
ŷT,N, h
s, tþt � u

n o
� 1 u � Xtþt � u

 � !

,

Table 56.1 Specification test hypotheses of continuous time spot rate processa

Model Specification

Reference and

data Hypothesis

Wong dr tð Þ ¼ a� l� r tð Þð Þdtþ ffiffiffiffiffiffiffiffiffiffi
ar tð Þp

dWr tð Þ Corradi and

Swanson (2005)

H1

Simulated data

Bhardwaj

et al. (2008)

Eurodollar rate H2

(1971–2005)

CIR dr tð Þ ¼ kr r � r tð Þð Þdtþ ffiffiffiffiffiffiffiffiffi
V tð Þp

dWr tð Þ, Cai and Swanson

(2011)

Eurodollar Rate H2, H3

(1971–2008)

Cai and Swanson

(2011)

CEV dr tð Þ ¼ kr r � r tð Þð Þdtþ srr tð ÞrdWr tð Þ Eurodollar rate H2, H3

(1971–2008)

SV dr tð Þ ¼ kr r � r tð Þð Þdtþ ffiffiffiffiffiffiffiffiffi
V tð Þp

dWr tð Þ, Bhardwaj

et al. (2008)

H2

dV tð Þ ¼ kr v� V tð Þð Þdtþ sv
ffiffiffiffiffiffiffiffiffi
V tð Þp

dWv tð Þ, Cai and Swanson

(2011)

H2, H3

SVJ dr tð Þ ¼ kr r � r tð Þð Þdtþ ffiffiffiffiffiffiffiffiffi
V tð Þp

dWr tð Þ þ Judqu � Jddqd , Bhardwaj

et al. (2008)

H2

dV tð Þ ¼ kv v� V tð Þð Þdtþ sv
ffiffiffiffiffiffiffiffiffi
V tð Þp

dWv tð Þ, Cai and Swanson

(2011)

H2, H3

CHEN dr tð Þ ¼ kr y tð Þ � r tð Þð Þdtþ ffiffiffiffiffiffiffiffiffi
V tð Þp

dWr , Cai and Swanson

(2011)

dV tð Þ ¼ kv v� V tð Þð Þdtþ sv
ffiffiffiffiffiffiffiffiffi
V tð Þp

dWv tð Þ, Eurodollar rate H2, H3

dy tð Þ ¼ ky y� y tð Þ� �
dtþ sy

ffiffiffiffiffiffiffiffi
y tð Þp

dWy tð Þ, (1971–2008)

CHENJ dr tð Þ ¼ kr y tð Þ � r tð Þð Þdtþ ffiffiffiffiffiffiffiffiffi
V tð Þp

dWr tð Þ þ Judqu � Jddqd , Cai and Swanson

(2011)

dV tð Þ ¼ kv v� V tð Þð Þdtþ sv
ffiffiffiffiffiffiffiffiffi
V tð Þp

dWv tð Þ, Eurodollar rate H2, H3

dy tð Þ ¼ ky y� y tð Þ� �
dtþ sy

ffiffiffiffiffiffiffiffi
y tð Þp

dWy tð Þ, (1971–2008)

aNote that the third column, “Reference and data,” provides the referenced papers and data used in

empirical applications. In the fourth column, H1, H2, and H3 denote Hypothesis 1, Hypothesis

2, and Hypothesis 3, respectively. The hypotheses are presented corresponding to the references in

the third column. For example, for CIR model, H2 corresponds to Bhardwaj et al. (2008) and H2

and H3 correspond to Cai and Swanson (2011)
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and

Z�
T ¼ sup

v2V
Z�
T vð Þ		 		,

Where

Z�
T vð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

XT�t

t¼1

1 X�
t � v


 �

� 1

S

XS
s¼1

1 u � X
ŷ
�
T,N, h

s, tþt, � � u

� 
� 1 u � X�

tþt � u

 � !

� 1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

1 Xt � vf g:

� 1

S

XS
s¼1

1 u � X
ŷT,N, h
s, tþt � u

n o
� 1 u � Xtþt � u

 � !

:

For the case of stochastic volatility models, similarly we have

SZT ¼ sup
v2V

SZT vð Þj j,

where

SZT vð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

1 Xt � vf g

� 1

LS

XL
j¼1

XS
s¼1

1 u � X
ŷT,N, h
j, s, tþt � u

n o
� 1 u � Xtþt � u

 � !

,

and its bootstrap analog

SZ�
T ¼ sup

v2V
SZ�

T vð Þ		 		,

where

SZ�
T vð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

XT�t

t¼1

1 X�
t � v


 � � 1

LS

XL
j¼1

XS
s¼1

1 u � X
ŷ
�
i,T,N, h

j, s, tþt, � � u

�  

� 1 u � X�
tþt � u


 �!� 1ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
XT�t

t¼1

1 Xt � vf g

� 1

LS

XL
j¼1

XS
s¼1

1 u � X
ŷ i, T,N, h
j, s, tþt � u

n o 
� 1 u � Xtþt � u

 �

!
:
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Bhardwaj et al. (2008) carry out these tests using t-step ahead confidence inter-

vals. They set t ¼ {1, 2, 4, 12} which corresponds to 1-week, 2-week, 1-month, and

one-quarter ahead intervals and set uu
� � ¼ X � 0:5sX,X � sX

� �
, covering 46.3 %

and 72.4 % coverage, respectively. X and sX are the mean and variance of an initial

sample of data. In addition, S ¼ {10T, 20T} and l ¼ {5, 10, 20, 50}.

For illustrative purposes, we report one case fromBhardwaj et al. (2008). The test is

implemented by setting S¼ 10T and l¼ 25 for the calculation of both ZT and SZT. In
Table 56.2, single, double, and triple starred entries represent rejection using 20 %,

10%, and 5% size tests, respectively. Not surprisingly, the findings are consistent with

some other papers in the specification test literature such as Aı̈t-Sahalia (1996) and

Bandi (2002).Namely, theCIRmodel is rejectedusing5%size tests inalmost all cases.

When considering SV and SVJ models, smaller confidence intervals appear to lead to

more model rejections. Moreover, results are somewhat mixed when evaluating the

SVJmodel, with a slightly higher frequency of rejection than in the case of SVmodels.

Finally, turning to Hypothesis 3, Cai and Swanson (2011) use an extended

version of the above dataset, i.e., the 1-month Eurodollar deposit rate from January

1971 to April 2008 (1,996 weekly observations). Specifically, they examine

whether the Chen model is the “best” model amongst multiple alternative models

including those outlined in Table 56.1. The answer is “yes.” In this example, the test

was implemented using Dk,p,N(u1, u2), as described in Sects. 56.3.1 and 56.3.2,

where P ¼ T/2 and predictions are constructed using recursively estimated models

and the simulation sample length used to address latent variable initial values is set

at L ¼ 10T. The choice of other inputs to the test such as t and interval u, u
� �

is the

same as in Bhardwaj et al. (2008). The number of replications S, the block length l,
and number of bootstrap replications are S ¼ 10T, l ¼ 20, and B ¼ 100.

Cai and Swanson (2011) also compare the Chen model with the so-called smooth

transition autoregression (STAR) model defined as follows:

rt ¼ y1 þ b1rt�1ð ÞG g; zt; cð Þ þ y1 þ b2rt�1ð Þ 1� G g; zt; cð Þð Þ þ ut,

where ut is a disturbance term; y1, b1, g, b2, and c are constants; G(·) is the logistic

CDF i:e:;G; g; zt; cð Þ;¼; 1
1þexp g zt�cð Þð Þ

� �
and the number of lags; and p is selected via

the use of Schwarz information criterion. Test statistics and predictive density-type

“mean square forecast error” (MSFEs) values are again calculated as in Sects.

56.3.1 and 56.3.2.24 Their results indicate that at a 90 % level of confidence, one

cannot reject the null hypothesis that the Chen model generates predictive densities

at least as accurate as the STAR model, regardless of forecast horizon and confi-

dence interval width. Moreover, in almost all cases, the Chen model has lower

MSFE, and the magnitude of the MSFE differential between the Chen model and

STAR model rises as the forecast horizon increases. This confirms their in-sample

findings that the Chen model also wins when carrying out in-sample tests.

24See Table 6 in Cai and Swanson (2011) for complete details.
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56.5 Conclusion

This chapter reviews a class of specification and model selection-type tests devel-

oped by Corradi and Swanson (2005), Bhardwaj et al. (2008), and Corradi and

Swanson (2011) for continuous time models. We begin with outlining the setup

used to specify the types of diffusion models considered in this chapter. Thereafter,

diffusion models in finance are discussed, and testing procedures are outlined.

Related testing procedures are also discussed, both in contexts where models are

assumed to be either correctly specified under the null hypothesis or generically

misspecified under both the null and alternative test hypotheses. In addition to

discussing tests of correct specification and test for selecting amongst alternative

competing models, using both in-sample methods and via comparison of predictive

accuracy, methodology is outlined allowing for parameter estimation, model and

data simulation, and bootstrap critical value construction.

Several extensions that are left to future research are as follows. First, it remains

to construct specification tests that do not integrate out the effects of latent factors.

Additionally, it remains to examine the finite sample properties of the estimators

and bootstrap methods discussed in this chapter.
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Abstract

We describe different procedures to deal with measurement error in linear

models and assess their performance in finite samples using Monte Carlo

simulations and data on corporate investment. We consider the standard instru-

mental variable approach proposed by Griliches and Hausman (Journal of

Econometrics 31:93–118, 1986) as extended by Biorn (Econometric Reviews

19:391–424, 2000) [OLS-IV], the Arellano and Bond (Review of Economic

Studies 58:277–297, 1991) instrumental variable estimator, and the higher-order

moment estimator proposed by Erickson and Whited (Journal of Political Econ-

omy 108:1027–1057, 2000, Econometric Theory 18:776–799, 2002). Our anal-

ysis focuses on characterizing the conditions under which each of these

estimators produce unbiased and efficient estimates in a standard “errors-in-

variables” setting. In the presence of fixed effects, under heteroscedasticity, or in

the absence of a very high degree of skewness in the data, the EW estimator is

inefficient and returns biased estimates for mismeasured and perfectly measured

regressors. In contrast to the EW estimator, IV-type estimators (OLS-IV and

AB-GMM) easily handle individual effects, heteroscedastic errors, and different

degrees of data skewness. The IV approach, however, requires assumptions

about the autocorrelation structure of the mismeasured regressor and the mea-

surement error. We illustrate the application of the different estimators using

empirical investment models. Our results show that the EW estimator produces

inconsistent results when applied to real-world investment data, while the IV

estimators tend to return results that are consistent with theoretical priors.

Keywords

Investment equations • Measurement error • Monte Carlo simulations • Instru-

mental variables • GMM • Bias • Fixed effects • Heteroscedasticity • Skewness •

High-order moments

57.1 Introduction

OLS estimators are the workhorse of empirical research in many fields in applied

economics. Researchers see a number of advantages in these estimators. Most

notably, they are easy to implement and the results they generate are easy

to replicate. Another appealing feature of OLS estimators is that they easily

accommodate the inclusion of individual (e.g., firm and time) idiosyncratic effects.

Despite their popularity, however, OLS estimators are weak in dealing with the

problem of errors in variables. When the independent (right-hand side) variables of

an empirical model are mismeasured, coefficients estimated via standard OLS are
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inconsistent (attenuation bias). This poses a problem since, in practice, it is hard to

think of any empirical proxies in applied research whose measurement is not

a concern.

In this chapter, we describe three estimators that deal with the problem of

mismeasurement, namely, the standard instrumental variable approach extended

by Biorn (2000) [OLS-IV], the Arellano and Bond (1991) instrumental variable

estimator [AB-GMM], and the higher-order moment estimator proposed by

Erickson and Whited (2000, 2002) [henceforth, EW]. We also assess the perfor-

mance of these estimators in finite samples using Monte Carlo simulations and

illustrate their application using data on corporate investment.

While we provide a formal presentation in the next section, it is useful to discuss

the intuition behind the estimation approaches we analyze. All approaches share the

attractive property that they do not require the researcher to look for instruments

outside the model being considered.1 They differ, however, on how identification is

achieved.

Both instrumental variable approaches rely on assumptions about the serial

correlation of the latent variable and the innovations of the model (the model’s

disturbances and the measurement error). There are two conditions that must hold

to ensure identification. First, the true value of the mismeasured regressor must

have some degree of autocorrelation. In this case, lags of the mismeasured regressor

are natural candidates for the instrumental set since they contain information about

the current value of the mismeasured regressor.2 This condition is akin to the

standard requirement that the instrument be correlated with the variable of interest.

The other necessary condition is associated with the exclusion restriction that is

standard in IV methods and relates to the degree of serial correlation of the

innovations. A standard assumption guaranteeing identification is that the

measurement-error process is independently and identically distributed. This con-

dition ensures that past values of the observed variables are uncorrelated with the

current value of the measurement error, validating the use of lags of observed

variables as instruments. Under certain conditions, one can also allow for autocor-

relation in the measurement error. Examples in which identification works are when

autocorrelation is constant over time or when it evolves according to a moving

average process.3 The first assumption ensures identification because it means that

while lagged values of the measurement error are correlated with its current value,

any past shocks to the measurement-error process do not persist over time. The

moving average assumption allows for shocks to persist over time, but it imposes

restrictions on the instrumental set. In particular, as we show below, it precludes the

1Naturally, if extraneous instruments are available, they can help solve the identification problem.

See Rauh (2006) for the use of discontinuities in pension contributions as a source of variation in

cash flows in an investment model. Bond and Cummins (2000) use information contained in

financial analysts’ forecasts to instrument for investment demand.
2Lags of the well-measured variable may also be included in the instrument set if they are believed

to also contain information about the mismeasured one.
3See, among others, Biorn (2000), Wansbeek (2001), and Xiao et al. (2008).
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use of shorter lags of observed variables in the instrument set, as the information

contained in short lags may be correlated with the current value of the measurement

error.

The EW estimator is based on high-order moments of residuals obtained by

“partialling out” perfectly measured regressors from the dependent, observed

mismeasured, and latent variables, as well as high-order moments of the innova-

tions of the model. The key idea is to create a set of auxiliary equations as a function

of these moments and cross-moments. Implementation then requires a high degree

of skewness in the distribution of the partialled out latent variable. Our analysis also

shows that the presence of individual fixed effects and heteroscedasticity also

impacts the performance of the EW estimator, particularly so if they are both

present in the data process.

We perform a series of Monte Carlo simulations to compare the performance of

the EW and IV estimators in finite samples. Emulating the types of environments

commonly found by empirical researchers, we set up a panel data model with

individual fixed effects and potential heteroscedasticity in the errors. Monte Carlo

experiments enable us to study those estimators in a “controlled environment,”

where we can investigate the role played by each element (or assumption) of an

estimator in evaluating its performance. Our simulations compare the EW and IV

(OLS-IV and AB-GMM) estimators in terms of bias and root mean squared error

(RMSE), a standard measure of efficiency.

We consider several distributional assumptions to generate observations and

errors. Experimenting with multiple distributions is important because researchers

often find a variety of distributions in real-world applications and because one

ultimately does not observe the distribution of the mismeasurement term. Since the

EW estimator is built around the notion of skewness of the relevant distributions,

we experiment with three skewed distributions (lognormal, chi-square, and

F-distribution), using the standard normal (non-skewed) as a benchmark. The

simulations also allow for significant correlation between mismeasured and well-

measured regressors (as in Erickson andWhited 2000, 2002), so that the attenuation

bias of the mismeasured regressor affects the coefficient of the well-measured

regressor.

Our simulation results can be summarized as follows. First, we examine the

identification test proposed by Erickson and Whited (2002). This is a test that

the data contain a sufficiently high degree of skewness to allow for the

identification of their model. We study the power of the EW identification

test by generating data that do not satisfy its null hypothesis of non-skewness.

In this case, even for the most skewed distribution (lognormal), the test rejects

the null hypothesis only 47 % of the time – this is far less than desirable, given

that the null is false. The power of the test becomes even weaker after we treat

the data for the presence of fixed effects in the true model (“within transfor-

mation”). In this case, the rejection rate under the lognormal distribution drops

to 43 %. The test’s power declines even further when we consider alternative

skewed distributions (chi-square and F-distributions). The upshot of this first

set of experiments is that the EW model too often rejects data that are
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generated to fit its identifying assumptions. These findings may help explain

some of the difficulties previous researchers have reported when attempting to

implement the EW estimator.

We then study the bias and efficiency of the EW and IV estimators. Given that

the true model contains fixed effects, it is appropriate to apply the within transfor-

mation to the data. However, because most empirical implementations of the EW

estimator have used data in “level form” (i.e., not treated for the presence of fixed

effects),4 we also experiment with cases in which we do not apply the within

transformation. EW propose three estimators that differ according to the number

of moments used: GMM3, GMM4, and GMM5. We consider all of them in our

experiments.

In a first round of simulations, we impose error homoscedasticity. When we

implement the EW estimator with the data in level form, we find that the

coefficients returned are significantly biased even when the data have a high

degree of skewness (i.e., under the lognormal case, which is EW’s preferred

case). Indeed, for the mismeasured regressors the EW biases are in excess of

100 % of their true value. As should be expected, the performance of the EW

estimator improves once the within transformation is used. In the case of the

lognormal distribution, the EW estimator bias is relatively small. In addition,

deviations from the lognormal assumption tend to generate significant biases for

the EW estimator.

In a second round of simulations, we allow for heteroscedasticity in the data.

We focus our attention on simulations that use data that are generated using

a lognormal distribution after applying the within transformation (the best case

scenario for the EW estimator). Heteroscedasticity introduces heterogeneity to the

model and consequently to the distribution of the partialled out dependent

variable, compromising identification in the EW framework. The simulations

show that the EW estimator is biased and inefficient for both the mismeasured

and well-measured regressors. In fact, biases emerge even for very small amounts

of heteroscedasticity, where we find biases of approximately 40 % for the

mismeasured regressor. Paradoxically, biases “switch signs” depending on the

degree of heteroscedasticity that is allowed for in the model. For instance, for

small amounts of heteroscedasticity, the bias of the mismeasured regressor is

negative (i.e., the coefficient is biased downwards). However, the bias turns

positive for a higher degree of heteroscedasticity. Since heteroscedasticity is

a naturally occurring phenomenon in corporate data, our simulations imply that

empirical researchers might face serious drawbacks when using the EW

estimator.

Our simulations also show that, in contrast to the EW estimator, the bias in the

IV estimates is small and insensitive to the degree of skewness and heterosce-

dasticity in the data. Focusing on the OLS-IV estimator, we consider the case of

time-invariant correlation in the error structure and use the second lag of the

4Examples are Whited (2001, 2006), Hennessy (2004), and Colak and Whited (2007).
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observed mismeasured variable as an instrument for its current (differenced) value.5

We also allow the true value of the mismeasured regressor to have a moderate

degree of autocorrelation. Our results suggest that the OLS-IV estimator renders

fairly unbiased estimates. In general, that estimator is also distinctly more efficient

than the EW estimator.

We also examine the OLS-IV estimator’s sensitivity to the autocorrelation

structures of the mismeasured regressor and the measurement error. First, we

consider variations in the degree of autocorrelation in the process for the true

value of the mismeasured regressor. Our simulations show that the IV bias is

largely insensitive to variations in the autoregressive (AR) coefficient (except for

extreme values of the AR coefficient). Second, we replace the assumption of time-

invariant autocorrelation in the measurement error with a moving average

(MA) structure. Our simulations show that the OLS-IV bias remains small if one

uses long enough lags of the observable variables as instruments. In addition,

provided that the instrument set contains suitably long lags, the results are robust

to variations in the degree of correlation in the MA process. As we discuss below,

understanding these features (and limitations) of the IV approach is important given

that the researcher will be unable to pin down the process followed by the

measurement-error process.

To illustrate the performance of these alternative estimators on real data, in the

final part of our analysis, we estimate empirical investment models under the EW

and IV frameworks. Concerns about measurement errors have been emphasized in

the context of the empirical investment model introduced by Fazzari et al. (1988),

where a firm’s investment is regressed on a proxy for investment demand

(Tobin’s q) and cash flows. Theory suggests that the correct proxy for a firm’s

investment demand is captured by marginal q, but this quantity is unobservable and
researchers use instead its measurable proxy, average q. Since the two variables are
not the same, a measurement problem naturally arises (Hayashi 1982; Poterba

1988). Following Fazzari et al. (1988), investment-cash flow sensitivities became

a standard metric in the literature that examines the impact of financing imperfec-

tions on corporate investment (Stein 2003). These empirical sensitivities are also

used for drawing inferences about efficiency in internal capital markets (Lamont

1997; Shin and Stulz 1998), the effect of agency on corporate spending (Hadlock

1998; Bertrand and Mullainathan 2005), the role of business groups in capital

allocation (Hoshi et al. 1991), and the effect of managerial characteristics on

corporate policies (Bertrand and Schoar 2003; Malmendier and Tate 2005).

Theory does not pin down exact values for the expected coefficients on q and

cash flow in an investment model. However, two conditions would seem reasonable

in practice. First, given that the estimator is addressing measurement error in q that
may be “picked up” by cash flow (joint effects of attenuation bias and regressor

5The results for the Arellano–Bond GMM estimator are similar to those of the OLS-IV estimator.

To save space and because the OLS-IV estimator is easier to implement, we focus on this

estimator.
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covariance), we should expect the q coefficient to go up and the cash flow coeffi-

cient to go down, when compared to standard (likely biased) OLS estimates.

Second, we would expect the q and cash flow coefficients to be nonnegative after

addressing the problem of mismeasurement. If the original q-theory of investment

holds and the estimator does a good job of addressing mismeasurement, then the

cash flow coefficient would be zero. Alternatively, the cash flow coefficient could

be positive because of financing frictions.6

Using data from Compustat from 1970 to 2005, we estimate investment equa-

tions in which investment is regressed on proxies for q and cash flow. Before doing
so, we perform standard tests to check for the presence of individual fixed effects

and heteroscedasticity in the data. In addition, we perform the EW identification

test to check whether the data contain a sufficiently high degree of skewness.

Our results are as follows. First, our tests reject the hypotheses that the data do

not contain firm-fixed effects and that errors are homoscedastic. Second, the EW

identification tests indicate that the data fail to display sufficiently high skewness.

These initial tests suggest that the EW estimator is not suitable for standard

investment equation applications. In fact, we find that, when applied to the data,

the EW estimator returns coefficients for q and cash flow that are highly unstable

across different years. Moreover, following the EW procedure for panel models

(which comprises combining yearly cross-sectional coefficients into single esti-

mates), we obtain estimates for q and cash flow that do not satisfy the conditions

discussed above. In particular, EW estimators do not reduce the cash flow coeffi-

cient relative to that obtained by standard OLS, while the q coefficient is never

statistically significant. In addition, those estimates are not robust with respect to

the number of moments used: EW’s GMM3, GMM4, and GMM5models procedure

results that are inconsistent with one another. These results suggest that the pres-

ence of heteroscedasticity and fixed effects in real-world investment data hampers

identification when using the EW estimator.

In contrast to EW, the OLS-IV procedure yields estimates that are fairly sensi-

ble. The q coefficient goes up by a factor of 3–5, depending on the set of instruments

used. At the same time, the cash flow coefficient goes down by about two-thirds of

the standard OLS value. Similar conclusions apply to the AB-GMM estimator. We

also examine the robustness of the OLS-IV to variations in the set of instruments

used in the estimation, including sets that feature only longer lags of the variables in

the model. The OLS-IV coefficients remain fairly stable after such changes. These

results suggest that real-world investment data likely satisfies the assumptions that

are required for identification of IV estimators.

The remainder of the chapter is structured as follows. We start the next section

discussing in detail the EW estimator, clarifying the assumptions that are needed for

its implementation. Subsequently, we show how alternative IV models deal with

6See Hubbard (1998) and Stein (2003) for comprehensive reviews. We note that the presence of

financing frictions does not necessarily imply that the cash flow coefficient should be positive. See

Chirinko (1993) and Gomes (2001) for arguments suggesting that financing frictions are not

sufficient to generate positive cash flow coefficients.
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the errors-in-variables problem. In Sect. 57.3, we use Monte Carlo simulations to

examine the performance of alternative estimators in small samples and when we

relax the assumptions that are required for identification. In Sect. 57.4, we take our

investigation to actual data, estimating investment regressions under the EW and IV

frameworks. Section 57.5 concludes the chapter.

57.2 Dealing with Mismeasurement: Alternative Estimators

57.2.1 The Erickson–Whited Estimator

In this section, we discuss the estimator proposed in companion papers by Erickson

and Whited (2000, 2002). Those authors present a two-step generalized method of

moments (GMM) estimator that exploits information contained in the high-order

moments of residuals obtained from perfectly measured regressors (similar to

Cragg 1997). We follow EW and present the estimator using notation of cross-

section estimation. Let (yi, zi, xi), i ¼ 1,. . .,n, be a sequence of observable vectors,
where xi � (xi1,. . .,xiJ) and zi � (1, zi1,. . ., ziL). Let (ui, wi, ei) be a sequence of

unobservable vectors, where wi � (wi1,. . .,wiJ) and ei � (ei1,. . .,eiJ). Consider the
following model:

yi ¼ ziaþ wibþ ui (57.1)

where yi is the dependent variable, zi is a perfectly measured regressor, wi is
a mismeasured regressor, ui is the innovation of the model, and a � (a0, ai,
. . .,aL)0 and b � (b1, . . .,bJ)0. The measurement error is assumed to be additive

such that

xi ¼ wi þ ei (57.2)

where xi is the observed variable and ei is the measurement error. The observed

variables are yi, zi, and xi; and by substituting Eq. 57.2 in Eq. 57.1, we have

yi ¼ ziaþ xibþ vi,

where vi ¼ ui � eib. In the new regression, the observable variable xi is correlated
with the innovation term vi, causing the coefficient of interest, b, to be biased.

To compute the EW estimator, it is necessary to first partial out the effect of the

well-measured variable, zi, in Eqs. 57.1 and 57.2 and rewrite the resulting expres-

sions in terms of residual populations:

yi � zimy ¼ �ibþ ui (57.3)

xi � zimx ¼ �i þ ei, (57.4)
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where (my, mx, mw) ¼ [E(zi
0zi)]

�1E[zi
0(yi, xi, wi)] and �i � wi � zimw. For the details of

this derivation, see Erickson and Whited (2002, p. 779). One can then consider

a two-step estimation approach, where the first step is to substitute least squares

estimates m̂y; m̂x

� � �
Xn

i¼1
z0izi

� ��1Xn

i¼1
z0i yi; xið Þ into Eqs. 57.3 and 57.4 to

obtain a lower dimensional errors-in-variables model. The second step consists

of estimating b using GMM using high-order sample moments of yi � zim̂y and

xi � zim̂x. Estimates of a are then recovered via my ¼ a + mxb. Thus, the estimators

are based on equations giving the moments of yi � zimy and xi � zimx as functions of
b and the moments of (ui, ei, �i).

To give a concrete example of how the EW estimator works, we explore the case

of J ¼ 1. The more general case is discussed below. By substituting

m̂y; m̂x �
Xn
i¼1

z0izi

 !�1Xn
i¼1

zi
0 yi; xið Þ

into Eqs. 57.1 and 57.2, one can estimate b, E(ui
2), E(ei

2), and E(�i
2) via

GMM. Estimates of the lth element of a are obtained by substituting the estimate

of b and the lth elements of m̂y and m̂x into

al ¼ myl � mxlb, l 6¼ 0:

There are three second-order moment equations:

E yi � zimy
� �2h i

¼ b2E �2i
� �þ E u2i

� �
(57.5)

E yi � zimy
� �

xi � zimxð Þ� � ¼ bE �2i
� �

(57.6)

E xi � zimxð Þ2
h i

¼ E �2i
� �þ E e21

� �
: (57.7)

The left-hand side quantities are consistently estimable, but there are only three

equations with which to estimate four unknown parameters on the right-hand side.

The third-order product moment equations, however, consist of two equations in

two unknowns:

E yi � zimy
� �2

xi � zimxð Þ
h i

¼ b2E �3i
� �

, (57.8)

E yi � zimy
� �

xi � zimxð Þ2
h i

¼ bE �3i
� �

: (57.9)

It is possible to solve these two equations for b. Crucially, a solution exists if the
identifying assumptions b 6¼ 0 and E(�i

3) 6¼ 0 are true, and one can test the contrary
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hypothesis (i.e., b 6¼ 0 and/or E(�i
3) ¼ 0) by testing whether their sample counter-

parts are significatively different from zero.

Given b, Eqs. 57.5, 57.6, 57.7, and 57.9 can be solved for the remaining right-

hand side quantities. One obtains an overidentified equation system by combining

Eqs. 57.5, 57.6, 57.7, 57.8, and 57.9 with the fourth-order product moment equa-

tions, which introduce only one new quantity, E(�i
4):

E yi � zimy
� �3

xi � zimxð Þ
h i

¼ b3E �4i
� �þ 3E �2i

� �
E u2i
� �

, (57.10)

E yi � zimy
� �2

xi � zimxð Þ2
h i

¼ b2 E �4i
� �þ E �2i

� �
E u2i
� �� �

þ E u2i
� �

E �2i
� �þE e2i

� �� �
, (57.11)

E yi � zimy
� �

xi � zimxð Þ3
h i

¼ b E �4i
� �þ 3E �2i

� �
E e2i
� �� �

: (57.12)

The resulting eight-equation system Eqs. 57.5, 57.6, 57.7, 57.8, 57.9, 57.10,

57.11, and 57.12 contains the six unknowns (b, E(ui
2), E(ei

2), E(�i
2), E(�i

3), E(�i
4)).

It is possible to estimate this vector by numerically minimizing a quadratic form

that minimizes asymptotic variance.

The conditions imposed by EW imply restrictions on the residual moments of

the observable variables. Such restrictions can be tested using the corresponding

sample moments. EW also propose a test for residual moments that is based on

several assumptions.7 These assumptions imply testable restrictions on the residuals

from the population regression of the dependent and proxy variables on the

perfectly measured regressors. Accordingly, one can develop Wald-type partially

adjusted statistics and asymptotic null distributions for the test. Empirically, one

can use the Wald test statistic and critical values from a chi-square distribution to

test whether the last moments are equal to zero. This is an identification test, and if

in a particular application one cannot reject the null hypothesis, then the model is

unidentified and the EW estimator may not be used. We study the finite sample

performance of this test and its sensitivity to different data-generating processes in

the next section.

It is possible to derive more general forms of the EW estimator. In particular, the

EW estimators are based on the equations for the moments of yi � zimy and xi � zimx
as functions of b and the moments ui, ei, and �i. To derive these equations, write

Eq. 57.3 as yi � zimy ¼ ∑ j ¼ 1
J �ijbj + ui, where J is the number of well-measured

regressors and the jth equation in Eq. 57.4 as xij� zimxj¼ �ij + eij, where mxj is the jth
column of and mx and (�ij, eij) is the jth row of (�ij

0 , eij
0 ). Next write

7First, the measurement errors, the equation error, and all regressors have finite moments of

sufficiently high order. Second, the regression error and the measurement error must be indepen-

dent of each other and of all regressors. Third, the residuals from the population regression of the

unobservable regressors on the perfectly measured regressors must have a nonnormal distribution.
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E yi � zimy
� �r0YJ

j¼1
xi � zimxð Þrj

h i
¼ E

XJ
j¼1

�ibþ ui

 !r0YJ

j¼1
�i þ eið Þrj

" #
,

(57.13)

where (r0, r1,. . ., rJ) are nonnegative integers. After expanding the right-hand side of
Eq. 57.13, using the multinomial theorem, it is possible to write the above moment

condition as

E gi mð Þ½ � ¼ c yð Þ,

where m¼ vec(my, mx), gi(m) is a vector of distinct elements of the form yi � zimy
� �r0

YJ

j¼1
xi � zimxð Þrj , c yð Þ contains the corresponding expanded version of the right-

hand side of Eq. 57.13, and y is a vector containing the elements of b and the

moments of (ui, ei, �i). The GMM estimator y is defined as

ŷ ¼ arg min
t2Y

gi m̂ð Þ � c tð Þð Þ0Ŵ gi m̂ð Þ � c tð Þð Þ,

where -gi sð Þ �
Xn

t¼1
gi sð Þ for all s, and Ŵ is a positive definite matrix. Assuming a

number of regularity conditions,8 the estimator is consistent and asymptotically normal.

It is important to notice that the estimator proposed by Erickson and Whited

(2002) was originally designed for cross-sectional data. To accommodate a panel-

like structure, Erickson andWhited (2000) propose transforming the data before the

estimation using the within transformation or differencing. To mimic a panel

structure, the authors propose the idea of combining different cross-sectional

GMM estimates using a minimum distance estimator (MDE).

The MDE estimator is derived by minimizing the distance between the auxiliary

parameter vectors under the following restrictions:

f b; ŷ
� �

¼ Hb� ŷ ¼ 0,

where the R · K � K matrix H imposes (R � 1) · K restrictions on y. The R K � 1

vector ŷ contains the R stacked auxiliary parameter vectors, and b is the parameter

of interest. Moreover, H is defined by an R · K � K – dimensional stacked identity

matrix.

8More specifically, these conditions are as follows: (zi, wi, ui, ei) is an independent and identically

distributed sequence; ui and the elements of zi, wi, and ei, have finite moments of every order; (ui, ei)
is independent of (zi, wi), and the individual elements in (ui, ei) are independent of each other;

E(ui)¼ 0 and E(ei)¼ 0; E[(zi, wi)0(zi, wi)] is positive definite; every element of b is nonzero; and the

distribution of � satisfies E[(�ic)
3] 6¼ 0 for every vector of constants c ¼ (c1,� � �,cJ) having at least

one nonzero element.
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The MDE is given by the minimization of

D bð Þ ¼ f b; ŷ
� �0

V̂ ŷ
h i�1

f b; ŷ
� �

, (57.14)

where V̂ ½ŷ� is the common estimated variance–covariance matrix of the auxiliary

parameter vectors.

In order to implement the MDE, it is necessary to determine the covariances

between the cross-sections being pooled. EW propose to estimate the covariance by

using the covariance between the estimators’ respective influence functions.9 The

procedure requires that each cross-section have the same sample size, that is, the

panel needs to be balanced.

Thus, minimization of D in Eq. 57.14 leads to

b̂ ¼ H
0
V̂ ŷ
h i�1

H

� 	�1

H
0
V̂ ŷ
h i�1

ŷ,

with variance–covariance matrix:

V̂ b̂
h i

¼ H
0
V̂ ŷ
h i�1

H

� 	�1

:

H is a vector in which R is the number of GMM estimates available (for each

time period) and K ¼ 1, ŷ is a vector containing all the EW estimates for each

period, and b is the MDE of interest. In addition, V ŷ
h i

is a matrix carrying the

estimated variance–covariance matrices of the GMM parameter vectors.

57.2.2 An OLS-IV Framework

In this section, we revisit the work of Griliches and Hausman (1986) and Biorn

(2000) to discuss a class of OLS-IV estimators that can help address the errors-in-

variables problem.

Consider the following single-equation model:

yit ¼ gi þ witbþ uit, i ¼ 1, . . .N, t ¼ 1, . . . ,T, (57.15)

where uit is independently and identically distributed, with mean zero and variance

su
2, and Cov(wit, uis) ¼ Cov(gi, uis) ¼ 0 for any t and s, but Cov(gi, wit) 6¼ 0, y is an

observable scalar, w is a 1 � K vector, and b is K � 1 vector. Suppose we do not

observe wit itself, but rather the error-ridden measure:

9See Erickson and Whited (2002) Lemma 1 for the definition of their proposed influence function.
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xit ¼ wit þ eit, (57.16)

where Cov(wit, eit) ¼ Cov(gi, eit) ¼ Cov(uis, eit) ¼ 0, Var(eit) ¼ se
2,

Cov(eit, eit � 1) ¼ gese
2, and e is a 1 � K vector. If we have a panel data with

T > 3, by substituting Eq. 57.16 in Eq. 57.15, we can take first differences of the

data to eliminate the individual effects gi and obtain

yit � yit�1 ¼ xit � xit�1ð Þbþ uit � eitbð Þ � uit�1 � eit�1bð Þ½ � (57.17)

Because of the correlation between the mismeasured variable and the

innovations, the coefficient of interest is known to be biased.

Griliches and Hausman (1986) propose an instrumental variable approach to

reduce the bias. If the measurement error eit is i.i.d. across i and t, and x is serially
correlated, then, for example, xit�2, xit�3, or (xit�2 � xit�3) are valid as instruments

for (xit � xit�1). The resulting instrumental variable estimator is consistent even

though T is finite and N might tend to infinity.

As emphasized by Erickson and Whited (2000), for some applications, the

assumption of i.i.d. measurement error can be seen as too strong. Nonetheless, it

is possible to relax this assumption to allow for autocorrelation in the measurement

errors. While other alternatives are available, here we follow the approach

suggested by Biorn (2000).10

Biorn (2000) relaxes the i.i.d. condition for innovations in the mismeasured

equation and proposes alternative assumptions under which consistent IV estima-

tors of the coefficient of the mismeasured regressor exists. Under those assump-

tions, as we will show, one can use the lags of the variables already included in the

model as instruments. A notable point is that the consistency of these estimators is

robust to potential correlation between individual heterogeneity and the latent

regressor.

Formally, consider the model described in Eqs. 57.15 and 57.16 and assume that

(wit, uit, eit, gi) are independent across individuals. For the necessary orthogonality

assumptions, we refer the reader to Biorn (2000), since these are quite standard.

More interesting are the assumptions about the measurement errors and distur-

bances. The standard Griliche–Hausman’s assumptions are

(A1) E(eit
0 eiy) ¼ 0KK, t 6¼ y,

(A2) E(uituiy) ¼ 0, t 6¼ y
which impose non-autocorrelation on innovations. It is possible to relax these

assumptions in different ways. For example, we can replace (A1) and (A2) with

(B1) E(eit
0 eiy) ¼ 0KK, jt � yj > t,

(B2) E(uituiy) ¼ 0, jt � yj > t,

10A more recent paper by Xiao et al. (2008) also shows how to relax the classical Griliches–

Hausman assumptions for measurement error models.
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This set of assumptions is weaker since (B1) and (B2) allow for a vector moving

average (MA) structure up to order t (�1) for the innovations. Alternatively, one

can use the following assumptions:

(C1) E(eit
0 ety) is invariant to t, y, t 6¼ y.

(C2) E(uituiy) is invariant to t, y, t 6¼ y.
Assumptions (C1) and (C2) allow for a different type of autocorrelation,

more specifically they allow for any amount of autocorrelation that is time

invariant. Assumptions (C1) and (C2) will be satisfied if the measurement

errors and the disturbances have individual components, say eit ¼ e1i + e2it,
uit ¼ u1i + u2it, where e1i, e2it, u1i, u2it i.i.d. Homoscedasticity of eit and/or uit across
i and t need not be assumed; the model accommodates various forms of

heteroscedasticity.

Biorn also considers assumptions related to the distribution of the latent regressor

vector wit:
(D1) E(wit) is invariant to t.
(D2) E(giwit) is invariant to t.

Assumptions (D1) and (D2) hold when wit is stationary. Note that wit and i need
not be uncorrelated.

To ensure identification of the slope coefficient vector when panel data are

available, it is necessary to impose restrictions on the second-order moments of

the variables (wit, uit, eit, gi). For simplicity, Biorn assumes that this distribution is

the same across individuals and that the moments are finite. More specifically,

C(wit, wit) ¼∑ ty
ww, E(wit�i) ¼∑ t

wn, E(eit
0 eit) ¼∑ty

ee, E(uituit) ¼ sty
uu, E(�i

2) ¼ s��, where
C denotes the covariance matrix operator. Then, it is possible to derive the

second-order moments of the observable variables and show that they only depend

on these matrices and the coefficient b.11 In this framework, there is no need to use

assumptions based on higher-order moments.

Biorn proposes several strategies to estimate the slope parameter of interest.

Under the OLS-IV framework, he proposes estimation procedures of two kinds:

• OLS-IV A: The equation is transformed to differences to remove individual

heterogeneity and is estimated by OLS-IV. Admissible instruments for

this case are the level values of the regressors and/or regressands for other

periods.

• OLS-IV B: The equation is kept in level form and is estimated by OLS-IV.

Admissible instruments for this case are differenced values of the regressors

and/or regressands for other periods.

Using moment conditions from the OLS-IV framework, one can define

the estimators just described. In particular, using the mean counterpart and the

moment conditions, one can formally define the OLS-IV A and OLS-IV B
estimators.

11Formally, one can show that C(xit, xiy) ¼ ∑ ty
ww + ∑ ty

ee, E(xit, yiy) ¼ ∑ty
wwb + ∑ t

w�, and E(yit, yiy)
¼ b0 ∑ ty

wwb + ∑ t
xnb + bH0(∑y

xn)0 + sty
uu + s��.
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In particular, the estimator for OLS-IV A can be defined as

b̂xp tyð Þ ¼
XN
i¼1

x0ip Dxityð Þ
" #�1 XN

i¼1

x0ip Dyityð Þ
" #

,

where (t, y, p) are indices. Let the dimension of b be defined by K. If K ¼ 1, it is

possible to define the following estimator for a given (t, y, p):

b̂yp tyð Þ ¼
XN
i¼1

yip Dxityð Þ
" #�1 XN

i¼1

yip Dyityð Þ
" #

:

If K > 1, the latter estimator is infeasible, but it is possible to modify the former

estimator by replacing one element in xip
0 by yip.

The estimator for OLS-IV B (equation in level and instruments in difference) can

be defined as

b̂x pqð Þt ¼
XN
i¼1

Dxipq
� �0

xit

" #�1 XN
i¼1

Dxipq
� �0

yit

" #
:

As in the previous case, if the dimension of b, K is equal to 1, it is possible to

define the following estimator for (t, p, q):

b̂y pqð Þt ¼
XN
i¼1

Dyipq
� �

xit

" #�1 XN
i¼1

Dyipq
� �

yit

" #
:

If K > 1, the latter estimator is infeasible, but it is possible to modify the former

estimator by replacing one element in Dxip by Dyip.
For some applications, it might be useful to impose weaker conditions on the

autocorrelation of measurement errors and disturbances. In this case, it is necessary

to restrict slightly further the conditions on the instrumental variables. More

formally, if one replaces assumptions (A1) and (A2), or (C1) and (C2), by the

weaker assumptions (B1) and (B2), then it is necessary to ensure that the IV set has

a lag of at least t � 2 and/or lead of at least t + 1 periods of the regressor in order to

“clear” the t period memory of the MA process. Consistency of these estimators is

discussed in Biorn (2000).12

To sum up, there are two simple ways to relax the standard assumption of i.i.d.

measurement errors. Under the assumption of time-invariant autocorrelation, the set of

instruments can contain the same variables used under Griliches–Hausman.

12In particular, if jt � pj, jy � pj > t, then (B1) and rank (E[wip
0 (Dwity)]) ¼ K for some

p 6¼ t 6¼ 0 ensure consistency of OLS–IV B, b̂xp tyð Þ, and (B2) and the same rank condition ensure

consistency of b̂xy tyð Þ . In the same way, if jp � tj, q � t > t, (B1), (D1), (D2), and rank

(E[(Dwipq)0wit)]) ¼ K for some p 6¼ q 6¼ t ensure consistency of OLS-IV B, b̂x pqð Þt, and (B2),

(D1), (D2), and the same rank condition ensure consistency of b̂y pqð Þt.
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For example, if one uses the OLS-IV A estimator (equation in differences and instru-

ments in levels), then twice-lagged levels of the observable variables can be used as

instruments. Under a moving average structure for the innovations in the measurement

error [assumptions (B1) and (B2)], identification requires the researcher to use longer

lags of the observable variables as instruments. For example, if the innovations follow

an MA(1) structure, then consistency of the OLS-IV A estimator requires the use of

instruments that are lagged three periods and longer. Finally, identification requires the

latent regressor to have some degree of autocorrelation (since lagged values are used as

instruments). Our Monte Carlo simulations will illustrate the importance of these

assumptions and will evaluate the performance of the OLS-IV estimator under

different sets of assumptions about the structure of the errors.

57.2.3 GMM Estimator

Within the broader instrumental variable approach, we also consider an entire class

of GMM estimators that deal with mismeasurement. These GMM estimators are

close to the OLS-IV estimator discussed above but may attain appreciable gains in

efficiency by combining numerous orthogonality conditions [see Biorn (2000) for

a detailed discussion]. GMM estimators that use all the available lags at each period

as instruments for equations in first differences were proposed by Holtz-Eakin

et al. (1988) and Arellano and Bond (1991). We provide a brief discussion in turn.

In the context of a standard investment model, Blundell et al. (1992) use GMM

allowing for correlated firm-specific effects, as well as endogeneity

(mismeasurement) of q. The authors use an instrumental variable approach on

a first-differenced model in which the instruments are weighted optimally so as to

form the GMM estimator. In particular, they use qit�2 and twice-lagged investments

as instruments for the first-differenced equation for firm i in period t. The Blundell,
Bond, Devereux, and Schiantarelli estimators can be seen as an application of the

GMM instrumental approach proposed by Arellano and Bond (1991), which was

originally applied to a dynamic panel.

A GMM estimator for the errors-in-variables model of Eq. 57.17 based on IV

moment conditions takes the form

b̂ ¼ Dx
0
Z

� �
V�1
N Z

0
Dx

� �h i�1

Dx
0
Z

� �
V�1
N Z

0
Dy

� �
,

where Dx is the stacked vector of observations on the first difference of the

mismeasured variable and Dy is the stacked vector of observations on the first

difference of the dependent variable. As in Blundell et al. (1992), the instrument

matrix Z has the following form13:

13In models with exogenous explanatory variables, Zi may consist of sub-matrices with the block

diagonal (exploiting all or part of the moment restrictions), concatenated to straightforward

one-column instruments.
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Zi ¼
x1 0 0 � � � 0 � � � 0

0 x1 x2 � � � 0 � � � 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 � � � x1 � � � xT�2

0
BB@

1
CCA:

According to standard GMM theory, an optimal choice of the inverse weight

matrix VN is a consistent estimate of the covariance matrix of the orthogonality

conditions E(Zi
0DviDvi

0Zi), where Dvi are the first-differenced residuals of each

individual. Accordingly, a one-step GMM estimator uses V̂ ¼
XN

i�1
Z0
iDD

0
Zi ,

where D is the first-difference matrix operator. A two-step GMM estimator uses

a robust choice eV ¼
XN

i¼1
ZDv̂iDv̂i0Zi where Dv̂i are one-step GMM residuals.

Biorn (2000) proposes estimation of linear, static regression equations from

panel data models with measurement errors in the regressors, showing that if the

latent regressor is autocorrelated or nonstationary, several consistent OLS-IV and

GMM estimators exist, provided some structure is imposed on the disturbances and

measurement errors. He considers alternative GMM estimations that combine all

essential orthogonality conditions. The procedures are very similar to the one

described just above under non-autocorrelation in the disturbances. In particular,

the required assumptions when allowing autocorrelation in the errors are very

similar to those discussed in the previous section. For instance, when one allows

for an MA(t) structure in the measurement error, for instance, one must ensure

that the variables in the IV matrix have a lead or lag of at least t + 1 periods to the

regressor.

We briefly discuss the GMM estimators proposed by Biorn (2000). First,

consider estimation using the equation in differences and instrumental variables

in levels. After taking differences of the model, there are (T� 1) + (T + 1) equations

that can be stacked for individual i as

Dyi21
Dyi32
⋮

Dyi,T, T � 1

Dyi31
Dyi42
⋮

Dyi,T, T � 2

2
66666666664

3
77777777775

¼

Dxi21
Dxi32
⋮

DxiT, T � 1

Dxi31
Dxi42
⋮

Dxi, T,T � 2

2
66666666664

3
77777777775

bþ

Dei21
Dei32
⋮

Dei,T,T � 1

Dei31
Dei42
⋮

Dei,T,T � 2

2
66666666664

3
77777777775

,

or compactly

Dyi ¼ DXibþ D2i:

The IV matrix is the ((2T � 3) � KT(T � 2)) diagonal matrix with the

instruments in the diagonal defined by Z. Let
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Dy ¼ Dy1ð Þ0 ; . . . ; DyNð Þ0
h i0

,D2 ¼ D21ð Þ0 ; . . . ; D2Nð Þ0
h i0

DX ¼ DX1ð Þ0 ; . . . ; DXNð Þ0
h i0

, Z ¼ Z0
1; . . . ; Z

0
N

� �0
:

TheGMMestimator thatminimizes [N�1(D2)0Ζ](N�2V)�1[N�1Z0(D2)] forV¼ Z0Z
can be written as

b̂Dx ¼
X
i

DXið Þ0Zi

" # X
i

Z0
iZi

" #�1 X
i

Z0
i DXið Þ

" #2
4

3
5
�1

�
X
i

DXið Þ0Zi

" # X
i

Z0
iZi

" #�1 X
i

Z0
i Dyið Þ

" #2
4

3
5:

If D2 has a non-scalar covariance matrix, a more efficient GMM estimator, ebDx,

can be obtained setting V ¼ VZ(D2) ¼ E[Z0(D2)(D2)0Z] and estimating V̂ z D2ð Þ by

V̂Z D2ð Þ
N

¼ 1

N

X
i

Z
0 cD2
� � cD2

� �0
Z,

where cD2i ¼ Dyi � DXið Þb̂Dx . This procedure assumes that (A1) and (A2) are

satisfied. However, as Biorn (2000) argues, one can replace them by (B1) or

(B2) and then ensure that the variables in the IV matrix have a lead or lag of at

least t + 1 periods to the regressor, to “get clear of” the t period memory of the

MA(t) process. The procedure described below is also based on the same set of

assumptions and can be extended similarly.14

The procedure for estimation using equation in levels and IVs in difference is

similar. Consider the T stacked level equations for individual i:

yi1
⋮
yiT

2
4

3
5 ¼

c
⋮
c

2
4

3
5þ

xi1
⋮
xiT

2
4

3
5bþ

2i1

⋮
2iT

2
4

3
5,

or more compactly,

yi ¼ eTcþ Xibþ 2,

where eΤ denotes a (T� 1) vector of ones. Let the (T� T(T� 2)K) diagonal matrix

of instrument be denoted by DZi. This matrix has the instruments in difference in

the main diagonal. In addition,

14See Propositions 1* and 2* in Biorn (2000) for a formal treatment of the conditions.
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define:

y ¼ y01; . . . ; y
0
N

� �0
,2 ¼ 20

1; . . . ;20
N

� �0

X ¼ X0
1; . . . ;X

0
N

� �0
,DZ ¼ DZ1ð Þ0 ; . . . ; DZNð Þ0

h i0
:

The GMM estimator that minimizes [N�120(DZi)0]|(N
�2VD)

�1[N�1(DZ)02]
for VD ¼ (DZ)0(DZ) is

b̂Lx ¼
X
i

X0
i DZið Þ

" # X
i

DZið Þ0DZi

" #�1 X
i

DZið Þ0Xi

" #2
4

3
5
�1

�
X
i

Xi
0
DZið Þ

" # X
i

DZið Þ0DZi

" #�1 X
i

DZið Þ0yi
" #2

4
3
5:

If 2 has a non-scalar covariance matrix, a more efficient GMM estimator, ebLx,

can be obtained setting VD ¼ V(DZ)2 ¼ E[(DZ)220(DZ)] and estimating V̂ DZð Þ2 by

V̂ DZð Þ2
N

¼ 1

N

X
i

DZð Þ0 2̂2̂0
DZð Þ,

where 2̂ ¼ yi � Xib̂Lx.

Finally, let us briefly contrast theOLS-IV andAB-GMMestimators. The advantages

of GMM over IV are clear: if heteroscedasticity is present, the GMM estimator is more

efficient than the IV estimator, while if heteroscedasticity is not present, the GMM

estimator is no worse asymptotically than the IV. Implementing the GMM estimator,

however, usually comeswith a high price. Themain problem, as Hayashi (2000, p. 215)

pointsout,concerns theestimationof theoptimalweightingmatrix that isat thecoreof the

GMM approach. This matrix is a function of fourth moments, and obtaining reasonable

estimates of fourth moments requires very large sample sizes. Problems also arise when

thenumber ofmoment conditions is high, that is,when there are “toomany instruments.”

This latter problem affects squarely the implementation of the AB-GMM, since it relies

on largenumbersof lags (especially in longpanels).Theupshot is that theefficientGMM

estimator canhavepoor small sampleproperties [seeBaumetal. (2003) for adiscussion].

These problems are well documented and remedies have been proposed by, among

others, Altonji and Segal (1996) and Doran and Schmidt (2006).

57.3 Monte Carlo Analysis

We use Monte Carlo simulations to assess the finite sample performance of the EW

and IV estimators discussed in Sect. 57.2. Monte Carlo simulations are an ideal

experimental tool because they enable us to study those two estimators in

a controlled setting, where we can assess and compare the importance of elements
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that are key to estimation performance. Our simulations use several distributions to

generate observations. This is important because researchers will often find

a variety of distributions in real-world applications and because one ultimately

does not see the distribution of the mismeasurement term. Our Monte Carlos

compare the EW, OLS-IV, and AB-GMM estimators presented in Sect. 57.2 in

terms of bias and RMSE.15 We also investigate the properties of the EW identifi-

cation test, focusing on the empirical size and power of this test.

57.3.1 Monte Carlo Design

A critical feature of panel data models is the observation of multiple data points

from the same individuals over time. It is natural to consider that repeat samples are

particularly useful in that individual idiosyncrasies are likely to contain information

that might influence the error structure of the data-generating process.

We consider a simple data-generating process to study the finite sample perfor-

mance of the EW and OLS-IV estimators. The response variable yit is generated
according to the following model:

yit ¼ gi þ bwit þ z0ita 1þ rwitð Þuit, (57.18)

where gi captures the individual-specific intercepts, b is a scalar coefficient associ-

ated with the mismeasured variable wit, a¼ (a1,a2,a3)0 is 3� 1 vector of coefficients

associated with the 3� 1 vector of perfectly measured variables zit ¼ (zit1, zit2, zit3),
uit is the error in the model, and rmodulates the amount of heteroscedasticity in the

model. When r ¼ 0, the innovations are homoscedastic. When r > 0, there is

heteroscedasticity associated with the variable wit, and this correlation is stronger as

the coefficient gets larger. The model in Eq. 57.18 is flexible enough to allow us to

consider two different variables as wit: (1) the individual-specific intercept gi and
(2) the well-measured regressor zit.

We consider a standard additive measurement error

xit ¼ wit þ vit, (57.19)

where wit follows an AR(1) process:

15The mean squared error (MSE) of an estimator ŷ incorporates a component measuring the

variability of the estimator (precision) and another measuring its bias (accuracy). An estimator

with good MSE properties has small combined variance and bias. The MSE of ŷ can be defined as

Var ŷ
� �

þ Bias ŷ
� �h i2

. The root mean squared error (RMSE) is simply the square root of the

MSE. This is an easily interpretable statistic, since it has the same unit as the estimator ŷ. For an
approximately unbiased estimator, the RMSE is just the square root of the variance, that is, the

standard error.
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1� fLð Þwit ¼ 2it: (57.20)

In all simulations, we set wi,� 50
* ¼ 0 and generate wit for t ¼ �49, �48, . . .,T,

such that we drop the first 50 observations. This ensures that the results are not

unduly influenced by the initial values of the wit process.
Following Biorn (2000), we relax the assumption of i.i.d. measurement error.

Our benchmark simulations will use the assumption of time-invariant autocorrela-

tion [(C1) and (C2)]. In particular, we assume that uit ¼ u1i + u2it and vit ¼ v1i + v2it.
We draw all the innovations (u1i,u2it,v1i,v2it,) from a lognormal distribution; that is,

we exponentiate two normal distributions and standardize the resulting variables to

have unit variances and zero means (this follows the approach used by EW). In

Sect. 57.3.6, we analyze the alternative case in which the innovations follow an MA

structure.

The perfectly measured regressor is generated according to

zit ¼ mi þ 2it: (57.21)

And the fixed effects, mi and gi, are generated as

mi ¼ e1i

gi ¼ e2i þ 1ffiffiffi
T

p
XT
t¼1

Wit,
(57.22)

where Wit is the sum of the explanatory variables. Our method of generating mi and
gi ensures that the usual random effects estimators are inconsistent because of the

correlation that exists between the individual effects and the error term or the explan-

atory variables. The variables (e1i, e2i) are fixed as standard normal distributions.16

We employ four different schemes to generate the disturbances (2it, eit). Under
Scheme 1, we generate them under a normal distribution, N(0,su

2). Under Scheme 2,

we generate them from a lognormal distribution, LN(0,su
2). Under Scheme 3, we use

a chi-square with 5 degrees of freedom, w5
2. Under Scheme 4, we generate the

innovations from a Fm,n-distribution with m ¼ 10 and n ¼ 40. The latter three

distributions are right-skewed so as to capture the key distributional assumptions

behind the EW estimator. We use the normal (non-skewed) distribution as

a benchmark.

Naturally, in practice, one cannot determine how skewed – if at all – is the

distribution of the partially out latent variable. One of our goals is to check how this

assumption affects the properties of the estimators we consider. Figure 57.1 pro-

vides a visual illustration of the distributions we employ. By inspection, at least, the

three skewed distributions we study appear to be plausible candidates for the

distribution governing mismeasurement, assuming EW’s prior that measurement

error must be markedly rightly skewed.

16Robustness checks show that the choice of a standard normal does not influence our results.
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As in Erickson and Whited (2002), our simulations allow for cross-sectional

correlation among the variables in the model. We do so because this correlation

may aggravate the consequences of mismeasurement of one regressor on the

estimated slope coefficients of the well-measured regressors. Notably, this source

of correlation is emphasized by EW in their argument that the inferences of Fazzari

et al. (1988) are flawed in part due to the correlation between q and cash flows. To

introduce this correlation in our application, for each period in the panel, we

generate (wi, zi1, zi2, zi3) using the correspondent error distribution and then multiply

the resulting vector by [var(wi, zi1, zi2, zi3)]
1/2 with diagonal elements equal to 1 and

off-diagonal elements equal to 0.5.

In the simulations, we experiment with T ¼ 10 and N ¼ 1,000. We set the

number of replications to 5,000 and consider the following values for the remaining

parameters:

b; a1; a2; a3ð Þ ¼ 1, � 1, 1, � 1ð Þ
f ¼ 0:6,s2u ¼ s2e1 ¼ s2e2 ¼ 1,

where the set of slope coefficients b, ai is set similarly to EW.
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Notice that the parameter f controls the amount of autocorrelation of the latent

regressor. As explained above, this autocorrelation is an important requirement for

the identification of the IV estimator. While we set f ¼ 0.6 in the following

experiments, we also conduct simulations in which we check the robustness of

the results with respect to variations in f between 0 and 1 (see Sect. 57.3.6).

57.3.2 The EW Identification Test

We study the EW identification test in a simple panel data setup. In the panel

context, it is important to consider individual fixed effects. If the data contain fixed

effects, according to Erickson andWhited (2000), a possible strategy is to transform

the data first and then apply their high-order GMM estimator. Accordingly,

throughout this section, our estimations consider data presented in two forms:

“level” and “within.” The first refers to data in their original format, without the

use of any transformation; estimations in level form ignore the presence of fixed

effects.17 The second applies the within transformation to the data – eliminating

fixed effects – before the model estimation.

We first compute the empirical size and power of the test. Note that the null

hypothesis is that the model is incorrectly specified, such that b ¼ 0 and/or

E[�i
3] ¼ 0. The empirical size is defined as the number of rejections of the null

hypothesis when the null is true – ideally, this should hover around 5 %. In our case,

the empirical size is given when we draw the innovations (2it, eit) from a

non-skewed distribution, which is the normal distribution since it generates

E[�i
3] ¼ 0. The empirical power is the number of rejections when the null hypoth-

esis is false – ideally, this should happen with very high probability. In the present

case, the empirical power is given when we use skewed distributions: lognormal,

chi-square, and F-distribution.
Our purpose is to investigate the validity of the skewness assumption once we

are setting b 6¼ 0. Erickson and Whited (2002) also restrict every element of b to be

nonzero. We conduct a Monte Carlo experiment to quantify the second part of this

assumption. It is important to note that we can compute the E[(�i)
3] since, in our

controlled experiment, we generate wi and therefore observe it.

Since the EW test is originally designed for cross-sectional data, the first

difficulty the researcher faces when implementing a panel test is aggregation.

Following EW, our test is computed for each year separately. We report the

average of empirical rejections over the years.18 To illustrate the size and power

of the test for the panel data case, we set the time series dimension of the

17To our knowledge, all but one of the empirical applications of the EWmodel use the data in level

form. In other words, firm-fixed effects are ignored outright in panel setting estimations of

parameters influencing firm behavior.
18The results using the median are similar.
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panel to T ¼ 10. Our tests are performed over 5,000 samples of cross-sectional size

equal to 1,000. We use a simple homoscedastic model with r ¼ 0, with the other

model parameters given as above.

Table 57.1 reports the empirical size and power of the statistic proposed by EW

for testing the null hypothesis H0 : E(ẏi
2ẋi) ¼ E(ẏiẋi

2) ¼ 0. This hypothesis is

equivalent to testing H0 : b¼ 0 and/or E(�i
3)¼ 0. Table 57.1 reports the frequencies

at which the statistic of test is rejected at the 5 % level of significance for,

respectively, the normal, lognormal, chi-square, and F-distributions of the data-

generating process. Recall that when the null hypothesis is true, we have the size of

the test, and when the null is false, we have the power of the test.

The results reported in Table 57.1 imply an average size of approximately 5 %

for the test. In particular, the first two rows in the table show the results in the case

of a normal distribution for the residuals (implying that we are operating under the

null hypothesis). For both the level and within cases, the empirical sizes match the

target significance level of 5 %.

When wemove to the case of skewed distributions (lognormal, chi-square, and F),
the null hypothesis is not satisfied by design, and the number of rejections delivers

the empirical power of the test. In the case when the data is presented in levels and

innovations are drawn from a lognormal distribution (see row 2), the test rejects

about 47 % of the time the null hypothesis of no skewness. Using within data, the

test rejects the null hypothesis 43 % of the time. Not only are these frequencies low,

but comparing these results, one can see that the within transformation slightly

reduces the power of the test.

The results associated with the identification test are more disappointing when

we consider other skewed distributions. For example, for the F-distribution, we

obtain only 17 % of rejections of the null hypothesis in the level case and only 28 %

for the within case. Similarly, poor statistical properties for the model identification

test are observed in the chi-square case.

Table 57.1 The performance of the EW identification test

Distribution Null is Data form Frequency of rejection

Normal True Level 0.05

Within 0.05

Lognormal False Level 0.47

Within 0.43

w3
2 False Level 0.14

Within 0.28

F10, 40 False Level 0.17

Within 0.28

This table shows the performance of the EW identification test for different distributional

assumptions displayed in column 1. The tests are computed for the data in levels and after applying

a within transformation. Column 4 shows the frequencies at which the null hypothesis that the

model is not identified is rejected at the 5 % level of significance
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57.3.3 Bias and Efficiency of the EW, OLS-IV, and AB-GMM
Estimators

In this sectionwepresent simulation results that assess the finite sample performance of

the estimators discussed in Sect. 57.2. The simulations compare the estimators in terms

of bias and efficiency under several distributional assumptions. In the next subsection,

we consider the cross-sectional setting, focusing on the properties of the EWestimator.

Subsequently, we examine the panel case in detail, comparing the performance of the

EW, OLS-IV, and AB-GMM estimators in terms of bias and efficiency.

57.3.3.1 The Cross-Sectional case
We generate data using a simple model as in Eqs. 57.18, and 57.19 with T¼ 1, such

that there are no fixed effects, no autocorrelation(f ¼ 0), and no heteroscedasticity

(r¼ 0). The other parameters are (b, a1, a2, a3)¼ (1, �1, 1, �1). Table 57.2 shows

the results for bias and RMSE for four different distributions: lognormal,

chi-square, F-distribution, and standard normal. For each distribution we estimate

the model using three different EW estimators: EW-GMM3, EW-GMM4, and

EW-GMM5. These estimators are based on the respective third, fourth, and fifth

moment conditions. By combining the estimation of 4 parameters, under 4 different

distributions, for all 3 EW estimators – a total of 48 estimates – we aim at

establishing robust conclusions about the bias and efficiency of the EW approach.

Panel A of Table 57.2 presents the results for bias and RMSE when we use the

lognormal distribution to generate innovations (2i ei) that produce wi and zi. Under
this particular scenario, point estimates are approximately unbiased, and the small

RMSEs indicate that coefficients are relatively efficiently estimated.

Panels B and C of Table 57.2 present the results for the chi-square and

F-distribution, respectively. The experiments show that coefficient estimates pro-

duced by the EW approach are generally very biased. For example, Panel B shows

that the b coefficient returned for the EW-GMM4 and EW-GMM5 estimators is

biased downwards by approximately 35 %. Panel C shows that for EW-GMM3, the

b coefficient is biased upwards about 35 %. Paradoxically, for EW-GMM4 and

EW-GMM5, the coefficients are biased downwards by approximately 25 %. The

coefficients returned for the perfectly measured regressors are also noticeably

biased. And they, too, switch bias signs in several cases. Panels B and C show

that the EW RMSEs are very high. Notably, the RMSE for EW-GMM4 under the

chi-square distribution is 12.23, and under F-distribution, it is 90.91. These RMSE

results highlight the lack of efficiency of the EW estimator. Finally, Panel D

presents the results for the normal distribution case, which has zero skewness. In

this case, the EW estimates are severely biased and the RMSEs are extremely high.

The estimated coefficient for the mismeasured variable using EW-GMM3 has

a bias of 1.91 (about three times larger than its true value) and an RMSE of 2305.

These results reveal that the EW estimators only have acceptable performance in

the case of very strong skewness (lognormal distribution). They relate to the last

section in highlighting the poor identification of the EW framework, even in the
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most basic cross-sectional setup. Crucially, for the other skewed distributions we

study, the EW estimator is significantly biased for both the mismeasured and the

well-measured variables. In addition, the RMSEs are quite high, indicating low

efficiency.

57.3.3.2 The Panel Case
We argue that a major drawback of the EW estimator is its limited ability to handle

individual heterogeneity – fixed effects and error heteroscedasticity – in panel data.

This section compares the impact of individual heterogeneity on the EW, OLS-IV,

Table 57.2 The EW estimator: cross-sectional data

b a1 a2 a3
Panel A. Lognormal distribution

EW-GMM3 Bias 0.0203 �0.0054 �0.0050 �0.0056

RMSE 0.1746 0.0705 0.0704 0.0706

EW-GMM4 Bias 0.0130 �0.0034 �0.0033 �0.0040

RMSE 0.2975 0.1056 0.1047 0.1083

EW-GMM5 Bias 0.0048 �0.0013 �0.0013 �0.0019

RMSE 0.0968 0.0572 0.0571 0.0571

Panel B. Chi-square distribution

EW-GMM3 Bias �0.0101 0.0092 0.0101 �0.0060

RMSE 61.9083 16.9275 16.1725 14.7948

EW-GMM4 Bias �0.3498 0.0938 0.0884 0.0831

RMSE 12.2386 3.2536 2.9732 3.1077

EW-GMM5 Bias �0.3469 0.0854 0.0929 0.0767

RMSE 7.2121 1.8329 1.8720 1.6577

Panel C. F-distribution

EW-GMM3 Bias 0.3663 �0.1058 �0.0938 �0.0868

RMSE 190.9102 53.5677 52.4094 43.3217

EW-GMM4 Bias �0.2426 0.0580 0.0649 0.0616

RMSE 90.9125 24.9612 24.6827 21.1106

EW-GMM5 Bias �0.2476 0.0709 0.0643 0.0632

RMSE 210.4784 53.5152 55.8090 52.4596

Panel D. Normal distribution

EW-GMM3 Bias 1.9179 �0.6397 �0.5073 �0.3512

RMSE 2305.0309 596.1859 608.2098 542.2125

EW-GMM4 Bias �1.0743 0.3012 0.2543 0.2640

RMSE 425.5931 111.8306 116.2705 101.4492

EW-GMM5 Bias 3.1066 �1.0649 �0.9050 �0.5483

RMSE 239.0734 60.3093 65.5883 58.3686

This table shows the bias and the RMSE associated with the estimation of the model in Eqs. 57.17,

57.18, 57.19, 57.20, and 57.21 using the EW estimator in simulated cross-sectional data. b is the

coefficient on the mismeasured regressor, and a1 to a3 are the coefficients on the perfectly

measured regressors. The table shows the results associated with GMM3, GMM4, and GMM5

for all the alternative distributions. These estimators are based on the respective third, fourth, and

fifth moment conditions
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and AB-GMM estimators in a panel setting. In the first round of experiments, we

assume error homoscedasticity by setting the parameter r in Eq. 57.18 equal to

zero. We shall later allow for changes in this parameter.

Although the EW estimations are performed on a period-by-period basis, one

generally wants a single coefficient for each of the variables in an empirical model.

To combine the various (time-specific) estimates, EW suggest the minimum dis-

tance estimator (MDE) described below. Accordingly, the results presented in this

section are for the MDE that combines the estimates obtained from each of the ten

time periods considered. For example, EW-GMM3 is the MDE that combines the

ten different cross-sectional EW-GMM3 estimates in our panel.

The OLS-IV is computed after differencing the model and using the second lag

of the observed mismeasured variable x, xt�2, as an instrument for Dxt. The

AB-GMM estimates (Arellano and Bond 1991) use all the orthogonality conditions,

with all available lags of x’s as instrumental variables. We also concatenate the

well-measured variables z’s in the instruments’ matrix. The AB-GMM estimator is

also computed after differencing Eq. 57.18. To highlight the gains of these various

estimators vis-à-vis the standard (biased) OLS estimator, we also report the results

of simulations for OLS models using equation in first difference without

instruments.

We first estimate the model using data in level form. While the true model

contains fixed effects (and thus it is appropriate to use the within transformation), it

is interesting to see what happens in this case since most applications of the EW

estimator use data in level form, and as shown previously, the EW identification test

performs slightly better using data in this form.

The results are presented in Table 57.3. The table makes it clear that the EW

method delivers remarkably biased results when ignoring the presence of fixed

effects. Panel A of Table 57.3 reports the results for the model estimated with the

data under strong skewness (lognormal). In this case, the coefficients for the

mismeasured regressor are very biased, with biases well in excess of 100 % of

the true coefficient for the EW-GMM3, EW-GMM4, and EW-GMM5 estimators.

The biases for the well-measured regressors are also very strong, all exceeding

200 % of the estimates’ true value. Panels B and C report results for models under

chi-square and F-distributions, respectively. The EW method continues to deliver

very biased results for all of the estimates considered. For example, the EW-GMM3

estimates that are returned for the mismeasured regressors are biased downwardly

by about 100 % of their true values – those regressors are deemed irrelevant when

they are not. Estimates for the well-measured regressors are positively biased by

approximately 200 % – they are inflated by a factor of 3. The RMSEs reported in

Panels A, B, and C show that the EW methodology produces very inefficient

estimates even when one assumes pronounced skewness in the data. Finally,

Panel D reports the results for the normal distribution. For the non-skewed data

case, the EW framework can produce estimates for the mismeasured regressor that

are downwardly biased by about 90 % of their true parameter values for all models.

At the same time, that estimator induces an upward bias of larger than 200 % for the

well-measured regressors.
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Table 57.4 reports results for the case in which we apply the within transforma-

tion to the data. Here, we introduce the OLS, OLS-IV, and AB-GMM estimators.

We first present the results associated with the set up that is most favorable for the

EW estimations, which is the lognormal case in Panel A. The EW estimates for the

lognormal case are relatively unbiased for the well-measured regressors (between 4 %

and 7 % deviation from true parameter values). The same applies for the mismeasured

regressors. Regarding the OLS-IV, Panel A shows that coefficient estimates are

unbiased in all models considered. AB-GMM estimates are also approximately

Table 57.3 The EW estimator: panel data in levels

b a1 a2 a3
Panel A. Lognormal distribution

EW-GMM3 Bias �1.6450 2.5148 2.5247 2.5172

RMSE 1.9144 2.5606 2.5711 2.5640

EW-GMM4 Bias �1.5329 2.5845 2.5920 2.5826

RMSE 1.9726 2.6353 2.6443 2.6354

EW-GMM5 Bias �1.3274 2.5468 2.5568 2.5490

RMSE 1.6139 2.5944 2.6062 2.5994

Panel B. Chi-square distribution

EW-GMM3 Bias �1.0051 2.2796 2.2753 2.2778

RMSE 1.1609 2.2887 2.2841 2.2866

EW-GMM4 Bias �0.9836 2.2754 2.2714 2.2736

RMSE 1.0540 2.2817 2.2776 2.2797

EW-GMM5 Bias �0.9560 2.2661 2.2613 2.2653

RMSE 1.0536 2.2728 2.2679 2.2719

Panel C. F-distribution

EW-GMM3 Bias �0.9926 2.2794 2.2808 2.2777

RMSE 1.1610 2.2890 2.2904 2.2870

EW-GMM4 Bias �0.9633 2.2735 2.2768 2.2720

RMSE 1.0365 2.2801 2.2836 2.2785

EW-GMM5 Bias �0.9184 2.2670 2.2687 2.2654

RMSE 2.0598 2.2742 2.2761 2.2725

Panel D. Normal distribution

EW-GMM3 Bias �0.8144 2.2292 2.228 2.2262

RMSE 0.9779 2.2363 2.2354 2.2332

EW-GMM4 Bias �0.9078 2.2392 2.2363 2.2351

RMSE 0.9863 2.2442 2.2413 2.2400

EW-GMM5 Bias �0.8773 2.2262 2.2225 2.2217

RMSE 0.9846 2.2316 2.2279 2.2269

This table shows the bias and the RMSE associated with the estimation of the model in Eqs. 57.17,

57.18, 57.19, 57.20, and 57.21 using the EW estimator in simulated panel data. The table reports

results from data in levels (i.e., without applying the within transformation). b is the coefficient on

the mismeasured regressor, and a1, a2, a3 are the coefficients on the perfectly measured regressors.

The table shows the results for the EW estimator associated with EW-GMM3, EW-GMM4, and

EW-GMM5 for all the alternative distributions. These estimators are based on the respective third,

fourth, and fifth moment conditions
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Table 57.4 OLS, OLS-IV, AB-GMM, and EW estimators: panel data after within transformation

b a1 a2 a3
Panel A. Lognormal distribution

OLS Bias �0.7126 0.1553 0.1558 0.1556

RMSE 0.7131 0.1565 0.1570 0.1568

OLS-IV Bias 0.0065 �0.0019 �0.0014 �0.0015

RMSE 0.1179 0.0358 0.0357 0.0355

AB-GMM Bias �0.0248 0.0080 0.0085 0.0081

RMSE 0.0983 0.0344 0.0344 0.0340

EW-GMM3 Bias �0.0459 0.0185 0.0184 0.0183

RMSE 0.0901 0.0336 0.0335 0.0335

EW-GMM4 Bias �0.0553 0.0182 0.0182 0.0183

RMSE 0.1405 0.0320 0.0321 0.0319

EW-GMM5 Bias �0.0749 0.0161 0.0161 0.0161

RMSE 0.1823 0.0303 0.0297 0.0297

Panel B. Chi-square distribution

OLS Bias �0.7126 0.1555 0.1553 0.1556

RMSE 0.7132 0.1565 0.1563 0.1567

OLS-IV Bias 0.0064 �0.0011 �0.0017 �0.001

RMSE 0.1149 0.0348 0.0348 0.0348

AB-GMM Bias �0.0231 0.0083 0.0077 0.0081

RMSE 0.0976 0.0339 0.0338 0.0342

EW-GMM3 Bias �0.3811 0.0982 0.0987 0.0982

RMSE 0.4421 0.1133 0.1136 0.1133

EW-GMM4 Bias �0.3887 0.0788 0.0786 0.0783

RMSE 0.4834 0.0927 0.0923 0.0919

EW-GMM5 Bias �0.4126 0.0799 0.0795 0.0798

RMSE 0.5093 0.0926 0.0921 0.0923

Panel C. F-distribution

OLS Bias �0.7123 0.1554 0.1549 0.1555

RMSE 0.7127 0.1565 0.1559 0.1566

OLS-IV Bias 0.0066 �0.0013 �0.0023 �0.001

RMSE 0.1212 0.0359 0.0362 0.0361

AB-GMM Bias �0.0232 0.0079 0.0072 0.0085

RMSE 0.0984 0.0343 0.0342 0.0344

EW-GMM3 Bias �0.3537 0.0928 0.0916 0.0917

RMSE 0.4239 0.1094 0.1086 0.1095

EW-GMM3 Bias �0.3906 0.0802 0.0790 0.0791

RMSE 0.4891 0.0939 0.0930 0.0932

EW-GMM3 Bias �0.4188 0.0818 0.0808 0.0813

RMSE 0.5098 0.0939 0.0932 0.0935

(continued)
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unbiased, while standard OLS estimates are very biased. In terms of efficiency, the

RMSEs of the EW-GMM3 are somewhat smaller than those of the OLS-IV and

AB-GMM for the well-measured and mismeasured regressors. However, for the

mismeasured regressor, both OLS-IV and AB-GMM have smaller RMSEs than

EW-GMM4 and EW-GMM5.

Panel B of Table 57.4 presents the results for the chi-square distribution. One can

see that the EW yields markedly biased estimates in this case. The bias in the

mismeasured regressor is approximately 38 % (downwards), and the coefficients

for the well-measured variable are also biased (upwards). In contrast, the OLS-IV

and AB-GMM estimates for both well-measured and mismeasured regressors are

approximately unbiased. In terms of efficiency, as expected, the AB-GMM presents

slightly smaller RMSEs than the OLS-IV estimator. These IV estimators’ RMSEs

are much smaller than those associated with the EW estimators.

Panels C and D of Table 57.4 show the results for the F and standard normal

distributions, respectively. The results for the F-distribution in Panel C are essentially

similar to those in Panel B: the instrumental variable estimators are approximately

unbiasedwhile theEWestimators areverybiased.Finally,PanelDshows thatdeviations

froma strongly skeweddistribution are very costly in termsof bias for theEWestimator,

since the bias for the mismeasured regressor is larger than 70 %, while for the well

measured, it is around 20 %. A comparison of RMSEs shows that the IV estimators are

moreefficient inboth theFandnormalcases. Inall,our simulationsshowthatstandardIV

methods almost universally dominate the EW estimator in terms of bias and efficiency.

Table 57.4 (continued)

b a1 a2 a3
Panel D. Normal distribution

OLS Bias �0.7119 0.1553 0.1554 0.1551

RMSE 0.7122 0.1563 0.1564 0.1562

OLS-IV Bias 0.0060 �0.0011 �0.0012 �0.0014

RMSE 0.1181 0.0353 0.0355 0.0358

AB-GMM Bias �0.0252 0.0086 0.0085 0.0084

RMSE 0.0983 0.0344 0.0339 0.0343

EW-GMM3 Bias �0.7370 0.1903 0.1904 0.1895

RMSE 0.7798 0.2020 0.2024 0.2017

EW-GMM4 Bias �0.8638 0.2141 0.2137 0.2137

RMSE 0.8847 0.2184 0.218 0.2182

EW-GMM5 Bias �0.8161 0.1959 0.1955 0.1955

RMSE 0.8506 0.2021 0.2018 0.2017

This table shows the bias and the RMSE associated with the estimation of the model in Eqs. 57.17,

57.18, 57.19, 57.20, 57.21 using the OLS, OLS-IV, AB-GMM, and EW estimators in simulated

panel data. The table reports results from the estimators on the data after applying the within

transformation. b is the coefficient on the mismeasured regressor, and a1, a2, a3 are the coefficients
on the perfectly measured regressors. The table shows the results for the EW estimator associated

with EW-GMM3, EW-GMM4, and EW-GMM5 for all the alternative distributions. These esti-

mators are based on the respective third, fourth, and fifth moment conditions
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We reiterate that the bias and RMSE of the IV estimators in Table 57.4 are all

relatively invariant to the distributional assumptions, while the EW estimators are

all very sensitive to those assumptions. In short, this happens because the EW relies

on the high-order moment conditions as opposed to the OLS and IV estimators.

57.3.4 Heteroscedasticity

One way in which individual heterogeneity may manifest itself in the data is via error

heteroscedasticity. Up to this point, we have disregarded the case in which the data has

a heteroscedastic error structure. However, most empirical applications in corporate

financeentail theuseofdataforwhichheteroscedasticitymightberelevant. It is important

that we examine how the EWand the IV estimators are affected by heteroscedasticity.19

The presence of heteroscedasticity introduces heterogeneity in the model and

consequently in the distribution of the partialled out dependent variable. This

compromises identification in the EW framework. Since the EW estimator is

based on equations giving the moments of (yi � zimy) and (yi � zimw) as functions
of b and moments of (ui, ei, �i), the heteroscedasticity associated with the fixed

effects (ai) or with the perfectly measured regressor (zit) distorts the required

moment conditions associated with (yi � zimy), yielding biased estimates. These

inaccurate estimates enter the minimum distance estimator equation and conse-

quently produce incorrect weights for each estimate along the time dimension. As

our simulations of this section demonstrate, this leads to biased MDE estimates,

where the bias is a function of the amount of heteroscedasticity.

We examine the biases imputed by heteroscedasticity by way of graphical analysis.

The graphs we present below are useful in that they synthesize the outputs of numerous

tables and provide a fuller visualization of the contrasts we draw between the EW and

OLS-IV estimators. The graphs depict the sensitivity of those two estimators with

respect to heteroscedasticity as we perturb the coefficient p in Eq. 57.18.

In our simulations, we alternatively set wit ¼ gi or wit ¼ zit. In the first case,

heteroscedasticity is associated with the individual effects. In the second, heterosce-

dasticity is associated with the well-measured regressor. Each of our figures

describes the biases associated with the mismeasured and the well-measured

regressors for each of the OLS-IV, EW-GMM3, EW-GMM4, and EW-GMM5

estimators.20 In order to narrow our discussion, we only present results for the

highly skewed distribution case (lognormal distribution) and for data that is treated

for fixed effects using the within transformation. As Sect. 57.3.3 shows, this is the

only case in which the EW estimator returns relatively unbiased estimators for the

parameters of interest. In all the other cases (data in levels and for data generated by

19We focus on the OLS-IV estimator hereinafter for the purpose of comparison with the EW

estimator.
20Since estimation biases have the same features across all well-measured regressors of a model,

we restrict attention to the first well-measured regressor of each of the estimated models.

57 Assessing the Performance of Estimators Dealing with Measurement Errors 1593



chi-square, F, and normal distributions), the estimates are strongly biased even

under the assumption of homoscedasticity.21

Figure 57.2 presents the simulation results under the assumption thatwit¼ gi as we
vary the amount of heteroscedasticity by changing the parameter r,22 the results for
the mismeasured coefficients show that biases in the EW estimators are generally

small for r equal to zero (this is the result reported in Sect. 57.3.3). However, as this

coefficient increases, the bias quickly becomes large. For example, for r ¼ 0.45, the

biases in the coefficient of the mismeasured variable are, respectively, �11 %,

�20 %, and �43 %, for the EW-GMM3, EW-GMM4, and EW-GMM5 estimators.

Notably, those biases, which are initially negative, turn positive for moderate values

of r. As heteroscedasticity increases, some of the biases diverge to positive infinite.

The variance of the biases of the EW estimators is also large. The results regarding

the well-measured variables using EW estimators are analogous to those for the

mismeasured one. Biases are substantial even for small amounts of heterosce-

dasticity, they switch signs for some level of heteroscedasticity, and their variances

are large. In sharp contrast, the same simulation exercises show that the OLS-IV

estimates are approximately unbiased even under heteroscedasticity. While the EW

estimator may potentially allow for some forms of heteroscedasticity, it is clear that it

is not well equipped to deal with this problem in more general settings.

57.3.5 Identification of the EW Estimator in Panel Data

Our Monte Carlo experiments show that the EW estimator has a poor handle of

individual fixed effects and that biases arise for deviations from the assumption of

strict lognormality. Biases in the EW framework are further magnified if one allows

for heteroscedasticity in the data (even under lognormality). The biases arising from

the EW framework are hard to measure and sign, ultimately implying that it can be

very difficult to replicate the results one obtains under that framework.

To better understand these results, we now discuss in more mathematical details

the identification of the EW estimator for the panel data case for both the model in

level and after the within transformation. Extending the EW estimator to panel data

seems to be a nontrivial task. EW have proposed to break the problem for each time

series, estimate a cross-section model for each t, and after that combine the

estimates using a minimum distance estimator. In what follows we show that this

procedure might affect the identification condition.

Consider the following model:

yit ¼ ai þ bwit þ uit, i ¼ 1, . . . ,N; t ¼ 1, . . . , T, (57.23)

21Our simulation results (available upon request) suggest that introducing heteroscedasticity

makes the performance of the EW estimator even worse in these cases.
22The results for wit ¼ zit are quite similar to those we get from setting wit ¼ gi. We report only one

set of graphs to save space.
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where uit is independent and identically distributed, with mean zero and variance

su
2. Assume that the Var(xit)¼ sw

2. The independent variable and unobserved effects

are exogenous, that is, Cov(wit, uis) ¼ Cov(ai, uit) ¼ 0 for any t and s. However,
Cov(ai, wit) 6¼ 0. Now, assume that we do not observe the true variable wit, but rather
a mismeasured variable, that is, you observe the following variable with an error:

xit ¼ wit þ eit, i ¼ 1, . . . ,N . . . ,N; t ¼ 1, . . . T, (57.24)
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where Cov(xit, eis) ¼ Cov(ai, eis) ¼ Cov(uit, eis) ¼ 0, and Var(eit) ¼ se
2,

Cov(eit, eit � 1) ¼ gse
2.

In addition, assume here that there is no variable zit (a ¼ 0 in Eq. 57.18) to

simplify the argument.

57.3.5.1 Model in Level
As mentioned before, EW propose to fix a particular time series and estimate the

model using the cross-section data. Without loss for generality, fix T ¼ 1. Thus,

Eqs. 57.23 and 57.24 become

yi1 ¼ ai þ bwi1 þ ui1, i ¼ 1, . . . ,N, (57.25)

and

xi1 ¼ wi1 þ ei1, i ¼ 1, . . . ,N: (57.26)

However, the unobserved individual-specific intercepts, ai, are still present

in Eq. 57.25 and in addition Cov(ai, wi1) 6¼ 0. Therefore, one can see that it is

impossible to estimate b consistently since ai’s are unobserved. This argument

is easily extended for every t ¼ 1, . . ., T. Thus, the estimator for each fixed t is
inconsistent, and consequently the minimum distance estimator is inconsistent by

construction. Therefore, we conclude that the EW minimum distance estimator

produces inconsistent estimates for panel data model with fixed effects.

57.3.5.2 Model After Within Transformation
Given the inconsistency of the model in levels presented in the last section, one

strategy is to previously transform the data to eliminate the fixed effects. One

suggestion is to use the within transformation in the data before estimation.

In order to analyze the model after the transformation, let’s assume that T¼ 2 for

simplification. Using the within transformation in Eqs. 57.23 and 57.24, we obtain

yit � yit ¼ b wit � wið Þ þ uit � uið Þ,

and

xit � xi ¼ wit � wið Þ þ eit � eið Þ,

where -yi ¼ 1
2
yil þ yi2ð Þ, -wi ¼ 1

2
wi1 þ wi2ð Þ, and so on.

Now, again EW propose to use a particular time series and estimate the model

using the cross-section data. Let’s use t ¼ 1 for ease of exposition. The model can

be written as

yil � yi ¼ b wi1 � wið Þ þ ui1 � uið Þ
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and

xi1 � xi ¼ wi1 � wið Þ þ eit � eið Þ:

Now substituting the definition of the deviations and rearranging, we have

yi1 �
1

2
yi1 þ yi2ð Þ ¼ b wi1 �

1

2
wi1 þ wi2ð Þ

� 	
þ ui1 � 1

2
ui1 þ ui2ð Þ

� 	
,

yil þ yi2 ¼ b wi1 þ wi2ð Þ þ ui1 þ ui2ð Þ,

and

xi1 � 1

2
xi1 þ xi2ð Þ ¼ wi1 �

1

2
wi1 þ wi2ð Þ

� 	
þ ei1 � 1

2
ei1 þ ei2ð Þ

� 	
,

xi1 þ xi2 ¼ wi1 þ wi2ð Þ þ ei1 þ ei2ð Þ:

Finally, our model can be described as

yi1 þ yi2 ¼ b wi1 þ wi2ð Þ þ ui1 þ ui2ð Þ,

and

xi1 þ xi2 ¼ wi1 þ wi2ð Þ þ ei1 þ ei2ð Þ:

Let’s now define Yi ¼ yi1 + yi2, Xi ¼ xi1 + xi2, Ui ¼ ui1 + ui2, vi ¼ wi1 + wi2, and
Ei ¼ ei1 + ei2. So, the model could be rewritten as

Yi ¼ bvi þ Ui

and

Xi ¼ vi þ Ei:

Notice that the requirements for identification now are on the high-order

moments of (V, U, E). However, note that vi ¼ wi1 + wi2, which is a sum of two

random variables. As it is well known from the econometrics literature, convolution

of random variables is in general a nontrivial object.

One example of why the identification condition may worsen considerably

is the following. Consider a model where wi1 and wi2 are independent

chi-square distributions with 2 degrees of freedom. The skewness of the

chi-square with k degrees of freedom is
ffiffiffiffiffiffiffiffi
8=k

p
. Note that the sum of two

independent chi-squares with k degrees of freedom is a chi-square with 2k degrees
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of freedom. Therefore, the skewness of the vi ¼ wi1 + wi2 drops from two

for the model using one distribution to 1.41 for the model using the summation

of both wi1 and wi2.
From this simple analysis one could conclude that the identification conditions

required for EW estimator can deteriorate considerably when using the within

transformation to eliminate the fixed effects in panel data. Thus, the required

conditions to achieve unbiased estimates with EW are very strong.

57.3.6 Revisiting the OLS-IV Assumptions

Our Monte Carlo simulations show that the OLS-IV estimator is consistent even

when one allows for autocorrelation in the measurement-error structure. We have

assumed, however, some structure on the processes governing innovations. In this

section, we examine the sensitivity of the OLS-IV results with respect to our

assumptions about measurement-error correlation and the amount of autocorrela-

tion in the latent regressor. These assumptions can affect the quality of the instru-

ments and therefore should be examined in some detail.

We first examine conditions regarding the correlation of the measurement

errors and disturbances. The assumption of time-invariant autocorrelation for

measurement errors and disturbances implies that past shocks to measurement

errors do not affect the current level of the measurement error. One way to relax

this assumption is to allow for the measurement-error process to have a moving

average structure. This structure satisfies Biorn’s assumptions (B1) and (B2). In

this case, Proposition 1 in Biorn (2000) shows that for an MA(t), the instruments

should be of order of at most t � t � 2. Intuitively, the set of instruments must be

“older” than the memory of the measurement-error process. For example, if the

measurement error is MA(1), then one must use third- and longer-lagged

instruments to identify the model.

To analyze this case, we conduct Monte Carlo simulations in which we

replace the time-invariant assumption for innovation uit and vit with an MA(1)

structure for the measurement-error process. The degree of correlation in the

MA process is set to y ¼ 0.4. Thus, the innovation in Eqs. 57.18 and 57.19 has

the following structure:

uit ¼ u1it � yu1it�1 and vit ¼ v1it ¼ v1it � yv1it�1,

with jyj � 1, and u1it and v1it are i.i.d. lognormal distributions. The other parameters

in the simulation remain the same.

The results are presented in Table 57.5. Using MA(1) in the innovations and

the third lag of the latent regressor as an instrument (either on its own or in

combination with the fourth lag), the bias of the OLS estimator is very small

(approximately 2–3 %). The bias increases somewhat when we use only the fourth

lag. While the fourth is an admissible instrument in this case, using longer lags

decreases the implied autocorrelation in the latent regressor [which follows an
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AR(1) process by Eq. 57.20]. This effect decreases somewhat the quality of the

instruments. Notice also that when we do not eliminate short lags from the instru-

ment set, the identification fails. For example, the bias is 60 % when we use the

second lag as an instrument. These results thus underscore the importance of using

long enough lags in this MA case. Table 57.5 also reports results based on an MA

(2) structure. The results are qualitatively identical to those shown in the MA

(1) case. Once again, the important condition for identification is to use long enough

lags (no less than four lags in this case).23

The second condition underlying the use of the OLS-IV is that the latent

regressor is not time invariant. Accordingly, the degree of autocorrelation in

the process for the latent regressor is an important element of the identification

strategy. We assess the sensitivity of the OLS-IV results to this condition by

varying the degree of autocorrelation through the autoregressive coefficient in the

AR(1) process for the latent regressor. In these simulations, we use a time-invariant

autocorrelation condition for the measurement error, but the results are very similar

for the MA case.

Figure 57.3 shows the results for the bias in the coefficients of interest for thewell-

measured and mismeasured variables, using the second lag of the mismeasured

variable as an instrument. The results show that the OLS-IV estimator performs well

for a large range of the autoregressive coefficient. However, as expected, when thef
coefficient is very close to zero or one, we have evidence of a weak instrument

problem. For example, when f ¼ 1, then Dwit is uncorrelated with any variable

dated at time t � 2 or earlier. These simulations show that, provided that one uses

adequately lagged instruments, the exact amount of autocorrelation in the latent

variable is not a critical aspect of the estimation.

The simulations of this section show how the performance of the OLS-IV

estimator is affected by changes in assumptions concerning measurement errors

and latent regressors. In practical applications, it is important to verify whether

the results obtained with OLS-IV estimators are robust to the elimination of

short lags from the instrumental set. This robustness check is particularly

important given that the researcher will be unable to pin down the process

followed by the measurement error. Our empirical application below incorporates

this suggestion. In addition, identification relies on some degree of autocorrelation

in the process for the latent regressor. While this condition cannot be directly

verified, we can perform standard tests of instrument adequacy that rely on

“first-stage” test statistics calculated from the processes for the observable

variables in the model.

Another important assumption in the OLS is non-autocorrelation in both uit
and vit. For example, these innovations cannot follow an autoregressive process.

23We note that if the instrument set uses suitably long lags, then the OLS-IV results are robust to

variations in the degree of correlation in the MA process. In unreported simulations under MA(1),

we show that the OLS bias is nearly invariant to the parameter y.
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When this is the case, the IV strategy of using lags of mismeasured variable as valid

instruments is invalid (see Biorn 2000).

57.3.7 Distributional Properties of the EW and OLS-IV Estimators

A natural question is whether our simulation results are rooted in the lack of

accuracy of the asymptotic approximation of the EW method. Inference in models

with mismeasured regressors is based on asymptotic approximations; hence infer-

ence based on estimators with poor approximations might lead to wrong inference

procedures. For instance, we might select wrong critical values for a test under poor

asymptotic approximations and make inaccurate statements under such circum-

stances. In this section, we use the panel data simulation procedure of Sect. 3.3.2 to

study and compare the accuracy of the asymptotic approximation of the EW and IV

methods. To save space, we restrict our attention to the mismeasured regressor

coefficient for the EW-GMM5 and OLS-IV cases. We present results where we

draw the data from the lognormal, chi-square, and F-distributions. The EW-GMM5

estimator is computed after the within transformation and the OLS-IV uses second

lags as instruments.

One should expect both the IV and EW estimators to have asymptotically normal

representations, such that when we normalize the estimator by subtracting the true

parameter and divide by the standard deviation, this quantity behaves asymptoti-

cally as a normal distribution. Accordingly, we compute the empirical density and

the distribution functions of the normalized sample estimators and their normal

approximations. These functions are plotted in Fig. 57.4. The true normal density

Table 57.5 Moving average structures for the measurement-error process

Instrument MA(1) MA(2)

Xit�2 �0.593 �0.368

(0.60) (0.38)

Xit�3 0.028 �0.707

(0.30) (0.71)

Xit�3, Xit�4 0.025 0.077

(0.63) (1.01)

Xit�3, Xit�4, Xit�5 �0.011 �0.759

(0.30) (0.76)

Xit�4 �0.107 �0.144

(1.62) (2.01)

Xit�4, Xit�5 �0.113 �0.140

(0.58) (0.59)

Xit�5 �0.076 �0.758

(0.31) (0.76)

This table shows the bias in the well-measured coefficient for OLS-IV using moving average

structure for the measurement-error process. Numbers in parentheses are the RMSE

1600 H. Almeida et al.



and distribution functions (drawn in red) serve as benchmarks. The graphs in

Fig. 57.4 depict the accuracy of the approximation. We calculate the density of

the estimators using a simple Gaussian Kernel estimator and also estimate the

empirical cumulative distribution function.24

Consider the lognormal distribution (first panel). In that case, the OLS-IV (black

line) displays a very precise approximation to the normal curve in terms of both

density and distribution. The result for the OLS-IV is robust across all of the

distributions considered (lognormal, chi-square, and F). These results are in sharp

contrast to those associated with the EW-GMM5 estimator. This estimator presents

a poor asymptotic approximation for all distributions examined. For the lognormal

case, the density is not quite centered at zero, and its shape does not fit the normal

distribution. For the chi-square and F-distributions, Fig. 57.4 shows that the shapes
of the density and distribution functions are very unlike the normal case, with the

center of the distribution located far away from zero. These results imply that

inference procedures using the EW estimator might be asymptotically invalid in

simple panel data with fixed effects, even when the relevant distributions present

high skewness.
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Fig. 57.3

24The empirical cumulative distribution function Fn is a step function with jumps i/n at observation
values, where i is the number of tied observations at that value.
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57.4 Empirical Application

We apply the EW and OLS-IV estimators to Fazzari et al. (1988) investment

equation. This is the most well-known model in the corporate investment literature,

and we use this application as a way to illustrate our Monte Carlo-based results. In

the Fazzari, Hubbard, and Petersen model, a firm’s investment spending is

regressed on a proxy for investment demand (Tobin’s q) and the firm’s cash flow.

Theory suggests that the correct proxy for the firm’s investment demand is

marginal q, but this quantity is unobservable and researchers use instead its

measurable proxy, average q. Because average q measures marginal

q imperfectly, a measurement problem naturally arises. Erickson and Whited

(2002) uses the Fazzari, Hubbard, and Petersen model to motivate the adoption of

their estimator in applied work in panel data.

A review of the corporate investment literature shows that virtually all empirical

work in the area considers panel data models with firm-fixed effects (Kaplan and

Zingales 1997; Rauh 2006; Almeida and Campello 2007). From an estimation point

of view, there are distinct advantages in exploiting repeated observations from

individuals to identify the model (Blundell et al. 1992). In an investment model

setting, exploiting firm effects contributes to estimation precision and allows for

Fig. 57.4
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model consistency in the presence of unobserved idiosyncrasies that may be

simultaneously correlated with investment and q. The baseline model in this

literature has the form

Iit=Kit ¼ �i þ bq	it þ aCFit=Kit þ uit, (57.27)

where I denotes investment, K capital stock, q* is marginal q, CF cash flow, � is the
firm-specific effect, and u is the innovation term.

As mentioned earlier, if q* is measured with error, OLS estimates of b will be

biased downwards. In addition, given that q and cash flow are likely to be positively

correlated, the coefficient a is likely to be biased upwards in OLS estimations. In

expectation, these biases should be reduced by the use of estimators like the ones

discussed in the previous section.

57.4.1 Theoretical Expectations

In order to better evaluate the performance of the two alternative estimators, we

develop some hypotheses about the effects of measurement-error correction on the

estimated coefficients b and a from Eq. 57.27. Theory does not pin down the exact

values that these coefficients should take. Nevertheless, one could argue that the

two following conditions should be reasonable.

First, an estimator that addresses measurement error in q in a standard

investment equation should return a higher estimate for b and a lower estimate

for a when compared with standard OLS estimates. Recall that measurement error

causes an attenuation bias on the estimate for the coefficient b. In addition,

since q and cash flow are likely to be positively correlated, measurement error

should cause an upward bias on the empirical estimate returned under the standard

OLS estimation. Accordingly, if one denotes the OLS and the measurement-error

consistent estimates, respectively, by (bOLS, aOLS) and (bMEC, aMEC), one

should expect:

Condition 1. bOLS < bMEC and aOLS > aMEC. Second, one would expect the coefficients

for q and the cash flow to be nonnegative after treating the data for measurement

error. The q-theory of investment predicts a positive correlation between invest-

ment and q (e.g., Hayashi 1982). If the theory holds and the estimator does a good

job of adjusting for measurement error, then the cash flow coefficient should be zero

(“neoclassical view”). However, the cash flow coefficient could be positive either

because of the presence of financing frictions (as posited by Fazzari et al. 1988)25 or

25However, financial constraints are not sufficient to generate a strictly positive cash flow

coefficient because the effect of financial constraints is capitalized in stock prices and may thus

be captured by variations in q (Chirinko 1993; Gomes 2001).
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due to fact that cash flow picks up variation in investment opportunities even after

we apply a correction for mismeasurement in q. Accordingly, one should observe:

Condition 2. bMEC � 0 and aMEC � 0. Notice that these conditions are fairly weak.

If a particular measurement-error consistent estimator does not deliver these basic

results, one should have reasons to question the usefulness of that estimator in

applied work.

57.4.2 Data Description

Our data collection process follows that ofAlmeida andCampello (2007).Weconsider

a sample of manufacturing firms over the 1970–2005 period with data available from

Compustat. Following those authors, we eliminate firm years displaying asset or sales

growth exceeding 100 %, or for which the stock of fixed capital (the denominator of

the investment and cash flow variables) is less than $5 million (in 1976 dollars).

Our raw sample consists of 31,278observations from3,084 individual firms. Summary

statistics for investment, q, and cash flow are presented in Table 57.6. These statistics

are similar to those reported by Almeida and Campello, among other papers. To save

space we omit the discussion of these descriptive statistics.

57.4.3 Testing for the Presence of Fixed Effects and
Heteroscedasticity

Before estimating our investment models, we conduct a series of tests for the

presence of firm-fixed effects and heteroscedasticity in our data. As a general

rule, these phenomena might arise naturally in panel data applications and should

not be ignored. Importantly, whether they appear in the data can have concrete

implications for the results generated by different estimators.

We first perform a couple of tests for the presence of firm-fixed effects. We allow

for individual firm intercepts in Eq. 57.27 and test the null hypothesis that the

coefficients associated with those firm effects are jointly equal to zero (Baltagi

2005). Table 57.7 shows that the F-statistic for this test is 4.4 (the associated

p-value is 0.000). Next, we contrast the random effects OLS and the fixed effects

OLS estimators to test again for the presence of fixed effects. The Hausman test

statistic reported in Table 57.7 rejects the null hypothesis that the random effects

model is appropriate with a test statistic of 8.2 (p-value of 0.017). In sum, standard

tests strongly reject the hypothesis that fixed effects can be ignored.

We test for homoscedasticity using two different panel data-based methods.

First, we compute the residuals from the least squares dummy variables estimator

and regress the squared residuals on a function of the independent variables [see

Frees (2004) for additional details]. We use two different combinations of inde-

pendent regressors – (qit, CFit) and (qit, qit
2, CFit, CFit, CFit

2) – and both of them

robustly reject the null hypothesis of homoscedasticity. We report the results for the
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first combination in Table 57.7, which yields a test statistic of 55.2 (p-value of

0.000). Our second approach for testing the null of homoscedasticity is the standard

random effects Breusch-Pagan test. Table 57.7 shows that the Breusch-Pagan test

yields a statistic of 7,396.2 (p-value of 0.000). Our tests hence show that the data

strongly reject the hypothesis of error homoscedasticity.

57.4.4 Implementing the EW Identification Test

Our preliminary tests show that one should control for fixed effects when estimating

investment models using real data. In the context of the EW estimator, it is thus

appropriate to apply the within transformation before the estimation. However, in this

section, we also present results for the data in level form to illustrate the point made in

Sect. 57.3.2 that applying the within transformation compromises identification in the

EW context. Prior papers adopting the EW estimator have ignored (or simply

dismissed) the importance of fixed effects (e.g., Whited 2001, 2006).

We present the results for EW’s identification test in Table 57.8. Using the data in

level form, we reject the hypothesis of no identification in 12 out of 30 years (or 36%

rejection). For data that is transformed to accommodate fixed effects (within trans-

formation), we find that in only 7 out of 33 (or 21 %) of the years between 1973 and

2005, one can reject the null hypothesis that the model is not identified at the usual

5 % level of significance. These results suggest that the power of the test is low and

decreases further after applying the within transformation to the data. These results

are consistent with Almeida and Campello’s (2007) use of the EW estimator.

Working with a 15-year Compustat panel, those authors report that they could only

find a maximum of 3 years of data passing the EW identification test.

Table 57.6 Descriptive statistics

Variable Obs. Mean Std. dev. Median Skewness

Investment 22,556 0.2004 0.1311 0.17423 2.6871

q 22,556 1.4081 0.9331 1.1453 4.5378

Cash flow 22,556 0.3179 0.3252 0.27845 �2.2411

This table shows the basic descriptive statistics for q, cash flow, and investment. The data are taken

from the annual Compustat industrial files over the 1970–2005 period. See text for details

Table 57.7 Diagnosis tests

Test Test statistic p-value

Pooling test 4.397 0.0000

Random effects vs. fixed effects 8.17 0.0169

Homoscedasticity 1 55.19 0.0000

Homoscedasticity 2 7,396.21 0.0000

This table reports results for specification tests. Hausman test for fixed effects models considers

fixed effects models against the simple pooled OLS and the random effects model.

A homoscedasticity test for the innovations is also reported. The data are taken from the annual

Compustat industrial files over the 1970–2005 period. See text for details
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The results in Table 57.8 reinforce the notion that it is quite difficult to

operationalize the EW estimator in real-world applications, particularly in situa-

tions in which the within transformation is appropriate due to the presence of fixed

effects. We recognize that the EW identification test rejects the model for most of

the data at hand. However, recall from Sect. 57.3.2 that the test itself is likely to be

misleading (“over-rejecting” the data). In the next section, we take the EW estima-

tor to the data (a standard Compustat sample extract) to illustrate the issues applied

researchers face when using that estimator, contrasting it to an easy-to-implement

alternative.

57.4.5 Estimation Results

We estimate Eq. 57.27 using the EW, OLS-IV, and AB-GMM estimators. For

comparison purposes, we also estimate the investment equation using standard OLS

andOLSwith fixed effects (OLS-FE). The estimates for the standard OLS are likely to

be biased, providing a benchmark to evaluate the performance of the other estimators.

As discussed in Sect. 57.4.1, we expect estimators that improve upon the problem of

mismeasurement to deliver results that satisfy Conditions 1 and 2 above.

As is standard in the empirical literature, we use an unbalanced panel in our

estimations. Erickson and Whited (2000) propose a minimum distance estimator

(MDE) to aggregate the cross-sectional estimates obtained for each sample year,

but their proposed MDE is designed for balanced panel data. Following Riddick and

Whited (2009), we use a Fama–MacBeth procedure to aggregate the yearly EW

estimations.26

To implement our OLS-IV estimators, we first take differences of the model in

Eq. 57.27. We then employ the estimator denoted by OLS-IV A from Sect. 57.2.2,

using lagged levels of q and cash flow as instruments for (differenced) qit. Our
Monte Carlos suggest that identification in this context may require the use of

longer lags of the model variables. Accordingly, we experiment with specifications

that use progressively longer lags of q and cash flow to verify the robustness of our

results.

Table 57.9 reports our findings. The OLS and OLS-FE estimates, reported in

columns (1) and (2), respectively, disregard the presence of measurement error

in q. The EW-GMM3, EW-GMM4, and EW-GMM5 estimates are reported in

columns (3), (4), and (5). For the OLS-IV estimates reported in column (6), we

use qt—2 as an instrument.27 The AB-GMM estimator, reported in column (7), uses

lags of q as instruments. Given our data structure, this implies using a total of

465 instruments. We account for firm-fixed effects by transforming the data.

26Fama–MacBeth estimates are computed as a simple standard errors for yearly estimates. An

alternative approach could use the Hall–Horowitz bootstrap. For completeness, we present in the

appendix the actual yearly EW estimates.
27In the next section, we examine the robustness of the results with respect to variation in the

instrument set.

1606 H. Almeida et al.



T
a
b
le

5
7
.8

T
h
e
E
W

id
en
ti
fi
ca
ti
o
n
te
st
u
si
n
g
re
al

d
at
a

L
ev
el

W
it
h
in

tr
an
sf
o
rm

at
io
n

#
R
ej
ec
ti
o
n
s
n
u
ll

#
R
ej
ec
ti
o
n
s
n
u
ll

1
9
7
3

t-
st
at
is
ti
c

1
.9
6
1

0
1
9
7
3

t-
st
at
is
ti
c

1
.3
4
9

0

p
-v
al
u
e

0
.3
7
5

p
-v
al
u
e

0
.5
0
9

1
9
7
4

t-
st
at
is
ti
c

5
.0
5
2

0
1
9
7
4

t-
st
at
is
ti
c

7
.3
3
4

1

p
-v
al
u
e

0
.0
8

p
-v
al
u
e

0
.0
2
6

1
9
7
5

t-
st
at
is
ti
c

1
.3
3
5

0
1
9
7
5

t-
st
at
is
ti
c

1
.3
1
6

0

p
-v
al
u
e

0
.5
1
3

p
-v
al
u
e

0
.5
1
8

1
9
7
6

t-
st
at
is
ti
c

7
.1
6
1

1
1
9
7
6

t-
st
at
is
ti
c

5
.1
4
6

0

p
-v
al
u
e

0
.0
2
8

p
-v
al
u
e

0
.0
7
6

1
9
7
7

t-
st
at
is
ti
c

1
.9
6
8

0
1
9
7
7

t-
st
at
is
ti
c

1
.5
6
6

0

p
-v
al
u
e

0
.3
7
4

p
-v
al
u
e

0
.4
5
7

1
9
7
8

t-
st
at
is
ti
c

9
.8
8
4

1
1
9
7
8

t-
st
at
is
ti
c

2
.9
4
6

0

p
-v
al
u
e

0
.0
0
7

p
-v
al
u
e

0
.2
2
9

1
9
7
9

t-
st
at
is
ti
c

9
.0
6
5

1
1
9
7
9

t-
st
at
is
ti
c

1
.0
4
2

0

p
-v
al
u
e

0
.0
1
1

p
-v
al
u
e

0
.5
9
4

1
9
8
0

t-
st
at
is
ti
c

9
.7
6
9

1
1
9
8
0

t-
st
at
is
ti
c

7
.0
3
1

1

p
-v
al
u
e

0
.0
0
8

p
-v
al
u
e

0
.0
3

1
9
8
1

t-
st
at
is
ti
c

1
0
.1
7
4

1
1
9
8
1

t-
st
at
is
ti
c

7
.1
6
4

1

p
-v
al
u
e

0
.0
0
6

p
-v
al
u
e

0
.0
2
8

1
9
8
2

t-
st
at
is
ti
c

3
.3
0
4

0
1
9
8
2

t-
st
at
is
ti
c

2
.9
9
1

0

p
-v
al
u
e

0
.1
9
2

p
-v
al
u
e

0
.2
2
4

1
9
8
3

t-
st
at
is
ti
c

5
.7
2
4

0
1
9
8
3

t-
st
at
is
ti
c

9
.9
2
4

1

p
-v
al
u
e

0
.0
5
7

p
-v
al
u
e

0
.0
0
7

1
9
8
4

t-
st
at
is
ti
c

1
5
.6
4
5

1
1
9
8
4

t-
st
at
is
ti
c

6
.9
0
7

1

p
-v
al
u
e

0
p
-v
al
u
e

0
.0
3
2

(c
on

ti
nu

ed
)

57 Assessing the Performance of Estimators Dealing with Measurement Errors 1607



T
a
b
le

5
7
.8

(c
o
n
ti
n
u
ed
)

L
ev
el

W
it
h
in

tr
an
sf
o
rm

at
io
n

#
R
ej
ec
ti
o
n
s
n
u
ll

#
R
ej
ec
ti
o
n
s
n
u
ll

1
9
8
5

t-
st
at
is
ti
c

1
6
.0
8
4

1
1
9
8
5

t-
st
at
is
ti
c

1
.0
8
9

0

p
-v
al
u
e

0
p
-v
al
u
e

0
.5
8

1
9
8
6

t-
st
at
is
ti
c

4
.8
2
7

0
1
9
8
6

t-
st
at
is
ti
c

5
.2
5
6

0

p
-v
al
u
e

0
.0
8
9

p
-v
al
u
e

0
.0
7
2

1
9
8
7

t-
st
at
is
ti
c

1
9
.4
3
2

1
1
9
8
7

t-
st
at
is
ti
c

1
3
.6
0
4

1

p
-v
al
u
e

0
p
-v
al
u
e

0
.0
0
1

1
9
8
8

t-
st
at
is
ti
c

5
.1
5
2

0
1
9
8
8

t-
st
at
is
ti
c

1
.8
4
6

0

p
-v
al
u
e

0
.0
7
6

p
-v
al
u
e

0
.3
9
7

1
9
8
9

t-
st
at
is
ti
c

0
.2
9
5

0
1
9
8
9

t-
st
at
is
ti
c

0
.6
8
7

0

p
-v
al
u
e

0
.8
6
3

p
-v
al
u
e

0
.7
0
9

1
9
9
0

t-
st
at
is
ti
c

0
.9
2
3

0
1
9
9
0

t-
st
at
is
ti
c

1
.3

0

p
-v
al
u
e

0
.6
3

p
-v
al
u
e

0
.5
2
2

1
9
9
1

t-
st
at
is
ti
c

3
.2
8
1

0
1
9
9
1

t-
st
at
is
ti
c

3
.1
7

0

p
-v
al
u
e

0
.1
9
4

p
-v
al
u
e

0
.2
0
5

1
9
9
2

t-
st
at
is
ti
c

2
.3
1

0
1
9
9
2

t-
st
at
is
ti
c

2
.5
7
3

0

p
-v
al
u
e

0
.3
1
5

p
-v
al
u
e

0
.2
7
6

1
9
9
3

t-
st
at
is
ti
c

1
.5
1
7

0
1
9
9
3

t-
st
at
is
ti
c

1
.5
1
4

0

p
-v
al
u
e

0
.4
6
8

p
-v
al
u
e

0
.4
6
9

1
9
9
4

t-
st
at
is
ti
c

2
.8
7
3

0
1
9
9
4

t-
st
at
is
ti
c

4
.1
9
7

0

p
-v
al
u
e

0
.2
3
8

p
-v
al
u
e

0
.1
2
3

1
9
9
5

t-
st
at
is
ti
c

0
.9
6
9

0
1
9
9
5

t-
st
at
is
ti
c

1
.6
8
2

0

p
-v
al
u
e

0
.6
1
6

p
-v
al
u
e

0
.4
3
1

1608 H. Almeida et al.



1
9
9
6

t-
st
at
is
ti
c

1
7
.8
4
5

1
1
9
9
6

t-
st
at
is
ti
c

4
.7
1
1

0

p
-v
al
u
e

0
p
-v
al
u
e

0
.0
9
5

1
9
9
7

t-
st
at
is
ti
c

0
.1
4

0
1
9
9
7

t-
st
at
is
ti
c

1
.5
3
5

0

p
-v
al
u
e

0
.9
3
3

p
-v
al
u
e

0
.4
6
4

1
9
9
8

t-
st
at
is
ti
c

0
.6
2
3

0
1
9
9
8

t-
st
at
is
ti
c

5
.4
2
6

0

p
-v
al
u
e

0
.7
3
2

p
-v
al
u
e

0
.0
6
6

1
9
9
9

t-
st
at
is
ti
c

0
.3
5
4

0
1
9
9
9

t-
st
at
is
ti
c

2
.1
4
8

0

p
-v
al
u
e

0
.8
3
8

p
-v
al
u
e

0
.3
4
2

2
0
0
0

t-
st
at
is
ti
c

1
3
.4
4

1
2
0
0
0

t-
st
at
is
ti
c

1
3
.5
0
2

1

p
-v
al
u
e

0
.0
0
1

p
-v
al
u
e

0
.0
0
1

2
0
0
1

t-
st
at
is
ti
c

3
.1
5
9

0
2
0
0
1

t-
st
at
is
ti
c

3
.3
0
9

0

p
-v
al
u
e

0
.2
0
6

p
-v
al
u
e

0
.1
9
1

2
0
0
2

t-
st
at
is
ti
c

1
3
.6
1
6

1
2
0
0
2

t-
st
at
is
ti
c

0
.6
9
3

0

p
-v
al
u
e

0
.0
0
1

p
-v
al
u
e

0
.7
0
7

2
0
0
3

t-
st
at
is
ti
c

1
2
.9
0
4

1
2
0
0
3

t-
st
at
is
ti
c

4
.0
0
6

0

p
-v
al
u
e

0
.0
0
2

p
-v
al
u
e

0
.1
3
5

2
0
0
4

t-
st
at
is
ti
c

5
.2
1
2

0
2
0
0
4

t-
st
at
is
ti
c

2
.8
0
1

0

p
-v
al
u
e

0
.0
7
4

p
-v
al
u
e

0
.2
4
6

2
0
0
5

t-
st
at
is
ti
c

2
.3
6
5

0
2
0
0
5

t-
st
at
is
ti
c

4
.1
2
7

0

p
-v
al
u
e

0
.3
0
6

p
-v
al
u
e

0
.1
2
7

S
u
m

1
2

S
u
m

7

%
o
f
y
ea
rs

0
.3
6
3
6

%
o
f
y
ea
rs

0
.2
1
2
1

T
h
is
ta
b
le

sh
o
w
s
th
e
te
st
st
at
is
ti
c
an
d
it
s
p
-v
al
u
e
fo
r
th
e
E
W

id
en
ti
fi
ca
ti
o
n
te
st
,
w
h
ic
h
te
st
s
th
e
n
u
ll
h
y
p
o
th
es
is
th
at

th
e
m
o
d
el

is
n
o
t
id
en
ti
fi
ed
.
T
h
e
te
st
s
ar
e

p
er
fo
rm

ed
o
n
a
y
ea
rl
y
b
as
is
.
In

th
e
la
st
co
lu
m
n
s,
w
e
co
ll
ec
t
th
e
n
u
m
b
er

o
f
y
ea
rs
in

w
h
ic
h
th
e
n
u
ll
h
y
p
o
th
es
is
is
re
je
ct
ed

(s
u
m
)
an
d
co
m
p
u
te
th
e
p
er
ce
n
ta
g
e
o
f

y
ea
rs

in
w
h
ic
h
th
e
n
u
ll
is
re
je
ct
ed
.
T
h
e
d
at
a
ar
e
ta
k
en

fr
o
m

th
e
an
n
u
al

C
o
m
p
u
st
at

in
d
u
st
ri
al

fi
le
s
o
v
er

th
e
1
9
7
0
–
2
0
0
5
p
er
io
d
.
S
ee

te
x
t
fo
r
d
et
ai
ls

57 Assessing the Performance of Estimators Dealing with Measurement Errors 1609



T
a
b
le

5
7
.9

E
W
,
G
M
M
,
an
d
O
L
S
-I
V

co
ef
fi
ci
en
ts
,
re
al
-w

o
rl
d
d
at
a

V
ar
ia
b
le
s

O
L
S

O
L
S
-F
E

E
W
-G

M
M
3

E
W
-G

M
M
4

E
W
-G

M
M
5

O
L
S
-I
V

A
B
-G

M
M

q
0
.0
1
7
4
*
*
*

0
.0
2
5
3
*
*
*

0
.0
6
7
9

�0
.3
0
3
1

0
.0
2
3
0

0
.0
6
2
7
*
*
*

0
.0
4
5
3
*
*
*

(0
.0
0
2
)

(0
.0
0
3
)

(0
.0
4
5
)

(0
.3
0
2
)

(0
.0
7
9
)

(0
.0
0
7
)

(0
.0
0
6
)

C
as
h
fl
o
w

0
.1
3
1
0
*
*
*

0
.1
2
1
0
*
*
*

0
.1
2
9
9
*
*
*

0
.3
8
4
1
*

0
.1
5
5
4
*
*
*

0
.0
4
3
4
*
*
*

0
.0
4
6
0
*
*
*

(0
.0
1
1
)

(0
.0
1
7
)

(0
.0
3
1
)

(0
.2
0
1
)

(0
.0
5
2
)

(0
.0
0
7
)

(0
.0
1
6
)

O
b
se
rv
at
io
n
s

2
2
,5
5
6

2
2
,5
5
6

2
2
,5
5
6

2
2
,5
5
6

2
2
,5
5
6

1
7
,3
4
8

1
9
,7
4
8

F
-s
ta
t
p
-v
al
u
e
(fi
rs
t
st
ep
)

–
–

–
–

–
0
.0
0
0

–

T
h
is
ta
b
le

sh
o
w
s
th
e
co
ef
fi
ci
en
ts
an
d
st
an
d
ar
d
d
ev
ia
ti
o
n
s
th
at

w
e
o
b
ta
in

w
h
en

w
e
u
se

th
e
O
L
S
,
E
W
,
an
d
th
e
G
M
M

es
ti
m
at
o
rs

in
E
q
.
5
7
.2
2
.
T
h
e
ta
b
le

al
so

d
is
p
la
y
s
th
e
st
an
d
ar
d
O
L
S
-F
E
co
ef
fi
ci
en
ts

(a
ft
er

ap
p
ly
in
g
th
e
d
if
fe
re
n
ci
n
g
tr
an
sf
o
rm

at
io
n
to

tr
ea
t
th
e
fi
x
ed

ef
fe
ct
s)

in
co
lu
m
n
(2
)
an
d
O
L
S
-I
V

in
th
e
la
st

co
lu
m
n
.
R
o
b
u
st
st
an
d
ar
d
er
ro
rs
in

p
ar
en
th
es
es

fo
r
O
L
S
an
d
G
M
M

an
d
cl
u
st
er
ed

in
fi
rm

s
fo
r
O
L
S
-F
E
an
d
O
L
S
-I
V
.
E
ac
h
E
W

co
ef
fi
ci
en
t
is
an

av
er
ag
e
o
f
th
e

y
ea
rl
y
co
ef
fi
ci
en
ts
re
p
o
rt
ed

in
T
ab
le
5
7
.1
1
an
d
th
e
st
an
d
ar
d
er
ro
r
fo
r
th
es
e
co
ef
fi
ci
en
ts
is
a
F
am

a–
M
ac
B
et
h
st
an
d
ar
d
er
ro
r.
T
h
e
ta
b
le
sh
o
w
s
th
e
E
W

co
ef
fi
ci
en
ts

fo
r
th
e
d
at
a
af
te
r
ap
p
ly
in
g
th
e
w
it
h
in

tr
an
sf
o
rm

at
io
n
.
T
h
e
d
at
a
ar
e
ta
k
en

fr
o
m

th
e
an
n
u
al

C
o
m
p
u
st
at

in
d
u
st
ri
al

fi
le
s
o
v
er

th
e
1
9
7
0
–
2
0
0
5
p
er
io
d
.
S
ee

te
x
t
fo
r

d
et
ai
ls
.
*
,
*
*
,
an
d
*
*
*
re
p
re
se
n
t
st
at
is
ti
ca
l
si
g
n
ifi
ca
n
ce

at
th
e
1
0
%
,
5
%
,
an
d
1
%

le
v
el
s,
re
sp
ec
ti
v
el
y

1610 H. Almeida et al.



When using OLS and OLS-FE, we obtain the standard result in the literature that

both q and cash flow attract positive coefficients [see columns (1) and (2)]. In the

OLS-FE specification, for example, we obtain a q coefficient of 0.025 and a cash

flow coefficient of 0.121. Columns (3), (4), and (5) show that the EW estimator does

not deliver robust inferences about the correlations between investment, cash flow,

and q. The q coefficient estimate varies significantly with the set of moment

conditions used, even flipping signs. In addition, none of the q coefficients is

statistically significant. The cash flow coefficient is highly inflated under EW, and

in the case of the EW-GMM4 estimator, it is more than three times larger than the

(supposedly biased) OLS coefficient. These results are inconsistent with Conditions

1 and 2 above. These findings agree with the Monte Carlo simulations of Sect.

57.3.3, which also point to a very poor performance of the EW estimator in cases in

which fixed effects and heteroscedasticity are present.

By comparison, the OLS-IV delivers results that are consistent with Conditions

1 and 2. In particular, the q coefficient increases from 0.025 to 0.063, while the cash

flow coefficient drops from 0.131 to 0.043. These results suggest that the proposed

OLS-IV estimator does a fairly reasonable job at addressing the measurement-error

problem. This conclusion is consistent with the Monte Carlo simulations reported

above, which show that the OLS-IV procedure is robust to the presence of fixed

effects and heteroscedasticity in simulated data. The AB-GMM results also gener-

ally satisfy Conditions 1 and 2. Notice, however, that the observed changes in the

q and cash flow coefficients (“corrections” relative to the simple, biased OLS

estimator) are less significant than those obtained under the OLS-IV estimation.

57.4.6 Robustness of the Empirical OLS-IV Estimator

It is worth demonstrating that the OLS-IV we consider is robust to variations in the

set of instruments that is used for identification. While the OLS-IV delivered results

that are consistent with our priors, note that we examined a just-identified model,

for which tests of instrument quality are not available. As we have discussed

previously, OLS-IV estimators should be used with care in this setting, since the

underlying structure of the error in the latent variable is unknown. In particular, the

Monte Carlo simulations suggest that it is important to show that the results remain

when we use longer lags to identify the model.

We present the results from our robustness checks in Table 57.10. We start by

adding one more lag of q (i.e., qt�3) to the instrumental set. The associated

estimates are in the first column of Table 57.10. One can observe that the

slope coefficient associated with q increases even more with the new instrument

(up to 0.090), while that of the cash flow variable declines further (down to 0.038).

One problem with this estimation, however, is the associated J-statistic.
If we consider a 5 % hurdle rule, the J-statistic of 4.92 implies that, with this

particular instrumental set, we reject the null hypothesis that the identification

restrictions are met (p-value of 3 %). As we have discussed, this could be

expected if, for example, the measurement-error process has an MA structure.
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This suggests that the researcher should look for longer lagging schemes, lags that

“erase” the MA memory of the error structure.

Our next set of estimations use longer lagging structures for our proposed

instruments and even an instrumental set with only lags of cash flow, the exogenous

regressors in the model. We use combinations of longer lags of q (such as the fourth
and fifth lags) and longer lags of cash flow (fourth and fifth lags). This set of tests

yields estimates that more clearly meet standard tests for instrument validity.28

Specifically, the J-statistics now indicate we do not reject the hypothesis that the

exclusion restrictions are met. The results reported in columns (2) through (7) of

Table 57.10 also remain consistent with Conditions 1 and 2. In particular, the

q coefficient varies from approximately 0.040 to 0.091, while the cash flow

coefficient varies roughly from 0.044 to 0.046. These results are consistent with

our simulations, which suggest that these longer lag structures should deliver

relatively consistent, stable estimates of the coefficients for q and cash flow in

standard investment regressions.

57.5 Concluding Remarks

OLS estimators have been used as a reference in empirical work in financial

economics. Despite their popularity, those estimators perform poorly when dealing

with the problem of errors in variables. This is a serious problem since in most

empirical applications, one might raise concerns about issues such as data quality

and measurement errors.

This chapter uses Monte Carlo simulations and real data to assess the perfor-

mance of different estimators that deal with measurement error, including EW’s

higher-order moment estimator and alternative instrumental variable-type

approaches. We show that in the presence of individual fixed effects, under

heteroscedasticity, or in the absence of high degree of skewness in the data, the

EW estimator returns biased coefficients for both mismeasured and perfectly mea-

sured regressors. The IV estimator requires assumptions about the autocorrelation

structure of the measurement error, which we characterize and discuss in the chapter.

We also estimate empirical investment models using the two methods. Because

real-world investment data contain firm-fixed effects and heteroscedasticity, the

EW estimator delivers coefficients that are unstable across different specifications

and not economically meaningful. In contrast, a simple OLS-IV estimator yields

results that conform to theoretical expectations. We conclude that real-world

investment data is likely to satisfy the assumptions that are required for identifica-

tion of OLS-IV but that the presence of heteroscedasticity and fixed effects causes

the EW estimator to return biased coefficients.

28All of the F-statistics associated with the first-stage regressions have p-values that are close to

zero. These statistics (reported in Table 57.10) suggest that we do not incur a weak instrument

problem when we use longer lags in our instrumental set.
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Table 57.11 EW coefficients for real data (within transformation)

q coefficient Cash flow coefficient

Year GMM3 GMM4 GMM5 GMM3 GMM4 GMM5

1973 �0.029 0.000 0.000 0.347 0.265 0.264

(0.075) (0.073) (4.254) (0.207) (0.207) (11.968)

1974 0.050 0.029 0.019 0.168 0.199 0.214

(0.037) (0.012) (0.016) (0.073) (0.043) (0.043)

1975 0.225 0.001 0.000 0.161 0.292 0.292

(0.475) (0.149) (0.125) (0.281) (0.095) (0.094)

1976 0.137 0.001 0.000 0.156 0.276 0.276

(0.094) (0.273) (0.042) (0.090) (0.251) (0.048)

1977 0.082 0.243 0.000 0.203 0.091 0.261

(0.263) (0.109) (0.108) (0.179) (0.090) (0.083)

1978 0.263 0.514 0.281 0.122 (0.067) 0.108

(0.282) (0.927) (0.146) (0.224) (0.689) (0.125)

1979 0.020 0.001 0.001 0.249 0.266 0.266

(0.161) (0.048) (0.031) (0.155) (0.056) (0.044)

1980 0.349 0.116 0.183 0.021 0.219 0.163

(0.294) (0.071) (0.055) (0.273) (0.074) (0.067)

1981 0.334 0.185 0.324 �0.145 0.061 �0.131

(0.165) (0.045) (0.128) (0.248) (0.093) (0.191)

1982 0.109 0.383 0.238 0.125 �0.206 �0.031

(0.155) (0.316) (0.126) (0.195) (0.398) (0.174)

1983 0.081 0.001 0.001 0.132 0.184 0.184

(0.037) (0.041) (0.059) (0.033) (0.034) (0.040)

1984 0.230 0.210 0.185 0.125 0.138 0.154

(0.083) (0.050) (0.043) (0.067) (0.052) (0.048)

1985 0.198 0.349 0.230 0.050 (0.018) 0.035

(0.483) (0.137) (0.024) (0.212) (0.086) (0.032)

1986 0.672 0.244 0.593 �0.179 0.070 �0.133

(0.447) (0.089) (0.162) (0.303) (0.079) (0.128)

1987 0.102 0.104 0.115 0.078 0.078 0.077

(0.039) (0.020) (0.003) (0.021) (0.021) (0.020)

1988 0.129 0.179 0.148 0.030 0.027 0.029

(0.051) (0.029) (0.014) (0.011) (0.007) (0.007)

1989 �0.365 �0.015 �0.111 0.285 0.162 0.196

(1.797) (0.082) (0.196) (0.642) (0.063) (0.078)

1990 �0.437 �0.419 �0.529 0.395 0.386 0.440

(0.404) (0.137) (0.024) (0.214) (0.094) (0.093)

1991 0.384 0.260 0.240 �0.098 0.007 0.023

(0.225) (0.105) (0.038) (0.199) (0.099) (0.055)

1992 0.105 0.102 0.040 0.086 0.088 0.148

(0.016) (0.008) (0.016) (0.034) (0.033) (0.037)

1993 0.274 0.322 0.452 �0.076 �0.118 �0.232

(0.394) (0.352) (0.273) (0.360) (0.297) (0.276)

(continued)
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This chapter proposes a modeling framework for the study of co-movements in

price changes among crude oil, gold, and dollar/pound currencies that are
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conditional correlation (DCC) multivariate GARCH model to examine the

volatility and correlation dynamics depending on the variances of price returns

involving a threshold structure. The results indicate that the periods of market

turbulence are associated with an increase in co-movements in commodity (gold

and oil) prices. By contrast, high market volatility is associated with a decrease

in co-movements between gold and the dollar/pound or oil and the dollar/pound.

The results imply that gold may act as a safe haven against major currencies

when investors face market turmoil. By looking at different subperiods based on

the estimated thresholds, we find that the investors’ behavior changes in different

subperiods. Our model presents a useful tool for market participants to engage in

better portfolio allocation and risk management.

Keywords

Dynamic conditional correlation • Volatility threshold • Realized distribution •

Currency market • Gold • Oil

58.1 Introduction

Commodity markets in recent years have experienced dramatic growth in trading

volume as well as widespread price volatility. With few exceptions, most of the

commodities have experienced an impressive bull run and have generally

outperformed traditional investments. For example, the prices of commodities

such as crude oil have risen dramatically, and the crude oil price almost reached

a new high of US$200 per barrel in 2011. In the meantime, the price of gold hit

a new high of US$1,700 in 2011. These price surprises have influenced not only the

commodity markets but also the currency markets and the international parity of

foreign exchange. By the fall of 2007, the increasing speculation in commodity

markets was associated with the devaluation of the US dollar.

Among these commodities, gold appears to have exhibited a more stable price

trend than crude oil. From the beginning of the financial crisis in 1997 up until

2011, the price of gold has risen by almost 42 %. For many years, gold has been

viewed as a safe haven from market turbulence. However, very few empirical

studies have examined the role of gold as a safe-haven asset and even fewer have

examined gold’s safe-haven role with respect to major currency exchange rates,

especially those of the two major currencies – the US dollar and the British pound.

The reason why we choose exchange rates as a comparative baseline is that, for

commodities that are traded continuously in organized markets, a change in a major

currency exchange rate will result in an instant adjustment in the prices of com-

modities in at least one currency and perhaps in both currencies if both countries are

“large.” For instance, when the dollar depreciates against the pound, the dollar

prices of commodities tend to rise (and pound prices fall) even though the funda-

mentals of the markets remain unchanged.

1620 T.-L. Shih et al.



This widely expanded and complex volatility in commodity prices increases the

importance of modeling real volatility and correlation, because a good estimate

helps facilitate portfolio optimization, risk management, and hedging activities.

Although some of the literature assumes volatility and correlation to be constant

in the past years, it is widely recognized that they indeed vary over time. This

recognition has spurred a vibrant body of work regarding the dynamic properties of

market volatility. To date, very little is known about the volatility dynamics

between the commodity and currency markets, for instance, in the case of gold

and its possible correlations with oil and major currencies. This chapter intends to

address this gap.

The main purpose of this study is to examine the dynamic relationships among

gold, oil, and the dollar/pound to further understand the hedging ability of gold

relative to another commodity or currency. That is to say, if gold acts as a financial

safe haven against the dollar (or oil), it allows for systematic feedback between

changes in the price of gold, oil, and the dollar/pound exchange rate. Specifically,

this chapter asks, does gold act as a safe haven against the dollar/pound, as a hedge,

or as neither? Are gold and oil highly correlated with each other? Movements in the

price of gold, oil, and the dollar/pound are analyzed using a model of dynamic

conditional correlation covering 20 years of daily data.

Studies related to this issue are few. Capie et al. (2005) point out that gold acts as

an effective hedge against the US dollar by estimating elasticity relative to changes

in the exchange rate. However, their approach involves the use of a single-equation

model in which the exchange rate is assumed to be unaffected by the time of

the dependent variable, the price of gold. Our chapter improves their work

by employing a dynamic model of conditional correlations in which all variables

are treated symmetrically. Besides, although Baur and Lucey (2010) find evidence

in support of gold providing a haven from losses incurred in the bond and

stock markets, they neglect the interactions with the currency market and,

like Capie et al. (2005), do not consider feedback in their model of returns. Nikos

(2006) uses correlation analysis to estimate the correlation of returns between gold

and the dollar and shows that the correlation between the dollar and gold is �0.19

and �0.51 for two different periods. These findings imply that gold is

a contemporaneous safe haven in extreme currency market conditions. Steinitz

(2006) utilizes the same method to estimate the correlations of weekly

returns between gold and Brent oil for two periods of 1 year and 5 years,

respectively, and shows that the correlations between gold and Brent oil are 0.310

and 0.117, respectively. Boyer and Fillion (2007) report on the financial

determination of Canadian oil and gas stock returns and conclude that

a weakening of the Canadian dollar against the US dollar has a negative impact

on stock returns.

If correlations and volatilities vary over time, the hedge ratio should be adjusted

to account for the new information. Other work, such as Baur and McDermott

(2010), similarly neglects feedback in its regression model. Further studies

58 Realized Distributions of Dynamic Conditional Correlation 1621



investigate the concept of a safe-haven asset without reference to gold. For example,

Ranaldo and Soderlind (2009) and Kaul and Sapp (2006) examine safe-haven

currencies, while Upper (2000) examines German government bonds as safe-haven

instruments. Andersen et al. (2007) show that exchange rate volatility outstrips bond

volatility in the US, British, and German markets. Thus, currency risk is worth

exploring and being hedged.

As a general rule, commodities are priced in US dollars. Since the US currency

has weakened that a bull run of commodity prices appeared, the question arises as to

which the increases in commodity prices have been a product of the depreciation in

the US dollar. Furthermore, it would be interesting to examine how to provide

a hedge against the dollar that varies across different commodities. It also needs to

be asked which investment instruments are more suitable for diversification pur-

poses to protect against changes in the US currency.

This chapter investigates the following issues. First, how do the time-varying

correlations and associated distributions appear in the crude oil, gold, and dollar/

pound markets? Second, what is the shape of each separate distribution of various

volatility levels among the crude oil, gold, and dollar/pound markets? Third, by

employing the volatility threshold DCC model put forward by Kasch and Caporin

(2012), is the high volatility (exceeding a specified threshold) of the assets associ-

ated with an increasing degree of correlation?

We find that the volatility thresholds of oil and gold correspond to two major

events – the First Gulf War in 1990 and the 911 event in 2001. We also find that

the increase in commodity (crude oil and gold) prices was a reflection of the falling

US dollar, especially after the 911 event. The evidence shows that the DCC

between crude oil and gold was 0.1168, while those for the gold/dollar/pound and

oil/dollar/pound markets were �0.2826 and �0.0369, respectively, with the latter

being significantly higher than in the other subperiods.

This remainder of this chapter is organized as follows. Section 58.2 provides

a review of the literature. Section 58.3 describes the data and summary statistics for

crude oil, gold, and the dollar/pound exchange rate. Section 58.4 presents the

dynamic conditional correlation model and reports the results of its volatility

threshold. And also provides the results for subperiods separated by the thresholds

found. Finally, Sect. 58.5 discusses the results and concludes.

58.2 Literature Review

Engle et al. (1994) investigate how the returns and volatilities of stock indices

between Tokyo and New York are correlated and find that, except for a lagged

return spillover from New York to Tokyo after the crash, there was no significant

lagged spillover in returns or in volatilities. Ng (2000) examines the size and the

impact of volatility spillover from Japan and the USA to six Pacific Basin equity

markets. Using four different specifications of correlation by constructing volatility

spillover models, he distinguishes the volatility between local idiosyncratic shock,

regional shock from Japan, and global shock from the USA and finds significant
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spillover effects from regional to Pacific Basin economies. Andersen et al. (2001a)

find strong evidence that volatilities and correlations move together in a manner

broadly consistent with the latent factor structure. Andersen et al. (2001b) found

that volatility movements are highly correlated across the deutsche mark and yen

against the US dollar. Furthermore, the correlation between the two exchange rates

increases with volatility. Engle (2002) finds that the breakdown of the correlations

between the deutsche mark and the pound and lira in August 1992 is very apparent.

In addition, after the euro is launched, the estimated currency correlation essentially

moves to 1.

Recently, Doong et al. (2005) examined the dynamic relationship and pricing

between stocks and exchange rates for six Asian emerging markets. They found that

the currency depreciation is accompanied by a fall in stock prices. The conditional

variance-covariance process of changes in stock prices and exchange rates is time

varying. Lanza et al. (2006) estimate the dynamic conditional correlations in the

daily returns for West Texas Intermediate (WTI) oil forward and future prices from

January 3, 1985 to January 16, 2004, and find that the dynamic conditional

correlations vary dramatically. Chiang et al. (2009) investigate the probability

distribution properties, autocorrelations, dynamic conditional correlations, and

scaling analysis of Dow-Jones and NASDAQ Intraday returns from August 1,

1997 to December 31, 2003. They find the correlations to be positive and to mostly

fluctuate in the range of 0.6–0.8. Furthermore, the variance of the correlation

coefficients has been declining and appears to be stable during the post-2001

period. Pérez-Rodrı́guez (2006) applies a multivariate DCC-GARCH technique to

examine the structure of the short-run dynamics of volatility returns on the euro,

yen, and British pound against the US dollar over the period from 1999 to 2004 and

finds strong dynamic relationships between currencies. Tastan (2006) applies

multivariate GARCH to capture the time-varying variance-covariance matrix for

stock market returns (Dow-Jones Industrial Average Index and S&P500 Index) and

changes in exchange rates (euro/dollar exchange rates). He also plots news impact

surfaces for variances, covariances, and correlation coefficients to sort out the

effects of shocks. Chiang et al. (2007a) apply a dynamic conditional correlation

model to nine Asian daily stock-return series from 1990 to 2003 and find evidence

of a contagion effect and herding behavior. Chiang et al. (2007b) examine A-share

and B-share market segmentation conditions by employing a dynamic multivariate

GARCH model and show that stock returns in both A- and B-shares are positively

correlated with the daily change in trading volume or abnormal volume.

58.3 Data

Our data consist of the daily prices of crude oil and gold, and the US dollar/British

pound exchange rate, and are obtained from the AREMOS database over the period
from January 1, 1986 to December 31, 2007 for a total of 5,165 observations.

The West Texas Intermediate crude oil price is chosen to represent the oil

spot market, and the price of 99.5 % fine gold, the London afternoon fixing,
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is chosen to represent the gold spot market. The daily dollar/pound exchange rate,

which represents the major currencies, is selected to estimate the volatility of

the FX market.

In our sample period, the crude oil price was testing the $100 per barrel threshold

by November 2007. Meanwhile, the price of gold was relatively stable varying

between $415 and $440 per ounce from January to September 2005. However, in

the fourth quarter of 2005, the gold price jumped dramatically and hit $500 per

ounce. In April 2006, the gold price broke through the $640 level. 2007 was a strong

year, with the price steadily rising from $640 on January 2 with a closing London

fixed price of over $836 on December 31, 2007. Since then, prices have continued

to increase to reach new record highs of over $1,700 in 2011.

Figure 58.1 displays the price movements for oil, gold, and the dollar/pound over

the sample period. As shown in Fig. 58.1, gold traded between a low of $252

(August 1999) and a high of $836 (December 31, 2007) per ounce at the fixing,

while oil traded between a low of $10 (in late 1998, in the wake of the Asian
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Fig. 58.1 The price movement for the sampled markets from January 1, 1986 to December

31, 2007, for a total of 5,405 observations
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Financial Crisis and the United Nations’ oil-for-food program) and a high of $99.3

(November 2007) per barrel. These large variations in the price of both gold and oil

indicate that the DCC and realized distribution are better approaches for detecting

the trading pattern of investors.

Table 58.1 reports the statistics of daily returns for crude oil, gold, and the dollar/

pound exchange rate. The daily returns are calculated as the first differences of the

natural log of the prices times 100. The results show that the crude oil has the

highest return, followed by gold and the dollar/pound.

58.4 Dynamic Conditional Correlation

58.4.1 Dynamic Conditional Correlation Between Gold, Oil, and the
Dollar/Pound

It is generally recognized that financial markets are highly integrated in terms of

price movements, since prices soaring in one market can spill over to another

market instantly. One simple method to explore the relationship between the two

markets is to calculate the correlation coefficient. We then specify a multivariate

model, which is capable of computing the dynamic conditional correlation (DCC)

that is capable of capturing ongoing market elements and shocks. The DCC model

is specified as Eq. 58.1.

Table 58.1 Summary statistics of the daily returns among crude oil, gold, and dollar/pounda

(January 1, 1986 to December 31, 2007)

Crude oil Gold Dollar/pound

Mean 0.024 0.017 �0.006

(0.536) (0.159) (0.4769)

Max 0.437 0.070 0.0379

Min �0.404 �0.063 �0.0329

Standard dev. 0.029 0.009 0.006

Skewnessb �0.012 �0.031 0.164**

(0.729) (0.354) (0.0000)

Kurtosisb 37.915** 5.968** 2.439**

(0.0000) (0.0000) (0.0000)

Jarque-Berac 323,692.99** 8,019.20** 1,363.59**

(0.0000) (0.0000) (0.0000)

aThe table summarizes the daily returns of estimates for the West Texas Intermediate crude oil,

gold, and dollar/pound markets. The sample covers the period from January 1, 1986 through

December 31, 2007 for a total of 5,405 observations
bThe three markets are far away from the skewness and kurtosis of 0 and 3, respectively, implying

that the three markets are not normally distributed
cJarque-Bera is the Jarque-Bera test statistic, distributed w22
**Denotes significance at the 0.05 level
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rij,t ¼
Et�1 ri,trj,t

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et�1 r2i,t

� �
Et�1 r2j,t

� �r (58.1)

where the conditional correlation rij,t is based on information known in the

previous period Et�1 and i, j represent the three markets 1, 2, and 3. Based on the

laws of probability, all correlations defined in this way must lie within the interval

[�1, 1]. This is different from the constant correlation we have usually used and

assumed throughout a given period. To clarify the relationship between the

conditional correlations and conditional variances, it is convenient to express the

returns as the conditional standard deviation times the standardized disturbance as

suggested by Engle (2002) in Eq. 58.2 below:

hi,t ¼ Et�1 r2i,t

� �
, ri,t ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
hi,tei,t

p
, i ¼ 1, 2, 3 (58.2)

Since the correlation coefficients among crude oil, gold, and dollar/pound FX

markets provide useful measures of the long-term relationship between each pair of

markets, Table 58.2 presents a simple correlation matrix in which the calculation is

based on the constant coefficient given by Eq. 58.1. Some preliminary information

is obtained below. First, the crude oil and gold are highly correlated with

a coefficient of 0.7488, a result that is in line with Steinitz (2006). Secondly, both

gold and crude oil are highly negatively related to the dollar/pound with coefficients

of �0.6260 and �0.5592, respectively, which is consistent with the report of

Nikos (2006).

As the autoregressive conditional heteroskedasticity (ARCH) model has become

the most useful model in investigating the conditional volatility since Engle (1982),

we then follow this model in our analysis. The ARCH model adopts the effect of

past residuals that helps explain the phenomenon of volatility clustering. Bollerslev

(1986) proposed the generalized autoregressive conditional heteroskedasticity

(GARCH) model, which has created a new field in the research on volatility and

is widely used in financial and economic time series. Some of his research attempts

to discuss the effects of more than one variable simultaneously. For instance,

Bollerslev (1990) proposed the constant conditional correlation (CCC) model

which makes a strong assumption, namely, that the correlation among the variables

remains constant in order to simplify the estimation. Engle (2002) later proposed

Table 58.2 The correlation among crude oil, gold, and FX of dollar/pound (January 1, 1986 to

December 31, 2007)

Oil Gold FX

Oil 1

Gold 0.7488 1

FX �0.5592 �0.6260 1
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a dynamic conditional correlation (DCC) model, which allows the correlation to be

time varying and, by involving fewer complicated calculations, is capable of

dealing with numerous variables.

In this chapter, we follow the Engle (2002) approach, which has clear compu-

tational advantages over multivariate GARCH models in that the number of

parameters to be estimated remains constant and loosens the assumptions of the

multivariate conditional correlations, in order to develop the dynamic conditional

correlation (DCC) model. The DCC model can be viewed as a generalization of the

Bollerslev (1990) constant conditional correlation (CCC) estimator. It differs only

in that it allows the correlation to be time varying, which parameterizes the

conditional correlations directly. The estimation takes place in two steps, in that

a series of univariate GARCH estimates are first obtained followed by the

correlation coefficients. The characteristics of the DCC model are that the

multivariate conditional correlations are dynamic and not constant and confirm

that the real conditional correlations of financial assets in general and the time-

varying covariance matrices can be estimated. This model involves a less compli-

cated calculation without losing too much generality and is able to deal with

numerous variables.

Following Engle (2002) and Chiang et al. (2009), the mean equation is

assumed to be represented by Eq. 58.1, where the multivariate conditional

variance is given by

Ht,t ¼ Dt,tVt,tDt,t, (58.3)

where t is a time interval, which can be a day, an hour, or 1 min. Here t is a daily
interval. Vt,t is a symmetric conditional correlation matrix of et and Dt,t is a (2 � 2)

matrix with the conditional variances ht,ii,t for two stock returns (where i ¼ gold,

oil, or the dollar/pound exchange rate) on the diagonal. That is,

Dt,t ¼ diag
ffiffiffiffiffiffiffiffiffiffi
s2t,ii,t

qh i
2;2ð Þ

. Equation 58.3 suggests that the dynamic properties of

the covariance matrix Ht,t are determined by Dt,t and Vt,t for a given t, a time

interval that can be 1 min, 1 day, or 1 week and so on. The DCC model proposed by

Engle (2002) involves a two-stage estimation of the conditional covariance matrix

Ht in Eq. 58.3. In the first stage, univariate volatility models are fitted for each of the

returns, and estimates of
ffiffiffiffiffiffiffiffiffiffiffi
s2t, ii, t

q
i ¼ 1, 2, and 3ð Þ are obtained by using Eq. 58.4.

In the second stage, return residuals are transformed by their estimated standard

deviations from the first stage. That is �t,i,t ¼ et,i,t=
ffiffiffiffiffiffiffiffiffiffi
s2t,ii,t

q
, where �t,i,t is used to

estimate the parameters of the conditional correlation. The evolution of the corre-

lation in the DCC model is given by Eq. 58.5:

s2t,ii,t ¼ ct,i þ at, ie2t,i,t�1 þ bt, is
2
t,ii,t�1, i ¼ 1, 2 (58.4)

Qt,t ¼ 1� at,i � bt,i
� �

Qt þ at,i �t, i,t�1�
0
t, i,t�1 þ bt,iQt,t�1, (58.5)
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where Qt,t ¼ (qt,ij,t) is the 2 � 2 time-varying covariance matrix of �t, i, t, Qt ¼
E �t, i, t�

0
t, i, t

h i
is the 2� 2 unconditional variance matrix of �t,i,t, and at,i and bt,i are

non-negative scalar parameters satisfying (at,i + bt,i) < 1. Since Qt does

not generally have ones on its diagonal, we scale it to obtain a proper correlation

matrix Vt,t Thus,

Vt, t ¼ diag Qt, t
� �� ��1=2

Qt, t diag Qt, t
� �� ��1=2

, (58.6)

where diag Qt, t
� �� ��1=2 ¼ diag 1=

ffiffiffiffiffiffiffiffiffiffiffi
qt,11,t

p
, 1=

ffiffiffiffiffiffiffiffiffiffiffi
qt,22,t

p� �
:

Here Vt,t in Eq. 58.6 is a correlation matrix with ones on the diagonal and

off-diagonal elements of less than one in absolute value terms, as long as Qt,t is

positive definite. A typical element of Vt,t takes the form:

rt, 12, t ¼ qt, 12, t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qt, 11, tqt, 22, t

p
(58.7)

The dynamic correlation coefficient, rt,12,t, can be obtained by using the element

of Qt,t in Eq. 58.5, which is given by Eq. 58.8 below:

qt, ij, t ¼ 1� at, i � bt, i
� �

rt, ij þ at, i �t, i, t�1�
0
t, j, t�1 þ bt, iqt, ij, t�1, (58.8)

The mean reversion requires that (at,i + bt,i)< 1. In general terms, the essence of

this concept is the assumption that both an asset’s high and low prices are temporary

and that the asset’s price will tend to move toward the average price over time.

Besides, the estimates of the dynamic correlation coefficients, rij,t, between each

pair of the three markets have been specified as in Eq. 58.1.

58.4.2 Empirical Results of Dynamic Conditional Correlation

In this section, we present the estimation results of the models outlined above. The

estimation results are presented in Table 58.1, which provides the dynamic corre-

lations of returns across crude oil, gold, and the dollar/pound foreign exchange rate

with each other. The estimated a and b for three markets are listed in Tables 58.3

and 58.4. The likelihood ratio does not support the rejection of the null hypothesis

of the scalar dynamic conditional correlation. It can be seen that the sum of the

estimated coefficients in the variance equations (a + b) is close to 1 for all of the

cases, implying that the volatility appears to be highly persistent. As for the Ljung-

Box Q-statistic of the serial correlation of the residuals, the results show that that

the serial correlations in the error series are regarded as adequate.

Calvert et al. (2006) observed that through the dynamic conditional correlation

distribution, we can more fully understand the real impacts in international markets.
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It can also help with portfolio selection and risk management. In Fig. 58.2, which

reports the results of the dynamic conditional correlation, the estimated correlation

coefficients are time varying, reflecting some sort of portfolio shift between each

two items.

The correlation between crude oil and gold was estimated using the DCC

integrated method, and the results, shown in Fig. 58.2a, are quite interesting.

The correlations are found to be generally positive around 0.2 except for

mid-1990 which turns out to be highly correlated with a correlation of around

0.6605. The possible interpretation for the high correlation is due to the Iraqi

invasion of Kuwait and the Gulf War. The crude oil price jumped from about $15

to over $33 per barrel during that time, so that investors channeled their money into

the gold market because of their fear of inflation. This fact accords with the “flight

to quality” concept, which represents the action of investors moving their capital

away from riskier or more volatile assets to the ones considered to be safer and less

volatile. The correlation between gold and the dollar/pound exchange rate is shown

in Fig. 58.2b for the integrated DCC in the last 20 years. Whereas for most of the

period the correlations were between �0.1 and �0.3, there were two notable drops,

where the stock market crashed in October 1987 and in late 2002, and we also find

two peaks, one in the middle of 1990 and the other in late 1998 where the gold price

dropped to $252 per ounce. Fig. 58.2c shows the correlation between crude oil and

Table 58.3 DCC estimates: three marketsa (January 1, 1986 to December 31, 2007)

DCC

a 0.0202** b 0.9651**

(52.3020) (1,050.395)

aThe t-statistic is given in parentheses

**Denotes significance at the 0.05 level

Table 58.4 Estimation results from the DCC-GARCH modela

Mean equation Variance equation

Constant a b Persistence Ljung-Box Q-statistic

Oil 0.0004** 0.1399** 0.8306** 0.9705 185.7203**

(1.6549) (21.6431) (143.5303)

Gold �1.54E-06** 0.0664** 0.9272** 0.9936 61.8887**

(�0.1658) (15.0320) (202.223)

FX �0.0001** 0.0417** 0.9479** 0.9896 32.6628

(�1.6045) (9.2628) (168.722)

aThe persistence level of the variance is calculated as the summation of the coefficients in the

variance equations (a + b). The z-statistic is given in parentheses. The Ljung-Box Q-statistic tests

the serial correlation of the residuals
**Denotes significance at the 0.05 level
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Fig. 58.2 The time series of dynamic conditional correlations (DCC) among each pair of three

markets: (a) daily DCC between crude oil and gold, (b) daily DCC between gold and dollar/pound,

and (c) daily DCC between crude oil and dollar/pound
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the dollar/pound that was estimated using the DCC integrated method. Except in the

mid-1990s when they are highly correlated with a coefficient of 0.32, the correla-

tion between crude oil and the dollar/pound is generally negative (with a coefficient

of �0.08 at the beginning of 1986 and a coefficient of �0.16 at the beginning of

2003, respectively).

Key issues relevant in financial economic applications include, for example,

whether and how volatility and correlation move together. It is widely recognized

among both finance academics and practitioners that they vary importantly over

time (Andersen et al. 2001a, b; Engle 2002; Kasch and Caporin 2012). Such

questions are difficult to answer using conventional volatility models, and so we

wish to use the dynamic conditional correlation model to explain the

phenomenon. From Fig. 58.3, the bivariate scatter plots of volatilities and

correlations, it is hard to tell if there is a strong positive association between

each of the two markets sampled. The correlation between two financial assets

will affect the diversification of the portfolio. If two financial assets are highly

negatively correlated, the effect of diversification will be significant, meaning that

the portfolio can balance the returns. This is the so-called idea of not putting all

one’s eggs in the same basket.

According to the empirical data, the dynamic conditional correlation for the

overall gold and dollar/pound (at �0.1986) or the overall oil and dollar/pound

(at �0.0116) can moderately diversify investment risks and can thereby increase

the rate of return. Investors can add commodities and their related derivatives to

portfolios, in an effort to diversify away from traditional investments and assets.

These results are in line with Capie et al. (2005) who found a negative relationship

between the gold price and the sterling/dollar and yen/dollar foreign exchange rates

and Nikos (2006) who found that the correlation between the dollar and gold is

significantly negative. The conclusion we can draw from the results is that gold is

by far the most relevant commodity in hedging against the US dollar. Capie

et al. (2005) observed that gold has served as a hedge against fluctuations in the

foreign exchange value of the dollar. Secondly, gold has become particularly

relevant during times of US dollar weakness. In addition to that, the dynamic

conditional correlation for the overall crude oil and gold markets is 0.0889, and

a similar correlation was documented for the Brent crude oil and gold markets by

Steinitz (2006).

To characterize the distributions of dynamic conditional correlation among the

sampled markets, the summary statistics of the probability distributions for DCC

are shown in Table 58.5, and the associated distributions of DCC for the sampled

markets are shown in Fig. 58.4. We can find that the average DCC between the

crude oil and gold markets is 0.0889 with a standard deviation of 0.0916. The

distribution of the daily DCC between the crude oil and gold markets reflects

a slightly right-skewed (at 1.2021) and leptokurtic distribution (at 4.6799), imply-

ing that a positive DCC occurs more often than a negative DCC between the

crude oil and gold markets. Furthermore, the average DCC between the gold and
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dollar/pound markets is �0.1986 with a standard deviation of 0.1197. The distri-

bution of the daily DCC between the gold and dollar/British pound markets reflects

a slightly left-skewed (at �0.1529) and platykurtic distribution (at 0.3304), imply-

ing that a negative DCC occurs more often than a positive DCC between gold and

the dollar/pound. Moreover, the average DCC between the dollar/pound and crude

oil is �0.0116 with a standard deviation of 0.0799. The distribution of daily DCCs

between the dollar/pound and crude oil markets reflects a slightly left-skewed

(at �0.0201) and platykurtic distribution (at 0.8678), implying that negative

DCCs occur more often than positive DCCs between the dollar/pound and crude

oil markets.

According to the empirical results, we rank the sequence of the volatility in order

to analyze the volatility effect in the correlation. We show the panel of volatility

and dynamic conditional correlation in Tables 58.6, 58.7, and 58.8. We can clearly

realize from the sample mean, from the daily DCC between the crude oil and gold

markets, that higher volatility can accompany the larger DCC. However, the higher

volatility can also accompany the smaller DCC between the gold and dollar/pound

markets and the crude oil and dollar/pound markets. This is because the correlations

between these markets are negative.

Table 58.5 Summary statistics of probability distributions of DCC for each pair of oil, gold,

and FX

Panel A The DCC distributions for the sampled markets from January 1, 1986 to December 31, 2007

Mean Standard dev. Max Min Skewness Kurtosis

DCC between oil and gold 0.0889 0.0916 0.6605 �0.1744 1.2021 4.6799

DCC between gold and FX �0.1986 0.1197 0.2019 �0.5596 �0.1529 0.3304

DCC between FX and oil �0.0116 0.0799 0.3349 �0.3076 �0.0201 0.8678

Panel B The DCC distributions for the sampled markets from January 1, 1986 through July 31, 1990

Mean Standard dev. Max Min Skewness Kurtosis

DCC between oil and gold 0.0910 0.0669 0.3003 �0.0783 0.3752 0.1478

DCC between gold and FX �0.2567 0.1052 0.0246 �0.5506 �0.2751 0.0666

DCC between FX and oil �0.0030 0.0734 0.2308 �0.3076 �0.5582 1.9547

Panel C The DCC distributions for the sampled markets from August 1, 1990 through

August 31, 2001

Mean Standard dev. Max Min Skewness Kurtosis

DCC between oil and gold 0.0720 0.1040 0.6605 �0.1744 1.8367 6.5149

DCC between gold and FX �0.1258 0.0857 0.2019 �0.3222 0.7307 0.8036

DCC between FX and oil �0.0004 0.0772 0.3349 �0.2469 0.1648 1.3984

Panel D The DCC distributions for the sampled markets from September 1, 2001 through

December 31, 2007

Mean Standard dev. Max Min Skewness Kurtosis

DCC between oil and gold 0.1168 0.0758 0.3270 �0.0772 �0.0521 �0.4706

DCC between gold and FX �0.2826 0.1003 �0.0688 �0.5596 �0.2534 �0.4195

DCC between FX and oil �0.0369 0.0832 0.2413 �0.2459 0.1549 �0.0225
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To further quantify this volatility effect in correlation, we classify the volatility

into two categories, low volatility days and high volatility days,1 and according to

the results, we rank the sequence of the volatility. The group of low volatility days

means that the volatility is less than the 10th percentile value and the group of high

volatility days means that the volatility is greater than the 90th percentile value. The

results are shown in Fig. 58.5a–c that reports the DCC distributions for low

volatility days and high volatility days.

It is found that some special characteristics of DCC exist among the oil, gold,

and FX markets. First, distributions for low volatility days are obviously differ-

ent from those for high volatility days. Those for low volatility days approximate

leptokurtic distributions, whereas those for high volatility days approximate
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Fig. 58.4 The distributions of dynamic conditional correlations among gold, oil, and FX from

1986 to 2007

1Following Andersen et al. (2001b), the authors classify the days into two groups: low volatility

days and high volatility days. The empirical results show that the distribution of correlations shifts

rightward when volatility increases.
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platykurtic distributions. Secondly, the average DCCs of the high volatility

days are greater than the average DCCs of the low volatility days for the

DCCs between crude oil and gold, implying that the correlation between

gold and oil increases with volatility. Furthermore, the distribution of DCCs

shifts rightward when volatility increases. Similar results are found for

equity returns as reported by Sonlinik et al. (1996) and in realized exchange

rate returns by Andersen et al. (2001b). Thirdly, the average DCCs for the high

volatility days are smaller than the average DCCs for lower volatility days across

gold and the dollar/pound, and oil and the dollar/pound. This implies that

the correlation between gold (oil) and foreign exchange rates decreases with

volatility, and the distribution of DCCs shifts leftward when volatility increases.

Finally, the standard deviations of the distributions for high volatility days

are obviously greater than the standard deviations of the distributions for

low volatility days.

Table 58.6 DCC distributions of crude oil and gold markets

Panel A DCC between crude oil and gold against the crude oil market volatility

Crude oil and gold against the crude oil market volatility

Volatility Mean Standard dev. Skewness Kurtosis

0–10 % 0.0779 0.0379 0.6205 1.8582

10–20 % 0.0785 0.0589 0.7672 0.6458

20–30 % 0.0887 0.0680 0.3950 �0.1434

30–40 % 0.0924 0.0754 0.6638 0.9140

40–50 % 0.0904 0.0769 0.4299 0.8993

50–60 % 0.0900 0.0825 0.1764 0.5715

60–70 % 0.0839 0.0820 0.3908 0.7808

70–80 % 0.0735 0.0872 0.4688 1.4680

80–90 % 0.0908 0.1273 1.2185 2.3300

90–100 % 0.1212 0.1530 0.8691 1.2595

Panel B DCC between crude oil and gold against the gold market volatility

Crude oil and gold against the gold market volatility

Volatility Mean Standard dev. Skewness Kurtosis

0–10 % 0.0537 0.0516 �0.1667 �0.6070

10–20 % 0.0817 0.0567 0.0538 1.4446

20–30 % 0.0790 0.0704 0.4538 1.2475

30–40 % 0.0908 0.0734 0.7867 1.8984

40–50 % 0.0842 0.0879 0.7319 2.4974

50–60 % 0.0723 0.0918 0.2724 1.5955

60–70 % 0.0838 0.0899 0.6821 1.9649

70–80 % 0.0868 0.0880 0.9889 3.9028

80–90 % 0.1002 0.0996 0.9919 3.0296

90–100 % 0.1579 0.1386 0.9773 1.9451
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58.4.3 Volatility Threshold Dynamic Conditional Correlation

To further check if different subperiods have various patterns, we utilize

the volatility threshold model addressed by Kasch and Caporin (2012)2 to

examine whether increasing volatility (exceeding a specified threshold)

is associated with an increasing correlation. The volatility threshold DCC model

is specified as Eq. 58.9:

qij, t ¼ 1� a2 � b2
� �

qij � gigjvij þ a2ei, t�1ej, t�1 þ b2qij, t�1 þ gigjvij, t (58.9)

Table 58.7 DCC distributions of gold and dollar/pound markets

Panel A DCC between gold and FX against the gold market volatility

Gold and FX against the gold market volatility

Volatility Mean Standard dev. Skewness Kurtosis

0–10 % �0.1507 0.0452 �0.2642 �0.2864

10–20 % �0.1468 0.0811 �0.1898 0.1166

20–30 % �0.2048 0.1069 0.0397 �0.2823

30–40 % �0.2209 0.1039 0.3412 0.0578

40–50 % �0.2105 0.1184 0.2681 �0.3950

50–60 % �0.2070 0.1131 0.0924 �0.2283

60–70 % �0.1984 0.1239 �0.0848 �0.2003

70–80 % �0.2188 0.1411 �0.2455 �0.1963

80–90 % �0.2231 0.1425 �0.2051 0.0326

90–100 % �0.2064 0.1498 0.3059 0.0513

Panel B DCC between gold and FX against the FX market volatility

Gold and FX against the FX market volatility

Volatility Mean Standard dev. Skewness Kurtosis

0–10 % �0.1419 0.0621 0.1926 0.8518

10–20 % �0.1618 0.0861 0.1325 �0.1298

20–30 % �0.1839 0.0943 0.0866 �0.0156

30–40 % �0.1968 0.1036 0.5927 0.7147

40–50 % �0.2012 0.1163 0.4529 1.0610

50–60 % �0.2314 0.1150 0.3684 0.9286

60–70 % �0.2189 0.1239 0.2181 0.1255

70–80 % �0.2201 0.1217 0.1057 �0.1704

80–90 % �0.2170 0.1510 �0.2916 �0.4897

90–100 % �0.2170 0.1558 �0.1548 �0.6496

2Kasch and Caporin (2012) extended the multivariate GARCH dynamic conditional correlation of

Engle to analyze the relationship between the volatilities and correlations. The empirical results

indicated that high volatility levels significantly affect the correlations of the developed markets,

while high volatility does not seem to have a direct impact on the correlations of the transition blue

chip indices with the rest of the markets. It is easy to see that the volatility and correlation move

together.

1636 T.-L. Shih et al.



where vt is a dummy variables matrix defined as

vij, t ¼ 1 if hi, t > f hi kð Þ or hj, t > f hj kð Þ
0 otherwise

�
(58.10)

where fhi(k) is the kth fractional of the volatility series hi,t.
When thresholds are found, the whole period will be divided into various sub-

periods based on these thresholds. This separation helps detect any changes in

investor behavior after crucial events. It is then known whether a time horizon is

a key factor influencing the patterns of return and volatility.

Table 58.9 presents the estimation results of the volatility threshold DCCmodels.

The estimation was based on various volatility threshold levels at 50 %, 75 %, 90 %,

and 95%. The results in Table 58.9 show that the correlation between the oil and gold

prices is significantly affected by the volatility of oil at the 50 %, 75 %, and 90 %

Table 58.8 DCC distributions of crude oil and dollar/pound markets

Panel A DCC between crude oil and FX against the FX market volatility

Crude oil and FX against the FX market volatility

Volatility Mean Standard dev. Skewness Kurtosis

0–10 % �0.0147 0.0530 �0.2458 0.3703

10–20 % �0.0142 0.0651 �0.4224 �0.1734

20–30 % �0.0140 0.0695 0.0757 0.2648

30–40 % �0.0028 0.0804 0.0465 �0.2710

40–50 % �0.0108 0.0832 0.0264 0.1784

50–60 % �0.0206 0.0720 0.1618 0.0328

60–70 % �0.0081 0.0789 0.5080 1.0521

70–80 % �0.0081 0.0773 0.4689 1.6993

80–90 % �0.0161 0.1042 0.1100 0.5576

90–100 % �0.0068 0.1019 �0.7085 0.2311

Panel B DCC between crude oil and FX against the crude oil market volatility

Crude oil and gold against the gold market volatility

Volatility Mean Standard dev. Skewness Kurtosis

0–10 % �0.0001 0.0453 0.5049 0.7991

10–20 % 0.0045 0.0609 �0.1145 0.1341

20–30 % �0.0016 0.0675 �0.2397 �0.2455

30–40 % �0.0087 0.0715 �0.2668 0.1219

40–50 % �0.0164 0.0736 �0.2498 0.1421

50–60 % �0.0228 0.0743 �0.2262 0.0489

60–70 % �0.0174 0.0732 0.0187 �0.2162

70–80 % �0.0167 0.0811 �0.0200 0.0117

80–90 % �0.0028 0.0934 0.0397 0.0698

90–100 % �0.0310 0.1234 0.4996 0.1905
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(with the exception of 95 %) thresholds. Interestingly, these estimated thresholds

were quite consistent with the real events of the First Gulf War in 1990 and the
911 attack in 2001. We then separate the period into three subperiods to further

examine whether the investors’ behaviors change after the events.
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58.4.4 Does Investors’ Behavior Change over Subperiods?

The three subperiods based on our estimated thresholds are before the first Gulf War

(January 1, 1986 to July 31, 1990), after the first Gulf War up to the 911 attack

(August 1, 1990 to August 31, 2001), and after the 911 attack (September 1, 2001 to

December 1, 2007). We then examine the dynamic co-movement in each pair of

markets in various subperiods (Rigobon and Sack 2005; Guidi et al. 20073).

Our sampled period covers economic hardship and soaring energy prices.

Soaring energy prices make gold an attractive hedging asset against inflation in

that a positive correlation with oil is expected over time, especially after the

911 event. The evidence in Table 58.10 shows that oil and gold are highly

Table 58.9 The volatility threshold dynamic conditional correlationa

Panel A Crude oil and gold

50 % 75 % 90 % 95 %

a2 0.0171 0.0146 0.0187 0.0229

(1.956) (1.870) (2.072) (2.424)

b2 0.9546 0.9548 0.9362 0.9233

(36.377) (41.162) (27.21) (23.705)

gWTIgGOLD 0.0075 0.0116 0.0206 0.0253

(2.045) (2.300) (2.376) (1.636)

Panel B Gold and dollar/pound

50 % 75 % 90 % 95 %

a2 0.0161 0.0150 0.0150 0.0149

(3.016) (3.052) (2.938) (2.894)

b2 0.9784 0.9808 0.9804 0.9803

(108.063) (124.94) (120.37) (119.94)

gGOLDgFX �0.00032 0.0012 0.0023 0.0046

(�0.190) (0.805) (0.932) (1.079)

Panel C Crude oil and dollar/pound

50 % 75 % 90 % 95 %

a2 0.0131 0.0121 0.0109 0.0126

(2.294) (1.825) (1.633) (2.013)

b2 0.9519 0.9580 0.9639 0.9518

(33.260) (28.286) (33.633) (28.095)

gWTIgFX 0.00006 0.0015 0.0034 0.0099

(0.016) (0.418) (0.785) (0.991)

aThis table presents the quasi-maximum likelihood estimates of volatility threshold of dynamic

conditional correlation. The t-statistics are given in parentheses

3Guidi et al. (2007) examined the impact of relevant US decisions on oil spot price movements

from January 1986 to December 2005. They identified the following conflict periods: the Iran-Iraq

conflict, January 1985 until July 1988; Iraq’s invasion of Kuwait, August 1990 until February

1991; and the US-led forces’ invasion of Iraq, March 2003 until December 2005.
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correlated with a high coefficient of 0.9264 between September 1, 2001 and

December 31, 2007 (after the 911 event). In the meantime, the correlation between

gold and the dollar/pound is �0.8142, and between oil and the dollar/pound

is �0.8124, showing the fears of a depreciation in the US dollar push commodity

prices up significantly.

The results of Panels B, C, and D in Table 58.5 along with Figs. 58.6 and 58.7

show that the DCCs between oil and gold are all positive in the three subperiods

(with coefficients of 0.0910, 0.0720, and 0.1168, respectively). Obviously, higher

oil prices spark inflationary concerns and make gold a value reserve for wealth.

By contrast, the correlation between oil and the dollar/pound has been negative,

and a DCC of �0.0369 is shown after the 911 attack. In this period, the oil price

increased from a low of US$19 per barrel in late January 2002 to US$96 per barrel

in late December 2007. Meanwhile, the dollar conversely tumbled 29 % from

US$0.7 to a US$0.5 per pound.

Historical data also show that the prices of oil and gold are rising over time. The

increase in the prices of gold was a reflection of the falling US dollar. The evidence

confirms that the DCCs between gold and the dollar/pound in the three subperiods

are all negative (with average DCC of �0.2567, �0.1258, and �0.2826 in the first,

second, and third periods, respectively). Generally speaking, during the subperiods

of market crises, increasingly high correlations in commodity prices were observed,

with oil and gold moving in the same direction and the dollar/pound moving in

opposite directions.

Table 58.10 Simple correlation matrix of oil, gold, and dollar/pound markets among the three

subperiods

PanelAThe correlation coefficients between crude oil, gold, and dollar/poundmarkets from January 1,

1986 through July 31, 1990

Oil Gold FX

Oil 1

Gold 0.1648 1

FX �0.1517 �0.5228 1

Panel B The correlation coefficients between crude oil, gold, and dollar/poundmarkets fromAugust 1,

1990 through August 31, 2001

Oil Gold FX

Oil 1

Gold �0.2465 1

FX 0.0628 �0.2096 1

PanelCThecorrelationcoefficientsbetweencrudeoil,gold,anddollar/poundmarketsfromSeptember1,

2001 through December 31, 2007

Oil Gold FX

Oil 1

Gold 0.9264 1

FX �0.8124 �0.8142 1
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58.5 Conclusions and Implications

Using the dynamic conditional correlation model, we have estimated the cross

correlation and volatility among crude oil, gold, and dollar/pound currencies from

1986 to 2007. After exploring the time-varying correlations and realized distribu-

tions, several regularities have been found that help illustrate the characteristics of

the crude oil, gold, and currency markets.

First, the correlation coefficients between each pair of the three assets are found

to be time varying instead of constant. As such, besides considering the mean and

standard deviation of the underlying assets, investors need to follow the

co-movement in the relevant assets in order to make better portfolio hedging and

risk management decisions across these assets. The results of the dynamic correla-

tion coefficients between the gold and dollar/pound show that gold is by far the

most relevant commodity in terms of serving as a hedge against the US dollar.

These results are in line with the reports suggested by Nikos (2006) and Capie

et al. (2005). Our findings are helpful in terms of arriving at a more optimal

allocation of assets based on their multivariate returns and associated risks.

Besides, the distributions of low volatility days are found to approximate

leptokurtic distributions in the gold, oil, and dollar/pound markets, whereas the

high volatility days approximate platykurtic distributions. Furthermore, the DCC

between oil and gold is increasing with volatility, indicating that the distribution of

DCC shifts rightward when volatility increases. By contrast, the DCCs between

gold and the dollar/pound and crude oil and the dollar/pound are decreasing with

the volatility. Our findings in terms of oil and gold are consistent with the reports of

Sonlinik et al. (1996) and Andersen et al. (2001b) who use different approaches.

Moreover, by estimating the volatility threshold dynamic conditional correlation

model addressed by Kasch and Caporin (2012), we find that high volatility values

(exceeding some specified thresholds) are associated with an increase in correlation

values in various subperiods. Remarkably, investors’ behaviors are seen to have

changed in different subperiods. During periods of market turmoil, such as the First

Gulf War in 1990 and the 911 terror attack in 2001, an increase in correlation

between the prices of oil and gold, as well as a decrease in correlation between the

oil (gold) and dollar/pound currencies, is observed. These behaviors make gold

an attractive asset against major currencies for value-preserving purposes.

For market participants from long-term hedging perspective, our results provide

useful information on asset allocation across commodity and currency markets

during market turmoil.
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Abstract

We estimate two SVECM (structural vector error correction) models for the

Turkish economy based on imposing short-run and long-run restrictions that

account for examining the behavior of the real sphere in the pre-IT policy (before

inflation-targeting adoption) and post-IT policy (after inflation-targeting

adoption).

Responses reveal that an expansionary interest policy shock leads to a decrease

in price level, a fall in output, an appreciation in the exchange rate, and an

improvement in the share prices in the very short run for the most of pre-IT period.

Central Bank of the Republic of Turkey (CBT) stabilizes output fluctuations in

the short run while maintaining a very medium-run inflation target since January

2006.Oneof themost important resultsof this study is that the impactofamonetary

policy shock on the real sphere is insignificant during the post-IT policy.

Keywords

SVECMmodels • Turkish economy • Pre-IT policy • Post-IT policy • Real sphere

59.1 Introduction

The effectiveness of inflation targeting on the real sphere has recently been the

subject of a vast and ever-growing literature. Being well defined in theory, we can

say that there is a lack especially in the identification of the repercussion of

inflation-targeting framework on macroeconomic variables. This is one of the

most interesting subjects that merit to be watched nowadays. This chapter will be

a new contribution to the empirical literature.

We are going to present the eligible method that allows us to discover the

relation between the inflation targeting and the real sphere in Turkey.

Due to the successful experience in some neighboring countries with the

adopting of inflation-targeting regime, the Turkish economy was encouraged to

adopt such a monetary policy to overcome one of the deepest crises of Turkish

economy in 2001 especially when the Central Bank of the Republic of Turkey was

obliged to observe floating its currency.

In this study, we analyze the following research questions: “How can the real

sphere react to a pre-inflation-targeting regime?” “Does inflation targeting enhance

output growth?” “Are we going to find similar results regarding the effectiveness of

pre-IT policy and IT policy?”

To deal with our objective, we investigate a structural vector error correction

model (SVECM) analysis with long-run and short-run restrictions for IT policy and

pre-IT policy to extract conclusions through examining the responses of macroeco-

nomic data, respectively, to a monetary policy shock. Monetary transmission

mechanisms based on a structural vector error correction model were studied by

King et al. (1991), Ehrmann (1998), L€utkepohl et al. (1998), Ramaswamy

and Sloek (1998), Cecchetti (1995), Debondt (2000), Clements et al. (2001),
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Kakes and Sturm (2002), Nadenichek (2006), Hachicha and Chaabane (2007),

Ivrendi and Guloglu (2010), Lucke (2010), and Bhuiyan (2012).

The structure of this chapter is as follows: Sect. 59.2 provides the empirical

methodology and outlines the SVECM technique. Section 59.3 defines the data.

Section 59.4 presents long-run and short-run matrices estimation of the SVECM

technique before and after IT adoption. Section 59.5 highlights a comparative

analysis for the empirical results studying the impact of an interest rate shock on

the output, inflation rate, share prices, and exchange rates in the pre-IT and post-IT

policy. Section 59.6 makes some concluding remarks.

59.2 Empirical Methodology

Searching for an answer to my problematic, we resort to a structural vector error

correction model (SVECM) technique with contemporaneous and long-run restric-

tions developed by Breitung et al. (2004). The main advantage of adopting

a structural vector error correction model instead of a structural vector

autoregressive model is that it gives us the opportunity to use cointegration restric-

tions which implement constraints on the long-run effects of the permanent shocks

(Lutkepohl 2005). In what follows, we explore the SVEC model and forecasting

technique.

59.2.1 SVEC Model and Forecasting Technique

Dyt ¼ ab�0
yt�1

D1
t�1

� �
þ G1Dyt�1 þ . . .þ GpDyt�p þ CDt þ ut (59.1)

where yt ¼ (y1t, . . . ykt)
0 is a vector of K endogenous variables, Dt � 1

1 contains all

deterministic terms included in the cointegration relations, and Dt contains all

remaining deterministic variables (constant, seasonal dummy). The residual vector

ut is assumed to be a K-dimensional process and unobservable zero means white

noise process with positive definite covariance matrix E(u u 0) ¼ Su.

The parameter matrices a and b have dimensions (K � r) and they have to have

rank r. They specify the long-run part of the model with b containing the

cointegrating relations and a representing the loading coefficients. The column

dimension of � is also r and its row dimension corresponds to the dimension of

Dt � 1
1 . The notationb� ¼ b

�

� �
will be used in the following and the row dimension

of b� will be denoted by K�. Hence, b� is a (K � r) matrix. The cointegrating rank

has to be in the range 1 � r � k � 1.

SVEC (structural vector correction) is a model that can identify the shocks to be

traced in an impulse response analysis by imposing restrictions on the matrix of long-

run effects of shocks and the matrix B of contemporaneous effects of the shocks.
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59.2.2 Matrix B Definition

According to the theorem of Johansen (1995), the VEC model has the following

moving average representation:

yt ¼ X
Xt
i¼1

ui þ X� Lð Þut þ y�0 (59.2)

where yt ¼ (y1t, . . . ykt)
0 is a vector of K observable series and y0

* contains the initial

values. The long-run effects of shocks are represented by the first term in Eq. 59.2,

X
Xt
i¼1

ui , which captures the common stochastic trends from time (1) till time (t).

The matrix B is defined such that ut ¼ Bet, and assuming that it is in reduced form,

the matrix of long-run effects of the ut residuals is

X ¼ b⊥

 
a⊥0 Ik �

Xp�1

i¼1

Gi

!
b⊥

 !�1

a
0
⊥ (59.3)

Hence the long-run effects of e shocks are given by XB. rk(X) ¼ K � r and

it follows that XB has rank K � r. Thus the matrix XB can have at most r columns

of zero.

On that account, there can be at most r shock with transitory effect andis at least

(k � r) shocks have permanent effects. Due to the reduced rank of the matrix,

each column of zeros stands for only (k � r) independent restrictions. (K � r)
(K � r � 1)/2 additional restrictions are needed to exactly identify the permanent

shocks and r(r � 1)/2 additional contemporaneous restrictions identify the transi-

tory shocks.

59.2.3 The Confidence Interval

The impulse responses are computed from the estimated VAR coefficients, and the

Hall percentile interval is chosen to build confidence intervals (CI) that reflect the
estimation’s unpredictability:

CI ¼ f1 � t�1�g=2ð Þ,f2 � t�g=2ð Þ
h i

(59.4)

According to Hall (1992), t�
g=2

and t* (1 � g/2) are the g/2 and the (1 � g/2)

quantiles of the distribution of CI ¼ hf1 � f2i, respectively.
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59.2.4 Forecasting with SVEC Processes

According to Pfaff (2008), forecasting is based on h-step at time T:

yTþh=T ¼ A1yTþh�1=T þ . . .þ ApyTþh�p=T þ B0xTþh þ . . .þ BqxTþh�q

þ CDTþh (59.5)

The forecasts are computed recursively for h � 1 of an empirical VECM

(p) process according to

yTþh=T ¼ A1yT þ . . .þ ApyTþh�p þ B0xTþh þ . . .þ BqxTþ1�q þ CDTþh (59.6)

The forecasting errors are

yTþh � yTþh=T ¼ uTþh þ F1uTþh�1 þ . . .þ fh�1uTþ1, (59.7)

With F0 ¼ Ik and Fs can be computed recursively according to

Fs ¼
Xs
i¼1

Fs�jAj, s ¼ 1, 2 . . . (59.8)

According to L€utkepohl (1991), F0¼ Ik and A j¼ 0 for jip. Appendix 1 explores

Table 59.1 Forecasting 1st undifferenced series (pre-IT period)

Reference: L€utkepohl (1993), IMTSA, 2ed, ch. 5.2.6, ch. 10.5

CI coverage: 0.95

Forecast horizon: 1 period

Using standard confidence intervals

y(N) in levels used in the forecast

Time

MMR_log-

level (N)

ExRate_log-

level (N)

Share_prices_log-

level (N)

IP_log-

level (N)

CPI_log-

level (N)

2005 M12 0.0000 0.0000 0.0000 0.0000 0.0000

ExRate_log

Time Forecast Lower CI Upper CI +/�
2006 M1 0.3098 0.1963 0.4234 0.1135

Share_prices_log

Time Forecast Lower CI Upper CI +/�
2006 M1 4.8843 4.6852 5.0834 0.1991

IP_log

Time Forecast Lower CI Upper CI +/�
2006 M1 4.7326 4.5883 4.8769 0.1443

CPI_log

Time Forecast Lower CI Upper CI +/�
2006 M1 4.6779 4.6504 4.7055 0.0275
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the forecast error covariance matrix, presents forecasting series estimations

(Tables 59.1 and 59.2), and plots figures (Figs. 59.1 and 59.2).

59.3 Data Definition

The dataset consists of monthly observations from January 2000 up to November

2011 divided into two periods, i.e., the inflation-targeting framework was adopted

in Turkey in January 2006. The first period named “Pre-IT” treats the case before
the adoption of inflation-targeting policy and starts from 2000 M1.

The second period called “Post-IT” takes into consideration the adoption of

inflation-targeting policy and starts from 2006 M1. This division highlights the

importance of the topic treated in our paper and does not affect our estimation

results. We choose deliberately monthly frequency to maximize the number of

observations to get a robust estimation of each period.

The empirical models are estimated separately for each period. The

interest rate (R) is measured by the log of money market rate (MMR); the price

level (P) is measured by the log of consumer prices (2005¼100); the real

output (Y) is measured by the log of industrial production index (2005¼100);

Table 59.2 Forecasting 1st undifferenced series (post-IT period)

Reference: L€utkepohl (1993), IMTSA, 2ed, ch. 5.2.6, ch. 10.5

CI coverage: 0.95

Forecast horizon: 1 period

Using standard confidence intervals

y(N) in levels used in the forecast

Time

MMR_log-

level (N)

ExRate_log-

level (N)

Share_prices_log-

level (N)

IP_log-level

(N)

CPI_log-

level (N)

2005 M12 0.0000 0.0000 0.0000 0.0000 0.0000

MMR_log

Time Forecast Lower CI Upper CI +/�
2011 M12 1.6238 1.2610 1.9866 0.3628

ExRate_log

Time Forecast Lower CI Upper CI +/�
2011 M12 0.6154 0.5210 0.7099 0.0944

Share_prices_log

Time Forecast Lower CI Upper CI +/�
2011 M12 5.2127 5.0617 5.3637 0.1510

IP_log

Time Forecast Lower CI Upper CI +/�
2011 M12 4.8102 4.6942 4.9262 0.1160

Consumerprices_log

Time Forecast Lower CI Upper CI +/�
2011 M12 5.1506 5.1336 5.1676 0.0170
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the real exchange rate (REXR) is measured by the log of (EXR). Due to lack of

adequate data for the Tobin’s Q, the share prices index (share prices) is taken as

a proxy for wealth channel, and it is measured by the log of share prices.

The main source of data is IMF’s International Financial Statistics and the

Central Bank of the Republic of Turkey.

59.4 Empirical Analysis

We start our empirical analysis by investigating the univariate time series properties of

the variables. Secondly, we use the AIC information criteria to determine the lag length

of the VECM process. It suggests a lag length of P ¼ 11 when maximum lag length

is pmax ¼ 11. This lag length is also confirmed with the same information criteria for

p ¼ 12 (L€utkepohl 1991). Then, we test the number of cointegration relation for each

system before and after IT adoption, separately. We use Johansen’s (1988, 1995)

approach to test for the existence of a cointegrating relationship among the variables.

The maximum eigenvalue (lmax) and the trace tests for each model suggest one or

two cointegration relations among five variables. In Appendix 2, we show results of

Johansen cointegration test for the two systems. Specifically in Tables 59.3 and 59.4, we

report cointegration results of the estimated parameters for the whole SVECM systems.

The structural shocks being identified, the VECM model is transformed into

a VMA model (moving average) which makes it possible to compute the dynamics

of the various endogenous variables following a structural shock due to

Table 59.3 Cointegration test (pre-IT)

Sample range: [2000 M3, 2005 M12], T ¼ 70

Johansen trace test for: MMR_log ExRate_log Share_prices_log IP_log Consumerprices_log

Included lags (levels): 2

Dimension of the process: 5

Trend and intercept included

Response surface computed:

r0 LR pval 90 % 95 % 99 %

0 133.83 0.0000 84.27 88.55 96.97

1 86.49 0.0001 60.00 63.66 70.91

2 50.90 0.0055 39.73 42.77 48.87

3 24.33 0.0754 23.32 25.73 30.67

4 10.55 0.1051 10.68 12.45 16.22

Optimal endogenous lags from information criteria

Sample range: [2000 M11, 2005 M12], T ¼ 62

Optimal number of lags (searched up to 10 lags of levels)

Akaike info criterion: 10

Final prediction error: 10

Hannan-Quinn criterion: 10

Schwarz criterion: 1
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the Johansen procedure which supposes the ignorance of restrictions on beta. Then,

we introduce restrictions in matrices of the long and short run. In addition, we know

from the common trends literature that in a five-dimensional system with two

cointegration relations determined previously, only three shocks can have perma-

nent effect. We impose over identifying restrictions on the cointegrating vectors

using the ML method proposed by Johansen (1995).

The identified cointegration relations can be used to set up a full VECM, where

no further restrictions are imposed to form an estimate for Su. Moreover, long-run

and contemporaneous identifying restrictions derived from the theory are used to

form estimates for matrix B or A. We know from the previous results that we need

K (K � 1)/2 ¼ 5(5 � 1)/2 ¼ 10 additional linearly independent restrictions coming

from economic theory to exactly identify the structural shocks.

A ¼ C 1ð ÞB ¼

� � � � �
0 0 � � �
� � � � �
� � � 0 �
� 0 � � �

0
BBBB@

1
CCCCA

While

B ¼

� 0 0 0 0

� � 0 � 0

� � � 0 0

� � � � 0

� � � � 0

0
BBBB@

1
CCCCA

Table 59.4 Cointegration test (post-IT)

Sample range: [2006 M3, 2011 M11], T ¼ 69

Johansen trace test for: MMR_log ExRate_log Share_prices_log IP_log Consumerprices_log

r0 LR pval 90 % 95 % 99 %

0 79.82 0.0284 72.74 76.81 84.84

1 46.76 0.1928 50.50 53.94 60.81

2 27.58 0.2642 32.25 35.07 40.78

3 15.03 0.2293 17.98 20.16 24.69

4 4.83 0.3131 7.60 9.14 12.53

Optimal endogenous lags from information criteria

Sample range: [2006 M11, 2011 M11], T ¼ 61

Optimal number of lags (searched up to 10 lags of levels)

Akaike info criterion: 10

Final prediction error: 10

Hannan-Quinn criterion: 10

Schwarz criterion: 1
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Then, we estimate the standard VECM with identifying restrictions explained

above for the first non-inflation-targeting period and reestimate a second model for

the second inflation-targeting period. The zeros represent the restricted elements

and the asterisks denote unrestricted elements.

The bootstrap estimation allows us to determine unknown values of the short and

long-run matrix for two periods.

59.4.1 Pre-IT (Before IT Adoption)

Matrix A ¼ C 1ð ÞB

¼

0:134 0:0125 �0:1012 �0:0668 �0:00587
0 0 0:004 0:0649 0:0427

�0:0644 0:0609 0:0622 �0:0068 0:0068
�0:0362 �0:0602 0:0289 0 0:0325
0:0139 0 0:0112 0:0064 0:0325

0
BBBB@

1
CCCCA

While

Matrix B ¼

0:3601 0 0 0 0

�0:0089 0:0005 0 0:0622 0

�0:0415 0:0596 0:0725 0 0

�0:0156 �0:0613 0:0382 0:0061 0

0:0018 0:0007 0:0057 0:0028 0

0
BBBB@

1
CCCCA

59.4.2 Post-IT (After IT Adoption)

Matrix A ¼ C 1ð ÞB ¼

0:1815 0:029 0:0428 0:0113 0:0123
0 0 �0:003 �0:0479 �0:0324

�0:0134 �0:0784 0:02134 �0:0011 �0:0214
0:0012 �0:0211 0:0012 0 0:0213
0:0011 0 0:0007 0:001 0:0012

0
BBBB@

1
CCCCA

While

Matrix B ¼

0:1851 0 0 0 0

�0:0003 0:002 0 �0:0471 0

�0:0138 �0:0756 0:0041 0 0

�0:0035 0:0168 0:0571 0:0148 0

0:001 0:0003 0:0011 0:0011 0

0
BBBB@

1
CCCCA

To investigate the impulse response analysis, we compute impulse responses

from the full SVECM, and we try to benefit from the important number of series
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Table 59.5 Selected impulse responses: “impulse variable �> response variable” related to

Appendix 3. Selected confidence interval (CI): (a) 95 % Hall percentile CI (B ¼ 100 h ¼ 20)

Time point estimate

MMR_log MMR_log MMR_log MMR_log

�>ExRate_log �>Share_prices_log �>IP_log �>CPI_log

Point

estimate

�0.0089 �0.0415 �0.0156 0.0018

CI a) [�0.0228, 0.0195] [�0.0722,�0.0147] [�0.0325, 0.0063] [�0.0025, 0.0065]

1 Point

estimate

�0.0035 �0.0555 �0.0281 0.0092

CI a) [�0.0082, 0.0153] [�0.0911,�0.0184] [�0.0511, 0.0019] [0.0027, 0.0153]

2 Point

estimate

�0.0014 �0.0609 �0.0330 0.0120

CI a) [�0.0030, 0.0107] [�0.1013,�0.0169] [�0.0603, 0.0026] [0.0053, 0.0199]

3 Point

estimate

�0.0005 �0.0631 �0.0349 0.0132

CI a) [�0.0011, 0.0071] [�0.1054,�0.0156] [�0.0640, 0.0041] [0.0060, 0.0216]

4 Point

estimate

�0.0002 �0.0639 �0.0357 0.0136

CI a) [�0.0004, 0.0046] [�0.1070,�0.0134] [�0.0654, 0.0053] [0.0055, 0.0223]

5 Point

estimate

�0.0001 �0.0642 �0.0360 0.0138

CI a) [�0.0002, 0.0030] [�0.1077,�0.0132] [�0.0660, 0.0061] [0.0049, 0.0226]

6 Point

estimate

�0.0000 �0.0643 �0.0361 0.0138

CI a) [�0.0001, 0.0019] [�0.1079,�0.0131] [�0.0662, 0.0065] [0.0047, 0.0227]

7 Point

estimate

�0.0000 �0.0644 �0.0361 0.0139

CI a) [�0.0000, 0.0012] [�0.1080,�0.0130] [�0.0663, 0.0068] [0.0046, 0.0228]

8 Point

estimate

�0.0000 �0.0644 �0.0361 0.0139

CI a) [�0.0000, 0.0008] [�0.1081,�0.0130] [�0.0663, 0.0069] [0.0046, 0.0228]

9 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0005] [�0.1081,�0.0129] [�0.0663, 0.0070] [0.0045, 0.0228]

10 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0003] [�0.1081,�0.0129] [�0.0663, 0.0071] [0.0045, 0.0228]

11 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0002] [�0.1081,�0.0129] [�0.0663, 0.0071] [0.0045, 0.0228]

12 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0001] [�0.1081,�0.0129] [�0.0663, 0.0071] [0.0045, 0.0228]

13 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0001] [�0.1081,�0.0129] [�0.0663, 0.0071] [0.0045, 0.0228]

(continued)
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taken in this chapter and presented for a long period by estimating series two times;

the first treats the case before the adoption of inflation targeting by Turkish

monetary policy authorities. The second allows us to examine real sphere during

the adoption of inflation-targeting policy.

59.5 Interest Rate Shock and Real Sphere

Appendixes 3 and 4 show the responses of the real exchange rate, the shares prices,

the industrial production, and the consumer prices to a monetary policy shock

during the pre-IT and the post-IT policy, respectively. The confidence

bounds were bootstrapped, since this gives more accurate confidence coverage

compared to the asymptotic ones. Results are reported in Tables 59.6 and 59.7 in

Appendix 5.

It is worth noting that for each figure presented in Appendixes 3 and 4, the

horizontal axis of graphs shows the number of periods after a monetary policy

shock has been initialized. The vertical axis measures the response of the relevant

variables.

Table 59.5 (continued)

Time point estimate

MMR_log MMR_log MMR_log MMR_log

�>ExRate_log �>Share_prices_log �>IP_log �>CPI_log

14 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0001] [�0.1081,�0.0129] [�0.0663, 0.0071] [0.0045, 0.0228]

15 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0000] [�0.1081,�0.0129] [�0.0663, 0.0071] [0.0045, 0.0228]

16 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0000] [�0.1081,�0.0129] [�0.0663, 0.0071] [0.0045, 0.0228]

17 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0000] [�0.1081,�0.0129] [�0.0663, 0.0071] [0.0045, 0.0228]

18 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0000] [�0.1081,�0.0129] [�0.0663, 0.0071] [0.0045, 0.0228]

19 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0000] [�0.1081,�0.0129] [�0.0663, 0.0071] [0.0045, 0.0228]

20 Point

estimate

�0.0000 �0.0644 �0.0362 0.0139

CI a) [�0.0000, 0.0000] [�0.1081,�0.0129] [�0.0663, 0.0071] [0.0045, 0.0228]
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Table 59.6 Selected impulse responses: “impulse variable �> response variable” related to

Appendix 4

Selected confidence interval (CI):

a) 95 % Hall percentile CI (B¼100 h¼20)

MMR_log MMR_log MMR_log MMR_log

�>ExRate_log �>Share_prices_log �>IP_log �>CPI_log

Point estimate �0.0003 �0.0138 �0.0035 0.0010

CI a) [�0.0037, 0.0029] [�0.0327,�0.0009] [�0.0236,

0.0140]

[�0.0005, 0.0027]

1 Point estimate �0.0001 �0.0135 �0.0006 0.0010

CI a) [�0.0016, 0.0013] [�0.0334,�0.0004] [�0.0081,

0.0039]

[�0.0006, 0.0028]

2 Point estimate �0.0000 �0.0135 0.0005 0.0011

CI a) [�0.0007, 0.0006] [�0.0343,�0.0001] [�0.0032,

0.0034]

[�0.0006, 0.0028]

3 Point estimate �0.0000 �0.0134 0.0009 0.0011

CI a) [�0.0003, 0.0003] [�0.0347,�0.0000] [�0.0031,

0.0047]

[�0.0006, 0.0028]

4 Point estimate �0.0000 �0.0134 0.0011 0.0011

CI a) [�0.0001, 0.0001] [�0.0349, 0.0000] [�0.0034,

0.0053]

[�0.0007, 0.0028]

5 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0001, 0.0001] [�0.0349, 0.0000] [�0.0038,

0.0056]

[�0.0007, 0.0028]

6 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0000] [�0.0039,

0.0057]

[�0.0007, 0.0028]

7 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0000] [�0.0040,

0.0058]

[�0.0007, 0.0028]

8 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

9 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

10 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

11 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

12 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

(continued)
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The simulation analysis covers 20 periods. The solid lines for each graph denote

impulse responses. The dotted lines are approximately 95 error bands (with 95 %

confidence intervals) that are derived from a bootstrap routine with 100 replications.

Bootstrap confidence bands are computed by percentile method advanced by Hall

(1992) and L€utkepohl et al. (2001).

59.5.1 Pre-IT (Before IT Adoption)

Figure 59.3 presented in Appendix 3 reveals the responses of our series after an

unexpected increase of the short-term interest rate which normally leads to an

exchange rate appreciation (Mishkin 2001). This cannot be seen in the response

of real exchange rate due to nonsignificant response in the short and long run.

Table 59.6 (continued)

Selected confidence interval (CI):

a) 95 % Hall percentile CI (B¼100 h¼20)

MMR_log MMR_log MMR_log MMR_log

�>ExRate_log �>Share_prices_log �>IP_log �>CPI_log

13 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

14 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

15 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

16 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

17 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

18 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

19 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]

20 Point estimate �0.0000 �0.0134 0.0012 0.0011

CI a) [�0.0000, 0.0000] [�0.0350, 0.0001] [�0.0040,

0.0058]

[�0.0007, 0.0028]
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Despite the trial by Turkish authorities to implement a new stabilization and

structural adjustment program, the banking sector was in turbulence in May 2001.

According to Table 59.7, this result could be explained by the predominance of

many preponderant banking crisis dates especially in 1991 and 2000 which

were accompanied by a considerable output collapse in 2001 (Rogoff and

Reinhart 2010).

0.005
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Fig. 59.3 Responses of the main macro variables to a monetary policy shock before IT
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59.5.2 Post-IT (After IT Adoption)

Figure 59.4 presented in Appendix 4 reveals the responses of our series after an

unexpected increase of the short-term interest rate. Seeking to reduce the size of

the money supply, normally, a contractionary monetary policy shock in the very
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Fig. 59.4 Responses of the main macro variables to a monetary policy shock after IT adoption
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short run depresses exchange rate which in turn reduces share prices, and it also

appreciates consumer prices which in turn reduces the output. The other important

result obtained from this study is that a contractionary policy has a nonsignificant

effect on price level in only non-inflation-targeting period. This may be interpreted as

a particular case of monetary policy effectiveness in inflation-targeting period. But,

this does not mean that monetary policy in inflation-targeting period is more effective

than monetary policy in non-inflation-targeting period. This result contradicts the

findings of Akyurek and Kutan (2008) who advance that the performances of Turkey

after inflation-targeting regime are better than its pre-inflation-targeting regime, at

least in terms of containing inflation.

However, the findings reveal that monetary policy affects the price level, share

prices, real exchange rate, and output level in the very short run before inflation-

targeting policy. These results are similar to those advanced by Fair (2007) and Ball

and Sheridan (2005) who show no evidence that inflation targeting improves

a country’s performance.

To conclude, our results are similar to those of the IMF World Economic

Outlook (2005) which offers evidence of either “no increase or a decrease in the

volatility of output” due to inflation-targeting policy.

59.6 Conclusion

In this chapter, we based our analysis on two SVEC models with long- and short-run

restrictions to detect the impact and dynamic effects of a contractionary monetary

policy shock on the output, inflation rate, share prices, and exchange rate. The overall

responses of the macroeconomic variables in our SVEC models are consistent with

most common theoretical expectations that we discussed in this chapter: an expan-

sionary interest policy shock leads to a decrease in price level, a fall in output, an

appreciation in the exchange rate, an improvement in the share prices in the very

short run for the most of non-inflation-targeting period. For this pre-IT period, we did

not find any evidence of empirical anomalies advanced in empirical literature, i.e.,

the price puzzle and the exchange rate puzzle.

Our approach in this chapter overcomes such empirical anomalies only for the

pre-IT policy. The exchange rate puzzle and the price puzzle were observed for the

whole inflation-targeting period.

One of the most important results of this study is that the impact effect of

a monetary policy shock on the real sphere is negative and generally statistically

significant only in pre-IT period.

Appendix 1: Joint Forecast Error Covariance Matrix, Pre-IT,
and Post-IT Forecasting Results

The forecast errors have zero mean and, hence, the forecasts are unbiased. The joint

forecast error covariance matrix for all forecasts up to horizon h is
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0 (59.9)

where yT + 1/T ¼ yT + j for j � 0.

Assuming normally distributed disturbances, these results can be used for setting

up forecast intervals for any linear combination of these forecasts.

See Tables 59.1 and 59.2, Figs. 59.1 and 59.2.

Appendix 2: Pre-IT and Post-IT Cointegration Tests

See Tables 59.3 and 59.4.

Appendix 3: Pre-IT Macro Variables Responses

See Fig. 59.3.

Appendix 4: Post-IT Macro Variables Responses

See Fig. 59.4.

Appendix 5: Impulse Responses and Confidence Intervals

See Tables 59.5 and 59.6.
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Abstract

Most previous studies investigate theoretical variables which affect the capital

structure of a firm; however, these latent variables are unobservable and generally

estimated by accounting items with measurement errors. The use of these observed

accounting variables as theoretical explanatory latent variables will cause error-in-

variable problems during the analysis of the factors of capital structure.
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Since Titman andWessels (Journal of Finance 43, 1–19, 1988) first utilize LISREL
system to analyze the determinants of capital structure choice based on a structural

equation modeling (SEM) framework, Chang et al. (The Quarterly Review of
Economic and Finance 49, 197–213, 2009) and Yang et al. (The Quarterly Review
of Economics and Finance 50, 222–233, 2010) extend the empirical work on capital

structure research and obtain more convincing results by using multiple indicators

and multiple causes (MIMIC) model and structural equation modeling (SEM) with

confirmatory factor analysis (CFA) approach, respectively.

In this chapter, we employ structural equation modeling (SEM) in LISREL

system to solve the measurement errors problems in the analysis of the deter-

minants of capital structure and find the important factors consistent with capital

structure theory by using date from 2002 to 2010. The purpose of this chapter is

to investigate whether the influences of accounting factors on capital structure

change and whether the important factors are consistent with the previous

literature.

Keywords

Capital structure • Structural equation modeling (SEM) • Multiple indicators

and multiple causes (MIMIC) model • LISREL system • Simultaneous

equations • Latent variable • Determinants of capital structure • Error in variable

problem

60.1 Introduction

In previous research in capital structure, many models are derived based on

theoretical variables; however, these variables are often unobservable in the real

world. Therefore, many studies use the accounting items from the financial

statements as proxies to substitute for the theoretically derived variables. In

the regression analysis, the estimated parameters from accounting items as

proxies for unobservable theoretical attributes would cause some problems.

First, there are measurement errors between the observable proxies and latent

variables. According to the previous theoretical literature in corporate finance,

a theoretical variable can be formed with either one or several observed vari-

ables as a proxy. But there is no clear rule to allocate the unique weights of

observable variables as the perfect proxy of a latent variable. Second, because

of unobservable attributes to capital structure choice, researchers can choose

different accounting items to measure the same attribute in accordance with the

various capital structure theory and the their bias economic interpretation. The

use of these observed variables as theoretical explanatory latent variables in

both cases will cause error-in-variable problems. Joreskog (1977) Joreskog and

Sorbom (1981, 1989) and Jorekog and Goldberger (1975) first develop the

structure equation modeling (hereafter called SEM) to analyze the relationship

between the observed variables as the indicators and the latent variables as the

attributes of the capital structure choice.
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Since Titman and Wessels (1988) (hereafter called TW) first utilize LISREL

system to analyze the determinants of capital structure choice based on

a structural equation modeling (SEM) framework, Chang et al. (2009) and

Yang et al. (2010) extend the empirical work on capital structure choice and

obtain more convincing results. These papers employ structural equation model-

ing (SEM) in LISREL system to solve the measurement errors problems in the

analysis of the determinants of capital structure and to find the important factors

consistent with capital structure theories. Although TW initially apply SEM to

analyze the factors of capital structure choice, their results are insignificant and

poor to explain capital structure theories. Maddala and Nimalendran (1996)

point out the problematic model specification as the reason for TW’s poor

finding and propose a multiple indicators and multiple causes (hereafter called

MIMIC) model to improve the results. Chang et al. (2009) reproduce TW’s

research on determinants of capital structure choice but use MIMIC model to

compare the results with TW’s. They state that the results show the significant

effects on capital structure in a simultaneous cause-effect framework rather than

in SEM framework. Later, Yang et al. (2010) incorporate the stock returns with

the research on capital structure choice and utilize structural equation modeling

(SEM) with confirmatory factor analysis (CFA) approach to solve the simulta-

neous equations with latent determinants of capital structure. They assert that

a firm’s capital structure and its stock return are correlated and should be

decided simultaneously. Their results are mainly same as TW’s finding; more-

over, they also find that the stock returns as a main factors of capital structure

choice.

In this chapter, we compare the results of the determinants of capital struc-

ture from the period 2002–2010 with the results in previous chapter by using

LISREL system. The purpose of this chapter is to investigate whether the

influences of accounting factors on capital structure are of difference from

TW’s results and whether the important factors are consistent with the theories

in previous literature. During the financial crisis, the influences of accounting

factors on the firm’s capital structure may have some difference due to the

extremely decline of the equity market in the economic recession. Also, the

method of reducing measurement error via the average of 3-year data may be

invalid because the samples will have different time series pattern after signif-

icant event such as current financial crisis. Therefore, this chapter aims at

whether the parameters used in TW paper are still significant or not during

the financial crisis.

This chapter is organized as follows. In Sect. 60.2, we review the account-

ing items as proxies for latent variables in TW paper and describe the

sample data used in LISREL system. Then, in Sect. 60.3, we introduce

SEM to investigate the determinants of capital structure choice and illus-

trate the SEM approach for TW work in LISREL program. The results of

empirical work and the analysis of the comparison with TW’s finding are

shown in Sect. 60.4. Finally, Sect. 60.5 represents the conclusions of

this study.
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60.2 Determinants of Capital Structure and Data

Before we utilize SEM approach to analyze the determinants of capital structure,

the observable indicators are first briefly described in this section and then the data

used in this chapter is subsequently introduced.

60.2.1 Determinants of Capital Structure

TW provide eight characteristics to determine the capital structure: asset structure,

non-debt tax shields, growth, uniqueness, industry classification, size, volatility,

and profitability. These attributes are unobservable; therefore, some useful and

observable accounting items are classified into these eight characteristics in accor-

dance with the previous literature on capital structure. The attributes as latent

variables, their indicators as independent variables, and the indicators of capital

structure as dependent variables are shown in Table 60.1. The parentheses in

indicators are the notations used in LISREL system. Moreover, TW adopt the

long-term debt, the short-term debt, and the convertible debt over either market

Table 60.1 Attributes and indicators

Attributes Indicators

Asset structure Intangible asset/total assets (INT_TA)

Inventory plus gross plant and equipment/total assets (IGP_TA)

Non-debt tax shield Investment tax credits/total asset (ITC_TA)

Depreciation/total asset (D_TA)

Non-debt tax shields/total asset (NDT_TA)

Growth Capital expenditures/total asset (CE_TA)

The growth of total asset (GTA)

Research and development/sales (RD_S)

Uniqueness Research and development/sales (RD_S)

Selling expense/sales (SE_S)

Industry classification SIC code (IDUM)

Size Natural logarithm of sales (LnS)

Volatility The standard deviation of the percentage change in operating

income (SIGOI)

Profitability Operating income/sales (OI_S)

Operating income/total assets (OI_TA)

Capital structure (dependent

variables)

Long-term debt/market value of equity (LT_MVE)

Short-term debt/market value of equity (ST_MVE)

Convertible debt/market value of equity (C_MVE)

Long-term debt/book value of equity (LT_BVE)

Short-term debt/book value of equity (ST_BVE)

Convertible debt/book value of equity (C_BVE)

1672 C.-F. Lee and T. Tai



value of equity or book value of equity as the indicators of capital structure as

shown in the bottom of Table 60.1.

Based on the trade-off theory and agency theory, firms with larger tangible and

collateral assets may have less bankruptcy, asymmetry information, and agency

costs. Myers and Majluf (1984) indicate that companies with larger collateral

assets attempt to issue more secured debt to reduce the cost arising from infor-

mation asymmetry. Moreover, Jensen and Meckling (1976) and Myers (1977)

state that there are agency costs related to underinvestment problem in the

leveraged firm. Therefore, the collateral assets are positive correlated to debt

ratios. According to TW paper, the ratio of intangible assets to total assets

(INT_TA) and the ratio of inventory plus gross plant and equipment to total

assets (IGP_TA) are viewed as the indicators to evaluate the asset structure

attribute.

DeAngelo and Masulis (1980) extend Miller’s (1977) model to analyze the

effect of non-debt tax shields increasing the costs of debt for firms. Bowen

et al. (1982) find their empirical work on the influence of non-debt tax shields

on capital structure consistent with DeAngelo and Masulis’s (1980) optimal debt

model. Following Fama and French (2002) and TW paper, the indicators

of non-debt tax shields are investment tax credits over total asset (ITC_TA),

depreciation over total asset (D_TA), and non-debt tax shields over total asset

(NDT_TA) which NDT is defined as in TW paper with the corporate tax

rate 34 %.

According to TW paper, we use capital expenditures over total asset (CE_TA),

the growth of total asset (GTA), and research and development over sales (RD_S)

as the indicators of growth attribute. TW argue the negative relationship between

growth opportunities and debt because growth opportunities only add firm’s value

but cannot collateralize or generate taxable income. Furthermore, the indicators of

uniqueness include development over sales (RD_S) and selling expense over sales

(SE_S). Titman (1984) indicates that uniqueness negatively correlates to debt

because the firms with high-level uniqueness will cause customers, suppliers, and

workers to suffer relatively high costs of finding alternative products, buyers, and

jobs when firms liquidate. SIC code (IDUM) as proxy of industry classification

attribute followed Titman’s (1984) and TW’s suggestions that firms manufacturing

machines and equipment have high liquidation cost and thus more likely to issue

less debt.

The indicator of size attribute is measured by natural logarithm of sales (LnS).

The financing cost of firms may relate to firm size since small firms have higher cost

of nonbank debt financing (see Bevan and Danbolt 2002). Therefore size is sup-

posed to be positive associated with debt level. Besides, volatility attribute is

estimated by the standard deviation of the percentage change in operating income

(SIGOI). The large variance in earnings means higher possibility of financial

distress; therefore, to avoid bankruptcy to happen, firms with larger volatility of

earnings will have less debt. Finally, the pecking order theory developed in Myers

(1977) paper indicates that firms prefer to use internal finance rather than external

finance when raising capital. The profitable firms are likely to have less debt and
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profitability and hence are negatively related to debt level. Following TW paper, the

indicators of profitability are operating income over sales (OI_S) and operating

income over total assets (OI_TA).

60.2.2 Data

The sample period from 2002 to 2010 is the same as the duration of variables used

in TW paper. The sources of data are from Compustat and CRSP in WRDS.

The codes of the accounting items used to calculate the observed variables in

Compustat are shown in Table 60.2.

The process of dealing with data is same as TW. The firms with incomplete

record on variables and with negative values of total asset and operating income are

deleted from the samples. After combination of all data from Compustat and CRSP,

one indicator of non-debt tax shields is also excluded because almost all samples

are zero or insignificant. For indicator of industry classification, we use dummy

variable which equal to one for firms with SIC codes between 3400 and 4000 and

equal to zero otherwise.

According to the problem of measurement errors, TW suggested that the

sampling period should be divided into three subperiods. In each subperiod, the

variables are the average of 3-year data due to random year-to-year fluctuations

in variables. The dependent variables and independent variables used to

measure uniqueness, non-debt tax shields, asset structure, and the industry

classification are measured during the period 2005–2007. The indicators of

size and profitability are measured during the period 2002–2004. Two indepen-

dent variables, capital expenditures/total asset (CE_TA) and the growth of total

asset (GTA), are measured during 2008–2010. Finally, the standard deviation of

the percentage change in operating income (SIGOI) is estimated during the

whole sample period 2002–2010 in order to obtain as the same measure as in

TW paper.

Table 60.2 The Compustat code of observable data

Accounting Code Accounting Code

Total asset AT Net income NI

Intangible asset INTAN R&D expense RDIP

Inventory INVT Sales SALE

Gross plant and equipment PPEGT Selling expense XSGA

Investment tax credits ITCB SIC code SIC

Depreciation DPACT Short-term debt DLC

Income tax TXT Long-term debt DLTT

Operating income EBIT Convertible debt DCVT

Interest payment XINT Book value of equity SEQ

Capital expenditures CAPX Market value of equity MKVALT
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60.3 Methodology and LISREL System

In this section, we first introduce the SEM approach and present an example of

path diagram to show the structure of structural model and measurement model in

SEM framework. Then, the specified structure in SEM approach is given

in accordance with the constraints in TW paper and the code is illustrated in

Appendix.

60.3.1 SEM Approach

The SEM incorporates three equations as follows:

Structural model: � ¼ b� þ Fxþ B (60.1)

Measurement model for y: y ¼ Ly� þ u (60.2)

Measurement model for x: x ¼ Lxþ d (60.3)

where x is the matrix of observed independent variables as the indicators of

attributes, y is the matrix of observed dependent variables as the indicators of

capital structure, x is the matrix of latent variables as attributes, and � is the latent

variables that link determinants of capital structure (a linear function of attributes)

to capital structure(y).

Figure 60.1 shows an example of the path diagram of SEM approach

where the observed independent variables x ¼ (x1, x2, x3)
0 are located in

rectangular, the observed dependent variables y ¼ (y1, y2)
0 are set in hexagons,

variables � ¼ (�1, �2)
0, x ¼ (x1, x2)0 in ovals denote the latent variables,

and the corresponding sets of disturbance are B ¼ (B1, B2)0, u ¼ (u1, u2)0, and
d ¼ (d1, d2, d3)0.

The structural model can be specified as the system of equations which combines

(60.1) and (60.2), and then we can obtain the structural model in TW paper as

follows:

y ¼ Gxþ e (60.4)

In this chapter, the accounting items can be viewed as the observable indepen-

dent variables (x) which are the causes of attributes as the latent variables (x), and
the debt-equity ratios represented the indicators of capital structure are the observ-

able dependent variables (y).

The fitting function for maximum likelihood estimation method for SEM

approach is the following:

F ¼ log Sj j þ tr SS�1
� �� log Sj j � pþ qð Þ (60.5)
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where S is the observed covariance matrix, S is the model-implied covariance

matrix, p is the number of independent variables (x), and q is the number of

dependent variables (y).

60.3.2 Illustration of SEM Approach in LISREL System

In general, SEM consists of two parts, the measurement model and structural

model. The measurement model analyzes the presumed relations between the latent

variables viewed as the attributes and observable variables viewed as the indicators.

For example, in TW paper, capital expenditures over total assets (CE_TA) and

research and development over sales (RD_S) are the indicators of the growth

attributes (Growth). In the measurement model, each indicator is assumed to have

measurement error associated with it. On the other hand, the structure model

presents the relationship between unobserved variables and outcome. For instance,

the relationship between attributes and the capital structure is represented by the

structure model. Moreover, the relationship between the capital structure and its

indicators estimated by debt-equity ratios is modeled by the measurement model.

TW also specific settings include zero measurement error of variables,

the standard deviation of the percentage change in operating income

(SIGOI) and SIC code (IDUM), measurement errors uncorrelated with

each other indicator, with the latent variables, and with the errors in the

structural equations. The attributes of volatility and industry classification

equal to their indicators, respectively. Based on eight attributes as latent

variables, thirteen indicators for determinants of capital structure choice,

and six indicators of capital structure in TW paper, the SEM measurement

X1

X2

X3d 3

d 2

x 2 h2

V = (V1, V2)

h1

u1

u2

x 1

d 1

y2

y1
Ly

L

Fig. 60.1 Path diagram of SEM approach

In this path diagram, the SEM formulas (60.1), (60.2), and (60.3) are specified as follows:

b ¼ 0 b1
0 0

� �
,F ¼ F1 0

0 F2

� �
,Ly ¼ Ly1 Ly2

0 Ly3

� �
,L ¼

L1 0

0 L2

L3 L4

2
4

3
5 where Ly1, Ly2, Ly3,

L1, L2, L3, and L4 denote unknown factor loadings; b1, F1, and F2 denote unknown

regression weights; u1, u2, d1, d2, and d3 denote measurement errors; and B1, and B2 denote

error terms
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model formula (60.3) and structural model formula (60.4) are specified as

follows:

x ¼

GTA
CE�TA
RD�S
SE�S
D�TA

NDT�TA
INT�TA
IGP�TA
LnS

OI�TA
OI�S
SIGOI
IDUM

2
666666666666666666664

3
777777777777777777775

, x ¼

Growth
Uniqueness

Non�Debt�Tax�Shields
Asset�Structure

Size
Profitability
Volatility

Industry�Dummy

2
66666666664

3
77777777775

,

L ¼

L1 0 0 0 0 0 0 0

L2 0 0 0 0 0 0 0

L3 L4 0 0 0 0 0 0

0 L5 0 0 0 0 0 0

0 0 L6 0 0 0 0 0

0 0 L7 0 0 0 0 0

0 0 0 L8 0 0 0 0

0 0 0 L9 0 0 0 0

0 0 0 0 L10 0 0 0

0 0 0 0 0 L11 0 0

0 0 0 0 0 L12 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
666666666666666666664

3
777777777777777777775

, d ¼

d1
d2
d3
d4
d5
d6
d7
d8
d9
d10
d11
0

0

2
666666666666666666664

3
777777777777777777775

,

y ¼

LT�MVE
ST�MVE
C�MVE
LT�BVE
ST�BVE
C�BVE

2
6666664

3
7777775
,G ¼

G1, 1 � � � G1, 8
⋮ ⋱ ⋮
G6, 1 � � � G6, 8

2
4

3
5, e ¼

e1
e2
e3
e4
e5
e6

2
6666664

3
7777775

where the variables for x, y, and x are defined as in Table 60.1. The codes of SEM in

LISREL system are illustrated in Appendix.

60.4 Empirical Results and Analysis

In our empirical research, the estimates of the parameters of measurement

model are presented in Tables 60.3 and 60.4. The regression coefficients of
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matrixL in (60.3) are illustrated in Table 60.3, and most coefficients of independent

variables except operating income over sales (OI_S) and intangible asset over total

assets (INT_TA) are the same direction as TW paper. However, only five of them

are significant. Table 60.4 shows the relationship between the attributes (the latent

variables). Compared with TW results, only four relations are significantly the

same: the relation between profitability and uniqueness, the relation between

non-debt tax shields and size, the relation between profitability and non-debt tax

shields, and the relation between asset structure and industry dummy. Even

though the results of attributes’ relations are different from TW paper, the

estimated correlations between attributes in TW do not show the t-statistic

value. Thus we cannot conclude which results represent correct and convincing

relationships between the latent variables.

Moreover, there are only two significant estimates of structural coefficients

(uniqueness and asset structure) in Table 60.5. The results inconsistent with TW

paper may result from the several reasons as below. First, insignificant and incorrect

latent variables may cause the wrong outcome of structural model. Besides, too

many latent variables and the lack of using indicators with unique weights

corresponding to their attributes may also cause the week results (Maddala and

Nimalendran 1996). The other conjecture of inconsistent results is that the sampling

fluctuation during financial crisis may aggravate the problem of measurement error.

Although the results of estimates of structural coefficients seem very week, the

evidence of negative relationship between debt ratio and uniqueness is consistent

the statement of Titman (1984) that the high costs of liquidation are imposed on the

customers, workers, and suppliers of firms with high uniqueness products. Besides,

the evidence of the attribute of asset structure negatively related to debt ratios

corresponds to the supposition of Grossman and Hart (1982). They indicate that in

order to avoid the threat of bankruptcy and closely monitor, managers in firms with

higher debt are less likely to consume excessive perquisites.

60.5 Conclusion

This chapter utilizes the structure equation modeling (SEM) approach to estimate the

impact of unobservable attributes on the capital structure. We use the sample period

from 2002 to 2010 as same as the duration in TW paper to investigate whether the

influences of accounting factors on capital structure are consistent with TW’s results

and whether the important factors are associated with the previous literature. In SEM

framework, the debt ratios as indicators of capital structure choice to present the

dependent variables and the observable accounting data from the financial statements

used to calculate the indicators of attributes to form the latent variables.

Compared with the results of TW, our empirical work still cannot support the

influence of most attributes on the decision of capital structure. The main reason of

weak finding in our chapter and TWpaper is toomany latent variables as indicated in

Maddala and Nimalendran (1996). And, another possible reason is the problem of

sampling fluctuation during financial crisis which may cause serious measurement
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error in SEM approach. However, our empirical results show the significantly

negative relationship between debt ratio and uniqueness which is consistent with

the statement of Titman (1984) and TW results. Finally, in contrast with the unclear

and insignificant relationship between the attribute of asset structure and debt

ratios in TW paper, our finding of the significant negative relationship supports

the argument of Grossman and Hart (1982) that firms with less collateral assets

may choose higher debt levels to limit managers’ consumption of perquisites.

Appendix: Codes of Structure Equation Modeling (SEM)
in LISREL System

SEM Model-Titman and Wessels Paper
Observed Variables:
LT_MVE ST_MVE C_MVE LT_BVE ST_BVE C_BVE GTA CE_TA RD_S
SE_S D_TA NDT_TA INT_TA IGP_TA LnS OI_TA OI_S SIGOI
IDUM
Covariance Matrix from File TW0904.COV
Asymptotic Covariance Matrix from File TW0904.ACM
Sample Size: 125
Latent Variables: Growth Uniqueness
Non_Debt_Tax_Shields Asset_Structure Size
Profitability Volatility Industry_Dummy
Relationships:
LT_MVE ¼ Growth Uniqueness
Non_Debt_Tax_Shields Asset_Structure Size
Profitability Volatility Industry_Dummy
ST_MVE¼ GrowthUniqueness
Non_Debt_Tax_ShieldsAsset_Structure Size
ProfitabilityVolatilityIndustry_Dummy
C_MVE ¼ Growth Uniqueness
Non_Debt_Tax_Shields Asset_Structure Size
Profitability Volatility Industry_Dummy
LT_BVE ¼ Growth Uniqueness
Non_Debt_Tax_Shields Asset_Structure Size
Profitability Volatility Industry_Dummy
ST_BVE ¼ Growth Uniqueness
Non_Debt_Tax_Shields Asset_Structure Size
Profitability Volatility Industry_Dummy
C_BVE ¼ Growth Uniqueness
Non_Debt_Tax_Shields Asset_Structure Size
Profitability Volatility Industry_Dummy
Growth ¼ GTA CE_TA RD_S
Uniqueness ¼ RD_S SE_S
Non_Debt_Tax_Shields ¼ D_TA NDT_TA
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Asset_Structure ¼ INT_TA IGP_TA
Size ¼ LnS
Profitability ¼ OI_TA OI_S
Volatility ¼ 1.0*SIGOI
Industry_Dummy ¼ 1.0*IDUM
Set the Error Variance of SIGOI to 0.0
Set the Error Variance of IDUM to 0.0
LISREL Output: PS ¼ SY,FR TD ¼ DI,FR ND ¼ 3 SL ¼ 0.05 SC SE
SS TV AL EF RS MI
Path Diagram
End of Problem
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Abstract

The objective of this chapter is to demonstrate specific test methodology for

detection of earnings management in the oil and gas industry. This study utilized

several parametric and nonparametric statistical methods to test for such earn-

ings management. The oil and gas industry was used given the earlier evidence

where such firms manage earnings in order to ease the public view of the

significant price swings that occur in oil and gas prices. In this chapter, our
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focus is on total accruals as the primary means of earnings management. The

prevailing view is that total accruals account for a greater amount of earnings

management and should be more readily detected. The model to be considered is

the Jones model (Journal of Accounting Research 29, 193–228, 1991) which
projects the expected level of discretionary accruals. By comparing actuals

vs. projected accruals, we are able to compute the total unexpected accruals.

Next, we correlate unexpected total accruals with several difficult to manipulate

indicators that reflect company’s level of activities. The significant positive

correlations between unexpected total accruals and these variables are an indi-

cation that oil and gas firms do not manage income before extraordinary items

and discontinued operations. A second test is conducted by focusing on the

possible use of special items to reduce reported net income by comparing mean

levels of several special items pre-2008 and 2008. The test results indicate

significant difference between 2008 means and the pre-2008 period.

Keywords

Earnings management • Jones model (1991) • Discretionary accruals • Income

from operations • Nonrecurring items • Special items • Research and develop-

ment expense • Write-downs • Political cost • Impression management • Oil and

gas industry

61.1 Introduction

Repeated oil crises have often resulted in above normal profits for integrated oil and

gas companies. Such above normal profits typically attract attention in the news

media and consequently in the political environment. In this circumstance, the

political environment in North America typically provides a short-lived threat of

higher taxes and/or regulations. In the latest crude oil price hike in 2008 that

reached $140 per barrel, oil and gas companies reported unusually high profits.

This was true even though, by the end of 2008, prices were about 50 % of their peak.

Reporting high income numbers represent a short-term threat that focuses public

attention on these companies for a period of time until consumers adapt to new and

higher prices (i.e., $2.89 per gallon in 2010 is way above $1.90 per gallon in

2006–2007, but it is significantly lower than a near $5.00 per gallon in 2008–2009).

The agency model predicts that faced with higher taxes and stricter regulations,

management tends to use accounting accruals and/or special items to decrease

reported income. Because of the possibility of reversals of all or of these accruals

in future years, management has to time their responses to such crises to make its

point to influence public opinion. Thus, the purpose of earnings management by

management of these companies is to buy time until the public attitudes adjust to

the new pricing and profitability levels. Earnings management is by no means a tool

that can be used over a long period (i.e., multiple years) given the nature of the

financial accounting accruals (i.e., firms cannot decrease sales by delaying revenue
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recognition over several years or keep reporting higher depreciation expense year

after year). It is an important issue however for both regulators and those in the

accounting profession, particularly auditors.

61.2 Literature Review

The earnings management literature can be broadly divided into two categories:

(i) accrual management and (ii) operating decisions (real activity manipulation or

economic earnings management). Accruals management is primarily the accounting

choices available to management under generally accepted accounting practices

(GAAP) that obscure true economic performance (Dechow and Skinner 2000). On

the contrary, real earnings management takes place when managers intentionally

change the timing or structuring of an operation, investment, or financing transaction

to influence the output of an accounting system (Gunny 2010). Accruals management

does not have any direct cash flow consequences as it is the manipulation of

accounting numbers by using different accounting procedures and/or revising some

specific accounting items to obtain desired reported earnings. In real earnings

management, managers tend to take actions that affect cash flows and eventually

earnings (Gupta et al. 2010). Over production by firms building up inventories when

demand is falling allows management to report increased earnings because GAAP

mandated the use of absorption or full costing for reporting purposes.

Much has been written in the area of earnings management. Earnings management

may arise in several contextual settings where it can be identified that there exist

conditions in which managers’ incentive to manage earning is large (Healy and

Wahlen 1999; Marquardt and Weidman 2004a among others). The empirical

research has investigated many different incentives and settings conducive for

earnings management. Some of settings investigated in Marquardt and Weidman

(2004a) include the following: (1) equity offerings, where the motivation to manage

earnings around equity offerings is viewed as increasing the stock price to benefit the

firm; (2) management buyouts which is an opposite goal to reduce the stock price;

and (3) firms attempting to avoid earning decreases. In general, as indicated above,

earnings management could be either income increasing or income decreasing.

The incentives as per Healy andWhalen (1999) include the following: (1) Capital

market expectations and valuation. Here the argument made is that the widespread

use of accounting information by investors and financial analysts to help value

stock can create an incentive for managers to manipulate earning. (2) Contracts

written in terms of accounting numbers. Compensation contracts which are based

on accounting numbers are used to align the incentives of management with that of

external stakeholders. Watts and Zimmerman (1979) argue that contacts create

incentives for earnings management, because it is costly for compensation com-

mittees and creditors to “undo” earnings management. (3) Antitrust or other

government regulation. The idea is that accounting discretion is used to manage

industry-specific regulatory constraints.
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In a more recent study, Ang (2011) examines the effect of the Sarbanes-Oxley

Act (SOX), specifically Section 404, on earnings management among large firms

as defined by the Fortune 500. Ang’s findings are that firms tend to filter

information that investors receive as well as disguise the true earnings of the

firm. Overall, Ang concludes that earnings management activity was diminished

with the enactment of Sarbanes-Oxley. In another recent study, Ota (2011)

examines earnings forecast in a global setting, more specifically for Japanese

firms. This study considers earnings management and its determinants with the

conclusion that issues related to distress, growth, size, as well as prior forecasting

errors are all related to earnings management in Japan. A further part of this study

concludes that analysts are indeed knowledgeable of earnings management practice

and take such practices into consideration when preparing their own independent

forecasts of earnings.

Habib and Hansen (2008) provide an updated literature review regarding earn-

ings management. Their work essentially extends and updates the earlier work of

Healey and Wahlen. In an earlier work, Burgstahler and Dichev (1997) consider the

distribution of earnings changes and find a lower frequency of decreases in earnings

but higher frequencies of increases. The implication is of course that management

seeks to avoid such decreases in reported earnings.

Earnings management has potential costs which may be high or low depending

on the situation which can be grouped into (1) costs of detected earnings manage-

ment and (2) the cost of undetected earnings management (Marquardt and

Wiedman 2004b). If a firm’s use of earnings management becomes publicly

known through the release of SEC enforcement actions, earnings restatements,

shareholder litigation, qualified audit opinion, and negative business coverage by

press, then it is termed detected earnings management. In undetected earnings

management, there is no obvious event of public announcement of its occurrence.

In terms of the research methodologies employed in earnings management studies,

work by McNichols (2000) critically reviews several approaches from an empirical

standpoint. In summary, McNichols considers three approaches typically seen in

such analyses. Her work contends that further research should consider alternative

specifications as opposed to the more traditional aggregate accrual models.

61.3 Empirical Methodology and Data

61.3.1 Integrated Companies

Integrated oil and gas companies are in the public spotlight whenever there is

a spike in consumer prices. Other companies within the industry (e.g., refineries,

transportation including pipelines, equipment, and service companies) may or may

not report higher profits but are not subject to the same degree of media scrutiny and

criticism (i.e., price gouging). In addition, large integrated companies have the

resources needed to manage their earnings. Smaller oil and gas producers, with
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limited resources and limited operations, may find it more difficult to be involved in

earnings management. At the time this study has been conducted, we consider 2008

to be a target year for earnings management. Our contention is based on the fact that

crude oil prices reached a record price of $140 per barrel in 2008.

61.3.2 Tools of Earnings Management and Associated Costs

Tools of earnings management may include total accruals (A/R, inventory,

accounts payable, and depreciation). They may also use special items including

write-downs, restructuring charges, and discontinued operations. Companies

involved in earnings management are always subject to scrutiny by regulatory

agencies (i.e., SEC), external auditors, financial analysts, as well as media attention.

Management of such firms has to judge each situation to determine whether it is

wise to get involved in this type of activities. According to Marquardt andWiedman

(2004b), the use of special items carries a small cost if discovered, while managing

of revenue (A/R) carries a very high cost if discovered. In the current study, we do

not presume that management is biased for/against any tool. The argument we use is

that a significant reduction of an extremely high profitability situation may prove

appropriate. Also, the nature of the industry and the diversity of these companies’

businesses (i.e., search, exploration, development, production, transportation, and

marketing of oil and gas products) would allow a very wide range of possibilities

for management of these companies to influence reported income. For instance,

assessing goodwill for impairment provides an excellent opportunity to drive

reported profits down because of the conservative nature of impairment losses.

Likewise, accelerating the process of expensing research and development costs is

another conservative accounting tool that would not raise auditor’s concern but yet

could affect reported profit. Also, the use of special items such as an upward

revision of the provision for site restoration and environmental protection is

a very strong tool in management’s hands to drive down reported profits.

61.3.3 Measures of Earnings Management

Complete discussion of the empirical methodology is included in the Appendix. In

general, the detection of earnings management is based on a variety of measures

including (for more details, please see Ronen and Yaari 2008) serial correlation of

income streams, the standard deviation of earnings relative to the standard devia-

tion of cash flows, and the correlation between discretionary accruals and change in

operating cash flows. In this chapter, our focus is on total accruals as the primary

means of earnings management. The prevailing view is that total accruals account

for a greater amount of earnings management and should be more readily detected.

The model to be considered is the Jones model (1991) which projects the expected

level of discretionary accruals.
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61.3.4 Data

The sample is drawn from the North America COMPUSTAT – Fundamentals

Annual through the Wharton Research Database and consists of international

integrated oil and gas companies that carry a GSUBIND code 10102010. The initial

sample consists of 1,428 annual observations covering the period 1950–2010.

Companies included in the final sample of 836 annual observations met the

following conditions: (1) information is available for the 2008 event year,

(2) there is a minimum number of 6 annual consecutive observations per company,

and (3) all data needed for analysis is available. After excluding out-of-range

unusable observations, the final sample consists of 28 integrated oil and gas

companies from Argentina, Austria, Brazil, Canada, China, France, Italy, Kazakhstan,

the Netherlands, Norway, Russia, South Africa, Spain, the UK, and the USA.

61.3.5 Data Items

The following data items (COMPUSTAT – Fundamentals Annual) were collected

for all firms with the GSUBIND code 10102010 and used in the empirical part of

this study. The following mnemonics are collected:

AT Total assets for

GDWLIP Goodwill impairment (pretax)

IB Income before extraordinary items

OANCF Cash flow from operations – net

PPEGT Property, plant, and equipment – gross

SALE Sales – net

SPIOP Special items – pretax

XIDO Extraordinary items and discontinued operations

XRD Research and development expense

WDP Write-downs – pretax

61.4 Empirical Findings

61.4.1 Does Management Employ Total Accruals to Manage
Earnings?

The presence of earnings management can be detected by observing a negative

correlation between unexpected total accruals (UTACC2008) and a change in

operating cash flows for the same year (DOANCF2008) (see Leuz et al. 2003).

Table 61.1 provides parametric and nonparametric correlation coefficients for

UTACC2008 and several variables including DOANCF2008. The statistics are

presented for all companies, North American companies and the non-North

American companies. The results that are presented indicate no evidence of
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earnings management. In fact, the significant positive correlation coefficients

between UTACC2008 and DOANCF2008 suggest that North American integrated

oil and gas companies actually do not use total accruals to manage earnings.

61.4.2 Does Management Employ Special Items to Manage
Earnings?

Using special items to manage earnings is (1) less costly, i.e., unlike the case with

manipulating revenues and/or operating expenses which are closely monitored by

auditors, and (2) has no reversal problem, i.e., the timing of write-downs and/or

spending is under management control. The results presented in Table 61.2 indicate

that special items SPI which include goodwill impairment (GDWLIP), in-progress

research and development (RDIP), restructuring costs (RCP), and other write-downs

before taxes were significantly higher in 2008 ($1,492.30 million) versus an average

of $48.96 million for the pre-2008 fiscal year. The t-test value of 5.419 is significant

at the 0.000 level. The results in Table 61.2 also provide t-test statistics on some

individual components of SPI. For example, the 2008 mean write-down before taxes

of $1,862.47 million is significantly higher than the pre-2008 mean write-down of

$410.39. The t-test statistic here shows a t-value of 1.994 which is significant at the

Table 61.2 T-test results – special items (2008 versus pre-2008)

Item

Observations

2008

Observations

pre-2008 Mean 2008

Mean

pre-2008 T-value

One-tail

significance

SPI 24 660 1,492.30 48.96 5.419 0.000

WDP 4 32 1,862.47 410.39 1.994 0.027

GDWLIP 5 7 5,507.40 328.10 1.250 0.120

XRD 13 415 535.33 200.20 5.075 0.000

Table 61.1 Correlation coefficients for UTACC2008

Sample DOANCF2008 OANCF2007 OANCF2008 SALES2008

All Observations (28)

Pearson corr. �0.020 0.120 0.097 0.102

Kendall’s tau 0.058 0.058 0.101 0.122

Spearman’s Rho 0.096 0.102 0.123 0.193

North American (14)

Pearson corr. 0.427* 0.245 0.284 0.295

Kendall’s tau 0.275* 0.231 0.319* 0.341*

Spearman’s Rho 0.473** 0.314 0.455** 0.504**

Non-North American (14)

Pearson corr. �0.075 0.159 0.096 0.098

Kendall’s tau �0.011 0.011 0.033 0.033

Spearman’s Rho �0.051 0.064 0.055 0.064

*, **, *** significant at the 10 %, 5 %, and 1 %, respectively
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0.027 level. The component GDWLIP does not reveal a significant increase in

recognizing goodwill impairment though these companies reported on average

$5,507.40 million impairment losses in 2008 compared to only $328.10 mean losses

in the pre-2008 period. One should notice that individual means do not add up to the

total SPI because of the different number of observations used in computing indi-

vidual components’ means. Other components of SPI are missing either because they

are not available in the data base or because they do not display significant t-values.

Research and development expenditures represent another discretionary item

that management is able to control (see Shehata, October 1991). As the results

reported in Table 61.2 reveal, average spending on research and development

(XRD) is approximately $535.33 million in 2008 compared to a pre-2008 average

of $200.20 million. The t-test statistic indicates a t-value of 5.075 at the 0.000 level.

Given the results reported in Table 61.2, one may conclude that management of

integrated oil and gas companies does indeed employ special items as a tool to

manage earnings.

61.5 Conclusion

Earnings management, which is an extensively researched topic in accounting, could

be either income increasing or income decreasing.While there are several motivations

for managing earnings and the associated costs depending whether earnings manage-

ment is detected through public announcements or not, there are implications for

incentive design and standard setting in a firm. In this chapter we explore the income

decreasing earnings management by integrated oil and gas companies. Our findings

provide evidence that integrated oil and gas companies do indeed use special items to

manage earnings downwards. While there could be several reasons, one main reason

is impression management. Although we selected earnings management as our topic,

our primarily objective in this chapter is to demonstrate the important application of

standard statistical analysis to the issue of detecting earnings management practices.

Appendix: Methodology

Detecting Earnings Management

The paper uses the Jones model (1991) as the basis for projecting the expected level

of discretionary accruals. The steps are as follows:

Step 1: Define total accruals (TACC) for as the difference between income (NI)
before extra ordinary items and discontinued operations (EOI) and cash flows

from operations (OCF). Compute the TACCit ¼ NIit � EOIit � OCFit for each

year (t) for firm (i).
Step 2: Divide the data available into two periods, namely, the estimation period

t ¼ 1, . . ., Ti and the prediction period p ¼ 1, . . ., P.
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Step 3: Useordinary least squares toobtain the coefficient estimatesai,bi, andciofai,bi,
and gi, respectively. The linear regression expectation model (Jones 1991) for total

accruals after controlling for changes in the economic circumstances of the firm is

TACCit

TAit�1

¼ ai
1

TAit�1

� �
þ bi

DREVit

TAit�1

� �
þ gi

PPEit

TAit�1

� �
þ eit (61.1)

where

TACCit is the total accruals in year (t) for firm (i)
DREVit is the revenues in year (t) less revenues in year (t� 1) for firm (i)
PPEit is the gross property, plant, and equipment in year (t) for firm (i)
TAit�1 is the total assets in year (t � 1) for firm (i)
eit is the error term in year (t) for firm (i)
i ¼ 1, . . ., N is the firm index (N ¼ XX)
t ¼ 1, . . ., Ti is year index for the years included in the estimation period for firm

(i), where Ti ranges between 6 and 22 years.

The gross property, plant, and equipment and change in revenue are included to

control for changes in nondiscretionary accruals due to changing conditions. All

variables in the accruals expectation model are scaled by lagged assets to reduce

heteroscedasticity. The lagged assets are assumed to be positively associated

with the variance of the disturbance term.

Model (1) was used to calculate the coefficients ai, bi, and gi for the estimation

period ending in 2007. This procedure is conducted on a company-by-company

basis and produced 28 individual models that fit the TACC history of each of the

sample companies. Each of these models is used in step 4 below to estimate

TACC for the event year 2008 for each of the 28 firms.

Step 4: Compute the discretionary accruals for the event year (2008) for firm (i) as
follows.

The coefficients ai, bi, and gi obtained from running model (1) are used to

predict TACC2008 for each of the 28 sample firms. This procedure produced

an estimated ETACC2008 which is compared to the actual ATACC2008.

This comparison produced the unexpected total accruals (UTACC2008) for the

event year.

UTACC2008 ¼ ETACC2008 � ATACC2008 (61.2)

where

UTACC2008 is the unexpected total accruals for the event year 2008

ETACC2008 is the estimated expected total accruals for the event year 2008

ATACC2008 is the actual total accruals for the event year 2008.

Step 5: Test for earnings management. This study ran several parametric and

nonparametric statistics to test for earnings management as follows:
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1. Correlations: We measured correlation coefficients (Pearson, Kendall’s tau,

and Spearman’s Rho) to test for significant correlation between UTACC2008

and DONACF (a change in operating cash flows). A significant negative

correlation between the two variables would represent a good sign of earnings

management, i.e., a higher level of a change in operating cash flows nega-

tively correlates with higher UTACC2008 (Leuz et al., September 2003).

2. T-test: We compared means UTACC2008 for North American companies

against all other international companies included in the sample.

3. Regression analysis: We ran the following regression model

UTACC2008 ¼ bi Countryþ x (61.3)

where

UTACC2008 is the unexpected total accruals for 2008

Country is a partition variable coded 1 for North American companies,

0 otherwise

x is an error term.

Step 6: Testing for use of special items to manage earnings.

This study assumes that integrated oil and gas companies will find it easier and less

costly to manage earnings using special items such as SPI, WDP, GDWLIP, and
XRD. T-test is used to compare means of each of these items for 2008 fiscal year

and pre-2008 means. Unlike total accruals which require a fitting period and an

event period, special items’ expected level is always zero (Marquardt andWiedman

2004a). Consequently, the unexpected amount of any of the above items is

USPI2008 ¼ SPI � 0,

UWDP2008 ¼ UWDP� 0,

UGDWLIP2008 ¼ GDWLIP � 0,

UXRD2008 ¼ XRD� 0

where

USPI2008 is unexpected special items for fiscal year 2008

UWDP2008 is unexpected write-downs for fiscal year 2008

UGDWLIP2008 is unexpected goodwill impairment loss for fiscal year 2008

UXRD2008 is unexpected research and development for fiscal year 2008.
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Abstract

This paper examines two asymmetric stochastic volatility models used to describe

the volatility dependencies found in most financial returns. The first is

the autoregressive stochastic volatility model with Student’s t-distribution

(ARSV-t), and the second is the basic Svol of JPR (Journal of Business and
Economic Statistics 12(4), 371–417, 1994). In order to estimate these models, our

analysis is based on the Markov Chain Monte Carlo (MCMC) method. Therefore,

the technique used is a Metropolis-Hastings (Hastings, Biometrika 57, 97–109,
1970), and the Gibbs sampler (Casella and George The American Statistician
46(3) 167–174, 1992; Gelfand and Smith, Journal of the American Statistical
Association 85, 398–409, 1990; Gilks et al. 1993). The empirical results concerned

on the Standard and Poor’s 500 Composite Index (S&P), CAC 40, Nasdaq,

Nikkei, and Dow Jones stock price indexes reveal that the ARSV-t model provides

a better performance than the Svol model on the mean squared error (MSE) and

the maximum likelihood function.

Keywords

Autoregression • Asymmetric stochastic volatility • MCMC • Metropolis-

Hastings • Gibbs sampler • Volatility dependencies • Student’s t-distribution •

SVOL • MSE • Financial returns • Stock price indexes

62.1 Introduction

Stochastic volatility (SV) models are workhorses for the modelling and prediction

of time-varying volatility on financial markets and are essential tools in risk

management, asset pricing, and asset allocation. In financial mathematics and finan-

cial economics, stochastic volatility is typically modelled in a continuous time setting

which is advantageous for derivative pricing and portfolio optimization. Neverthe-

less, since data is typically only observable at discrete points in time, in empirical

applications, discrete-time formulations of SV models are equally important.

Volatility plays an important role in determining the overall risk of a portfolio

and identifying hedging strategies that make the portfolio neutral with respect to

market moves. Moreover, volatility forecasting is also crucial in derivatives trading.

Recently, SV models allowing the mean level of volatility to “jump” have been

used in the literature; see Chang et al. (2007), Chib et al. (2002), and Eraker

et al. (2002). The volatility of financial markets is a subject of constant analysis

movements in the price of financial assets which directly affects the wealth of

individual, companies, charities, and other corporate bodies. Determining whether

there are any patterns in the size and frequency of such movements, or in their cause

and effect, is critical in devising strategies for investments at the micro level and

monetary stability at the macro level. Shephard and Pitt (1997) used improved and

efficient Markov Chain Monte Carlo (MCMC) methods to estimate the volatility

process “in block” rather than one point of time such as highlighted by

Jacquier et al. (1994), for a simple SV model. Furthermore, Hsu and Chiao (2011)
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analyze the time patterns of individual analyst’s relative accuracy ranking in earnings

forecasts using a Markov chain model by treating two levels of stochastic persistence.

Least squares and maximum likelihood techniques have long been used in

parameter estimation problems.

However, those techniques provide only point estimates with unknown or approx-

imate uncertainty information. Bayesian inference coupled with the Gibbs sampler is

an approach to parameter estimation that exploits modern computing technology.

The estimation results are complete with exact uncertainty information. Section 62.2

presents the Bayesian approach and the MCMC algorithms. The SV model is

introduced in Sect. 62.3, whereas empirical illustrations are given in Sect. 62.4.

62.2 The Bayesian Approach and the MCMC Algorithm

The Bayesian approach is a classical methodology where we assume that there is a set

of unknown parameters. Alternatively, in the Bayesian approach the parameters are

considered as random variables with given prior distributions. We then use observa-

tions (the likelihood) to update these distributions and obtain the posterior distributions.

Formally, let X¼ (X1, . . . , XT) denote the observed data and y a parameter vector:

P
y
X

� �
/ P

X

y

� �
� P yð Þ

The posterior distribution P(y/X) of a parameter y/ given the observed data X, where
P(X/y)denotes the likelihooddistributionofXandP(y)denotes thepriordistributionofy.

It would seem that in order to be as subjective as possible and to use

the observations as much as possible, one should use priors that are non-informative.

However, this can sometimes create degeneracy issues and one should choose

a different prior for this reason. Markov Chain Monte Carlo (MCMC) includes the

Gibbs sampler as well as the Metropolis-Hastings (M-H) algorithm.

62.2.1 The Metropolis-Hastings

The Metropolis-Hastings is the baseline for MCMC schemes that simulate

a Markov chain y(t) with P(y/Y) as the stationary distribution of a parameter y
given a stock price index X. For example, we can define y1, y2, and y3
such that y ¼ (y1, y2, y3) where each y1 can be scalar, vectors, or matrices.

MCMC algorithms are iterative, and so at iteration t we will sample in turn

from the three conditional distributions. Firstly, we update y1 by drawing a value

y1
(t) from p(y1/Y, y2

(t�1), y3
(t�1)). Secondly, we draw a value for y2

(t) from p(y2/Y, y1
(t),

y3
(t�1)), and finally, we draw y3

(t) from p(y3/Y, y1
(t), y2

(t)).

We start the algorithm by selecting initial values, yi
(0), for the three parameters.

Then sampling from the three conditional distributions in turn will produce a set of

Markov chains whose equilibrium distributions can be shown to be the joint

posterior distributions that we require.
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Following Hastings (1970), a generic step from a M-H algorithm to update

parameter yi at iteration t is as follows:

1. Sample yi
* from the proposal distribution pt(yi/yi

(t�1)).

2. Calculate f ¼ pt(yi
(t�1)/yi

*)/pt(yi
*/yi

(t�1)) which is known as the Hastings ratio

and which equals 1 for symmetric proposals as used in pure Metropolis sampling.

3. Calculate st ¼ fp(yi
*/Y, fi)/p(yi

(t�1)/Y, fi), where fi is the acceptance ratio and

gives the probability of accepting the proposed value.

4. Let yi
(t) ¼ yi

* with probability min(1, st); otherwise let yi
(t) ¼ yi

(t � 1).

A popular and more efficient method is the acceptance-rejection (A-R) M-H

sampling method which is available. Whenever the target densities are bounded by

a density from which it is easy to sample.

62.2.2 The Gibbs Sampler

TheGibbssampler(CasellaandEdward1992;GelfandandSmith1990;Gilksetal.1992)

is the special M-H algorithm whereby the proposal density for updating yj equals the
full conditional p(yj

*/yj) so that proposals are acceptance with probability 1.
The Gibbs sampler involves parameter-by-parameter or block-by-block

updating, which when completed from the transaction from y(t) to y(t+1):
1. y1

(t+1) � f1(y1/y2
t , y3

(t), . . . yD
(t))

2. y2
(t+1) � f2(y2/y1

t+1, y3
(t), . . . yD

(t))

.

.

.

.

D. yD
(t+1) � fD(yD/y1

t+1, y2
(t+1), . . . yD � 1

(t+1) )

Repeated sampling from M-H samplers such as the Gibbs samplers generates

an autocorrelated sequence of numbers that, subject to regularity

condition (ergodicity, etc.), eventually “forgets” the starting values y0¼ (y1
(0), y2

(0),

. . . . . . , yD
(0)) used to initialize the chain and converges to a stationary sampling

distribution p(y/y).
In practice, Gibbs and M-H algorithms are often combined, which results in

a “hybrid” MCMC procedure.

62.3 The Stochastic Volatility Model

62.3.1 Autoregressive SV Model with Student’s Distribution

In this paper, we will consider the pth order ARSV-t model, ARSV(p)-t, as follows:

Yt ¼ sx exp Vt=2ð Þ
Vt ¼ f1Vt�1 þ ::::þ fpVt�p þ �t�1

�
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xt ¼
etffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kt= n� 2ð Þp

kt � w2 nð Þ

where kt is independent of (et, �t), Yt is the stock return for market indexes, and Vt is

the log-volatility which is assumed to follow a stationarity AR(p) process

with a persistent parameter jfj ≺ 1. By this specification, the conditional

distribution, xt, follows the standardized t-distribution with mean zero and variance

one. Since kt is independent of (et, �t), the correlation coefficient between xt and �t
is also r.

If f � N(0, 1), then

f1 ¼

XT
t¼1

VtVt�1

 !
� f2

XT
t¼1

Vt�1Vt�2

 !
þ f1

Xt
t¼1

V2
t�1

 !
� 1

and

f2 ¼

XT
t¼2

VtVt�2

 !
� f1

XT
t¼2

Vt�1Vt�2

 !
þ f2

XT
t¼2

V2
t�2

 !
� 1

The conditional posterior distribution of the volatility is given by

p V=Y, Yð Þ / e

1

2 � s2
XT
t¼1

Y2
t e

�Vt

 ! 
� 1

2

XT
t¼1

Vt � f1Vt�1 � f2Vt�2ð Þ2

� 1

2

XT
t¼1

Vtþ1 � f1Vt � f2Vt�2ð Þ2
!

The representation of the SV-t model in terms of a scale mixture is particularity

useful in a MCMC context since it allows for sampling a non-log-concave sampling

problem into a log-concave one. This allows for sampling algorithms which guarantee

convergence in finite time (see Frieze et al. 1994). Allowing log returns to be student-t-

distributed naturally changes the behavior of the stochastic volatility process; in the

standard SV model, large value of jYtj induces large value of the Vt.

62 A Comparative Study of Two Models SV with MCMC Algorithm 1701



62.3.2 Basic Svol Model

Jacquier, Polson, and Rossi (1994), hereafter JPR, introduced Markov chain tech-

nique (MCMC) for the estimation of the basic Svol model with normally distributed

conditional errors:

Yt ¼
ffiffiffiffiffi
Vt

p
est

log Vtð Þ ¼ aþ d log Vt�1ð Þ þ sn ent

�

est ; e
n
t

� � � N 0; I2ð Þ

LetY¼ (a, d,sv) be the vector of parameters of the basic SVOL, andV ¼ Vtð ÞTt¼1,

where a is the intercept. The parameter vector consists of a location a, a volatility

persistence d, and a volatility of volatility sn.
The basic Svol specifies zero correlation, the errors of the mean, and variance

equations.

Briefly, the Hammersley-Clifford theorem states that having a parameter-set Y,

a state Vt, and an observation Yt, we can obtain the joint distribution p(Y, V/Y)
from p(Y, V/Y) and p(V/Y, Y), under some mild regularity conditions.

Therefore by applying the theorem iteratively, we can break a complicated

multidimensional estimation problem into many sample one-dimensional

problems.

Creating a Markov chain Y(t) via a Monte Carlo process, the ergodic averaging

theorem states that the time average of a parameter will converge towards its

posterior mean.

The formula of Bayes factorizes the posterior distribution likelihood function

with prior hypotheses:

P Y,V=Yð ÞaP Y=V,Yð ÞP V=Yð ÞP Yð Þ

where a is the intercept, d the volatility persistence, and sv is the standard deviation
of the shock to log Vt.

We use a normal-gamma prior, so, the parameters a, d � N, and sv
2 � IG,

(Appendix 1)

Then

P a, d=sv,V, Yð Þ �
Y

P Vt=Vt�1, a, d,svð ÞP a; dð ÞaN

And for sv, we obtain

P s2=a, sv,V,Y
� �

a
Y

P Vt=Vt�1, a, d, svð ÞP s2v
� �

aIG
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62.4 Empirical Illustration

62.4.1 The Data

Our empirical analysis focuses on the study of five international financial indexes:

the Dow Jones Industrial, the Nikkei, the CAC 40, the S&P500, and the

Nasdaq. The indexes are compiled and provided by Morgan Stanley Capital

International. The returns are defined as yt ¼ 100 * (log St � log St�1). We used

the last 2,252 observations for all indexes except the Nikkei, when we have only

used 2,201 observations due to lack of data. The daily stock market indexes are for

five different countries over the period 1 January 2000 to 31 December 2008.

Table 62.1 reports the mean, standard deviation, median, and the empirical

skewness as well as kurtosis of the five series. All series reveal negative skewness

and overkurtosis which is a common finding of financial returns.

62.4.2 Estimation of SV Models

The standard SV model is estimated by running the Gibbs and A-R M-H algorithm

based on 15,000 MCMC iterations, where 5,000 iterations are used as burn-in period.

Tables 62.2 and 62.3 show the estimation results in the basic Svol model and the

SV-t model of the daily indexes. a and d are independent priors.

The prior in d is essentially flat over [0, 1]. We impose stationarity for log(Vt) by

truncating the prior of d. Other priors for d are possible.

Geweke (1994a, b) proposes alternative priors to allow the formulation of odds

ratios for non-stationarity. Whereas Kim et al. (1998) center an informative Beta

prior around 0.9.

Table 62.2 Estimation results for the Svol model

CAC 40 Dow Jones Nasdaq Nikkei S&P

s 0.4317(0.0312) 0.4561(0.0421) 0.5103(0.0393) 0.5386(0.0523) 0.4435(0.0623)

a �0.1270(0.0421) 0.0059(0.0534) 0.1596(0.0332) 0.1966(0.0493) �0.1285(0.0593)

d �0.7821(0.0621) 0.0673(0.0317) 0.6112(0.0429) 0.8535(0.0645) 0.7224(0.0423)

Table 62.1 Summary statistics for daily returns

Mean SD Median Skewness Kurtosis

CAC 40 3.7E-04 0.013 5.0e-4 �0.295 5.455

Dow Jones 2.8e-04 0.015 4.0e-4 �0.368 4.522

Nasdaq 2.5e-04 0.014 5.5e-4 �0.523 6.237

Nikkei 3.5e-04 0.005 3.2e-4 �0.698 3.268

S&P 2.8e-04 0.008 4.5e-4 �0.523 5.659
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Table 62.2 shows the results for the daily indexes. The posterior of d are higher

for the daily series. The highest means are 0.782, 0.067, 0.611, 0.85, and 0.722, for

the full sample Nikkei.

This result is not a priori curious because the model of Jacquier et al. (1994) can

lead to biased volatility forecast.

Well, as the basic SVOL, there is no apparent evidence of unit of volatility.

There are other factors that can deflect this rate such exchange rate (O’Brien and

Dolde 2000).

Deduced from this model, against the empirical evidence, positive and negative

shocks have the same effect in volatility.

Table 62.3 shows the Metropolis-Hastings estimates of the autoregressive SV

model.

The estimates of f are between 0.554 and 0.643, while those of s are between

0.15 and 0.205.

Against, the posterior of f for the SV-t model are located higher.1 This is

consistent with temporal aggregation (as suggested by Meddahi and Renault

2000). This result confirms the typical persistence reported in the GARCH litera-

ture. After the result, the first volatility factors have higher persistence, while the

small values of F2 indicate the low persistence of the second volatility factors.

The second factorF2 plays an important role in the sense that it captures extreme

values, which may produce the leverage effect, and then it can be considered

conceivable.

The estimates of r are negative in most cases. Another thing to note is that these

estimates are relatively higher than that observed by Asai et al. (2006) and Manabu

Asai (2008). The estimated of r for index S&P using Monte Carlo simulation

is �0.3117, then it is �0.0235 using Metropolis-Hasting. This implies that for each

data set, the innovations in the mean and volatility are negatively correlated.

Negative correlations between mean and variance errors can produce

a “leverage” effect in which negative (positive) shocks to the mean are associated

with increases (decreases) in volatility.

The return of different indexes not only is affected by market structure

(Sharma 2011) but also is deeply influenced by different crises observed in inter-

national market, i.e., the Asian crises detected in 1987 and the Russian one in 2002.

Table 62.3 Estimation results for the SV-t model

CAC 40 Dow Jones Nasdaq Nikkei S&P

F1 0.4548(0.0037) 0.40839(0.0021) 0.5225(0.0065) 0.4348(0.0059) 0.2890(0.0046)

F2 0.5544(0.1524) 0.6437(0.1789) 0.4473(0.1326) 0.4865(0.1628) 0.6133(0.1856)

s 0.0154(0.0294) 0.0205(0.0367) 0.0131(0.0524) 0.0148(0.0689) 0.0135(0.0312)

r �0.02191(0.0625) �0.0306(0.0346) �0.0489(0.0498) �0.0751(0.0255) �0.0235(0.0568)

1We choose p¼ 2 because if p¼ 1 and v!1, the ARSV-t model declined to the asymmetric SV

model of Harvey and Shephard (1996).
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The markets in our sample are subject to several crises that directly affect the

evolution of the return indexes. The event of 11 September 2002 the Russian crisis

and especially the beginning of the subprime crisis in the United States in July 2007

justify our results. These results explored in Fig. 62.1 suggest that periods of market

crisis or stress increase the volatility. Then the volatility at time (t) depends on the

volatility at (t�1) (Engle 1982).

When the new information comes in the market, it can be disrupted and this

affects the anticipation of shareholders for the evolution of the return.
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The resulting plots of the smoothed volatilities are shown in Fig. 62.2. We take

our analysis in the Nikkei indexes, but the others are reported in Appendix 2.

The convergence is very remarkable for the Nikkei, like Dow Jones, Nasdaq, and

the CAC 40 indexes. This enhances the idea that the algorithm used for estimated

volatility is a good choice.

The basic Svol model mis-specified can induce substantial parameter bias and

error in inference about Vt; Geweke (1994a, b) showed that the basic Svol has the

same problem with the largest outlier, October 1987 “Asiatique crisis.” The Vt for

the model Svol reveal a big outlier on period crises.

The corresponding plots of innovation are given by Fig. 62.3 for two models

basic Svol and SV-t for Nikkei indexes. Appendix 3 shows the QQ plot for the other

indexes, respectively, for the Nasdaq, S&P, Dow Jones, and CAC 40 for the two

models. The standardized innovation reveals a big outlier when the market in stress

(Hwang and Salmon 2004).
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The advantages of asymmetric basic SV is able to capture some aspects of

financial market and the main properties of their volatility behavior (Danielsson

1994; Chaos 1991; Eraker et al. 2000).

It is shown that the inclusion of student-t errors improves the distributional

properties of the model only slightly. Actually, we observe that basic Svol model

is not able to capture extreme observation in the tail of the distribution. In contrast,

the SV-t model turns out to be more appropriate to accommodate outliers.

The corresponding plot of innovation for the basic model is unable to capture the

distribution properties of the returns. This is confirmed by the Jarque-Bera normal-

ity test and the QQ plot revealing departures from normality, mainly stemming

from extreme innovation.

Finally, in order to detect which of the two models is better, we opt for two

indicators of performance, such as the likelihood and the MSE. Likelihood is

a function of the parameters of the statistical model that plays a preponderant role

in statistical inference. MSE is called squared error loss, and it measures the

average of the square of “error.” Table 62.4 reveals the results for this measure

and indicates that the SV-t model is much more efficient than the other. Indeed, in

terms of comparison, we are interested in the convergence of two models. We find

that convergence to the SV-t model is fast.

Table 62.4 shows the performance of the algorithm and the consequence of using

the wrong model on the estimates of volatility. The efficiency is at 60 %.

The MCMC is more efficient for all parameters used in these two models. In

a certain threshold, all parameters are stable and converge to a certain level.

Appendices 4 and 5 show that the a, d, s, f converge and stabilize; this shows

the power for MCMC.

The results for both simulated show that the algorithm of SV-t model is fast and

converges rapidly with acceptable levels of numerical efficiency. Then, our sam-

pling provides strong evidence of convergence of the chain.

62.5 Conclusion

We have applied these MCMC methods to the study of various indexes. The

ARSV-t models were compared with Svol models of Jacquier et al. (1994) models

using the S&P, Dow Jones, Nasdaq, Nikkei, and CAC 40.

The empirical results show that SV-t model can describe extreme values to a certain

extent, but it is more appropriate to accommodate outliers. Surprisingly, we have

frequently observed that the best model is the Student’s t-distribution (ARSV-t) with

their forecast performance. Our result confirms the finding from Manabu Asai (2008),

who indicates, first, that the ARSV-t model provides a better fit than the MFSV model

and, second, the positive and negative shocks do not have the same effect in volatility.

Our result proves the efficiency of Markov chain for our sample and the convergence

and stability for all parameters to a certain level. This paper has made certain

contributions, but several extensions are still possible. To find the best results, opt for

extensions of SVOL.
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Appendix 1

The posterior volatility is

P V=Y,Vð Þ / P Y=Y,Vð ÞP V=Yð Þ /
YT
t¼1

P Vt=Vt�1,Vtþ1,Y, Ytð Þ
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with

P V=Vt�1,Vtþ1,Y, Ytð Þ / P Yt=Vt,Yð ÞP Vt=Vt�1,Yð ÞP Vtþ1=Vt,Yð Þ

A simple calculation shows that

Y
Vtð Þ ¼ P Vt=Vt�1,Vtþ1,Y, Ytð Þ / 1

V0:5
t

exp
�Y2

t

2Vt

� �
1

Vt
exp � logVt � mtð Þ2

2s2

 !

with

mt ¼
a 1� bð Þ þ b logVtþ1 þ logVt�1ð Þ

1þ b2

and

s2 ¼ s2v
1þ b2

The MCMC algorithm consists of the following steps:

P a, d=sn,V, Yð Þ � N

P s2n=a, d,V,Y
� � � IG
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P Vt=Vt�1,Vtþ1,Y,Ytð Þ : Metropolis-Hastings

An iteration (j),

a jð Þ ¼

XT
t¼1

logV
j�1ð Þ

t � b j�1ð ÞXT
t¼1

logV
j�1ð Þ
t�1

s2n
� � j�1ð Þ þ T

By following the same approach, the estimator d at step (j) is given by

d jð Þ ¼

XT
t¼1

logV
j�1ð Þ
t�1 logV

j�1ð Þ
t � a jð Þ

� 	h i

s2n
� � j�1ð Þ þ

XT
t¼1

logV
j�1ð Þ
t�1

� 	2

For parameter sv
2, the prior density is an inverse gamma (IG (a, b)). The

expression of the estimator parameter sv
2 at step (j) is given by

s2v
� � jð Þ ¼

1

2

XT
t¼1

logV
j�1ð Þ
t � a jð Þ � d jð ÞlogV j�1ð Þ

t�1

� 	2
þ b

T=2þ a� 1
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Appendix 2

See Fig. 62.4

Appendix 3

See Fig. 62.5

Appendix 4

See Fig. 62.6

Appendix 5

See Fig. 62.7
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Abstract

We examine the impact of internal control material weaknesses (ICMW

hereafter) on sell-side analysts. Using matched firms, we find that ICMW

reporting firms have less accurate analyst forecasts relative to non-reporting

firms when the reported ICMWs belong to the Pervasive type. ICMW

reporting firms have more optimistically biased analyst forecasts compared

to non-reporting firms. The optimistic bias exists only in the forecasts issued

by the analysts affiliated with less highly reputable brokerage houses. The

differences in accuracy and bias between ICMW and non-ICMW firms disap-

pear when ICMW disclosing firms stop disclosing ICMWs. Collectively, our

results suggest that the weaknesses in internal control increase forecasting

errors and upward bias for financial analysts. However, a good brokerage

reputation can curb the optimistic bias.

We use the Ordinary Least Squares (OLS) methodology in the main

tests to examine the impact of internal control material weaknesses (ICMW

hereafter) on sell-side analysts. We match our ICMW firms with non-ICMWs

based on industry, sales, and assets. We reestimate the models using rank

regression technique to assess the sensitivity of the results to the underlying

functional form assumption made by OLS. We use Cook’s distance to test

the outliers.

Keywords

Internal control material weakness • Analyst forecast accuracy • Analyst

forecast bias • Brokerage reputation • Sarbanes-Oxley act • Ordinary least

squares regressions • Rank regressions • Fixed effects • Matching procedure •

Cook’s distance

63.1 Introduction

As part of the Sarbanes-Oxley Act of 2002 (SOX), SEC registrants’ executives

are now required to certify that they have evaluated the effectiveness of

their internal controls over financial reporting (Section 302, effective in

August 2002) and to provide an annual report to assess the effectiveness

of the internal control structure and procedures (Section 404, effective
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in November 2004).1,2 These assessments of internal control requirements have

arguably been the most controversial aspect of SOX. On the one hand, many firms

complain that internal control problems are inconsequential for financial statement

users, and hence the high compliance costs of assessing internal control are not

justified (Solomon 2005). On the other hand, a growing chorus of investors claims

that good internal controls result in much more reliable corporate financial state-

ments, which benefit financial statement users by reducing their information col-

lection and interpretation costs.3

In this paper we test whether internal control problems are inconsequential for

financial statement users by examining the impact of internal control material

weaknesses (ICMWs hereafter) on one group of the most important financial

statement users – sell-side analysts. We examine the association between the

analyst forecast accuracy and bias and the disclosed ICMWs under SOX Sections

302 and 404 and how the brokerage reputation will influence this association.

Additionally, we investigate the impact of the types and severity of ICMWs on

forecast accuracy.

Based on a sample of 727 firms that have disclosed ICMWs since August

of 2002, we find that the analysts’ forecasts are less accurate among ICMW

reporting firms relative to matched non-reporting firms. When we classify

ICMW reporting firms into Pervasive or Contained ICMW reporting firms, the

accuracy is significantly lower among Pervasive ICMW reporting firms.

Our findings suggest that Pervasive ICMWs significantly increase the complexity

of the forecasting task for analysts. In contrast, Contained ICMWs alone do not

significantly increase the complexity of the forecasting task for analysts.

When we investigate the association between analyst forecast bias and ICMWs,

1Key points of Section 302 include the following: (1) The signing officers must certify that they are

responsible for establishing and maintaining internal control and have designed such internal

controls to ensure that material information relating to the registrants and its consolidated sub-

sidiaries is made known to such officers by others within those entities, particularly during the

period in which the periodic reports are being prepared. (2) The officers must query “have

evaluated the effectiveness of the registrant’s internal controls” as of a date within 90 days prior

to the report and have presented in the report their conclusions about the effectiveness of their

internal controls based on their evaluation as of that date.
2Key points of Section 404 include the following: (1) Management is required to produce an

internal control report as part of each annual Exchange Act report. (2) The report must affirm the

responsibility of management for establishing and maintaining an adequate internal control

structure and procedures for financial reporting. (3) The report must also contain an assessment,

as of the end of the most recent fiscal year of the registrant, of the effectiveness of the internal

control structure and procedures of the issuer for financial reporting. (4) External auditors are

required to issue an opinion on whether effective internal control over financial reporting was

maintained in all material respects by management. This is in addition to the financial statement

opinion regarding the accuracy of the financial statements.
3For example, Donald J. Peters, a portfolio manager at T. Rowe Price Group, says: “The accounting

reforms [of SOX] have been a win. It is [now] much easier for financial statement users to have a view

of the true economics” of a company (Wall Street Journal, January 29, 2007).
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we find that the analysts’ forecasts are more optimistically biased toward ICMW

reporting firms compared to matched non-reporting firms. Taken together,

our overall findings on accuracy and bias suggest that ICMWs add a unique

dimension to forecasting complexity.

In addition, we separate the analysts’ brokerage houses into two groups:

highly reputable and less highly reputable brokerage houses. Highly reputable

brokerage houses value analysts’ reports more than less highly reputable

brokerage houses. Hence, analysts are likely to feel constrained from adding

an arbitrarily high optimistic bias to their private estimates for fear of hurting

the brokerage house’s reputation. In addition, more reputable brokerage firms

tend to spend significant resources in collecting information, and thus the

access to firms’ private information is relatively less important for analysts

from highly reputable brokerage houses (compared to those from less highly

reputable brokerage houses). We predict and find that analysts from less

highly reputable brokerage houses are more likely to issue optimistic forecasts

for ICMW reporting firms.

We also examine the association between ICMW and forecast accuracy (and

bias) in the post-reporting periods. We find that the differences in accuracy and bias

between ICMW reporting firms and control firms disappear when firms stop

reporting material weaknesses.

This paper makes four major contributions to the accounting literature.

First, sell-side analysts are among the most important users of financial

reports. Researchers have long been interested in learning about analysts’ use

of accounting information (Schipper 1991). While prior studies provide evidence

of the link between earnings quality and weaknesses in internal control, exactly

how weakness in internal control affects the users of earnings reports directly has

been largely ignored.4 This study adds to this research by directly documenting

a relation between ICMW and accuracy along with bias of analyst forecasts. The

evidence presented in this paper shows that internal control deficiencies can

influence the quality of analysts’ forecasts.

Secondly, this study finds that not all ICMWs are created equal. The association

between ICMW and forecast accuracy depends upon the severity of the reported

ICMWs. When we separate material weaknesses into Contained or Pervasive types

of weaknesses (based on the severity of the weaknesses), we find that firms

identified with Pervasive ICMWs are more likely to be associated with forecast

errors. In contrast, the relation between ICMW and accuracy is insignificant among

firms identified with Contained ICMWs.

Thirdly, we are able to link brokerage reputation to the analysts’ optimistic

bias. Conceptually, it makes sense that the optimistic bias should be related to

the reputation of the brokerage houses since highly reputable brokerage houses

4A recent working paper by Kim et al. (2009) confirms our results. They find that internal control

quality is inversely; associated with analysts’ error and forecast dispersion.
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are more concerned with the analysts’ forecasts. In addition, highly reputable

houses have the resources to conduct more sophisticated analyses. This study

presents the evidence to demonstrate that a good brokerage reputation can curb

the optimistic bias.

Finally, the study also shows that the differences in accuracy and bias between

ICMW reporting firms and control firms disappear when firms stop reporting

material weaknesses. We provide evidence that ICMWs indeed contribute to

lower forecast accuracy and more positive forecast bias.

The chapter is organized as follows. Section 63.2 develops hypotheses, and

Sect. 63.3 describes sample selection process and forecast properties measurement.

Sections 63.4 and 63.5 present the empirical tests and additional analysis, respec-

tively. Conclusions are presented in Sect. 63.6.

63.2 Hypothesis Development

63.2.1 Internal Control Material Weakness and Forecast Accuracy

The extant literature on the relation between ICMW, accruals quality, and man-

agement’s earnings guidance implies that ICMWs could affect analysts’ forecast

accuracy.

Doyle et al. (2007a) and Ashbaugh et al. (2008) find that ICMW reporting firms

have lower accruals quality. Lobo et al. (2012) link accruals quality with analysts’

forecast accuracy by documenting that firms with lower accruals quality tend to

have larger forecast errors. They conclude that analysts are unable to fully resolve

the uncertainty in firms with lower accruals quality.

Extant literature also suggests that ICMWs could affect management’s earnings

guidance. In a recent study, Feng et al. (2009) discover that ICMW reporting firms

have less accurate management earnings guidance. Management’s earnings

guidance has been shown to be directly related to forecast accuracy, since the

earnings guidance provides valuable information for analysts (Chen et al. 2011).

Thus, we conjecture that ICMW disclosing firms are associated with less accurate

analysts’ earnings forecast. This leads to our first hypothesis in the alternative form

as the following:

H1 Analysts’ earnings forecast for ICMW reporting firms will be less accurate

relative to non-reporting firms (in alternative form).

Internal control material weaknesses vary widely with respect to severity

and underlying reasons. (See page 196 of Doyle et al. 2007b). Doyle

et al. (2007b) find that the type of internal control problem is an important

factor when examining determinants of ICMWs. They recommend that the type

and severity of ICMWs should be considered by future research on

internal control.

If a firm’s management lacks the abilities or resources to exercise efficient

internal control within the firm, the firm tends to have ICMWs about the overall

63 Internal Control Material Weakness 1723



control environment (defined as Pervasive ICMWs).5 Alternatively, even if

management has sufficient capabilities and resources to prepare accurate and

adequate financial statements, a firm may still have internal control deficiencies

over financial reporting. Such internal control deficiencies may be related

to controls over specific account balances or transaction-level processes

(defined as Contained ICMWs).6,7 Doyle et al. (2007a) find that among all

ICMW reporting firms, the earnings quality is significantly lower for firms

reporting Pervasive ICMWs. In contrast, Contained ICMWs have no impact

on earnings quality.

In making their forecasts, analysts can use earnings-related information,

disaggregated segmental information, and information provided by management

(Previts and Bricker 1994; Bouwman and Frishkoff 1995; Rogers and Grant 1997).

If analysts use firms’ earnings-related and segmental information to make forecasts,

they might have more difficulty in predicting earnings for firms with Pervasive

ICMWs. This is because earnings quality of Pervasive type ICMW firms is low

(Doyle et al. 2007a). On the contrary, analysts should have no difficulty in

predicting earnings for firms with Contained ICMWs, because auditors would be

able to mitigate the errors in reported earnings associated with Contained ICMWs.

Consistent with this argument, Doyle et al. (2007a) find that account-specific

material weaknesses are not associated with lower earnings quality. If analysts

use the guidance provided by management or other unaudited reports to make

forecasts, it is possible that Contained ICMWs might still introduce errors into

the reports since these reports are unaudited. In this case, both Pervasive and

Contained ICMWs may increase the forecasting difficulties for analysts. Taken

together, the forecast errors are expected to be larger for firms with Pervasive

ICMWs than for firms with Contained ICMWs.

To compare the forecast accuracy between Pervasive and Contained ICMWs,

we classify firms into two groups based on the company’s stated reasons for

material weaknesses. The first group of firms discloses only Contained ICMWs

5For example, DynTek Inc. disclosed the following deficiencies in their 2004, 10-K: “The material

weaknesses that we have identified relate to the fact that our overall financial reporting structure

and current staffing levels are not sufficient to support the complexity of our financial reporting

requirements. We have experienced employee turnover in our accounting department including

the position of Chief Financial Officer. As a result, we have experienced difficulty with respect to

our ability to record, process and summarize all of the information that we need to close our books

and records on a timely basis and deliver our reports to the Securities and Exchange Commission

within the time frames required under the Commission’s rules.”
6For example, Westmoreland Coal Inc. disclosed the following deficiencies in their 2005, 10-K:

“The company’s policies and procedures regarding coal sales contracts with its customers did not

provide for a sufficiently detailed, periodic management review of the accounting for payments

received. This material weakness resulted in a material overstatement of coal revenues and an

overstatement of amortization of capitalized asset retirement costs.” Moody suggests that these

types of material weaknesses are “auditable” and thus do not represent as serious a concern

regarding the reliability of the financial statements.
7The detailed classification of Pervasive and Contained ICMWs is provided in Appendix 1.
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(defined as G1 firms), which are related to controls over specific accounting

choices. The second group of firms discloses Pervasive ICMWs (with or without

Contained ICMWs) (defined as G2 firms). Note that unlike G1 firms that disclose

only one type of ICMWs (i.e., Contained ICMWs). G2 firms may disclose two

types of ICMWs (i.e., Pervasive as well as Contained ICMWs).8 We have the

following hypothesis based on the types of ICMWs:

H2 The analysts’ forecast errors are more pronounced for forecasts issued for G2

firms (compared to those issued for G1 firms) (in alternative form).

63.2.2 Internal Control Material Weaknesses and Optimistic
Forecast Bias

Extant literature suggests that sell-side analysts have an inclination to issue optimistic

forecasts for several reasons. First, the compensation of analysts is tied to the amount

of trade they generate for their brokerage firms. Given widespread unwillingness or

inability to sell short, more trades will result from more optimistic forecasts.

Moreover, mutual funds, the client group with resources to generate large trades,

are precluded by regulation from selling short. Hence, without reputation concerns,

analysts will prefer to issue more optimistic forecasts.

Secondly, a positive outlook improves the chances of analysts’ brokerage houses

winning investment banking deals. A number of prior studies have suggested that

initial public offering (IPO) activities may compromise the quality of analysts’

research. For example, Womack (1996) argues that analysts are reluctant to issue

unfavorable forecasts if there is an IPO underwriting relationship.

Thirdly, prior studies show that analyst forecasts contain private information in

addition to a statistical model based only on public information. Hence, access to

management is crucial for analysts, as evidenced by the reports from Institutional

Investor (a firm that compiles annual analyst rankings) showing that analysts rank the

access to management as the sixth most valuable attribute out of 13 attributes (ahead

of accuracy of earnings estimates, written reports, stock selection, and financial

modeling). As evidenced by Huang et al. (2005), being optimistic has historically

helped analysts maintain good relations with management.9

8The conclusions of this paper remain the same if we classify G2 firms as firms disclosing only

Pervasive ICMWs.
9Our sample period starts after the introduction of Regulation Fair Disclosure (Reg. FD). The goal

of Reg. FD is to prohibit management from selectively disclosing private information to analysts.

However, as pointed out by recent research (see, e.g., Ke and Yu 2006; Kanagaretnam et al. 2012),

there is no empirical evidence of management relations incentive weakening after Reg. FD. In the

post-Reg. FD period, there are other incentives for analysts to please management, such as to gain

favored participation in conference calls (Libby et al. 2008; Mayew 2008). Anecdotal evidence

also shows that Reg. FD does not prevent a company from more subtle forms of retaliations against

analysts who issue negative research reports (Solomon and Frank 2003).
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The optimistic bias in analyst forecasts is more pronounced when earnings are

less predictable (e.g., Lim 2001; Das et al. 1998). Feeling less accountable in

uncertain environments, analysts are inclined to issue more optimistic forecasts.

Consistently, Zhang (2006) concludes that greater information uncertainty predicts

more positive forecast bias.

Since both less predictable earnings (Doyle et al. 2007a) and an uncertain

information environment (Beneish et al. 2008) are more prevalent among ICMW

firms, we expect that analysts will issue positively biased forecasts when firms have

ICMWs.10 We, therefore, offer our next hypothesis regarding the relation between

forecast bias and ICMWs:

H3 Analysts’ earnings forecasts are more positively biased among ICMW reporting

firms relative to non-reporting firms (in alternative form).

63.2.3 The Impact of the Reputation of Brokerage Houses

As we discussed before, the magnitude of the bias is held in check by reputational

concerns. We hypothesize that highly reputable brokerage houses value analysts’

reports more than less highly reputable brokerage houses. Hence, their analysts

are likely to feel constrained from adding an arbitrarily high optimistic bias to

their private estimates by the fear of hurting the brokerage houses’ reputations.

In addition, highly reputable brokerage firms tend to have significant resources to

collect information, and thus the access to firms’ private information is relatively

less important for analysts from highly reputable brokerage houses.11

Alternatively, analysts from less highly reputable brokerage houses tend to have

limited resources in research and thus have more incentives to issue more biased

forecasts. If ICMWs indeed increase the cost of information collection and

research, these extra costs will exacerbate the need of analysts from less highly

reputable brokerage houses to access firms’ private information. Hence, we expect

that analysts from less highly reputable brokerage houses will issue more upwardly

biased forecasts for ICMW firms (compared to analysts from highly reputable

brokerage houses). We, therefore, offer our last hypothesis:

H4 The analysts’ optimistic biases associated with ICMW firms are more pronounced

for forecasts issued by analysts from less highly reputable brokerage houses

(compared to analysts from highly reputable brokerage houses) (in alternative form).

10Note that our hypothesis is still valid if the forecasts have been made before the disclosure of

ICMWs. Doyle et al. (2007a) argue that Sarbanes-Oxley has led to the disclosure of ICMWs that

might have existed for some time. Indeed, they find that accrual quality has been lower for ICMW

firms relative to non-ICMW firms even in the periods prior to the disclosure of ICMWs.
11Brown et al. (2009) document stock market response to an analyst’s recommendation change and

the difference between the analyst’s recommendation and the consensus recommendation.

The market’s reaction is strongly influenced by the analyst’s reputation.
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63.3 Sample Selection and Descriptive Statistics

63.3.1 The Sample Selection and Matching Procedure

We first use the key words “internal control” and “material weakness” to search the

8-K, 10-Q, and 10-K filings in Lexis/Nexis during the period of August 2002 to

December 2006 and obtain 1,275 firms which disclose at least one material weak-

ness (ICMW firms).12 We then cross-check our 1,275 firms against Doyle et al.’s

(2007a) 1,210 sample firms, which are obtained by Doyle et al. through searching

10Kwizard.com (10-Ks, 10-Qs, and 8-Ks) from August 1, 2002, to October

31, 2005.13 We find that there are 181 firms in Doyle et al.’s (2007a) sample but

not in ours. We subsequently add these 181 firms into our sample to create an initial

sample of 1,456 firms. Out of the 1,456 initial sample firms, 952 firms have the

required firm characteristics variables (for regressions) in the Compustat and CRSP

annual database. Among these 952 firms, 745 firms have analyst forecast data in

IBES database.

Next we identify a sample of matched firms that do not disclose internal control

material weaknesses (non-ICMW firms) with similar IBES, CRSP, and Compustat

requirements as the ICMW firms. We match ICMW firms with non-ICMW firms by

industry, firm size, and sales performance, as measured during the fiscal year in

which the ICMW is disclosed. Industry is defined by using the 48 industry codes

identified by Fama and French (1997), firm size is measured as total assets

(Compustat #6), and sales performance is measured as total sales (Compustat #12).

The matching algorithm is similar to that used by Francis et al. (2006).

In particular, matches are identified by an algorithm that calculates the distance

between each ICMW firm k and its matched non-ICMW counterpart j. Specifically,

for each non-ICMW firm j in the same Fama-French industry as ICMW firm k,

we calculate the percentage difference in assets, AssetsDIS ¼ Assetsj�Assetsk
Assetsk

���
���, and

the percentage difference in sales, SalesDIS ¼ Salesj�Salesk
Salesk

���
��� . The sum of the two

distance measures yields a matching score for each non-ICMW firm j that is in the

same industry as ICMW firm k. From the set of matching scores that are less than

two, we choose the non-ICMW firm with the smallest matching score for each

ICMW firm; we then remove the matched pair (the ICMW and its non-ICMW

counterpart) from the lists of ICMW and non-ICMW firms. In some cases, a single

non-ICMW firm is the best match for several ICMW firms. In this case, we control

for the order in which we match a non-ICMW firm to an ICMW firm by first

12It could be argued that our sample might miss some firms which have ICMWs but choose not to

disclose them. However, discovery and disclosure of material weaknesses are mandatory

according to 2004 SEC FAQ #11. We, therefore, use the disclosure of ICMW as a proxy for the

existence of ICMW.
13We thank Sarah McVay for making the data available on her website (http://pages.stern.nyu.edu/

�smcvay/research/Index.html).
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calculating all possible matching scores and then assigning the non-ICMW firm j

to the ICMW firm k whose matching score is the smallest among the candidate

ICMWs. For the remaining candidate non-ICMWs, we repeat the above steps using

the remaining ICMW firms. In total, the application of these procedures produces

a final sample of 727 pairs of ICMW and non-ICMW firm-year observations.14

63.3.2 Descriptive Statistics

Panels A and B in Table 63.1 show the number and percentage of sample firms

by industry and by stock exchange, respectively. Industry groups with the largest

representations in the sample include durable manufacturers (20.4 %), computers

(19.1 %), retail (12.9 %), and financial (12.5 %). Our sample distribution is similar to

that of Ghosh and Lubberink (2006) and Beneish et al. (2008). As a comparison, in the

last two columns of Table 63.1 we also present the number and percentage of 2003

Compustat population by industry. The industry distributions of our sample firms and

2003 Compustat firms are similar. The industry groups with the largest representa-

tions in 2003 Compustat population are also durable manufacturers, computers, and

financial. The retail industry has a larger weight in our sample relative to the 2003

Compustat population. In terms of stock exchange, the majority of ICMW firms are

listed on NASDAQ (436 firm-years) and NYSE (245 firm-years).

Table 63.2 Panel A presents the descriptive statistics for sample firms and

matched firms. The median number of analysts following sample firms is smaller

than that of analysts following matched firms. The firm size is measured as the

natural logarithm of the market value of equity. The median firm size suggests that

sample firms are smaller than matched firms (significant at the 0.1 significance

level). There are no significant mean and median differences in leverage between

sample firms and matched firms. The mean and median profitability of sample

firms, measured by return on assets (ROA), are significantly lower than those of

matched firms at the 0.01 significance level.

The mean and median of book to market ratios (BM) of sample firms

are significantly larger than those of matched firms at the 0.01 significance level.

The mean and median of percentage change in earnings of sample firms are

significantly smaller than those of matched firms at the 0.01 significance level,

which suggests a systematic downward shift in reported earnings for firms disclos-

ing ICMWs. Also, the median number of negative earnings of sample firms is

significantly greater than that of matched firms at the 0.01 significance level. Taken

together, the statistics imply that sample firms are followed by fewer analysts and

have smaller market capitalization, higher book to market ratio, and lower profit-

ability than their matched firms.

14If a firm in our final sample reports internal material weaknesses in multiple years, the firm will

show up in our sample multiple times. We have 599 distinct firms showing up once in our final

sample and 64 firms showing up twice in our sample. The conclusions of this paper remain the

same if we exclude these 64 firms from our analyses.
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63.3.3 The Sample Firms by Types of ICMW

As we discussed in Sect. 63.2, we classify firms disclosing ICMWs into two groups:

one group of firms discloses only Contained ICMWs, and the other group of firms

discloses Pervasive ICMWs (with or without Contained ICMWs).

The classification of Contained or Pervasive ICMWs is similar to that of

Moody’s. Contained ICMWs are defined as internal control issues related to controls

over specific account balances, or transaction-level processes, or accounting policy

interpretations. Pervasive ICMWs are defined as internal control issues related to

controls over the control environment or the overall financial reporting process.

Table 63.1 Industry and exchange distributions of firms reporting internal control material

weakness (ICMW)

Panel A: by industry

Sample 2003 Compustat

Industry name SIC codes N % N %

Mining and construction 1000–1999 13 1.79 158 2.56

excluding 1300–1399

Food 2000–2111 3 0.41 112 1.82

Textiles and printing/

publishing

2200–2799 22 3.03 210 3.41

Chemicals 2800–2824, 2840–2899 9 1.24 135 2.19

Pharmaceuticals 2830–2836 31 4.26 559 9.07

Extractive 1300–1399, 2900–2999 25 3.44 196 3.18

Durable manufactures 3000–3999, excluding 148 20.36 945 15.34

3570–3579, 3670–3679

Computers 3570–3579, 3670–3679 139 19.12 853 13.84

Transportation 4000–4899 42 5.78 333 5.40

Utilities 4900–4999 27 3.71 287 4.66

Retail 5000–5999 94 12.93 460 7.47

Financial 6000–6999 91 12.52 1377 22.35

Services 7000–8999 excluding

7370–7379

83 11.42 537 8.71

Total 727 100 6,162 98.80

Panel B: by stock exchange

Stock exchange N %

NYSE 245 33.70

NASDAQ 436 59.97

AMEX 29 3.99

OTC 16 2.20

Other 1 0.14

Total 727 100.00

A total of 727 firm-year observations have reported ICMW and have data available from

Compustat and IBES. SIC codes and stock exchanges are from the Compustat

The sample period is from 2003 to 2006. All data are from CRSP, Compustat, and IBES databases
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The detailed classification procedures are as follows: we first provide

a breakdown of the firms based on firms’ stated reasons for material weaknesses

as in Ge and McVay (2005). Firms usually disclose internal control issues in nine

areas: Account-Specific, Training and Personnel, Period-End Reporting/Account-

ing Policies, Revenue Recognition, Segregation of Duties, Account Reconciliation,

Subsidiary-Specific, Senior Management, and Technology Issues. We then classify

Table 63.2 Descriptive statistics for selected variables

Panel A: descriptive statistics for the ICMW sample and the matched sample firms

ICMW sample (N ¼ 727) Matched sample (N ¼ 727)

Mean Median Mean Median

NUMBER 6.183 4.000** 6.614 5.000

MV 6.285 6.165* 6.456 6.343

LEV 0.196 0.157 0.185 0.138

ROA �0.019*** 0.014*** 0.019 0.038

BM 0.534*** 0.473*** 0.488 0.424

ECHG �0.219*** �0.116*** �0.021 0.081

LOSS 0.354 0.000*** 0.228 0.000

Panel B: descriptive statistics for the Contained ICMW (G1) and Pervasive ICMW (G2) firms

G1 firms (N ¼ 348) G2 firms (N ¼ 379)

Mean Median Mean Median

ROA �0.001*** 0.017 �0.035 0.012

LOSS 0.322* 0.000 0.383 0.000

FOREIGN 0.391* 0.000* 0.459 0.000

ECHG �0.261 �0.101 �0.183 �0.129

Matched firms consist of firms in the same industry based on the 48 industry codes identified by

Fama and French (1997) with the closest market value and sales at the end of fiscal year
*, **, *** denote two-tailed significance levels of 10 %, 5 %, and 1 %, respectively, for the

differences between the ICMW sample and the matched sample. T-test is used to test the difference
between the mean of the ICMW sample and the matched sample, and median test is used to test the

difference between the median of the ICMW sample and the matched sample

We match ICMW firms with non-ICMW firms by industry, firm size, and sales performance, as

measured in the fiscal year in which the ICMW is disclosed. Industry is defined using the

48 industry codes identified by Fama and French (1997), firm size is measured as total assets

(Compustat #6), and sales performance is measured as total sales (Compustat #12). The matching

algorithm is similar to that used by Francis et al. (2006)

All the variables are defined in Appendix 2. N is the number of firm-year observations
*, **, *** denote two-tailed significance levels of 10 %, 5 %, and 1 %, respectively, for

the differences between G1 firms and G2 firms. T-test is used to test the difference between the

mean of G1 sample and G2 sample, and median test is used to test the difference between

the median of G1 sample and G2 sample

G1 firms are firms that disclose only Contained ICMW, and G2 firms are firms that disclose at least
Pervasive ICMW. The Contained and Pervasive internal control material weaknesses are similar to

Moody’s classification scheme. The Contained internal control material weakness is defined as the

internal control issues related to controls over specific account balances, or transaction-level

processes, or special accounting policy interpretation; the Pervasive internal control material

weakness is defined as the internal control issues related to controls over the control environment

or the overall financial reporting process

1730 L. Xu and A.P. Tang



Contained internal control issues as (1) Account-Specific, (2) Period-End

Reporting/Accounting Policies, (3) Revenue Recognition, and (4) Account Recon-

ciliation issues. The rationale for this classification is that these internal control

issues are all related to controls over specific account balances, or transaction-level

processes, or accounting policy interpretation. We next classify Pervasive

internal controls issues as (1) Training and Personnel, (2) Segregation of Duties,

(3) Subsidiary-Specific, (4) Senior Management, and (5) Technology Issues. All of

these control issues are related to controls over the control environment or the

overall financial reporting process.

We record 1,372 distinct deficiencies for our 727 firm-year observations since

some firms disclose more than one ICMW. Among these 1,372 deficiencies, 431 are

Account-Specific deficiencies; 243 are Period-End Reporting/Accounting Policies

deficiencies; 138 are Revenue Recognition deficiencies; 90 are Account Reconcil-

iation issues deficiencies; 165 are Training and Personnel deficiencies; 53 are

Segregation of Duties deficiencies; 89 are Subsidiary-Specific deficiencies; 56 are

Senior Management deficiencies; and 68 are Technology deficiencies. Examples of

our material weakness classification scheme are presented in Appendix 1.

Among 727 ICMW firm-year observations, 348 firm-year observations disclose

Contained ICMWs; 318 firm-year observations disclose both Contained and Per-

vasive ICMWs; and 61 firm-year observations disclose only Pervasive ICMWs.

Hence, there are 348 G1 firm-year observations and 379 G2 firm-year observations

(318 firm-year observations plus 61 firm-year observations).

We examine and compare G1 and G2 firms’ profitability, business complexity, and

changes in earnings. We use return on assets (ROA) and a loss indicator (LOSS) to

proxy for profitability. ROA is calculated as earnings before extraordinary items

(Compustat #18) scaled by average total assets (Compustat # 6); and LOSS is an

indicator variable that equals one if earnings are negative and zero otherwise. As in

Ge andMcVay (2005), we use the existence of a foreign currency adjustment to proxy

for the complexity of the business (FOREIGN) (Compustat Data Item #150). Lastly,

we examine the percentage change in earnings.

The descriptive statistics provided in Table 63.2 Panel B suggest that G1 firms are,

on average, more profitable than G2 firms. The average return on assets (ROA) of G1

firms is significantly higher than that of G2 firms (at the 0.01 significance level); the

average loss (LOSS) of G1 firms is significantly lower than that of G2 firms (at the 0.1

significance level). By comparing our business complexity measure, the existence

of a foreign currency adjustment (FOREIGN), we find that the business models of

G2 firms, on average, are significantly more complex than those of G1 firms (at the

0.1 significance level). Lastly, we find no significant differences in means and

medians of earnings changes (ECHG), which suggests that there are no systematic

differences in the reporting earnings between G1 and G2 firms.

In summary, we find that G2 firms are less profitable and more complex

compared to G1 firms. These results imply that the managements of G2 firms

may have limited resources to invest in proper internal control (due to lower

profitability) and have more difficulty in establishing efficient internal control

(due to higher complexity) than G1 firms.
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63.4 Empirical Tests

63.4.1 Variable Measurement

Based on Kanagaretnam et al. (2012), we define forecasts accuracy and bias as

follows:

Forecast accuracy (ACCURACY) is calculated as � EPS Forecasted�EPS Actualj j
Beginning Stock Price

;

both forecasted and actual earnings per share are from IBES Summary Files. Because

we are interested in assessing the impact of a firm’s internal control on its financial

statements, we try to focus on a particular announcement date: the annual earnings

announcement. Forecast accuracy is computed as the absolute difference between the

last median forecasted earnings before the annual earnings announcement and the

actual earnings for the year in which ICMWs are disclosed.15 We deflate forecast

accuracy by beginning stock price to facilitate comparisons across firms.

Forecast bias (BIAS) is calculated as EPS Forecasted�EPS Actual
Beginning Stock Price

, both forecasted and

actual earnings per share are from IBES Summary Files. Forecast bias is computed

as the difference between the last median forecasted earnings before the annual

earnings announcement and the actual earnings for the year in which ICMWs

are disclosed. We also deflate forecast bias by beginning stock price to facilitate

comparisons across firms.16

63.4.2 Univariate Analysis

We first examine whether there are significant differences between ICMW firms

and their matched firms in forecast accuracy and bias using mean and median tests.

The results are reported in Table 63.3.

We find that median forecast accuracy for the ICMW sample is significantly

smaller than that for matched firms at the 0.01 level, suggesting that internal control

material weaknesses are related to less accurate forecasts. In addition, we find that

median forecast bias for the ICMW sample is significantly larger than that for

matched firms at the 0.01 level, consistent with the notion that internal control

material weaknesses are related to more optimistic forecasts.

A similar pattern exists when comparing forecast accuracy and bias separately

for G1 firms and their matched firms and for G2 firms and their matched firms.

15Note that the ACCURACY is defined so that larger errors correspond to a lower level of

accuracy.
16As a sensitivity test, we calculate ACCURACY and BIAS using the simple average of the

measures across the 6 or 12 monthly reporting periods on the IBES before the company’s fiscal

year end. In other words, we choose all median forecasts across the 6 or 12 monthly reporting

periods on IBES before the company’s fiscal year ends and then average the median forecasts to

create our ACCURACY and BIAS variables. The results are similar to what we report in this paper

(not tabulated). When we use forecasts from the prior year instead of the current year, we also get

similar results (not tabulated).
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The median forecast accuracy of G1 firms is smaller than that of the matched firms

at the 0.01 significance level. For G2 firms, the median forecast accuracy is also

smaller than that of matched firms at the 0.01 significance level. In terms of

optimistic bias, we find that median forecast biases for G1 and G2 samples are

larger than those for their matched firms at the 0.01 significance level.

These findings suggest that internal control material weaknesses are associated

with less accurate and more optimistic forecasts for both G1 and G2 firms. In the

next two subsections, we examine the association between ICMW and forecast

accuracy (and bias) using multivariate regressions.

The definitions of all the independent variables are provided in Appendix 2.

Since we have a large number of independent variables incorporated in our

regression models, the statistical inference on the variables could be affected

by multicollinearity. Multicollinearity is a high degree of correlation (linear

dependency) among several independent variables. It commonly occurs when

some of the independent variables measure the same concepts or phenomena.

Table 63.3 Accuracy and bias statistics for all ICMW firms, Contained ICMW (G1) and

Pervasive ICMW firms (G2), and their matched firms

ICMW firms (N ¼ 727) Matched firms (N ¼ 727)

Mean Median Mean Median

ACCURACY �0.019 �0.003*** �0.015 �0.002

BIAS 0.007* 0.001*** �0.001 0.000

G1 firms (N ¼ 348) Matched firms (N ¼ 348)

Mean Median Mean Median

ACCURACY �0.017 �0.003*** �0.022 �0.002

BIAS 0.004 0.001*** 0.000 0.000

G2 firms (N ¼ 379) Matched firms (N ¼ 379)

Mean Median Mean Median

ACCURACY �0.020*** �0.004*** �0.009 �0.002

BIAS 0.010*** 0.001*** 0.000 0.000

ACCURACY is forecast accuracy, calculated as the negative of the absolute difference between

actual EPS and last median forecasted EPS scaled by stock price. BIAS is forecast bias, calculated

as the difference between last median forecasted EPS and actual EPS scaled by stock price.
*, **, *** denote two-tailed significance levels of 10 %, 5 %, and 1 %, respectively, for the

differences between ICMW firms and matched firms, G1 firms and matched firms, and G2 firms

and matched firms. T-test is used to test the difference between the mean of the ICMW sample and

the matched sample, and median test is used to test the difference between the median of the

ICMW sample and the matched sample

Matched firms consist of firms in the same industry based on the 48 industry codes identified by

Fama and French (1997) with the closest market value and sales at the end of fiscal year

G1 firms are firms that disclose only Contained ICMW, and G2 firms are firms that disclose at least
Pervasive ICMW. The Contained and Pervasive internal control material weaknesses are similar to

Moody’s classification scheme. The Contained internal control material weakness is defined as the

internal control issues related to controls over specific account balances, or transaction-level

processes, or special accounting policy interpretation; the Pervasive internal control material

weakness is defined as the internal control issues related to controls over the control environment

or the overall financial reporting process
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In Table 63.4, we present the pair-wise correlations among all independent vari-

ables in the regressions and find that none of the correlations are larger than 0.50

(or smaller than�0.50) except for the correlation between SKEW and EPSVOL. To

avoid the multicollinearity issue, we choose not to include these two variables in the

same regression model.

63.4.3 Analysis of Forecast Accuracy

The hypotheses to be tested are that analyst accuracy and bias are a function of

ICMWs. However, the results will be difficult to interpret if endogeneity is

a concern. We include firm-specific fixed effects to control for the possibility that

endogeneity arises from omitted unobserved factors (e.g., business models) that

may be correlated with both forecast quality and ICMWs.

The model employed to test the association between forecast accuracy and

ICMW is (H1 and H2):

ACCURACYi,t ¼ a0þa1ICMWi, tþa2NUMi, tþa3MVi, tþa4LEVi, t

þa5ROAi, tþa6BMi, tþa7EPSVOLi, t�5, t�1ð Þ þa8ABSECHGi, t

þa9LOSSi, tþa10SPECIALi, tþa11RETi, t�3, t�1ð Þ þa12DAi, tþ e

(63.1)

where ACCURACY is forecast accuracy, calculated as the negative of the absolute

difference between actual EPS and last median forecasted EPS scaled by stock

price. ICMW is an indicator variable that equals one if a firm discloses a material

weakness in internal control and zero otherwise. The definitions of the other

variables are provided in Appendix 2.

In our regression model we first control for earnings characteristics. Prior research

identifies earnings volatility (EPSVOL), losses (LOSS), and special items (SPECIAL)

as earnings characteristics that can negatively affect forecast accuracy. The forecasting

task is more difficult for firms with historically more volatile earnings compared to

firms with historically more stable earnings (e.g., Kross et al. 1990; Lim 2001), losses,

and special items (Brown andHiggins 2001). In addition, we include absolute earnings

changes (ABSECHG) to capture any shift in reported earnings. Prior studies show that

forecast errors are larger for larger earnings surprises (e.g., Lang and Lundholm 1996;

Duru and Reeb 2002). Moreover, we use absolute abnormal accruals (DA) to control

for earnings quality. DA is estimated using the modified Jones model of Larcker

et al. (2007). We expect a negative relation between forecast accuracy and DA.17

17Note that the differences in the earnings quality could also be the consequences of the existence

of ICMWs. By controlling for absolute abnormal accruals, we may overcontrol the impact of

ICMWs. But it will bias against us finding any results.
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We next control for other firm characteristics such as size, growth, financial

leverage, profitability, and risk. Firm size is measured as the natural logarithm of

market value at the end of the year (MV) and has been used in the literature as

a proxy for a number of factors. To the extent that size reflects information

availability about a firm (other than through annual reports), a positive relation

with forecast accuracy is expected (Ho 2004). However, firm size could also proxy

for a host of other factors, such as managers’ incentives, for which predictions for

the relation with forecast accuracy are unclear.18

We measure growth as the natural logarithm of the ratio of the book value

of equity to the market value of equity at the end of the year (BM). Dechow

and Sloan (1997) and Richardson et al. (2004) find that forecast accuracy and

bias are related to measures of growth. Consistent with prior research, we expect

firms with low book to market ratios (i.e., high growth firms) to have more accurate

forecasts than firms with high book to market ratios (i.e., turnaround and declining

firms). We also include the debt to equity ratio (LEV) to proxy for financial

leverage and return on assets (ROA) to proxy for profitability. We do not have

predictions for the sign of these two variables. Finally, we use the equally weighted

market-adjusted cumulative return over the past 3 years (RET) to proxy for firm

risk. We expect a negative relation between forecast accuracy and RET.19

Next, we use the natural logarithm of the number of analysts who issue the

forecasts in calculating the last median earnings (NUM) to account for the effects of

differences in forecast characteristics on forecast accuracy. Lys and Soo (1995)

argue that the number of analysts proxies for the intensity of competition in the

market. We expect a positive relation between forecast accuracy and analyst

following. Finally, we include firm-specific and exchange-specific fixed effects to

control for firm-specific and exchange-specific shocks.

The results of the accuracy tests are reported in Table 63.5. Column 3 shows the

OLS regression results for the overall sample alongwith thematched sample; Column 4

shows the OLS regression results for G1 sample firms and their matched firms; and

Column5 shows theOLS regression results forG2 samplefirmsand theirmatchedfirms.

The results presented in Table 63.5 show that the coefficients on ICMW for the

overall sample and G1 sample firms are not significantly different from zero. These

findings suggest that forecast accuracy is not significantly different for all ICMW

disclosing firms and for Contained ICMW disclosing firms relative to their

corresponding matched firms when controlling for other independent variables.

In contrast, for G2 sample firms, the coefficient of ICMW in Column 4 is signif-

icantly negative (at the 0.1 level for the two-tailed test). The negative coefficient

suggests that forecast accuracy is significantly lower for Pervasive ICMW disclos-

ing firms compared with their matched firms.

Inferences about the control variables in the regression are generally similar to

previous studies. Specifically, firms with lower frequency of negative earnings,

18Fan and Yeh (2006) find that forecasting error is a negative function of firm size.
19The results are similar if we use value-weighted market-adjusted cumulative returns.
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Table 63.5 OLS regression estimations relating ACCURACY to ICMW firm variables

ACCURACYi, t ¼ a0 þ a1ICMWi, t þ a2NUMi, t þ a3MVi, t þ a4LEVi, t þ a5ROAi, t þ a6BMi, t
þa7EPSVOLi, t�5, t�1ð Þ þ a8ABSECHGi, t þ a9LOSSi, t þ a10SPECIALi, t þ a11RETi, t�3, t�1ð Þ
þa12DAi, t þ e

Dependent variable ¼ ACCURACY

Predicted All sample G1 sample G2 sample
Sign N ¼ 1454 N ¼ 696 N ¼ 758

(1) (2) (3) (4) (5)

Independent variables Coefficient Coefficient Coefficient

(t-statistic) (t-statistic) (t-statistic)

INTERCEPT �0.043 �0.038 �0.046

(�3.65***) (�1.92*) (�3.19***)

ICMW � �0.005 0.002 �0.009

(�1.22) (0.36) (�1.77*)

NUM + 0.003 �0.002 0.007

(0.92) (�0.36) (1.69*)

MV + 0.003 0.004 0.002

(1.41) (1.14) (0.73)

LEV +/� �0.005 �0.016 �0.008

(�0.44) (�0.80) (�0.52)

BM � �0.009 �0.006 �0.011

(�3.02***) (�0.99) (�3.12***)

SPECIAL � �0.016 �0.024 �0.009

(�2.57***) (�2.22**) (�1.14)

EPSVOL � �0.000 0.002 �0.000

(�1.13) (0.92) (�1.10)

ABSECHG � �0.000 �0.000 0.000

(�0.05) (�0.20) (0.47)

LOSS � �0.010 �0.006 �0.006

(�1.75*) (�0.54) (�0.76)

ROA +/� 0.120 0.181 0.120

(5.69***) (3.96***) (5.21***)

RET � 0.002 0.017 �0.005

(0.79) (2.93***) (�1.35)

DA � �0.044 �0.099 �0.026

(�1.49) (�1.67*) (�0.84)

R-square 16.11 % 14.21 % 23.32 %

Observations include ICMW firms and matched firms that do not disclose ICMW. Matched firms

consist of firms in the same industry based on the 48 industry codes identified by Fama and French

(1997) with the closest market value and sales at the end of fiscal year. Regressions in the third,

fourth, and fifth columns include all ICMW firms and matched firms, G1 firms and matched firms,

and G2 firms and matched firms separately. Regressions control for exchange and firm fixed

effects. Outliers are excluded using Cook’s (1977) distance statistic. N is the number of firm-year

observations. *, **, *** denote two-tailed significance levels of 10 %, 5 %, and 1 %, respectively. All

the variables are defined in Appendix 2
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lower book to market ratio, smaller abnormal accruals, and a larger number of

analyst following have more accurate forecasts (as evidenced by significant P-value

[<0.1] in Table 63.5). The results documented in this subsection are consistent with

our H2 hypothesis.

One alternative explanation for our findings is that auditors may become more

conservative in the year of the ICMW, leading to a systematic downward shift in

reported earnings, as evidenced by the results in Table 63.2 Panel A.20 The

systematic downward shift may account for the differences in ACCURACY

between ICMW firms and non-ICMW firms. This alternative explanation is

unlikely since we have included ABSECHG, absolute changes in reported earnings,

in the regression model to capture any systematic shift in reported earnings.

63.4.4 Analysis of Forecast Bias

We estimate the following regression model to test H3 and H4 on forecast bias:

BIASi, t ¼ b0 þ b1ICMWi, t þ b2NUMi, t þ b3MVi, t þ b4LEVi, t þ b5BMi, t

þ b6SKEWi, t�5, t�1ð Þ þ b7ECHGi, t þ b8LOSSi, t þ b9SPECIALi, t

þ b10NECHGi, t þ b11RETi, t�3, t�1ð Þ þ b12DAi, t þ e

(63.2)

where BIAS is forecast bias, calculated as the difference between last median

forecasted EPS and actual EPS scaled by stock price.21 The definitions of

Eq. 63.2’s other variables are provided in Appendix 2.

As in the forecast accuracy tests, we use losses (LOSS) and special items

(SPECIAL) to control for earnings characteristics.22 Unlike the accuracy test, we

use earnings changes (ECHG) instead of absolute earnings changes (ABSECHG).

We expect that optimistic forecast bias is positively associated with earnings

characteristics because these characteristics are positively related to the complexity

of forecasting tasks. In addition, we include ECHG and NECHG to control for the

anchoring behavior of analysts who tend to anchor their forecasts closely to

previous period’s actual results.23 We use the difference between the mean and

median of price-scaled earnings from five prior years (minimum of 4 years) to

proxy for earnings skewness (SKEW). We expect that optimistic forecast bias is

20We thank an anonymous referee for pointing this out to us.
21When we use forecasts from the prior year instead of the current year, we also get similar results

(not tabulated).
22We exclude earnings volatility (EPSVOL) variable because the variable is significantly corre-

lated with SKEW variable. In a sensitivity test, we replace SKEW by EPSVOL; the results are

similar to what we report in the paper.
23See Shiller (1999) on anchoring behavior of financial analysts.
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negatively associated with earnings skewness primarily due to mean-median dif-

ferences in skewed earnings distributions (Gu and Wu 2003).

As in the forecast accuracy test, we use size (MV), growth (BM), leverage

(LEV), profitability (ROA), risk (RET), and earnings quality (DA) to control for

differences in firm characteristics. We have no prediction on the signs of these

variables. We also include the log of the number of analysts following the firm

(NUM) to account for differences in forecasts characteristics that affect forecast

bias. In addition, we include firm-specific and exchange-specific fixed effects to

control for firm-specific and exchange-specific shocks.

In Table 63.6 we report the results for the bias test. The coefficient on ICMW is

significantly positive for the overall sample at the 0.05 significance level, which

suggests that analysts tend to be more optimistic toward ICMW disclosing firms.

Inferences about the control variables suggest that firms with smaller size, higher

leverage, higher frequency of negative earnings, and lower profitability have more

optimistically biased forecasts (as evidenced by significant P-value [<0.1] in

Table 63.6). The results presented in Table 63.6 are consistent with our H3

hypothesis. Analysts’ earnings forecasts are more positively biased among ICMW

reporting firms relative to non-reporting firms.

63.4.5 Analysis of Brokerage Reputation

In this subsection, we examine the impact of the brokerage reputation on the

positive bias. We use Institutional Investors’ ranking of brokerage houses to

proxy for brokerage reputation: a brokerage is considered to be of high reputation

if it is consistently (for at least three prior years) ranked among the “Leaders” by

Institutional Investors during the sample period. The following 12 brokers are

identified as highly reputable: Bear Stearns & Co; CS First Boston; Goldman

Sachs; Lehman Brothers; Donaldson, Lufkin & Jenrette; J.P. Morgan Securities;

Merrill Lynch; Morgan Stanley & Co; Paine Webber; Prudential Securities; Salo-

mon Brothers; and Smith Barney. The other brokerages are classified as less highly

reputable brokerages.

An analyst’s brokerage affiliation data comes from the IBES Detailed Files. We

first separate all forecasts issued for ICMW firms into two subsamples based on

whether the forecasts are issued by the analysts from highly reputable brokerage

houses or not. All forecasts issued by the analysts affiliated with highly reputable

brokerage houses belong to the highly reputable brokerage subsample, and the

remaining forecasts belong to the less highly reputable brokerage subsample.

For each analyst, we only keep the last forecast issued for each forecast period.

We then calculate the median forecasted earnings for each forecast period for each

sample firm in each subsample. Note that, if a firm has forecasts made by the

analysts affiliated with both highly reputable and less highly reputable brokerage

houses, the firm will show up in both subsamples with different values for the

medians. The median forecasted earnings in the highly reputable brokerage (less

highly reputable brokerage) subsample are calculated based on the forecasts made
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Table 63.6 OLS regression estimations relating bias to ICMW firm variables

BIASi, t ¼ b0 þ b1ICMWi, t þ b2NUMi, t þ b3MVi, t þ b4LEVi, t þ b5BMi, t þ b6SKEWi, t�5, t�1ð Þ
þb7ECHGi, t þ b8LOSSi, t þ b9SPECIALi, t þ b10NECHGi, t þ b11RETi, t�3, t�1ð Þ þ b12DAi, t þ e

Dependent variable ¼ BIAS

Predicted All sample
Sign N ¼ 1454

(1) (2) (3)

Independent variables Coefficient

(t-statistic)

INTERCEPT 0.015

(2.04**)

ICMW + 0.005

(2.03**)

NUM +/� �0.001

(�0.33)

MV +/� �0.003

(�1.97**)

LEV +/� 0.017

(2.34b)

BM +/� 0.001

(0.77)

SPECIAL + 0.004

(1.11)

NECHG _ 0.001

(0.22)

SKEW _ �0.000

(�1.53)

ECHG + �0.000

(�0.03)

LOSS + 0.013

(3.34***)

ROA +/� �0.059

(�4.51***)

RET +/� �0.001

(�0.77)

DA +/� 0.025

(1.39)

R-square 17.03 %

Observations include ICMW firms and matched firms that do not disclose ICMW. Matched firms

consist of firms in the same industry based on the 48 industry codes identified by Fama and French

(1997) with the closest market value and sales at the end of fiscal year. Regressions control for

exchange fixed effects. Outliers are excluded using Cook’s (1977) distance statistic. N is the

number of firm-year observations. All the variables are defined in Appendix 2
*, **, *** denote two-tailed significance levels of 10 %, 5 %, and 1 %, respectively
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by the analysts affiliated with highly reputable brokerage houses (less highly

reputable brokerage houses).

We next compute forecast bias (BIAS) as the difference between the last median

forecasted earnings before the annual earnings announcement and the actual earnings

for the year in which ICMWs are disclosed. As in the prior section, we also deflate

forecast bias by beginning stock price to facilitate comparisons across firms. We

reestimate Eq. 63.2 for highly reputable brokerage forecasts of the sample firms and

their matched firms (638 observations) and for less highly reputable brokerage fore-

casts of the sample firms and their matched firms (816 observations), respectively.

The results are presented in Columns 3–4 of Table 63.7. As reported in

Column 3, the analysts affiliated with highly reputable brokerage houses are less

likely to issue biased forecasts for firms with ICMWs (compared to the analysts

from less highly reputable brokerage houses). The significantly positive relation

between ICMWs and forecast bias only exists when those forecasts are made by the

analysts affiliated with less highly reputable brokerage houses as reported in

Column 4 (P-value < 0.1).

There are some sample firms that have forecasts made by analysts affiliated with

both highly reputable and less highly reputable brokerage houses. We repeat our

tests for this subsample. We reestimate Eq. 63.2 for highly reputable brokerage

forecasts of the subsample firms and their matched firms (276 observations) and for

less highly reputable brokerage forecasts of the subsample firms and their matched

firms (276 observations), respectively.

The results are presented in Table 63.7 Columns 5–6. Similar to what are reported

for the whole sample, the significantly positive relation between ICMWs and forecast

bias only exists when those forecasts are made by the analysts affiliated with less

highly reputable brokerage houses as reported in Column 5 (P-value < 0.1).

Taken together, our regression results show that analysts from less highly reputa-

ble brokerage houses are likely to issue more optimistic forecasts. We interpret these

findings as that highly reputable brokerage houses value the creditability of analysts’

reports more than less highly reputable brokerage houses. Hence, analysts are likely to

feel constrained from adding an arbitrarily high optimistic bias to their estimates by

a fear of hurting the brokerage houses’ reputations.

63.5 Additional Tests

63.5.1 ICMW Resolution and Forecast Accuracy and Bias

Our first additional test probes our findings of the association between ICMWs and

forecast accuracy (and bias) for G2 firms. In particular, we investigate whether the

association between ICMW and forecast accuracy (and bias) still exists when firms

resolve the internal control deficiencies. If there is indeed an association between

ICMW and forecast accuracy (and bias), we should find no difference in forecast

accuracy (and bias) between G2 firms and their matched firms after ICMW firms

resolve their internal control issues. To test this hypothesis, we examine whether the
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Table 63.7 OLS regression estimations relating bias to ICMW firm variables based on brokerage

reputation partition

Predicted

Highly

reputable

Less highly

reputable

Highly reputable

reputable

Less highly

reputable
Signs N ¼ 638 N ¼ 816 N ¼ 276 N ¼ 276

(1) (2) (3) (4) (5) (6)

Independent

variables

Coefficient

(t-statistic)

Coefficient

(t-statistic)

Coefficient

(t-statistic)

Coefficient

(t-statistic)

INTERCEPT 0.302 0.058 �0.008 0.013

(6.99***) (2.98***) (�0.63) (0.18)

ICMW + �0.002 0.007 0.003 0.004

(�0.29) (1.97**) (0.85) (1.84*)

NUM +/� �0.007 0.003 �0.002 �0.001

(�1.16) (0.98) (�0.73) (0.88)

MV +/� �0.003 �0.008 �0.001 0.000

(�0.66) (�3.63***) (�0.30) (�0.43)

LEV +/� �0.025 0.020 �0.014 0.001

(�1.18) (1.75*) (1.19) (1.06)

BM +/� 0.005 0.001 0.000 �0.001

(0.78) (0.44) (0.10) (�0.41)

SPECIAL + 0.037 �0.000 0.010 �0.003

(3.30***) (�0.04) (1.62) (�1.34)

NECHG _ 0.003 �0.004 0.004 0.000

(0.37) (�1.09) (0.98) (0.13)

SKEW _ �0.000 �0.000 �0.000 �0.000

(0.06) (1.71*) (0.04) (0.11)

ECHG + �0.000 0.000 �0.000 �0.000

(�0.37) (0.53) (�0.10) (�1.47)

LOSS + 0.005 0.017 0.010 0.008

(0.40) (3.09***) (1.68*) (3.22***)

ROA +/� �0.128 �0.050 0.030 0.003

(�2.49***) (�2.81***) (1.02) (0.23)

RET +/� �0.008 �0.004 0.001 0.002

(�1.56) (�1.46) (0.67) (1.51)

DA +/� 0.148 0.012 0.038 0.013

(1.85*) (0.51) (0.85) (0.70)

R-square 35.24 % 23.75 % 12.16 % 10.57 %

Observations include ICMW firms and matched firms that do not disclose ICMW. Regressions in

the third and fourth columns include estimates made by analysts affiliated with highly reputable

brokers and the estimates made by analysts affiliated with less highly reputable brokers separately

The regressions results in the fifth and sixth columns are for ICMW firms that are covered by both

analysts affiliatedwith highly reputable and less highly reputable brokers. The regressions results on the

estimates made by analysts affiliated with highly reputable brokers are reported in the fifth column, and

the regressions results on the estimatesmade by analysts affiliatedwith less highly reputable brokers are

reported in the sixth column. Regressions control for exchange and firm fixed effects. Outliers are

excluded using Cook’s (1977) distance statistic. *, **, *** denote two-tailed significance levels of 10 %,

5 %, and 1 %, respectively. All the variables are defined in Appendix 2. Dependent variable is BIAS

1742 L. Xu and A.P. Tang



forecast accuracy (and bias) for G2 sample firms is significantly different from their

matched firms after the sample firms stop disclosing internal control material

weaknesses.

We start by assigning a post-ICMW year to each G2 firm-year observation. The

post-ICMW year is defined as the first year after the year in which ICMWs are

disclosed in our sample period (i.e. the first year in which our sample firms solve their

disclosed internal control issues).24 We then reestimate Eqs. 63.1 and 63.2 for the

post-ICMWfirm-year observations. We have 196 post-ICMWfirm-year observations

for G2 sample, and 183 firm-year observations are lost due to the lack of required

data. The un-tabulated results show that the ICMW coefficients in both accuracy and

bias tests are no longer significant, which suggests that in the first year in which our

sample firms solve their disclosed internal control issues, there are no significant

differences in accuracy and bias between G2 firms and their matched firms.

63.5.2 The Differences in the Frequency of Analyst Forecasts
Between Highly Reputable Houses and Less Highly
Reputable Houses

For our sample period, analysts affiliated with highly reputable houses on average

issue 3.49 annual earnings forecasts for each firm each year (the median number of

forecasts issued is 3), while analysts affiliated with less highly reputable houses on

average issue 3.07 annual earnings forecasts for each firm each year (the median

number of forecasts issued is 2). Thus, it appears that analysts affiliated with highly

reputable houses issue forecasts more frequently than those affiliated with less

highly reputable houses. To further examine this issue, we create one variable

STALE, which is calculated as the difference between the date of fiscal year end

and the date of the last annual forecast issued by an analyst. In un-tabulated test, we

find that the mean and median STALE values for analysts affiliated with highly

reputable houses are 99.83 and 68 days, respectively. In contrast, the mean and

median STALE values for analysts affiliated with the less highly reputable houses

are 110.92 and 75 days. Both mean and median differences for the STALE variable

between analysts affiliated with highly reputable houses and those affiliated with

less highly reputable houses are statistically significant at the 0.01 levels.

To make sure that our results in Table 63.7 are not caused by the differences in

the frequency of analyst forecasts made by highly reputable houses and less highly

reputable houses, we include an ADJSTALE variable in Eq. 63.2. The ADJSTALE

variable is the median value of the STALE variable for each forecast period for

each sample firm. We then reestimate the revised Eq. 63.2 for highly reputable

brokerage forecasts of the sample firms and their matched firms (638 observations)

and for less highly reputable brokerage forecasts of the sample firms and their

24For firms that disclose ICMWs for multiple years, the last year in which ICMWs are disclosed

for the firms in our sample period is used.
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matched firms (816 observations), respectively. Similar to what are reported in

Table 63.7, we find that the significantly positive relation between ICMWs and

forecast bias only exists when those forecasts are made by the analysts affiliated

with less highly reputable brokerage houses (results are not tabulated). Hence, our

results in Table 63.7 are unlikely to be caused by the differences in the frequency of

analyst forecasts made by highly reputable houses and less highly reputable houses.

63.5.3 Other Robustness Tests

We conduct several additional tests to probe the robustness of our main results

reported in Tables 63.4 and 63.5. Eames and Glover (2003) document that there is

no significant relation between forecast error and earnings predictability after

controlling for the level of earnings. We, first, investigate whether the level of

earnings will affect our results. Our main results remain qualitatively the same after

controlling for the level of earnings (not tabulated).

Second, we reestimate the models using rank regression techniques to assess the

sensitivity of the results to the underlying functional form assumption made by OLS

(Cavanagh and Sherman 1998). The results using rank regressions support the

reported results (not tabulated). Lastly, we classify our sample firms into

302 and 404 ICMW firms to capture any differences in ICMW disclosures between

Sections 302 and 404. ICMW firms under Section 302 are those that have

a market value of less than $75 million or have disclosed their material weakness

prior to November 15, 2004. ICMW firms under Section 404 are those that have

a market value of at least $75 million and disclose a material weakness on or after

November 15, 2004. We reestimate our Eqs. 63.1 and 63.2 separately for 302 and

404 disclosures. The results for 302 and 404 firms are qualitatively similar (not

tabulated).

Last, on April 28, 2003, an enforcement agreement, the Global Settlement, was

reached between the SEC, NASD, NYSE, and ten of the largest investment firms in

the USA to address issues of conflict of interest within their businesses. One of the

goals of Global Settlement is to reduce the biases in analyst reports. To make sure

that our results are not influenced by the Global Settlement, we include a set of

dummy variables in all our regression models to control for year-specific shocks.

Our un-tabulated results are similar to what are reported in the paper.

63.6 Conclusion

In this paper we investigate the effects of ICMWs on the accuracy and optimistic

bias of financial analysts’ earnings forecasts. We find that financial analysts’

earnings forecasts are less accurate and more positively biased among ICMW

reporting firms relative to non-reporting firms.

When separating all the ICMW reporting firms into Pervasive ICMW and

Contained ICMW reporting firms, we find that accuracy is only inversely associated
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with Pervasive ICMWs. One possible explanation is that the managers of Pervasive

ICMW reporting firms cannot effectively control firms’ financial reporting process,

which leads to much noisier financial statements and thus makes financial analysts’

earnings forecasts less accurate.

In addition, we find that analysts from less highly reputable brokerage houses are

likely to issue more optimistic forecasts. We interpret these findings as that highly

reputable brokerage houses value the creditability of analysts’ reports more than

less highly reputable brokerage houses. Hence, analysts are likely to feel

constrained from adding an arbitrarily high optimistic bias to their estimates by

a fear of hurting the brokerage houses’ reputations.

Our results suggest that the weaknesses in internal control increase the

complexity of the forecasting tasks for financial analysts. Analysts’ forecasts

become less accurate if the weaknesses belong to the Pervasive type. The

weaknesses in internal control are also associated with more positively biased

forecasts. However, the good reputation of brokerage firms appears to curb the

upward bias. We also show that when Pervasive ICMW reporting firms stop

disclosing weaknesses, the documented relation between accuracy (bias) and

ICMWs disappears.

Appendix 1: Material Weakness Classification Examples

G1 Contained Material Weaknesses

1. Account-Specific

e.g., “U.S. Cellular did not maintain effective controls over the completeness,

accuracy, presentation and disclosure of its accounting for income taxes.”

(U.S. Cellular Inc., 2004 10-K report)

2. Period-End Reporting/Accounting Policies

e.g., “–a lack of an ongoing formal self-assessment process related to internal

control over financial reporting.” (Ivanhoe energy Inc., 2004 10-K report)

3. Revenue Recognition

e.g., “The Company’s policies and procedures regarding coal sales contracts with

its customers did not provide for a sufficiently detailed, periodic management

review of the accounting for payments received. This material weakness resulted

in a material overstatement of coal revenues and an overstatement of amortization

of capitalized asset retirement costs.” (Westmoreland Coal Co., 2005 10-K report)

4. Account Reconciliation

e.g., “The Company did not maintain effective controls over reconciliations of

certain financial statement accounts.” (SIRVA Inc., 2004 10-K report)

G2 Pervasive material weaknesses

1. Segregation of Duties

e.g., “Inadequate segregation of duties was noted with respect to the revenue,

expenditure and payroll processes as numerous incompatible tasks are

performed by the same accounting personnel.” (Versant Co., 2004 10-K report)
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2. Subsidiary-Specific

e.g., “We have reported to the SEC that one of our foreign subsidiaries operating

in Nigeria made improper payments of approximately $2.4 million to an entity

owned by a Nigerian national who held himself out as a tax consultant when in

fact he was an employee of a local tax authority. The payments were made to

obtain favorable tax treatment and clearly violated our Code of Business Con-

duct and our internal control procedures.” (Halliburton Co., 2002 10-K report)

3. Senior Management

e.g., “management did not set a culture that extended the necessary rigor and

commitment to internal control over financial reporting.” (SIRVA Inc, 2004

10-K report)

4. Technology Issues

e.g., “There are weaknesses in the Company’s information technology (“IT”)

controls which makes the Company’s financial data vulnerable to error or

fraud; a lack of documentation regarding the roles and responsibilities of

the IT function; lack of security management and monitoring and

inadequate segregation of duties involving IT functions.” (Earthshell Co., 2005

10-K report)

5. Training and Personnel

e.g., “The Company lacks personnel with adequate expertise in accounting for

income taxes in accordance with U.S. GAAP.” (Westmoreland Coal Co., 2005

10-K report)

Appendix 2: Variable Definitions

Variables Definition and data source

NUMBER The number of analysts who make the forecasts in calculating the last

median earnings

NUM Natural logarithm of the number of analysts who make the forecasts in

calculating the last median earnings

SKEW The skewness of the earnings, calculated as the mean-median difference

of price-scaled earnings from the prior 5 years (minimum of 4 years)

SPECIAL An indicator variable equal to one if special items (Compustat # 17) are

not equal to zero, zero otherwise

RET Is the equally weighted market-adjusted cumulative return over the past

3 years

DA The absolute value of abnormal total accruals. The calculation of DA is

estimated using the modified Jones model of Larcker et al. (2007)

LOSS An indicator variable equal to one if earnings are negative, zero

otherwise

ECHG Is the change in earnings (Compustat #18), calculated as the change in

earnings over the previous year scaled by the previous year’s earnings

NECHG Is equal to one if ECHG is negative and zero otherwise

(continued)
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Variables Definition and data source

ABSECHG The absolute change in earnings (Compustat #18), calculated as the

absolute value of the change in earnings over the previous year scaled by

the previous year’s earnings

EPSVOL The standard deviation of earnings before extraordinary items

(Compustat #18) estimated using data from the prior 5 years (minimum

of 4 years)

BM The natural logarithm of book value (Compustat # 60) to the market

(Compustat # 25* Compustat #199) of the firms

ROA The ratio of return to asset, calculated as earnings before extraordinary

items (Compustat #18) scaled by average total assets (Compustat # 6)

LEV The ratio of debt (Compustat # 34 + Compustat # 9) to averaged total

assets (Compustat # 6)

MV Natural logarithm of the market value of equity (Compustat #199*#25)

FOREIGN An indicator variable equal to one if foreign currency translation

(COMPUSTAT Data Item #150) is not zero, zero otherwise

G1 An indicator variable that equals one if a firm discloses only Contained

ICMWs in year t, and zero otherwise

G2 An indicator variable equal to one if a firm discloses Pervasive ICMWs

in year t, and zero otherwise

ICMW An indicator variable equal to one if the firm has disclosed internal

control material weakness in year t, and zero otherwise

STALE The days between the date of fiscal year end and the date of the last

annual forecast issued (before the fiscal year end) by an analyst

ADJSTALE The median value of the STALE variable for a firm per fiscal year

AGE The number of years that a firm has been the CRSP database

BROKERAGE

REPUTATION

The Institutional Investors’ ranking of brokerage houses is used to proxy

for brokerage reputation: a brokerage is considered to be of high reputation

if it is consistently (at least for three prior years) ranked among the

“Leaders” by Institutional Investors during the sample period. The

following 12 brokers are identified as highly reputable: Bear Stearns & Co;

CS First Boston; Goldman Sachs; Lehman Brothers; Donaldson, Lufkin &

Jenrette; J.P. Morgan Securities; Merrill Lynch; Morgan Stanley & Co;

Paine Webber; Prudential Securities; Salomon Brothers; and Smith

Barney. The other brokerages are classified as less highly reputable

Appendix 3: Matching Procedure

The matches are identified by an algorithm that calculates the distance between

each ICMW firm k and its matched non-ICMW counterpart j. Specifically, for each

non-ICMW firm j in the same Fama-French industry as ICMW firm k, we calculate

the percentage difference in assets, AssetsDIS ¼ Assetsj�Assetsk
Assetsk

���
���, and the percentage

difference in sales, SalesDIS ¼ Salesj�Salesk
Salesk

���
���. The sum of the two distance measures

yields a matching score for each non-ICMW firm j that is in the same industry as

ICMW firm k. From the set of matching scores that are less than two, we choose the
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non-ICMW firm with the smallest matching score for each ICMW firm; we then

remove the matched pair (the ICMW and its non-ICMW counterpart) from the lists

of ICMW and non-ICMW firms. In some cases, a single non-ICMW firm is the best

match for several ICMW firms. In this case, we control for the order in which we

match a non-ICMW firm to an ICMW firm by first calculating all possible matching

scores, and then assigning the non-ICMW firm j to the ICMW firm k whose

matching score is the smallest among the candidate ICMWs. For the remaining

candidate non-ICMWs, we repeat the above steps using the remaining ICMW firms.

Appendix 4: Ordinary Least Squares (OLS) Method

For the main tests, we use Ordinary Least Squares (OLS) or linear least squares

method to estimate the ACCURACY and BIAS parameters in the following linear

regression models (Greene 2011). This method minimizes the sum of squared

vertical distances between the observed responses (ICMW and control variables)

in the dataset and the responses predicted by the linear approximation.

ACCURACYi,t ¼ a0þa1ICMWi, tþa2NUMi, tþa3MVi, tþa4LEVi, t

þa5ROAi, tþa6BMi, tþa7EPSVOLi, t�5, t�1ð Þ þa8ABSECHGi, t

þa9LOSSi, tþa10SPECIALi, tþa11RETi, t�3, t�1ð Þ þa12DAi, tþ e

(63.3)

BIASi, t ¼ b0 þ b1ICMWi, t þ b2NUMi, t þ b3MVi, t þ b4LEVi, t þ b5BMi, t

þ b6SKEWi, t�5, t�1ð Þ þ b7ECHGi, t þ b8LOSSi, t þ b9SPECIALi, t

þ b10NECHGi, t þ b11RETi, t�3, t�1ð Þ þ b12DAi, t þ e

(63.4)

Appendix 5: Cook’s Distance

We use Cook’s distance to test the influence of outliers when performing least

squares regression analysis. Cook’s distance is calculated using the following

formula (Cook 1977):

Di ¼
Xn

j¼1
Y
_

j � Y
_

j ið Þ
� �

Ŷj � Ŷj ið Þ
� �2

p �MSE

where ŶJ is the prediction from Eqs. 63.1 and 63.2 for observation j; Ŷj ið Þ is the

prediction for observation j from a refitted regression model in which observation

i has been omitted; MSE is the mean square error of Eqs. 63.1 and 63.2. P is the
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number of fitted parameters in Eqs. 63.1 and 63.2. The higher the Cook’s D is,

the more influential the point. We choose 4/Nas our cutoff point. N is the number of

observations in the regression tests. We exclude all observations with Cook’s

D higher than 4/N.

Appendix 6: Rank Regression

As a robust test, we reestimate the models using rank regression techniques to

assess the sensitivity of the results to the underlying functional form assumption

made by OLS (Cavanagh and Sherman 1998). Rank regression is one type of

nonparametric tests that are widely used for studying populations that take on a

ranked order. The use of nonparametric methods may be necessary when data

have a ranking but no clear numerical interpretation. We first performance rank

transformation (quintile rank) on all continuous variables used in Eqs. 63.1 or 63.2

and then performing OLS test on the ranks of the data instead of the data

themselves.
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Abstract

It is not clear whether short-term financing increases banks’ vulnerability to

financial crisis or just reflects the weakness of banks’ balance sheets. This

chapter examines the role of short-term financing and assets with deteriorated

quality in the financial crisis 2007–2009.

We apply logit and OLS econometric techniques to analyze the Federal

Reserve Y-9C report data. We show that short-term financing is a response

to the adverse economic shocks rather than a cause of the recent crisis.

The likelihood of financial crisis actually stems from the illiquidity and low
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creditworthiness of the investment. Our results are robust to endogeneity con-

cerns when we use a difference-in-differences (DiD) approach with the Lehman

bankruptcy in 2008 proxying for an exogenous shock.

Keywords

Financial crisis • Short-term financing • Debt maturity • Liquidity risk • Dete-

rioration of bank asset quality

Banks will be required to hold emergency stocks of easy-to-
sell assets . . . ‘liquidity coverage ratio’ that will require
banks to hold buffers against a 30-day market crisis.

–Financial Times, January 8, 2012

64.1 Introduction

Does short-term financing increase banks’ vulnerability to financial crisis?

Banks have a special feature, what we called “lend long and borrow short,” that

the illiquid loans which typically constitute assets be financed by volatile and

demandable deposits. This means that banks which want to finance illiquid

investments have to borrow short-term debt; hence, the increasing illiquidity of

the investment possibly causes higher exposure of liquidity risk and the suscepti-

bility to crises. Recently, the role of short-term financing to financial crises is being

debated again in depth.1 In particular, short-term financing and its rollover

risks have been recognized as a distinct characteristic of the financial crisis

2007–2009 since, during recent financial crisis, bank runs were incited by

short-term creditors who were concerned about liquidity and solvency, unlike

old-style bank runs instigated by uninsured depositors. This indicates that

short-term financing exposes banks to rollover risk and can amplify financial crises.

However, it is not clear whether the short-term financing indeed causes

the vulnerability of financial crisis or just reflects the weakness of banks’ balance

sheets.

Why is short-term financing an important source of financing for banks? One

well-known answer is that short-term financing is an equilibrium response to the

agency problems.2 Unless banks are fully equity financed, they have the wrong

incentives when it comes to continuing or liquidating its project. Similar to a risk-

shifting problem, banks have an incentive to continue excessively risky projects at

the cost of debt holders. Therefore, banks’ choice of maturity structure and the

1See Brunnermier (2009), Diamond and Rajan (2009), Gorton (2009), Gorton and Metrick (2012),

Ivashina and Scharfstein (2009), Eisenbach (2010), Kashyap (2010), Benmelech and Dvir (2011),

and Brunnermeier et al. (2011).
2See Diamond and Rajan (2001), Diamond (2004), Diamond and Rajan (2009), Eisenbach (2010),

and Kashyap (2010).
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implied exposure to rollover risk can play an important role of risk takings and bank

runs in financial crisis. Banks can choose any combination of long-term and short-

term debt to finance its investment.3 While long-term debt has the same maturity as

the projects’ final payoff, short-term debt has to be rolled over after the additional

information about the project’s expected payoff and the liquidation value becomes

available. Rollover risk arises since it may not be possible to satisfy all withdrawals

of short-term creditors, even by liquidating all of the bank’s assets.

However, the likelihood of financial crisis can stem not from short-term

financing, but from the illiquidity and low creditworthiness of the investment being

financed.4 How assets with low quality and short-term financing affect the financial

crisis 2007–2009? The answer can be summarized as follows: A substantial amount

of mortgage-backed securities with exposure to subprime risk were kept on bank

balance sheets, and banks financed these securities and other risky assets with

short-term debt. As the housing market deteriorated, the perceived risk of

mortgage-backed securities increased, and it became difficult to roll over short-term

borrowing against those securities. The funding problems led to fire sales of assets,

and these fire sales made banks obtain short-term financing even harder. These

difficulties of bank funding spilled over to the entire economy, causing bank runs

and financial crisis. Therefore, short-term financing could be a symptom of adverse

economic shocks rather than a cause. In this setting, the investments being financed

are becoming illiquid and as a result banks will increase short-term financing.5

Given the ambiguous causality, this chapter examines the role of short-term

financing and assets with deteriorated quality in the financial crisis 2007–2009.

Specifically, we try to answer two questions: (1) Does short-term financing predicts

the financial crisis? (2) Do assets with deteriorated quality increase banks’ vulner-

ability to financial crisis? Empirically we test whether short-term financing and

assets with low creditworthiness are related to a bank’s risk and profitability during

3Given the complexity of bank-risk taking, investors would have demanded a very high premium

for financing the bank long term. Creditors would have been willing to hold short-term debt on the

bank since that would give them the option to exit or get a higher premium if banks were appeared

to be getting into trouble. So, creditors would have demanded lower premium for holding short-

term secured debt in light of potential agency problems at banks. Thus, from the banker’s

perspective, financing with short-term debt claims is more attractive to the banks than issuing

long-term claims. Clearly, banks should have been worried about the possibility that they could

become illiquid and incapable of rolling over financing (Diamond and Rajan 2009).
4Diamond and Rajan (2001) argue that “It is no surprise that illiquid or poor quality investment

when a bank or banking system is close to its debt capacity will result in a buildup of short-term

debt.”
5Eisenbach (2010) points out similar view, saying that “While short-term debt acts as an effective

disciplining device when banks only face idiosyncratic risk, it is severely undermined when

aggregate risk is added. The problem is that the disciplining effect is too weak in good sates and

too powerful in bad states. This leads to a two-sided inefficiency: In good aggregate states the

banks take excessive risks in the form of projects with negative net present value. Bad aggregate

states suffer from fire sales as projects with positive net present value are liquidated.”
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the crisis.6 The following results are found: (1) Short-term financing is a response,

rather than a cause, of the recent financial crisis; (2) Assets that experienced asset

deterioration are positively related to financial distress. The results are consistent to

recent findings of banks’ risk-taking behaviors and short-term financing literatures.7

Finally, we check if the above results are driven by endogeneity concerns, namely,

that significant omitted variables are correlated with both dependent and indepen-

dent variables.

Section 64.2 summarizes the related literatures and hypotheses development.

Section 64.3 explains the data and descriptive statistics. Section 64.4 presents the

empirical results. Section 64.5 conducts robustness checks, and Sect. 64.6

concludes.

64.2 Related Literatures

What caused the financial crisis?8 What keeps asset prices and lending depressed?

According to Diamond and Rajan (2009), there are some consensus on the proxi-

mate causes of the crisis: (1) The US financial sector misallocated resources to real

estate, financed through the issuance of exotic new financial instruments; (2) a

significant portion of these instruments found their way, directly or indirectly, into

commercial and investment bank balance sheets; (3) these investments were largely

financed with short-term debt.

There are two approaches linking short-term financing to financial crisis.

According to the first approach, taking on short-term debt increases banks’ expo-

sure to bank runs, and the bank is therefore more likely to fail. In the second

approach, short-term financing is endogenous and is potentially the only financing

available for lower-quality banks. Hence, the likelihood of failure is not necessarily

driven by short-term debt itself but rather is a consequence of the bank’s underlying

economic conditions.

The first approach describes that short-term financing exposes banks to rollover

risk and thus can cause and increase financial crisis. There is a growing agreement

that an excessive buildup of short-term debt was a proximate cause of the financial

crises. In the recent crisis, many studies point out the fragility embedded in

6Brunnermeier et al. (2011) suggest a more comprehensive measure of short-term financing. But in

this paper we define short-term financing as short-term debt subtracted by long-term debt due in

1 year.
7Benmelech and Dvir (2011) and Bhattacharyya and Purnanandam (2011).
8According to Bhattacharyya and Purnanandam (2011), the analysis of the causes of the financial

crisis in the USA during 2007–2009 has followed three distinct sources. One track focuses on the

important role played by the shadow banking system in the securitization of mortgage loans

(Gorton and Metrick 2012). A second track examines the incentives provided by the securitization

process to skimp on adequate due diligence in the origination process (Keys et al. 2010). A third

track focuses on the role of banks in originating unduly risky loans and also examines the

incentives of bank management to originate risky loans (Fahlenbrach and Stulz 2011; Acharya

and Richardson 2010).
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short-term debt and rollover risk on the collapse of the housing and mortgage-

backed securities market9 as well as the increased short-term repurchase agree-

ments (Brunnermeier and Oehmke 2013; He and Xiong 2009). As a result, some of

them argue to regulate the use of short-term debt in the shadow banking system

(Gotron and Metrick 2012). Borrowing with large amounts of short-term debt can

lead to the threat of runs on banks, because there may be an externality across

lenders (Diamond 2004). These runs on firms are very similar to the bank runs

analyzed in Diamond and Dybvig (1983).10

In contrast to this view, some financial economists argue that short-term financ-

ing may be the optimal choice for borrowers who experience the deterioration in

asset quality (Diamond and Rajan 2001; Eisenbach 2010; Benmelech and Dvir

2010). Diamond and Rajan (2001) suggest that maturity mismatch may be an

optimal ex ante capital structure for banks when they cannot commit to fully

repay investors once a project has been completed. In their model, if the projects

being financed are seen as becoming less liquid due to an adverse shock to

fundamentals, banks will find it harder to secure long-term financing from creditors

and as a result will increase short-term financing. Short-term financing is hence

a result of adverse fundamental economic shock rather a cause.11

In addition to the relation between short-term financing and financial crises, the

finance literature abounds with attempts to quantify and explain risk-taking behav-

ior of banks. Many studies have pointed out that risk-taking incentives among banks

cause the financial crisis (see Bernanke 1983). However, the difficulty to accurately

measure the banks’ risk limits the access to information needed to evaluate the risk

factors of banks.

Among recent studies, Bhattacharyya and Purnanandam (2011) document

remarkable changes in the composition of risk taking by banks from 2006 to 2006.

9Changes in asset prices show up immediately on balance sheets and have an instant impact on the

net worth of all constituents of the financial system. The net worth of financial intermediaries is

especially sensitive to fluctuations in asset prices given the highly leveraged nature of such

intermediaries’ balance sheets. Procyclical leverage can be seen as a consequence of the active

management of balance sheets by financial intermediaries who respond to changes in prices and

measured risk. For financial intermediaries, their models of risk and economics capital dictate

active management of their overall Value-at-Risk (VaR) through adjustments of their balance

sheets (Adrian and Shin 2010).
10When banks do not have cash on hand to pay all depositors and must liquidate assets at a loss to

pay those who withdraw first, this can lead all depositors to withdraw whenever they expect

enough others to withdraw, even though this makes them collectively worse off. They all withdraw

because the payments to those who withdraw impose losses on those who wait to withdraw after

the bank runs out of money.
11Theories of imperfect capital markets (Bernanke and Gertler 1989; Kiyotaki and Moore 1997)

argue that the banking sector is especially vulnerable to adverse selection and moral hazard, both

caused by asymmetric information. The US financial sector is indeed becoming more vulnerable to

systemic risk. Rajan (2005) argues that compensation structure at many financial firms may induce

additional risk taking against underperforming their peers. This type of common exposure may

increase the possibility of a severe tail event, if exacerbated by liquidity and informational

frictions.
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According to Bhattacharyya and Purnanandam (2011), the systematic risk doubled

between 2000 and 2006, and banks with heavy involvement in residential mortgage

lending and securitization have higher earnings per share. Banks heavily engaged in

residential mortgage lending started exhibiting lower earnings and stock returns even

prior to the crisis.

In addition, many recent studies have suggested that governance structures are

related to risk-taking behavior of banks. Cheng et al. (2010) find evidence that

excess compensation is correlated with risk taking and suggest that institutional

investors both pushed managers towards a risky business model and rewarded them

for it through higher compensation. Fahlenbrach and Stulz (2011) show that banks

where the incentives of CEOs were better aligned with those of shareholders did not

perform better during the crisis. Beltratti and Stulz (2011) investigate a sample of

banks across the world and show that banks with more vulnerable financing with

better governance performed worse during the crisis. Ellul and Yerramilli (2010)

find that bank holding companies with strong and independent risk management

functions tend to have lower enterprise-wide risk. However, none of these studies

provide an answer to the question whether short-term financing or deteriorated

assets contributed to the crisis.

64.3 Data and Summary Statistics

64.3.1 Data

This study focuses on commercial banks in the USA with SIC code 60 or 61. The

sample is from 1993 to 2009, consisting of a panel database. Banks’ monthly stock

return from CRSP and financial statement data from Compustat and Federal

Reserve from FR Y-9C are obtained.

Table 64.1 presents the variables’ definition. Short-term financing is defined as

short-term debt subtracted by long-term debt due in 1 year. Assets with deteriorated

quality is defined as loans secured by real estate (scaled by total assets) subtracted

by short-term financing. Crisis is an indicator variable that equals 1 for year

2007–2009 and zero otherwise. Std(ROA) is defined as a standard deviation of

net income divided by total assets in a given firm and a given year. Earning per

shares (EPS) is defined as net income divided by numbers of shares outstanding.

Stock returns are holding period returns from CRSP monthly.

64.3.2 Descriptive Statistics

Table 64.2 provides the average and standard deviation of main variables from year

1993 to 2009. Short-term financing increased before 2007 and drastically decreased

year between 2008 and 2009. Assets with deteriorated quality also increased and

peaked at 2008. During the crisis period, the EPS plummeted and the standard

deviation of earnings increased dramatically.
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Table 64.3 shows the summary statistics of variables used in study. The average

of short-term financing is 0.056 and the average of assets with deteriorated quality

0.412. During the sample period, the average EPS is $1.39 and the average stock

return is 1.1 %. Bhattacharyya and Purnanandam (2011) report the average EPS of

$1.82 and the average return of 18 % during the peak period of 2000–2006.

Table 64.2 Mean and standard deviation by year

Short-term financing Assets with deteriorated quality Earnings per share

Year Mean Standard deviation Mean Standard deviation Mean Standard deviation

1993 0.03 0.05 0.34 0.15 1.77 1.74

1994 0.04 0.05 0.35 0.15 1.81 1.82

1995 0.04 0.05 0.38 0.15 1.67 0.98

1996 0.05 0.20 0.37 0.24 1.85 1.57

1997 0.05 0.25 0.38 0.28 1.77 1.15

1998 0.06 0.18 0.34 0.23 1.71 1.98

1999 0.08 0.17 0.35 0.24 1.65 2.17

2000 0.06 0.13 0.39 0.20 1.52 1.38

2001 0.06 0.14 0.40 0.21 1.49 1.14

2002 0.06 0.10 0.41 0.18 1.66 1.15

2003 0.06 0.09 0.41 0.18 1.69 1.13

2004 0.06 0.09 0.44 0.19 1.55 1.09

2005 0.06 0.09 0.46 0.19 1.67 1.20

2006 0.06 0.09 0.47 0.19 1.73 1.37

2007 0.07 0.07 0.47 0.18 1.44 1.36

2008 0.06 0.06 0.49 0.17 �0.27 3.26

2009 0.04 0.05 0.48 0.17 �0.92 4.99

Table 64.1 Variable definitions

Variable Calculation Sources

Short-term financing Short-term debt subtracted by long-

term debt due in 1 year/total assets

Compustat

Assets with deteriorated quality (Loan secured by real estate/total

assets) – short-term financing

FR Y-9C report

Compustat

Std(ROA) Standard deviation of return on

assets (net income/total assets)

Compustat

FR Y-9C report

Crisis An indicator variable that equals

one for years 2007–2009, zero

otherwise

Ln (total assets) Log of total assets FR Y-9C report

Market to book equity Market value of equity/book value

of equity

CRSP indices monthly

Leverage debt/equity Compustat

Earning per share Net income/numbers of

outstanding shares

FR Y-9C report

CRSP indices monthly

Stock return Holding period of return CRSP indices monthly
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The correlation matrix is reported in Table 64.4. There is no large correlation

between variables, except the correlation between short-term financing and assets

with deteriorated quality.

64.4 Empirical Results

Table 64.5 shows the logit analysis results of short-term financing and assets with

deteriorated quality. The dependent variable is a dummy variable that equals one if

a bank bankrupted, filed for bankruptcy protection, or closed and received by the

FDIC during year 2007–2009 and zero otherwise. The independent variables are

short-term financing (short-term debt subtracted by long-term debt due in 1 year)

and assets with deteriorated quality (loans secured by real estate subtracted by

short-term financing). The control variables include log of total asset, market to

book equity, and leverage. The results show that there are increasing assets with

deteriorated quality, in contrast to decreasing short-term financing during the

financial crisis years, indicating that short-term financing may not have contributed

to the crisis, but reflect the weakness of banks’ balance sheets.

Table 64.6 reports the regression results of standard deviation of ROA on short-

term financing and assets with deteriorated quality. The dependent variable is the

standard deviation of ROA and independent variables include short-term financing

and assets with deteriorated quality. The control variables include log total asset,

market to book equity ratio, and leverage ratio. The results show that short-term

financing is not significantly related to the bank risk as measured by the standard

deviation of ROA. Instead, assets with deteriorated quality during crisis years are

positively related to the bank risk. This suggests that it is the assets with quality

deterioration rather than short-term financing that actually caused bank distress.

However, this finding does not exclude the possibility that exposures to rollover risk

by short-term financing might also cause bank distress during the crisis.

Table 64.7 reports the regression results of earnings per share on short-term

financing and assets with deteriorated quality. The dependent variable is EPS and

the independent variables include short-term financing and assets with deteriorated

Table 64.3 Summary statistics

Variable Mean Standard deviation Minimum Maximum

Short-term financing 0.056 0.122 0.000 4.992

Assets with deteriorated quality 0.412 0.205 �4.452 0.907

Std(ROA) 0.015 0.014 0.000 0.251

Crisis 0.175 0.380 0.000 1.000

Ln (total asset) 14.218 1.552 11.898 21.612

Market to book equity 1.470 1.220 �4.084 14.382

Leverage 10.995 5.125 �0.400 152.340

Earnings per share 1.391 2.105 �62.572 33.760

Stock return 0.011 0.097 �0.750 1.756
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quality. The control variables include log total asset, market to book equity ratio,

and leverage ratio. The results suggest that short-term financing is positively related

to banks’ profitability. During the crisis years, short-term financing’s contribution

to bank profitability is significantly negative, indicating that short-term financing

could be a symptom of adverse economic shocks rather than a cause of financial

crisis, whereas assets with quality deterioration actually reduced banks’ profits.

Table 64.8 reports the regression results of stock returns on short-term financing

and assets with deteriorated quality. The results suggest that short-term financing is

positively related to bank performance as measured by stock returns; however, during

the crisis years, the effect turns to negative. The relation between assets with deteri-

orated quality and stock returns is always negative, regardless of the sample period.

64.5 Robustness Checks

As a robust check, we add time fixed effects to the regressions and report the results

in Table 64.9. The dependent variables are standard deviation of ROA, EPS, and

stock returns. Independent variables include short-term financing and assets with

deteriorated quality. Consistent with the previous results, Table 64.9 shows that

short-term financing during crisis is negatively related to standard deviation of

ROA, suggesting that short-term financing might not actually contribute to financial

crisis. The positive relation between assets with deteriorated quality and bank

Table 64.5 Logit analysis. This table shows the logit analysis results of short-term financing and

assets with deteriorated quality. The dependent variable is a dummy variable that equals one if

a bank bankrupted, filed for bankruptcy protection, or closed and received by the FDIC during year

2007–2009 and zero otherwise, indicating crisis years. Independent variables include short-term

financing, which is defined as short-term debt subtracted by long-term debt due in 1 year and assets

with deteriorated quality, which is defined as loans secured by real estate subtracted by short-term

financing. The control variables include log total asset, market to book equity, and leverage

Dependent variable: crisis (1) (2) (3) (4)

Short-term financing �0.0542 �2.469***

(�0.23) (�4.74)

Assets with deteriorated quality 2.752*** 5.075***

(15.69) (23.83)

Log(total asset) 0.477*** 0.677***

(23.72) (30.11)

Market to book �0.520*** �0.579***

(�21.09) (�21.69)

Leverage 0.0646*** 0.0705***

(9.74) (9.36)

Intercept �1.549*** �2.768*** �8.355*** �13.63***

(�51.00) (�32.02) (�29.11) (�34.88)

N 9,060 9,060 9,060 9,060

The parenthesis with ***, **, and * indicates its statistical significant level of 0.1 %, 1 %, and 5 %,

respectively
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performance suggests that the low creditworthiness of the investment assets might

have caused the bank distress during the crisis.

We now examine if the above results are driven by endogeneity concerns. Specif-

ically, are significant omitted variable(s) correlated with both dependent and indepen-

dent variables driving our results spuriously? In order to do so, we consider the

bankruptcy filing of Lehman Brothers on September 15, 2011 (2008Q3), as an

exogenous shock.We employ a difference-in-differences approach to analyzewhether

banks with different short-term financing and deteriorated assets react differently in

terms of equity returns when they face the unexpected shock of Lehman Brothers

bankruptcy. Accordingly, banks with more short-term financing and deteriorated

assets are defined as the treatment group, and banks with less short-term financing

and deteriorated assets are the control or non-treated group. We rank all commercial

banks based on their short-term financing and deteriorated assets in the year 2007Q2

and Q3. The dummy variable of post-Lehman bankruptcy is set to one if the date is

2008Q4 and zero if the date is 2007Q4. Table 64.10 reports the DiD regression results.

In columns 1 and 2, the dummy variable of top-quartile short-term financing is set to
one if a bank’s short-term financing is in the top quartile and zero if it is in the bottom

Table 64.6 Regression of standard deviation of ROA on short-term financing. This table reports

the regression results of standard deviation of ROA on short-term financing and assets with

deteriorated quality. The dependent variable is a standard deviation of return on assets and

independent variables include short-term financing and assets with deteriorated quality. The

control variables include log total asset, market to book equity, and leverage

Dependent variable:

Std(ROA) (1) (2) (3) (4) (5) (6)

Short-term financing �0.00225

(�1.83)

Assets with

deteriorated quality

�0.00118

(�1.61)

Short-term financing �
crisis

0.000310 �0.00860

(0.07) (�1.84)

Assets with

deteriorated quality �
crisis

0.0107*** 0.00868***

(14.12) (11.31)

Log(total asset) 0.000681*** 0.000443***

(6.65) (4.44)

Market to book 0.000570*** 0.000916***

(4.47) (7.15)

Leverage 0.000567*** 0.000517***

(19.93) (18.06)

Intercept 0.0155*** 0.0154*** �0.00136 0.0159*** 0.0145*** 0.00126

(93.39) (97.47) (�0.96) (46.86) (89.03) (0.90)

N 9,060 9,060 9,060 9,060 9,060 9,060

Adjusted R-square 0.0003 0.0001 0.052 0.000 0.021 0.065

The parenthesis with ***, **, and * indicates its statistical significant level of 0.1 %, 1 %, and 5 %,

respectively
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quartile A third dummy variable of top-quartile short-term financing � post-Lehman
bankruptcy is the cross product of the previous two dummy variables. In columns 3 and

4, the dummy variable of top-quartile deteriorated assets is set to one if a bank’s

deteriorated asset is in the top quartile and zero if it is in the bottom quartile. A third

dummy variable of top-quartile deteriorated assets � post-Lehman bankruptcy is the
crossproductof theprevioustwodummyvariables.Thecoefficientestimatesof thecross-

product dummy for short-term financing in DiD specifications (1) and (2) are not

statistically significant, whereas the coefficient estimates of the cross-product dummy

fordeterioratedassets in (3)and (4) are significantlynegative, suggesting that abankwith

asset experiencing deterioration of quality after the Lehman shock have much lower

equity returns. This suggests that our results are not driven by omitted variables(s) that

happen to be correlated with both dependent and independent variables.

64.6 Conclusion

It is not clear whether short-term financing indeed caused the banks’ vulnerability

to financial crisis or simply reflects the weakness of banks’ balance sheets. Given

the ambiguous causality, in this chapter we examine the role of short-term financing

Table 64.7 Regression of earnings per share on short-term financing. This table reports the

regression results of earnings per share on short-term financing and assets with deteriorated

quality. The dependent variable is earnings per share and independent variables include short-

term financing and assets with deteriorated quality. The control variables include log total asset,

market to book equity, and leverage

Dependent variable: EPS (1) (2) (3) (4)

Short-term financing 1.511***

(9.04)

Assets with deteriorated quality �0.929***

(�8.94)

Short-term financing � crisis �9.345*** �9.917***

(�14.58) (�15.46)

Assets with deteriorated quality � crisis �3.079*** �2.765***

(�30.18) (�25.72)

Log(total asset) 0.244*** 0.218*** 0.260*** 0.214***

(17.51) (15.33) (19.66) (15.17)

Market to book 0.0944*** 0.0931*** 0.0238 0.0326

(5.44) (5.39) (1.41) (1.93)

Leverage �0.145*** �0.144*** �0.129*** �0.129***

(�37.32) (�37.05) (�33.91) (�34.09)

Intercept �0.532** �0.249 �0.658*** 0.336

(�2.75) (�1.27) (�3.58) (1.57)

N 9,060 9,060 9,060 9,060

Adjusted R-square 0.176 0.183 0.233 0.240

The parenthesis with ***, **, and * indicates its statistical significant level of 0.1 %, 1 %, and 5 %,

respectively
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and assets with deteriorated quality during the crisis of 2007–2009. We find that

short-term financing is a response or a symptom of the adverse economic shocks

rather than a cause of the recent crisis; instead, assets that experienced quality

deterioration are positively related to bank distress. These results might suggest that

financial crisis can stem not from short-term financing, but from the illiquidity and

low creditworthiness of the investment. However, this finding does not rule out the

possibility that exposures to rollover risk by short-term financing might also

contribute to the distress in the banking sector during the crisis.

Appendix

We focus on all publicly traded commercial banks in the USA, namely, with SIC

codes 60 and 61 and filing Federal Reserve Y-9C report in each quarter. FR Y-9C

report collects basic financial data from a domestic bank holding company (BHC)

on a consolidated basis in the form of a balance sheet, an income statement, and

detailed supporting schedules, including a schedule of off balance-sheet items. By

focusing on commercial banks, we do not include insurance companies, investment

Table 64.8 Regression of stock returns on short-term financing. This table reports the regression

results of stock returns on short-term financing and assets with deteriorated quality. The dependent

variable is earnings per share and independent variables include short-term financing and assets

with deteriorated quality. The control variables include log total asset, market to book equity, and

leverage

Dependent variable: stock return (1) (2) (3) (4)

Short-term financing 0.0271**

(3.19)

Assets with deteriorated quality �0.0199***

(�3.65)

Short-term financing � crisis �0.234*** �0.244***

(�7.23) (�7.51)

Assets with deteriorated quality � crisis �0.0555*** �0.0488***

(�10.42) (�8.66)

Log(total asset) �0.00116 �0.00164* �0.00126 �0.00224**

(�1.65) (�2.28) (�1.83) (�3.03)

Market to book 0.00764*** 0.00762*** 0.00663*** 0.00682***

(8.71) (8.69) (7.50) (7.70)

Leverage 0.00104*** 0.00107*** 0.00133*** 0.00132***

(5.28) (5.42) (6.69) (6.68)

Intercept 0.00706 0.0121 0.00917 0.0305**

(0.72) (1.22) (0.95) (2.71)

N 9,060 9,060 9,060 9,060

Adjusted R-square 0.018 0.019 0.024 0.025

The parenthesis with ***, **, and * indicates its statistical significant level of 0.1 %, 1 %, and 5 %,

respectively
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banks, investment management companies, and brokers. Our sample is from 1993

to 2009 and consisted of an unbalanced panel of 538 unique banks. We obtain

a bank’s monthly equity returns from CRSP and financial statement data from

Compustat and FR Y-9C filed by a bank with the Federal Reserve.

Short-term financing (STF) is defined as short-term debt subtracted by long-term

debt due in 1 year. Assets with deteriorated quality (ADQ) are defined as loans

Table 64.10 DiD regressions of a bank’s equity return prior and post-Lehman bankruptcy. We

consider the bankruptcy filing of Lehman Brothers on September 15, 2011, (2008Q3) as an

exogenous shock. We employ a difference-in-differences (DiD) approach (see Meyer 1995;

Angrist and Krueger 1999 for detailed explanations of this methodology). Banks with more

short-term financing and deteriorated assets are defined as the treatment group, and banks with

less short-term financing and deteriorated assets are the control or non-treated group We rank the

banks’ short-term financing and deteriorated assets in 2007 separately. The dummy variable of

post-Lehman bankruptcy is set to one if the date is 2008Q4 (the quarter after the bankruptcy filing
of Lehman Brothers) and zero if the date is 2007Q4 (1 year before the bankruptcy filing of Lehman

Brothers). In models (1) and (2), the dummy variable of top-quartile short-term financing is set to
one if a bank’s short-term financing is in the top quartile (75 percentile and above) and zero if it is

in the bottom quartile (25 percentile and below). A third dummy variable of top-quartile short-
term financing � post-Lehman bankruptcy is the cross product of the previous two dummy

variables. In models (3) and (4), the dummy variable of top-quartile deteriorated assets is set to
one if a bank’s IBVC income is in the top quartile (75 percentile and above) and zero if it is in the

bottom quartile (25 percentile and below). A third dummy variable of top-quartile deteriorated
assets � post-Lehman bankruptcy is the cross product of the previous two dummy variables

Dependent variable: Stock return (1) (2) (3) (4)

Post-Lehman bankruptcy dummy �0.926** �0.912** �1.199*** �1.029***

(�2.15) (�2.16) (�4.16) (�3.61)

Top-quartile short-term financing dummy �1.173*** �0.528

(�2.74) (�1.26)

Top-quartile short-term financing � post-Lehman

bankruptcy dummy

�0.993 �1.039

(�1.32) (�1.58)

Top-quartile deteriorated asset dummy �0.726** 0.500*

(�2.01) (1.83)

Top-quartile deteriorated asset � post-Lehman

bankruptcy dummy

�1.059** �1.078**

(�2.02) (�2.16)

Log(total asset) �0.656 �2.639***

(�0.57) (�2.82)

Market to book �0.163 0.175

(�0.62) (0.93)

Leverage �0.0216 �0.00908

(�0.65) (�0.28)

Intercept �1.292*** 7.714 �1.853*** 23.13***

(�4.29) (0.83) (�9.19) (3.03)

N 250 250 250 250

Adjusted R-square 0.16 0.26 0.13 0.24

A t-test is shown in the parenthesis with ***, **, and * indicating its statistical significant level of

1 %, 5 %, and 10 %, respectively
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secured by real estates and scaled by total assets (AT) subtracted by short-term

financing. Crisis is an indicator variable that equals one if a bank bankrupted, filed

for bankruptcy protection, or closed and received by the FDIC during year

2007–2009 and zero otherwise. Bank risk is defined as the standard deviation of

net income which is divided by total assets in a given firm and a given year.

Earnings per shares are defined as net income divided by numbers of shares

outstanding. Stock returns are holding period of returns from CRSP monthly.

After obtaining the data from CRSP, Compustat, and FR Y-9C, we merge them

using the company identification (PERMCO) and calendar year. The correlation

matrix reports no large correlation between the various independent variables.

These low correlations suggest no evidence of multicollinearity in our following

regressions, which is also confirmed by a low condition number of 2.67 (see Belsley

et al. 1980). The first multivariate analysis is a logit regression:

Crisis ¼ b0 þ b1STFþ b2ADQ þ b3log ATð Þ þ b4Leverageþ e (64.1)

The second analysis is an OLS regression where the standard deviation of return

on asset (ROA) serves as a proxy for bank risk:

Std ROAð Þ ¼ b0 þ b1STFþ b2ADQþ b3STF� Crisisþ b4ADQ

� Crisisþ b5log ATð Þ þ b6M2Bþ b7Leverageþ e (64.2)

To understand the effect of short-term financing on bank performance, we

regress the bank’s EPS on short-term financing activities and other control

variables:

EPS ¼ b0 þ b1STFþ b2ADQþ b3STF� Crisisþ b4ADQ � Crisis

þ b5log ATð Þ þ b6M2Bþ b7Leverageþ e (64.3)

We also consider the stock returns as a measure of bank performance and

conduct the following OLS regression:

Return ¼ b0 þ b1STFþ b2ADQþ b3STF� Crisisþ b4ADQ � Crisis

þ b5log ATð Þ þ b6M2Bþ b7Leverageþ e (64.4)

As a robustness check, we add the fixed effects to all regression models and redo

our empirical analysis. Finally, we examine if the above results are driven by

endogeneity concerns. Specifically, are significant omitted variable(s) correlated

with both dependent and independent variables driving our results spuriously? In

order to do so, we consider the bankruptcy filing of Lehman Brothers on September

15, 2011 (2008Q3) as an exogenous shock. We employ a difference-in-differences

(DiD) approach (see Meyer 1995; Angrist and Krueger 1999 for detailed explana-

tions of this methodology). We specifically analyze whether banks with different

1768 G.N. Dong and Y. Heo



short-term financing and deteriorated assets react differently in terms of equity

returns when they face the unexpected shock of Lehman Brothers bankruptcy.

Accordingly, banks with more short-term financing and deteriorated assets are

defined as the treatment group, and banks with less short-term financing and

deteriorated assets are the control or non-treated group. We rank all commercial

banks based on their short-term financing and deteriorated assets in the year

2007Q2 and Q3 (average over the two quarters). The dummy variable of post-

Lehman bankruptcy is set to one if the date is 2008Q4 (the quarter after the

bankruptcy filing of Lehman Brothers) and zero if the date is 2007Q4 (1 year before

the bankruptcy filing of Lehman Brothers):

Return ¼ b0 þ b1Post-Lehmanþ b2Top-Quartile þ b3Top-Quartile

� Post-Lehmanþ b4log ATð Þ þ b5M2Bþ b6Leverageþ e
(64.5)
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Abstract

To price the stock options with discrete dividend payout reasonably and consis-

tently, the stock price falls due to dividend payout must be faithfully modeled.

However, this will significantly increase the mathematical difficulty since the

post-dividend stock price process, the stock price process after the price falls due

to dividend payout, no longer follows the lognormal diffusion process. Analytical

pricing formulas are hard to be derived even for the simplest vanilla options.

The author was supported by NSC grant 100-2410-H-009-025

T.-S. Dai (*)

National Chiao–Tung University, Taiwan, Republic of China

e-mail: d88006@csie.ntu.edu.tw; cameldai@mail.nctu.edu.tw; cameldai@gmail.com

C.-Y. Chiu

National Chiao–Tung University, Taiwan, Republic of China

Institute of Information Management, National Chiao Tung University, Taiwan, Republic of

China

e-mail: r94922072@ntu.edu.tw

C.-F. Lee, J. Lee (eds.), Handbook of Financial Econometrics and Statistics,
DOI 10.1007/978-1-4614-7750-1_65,
# Springer Science+Business Media New York 2015

1771

mailto:d88006@csie.ntu.edu.tw
mailto:cameldai@mail.nctu.edu.tw
mailto:cameldai@gmail.com
mailto:r94922072@ntu.edu.tw


This chapter approximates the discrete dividend payout by a stochastic continuous

dividend yield, so the post-dividend stock price process can be approximated by

another lognormally diffusive stock process with a stochastic continuous payout

ratio up to the ex dividend date. Accurate approximation analytical pricing

formulas for barrier options are derived by repeatedly applying the reflection

principle. Besides, our formulas can be applied to extend the applicability of

the first passage model — a branch of structural credit risk model. The stock

price falls due to the dividend payout in the option pricing problem is analog to

selling the firm’s asset to finance the loan repayment or dividend payout in the first

passage model. Thus, our formulas can evaluate vulnerable bonds or the equity

values given that the firm’s future loan/dividend payments are known.

Keywords

Barrier option • Option pricing • Stock option • Dividend • Reflection principle •

Lognormal • Credit risk

65.1 Introduction

Black and Scholes (1973) arrive at their groundbreaking option pricing formula for

non-dividend-paying stocks. Their option pricing model is extended to evaluate the

credit risk of a defaultable firm by assuming that the firm defaults when its firm

value fails to meet the debt obligation at maturity. Thus, both equities and the

corporate debts can be viewed as contingent claims of the firm value, and their

values can be evaluated by the aforementioned Black-Scholes option pricing

formula (see Merton 1974). To deal with the dividend payout problem, Merton

(1973) extends Black-Scholes formula by assuming that the stock pays a fixed

continuous dividend yield. This assumption is used in the credit risk evaluation

problem by allowing the firm to sell a fixed ratio of its asset continuously to finance

the loan repayment or dividend payout (see Kim et al. 1993; Leland 1994).

However, most dividends and coupon payments are paid discretely rather

than continuously. Pricing stock options with discrete dividend payout seems to

be first investigated in Black (1975). This discrete payout setting is analog to the

setting that allows the firm to discretely sell its asset to finance the loan repayment

or dividend payout under the credit risk evaluation problem. Although

much financial literature alternatively assumes that the firm is restricted from

selling its asset (see Leland 1994) or is allowed to sell its asset continuously at

a fixed rate (see Kim et al. 1993; Leland 1994; Leland and Toft 1996), it is not

the only — or even the typical — situation in the real-world financial markets.

For example, British Petroleum Plc. sold its asset to finance the spill fund demanded

by the US President Obama.1 Recent news also report that many companies, like

1See “http://online.wsj.com/article/SB10001424-052748704862404575350830340543798.html”

for the news entitled “BP Won’t Issue New Equity to Cover Spill Costs.”
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Anglo American Plc. and Potash Corp. of Saskatchewan Inc., sold their asset to meet

the required dividend payments.2 Although this discrete payment setting might be

more realistic, it incurs significantmathematical difficulty since the stock price process

(or the firm’s value process) becomes much more complicated (see Lando 2004).

Pricing stock options with discrete dividend payout has drawn a lot of attention

in the literature. Frishling (2002) shows that the underlying stock price processes

are usually modeled in three following different ways. Model 1 suggests that the

stock price minus the present value of future dividends over the life of the option

follows the lognormal diffusion process (see Roll 1977; Geske 1979). Model 2
suggests that the stock price plus the forward values of the dividends paid from

today up to option maturity follows a lognormal diffusion process (see Heath and

Jarrow (1988) and Musiela and Rutkowski (1997)).Model 3 suggests that the stock
price falls with the amount of dividend paid at the ex dividend date and follows the

lognormal diffusion process between two ex dividend dates. Frishling (2002)

argues that these three models are incompatible with each other and generate

very different prices. In addition, Frishling (2002), Bender and Vorst (2001), and

Bos and Vandermark (2002) argue that only model 3 can reflect the reality and

generate consistent option prices. Except the aforementioned three models, Chiras

and Manaster (1978) suggest that the discrete dividends can be transformed into

a fixed continuous dividend yield. The stock option can then be analytically solved

by Merton’s formula (see Merton 1973). But Dai and Lyuu (2009) show that the

pricing results of their approach can deviate significantly from those generated by

model 3. The aforementioned observations suggest that the credit risk evaluation

problem could be significantly mispriced if the aforementioned approaches (except

model 3) are adopted.
On the other hand, pricing under model 3 is mathematical intractable since the

post-dividend stock price process, the stock price process after the price fall due to

dividend payout, is no longer lognormally distributed. Bender and Vorst (2001), Bos

and Vandermark (2002), Vellekoop and Nieuwenhuis (2006), Dai and Lyuu (2009),

and Dai (2009) provide approximating analytical pricing formulas or efficient numer-

ical methods for pricing vanilla options. But no announced papers derive analytical

pricing formulas for pricing barrier stock options with discrete dividend payout.

A barrier option is a popular exotic option whose payoff depends on whether the

path of the underlying stock has reached a certain predetermined price level called

barrier. The study of pricing barrier options is of special interesting since this

problem is dual to the problem of credit risk evaluation under the first passage

model — a credit risk model that models the evolution of the firm value and forces

the firm to default if its value is below a certain predefined default boundary.3

2See http://www.businessweek.com/news/2010-02-17/anglo-may-resume-dividend-after-asset-

sales-analysts-say.html for the news entitled “Anglo May Resume Dividend After Asset Sales,

Analysts Say” and http://fxnonstop.com/index.php/component/content/article/42555-myart26206

for the news entitled “Potash Weighs Asset Sales for Special Dividend.”
3Note that the roles played by the stock price and the barrier in the barrier option pricing problem

are analog to the roles played by the firm value and the default boundary in the first passage model.
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Reiner and Rubinstein (1991) derive analytical pricing formula for the barrier

option given the condition that the underlying stock pays no dividend or fixed

continuous dividend yield. Thus, the process of the stock return can be expressed as

a drifted Brownian motion, and the joint density of the extreme stock price over the

option life and the stock price at the option maturity date can therefore be derived

by taking advantages of the reflection principle and Girsanov’s theorem. By using

the risk-neutral variation technique, the pricing formulas can be derived with the

aforementioned joint density function. Note that the Reiner and Rubinstein (1991)

approach cannot be directly extended to price barrier options with discrete dividend

undermodel 3 or to evaluate the equity or the corporate debt values of a defaultable
firm with discrete loan or dividend payout. In addition, deal with the discrete payout

with the aforementioned models except model 3 can produce unreasonable pricing

results (see Frishling 2002). Besides, Gaudenzi and Zanette (2009) develop a tree

model to address this pricing problem. The impact of discrete dividend is heuris-

tically estimated by the linear interpolation method to avoid the combinatorial

explosion problem due to non-recombining property of a bushy tree (see Dai

2009). However, it seems that their pricing results oscillate drastically due to

nonlinearity error problem (see Figlewski and Gao 1999).

A dividend c1 is paid at time t1. The black solid curve denotes the stock price

process prior to time t1 (see Eq. 65.1). The stock price process after time t1 is

approximated by a stock price process that pays a continuous dividend q up to time

t1 (see Eq. 65.10). This approximation process is plotted in gray curve in time

interval [0, t1] and is plotted in black dash curve after time t1.
The major contribution of this chapter is to derive approximate analytical formulas

for pricing barrier stock options with discrete dividend payout. As a by-product, our

formula can be applied to evaluate the credit risk under the first passage model that

allows the firm to sell its asset to finance the payout. Note that analytical pricing

formula for the barrier option can be derived if the underlying stock pays no dividends

(see Reiner and Rubinstein 1991). They show that the process of the stock return can

be expressed as a Brownianmotion with drift, so the joint density of the extreme stock

price over a time interval and the stock price at the end of that time interval can be

derived by taking advantages of the reflection principle for Brownian motion

and Girsanov’s theorem. Specifically speaking, assume that the stock price process

P(t) under the risk-neutral probability is given by

P tð Þ ¼ P 0ð ÞeltþsB tð Þ, (65.1)

where l � r � 0.5s2, r denotes the annual risk-free interest rate, s denotes the

volatility, and B(t) denotes the standard Brownian motion. Then the process of the

stock return can be expressed by a Brownian motion with drift: lt + sB(t), as
plotted in black solid curve in Fig. 65.1. In model 3, the stock price process is

assumed to jump down with the dividend amount at an ex dividend date to avoid

arbitrage. Specifically, assume that the i-th dividend ci is paid at time ti, where
t1 < t2 < t3. . . . In Fig. 65.1, we assume that the option maturity T is less than t2 for
simplicity. Thus, the stock price at time t 2 [t1, t2) must be expressed as
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P tð Þ ¼ P 0ð ÞeltþsB t1ð Þ � c1

� �
el t�t1ð Þþs B tð Þ�B t1ð Þð Þ, (65.2)

which makes the stock return no longer a Brownian motion with drift. To address

the problem, we extend Dai and Lyuu (2009) idea by setting a continuous dividend

yield q to satisfy

P 0ð ÞeltþsB t1ð Þ � c1 ¼ P 0ð Þe l�qð ÞtþsB t1ð Þ:

q can be approximated solved by Taylor expansion to be a linear function of c1 and
B(t1). Due to the Markov property of the stock price process, the process of stock

return after time t1 can be approximated by another Brownian motion with drift:

lt� qt1 + sB(t) as plotted in black dashed curve in Fig. 65.1. Since the processes of
stock returns for the time interval [0, t1] and [t1, T] can be expressed by Brownian

motions, the approximation analytical formulas can be derived by repeatedly

applying the reflection principle. The numerical results suggest that our approxi-

mation pricing formulas provide accurate option pricing results. For evaluating the

credit risk problem, our model can explicitly illustrate how the repayments by

selling the firm asset influence the financial status of the firm and the credit qualities

of other outstanding corporate debts.

The chapter is organized as follows. Section 65.2 introduces required back-

ground knowledge and preparations for formula derivation. In Sect. 65.3.1, we

derive our approximation formula for the barrier option with single dividend.

In Sect. 65.3.2, we extend our formulas to the multi-dividend case. Experimental

results given in Sect. 65.4 verify the accuracy of our pricing formulas. Section 65.5

concludes the chapter.

Fig. 65.1 Approximating the stock price process with discrete dividends
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65.2 Preliminaries

65.2.1 Pricing Formula for Barrier Option Without Dividend

Assume that a barrier stock option with strike K initiates at time 0 and matures at

time T. The payoff of an up-and-out call option at maturity is as follows:

payoff ¼ P Tð Þ�Kð Þþ
0

n if Pmax < B

if Pmax � B
,

where (A)+ denotes max(A, 0), Pmax denotes the maximum underlying stock price

between time 0 and time T, and B denotes the barrier. Similarly, the payoff of

a down-and-out call option at maturity is as follows:

payoff ¼ P Tð Þ�Kð Þþ
0

n if Pmin < B

if Pmin � B
,

where Pmin denotes the minimum stock price between time 0 and time T. For
simplicity, our chapter will focus on up-and-out call option, and the extensions to

other barrier options are straightforward.

To derive the pricing formula for up-and-out calls, we need to know whether the

stock price process has ever hit the barrier. Note that the stock price process has

ever hit the barrier during time interval [0, t] if and only if the maximum stock price

during time interval [0, t] is greater than the barrier. The following theorem can be

applied to derive the joint density of the stock price at time t and the maximum

stock price during the time interval [0, t].

Theorem 65.1 Let eW tð Þ ¼ ytþ B tð Þ be a Brownian motion with a drift term yt
and eM tð Þ ¼ max0�t�t eW tð Þ be its maximum value over a certain time period [0, t].
The joint density function of eM tð Þ, eW tð Þ

� �
is given by

f ~M tð Þ, ~B tð Þ m;wð Þ ¼
2 2m� wð Þ
t
ffiffiffiffiffiffiffiffi
2pt

p eyw�
1
2
y2t� 1

2t 2m�wð Þ2

0

8<
:

ifm � wþ

otherwise:
(65.3)

The support of this density function is illustrated in Fig . 65.2a.

This theorem can be derived by applying the reflection principle and Girsanov’s

theorem as discussed in Shreve (2007).

Reiner and Rubinstein (1991) derive analytical formulas for barrier

options without discrete dividend payout by the aforementioned theorem.

A detailed explanation of their derivation is given below since the derivation

of our formula also takes advantage of their derivation. Define the stock

return in Eq. 65.1 lt + sB(t) as sB̂ tð Þ; that is, B̂ tð Þ is a Brownian motion with

drift term: B̂ tð Þ � lt=sþ B tð Þ:Define the maximum value of the Brownian motion
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M̂ tð Þ by M̂ tð Þ ¼ max0�t�t eW tð Þ. Thus, the value of an up-and-out call option can be
derived as follows:

C ¼ e�rTE P 0ð ÞesŴ Tð Þ � K
� �

1 Ŵ Tð Þ�k, M̂ Tð Þ�bf g
n o

, (65.4)

where k and b in Eq. 65.4 stand for 1
s log

K
P 0ð Þ and 1

s log
B

P 0ð Þ , respectively.

By substituting Eq. 65.3 into Eq. 65.4 with y ¼ s/l, we have

C ¼
ð1
k

ðb
�1

e�rT P 0ð Þesw � Kð Þ f M̂ Tð Þ, Ŵ Tð Þ m, wð Þdmdw
(65.5)

¼
ðb
k

ðb
wþ

e�rT P 0ð Þesw � Kð Þ 2 2m� wð Þ
T
ffiffiffiffiffiffiffiffiffi
2pT

p eyw�
1
2
y2T� 1

2T 2m�wð Þ2 dmdw, (65.6)

where the domain of integral in Eq. 65.5, i.e., �1 < m < b and k < w < 1,

is the support of the indicator function in Eq. 65.4 as illustrated in

Fig. 65.2b. The domain of integral in Eq. 65.6 is the intersection of the support

of the joint density function f M̂ Tð Þ, Ŵ Tð Þ m;wð Þ and the support of indicator

function 1 Ŵ Tð Þ�k, M̂ Tð Þ�bf g as illustrated in Fig. 65.2c.

In the double integral formula Eq. 65.6, since only f M̂ Tð Þ, Ŵ Tð Þ m;wð Þ contains

the variablem,

ðb
wþ

f M̂ Tð Þ, Ŵ Tð Þ m;wð Þdm can be evaluated first by the following lemma:

Lemma 65.2 ðB
vþ

2 2u� vð Þ
ℶ
ffiffiffiffiffiffiffiffiffi
2pℶ

p eyv�
1
2
y2ℶ� 1

2ℶ 2u�vð Þ2du

¼ 1ffiffiffiffiffiffiffiffiffi
2pℶ

p eyv�
1
2
y2ℶ�v2

2ℶ 1� e
2B v�Bð Þ

ℶ

� �
:

Panel (a) denotes the support of the density function of f ~M Tð Þ, ~W Tð Þ in

Eq. 65.3, i.e., a set of points (m, w) that make f ~M Tð Þ, ~W Tð Þ m;wð Þ nonzero.

−2 −1 0 1 2
−2

−1

0

1

2
w

m

−2 −1 0 1 2
−2

−1

0

1

2
w

m

−2 −1 0 1 2
−2

−1

0

1

2
w

m

Support of Eq. (65.3) Integral Domain of Eq. (65.5) Taking Intersection

a b c

Fig. 65.2 Domain of double integral in Eq. 65.6
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Panel (b) denotes the domain of integral in Eq. 65.5, which is also the support of the

indicator function of Eq. 65.4. Panel (c) denotes the intersection of shadow areas in

Panel (a) and (b), which is the domain of integral in Eq. 65.6.

Proof ðB
vþ

2 2u� vð Þ
ℶ
ffiffiffiffiffiffiffiffiffi
2pℶ

p eyv�
1
2
y2ℶ� 1

2ℶ 2u�vð Þ2du

¼ 1ffiffiffiffiffiffiffiffiffi
2pℶ

p eyv�
1
2y

2ℶ�v2

2ℶ 1� e
2B v�Bð Þ

ℶ

� �
:

By applying Lemma 65.2, Eq. 65.6 can be rewritten as

C ¼ e�rT

ðb
k

� Kffiffiffiffiffiffiffiffi
2pT

p e�
w2

2Tþyw�Ty2
2 þ Kffiffiffiffiffiffiffiffi

2pT
p e�

w2

2Tþyw�Ty2
2
þ2b w�bð Þ

T

þ P0 0ð Þffiffiffiffiffiffiffiffi
2pT

p e�
w2

2Tþywþsw�Ty2
2 � P0 0ð Þffiffiffiffiffiffiffiffi

2pT
p e�

w2

2Tþywþsw�Ty2
2
þ2b w�bð Þ

T dw:

(65.7)

In Eq. 65.7, each term of the integrand is of the form Lef2x
2þf 1xþf 0 , where f0,

f1, f2, and L are all constants. The integral can be converted into the cumulative

distribution function (CDF) of the standard normal distribution by the following identity:

ðl
�1

ef2x
2þf1xþf0dx ¼

ffiffiffiffiffiffiffiffiffi
p

�f2

r
e
�f2

1
�4f0f2
4f2 N

l� m

s

� �
,

where m ¼ � f1

2f2
, s ¼ 1ffiffiffiffiffiffiffiffi

�2f2

p , and N(·) denotes the CDF of the standard normal

distribution. Equation 65.31 in Appendix gives the derivation of this identity.

Finally, we obtain the closed form pricing formula:

C¼ P 0ð Þ N dþ T;
P 0ð Þ
K

� �� �
�N dþ T;

P 0ð Þ
B

� �� �� �

�Ke�rT N d� T;
P 0ð Þ
K

� �� �
�N d� T;

P 0ð Þ
B

� �� �� �

�B
P 0ð Þ
B

� ��2r
s2

N dþ T;
B2

KP 0ð Þ
� �� �

�N dþ T;
B

P 0ð Þ
� �� �� �

þKe�rT P 0ð Þ
B

� ��2r
s2
þ1

N d� T;
B2

KP 0ð Þ
� �� �

�N d� T;
B

P 0ð Þ
� �� �� �

(65.8)

where

d� t; sð Þ � 1

s
ffiffiffi
t

p log sþ r � 1

2
s2

� �
t

	 

:
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65.2.2 Approximate the Dividend-Paying Stock Price Process

Obviously, the stock price process before the first ex dividend date is as given in

Eq. 65.1. Here we only focus on what happens after the first ex dividend date.

Extending the idea by Dai and Lyuu (2009), the stock price P(t) between the

first and second ex dividend date, defined as t1 and t2, respectively, can be approx-

imated by a stock price process that pays a continuous dividend yield z1 from time

0 to time t1 as follows:

P tð Þ ¼ P 0ð Þelt1þsB t1ð Þ � c1

h i
el t�t1ð Þþs B tð Þ�B t1ð Þð Þ

¼ P 0ð Þe l�z1ð Þt1þsB t1ð Þþl t�t1ð Þþs B tð Þ�B t1ð Þð Þ,
(65.9)

and hence,

P 0ð Þelt1þsB t1ð Þ � c1 ¼ P 0ð Þelt1þsB t1ð Þ � e�z1t1 :

Since c1 is usually small, z1 is also small, and hence, e�z1t can be approximated

well by its first order Taylor expansion 1 � z1t. Replacing e�z1t1 in the RHS of the

above identity by 1 � z1t1 gives

P 0ð Þelt1þsB t1ð Þ � c1 � P 0ð Þelt1þs B t1ð Þ�B 0ð Þð Þ 1� z1t1ð Þ
) z1 �

c1e
�lt1 1� s B t1ð Þ � B 0ð Þð Þð Þ

t1P 0ð Þ ,

where ex � 1 + x is used again in the last approximation. By substituting k1 � c1e
�lt1

P 0ð Þ
þ1, z1 � k1�1ð Þ 1�s B t1ð Þ�B 0ð Þð Þð Þ

t1
into Eq. 65.9, we obtain the following approximating

process for Eq. 65.9:

P tð Þ � P 0ð Þelt� k
1
�1ð Þ 1�s B t

1ð Þ�B 0ð Þð Þð Þþs B t
1ð Þ�B 0ð Þð Þþs B tð Þ�B t

1ð Þð Þ

¼ P 0ð Þe lt�k
1
þ1ð Þþk

1
s B t

1ð Þ�B 0ð Þð Þþs B tð Þ�B t
1ð Þð Þ (65.10)

Note that the stock price after the second ex dividend date can be recursively

defined by the aforementioned method. For example, the stock price P(t) between
the second ex dividend date t2 and the third ex dividend date t3 can be expressed as

follows:

P tð Þ ¼ P t1ð Þel t2�t1ð Þþs B t2ð Þ�B t1ð Þð Þ � c2
� �

el t�t2ð Þþs B tð Þ�B t2ð Þð Þ

¼ P 0ð Þe l�z1ð Þt1þs B t1ð Þ�B 0ð Þð Þe l�z2ð Þ t2�t1ð Þþs B t2ð Þ�B t1ð Þð Þ

el t�t2ð Þþs B tð Þ�B t2ð Þð Þ

� P 0ð Þe lt�k1�k2þ2ð Þþk1 k2s B t
1ð Þ�B 0ð Þð Þ

eþk2s B t2ð Þ�B t1ð Þð Þþs B tð Þ�B t
2ð Þð Þ,

(65.11)
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where

z2 �
k2 � 1ð Þ 1� k1s B t1ð Þ � B 0ð Þð Þ � s B t2ð Þ � B t1ð Þð Þ½ 	

t2 � t1
, (65.12)

and

k2 � c2e
�lt2þk1þ1

P 0ð Þ � 1:

65.3 Deriving Pricing Formulas

We will first derive the analytical approximating pricing formula in the single-

discrete-dividend case in Sect. 65.3.1. Our approach used in Sect. 65.3.1 can

be extended to obtain pricing formulas in general case. We will show that in

Sect. 65.3.2 by the same approach as in Sect. 65.3.1 to derive the pricing formula

in the multi-discrete-dividend case.

65.3.1 Single-Discrete-Dividend Case

Recall that combining Eq. 65.1 and 65.10, the stock price process can be approx-

imated by

_P tð Þ � P 0ð Þeltþs B tð Þ�B 0ð Þð Þ 0�t<t1

P 0ð Þe lt�k1þ1ð Þþk1 s B t1ð Þ�B 0ð Þð Þþs B tð Þ�B t1ð Þð Þ t1�t�T,

�
(65.13)

where t1 represents the only ex dividend date. Note that we denote the

above approximating process for single-dividend case by _P tð Þ. Similarly, we will

use €P tð Þ to denote the approximating process for two-dividend case later. Our goal is

to compute the following expectation as an approximation to call value:

_C � e�rTE _P Tð Þ � KÞ1 X1\X2\X3f g
� 

,
�

(65.14)

where X1, X2 represent the events that stock price does not hit barrier B during time

period [0, t1) and [t1, T], respectively, and X3 is the event that stock price is greater

than strike price at maturity date. That is, the three events X1, X2, X3 are defined by

X1 � f _P tð Þ < Bj 0 � t < t1g,
X2 � f _P tð Þ < Bj t1 � t � Tg,
X3 � f _P Tð Þ > Kg:

Similarly to Eq. 65.4, first we rewrite the process _P tð Þ for t 2 [t1, T] as follows:

_P tð Þ ¼ P 0ð Þe lt�k
1
þ1ð Þþk

1
s B t

1ð Þ�B 0ð Þð Þþs B tð Þ�B t
1ð Þð Þ

¼ P0 0ð Þek1 sB̂ t
1

ð Þ þ sŴ
1
t� t

1
ð Þ

, (65.15)
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wherewe introduce a process Ŵ
1
t� t1ð Þ� l

s t� t1ð Þþ B tð Þ�B t1ð Þð Þ 8t 2 t1;Tð Þ, and
P0(0) stands for P 0ð Þeð1�k1Þð1þlt1Þ for simplicity. Putting Eq. 65.13 and the

above identity together, with B̂ tð Þ� lt
s þB tð Þ 8t2 0; t1½ 	 defined as aforementioned,

we obtain

_P tð Þ ¼ P 0ð ÞesB̂ tð Þ 0 � t < t1

P0 0ð Þek1sB̂ t
1ð ÞþsŴ 1 t�t

1ð Þ t1 � t � T:
:

(
(65.16)

Note that the two processes B̂ tð Þ for t 2 [0, t1] and Ŵ1(t) for t 2 [t1, T] are
independent due to the Markov property of Brownian motion. Let

M̂1�1 � maxt1�t�TŴ 1 t� t1ð Þ be the maximum value of Ŵ1(t) over time period

[t1, T], where �1 denotes the abbreviation of T� t1. Theorem 65.1 says that the joint

density functions f M̂ t1ð Þ, B̂ t1ð Þ and f M̂
1
�1, Ŵ 1�1

are given by

f M̂ t
1ð Þ, B̂ t

1ð Þ m;wð Þ ¼
2 2m� wð Þ
t1
ffiffiffiffiffiffiffiffiffi
2pt1

p ee1 ifm � wþ

0 otherwise;
:

8<
: (65.17)

f M̂
1
�
1
, Ŵ

1
�1

m 1;w1ð Þ ¼
2 2m1 � w1ð Þ
�1

ffiffiffiffiffiffiffiffiffiffi
2p�1

p ee2 ifm1 � w
1

þ

0 otherwise,

:

8<
: (65.18)

where e1 ¼ yw� 1
2
y2t1 � 1

2t1
2m� wð Þ2, e2 ¼ yw1 � 1

2
y2�1 � 1

2�1
2m1 � w1ð Þ2 and

y ¼ l/s. For convenience, from now on we will use the symbols f0 and f1 to

represent f M̂ t1ð Þ, B̂ t1ð Þ and f M̂
1
�1, Ŵ1

�1
, respectively. Substituting Eq. 65.16 into

Eq. 65.14, with the above joint density functions, we can compute · analytically.

Note that X1, X2, X3 can be rewritten as

X1 ¼ M̂ t1ð Þ < b
� �

,

X2 ¼ M̂1�1 < b0 � k1B̂ t1ð Þ� �
,

X3 ¼ Ŵ1�1 > k0 � k1B̂ t1ð Þ� �
,

where b, b0, and k0 represent 1s log
B

P 0ð Þ ,
1
s log

B
P0 0ð Þand

1
s log

K
P0 0ð Þ for simplicity.Thus, the

analytical pricing formula can be derived by law of iterated expectation as follows:

_C ¼ e�rTE E _P Tð Þ � K
� �

1 X1\X2\X3f gjB̂ t1ð Þ, M̂ t1ð Þ� � 

e�rT

ðb
�1

ðb
wþ

ðb0�k1w

k0�k
1
w

ðb0 �k
1
w

w1
þ

P0 0ð Þek1 swþsw
1 � K

� �

:
2 2m1 � w1ð Þ
�1

ffiffiffiffiffiffiffiffiffiffi
2p�1

p ee2

:
2 2m� wð Þ
t1
ffiffiffiffiffiffiffiffiffi
2p t1

p ee1dm
1
dw

1
dmdw:

(65.19)
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To simplify the above multiple integral, first recall that Eq. 65.6 can be derived

as Eq. 65.8 by first evaluating

ðb
wþ

f B̂ tð Þ, M̂ tð Þ m;wð Þdm with lemma 2.2. Similarly, to

simplify Eq. 65.19, first we evaluate

ðb
wþ

f 0 m;wð Þdm and

ðb0�k1w

wþ
1

f 1 m1;w1ð Þ , and
then obtain a double integral similar to Eq. 65.7. We will rewrite this double

integral in terms of a bivariate normal CDF, just like the way to rewrite Eq. 65.7

in terms of the standard normal CDF. Like single-variate case, the CDF of

a bivariate normal distribution can be approximated efficiently and accurately by

a number of numerical schemes.4 However, literatures only give the approximation

for

ðd
�1

ðc
�1

f X,Y x; yð Þdxdy,

while the double integral we deal with is of the form

ðd
�1

ðh xð Þ

�1
f X,Y x; yð Þdxdy,

where fX, Y stands for the joint density function of a bivariate normal distribution,

c and d are constants, and the value of h depends on x. To tackle this problem,

we use a change of variable to adapt the double integral. Specifically, Eq. 65.19 can

be simplified as follows:

_C ¼ e�rT

ðb
�1

ðb0�k
1
w

k0�k
1
w

P0 0ð Þek1 swþsw
1 �K

� �

:

ðb0�k
1
w

wþ
1

2 2m1�w1ð Þ
�1

ffiffiffiffiffiffiffiffiffiffi
2p�1

p ee2dm1

 ! (65.20)

:

ðb
wþ

2 2m� wð Þ
t1
ffiffiffiffiffiffiffiffiffi
2p t1

p ee1 dm

� �
dw1 dw: (65.21)

By applying lemma 65.2 twice on Eqs. 65.20 and 65.21 and the change of

variable

x ¼ w1 þ k1w
y ¼ w,

�

4See, for example, Hull (2003).
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we have5

_C ¼ e�rT

ðb
�1

ðb0
k0

P0 0ð Þesx � Kð Þ

:
1ffiffiffiffiffiffiffiffiffiffi
2p�1

p e
y x�k

1
yð Þ�1

2
y2 �1�

x�k
1
yð Þ2

2�1

1� e
2 b0 � k1yð Þ x� k1y� b0 � k1yð Þð Þ

�1

� �

:
1ffiffiffiffiffiffiffiffiffi
2pt1

p e
yy�1

2
y2 t1� y2

2t1 1� e
2b y�bð Þ

t1

� �
dxdy:

¼ e�rT

ðb
�1

ðb0
k0

X8
i¼0

Q ið Þ dxdy,

(65.22)

where the integrands Q(1), Q(2), ···, Q(8), by immediately expanding whole the

integrand, are given in Table 65.1.

Since each of the integrands Q(1), Q(2), ···, Q(8) is a quadratic form of x,
y taking exponential and multiplied by a constant, we rewrite the double integral

of each integrand in terms of a bivariate normal CDF. Thus, all the double

integrals of Q(1), Q(2), ···, Q(8) can be evaluated. To simplify these double

integrals, we introduce the following formula:

Table 65.1 Coefficients of the exponential terms of Q(i)

Q 1ð Þ ¼ � K
2p
ffiffiffiffiffiffi
�1t1

p e
� y2

2t1
þ yyþy x�yk1ð Þ � 1

2
y2�1 � y2 t1

2
� x�yk1ð Þ2

2�1 ,

Q 2ð Þ ¼ K
2p
ffiffiffiffiffiffi
�1t1

p e
� y2

2t1
þyy þ y x�yk1ð Þ � 1

2
y2�1 � y2 t1

2
� x�yk1ð Þ2

2�1
þ 2 x�b0ð Þ b0�yk1ð Þ

�1 ,

Q 3ð Þ ¼ K
2p
ffiffiffiffiffiffi
�1t1

p e
� y2

2t1
þ yy þ y x�yk1ð Þ � 1

2
y2�1 � y2 t1

2
� x�yk1ð Þ2

2�1
þ 2b y�bð Þ

t1 ,

Q 4ð Þ ¼ � K
2p
ffiffiffiffiffiffi
�1t1

p e
� y2

2t1
þ yy þ y x�yk1ð Þ � 1

2
y2�1 � y2 t1

2
� x�yk1ð Þ2

2�1
þ 2 x�b0ð Þ b0�yk1ð Þ

�1
þ 2b y�bð Þ

t1 ,

Q 5ð Þ ¼ P0 0ð Þ
2p
ffiffiffiffiffiffi
�1t1

p e
� y2

2t1
þ yy þ xs þ y x�yk1ð Þ � 1

2
y2�1 � y2 t1

2
� x�yk1ð Þ2

2�1 ,

Q 6ð Þ ¼ � P0 0ð Þ
2p
ffiffiffiffiffiffi
�1t1

p e
� y2

2t1
þ yy þ xs þ y x�yk1ð Þ � 1

2
y2�1 � y2 t1

2
� x�yk1ð Þ2

2�1
þ 2 x�b0ð Þ b0�yk1ð Þ

�1 ,

Q 7ð Þ ¼ � P0 0ð Þ
2p
ffiffiffiffiffiffi
�1t1

p e
� y2

2t1
þ yy þ xs þ y x�yk1ð Þ � 1

2
y2�1 � y2 t1

2
� x�yk1ð Þ2

2�1
þ 2b y�bð Þ

t1 ,

Q 8ð Þ ¼ P0 0ð Þ
2p
ffiffiffiffiffiffi
�1t1

p e
� y2

2t1
þ yy þ xs þ y x�yk1ð Þ � 1

2
y2�1 � y2 t1

2
� x�yk1ð Þ2

2�1
þ 2 x�b0ð Þ b0�yk1ð Þ

�1
þ 2b y�bð Þ

t1 :

5The Jacobian determinant
@ w1 ;wð Þ
@ x;yð Þ ¼ 1.
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Lemma 65.3 Let FX1,X2
a; b;Oð Þ be the CDF of a bivariate normal distributed

random vector (X1, X2). That is,

FX1,X2
a; b;Oð Þ �

ða
�1

ðb
�1

f X1,X2
x1; x2ð Þdx1dx2

¼
ða
�1

ðb
�1

1

2p
ffiffiffiffiffiffiffi
Oj jp e�

1
2
XTOXdx1dx2

where x and O denote (x1, x2)
T and the covariance matrix, respectively, and both X1

and X2 have mean 0 and variance 1. The following double integral can be expressed
in terms of FX1, X2 as

G p; q;f1;f2;f3;f4;f5;f6ð Þ
�
ðq
�1

ðp
�1

ef1x
2þf2xyþf3y

2þf4xþf5yþf6dxdy

¼ 2pffiffiffiffi
ℶ

p exp f6 þ
f2f4f5 � f3f

2
4 � f1f

2
5

ℶ

� �

FU1, U2

ffiffiffiffi
ℶ

p
pþ 2f3f4 � f2f5ffiffiffiffi

ℶ
p

ffiffiffiffiffiffiffiffiffiffiffiffi�2f3

p ;

ffiffiffiffi
ℶ

p
qþ 2f1f5 � f2f4ffiffiffiffi

ℶ
p

ffiffiffiffiffiffiffiffiffiffiffiffi�2f1

p ;O

0
BB@

1
CCA,

where

ℶ � 4f1f3 � f2
2, (65.23)

O �
1

f2

2
ffiffiffiffiffiffiffiffiffiffiffi
f1f3

p
f2

2
ffiffiffiffiffiffiffiffiffiffiffi
f1f3

p 1

0
BB@

1
CCA: (65.24)

Proof To make f1x
2 + f2xy + f3y

2 + f4x + f5y + f6 equal z
TWz + zTb + d, we set

# �
f1

f2

2
f2

2
f3

0
B@

1
CA, b � f4

f5

� �
, d � f6:

By Eqs. 65.38, 65.39, 65.42, and 65.43, we have
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m ¼ � 1

4f1f3 � f2
2

2f3f4 � f2f5

2f1f5 � f2f4

� �
,

d0 ¼ f6 þ
f2f4f5 � f3f

2
4 � f6f

2
5

4f1f3 � f2
2

,

F1, 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2f3

4f1f3 � f2
2

s
,

F2, 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2f1

4f1f3 � f2
2

s
,

O ¼
1

f2

2
ffiffiffiffiffiffiffiffiffiffiffi
f1f3

p

f2

2
ffiffiffiffiffiffiffiffiffiffiffi
f1f3

p 1

0
BBB@

1
CCCA,

�#j j ¼ 4f1f3 � f2
2

4
:

By substituting all above equations into Eq. 65.45, we obtain

ðq
�1

ðp
�1

ef1x
2þf2xyþf3y

2þf4xþf5yþf6dxdy

¼ 2pffiffiffiffi
ℶ

p exp f6 þ
f2f4f5 � f3f

2
4 � f1f

2
5

ℶ

� �

FU1U2

ffiffiffiffi
ℶ

p
pþ 2f3f4 � f2f5ffiffiffiffi

ℶ
p

ffiffiffiffiffiffiffiffiffiffiffiffi�2f3

p ;

ffiffiffiffi
ℶ

p
qþ 2f1f5 � f2f4ffiffiffiffi

ℶ
p

ffiffiffiffiffiffiffiffiffiffiffiffi�2f1

p ;O

0
BB@

1
CCA

where ℶ ¼ 4f1f3 � f2
2: Thus, the proof is completed.

With lemma 65.3, the double integrals of Q(1), Q(2), ···, Q(8) can be evaluated

immediately. For example, the integral of Q(1) is given by

ðb
�1

ðb0
k0
Q 1ð Þdxdy ¼

ðb
�1

ðb0
k0
� K

2p
ffiffiffiffiffiffiffiffi
�1t1

p

e
� y2

2t1
þyyþy x�yk1ð Þ�1

2
y2�1�y2 t1

2
� x�yk1ð Þ2

2�1 dxdy

¼ � K

2p
ffiffiffiffiffiffiffiffi
�1t1

p
ðb
�1

ðb0
�1

ee3dxdy

�

�
ðb
�1

ðk0
�1

ee4dxdy

�
,

(65.25)
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where e3 ¼ � 1
2�1

x2 þ k1
�1
xy� k21

2�1
þ 1

2t1

� �
y2 þ yxþ y� yk1ð Þy� Ty2

2
, and e4 ¼ � 1

2�1

x2 þ k1
�1
xy� k21

2�1
þ 1

2t1

� �
y2 þ yxþ y� yk1ð Þy� Ty2

2
. Note that the integrand is

a quadratic form of x, y taking exponential. Let f1(1), f2(1), f3(1), f4(1),

f5(1), f6(1) be the coefficients of x2, xy, y2, x, y and the constant term of the

quadratic form, respectively. That is,

f1 1ð Þ � � 1

2�1
,

f2 1ð Þ � k1
�1

,

f3 1ð Þ � � k21
2�1

þ 1

2t1

� �
,

f4 1ð Þ � y,
f5 1ð Þ � y� yk1ð Þ,
f6 1ð Þ � � Ty2

2
:

By Lemma 3.1, Eq. 65.25 can be rewritten in terms of bivariate normal CDF as

� D 1ð Þ G b0, b,f1 1ð Þ,f2 1ð Þ,f3 1ð Þ,f4 1ð Þ,f5 1ð Þ,f6 1ð Þð Þ
�G k0, b,f1 1ð Þ,f2 1ð Þ,f3 1ð Þ,f4 1ð Þf5 1ð Þ,f6 1ð Þð Þ
	 


,

where D 1ð Þ � � K
2p
ffiffiffiffiffiffi
�1t1

p , and ℶ(1), O(1) are obtained by substituting a(1), a(2), ···,

a(6) into Eqs. 65.23, 65.24, respectively. That is,

ℶ 1ð Þ � 4f1 1ð Þf3 1ð Þ � f2 1ð Þ2,

O 1ð Þ �
1

f2 1ð Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1 1ð Þf3 1ð Þp

f2 1ð Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1 1ð Þf3 1ð Þp 1

0
BBB@

1
CCCA:

Similarly, we have

ðb
�1

ðb0
k0
Q ið Þdxdy

¼ D ið Þ G b0, b,f1 ið Þ,f2 ið Þ,f3 ið Þ,f4 ið Þ,f5 ið Þ,f6 ið Þð Þ½
� G k0, b,f1 ið Þ,f2 ið Þ,f3 ið Þ,f4 ið Þ,f5 ið Þ,f6 ið Þð Þ	,
8i ¼ 2, 3, :::8,

where we define f1(i), f2(i), f3(i), f4(i), f5(i), f6(i) as the coefficients of x
2, xy, y2,

x, y and the constant term of the quadratic form in the exponential part of Q(i)
for i ¼ 2, 3, · · ·, 8. Specifically, the parameters are given by f1(i) ¼ f1(1),

f3(i) ¼ f3(1), f2(i) ¼ (�1)i+1f2(1) 8i ¼ 2, 3, ···, 8, and D(i), f4(i), f5(i), f6(i)
are given by Table 65.2.
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Thus, we obtain the pricing formula

_C ¼ e�rT

ðb
�1

ðb0
k0
Q 1ð Þ þ Q 2ð Þ þ . . .þ Q 8ð Þdxdy

¼ e�rT
X8
i¼1

D ið Þ G b0, b,f1 ið Þ,f2 ið Þ,f3 ið Þ,f4 ið Þ,f5 ið Þ,f6 ið Þð Þ½½
�G k0, b,f1 ið Þ,f2 ið Þ,f3 ið Þ,f4 ið Þ,f5 ið Þ,f6 ið Þð Þ		:

65.3.2 Multi-Discrete-Dividend Case

The above approach can be repeatedly applied to derive approximated pricing

formulas for barrier stock options with multiple-discrete-dividend payout. For

simplicity, we derive the pricing formula for the two-dividend case in this section.

The extensions for three or more dividends cases are straightforward. Note that t1
<t2 < T< t3 in the two-dividend case.

To evaluate the option, we need to derive the joint density function of the

maximum stock prices over the time intervals [0, t1), [t1, t2), and [t2, T] and the

stock price at time T. LetM̂1 t2 � t1ð Þ � maxt1�t<t2Ŵ 1 t� t1ð Þbe the maximum value

of Ŵ1(t) over the time interval [t1, t2) and M̂2�2 � maxt2�t�TŴ 2 t� t2ð Þ be the

maximum value of Ŵ 2 tð Þ over the time interval [t2, T], where �2 denotes the

abbreviation of T � t2.
The joint density function of M̂1 t2 � t1ð Þ and Ŵ1(t2� t1) and the density function

of M̂2�2 and Ŵ2�2 can be derived by applying Theorem 65.1 as follows:

f M̂1
t2� t1ð Þ,Ŵ1 t2� t1ð Þ m1;w1ð Þ

¼
2 2m1�w1ð Þ

t2� t1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p t2� t1ð Þp e

yw1�1
2y

2 t2�t1ð Þ� 1

2 t2�t1ð Þ 2m1�w
1ð Þ2

if m1 �w1
þ,

0 otherwise,

8<
:

(65.26)

Table 65.2 Coefficients of D(i), f4(i), f5(i), and f6(i)

i D(i) f4(i) f5(i) f6(i)

2 K
2p
ffiffiffiffiffiffi
�1t1

p 2b0
�1

þ y yþ k1
2b0
�1

� y
� �

� 4b02þT2y2�Ty2t1
2T�2t1

3 K
2p
ffiffiffiffiffiffi
�1t1

p y 2b
t1
þ y� yk1 � 2b2

t1
� Ty2

2

4 � K
2p
ffiffiffiffiffiffi
�1 t1

p 2b0
�1

þ y 2b
t1
þ yþ k1

2b0
�1
�y

� �
� 2b2

t1
� Ty2

2
� 2b02

�1

5 P0 0ð Þ
2p
ffiffiffiffiffiffi
�1t1

p y + s y � yk1 � Ty2
2

6 � P0 0ð Þ
2p
ffiffiffiffiffiffi
�1 t1

p 2b0
�1

þ yþ s yþ k1
2b0
�1

� y
� �

� 4b02þT2y2�Ty2t1
2T�2t1

7 � P0 0ð Þ
2p
ffiffiffiffiffiffi
�1 t1

p y + s 2b
t1
þ y� yk1 � 2b2

t1
� Ty2

2

8 P0 0ð Þ
2p
ffiffiffiffiffiffi
�1t1

p 2b0
�1

þ yþ s 2b
t1
þ yþ k1

2b0
�1
�y

� �
� 2b2

t1
� Ty2

2
� 2b02

�1
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f M̂2
�2, Ŵ2�2 m2;w2ð Þ ¼

2 2m2 � w2ð Þ
�2

ffiffiffiffiffiffiffiffiffiffi
2p�2

p e
yw2�1

2
y2�2� 1

2�2
2m2�w

2ð Þ2 ifm2 � w2
þ,

0 otherwise:

8<
:

(65.27)

For simplicity, we use €f 0, €f 1, and €f 2 to represent the density functions f M̂ t1ð Þ, B̂
t1ð Þ (see Eq. 65.17), f M̂1

t2 � t1ð Þ,
Ŵ 1

t2 � t1ð Þ, and f M̂2
�2, Ŵ2�2, respectively. Note

that the drifted Brownian motions B̂ tð Þ for t 2 [0, t1), Ŵ1(t � t1) for t 2 [t1, t2), and
Ŵ2(t � t2) for t 2 [t2, t3] are independent due to the Markov property of Brownian

motion; the joint density function of maximum stock prices over [0, t1), [t1, t2), and
[t2, T] and the stock prices at time t1, t2, and T can be calculated by directly

multiplying €f 0 with €f 1 and €f 2
The option value can be evaluated by the risk-neutral variation method as

follows:

€C � e�rTE P̂ Tð Þ � K
� �

1 €X1\€X2\€X3\€X4f g
h i

, (65.28)

where €X1, €X2, €X3 represent the events that the stock price process does not hit the

barrier B during the time interval [0, t1), [t1, t2), and [t2, T], respectively, and €X4

denotes the event that the stock price at maturity is greater than the strike price.

Specifically, €X1, €X2, €X3, and €X4 are defined as

€X1 � M̂ t1ð Þ < b
� �

,
€X2 � M̂1 t2 � t1ð Þ < b0 � k1B̂ t1ð Þ� �

,
€X3 � M̂2�2 < b

00 � k1k2B̂ t1ð Þ � k2Ŵ t2 � t1ð Þ� �
,

€X4 � Ŵ2�2 < k
00 � k1k2B̂ t1ð Þ � k2Ŵ1 t2 � t1ð Þ� �

,

where k
00 � 1

s log
K

S
00
0ð Þ , and b

00 � 1
s log

B
S
00
0ð Þ , respectively. Thus, we can compute

the pricing formula in Eq. 65.28 by applying the law of iterated expectation as

follows:

€C ¼ e�rTE E E P̂ Tð Þ � K
� �

1 €X1\€X2\€X3\€X4f g
hhh

B̂ t1ð Þ, M̂ t1ð Þ, Ŵ1 t2 � t1ð Þ, M̂1ðt2 � t1
�

B̂ t1ð Þ, M̂ðt1
�� ���

¼ e�rT

ðb
�1

ðb
wþ

ðb0-k1w
�1

ðb0-k1 w
wþ
1

ðb00�k1k2w�k2w1

k
00�k1k2w�k2w1

ðb00 j�k1k2w�k2w1

wþ
2

S
00
0ð Þek1k2swþk2sw1þsw2 � K

� �
� €f 2 m2;w2ð Þ � €f 1 m1;w1ð Þ � €f 0 m;wð Þdm2dw2dm1dw1dmdw,

(65.29)
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where the domain of integral in Eq. 65.29 is obtained by taking the intersection

of the supports of €f 2 m2;w2ð Þ,€f 1 m1;w1ð Þ,€f 0 m;wð Þ Since only €f 2 m2;w2ð Þ
contains m2, €f 1 m1;w1ð Þ contains m1, and €f 0 m;wð Þ contains m in the integrand in

Eq. 65.29,

ð
€f 0 m;wð Þdm,

ð
€f 1 m1;w1ð Þdm1 and

ð
€f 2 m2;w2ð Þ dm2 can be simplified as

follows:

€C ¼ e�rT

ðb
�1

ðb0�k1w

�1

ðb00�k1k2w�k2w1

k00�k1k2w�k2w1

S
00
0ð Þek1k2swþk2sw1þsw2 � K

� �

:

ðb00�k1k2w�k2w1

wþ
2

2 2m2 � w2ð Þ
�2

ffiffiffiffiffiffiffiffiffiffi
2p�2

p
 


e
yw2�1

2
y2�2� 1

2�2
2m2�w2ð Þ2

dm2

�

:

ðb0�k1w

wþ
1

2 2m1 � w1ð Þ
t2 � t1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p t2 � t1ð Þp
 


e
yw1�1

2
y2 t2�t1ð Þ� 1

2 t2�t1ð Þ 2m1�w1ð Þ2
dm1

�

:

ðb
wþ

2 2m� wð Þ
t1
ffiffiffiffiffiffi
2p

p
t1

e

yw�1
2
y2t1� 1

2t1
2m�wð Þ2

dm

0
@

1
Adw2dw1dw:

To eliminate the variables in the lower and the upper limits for the integrals on

w1 and w2, we substitute

x ¼ w2 þ k2w1 þ k1k2w,
y ¼ w1 þ k1w,
z ¼ w

8<
: ,

into the aforementioned formula to get6

€C ¼ e�rT

ðb
�1

ðb0
�1

ðb00

k
00

X16
i¼1

O ið Þdxdydz, (65.30)

where O(1), O(2),···, O(16) are defined in Table 65.3

Again, each of the integrands O(1), O(2),···, O(16) is a quadratic form taking

exponential. We reformulate the integrals of them in terms of the CDF of the

multivariate normal distribution by the lemma shown below. Appendix gives the

proof of this lemma.

6The Jacobian determinant
@ w2 ;w1 ;wð Þ
@ x;y;zð Þ is 1.
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T
a
b
le

6
5
.3

T
h
e
d
ef
in
it
io
n
s
o
f
O
(1
),
..
.,
O
(1
6
)

O
1ð
Þ

¼
�

K
ffiffiffiffiffi
ffiffiffiffiffi
ffiffiffiffiffi
ffiffiffiffi

8
p3
�
2
t 2
�t

1
ð

Þ
p

t 1
e�

z2 2
t 1
þy

zþ
y
y�

zk
1

ð
Þþ

y
x�

yk
2

ð
Þ�

y2
t 1 2
�1 2

y2
�
2
�1 2

y2
t 2
�t

1
ð

Þ�
x�

yk
2

ð
Þ2

2
�
2

�
y�

zk
1

ð
Þ2

2
t 2
�t

1
ð

Þ ,

O
2ð
Þ¼

K
ffiffiffiffiffi
ffiffiffiffiffi
ffiffiffiffiffi
ffiffiffiffi

8
p3
�
2
t 2
�t

1
ð

Þ
p

t 1
e�

z2 2
t 1
þy

zþ
y
y�

zk
1

ð
Þþ

y
x�

yk
2

ð
Þ�

y2
t 1 2
�1 2

y2
�
2
�1 2

y2
t 2
�t

1
ð

Þþ
2
b
z�

b
ð

Þ
t 1
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Lemma 65.4 Let FX1,X2,X3
a; b; c;Oð Þ be the CDF of a multivariate normal distrib-

uted random vector (X1, X2, X3). That is,

FX1,X2,X3
a; b; c;Oð Þ

�
ða
�1

ðb
�1

ðc
�1

f X1,X2,X3
x1; x2; x3ð Þdx1dx2dx3

¼
ða
�1

ðb
�1

ðc
�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p3 Oj j

p e�
1
2
xTOxdx1dx2dx3

where x andO denote (x1, x2, x3)
T and the covariance matrix, respectively, and each

of X1, X2, and X3 has mean 0 and variance 1. The following triple integral can be
expressed in terms of FX1,X2,X3

as

H p; q; r;A;B;Cð Þ �
ðr
�1

ðq
�1

ðp
�1

ef1x
2þf2y

2þf3z
2þf4xyþf5yzþf6xzþf7xþf8yþf9zþf10dxdydz

¼ eC0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3

�Aj jFU1,U2, U3
w1 �m1

F1, 1
;
w2 �m2

F2, 2
;
w3 �m3

F3, 3
;O

� �s
,

where

A ¼
f1

f4

2

f6

2
f4

2
f2

f5

2
f6

2

f5

2
f3

0
BBBBB@

1
CCCCCA
,B ¼

f7

f8

f9

0
@

1
A,C ¼ f10,

F ¼
F1, 1 0 0

0 F2, 2 0

0 0 F3, 3

0
@

1
A,

Fj, j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Að Þ�1

� �
j, j

r
8j ¼ 1, 2, 3,

m ¼ � 1

2
A�1B,

C0 ¼ C� 1

4
BTA�1B

O ¼ �2SACð Þ�1:

Let A(i), B(i), C(i) be

A ið Þ ¼

f1 ið Þ f4 ið Þ
2

f6 ið Þ
2

f4 ið Þ
2

f2 ið Þ f5 ið Þ
2

f6 ið Þ
2

f5 ið Þ
2

f3 ið Þ

0
BBBBBB@

1
CCCCCCA
,

B ið Þ ¼
f7 ið Þ
f8 ið Þ
f9 ið Þ

0
B@

1
CA,C ið Þ ¼ f10 ið Þ,

1792 T.-S. Dai and C.-Y. Chiu



respectively. Thus, we have

ðb
�1

ðb0
�1

ðb00

k
00
O ið Þdxdydz

¼ L ið Þ H b
00
, b0, b,A ið Þ,B ið Þ,C ið Þ� ��

�H k
00
, b0, b,A ið Þ,B ið Þ,C ið Þ� �

,8i ¼ 2, 3, � � �, 8,

where

f1 ið Þ ¼ � 1

2�2
,

f2 ið Þ ¼ � k22
2�2

þ 1

2 t2 � t1ð Þ
� �

,

f3 ið Þ ¼ � k21
2 t2 � t1ð Þ þ

1

2t1

� �
,

f6 ið Þ ¼ 0,

f4 ið Þ ¼
k2
�2

if i ¼ 4lþ 1or i ¼ 4lþ 2

� k2
�2

otherwise

8>><
>>:

f5 ið Þ ¼
k2

t2 � t1
if i ¼ 8lþ 1, 8lþ 2, 8lþ 3, or8lþ 4

� k2
t2 � t1

otherwise

8><
>:

,8i ¼ 1, 2, � � �, 16,

L ið Þ ¼ Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p3�2 t2 � t1ð Þt1

p , i ¼ 2, 3, 5, 8,

L ið Þ ¼ �L 2ð Þ, i ¼ 1, 4, 6, 7

L ið Þ ¼ S
00
0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8p3�2 t2 � t1ð Þt1
p , i ¼ 9, 12, 14, 15,

L ið Þ ¼ �L 9ð Þ, i ¼ 10, 11, 13, 16,

and the rest parameters can be easily derived.

Finally, we obtain the following pricing formula in two-dividend case:

€C ¼ e�rT

ðb
�1

ðb0
�1

ðb00

k
00

O 1ð Þ þ O 2ð Þ þ � � � þ O 16ð Þdxdydz
¼ e�rT

X16
i¼1

h
L ið Þ H b

00
, b0, b,A ið Þ, B ið Þ, C ið Þ

� �h

� Hðk00
, b0, b, A ið Þ, B ið Þ, C ið Þ�

ii
:
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65.4 Numerical Results

Option values in different initial underlying stock prices with r ¼ 0.03, s ¼ 0.2,

K ¼ 50, B ¼ 65, T ¼ 1, t1 ¼ 0.5, and c1 ¼ 0. “Ours” and “RR” stand for the pricing

results by Eq. 65.8 and our closed form approximation for single-dividend case,

respectively. “diff” gives their difference.

To show that our approximating formula prices accurately, in this section we

give the numerical results of our formula, compared with other pricing schemes.

First we show that our pricing formula can exactly price a barrier option in zero-

dividend case. Equation 65.8 given in Reiner and Rubinstein (1991) is our special

case when all discrete dividend ci are zero. Table 65.4 gives the comparison of

the pricing results by our formula in single-dividend case and Eq. 65.8, with

settings r ¼ 0.03, s ¼ 0.2, K ¼ 50, B ¼ 65, T ¼ 1, t1 ¼ 0.5, and c1 ¼ 0. As

shown in this table, Eq. 65.8 and our pricing formula give almost the same result.

Notice that the approximations for CDF N(x) and FU1,U2 a; b;Oð Þ could cause

insignificant errors.

Option values approximated by model 1 (denoted as “M1”), 2 (denoted as

“M2”), and our formula in different initial underlying stock prices with r ¼ 0.03,

s ¼ 0.2, K ¼ 50, B ¼ 65, T ¼ 1, t1 ¼ 0.5, and c1 ¼ 1. The columns “error” list

the difference between their left column and the benchmark (denoted as “B”).

MAE denotes the maximum absolute error, and RSE stands for the root-mean-

square error.

As mentioned in Frishling (2002), only model 3 can reflect the real-world

phenomenon. Though models 1 and 2 suggested by Roll (1977) and Heath and

Jarrow (1988) try to approximate model 3, Table 65.5 shows that their pricing

results are less accurate than ours. Table 65.5 gives the comparison of the pricing

Table 65.4 Comparing our pricing results and the exact values in single-dividend case

P(0) 44 46 48 50 52

RR 1.0063271 1.25184 1.45995 1.60138 1.65384

ours 1.0063272 1.25183 1.45994 1.60137 1.65384

diff �1.44794E-07 �4.6E-06 1.61E-06 1.81E-06 9.21E-07

Table 65.5 Comparing the pricing results by different models in single-dividend case

P(0) B ours M2 M1

48 1.3456 1.3427 1.3317 1.3641

52 1.5829 1.5796 1.5767 1.6401

56 1.4389 1.431 1.4395 1.5423

60 0.9164 0.9106 0.9266 1.07

64 0.1932 0.1868 0.1932 0.3697

MAE 0.0089 0.0141 0.1765

RSE 0.0054 0.0093 0.1109
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results by models 1 and 2 and our formula in single-dividend case, where we use the

results by Monte Carlo simulation with 1,000,000 paths as a benchmark. Table 65.6

gives the same comparison as Table 65.5, while Table 65.6 compares the pricing

results for several different c1 and one fixed P(0), but Table 65.5 compares the

results for different P(0) fixing c1. As shown in Table 65.6, our pricing formula

produces poorer results as c1 increases, but on average, our pricing results are still

more accurate than others. Furthermore, typically dividend c1 is quite small, and

hence, our pricing formula approximates option values accurately. In two-dividend

case, the pricing results comparison is shown in Table 65.7. As shown in these

tables, our formula also produces more accurate results the model 1 and 2. Thus, we

can conclude that our formula is better in all cases.

65.5 Conclusions

There are several different ways to model the stock price process with discrete

dividend. As suggested by Frishling (2002), only model 3 can reflect real-world

phenomenon. However, it is hard to price a barrier option under model 3. Our

chapter suggests a way to derive analytically approximating pricing formulas for

a barrier option under model 3. Though the resulting analytical formulas involve

multiple integral, as shown above, all of them can be reformulated in terms of the

Table 65.6 Comparing the pricing results by different models in single-dividend case. All

settings are the same with table 65.5, but now we fix P(0) ¼ 50 and compare the pricing results

for different dividend c1

c1 B ours M2 M1

0.3 1.57589 1.57301 1.57046 1.58565

0.9 1.52022 1.51291 1.50619 1.54856

1.5 1.44776 1.44926 1.439 1.50439

2.1 1.3843 1.38283 1.36935 1.45376

2.7 1.30605 1.31449 1.29772 1.39734

MAE 0.01004 0.01495 0.09737

RMSE 0.00528 0.01067 0.06299

Table 65.7 Comparing the pricing results in two-dividend case

P(0) B ours M2 M1

48 1.003312 1.002807 0.996404 1.061938

52 1.048434 1.043798 1.047928 1.151891

56 0.877129 0.873651 0.887206 1.031609

60 0.536375 0.531522 0.54854 0.728746

64 0.110358 0.107166 0.113098 0.319177

MAE 0.004919 0.015314 0.208819

RSE 0.003754 0.009409 0.146997
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CDF of a multivariate normal distribution. As a result, our pricing formula prices

efficiently. Furthermore, numerical results show that our pricing formulas produce

accurate result.

Option values in two-dividend case approximated by models 1 and 2 and

our formula in different initial underlying stock prices with r ¼ 0.03, s ¼ 0.2,

K ¼ 50, B ¼ 65, T ¼ 1.5, t1 ¼ 0.5, and t2 ¼ t1 + 0.5.

Appendix: Solve the Integration of Exponential Functions by the
CDF of Multivariate Normal Distribution

If the price of the underlying asset is assumed to follow the lognormal diffusion

process, most option pricing formulas, including the pricing formulas in this

chapter, can be expressed in terms of multiple integrations of an exponential

function, where the exponent term is a quadratic function of integrators z1, z2, ···.
The integration problem can be numerically solved by reexpressing the formulas in

terms of CDF of multivariate normal distribution, which can be efficiently solved

by accurate numerical approximation methods (see Hull 2003). These numerical

methods are provided by mathematical softwares, like Matlab and Mathematica.

Take the simplest case – the single integral, for example. Under the premise

f2 < 0, the integral

ðl
�1

ef2x
2þf1xþf0 dx can be rewritten as

ffiffiffiffiffiffiffiffiffi
p

�f2

r
e
�f2

1
�4f0f2
4f2 N

l� m

s

� �
, (65.31)

where

m ¼ � f1

2f2

s ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi�2f2

p ,

and N(·) denotes the CDF of a univariate standard normal distribution. Note that the

above identity is used to derive the pricing formula in no-dividend case.

However, the integration for multivariate case is not straightforward. To

address this problem, we derive a general formula for the multivariate integration

with n integrators: z1, z2, ···, zn.
Some matrix and vector calculations are employed to simplify derivation.

For simplicity, for any matrix ℶ, we use ℶj j, ℶT , and ℶ�1 to denote the determi-

nant, the transpose, and the inverse matrix of ℶ. ℶi, j stands for the element located

at the i-th row and j-th column of ℶ. For any vector n, we use ni to denote the i-th
element of n. We further assume that z ¼ (z1, z2, ···, zn)

T is a column vector

with n variables, b is an n 
 1 constant vector, d is a constant, and W is an

n 
 n symmetric invertible negative-definite constant matrix. Then the general

integral formula is derived in the following theorem:
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Theorem 65.5 For any general quadratic formula zT Wz + bTz + d, the n-variate
integral for ez

T#zþbTzþd

ðwn
�1

ðwn�1

�1
. . .

ðw1
�1

ez
T#zþbTzþddz (65.32)

can be expressed in terms of a CDF of an n-dimensional standard normal
distribution

FU1,U2, ���,Un l1; l2; � � �; ln;Oð Þ �ðln
�1

ðln�1

�1
� � �
ðl1
�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oj j 2pð Þn

p e�
1
2
yTO�1ydy,

where O denotes the covariance matrix of a n-variate standard normal random
vector (Υ1, Υ2,� � �, Υn).

Proof To express the integral in Eq. 65.32 in terms of a CDF of a standard normal

distribution, the exponent term zT Wz + bTz + d should be expressed in terms of the

exponent term of a standard normal distribution. That is,

zT#zþ bTzþ d ¼ � 1

2
yTO�1yþ d0 (65.33)

for some constant d0. This can be achieved by first deriving a proper constant vector
m and a proper diagonal matrix S and then substituting

y ¼ S�1n (65.34)

into the left-hand side of Eq. 65.33, where n is the abbreviation of z � m.

The following lemma derives a proper m by completing the square identity for

zT Wz + bTz.

Lemma 65.6 Under the premises that W is a symmetric invertible n 
 n matrix, and
z, b are both n 
 1 vectors, we have

zT#zþ bTz ¼ zþ 1

2
#�1b

� �T

# zþ 1

2
#�1b

� �
� 1

4
bT#�1b: (65.35)

Proof By expanding the right-hand side of Eq. 65.35, we have

zþ 1
2
#�1b

� �T
# zþ 1

2
#�1b

� �
� 1

4
bT#�1b

¼ zT#zþ bTz ¼ the left-hand side of Eq:65:35:

(65.36)

With lemma 65.6, we obtain

zT#zþ zTbþ d ¼ nT#nþ d0, (65.37)
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where

m � � 1

2
#�1b, (65.38)

d0 � d� 1

4
bT#�1b: (65.39)

The diagonal matrix F can be derived by equating the right-hand sides of

Eq. 65.33 and Eq. 65.37 to get

nTWnþ d0 ¼ � 1

2
yTO�1yþ d0:

Subtracting d0 from both sides of above equation yields

nT#n ¼ � 1

2
yTO�1y (65.40)

� 1

2
nT FOFð Þ�1

n, (65.41)

By comparing the right-hand side of Eqs. 65.40 and 65.41, we have

� 1
2
FOFð Þ�1 ¼ # , which is rewritten as FOF ¼ (�2W)�1. Recall that F is

a diagonal matrix. All diagonal elements of O are all 1 since O is a covariance

matrix of multivariate standard normal random variables. Thus, we have (FOF)i,
i ¼ Fi,i

2 , which leads us to obtain

Fi, j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2#ð Þ�1

� �
i, i

r
if i¼j

0 otherwise

8<
: (65.42)

and

O � �2FWFð Þ�1: (65.43)

Now we can evaluate Eq. 65.32 with d0,m, F, and O defined above. By applying

the change of variable Eq. 65.34, Eq. 65.32 can be rewritten as

ðzn¼wn

zn¼�1

ðzn�1¼wn�1

zn�1¼�1
� � �
ðz1¼w1

z1¼�1
ez

T#zþbTzþddz

¼
ðzn¼wn

zn¼�1

ðzn�1¼wn�1

zn�1¼�1
� � �
ðz1¼w1

z
1
¼�1

e�
1
2
yTO�1yþd0

@x

@y

����
����

����dy:

(65.44)
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Since the elements in vector y can be represented as z1�m1

F1, 1 ; z2�m2

F2, 2 ; � � �; zn�mn

Fn, n

� �T
, the

Jacobian determinant can be straightforwardly computed to get

@x
@y

���
��� ¼

Yn

i¼1
Fi, i ¼ Fj j . Thus, Eq. 65.44 can be further rewritten as the following

closed form formula:

ed0
ffiffiffiffiffiffiffiffiffiffi
pn

�#j j
r

FU1,U2, ���,Un

w1 �m1

F1, 1
;
w2 �m2

F2, 2
; � � �; wn �mn

Fn, n
;O

� �
, (65.45)

where Fj j ffiffiffiffiffiffiffi
Oj jp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

FOFj jp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2#j j�1

q
and | � 2#j ¼ 2n| � #j are substituted

into Eq. 65.45. This integration formula is similar to the single integral case given.

Q.E.D.
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Abstract

This work reflects the impact of the Spanish and UK pension funds investment

on the market efficiency; specifically, we analyze if manager’s behavior

enhances the existence of herding phenomena.

To implement this study, we apply a less common methodology: the esti-

mated cross-sectional standard deviations of betas. We also estimate the betas
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with an econometric technique less applied in the financial literature: state-space

models and the Kalman filter. Additionally, in order to obtain a robust estima-

tion, we apply the Huber estimator.

Finally, we apply several models and study the existence of herding towards

the market, size, book-to-market, and momentum factors.

The results are similar for the two countries and style factors, revealing the

existence of herding. Nonetheless, this is smaller on size, book-to-market, and

momentum factors.

Keywords

Herding • Pension funds • State-space models • Kalman filter • Huber estimation •

Imitation • Behavioral finance • Estimated cross-sectional standard deviations

of betas • Herding towards the market • Herding towards size factor • Herding

towards book-to-market factor • Herding towards momentum factor

66.1 Introduction

For some time, Western countries have been undergoing a range of demographic

and social changes: increased life expectancy, ageing population, shorter active

phases, and longer retirement periods. All of these changes, together with increas-

ing concern over the viability of public pension systems, have led to a greater role

for complementary pension systems.

Together with all these factors, society has become increasingly aware of the

need to save for a higher retirement income; as Sanz (1999) observes, the state

pension incomes are lower than those received during working life. Thus, together

with tax incentives, pension plans are one of the key financial products for saving in

developed economies.

The need to find a backup to the state pension has caused more and more

professional and nonprofessional investors to take out pension plans by investing

in pension funds.

As a consequence, these products are beginning to take a leading role in the

industry of collective investment; according to INVERCO (Spanish Association of

Investment and Pension Funds), the investment in such products worldwide in 2010

exceeded 12½ billion euros, of which more than 3 billion euros came from Europe,

highlighting the United Kingdom, which represents a third of the total European

investment.

The origin of pension funds and pension plans can be traced to the foundation of

the welfare states, when various governments began to expand public spending, in

particular on social welfare: education, health, pensions, housing, and unemploy-

ment benefit.

Among the different parts of the welfare state, pensions are included under the

heading of the Social Welfare Systems, and the European pension systems are

organized around the Livonia focus which is divided into three pillars, as González

and Garcı́a (2002) notes:
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1. The first pillar consists of the Social Security System. It is integrated by the

public system, which is mandatory, defined benefit pensions, and pay-as-you-go

system, which guarantees a minimum level of pension. The pay-as-you-go

system means that active workers pay, with their contributions, the pensions of

retirees at that time; although each worker’s pension depends on the contribu-

tions made during working life.

2. The second pillar consists of private and complementary occupational plans,

within the scope of companies and workers associations. This pillar may be

either voluntary or compulsory and may replace or supplement the first pillar, so

it may be either private or public.

3. The third pillar consists of individual savings decisions, so it is private and

voluntary; an example is the personal pension plans.

Therefore, the first pillar is the Public Social Welfare System, while the second

and third comprise the Complementary Social Welfare System.

The evolution of each of these pillars depends on the evolution of the state

system, so if the latter has expanded, providing more generous state pensions, the

other two have been developed to a lesser extent, and vice versa. For instance,

Fernández (2011) notes that the third pillar is weak in Spain because public

pensions are close to the final salary.

Therefore, complementary pension systems have varying characteristics across

Europe depending on the private pension’s development (second and third pillars),

and we can divide them into three groups:

– Countries in which private pension systems have reached a high stage of

development: the United Kingdom, Ireland, the Netherlands, and Sweden.

– Countries in which private pension systems have reached a considerable degree

of development, but are still evolving: Spain, Portugal, Italy, and Germany.

– Countries in which private pension systems are less developed: France, Belgium,

and some East European countries.

With regard to legislation in Europe on these products, it must be noted that

each country has its own, so that across Europe we can observe significant

differences.

Among the different European countries, we focus on Spain and the United

Kingdom because they represent two different systems and their industries have

different size; as a result, we want to study if these characteristics provide different

results on the topic studied: the herding phenomenon.

Respect the pension systems, these two markets are the most representative of

two different pension systems:

Spain belongs to the “Mediterranean model,” which is characterized by generous

public pensions. In contrast, the United Kingdom belongs to the “Anglo-Saxon

model,”with less generous public pensions, so private pensions aremore developed.

Equally, the differences in size between the two markets allow us to observe

whether they enhance or not the existence of herding.

With regard to the United Kingdom, according to the OECD (2010), it is the

leading country in Europe (1.1 billion euros) and the second in worldwide terms,

just behind the United States.
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For its part, Spain occupies seventh place in Europe with 84 milliard of euros

invested in 2010, and given that these products did not come on the market here

until 1988, this country has experienced a significant growth over the past years; as

a result, this trend could have implications for the existence of herding.

We focus on the study of herding because traditionally, most of the financial studies

examine the pension funds’ performance, analyzing the manager behavior; however,

the market efficiency can also be affected by the pension funds’ investment, for

example, through the herding phenomenon, an aspect that we study in this paper.

We apply a less common methodology to detect herding, based on the state-

space models, as in the work of Christie and Huang (1995). Nonetheless, this model

suffers from several inadequacies: it supposes that the instability of the market

means that the whole market should demonstrate negative or positive returns and it

introduces dummy variables arbitrarily; therefore, we also focus on the work of

Hwang and Salmon (2004), who calculate herding using a single-factor model. In

particular, they base on the market return from the CAPM model, using the betas

dispersion of all market stocks.

The rest of the work is organized as follows: in the second section we describe

the herding phenomenon and the third section carries out a literature review on the

topic. The fourth section develops the methodology. The fifth section compiles the

data and presents the empirical results. Finally, we show the main conclusions.

66.2 The Herding Phenomenon

This topic is part of the behavioral finance, which is focused on the study of the

rationality of investment decisions and the implications of the cognitive processes

in the make decisions (Fromlet 2001).

Investors’ preference, such as the avoidance of loss, may produce some irratio-

nal reactions and affect the market efficiency (Kahnemann and Tversky 1979;

Tversky and Kahnemann 1986). This behavior may imply price fluctuations, not

necessarily related to the arrival of new market information, but rather by the

emergence of collective phenomena, like herding (Thaler 1991; Shefrin 2000),

affecting the efficiency and stability of the market.

In financial literature, herding arises when investors decide to imitate the

decisions of other participants in the market or market movements; that it is to

say, they imitate market agents who are thought to be better informed, rather than

follow their own beliefs and information.

We assume the manager as investor, given that even though individual investors

make the investments in pension plans, the managers are responsible for buying and

selling in the market; likewise, they also vary the composition of the pension fund

portfolio. Therefore, managers are the final investors and they carry out the

investment in the market, albeit according to the guidelines established by the

members of the pension plans.

In financial language, the herding phenomenon is one of the most widely

discussed because, in the field of the asset pricing, it helps to explain market
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anomalies; however, the difficulty in its measurement and calculation has limited

their research.

It is generally accepted that herding can lead to a situation in which market

prices cannot reflect all of the information, then the market becomes unstable and

moves towards the inefficiency. For that reason, market regulators show an interest

in reducing this type of phenomena.

Theoretical and empirical studies have focused on finding causes and implica-

tions related to herding. The majority agree that this may due to both rational and

irrational investor behavior.

According to Devenow and Welch (1996), irrational viewpoint focuses on the

psychology of the investor, where the investor follows others blindly.

On the other hand, rational herding may appear due to diverse causes:

The first of them is the existence of imperfect information, that it is to say, when it is

believed that other market participants are better informed. Banerjee (1992),

Bikhchandani et al. (1992), Hirshleifer et al. (1994), Calvo and Mendoza (2000),

Avery and Zemsky (1998), Chari and Kehoe (2004), Gompers and Metrick

(2001), Puckett and Yan (2007), and Sahut et al. (2011) show evidence of

such imperfect information.

The second aspect that causes rational herding is the costs of reputation. Scharfstein

and Stein (1990), Trueman (1994), Rajan (1994), or Maug and Naik (1996),

focusing on agency theory, show evidence of this. These studies prove that

mutual fund managers imitate others in order to obtain bonuses as set out in

their compensation-reputation scheme rewarding.

Compensation schemes also cause rational herding, as an investor will be rewarded

based on their performance against the others; therefore, the deviations with respect to

the market consensus could lead to an undesirable cost. Studies such as those of Roll

(1992), Brennan (1993), Rajan (1994), or Maug and Naik (1996) demonstrate this.

In addition to these explanations, some authors have considered other factors,

like the degree of institutional participation, the spread of opinions, derivatives

markets and their sophistication, or uninformed investors. Among these are

Patterson and Sharma (2006), Demirer and Kutan (2006), Henker et al. (2006),

and Puckett and Yan (2007).

Despite the uncertainty surrounding the causes of this behavior, the study of

herding in financial markets has followed two lines of investigation. The first one

analyzes the tendency of individuals (individual investors). Among them, we

highlight the works of Lakonishok et al. (1992a); Grinblatt et al. (1995); Wermers

(1999), and Uchida and Nakagawa (2007).

The second trend focuses on market herding as a whole, that is to say, as

a collective behavior of all participants buying or selling a certain asset at the

same time. The most representative studies within this line of investigation are

those of Christie and Huang (1995), Chang et al. (2000), Hwang and Salmon

(2004), Patterson and Sharma (2006), and Wang (2008).

In this paper we focus on this second approach; to this purpose, we use the

observing deviations from the equilibrium expressed in CAPM prices, a focus less

used in financial literature.
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Based on the works of Christie and Huang (1995) and Hwang and Salmon

(2004), we capture herding with the use of observed returns data, instead of

measuring it in the same way as Lakonishok et al. (1992a), by detailed records of

individual trading activities which may not be available in many cases. For this

reason, in order to detect herding, we use the cross-sectional dispersion of the betas.

Nonetheless, as this model suffers from some deficiencies as it supposes that

market betas are statics, we build a time-varying distribution of the cross-sectional

dispersion of betas. Likewise, as its betas do not take into account outliers, we apply

a robust estimation.

The estimation method applied is the state-space model, using the Kalman filter.

This methodology is more innovative in financial literature, and as far as we know,

it has not been applied to pensions, so we will obtain new empirical evidence.

Likewise, as this technique has not been applied to pension funds, it will allow us

to detect, for the first time, if pension fund managers produce herding behavior in

the markets.

66.3 Literature Review

As we mentioned, we focus on the study of herding considering the market as

a whole. In this trend, we find various types of models that detect herding: models

of returns’ dispersion and state-space models.

In the first ones we can distinguish between linear and nonlinear models. In the

linear models, the most common measurement is the cross-sectional standard

deviation of returns (henceforth CSSD), while in the nonlinear ones is the cross-

sectional absolute deviation of returns (henceforth CSAD).

Studies based on these models show mixed evidence of this behavior. Christie and

Huang (1995) find evidence in American stocks, but not during the market crises.

Chang et al. (2000) find this in Taiwan, South Korea, and Japan, but not in Hong Kong

and the United States. Lin and Swanson (2003) do not find this in international

securities. Gleason et al. (2004) show this for ETFs funds. Bowe and Domuta (2004)

also find positive results in the Jakarta stock market. Weiner (2006) finds scarce

evidence for herding in the oil market. Demirer and Kutan (2006), together with Tan

et al. (2008), study the Chinese market, but they do not find evidence of herding. In the

Polish market, Goodfellow et al. (2009) find evidence of individual herding in bear

markets, while they do not find evidence for institutional herding. Bohl et al. (2011)

observe that restrictions on short-term positions lead to adverse herding in the United

States, the United Kingdom, Germany, France, Australia, and South Korea. Economou

et al. (2011) detect the presence of herding in Greek, Italian, and Portuguese markets.

With respect to the Spanish market, there are different studies that detect herding:

Blasco and Ferreruela (2007, 2008) Lillo et al. (2008), and Blasco et al. (2011).

On the other hand, the state-space model (used in this work) also provides mixed

evidence: Gleason et al. (2003) use it on the European futures markets, but the

results display absence of herding. Hwang and Salmon (2004) find it in the Korean

and American markets. In addition, they clearly observe it when the markets are
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stable and the investors are sure of the futures markets’ direction. The authors

conclude that financial crises stimulate a return towards efficiency.

Wang (2008) applies this to various markets (developed and emerging)

and concludes that herding in emerging markets is greater than in developed ones.

Demirer et al. (2010) apply some models to the Taiwanese market, obtaining

different results depending on the method. These authors find a lack of herding with

the linear method (CSSD), but with the nonlinear model (CSAD) and the state-

space model, they find strong evidence.

Shapour et al. (2010) also discover such evidence in the Tehran stock market, but

no evidence of herding when they study towards size and book-to-market factors.

With regard to studies of herding in collective investment instruments (mutual

and pension funds), we observe different analyses:

Oehler and Goeth-Chi (2000) examine German mutual funds that invest on bond

market. The results show herding, but to a lesser degree than in the stock market.

Kim and Wei (2002) also get positive evidence in domestic and international

Korean mutual funds. Voronkova and Bohl (2005) do not detect an influence of

Polish pension funds on the stock market. Wylie (2005) examines this behavior

in the portfolio holdings of UK equity mutual fund managers, revealing some

modest results. Walter and Weber (2006) analyze whether the German mutual

fund managers demonstrate this behavior, and their results confirm it. Lobao

et al. (2007) obtain evidence in Portuguese mutual funds, detecting a stronger

tendency to herd among medium-cap funds, and a decrease when the stock

market corrects itself or is more volatile.

Ferruz et al. (2008a, b) notice evidence of this phenomenon in value, growth, and

cash stocks in Spanish equity mutual funds. Hsieh et al. (2010) show that mutual

funds on 13 emerging Asian countries influence on the existence of herding, and

this phenomenon is more pronounced during and after crises; for this reason,

they suggest that mutual funds’ behavior may have contributed to the crises.

Fong et al. (2011) document the existence of herding due to information

cascades, in a sample of US equity mutual funds. Jame (2011) examines the

magnitude and effects of herding on pension fund price in the United States.

Jame uses the measurement proposed by Lakonishok et al. (1992b) and confirms

that pension funds are involved on the development of herding.

Given the small number of studies that analyze this topic in pension funds, this

paper contributes to the financial literature by studying the influence of Spanish and

British pension fund managers in their respective markets.

66.4 Methodology

66.4.1 CAPM and Herding

Herding leads to mispricing so rational decisions may be disturbed through the use of

biased beliefs and views of expected returns and risks. More specifically, in the

CAPM model, herding produces biased betas, and they deviate from equilibrium.
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In order to observe empirically how this phenomenon affects the betas, we take

as a starting point the CAPM model in equilibrium:

Et ritð Þ ¼ bimtEt rmtð Þ (66.1)

where rit and rmt are the excess return of fund i and the excess market return over the

risk-free asset during the period t, respectively, bimt is the systematic risk measure,

and Et(∙) is the conditional expectation at time t in order to price the fund i.
The CAPM model assumes that bimt does not change over time, despite consid-

erable empirical evidence demonstrating that betas are not constant, among those,

Harvey (1989), Ferson and Harvey (1991, 1993), and Ferson and Korajczyk (1995).

Nonetheless, following Hwang and Salmon (2004), the evidence shows that the

betas do not change over time in equilibrium, which means that the variation of

betas can be interpreted as behavioral anomalies, such as herding, rather than from

fundamental changes in the beta or the equilibrium relationship between Et(rmt)
and Et(rit).

In this way, the individual cross-sectional dispersion of betas is lower than in

equilibrium; given that if all returns were expected to be equal to the market return,

all betas would be equal to one and the cross-sectional variance would be zero.

In addition, if we assume that Et(rmt) represents the market as a whole and

investor first forms a view of the market as a whole and then considers the value of

the individual asset, subsequently the investor’s behavior is conditional on Et(rmt)
and the observed beta (bimt) will be biased, at least in the short-term, given Et(rmt).

In this way, the biased betas appear because the beliefs of the investors change,

they follow the market more than they should in equilibrium, and they ignore the

equilibrium relation, trying to match the individual asset returns with the market

return. In this case takes place the so-called herding towards the market.

The opposite behavior is also possible, producing adverse herding. This appears

when high betas (larger than one) become higher and low betas (smaller than one)

become lower. On this occasion, individual return becomes more sensitive for large

beta stocks and less sensitive for low beta stocks. This leads to a reversion in the

long-term equilibrium of bimt. In fact, adverse herding should exist if herding exists,
since there must be some systematic adjustment back to the CAPM equilibrium.

66.4.2 Measuring Herding

When there is herding in the market portfolio, the CAPM equilibrium does not

occur, and both beta and expected return are biased. Therefore, instead of the

equilibrium in (1), Hwang and Salmon (2004) assume that the following relation

is produced in presence of herding towards the market:

Eb
t ritð Þ

Et rmtð Þ ¼ bbimt ¼ bimt � hmt bimt � 1ð Þ (66.2)
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where Et
b(rit) is the market’s biased short run conditional expectation on the excess

returns of fund i, bimt
b is the market beta at time t in the presence of herding, and hmt

is a latent herding parameter that changes over time, less than one (hmt � 1) and

conditional on market fundaments.

When hmt¼ 0, then bimt
b ¼ bimt, and herding does not exist, producing the CAPM

equilibrium. However, when hmt¼ 1, then bimt
b ¼ 1, it is perfect herding towards the

market portfolio in the sense that all individual funds move in the same direction

and magnitude as the market portfolio.

In general, when the herding parameter (hmt) is between zero and one

(0 < hmt < 1), a certain degree of herding exists in the market, determined by the

magnitude of the herding coefficient.

Considering the situation described in the previous section, the relationship

between the real and biased expected excess fund returns and its beta can be explained.

Therefore, for a fund with bimt > 1, then Er(rit) > Et(rmt), and the fund

presents herding towards the market, so that Et
b(rit) moves towards Et(rmt), and

Er(rit) > Et
b(rit) > Et(rmt). As a result, the fund seems less risky than it should be,

suggesting that bimt
b < bimt.

On the other hand, for a fund with bimt< 1, it gives Er(rit)< Et(rmt), and the fund
presents herding towards the market when Et

b(rit) moves towards Et(rmt), which is

why Er(rit) < Et
b(rit) < Et(rmt). The fund seems riskier than it should be, suggesting

that bimt
b > bimt.

Finally, for a fund with a beta equal to one, bimt ¼ 1, the fund is neutral to

herding.

As we have already mentioned, the existence of herding implies adverse herding,

allowing hmt < 0; therefore, for a fund with bimt > 1, then Et
b(rit)> Er(rit)> Et(rmt),

while a fund with bimt < 1 will produce the following: Et
b(rit) < Er(rit) < Et(rmt).

66.4.3 Models for Measuring Herding

Herding of a market portfolio can be captured with the parameter hmt of the

expression (66.2); however, neither the beta nor the herding parameter is observed.

For this reason, we use state-space models in order to extract those parameters.

As we aim to measure herding in terms of the market as a whole, we assume that the

Eq. 66.2 captures all of the market assets, so we can calculate herding using all of

the assets and not only one, eliminating the effects of the idiosyncratic movements

of individual betas (bimt
b ).

Since the cross-sectional mean of the betas (bimt
b or bimt) is always one, Hwang

and Salmon (2004) show that

Stdc bbimt
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec bimt � hmt bimt � 1ð Þ � 1ð Þ2
� �r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec bimt � 1ð Þ2
� �r

1� hmtð Þ ¼ Stdc bimtð Þ 1� hmtð Þ (66.3)
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where Ec(∙) represents the cross-sectional expectation, Stdc(bimt
b ) is the

cross-sectional standard deviation of the beta in equilibrium, andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec bimt � hmt bimt � 1ð Þ � 1ð Þ2
� �r

is a direct function of the herding parameter.

In order to minimize the impact of the idiosyncratic changes in bimt, a great

number of assets are used in the calculation of Stdc(bimt), so Stdc(bimt) will be

stochastic in order to observe the movements in the equilibrium beta.

Nonetheless, as it is expected that the market as a whole Stdc(bimt) does not

change significantly in the short term, unless the structure of companies changes

suddenly, it is assumed that Stdc(bimt) does not exhibit any systematic movement

and that the changes in Stdc(bimt
b ) in the short term are due to the changes in hmt, that

is to say, due to the presence of herding.

66.4.4 The State-Space Models

In the previous section, we remark that the herding parameter is not observed,

so we apply state-space models. Those models may be estimated by using the

Kalman filter, which is an algorithm to perform filtering on the state-space

model.

In order to extract herding from model (66.3), we follow the procedure used by

Hwang and Salmon (2004). First, taking logarithms of (66.3)

log Stdc bbimt
� �� � ¼ log Stdc bimtð Þ½ � þ log 1� hmtð Þ (66.4)

and considering the assumptions carried out for Stdc(bimt), it is rewritten

like this:

log Stdc bbimt
� �� � ¼ mm þ umt (66.5)

where mm ¼ E[log[Stdc(bimt)]] and umt � iid(0, smu
2 ), then

log Stdc bbimt
� �� � ¼ mm þ Hmt þ umt (66.6)

where Hmt ¼ log(1 � hmt).
Therefore, we suppose that the herding (Hmt) evolves over time and

follows a dynamic process; for example, assuming a mean zero AR(1), we obtain

the model (66.7):

log Stdc bbimt
� �� � ¼ mm þ Hmt þ umt (66.7)

Hmt ¼ fmHmt�1 þ �mt

where �mt � iid(0, sm�
2 ).
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As a result, we have a standard state-space model, similar to those used in

stochastic volatility modeling which is estimated using the Kalman filter. Further-

more, we focus on the movements of the latent variable (Hmt).

It should be observed that when sm�
2 ¼ 0, the model (66.7) becomes

log Stdc bbimt
� �� � ¼ mm þ umt (66.8)

This means that herding does not exist, so Hmt ¼ 0 for all t.
A significant value of sm�

2 can be interpreted as the existence of herding, and

a significant value of f supports the autoregressive structure considered.

A restriction is that the herding process (Hmt) should be stationary, and as we

do not expect herding to be an explosive process towards the market portfolio,

it must be jfmj � 1.

66.4.5 Herding with Market and Macroeconomic Variables

We explain above that Stdc(bimt
b ) changes over time depending on the level of

herding in the market. However, it is interesting to study whether this behavior,

extracted from Stdc(bimt
b ), is robust in the presence of variables that reflect the state

of the market: the degree of volatility, the market return, or potential variables that

reflect macroeconomic fundamentals.

Therefore, if the herding parameter becomes insignificant when these variables

are included, then the changes in Stdc(bimt
b ) could be explained by changes in the

fundamentals rather than herding.

In order to consider the influence of market volatility and market return, Hwang

and Salmon (2004) include them as independent variables in the model (66.7),

obtaining the model (66.9):

log Stdc bbimt
� �� � ¼ mm þ Hmt þ cm1log smt þ cm2rmt þ umt (66.9)

Hmt ¼ fmHmt�1 þ �mt

where log smt and rmt are the market log volatility and the market return at time t,
respectively.

In a second step, Hwang and Salmon (2004) include the factors of the Fama and

French (1993) in the model (66.9). Nevertheless, we also include the four factors of

Carhart’s (1997) model, considering the size (SMB), book-to-market (HLM), and

momentum (PR1YR) factors, as model (66.10) exhibits:

log Stdc bbimt
� �� � ¼ mm þ Hmt þ cm1 log smt þ cm2rmt þ cm3SMBt þ cm2HMLt

þ cm3PR1YRþ umt

Hmt ¼ fmHmt�1 þ �mt (66.10)
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Lastly, we add three macroeconomic variables to the model (66.9) – dividend

yield (DY), time spread (TS), and the short-term interest rate (STIR), in order to

consider information variables representative of the economic cycle:

log Stdc bbimt
� �� � ¼ mm þ Hmt þ cm1logsmt þ cm2rmt þ cm6DYt þ cm7TSt

þ cm8STIRt þ umt

Hmt ¼ fmHmt�1 þ �mt (66.11)

66.4.6 Generalized Herding Measurement in Linear Factor Models

In the previous section, we observe that we can measure herding in any factor,

employing linear factor models. Therefore, supposing that the excess return of the

fund i (rit) follows this linear model:

rit ¼ abit þ
XK
k¼1

bbikt f kt þ eit, i ¼ 1, . . . ,N y t ¼ 1, . . . , T (66.12)

where ait
b is the intercept that changes over time, bikt

b are the coefficients on factor

k at time t, fkt is the realized value of factor k at time t, and eit has a mean zero with

a variance se
2.

The factors in model (66.12) may be risk-specific factors or factors to detect an

anomaly. One factor included is the excess market return, as in the conventional

linear factor models.1

The superscript b on the betas indicates that they are biased betas under herding;
therefore, the herding towards the factor k at time t can be captured by (66.13):

bbikt ¼ bikt � hkt bikt � Ec bikt½ �ð Þ (66.13)

where Ec[bikt] is the cross-sectional expected beta for factor k at time t.

66.4.7 Robust Estimate of the Betas

The first step to calculate the different models considered is to estimate the market

betas from the CAPM model (66.14) and from the four-factor Carhart model

(66.15):

rit ¼ abit þ bbimtrmt þ eit (66.14)

1It should be clear that the linear factor model used does not require that the market is in

equilibrium or efficient.
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rit ¼ abit þ bbimtrmt þ bbiStSMBt þ bbiHtHMLHt þ bbiPtPR1YRMt þ eit (66.15)

With these betas we obtain the estimated cross-sectional standard deviation of

the betas, and these are used in the state-space model.

Although the ordinary least squares (OLS) estimation is the most common

technique to estimate the beta, this has some drawbacks. Firstly, they behave

badly when the errors are not from a normal i.i.d. distribution, particularly when

the data is heavily tailed, which are very frequent in return data. Furthermore, the

existence of outliers may also influence on the OLS beta, thus leading to

a distorted perspective on the relationship between asset returns and index

returns.

In order to overcome these disadvantages and provide a better fit, Martı́n and

Simin (2002) indicate that a robust estimation of beta should be implemented. One

robust regression is the M-estimation method thorough the Huber estimation.

With the different betas estimated, we obtain the cross-sectional standard devi-

ation of the betas on the market portfolio as

Stdc b̂
b

imt

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNt

i¼1

b̂
b

imt � b̂
b

imt

	 
2

Nt

vuuuut
(66.16)

where b̂
b

imt ¼ 1
Nt

XNt

i¼1

b̂
b

imt and Nt is the number of funds in the month t.

Finally, we estimate the four state-space models considered: (66.7), (66.9),

(66.10), and (66.11), with the standard deviation of the betas.

66.5 Data and Empirical Results

66.5.1 Data

The database was provided by Thomson Reuters. The data comprises the monthly

returns obtained by all private pension funds with European equity investment

vocation registered for sale in Spain (84 pension funds) and in the United Kingdom

(690 pension funds).

The time period analyzed is from January 1999 to September 2010. We require

that the pension funds present data for at least 24 months to ensure the consistency

of the analyses. In this way, our database is free of the so-called survivorship bias.

The market benchmark used is the MSCI Europe index, given the European

equity vocation of the pension funds, and it is necessary to use European benchmark

portfolio to assess performance on an appropriate basis. The representative variable

for risk-free asset is the 1-month Euribor rate.
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The macroeconomic variables used are as follows:

• Dividend yield2 is the ratio between the dividends paid out by the MSCI Europe

in the previous 12 months and the current index price.

• Time spread is the annualized difference between the return on the EMU 10-year

bond3 and the 3-month Euribor rate.

• Short-term interest rate is the 3-month Euribor rate.

In the investment style analysis, we consider the four factors of the Carhart

(1997) model: excess market return, size (SMB), book-to-market (HML), and

momentum (PR1YR).

We follow the instructions by Fama and French (1993) to build the size and

book-to-market factors. In regard to the size factor (SMBt), we build the

mimicking portfolio as the difference between the portfolio made up of the

MSCI Europe small value price, MSCI Europe small core price, and MSCI

Europe small growth price indices and the portfolio made up of the MSCI

Europe large value price, MSCI Europe large core price, and MSCI Europe

large growth price indices.

In relation with the book-to-market factor (HMLt), with the monthly returns

obtained by the indices, the mimicking portfolio is the difference between the

portfolio made up of the MSCI Europe small value price and MSCI Europe large

value price indices and the portfolio made up of the MSCI Europe small growth

price and MSCI Europe large growth price indices.

Finally, the 1-year momentum factor (PR1YRt) is approached following the

Carhart instructions, in our case, with the monthly returns obtained by a group of

market indices representative of the geographic universe studied. As we analyze

European equity funds, we use the 16 MSCI indices of the countries integrated in

the MSCI Europe index: Austria, Belgium, Denmark, Finland, France, Germany,

Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzer-

land, and the United Kingdom. All of the indices have been obtained from the

official MSCI website.

Based on these 16 market indices, we build the equal-weight average of indices

with the highest 30 % (five) 11-month returns, lagged 1 month, minus the equal-

weight average of indices with the lowest 30 % (five) 11-month returns, lagged

1 month.

The descriptive statistics of the different risk factors are displayed on Table 66.1.

The Table 66.1 reveals that the excess market return is the factor with least mean

return, presenting the minimum negative value. Nonetheless, the maximum value is

also found in this factor; hence the standard deviation is somewhat greater than

the rest.

2For its calculation we apply the difference between the monthly return obtained by the

corresponding MSCI gross and the MSCI price; then we obtain the total of the 12 previous values

for a determined month. Information obtained from MSCI: http://www.msci.com/
3Data obtained from the Bank of Spain: www.bde.es
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With respect to kurtosis, it is high in all factors (greater than three), indicating

leptokurtosis, and therefore, they are not Gaussian. Furthermore, it is also remark-

able the negative skewness on all factors.

66.5.2 Empirical Results

Firstly, we estimate the betas of the models (66.14) and (66.15), and next we

calculate the cross-sectional deviations, as we describe in Sect. 66.4.7.

The main characteristics of the standard deviations of the estimated betas are

reflected in Table 66.2. This table differentiates between the market betas from the

CAPM model and the market betas from the Carhart four-factor model. All of them

are estimated with the Huber robust technique.

The first two columns of Table 66.2 show all cross-sectional standard deviations

of the market betas: Stdc b̂
b

imt

� �
. These are significantly different from zero in all

cases. However, the betas from the CAPM model present negative skewness, while

the skewness is positive in the market betas from the four-factor model, which is

common in series with volatility. We also observe a high kurtosis, revealing

non-normality. This is confirmed with the Jarque-Bera test, as we reject the null

hypothesis of normality; therefore, the standard deviation of the betas is not Gaussian.

The correlation between these two market betas is high; then, if there is herding,

this may reveal similar herding between models.

Finally, the properties of the cross-sectional deviations of the betas of the SMB,

HML, and PR1YR factors also exhibit similar properties: they are not normal and

negative skewness.

66.5.2.1 Results of Herding Towards the Market Factor
In this section we study the herding towards the market factor; that is to say, we start

from the market betas of the CAPM and the four-factor models; after that, we

calculate the standard deviation of the betas: Stdc(bimt
b ), and with these, we estimate

the models (66.7), (66.9), (66.10), and (66.11).

The results of these models are displayed on Tables 66.3 and 66.4 for the Spanish

and British pension funds, respectively.

Table 66.1 Properties of the risk factors

Variable Average Standard deviation Minimum Maximum Kurtosis Skewness

Market excess return �0.0005 0.0488 �0.1350 0.1323 3.5650 �0.3032

SMB 0.0051 0.0269 �0.0813 0.0858 3.8340 �0.3169

HML 0.0017 0.0254 �0.0896 0.0972 6.2798 0.3345

PR1YR 0.0042 0.0392 �0.1146 0.1106 3.4888 �0.1526

This table includes the main statistics (average, standard deviation, minimum, maximum, kurtosis,

and skewness) for the four risk factors calculated: market excess return, size (SMB), book-to-

market (HML), and momentum (PR1YR)
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We interpret the significance of the market variables included in the models

(66.9), (66.10), and (66.11) as adjustment in the mean level (mm) of log[Stdc(bimt
b )]

on the equation without herding, so we examine the degree of herding given the

state of the market.

The Spanish results (Table 66.3) display that the model (66.7), both in the case of

the market betas of the CAPM model as in Carhart model, presents evidence of

quite persistent herding, as the coefficient f̂m is large and significant.

Likewise, the standard deviation of nmt (smn) is significant; therefore, given the

level of market volatility and return, Spanish pension funds lead to herding towards

the market portfolio.

The coefficients of the model (66.9) show that the herding is still significant

when the two market variables are included: volatility and return, which suggests

that the changes in the volatility of the sensitivity factor [Stdc(bimt
b )] can be

explained by herding rather than by changes in fundamentals.

Table 66.2 Properties of the cross-sectional standard deviation of estimated betas

CAPM model Four-factor Carhart (1997) model

Market return

beta (A)

Market return

beta (B)

Beta of SMB

factor

Beta of HML

factor

Beta of

PR1YR

Panel A: Pension funds with European equity investment vocation in Spain

Average 0.7592 0.0163 0.1361 �0.0423 0.8030

Standard deviation 0.1663 0.1408 0.2520 0.0887 0.1775

Minimum 0.0073 �0.2947 �0.5478 �0.1919 �0.0037

Maximum 1.0822 0.3548 0.8198 0.3626 1.1754

Kurtosis 10.5915 2.5177 3.0209 6.9308 10.2584

Skewness �2.0215 0.1710 �0.1230 1.1898 �1.8888

Jarque � Bera test

(p-value)

(0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)***

Correlation A–B 0.9507

Panel B: Pension funds with European equity investment vocation in the United Kingdom

Average 0.8116 0.2207 0.1275 0.0193 0.8725

Standard deviation 0.1418 0.2129 0.4075 0.1367 0.1346

Minimum 0.2079 �0.3876 �1.8963 �0.8442 0.2027

Maximum 1.1433 1.1677 1.4798 0.8482 1.2735

Kurtosis 6.8994 6.9736 4.5372 9.3433 9.2515

Skewness �1.3375 1.5837 �0.6795 �0.1274 �1.6848

Jarque-Bera test

(p-value)

(0.0000)*** (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)***

Correlation A–B 0.8935

This table is divided into two panels (A and B), corresponding to the Spanish and British pension

funds. Each panel includes the main statistics (average, standard deviation, minimum, maximum,

kurtosis, skewness, and Jarque-Bera normality test) of the cross-sectional standard deviation for

the estimated market betas in the CAPM model and the four betas of Carhart (1997) model:

market, size (SMB), book-to-market (HML), and momentum (PR1YR) betas. *** represents

significance at 1 % level
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Therefore, the betas’ deviation decreases when the market volatility rises,

but increases with the level of market return, as the logarithm of market

volatility and the market return have significant negative and positive

coefficients, respectively.

As a result, when the market becomes riskier and is falling, Stdc(bimt
b ) decreases,

while it increases when the market becomes less risky and rises. Therefore,

a reduction in the standard deviation due to the herding process suggests that

herd behavior is significant and exists independently of a particular state of the

market.

The model (66.10) includes the SMB, HML, and PR1YR factors as explanatory

variables, but none of them is significant. Moreover, the herding (f̂m) increases, so

the results are very similar to those of the previous models.

Model (66.11) includes three macroeconomic variables, but none of them is

significantly different to zero. Nonetheless, the herding is still persistent because

the coefficient f̂m is significant.

On the other hand, the UK results are reported in Table 66.4, where the

coefficients f̂m and smn are significant and persistent. Equally, the additional

variables of the models (66.10) and (66.11) are not significant.

Nonetheless, the market variables (logarithm of the volatility and market return)

present signs contrary to the previous results, that is to say, positive and negative,

respectively. Nevertheless, these results are consistent with previous studies, which

find that herding arises most likely during market instability, in other words, periods

of high volatility.

As a consequence, we obtain evidence of herding in the two countries analyzed.

Nonetheless, we do not observe significant differences between herding models, as

the factors of the investment styles or macroeconomic variables are not significant.

Therefore, herding is not influenced by the size of the company, the relation

between book equity and market equity, or the momentum strategy. However,

herding varies with the model applied; so the inclusion of additional variables is

useful, but does not provide more information.

66.5.2.2 Results of Herding Towards Size, Book-to-Market, and
Momentum Factors

Starting with the betas estimated for the different factors (size, book-to-market, and

momentum) of the four-factor Carhart model (66.15), we also calculate the standard

deviation of these betas: Stdc(biSt
b ), Stdc(biHt

b ), and Stdc(biPR1YRt
b ).

After that, we repeat the above analysis, but, in this case, we study the herding

towards the size, book-to-market, and momentum factors.

The results of these analyses are very similar to the previous one; consequently

we do not display them,4 but we show a summary in Table 66.5, indicating if the

variables of the different models are significant. Nonetheless, next we discuss the

different results.

4These tables are available upon request.
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We find the same behavior in all factors: existence of herding and the herding

coefficients (f̂S, f̂H, f̂PR1YR) are greater than 0.7, on average. Likewise, all standard

deviations are highly significant and persistent (ss�, sH� sPR1YR�).
However, we notice less degree of herding towards the book-to-market in the

Spanish pension funds, presenting a parameter f̂H around 0.3. This behavior is also

perceived in the case of the herding towards the momentum factor in Spain and the

United Kingdom, where the coefficient f̂PR1YR is 0.6, on average.

Although the herding is less intense in these cases, the phenomenon is still

significant towards the size (HSt), book-to-market (HHt), and momentum (HPR1YRt)

factors, and the results are similar to the herding towards the market (Hmt).

Furthermore, we also observe that the additional variables of the four-factor

model (66.10) and the macroeconomic variables of the model (66.11) are not

significant.

Lastly, the logarithms of market volatility and the market return, especially the

latter, explain less the cross-sectional standard deviation of the SMB, HML, and

PR1YR betas, as the market return is less significant or not significant.

66.5.2.3 Relationship Between the Herding Towards Factors and
Countries

As in the previous section we find similar herding towards factors and between

countries, we study the herding patterns in greater detail in Table 66.6, displaying

the correlations between the different herding coefficients (coefficients of herding

towards the market, size, book-to-market, and momentum factors).

Table 66.5 Summary of the state-space models for herding towards style factors in Spain and the

United Kingdom

Herding towards SMB

factor

Herding towards HML

factor

Herding towards PR1YR

factor

Spain

United

Kingdom Spain

United

Kingdom Spain

United

Kingdom

Existence

of herding

Yes, + and

significant

Yes, + and

significant

Yes, + and

significant

Yes, + and

significant

Yes, + and

significant

Yes, + and

significant

Market

volatility

Signif. Signif. Signif. Signif. Signif. Signif.

Market

return

Signif. Signif. Signif. Signif. Signif. Signif.

SMB No signif. No signif. No signif. No signif. No signif. No signif.

HML No signif. No signif. No signif. No signif. No signif. No signif.

PR1YR No signif. No signif. No signif. No signif. No signif. No signif.

DY No signif. No signif. No signif. No signif. No signif. No signif.

TS No signif. No signif. No signif. No signif. No signif. No signif.

STIR No signif. No signif. No signif. No signif. No signif. No signif.

This table displays a summary of the state-space models for herding towards the style factors (size,

book-to-market, and momentum) in Spain and the United Kingdom, indicating the existence of

herding and if the variables of the different models (66.7), (66.9), (66.10), and (66.11) are

significant (signif.) or not significant (no signif.)

1820 M. Alda Garcia and L. Ferruz



T
a
b
le

6
6
.6

R
el
at
io
n
b
et
w
ee
n
th
e
h
er
d
in
g
o
f
d
if
fe
re
n
t
p
en
si
o
n
fu
n
d
s
in

ea
ch

co
u
n
tr
y

S
p
ai
n
m
ar
k
et

S
p
ai
n
S
M
B

S
p
ai
n
H
M
L

S
p
ai
n
P
R
1
Y
R

U
K
m
ar
k
et

U
K
S
M
B

U
K

H
M
L

U
K
P
R
1
Y
R

S
p
ai
n
m
ar
k
et

1

S
p
ai
n
S
M
B

�0
.2
5
5
*
*
*

1

S
p
ai
n
H
M
L

�0
.1
5
6
*
*
*

�0
.0
0
5
*
*
*

1

S
p
ai
n
P
R
1
Y
R

�0
.1
3
4
*
*
*

0
.1
1
1
*
*
*

0
.0
9
3
*
*
*

1

U
K

m
ar
k
et

0
.0
5
3
*
*
*

0
.0
7
5
*
*
*

0
.0
2
2
*
*

0
.2
8
6
*
*
*

1

U
K

S
M
B

�0
.0
1
2
*
*
*

0
.0
0
9

�0
.0
6
8
*
*
*

�0
.0
5
1
*
*
*

0
.0
9
9
*
*
*

1

U
K

H
M
L

�0
.0
4
5
*
*
*

�0
.0
5
7
*
*
*

0
.0
4
1
*
*
*

0
.0
8
2
*
*
*

�0
.0
0
9
*
*
*

0
.1
1
8
*
*
*

1

U
K

P
R
1
Y
R

0
.0
3
4
*
*
*

0
.0
5
0
*
*
*

�0
.2
3
0
*
*
*

�0
.0
9
6
*
*
*

0
.1
2
9
*
*
*

0
.0
7
8
*
*
*

0
.1
2
8
*
*
*

1

T
h
is
ta
b
le

re
p
re
se
n
ts
th
e
co
rr
el
at
io
n
co
ef
fi
ci
en
ts
o
f
h
er
d
in
g
m
ea
su
re
s
to
w
ar
d
s
d
if
fe
re
n
t
fa
ct
o
rs
:
m
ar
k
et

re
tu
rn

(r
ep
re
se
n
te
d
as

m
ar
k
et
),
si
ze

(S
M
B
),
b
o
o
k
-t
o
-

m
ar
k
et

(H
M
L
),
an
d
m
o
m
en
tu
m

(P
R
1
Y
R
),
fr
o
m

m
o
d
el

(6
6
.9
)
in

th
e
d
if
fe
re
n
t
fa
ct
o
rs

an
d
p
en
si
o
n
fu
n
d
s
in

S
p
ai
n
an
d
th
e
U
n
it
ed

K
in
g
d
o
m

*
,*
*
,
an
d

*
*
*
re
p
re
se
n
t
si
g
n
ifi
ca
n
ce

at
1
0
%
,
5
%
,
an
d
1
%

le
v
el
,
re
sp
ec
ti
v
el
y

66 Pension Funds 1821



Although we do not display the herding towards the last three factors in the

previous section, we calculate the correlation between their coefficients, consider-

ing the herding measures obtained in the model (66.9), as they are more significant,

in general.

This table exhibits the correlation between herding towards factors (hmt, hSt, hHt,

and hPR1YRt) at 5 % significance level.

The results show that among the 36 pairwise correlation coefficients, 15 are

significantly positive, 12 are significantly negative, and 4 are not significant.

We also detect positive negative correlations between common factors in both

countries, except in the momentum factor, so we notice international herding.

Overall, we notice more positive correlation between the UK factors and

between Spanish and the UK factors than between Spanish factors.

In conclusion, we observe a relationship between the herding coefficients for the

same factor in Spain and the United Kingdom.

66.6 Conclusions

The pension fund industry has acquired great significance in recent years, especially

in Europe, due to doubts about the future viability of public pensions. For

this reason, more works focus on their study, especially in the analysis of their

performance and the manager behavior.

However, it is also interesting to study the consequences of their investment on

the market, as it can affect the market efficiency. Specifically, we study the

existence of herding, a phenomenon that arises when investors decide to imitate

the observed decisions of others, instead of following their own beliefs and infor-

mation. This phenomenon can lead to a situation in which market prices do not

reflect all of the information and the market moves towards inefficiency.

We analyze whether the behavior of the pension fund managers studied arises

the herding behavior in the equity markets of Spain and the United Kingdom,

applying a focus less used in financial literature: the estimated cross-sectional of

standard deviations of market betas.

The estimation technique is also less common because we use the state-space

models, employing the Kalman filter. Furthermore, in order to carry out a robust

estimation of the beta from the CAPM model and from the four-factor model of

Carhart (1997), we implement the robust M-estimation with Huber estimator.

We apply different models in order to analyze the existence of herding. Firstly, we

only detect the existence and persistence of the phenomenon. After that, we add two

market variables (volatility and return), then three style factors (size, book-to-market,

momentum), and finally, three macroeconomic variables (dividend yield, time spread,

and short-term interest rate), in order to examine their influence on herding.

In addition, we check the existence of herding towards the size, book-to-market,

and momentum factors; for this purpose, we use the estimated betas of these factors

in Carhart’s model. The analysis of the momentum factor is innovative, as we do

not find previous studies that analyze this aspect.
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The results obtained are similar for the two countries studied, as well as for the

different types of investment. These reveal the existence of herding towards the

market and the style factors, showing significant movements and persistence

independently from and given market conditions. Nonetheless, this effect is smaller

in the case of herding towards the different style factors.

Additionally, we do not find relevant influence of the macroeconomic variables, nor

the style factors with any of the different models, so these variables do not significantly

influence herding. As a consequence, we note that herding arises regardless of the

company size, its situation (growing or not), as well as the implemented strategies.

Hence, as we only study equity pension funds, we confirm that the Spanish and

British pension fund managers influence the degree of herding in the stock markets.

Moreover, we find the existence of herding in all models and markets, so pension

fund managers encourage the existence of herding towards the market, size, book-

to-market, and momentum factors. As a consequence, managers follow the perfor-

mance of the market and the different styles more than they should in equilibrium,

so they move towards matching the return on individual assets with that of the

market and styles. Additionally, we discover a relationship between the herding

coefficients for the same factor in Spain and the United Kingdom.

As a result, the behavior of Spanish and British pension fund managers influ-

ences the market and, consequently, the performance of pension funds.

Appendix 1: The State-Space Models

We remark that the herding parameter is not observed, so in order to extract herding

parameter we apply state-space models.

A state-space model is defined by two equations:

Yt ¼ cþ SXt þ et (66.17)

Xt ¼ d þ HXt�1 þ zt (66.18)

where:

Xt is the hidden vector at time t.
Yt is the observation vector at time t.
c and d are vectors with constants.

e is the error.
z is the state error.

e and z are both multivariate normally distributed, with mean zero and covari-

ance matrices of R and Q, respectively.

Those models can be estimated by using the Kalman filter, which is an algorithm

to perform filtering on the state-space model.

The estimate of the state equation by the Kalman filter algorithm also

offers a smoothing time series, by performing fixed interval smoothing, i.e.,

computing Yt|t ¼ P[YtjY1, . . . ,Yt � 1] for t � T.
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The objective is, in the formula (66.17), to minimize the difference between

the observation Yt, and the prediction based on the previous observations, (Yt|t ¼
P[YtjY1, . . . ,Yt�1]) by recursive maximum likelihood estimation.

The Kalman filter can be considered as an online estimation procedure, which is

used to estimate the parameters online when new observations are entered after they

have already been estimated. On the other hand, the smoothed Kalman filter is

a method only used when the total series are observed.

The Kalman filter results are close to the maximum likelihood estimates, while

the smoother results are exact to the maximum likelihood estimates.

Appendix 2: Robust Estimate of the Betas

In order to calculate the different betas from the CAPM model and from the

four-factor Carhart model, the ordinary least squares (OLS) estimation is the

most common technique for estimating betas; however, this has some

drawbacks.

Firstly, they behave badly when the errors are not from a normal i.i.d.

(independent and identically distributed) distribution, particularly when the data

is heavily tailed, which are very frequent in return data.

Furthermore, the existence of outliers may also influence on the OLS beta, thus

leading to a distorted perspective on the relationship between asset returns and

index returns.

In order to overcome these disadvantages and provide a better fit, Martı́n

and Simin (2002) indicate that a robust estimation of beta should be

implemented. One of the most commonly applied methods of robust regression

is the M-estimation method, a generalization of maximum likelihood

estimation.

In order to explain this estimate method, we considered a linear model as

a starting point:

yi ¼ Xibþ ei (66.19)

where i ¼ 1,.., n

Thus, the fitted model is

yt ¼ Xtbþ et (66.20)

The M-estimate principle is to minimize the objective function:

Xn
i¼1

r eið Þ ¼
Xn
i¼1

r yi � Xibð Þ (66.21)

where the function r(.) gives the contribution of each residual to the objective

function.
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If we define c ¼ r0, as the first order derivative of r(.), by differentiating the

objective function with respect to b and setting the partial derivatives to zero, we

obtain a system of estimating equations:

Xn
i¼1

c yi � Xibð ÞX0
i ¼ 0 (66.22)

If the weight function is w(e) ¼ c(e)/e and wi ¼ w(ei), the estimating equations

become

Xn
i¼1

wieiX
0
i ¼ 0 (66.23)

These equations can be solved as a weighted least squares problem, with the

objective of minimizing:

Xn
i¼1

w2
i ei

2 (66.24)

The weights depend on the residuals, the residuals depend on the estimated

coefficients, and the estimated coefficients depend on the weights, so an iteration

procedure is needed in order to solve the problem.

To solve this iterative procedure, we apply the Huber estimation, given that this

allows us to determine the weighted, the residuals, and the estimated coefficients.

In order to compare the OLS estimator with the robust Huber estimator,

Table 66.7 distinguishes the objective functions and weighted functions for each

one of the methods.

In Table 66.7 weobserve that both functions increasewithout bound, as the residuals

departs from zero; nonetheless, the Huber objective function increases more slowly.

In fact, the least squares assigns equal weight to each observation, but the

weights of the Huber estimator decline for jej > k, where e is the residual term

and k is called a tuning constant for the Huber estimation.

In the OLS estimation, a smaller k parameter provides more resistance to

outliers; however, it offers a lower efficiency when the errors are normally distrib-

uted. In contrast, with Huber estimation, k has a general value of k ¼ 1.345 s

Table 66.7 Objective functions and weight functions for the ordinary least squares estimation

and the Huber estimation

Estimation method Objective function (r) Weight function (wi)

Ordinary least square (OLS) e2 1

Huber estimation e2/2 when jej � k 1 when jej � k

kjej � k2/2 when jej > k k/jej when jej > k

This table compares the objective functions and weight functions for the ordinary least squares

estimator and the Huber estimator
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(where s is the conventional standard deviation), producing 95 % efficiency when

the errors are normal, and it also offers protection against outliers; therefore, this

estimation is better than the OLS estimation.
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Abstract

In the practice of risk management, an important consideration in the portfolio

choice problem is the correlation structure across assets. However, the correla-

tion is an extremely challenging parameter to estimate as it is known to vary

substantially over the business cycle and respond to changing market conditions.

Focusing on international stock markets, I consider a new approach of estimating

correlation that utilizes the idea that the condition of a stock market is related to

its return performance, particularly to the conditional quantile of its return, as the

lower return quantiles reflect a weak market while the upper quantiles reflect

a bullish one.

Combining the techniques of quantile regression and copula modeling,

I propose the copula quantile-on-quantile regression (C-QQR) approach to

construct the correlation between the conditional quantiles of stock returns.

The C-QQR approach uses the copula to generate a regression function for

modeling the dependence between the conditional quantiles of the stock returns

under consideration. It is estimated using a two-step quantile regression
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procedure, where in principle, the first step is implemented to model the condi-

tional quantile of one stock return, which is then related in the second step to the

conditional quantile of another return. The C-QQR approach is then applied to

study how the US stock market is correlated with the stock markets of Australia,

Hong Kong, Japan, and Singapore.

Keywords

Stock markets • Copula • Correlation • Quantile regression • Quantile depen-

dence • Business cycle • Dynamics • Risk management • Investment • Tail risk •

Extreme events • Market uncertainties

67.1 Introduction

In the practice of risk management, an important consideration in the portfolio

choice problem is the correlation structure across assets. The correlation is espe-

cially crucial for conveying the level of portfolio risk as it is the parameter that

underscores the extent of how well diversified a given portfolio is. Nevertheless in

practice, estimating the actual level of correlation is a notoriously difficult task,

where existing research has overwhelmingly shown that the true correlation, be it

the correlation of equities, bonds, and exchange rates, may fluctuate significantly

over the business cycle and during extreme events.1 Over the past two decades, the

literature has offered new ways of estimating asset correlation that depart from the

premise that the correlation is constant. To complement these existing methodolo-

gies, this chapter offers a new perspective based on the concept of dependence

between conditional quantiles to motivate a new approach of modeling correlation

structure that takes into account that the correlation may be sensitive to the

performance of financial markets.

Since the early findings of Erb et al. (1994) and Longin and Solnik (1995),

among others, it is well accepted among academics and practitioners that the

correlation may respond to changing economic circumstances.2 A prime example

can be found in the study of how international equity markets are dependent, where

the literature has provided ample evidence that the level of dependence tends to be

1For instance, equity returns are more highly correlated during business cycle downturns and bear

markets (Erb et al. 1994; Longin and Solnik 1995, 2001; Ang and Chen 2002); the same is true for

exchange rates returns (Patton 2006; Bouyè and Salmon 2009). Likewise, the deviation in the

stock-bond correlation during bear markets is documented by Guidolin and Timmermann (2005).
2For example, Erb et al. (1994) examine the dependence of G-7 equity stock markets by computing

semicorrelations and find that the correlation is generally larger when the equity returns and output

growth of these countries are below than above their respective means, thus when the economies

and financial markets in these countries are bearish. Longin and Solnik (1995) examine the

dependence of the market returns of Switzerland plus G-7, less Italy, by using a version of the

multivariate GARCH model to show that the correlation is larger in times of greater market

uncertainties.
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stronger when markets become bearish (e.g., Erb et al. 1994). In order to capture

such salient features about correlation, it is important to address the possibility that

the actual level of correlation is contingent on current market conditions. Recent

techniques of modeling asset dependence are developed with this objective in mind.

They include regimes-witching frameworks to model jumps in correlation between

normal and bearish states (e.g., Ang and Bekaert 2002; Guidolin and Timmermann

2005); extreme value theory that facilitates estimating the level of dependence

during extreme events (e.g., Longin and Solnik 2001; Ang and Chen 2002; Poon

et al. 2004; Heffernan and Tawn 2004); the copula approach, where the copula is

a function that expresses the dependence structure of assets that also delivers an

explicit measure of the dependence between the tail distributions of these assets

(e.g., Patton 2006; Bouyè and Salmon 2009; Chollete et al. 2011); and the mixed

copula approach that combines several copula functions where a different copula

may be specified for a different state where financial markets are found (e.g., Hu

2006; Okimoto 2008). These techniques are widely popular in financial applications

and are especially powerful for eliciting the properties of correlation across various

market conditions. Nevertheless, there are also some limitations in the scope of how

they may be used in financial applications.

Take the extreme value theory approach of Longin and Solnik (2001), for

example. Extreme value theory is relevant for the study of the conditional correlation

between the extreme tail distributions of asset returns, hence is particularly useful for

providing results on asymptotic tail dependence. However, as the asymptotic tail

dependence is only suitable for describing the level of dependence between markets

that are significantly bearish or bullish, the extreme value theory approachmay not be

amenable for examining the level of dependence when the extent of such market

conditions is, loosely speaking, “less severe” or “mild.” Similarly, the concept of tail

dependence in the copula approach is an asymptotic concept, and like extreme value

theory, it does not convey the level of dependence for the different degrees of how

bearish or bullish markets are. Regime-switching models can paint a broader picture

on the characteristics of correlation, but might also require specifying a large number

of regimes that makes them computationally burdensome to estimate.

By focusing on modeling the correlation of international stock markets as the

application, this chapter contributes to the existing literature by offering a simple

approach to estimate the level of dependence that pertains not only to extreme market

conditions but also to varying degrees of market bearishness or bullishness. It does so

by simply relating the severity (or a lesser extent) of these market conditions to the

distributions of the market returns under consideration. For example, we may

associate the lower tail of the return distribution with a bearish market and the

upper tail of this distribution with a bullish one. And between, say, the 10th and

30th percentiles of a stock return, the 10th return percentile may be perceived as

associated with a market more bearish than the market associated with the 30th return

percentile. By taking advantage of the fact that the quantile information of a market

return reflects the market performance, concepts such as a market being “mildly” or

“severely” bearish or bullish can be expressed more concretely by relating them to

certain quantiles on the distribution of that market return.
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To estimate the level of dependence for specific market conditions, this chapter

proposes a quantile dependence approach that looks at how the conditional quantiles
of the market returns are correlated. From this perspective, to study how the equity

markets of, say, the United States and Japan are dependent when they are bearish

(bullish), one suggestion is to construct the correlation between the 10th (90th)

conditional percentiles of the United States and Japan market returns. When studying

their dependence during less bearish (bullish) times, we may construct the correlation

of their return quantiles that are further away from the left (right) tails and closer

towards the center of distributions. In other words, from the perspective that the

distributional information (in particular, the quantile information) of a market return

is indicative of the concurrent market condition, we may model the dependence

structure of equity markets in a holistic and flexible way by estimating the correlation

between the conditional quantiles of their returns, so that the level of dependence

pertaining to a wide range of market conditions may be uncovered.

To model the dependence of the return quantiles, a new framework combining the

techniques of quantile regression and copula modeling is proposed. Quantile regres-

sion is a statistical tool for examining how the quantile of a variable is dependent on

some other conditioning variables and thus is useful in this study as its main objective

is to investigate the link between the distributional (or quantile) information on asset

returns on the one hand and the correlation between these assets on the other.

Together with the quantile regression technique, I use the copula model, which is

popular among practitioners for its flexibility in modeling dependence between vari-

ables that may have complex, nonstandard joint distributions.3 When the study of

correlation is considered, the copula approach is extremely useful as the correlation

structure is summarized by the parameter in the copula function. In the case of the

Gaussian or Student-t copula, the copula parameter is itself the correlation coefficient.

Using these techniques to estimate how the conditional quantile of an asset return is
correlated with the conditional quantile of another asset return, this chapter thereby

proposes a methodology dubbed as the copula quantile-on-quantile regression
(C-QQR) approach. The C-QQR approach is computationally convenient to imple-

ment as it is based on a two-step quantile regression procedure. Specifically, when

computing the correlation between the market returns of, say, the United States and

Japan, the C-QQR approach proceeds by first estimating the conditional quantile of the

US return by way of quantile regression on an auxiliary equation, which is not an

equation of main interest. Then, using information from this regression, it proceeds to

estimate the correlation between the conditional quantiles of the market returns of

Japan and the United States. This is achieved by implementing quantile regression on

a quantile dependence equation, which contains a parameter that expresses the

dependence between the return quantiles of these markets. As the quantile dependence

equation articulates how the quantile of a return is related to the quantile of another
return, it can be used to examine the entire dependence structure between these assets

where their relationship is assumed to be contingent on their quantile information.

3Introduction to copula models can be found in Nelsen (2006) and Trivedi and Zimmer (2007).
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The application in this chapter focuses on modeling how the US market return is

correlated with the market returns of Australia, Hong Kong, Japan, and Singapore.

I employ the C-QQR approach to estimate the correlation between the 10th–90th

conditional percentiles of the US return and the 10th–90th conditional return per-

centiles of Australia, Hong Kong, Japan, or Singapore (in decile intervals), leading to

a total of 81 different correlation estimates for each return pair.4 These estimates

exhibit substantial variation, implying that the correlation varies considerably across

different levels (thus quantiles) of market returns. In particular, the C-QQR approach

shows that the correlation between returns at the center of distributions, such as the

correlation between the median returns, is typically weaker. This implies that equity

markets are less dependent when conditions are not extreme. It also shows that the

correlation is stronger between returns deep in the left tails and that the correlation

between the tenth return percentiles is consistently larger than the correlation

between the median returns. This observation is in line with the existing evidence

that stock markets are more strongly dependent when they are bearish.

After computing the C-QQR correlations, it is straightforward to construct

a correlation time series by assigning a correlation estimate (from the pool of

81 C-QQR correlation estimates) to the realized returns in each period t. Calling
this the dynamic C-QQR correlation, it is interesting to compare this constructed

series against estimates that are obtained using conventional methods, such as the

celebrated dynamic conditional correlation (DCC) framework of Engle (2002) that

is designed for the study of how correlation evolves across time. Interestingly,

although the C-QQR and DCC approaches are based on completely unrelated

modeling principles – the C-QQR approach is based on quantile regressions and

the DCC approach is based on the GARCH framework – the dynamic C-QQR

correlation turns out to have similar visual characteristics as the DCC. This under-

scores another strength of the C-QQR approach – its ability to capture the salient

features of the actual correlation dynamics.

This chapter draws heavily from Sim (2012) on modeling quantile dependence

but contains two important differences. First, it considers a different specification of

the auxiliary equation as the one in Sim (2012). As it turns out, where the results are

suppressed for conciseness sake, the estimation outcomes of the C-QQR correlation

are not sensitive to using either the current auxiliary equation or the one in Sim

(2012), suggesting at first pass that the C-QQR correlation estimates are fairly

robust to mis-specification of the auxiliary equation. Second, the application in Sim

(2012) is limited in scope as it focuses on modeling the correlation of the US market

return with the market and sectoral returns of Australia. Extending this work,

I present new results on the correlation of the US market with the stock markets

of Hong Kong, Japan, and Singapore in addition to Australia.

4Take the US-Australia return pair, for example. The 81 correlation estimates consist of estimates

of the correlation between the tenth US and tenth Australian return percentiles, the tenth US and

20th Australian return percentiles, and so on, up to the 90th US and 90th Australian return

percentiles.
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67.2 The C-QQR Model

67.2.1 Specification

To construct the C-QQR model, an auxiliary equation and a quantile dependence
equation must be specified. In our application, the auxiliary equation is utilized for

modeling the conditional quantile of the US return quantile, and the quantile depen-

dence equation is used for relating the dependence between the conditional quantile

of the US market return and the conditional quantile of the market returns of

Australia, Hong Kong, Japan, and Singapore. To specify the auxiliary equation,

a model is postulated to link the US return (x) to a set of conditioning variables (x) as

xt ¼ b>zt þ vt, (67.1)

where vt is the innovation in xt. In (67.1), xt is expressed as an autoregression with

12 lags to capture any mean reverting behavior of the US stock return, but it should

be emphasized that the final outcome of the correlation estimate is not sensitive to

using different numbers of lags. While the auxiliary equation is specified as an

autoregression of xt, another possibility is to motivate a model such that the US

return is dependent on certain macroeconomic aggregates5 or a model that is based

on a general equilibrium framework with certain restrictions imposed. For example,

instead of an autoregression, Sim (2012) takes into account of these considerations

by specifying the auxiliary equation as a function of the US industrial production,6

which is an important determinant of stock return from both theoretical and

empirical perspectives.7

To specify the quantile dependence equation, a dependence function h is postu-

lated to relate the return of Australia, Hong Kong, Japan, or Singapore (y) to the US
return (x) as

yt ¼ h xt; e’ ut; vtð Þð Þ, (67.2)

5According to the seminal work of Chen, Roll, and Ross (1986), asset prices could also be linked to

information about the macroeconomic aggregates as they could influence the discount rate or

dividend stream, given that asset price is the sum of discounted future dividend stream (e.g.,

McQueen and Roley 1993; Flannery and Protopapadakis 2002; Shanken and Weinstein 2006).
6For example, Balvers et al. (1990) show that the general equilibrium framework with

a logarithmic utility function and full capital depreciation can deliver a linear econometric

model of stock return on the log of output.
7See Balvers et al. (1990) for a theoretical justification of the importance of output as a determinant

of stock return. In the empirical study of Shanken and Weinstein (2006), industrial production is

found to be an important determinant of stock return. In the empirical study of Shanken and

Weinstein (2006), industrial production is found to be an important determinant of stock return

among other factors, such as expected and unanticipated inflation, the spread in corporate bonds,

and the spread in the treasury yields.
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where vt enters the quantile dependence equation; ut, the innovation in yt, is

independent of vt; and yt is monotonic in ut for each xt and vt.
8 The main parameter

of interest is e’ which captures the dependence between y and x. In order to allow

this dependence parameter to be contingent on information about the US and the

other financial market, e’ in (67.2) is modeled as a function of ut and vt so that shocks
to either theUnitedStates or the other financialmarketmay influence the extent towhich

these markets are dependent. To obtain a parameter that provides information about the

correlation between y and x, a copula model will be used to generate the function h. In
the bivariate case, the copula is a function that combines the marginal distributions of

x and y to yield their joint distribution function. Specifically, for variables x and y with
marginal distributions Fx and Fy and joint distribution F, there exists a unique copula

function C with copula parameter (with an abuse of notation) that satisfies

F x; yð Þ ¼ C Fx xð Þ,Fy yð Þ; e’� �
:

The copula that is employed in this study is the Gaussian copula, although other

copulae such as the Student-t copula may be explored. Letting F2(∙) denote the

bivariate Gaussian distribution andF(∙) denote the standard normal distribution, the

Gaussian copula expresses the joint distribution of x and y as

F yt; xtð Þ ¼ F2 F�1 Fy ytð Þ� �
,F�1 Fx xtð Þð Þ; e’� �

, (67.3)

and is especially useful as its parameter e’ is the correlation coefficient. One

important advantage in adopting the Gaussian copula is the feasibility of

transforming it into a regression model that is amenable to the quantile regression

technique. For instance, Bouyè and Salmon (2009) show that the ty copula quantile
curve based on the Gaussian copula can be derived from (67.3) as

ty � ∂F2 F�1 Fy ytð Þ� �
,F�1 Fx xtð Þð Þ; e’

� �
∂Fx xtð Þ

¼ F
F�1 Fy ytð Þ� �� e’F�1 Fx xtð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e’2
p

 !
,

(67.4)

where the first line follows by definition.9 Rewriting (67.4), a regression model can

be written as10

8Monotonicity ensures that conditional on xt and vt, the quantile of y can be mapped from the

quantile of u.
9See p. 726 in Bouyè and Salmon (2009).
10When xt is replaced by yt�1, the model becomes an autoregression in F� 1(Fy(yt)), leading to the
nonlinear copula quantile autoregression model of Chen et al. (2009).

67 Estimating the Correlation of Asset Returns : A Quantile Dependence Perspective 1835



F�1 Fy ytð Þ� � ¼ e’F�1 Fx xtð Þð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e’2

q
F�1 ty

� �
: (67.5)

If the marginal distributions Fx and Fy are standard normal, (67.5) simplifies

further into an elegant regression model of

yt ¼ e’xt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e’2

q
F�1 ty

� �
: (67.6)

Adapting from (67.6), the quantile dependence equation that is considered in the

application can be expressed as

yt ¼ e’ ut; vtð Þxt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� e’

p
ut; vtð Þ2F�1 ty

� �
, (67.7)

where the correlation parameter is modeled as function of ut and vt to be consistent
with (67.2).

That e’ is allowed to be influenced by ut and vt is a crucial feature in the quantile
dependence approach. First of all, if e’ were a constant, the dependence parameter

will not be affected by the quantile information of the financial markets. Second, the

conditional quantiles of y and x are intertwined with the quantiles of u and v,
respectively. By postulating e’ as a function of ut and vt, we are relating the

dependence between y and x given by e’ to the quantile information on u and v,
which is in turn linked to the quantile information on y and x. Therefore, allowing e’
to be dependent on the quantile information of u and v enables us to capture the

level of dependence that is specific to the quantile information of y and x.
For example, let us consider how the conditional quantile of the US return can be

motivated from the auxiliary equation of (67.1). Equation 67.1 shows that holding

the conditioning variables fixed, any extrinsic variation in the US return (xt) must be

attributed to vt. In other words, the conditional quantile of the US return is linked to

the quantile of vt, so that the tx conditional quantile of the US return is given as

Qx tx ztjð Þ ¼ b>zt þ Fv
�1 txð Þ, (67.8)

where the distribution function of v be Fv(∙) and its tx quantile is Fv
�1(tx).

Conditioning on z, (67.8) therefore illustrates how the conditional quantile of x,

i.e., Qx(tx|zt), is intertwined with the quantile of v. By modeling e’ as a function of

v, e’ may then vary with the quantile information of v and hence of x. Likewise, by
modeling e’ as a function of u, e’ may vary with the quantile information of y as the
quantile information of u and y are related.

To express the concept of quantile dependence using the general quantile

dependence equation of (67.2) for our discussion, recall from (67.8) that Qx(tx|zt)
is linked with Fv

�1(tx). By conditioning yt on Qx(tx|zt), logical consistency

requires fixing vt at Fv
�1(tx) in (67.2) as well. This is because as we have seen

in (67.8), vt cannot vary freely in the construction of Qx(tx|zt). With this in

mind, the ty quantile of the Australian return conditioning on Qx(tx|zt) can

be expressed as
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Qy ty Qx tx ztjð Þj� � ¼ h Qx tx ztjð Þ; e’ F�1
u ty
� �

,F�1
v txð Þ� �� �

� h Qx tx ztjð Þ;’ ty; tx
� �� �

,
(67.9)

where I have defined ’ ty; tx
� � � e’ F�1

u ty
� �

,F�1
v txð Þ� �

. Through the dependence

parameter ’(ty, tx), (67.9) summarizes how the tyAustralian return quantile is related
to the txUS return quantile. If the dependence function h in (67.9) is replaced with the
copula-based model in (67.7), then (67.9) expresses the copula quantile-on-quantile
regression (C-QQR) model that is to be estimated in this chapter.

Before we proceed, it should be emphasized why the US return is chosen for the

auxiliary model over the other market returns. In formulating (67.1) and (67.2), two

assumptions are made. First, in relation to the auxiliary equation of (67.1), which is

modeled as an autoregression of xt, I assume that US economic fundamentals

are sufficient for determining the US return beyond the economic fundamentals

of the other markets. Hence, information from the other markets would not matter

for driving the US return and are excluded from (67.1), which is likely too

reasonable for relatively smaller economies such as Australia, Hong Kong, and

Singapore and perhaps less so for Japan. By including the United States in the

quantile dependence equation of (67.2), the second assumption asserts that

the US return information is important for influencing the other stock markets.

This would be plausible if US fundamentals contribute towards the global

economic forces that drive the co-movement between the United States and the

other financial markets. Therefore, if information about US fundamentals has

global content, and if this is subsumed in the US return, the US return will be

a powerful variable for explaining the variation in the market returns of the

Australia, Hong Kong, Japan, and Singapore. This motivates placing the US

return, not the other market returns, as a right-hand-side variable in the quantile

dependence equation.

Furthermore, it should also be emphasized that (67.1) and (67.2) form

a triangular system of simultaneous equation of the type analyzed by Ma and

Koenker (2006), who study the dependence between conditional quantiles that is

motivated from such a structure. However, there is a fundamental difference

between this paper and Ma and Koenker (2006). While Ma and Koenker (2006)

study a parametric model, this chapter does not make a parametric assumption

about the function e’ ut; vtð Þ in order that the data is allowed to speak with respect to
the response of e’ to the quantile information of u and v. Therefore, this requires
an alternative method of estimation from Ma and Koenker (2006) which

is discussed in the next section.

67.2.2 Estimation

This section outlines the procedure for estimating the dependence parameter in the

C-QQR model, i.e.,’ ty; tx
� � � e’ F�1

u ty
� �

,F�1
v txð Þ� �

in (67.9). In the context of the

C-QQR model where the h function in (67.9) is replaced by the copula-based model

in (67.7), ’(ty, tx) expresses the correlation between ty conditional quantile of y and
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tx conditional quantile of x. Even though the value of ’(ty, tx) is based upon the

e’ ut; vtð Þ parameter in the quantile dependence equation of (67.2),11 the estimate of

’(ty, tx) cannot be obtained by a straightforward application of quantile regression

on (67.2) as it is a single equation with two unobservable terms ut and vt. In order to
estimate ’(ty,tx), or equivalently e’ F�1

u ty
� �

,F�1
v txð Þ� �

, I first anchor vt at Fv
�1(tx)

in the quantile dependence equation while letting ut be “free” and then implement

a ty -quantile regression on this resulting equation to set ut to F�1
u (ty) for an estimate

of e’ F�1
u ty
� �

,F�1
v txð Þ� �

.

To elaborate, let us decompose the quantile dependence equation of (67.2) into

two parts:

yt ¼ h xt; e’ ut,F
�1
v txð Þ� �� �þ h xt; e’ ut; vtð Þð Þ � h xt; e’ ut,F

�1
v txð Þ� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
O

: (67.10)

In the first part of (67.10), the v-argument in e’ is anchored at Fu
�1(tx) so that

h xt; e’ ut,F
�1
v txð Þ� �� �

is now a function of a single unobservable, ut. If the Ω portion

of (67.10) can be controlled, our target parameter ’(ty,tx) can be estimated by

implementing a ty-quantile regression on (67.10) as doing so would, in principle,

deliver an estimate of the conditional function of h xt; e’ F�1
u ty
� �

,F�1
v txð Þ� �� �

which

contains our target. To control for Ω, I approximate it by a first-order Taylor

expansion of vt around F�1
v (tx) as

O � he’ xt; e’ ut,F
�1
u txð Þ� �� �e’v ut,F

�1
u txð Þ� �

ut txð Þ, (67.11)

where (67.11) uses the definition vt(tx) ¼ vt � F�1
v (tx). The function he’ is the

partial derivative of h with respect to e’, which is a known expression given that h is

specified in (67.7). The parameter e’v ut,F
�1
v txð Þ� �

is the partial derivative of e’ with

respect to vt, where its v-argument is evaluated at Fv
�1(tx). The functional form of this

partial derivative is unknown as the functional form of e’ ut,F
�1
v txð Þ� �

is not specified.

With the first-order Taylor approximation leading to (67.11), the initial problem of

controlling for vt in the quantile dependence equation now becomes an issue of

controlling for vt(tx) in (67.11). The new variable vt(tx) can be estimated as the

residual following a tx-quantile regression on the auxiliary model of (67.1).12 Letting

v̂t txð Þdenote the estimate of vt(tx), we can control forΩ using its feasible counterpart:

Ô ¼ he’ xt; e’ ut,F
�1
v txð Þ� �� �e’v ut,F

�1
v txð Þ� �

v̂t txð Þ,

so that the quantile dependence equation to be taken to the data is

11’(ty, tx) can be motivated from e’ ut; vtð Þ by anchoring the u , v-arguments in e’ ut; vtð Þ at Fu
�1(ty)

and Fv
�1(tx).

12Since Qx(tx|zt)¼ b>zt + Fv
�1(tx), we may express the auxiliary regression of (67.1), i.e., xt¼ b>zt

+ vt, as xt ¼ b>zt + Fv
�1(tx) + vt � Fv

�1(tx) ¼ Qx(tx|zt) + vt � Fv
�1(tx) ¼ Qx(tx|zt) + vt(tx).

Therefore, we may estimate ut(tx) as the residual from a tx -quantile regression on (67.1).
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yt ¼ h xt; e’ ut,F
�1
v txð Þ� �� �

þ he’ xt; e’ ut,F
�1
v txð Þ� �� �e’v ut,F

�1
v txð Þ� �

v̂t txð Þ: (67.12)

To a first-order approximation, ut is the only unobservable term in (67.12).

Therefore, ’(ty, tx) can now be estimated by implementing a ty-quantile
regression on (67.12). As compared to the original quantile dependence equation

of (67.10), the “revised” quantile dependence equation of (67.12) now contains an

additional parameter, e’v, which is to be estimated together with the main parameter

of interest, e’.
Let rt(�) be the “check” function in Koenker and Bassett (1978), defined as

rt(u) ¼ u(t � I(u < 0)), where I(∙) is an indicator function. Using (67.12), the

dependence between the quantiles of x and y can be estimated by implementing

a two-step quantile regression procedure:

1. Obtain residuals v̂t txð Þ from a tx -quantile regression on (67.1), the auxiliary
equation, i.e.,

min
b

XT
t¼1

rt xt � b>zt
� �

2. Using v̂t txð Þ, estimate e’ from a ty -quantile regression on (67.12), the quantile
dependence equation, i.e.,

min
e’;e’vð Þ

XT
t¼1

rt yt � h xt; e’ð Þ � he’ xt; e’ð Þe’vv̂t txð Þ� �
:

Step 1 is a standard linear quantile regression and Step 2 is a standard nonlinear

quantile regression. The second-step estimate of e’ will yield the desired estimate of

’(ty, tx). Because the C-QQR approach involves a two-step quantile regression

procedure, it can be implemented using statistical packages for quantile regression

such as the quantreg package of Koenker (2009) within the R software.13

67.3 Application

Monthly returns of Australia, Hong Kong, Japan, Singapore, and the United States are

constructed from the Datastream-MSCI indices.14 Table 67.1 provides the summary

statistics for the period between March 1974 and February 2010. Among Australia,

Hong Kong, Japan, and Singapore, the US market is most strongly correlated with the

Singapore market (at 0.60) and most weakly correlated with the Japan market (at 0.41).

But these are sample correlation coefficients that could differ significantly from actual

levels of correlation especially when equity markets are bearish. By considering how

13For instance, the Steps 1 and 2 regressions can be implemented using the rq and nlrq commands

of the quantreg package in R.
14The monthly returns are constructed as 100 multiplied by the change in the log of the index.
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the quantiles of these market returns are correlated, the C-QQR approach offers a way

of examining their level of dependence that is contingent on specific market conditions.

In this application, the correlation between the tx conditional quantile of the US

return and the ty conditional quantile of the return of Australia, Japan, Hong Kong, or
Singapore is computed. The values of ty and tx are defined on the grid [0.1, 0.2, . . .,
0.9], where the total number of ty and tx combinations on this grid is 81. The C-QQR

approach is implemented to estimate the correlation between the 10th–90th percen-

tiles of the US return and the 10th–90th percentiles of the other market return

(in decile intervals), for a total of 81 different correlation estimates for each return pair.

To visualize the C-QQR correlation, Fig. 67.1 plots the C-QQR correlation surfaces

by relating the level of correlation in the z-axis to the return quantiles of Australia, Hong
Kong, Japan, or Singapore on the x-axis and the return quantiles of the United States on
the y-axis. The correlation surfaces offer some important insights. First, they show that

the level of dependence varies substantially across the distributions of returns. Second,

across all the four return pairs, the C-QQR correlations share many common features

that echo our existing understanding about how correlations behave under various

circumstances. For instance, the C-QQR correlation has the tendency to be weak at

the center of the return distributions, implying that markets are less dependent when they

are neither bearish nor bullish. As a side remark, while the correlation between centrally

located quantiles may be interpreted as the level of dependence when markets are

neither bearish or bullish, measures such as the sample correlation coefficient may not

deliver the same interpretation. In fact, Table 67.2 shows that the sample correlation

coefficient appears to be different from the correlation between centrally located return

quantiles such as the median returns, where the correlation between the median returns

is always smaller than the sample correlation coefficient. This perhaps is not surprising

as the sample correlation coefficient is computed without cleaving out the consequence

of extreme events that lead to inflating the actual level of dependence when they happen.

Of particular relevance to the practice of risk management is the fact that stock

markets are more strongly dependent when they are bearish. Through the C-QQR

approach, a similar point is made in terms of the stronger dependence between

return quantiles in the left tail distributions. This is demonstrated in Fig. 67.2, which

plots the correlation along the main diagonals in Fig. 67.1, i.e., the correlation along

ty¼ tx. Figure 67.2 reveals that the correlation usually peaks at around ty¼ tx¼ 0.1

(the 10th percentiles of returns). Because these lower return quantiles are associated

with markets that are bearish, Fig. 67.2 reiterates a familiar result in the existing

literature that the correlation between bear markets would be stronger than usual

(e.g., Longin and Solnik 2001; Hu 2006; Chollete et al. 2011).

Table 67.1 Summary statistics on monthly stock returns (March 1974 to February 2010)

Mean Min Max Standard deviation Correlation with United States

Australia 0.67 �44.79 20.11 5.80 0.58

Hong Kong 1.22 �62.50 36.36 9.19 0.49

Japan 0.39 �24.38 17.51 5.32 0.41

Singapore 0.71 �44.55 44.92 7.70 0.60
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Note that the C-QQR approach is useful for showing the key locations in the

return distributions where most of the movements in correlation take place. Spe-

cifically, it offers a new insight that the correlation may deviate sharply even at less

extreme return quantiles. In the case of the US-Australia and US-Singapore return

pairs, Fig. 67.2 shows that the correlation rises substantially starting from the 30th

return percentiles. If 30th return percentiles are associated with markets that are

mildly bearish, this implies that markets do not have to be severely bearish in order

to trigger a nontrivial increase in correlation.

To evaluate the “performance” of the C-QQR approach informally, it is useful to

compare the average correlation based on the C-QQR approach with the sample

1a b

c d

0.8

C
or

re
la

tio
n 0.6

0.4

0.2

0.8
0.8

Australia

Australia

0.6
0.6

U.S
0.4 0.4

0.2 0.2

0

1

0.8

C
or

re
la

tio
n 0.6

0.4

0.2

0.8
0.8

Hong Kong

Hong Kong

0.6
0.6

U.S
0.4 0.4

0.2 0.2

0

1

0.8

C
or

re
la

tio
n

0.6

0.4

0.2

0.8
0.8

Japan
Japan

0.6
0.6

U.S
0.4 0.4

0.2 0.2

0

1

0.8

C
or

re
la

tio
n 0.6

0.4

0.2

0.8
0.8

Singapore

Singapore

0.6
0.6

U.S
0.4 0.4

0.2 0.2

0

Fig. 67.1 C-QQR correlation

This figure plots the correlation between the quantile of the US market return and the quantile of

the market return of Australia, Hong Kong, Japan, or Singapore using the C-QQR approach. The

x-axis marks the quantiles of the US return and the y-axis marks the quantile of the other return
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correlation coefficient, which itself reflects the average level of dependence. This

“average C-QQR correlation” can be obtained by averaging up the 81 C-QQR corre-

lation estimates for each return pair. Panel A of Table 67.2 compares the average

C-QQR correlation with the sample correlation coefficient and shows that the two

measures of average dependence are quite similar. For example, looking at the

dependence between the US-Australia return pair, the average C-QQR correlation is

0.57 (rounded to the nearest two decimal places), which is very close the sample

correlation of 0.58. However, the closeness between the average C-QQR correlation

and the sample correlation coefficient is not specific to the US-Australia correlation.

For instance, in the case of the US-Hong Kong and US-Singapore return pairs, their

average C-QQR correlations are 0.52 and 0.63, respectively, which are very close to

their sample correlation coefficients of 0.49 and 0.60. Even in the largest case of

disparity between the two correlation measures, which is found for US-Japan return

pair, the difference between the average C-QQR correlation and the sample correlation

is only about 0.05. Given that the average C-QQR correlation delivers a reasonable

measure of the average level of dependence as benchmarked by the sample correlation

coefficient, one may interpret the C-QQR approach as a technique for decomposing

the level of average dependence into levels that are specific to different points in the

distribution of returns and thus to a wide spectrum of market conditions.

67.3.1 Dynamic C-QQR Correlation

Having obtained the C-QQR correlation estimates, it is straightforward to construct

a historical series of correlation. This construction is especially useful for shedding

light on the behavior of correlation across time, and in this regard, the C-QQR

approach is related to the celebrated Dynamic Conditional Correlation (DCC)

framework of Engle (2002) that is designed for the study of the time series behavior

of correlation. Therefore, another informal evaluation of the C-QQR approach is to

compare its estimates directly with the DCC. This comparison is interesting as

the two approaches are completely unrelated – the C-QQR approach is based

Table 67.2 Sample and C-QQR correlations

Australia Hong Kong Japan Singapore

Panel A

Sample 0.5795 0.4867 0.4123 0.5987

Average C-QQR 0.5697 0.5194 0.4657 0.6318

Panel B

ty ¼ tx ¼ 0.1 0.8856 0.8358 0.9541 0.8132

ty ¼ tx ¼ 0.5 0.4625 0.3583 0.3552 0.4757

ty ¼ tx ¼ 0.9 0.5480 0.7212 0.3439 0.7976

Sample reports the sample correlation coefficient. C-QQR reports the average of the 81 correlation

estimates, where each estimate ’̂ ty; tx
� �

is specific for ty and tx defined on the grid [0.1, . . ., 0.9].
ty ¼ tx ¼ k reports the correlation between the k quantile of the US market return and k quantile of
the market return of Australia, Hong Kong, Japan, or Singapore, i.e., ’̂ k; kð Þ
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Fig. 67.2 C-QQR

correlation, ty ¼ tx
For ty ¼ tx, this figure plots
the correlation between the ty
US return quantile and the tx
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of Australia, Hong Kong,

Japan, or Singapore using the

C-QQR approach. The 95 %

bootstrap confidence band is

provided
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Fig. 67.3 (continued)
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Fig. 67.3 Dynamic C-QQR correlation and DCC in levels, 1974–1979

The C-QQR correlation and the DCC are plotted for the correlation of the US market return with

the market return of Australia, Hong Kong, Japan, or Singapore. The solid line corresponds to the
4-month moving average C-QQR correlation and the dotted line corresponds to the DCC that is

estimated using the DCC-GARCH(1,1) specification
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on quantile regressions and the DCC approach is based on the GARCH framework.

As it turns out, despite the clear difference in the two modeling approaches, the

C-QQR approach produces estimates that in some ways are visually

comparable to the DCC.

The time series of correlation can be constructed by first matching each

realized stock return at period t to the nearest return quantile that is used when

estimating the C-QQR correlation. Once that is done for the US return and the

return of the other market, we may then match a C-QQR correlation estimate (from

the pool of 81 estimates) to these quantiles to obtain an approximate realized

correlation at period t. By employing this matching approach for each period, we

may construct an approximation of the historical correlation. Calling this the

“dynamic C-QQR correlation,” the detailed procedure of computing it is outlined

as follows:

1. Compute the empirical distributions for the returns to the US market (x) and to

the market returns of Australia, Hong Kong, Japan, or Singapore (y) for each
period t. Denote them by eFx xtð Þ and eFy ytð Þ:

2. If eFx xtð Þ or eFy ytð Þ is less than 0.05, add 0.05. If eFx xtð Þ or eFy ytð Þ is greater than
0.95, subtract 0.05. Call the new series eFx 1ð Þ xtð Þ and eFy 1ð Þ ytð Þ.

3. Round eFx 1ð Þ xtð Þ and eFy 1ð Þ ytð Þ to the nearest first decimal place. The new series

eFx 2ð Þ xtð Þ and eFy 2ð Þ ytð Þ will be on the grid [0.1, . . ., 0.9].

4. The C-QQR correlation estimates is a 9 � 9 matrix, where each point on the

matrix corresponds to a combination of points on two [0.1, . . ., 0.9] grids, with
each grid representing the return percentiles of the US market and the other

market, respectively. The correlation at time t is obtained by matching eFx 2ð Þ xtð Þ
and eFy 2ð Þ ytð Þ to the C-QQR correlation matrix of estimates.

For a close-up comparison, Fig. 67.4 plots the dynamic C-QQR correlation

(4-month moving average) and the DCC for the first 5-year period in the

sample from 1973 to 1979, and Fig. 67.5 plots these correlations for the last

5-year period in the sample from 2005 to 2010. Choosing the first and last 5-year

periods allows us to observe how the dynamic C-QQR correlation and DCC

compare across the two most distant 5-year periods in the sample. Besides com-

paring their levels, it is also useful to compare their first difference as doing so

would help us to gain further insights on how the dynamic C-QQR correlation

behaves relative to the DCC.

Focusing on the 1973–1979 period, Fig. 67.4 shows that the dynamic C-QQR

correlation is similar to the DCC in terms of movements, although not necessarily in

terms of magnitude. For instance, comparing the C-QQR correlation and the DCC

for the US-Australia return pairs, Fig. 67.1 shows a decline in the C-QQR correla-

tion from around July 1974 to April 1975, while the DCC manifests a similar

downward motion from January to October 1975. Likewise, the C-QQR correlation

trends upwards from April 1976 to January 1977 with the DCC following suit from

October 1976 to around the same time. Focusing on their first difference, Fig. 67.5

shows that the peaks in the first difference of the dynamic C-QQR correlation are
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Fig. 67.4 (continued)
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Fig. 67.4 Dynamic C-QQR correlation and DCC in levels, 2005–2010

The C-QQR correlation and the DCC are plotted for the correlation of the US market return with

the market return of Australia, Hong Kong, Japan, or Singapore. The solid line corresponds to the
4-month moving average C-QQR correlation and the dotted line corresponds to the DCC that is

estimated using the DCC-GARCH(1,1) specification
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Fig. 67.5 (continued)
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Fig. 67.5 Dynamic C-QQR correlation and DCC in first difference, 1974–1979

The C-QQR correlation and the DCC, in first difference, are plotted for the correlation of the US

market return with the market return of Australia, Hong Kong, Japan, or Singapore. The solid line
corresponds to the 4-month moving average C-QQR correlation and the dotted line corresponds to
the DCC that is estimated using the DCC-GARCH(1,1) specification
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followed by similar peaks in the first difference of the DCC in many occasions,

although the size of these changes across the C-QQR correlation and the DCC are

somewhat different. Besides the US-Australia return pairs, the C-QQR correlation

and the DCC display noticeable similarities with respect to the US-Hong Kong and

US-Singapore return pairs, but least resemble each other in the case of US-Japan.

During the 2005–2010 period, not only do the dynamic C-QQR correlation and

the DCC display similar trends, they also appear to be moving along the same path.

For instance, when focusing on the US-Australia and US-Hong Kong return pairs,

Fig. 67.4 shows that the C-QQR correlation and the DCC track each other closely

with similar levels. In terms of their first difference, Fig. 67.6 also shows that while

changes in the C-QQR correlation and the DCC occur nearly in tandem, the changes

in the DCC are usually preceded by changes in the C-QQR correlation in the same

direction. For example, in the case of the US-Australia return pairs, Fig. 67.6 shows

that the peaks in the first difference of the C-QQR correlation around April 2005,

November 2005, and June 2006 are followed by peaks in the first difference of the

DCC about a month or two later.

The US-Japan return pair presents an interesting case in the comparison between

the dynamic C-QQR correlation and the DCC. For example, I find that the DCC in

this context to be more or less steady throughout the sample period, including the

1973–1979 and 2005–2010 periods that saw the 1974–1975 US and global recession

triggered by the tripling of the price of oil and the current global financial crisis that

started in 2007. Interestingly, while the C-QQR correlation typically meanders

around a steady level throughout the sample period, it is also characterized by

sharp upward movements during 1974–1975 and starting from the end of November

2007, the periods when global financial markets are bearish. And, during the times

when the C-QQR correlation is free from these large deviations, it is nearly identical

to the DCC. This can be seen by comparing the two correlation series during April

1976 to August 1977 and April 1978 to March 1979 in Fig. 67.3, and prior to

February 2006 in Fig. 67.4, where the two correlation estimates nearly coincide.

While this exercise does not offer a statistical evaluation of the closeness

between the dynamic C-QQR correlation and the DCC, visual inspection of the

two correlation series reveals some common features between them especially

during 2005–2010. That there are some similarities between the dynamic C-QQR

correlation and the DCC is somewhat surprising since from the outset, the C-QQR

and the DCC approaches based on completely different modeling paradigms.

67.4 Conclusion

This chapter discusses a new perspective of modeling correlation, based on the

C-QQR approach, which focuses on the correlation between the conditional quantiles

of asset returns as a way of uncovering the level of dependence for specific market

conditions. The C-QQR approach has the ability to replicate key features about the

correlation between stock returns that have been noted before. For instance, it shows

that the correlation between lower return quantiles is stronger than that between
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Fig. 67.6 (continued)
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Fig. 67.6 Dynamic C-QQR correlation and DCC in first difference, 2005–2010

The C-QQR correlation and the DCC, in first difference, are plotted for the correlation of the US

market return with the market return of Australia, Hong Kong, Japan, or Singapore. The solid line
corresponds to the 4-month moving average C-QQR correlation and the dotted line corresponds to
the DCC that is estimated using the DCC-GARCH(1,1) specification
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centrally located return quantiles, which corroborates the familiar observation that

bear markets are more strongly correlated. The C-QQR approach also has the ability

to produce a constructed time series of correlation that resembles the DCC even

though the C-QQR and DCC approaches are completely unrelated. Given that the

C-QQR framework produces correlation estimates that match the findings of existing

non-dynamic-based approaches of modeling correlation and the estimates of the

dynamic based DCC approach, it therefore empirically bridges the gap between the

dynamic and non-dynamic-based paradigms of modeling correlation.

Nevertheless, the application of the concept of quantile dependence in financial

economics is still in the early stagewhere some issues could be addressed going forward.

Firstly, I presented a bivariate version of the C-QQRmodel for the analysis of pairwise

correlation. As financial markets are interrelated, an extension to the multivariate case

would be an important direction. Secondly, I use the auxiliary equation to model the US

return, and it would be interesting to investigate the implications on the final correlation

estimate of doing the opposite, that is, use the auxiliary equation to model the market

returns ofAustralia, HongKong, Japan, and Singapore. Finally, in terms of applications,

it should be emphasized that the relevance of the C-QQR approach is not confined to the

study of equities alone. For instance, one could also look at the correlation between

stocks and bonds through the lens of the C-QQR approach and examine “flight to

quality” hypothesis,which emphasizes the tendency of investors to underweight equities

in favor of bonds in the face ofmarket uncertainties (e.g., Connolly et al. 2005). It would

also be interesting to apply the C-QQR approach to examine issues in macroeconomics

such as studying the nonlinearity in the relationships between macroeconomic aggre-

gates, which has been a topic of considerable interest in recent research.
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Bouyè, E., & Salmon, M. (2009). Dynamic copula quantile regressions and tail area dynamic

dependence in Forex markets. European Journal of Finance, 15, 721–750.
Chen, N. F., Roll, R. R., & Ross, S. A. (1986). Economic forces and the stock market. Journal of

Business, 59, 383–403.
Chen, X., Koenker, R., & Xiao, Z. (2009). Copula-based nonlinear quantile regression

autoregression. Econometrics Journal, 12, S50–S67.
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Abstract

Investors often need to evaluate the investment strategies in terms of numerical

values based upon various criteria when making investment. This situation can

be regarded as a multiple criteria decision-making (MCDM) problem. This

approach is oftentimes the basic assumption in applying hierarchical system

for evaluating the strategies of selecting the investment style. We employ the

criteria measurements to evaluate investment style. To achieve this objective,

first, we employ factor analysis to extract independent common factors from

those criteria. Second, we construct the evaluation frame using hierarchical

system composed of the above common factors with evaluation criteria and

then derive the relative weights with respect to the considered criteria. Third, the

synthetic utility value corresponding to each investment style is aggregated by

the weights with performance values. Finally, we compare with empirical data

and find that the model of MCDM predicts the rate of return.

Keywords

Investment strategies • Multiple criteria decision making (MCDM) •

Hierarchical system • Investment style • Factor analysis • Synthetic utility

value • Performance values

68.1 Introduction

The number of mutual funds has increased exceeding the number of stocks listed on

the organized exchange, hence making the selection of mutual funds an onerous

task for the investor. In addition, the mutual funds are moving rapidly towards

financial market development in response to increasing market demand and the

mutual fund industry. Therefore the mutual funds have huge market potential

and have been gaining momentum in the financial market. The complexities are

numerous, and overcoming these complexities to offer successful selections is

a mutual fund manager’s challenge.

The mutual fund managers need to evaluate aquatic return so as to reduce its risk

to find the optimal combination of invested stocks out of many feasible stocks and

distribute the amount of investing funds to many stocks. Because of the limited

amount of funds invested into mutual funds, the solution of the portfolio selection

problem proposed by Markowitz (1952) has a tendency to increase the number of

stocks selected for mutual funds. In a real investment, a fund manager first makes

a decision on how much proportion of the investment should go to the market, and

then he invests the fund to which stocks which is the stock selection ability. After

that, many researchers explained in the presence of market-timing ability that

actions will affect the performance of mutual funds. When investing mutual

funds, some reports also point out that there are 90 % of investors who will consider

the rate of return firstly and then the reputation of mutual fund corporation and
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investment risk. Maximizing the mutual fund performance is the primary goal of

mutual fund managers in a corporation. Usually, the mutual fund return reflects

the financial performance of a fund corporation for operating and development.

This study explores which criteria can lead to high mutual fund performance.

To achieve this purpose, we use the method of multi-criteria decision making

(MCDM). MCDM is one of the most widely used decision methodologies in

engineering, medicine, economics, law, the environment, and public policy and

business. The theory, methodology, and practice of MCDM have experienced

a revolutionary process during the last five decades. MCDM methods aim at

improving the quality of decisions by making the process more explicit, rational,

and efficient. One intriguing problem is that oftentimes, different methods may

yield different answers to the same decision problem. Thus, the issue of evaluating

the relative performance of different MCDM methods is raised. One evaluating

procedure is to examine the stability of an MCDM method’s mathematical process

by checking the validity of its proposed rankings. However, within a dynamic

and diversified decision-making environment, the traditional quantitative method

does not solve the non-quantity problems of investment selection. Therefore, what

is needed is a useful and applicable strategy that addresses the issues of investment

selection. We thus propose a MCDM method to evaluate the hierarchy system for

selecting investment strategies.

In this study the hierarchical analytic approach is used to determine the weights

of criteria from subjective judgment, and a nonadditive integral technique is

utilized to evaluate the performance of investment style. Traditionally, researchers

have used additive techniques to evaluate the synthetic performance of each

criterion. The rest of the chapter is organized as follows: Mutual fund literature is

discussed in the next section. The method of MCDM including the hierarchical

analytic approach and non- additive integral evaluation process for MCDM prob-

lems is derived in Sect. 68.3. Then an illustrative example is presented in Sect. 68.4,

which applies the MCDM method of investment. After which we discuss and show

how the MCDM methods in this chapter are effective in Sect. 68.5. Finally, the

conclusions are presented in Sect. 68.6.

68.2 Review of Mutual Fund Investment

Mutual fund research abounds in finance literature, and the investment performance

of mutual fund managers has been extensively examined. Most of these studies

employ a method developed by Jensen (1968, 1969) and later refined by Black

et al. (1972) and Blume and Friend (1973). Such a method compares a particular

manager’s performance with that of a benchmark index fund. Connor and

Korajczyk (1986) develop a method of portfolio performance measurement using

a competitive version of the arbitrage pricing theory (APT). However, they ignore

any potential market timing by managers. One weakness of the above approach is

68 Multi-criteria Decision Making for Evaluating Mutual Funds Investment Strategies 1859



that it fails to separate the aggressiveness of a fund manager from the quality of the

information he/she possesses. It is apparent that superior performance of a mutual

fund manager occurs because of his/her ability to “time” the market and the ability

to forecast the returns on individual assets.

Jensen (1968) demonstrates that the presence of market-timing ability is

an important factor in mutual fund selections. Grant (1977) explains how

market-timing actions will affect the results of empirical tests that focus only on

microforecasting skills. Fama (1972) indicates that there are two ways for fund

managers to obtain abnormal returns. The first one is security analysis, which is the

ability of fund managers to identify the potential winning securities. The second

one is market timing, which is the ability of portfolio managers to time market

cycles and takes advantage of this ability in trading securities. Treynor and Mazuy

(1966) add a quadratic term to the Jensen function to test for market-timing ability.

Chen and Stockum (1986) employ a generalized varying parameter model, which

treats Treynor and Mazuy (1966) as a special case, to study the mutual fund’s stock

selectivity and market-timing ability. They find mutual funds as a group exhibits

some evidence of stock selection ability yet no market-timing ability. Jensen (1972)

develops theoretical structures for the evaluation of micro- and macroforecasting

performance of fund managers where the basis for evaluation is a comparison of the

ex post performance of the fund manager with the returns on the market. Merton

(1981) and Henriksson’s (1984) model differs from Jensen’s formulation in that

their forecasters follow a more qualitative approach to market timing. Chang and

Lewellen (1984) and Henriksson (1984) employ the Merton-Henriksson model in

evaluating mutual fund performance and find no evidence of market timing by fund

managers. Bhattacharya and Pfleiderer (1983) extend the work of Jensen (1972). By

correcting an error made in Jensen, they show that one can use a simple regression

technique to obtain accurate measures of timing and selection ability.

Lehmann and Modest (1987) combine the APT performance evaluation

method with the Treynor and Mazuy (1966) quadratic regression technique.

They found statically significant abnormal timing and selectivity performance by

mutual funds. They also examine the impact of alternative benchmarks on the

performance of mutual funds and find that performance measures are quite sensitive

to the benchmark chosen. Also, Henriksson (1984) finds a negative correlation

between the measures of stock selection and market-timing ability. Finally,

Lee and Rahman (1990) also empirically examine market timing and selectivity

performance of mutual funds. Furthermore, Jorge et al. (2006) deal with the

relevance of benchmark choice for mutual fund performance behavior, and

Spitz (1970) researches the relationship between mutual fund performance and

cash inflows. Blake and Morey (2000) verify the mutual fund performance of

Morningstar ratings.

The above mentioned studies concentrate on a fund manager’s security selection

and market-timing skills. However, external evaluation, human judgment, and

subjective perception also affect the performance of mutual funds. In a real-world

setting, the performance of mutual funds involves many criteria. In this article we

will discuss these criteria and performance at the same time.
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68.3 The Method of Multi-criteria Decision Making

Kuosmanen (2004) and Kopa and Post (2009) use the stochastic dominance criterion

test on a portfolio optimality and efficient diversification. In this section we employ

factor analysis to extract four independent common factors from those criteria. At the

same time we construct the evaluation frame using AHP (analytic hierarchy process),

which is composed of the above four common factors with sixteen evaluated criteria,

and derive the relative weights with respect to the considered criteria and the synthetic

utility value corresponding to each mutual fund investment style.

According to the literature review and our questionnaire survey, we employ

factor analysis to extract independent common factors from criteria. At the same

time we construct the evaluation framework using a hierarchical system composed

of the above common factors with evaluation criteria and derive the relative

weights pertinent to the considered criteria. Then the synthetic utility

value corresponding to each investment style is aggregated by the weights with

performance values. Traditional analytic hierarchy process (AHP) assumes

that there is no interaction between any two criteria within the same hierarchy.

However, in reality, a criterion is inevitably correlated with another one. In this

section, we give a brief to some notions from the theory of measure and integral.

We describe a hierarchical analytic approach to determine the weighting of sub-

jective judgments.

68.3.1 l-Measure

The specification for general measures requires the values \ of a measure for

all subsets in X. Let (X, b, g) be a measure space: l 2 (�1, 1). If A 2 b, B 2 b;
and A \ B¼f, and

g A [ Bð Þ ¼ g Að Þ þ g Bð Þ þ lg Að Þg Bð Þ (68.1)

If this holds, then measure g is l-additive. This kind of measure is named

l-measure, or the Sugeno measure. In this chapter we denote this l-measure by gi
to differentiate from other measures. Based on the axioms above, the l-measure of

the finite set can be derived from densities, as indicated in the following equation:

gl x1; x2f gð Þ ¼ g1 þ g2 þ lg1g2 (68.2)

Where g1, g2 represents the density.
Let set X¼ {x1, x2, .., xn} and the density of measure gi¼ gl ({xi}), which can be

formulated as follows:

gl x1; x2; . . . ; xnf gð Þ ¼
Xn
i¼1

gi þ l
Xn�1

i1¼1

Xn
i2¼i1þ1

gi1gi2 þ � � � þ ln�1g1g2� � �gn (68.3)
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For an evaluation case with two criteria, A and B, there are three cases based on

the above properties:

Case 1: If l > 0, i.e., gl(A [ B) > gl(A) + gl(B), implying that A and B have

a multiplicative effect.

Case 2: If l ¼ 0, i.e., gl(A [ B) ¼ gl(A) + gl(B), implying that A and B have an

additive effect.

Case 3: If l < 0, i.e., gl(A [ B) < gl(A) + gl(B), implying that A and B have

a substitutive effect.

The measure is often used with the integral for aggregating information evalu-

ation by considering the influence of the substitutive and multiplication effect

among all criteria.

68.3.2 The Integral

In a measure space (X, b, g), let h be a measurable set function defined in the

measurable space. Then the definition of the integral of h over A with respect to g is

ð

A

h xð Þdg ¼ sup
a2 0;1½ �

a∧g A \ Hað Þ½ � (68.4)

where Ha ¼ {x belonging to X|h(x) � a}. A is the domain of the integral. When

A ¼ X, then A can be taken out.

Next, the integral calculation is described in the following. For the sake

of simplification, consider a measure g of X, ℵ where X is a finite set. Let h :

X ! [0,1] and assume without loss of generality that the function h (xj) is

monotonically decreasing with respect to j, i.e., h(x1) � h(x2) � � � � � h(xn). To
achieve this, the elements in X can be renumbered. With this, we then have

ð
h xð Þdg ¼ ∨

n

i¼1
f xið Þ∧g Xið Þ½ � (68.5)

where Xi ¼ {x1,x2, � � �,xi}, i ¼ 1, 2, � � �, n.
In practice, h is the evaluated performance on a particular criterion for the

alternatives, and g represents the weight of each criterion. The integral of h with

respect to g gives the overall evaluation of the alternative. In addition, we can use

the same measure using Choquet’s integral, defined as follows:

ð
hdg ¼ h xnð Þg Xnð Þ þ h xn�1ð Þ � h xnð Þ½ �g Xn�1ð Þ þ � � � þ h x1ð Þ � h x2ð Þ½ �g X1ð Þ

(68.6)

The integral model can be used in a nonlinear situation since it does not need to

assume the independence of each criterion.
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68.3.3 The Integral Multi-criteria Assessment Methodology

The integral is used in this study to combine assessments primarily because this

model does not need to assume independence among the criteria. A brief overview

of the integral is presented here.

Assume under general conditions, h(x1
k) � � � � � h(xi

k) � � � � � h(xn
k) where h(xi

k)

is the performance value of the kth alternative for the ith criterion, the integral of the
measure gl(Xn

k) with respect to h(xn
k) on ℵ (g: ℵ⟶[0, 1]) can be defined as follows:

Ð k
hdg¼ h xkn

� �
gl Xk

n

� �þ h xkn�1

� �� h xkn
� �� �

gl Xk
n�1

� �þ �� �þ h xk1
� �� h xk2

� �� �
gl Xk

1

� �

(68.7)

where gl(X1
k) ¼ gl({x1

k}), gl(X2
k) ¼ gl({x1

k,x2
k}), . . ., gl(Xn

k) ¼ gl({x1
k,x2

k, � � �,xnk})
The measure of each individual criterion group gl(Xn

k) can be expressed
Xn
i¼1

gl xki
� �þ l

XX
gl xif gð Þgl xj

� �� �þ � � �ln�1gl x1f gð Þ� � �gl xnf gð Þ as follows:

gl Xk
n

� � ¼ gl xk1, x
k
2 � � � xkn

� �� � ¼
Xn
i¼1

gl xki
� �þ

l
XX

gl xif gð Þgl xj
� �� �þ � � �

ln�1gl x1f gð Þ� � �gl xnf gð Þ ¼ 1

l

Yn
i¼1

1þ lgl xki
� �� �� 1

" # (68.8)

for � 1 < l < þ1:

l is the parameter that indicates the relationship among related criteria (if l¼0,

Eq. 68.7 is an additive form; if l 6¼0, Eq. 68.7 is a nonadditive form).

68.4 Evaluation Model for Prioritizing the Investment Strategy

We build up a hierarchical system for evaluating investment strategies of Wang and

Lee (2011). Its analytical procedures stem from three steps: (i) factor, (ii) criteria,

and (iii) investment style. We employ factor analysis to extract four independent

common factors from various criteria, and these factors are (1) market timing,

(2) stock selection ability, (3) fund size, and (4) teamwork. We construct the

evaluation frame using hierarchical system composed of the above four common

factors with sixteen evaluated criteria. We then derive the relative weights pertinent

to the considered criteria. According to the risk of investment, mutual funds with

different investment styles are classified as S1, asset allocation style; S2, aggressive

growth style; S3, equity income style; S4, growth style; and S5, growth income

style. Based on the review of literature, personal experience, and interviews with

senior mutual fund managers, relevance trees are used to create hierarchical

strategies for developing the optimal selection strategy of mutual funds.
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The elements (nodes) of relevance trees are defined and identified in hierarchical

strategies, the combination of which consists of an evaluating mechanism for

selecting a mutual fund strategy, as shown in Fig. 68.1.

68.4.1 Evaluating the Mutual Fund Strategy Hierarchy System

Minimum risk or maximum return is usually used as the measurement index in

traditional financial evaluation methods. Based on the risk of investment, mutual

funds are classified into five investment styles and we evaluate the funds’ performance

by the rate of return. Within a dynamic and diversified decision-making environment,

the traditional quantitativemethod does not solve the non-quantity problems of mutual

fund selection. Therefore, what is needed is a useful and applicable strategy that

addresses the issues of selecting mutual funds. We propose an MCDM method to

evaluate the hierarchy system for selecting mutual fund strategies.

The performance of mutual fund architecture includes four components: market

timing, stock selection ability, fund size, and teamwork. We first discuss conceptual

and econometric issues associated with identifying four components of mutual fund

performance. We have chosen multiple criteria evaluation method for selecting and

prioritizing the mutual fund strategies to optimize the real scenarios faced by

managers or investors.

Perform
ance of m

utual fund

Goal Factor Criteria Investment style

-The ratio of fund’s market share
-Market returns
-Risk-free interest rate
-Direction of fund flow

S1: Asset Allocation style
S2: Aggressive Growth style
S3: Equity Income style
S3: Growth style
S5: Growth Income style

-P/E ratio
-Net asset value/market value
-Cash flow/market value
-Net asset value
-Risk premium

-The market share of mutual fund
-The growth rate of mutual fund scale
-Dividend yield of mutual fund

-Number of researchers
-Education of fund manager
-Known of fund manager
-Turnover rate of fund manager

M
arket tim

ing
Stock selection ability

Fund size
Team

 w
ork

Fig. 68.1 Relevance system of hierarchy tree for evaluating mutual fund strategy
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68.4.2 The Process for Evaluating and Prioritizing Mutual Fund
Strategies

In this study, we use this MCDM method to evaluate various mutual fund

strategies and rank them by performance. The following subsection describes the

method of MCDM.

68.4.2.1 The Weights for the Hierarchy Process
An evaluator always perceives the weight of a hierarchy subjectively. Therefore,

consider the uncertain, interactive effects coming from other criteria when

calculating the weight of a specified criterion.

The weights wj corresponding to each criterion is as follows:

wj ¼ rj � r1 � � � � � rmð Þ�1
(68.9)

where rj is the geometric mean of each row of AHP reciprocal matrix

rj ¼ aj1 � � � � � ajm
� �1=m

(68.10)

68.4.2.2 The Synthetic Decision
The weight of the different criteria and the performance value needs to be operated

using integral techniques to generate the synthetic performance of each strategy

within the same dimension.

Furthermore, we have calculated the synthetic performance of each alternative

strategy using different l values. Additionally, the synthetic performance is

conducted by a simple additive weight method assuming the criteria are

independent in an environment. Since each individual criterion is not completely

independent from the others, we use the nonadditive integral technique to find the

synthetic performance of each alternative and to investigate the order of the

synthetic performance of different l values.

68.5 Empirical Examinations and Discussions

To demonstrate the practicality of our proposed method of evaluating mutual fund

strategies, we conducted an empirical study based on survey of a total of 30 valid

samples from managers of 12 Taiwanese mutual fund companies and researchers of

eight research institutions and universities. The majority of the respondents are fund

managers responsible for financial or general management. The mutual fund strat-

egy selection process is examined below.
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68.5.1 Evaluating the Weights of Criteria

By using the MCDM method, the weights of the factors and criteria are found and

are shown in Table 68.1. The empirical evidence shown in Table 68.1 indicates that

the weights of each criterion are market timing, 0.524; stock selection ability,

0.318; fund size, 0.141; and teamwork, 0.017, respectively. Therefore, the market

timing is the most important factor influencing the performance of mutual funds,

followed by the stock selection ability. Prior studies have simultaneously estimated

the magnitudes of these portfolio performance evaluation measures. For example,

some results show that, on average, mutual fund managers have positive security

selection ability but negative market-timing ability (e.g., Chen and Stockum 1986).

Since our results suggest that market timing has heavier weight than the stock

selection ability, to enhance their performance, mutual fund managers should

improve their ability of market timing.

68.5.2 Evaluation and Prioritization of the Mutual Fund Strategy

In this study, the surveyors define their individual range (from 0 to100) for the

linguistic variables based on their judgments. By ranking weights and synthetic

performance values, we can determine the relative importance of criteria and decide

on the best strategies. We apply a l-measure and nonadditive integral technique to

evaluate investment strategies. The synthetic performance of each alternative using

different ls is shown in Table 68.2. By ranking the synthetic performance in

different ls in Table 68.2, we obtain mutual fund strategy ranking in Table 68.3.

In Table 68.3, our empirical results show that when l < 0, the aggressive growth

style is the most important strategy and growth style is the second most important

strategy. When l � 0 – 5, the results show that growth style is the most important

strategy, and equity income style is the second most important strategy. When

l ¼ 10 – 30, growth style is the most important strategy, followed by the growth

income style strategy. When l � 40, the results show that growth income style

replaces growth style becoming the second ranked. On the other hand, when

l � 0, asset allocation style is the worst strategy with the smallest synthetic

performance. We can thus infer that the less risky the funds are, the less perfor-

mance of the funds will be.

68.5.3 Comparing with the Empirical Data

Monthly returns from January 1980 to September 1996 (201 months) for a sample

of 65 US mutual funds are used in this study to generate mutual fund performance.

The random sample of mutual funds is provided by the MorningStar. The

MorningStar segregates mutual funds into four basic investment styles on the

basis ofmanager’s portfolio characteristics. Our sample consists of 8 asset allocation

(S1), 14 aggressive growth (S2), 10 equity income (S3), 16 growth (S4),
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Table 68.1 The weights of

criteria for evaluating mutual

funds

Criteria Weight

Market timing 0.524

The ratio of fund’s market share 0.252

Market returns 0.495

Risk-free interest rate 0.212

Direction of fund flow 0.041

Stock selection ability 0.318

P/E ratio 0.252

Net asset value/market value 0.150

Cash flow/market value 0.080

Net asset value 0.187

Risk premium 0.331

Fund size 0.141

The market share of mutual fund 0.341

The growth rate of mutual fund scale 0.155

Dividend yield of mutual fund 0.504

Teamwork 0.017

Number of researchers 0.293

Education of fund manager 0.182

Known of fund manager 0.429

Turnover rate of fund manager 0.096

Table 68.2 The synthetic performance of mutual fund style

l �1.0 �0.5 0.0 1.0 3.0 5.0 10.0 20.0 40.0 100.0 150.0 200.0

S1 395.3 538.0 300.7 299.9 298.8 297.1 296.1 295.9 293.7 292.5 291.6 291.0

S2 616.8 901.2 311.9 310.8 307.6 306.0 303.2 300.2 297.3 294.0 292.0 290.9

S3 457.0 682.5 313.0 311.8 309.5 307.8 304.5 302.1 297.6 294.5 291.7 290.5

S4 552.2 855.7 315.7 312.8 311.7 310.2 308.6 304.4 300.3 298.9 295.8 294.6

S5 363.1 382.9 310.5 309.3 307.2 305.3 304.9 303.5 302.1 301.9 300.1 299.5

S1 is the asset allocation fund, S2 is the aggressive growth, S3 is the equity income, S4 is the

growth, and S5 is the growth income fund

Table 68.3 The evaluation

results of mutual fund

strategy

Mutual fund strategy ranking

l ¼�1, �0.5 S2 � S4 � S3 � S1 �S5

l ¼ 0, 1, 3 S4 � S3 � S2 � S5 � S1

l ¼ 5 S4 � S3 � S5 � S2 � S1

l ¼ 10, 20 S4 � S5 � S3 � S2 � S1

l ¼ 40, 100 S5 � S4 � S3 � S2 � S1

l ¼ 150, 200 S5� S4 � S2 � S3 � S1

Where S1, asset allocation style; S2, aggressive growth style; S3,

equity income style; S4, growth style; and S5, growth income

style

68 Multi-criteria Decision Making for Evaluating Mutual Funds Investment Strategies 1867



and 17 growth income (S5) mutual funds. The monthly returns on the S&P

500 Index are used for the market returns. Monthly observations of the 30-day

Treasury-bill rate are used as a proxy for the risk-free rate.

Appendix 3 contains summary statistics for the returns of mutual funds. All

values are computed in excess of the returns on the US T-bills closest to 30 days to

maturity. Data contains mean, standard deviation, maximum, and minimum. Aver-

ages of each investment style show that the asset allocation style has the smallest

expected return and it also has the smallest standard deviation. However, the

aggressive growth style has the largest maximum return but it also has the smallest

minimum return and the largest standard deviation. In other words, the more

aggressive the funds are, the more volatile the fund returns will be.

The primary purpose of comparing with mutual fund performance data is to find

out the true value of l. Given the true l value, we can infer other mutual funds’

performance during the same period. For example, in Appendix 3, we find the

pecking order of mutual funds’ performance based upon investment styles is

S4 > S5 > S3 > S2 > S1, which is in the same order as shown in Table 68.3

when l ¼ 10, 20. Therefore, we find the l value for certain period when comparing

with a sample of mutual fund performance data. Based upon this l value, we can

easily predict the performance of other mutual funds.

68.6 Conclusions

This study focuses on providing a mutual fund strategy for the mutual fund

managers so that they could be successful in their decision making. Our empirical

study demonstrates the validity of this method. In this study, the mutual fund

strategy stems from four aspects: market timing, stock selection ability, fund size,

as well as teamwork. Picking a mutual fund from the thousands is not an easy task.

Mutual fund managers have difficulty in selecting the proper strategy for reasons

such as the uncertain and dynamic environment and numerous criteria that they are

facing. Managers are hence overwhelmed by this vague scenario and do not make

proper decisions or allocate resources efficiently. The hierarchical method guides

the manager how to select the investment style of mutual funds in the uncertainty

environment.

We compare our results with the empirical data and find that the model of

MCDM predicts the rate of return well in certain ranges of l. Furthermore, we

can use this l value to compute the performance of different mutual funds; thus the

nonadditive integral technique is an effective method to predict the mutual fund

performance. By ranking weights and synthetic performance values, we determine

the relative importance of criteria, which allows us to decide on the best strategies.

We apply a l-measure and nonadditive integral technique to evaluate investment

strategies. By ranking the synthetic performance in different ls, we obtain mutual

fund strategy ranking. Our empirical results show that when l < 0, the aggressive

growth style is the most important strategy; when l � 0 – 5, the growth style is the

most important strategy; when l ¼ 10 – 30, growth style is the most important
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strategy followed by the growth income style strategy. However, when

l � 40, growth income style replaces growth style becoming the second ranked.

On the other hand, when l � 0, asset allocation style is the worst strategy with the

smallest synthetic performance. We can thus infer that the less risky the funds are,

the less performance of the funds will be, and the more aggressive the funds are, the

higher the volatility of the fund performance will be.

Few studies have addressed mutual fund strategy planning. Proposed in this

study is a first attempt to formally model the formulation process for a mutual fund

strategy using MCDM. We believe that the analysis presented is a significant

contribution to the literature and will help to establish groundwork for future

research. Even though we are dedicated to setting up the model as completely as

possible, there are additional criteria (e.g., tax, expenses, dividend) and methods

that could be adopted and added in future research. The mutual fund industry is

growing rapidly in the financial markets in response to increasing demand. There-

fore, what is needed is a useful and applicable method that addresses the selection

of mutual funds. We use a MCDM method to achieve this goal.

Appendix 1

The Description of Evaluative Criteria of Mutual Funds

Criteria Description

Market timing The ability of portfolio managers to time market cycles and take

advantage of this ability in trading securities

The ratio of fund market

share

The ratio of fund invested in securities

The return of market The fraction of ups or downs of deep bid index in current period

divided by the deep bid index in last period

Riskless interest rate The risk-free interest rate is the interest rate that it is assumed can be

obtained by investing in financial instruments with no default risk. In

practice most professionals and academics use short-dated

government bonds of the currency in question. For Taiwan

investments, usually Taiwan bank 1-month deposit rate is used

Flowing of cash Cash flow refers to the amounts of cash being received and spent by

a business during a defined period of time, sometimes tied to

a specific project. Measurement of cash flow can be used to evaluate

the state or performance of a business or project

Stock selection ability The ability of fund managers to identify the potential winning

securities

P/E ratio The P/E ratio (price per share/earnings per share) of a mutual fund is

used to measure how cheap or expensive its share price is. The lower

the P/E, the less you have to pay for the mutual fund, relative to what

you can expect to earn from it

Net value/market value The value of an entity’s assets less the value of its liabilities divided

by market value

(continued)
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Criteria Description

Cash flowing/market

value

It equals cash receipts minus cash payments over a given period of

time divided by market value or equivalently, net profit plus amounts

charged off for depreciation, depletion, and amortization (business)

divided by market value

Net value Net value is a term used to describe the value of an entity’s assets less

the value of its liabilities. The term is commonly used in relation to

collective investment schemes

Risk premium A risk premium is the minimum difference between the expected

value of an uncertain bet that a person is willing to take and the certain

value that he is indifferent to

Fund size The volume and scale of mutual funds

The market share of

mutual fund

It can be expressed as a company’s sales revenue (from that market)

divided by the total sales revenue available in that market. It can also

be expressed as a company’s unit sales volume (in a market) divided

by the total volume of units sold in that market

The growth rate of mutual

fund scale

The fraction of the increase or decrease of the fund scale in current

period divided by the fund scale in last period

Dividend yield of mutual

fund

The dividend yield on a company mutual fund is the company’s

annual dividend payments divided by its market cap or the dividend

per share divided by the price per share

Teamwork The culture of mutual fund company

Number of researcher The number of researcher of each fund

Education of fund

manager

Fund manager’s seniority, quality, and performance

Known of fund manager Fund manager’s rate of exposed in the medium and number of win

a prize

Turnover rate of fund

manager

Fund manager leaves his job temporarily

Appendix 2

Summary Statistics for Returns of the Mutual Funds

The notations and definition of the investment style of mutual funds are in panel 2.1.

Panel 2.1

Classifications Investment style Description

Aa Asset allocation A large part of financial planning is finding an asset allocation

that is appropriate for a given person in terms of their appetite

for and ability to shoulder risk. The designation of funds into

various categories of assets

Ag Aggressive

growth

Regardless of the investment style or the size of the companies

purchased, funds vary widely in their risk and price behavior

which is likely to have a high beta and high volatility

(continued)
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Classifications Investment style Description

Ei Equity income It will invest in common stock but will have a portfolio beta

closer to 1.0 than to 2.0. It likely favors stocks with

comparatively high dividend yields so as to generate the

income its name implied

G Growth The pursuit of capital appreciation is the emphasis with

growth funds. This class of funds includes those called

aggressive growth funds and those concentrating on more

stable and predictable growth

Gi Growth income It pays steady dividends, and it is still predominately an

investment in stocks, although some bonds may be included to

increase the income yield of the fund

Monthly mutual funds are from January 1980 to September 1996 for a sample of

65 US mutual funds. The data are from Morningstar Company.

Panel 2.2

Fund name Investment style Mean Standard deviation Maximum Minimum

General Securities Aa 0.477 5.084 15.389 �17.151

Franklin Asset

Allocation

Aa 0.407 3.743 10.424 �19.506

Seligman Income A Aa 0.394 2.414 8.474 �7.324

USAA Income Aa 0.316 2.024 9.381 �5.362

Valley Forge Aa 0.293 1.803 9.980 �5.573

Income Fund of

America

Aa 0.566 2.552 9.166 �8.836

FBL Growth Common

Stock

Aa 0.273 3.599 10.466 �24.088

Mathers Aa 0.220 3.910 14.405 �14.750

Asset allocation
average

Aa 0.391 2.550 8.962 �9.464

American Heritage Ag �0.905 6.446 28.976 �33.101

Alliance Quasar A Ag 0.644 6.547 15.747 �39.250

Keystone Small Co

Grth (S-4)

Ag 0.433 7.053 19.250 �38.516

Keystone Omega A Ag 0.473 6.112 18.873 �33.240

Invesco Dynamics Ag 0.510 6.009 17.378 �37.496

Security Ultra A Ag 0.222 6.940 16.297 �43.468

Putnam Voyager A Ag 0.808 5.781 17.179 �29.425

Stein Roe Capital

Opport

Ag 0.578 6.783 17.263 �32.135

Value Line Spec

Situations

Ag 0.145 6.240 13.532 �37.496

Value Line Leveraged

Gr Inv

Ag 0.601 4.970 14.617 �29.025

WPG Tudor Ag 0.726 6.010 14.749 �33.658

(continued)

68 Multi-criteria Decision Making for Evaluating Mutual Funds Investment Strategies 1871



Fund name Investment style Mean Standard deviation Maximum Minimum

Winthrop Aggressive

Growth A

Ag 0.476 5.596 17.012 �34.921

Delaware Trend A Ag 0.787 6.536 14.571 �42.397

Founders Special Ag 0.564 5.900 12.905 �31.861

Aggressive growth
average

Ag 0.459 5.814 13.142 �35.335

Smith Barney Equity

Income A

Ei 0.601 3.270 7.813 �18.782

Van Kampen Am Cap

Eqty-Inc A

Ei 0.510 3.530 12.292 �22.579

Value Line Income Ei 0.423 3.357 9.311 �18.242

United Income A Ei 0.714 4.037 11.852 �13.743

Oppenheimer Equity

Income A

Ei 0.555 3.422 10.071 �16.524

Fidelity Equity Income Ei 0.706 3.612 10.608 �19.627

Delaware Decatur

Income A

Ei 0.547 3.615 10.269 �20.235

Invesco Industrial

Income

Ei 0.601 3.705 9.349 �20.235

Old Dominion Investors Ei 0.360 3.699 11.498 �21.092

Evergreen Total

Return Y

Ei 0.508 3.220 8.074 �13.857

Equity income average Ei 0.527 3.238 9.094 �18.718

Guardian Park

Avenue A

G 0.740 4.391 11.321 �27.965

Founders Growth G 0.718 4.986 13.055 �25.108

Fortis Growth A G 0.724 5.983 14.520 �30.771

Franklin Growth I G 0.570 4.050 12.907 �11.706

Fortis Capital A G 0.682 4.791 12.818 �21.585

Growth Fund of

America

G 0.625 4.722 12.226 �23.962

Hancock Growth A G 0.484 5.381 15.708 �25.236

Franklin Equity I G 0.469 5.156 12.818 �32.135

Nationwide growth G 0.598 4.370 11.444 �27.570

Neuberger&Berman

Focus

G 0.434 4.366 12.187 �25.108

MSB G 0.517 4.665 13.452 �31.178

Neuberger&Berman

Partners

G 0.661 3.612 9.311 �19.385

Neuberger&Berman G 0.606 5.095 11.574 �30.500

Manhattan G 0.710 4.067 10.125 �19.385

Nicholas G 0.225 5.234 11.321 �31.451

Oppenheimer A G 0.727 5.802 19.120 �37.207

New England growth A G 0.608 4.505 11.121 �26.081

(continued)

1872 S.Y. Wang and C.-F. Lee



Fund name Investment style Mean Standard deviation Maximum Minimum

Growth average G 0.594 4.775 12.649 �26.255

Pioneer II A Gi 0.517 4.386 10.912 �29.693

Pilgrim America Magna

Cap A

Gi 0.611 3.949 10.843 �22.704

Pioneer Gi 0.410 4.339 12.293 �28.361

Philadelphia Gi 0.244 4.004 11.074 �23.457

Penn Square Mutual A Gi 0.504 3.907 11.852 �20.724

Oppenheimer Total

Return A

Gi 0.507 4.451 13.861 �22.829

Vanguard/Windsor Gi 0.726 4.078 10.746 �18.542

Van Kampen Am Cap

Gr & Inc A

Gi 0.570 4.781 15.349 �32.135

Van Kampen Am Cap

Comstock A

Gi 0.599 4.539 13.167 �34.921

Winthrop Growth &

Income A

Gi 0.430 3.987 10.717 �24.088

Washington Mutual

Investors

Gi 0.723 3.882 11.409 �20.113

Safeco Equity Gi 0.587 4.797 14.263 �31.042

Seligman Common

Stock A

Gi 0.553 4.224 11.785 �23.331

Salomon Bros Investors

O

Gi 0.583 4.194 11.785 �24.980

Security Growth &

Income A

Gi 0.233 3.825 10.161 �19.674

Selected American Gi 0.650 3.969 13.142 �19.385

Putnam Fund for Grth &

Inc A

Gi 0.637 3.540 8.456 �22.081

Growth income
average

Gi 0.544 3.940 10.380 �24.469

Appendix 3

Summary Statistics for Returns of the Mutual Funds

Fund name Investment style Mean Standard deviation Maximum Minimum

Asset allocation average S1 0.391 2.550 8.962 �9.464

Aggressive growth average S2 0.459 5.814 13.142 �35.335

Equity income average S3 0.527 3.238 9.094 �18.718

Growth average S4 0.594 4.775 12.649 �26.255

Growth income average S5 0.544 3.940 10.380 �24.469
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Appendix 4

The MCDM proposed approach consists of eight steps: define the problem, define

the evaluation criteria, initial screen, define the preferences on evaluation criteria,

define the MCDM method for selection, evaluate the MCDM methods, choose the

most suitable method, and conduct sensitivity analysis.

Step 1: Define the problem. The characteristics of the decision-making problem

under consideration are addressed in the problem definition step, such as iden-

tifying the number of alternatives, attributes, and constraints. The available

information about the decision-making problem is the basis on which the most

appropriate MCDM techniques will be evaluated and utilized to solve the

problem.

Step 2: Define the evaluation criteria. The proper determination of the applicable

evaluation criteria is important because they have great influence on the outcome

of the MCDM method selection process. However, simply using every criterion

in the selection process is not the best approach because the more criteria used,

the more information is required, which will result in higher computational cost.

In this study, the characteristics of the MCDM methods will be identified by the

relevant evaluation criteria in the form of a questionnaire. Ten questions are

defined to capture the advantages, disadvantages, applicability, computational

complexity, etc. of each MCDMmethod, as shown in the following. The defined

evaluation criteria will be used as the attributes of an MCDM formulation and as

the input data of decision matrix for method selection:

1. Is the method able to handle MADM, MODM, or MCDM problem?

2. Does the method evaluate the feasibility of the alternatives?

3. Is the method able to capture uncertainties existing in the problem?

4. What input data are required by the method?

5. What preference information does the method use?

6. What metric does the method use to rank the alternatives?

7. Can the method deal changing alternatives or requirements?

8. Does the method handle qualitative or quantitative data?

9. Does the method deal with discrete or continuous data?

10. Can the method handle the problem with hierarchy structure of attributes?

Step 3: Initial screen in the initial screen step. The dominated and infeasible

MCDM methods are eliminated by dominance and conjunctive. An alternative

is dominated if there is another alternative which excels it in one or more

attributes and equals it in the remainder. The dominated MCDM methods are

eliminated by the dominance method, which does not require any assumption or

any transformation of attributes. The sieve of dominance takes the following

procedures. Compare the first two alternatives, and if one is dominated by the

other, discard the dominated one; then compare the un-discarded alternative with

the third alternative and discard any dominated alternative; and then introduce

the fourth alternative and repeat this process until the last alternative has been

compared. A set of non-dominated alternatives may possess unacceptable or

infeasible attribute values. The conjunctive method is employed to remove the
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unacceptable alternatives, in which the decision maker sets up the cutoff value

he/she will accept for each of the attributes. Any alternative which has an

attribute value worse than the cutoff values will be eliminated.

Step 4: Define the preferences on evaluation criteria. Usually, after the initial screen

step is completed, multiple MCDM methods are expected to remain; otherwise

we can directly choose the only one left to solve the decision-making problem.

With the ten evaluation criteria defined in step 2, the decision maker’s prefer-

ence information on the evaluation criteria is defined. This will reflect which

criterion is more important to the decision maker when he/she makes decisions

on method selection.

Step 5: Define the MCDM method for selection. Existing commonly used MCDM

methods are identified and stored in the method base as candidate methods for

selection. The simple additive weighting (SAW) method is chosen to select the

most suitable MCDM methods considering its simplicity and general accept-

ability. Basically, the SAW method provides a weighted summation of the

attributes of each method, and the one with the highest score is considered as

the most appropriate method. Though SAW is used in this study, it is worth

noting that other MCDM methods can be employed to handle the same MCDM

methods selection problem.

Step 6: Evaluate the MCDM methods. Mathematical formulation of appropriate-

ness index (AI) is used to rank the MCDM methods. The method with the

highest AI will be recommended as the most appropriate method to solve the

problem under consideration.

Step 7: Choose the most suitable method.Foroptimizationofspecificationofgrinding

wheel, the MCDM method which has the highest AI will be selected as the most

appropriate method to solve the given decision-making problem. If the DM is

satisfiedwith the final results, he/she can implement the solution andmove forward.

Otherwise, he/she can go back to step 2 and modify the input data or preference

information and repeat the selectionprocess until a satisfiedoutcome is obtained.Be

displayed to provide guidance toDMis provided guidance about how to get thefinal

solution by using the selectedmethod. In addition, the detailedmathematical calcu-

lation steps are also built in the MATLAB-based DSS, which highly facilitates the

decision-making process. Thus, the DM can input their data according to the

instruction and get the final results by clicking one corresponding button.

Step 8: Conduct analysis. In this section, selection of an optimized specification of

grinding wheel problem is conducted to improve the capabilities of the grinding

operation products by proposed MCDM decision support system. It is observed

that different decision makers often have different preference information on the

evaluation criteria and different answers to the ten questions; thus, analysis

should be performed on the MCDM method selection algorithm in order to

analyze its robustness with respect to parameter variations, such as the variation

of decision maker’s preference information and the input data. If the decision

maker is satisfied with the final results, he/she can implement the solution and

move forward. Otherwise, he/she can go back to step 2 and modify the input data

or preference information and repeat the selection process until a satisfied
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outcome is obtained. In this implementation, emphasis is put on explaining the

holistic process of the intelligent MCDM decision support system. Thus, the

step-by-step problem-solving process is explained and discussed for this

decision-making problem.
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Abstract

The carry trade is a popular strategy in the currency markets whereby investors

fund positions in high interest rate currencies by selling low interest rate currencies

to earn the interest rate differential. In this article, we first provide an overview of

the risk and return profile of currency carry trade; second, we introduce two popular

models, the regime-switch model and the logistic smooth transition regression

model, to analyze carry trade returns because the carry trade returns are highly

regime dependent. Finally, an empirical example is illustrated.
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69.1 Introduction

According to the international financial theory such as uncovered interest parity (UIP),

the exchange rate will depreciated in the future if the country has a high interest rate.

Although investors can potentially profit from the interest rate differential between the

two countries, the exchange rate differential may offset the interest rate differential.

However, in the past two decades, an enormous amount of empirical research has

refuted the UIP theory. These evidences suggest that when exchange rate returns

combine with time-varying premium, UIP is not usually present in the past.1

Carry trade, a common international investment strategy, is a good example that

runs contradictory to UIP theory. Carry trade is built by borrowing currency from

a lower interest rate country and then investing in a higher interest rate country.

A large body of research shows that carry trade is profitable over the long horizon.

How the carry trade strategy earns a persistent excess return is an open question.

The literature suggests several explanations for the forward premium puzzle. Engel

(1984) and Fama (1984) provide the straightforward and theoretically convincing

explanation based on the existence of time-varying risk premia for this puzzle.

Burnside et al. (2011) refer to the peso problem as an explanation for the high

average payoff to the carry trade.2 Baillie and Chang (2011) provide another

explanation for this puzzle that focuses on the trading behavior.

However, because UIP is not always held in the short term, previous empirical

studies have adopted several models that allow for temporary deviations fromUIP and

have discussed regime dependence among other factors to fit the carry trade return. For

example, Ichiue and Koyama (2008) provide the regime-switch model to detect how

the exchange rate volatility influences UIP. The failures of UIP usually happen at

relatively lowvolatility environment. In particular, they argue that the rapidly unwind-

ing carry trade affects the exchange rate volatility. Recently, using daily data from

1985 to 2008, Christiansen and Ranaldo (2011) analyze carry trade returns with the

multifactor model. Their main findings suggest high regime dependence of the carry

trade return. Clarida et al. (2009) also find significant volatility regime sensitivity for

Fama regressions estimated over low and high volatility periods. Sarno et al. (2006)

1Meese and Rogoff (1983) assume that exchange rates follow the “near-random walk” model and

provide the evidence to reject UIP. Fama (1984) applies the concept of forward rate contained in

the time-varying premium to analyze the relation between the forward exchange rate and spot

exchange rate and points out that high interest rate currencies tend to appreciate rather than

depreciate. Froot and Thaler (1990) replace time-varying premium with the mean return theory

to explain foreign exchange anomalies. Burnside et al. (2009) emphasize that the forward premium

puzzle can be construed as the adverse selection problems between participants in foreign

exchange markets. Brunnermerier et al. (2008) use the liquidity risk factor to explain the excess

return of the carry trade. They add the change of VIX index or the TED spread variable to be the

liquidity risk factors in the regression and suggest that the market liquidity factor may explain the

carry trade’s risk premium.
2The peso problem is as a generic term for the effects of small probabilities of large events in

empirical work. Burnside et al. (2011) approach relies on analyzing the payoffs to a version of the

carry trade strategy that does not yield high negative payoffs in the peso state.
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provide empirical evidence the deviations from UIP display significant nonlinearities

that consistent with theories based on transactions costs or limits to speculation.

Menkhoff et al. (2012) explain that low returns occur in times of unexpected high

volatility, when low interest rate currencies provide a hedge by yielding positive

returns. Empirically, however, the literature has serious problems convincingly

claiming that carry trade returns as regime dependence or that the higher profit
opportunities of carry trade usually occurred in lower volatility regime.

In sum, massive losses associated with the carry trade usually occurred in the

higher volatility regime, the positive return usually exists in carry trade at the low

volatility regime, and the carry trade return process does not follow the traditional

linear models. Baillie and Chang (2011) further find that momentum trading

increases carry trade volatility. Brunnermerier et al. (2008) also find the levered

market participants gradually build up positions in high-yielding currencies, caus-

ing high-yielding currencies to appreciate over time along with speculators’ larger

positions. In addition, Brunnermerier et al. (2008) find that higher market volatility

is associated with carry trade losses. Clarida et al. (2009) use the Fama regression,

which produces a positive coefficient that is greater than unity when volatility is in

the top quartile.3 Baillie and Chang (2011) find that UIP is more likely to hold in

a regime when volatility is unusually high. These results suggest that the momen-

tum effect in the carry trade perhaps exists in the low volatility regime, but the

empirical results are mixed in the high volatility regime. However, the carry trade

perhaps confronts crash risk in the high volatility regime whether UIP holds.

Because the carry trade return is highly regime dependent, regime conditions must

be considered in the return process model. Ichiue and Koyama (2008) use the regime-

switch model to investigate the relation among exchange rate returns, volatilities, and

interest rate differentials. Baillie and Chang (2011) use the logistic smooth transition

regression (LSTR) model to identify whether the forward FX market is in a regime

where the anomaly is present or whether it is in a regime where UIP tends to hold.

They find that UIP ismore likely to hold in a regimewhere volatility is unusually high,

which may be explained by previous theoretical work that links momentum trading to

increased volatility and more pronounced reversion to fundamentals.

In estimating the model, we suggest the Markov chain Monte Carlo (MCMC)

methods. The major advantage of the Bayesian MCMC approach is its extreme

flexibility. Because the parameters are generated by the random variable from

posterior distributions, the MCMC method can avoid the thorny problem of max-

imum such as the maximum likelihood estimation. This method is well suited to fit

realistic models to complex data sets with threshold value, measurement error,

censored or missing observations, multilevel or serial correlation structures, and

multiple endpoints. This method is suitable for the regime-dependent models

because these models usually have a threshold point. For instance, Ichiue and

Koyama (2008) use the Bayesian Gibbs sampling method to estimate the parameters

3The empirical result of Clarida et al. (2009) indicates that UIP is violated in the high volatility

regime.
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of the regime-switch model, and early investigations also used MCMC method, such

as Albert and Chib (1993), Kim et al. (1998), and Kim and Nelson (1999).

The study provides a more clear analysis of carry trade return behavior in the

different volatility regimes. Our main purpose is to construct an investment strategy

that can create lower volatility and higher return of the carry trade, where the carry

trade returns are produced by exchange rate and 3-month interbank rate data and the

volatility variables are determined by VIX, which is calculated from the S&P500

equity-options market, generalized autoregressive conditional heteroskedasticity

(GARCH), and exponential GARCH (EGARCH).4 According to our empirical out-

puts, we find several results. First, we confirm that carry trade returns display

a significant momentum effect at the low volatility regime. Second, the VIX perfor-

mance of carry trade is better than other volatility measures during the subprime

period (2007–2008). Third, we can create lower downside risk strategy than the

buy-and-hold strategy in the long run when we used the GARCH volatility measure.

Finally, we still have a higher Sortino ratio by using the GARCH volatility measure.

The remainder of this study is organized as follows. We introduce two financial

econometrics models, the regime-switch model and LSTR model, in Sect. 69.2.1.

Section 69.2.2 discusses our method, based on the MCMC method. We discuss the

carry trade return behavior and provide a new carry trade trading strategy of carry

trade in Sect. 69.3. Section 69.4 concludes.

69.2 Overview of Model and Methodology for Carry Trade

Based on past study, the regime-dependent model is most popular to analyze carry

trade returns because the behaviors of carry trade returns are diversely in the

different volatility regimes. We will introduce two popular regime-dependent

models, the regime-switching and logistic smooth transition regression models, in

this section. The regime-dependent models usually have threshold value such as

regime-switching model. We suggest using the MCMC methods to avoid this

thorny problem of parameter estimation.

69.2.1 The Regime-Switching and Logistic Smooth Transition
Regression Models

The covered interest parity (CIP) is a non-arbitrage condition. It postulates that the

nominal interest differential between two countries (it
* � it) should equal the

forward premium (ft�st). It is expressed as

Et Dstþ1½ � ¼ i�t � it ¼ f t � st, (69.1)

4Wang et al. (2012) suggest that GARCH models with skew density innovations may be another

suitable volatility measure for carry trade return.

1880 Y.-J. Wang et al.



where st is the logarithm of the spot exchange rate quoted as the foreign price of

domestic currency, ft is the logarithm of the forward rate for a one-period ahead

transaction, and it and it
* are the one-period risk-free domestic and foreign interest

rates, respectively. The standard test of UIP to estimate the regression is

Dstþ1 ¼ aþ b f t � stð Þ þ utþ1: (69.2)

Under UIP, the null hypothesis is that a¼ 0 and b¼ 1 that the error term, ut+1, is
serially uncorrelated. The forward premium anomaly generally refers to the

widespread phenomenon of a negative slope coefficient being obtained by the

ordinary least square estimation of Eq. 69.2. Baillie and Chang (2011) further use

the LSTR model, which postulates that the slop coefficient is related nonlinear to

the degree of carry and momentum trading over time; a natural approach is to

specify the UIP relation in terms of the LSTR model:

Dstþ1 ¼ a1 þ b1 f t � stð Þ½ � 1� G zt; g; cð Þð Þ
þ a2 þ b2 f t � stð Þ½ �G zt; g; cð Þ þ utþ1,

(69.3)

where G(·) is a logistic transition function as follows:

G zt; g; cð Þ ¼ 1þ exp
�g zt � cð Þ

szt

� �� ��1

, g > 0, (69.4)

where zt is the transition variable, szt is the standard deviation of zt, g is a slope

parameter, and c is a location parameter. Baillie and Chang choose various transi-

tion variables, zt, related to carry and consider momentum trading. Specifically,

they use the interest differentials and the conditional volatility of exchange rates as

measured by GARCH(1,1) models of spot exchange rate returns. This model

approach works well for carry trade analysis because it allows for smooth and

continuous adjustment between regimes.

Another popular regime-dependent model is the regime-switch model.

After Hamilton (1989) proposed the regime-switching model to examine the per-

sistency of recessions and booms, many studies applied this model to exchange rate

data. Engel and Hamilton’s (1990) two-regime model specifies currency returns as

stþ1 � st ¼ ai þ si�tþ1, (69.5)

where i∈ {1, 2} denotes the regime; ai and si denote the trend of exchange rate and the
volatility of exchange rate return under regime i, respectively; and �tþ1 �i:i:d: N 0; 1ð Þ.
Ichiue and Koyama (2008) employ the four-regime model to discuss carry trade

returns. First, they use the following nesting model:

stþ1 � st ¼ ai þ bi it � i�t
� �þ si�tþ1: (69.6)
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According to the views of market participants, regime switches in exchange rate

returns should be interpreted as switches in the relation between the returns and

interest rate differentials or switches in market participants’ activities between

the carry trade and its unwinding, rather than just switches in trends. Ichiue and

Koyama assume that the intercept ai does not switch, that is, ai ¼ a for all

i ¼ 1, 2. Second, they define a regime indicator variable that spans the regime

space for both the slope and volatility regimes as

St ¼
1 if Sbt ¼ 1 and Sst ¼ 1

2 if Sbt ¼ 2 and Sst ¼ 1

3 if Sbt ¼ 1 and Sst ¼ 2

4 if Sbt ¼ 2 and Sst ¼ 2

8>><
>>:

, (69.7)

where Sbt is the slope regime, which indicates the relation between exchange rate

returns and interest rate differentials, and at time t is bi when Sbt ¼ i, i ¼ 1, 2. Sst is
defined as the volatility regime, with the volatility at time t being sj when Sst ¼ j,
j ¼ 1, 2. Finally, Ichiue and Koyama’s model can be described as

stþn � st ¼ aþ bt it, n � i�t, n
� �

þ st�tþn: (69.8)

bt ¼ b1 I1t þ I3tð Þ þ b2 I2t þ I4tð Þ: (69.9)

st ¼ s1 I1t þ I2tð Þ þ s2 I3t þ I4tð Þ, (69.10)

where Ikt ¼ 1 if St ¼ k and Ikt ¼ 0 if St 6¼ k, k ¼ 1, 2, 3, 4, where b1<b2 and

0<s1<s2. And Pr[St + 1 ¼ k|St ¼ l] ¼ pkl are the transition probabilities in the

transition matrix Pn, for k, l¼ 1, 2, 3, 4, where
X4
k¼1

pkl ¼ 1. This model provides four

kinds of regimes for carry trade returns. For instance, when St¼ 1, the carry trade return

will be with lower slope coefficient b1 and low volatility. Ichiue and Koyama refer to

this regime the negative/low regime. The remainder of the regimes are positive/low,

when St ¼ 2; negative/high, when St ¼ 3; and positive/high, when St ¼ 4.5

The parameters of these regime-dependent models can be estimated by the MCMC

method, especially regime-switch models, because regime-switch models have thresh-

old points to separate the regimes. We introduce this method in the next subsection.

69.2.2 The MCMC Method

Bayesian inference using the MCMC method is a popular technique for parameter

estimation. We can estimate parameters easily via this technique. MCMC includes

5The empirical results shown b1 and b2 are negative and positive, respectively.
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two major algorithms, Gibbs sampling and Metropolis-Hustings (M-H) algorithm.

The algorithms are sampled from probability distributions based on constructing

a Markov chain that has the desired distribution as its equilibrium distribution.

Metropolis et al. (1953) introduced the M-H algorithm. Setting the interest distri-

bution p¼ {pj, j∈ S} with∑ jpj¼ 1 and an arbitrary irreducible transition matrixQ¼
[qij] on the state space S with the elements satisfying qij¼ qji, the MCMC {xt, t� 0} is

constructed by the following steps. First, set xk ¼ i where i is any realization from p.
Second, generate j from the {qij:j ¼ 1, 2, . . .} where qij is often called the proposal or

candidate generating function. Third, set a ¼ pj/pi; if a � 1, set xk+1 ¼ qij. Otherwise
generate u�U(0, 1) if u<a; set xk+1¼ qij, else xk+1¼ xk. Finally, set k¼ k + 1 and go to

the first step.

The Gibbs sampler is a generally applicable method, which is an algorithm

for generation values from the full conditional distributions. The algorithm for

Gibbs sampling is as follows: First, give an initial value Q(0) ¼ (y1
(0),y2

(0), . . .,yp
(0))

for parameter Q ¼ (y1,y2, . . .,yp). Second, draw yi from the full conditional

p(yi|Q� i
(k) ) for i ¼ 1, . . ., p at k th iteration, where Q

kð Þ
�i is defined by Q

kð Þ
�i ¼

y kð Þ
1 ; y kð Þ

2 ; . . . ; y kð Þ
i�1; y

k�1ð Þ
iþ1 ; . . . ; y k�1ð Þ

p

� �
. Third, set k ¼ k + 1; return to second step

until convergence is achieved. We can use the M-H algorithm to generate the random

variables for parameters if they are difficult to generate by full conditional distributions.

For example, we review the regime-switch model. We can find Eq. 69.8

following the normal distribution as

stþn � stð Þ � N aþ bt it, n � i�t, n
� �

,s2t
� �

: (69.11)

Ichiue and Koyama (2008) employ the noninformation priors for all the

parameters of the model as a � N(0, 10), b1 � N(�1, 10), b2 � N(1, 10),
s1
2 � IG(4,300), s2

2/s1
2 � IG(4,8), and (pk1, . . .,pk4) � Dirichlet(p0,k1, . . .,p0,k4)

where p0, kk ¼ 4 and p0, kl ¼ 1 if k6¼l. The selection of priors can be based on

prior knowledge or user experience. The noninformation (diffuse) priors are useful

to be able to conveniently calculate full conditional distributions. For instance, the

conditional distribution (posterior distribution) of a can be found as

p a Q
kð Þ
�i

���
�
� N stþn � st,s2t

� �
,

�
(69.12)

where Q
kð Þ

�i ¼ stþn � st, b
kð Þ
1 , b kð Þ

2 , s kð Þ
1 , s kð Þ

2 ,Pn kð Þ
� �

. All parameters can be draw

from full conditional distributions via the MCMC method.

69.3 Empirical Result

In this section, we discuss the relation between carry trade return and volatility

measures. We calculate a series of long Australian dollars (AUD) and short
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Japanese Yen (JPY) weekly carry trade return and three kinds of volatility measure

(VIX, GARCH, and EGARCH) from 4 January 2001 to 18 August 2010. Our

sample consists of 503 observations.

We calculate weekly return of short JPY and long AUD carry trades using the

following formula:

ytþ1 ¼ log 1þ ði�t � it
� ��� Dstþ1, (69.13)

where it
* is Australia interest rate at time t and it is Japan interest rate. Therefore, log

(1 + (it
* � it)) is log return of interest rate differential and Dst + 1 ¼ st + 1 � st with Sj

denotes logarithm of the nominal exchange rate at time j (unit of AUD per JPY).

Table 69.1 presents the summary statistics for the weekly return from investing

in a long position in the Australian dollar (AUD) financed by borrowing in the

Japanese Yen (JPY) and three volatility measures, VIX, GARCH, and EGARCH,

from 4 January 2001 to 18 August 2010. Panels B and C show the summary

statistics for the weekly return in the low and high volatility regimes, respectively.

We can observe that, relative to the normal distribution, the density of the weekly

returns exhibits skewness and excess kurtosis, especially the returns in the high

volatility regime. Brunnermerier et al. (2008) explained that carry trade returns

have crash risk that caused the negative skewness and excess kurtosis. They pointed

out that “exchange rates go up by the stairs and down by the elevator.” Based on the

VaR results, we find the losses at high volatility regime are larger than low volatility

regime. However, Table 69.1 clearly shows that the behaviors of carry trade returns

are diversely in the different volatility regimes.

First, we use the AR(1) model to discuss the relation between momentum effect

and volatility regimes.6 We consider following the AR(1) model:

ytþ1 ¼ f0 þ f1yt þ etþ1, (69.14)

where et+1 is serially uncorrelated. If parameter f1 is positive, we assume that the

momentum effect exists because the directions of returns are the same between the

now and future. We show the results in the four kinds of volatility regimes in

Table 69.2, in which we use three volatility measures, VIX, GARCH, and

EGARCH, to capture the volatility of carry trade.

However, based on results of Table 69.2, we create a new carry trade trading

strategy that results in higher return and downside risk. At the low volatility, we

have a momentum trading strategy of carry trade. On the other hand, we do

nothing during the high volatility regime. For robustness, we separate our sample

into 2, 5, and 10 years. We use buy-and-hold strategy as our benchmark to

6Based on Eq. 69.6, we divide the long AUD and short JPY carry trade from 4 January 2001 to

18 August 2010 into four kinds of volatility regimes and try to use the MCMC method to test

whether UIP is existing in these intervals, but we cannot find any evidences to support it.
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compare with our strategy performance (cumulative return), which is created by

three volatility measures.

Table 69.3 shows the results. The buy-and-hold strategy usually has the best

performance. During the financial crisis (2007–2008), the VIX threshold produces

Table 69.2 The parameters are calculated by AR(1) model in the four kinds of volatility regimes

that are distinguished by the first, second, and third quartiles as Q1, Q2, and Q3, respectively. The

volatility measures, V, are found by VIX, GARCH, and EGARCH. The weekly carry trade returns

are calculated by Eq. 69.13 from 4 January 2001 to 18 August 2010

V<Q1 Q1<V<Q2 Q2<V<Q3 V>Q3

Panel A V: EGARCH

f0 0.0035*** 0.0055*** 0.0062*** 0.0008

p-value 0.0002 0.0000 0.0009 0.8130

f1 0.1090* 0.0379 �0.0679 �0.0233

p-value 0.0631 0.6040 0.4530 0.8110

Panel B V: GARCH

f0 0.0065*** 0.0069*** 0.0066*** �0.0037

p-value 0.0000 0.0000 0.0001 0.2870

f1 0.0210 0.0232 0.0441 �0.0665

p-value 0.6970 0.7080 0.5689 0.5110

Panel C V: VIX

f0 0.0058*** 0.0060*** 0.0049** �0.0002

p-value 0.0000 0.0001 0.0206 0.9470

f1 0.1149 0.0627 �0.1244 0.0142

p-value 0.1820 0.4841 0.1444 0.8780

*, **, and *** denote significance at the 10 %, 5 %, and 1 % levels, respectively

Based on these data, we find results consistent with previous investigations: the carry trade displays

the momentum effect only in the low volatility regime. In addition, the EGARCH volatility

measure has a significant result. The negative relation between now and future returns are usually

found in the high volatility regime. This phenomenon may imply the carry trade’s exposure to

crash risk but the parameter f1 is always insignificant

Table 69.3 We compare the total return of four types of strategy. First, we calculate the third

quartiles (Q3) with three different volatility measures. Second, if the return in the low volatility

regime where the volatility measure is smaller than Q3, we do the momentum trading strategy of

carry trade. Otherwise, we do nothing

Period VIX GARCH EGARCH Buy and hold

10 years (2001–2010) 1.0277 1.0413 0.8416 2.1070a

5 years (2006–2010) 0.8313a 0.7935 0.7963 0.8207

5 years (2001–2005) 0.1773 0.4198 0.5439 1.2768a

2 years (2009–2010) 0.0634 0.1193 �0.1907 0.4260a

2 years (2007–2008) 0.5285a 0.4814 0.4550 0.0669

2 years (2005–2006) 0.2665 0.2646 0.3658 0.6015a

2 years (2003–2004) 0.1906 0.3474 0.2758 0.5779a

2 years (2001–2002) �0.1088 �0.0112 0.0868 0.4009a

aDenotes the maximum cumulative return that an investment has gained or lost over sample period
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the highest performance (0.5285), which explains why prior studies commonly

employ VIX as a proxy variable for global risk. During the same tumultuous period,

the buy-and-hold strategy shows lower returns than other periods. The reason may be

that traders suffered the risk from the low interest rate country’s currency appreciated,

and thus UIP tends to hold. Although the buy-and-hold strategy often has the highest

returns, it also may suffer from the highest crash risk. To consider the downside risk of

the carry trade strategy, we use the Sortino ratio criteria to compare the performance

of strategies. Sortino ratio measures how many units of return are received per unit of

downside risk experienced (Riddles 2001). Table 69.4 provides the results of the

comparison of the Sortino ratio of four types of strategy.

As Table 69.4 shows, using the GARCH volatility measure, our trading strat-

egy produces the highest return per unit of the downside risk in the long run.

Table 69.4 We compare the Sortino ratio of four types of strategy, where the semi-standard

deviations (downside risks) are calculated by negative deviations for each return interval

Period VIX GARCH EGARCH Buy and hold

10 years (2001–2010) 66.9450 94.3632a 67.5042 86.4720

5 years (2006–2010) 55.2632 82.3461a 66.5947 27.4893

5 years (2001–2005) 12.6324 39.8917 59.5527 110.3050a

2 years (2009–2010) 2.2658 10.9572 �7.2599 15.6953a

2 years (2007–2008) 34.0658 41.1898a 37.8497 1.8875

2 years (2005–2006) 30.7356 36.8381 42.5293 88.2519a

2 years (2003–2004) 16.5059 61.9929a 26.1353 60.9510

2 years (2001–2002) �10.7429 �1.5258 8.5799 30.3857a

aDenotes the maximum Sortino ratio among the four strategies
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Fig. 69.1 Weekly return of long AUD and short JPY carry trade from 13 January 1994 to

18 August 2010 and weekly volatilities, calculated by AR(1)-EGARCH(1,1) model
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It also shows that the GARCH is the best variable to explain our trading

strategy, which usually has a higher Sortino ratio. Thus, although the buy-and-

hold strategy often has the highest returns, our strategy effectively avoids loss at

high volatility regime. Figure 69.1 explicitly expresses the benefits of our

strategy.

Figure 69.1 shows that carry trade returns are negatively related to the EGARCH

volatility measure. Base on the threshold value, we can precisely capture the

1997–1998 Asian financial crisis and the 2007–2008 American subprime risk.

The volatility level is far above our threshold during these tumultuous episodes.

In addition, we find that the carry trade usually has a positive return during the low

volatility regime.

69.4 Conclusion

The literature provides several explanations for why the carry trade has persistent

excess returns including time-varying risk premia, illiquidity spirals, the peso

problem, and trading behavior. Regime-dependent models, such as the regime-

switch model and the LSTR model, are commonly used for currency markets. This

study employs characteristics of the carry trade to build a new trading strategy that

can earn higher returns with lower volatility. We use three measures of volatility,

VIX, GARCH, and EAGRCH, to capture the volatility of carry trade returns.

Our main results are threefold. First, we find that carry trade returns have

a significant momentum effect at the low volatility regime. Second, the results

show that although the buy-and-hold strategy often has higher returns, our strategy

effectively avoids losses at the high volatility regime. Third, carry trade returns

often suffer higher losses at the high volatility regime. Compared with the buy-and-

hold strategy, our method thus bears less downside risk. We use the Sortino ratio

criteria to provide this evidence.

Questions remain to be addressed. The United States is maintaining a low

interest rate policy right now. Is the US dollar the new carry trade currency?

This and other questions are worth discussing. For example, future research may

be usefully directed at incorporating such trading strategies with more conven-

tional models of regime dependence. The emerging and developing currency

market has dissimilar volatility structures, which may be another issue discussed

in the future.

Appendix: Empirical Study Process

1. We find the first, second, and third quartiles from each volatility measures to

determine the volatility regimes.

2. We sort the carry trade returns by the volatility regimes.

3. We test the momentum effects for AR(1) model.
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4. We use the third quartile of the volatility measures to discriminate returns

between high and low volatility regimes.

5. Based on our trading strategy, we calculate the cumulative return and compare

the performance with the buy and hold strategy.

6. We use the cumulative returns to calculate the Sortino ratio for each strategy.

These processes can run in the R programming. If you need programming assis-

tance, please contact authors.
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Abstract

This chapter examines the Ederington hedging effectiveness (EHE) comparisons

between unconditional OLS hedge strategy and other conditional hedge strate-

gies. It is shown that OLS hedge strategy outperforms most of the optimal

conditional hedge strategies when EHE is used as the hedging effectiveness

criteria. Before concluding that OLS hedge is better than the others, however, we

need to understand under what circumstances the result is derived. We explain

why OLS is the best hedge strategy under EHE criteria in most cases and how

most conditional hedge strategies are judged as inferior to OLS hedge strategy

by an EHE comparison.

Keywords

Futures hedging • Portfolio management • Ederington hedging effectiveness •

Variance estimation • Unconditional variance • Conditional variance • OLS

hedging strategy • GARCH hedging strategy • Regime switching hedging

strategy • Utility-based hedging strategy

70.1 Introduction

Futures market provides a useful tool for hedgers to reduce the overall risk. The

extent of the usefulness is, however, determined by the hedging strategy adopted by

the hedger. In this regard, the hedging effectiveness measure proposed by

Ederington (1979) has been the most popular criterion to evaluate the usefulness.

Different hedging strategies are compared in terms of Ederington hedging effec-

tiveness (EHE). The strategy possessed with the greatest EHE is deemed the best

strategy.

Specifically, EHE is the percentage reduction in the return variance of the

hedged portfolio relative to the return variance of the unhedged portfolio. While

the variance could be conditional or unconditional, in empirical studies EHE is

always calculated on the basis of unconditional variance. This is natural as

Ederington (1979) considers only unconditional constant hedge strategies. Further

development in futures hedging literature focuses on conditional dynamic hedge

strategies. However, EHE remains the major criterion to evaluate the usefulness of

these strategies. This approach is inappropriate since the conditional hedge strategy

is constructed to minimize conditional variance, but its usefulness is measured by

unconditional variance. As long as there is not a linear relationship between

conditional and unconditional variances, the EHE should not serve as

a benchmark to evaluate the conditional hedge strategy.

This paper examines the EHE comparisons between the OLS hedge strategy

(i.e., the unconditional strategy) with various conditional hedge strategies, assum-

ing spot and futures returns are described by different statistical framework. It is

shown that, for most statistical models, the OLS hedge strategy is most likely to

outperform the optimal conditional hedge strategy. For example, in a vector error
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correction model (VECM), the optimal conditional hedge ratio should take into

account the cointegration relationship. The resulting EHE from this optimal ECM

hedge ratio, however, underperforms the OLS hedge ratio (where the cointegration

relationship is ignored). Similarly, when spot and futures returns follow

a multivariate generalized autoregressive conditional heteroskedasticity

(MGARCH) model, the GARCH hedge ratio is likely to be inferior to the OLS

hedge ratio in terms of EHE.

The above results are not surprising as OLS hedge ratio is chosen to minimize

the unconditional variance, whereas ECM and GARCH hedge ratios minimize their

corresponding conditional variances. By definition, EHE is biased in favor of OLS

hedge ratio over other hedge ratios. The only possible exception is the regime

switching (RS) hedge ratio. It is analytically shown that RS-OLS hedge ratio would

outperform the conventional OLS hedge ratio under certain assumptions.

Besides EHE, another popular hedging effectiveness measure is certainty equiv-

alent derived from expected utility comparisons from hedged and unhedged port-

folios. It is shown that the sample certainty equivalent estimator, similar to the

sample EHE estimator, is biased. On the other hand, this utility-based effectiveness

measure does not necessarily favor the OLS hedge ratio except when the futures

price is a martingale or when the hedger is extremely risk averse.

The remaining of the paper is organized as follows. In Sect. 70.2, we discuss the

Ederington hedging effectiveness measure and demonstrate the superiority of the

OLS hedge ratio. The next sections consider two specific dynamic hedging strate-

gies; Sect. 70.3 examines the GARCH specifications and Sect. 70.4 the regime

switching models. The two models provide contradicting conclusions regarding the

relative performance to the OLS hedge ratio. In Sect. 70.5, we analyze the utility-

based hedging effectiveness. Finally, conclusions are provided in Sect. 70.6.

70.2 Ederington Hedging Effectiveness

The fundamental idea of Ederington (1979) originates from Johnson (1960) and

Stein (1961) who introduce portfolio theory into the area of hedging. Most of the

previous hedging theories consider only the “naive” hedging, which is done by

trading the hedging instrument in the same amount as the asset being hedged.

Ederington shows that the hedge ratio, which is the ratio of the amount of the

hedging instrument being used relative to the amount of the asset being hedged,

must be adjusted to obtain the maximum hedging effectiveness. To derive this

result, Ederington proves that there exists an optimal hedge ratio which minimizes

the variance of the portfolio value.

70.2.1 Definition

Ederington shows that if we construct a hedged portfolio P which consists of the

asset being hedged, S, and a hedging instrument, F, the optimal hedge ratio is the
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value where the partial derivative of the portfolio return variance with respect to the

hedge ratio becomes zero. This partial derivative is given by

∂Var pð Þ
∂h

¼ X2
s 2hVar fð Þ � 2Cov s; fð Þ½ �, (70.1)

where Xs and Xf are the positions of the asset and the hedging instrument,

respectively; h ¼ � Xf/Xs is the hedge ratio; s and f are the returns of S and F,
respectively; p is the return of the portfolio: p ¼ Xss + Xf f ¼ Xs(s � hf). Var(.) and
Cov(.,.) are the variance and covariance operators, respectively. Given this

formula, the optimal hedge ratio h* can be easily derived by setting Eq. 70.1

equal to zero, i.e.,

h� ¼ Cov s; fð Þ=Var fð Þ: (70.2)

As shown in Eqs. 70.1 and 70.2, Ederington regards hedging as an act of

“minimizing variance.” When devising his measure of hedging effectiveness, he

also takes this property as the main criteria. Specifically, the Ederington hedging

effectiveness (EHE hereafter) is defined as

H ¼ 1� Var pð Þ
Var sð Þ : (70.3)

Equation 70.3 shows that EHE is directly related to the percentage reduction of

the variance in the asset return after hedging.

70.2.2 Some Properties

The most evident characteristic of EHE is its simplicity. The variance and covari-

ance in Eq. 70.3 are both unconditional and are assumed to be constant over time.

While this aspect of EHE is one of the reasons why it is being widely used, it also

has caused some controversies about its appropriateness. It was argued that, given

the information set, the hedger is concerned with the conditional variance of the

portfolio return. Accordingly, unconditional variance and covariance in Eq. 70.3

should be replaced by their conditional counterparts. Various variables were taken

into account to derive conditional variance and covariance, including past prices

and inventories. In addition, recent research emphasizes the nonconstancy nature of

conditional variance and covariance and recommends time-varying hedge ratios.

In empirical implementation, the complete sample is divided into two subsam-

ples. The first subsample is applied to construct the most appropriate (within-

sample) statistical models for conditional variance and covariance. Based upon

the estimated model, optimal hedge ratios are obtained for the second subsample.

Returns for the hedged portfolio are calculated for this subsample. The uncondi-

tional variance of the return series is adopted to calculate the so-called post-sample
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EHE which serves as a benchmark to compare various hedge strategies. Thus, the

within-sample model is chosen to minimize conditional variance, whereas the post-

sample hedging effectiveness is evaluated at unconditional variance. The inconsis-

tency in criteria raises a concern for the appropriateness of EHE to be used as the

criteria to compare conditional hedge strategies. Moreover, one would suspect

the hedge strategy constructed by minimizing the within-sample unconditional

variance may have the best out-of-sample EHE.

To address this question, Lien (2005a) introduces several assumptions:

1. The size of the estimation sample is sufficiently large.

2. The size of the evaluation sample is sufficiently large.

3. There is no structural change between the estimation sample and the evaluation

sample.

Under these conditions, it is shown that the ratio of unconditional covariance to

the conditional variance provides the best EHE. This ratio can be obtained by the

ordinary least squares (OLS) method when regressing the spot price change on the

futures price change.

The first two assumptions ensure sample unconditional variance and sample

unconditional covariance both to be close enough to their population counterparts.

The third assumption requires the estimation and evaluation samples to be drawn

from the same population such that the hedge ratio derived from the former is

applicable to the latter. When there is a structural change across the two samples,

nothing can be guaranteed. However, Lien (2005a, b) warns that it is a tautology to

prove the superiority of OLS hedge ratio to other hedge ratios with EHE. Since the

OLS hedge ratio is the hedge ratio which produces the minimal unconditional

variance, it cannot be inferior to any other hedge ratios when compared in terms of

EHE, which measures the unconditional variance reduction. Alternatively, one can

argue that it is not appropriate to compare conditional hedge strategies on the basis

of EHE.

Lien (2005b) illustrates the superiority of the OLS hedge ratio with a simple

example:

f t ¼ a0 þ a1f t�1 þ ut, (70.4)

st ¼ b0 þ b1st�1 þ vt, (70.5)

where both {ut} and {vt} are white noises. Let su
2 and sv

2 denote the variances of ut
and vt, respectively, and let suv denote the covariance between ut and vt. In addition,
to ensure stationarity, we require |a1| < 1 and |b1| < 1. The unconditional hedge

ratio (i.e., OLS hedge ratio) is

hu ¼ 1� a21
1� a1b1

� �
suv
s2u

� �
, (70.6)

whereas the conditional hedge ratio is simply hc ¼ suv/su
2. By construction, hu

performs better than hc in terms of EHE.
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Upon incorporating the cointegration relationship between spot and futures

prices into Eqs. 70.4 and 70.5, Lien (2005a) demonstrates the superiority of the

OLS hedge ratio over the error correction hedge ratio. For the importance of the

error correction term for futures hedging and further comparisons between the two

hedge ratios, see Lien (1996, 2004).

70.2.3 Estimation Bias

In Lien (2006), it is shown that the usual EHE estimator is downward biased and,

therefore, tends to underestimate the true hedging performance, even when the

estimator for optimal hedge ratio is unbiased. This is because the estimated

optimal hedge ratio itself is a random variable so that its variance affects the

expected EHE. Lien explains this by decomposing the EHE formula (70.3) as

follows.

Let M ¼ Ik � (ekek
0
/k) where Ik is a (k � k)-dimensional identity matrix and ek is

a k-dimensional vector such that all elements are equal to 1. Then Eq. 70.3 can be

decomposed to

H ¼ 1� w
0
Mw

p0Mp
, (70.7)

where p and w are k-dimensional vectors consisting of k unhedged asset returns and
hedged portfolio returns, respectively. Because the estimated hedge ratio ĥ sub-

stitutes the optimal hedge ratio h*, the EHE one calculates based on ĥ is also in fact
an estimated EHE, Ĥ. That is,

Ĥ ¼ 1� ŵ
0
Mŵ

p0Mp
, (70.8)

where ŵ is a k-dimensional vector consisting of the portfolio returns which are

hedged with ĥ. Since ŵ ¼ wþ h� � ĥ
� �

f , Eq. 70.7 can be rewritten as

1� Ĥ ¼ w
0
Mw

p0Mp
þ 2 h� � ĥ
� � f

0
Mw

p0Mp

" #
þ h� � ĥ
� �2 f

0
Mf

p0Mp

" #
, (70.9)

and therefore,

Ĥ ¼ H � 2 h� � ĥ
� � f

0
Mw

p0Mp

" #
� h� � ĥ
� �2 f

0
Mf

p0Mp

" #
: (70.10)
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As a consequence,

E Ĥ
� � ¼ H þ 2b

f
0
Mw

p0Mp

" #
� b2 þ Var ĥ

� �� � f
0
Mf

p0Mp

" #
, (70.11)

where b ¼ E ĥ � h�
� �

and b2 þ Var ĥ
� �

are the estimation bias and mean squared

error of ĥ, respectively. If ĥ is an unbiased estimator of h*, b becomes zero and

Eq. 70.11 is reduced to

E Ĥ
� � ¼ H � Var ĥ

� � f
0
Mf

p0Mp

" #
: (70.12)

This shows that Ĥ is a downward biased estimator of H, even when ĥ is an

unbiased estimator of h*.
We provide two further remarks. First, Chen and Sutcliffe (2007) examine the

benefits of a composite hedge where multiple hedging instruments are adopted over

a simple hedge where only one hedging instrument is adopted. The benefit is

measured by the improvement in EHE. Lien (2008) demonstrates the empirical

estimator is biased. Secondly, through empirical studies, Lien and Shreshta

(2008) concludes that the downward bias of the EHE estimator is negligible and

therefore bias correction seems to be redundant.

70.3 GARCH Hedging Strategy

The previous analysis assumes the conditional second moments of spot and futures

returns are constant over time. This assumption is frequently rejected through

empirical data analysis. To describe time-varying second moments, researchers

rely upon different versions of multivariate GARCH (generalized autoregressive

conditional heteroskedasticity) models. The standard univariate GARCH model is

an extension of the ARCH (autoregressive conditional heteroskedasticity) model

proposed by Engle (1982).

70.3.1 GARCH Specification

Specifically, consider a time series {yt} such that

yt ¼ b
0
xt þ et, (70.13)

where xt is the vector of exogenous variables contained in the information set

previous to time t � 1, #t �1. The error term is normally distributed conditional
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on the information set, i.e., etj#t � 1 � N(0, st
2). Bollerslev (1986) proposed the

following process for the conditional variance:

s2t ¼ oþ
Xq

i¼1

aie2t�i þ
Xp

j¼1

bjs
2
t�j: (70.14)

The model is termed as GARCH (p, q) process. If we set p ¼ 0 and q 6¼ 0, the

process is reduced to an ARCH(q) process. When p¼ q¼ 0, it is further reduced to

a process with a constant variance.

For futures hedging purpose, we need to consider multivariate GARCH models

which specify the process for the conditional covariance as well. Various specifi-

cations are available in the literature, e.g., constant correlation, BEKK, and DCC

(dynamic conditional correlation) models. Different dynamic hedge ratios are then

generated and compared on the basis of EHE; for example, see Baillie and Myers

(1991), Myers (1991), Kroner and Sultan (1993), Dawson et al. (2000), and

Kavussanos and Visvikis (2008).

70.3.2 GARCH Hedging Strategy

Under GARCH models, the optimal hedge ratio is determined by the ratio of the

conditional covariance to the conditional variance,

hct�1 ¼
Covt�1 st; f tð Þ
Vart�1 f tð Þ , (70.15)

where Covt�1(st,ft) is the conditional covariance between spot and futures returns at
time t based upon information available at time t�1 and Vart�1(ft) is the conditional
variance of the futures return at time t based upon information available at

time t�1. As both conditional moments are time varying, the conditional hedge

ratio is expected to change over time as well.

That is, although OLS and GARCH hedge ratios have the same object of

variance minimization, they differ in terms of the target variance. While OLS

hedge ratio considers the unconditional variance, GARCH hedge ratio focuses on

conditional variance under the GARCH assumptions. This difference suggests

a concern about the appropriate procedure of assessing and comparing their

effectiveness. Since their objectives are different, the relative superiority of one

hedge ratio over the other can vary when one applies a different effectiveness

measure. In particular, since EHE depends upon the reduction in the uncondi-

tional variance, OLS hedge ratio is naturally favored. Lien (2009) explains this

result as follows.
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70.3.3 EHE and GARCH Hedging Strategy

Let us assume that there are two portfolios P0 and P1, both consisting of an asset

S and a hedging instrument F. The first portfolio is constructed from the OLS hedge

ratio, h0 ¼ Cov(st,ft)/Var(ft), whereas the second portfolio is constructed from the

GARCH hedge ratio, ht�1
c ¼ Covt�1(st,ft)/Vart�1(ft). We can decompose the uncon-

ditional variance of the return from portfolio P1 as

Var P1ð Þ ¼ Var st � hct�1ft
� � ¼ E Vart�1 st � hct�1ft

� �� �þ Var Et�1 st � hct�1ft
� �� �

,

(70.16)

where E(.) is the unconditional expectation operator and Et�1(.) is the conditional

expectation operator based upon information available at time t�1. We can rewrite

the first term of Eq. 70.16 as follows:

E Vart�1 stð Þ � Cov2t�1 st; ftð Þ
Vart�1 f tð Þ

� 	
¼ Var stð Þ � E

Cov2t�1 st; ftð Þ
Vart�1 ftð Þ

� 	
, (70.17)

using the definition of ht�1
c . Suppose that the sample size is sufficiently large, we

can approximate the second term of Eq. 70.17 by

E
Cov2t�1 st; f tð Þ
Vart�1 f tð Þ

� 	
� E Cov2t�1 st; f tð Þ� �

E Vart�1 f tð Þ½ � ¼ Covs st; f tð Þ
Var f tð Þ : (70.18)

Consequently,

Var P1ð Þ � Var stð Þ � Cov2 st; f tð Þ
Var f tð Þ þ Var Et�1 st � ht�1f tð Þ½ �: (70.19)

On the other hand, by the definition of h0, the unconditional variance of the

return from portfolio P0 is

Var P0ð Þ ¼ Var st � h0f tð Þ ¼ Var stð Þ � Cov2 st; f tð Þ
Var f tð Þ : (70.20)

Therefore,

Var P1ð Þ � Var P0ð Þ þ Var Et�1 st � ht�1f tð Þ½ �, (70.21)

implying Var(P1) tends to be larger than Var(P0). That is, the OLS hedge ratio is

likely to have a greater hedging effectiveness than the GARCH hedge ratio, in terms

of EHE.
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Note that the derivation of Eqs. 70.16, 70.17, 70.18, 70.19, 70.20, and 70.21 does

not rely on any specific properties of the GARCH model. The above conclusion,

therefore, applies to any general dynamic hedge strategy that aims at minimizing the

conditional variance; see also Lien (2010). In other words, when adopting EHE as the

effectiveness measure, the OLS hedge ratio is likely to outperform any dynamic

hedge ratio. However, we should be careful when interpreting this result. As Lien

(2005a) points out, EHE is focused on the unconditional variance and it would be an

abuse to use EHE to assess a conditional variance minimization strategy.

Kavussanos and Nomikos (2000) suggest that for the GARCH hedge strategy to

outperform the OLS hedge strategy, the variability of the resulting GARCH ratio

must be sufficiently large. On the other hand, Park and Jei (2010) find an inverse

relationship between the variability of the GARCH hedge ratio and corresponding

hedging effectiveness (i.e., EHE).

70.4 Regime Switching Hedging Strategy

Lien (2010) provides a theoretical analysis on the relationship between the vari-

ability of the hedge ratio and hedging performance in support of the finding from

Park and Jei (2010). Extending the result to general dynamic hedge strategy, there is

a small window for the strategy to outperform the OLS strategy, that is, when the

variability of the hedge ratio cannot be too small or too large. We therefore turn to

regime switching hedge strategies.

70.4.1 Definition of Regime Switching

Both GARCH and regime switching models belong to the family of nonlinear time

series. Hamilton (1988, 1989) characterizes the concept of “regime switching”

(RS hereafter) and proposes an approach to model the RS process. The simplest

RS model specification of RS is the first-order Markov process with two states.

If St ∊ {0, 1} denotes the (not directly observable) state of the system in which the

source of the time-series data exists, the transition between two states is driven by

the following first-order Markov process:

Pr St¼ 1 St�1 ¼ 1j� � ¼ p,
Pr St¼ 0, St�1 ¼ 1j� � ¼ 1� p,
Pr St¼ 0 St�1 ¼ 0j� � ¼ q,
Pr St¼ 1, St�1 ¼ 0j� � ¼ 1� q:

(70.22)

Thus, the probability of state transition depends only upon the state of the

previous period.

In each state, the spot and futures returns can be described by linear models

such as ECM or nonlinear models such as GARCH processes. For the former case,
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there will be two constant hedge ratios each pertaining to one state; for the latter

case, there will be two dynamic hedge ratios instead. The literature on RS hedge

strategies began with the former case and recently extended to the latter case. For

example, Sarno and Valente (2000) and Alizadeh et al. (2008) combine RS with

ECM; Alizadeh and Nomikos (2004) and Lee and Yoder (2007a, b) add RS into

the GARCH models; Lee (2010) combines RS with dynamic conditional correla-

tion (DCC) models. In most cases, it is shown that the hedging performance is

improved when regime switching is incorporated into the econometric

framework.

70.4.2 RS Hedging Strategy

Although RS can be introduced in various ways, it is most understandable when we

combine RS with the OLS hedging strategy. Lien (2012b) explains the basic

framework of the RS-OLS strategy as follows. Suppose that RS process is given

as Eq. 70.22. Assume futures returns in the two states equal to each other. When

St�1 ¼ 1, the OLS hedge ratio in Eq. 70.2 is modified to

h�1 ¼
pCov1 st; f tð Þ þ 1� pð ÞCov0 st; f tð Þ

pVar1 f tð Þ þ 1� pð ÞVar0 f tð Þ , (70.23)

where Varn(.) and Covn(.,.) denote the variance and covariance operators in state n,
respectively, n¼ 0, 1. Similarly, when St�1¼ 0, the corresponding OLS hedge ratio is

h�0 ¼
qCov0 st; f tð Þ þ 1� qð ÞCov1 st; f tð Þ

qVar0 f tð Þ þ 1� qð ÞVar1 f tð Þ : (70.24)

The pair of hedge ratios (h0
*, h1

*) constitutes the optimal RS-OLS hedge ratio. To

apply this hedge strategy, it requires the hedger to be able to identify the state at the

moment of making the hedging decision.

Lien (2012b) compares the RS-OLS hedge strategy to the conventional OLS

hedge strategy. To calculate the conventional OLS hedge ratio under the RS

framework, we first derive the steady-state probability for each state. Let a and

1 � a denote the steady-state probability of state 1 and 0, respectively. Thus,

1� að Þpþ a 1� qð Þ ¼ a, (70.25)

or equivalently

a ¼ 1� q

2� p� q
: (70.26)
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Given the steady-state probability of each state, we can obtain the conventional

OLS hedge ratio as follows:

h� ¼ aCov1 st; f tð Þ þ 1� að ÞCov0 st; f tð Þ
aVar1 f tð Þ þ 1� að ÞVar0 f tð Þ : (70.27)

Let hRS
* ¼ ah1

* + (1 � a)h0
*, the expected RS-OLS hedge ratio. Lien (2012b)

shows the expected RS-OLS hedge ratio exceeds the conventional OLS hedge ratio:

h�RS � h�: (70.28)

Thus, more transaction cost is incurred when implementing the RS-OLS hedge

strategy.

70.4.3 Hedging Effectiveness

To compare the hedging effectiveness, let V(h) denote the variance of the return

from the hedged portfolio, where h ¼ h0
*, h1

*, or h*. The expected variance of the

RS-OLS hedged portfolio is then VRS ¼ aV(h1
*) + (1 � a)V(h0

*). Lien (2012b)

demonstrates that

VRS 	 V h�ð Þ, (70.29)

that is, the RS-OLS hedged portfolio has a smaller variance than the conventional

OLS hedged portfolio. Consequently, the RS-OLS strategy outperforms the OLS

strategy in terms of EHE.

While the RS-OLS seems to be very promising, a serious problem with this result

is that, as Lien (2012a) points out, the superiority of the RS-OLS strategy is based on

the assumption that a hedger can always correctly identify the prevailing state at the

decision time correctly. To successfully conduct the above hedging strategy, we must

succeed in at least three tasks to complete the correct identification:

1. We must identify the entire set of possible states.

2. We must identify the prevailing state.

3. We must identify the relationship between spot and futures returns in each state.

In reality, it is unlikely to complete any of these taskswithout errors.Hamilton (1989)

is well aware of these issues and emphasizes the importance of “optimal probabilistic

inference” to find the turning points. One may try to go around this problem by

a weighted average strategy such that the optimal hedge ratio is chosen to be

ĥ
� ¼ bh�1 þ 1� bð Þh�0, (70.30)

where b is the estimated probability that the prevailing state is state 1. However,

as Lien (2012b) points out, this again dilutes the relative superiority of RS-OLS
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strategy, since at least one of the states is false at any time t. We can conclude that,

therefore, one must succeed in the structural definition of possible states and

correct identification of the current state to fully take advantage of the RS

framework.

70.5 Utility-Based Hedging Effectiveness

Up to now, we assume that the sole objective of hedging is variance reduction,

and correspondingly the optimal hedge ratio is the one that minimizes variance.

This is quite intuitive because risk minimization is the most important reason

that hedging is actually being done. In the real world, however, the variance-

minimizing hedge ratio is not always the optimal one. To understand why this is

true, we must know that there are some other factors than variance minimization

about which a hedger should consider. For example, if a hedger assumes that

a price process is sub-martingale and wants to take advantage of positive

expected return, he or she will try to afford some risk by a non-perfect hedging.

In this situation, variance reduction cannot be the perfect measure for hedging

effectiveness.

70.5.1 Definition of Utility-Based Hedging

Given these restrictions, we can adopt a multivariable function as the alternative

and consider additional factors other than variance to measure the hedging effec-

tiveness. In particular, we can consider how large the expected return will be after

hedging cost is offset, how much risk a hedger can afford to retain a certain amount

of expected return, as well as how large the variance will be. Many previous studies,

e.g., Kroner and Sultan (1993), Gagnon et al. (1998), Follmer and Leukert (1999,

2000), and Monoyios (2004), introduce the idea of utility function to construct

a framework for this multivariate relationship.

A basic framework of utility-based hedging effectiveness measure is provided in

Lien (2012a). Consider a two-date one-period model. The expected utility of an

unhedged portfolio can be defined as

E U w1, u
� �� � ¼ E U w0 þ s1 � s0ð Þ½ �, (70.31)

where w0 is the initial wealth (i.e., the wealth at time 0), s1 is the random value of

the spot asset at time 1, s0 is the value of spot asset at time 0, and w1, u is the random

value of wealth at time 1 when there is no hedging conducted. If we adopt a hedging

strategy, the expected utility of the hedged portfolio is

E U w1, h
� �� � ¼ E U w0 þ s1 � s0 � h f 1 � f 0ð Þð Þ½ �, (70.32)
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where f1 is the random value of the hedging instrument at time 1, f0 is the value of
the hedging instrument at time 0, and w1, h is the random value of wealth at

time 1 when hedging is conducted. Hedging performance is measured by the

certainty equivalent C:

E U w1, u þ C
� �� � ¼ E U w1, h

� �� �
: (70.33)

70.5.2 Utility Function and Risk Aversion

One of the simplest types of utility function, which can be used as a hedging

effectiveness measure, is the expected mean-variance utility function. It is also

quite popular since it can consider all the factors above within a simple framework;

see, for example, Kroner and Sultan (1993), Gagnon et al. (1998), and Lafuente and

Novales (2003). Suppose that a hedger is endowed with a strictly increasing

and twice-differentiable concave utility function U(x), such that U0(x) > 0 and

U00(x) < 0. Then the expected utility of the hedged portfolio P at time t�1 can be

defined as

Et�1 U Pð Þ½ � ¼ Et�1 ptð Þ � lVart�1 ptð Þ, (70.34)

where p is the return of the portfolio P and l is a positive risk-aversion parameter.

The existence of the risk aversion parameter is suggested by Merton (1973).

Chou (1988) explains that there exists a linear relationship between the equity

premium p and return variance in the inter-temporal CAPM model of Merton

(1973), such that

pt ¼ lmVar Mtð Þ, (70.35)

where Mt is the instantaneous market return and lm is the harmonic mean of

individual investor’s risk-aversion parameter. Various studies, e.g., Grossman

and Shiller (1981) and Pindyck (1986), show that the idea of premium can

explain much of the stock price changes beyond changes in dividends and

interest rates. Also, their estimation results show that l ranges approximately

from 3 to 4.5.

One thing we should note is that the estimation of l relies on the variance

estimation method. Poterba and Summers (1986) employ a two-stage OLS

procedure to estimate the variance and conclude that shocks to the volatility

decay rapidly so that it is skeptical to claim that fluctuations in risk premia

account for much of the variation in prices. On the other hand, Chou (1988)

introduces GARCH-M model and argues that the persistence of volatility shocks

is significant such that fluctuations in risk premia can explain much of the price

changes. Given that the other aspects of both researches are quite similar,

this observation implies that different variance estimation method will lead to

different estimates for l.
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70.5.3 Utility-Based Hedging Effectiveness

Similar to the EHE case, Lien (2012a) shows that the sample utility-based hedging

effectiveness estimator is downward biased and therefore tends to underestimate

the true hedging performance, even when the sample estimator for the optimal

hedge ratio is unbiased. To explain in detail why this happens, Lien first assumes

that a hedger is endowed with a mean-variance expected utility function, i.e.,

Eq. 70.34. Given Eqs. 70.33 and 70.34, we obtain

E U w1, u þ C
� �� � ¼ w0 þ Cþ E Dsð Þ � lVar Dsð Þ, (70.36)

E U w1, h
� �� � ¼ w0 þ E Ds� hDfð Þ � lVar Ds� hDfð Þ, (70.37)

where Ds ¼ s1 � s0 and Df ¼ f1 � f0. From the above two equations, we derive

C ¼ �hE Dfð Þ þ l Var Dsð Þ � Var Ds� hDfð Þ½ �: (70.38)

The sample estimator of C is then

Ĉ ¼ �ĥE Dfð Þ þ l Var Dsð Þ � Var Ds� ĥDf
� �� �

: (70.39)

From Eqs. 70.38 and 70.39, we obtain

Ĉ ¼ C� h� ĥ
� �

E Dfð Þ::þ l Var Ds� hDfð Þ � Var Ds� ĥDf
� �� �

: (70.40)

After algebraic manipulations, Eq. 70.40 becomes

Ĉ ¼ C� h� ĥ
� �

E Dfð Þ þ 2l ĥ � h
� �

Cov Ds,Dfð Þ � l ĥ
2 � h2


 �
Var Dfð Þ:

(70.41)

Suppose that ĥ is an unbiased estimator of h, i.e., E ĥ
� � ¼ h, then

E Ĉ
� � ¼ C� lE ĥ

2 � h2

 �

Var Dfð Þ ¼ C� lVar ĥ
� �

Var Dfð Þ < C: (70.42)

That is, the expected value of Ĉ is downward biased. Lien (2012a) shows that the

downward bias result can be extended to the case when a hedger is endowed with

another type of strictly increasing concave utility function.

Because the certainty equivalent is not a strictly monotonically decreasing

function of the portfolio variance (except when E (Df) ¼ 0 or when l is infinitely

large), the solution to variance minimization is not the same as the solution to

certainty equivalent maximization. Therefore, OLS hedge ratio is not necessarily

favored by the utility-based performance measure.
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70.6 Conclusions

This paper analyzes the properties of Ederington hedging effectiveness (EHE) in

general and within different statistical framework. The most popular EHE is

measured by the percentage reduction in the unconditional return variance of the

hedged portfolio relative to the unconditional return variance of the unhedged

portfolio. Because of this emphasis on “unconditional” statistics, the OLS hedge

strategy (which does not take into account any other information except current spot

and futures returns) is most likely to outperform the optimal conditional hedge

strategy.

This superiority of the OLS hedge ratio is challenged by the concern of the

appropriateness to evaluate conditional hedging strategies by EHE. Nonetheless,

the regime switching (RS) hedge ratio seems to be an exception. Under specific

assumptions, the RS-OLS hedge ratio will outperform the conventional OLS hedge

ratio.

Utility-based hedging effectiveness is another popular measure examined in the

literature. The sample estimator of this effectiveness is, similar to the sample EHE

estimator, biased. On the other hand, the measure does not necessarily favor the

OLS hedge ratio except when the futures price is a martingale or when the hedger is

extremely risk averse.

Recently there have been several alternative effectiveness measures related to

tail risk such as lower partial moment, value at risk, and conditional value at risk.

Similar problems prevail. That is, a hedge strategy may be chosen to minimize the

conditional value at risk. However, when in the evaluation stage, it is the uncon-

ditional value at risk that counts. We do not address these issues in the current

paper. It will be left for future research.
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Abstract

The pricing of delivery options, particularly timing options, in Treasury bond

futures is prohibitively expensive. Recursive use of the lattice model is unavoid-

able for valuing such options, as Boyle (1989) demonstrates. As a result, the main

purpose of this study is to derive upper bounds and lower bounds for Treasury

bond futures prices.

This study employs a maximum likelihood estimation technique presented by

Chen and Scott (1993) to estimate the parameters for two-factor Cox-Ingersoll-

Ross models of the term structure. Following the estimation, the factor values

are solved for by matching the short rate with the cheapest-to-deliver bond price.

Then, upper bounds and lower bounds for Treasury bond futures prices can be

calculated.

This study first shows that the popular preference-free, closed-form cost of

carry model is an upper bound for the Treasury bond futures price. Then, the

next step is to derive analytical lower bounds for the futures price under one- and

two-factor Cox-Ingersoll-Ross models of the term structure. The bound under

the two-factor Cox-Ingersoll-Ross model is then tested empirically using weekly

futures prices from January 1987 to December 2000.

Keywords

Treasury bond futures • Delivery options • Cox-Ingersoll-Ross models • Bounds •

Maximum likelihood estimation • Term structure • Cheapest-to-deliver bond •

Timing options • Quality options • Chicago board of trade

71.1 Introduction

Delivery options in Treasury bond futures are generally known as the quality option

and three timing options. The quality option gives the short the right to deliver any

eligible bond (no less than 15 years tomaturity or first call) and various timing options

give the short the flexibility to make the delivery decision at any time in the delivery

month. The end-of-month timing option refers to the deliveries occurring during the
last 7 business days in the deliverymonthwhen the futuresmarket is closed to trading.

During the remaining approximately 15 business days of the delivery month, the

wildcard timing option describes the period from 2:00 p.m. to 8:00 p.m. (Chicago

time) every day when the futures market is closed but the bond market is open, while

the accrued interest timing option refers to the period from 7:20 a.m. to 2:00

p.m. when both the futures and its underlying bond markets are open.

Delivery options in T bond futures are difficult to price. Recursive use of the lattice

model is unavoidable for valuing such options, as Boyle (1989) demonstrates, the

futures price is effectively a forward price. Furthermore, as demonstrated later,

the wildcard timing option is actually a compound forward price – one on top of the

other – which cannot be accurately calculated without a multi-recursive system.

Consequently, accurate valuation of these delivery options is very costly. This study
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thus derives fast bounds for the T bond futures price. These bounds can be quickly

computed and can provide a crude conservative estimate for the T bond futures price.

Early discussion of the valuation of the quality option appears in Cox

et al. (1981), who state that their valuations can be applied to futures with the

quality option when the single spot bond price is replaced with the minimum price

from the deliverable set. Hemler (1990) uses the exchange option formula of

Margrabe’s (1978) to price the quality option, but the pricing formula becomes

intractable as the number of deliverable bonds increases. Carr (1988) was the first to

use factor models to price the quality option, and Carr and Chen (1996) extend the

Carr model to include a second factor. Ritchken and Sankarasubramanian (1992)

use the Heath et al. (1992) framework to identify the quality option value. Finally,

Livingston (1987) analyzes the quality option on the forward contract.

Timing options generally have no closed-form solutions and therefore are

studied with lattice methods. Kane and Marcus (1986) lay out a general framework

for analyzing the wildcard option. In their analysis, discounting is not considered in

the wildcard period. Broadie and Sundaresan (1987) develop a lattice model to

value the end-of-month option. They focus strictly on the futures price during the

end-of-month period. Boyle (1989) uses a two-period model to demonstrate that the

timing option could have a significant impact. His analysis assumes constant

interest rates and does not apply directly to T bond futures.

Empiricists generally agree that the quality option has a nontrivial value.1

However, unlike the evidence for the quality option, the evidence for the timing

option is not so clear. This is because most studies do not distinguish between the

quality option value and the value from the other timing options, let alone distin-

guish values among various timing options.2

Treasury bond futures contracts are one of the most liquid and widely traded

interest rate derivative contracts worldwide and consequently have tight bid-ask

spread and high volume. Practitioners thus typically use the market to calibrate the

models they use to price other less liquid contracts. Hence, a pricing model that

accurately prices both the quality and timing options is necessary to perform this

task. However, as demonstrated later, such a model is too expensive since it

involves a recursive search for the futures price at the beginning of the delivery

month. To have a rough feel for the cost of computation of directly modeling the

quality and timing options, this study uses a similar two-factor Cox-Ingersoll-Ross

model to the one we use in this paper to compute six futures contract prices. Using

a Dell Dimension 2400 with an Intel Celeron processor 2.4 GHz CPU, an average of

9,719.52 seconds (or 2.7 hours) per calculation is required under 102 steps. Clearly

such high computational costs are too expensive for real-world applications.

This study derives several results regarding the lower and upper bounds for the

futures price. First, this study derives the upper bounds in a model-free format and

1See, for example, Carr and Chen (1996), Kilcollin (1982), Benninga and Smirlock (1985), Kane

and Marcus (1986), and Hedge (1990).
2See, for example, Arak and Goodman (1987), Hedge (1988), and Gay and Manaster (1986).
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the lower bound in a semi-model-dependent format. This study proves that the

model-free upper bond is the cost of carry model, which is closed form. The lower

bond is in the format of an expectation. Since the bounds are almost model-free,

violating them implies arbitrage profits. Secondly, this study derives an analytical

lower bound for the Treasury bond futures price under the Cox-Ingersoll-Ross

model. The study then provides empirical results to show that these bounds are

reasonably tight – about 2–3 % above and below the futures price.3

The remainder of this paper is organized as follows. The next section studies the

quality option. We first study the quality option under continuous marking to

market or MTM (i.e., both futures and bond markets are open all the time). Next,

the futures price with the quality option is demonstrated effectively to be a forward

price when the futures market is closed but the bond market is open. Section 71.3

then provides the theoretical analysis and derives lower and upper bounds for the

futures price. Lower bounds are obtained for the futures price under both the quality

option and the timing options. We then show that the preference-free cost of carry

formula is an upper bound for the futures price. Section 71.4 derives analytical

formulas for the lower bound of the futures price (note that the cost of carry formula

is model-free) under one- and two-factor Cox-Ingersoll-Ross models. Section 71.5

presents an empirical study where a two-factor equilibrium term structure model is

estimated using the Chen and Scott (1993) technique. Finally, Section 71.6 gives

a conclusion.

71.2 The Quality Option and the Futures Price

The delivery option that has the highest economic value is the quality option, which

gives the short of the futures contract the right to choose the cheapest bond to

deliver on the delivery date. Other delivery options that are embedded in T bond

futures are known as the three timing options. The short can make a delivery at any

time during the delivery month. The short can make a delivery even when the

futures market is closed. At the end of the delivery month, for 7 business days,

the futures market is closed but the short can still make a delivery. This is

understood as the end-of-month timing option. For the remaining approximately

15 business days of the delivery month, the short can deliver either between 7:20

a.m. and 2:00 p.m. (Chicago time) when both the futures market and the underlying

bond market are open or after 2:00 p.m. when the futures market is closed.4

3These bounds are not to be violated, or arbitrage profits should take place. As it will become clear

(in Sect. 71.4), in the case of the upper bound that is model-free, a simple trading strategy can be

formed to arbitrage against the violation (under perfect markets). In the case of the semi-model-

dependent lower bound, arbitrage profits exist only if the assumed model is correct.
4T bond market is an over the counter market that has no official closing time, even though market

practice adopts 3:00 p.m. Eastern time as a symbolic closing time. The futures market allows the

short up to 8:00 p.m. Eastern time to make the delivery announcement, and hence theoretically

there is a 5-h window for the wild card.
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The former timing option is called the accrued interest timing option and the latter

timing option is also known as the daily wild card play. The following picture

graphically explains various timing options.

Both
markets
open

Futures
market
closed

7:20am 2pm 8pm

DELIVERY MONTH

Last 7 business days

. . . e.o.m.

w.c.a.i.
ui

v

ui+h

T
t

The last 7 business days of the month comprises the end-of-month period. This study

uses v to denote the starting time and T to represent the ending time of this period. For

the rest of the delivery month, there are two sections of each day, the accrued interest

period and the wildcard period. For a regular futures trading day i between 7:20

a.m. and 2 p.m. Chicago time, both the bond and futures markets are open simulta-

neously. The futures market closes at 2 p.m., but there is no official closing time for

the bond market (while conventionally 3 p.m. Eastern time is marked as a symbolic

closing time for the bond market). Since the short has till 8 p.m. to make the delivery

decision, the wildcard period is defined over 2 p.m. (ui) to 8 p.m. (ui + h).
The notation and symbols used in the paper are also summarized as follows:

F(t) ¼ “quoted” futures price with all delivery options

F*(t) ¼ futures price with the quality option and continuous marking to market

F**(t) ¼ futures price with the quality option at the absence of continuous MTM

F tð Þ ¼ upper bound

F tð Þ ¼ lower bound

Fi(t) ¼ futures price of the ith quoted bond price

Ci(t) ¼ forward price of the ith quoted bond price

ai(t) ¼ accrued interest of the ith bond

P(t, T) ¼ discount bond price at time t of $1 at time T
Qi(t) ¼ “quoted” coupon bond price of the ith bond

qi ¼ conversion factor of the ith bond

d(t, T) ¼ random discount factor between t and T
Note that under a specific model for the term structure (e.g., Vasicek or

Cox-Ingersoll-Ross), the futures price of a specific bond can be priced in an

analytical form (see Sect. 71.4). Before we start our analysis, we need Jamshidian’s

separation theorem (1987) and his definition of the forward measure.5

5Also see Hull (2009).
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Theorem 1 (Forward Measure) Let P(t, T) be the price of a pure discount bond
delivering $1 at some future date and it follows the dynamics as:

dP t; Tð Þ
P t; Tð Þ ¼ r tð Þdtþ b t; Tð ÞdWQ tð Þ

where r is the instantaneous risk-free rate, b is maturity dependent bond volatility,
and dWQ(t) is the standard Wiener process defined under the risk-neutral space.
Then the forward measure is defined as:

dP t; Tð Þ
P t; Tð Þ ¼ r tð Þ � b t; Tð Þ2

� �
dtþ b t; Tð ÞdWF Tð Þ tð Þ

where dWF(T)(t) ¼ dWQ(t) + b(t, T)dt. Under this forward measure, all expected
values taken will be forward prices, that is:

EQ
t d t; Tð ÞX Tð Þ½ � ¼ EQ

t d t; Tð Þ½ �EF Tð Þ
t X Tð Þ½ �

¼ P t; Tð ÞEF Tð Þ
t X Tð Þ½ �

where d(t,T) ¼ exp(�Ð tTr(u)du) and Et
F(T)[X(T)] computes the forward price of X.

A simple proof of this theorem is given in an appendix although the original

proof is available in Jamshidian (1987).

71.2.1 The Quality Option with Continuous Marking to Market

In the absence of all timing options, the quality option gives the short the right to

deliver the cheapest bond only at maturity, T, and the short receives the following

payoff:

max qiF Tð Þ � Qi Tð Þf g (71.1)

Note that the accrued interests of both bond and futures contracts are equal and

canceled. Since the delivery value of Eq. 71.1 has to be identically 0 for all states,

we can solve for the futures price at maturity as:

F Tð Þ ¼ min
Qi Tð Þ
qi

� �
(71.2)

and today’s futures price is merely a risk-neutral expectation of this payoff:
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F� tð Þ ¼ EQ
t min

Qi Tð Þ
qi

� �� �

¼ EQ
t Q1 Tð Þ½ �

q1
� EQ

t max
Q1 Tð Þ
q1

� Qi Tð Þ
qi

� �� �

¼ F1 tð Þ
q1

� EQ
t max

Q1 Tð Þ
q1

� Qi Tð Þ
qi

� �� �
(71.3)

Note F1(t) ¼ Et
Q[Q1(T)] is the futures price of the first bond with no option and

F*(t) is that of the cheapest bond at maturity. This result has previously been shown

by Carr (1988) and others. This equation says that the futures contract with

the quality option is equivalent to a futures contract without the quality option

(only bond 1 is eligible for delivery) with an exchange option held by the short.

With a specific term structure model, Eq. 71.3 becomes an analytical solution.6

71.2.2 The Quality Option with No Marking to Market When
the Futures Market Is Closed

Equation 71.3 is correct only if marking tomarket is applied continuously throughout

the life of the futures contract. Unfortunately, during the last 7 business days of the

deliverymonth, the futuresmarket is not open and the futures contract is notmarked to

market. The futures price used for settlement in this period is the last settlement price

at the beginning of the 7-day period. Since the futures price is already determined, the

actual payoff at the last delivery day,T, is not necessarily 0. The short thus can actually
gain or lose. To avoid arbitrage, the futures price at the beginning of the 7-day period

should be set so that the expected present value of payoffs at maturity is 0. Under this

circumstance, the futures price at the beginning of the 7-day period is a forward price,
not a futures price. Formally, labeling the futures price as F��(v) to represent the

futures price at the beginning of the end-of-month period, v, should be so set that

EQ
v d v; Tð Þmax F�� vð Þqi � Qi Tð Þf g½ � ¼ 0 (71.4)

where d is the stochastic discount factor assumed to be strictly less than 1. Using

Theorem 1, we can then rewrite Eq. 71.4 as:

EF Tð Þ
v max F�� vð Þqi � Qi Tð Þf g½ � ¼ 0 (71.5)

which can be expanded as follows:

6For example, the closed-form solution under the one-factor Cox-Ingersoll-Ross model can be

found in Carr (1988).
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0 ¼ EF Tð Þ
v max F�� vð Þqi � Qi Tð Þf g½ �

0 ¼ EF Tð Þ
v F�� vð Þq1 � Q1 Tð Þ þmax F�� vð Þ qi � q1ð Þ � Qi Tð Þ � Q1 Tð Þð Þ, 0f g½ �

0 ¼ F�� vð Þq1 �C1 vð Þ þ EF Tð Þ
v max Q1 Tð Þ � Qi Tð Þ � F�� vð Þ q1 � qið Þ, 0f g½ �

(71.6)
and the futures price at time v can be written as:

F�� vð Þ ¼ C1 vð Þ
q1

� 1

q1
EF Tð Þ
v max Q1 Tð Þ � Qi Tð Þ � K��

i , 0
� 	
 �

(71.7)

where Ki
�� ¼ (q1 � qi)F

��(v). Note thatC1(v)¼ Ev
F(T)[Q1(T)] is the forward price of

the first bond. The interpretation of this result is similar to that of Eq. 71.3,

except that the risk-neutral measure is replaced by the forward measure defined

in Theorem 1 and the futures price becomes the forward price. However, unlike

Eq. 71.3, the futures price at time v has no easy solution, because it appears on both
sides of the equation. This futures price has to be solved recursively using a numerical

method. In a lattice framework suggested by Boyle (1989), we first choose an initial

value for the futures price at time v, calculate payoffs at various states atmaturity T, and
then work backwards along the lattice. We adjust the futures price until the discounted

payoff computed from the lattice is 0. Once the futures price at time v is set, we can then
travel back along the lattice and use the risk-neutral probabilities till the end of the last

wildcard period, un + h. Then the similar procedure for the end-of-month period is

repeated for the last wildcard period to arrive at the futures price at the beginning of the

wildcard period un. Again, the risk-neutral expectation is taken at un�1 + h and

a recursive search is to compute the futures price at un�1. The process is repeated

until the delivery month is over. Since the futures price becomes a forward price which

cannot be obtained without a recursive search. The search for the “forward price” takes

place at every node at all the times (i.e., u1, u2, . . ., un, v). As a result, to compute the

futures price with the quality option is prohibitively expensive.

With the presence of the end-of-month timing option, the futures price computed

by Eq. 71.7 is an overestimate because the short has additional flexibility of choosing

the best timing. If the short is allowed to deliver at any time in this 7-day period, then

we need to compare the expected present value of future payoffs with the current

delivery value. Higher current delivery value will trigger early deliveries. This is very

similar to the American option pricing methodology where the intrinsic value is

compared with the expected present value of future payoffs.

71.3 The Timing Options and Futures Price Bounds

In the previous section, we see that under the end-of-month and a series of wildcard

periods, even the quality option alone is very complex to compute, let alone those

timing options. In this section, we derive upper and lower bounds for these options

in a general framework and analytical formulas are derived in the next section when

a specific term structure model is chosen.
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71.3.1 The Accrued Interest Timing Option

The accrued interest timing option refers to the flexibility for the short to deliver the

cheapest bond any time in the delivery month when both futures and spot markets

are open. This is every day from 7:20 a.m. to 2:00 p.m. (Chicago time) from the first

day of the delivery month to right before the end-of-month period. Since the futures

market is open, the futures contract is marked to market and deliveries can

take place any time. As a result, the futures price can never be greater than the

cheapest-to-deliver bond price. If the futures price were greater than the cheapest

bond price, then deliveries would take place instantly. The short will sell the

futures, buy the cheapest bond, make the delivery, and earn an arbitrage profit.

Formally, for t < v, if the futures price is greater than the delivery value,

F tð Þ > min
Qi tð Þ
qi

� �

iff

max F tð Þqi � Qi tð Þf g > 0
(71.8)

which represents arbitrage profit. Therefore, the futures price in the period

where both markets are open must be less than the cheapest-to-deliver bond price

to avoid arbitrage. On the other hand, if the futures price is lower, one can long

futures and short spot, but the delivery will not occur because the short position

of the futures contract will lose money if he makes a delivery. Consequently,

the delivery will be postponed and there is no arbitrage profit to be made. If the

futures price is always less than the cheapest-to-deliver bond price (adjusted by its

conversion factor), the delivery payoff now is negative as opposed to 0 at the end.

As a result, the short will never deliver until the last day. Consequently, the accrued

interest timing option has no value. We restate this result in the following

proposition:

Proposition 1 The accrued interest timing option without the wildcard and end-of-
month options has no value.7 □

The existence of the other timing options will lower the current futures price,

further reducing the incentive for the short to deliver early. We state this result in

the following Corollary:

Corollary 1-1 The accrued interest timing option with the wildcard and end-of-
month options has no value. □

While the accrued interest timing option is worthless, the timing options at the

end-of-month and the wildcard periods are not. When the futures market is closed,

there is no marking to market in the futures market and the futures contract becomes

a forward contract. Boyle (1989) demonstrates that in a case of forward contracts,

7The name “accrued interest” comes in because in the delivery month, the bond price increases due

to accrued interests. Here, Q is a traded price that included accrued interests.
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timing options will have value. We shall extend Boyle’s analysis to stochastic

interest rates so that we can evaluate T bond futures timing options.

71.3.2 The End-of-Month Timing Option

Without the end-of-month timing option, we know that the futures price should be

set according to Eq. 71.7. With the end-of-month timing option, deliveries can

occur any time in the end-of-month period as long as the current delivery payoff is

more than the present value of the expected payoff.

When both quality and timing options exist, the short makes a rational delivery

decision when the immediate delivery value is higher than the expected discounted

value should delivery take place later. This is like the early exercise of an American

option. There is no closed-form solution to compute American option prices.

Precisely as Boyle (1989) observes, the pricing of quality and timing options do

need a lattice model.

To avoid arbitrage, today’s futures price needs to be set so that the expected

discounted payoff is nil. As a result, if we can identify a function that is always

greater than both the delivery payoff and the discounted present value, this function is

guaranteed to have a positive present value at time v. This is in spirit similar to the

application in Chen and Yeh (2002). The trick is to identify a function that is always

greater than the delivery value and the continuation value (ft: Continuation value is

the value if it is not optimal to exercise (i.e., delivery). In the binomial model, the

continuation value is the value at the node that reflects all possible exercises.)

We guess the function of the following, for v < t < T:

EQ
t max

1

d t; Tð ÞF vð Þqi � Qi Tð Þ
� �� �

> EQ
t max F vð Þqi � d t; Tð ÞQi Tð Þf g½ �

> max F vð Þqi � Qi tð Þf g (71.9)

where d is the stochastic discount factor which is assumed to be strictly less

than 1. This value is greater than the present value of the delivery payoff at any

time t 2 [v, T]. Equation 71.9 states that the upper bound is always greater than the

exercise value of the futures contract. The last line is obtained as follows. Note that

the martingale result states that: Et
Q[d(t, T)(Qi(T) + ai(T))] ¼ Qi(t) + ai(t), in other

words, discounted market price of a bond should equal its current value, assuming

there is no coupon in between t and T.8 Since the accrued interest is linear but

discounting is not (i.e., P(t, T)ai(T) > ai(t)) it follows that Et
Q[d(t, T)Qi(T)] < Qi(t)

but the difference is small.

8If there is a coupon in between t and T, we simply subtract the coupon value from the expected

value.

1918 R.-R. Chen and S.-K. Yeh



Equation 71.9 shows that the proposed function is greater than the delivery value

at any time. We can also show that the function has a higher value at an earlier time

than at a later time. That is:

EQ
t max

1

d t; Tð ÞF vð Þqi � Qi Tð Þ
� �� �

> EQ
t max

1

d tþ Dt, Tð ÞF vð Þqi � Qi Tð Þ
� �� �

> EQ
t d t, tþ Dtð ÞEQ

tþDt max
1

d tþ Dt,Tð ÞF vð Þqi � Qi Tð Þ
� �� � �

(71.10)

It is seen that the proposed function is always greater than the delivery value and

the discounted continuation value. It must be the case that it is an upper bound for

the end-of-month period timing option value. Hence, at time v, the payoff should be
positive:

EQ
v max

1

d v; Tð ÞF vð Þqi � Qi Tð Þ
� �� �

> 0 (71.11)

which can be expanded as follows:

EQ
v

1

d v; Tð ÞF vð Þq1 � Q1 Tð Þ þmax
1

d v;Tð ÞF vð Þ qi � q1ð Þ � Qi Tð Þ � Q1 Tð Þð Þ
� �� �

> 0

EQ
v

1

d v; Tð Þ
� �

F vð Þq1 � F1 vð Þ þ EQ
v max Q1 Tð Þ � Qi Tð Þ � 1

d v; Tð ÞF vð Þ q1 � qið Þ
� �� �

> 0

(71.12)

This implies that the futures price should be bounded from below as follows:

F vð Þ > F1 vð ÞD v; Tð Þ
q1

� D v; Tð Þ
q1

EQ
v max Q1 Tð Þ � Qi Tð Þ � 1

d v; Tð ÞKi, 0

� �� �

>
F1 vð ÞD v; Tð Þ

q1
� D v;Tð Þ

q1
EQ
v max Q1 Tð Þ � Qi Tð Þ � Ki, 0f g½ �

(71.13)

where

Ki ¼ q1 � qið ÞF vð Þ and

D v; Tð Þ ¼ 1

EQ
v 1=d v; Tð Þ½ �

Note that the second inequality holds because d is strictly less than 1. Therefore,
the right hand side of the above equation is a lower bound. The lower bound

for any time t, F tð Þ , is the risk-neutral expectation of the above lower bound at

time v:

71 Analytical Bounds for Treasury Bond Futures Prices 1919



F tð Þ ¼ EQ
t

F1 vð ÞD v; Tð Þ
q1

� D v; Tð Þ
q1

EQ
v max Q1 Tð Þ � Qi Tð Þ � Ki, 0f g½ �

� �

¼ F1 tð ÞD v; Tð Þ
q1

� D v; Tð Þ
q1

EQ
t max Q1 Tð Þ � Qi Tð Þ � Ki, 0f g½ �

(71.14)

Note that Ki is a function of F(v) which cannot be solved without a recursive

search procedure. To arrive at an analytical lower bound, we replace this value

with a closed-form futures price F*(v). We state this result in a following

proposition:

Proposition 2 The futures price under only the end-of-month timing option is
bounded from below by the following risk-neutral expectation:

F1 tð ÞD v; Tð Þ
q1

� D v; Tð Þ
q1

EQ
t max Q1 Tð Þ � Qi Tð Þ � K�

i , 0
� 	
 �

(71.15)

where Ki
� ¼ (q1 � qi)F

�(v) and F�(v) is the futures price with only the quality
option defined in Eq. 71.3. □

It is interesting to note that the end-of-month option has a value even if the

quality option does not exist. When there is no quality option but the timing option

is allowed, the delivery may occur early. The short always compares the delivery

payoffF(v)q�Q(t) where v< t< Twith the expected present value of the delivery

payoff at maturity. We can show that:

EQ
t d t; Tð Þ F vð Þq� Q Tð Þð Þ½ � > P t; Tð ÞF vð Þq� Q tð Þ < F vð Þq� Q tð Þ (71.16)

Since the direction of the inequality can go either way, it is likely that early

deliveries can take place. This demonstrates that the timing option, even in the absence

of the quality option, does have value. The difference between the first two terms in

Eq. 71.16 is P(t, T)a(T)� a(t) where a is the accrued interest and the difference of the
last two terms is (1 � P(t,T))F(v). As a result, whether or not deliveries will occur
early depends upon which effect is larger. This result should not be confused with the

result from Boyle (1989) where the timing option is defined differently.

71.3.3 The Wild Card Timing Option

In addition to the end-of-month period where the futures market is closed but the

bond market is open, there is a 6-h period every day for about 15 days where the

futures market is also closed. This is called the daily wild card timing option.

The wild card option is different from the end-of-month option in that the futures

market will reopen after each wild card period and the futures contract will be marked

to market. If bond prices drop in the wild card period, given that the futures price is

fixed, the short can benefit from delivering a cheaper bond. However, the short can
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equally benefit from the marking to market when the futures market reopens. As

a result, the incentive for the short to deliver in the wild card period is minimal.

Delivery can take place in a wildcard period only when the payoff from immediate

delivery exceeds the expected present value of marking to market on the next day.

We now proceed to derive the bound of the wild card option. For each daily

wild card period, (u, u + h), we define the following function as the upper bound of
the delivery payoff (for u < t < u + h):

EQ
t max F uð Þqi � d t, uþ hð ÞQi uþ hð Þf g½ � (71.17)

This is an upper bound of the payoff because it is greater than (i) the payoff from

immediate delivery:

EQ
t max F uð Þqi � d t, uþ hð ÞQi uþ hð Þf g½ � � max F uð Þqi � EQ

t d t, uþ hð ÞQi uþ hð Þ½ �� 	

> max F uð Þqi � Qi tð Þ�f g
(71.18)

where the second line is obtained by the fact that Et
Q[d(t,T)Qi(T)] < Qi(t) proved

earlier and (ii) the discounted expected payoff from delivering at the end of the

wild card period:

EQ
t max F uð Þqi � d t, uþ hð ÞQi uþ hð Þf½ �
> EQ

t d t, uþ hð Þmax F uð Þqi � Qi uþ hð Þ½ �f g½ � (71.19)

Hence, Eq. 71.19 is indeed an upper bound for the wild card option value, which

is greater than 0:

EQ
t max F uð Þqi � d t, uþ hð ÞQi uþ hð Þf g½ � > 0

EQ
t max F uð Þ � d t, uþ hð ÞQi uþ hð Þ

qi

� �� �
> 0

F uð Þ � EQ
t d t, uþ hð Þmin

Qi uþ hð Þ
qi

� �� �
> 0

F uð Þ > P t, uþ hð ÞEF uþhð Þ
t min

Qi uþ hð Þ
qi

� �� �
(71.20)

Note that min
Qi uþhð Þ

qi

n o
� F(u + h) when both markets are open from

Sect 71.3.1.9 Therefore, F(u) > P(t, u + h)Et
F(u+h)[F(u + h)]. This is no surprise

because the end-of-month option will reduce the futures price prior to time v, which
in turn will reduce the futures price at time u + h. Hence, it is

9Note that in the second line of Eq. 71.17 where qi is divided through is due to the fact that there

exists a bond i such that max{F(u)qi � d(t, u + h)Qi(u + h)} > 0 in all states.
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Proposition 3 Given the futures price next morning (i.e.,F(ui + h)) when the futures
market reopens at day i + 1 (assuming continuous marking to market), the futures
price prior to each wildcard period (i.e., F(ui)) is bounded from below by

P ui, ui þ hð ÞEF uiþhð Þ
t F ui þ hð Þ½ � (71.21)

where ui is the beginning of a wild card period depicted on page 4 and ui + h is end
of the wild card period (which is assumed to be the same as the time when the
futures market reopens the next morning). □

71.3.4 Putting It All Together for the Lower Bound

So far, we have derived the lower bound for the futures price of the end-of-month

period, F(v), and each of the wildcard period, F(u), where u represents the beginning
time of any wildcard period. The futures price of any given time is a recursive

calculation of Eq. 71.21. The easiest way to understand the calculation is to picture

a univariate latticemodel. The lower bound for the futures price at time v is calculated
by Eq. 71.15. We shall label it F vð Þ for the lower bound at time v. Then, the regular

risk-neutral expectation is taken until the end of the last wildcard period, un + hwhere
un represents the beginning of the nth (last) wildcard period, is reached. The correct
futures price, F(un + h), at this moment is unknown since it requires a repeated

recursive process described in Sect. 71.3. But we can replace it with the lower bound

F un þ hð Þ ¼ EQ
unþh F vð Þ

h i
. Then, we apply Eq. 71.21 to compute the lower bound at

time un to get F unð Þ ¼ P un, un þ hð ÞEF unþhð Þ
un

F un þ hð Þ
h i

. Repeat this process

through all the wildcard periods, un�1, un�2, . . . , u1 to get F u1ð Þ ¼ P u1, u1 þ hð Þ
EF u1þhð Þ
u1

F u1 þ hð Þ
h i

. Then the regular risk-neutral expectation is taken to the current

time: F tð Þ ¼ EQ
t F u1ð Þ
h i

. Repeated substitutions yield the following general result

for the lower bound at the current time t < u1,

F tð Þ ¼ EQ
t F u1ð Þ
h i

¼ EQ
t d u1, u1 þ hð ÞEQ

u1þh F u2ð Þ
h ih i

¼ EQ
t d u1, u1 þ hð ÞEQ

u2
d u2, u2 þ hð Þ F u2 þ hð Þ

h ih ih

¼ � � �

¼ EQ
t

Yn

j¼1
d uj, uj þ h
� �

F vð Þ
h i

¼ EQ
t

Yn

j¼1
d uj, uj þ h
� � F1 vð ÞD v; Tð Þ

q1
� D v; Tð Þ

q1
max

i
Q1 Tð Þ � Qi Tð Þ � K�

i

� 	� � �

(71.22)
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The second line of the above equation is obtained by substituting the lower

bound for F u1ð Þ (i.e., F u1ð Þ ¼ EQ
u1

d u1, u1 þ hð Þ F u1 þ hð Þ
h ih

) and the law of

iterative expectations under the risk-neutral measure. We summarize in

a proposition:

Proposition 4 The futures price is bounded from below by the following risk-
neutral expectation:

F tð Þ ¼ EQ
t

Yn

j¼1
d uj, uj þ h
� � F1 vð ÞD v; Tð Þ

q1
� D v; Tð Þ

q1
max

i
Q1 Tð Þ � Qi Tð Þ � K�

i

� 	� � �

(71.23)
□

71.3.5 The Cost of Carry Model: The Upper Bound

After deriving the lower bound of the futures price, in the next proposition, we

show that the cost of carry model provides an upper bound for the futures price.

The well-known cost of carry formula is the following:

F� tð Þ ¼
Q� tð Þþa� tð Þ

P t;Tð Þ � a� Tð Þ
q�

(71.24)

where Q*, q*, and a* are quoted price, conversion factor, and accrued interest of the
cheapest bond at time t. Rearranging terms to get:

F� tð Þ ¼
Q� tð Þ þ a� tð Þ

P t;Tð Þ � a� Tð Þ
q�

¼ E
F Tð Þ
t

Q� Tð Þ
q�

� �

¼ E
F Tð Þ
t min

Qi Tð Þ
qi

� �� �

> EQ
t min

Qi Tð Þ
qi

� �� �

(71.25)

As we can see, the cost of carry model is equal to a forward expectation of

the payoff. The futures price without the timing options is a risk-neutral expectation

of the payoff (see Eq. 71.3). The last inequality is obtained due to the following:

cov d t; Tð Þ, min
Qi Tð Þ
qi

� �� �
> 0 (71.26)

This is easy to see because when r increases (decreases), both discount factor, d, and
all quoted bond prices, Qi’s, decrease (increase), and the sign of the covariance is
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therefore positive. Note that the futures price without timing options is already an upper

bound; the cost of carry model used by practitioners is a more conservative upper

bound of the futures price. We state the result in the following proposition:

Proposition 5 The futures price is bounded from above by the cost of carry model.

F tð Þ ¼ F� tð Þ (71.27)

□

It is generally believed that the futures price with the quality option (Eq. 71.3)

is the upper bound of the futures price, since it ignores the timing options. Indeed,

if Eq. 71.3 can be evaluated accurately, it is a much tighter lower bound than

the cost of carry model shown above. However, note that the cost of carry

model is a “model-free” result, while Eq. 71.3 relies upon a specific term structure

model. As a result, if the term structure model is not correctly specified, Eq. 71.3

may not serve the role of upper bound well. As we shall see in the

empirical section, under a two-factor Cox-Ingersoll-Ross model, Eq. 71.3 does

not always provide an upper bound. On the other hand, the violation of the cost of

carry upper bound implies arbitrage opportunities.

71.4 Analytical Bounds for Explicit Term Structure Models

The study of the bounds of option prices starts as early as the beginning of modern

option pricing theory. There are different approaches to find bounds for option

prices. Like Lo (1987) develops the semi-parametric upper bounds of the expected

payoffs of options. Zhang (1994) extends the methodology to obtain tighter upper

and lower bounds for option prices. In this section, we use the one- and two-factor

Cox-Ingersoll-Ross (1985) models to demonstrate how one can calculate the upper

bounds of the delivery options and the lower bound of the futures price analytically.

Quoted coupon bond price should be equal to:

Q tð Þ ¼
Xm
j¼1

P t; Tj

� �
cj � a tð Þ, (71.28)

Define additional notation F(t, Ti, Tj) ¼ Et
Q[P(Ti, Tj)] to be the futures price of

a pure discount bond delivered at time Ti andC(t, Ti, Tj)¼ P(t, Ti)/P(t, Tj) to be the
forward price of a pure discount bond. These general results are independent of

model assumption and of the number of factors.

71.4.1 Single-Factor Model

For the sake of easy exposition and no loss of generality, we shall derive analytical

lower bound for the futures price at time v (beginning of end-of-month period).
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The lower bound at an arbitrary time t can be derived similarly. AssumeQ1>Qi for

i 6¼ 1. We follow Carr (1988) that in a single-factor model, the whole distribution of

r can be partitioned into n disjoint segments, denoted by Oi � [rk(i)�1
� , rk(i)

� ]

where r0
* ¼ 0 and rn

* ¼ 1, each of which represents a segment where Qi

maximizes the payoff function: max{Q1 � Qi � Ki
�,}. The analytic result of the

expected value (taken at time v) of Eq. 71.15 is then derived as follows:

Wv ¼ EQ
v max Q1 � Qi � K�

i , 0
� 	
 �

¼
Xn

i¼2

ð

Oi

Xb 1ð Þ
j¼1

c1jP T; T1j

� ��
Xb ið Þ

j¼1
cijP T; Tij

� �� K�
i

h i
’ rð Þdr

¼
Xb 1ð Þ

j¼1
c1j

ð

Sn
i¼2Oi

P T; T1j

� �
’ rð Þdr �

Xn

i¼2

Xb ið Þ
j¼1

cij

ð

Oi

P T; Tij

� �
’ rð Þdr � K�

i

(71.29)

where b(i) is the last coupon payment time for bond i, Ki
� ¼ (q1 � qi)F

�(v), and
F�(v) is the futures price under continuous marking to market (defined by Eq. 71.3).

Note that in each region Oi, bond imaximizes the payoff max{Q1�Qi� Ki, 0} and

’(r) is the risk-neutral density of the interest rate.

Without the consideration of any wild card, the lower bound for the futures price

at any arbitrary time t is a risk-neutral expectation of Eq. 71.29:

F tð Þ ¼ EQ
t

Yn

j¼1
d uj, uj þ h
� � F1 vð ÞD v; Tð Þ

q1
� D v; Tð Þ

q1
max

i
Q1 Tð Þ � Qi Tð Þ � K�

i

� 	� � �

¼
ð1
�1

dr u1ð Þ
ð1
�1

dr u2ð Þ
ð1
�1

� � �
ð1
�1

dr unð Þ
Yn

j¼1
d uj, uj þ h
� �ð1

�1
dr vð ÞF1 vð ÞD v;Tð Þ

q1

�D v;Tð Þ
q1

ð1
�1

dr Tð Þmax
i

Q1 Tð Þ � Qi Tð Þ � K�
i

� 	
’ r u1ð Þ, � � � , r Tð Þð Þ

¼
ð1
�1

dr u1ð Þ
ð1
�1

dr u2ð Þ
ð1
�1

� � �
ð1
�1

dr unð Þ
Yn

j¼1
d uj, uj þ h
� �ð1

�1
dr vð ÞF1 vð ÞD v;Tð Þ

q1

� D v; Tð Þ
q1

Xn

i¼2

ð

Oi

Xb 1ð Þ
j¼1

c1P T;T1j

� ��
Xb ið Þ

j¼1
ciP T; Tij

� �� K�
i

h i
’ r u1ð Þ, � � � , r Tð Þð Þ

¼
ð1
�1

dr u1ð Þ� � �
ð1
�1

dr unð Þ
Yn

j¼1
d uj, uj þ h
� �ð1

�1
dr vð ÞF1 vð ÞD v;Tð Þ

q1
� D v;Tð Þ

q1
Wv’ r u1ð Þ, � � � , r vð Þð Þ

(71.30)

where Wv is defined in Eq. 71.29.

In the case of CIR, the interest rate process follows the square root process:

dr ¼ am� aþ Bð Þrð Þdtþ s
ffiffi
r

p
dWQ (71.31)

where a is the reverting speed, m is the reverting level, s is the volatility parameter,

and ϛ is the market price of risk which is constant under log utility. The futures price

with only the quality option is in Carr (1988) as:
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F� tð Þ ¼
Xn
i¼1

Xb ið Þ

j¼1

cij
qi
F t; T; Tij

� �Xm ið Þ
k¼1

Iik w2j r�ik
� �� w2j r�ik�1

� �h i
(71.32)

where

F(t, u, v) ¼ C(t, u, v)e� r(t)D(t,u,v), futures price under the CIR model without any

options

C t; u; vð Þ ¼ A u; vð Þ � t; uð Þ
� t; uð Þ þ B u; vð Þ

� 2am
s2

D t; u; vð Þ ¼ B u; vð Þ� t; uð Þe� aþBð Þ u�tð Þ

� t; uð Þ þ B u; vð Þ

A u; vð Þ ¼ 2ge aþBþgð Þ v�uð Þ=2

aþ Bþ gð Þ eg v�uð Þ � 1ð Þ þ 2g

� 2am
s2

B u; vð Þ ¼ 2 eg v�uð Þ � 1
� �

aþ Bþ gð Þ eg v�uð Þ � 1ð Þ þ 2g

� t; uð Þ ¼ 2 aþ Bð Þ
s2 1� e� aþBð Þ u�tð Þð Þ

w2j r�ð Þ ¼ w2 2� t; uð Þr�; 4am
s2

, 2� t; uð Þre� aþBð Þ Tij�tð Þh i

m(i) represents the domain where bond i can be the cheapest to deliver, similar to

Oi in Eq. 71.29. Tij represents the time of the jth coupon of bond i. cij represents
the jth cash flow (coupon or coupon and principal) of bond i. For example,

when j < b(i), cij is coupon, and when j ¼ b(i), cij is coupon plus principal.

In addition, note that Iik is the indicator function equal to 1 for the ith bond and

between the critical values of rik � 1
* and rik

* and w2(x, y, z) is a noncentral chi-square
probability function with limit x, degrees of freedom y, and degrees of

noncentrality z.
Under the CIR model, Eq. 71.29 becomes

WCIR
v ¼ EQ

v max Q1 � Qi � K�
i , 0

� 	
 �

¼
Xn�1

i¼1

Xb ið Þ
j¼1

c1F v; T; T1j

� �
w2 r1ð Þ

h
�
Xn

j¼1
ciF v;T;Tij

� �
w2 rið Þ � K�

i w
2 r1ð Þ

n io

(71.33)

r1 and ri denote crossover rates that are over a plausible range of interest rates;
there exists only one such rate that determine regions where one bond is cheaper

and regions where the other is cheaper. Then the lower bound under the CIR model

of the term structure is still Eq. 71.30 but with Wv
CIR replacing Wv.
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71.4.2 Two-Factor Model

We use the two-factor model of the following kind:10

r ¼ y1 þ y2 (71.34)

where each factor follows a square root process as in Eq. 71.31:

dyi ¼ aimi � ai þ Bið Þyið Þdtþ si
ffiffiffiffi
yi

p
dWQ

i (71.35)

where i ¼ 1, 2 and dW1
QdW2

Q ¼ 0. Under this framework, the two-factor

model works the same way as the one-factor models. The difference is that the

univariate integrals in the one-factor models are replaced with two-dimensional

integrals:

F tð Þ ¼
ð1
�1

ð1
�1

dr u1ð Þ� � �
ð ð1

�1
dr unð Þ

Yn

j¼1
d uj, uj þ h
� �

ð1
�1

ð1
�1

dr vð ÞF1 vð ÞD v; Tð Þ
q1

� D v; Tð Þ
q1
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(71.36)

where
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The bivariate integrals may become quadruple integrals as we move backwards

in time. The lattice approach proposed by Longstaff and Schwartz (1992) can

be efficiently implemented to calculate the result. Since the lower bound requires

only risk-neutral expectations, it can be computed without recursive loops and be

extremely fast.

10This two-factor model is adopted by a number of authors. See Chen and Scott (1993), Turnbull

and Milne (1991), Langetieg (1980), and Hull and White (1990).
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71.5 Empirical Study

This section empirically examines the magnitude of each bound using a two-factor

CIR model. Evidence is presented for two non-overlapping periods: 1987–1991 and

1992–2000. Both in-sample and out-of-sample tests are performed during each

period. Results are similar for both periods, implying the model is robust. Further-

more, for both periods, out-of-sample performance is pleasantly satisfactory.

71.5.1 Term Structure Model Estimation

In estimating the two-factor CIR term structure model, this study uses weekly

(Friday) four Treasury interest rate series: the 3-month and 6-month Treasury

bills and the 5-year and 30-year Constant Maturity Treasury (CMT) interest rates

to estimate the parameters for the two-factor CIR model. Weekly data is obtained

from January 4, 1991 to December 29, 1998, comprising 416 observations in total.

Data is from the Aremos USFIN databank.

Parameter estimation is important because without good estimates, the two-factor

CIR model cannot work properly. Several estimation techniques regarding term

structure models have recently been developed. Duan and Simonato (1999) use

the state space model with the Kalman filter to estimate exponential-affine term

structure models. The estimation procedure is identical to that described in Chen and

Scott (1993). Its methodology employs maximum likelihood estimation for a time-

series bond price data. Hamilton (1994) provides a detailed introduction for maxi-

mum likelihood estimation applied in time-series data. Furthermore, Yeh and Lin

(2003) use curve fitting techniques and also used cross-sectional bond price data to

estimate the Vasicek (1977) and the CIR models. In addition to our estimates, as

a robustness comparison, we also use the results from Chen and Scott (1993) who

used a weekly dataset from 1980 to 1988, and Table 71.1 lists the estimates obtained

Table 71.1 Parameter estimates of the two-factor Cox-Ingersoll-Ross model

Chen-Scott estimation New estimation

Factor 1 Std. err. Factor 2 Std. err. Factor 1 Std. err. Factor 2 Std. err.

a 1.834100 0.222800 0.005212 0.115600 a 0.879967 0.001014 0.004423 0.000014

m 0.051480 0.005321 0.030830 0.683300 m 0.043822 0.000009 0.029555 0.000097

s 0.154300 0.005529 0.066890 0.002110 s 0.097855 0.001429 0.095974 0.000018

B �0.125300 0.180600 �0.066500 0.115400 B �0.146140 0.000151 �0.178846 0.000361

Likelihood function ¼ 7750.82 Likelihood function ¼ 11722.81

# of obs. 470 # of obs. 416

Chen-Scott estimates are taken from Exhibit 2, Panel B on page 21 of Chen and Scott (1993) who

take Thursday weekly prices of 13-week, 26-week, 5-year, and longest maturity Treasuries. The

period of study is from January 1980 to December 1988. The new estimates use Friday weekly

T-Bill rates of 3 months and 6 months and CMT rates of 5 years and 30 years. The period of study

is from January 1991 to December 1998. The new estimates are estimated with RATS where the

number of usable observations in the estimation is 387
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using both estimations. The estimates change little from one period to another, while

the new estimates show slightly lower reverting level and slower mean reversion. The

first factor remains strong mean reversion while the second remains close to a random

walk.

The term structure estimation must also estimate the factor values. Chen and Scott

(1993) compute factor values by fitting the long and short rates of the yield curve. For

the purpose of this study (correctly pricing the cheapest-to-deliver bond correctly),11

the factor values are solved for bymatching the short rate with the cheapest-to-deliver

bond price. In reality, the delivery options are priced based on the cheapest-to-delivery

bond and a series of exchange options to the next cheapest, the third cheapest, and so

on. Calibrating the term structure model of Chen-Scott to the cheapest-to-delivery

bond yields the most accurate valuation of the delivery options using the two-factor

CIR model. The two-factor CIR model is generally understood not to closely fit

the yield curve.12 To mitigate the concerns of Jagannathan et al. (2003), this

study examines how our term structure best fits the set of deliverable bonds.

Unlike Ho et al. (1992), this study is not particularly concerned with the whole yield

curve fit because most of the risk of the delivery options resides in the set

of deliverable bonds. Furthermore, as a practical concern, we present the fitting

performance of the three most relevant bonds – the cheapest, second cheapest,

and third cheapest. The probability of other bonds becoming the cheapest is small

and the impact of other deliverable bonds is believed to be negligible.

Theoretically, the cheapest bond at any time should be fitted perfectly by

tweaking the second factor, since there is one equation and one unknown. However,

no solution exists for the second factor at the following dates when trying to fit the

cheapest bond: 980903, 980910, 980917, 980924, 981001, 981015, 981029,

981203, 981210, and 981217. Figure 71.1 plots the yield curves for a subperiod

(January 2, 1998, to December 28, 2000) from the CMT dataset. The above dates,

where the second factor fails to coincide (CTD bond fails to fit) with the period,

occur when the yield curve is steeply sloped and the short rates are small. This

problem has already been described in Chen and Scott (1993). Chen and Scott

recommend a three-factor model to improve the fit. However, because this problem

only exists for 10 out of 722 cases (252 observations in the first subperiod,

1987–1991, and 470 observations in the second subperiod, 1992–2000)13 and

because of the complexity of estimating a three-factor model, the two-factor

model is retained.14 Alternatively, the first factor can be left flexible until the CTD

bond can be fitted. However, to maintain consistency, the CTD bond is allowed to

11T bond futures prices are affected by all bonds underlying the yield curve, and yet doubtlessly the

cheapest-to-deliver bond has the most influence.
12See, for example, Chen and Scott (1993) and Jagannathan et al. (2003).
13All 10 cases are in the second subperiod: 1992–2000.
14Chen and Scott (1993) argue that the three-factor model does not necessarily dominate the

two-factor model; in that, the three-factor model, although fits better the term structure, generates

extra volatility. See Chen and Scott for details.
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imperfectly fit those 10 dates.15 The ill-fitted CTD bonds for those 10 dates thus hurt

the tightness of the bounds. The following summary illustrates the cheapest bond

that fails to be fitted and the difference between the market and the model prices.

Date Coupon Maturity Market price Model price % diff

980903 11.250 150215 164.6250 159.2477 3.38

980910 11.250 150215 167.9063 158.6218 5.85

980917 11.250 150215 167.2500 163.3068 2.41

980924 11.250 150215 168.3438 163.2337 3.13

981001 11.250 150215 171.7188 163.7861 4.84

981015 11.250 150215 169.3438 165.2365 2.49

981029 11.250 150215 168.2813 164.6084 2.23

981203 11.250 150215 168.7813 162.1672 4.08

981210 11.250 150215 169.3438 161.4943 4.86

981217 11.250 150215 167.9688 161.1123 4.26

Notably, other than these ten dates, the CTD bond fits perfectly. To mitigate the

criticism of Jagannathan et al. (2003), the fitting performance of the second

cheapest and the third cheapest must also be examined. Figure 71.2 presents the
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Fig. 71.1 Yield curves for the selected period

15The result of the alternative fitting is available upon request.
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Fig. 71.2 Fitting performance of the second and third cheapest-to-deliver bonds

Note: The pricing error is measured as percentage error of the market price: model price �market

price – 1. The average percentage errors are 30 basis points and 14 basis points for the 2nd CTD

and 3rd CTD, respectively. The root mean square errors are 1.07 % and 1.20 %, respectively

Note: The pricing error is measured as percentage error of the market price: model price �market

price – 1. The average percentage errors are 10 basis points and 26 basis points for the 2nd CTD

and 3rd CTD, respectively. The root mean square errors are 1.04 % and 1.61 %, respectively
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fitting performance of the two-factor model (with the 3-month short rate and the

CTD bond perfectly fitted). The percentage fitting error (theoretical price � market

price – 1) is plotted. The second CTD bonds are fitted very well. The average

percentage error (APE) is 30 basis points in the first period (1987–1991) and

10 basis points in the second subperiod (1992–2000). The root mean square errors

(RMSE) for both periods are 1.07 % and 1.04 %, respectively. The numbers may

seem to suggest that the second sample period provides better fit, but eyeballing the

graphs reveals good fit during most of the first sample period; the second CTD is

well fitted and only half of the time in the second period is well fitted.

The fitting performance of the third CTD bonds displays a very different profile. The

third CTD bonds presents equal fit to the second CTD bonds during the first sample

period (1987–1991), but the former have worse fit than the later during the second

subperiod (1992–2000). As opposed to 30 basis points APE and 1.07 % RMSE for the

second CTD bond, the APE and the RMSE for the third CTD bond are 14 basis points

and 1.2 % in 1987–1991. However, during 1992–2000, the APE and RMSE increase

from 10 basis points and 1.04 %, respectively, for the second CTD bond to 26 basis

points and 1.61 %, respectively, for the third CTD bond. The worse fit of the third CTD

bond and the 10 cases of unsuccessful fit of the CTD during the second subperiodmight

explain the slightly worse bound performance (show later) during the second period.

71.5.2 Futures Data

Daily futures prices are obtained from the Chicago Board of Trade (CBOT) between

January 1987 and December 2000. Table 71.2 lists the summarized statistics. Nota-

bly, the decline in the futures price for March 2000 contract results from the change

of the discount rate in the conversion factor (from 8 % to 6 %). However, this study

collects the futures prices weekly (Thursday) for two different (non-overlapping)

periods. One period is from January 8, 1987 through October 31, 1991 (252 observa-

tions) and the other runs from November 7, 1991 through November 2, 2000

(470 observations). The first period, which covers the quarterly contracts during

March 1987 through December 1991, uses the Chen-Scott estimates, and the second

period, which covers contracts during March 1992 through December 2000, uses the

new estimates. Weekly futures prices with maturity ranging from 6 weeks to 4½

months are selected from the CBOT daily price dataset.

The cost of carry model requires the knowledge of all deliverable bonds at the

trade date. All deliverable bonds are collected from the Wall Street Journal for all

the trade dates and the average of the bid and ask is taken as the bond price. This

study also uses the 3-month T bill rates for the cost of carry model. There are about

26 deliverable bonds for any given trade date. Conversion factors are computed

using the CBOT formula.16

16Hull (2009) has an excellent demonstration of such a computation.
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Table 71.2 Summary statistics of daily futures prices

Contract month N Mean Std. dev Min Max

All maturities 3537 103.69 11.4274 77.78 134.66

8703 21 100.62 0.6833 99.47 101.59

8706 63 97.23 3.2328 88.56 101.38

8709 64 90.72 1.5606 86.84 93.19

8712 65 84.59 3.3369 77.78 90.09

8803 63 88.23 2.147 83.72 93.91

8806 64 91.19 1.9662 97.34 94.16

8809 64 86.68 1.2191 84.44 89.56

8812 65 87.53 2.1673 83.94 91.41

8903 63 89.09 1.1461 86.97 91.44

8906 64 88.73 1.0879 86.5 91.28

8909 64 95.23 3.1389 88.34 100.38

8912 65 97.42 1.1772 95.25 99.84

9003 63 98.29 1.9 93.22 100.28

9006 64 92.26 1.6765 88.59 94.72

9009 64 93.15 1.1783 89.78 95.19

9012 65 89.6 1.2881 87.16 93.09

9103 63 94.91 1.6509 91.09 97.56

9106 64 95.95 1.1031 93.44 97.94

9109 63 93.83 0.925 92.28 95.94

9112 64 98.17 1.4522 95.25 100.41

9203 62 101.25 2.106 97.78 105.25

9206 62 98.94 0.8243 97.28 100.31

9209 64 100.79 2.0015 97.31 105.16

9212 64 104.46 1.1772 102.31 106.91

9303 61 103.9 1.7221 100.28 107.22

9306 64 109.79 1.9499 105.69 112.66

9309 64 112.3 2.3068 108.44 115.97

9312 64 118 2.83 102.63 121.94

9403 62 110.33 0.9456 113.34 117.44

9406 64 108.69 3.4739 103.25 115.34

9409 64 103.02 1.2617 100.31 105.44

9412 64 100.08 1.9172 97.06 103.81

9503 60 98.64 1.5588 95.44 101.47

9506 64 103.57 1.4609 100.5 106.31

9509 64 112.34 2.2275 106.97 115.75

9512 61 113.51 2.6347 108.69 117.44

9603 63 119.33 1.4683 116.75 121.56

9606 65 112.94 3.5877 106.75 120.22

9609 62 108.1 1.0822 105.88 111.84

9612 62 109.72 1.7013 106.41 113

9703 59 113.06 1.9931 109.78 120.06

9706 61 109.45 1.9678 106.63 113.44

(continued)
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71.6 Results

This study assumes no gap between the close of the bond market for any given day

and the open of the futures market in the next morning. As a result, correctly dating

all the timing periods in the lattice requires counting the number of trading days.

As has been pointed out previously, each month contains about 22 trading days.

The last 7 days attribute to the end-of-month period. For each of the remaining

15 days, there are about 6 h for the day periodwhere both bond and futuresmarkets are

open and another about 6 h for the night period where only the bond market is open.

To accurately calculate various timing option values, the time tomaturity in this study

is not measured using calendar days but business days.17 Accurate day counting is

necessary because we need to calculate expectations at various times.

First, all deliverable bonds are ranked by their conversion factors. The bond with

the largest conversion factor is then chosen as the primary bond for delivery and its

futures price is calculated using the two-factor version of the Cox-Ingersoll-Ross

model (1981). Various timing options provide the short additional flexibility of

choosing the best timing.

Calculating the upper bound value for the end-of-month option for any given time

prior to v requires calculating Eq. 71.36 and then using Eq. 71.14. As noted earlier,

the wildcard value can be ignored if the lower bound of the futures price at the

beginning time of the end-of-month period, v, is already sufficiently low. That is, if
the lower bound for the end-of-month option is employed to substitute for F(v), the

Table 71.2 (continued)

Contract month N Mean Std. dev Min Max

9709 62 111.83 0.3393 108.31 116.75

9712 62 114.62 1.7645 112.06 118.47

9803 59 120.13 1.8508 117.03 123.72

9806 61 120.56 0.8548 118.66 122.44

9809 63 122.1 1.3907 118.88 124.16

9812 62 127.7 2.8354 122.97 134.66

9903 58 127.75 1.4533 124.72 130.63

9906 64 121.89 1.4661 119.47 126.19

9909 63 116.3 1.4175 113.63 119.38

9912 62 113.38 1.2839 110.84 116.16

0003 60 92.38 1.9398 89.22 95.66

0006 63 95.8 1.7785 92.47 99.34

0009 63 96.46 1.8667 92.66 99.38

0012 62 99.54 0.8819 97.63 101.22

Daily futures prices are taken with maturity between 6 weeks and 4½ months for each contract.

Such a selection enjoys high liquidity and rare overlapping between contracts

17That is, we do the business day count between trade day and the last day of the delivery month

and assume 252 trading days for a given year.
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loss of the wildcard value is translated into the end-of-month option. Restated, the

wildcard value can be efficiently incorporated into the lower bound for the end-of-

month option. If the wildcard value is completely eliminated by this substitution,

then the lower bound for the end-of-month option becomes a lower bound for both

the end-of-month andwildcard options. Aswe shall see, this is indeed the case for the

periods examined. Finally, the cost of carry model of Eq. 71.24 is computed and

compared with the actual futures price.

The empirical examination of the upper and lower bounds is presented in two

periods where the term structure model is estimated separately. The first period

contains the futures contracts from March 1987 to December 1991. The empirical

results during this period use the parameter estimates of Chen and Scott (1993),

which use data from January 1980 to December 1988 to estimate the term structure.

Hence, contracts from March 1987 to December 1988 are considered in-sample

and contracts from March 1989 to December 1991 are considered out of sample.

The second period contains the futures contracts from March 1992 to December

2000. The parameters are reestimated using the Treasury data from January

1991 through December 1998 to estimate the term structure, and in-sample and

out-of-sample tests are also performed. The parameters are reestimated because

significantly lower interest rates are observed during the later period.

The first part of Table 71.3 lists results in averages for the 20 contracts (8703–9112)

studied in this investigation. The first three columns of Table 71.3 present actual

futures prices, lower bound futures prices using Eq. 71.36 which considers only the

end-of-month option and upper bound futures prices using which is the cost of carry

model. The average for the whole period is listed at the bottom of the table. The

estimates obtained using the cost of carry model are on average 2 % higher than the

actual futures price, while the lower bound is 2 % lower than the actual futures price.

Weekly prices of these three series are plotted in Fig. 71.3.

The end-of-month option bound values are listed in column 4. This value

includes both the quality option and the timing option values. Separating these

two values is difficult because no consistent method exists for measuring the quality

option. Figure 71.3 shows that the lower bound for the futures price provided by this

upper bound is sufficiently conservative to include all daily wildcard values.

Furthermore, the bound is as tight as the cost of carry model, approximately 2 %

on average lower than the actual futures price.

This study also estimates the two-factor Cox-Ingersoll-Ross term structure

model for a more recent dataset (weekly, from January 4, 1991 through December

29, 1998). The in-sample test is for the contracts from March 1991 to

December 1998 and the out-of-sample test is for the contracts from March 1999

to December 2000. Somewhat different and yet very interesting results can be

observed. Similar to the first half of Table 71.3, the second half of the table presents

the results from the second period in a parallel fashion. First, the model-free upper

bound, the cost of carry model, performs as well as in the first period, remaining

roughly 2 % above the actual price, a very robust result.

The most surprising result involves the lower bound. Using the same term

structure model, the lower bound, on average, remains within about 2 % below
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Table 71.3 Empirical performance of upper and lower bounds

Contract month # of obs. (1) (2) (3) (4)

March 1987–December 1991

8703 4 100.703 99.486 100.585 1.505

8706 13 97.875 96.136 100.132 2.092

8709 13 90.719 89.204 93.853 2.031

8712 13 84.546 83.357 86.323 1.887

8803 13 88.269 87.545 89.407 2.208

8806 13 91.267 89.973 95.513 1.971

8809 13 86.628 84.728 87.053 1.956

8812 13 87.269 85.947 87.530 2.367

8903 13 89.123 87.205 89.912 2.496

8906 13 88.712 86.533 92.655 2.491

8909 14 94.980 92.763 96.251 2.594

8912 13 97.471 95.300 100.400 2.264

9003 12 98.430 96.106 100.170 2.491

9006 14 92.252 90.549 95.804 2.421

9009 13 93.238 91.168 94.006 2.302

9012 13 89.572 88.004 92.559 2.146

9103 13 95.195 93.275 95.982 2.003

9106 13 96.003 94.693 97.561 1.855

9109 13 93.902 92.723 94.322 1.856

9112 13 98.152 96.792 100.638 1.603

All maturities 252 92.414 90.758 94.306 2.151

March 1992–December 2000

9203 13 101.216 99.800 102.820 1.392

9206 13 98.875 95.497 101.650 3.315

9209 13 100.930 98.520 101.607 2.366

9212 13 104.577 100.955 106.022 3.563

9303 13 103.926 101.612 107.472 2.267

9306 13 110.099 107.530 110.817 2.531

9309 13 112.274 109.783 113.701 2.463

9312 13 118.125 115.264 120.051 2.843

9403 13 115.250 114.138 117.530 1.096

9406 13 108.777 107.669 110.239 1.090

9409 13 103.132 100.401 104.535 2.712

9412 13 100.277 97.763 100.997 2.473

9503 13 98.438 94.237 100.829 4.153

9506 13 103.394 100.743 104.408 2.616

9509 14 112.212 108.228 113.331 3.958

9512 12 113.485 112.215 114.642 1.240

9603 14 119.299 115.368 123.136 3.905

9606 13 112.681 111.661 113.476 0.993

9609 13 108.375 104.510 108.601 3.840

9612 13 109.630 108.310 111.131 1.294

(continued)

1936 R.-R. Chen and S.-K. Yeh



the actual futures price. Notably, the term structure estimation fitting performance

result during the first period (March 1987 to December 1991) is different from that

during the second period (March 1992 to December 2000). The term structure

model performs poorly during the second period but it performs well during the

first period. However, the lower bound still performs well during both periods.

This is due to the fact that the lower bound, on the other hand, is only “semi-model-

dependent” in that its theory is model-free and only the implementation requires a

term structure model. Hence, in theory, the lower bound is a “looser” bound and thus

unsurprisingly can perform well no matter what the term structure model fits.

Furthermore, from Table 71.3 (second part), throughout all contracts, the lower

bound constantly falls below the actual futures price. The weekly lower bound

performance can be seen in the second part of Fig. 71.3. This observation raises

an interesting issue, namely, that using an ill-fitted term structure model to estimate

contract value, the performance of the estimate relies extremely on the performance

of the underlying model. However, when estimating a range of values for the

contract, the accuracy of the underlying model becomes less sensitive. In reality,

no trader is seeking “the price,” since model assumptions are always inconsistent

with reality. However, robust models (models that are robust to parameter changes)

are useful in that they provide useful implications traders can use to gain insights.

What we have learned from this empirical test precisely demonstrates this point.

Table 71.3 (continued)

Contract month # of obs. (1) (2) (3) (4)

9703 13 112.834 109.111 116.659 3.700

9706 13 109.301 108.105 110.123 1.172

9709 13 111.875 107.909 114.585 3.944

9712 13 114.690 113.795 115.964 0.871

9803 13 120.329 116.394 124.512 3.911

9806 13 120.625 120.158 121.157 0.443

9809 13 122.120 118.071 123.111 4.026

9812 13 127.772 124.326 129.021 3.054

9903 13 127.916 121.848 131.740 5.584

9906 13 121.709 121.580 122.289 0.104

9909 13 116.298 112.651 116.150 3.629

9912 13 113.397 111.580 114.369 1.797

0003 13 92.378 89.690 93.742 3.746

0006 13 95.856 93.482 97.851 2.848

0009 14 96.574 95.796 97.963 2.662

0012 13 99.606 97.489 101.067 3.729

All maturities 470 109.940 107.378 111.584 2.651

(1) Is actual futures price

(2) Is lower bound (Eq. 71.36)

(3) Is cost of carry price, also upper bound (Eq. 71.24)

(4) Is average of (1)�(2), a measure of bound tightness

The theoretical values are computed using the Chen-Scott estimates (left panel of Table 71.1)

The theoretical values are computed using the new estimates (right panel of Table 71.1)
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Fig. 71.3 Weekly time-series plot of actual futures prices (actual), their upper (COC) and lower

(LBB) bounds
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71.7 Discussions

The importance of the bounds becomes clear if one realizes that it is nearly impossible

to compute the delivery options accurately. However, it is almost equally important to

recognize that violating such bounds implies arbitrage opportunities. This is particu-

larly interesting for the upper bound because the upper bound of the futures price – the

cost of carry – is model-free. The calculation results show that the futures price

exceeded its upper bound in 164 out of 722 (or 22.71 %) weeks. The magnitude of

violation is on average 28.6 basis points (annualized) or half a basis point a week in the

event that violation occurs. At such times, investors can sell futures and buy the CTD

bond and then dynamically switch to the new CTD bond if necessary. Such a strategy,

as suggested by the forward measure, should yield an arbitrage profit of half a basis

point each time. This profit must exceed the transaction costs to be profitable.

The violation of the lower bound only generates arbitrage profits when the

adopted model is true. The calculation results show that the lower bound is violated

in 32 out of 722 cases (or 4.4 %). Notably, the fewer violations of the lower bound

than upper bounds result mainly from the more conservative estimate of the lower

bound (i.e., we compound upper bound values of the embedded delivery options).

The results suggest that a more efficient lower bound remains to be discovered.

Future research can examine this question.

From Fig. 71.3, we note that there are periods where bounds are tight and others

where bounds are loose. To examine any potential systematic biases, this study runs

regressions of the “tightness” of the bound against a number of possible factors that affect

the futures price. For consistency, this study runs the following regressions18 for the

period of January 2, 1992, to November 2, 2000, containing 462 weekly observations:

Ft � Ft ¼ a0 þ a1 CTDt � SCTDtð Þ þ a2 3MTBt � 3MTBt�1ð Þ
þ a3 30YTBt � 30YTBt�1ð Þ þ a4 CFtð Þ þ et

Ft � Ft ¼ b0 þ b1 CTDt � SCTDtð Þ þ b2 3MTBt � 3MTBt�1ð Þ
þ b3 30YTBt � 30YTBt�1ð Þ þ b4 CFtð Þ þ ut

where

F ¼ market futures price

F ¼ upper bound (COC)

F ¼ lower bound

CTD ¼ cheapest to deliver bond

SCTD ¼ second cheapest to deliver bond

3MTB ¼ 3-month T bill rate

30YTB ¼ 30-year T bond rate

CF ¼ conversion factor of the cheapest bond

18Lee et al. (2000) provide excellent introductions about how to conduct multiple regressions.
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and the results are reported in Table 71.4. Interestingly, the lower bound perfor-

mance is more sensitive to the fitting of the second cheapest bond and the upper

bound performance is more sensitive to the long rate. This result is unsurprising

because the lower bound is a model-driven result while the upper bound is model-

free and hence relies on the long rate.

Finally, this study argues that the timing options are more valuable during the

first period than the second period. Notably, the timing options are negatively

related to the interest rates. Lower interest rates during the second period reduce

the value of the timing options.

71.8 Conclusion

This study derives lower and upper bound formulas for the Treasury bond futures

prices. The lower bound of the futures price is obtained by integrating all upper

Table 71.4 Regression results

Lower bound Upper bound

Coefficient Std. err. t Coefficient Std. err. t

Intercept 2.620156 0.080332 32.61647 1.62892 0.097364 16.73019

CTDt–SCTDt 0.615754 0.240687 2.558313 0.043733 0.291717 0.149915

3MTBt–3MTBt–1 �0.85906 1.056233 �0.81332 �1.35587 1.280171 �1.05913

30YTBt–30YTBt–1 �1.55869 0.919818 �1.69456 �3.24591 1.114835 �2.91156

CFt �0.79337 0.970453 �0.81753 �0.42436 1.176205 �0.36079

Adjusted R2 2.28 % 1.87 %

# of obs. 462 462

Regression period is from January 2, 1992 till November 2, 2000, total of 462 weekly observa-

tions. Regression equations are

Ft � Ft ¼ a0 þ a1 CTDt � SCTDtð Þ þ a2 3MTBt � 3MTBt�1ð Þ þ a3 30YTBt � 30YTBt�1ð Þ
þ a4 CFtð Þ þ et

Ft � Ft ¼ b0 þ b1 CTDt � SCTDtð Þ þ b2 3MTBt � 3MTBt�1ð Þ þ b3 30YTBt � 30YTBt�1ð Þ
þ b4 CFtð Þ þ ut

where

F ¼ market futures price

F ¼ upper bound (COC)

F ¼ lower bound

CTD ¼ cheapest to deliver bond

SCTD ¼ second cheapest to deliver bond

3MTB ¼ 3-month T bill rate

30YTB ¼ 30-year T bond rate

CF ¼ conversion factor of the cheapest bond
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bounds for the delivery options. The cost of carrymodel is found to be an upper bound

of the futures price. These bounds are model free and can be used with any choice of

the term structure model. Analytical results are obtained when using a two-factor

Cox-Ingersoll-Ross model. The results provide investors with an efficient range of

how far futures prices can move. During the two sample periods of 1987–1991 and

1992–2000, the cost of carry model is found to be about 2 % above the actual futures

price and the lower bound is found to be about 2 % below.

As opposed to recursively using the lattice model to iteratively obtain an

accurate estimate of the futures price, which is prohibitively expensive, as Boyle

(1989) demonstrates, the bounds provided in this paper can be computed quickly

and accurately. Thus, these bounds can then provide traders with a useful guide to

the true futures price.

Appendix

From Theorem 1, we have:

EQ
t d t; Tð ÞX Tð Þ½ � ¼ EQ

t d t; Tð Þ½ �EF Tð Þ
t X Tð Þ½ �

¼ P t; Tð ÞEF Tð Þ
t X Tð Þ½ �

(71.37)

where d is strictly less than 1. Due to the risk-neutral pricing result we have, the

LHS must equal X(t), and hence:

X tð Þ ¼ E
F Tð Þ
t X Tð Þ½ �
P t; Tð Þ (71.38)

Note that the forward measure is maturity dependent. Clearly, the Radon-

Nikodym derivative (RND) is

� t; Tð Þ ¼ d t; Tð Þ
P t; Tð Þ (71.39)

Since the measure is T-dependent, so should be the RND (usually, RND is just

�(t)). Let the interest rate process be

dr tð Þ ¼ m̂ r; tð Þdtþ s r; tð ÞdWQ tð Þ (71.40)
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Applying Ito’s lemma,

0 ¼ ln P T; Tð Þ ¼ ln P t; Tð Þ þ
ðT
t

1

P u; Tð Þ
�
Pu u; Tð Þduþ Pr u; Tð Þdr

þ 1

2
Prr u; Tð Þ drð Þ2

�
:dŴ uð Þ �

ðT
t

1

2

s r; uð ÞPr u; Tð Þ
P u; Tð Þ

� �2
du

¼ ln P t; Tð Þ þ
ðT
t

1

P u; Tð Þ Pu u; Tð Þduþ Pr u; Tð Þm̂ r; uð Þ þ 1

2
Prr u; Tð Þs r; uð Þ2

� �
du

þ
ðT
t

1

P u; Tð ÞPr u; Tð Þs r; uð ÞdŴ uð Þ �
ðT
t

1

2

s r; uð ÞPr u; Tð Þ
P u; Tð Þ

� �2
du

¼ ln P t; Tð Þ þ
ðT
t

r uð Þduþ
ðT
t

1

P u; Tð ÞPr u;Tð Þs r; uð ÞdŴ uð Þ �
ðT
t

1

2

s r; uð ÞPr u; Tð Þ
P u; Tð Þ

� �2
du

(71.41)

Letting:

y t; Tð Þ ¼ � s r; tð ÞPr t; Tð Þ
P t; Tð Þ (71.42)

and moving the first two terms to the left:

�
ðT
t

r uð Þdu� ln P t; Tð Þ ¼
ðT
t

�y u; Tð ÞdŴ uð Þ �
ðT
t

1

2
y u; Tð Þ2du

d t;Tð Þ
P t; Tð Þ ¼ � t; Tð Þ ¼ exp

ðT
t

�y u; Tð ÞdŴ uð Þ �
ðT
t

1

2
y u; Tð Þ2du

�  (71.43)

This implies the Girsanov transformation of the following:

WF Tð Þ tð Þ ¼ WQ tð Þ þ
ðT
t

y uð Þdt ¼ WQ tð Þ �
ðT
t

s r; uð ÞPr u; Tð Þ
P u; Tð Þ du (71.44)

The interest rate process under the forward measure henceforth becomes:

dr tð Þ ¼ m̂ r; tð Þ þ s r; tð Þ2 Pr t; Tð Þ
P t; Tð Þ

� �
dtþ s r; tð ÞdWF Tð Þ tð Þ (71.45)

Note that the forward measure is quite general. It does not depend on any specific

assumption on the interest rate process.
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Abstract

This study adopts the survival analysis framework (Allison, P. D. (1984). Event
history analysis. Beverly Hills: Sage) to examine issuer-heterogeneity and time-

heterogeneity in the rating migrations of fallen angels (FAs) and their specula-

tive grade-rated peers (FA peers). Cox’s hazard model is considered the
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preeminent method to estimate the probability that an issuer survives in its

current rating grade at any point in time t over the time horizon T. In this

study, estimation is based on two Cox’s hazard models, including

a proportional hazard model (Cox, Journal of Royal Statistical Society Series

B (Methodological) 34:187–220, 1972) and a dynamic hazard model. The first

model employs a static estimation approach and time-independent covariates,

whereas the second uses a dynamic estimation approach and time-dependent

covariates. To allow for any dependence among rating states of the same issuer,

the marginal event-specific method (Wei et al., Journal of The American Statis-

tical Association 84:1065–1073, 1989) was used to obtain robust variance

estimates. For validation purpose, the Brier score (Brier, Monthly Weather

Review 78(1):1–3, 1950) and its covariance decomposition (Yates, Organiza-

tional Behaviour and Human Performance 30:132–156, 1982) were applied to

assess the forecast performance of estimated models in forming time-varying

survival probability estimates for issuers out of sample.

It was found that FAs and their peers exhibit strong but markedly different

dependences on rating history, industry sectors, and macroeconomic conditions.

These factors jointly, and in several cases separately, are more important than

the current rating in determining future rating changes. A key finding is that past

rating behaviors persist even after controlling for the industry sector and the

evolution of the macroeconomic environment over the time for which the current

rating persists. Switching from a static to a dynamic estimation framework

markedly improves the forecast performance of the upgrade model for FAs.

The results suggest that rating history provides important diagnostic information

and different rating paths require different dynamic migration models.

Keywords

Survival analysis • Hazard model • Time-varying covariate • Recurrent event •

Brier score • Covariance decomposition • Rating migration • Fallen angel •

Markov property • Issuer-heterogeneity • Time-heterogeneity

72.1 Introduction

Market participants are interested in the rating migration propensity of fallen angels

(FAs) which were initially rated as investment grades but experienced deterioration

in credit quality and fell to speculative grades. Such dramatic downgrades are

consistently associated with a statistically significant negative return in the stock

market (Holthausen and Leftwich 1986; Ederington and Goh 1999) and in the bond

market (Hite and Warga 1997). Furthermore, bad news associated with a rating

downgrade is transferred from the downgraded company to its rivals. The rivals of

downgraded firms with speculative grade-rated debts experience significant down-

ward revisions of earnings forecasts (Caton and Goh 2003).

Institutional investors such as investment grade bond funds, due to restricted risk

levels, may not be able, or may be limited, to hold a small percentage of speculative
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grade-rated bonds (Altman and Kao 1992b, p. 73; Cantor and Packer 1997). They

may be forced to sell bonds that drop into the speculative grade ratings (fallen

angels) and may buy back bonds that regain the investment grade status (rising

stars). Accurately estimating the migration probabilities of FAs is important in the

context of portfolio construction and credit risk management. Tsaig et al. (2011)

showed that credit migration can explain as much as 51 % of volatility and 35 % of

economic risk capital for a typical loan portfolio.

In practice, the discrete time cohort Markov approach has been widely used by

credit rating agencies to model rating migration processes. This approach assumes

that the departure probability out of the current rating depends entirely on the

current rating (Markov process) and remains constant over time (time-

homogeneous). The time-homogeneous Markov property, however, is not strongly

supported by empirical studies. Frydman and Schuermann (2008) found that obli-

gors of the same rating grade migrate at different rates and the heterogeneity

persists after controlling for the state of the business cycle or the industry sector.

The sources of issuer-heterogeneity in the rating process can be attributed to several

aspects of rating history such as the direction of the prior rating change,1 the

duration of the previous rating states,2 the first rating received,3 and the period of

time since first rated.4 Failing to consider issuer-heterogeneity can result in inac-

curate estimates of value at risk and a misleading picture of the economic risk

capital (Kadam and Lenk 2008).

An interesting question then arises: Does one migration model fit all, or do

different rating histories require different models? Specifically, do FAs exhibit the

same issuer dependence and time dependence as their speculative grade-rated

peers? Literature confirms some established perceptions about FAs and supports

the notion that FAs exhibit different rating dynamics compared to their peers.5

This study adopts the survival analysis framework (Allison 1984) to examine

a wide variety of issuer-heterogeneity and time-heterogeneity in the rating dynam-

ics of US nonfinancial FAs and their speculative grade-rated peers. I estimate rating

migration models of FAs, after their fall dates. Comparator speculative grade-rated

issuers that experienced a downgrade but not a FA event at lag-one rating state

(FA peers) are identified, and rating migration models are estimated for these peers.

FAs that are further downgraded are compared to speculative grade-rated peers

experiencing a downgrade, and FAs that regain investment grade status are

compared to their peers experiencing an upgrade.

Cox’s hazard model (Cox 1972) is considered a preeminent method to estimate

the probability that an issuer survives in its current rating grade (start rating) at any

1See, for example, Altman and Kao (1992b), Carty and Fons (1994), Lando and Skodeberg (2002),

Hamilton and Cantor (2004), and Figlewski et al. (2012).
2See Carty and Fons (1994) and Lando and Skodeberg (2002).
3See, for example, Altman and Kao (1991, 1992a, b).
4See Altman (1998) and Figlewski et al. (2012).
5See Mann et al. (2003), Vazza et al. (2005a), and Figlewski et al. (2012).

72 Rating Dynamics of Fallen Angels and Their Speculative Grade-Rated Peers 1947



point in time t over the time horizon T. In this study, estimation is based on two

hazard models including a Cox’s proportional hazard model (Cox 1972) and

a Cox’s dynamic hazard model. The Cox’s proportional hazard model (static

model) employs a static estimation framework and incorporates time-independent

covariates. The Cox’s dynamic hazard model (dynamic model) departs from the

conventional Cox’s proportional hazard model by adopting a dynamic estimation

framework and including both time-independent and time-varying covariates. The

dynamic model captures the evolution of the macroeconomic environment over the

time during which the current rating persists. Time-varying survival probability

estimates were generated by the static and the dynamic hazard models for FAs and

FA peers out of sample. The Brier score (Brier 1950) was used to assess the

predictive accuracy of survival probability estimates. The covariance decomposi-

tion of the Brier score (Yates 1982) provides insights into the sources of forecast

errors.

The results of the proportional and dynamic hazard models for upgrades and

downgrades of FAs and their peers offer an improved understanding of the follow-

ing questions: First, how can rating history, after controlling for the industry sector

and the economic environment, explain and predict subsequent rating changes for

FAs and their peers? Second, does the development of economic factors over rating

durations matter, and if so, how does it affect the migration hazards of FAs and FA

peers? Third, does the impact of rating history on the migration process persist in

a dynamic estimation framework? Fourth, does the dynamic estimation framework

improve the forecast performance of rating history?

Comparing the proportional and the dynamic hazard models for FA issuers with

the respective models for FA peers, the results show that the significant variables

differ. In a dynamic estimation framework, the downgrade process of FAs exhibits

strong dependence on macroeconomic factors, whereas the upgrade process is

entirely determined by the current rating and rating history. For FA peers, down-

grades are substantially influenced by past rating behaviors, whereas upgrades are

strongly impacted by the industry sector. It is clear that issuer-heterogeneity (rating

history, industry sectors) and time-heterogeneity (macroeconomic environment)

jointly, and in several cases separately, are more important than the current rating

in determining future rating changes. A key finding is that past rating behaviors

persist even after controlling for the industry sector and the evolution of the

macroeconomic climate over rating durations. Switching from a static to

a dynamic estimation framework markedly improves the forecast performance of

the upgrade hazard model for FAs.

The contribution of this study is threefold. First, it enriches and strengthens the

evidence of issuer-heterogeneity and time-heterogeneity in the rating dynamics of

FAs and their peers observed in both static and dynamic estimation frameworks.

The study incorporates well-documented empirical properties and presents new

evidence on additional aspects of rating history which has received little attention in

previous studies. Second, the study contributes to the framework for estimating

rating migration models. Cox’s hazard model with time-varying covariates is

well suited to model recurrent rating migration events. The study overcomes
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computational challenges in forming dynamic survival estimates when the standard

proportionality assumption of the Cox’s hazard model does not hold. The dynamic

predictions allow the survival probability estimates of holdout issuers to vary over

the forecast horizons. Finally, the study enriches the literature on the framework for

evaluating probability forecasts. The Brier score has received little attention in

finance studies6 though it is a popular measure for ex post evaluation of probability

forecasts in meteorology (Murphy and Winkler 1977; Winkler 1996). The covari-

ance decomposition (Yates 1982) of the Brier score offers the possibility to evaluate

forecast characteristics in terms of discrimination, calibration, and variance.

This study is structured as follows: Sect. 72.2 provides a discussion of the

literature on rating migration dynamics. Section 72.3 presents the method used,

followed by a description of the data in Sect. 72.4. Section 72.5 summarizes the

results of the models for FAs and their peers. Section 72.6 presents the Brier scores

and Yates’s covariance decompositions. Section 72.7 summarizes the main

findings.

72.2 Literature Review

This section provides a summary of the literature on corporate rating dynamics of

FAs and their speculative graded-rated peers, with a focus on issuer-heterogeneity

(rating history, industry sector) and time-heterogeneity (business cycle).

The literature suggests that various aspects of rating history such as rating

momentum, duration dependence, aging effect, and the first rating impact on future

rating distribution. Issuers downgraded to a given rating, compared with those

upgraded to the same rating grade, are more likely to drop to lower rating categories

(Altman and Kao 1992b; Carty and Fons 1994; Bangia et al. 2002; Lando and

Skodeberg 2002; Hamilton and Cantor 2004; Mah and Verde 2004; Figlewski

et al. 2012). Issuers of different lagged rating durations have different departure

probabilities out of the current rating (Carty and Fons 1994; Lando and Skodeberg

2002). Newly rated firms, compared with seasoned firms of the same rating class,

exhibit a smaller probability of rating migrations within a few years (Altman and

Kao 1991; Altman 1992, 1998). The longer since a firm was first rated, the more

likely it will default (Figlewski et al. 2012). Furthermore, new issues of different

ratings retain their original ratings in a different manner and their rating stability

varies over time. For example, originally BB-rated bonds, which were in the

speculative grade barrier, exhibit the least stability in retaining the initial rating

and do not show a clear propensity to migrate in either direction (Altman and Kao

1991, pp. 19–20, 1992b, pp. 65–67).

6Samuelson and Rosenthal (1986), Bessler and Ruffley (2004), Yao et al. (2005), Grunert

et al. (2005), and Dang (2010) are among the few studies in finance that applied this scoring

rule to assess the predictive accuracy of estimated models. Johnstone (2002) suggested that the

Brier score performs better than categorical measures in accurately assessing forecast

performance.
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For a FA, the rating it received on the fall date strongly impacts on its future

rating changes (Mann et al. 2003). FAs which plunge to the speculative grade

barrier (Moody’s Ba or Standard & Poor’s BB class) exhibit a greater propensity to

rise to the investment grade territory and are less vulnerable to default. The higher

the rating a FA received prior to and after the fall date, the more likely it will

become a “prodigal son” and regain investment grade status. FAs, during the initial

years of financial distress, experience strong downward momentum (Mann

et al. 2003) and tend to travel multiple notches downward in a drastic and quick

succession rather than through gradual, mild steps (Johnson 2004). This pattern

is understandable as once FAs lose their investment grade status, their operations

are impaired due to regulations or private contracts (Cantor and Packer 1997;

Standard & Poor’s 2001).

Industry risk is an important determinant of rating distribution. In general,

ratings from the utility sector are more stable than those from the industrial sector

due to a smaller volatility of future revenues (Kadam and Lenk 2008). For FAs,

utilities are more likely to be upgraded for every horizon, whereas nonutilities do

not exhibit exceptional performance or a favorable tendency towards upgrades

(Altman and Kao 1992a, p. 19). The magnitude of subsequent rating changes for

nonutility FAs is dramatic. Public utility FAs exhibit strong negative serial corre-

lation and are more likely to rise up the rating scales after the fall date. In contrast,

nonutility FAs display a positive serial correlation and tend to continue the down-

ward journey after losing the investment grade status (Altman and Kao 1992a). FAs

in high-velocity sectors such as telecommunications exhibit rapid deterioration in

their credit profile. Distressed FAs tend to be weeded out during shakeouts while

surviving FAs cling to life and show strong recovery within 5 years from their fall

date. In contrast, FAs in low-velocity sectors such as leisure and media experience

slow decline in creditworthiness, but they do not make a strong rebound in the

subsequent years (Vazza et al. 2005a, p. 17).

In terms of time-heterogeneity, speculative grade-rated issuers exhibit different

migration patterns as time extends (Carty and Fons 1994). Issuers of low credit

ratings such as B and Caa are vulnerable to a downgrade in the short term and have

a migration probability that decreases with time. If they survive but fail to substan-

tially improve their credit quality, they tend to retain their existing ratings over

a long time. Issuers in the middle rating grades such as Ba can either go up or go

down the rating scale and have a migration probability that varies constantly

with time.

FAs, following the fall date, exhibit a faster rate of migration, a greater likelihood

to default, and a shorter median time to default compared with their peers7 (Mann

et al. 2003;Vazza et al. 2005a). However, as time passes FAs gained a robust franchise

value, enhanced business strength, and improved profitability (Vazza et al. 2005a).

7Vazza et al. (2005a) defined FA peers as those originally rated in speculative grades and have

identical rating distribution characteristics as FAs. Mann et al. (2003) defined FA peers as

speculative grade-rated issuers that were of the same ratings as FAs at the time they lost investment

grade status and never rated in the investment grade spectrum.
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In the long term, FAs are less risky, display a greater tendency to survive, and aremore

likely to rise back to the investment grade territory. Non-defaulted FAs appear to cling

to life for many more years than their peers.

The time-heterogeneity in the rating migration dynamics of FAs and their peers

can partly be attributed to macroeconomic conditions. The state of the economy is

a major driver of systematic credit risk (Blume et al. 1991), and low ratings are

more sensitive to business cycles than high ratings. The occurrence of downgrades

and the generation of FAs soar as market conditions deteriorate (Nickell et al. 2000;

Vazza et al. 2005a). Furthermore, rating volatility increases during business cycle

troughs and decreases during peaks. Thus, failure to account for the state of the

economy may result in an underestimation of “downward potential of high-yield

portfolio” in contraction periods or “suboptimal capital allocation in lending

business” (Bangia et al. 2002, p. 469).

The above evidences emphasize the need to account for rating history, industry

sector, and the business cycle inmodelling the ratingmigrations of FAs and their peers.

72.3 Models

72.3.1 Rating States

The substantive processes that govern the occurrence and timing of downgrade and

upgrade events to FAs/FA peers were examined using the survival analysis frame-

work (Allison 1984; Blossfeld et al. 1989; Yamaguchi 1991; Hosmer et al. 2008;

Dang 2010; Figlewski et al. 2012). A rating state starts from the time an issuer is

downgraded to a rating class (start rating) subsequent to the commencement date of

the study. For a FA, the start rating is also the rating it receives on the fall date upon
its entrance to speculative grade territory. The rating state ends at the time the issuer

migrates to another rating class (end rating), withdraws from being rated, or the

observation period terminates. The time a firm keeps the same rating grade is the

survival time (survival duration). If a firm exits from a rating class due to any reason

other than the migration event of interest, the survival time is treated as censored. In

the upgrade model, down states (rating states with the start rating better than the

end rating) are censored and vice versa for the downgrade model. Rating states

finishing after the end of the model estimation period are also treated as censored.

Survival analysis addresses this type of censoring by examining only that part of the

duration in the estimation period (Yamaguchi 1991; Blossfeld and Rohwer 1995).

Rating states are pooled across issuers and time. Rating states that pass the

screening test of having experienced at least two migrations (i.e., non-censored

lag-one and lag-two rating states8) will remain in the sample and be incorporated in

8To get enough observations to make meaningful inference of the effect of rating history, the study

considers lag-one and lag-two rating states. By definition, all FAs and FA peers in the study

experienced a downgrade at lag-one rating state.
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the estimation process. The estimation procedure makes use of event time risk sets,

which are composed of all the firm ratings that are at risk of a rating change at event

time t. In the process of estimating the model, a new risk set is formed at each event

time t when a rating transition occurs. Firm ratings leave the risk set once they

experience a rating transition or when they are censored.

An issuer may contribute several rating transitions to the dataset. The presence

of repeated rating transitions for the same firm is likely to introduce dependence

among the observations. This problem is reduced to the extent that covariates in

the models control for dependence. To allow for any dependence, the marginal

event-specific method (Wei et al. 1989) is used to obtain robust variance esti-

mates. Under this approach, rating states contribute to an event time risk set as

long as they are under observation at the event time t the risk set is formed. The

event time risk set arrangement “resets the clock” after a migration event occurs

and time is measured from the last downgrade event. The emphasis is on the

duration between the last downgrade event and the subsequent migration event

and “each migration event is analyzed as a separate process” (Hosmer et al. 2008,

pp. 290–294).

72.3.2 Cox’s Hazard Models

Cox’s proportional and dynamic hazard models were developed for two generic

migration outcomes (upgrade and downgrade) and were estimated separately for

FAs and FA peers over the period 1984–2000. Survival analysis in general and

Cox’s hazard model in particular offer several advantages over the discrete time

cohort Markov approach widely used by credit rating agencies. The hazard model

uses both completed transitions and censored observations in the estimation process

(Yamaguchi 1991), resulting in consistent parameter estimates (Allison 1995). It

does not make any assumptions about the distribution of survival times (Allison

1995) and provides descriptive information of the survivor function of event times

(Lee 1980). It is possible to incorporate time-varying covariates into the model to

capture the evolution of risk factors over time (Allison 1995, p. 183). It also allows

a rigorous testing of issuer-heterogeneity and time-heterogeneity in rating dynam-

ics (Lando and Skodeberg 2002).

72.3.2.1 Cox’s Proportional Hazard Model
The Cox’s proportional hazard model (Cox 1972) can be expressed as follows:

hm t; Zð Þ ¼ h 0; tð Þexp Zm
j bj

h i
(72.1)

where hm(t, Z) is the migration hazard of rating state m at time t given its time-fixed

covariate vector Zj
m. h(0,t) is the unspecified nonnegative baseline hazard, which is

the hazard with the covariate vector set to zero, at time t. bj is the vector of

estimated coefficients for time-fixed covariate vector Zj
m.
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The likelihood Lmtm that rating state m experiences a rating migration of interest at

ordered time tm is calculated as follows:

Lmtm ¼
exp bjZ

m
j

� �
X

i2R tmð Þ
exp bjZ

i
j

� � (72.2)

where i represents a rating state in the risk set formed at ordered event time tm,
R(tm).

The baseline hazard h(0,t) cancels out in the numerator and denominator when

forming the likelihood function and is not required in the estimation process.

Taking the product of the likelihoods, for all states that migrated, across

N ordered migration times tm gives the full partial likelihood, PL, as follows:

PL ¼
YN
m¼1

Lmtm ¼
YN
m¼1

exp bjZ
m
j

� �
X

i2R tmð Þ
exp bjZ

i
j

� �

2
6664

3
7775 (72.3)

The vectors of the estimated coefficients b̂j can be obtained in the absence

of knowledge of the baseline hazard h(0, t) by maximizing the full partial

likelihood in Eq. 72.3 (Kalbfleisch and Prentice 1980; Namboodiri and Suchindran

1987; Lawless 2003). Appendix 1 presents further details of the estimation

approach.

The Cox’s proportional hazard model has the property that the hazards for any

two firms m and n in the risk set R(tm) does not vary between observed event times

(Lawless 2003). Taking the ratio of the hazards for firms m and n and applying

Eq. 72.1,

hm t; Zð Þ
hn t; Zð Þ ¼

h 0; tð Þexp Zm
j bj

h i

h 0; tð Þexp Zn
j bj

h i ¼ exp bj Zm
j � Zn

j

� �h i
(72.4)

In the presence of time-fixed covariates Zj, this property can be used to derive the
estimated baseline hazard ĥ 0; tð Þ (see Lawless 2003).

The estimated hazard function of holdout state q at time t, ĥq t;Z½ � , can

be obtained by substituting in Eq. 72.1 the estimated baseline hazard ĥ 0; tð Þ derived
from in-sample analysis, the estimated coefficient vector b̂j obtained from Eq. 72.3,

and state q’s actual covariate vector Zj
q. The estimated survival function of holdout

state q at time t is

Ŝq t; Z½ � ¼ exp�
X

ĥq t; Z½ �
� �

(72.5)
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72.3.2.2 Dynamic Cox’s Hazard Model
The dynamic Cox’s hazard model can be expressed as follows:

hm t,Z,Z tð Þ½ � ¼ h 0; tð Þexp Zm
j bj þ Zm

p tð Þbp
h i

(72.6)

where hm(t, Z, Z(t)) is the migration hazard of rating state m at time t given its time-

fixed covariate vector Zj
m and its time-varying covariate vector Zp

m(t). h(0, t) is

the unspecified nonnegative baseline hazard at time t. bp is the vector of

estimated coefficients for time-varying covariate vector Zp
m(t), and bj is the vector

of estimated coefficients for time-fixed covariate vector Zj
m.

The likelihood Lmtm is constructed similarly as in Eq. 72.2:

Lmtm ¼
exp bjZ

m
j þ bpZ

m
p tmð Þ

h i
X

i2R tmð Þ
exp bjZ

i
j þ bpZ

i
p tmð Þ

h i (72.7)

The full partial likelihood PL is constructed similarly as in Eq. 72.3:

PL ¼
YN
m¼1

exp bjZ
m
j þ bpZ

m
p tmð Þ

h i
X

i2R tmð Þ
exp bjZ

i
j þ bpZ

i
p tmð Þ

h i

2
6664

3
7775 (72.8)

The estimation process requires the updated values of time-varying covariates

Zp(t) at each event time for all states i in the risk set formed at that event time

(Andersen 1992). The vectors of the estimated coefficients b̂j and b̂p can be obtained

by maximizing the full partial likelihood in Eq. 72.8.

In the presence of the time-varying covariates Zp(t), the ratio of the hazards for

firms m and n is not constant between observed event times:

hm t,Z,Z tð Þ½ �
hn t,Z, Z tð Þ½ � ¼

h 0; tð Þexp Zm
j bj þ Zm

p tmð Þbp
h i

h 0; tð Þexp Zn
j bj þ Zn

p tmð Þbp
h i (72.9)

hm t,Z,Z tð Þ½ �
hn t,Z, Z tð Þ½ � ¼ exp bj Zm

j � Zn
j

� �
þ bp Zm

p tmð Þ � Zn
p tmð Þ

h in o

It is therefore not possible to extract the baseline hazard h(0, t) from the dynamic

Cox’s hazard model regression results. To resolve this issue, this study takes an

approach proposed by Andersen (1992) and adapts the SAS codes published by

Chen et al. (2005). The integrated baseline hazard function H(0, t) can be estimated

given the vectors of the estimated coefficients b̂p and b̂j obtained from Eq. 72.8:
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Ĥ 0; tð Þ ¼
X
tm�t

DmX
i2R tmð Þ

exp b̂jZ
i
j þ b̂pZ

i
p tmð Þ

� � (72.10)

where Dm is the indicator for whether the migration event occurred to state m at

ordered time tm within the interval [0, t].
The integrated baseline hazard function H(0, t) can also be expressed as a step

function discontinued at ordered event time tm (Chen et al. 2005):

H 0; tð Þ ¼
X
tm2t

h 0; tm�1ð Þ tm � tm�1ð Þ½ � (72.11)

The estimated baseline hazard function ĥ 0; tð Þ can be derived from Eqs. 72.10

and 72.11. The use of a step function is well suited to speculative grade-rated

issuers given their volatile ratings and rapid migration propensity. The narrow gaps

between successive event times allow relatively accurate estimation of the baseline

hazards.

The estimated hazard function of holdout state q at time t, ĥq t,Z, Z tð Þ½ �, can be

obtained by substituting in Eq. 72.6 the estimated baseline hazard function ĥ 0; tð Þ
derived from Eqs. 72.10 and 72.11, the estimated coefficient vector b̂p and b̂j

obtained from Eq. 72.8, and state q’s actual covariate vector Zj
q and Zp

q(t). The
estimated survival function of holdout state q at time t is

Ŝq t,Z,Z tð Þ½ � ¼ exp�
X

ĥq t, Z,Z tð Þ½ �
� �

(72.12)

72.3.3 Forecast Evaluation

72.3.3.1 Forecast Horizons
The conventional forecast horizon is 1 year, and credit rating agencies, in practice,

publish annual transition matrices. In this study, survival probability estimates for

holdout issuers were formed at 1- and 2-year horizons. These forecast horizons were

selected for the following reasons: First, there are noticeable concentrations of

estimation rating states in survival durations of 1–2 years, resulting in consistent

estimates of the baseline hazard at time t¼ 1 year and t¼ 2 years. The availability of

holdout observations at 1- and 2-year horizons allows an unbiased accuracy assess-

ment of the models’ forecast performance. Second, as implied byMann et al. (2003),

the 2-year time frame highlights the relative risk of FAs as compared to their peers.

The 1- and 2-year forecast horizons also provide a short-term and near-intermediate-

term prospective which is relevant to speculative grade-rated issuers. Third, it is

of particular interest to examine the predictive accuracy of rating history at 1- and

2-year horizons given the evidence that the Markov property adequately holds

within 1 or 2 years (Kiefer and Larson 2007; Frydman and Schuermann 2008).
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72.3.3.2 Brier Score
The actual survival status of each issuer in the holdout sample was recorded and

mapped against the survival probability estimate generated by the static/dynamic

hazard models at forecast time t. The Brier score (Brier 1950) at forecast time t, Bt,

is defined as follows:

Bt ¼

XNt

q¼1

f state_qt � astate_q
� �2

Nt
(72.13)

where

Nt is the number of survival forecasts at time t (the number of holdout rating

states at time t)
ft
state_q indicates the survival probability forecast that the holdout state q will

survive at forecast time t9

astate_q is the known survival outcome of holdout state q. If holdout state

q survives, astate_q ¼ 1, and if holdout state q experienced the migration event of

interest (i.e., a downgrade in the downgrade model or an upgrade in the upgrade

model), astate_q ¼ 0.

72.3.3.3 Covariance Decomposition
Using the covariance decomposition (Yates 1982), the Brier score can be broken

down into skill components including slope (discrimination), bias (calibration), and

scatter (variance).10 The most basic form of the covariance decomposition of Brier

score at the forecast time t, Bt, is given as

Bt ¼ dt 1� dt
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Uncertainty

þ ft � dt
� �
|fflfflfflffl{zfflfflfflffl}
Bias square

2 þ S2f t|{z}
Scatter

�2Sf tdt|{z}
Covariance

(72.14)

where

dt, or d for short, is the overall mean survival index, or the survival base rate at

time t
dt 1� dt
� �

, or d 1� d
� �

for short, is the variance of the outcome index at the

forecast time t
ft, or f for ease of notation, is the overall mean survival forecast at the forecast

time t
ft � dt
� �

, or f� d
� �

for short, is the bias of forecasts at the forecast time t

9The notation was changed from Ŝq t;Z½ � Eq. 72.5 or Ŝq t,Z,Z tð Þ½ � Eq. 72.12 to ft
state_q to provide

a compact presentation of the formula in a form consistent with the literature review on the Brier

score.
10The covariance decomposition proposed by Yates (1982) provides components of forecast

accuracy that are more basic than the Sander (1963) and Murphy (1973) decompositions (Yates

1982, p. 141).
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S2f t, or Sf
2 for short, is the variance of the forecasts, or scatter, at the forecast time t

Sf tdt , or Sfd for short, is the covariance of the survival outcome index and the

survival probability forecasts at the forecast time t.
The component,d 1� d

� �
, namely, the outcome index variance, is determined by

“natural forces.” It reflects an aspect of forecast accuracy that does not depend on

the predictive power of the estimated model (Yates 1982, p. 139).

The first skill component, f� d
� �

, or bias, indicates the ability of the estimated

model to match the overall mean survival probability forecast f to the mean survival

outcome index d (Yates 1982). Bias reflects the overall pessimism or optimism of

the forecaster in assigning probability survival forecasts to holdout observations.

This term can be either positive or negative. The smaller the absolute value of bias,

the lower the Brier score.

The second skill component, scatter or Sf
2, is the pooled variance of the forecasts.

This term is derived from the distribution of the probability survival forecasts

assigned to survived states f1 and forecasts assigned to non-survived states f0
(Arkes et al. 1995, p. 121). Scatter represents the “noisiness” of survival probability

forecasts and reflects the sensitivity of the model to information that is not related to

the event occurrence. The smaller the scatter, the lower the Brier score. The scatter,

or variance of forecasts, Sf
2, takes a minimum value of zero when the model

produces constant forecasts.

The third term of the skill components, covariance Sfd, can be expressed as

Sfd ¼ f1 � f0
� �

d 1� d
� �� �

(72.15)

where

f1 is the mean survival forecasts assigned to rating states that actually survived

f0 is the mean survival forecasts assigned to non-survived states, i.e., states that

experienced the migration event of interest.

Since the outcome index variance d 1� d
� �

is determined by “natural forces,”

the covariance is determined by the term f1 � f0
� �

(Yates 1982, p. 138). This term is

equal to the slope of the regression line for a survival forecast on the outcome index.

Given a base rate d, the larger the term f1 � f0
� �

or the steeper the slope, the lower

the Brier score. The slope indicates the ability of the model to distinguish between

the group of survived states f1 and the group of non-survived states f0. A steeper

slope reflects the model’s ability to assign higher probability survival forecasts to

survived states than to non-survived states. It also shows the model’s sensitivity to

the information that is related to the event occurrence.

72.3.4 Variables

72.3.4.1 Measurements of Variables
Rating Scales
Corporate issuer ratings were obtained from Standard & Poor’s CreditPro 2005

dataset. The data does not include rating outlooks and credit watch listings.
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Standard & Poor’s alphabetical rating scale includes 10 major rating categories

varying from excellent credit quality (AAA) to default (D) as follows: AAA,

AA, A, BBB, BB, B, CCC, CC, C, and D. A plus (+) or a minus (�) can be

added to ratings from AA to CCC to capture the relative ranking within each rating

class.11 Ratings from AAA to BBB� are investment grade and ratings from BB+ to

C are speculative grade.

This study employs a numerical rating scale to represent Standard & Poor’s

alphabetical rating scale. For the rating classes above AA+ and below CCC�, the

plus (+) and minus (�) notches are not employed by Standard & Poor’s. The

omission of notches for AAA, CC, and C classes may lead to different gap lengths

in rating scales. It is suggested that a one notch rating change in low rating grades

implies a larger increase in default risk (Jorion and Zhang 2007). An issue arising

here is the treatment of the rating gap between AAA and AA+ and the gap between

ratings below CCC�. Similar to Dang (2010), this study assumed that the gap

between AAA and AA+ is not one notch but two, implicitly including AAA� in the

rating scale. A similar approach has been applied to rating classes below CCC�. As

a result, the numeric rating scales were coded from 0 to 26 with 0 indicating the

default class (D) and 26 indicating the AAA class. This numerical conversion

maintains the rank order of the letter ratings, captures fine revisions intra-ratings,

and reduces the effect of nonlinearity in the top and bottom rating classes. In

addition, a dummy variable (dummy junk boundary) was also created to capture

any nonlinearity between speculative grade rating boundary (BB�, BB, BB+) and

adjacent rating grades.

Macroeconomic Time Series
Seven macroeconomic variables12 were included in the static and dynamic hazard

models. The dummy recession indicates the state of the business cycle. The Chicago
Fed National Activity Index (CFNAI), the output growth gap (RealGDPg actual
minus potential), and the industrial production change capture general economic

activity. The S&P500 quarterly return and S&P500 annualized standard deviation
represent the performance of the stock market, while the term structure slope
reflects credit conditions.

As macroeconomic conditions are likely to affect rating migrations with a lag,

this study uses an exponentially weighted average of lagged observations computed

quarterly to construct five macroeconomic covariates (except dummy recession and
CFNAI). The construction of macroeconomic lagged values is similar to the

approach applied by Dang (2010) and Figlewski et al. (2012). The exponentially

weighted average value Xt for the quarterly series x for a given macroeconomic

variable in quarter t is calculated using data up to the previous quarter as

11http://www.standardandpoors.com/ratings/definitions-and-faqs/en/us/ (Accessed 17 August

2012)
12Seventeen macroeconomic candidate variables were considered and those that exhibited strong

multicollinearity were eliminated.
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Xt ¼

XK
k¼1

dk�1xt�k

XK
k¼1

dk�1

(72.16)

where K ¼ 6 is the length of the lagged window and d ¼ 0.6815 is the decay factor.

The CFNAI is published as a 3-month moving average and is used without

further transformation.

Of seven macroeconomic covariates, one (dummy recession) is constructed as

time-fixed in the static and dynamic hazard models, and six were constructed as

either time-fixed in the static models or time-varying in the dynamic models. The

value of the time-fixed covariate vector Zj was measured at the beginning of each

estimation and holdout rating state. The value of the time-varying macroeconomic

covariate vector Zp
m(t) for estimation state m was taken quarterly over its rating

duration, and the value used in Eq. 72.8 was updated to the most recent quarterly

value as each risk set was formed. For holdout state q, the known information of the

macroeconomic environment is limited to its commencement. Thus, the value of

the macroeconomic covariate vector Zp
q(t) used to form survival forecasts for

holdout state q was measured at state q’s beginning and entered in Eqs. 72.6 and

72.12 without being subsequently updated. So, Zp
q(t) ¼ Zp

q(t ¼ 0). The disadvantage

is that the macro data for holdout observations become static in relation to time.

72.3.4.2 Definitions of Variables
The candidate variables that capture issuer-heterogeneity (rating history, industry

sector) and time-heterogeneity (business cycle) in rating migration dynamics were

identified from the literature.

Rating Variables
Start rating: The rating at the beginning of the current rating state. For a FA

experiencing a plunge from an investment grade rating to a speculative grade

rating at lag-one state, the start rating is also the rating on the fall date.

Dummy junk boundary: This dummy takes the value of one if the start rating falls

within the speculative (junk) boundary BB�, BB, BB+, and zero otherwise.

Original rating: The rating of the firm when it was first rated.

Rate prior change: This indicates the average number of rating changes per year

over the rating history of an issuer. It is calculated as the number of prior

migrations (downgrades and upgrades) observed between the entry of the firm

to the study and the beginning of the current rating state divided by the period

from the time of entry till the start of the current rating state.

Rate prior down: This equals the average number of downgrades per year over the

rating history of an issuer. It is calculated similar to rate prior change except that
the numerator is the number of downgrades observed between the entry of the

firm to the study and the beginning of the current state.
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Lag one: The duration (in years) of the rating state that ends with a downgrade13 and
immediately precedes the current rating.

Lag two: The duration (in years) of the rating state that ends with either

a downgrade or an upgrade (i.e., is not censored) and immediately precedes

the lag-one rating.

Dummy lag2 down: This variable captures the direction of the lag-two regrade and

takes the value of one if the lag-two rating ends with a downgrade and zero

otherwise.

Number NR (not rated): This indicates the number of times a firm underwent

a break in rating history (a rating withdrawal14) from the entry of the firm to

the study until the beginning of the lag-one rating state.

Number prior fallen angel (FA): This indicates the number of times an issuer

experienced a FA event (a downgrade from an investment grade rating to

a speculative grade rating) from the entry of the firm to the study until the

beginning of the lag-one rating state.15

Number rising star (RS): This indicates the number of times a firm experienced

a RS event (an upgrade from a speculative grade rating to an investment grade

rating) from the entry of the firm to the study until the start of the lag-one rating

state.

Number big down: This indicates the number of times a firm experienced

a substantial downgrade jump, defined as a jump of at least three rating

notches,16 from the entry of the firm to the study until the beginning of the

current rating state.

Number big up: This variable indicates the number of times a firm experienced

a substantial upgrade jump, defined as a jump of at least two rating notches, from

the entry of the firm to the study until the beginning of the lag-one rating state.

Age since first rated: The rating age of the firm, which is equal to the length in years

from the time the firm was first rated until the beginning of the current state.

13By definition, all FAs and FA peers in this study experienced a downgrade at lag-one rating state.
14Rating withdrawals bear negative credit implications if there is a lack of information to

accurately assess debt issues (Carty 1997, p. 10). Issuers are likely to withdraw from being rated

when they expect a downgrade. In this case, being unrated (censored) substitutes for being

downgraded. The characteristics of issuers lost to non-independent (informative) censoring are

often associated with the [migration] process under study (Blossfeld and Rohwer 1995;

Kalbfleisch and Prentice 1980). There is no statistical test to check for and no standard methods

for handling informative censoring (Allison 1995, p. 14). In this study, two sensitivity tests

suggested by Allison (1995, pp. 249–252) to examine the effect of informative censoring on the

main results have been applied to the proportional hazard models for FAs and their peers. It is

found that being unrated is not informative.
15Number prior FA does not take into account the FA event FAs experienced at lag-one rating

state. By definition, none of FA peers in this study experienced a FA event at lag-one rating state.
16Substantial rating changes of more than one letter grade (i.e., three rating notches) were more

frequently observed in the ratings B through C (Lucas and Lonski 1992) and were less frequent

than rating revisions of small magnitude (Carty and Fons 1994; Carty 1997). Downgrades involved

a much bigger change in credit rating than upgrades (Jorion and Zhang 2007).
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Control Variables
Industry dummies: Firms’ industry sectors, as given by Standard & Poor’s, were

used to control for industry effects. The industry dummy took a value of one if the

firm was in an industry sector and zero otherwise. Due to their unique business

nature and credit risk exposure, firms in the financial institution sector17 were

excluded from the study. The data include 11 sectors, which resulted in ten

dummy variables with the insurance sector left uncoded.
Industrial production change: As published by the US Federal Reserve Board.

RealGDPg actual minus potential (output growth gap): This variable measures

the deviation of the actual real GDP growth (as published by the US Bureau of

Economic Analysis) from the potential real GDP growth (as published by the

St. Louis Federal Reserve).

CFNAI (Chicago Fed National Activity Index): This composite index is

published by the Chicago Federal Reserve and is computed as a 3-month moving

average of 85 monthly economic series.

Dummy recession: This variable takes the value of one if the rating state starts at
the time of a recession, defined by the National Bureau of Economic Research, as

1 August 1990 to 31 March 1991 or 1 April 2001 to 30 November 2001, and zero

otherwise.

S&P500 quarterly return: Definition sourced from Datastream.

S&P500 annualized standard deviation: Daily returns for the quarter are used to
compute the standard deviation and this is expressed as an annual standard

deviation.

Term structure slope: The slope is measured as the spread between 3-month and

10-year US Treasury ConstantMaturity rates as published by the US Federal Reserve.

72.4 Data

72.4.1 Estimation and Holdout Periods

The rating behaviors of FAs and their peers in the USA were examined over the

period 1984–2000.18 This period covers different phases of the business cycle in

the USA including the economic recession from July 1990 to March 1991.

17According to Lando and Skodeberg (2002), most financial institutions were assigned investment

rating grades. As confidence- and capital-sensitive entities, it is difficult for financial institutions to

run business with a poor credit profile or low credit rating. Lando and Skodeberg (2002) found that

the duration dependence and the downward momentum are less pronounced for issuers in the

financial institution sector than for issuers in other sectors. As this study examines the question of

rating history dependence in the rating dynamics of speculative grade-rated issuers, financial

institution sector was excluded from this study.
18The year 1984 was selected as the starting point for several reasons. 1982 is as far back as all

macro data are available, and Standard & Poor’s rating scales were changed in 1983. The growth

of the US high-yield bond market and rating migrations from 1984 also constitute a significant

source of events to this study.
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The estimation period also captures major market downturns such as the stock

market crash in 1987 and the collapse of the Long-Term Capital Market Hedge

Fund in 1998. The period subsequent to the estimation period, 2001–2005, was used

to construct holdout samples for FAs and their peers. The holdout period observed

the 9/11 terrorist attack, the internet bubble burst, and the economic recession from

March 2001 to November 2001. This period also witnessed altered business

dynamics stemming from deregulations, the shakeouts that weeded out vulnerable

FAs in high-velocity sectors, and the notorious collapse of tainted FAs such as

WorldCom and Enron.

The descriptive statistics of the time series for the exponentially weighted

average (except CFNAI) of macroeconomic variables are presented in Table 72.1.

Additional analysis (not reported) indicates that macroeconomic time series in the

estimation and holdout periods have statistically different mean and median values

(except term structure slope).

72.4.2 Estimation and Holdout Samples

The estimation population includes 276 FAs and 1,102 FA-peer candidates. From

the pool of 1,102 peer candidates, 276 observations were randomly chosen to form

the FA-peer estimation sample. The holdout population includes 141 FAs and

937 FA-peer candidates. The FA-peer holdout sample with 141 observations was

created randomly from the universe of 937 FA-peer candidates.19

The frequency of downgrades and upgrades for FA and FA peers in the estimation

and the holdout samples are presented in Table 72.2. The migration propensity of

estimation and holdout FAs differed markedly. Compared to estimation FAs, hold-

out FAs are more vulnerable to downgrades and are less likely to regain investment

grade status. This reinforces the notions that trends in corporate credit quality

change over time (Carty and Fons 1994), with downgrades outnumbering upgrades

(Altman and Kao 1991; Lucas and Lonski 1992; Lando and Skodeberg 2002).

72.4.3 Survival Time Distribution

The descriptive statistics of the survival time (survival duration) of FA/FA-peer

down states and up states in the estimation and holdout periods are summarized in

Panel A/Panel B of Table 72.3, respectively. Additional analysis (not reported)

shows that FA and FA-peer down states (up states) in the estimation (holdout)

period have statistically different mean survival time values.

19The FA sample and the universe of FA-peer candidates in the estimation/holdout period have

markedly different distribution of issuers in the upper speculative rating classes (BB, BB+). Thus,

it is impossible to construct from the candidate pool a FA-peer sample with the same current rating

distribution and the same sample size as the FA sample for either the estimation or the holdout

period.
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The survival duration histograms of FA/FA-peer down states and up states in the

estimation sample are depicted in Fig. 72.1. The time-to-event distributions are

quite different between down states and up states. For down states, particularly FA

peers, the histograms suggest that further decline in survival duration tends to be

swift. There is a noticeable concentration of FA/FA-peer down states in durations

within 1 year, whereas the durations for FA/FA-peer up states tend to be longer.

As shown in Table 72.3 and Fig. 72.1, estimation FA peers are riskier than

estimation FAs as evidenced by a higher (lower) likelihood to downgrade (upgrade)

and a shorter median time to downgrade. The reverse applies in the holdout period.

Holdout FAs are more vulnerable to downgrades and experience a shorter (longer)

median time to downgrade (upgrade) than holdout FA peers (Table 72.3). This is

consistent with the notion that FAs display faster downward migration and greater

rating velocity than their peers within few years since the fall date.

72.5 Estimation Results

The Cox’s proportional hazard models and the Cox’s dynamic hazard models were

estimated for FAs/FA peers over the period 1984–2000. The results of the estimated

hazard models are given in Panel A – Table 72.4. Panel B – Table 72.4 – is

appended to Panel A and provides statistics on the fit of the models. The backward

stepwise estimation procedure was employed. Significant variables were retained in

the models according to the log-likelihood ratio test, at the 10 % level or better,

derived from the maximum likelihood procedure used to estimate the models.

In interpreting Panel A of Table 72.4, a negative coefficient reduces the hazard of

the migration event being modelled. The reported hazard ratios represent the

relative change in the hazard for a one-unit change in the independent variable.

The discussion that follows focuses on the effect of past rating behaviors on the

downgrade and upgrade hazard of FAs and their peers.

72.5.1 Cox’s Proportional Hazard Models

72.5.1.1 Control Variables
With respect to macroeconomic variables and industry sector dummies, several key

results are observed (Panel A of Table 72.4). FAs, particularly with respect

to upgrades, are sensitive to the economic environment prevailing on the fall date.

Table 72.2 Downgrade and upgrade frequency

FAs FA peers

Total Down states Up states Total Down states Up states

Estimation sample,

1984–2000

276 102 (37 %) 104 (37.7 %) 276 163 (59 %) 46 (16.7 %)

Holdout sample,

2001–2005

141 83 (58.9 %) 13 (9.2 %) 141 71 (50.4 %) 22 (15.6 %)
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For example, changes in CFNAI have no impact on the downward journey of FAs,

whereas a one-unit increase in CFNAI makes a return to the investment grade

universe 799.3 % more likely. On the other hand, FA peers are more vulnerable to

industry risk. Those in the utility s ector are 135.8%more vulnerable to downgrades.

This is in contrast to the notion that issuers in utility sector have a stable rating

process (Kadam and Lenk 2008). It is noticeable that macroeconomic conditions are

not significant, whereas industry sectors are the key determinants of the upgrade

probability of FA peers. Those in high technology/computers/office equipment,
forest and building products/homebuilders, or transportation sectors are hundreds

of percentage points more likely to become rising stars.

72.5.1.2 Rating Behaviors
FAs and their peers exhibit different dependence on the current rating and past

rating behaviors (Panel A of Table 72.4). The start rating – the rating a FA received

on the fall date – and dummy lag2 down are not significant in determining the

downgrade hazard of FAs. The absence of start rating in the downgrade model is in

direct contrast to the Markov property and is inconsistent with the “destination

pattern” – the lower a rating a FA descends to, the more likely it will default (Mann

et al. 2003, p. 5). On the other hand, the absence of dummy lag2 down reinforces the
notions that the strong effect of a previous rating change become weaker with the

passage of time (Hamilton and Cantor 2004, p. 10) and does not persist after 2 or

3 years (Fledelius et al. 2004).

Two rating history variables (number big up and lag one) are significant in the

downgrade model for FAs. The effect of number big up seems to contradict credit

rating agencies’ policy to “limit rating reversal and dampen rating volatility”

(Hamilton and Cantor 2004, p. 3). A substantial jump to higher rating grades

(number big up) makes a rating bounce 148.4 % more likely. In contrast to number
big up, lag one has a smaller impact. Extending the duration of lag-one rating state

by 1 year merely increases the probability that the current rating persists by 15 %.

The effect of lag one is consistent with the duration dependence phenomenon

suggested by Lando and Skodeberg (2002).

The downgrade process of FA peers exhibit substantial dependence on past

rating behaviors. Those experiencing a downgrade at lag-two rating state (dummy
lag2 down) are 270 % more likely to descend to lower rating classes. The strong

impact of dummy lag2 down is consistent with the downward momentum in

corporate rating dynamics.20 Prior rating volatility (rate prior change) and prior

downgrade volatility (rate prior down) have reverse coefficient signs, of which the

earlier dominates with a 10 times stronger effect. Increasing prior rating volatility

20The effect of a previous rating change decays as time passes (Hamilton and Cantor 2004, p. 10).

Thus, the shorter the lag-one rating state, the more influential the rating change at lag-two state

(dummy lag2 down). Additional analysis (not reported) indicates that FA peer down states have

a shorter lag one than FAs down states. Consequently, the effect of dummy lag2 down on the

probability of a subsequent downgrade persists on FA peers but does not hold on FAs (as discussed

earlier).
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(rate prior change) by one migration per year makes a further downgrade for FA

peers 917.5 % more likely. In comparison to dummy lag2 down and rate prior
change, the current raring (start rating) and rating age (age since first rated) have
a modest effect. The better the current rating (start rating) and the longer the time

since an issuer was first rated (age since first rated), the more likely a FA peer will

retain its current rating. The effect of age since first rated contrasts with the notion

that aging issuers are vulnerable to downgrades and default (Altman and Kao 1991;

Altman 1992, 1998; Figlewski et al. 2012).

The upgrade models for FAs and FA peers share two common variables; both

capture the current rating state (start rating and dummy junk boundary). FAs and
their peers with a better start rating are more likely to stay in their current rating

grade. Those in the speculative grade barrier, BB+, BB, or BB� (dummy junk
boundary), have a favorable tendency towards upgrades and are several times more

likely to be rising stars. The effect of dummy junk boundary is more pronounced

than the effect of the start rating and is stronger for FAs than FA peers. The effect

of dummy junk boundary is consistent with the “destination pattern” – a higher

rating assigned to a FA upon its entrance to the speculative rating spectrum makes

a return to the investment rating universe more likely. This is most apparent in the

speculative grade boundary (Mann et al. 2003, p. 5).

Only one rating history variable is significant in the upgrade models for FAs and

FA peers. FAs with a prior rating withdrawal (number not rated) are 133 % more

likely to regain the investment grade status. In contrast, FA peers with a frequent

migration history (rate prior change) are 25.8 % less likely to ascend to higher

rating grades.

Overall, in a static estimation framework, several aspects of rating history are

key determinants of the migration hazard of FAs/FA peers. The question is whether

the impact of rating history persists in a dynamic estimation framework?

72.5.2 Dynamic Cox’s Hazard Models

Some noticeable changes were observed when switching from a static to a dynamic

estimation framework. The following discussion focuses on the distinguishing

features between the respective proportional models and the dynamic models for

FAs and their peers (Panel A of Table 72.4).

72.5.2.1 Control Variables
In a dynamic estimation framework, the downgrade process of FAs and their peers

exhibit strong dependence on macroeconomic conditions, whereas their upgrades

are entirely driven by the current rating, past rating behaviors, and industry sectors.

This reinforces the concept that upgrades are more sensitive to firm-specific risk

factors than macroeconomic shocks.

FAs, with respect to downgrades, are very sensitive to the economic environment

prevailing at each migration time. During an economic recession (dummy recession)

1970 H. Dang



or a period of large output growth gap (RealGDPg_actual_minus_potential) and
large industrial production change, FAs exhibit rapid deterioration and are hundreds
of percentage points more vulnerable to downgrades.

72.5.2.2 Rating Behaviors
For downgrades, relative to the corresponding static model, the dynamic model for

FAs/FA peers includes the same set of significant rating variables; all of them retain

the same coefficient signs. The substantial effect of past rating volatility (rate prior
change) on FA peers diminishes though it still dominates other rating behaviors. In

both estimation frameworks, the current rating (start rating) is either not significant
or has a minimal impact on the downgrade process of FAs and their peers.

For upgrades, the results of the proportional and dynamic models for FA peers

are consistent, with one exception. Rate prior down replaces rate prior change and
has a similar coefficient. FA peers with a frequent downgrade history (rate prior
down) are less likely to become rising stars. In both estimation frameworks, the

upgrade process of FA peers is entirely driven by endogenous risk factors, of which

industry sectors are more influential than rating history and the current rating.

Noticeable changes were observed in the upgrade model for FAs. None of

macroeconomic factors/industry sectors affects FAs’ probabilities to regain the

investment grade status. In other words, the upgrade process of FAs is entirely

determined by the current rating and rating history, of which rating history domi-

nates the current rating. Relative to the corresponding static model, the dynamic

model for FAs features a stronger effect and a greater number of rating history

variables. Variables significant in the proportional model (start rating, dummy junk
boundary, number not rated) are also present in the dynamic model and retain the

same coefficient signs. The current rating, specifically dummy junk boundary, is
less influential; its hazard ratio is about 200 basis points smaller when switching to

a dynamic estimation procedure. Age since first rated and the original rating
become significant. Aging FAs (age since first rated) are less likely to make an

uphill climb, whereas originally high-rated FAs (original rating) exhibit a favorable
tendency towards upgrades.

In summary, past rating behaviors persist even after controlling for the industry

sector and the development of macroeconomic conditions over the time for which

the current rating persists. As suggested by Lando (2004, p. 97), the Markov chain

assumptions do not hold if ratings vary across the business cycle or depend on the

age of the bond. The results of this study therefore suggest that rating changes for

FAs and FA peers are non-Markovian, and rating history variables can be used in

estimating future rating changes. The question is how accurate are such forecasts?

72.6 Forecast Accuracy Assessment

The Brier scores (Brier 1950) of survival probability forecasts generated by the

static and dynamic hazard models for FAs/FA peers were calculated as in Eq. 72.13
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and decomposed into forecast components as in Eq. 72.14. A Brier score of zero

indicates perfect predictive ability and a Brier score of one indicates no predictive

ability. Variation in the Brier score through time is a consequence of both the

passage of time and the changing holdout sample composition.21

Table 72.5 summarizes the covariance decompositions of the Brier scores at

1- and 2-year forecast horizons. Removing the outcome index variance dt 1� dt
� �

from the overall Brier score Bt results in the skill component score, which “levels

the playing field” and enhances the validity of comparative forecast assessments

(Yates 1982). The following discussion focuses on the skill components

(calibration or bias, variance or scatter, and discrimination or slope) of the Brier

score. In the interests of brevity, the covariance graphs which illustrate the covari-

ance components of the Brier scores are not presented. However, an example of

a covariance graph can be found in Appendix 2.

72.6.1 The Predictive Accuracy of Cox’s Proportional Hazard Models

72.6.1.1 Upgrade Models for FAs/FA Peers
The proportional (static) upgrade models for FAs and FAs peers exhibit modest

forecast performance as evidenced by relatively small skill component scores.

A lower skill component score implies better forecast performance.

The upgrade model for FAs demonstrates excessive pessimism and underesti-

mates survival estimates by a large margin. Additional analysis of the covariance

graphs indicates that the model generally places 1- and 2-year survival forecasts in

the middle and pessimistic probability categories that are substantially beneath the

survival base rate (d1 ¼ 90:78 % and d2 ¼ 75%). This corresponds to a large bias

of �21.98 % (Appendix 2) and �19.85 % at 1- and 2-year horizons, respectively.

In contrasts, the model for FA peers demonstrates well-calibrated survival

estimates across forecast horizons. Additional analysis of the covariance graphs

(not reported) indicates that the model for FA peers assigns 1- and 2-year survival

estimates in the optimistic probability categories that are close to the mean survival

index (d1 ¼ 84:4 % and d2 ¼ 72:2 %). This tendency translates into a negligible

bias at both forecast horizons.

Both the upgrade models for FAs and their peers do well in removing irrelevant

information and achieve small variability (scatter) in estimates. However, survival

forecasts for survived and upgraded issuers concentrate in few probability deciles,

reflecting poor discrimination ability.

21In forming the survival forecasts for holdout FAs/FA peers, the approach of Chen et al. (2005) is

followed. As the time horizon unfolds, Chen et al. (2005) deleted from the holdout sample at time

t those cases which are censored, or have experienced the event, before time t. The approach of

Chen et al. (2005) results in a holdout sample that reduces with the passage of time. The number of

survival forecasts Nt Eq. 72.13 accordingly reduces as the forecast time t gets longer.
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72.6.1.2 Downgrade Models for FAs/FA Peers
The proportional downgrade models for FAs and FA peers perform poorly.

Additional analysis of the covariance graphs (not reported) shows that most of

the 1-year estimates for FAs were placed in the probability categories that are

substantially higher than the survival base rate d1 ¼ 41:13 %
� �

. The marked

tendency to endorse upper optimistic categories in 1-year survival forecasts is

a major cause of the large positive bias of 39.15 %. For FA peers, a majority of

1-year survival estimates were assigned to the middle probability deciles that are

slightly above the mean survival index d1 ¼ 49:65 %
� �

, resulting in a relatively

small bias of 8.8 %. Both downgrade models for FAs/FA peers assign 2-year

survival forecasts to the probability categories that are lower than the survival

base rate (d2 ¼ 77:27 % for FAs and d2 ¼ 72:22 % for FA peers), resulting in

a negative bias.

On the index of slope, the downgrade models for FAs/FA peers perform poorly

in discriminating survived states from downgraded states. Both models, however,

achieve negligible scatters (variance).

72.6.1.3 Sources of Forecast Errors
For both FAs and their peers, the static upgrade models exhibit some predictive

ability, whereas the static downgrade models perform poorly. The following dis-

cussion focuses on two factors that may contribute to the forecast performance of

the static models.

The macroeconomic conditions in the estimation and holdout periods

markedly differ (Table 72.1). Similarly, the migration propensity of FAs in the

estimation period is not representative of the migration pattern in the holdout

period. Relative to estimation FAs, holdout FAs are more vulnerable to down-

grades and exhibit an unfavorable tendency towards upgrades (Tables 72.2 and

72.3). The poor economic development and the rapid deterioration in the credit

quality of FAs in the holdout period present challenges to both downgrade and

upgrade models.

The proportional models employ a static estimation framework and include

time-fixed covariates which capture the economic conditions at the beginning

of each rating state. The information embedded in the time-fixed macroeco-

nomic covariates becomes increasingly stale and less relevant as the rating

duration unfolds. As suggested by Amato and Furfine (2004), the date of

a rating change is generally close to the time the actual credit review

takes place. Any decision by credit rating agencies is influenced by the

economic conditions prevailing at the time of the rating change. Down-

grades departing from low ratings are particularly sensitive to the prevailing

economic environment. This suggests the need to develop dynamic hazard

models that include time-varying macroeconomic covariates updated at each

event time.
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72.6.2 The Predictive Accuracy of Dynamic Cox’s Hazard Models

The following discussion focuses on the comparative performance of the dynamic

models for FAs/FA peers in comparison to the respective static models examined

above (Table 72.5).

72.6.2.1 Upgrade Models for FAs/FA Peers
The dynamic upgrade model for FA peers exhibits similar good forecast perfor-

mance at the 1-year horizon and outperforms the respective static model at the

2-year horizon. Both the static and dynamic models for FA peers show strong

calibration ability as evidenced by a minimal bias across forecast horizons. Of

particular interest, the dynamic model achieves a zero (perfect) bias at the 1-year

horizon. On the index of slope, the dynamic model performs slightly better in

discriminating rating states that survived from states that were upgraded at the

2-year forecast horizon. This corresponds to a 5 % steeper slope and a smaller Brier

score.

The dynamic upgrade model for FAs performs far better than the corresponding

static model and achieves a competitive skill component score at both 1- and

2-year forecast horizons. The predictive accuracy is particularly good at the 1-year

horizon. Relative to the corresponding static model, the dynamic upgrade model

for FAs uses the optimistic probability category above 80 % to a much greater

extent and employs middle and lower probability deciles to a lesser extent. Unlike

the respective proportional model, the dynamic model seldom makes pessimistic

survival forecasts. The marked propensity to place a majority of 1- and

2-year survival estimates into the optimistic categories that are close to the survival

base rate ( d1 ¼ 90:78 % and d2 ¼ 75 % ) translates into a small (superior)

positive bias.

72.6.2.2 Dynamic Downgrade Models for FAs and FA Peers
The forecast performance of the dynamic downgrade models for FAs and FA peers

at 1-year horizon is disappointing. This can be attributed to the deterioration in their

calibration ability. Relative to the respective static models, the dynamic downgrade

models for FAs/FA peers use optimistic probability categories to a greater extent and

employ middle and lower probability deciles to a lesser extent. As a result, the

dynamic downgrade models overestimate the 1-year survival forecasts by a larger

margin and exhibit a larger (inferior) positive bias.

However, at the 2-year forecast horizon, both dynamic downgrade models have

an edge over the respective static models. The dynamic models underestimate the

2-year survival forecasts by a smaller margin and obtain a smaller (more compet-

itive) negative bias. It is noticeable that the dynamic model for FAs offers well-

calibrated 2-year survival estimates.
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72.6.2.3 Limitations
This study suffers from some limitations which contribute to the poor

forecast performance of the downgrade models for FAs/FA peers at the 1-year

horizon.

Speculative grade issuers, particularly FAs, are naturally under the close scru-

tiny of market participants and are potential targets for negative rating reviews and

downward revisions following their fall dates. The common concept is that credit

rating agencies focus more resources on quantifying deteriorations in the credit

profile of speculative grade issuers than analyzing any improvement in their

earnings (Holthausen and Leftwich 1986). Downgrades tend to be quick, whereas

upgrades tend to lag behind credit quality improvement. Furthermore, ratings are

assigned in a pro-cyclical manner.22 Amato and Furfine (2004) suggested that

credit rating agencies exhibit a propensity to overreact to the prevailing macro-

economic conditions when they revise ratings. They tend to exhibit excessive

pessimism during economic downturns. This tendency could contribute to an

acceleration of credit deterioration in the volatile holdout period 2001–2005.

The survival forecasts based on the “average” migration experience in the estima-

tion period 1984–2000 fail to capture the rapid deterioration in the credit quality of

holdout FAs.

Furthermore, the employment of static macroeconomic data to form

forecasts for holdout issuers in Eq. 72.12 is likely to dampen the predictive

accuracy of the dynamic downgrade models. This is more pronounced given the

strong effect of macroeconomic variables on downgrades (Panel A of Table 72.4)

and the dramatically changing economic conditions in the holdout period

(Table 72.1).

The absence of rating outlook and credit watch data in this study is also likely to

diminish the predictive power of the downgrade models. It is suggested that rating

outlook and CreditWatch data diminish the impact of rating history (Hamilton and

Cantor 2004) and exhibit predictive accuracy in forecasting future rating changes

(Vazza et al. 2005b; Hill et al. 2010; Guttler 2011).

72.7 Conclusion

Using Standard & Poor’s CreditPro 2005 dataset and the survival analysis frame-

work (Allison 1984), this study aimed to address two issues: first, to examine issuer-

heterogeneity and time-heterogeneity in the rating migration dynamics of FAs and

their speculative grade-rated peers over the period 1984–2000 and, second, to

assess the predictive accuracy of the static and dynamic hazard models in

22The pro-cyclicality in rating actions may be attributed to the possibility that business cycle

fluctuations coincide with permanent changes in credit quality (Loffler 2012).
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forecasting future rating changes over the subsequent period, 2001–2005. The

principal conclusions emerging from this study are as follows:

Past rating behaviors, industry sectors, and macroeconomic conditions are the

key determinants of the rating migration process. The significant factors differ

between FAs and their peers and vary between downgrades and upgrades. A key

finding is that past rating behaviors persist and have a strong effect in the presence

of time-varying macroeconomic covariates. As seen in the dynamic model, a prior

rating withdrawal makes a FA 185 % more likely to return to the investment grade

universe. A one-migration increase in the annual regrade volatility and a downgrade

at lag-two rating state, respectively, makes a FA peer 725 % and 248 % more likely

to continue the downward journey.

In both static and dynamic estimation frameworks, FAs and FA peers close to the

speculative grade boundary (BB+, BB, BB�) are resilient and several times more

likely to become rising stars. The current rating – the rating a FA received on the

fall date – is not significant in determining its subsequent downgrade probability.

For other rating migration processes, the current rating has a modest impact

compared to past rating behaviors.

Volatile macroeconomic conditions and accelerated credit deterioration in the

holdout period bring challenges to the models’ forecast performance. In the aggre-

gate, all models do well in removing irrelevant information but at some expense of

failing to incorporate important information. The tendency to assign survival

estimates in the probability categories that are either beyond or below the survival

base rate results in some bias.

Switching from a static to a dynamic estimation framework improves the

calibration power of the downgrade and upgrade models for FAs/FA peers, mostly

at the 2-year forecast horizon. Of particular interest, the dynamic upgrade model for

FAs, which includes only rating variables and features a strong effect of rating

history, substantially outperforms the respective static model at both the 1- and

2-year forecast horizons. The results are in direct contrast to the evidence that the

Markov property adequately holds within 1 or 2 years (Kiefer and Larson 2007;

Frydman and Schuermann 2008).

The implication is that rating history provides important diagnostic information

in making well-calibrated estimates for FAs. Financial institutions and regulators

should condition models of rating migrations by reference to the path an issuer has

followed to the current rating state. If, for example, an issuer is a FA, then it may

need a FA dynamic hazard model to obtain appropriate time-varying survival

probability estimates.

A natural extension of this study would be to employ rating outlook or credit

watch data as a time-varying covariate to capture the changing credit quality of

issuers over rating durations. The study could also be extended by using a moving

window and continually updating/recalibrating the models to capture the acceler-

ation in credit deterioration. Future work could also be directed to estimate separate

dynamic hazard models over economic contraction and expansion periods and

to examine credit quality changes under favorable and unfavorable macro

environment.
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Appendix 1: Maximum Partial Likelihood Estimation

The expression in Eq. 72.1 for the Cox’s proportional hazard model and the

expression in Eq. 72.3 for the full partial likelihood are repeated here as

Eqs. 72.17 and 72.18 for convenience:

hm t; Z½ � ¼ h 0; tð Þexp Zmb½ � (72.17)

PL ¼
YN
m¼1

Lmtm ¼
YN
m¼1

exp b Zmð ÞX
i2R tmð Þ

exp b Zi
� �

2
664

3
775 (72.18)

The log partial likelihood function can be written as

PL ¼
XN
m¼1

b Zmð Þ � ln
X

i2R tmð Þ
exp b Zi
� �

2
4

2
4

3
5 (72.19)

The derivative of Eq. (72.19) with respect to b is

∂PL
∂b

¼
XN
m¼1

Zm �

X
i2R tmð Þ

Ziexp b Zi
� �

X
i2R tmð Þ

exp b Zi
� �

2
664

3
775 (72.20)

∂PL
∂b

¼
XN
m¼1

Zm �
X

i2R tmð Þ
wim bð ÞZi

2
4

3
5

∂PL
∂b

¼
XN
m¼1

Zm � Z
wim

� �

where wim bð Þ ¼ exp b Zið ÞX
i2R tmð Þ

exp b Zi
� � and Z

wim ¼
X

i2R tmð Þ
wim bð ÞZi

The estimated coefficient vector b̂ can be obtained by setting the derivative in

Eq. 72.20 equal to zero and solving for the unknown parameter (Hosmer et al. 2008,

pp. 75–76).
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Appendix 2: Covariance Graph
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Brier score Bt ¼ 0.1578; outcome index variance dt 1� dt
� � ¼ 0:0837; bias ft � dt

¼ �0:2198; slope f1 � f0 ¼ 0:0677; forecast variance (Scatter) S2f t ¼ 0:0372

Yates (1982, pp. 143–148) and Arkes et al. (1995, pp. 121–123) provide detailed

descriptions of a covariance graph. For illustration purpose, the above covariance

graph depicts the characteristics of the 1-year survival forecasts generated by the

proportional Cox’s hazard upgrade model for FAs.

The abscissa shows the survival outcome index. The two possible outcomes for

a FA in the upgrade model are “upgrade,” which is denoted as 0 on the left, and

“survival” (non-upgrade), which is denoted as 1 on the right. Of 141 holdout FAs

available at 1-year lead time (forecast time t ¼ 1 year), 128 FAs survived, and

13 FAs were upgraded. A vertical dotted line is located at the survival base rate, or

the overall mean survival outcome index d ¼ 0:9078 , on the abscissa. On the

ordinate are the probability survival forecasts, categorized in deciles.

A horizontal dotted line is located at the overall mean survival forecasts

f ¼ 0:688 on the ordinate. The 45� solid line represents unbiased estimates. Bias

can be measured as the vertical distance from the 45� line to the point where the

vertical survival base rate line and the horizontal mean survival forecast line cross

(marked as ◊). If a model produces unbiased forecasts, the vertical and horizontal

dotted lines will cross on the 45� line, corresponding to a zero bias. If the two dotted
lines meet below (above) the diagonal line, the model underestimates

(overestimate) the survival outcome, corresponding to a negative (positive) bias.
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In the covariance graph, the static upgrade model for FAs is 21.98 % too pessimistic

in making 1-year survival forecasts.

On the vertical lines above the survival outcome (1) and the upgrade outcome

(0) indices are the histograms for survival forecasts of 128 FAs that actually survived

and 13FAs thatwere upgraded, respectively. Survived and non-survived holdout FAs are

stratified into distinct decile categories in the order of estimated survival probabilities. In

this setting, FAs with survival forecasts varying from 0% to 10% are put together, those

with forecasts ranging from 11% to 20% in another decile category and so on. The bars

on the histograms illustrate the percentage of survival forecasts made at the individual

probability deciles. The number of survival forecasts observed within each decile was

attached to the corresponding bar for an easy reference. The further the histogram bars

spread along the vertical lines, the greater the scatter (variance) of the survival forecasts.

The outcome index line extending vertically from 1 (on the right edge) includes

the mean survival forecasts given to FAs that actually survived, f1 ¼ 0:6943. The
outcome index line drawn vertically from 0 (on the left edge) contains the average

survival forecasts given to FAs that were actually upgraded, f0 ¼ 0:6265. The dotted
line linking f1 and f0 is the regression line for survival forecast on outcome index.

The slope of the regression line is the difference between f1 and f0 , or f1 � f0
� �

¼ 6:77 % . The further the regression line diverges from the horizontal line, the

more discriminative the forecasts of the survived and upgraded groups.
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Abstract

Persistent divergence of an asset price from its fundamental value has been

a subject of much theoretical and empirical discussion. This chapter takes an

alternative approach of inquiry – that of using laboratory experiments – to study

the creation and control of speculative bubbles. The following three factors are

chosen for analysis: the compensation scheme of portfolio managers, wealth and

supply constraints, and the relative risk aversion of traders. Under a short investment

horizon induced by a tournament compensation scheme, speculative bubbles are

observed inmarkets of speculative traders and inmixedmarkets of conservative and

speculative traders. These results maintain with super-experienced traders who are

awareof thepresenceofabubble.Abindingwealthconstraintdampens thebubblesas

does an increased supply of securities. These results are unchangedwhen traders risk

their ownmoney in lieu of initial endowments provided by the experimenter.

The primary method of analysis is to use live subjects in a laboratory setting

to generate original trading data, which are compared to their fundamental values.

Standard statistical techniques are used to supplement analysis in explaining the

divergence of asset prices from their fundamental values.

Keywords

Speculative bubbles • Laboratory experimental asset markets • Fundamental

asset values • Tournament • Market efficiency • Behavioral finance • Ordinary

least squares regression • Correlation

73.1 Introduction

The purpose of this study is to investigate the formation of speculative bubbles in asset

prices under a laboratory setting.1 Specifically, we investigate how to create, control,

and dismantle bubbles as well as the conditions in which bubbles may or may not arise.

Speculative bubbles are induced in this study under a laboratory setting, where

a New York Stock Exchange type of double-oral auction market (without

a specialist) involving many traders is modeled. Speculative bubbles occur

when buyers are willing to bid higher and higher prices for an asset which, in

retrospect, are far in excess of its worth based on fundamentals. The bubbles

ultimately burst and prices drop to a much lower level.2 The stock market crash in

1The paper was previously published as Ang et al. (2009). The creation and control of speculative

bubbles in a laboratory setting. In Lee, A., and Lee, C.F. (Eds.),Handbook of Quantitative Finance
and Risk Management (pp. 137–164). Springer, New York.
2Stiglitz (1990), in his overview of a symposium on bubbles, defines the existence of bubbles to be:

“if the reason that the price is high today is only because investors believe that the selling price will

be high tomorrow – when ‘fundamental’ factors do not seem to justify such a price.” Similarly, he

defines the breaking of a bubble as marked price declines which occur without any apparent new

information.
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the USA in 1987 and in Japan in 1991–1992, the dot-com bubble in 2,000, and the

recent housing bubble in the USA are examples.3 In recent years, academicians

and practitioners are slowly but grudgingly coming to the realization that the

extant theories of stock market behavior, e.g., efficient market hypothesis and

capital asset pricing theory, fail to explain the magnitude of fluctuations in

the stock market. Not only have stock prices been found to fluctuate too much

relative to fundamentals, but also there have been occurrences of speculative

bubbles that could not be explained by arrival of new information. Several

plausible explanations for bubbles are offered such as rational bubbles (Shiller

1988; West 1988), irrational bubbles (Ackert et al. 2002; Lei et al. 2001), judge-

ment error (Ackert et al. 2006), and herding behavior (Froot et al. 1992).4

While some work has been done to show that bubbles can be abated with

experience (Dufwenberg et al. 2005), an understanding of the formation of specu-

lative bubbles is still important to researchers for several reasons. First, bubbles

could cause significant disruptions in the asset market, not only by creating a large

redistribution of wealth among investors but also by adversely affecting the

supply of funds to the market as well as resource allocation among and within

firms. Second, the identification of factors affecting the formation of bubbles

is crucial in aiding regulators in designing policies to reduce the occurrence

or magnitude of bubbles. In particular, if bubbles can be replicated in

a laboratory setting, then various proposals to dampen bubbles could also be tested

and compared for their effectiveness. Roll (1989) summarizes the difficulty with

examining recent empirical results of the 1987 crash in this regard. Third, an

understanding of the dynamic process of bubble formation would contribute to

our knowledge of how to model the behavior of asset prices DeLong et al. (1989),

Cutler et al. (1989).

In spite of some interesting recent theoretical developments, empirical research

on the existence of bubbles tends to be inconclusive and with low power, e.g.,

Gurkaynak (2005), West (1988), Flood and Hodrick (1990). A major problem is the

difficulty of specifying the fundamental value of an asset, since bubbles are defined

as the price in excess of the fundamental values Bierman (1995), Robin and

Ruffieux (2001). Without being able to calculate the time series of the asset’s

fundamental value, price movement could simply be caused by factors affecting

the fundamental valuation of the asset, e.g., change in risk aversion and arrival of

3Other notable examples of bubbles include the Dutch tulip mania in the seventeenth century, the

South Sea Islands Company bubbles Voth and Temin (2003), John Law’s Mississippi Company

scheme bubbles of the eighteenth century, the US stock market boom of the late 1920s, the Florida

land price bubbles of the 1920s, the great bull market of the 1950s and 1960s, the high-tech stock

boom of the early 1980s, and the boom and bust of the California and Massachusetts housing

markets in recent years. However, due to the difficulties in specifying the fundamentals, there are

still disagreements as to whether these cases could be explained by the fundamental, e.g., Garber

(1990) versus White (1990).
4Outstanding surveys of this literature are provided by Porter and Smith (2003), Camerer (1989),

Sunder (1992).
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new information. And if the fundamental value could only be measured imperfectly

using proxies such as past dividends, the imprecise estimates would, of course,

reduce the power of any test.

The experimental approach reduces this problem (Cason and Noussair 2001). By

design, the value of the fundamentals can be specified in advance; hence, there is no

measurement problem. Any gross and persistent divergence of the asset price from

the prespecified fundamental value can now be attributed to bubbles (Siegel 2003).

In addition to reducing the identification/measurement problem, performing labo-

ratory experiments to study asset bubbles has two other advantages. First, it allows

different characteristics of the market institutions and participants to be introduced

in a controlled manner. That is, relevant factors may be manipulated to create or

discourage the formation of bubbles. This is an important feature because some of

these factors may not be isolated in the real world for detailed study, while other

factors are simply proposals in the design of market institutions of the future.

Second, by controlling the information available to market participants, we can

control the role played by unrelated or exogenous events, e.g., sunspots. Thus, the

laboratory experiment approach to study asset market behavior complements the

theory/model building process. The three types of variables chosen for analysis in

this study are:

1. The compensation scheme of a portfolio manager. Allen and Gorton (1988) have

argued that compensation schemes for portfolio managers may induce bubbles even

in a finite horizon. Also, recent literature on tournaments (see James and Issac

(2000), Ehrenberg and Bognanno (1990), and others) has shown that the level and

structure of relative compensation influence participant behavior, while Hirota and

Sunder (2005) have found that short horizons are important factors in the emergence

of bubbles. Three types of compensation structure are used in these experiments:

a linear compensation scheme based on portfolio performance and two versions of

compensation based on relative performance in a short-term horizon.

2. Wealth constraint (tight/loose), supply of securities. An infinite number of trades

(e.g., overlapping generations and the availability of credit) are often cited as

a prerequisite for bubbles. Ricke (2004) discusses how credit made available

from margin could generate bubbles. High liquidity leads to bubbles in the work

of Caginalp et al. (2001). Scheinkman and Xiong (2003) and Hong et al. (2004)

analyze the effect of a short sales constraint on the formation of bubbles.

Therefore, experimenting with wealth constraints may provide valuable insights

into the effectiveness of certain policies (such as margin rule change, credit

availability) to control bubbles.

3. The type of investors in the market (speculative/conservative). This variable

tests the Keynes-Hicks theory of speculation where differences in traders’

willingness to take risks are the foundation of speculative markets. Traders in

the experiments are pretested for attitudes toward risk taking.

Bubbles are observed under the following conditions:

1. A market of speculators with short-term investment horizon.

2. A market of mixed conservative and speculative traders with short-term invest-

ment horizon.
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3. A market of mixed trader types with short-term investment horizon using their

own money.

On the other hand, bubbles are dampened under the following investment

environments:

1. A market of conservative traders with a short-term horizon;

2. A market of mixed trader types with a long-term investment horizon;

3. A market of mixed trader types when the wealth of the traders, especially the

bulls, is constrained;

4. A single-period trading environment.

The remaining part of this chapter is organized into four sections. Section 73.1

presents the hypotheses to be tested by incorporating them into the experimental

design, which is discussed in greater detail in Sect. 73.2. The results are reported in

Sect. 73.3 with Sect. 73.4 summarizing and concluding the chapter.

73.2 Bubbles in the Asset Markets

The possibility of asset bubbles has long been recognized; however, more

formal theoretical development is of relatively recent vintage. Harrison and

Kreps (1978), for instance, suggest that in general the right to resell the asset

makes traders willing to pay more for it than they would if obliged to hold it

forever. Thus, market price could exceed fundamental value. Literature on ratio-

nal bubbles emphasizes that once a bubble is started, it would be rational to price

the bubble component even if it is expected to burst with positive probability.

Brunnermeier and Nagel (2003) examine stockholdings of hedge funds during the

recent Nasdaq tech bubble and find that the portfolios of these sophisticated

investors were heavily tilted toward (overpriced) technology stocks. However,

this does not seem to be the result of unawareness of the bubble on the part of

hedge funds.5 At an individual stock level, hedge funds reduced their exposure

before the prices collapsed, suggesting awareness and implicit pricing of the

bubble component. On the other hand, whether bubbles can even get started has

been questioned (Diba and Grossman 1987). Essentially, if there are a finite

number of periods, starting from the next to the last period, the expectation that

the bubble might end may be sufficient to keep it from ever starting. By the

process of backward induction or an unraveling argument, bubbles will not exist.

Moreover, if the number of trades is finite, withdrawal of early trades at a profit

means the remaining traders would be at a negative sum game, i.e., with

finite trades, will there be a “greater fool” who gets stuck when the bubble bursts.

5Griffin et al. (2003) examine the extant theoretical literature about bubbles which includes models

where naive individuals cause excessive price movements and smart money trades against (and

potentially eliminates) a bubble versus models where sophisticated investors follow market prices

and help drive a bubble. In considering these competing views over the tech bubble period on

Nasdaq, they find evidence which supports the view that institutions contributed more than

individuals to the spectacular Nasdaq rise and fall.
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Still, perturbing the model by adding uncertainties on the length of the horizon

among traders or market size may preserve the possibility of asset bubbles.

Smith et al. (1988) are among the first to investigate the incidence of bubbles.

Their design was to give traders common beliefs (according to one of

Tirole’s requirements) and long horizons of up to 15 trading periods. Bubbles

are observed in several of their experimental markets. It is unclear, however,

what institutional setting, other than long trading periods, induces bubbles in

their study.

In a speculative market where bubbles could be present, speculative traders are

more likely to purchase shares (and even more so, if bubbles are rationally priced)

than risk-averse traders. Not only are they more willing to put a higher value on

risky assets, they are also more likely to take the chance that they might not be able

to sell out their inventory before the bubble bursts. Therefore, our first hypothesis is

that bubbles are more likely to be formed in a market of risk-taking traders

(speculators).

The compensation scheme could also affect the behavior of traders. For instance,

Allen and Gorton (1988) and Allen and Gale (2002) show that an option-type

compensation scheme for portfolio managers could induce speculative bubbles in

asset prices. Portfolio managers are encouraged via incentive rewards to generate

short-term trading gains even in a finite horizon world. The current practice of

publishing and ranking the short-term investment performance of portfolio man-

agers and the very substantial incentives to hedge fund managers’ performance that

may be based on unrealized gains on illiquid assets could give rise to adverse

incentives. Portfolio managers who are concerned about these rankings will either

take on a riskier strategy for the possibility of outshining their peers or they will

simply play it safe and follow the crowd. Both portfolio strategies could lead to the

formation of bubbles. The play safe by “following the herd” strategy will cause

asset prices to have a strong positive correlation in the short term. Portfolio

managers would be buying when others are buying, thus creating an upward price

trend, and selling when others were selling, thus bursting the bubble it created. On

the other hand, the pursuit of a risky strategy may be sufficient to create price

leadership that is followed by others in the market. This would be more likely in an

uncertain valuation environment. Temin and Voth (2003) suggest that riding the

bubble may actually be a profitable strategy.

Portfolio managers are subject to an occupational hazard: unless they produce

winning results, they stand a good chance of being fired. On the other hand, star

performers receive seven or even eight figure incomes as new cash flows into the

funds they manage. This compensation system is similar to tournament models

where participants are paid according to their relative performance among a group

of peers rather than on their absolute performance. Tournament systems are likely

to produce increased performance when (1) there is difficulty in monitoring the

activities of the agent (Rosen 1981), (2) when the agent possesses valuable infor-

mation (Baker 1992), and (3) when good performance measures are available

(Baker 1992). All three of these conditions exist in the realm of professional

money management, and therefore it is probable that a relative performance
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compensation system will be effective in increasing manager performance.6 Thus,

it is hypothesized that a tournament incentive scheme that encourages a short-term

horizon for portfolio managers is more likely to create bubbles.7

Finally, an important policy question has been whether restricting the availabil-

ity of credit or the supply of securities in a market (by raising the margin require-

ment or allowing short sales) could reduce or even eliminate the formation of

speculative bubbles. Ackert et al. (2006) find that price run-ups and crashes are

moderated when traders are allowed to short sell). Most countries, including the

USA and Japan, have adjusted these conditions in the recent past through adjust-

ments in the use of stock index futures and by easing credit conditions. These

changes have tended to occur subsequent to large declines in the country’s equity

markets. With limited or asymmetric ability to go short versus long, speculators on

the long side have an advantage in acquiring funds for investment. Additionally, if

the life of a bubble is uncertain and relatively long lasting, costly short sell will not

be profitable even if the bubbles eventually burst. The usual experimental design

often endows traders with a relatively large initial wealth such that the budget

constraint is not binding. This experiment will test the effect of a tighter budget

constraint by both reducing the initial endowment and increasing the supply of

securities. It is hypothesized that a wealth constraint and/or relative increase in the

supply of securities will reduce the incidence of bubbles.

To summarize, the effect of three factors, attitude toward risk, investment

horizon, and wealth constraint, is examined as to their contribution to the creation

and control of asset bubbles. They are tested by incorporating them into the

experimental design of a laboratory setting described below; the importance of

these factors in the formation and control of asset price bubble, singly and jointly,

can now be formally examined.

73.3 Experimental Design

The evolutionary nature of laboratory experimental research is such that the results

of any study act as a catalyst for new questions and therefore new experiments. As

with Smith et al. (SSW) (1988), we note that many of our latter experiments were

directly motivated by the results obtained from our earlier ones. This progression of

thought and analysis will be apparent in the later section on results. Herein,

however, we present the method of our investigation in comprehensive form.

6Becker and Huselid (1992), Ehrenberg and Bognanno (1990) have documented in field studies

that such tournament compensation systems are effective in raising performance in professional

golf and auto racing competitions.
7It is possible that if there is sufficient number of short horizon portfolio managers herding in the

manner described by Froot et al. (1992), a bubble can start on basis of any information. Shleifer

and Vishny (1990) also propose that the portfolio managers have short horizon; however, it is the

risk of uncertain return from investing in the longer horizon that prevented disequilibrium to be

arbitraged away.
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The creation of “bubbles” within asset markets is examined under the control of

three primary factors: (1) the degree of trader risk aversion, (2) trader investment

horizon, and (3) available investment capital/supply of securities. Table 73.1 sum-

marizes the design of 14 experiments used to investigate these factors upon the

Table 73.1 Experimental design

Participant

groupsa Design Initial endowmentb Investment horizonc
Risk

aversiond Experimentse

Las Vegas 1 2 securities 10,000 francs Two period Mixed 1, 2, 3, 5$

Las Vegas 2 2 securities 10,000 francs ShortenedMixed 4m, 6m$

Las Vegas 3 5 securities 3,000 francs ShortenedMixed 7x, 8x, 9t,

10t

FSU1 4 2 securities 10,000 francs Two period Single type 11s, 13c

FSU1 5 2 securities 10,000 francs ShortenedSingle Type 12sm, 14cm

FSU2 2 2 securities 10,000 francs ShortenedMixed 15, 16

FSU2 6 10 securities 1,000 francs ShortenedMixed 17, 18

Albania 1 2 securities 10,000 francs Two period Mixed 23

Albania 2 2 securities 10,000 francs ShortenedMixed 24, 25

Albania 6 10 securities 1,000 francs ShortenedMixed 26

Albania 7 2 securities 5,000 francs Single Period Mixed 19

Albania 8 2 securities 5,000 francs Single Period/

Tournament

Mixed 20, 21

Albania 9 20 securities 500 francs Single Period/

Tournament

Mixed 22

This table categories five designs of 14 experiments used to examine the impact of risk aversion,

investment horizon, and credit/supply constraints (initial endowment) upon the formation and

control of asset bubbles.
aThe participant groups consist of the following:

Las Vegas represents students from the University of Las Vegas at Nevada.

FSU1 and FSU2 represent students from the Florida State University at two different time periods.

Albania represents students from the University of Tirana in Albania.
bThe initial endowment refers to traders wealth position at the beginning of each trading year of an

experiment. This endowment allows traders to sell (using provided securities) or buy (using francs,

the currency used in these experiments). The additional securities and reduced currency endow-

ments provided in Design 3 serves to better equate relative purchase and selling abilities.
cInvestment horizon refers to the horizon within which traders effectively operate. A two-period

horizon refers to a market where period A securities are based on the dividends paid in both

periods (A and B) of a trading year. In a shortened investment horizon, the trader is induced (via

the tournament compensation schedule of Table 73.3) to operate with a horizon which is shorter

than the two-period environment in which the securities will pay dividends.
dMixed risk aversion means that traders with various risk preferences were participants within the

same market. Single type means that only speculative (s) or conservative (c) traders made up that

market. The designations (s) and (c) appear next to experiments 11–14 in the last column.
eNotation is as follows:

$ represents a market where traders provided $20 of their own money to trade, the sum of which

became the pool of money dispersed according to relative profit performance.

m,x,t represents the number of traders receiving the tournament prize as outlined in Table 73.3. This

tournament compensation was used to induce a shortened horizon market and was differentially paid

to the top two (t) or the top six (x) traders. In experiments marked (m), the first three trading years

paid a bonus to the top six traders followed by years where only the top two traders received bonuses.
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presence of asset bubbles. Each of these experiments uses a common market mech-

anism that builds upon the earlier work of Forsythe et al. (1982), Plott and Sunder

(1982), Ang and Schwarz (1985). These common features are summarized below.

73.3.1 General Market Design

1. A double-oral auction, similar to that used on the floor of major US exchanges, is

replicated. The recruited traders are physically present within a single room

during the course of trading. These traders are independent and trade solely for

their own account. There are no specialists or other privileged traders.

2. Only those shares of a single generic security are traded. The sole attribute of

these shares is the payment of dividends at the end of each period.

3. Each market (experiment) has ten trading periods. These periods are further

categorized into five trading years, each of which consists of two contiguous

trading periods (A and B). Endowments (discussed below) are reinitialized at the

end of the second period of each year. Thus, the initial market represents

a two-period model with each security entitled to two payoffs (dividends), one

at the end of period A and the other at the end of period B.8

4. Each trading period lasts for 6 min, with opening, warning (at 5 and 5 1/2 min),

and closing bells. Consequently, each experiment has a total of

60 (6 min � 10 periods) trading minutes. During the 6-min periods, traders

can observe the continually updated bid-ask and past transacted prices.

73.3.2 Dividend Design

1. At the beginning of each year, each trader is endowed with trading capital and

shares of the generic security. Each share pays dividends at the end of the first

(A) and second (B) periods. The second period dividend is a liquidating divi-

dend. Reinitializing of position at the beginning of each year allows for repli-

cation of decision making in experimental markets.9

8In the experiment, a trader has at least the following choices available:

(a) Maintain the endowed position by not trading and receiving the stochastic payoffs at the end of

each period.

(b) Hold the securities through period A and sell in period B, in which case the investor will

receive the first period dividend and the selling price.

(c) Sell the initial holdings in period A to receive the sale price.

(d) Buy additional shares in period A, receive dividends at the end of the period, and then sell the

securities in period B.

(e) Sell the securities in period A and then buy back securities in period B in order to receive the

dividends.

(f) Purchase a net amount of shares in both periods.

(g) Purchase and sell shares within each period.
9See Smith et al. (1988) for an example of when reinitialization is not used.
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2. The dividends to be paid at the end of each period are stochastic. Two equally

likely dividend outcomes are possible, the good (G) state and the bad (B) state.

The realized state is announced at the end of each 6-min trading period as

determined by the flip of a coin by the experimenter.

3. The dollar amount of the dividends paid at the end of each period

depends upon the trader’s type and the realized state. The 12 traders who

make up each market are classified into three types to allow for differences

in induced values. The dividend payouts for these three trader types are

summarized in Table 73.2. As an example, at the beginning of year 1, the

four traders of type I are privately informed that for period A they

will receive either 350 or 110 for the good (G) and bad (B) states, respec-

tively, and for period B either 250 or 150 for the good and bad states,

respectively.

4. The trader type with the highest expected dividend (.5 � good dividend

+.5 � bad dividend) is rotated each period so as to enhance trader uncertainty

about equilibrium prices. Virtually all previous experimental studies have

documented that given sufficient learning (through repeated trading) in

a stationary dividend payout environment, prices will rather quickly approach

the rational equilibrium level. This learning has two sources: (a) observation

that one’s own payouts are not changing and (b) observation that market-

generated bids, offers, and transacted prices are not changing. Our expecta-

tion is that the greater the trader’s reliance upon market-generated

(as opposed to prior dividend) information, the more likely bubbles are to

occur due to bandwagon and other crowd psychologies. If, instead of bubbles,

we should observe that prices converge to rational equilibrium prices (as in

the constant dividend studies), then this would strengthen our knowledge

concerning efficiency in these laboratory markets. This result would also

suggest that trading methods based upon historical prices alone would not

have value.

73.3.3 Investment Horizon

1. Three types of investment horizon are provided within these experiments:

a single-period, a two-period, and a shortened horizon. Initially, at the begin-

ning of each trading year, a trader is entitled to two stochastic dividends

for each security held, one each at the end of periods A and B. Therefore,

at the beginning of period A, a rational trader will value the security for

both its period A and period B stochastic dividends. Hence, all A period

pricing should reflect a two-period investment horizon. Subsequent to the

termination of period A trading and the announcement and payment of the

period A dividend, period B trading proceeds. As the security is now only

entitled to the B period dividend, a single-period investment horizon results for

all B periods. Our hypothesis is that a shortened investment horizon increases

the possibility of an asset pricing bubble. We test for this by creating
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a tournament compensation package in period A. The incentive for traders

is to concentrate upon their single (A)-period performance over the

concerns of a rational two-period price. This incentive results in a shortened

investment horizon.10

10It is important to note that there is a difference between a one- and two-period horizon and

a shortened horizon. In a one-period model, only a single dividend is valued. In a two-period

model, two dividends are valued. In our shortened investment horizon, the trader is induced to

operate within a horizon that is different from that of his operating environment. That is, within

Table 73.2 Dividend design

Yearsa Trader typeb

Period A

dividend statec Expected

dividendd

Period B

dividend statec Expected

dividendd
Yearly expected

dividendeG B G B

1 I 350 110 230* 250 150 200 430*

II 250 150 200 200 140 170 370

III 200 140 170 350 110 230* 400

2 I 200 140 170 350 110 230* 400

II 350 110 230* 250 150 200 430*

III 250 150 200 200 140 170 370

3 I 250 150 200 200 140 170 370

II 200 140 170 350 100 230* 400

III 350 110 230* 250 150 200 430*

4 I 350 110 230* 250 150 200 430*

II 250 150 200 200 140 170 370

III 200 140 170 350 110 230* 400

5 I 200 140 170 350 110 230* 400

II 350 110 230* 250 150 200 430*

III 250 150 200 200 140 170 370

This table presents the cash flow payoffs which a single asset will provide to its owner. This payoff

is different for Trader Types I, II, and III and therefore provides for different fundamental

valuations. Rational Expectations Equilibrium are determined by the trader type with the highest

valuation for that period.
aEach experiment is composed of five trading years, each of which contains two trading periods A

and B. Ownership of an asset in period A entitles the bidder of both period A and Period B

dividends (two-period valuation) whereas period B ownership merits only that period’s dividend

(single-period valuation).
bThere are three trader types in each trading year with four traders in each category. These trader

types only differ by the amount of dividend cashflows that the single traded asset will provide its

holder. The four traders within each category are rotated within the other categories so as to

maintain an uncertain valuation environment.
cDividend States refer to the stochastic payoff that will be provided to specific trader types given

the occurrence of the G (Good) or B (Bad) state. The realization of the state of nature is determined

at the end of each trading period by flipping a fair coin.
dGiven equal fifty percent probability of occurrence of G or B, the expected dividend is the simple

average of period G and B payoffs.
eThe yearly expected dividend represents the summation of expected dividend for both periods A and B.
*Signifies trader type with the highest expected value
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2. In this study, initially, a trader’s dollar compensation is defined by the following

in which we alter the compensation structure to induce a change in the length of

a trader’s investment horizon profit function:

Pi ¼ f di, j, A � Xi,A þ di, j, B � Xi,B þ Ri � Cið Þ� �
(73.1)

where:

Pi ¼ dollar profit per trading year for trader i. It consists of dividend income and

trading gains (losses) from both periods.

f ¼ the conversion rate of francs into dollars.11

di,j,t ¼ the dividend paid in francs to trader i, given state j occurs in period t;

j ¼ G or B; t ¼ A or B.

Xi,t ¼ the number of shares held by trader i at the end of period t; t ¼ A or B.

Ri ¼ revenues in francs for trader i for all shares sold during periods A and B.

Ci ¼ costs in francs for trader i for all shares purchased during periods A and B.

In order to induce pressure for a shortened investment horizon, an

additional compensation package is introduced in period A of some experiments

as identified in Table 73.1. This tournament compensation system is based on the

traders’ relative performance as measured by the Tournament Performance Index

(TPI) below:

TPIi ¼ Ri � Ci þMXi,A (73.2)

where Ri, Ci, and Xi,A are as previously defined andM represents the closing market

value of the shares. This closingmarket value is taken to be the price of the second to

last transacted price for that period. This procedure is introduced in order to reduce

the possibility of manipulating market value by collaboration on a final transaction.

It represents a simplified version of the price-averaging process that takes place on

most organized exchanges for the setting of opening and closing prices.

3. The tournament compensation system provides traders with an incentive to

outperform each other in period A only. This incentive system increases the

importance of single-period performance (in A) over two-period concerns; that

is, it induces a shorter investment horizon in period A. A trader’s compensation is

dependent upon his relative rank as summarized in Table 73.3. In Schedule Six,

the top six (of 12) traders are rewarded with francs ranging from 1,500 to 200.

a two-period operating environment, the trader is given an incentive to operate with a shorter

(possibly single)-period horizon. This is quite different from a single-period model. This shortened

horizon is a stronger test of market efficiency, in that the pressures are away from rather toward

rational equilibrium prices, (as defined in Eq. 73.4, subsequently). The methodology is meant to

emulate modern portfolio managers operating in an environment of perpetual horizon stock

securities yet receiving tournament incentives to outperform colleagues on a short-term basis.
11Francs are the currency used within this study. They have been used successfully by Plott and

Sunder (1982), Ang and Schwarz (1985), as well as others. Their primary benefit is to avoid the

technical problem of dealing with small dollar amounts.
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Schedule Two is an alternative schedule which is hypothesized to induce even

greater competitive pressure as only the top two traders are compensated

greatly.12 Ehrenberg and Bognanno (1990), Becker and Huselid (1992) find

that the reward spread does cause increased performance incentives. Therefore,

we expect Schedule Two to increase incentives for short-term pricing behavior.

Table 73.1 summarizes the experimental use of the performance reward

schedule.

12The compensation schemes depict the different ways portfolio managers are being rewarded:

those who are above the average or beaten the market (Schedule Six) and those who are the

superstars (Schedule Two).

Table 73.3 Tournament

compensation schedule
Schedule Rank TPI Compensation

1 Highest 1,500 francs

Six 2 1,000

(s) 3 700

4 400

5 200

6 200

7–12 Lowest 0

1 Highest 3,000 francs

Two 2 1,000

(t) 3–12 Lowest 0

This table presents the additional tournament compensation

schedule provided to traders based on their relative profitability

in period A of certain experiments (see shortened investment

horizon listed in Table 1). Relative profitability is measured by:

TPIi ¼ Ri � Ci þMXi,A

where TPIi is the tournament performance index for trader i, Ri is

the revenues received from the sale of assets in period, Ci is the

cost of assets purchased, M is the closing market value for the

period, and Xi;A represents the end-of-period asset holdings.

Together the index measures the total of realized and unrealized

capital gains. The addition of the tournament compensation to

period A provides an incentive for traders to prefer period A capital

gains over equivalent period B dividends and thereby induces a

shortened (from the two period model) investment horizon.
aTwo compensation schedules are introduced. The first provides for

those traders who do better than the average (i.e., the top six)

receive the additional compensation list. In the second schedule,

only the top two “superstars” are richly rewarded. The tournament

literature (e.g., Baker 1991) suggests that tournament systems, and

especially schedule two, provide effective incentive systems to

increase performance. This design is meant to emulate the short-

term performance pressures faced by professional moneymanagers.

73 Creation and Control of Bubbles 1995



73.3.4 Risk Aversion

1. Prior to selection, each potential trader was given a lengthy questionnaire.

Intermingled within this material were two psychological tests on risk taking:

the Jackson Personality Inventory (1976) and the Jackson et al. (1972) tests.13

These two tests have been applied in laboratory Ang and Schwarz (1985) and

field studies (Durand et al. 2006) and are more practical to administer than the

theoretical risk measures found in the economics literature.14 Those persons who

score in the top 12, signifying the least risk averse, and the bottom 12, or the

most risk averse, are invited to participate in the second stage of the experiment.

2. Traders for experiments 1–10 were students from the University of Las Vegas at

Nevada and were recruited from a senior-level options class. These students had

all taken two statistics, a corporate finance, a valuation, a portfolio analysis, and

an options course. They were well trained in arbitrage, present value, and

expected value. From this pool of students, 12 were chosen to participate

based upon their attribute ranking in risk aversion. Participants were chosen so

that a mix of risk aversion types was represented in the same market. Included

were those who ranked at all levels of the scale, from high- to low-risk aversion.

This was done so that differences in individual risk behavior could be tracked

within an identical market environment.

3. Experiments 11–14 were conducted at Florida State University (FSU1), and as

summarized in Table 73.1, these experiments were designed so that an experi-

mental market consisted entirely of traders who were either relatively more risk

averse (conservatives) or less risk averse (speculators). This experimental form

allowed for evaluation of whether risk aversion is uniquely a necessary or

sufficient condition for the presence of bubbles.

4. Experiments 15–26 were conducted at a later date at Florida State University

(FSU2) and the University of Tirana in Albania. This was done to confirm

the robustness of our results. We intentionally chose students from two

13The authors are aware of the work of Holt and Laury (2002) which was not available at the time

of this study. According to Holt and Laury, their experiment shows that increases in the payoff

level increase RRA. However, when estimating RRA, Holt and Laury assume that subject’s

utilities depend only on payments in the experiment. They fail to account for the wealth subjects

have from other sources (see Heinemann 2003).
14The Jackson Personality Inventory is scientifically designed questionnaire for the purpose of

measuring a variety of traits of interest in the study of personality. It was developed for use on

populations of average or above average ability. Jackson states (1976, p. 9), “It is particularly

appropriate for use in schools, colleges, and universities as an aid to counseling, for personality

research in a variety of settings, and in business and industry.” Of the 16 measurement scales of

personality presented, one scale directly measures monetary risk taking using a set of 20 true and

false questions. Mean and standard deviation measures for 2,000 male and 2,000 female college

students are provided. Jackson et al. (1972) demonstrate four facets of risk taking: physical,

monetary, social, and ethical. The authors’ questionnaires are situational in that the respondent

is asked to choose the probability that would be necessary to induce the respondent to choose

a risky over a certain outcome. Jackson (1977) presents high internal consistency correlation

between the risk measurement techniques.
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different universities with different backgrounds to represent the two extremes

in our test. Experiments 19–26 were administrated to subjects in Albania,

who have a low degree of familiarity with capital markets, while experiments

15–18 were administered to Florida State University students (FSU2) who

had taken a financial engineering course and completed another more

involved laboratory asset market experiment. Hence, we consider

these FSU2 students to be super-experienced relative to the students from

Albania.

73.3.5 Validation Procedures

The following procedures are incorporated into the experimental design to ensure

the reliability and external validity of the results:

1. To guard against the possibility that subjects’ experience with trading could

change their attitudes toward risk taking, they were retested. Subsequent to the

first four experiments, additional risk questionnaires were given to the partici-

pants. A Spearman rank correlation (with initial risk rankings) was .902 with

a t-statistic of 6.61 indicating that there had been no significant change in the

relative risk attributes of the traders.

2. Videos were used to verify recorded information, to identify possible irregular-

ities, and to train new subjects.

3. Subjects were given extensive training on the operation of the game; the main

experiments were conducted on groups of experienced, if not super-experienced,

traders.

4. Lengthy post-experiment questionnaires were also given to the subjects. Among

other things, these were used to verify that the traders considered their trading

strategies taken at the time of trade to be rational.

73.4 Results and Analysis

73.4.1 Control Experiments

For experiments 1–14, 5 experimental designs were used to test for the effects of

risk aversion, investment horizon, and capital endowment upon the presence of

asset bubbles. These designs are summarized in Table 73.1. The first design

consisting of experiments 1, 2, 3, and 5 was control market where the

two-period model was tested without extraneous influence from the three treat-

ment variables mentioned above. Figures 73.1–73.5 plot the series of resulting

prices. Bid and ask prices are represented by a “+” symbol and are connected by

a vertical solid line. Transacted prices are identified by a solid horizontal line

connecting each trade. From earlier laboratory studies, we would expect prices to

converge to rational expectation equilibrium levels after an initial period of

learning.
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Fig. 73.1 Experiment 1: bid ask, close and equilibrium prices, two dividends with five trading

periods each, and mixed risk aversion. Subjects are from Las Vegas

Fig. 73.2 Experiment 2: bid ask, close and equilibrium prices, two dividends with five trading

periods each, and mixed risk aversion. Subjects are from Las Vegas
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Two relevant concepts of equilibrium prices in these markets have been pro-

posed (see Forsythe et al. 1982). The first is the naive equilibrium (NE) price. The

NE is the highest price any trader in the market is willing to pay based upon his

individual valuation of the expected dividends for the two periods or:

NE ¼ Maxk E DA, k
� �þ E DB, k

� �� �
(73.3)

where:

k classifies the trader type (1, 2, or 3) based upon prior expected dividend valuations

(see Table 73.2).

E(DA,k) and E(DB,k) are the values of expected dividends in periods A and B to the

kth trader type.

The NE price is the market price that will prevail if the traders use only their

private information to determine value. It is naı̈ve in the sense that traders do not

learn about the valuations of other traders from the market trading information.

These traders also ignore the option value to trade, e.g., hold a security for

a period and then sell it to another trader who would value it most in the remaining

period.

The second is the perfect foresight equilibrium (PFE) price. It is equal to the highest

total value that successive owners of the same share will pay or, in the experiment, the

sum of the highest expected payoffs for periods A and B for all traders or:

Fig. 73.3 Experiment 3: bid ask, close and equilibrium prices, two dividends with five trading

periods each, and mixed risk aversion. Subjects are from Las Vegas
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PFE ¼ Maxk E DA, k
� �þMaxE DB, k

� �
(73.4)

These prices represent two extreme benchmarks in the continuum of the value

of capital market in discovering information through trading. The NE price gives

no role to capital market in price discovery, while the PFE price assumes full

discovery, i.e., trading in capital market can correctly identify the share’s highest

value in each future holding period. They define, respectively, the lower and

upper bounds of the share’s fundamental value. Thus, with payoffs to traders and

across holding periods under the control of the experimenters, we can now

identify with certainty whether a stock is undervalued (when price is below NE)

or overvalued (when price is above PFE) or is in a bubble (when price is grossly

below NE or above PFE, as in a negative or positive bubble). If the experimental

market captures a well-functioning capital market, learning and repeated trials

would cause prices to converge toward PFE.

There are two properties in Eqs. 73.3 and 73.4 that are worth noting. First, NE

and PFE prices are identical in a one-period world when price determination is

closer to a simple auction of a single-period payoff. Second, when the payoff in

the equations is dollars, as in cash dividends and capital gains or losses, NE and

PFE give the risk neutral prices. In the absence of risk neutrality, a negative

Fig. 73.4 Experiment 4: bid ask, close and equilibrium prices, one dividend with 5 trading

periods, and mixed risk aversion. Subjects are from Las Vegas. Mixed bonus: to top 6 traders in

first half and top 2 traders only in the second half
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difference between observed prices and these prices may be interpreted as a risk

premium.

The results illustrated in Figs. 73.1–73.3 establish the validity of our experimen-

tal design as we are able to produce results similar to those obtained in previous

experimental studies. In particular, we are able to reproduce the result that prices

converge to PFE with learning and repeated trials. These prices are plotted as a solid

horizontal line and are greater than the NE prices.15 The inexperience of traders in

experiment 1 is greatly reduced in experiments 2 and 3 as traders learn to cope with

the large uncertainty in valuations (introduced by design). This pricing uncertainty

15Note that all odd-numbered experiments used the dividend design in Table 73.2. In order to

differentiate between (1) learning about a stationary environment and (2) learning efficient

valuation within laboratory markets, we created nonstationarity in equilibrium prices across

experiments. In particular, for all even-numbered experiments, the dividend payoffs of Table 73.2

were simply cut in half so that rational equilibrium prices were also one-half that of the

odd-numbered experiments. When this equilibrium dividend rotation is viewed in conjunction

with the previously mentioned rotation of trader types, it becomes apparent that each individual

trader was likely to view the environment (at least initially) as nonstationary. Consequently, any

results that we show regarding equilibrium pricing and convergence would suggest that learning

about valuation methods rather than a stationary environment creates rational valuation. That is,

we are concerned about learning which takes place within the trader (how he values) not about the

environment (stationary value). We are able to pursue this expanded question due to our debt to

earlier authors who have already well established the presence of the latter.

Fig. 73.5 Experiment 5: bid ask, close and equilibrium prices, two dividends periods with five

trading periods each, and mixed risk aversion. Subjects are from Las Vegas and use own funds
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increases the traders’ reliance upon “market-generated information” in order to

determine valuation. A microanalysis of traders’ accounts in experiment 2 shows

that some traders became actively involved in arbitrating between the A and

B periods of a trading year. As a consequence, these prices tended toward their

PFE equilibrium levels.

Traders’ learning contributed to further pricing efficiencies in experiment 3. Some

earlier “irrational” trades by selected individuals had resulted in substantial losses

creating a “once-bitten” effect, and more rational decisions were followed subse-

quently. By the end of this experiment, prices in both the A and B periods were close

to the PFE price.16 A final examination of the validity of the experimental design was

performed by requiring each trader from Las Vegas experiments 5 and 6 to “invest”

his own money ($20) into the markets. As a result, it was possible for traders to lose

as well as to win. The results, illustrated in Fig. 73.5, show continued price conver-

gence toward equilibrium levels.17 Of interest is the pattern of the bid-ask spread

within a period. The data suggests that the primary resolution of uncertainty is

obtained during the first transaction of a period. Subsequent trading tends to vary

little from earlier levels with subsequently smaller bid-ask spread levels.

We conclude the control section noting that the experimental design creates

price-revealing trades that foster PFE equilibrium pricing. While consistent with

earlier research, these results extend our knowledge into a much more uncertain

(nonstationary) valuation environment more typical of real-world asset markets. In

addition, the validity of these results is not affected by whether or not a dollar

investment is required from traders; trading behavior is similar under both

environments.

73.4.2 The Formation of Bubbles

With a well-functioning experimental design established, we now sequentially

introduce our hypothesized treatment variables. In experiment 4, we introduce the

shortened trading horizon with a tournament prize as described in the experimental

design. At this point, we have an advantage over previous studies in that we were

able to recruit the identical 12 traders back. This level of experience will lead to

converging equilibrium prices as opposed to bubble formation.18

16While period A prices exceeded the calculated PFE price of 460, this price is somewhat unknown

to traders at this point. Prior trading results had created a history of B period prices averaging 320.

Consequently, it was rational for a PFE trader to pay up to 550 (230 for A period plus 320 for

B period sales price). The last trade in period 5A of 505 was well below that level. A more detailed

presentation of the experimental results further reveals the rationality of these prices and is

available from the authors upon request.
17Again, period A prices seem to drift upward due to initial excess pricing in period B.
18Our design is to eliminate the bubble effect of miscalculation caused by inexperienced traders as

suggested by White (1990) and King et al. (1990). It is more useful and realistic to study the

formation and control of bubbles in markets of experienced traders.

2002 J.S. Ang et al.



The effect of the tournament compensation is to shorten the traders’ investment

horizon in period A from a PFE two-period model. By providing tournament

payment based on period A relative ranking, there is an increased incentive to

generate period A capital gains over equivalent period B dividends. The tournament

compensation, while increasing the incentive to win, does not necessarily equate to

higher equilibrium prices. The prize is paid to the largest (realized and unrealized)

relative capital gains which can be achieved in either a bull or bear market.

Extraordinary results are shown in Fig. 6.4 where five massive price bubbles are

observed in each of the A periods. At this point, a new learning phase was initiated

as traders competed strategically for the tournament prize. The dominant initial

strategy centered on buying all available assets at increasing price levels, thereby

creating artificial price support for capital gains. While this often resulted in

achieving the prize, it also meant dealing with an inventory of overvalued assets

in period B. Some traders actually lost money for the year even though they

obtained the prize. It is important to note that the bubbles did not discourage the

traders from participating, and at least for awhile the number willing to participate

actually increased. Examination of asset holdings reveals that there were four to

five active prize seekers in later bubbles versus one to two initially. In addition,

seven to nine traders continued to hold securities at the periods’ end rather than to

sell out at extremely high bubble levels.

The much higher increased tournament reward structure for “superstar” per-

formers of periods 4 and 5 (see Schedule Two of Table 73.3) resulted in the largest

bubbles (consistent with our predictions) and with the greatest variability in prices

and bid-ask spreads. Again, the buying frenzy in period 5 was lead by different

traders than those in period 4. This continued rotation in trading leadership high-

lights that the results are not driven by a few misinformed traders. In fact, period

B prices are very stable and efficiently priced. Furthermore, a trader questionnaire

survey at the end of experiment 4 revealed that traders were fully cognizant of

expected dividend value, yet they looked to both dividends and market-generated

information to determine value. Traders stated that they were influenced by the

behavior of their peers and were motivated to earn as much as possible. Several

traders noted that the introduction of the tournament compensation stimulated them

to take on more risk. The net result of these effects was to create a herd or

bandwagon effect centered on market-generated information.

Despite the earlier findings of experiment 5, we tested the validity of these

bubbles in an environment where traders used their own money rather than the

experimenters.19 Would such wild speculation occur when a trader’s own money

was at risk? Figure 73.6 clearly shows this answer to be yes. In all five A periods,

average prices are over twice the equilibrium value. As before, period B pricing is

very efficient and stable. That is, even though our traders engaged in bubble pricing,

they arrived at it through rational means (Figures 73.7–73.10).

19To the author’s knowledge, this is the first time traders in an experimental market of this type

have used their own money to trade and still produced bubbles.
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The traders in these markets had now participated in six experiments, the most of

any research to date. Yet, even in the presence of super-experienced traders, we

continue to find bubble formation. In addition, these traders were aware of the

situation and made every opportunity to profit from the bubble.20

73.4.3 The Control of Bubbles

It became readily apparent from the earlier experiments that restrictions on the

supply side of the market were having an influence on market prices. Many traders

found themselves bound in their actions by the institutional makeup of the

20For instance, new strategies were employed at various stages (which perpetuated continuing

uncertainty in the markets). At one time, the market actually stood still for an extended period.

Then traders began to liquidate at any price rather than to replicate their earlier strategy of waiting

until late in the period to sell out at bubble prices. Other traders began to try and scalp the market

by driving prices both up and down, thereby generating capital gains in both price directions. Even

others began to try and force losses on traders with large inventories and thereby improve their

relative ranking. This was accomplished successfully in period 2A by selling at a loss (at a price

below market prices) in order to create a low settle price, M (the second to last trade). Other

attempts at this strategy followed in all remaining A periods. Nevertheless, bubbles persisted and

many traders were frustrated in their inability to arbitrage them away.

Fig. 73.6 Experiment 6: bid ask, close and equilibrium prices, one dividend with 5 trading

periods, mixed risk aversion. Mixed bonus: to top 6 traders in first half and top 2 traders only in

the second half. Subjects are from Las Vegas and use own funds
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experimental markets. Many of the traders suggested that they be allowed to short

sell in future experiments so as to implement sell strategies in overvalued markets.

As previously mentioned, the tournament compensation system does not alter

PFE prices since the prize can be achieved in any type of market environment and

with any type of price pattern. Given the results of our previous experiments as well

as traders’ comments,21 it appeared that buyers (longs) had an advantage over

sellers (shorts). Is it possible that the bubbles we observe were due to differential

market position in addition to a shortened investment horizon? In order to answer

this question, we conducted four more experiments that provided traders with initial

endowments and better equated the position of buyers and sellers. Rather than being

endowed with two securities and 10,000 francs of trading capital as before, each

trader is initially endowed with five securities and 3,000 francs (see Table 73.3).22

21Traders completed survey questionnaire at the completion of experiments 4, 6, and 10.
22Given that in experiment 6, period A prices averaged around 600, initial trading capital of 3,000

francs would provide buying power of roughly five securities. Consequently, the new buying

power and selling power were a priori relatively equal. Even though period A prices turned out to

be quite a bit lower in experiments 7–10, this did not create a great advantage to buyers since the

supply of securities (5 traders � 12 traders ¼ 60) was relatively large for a 6-min trading period.

As such, there was an ample supply of securities relative to buying power in order to drive prices

down should traders turn bearish.

Fig. 73.7 Experiment 7: bid ask, close and equilibrium prices, one dividend with 5 trading

periods, mixed risk aversion, and increase supply of shares. Bonus to top six traders. Subjects

are from Las Vegas
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The price patterns of experiments 7–10 are as startling as the dramatic bubbles

earlier. We find that the market is immediately priced at a discount to PFE.23 This

had never happened in any of the tournament periods before. If this had been simply

the result of learning, we would have expected a gradual decline from the lofty

levels of experiments 4 and 6. Rather, we see an immediate discount price which

generally remains at a discount throughout all four experiments.24 Overall, we

consider this to be strong evidence that a necessary condition for the creation of

23We are unable to recruit all 12 traders back for experiments 7–10 due to graduation, taking of

jobs, etc. We were, however, able to retain 7 of the original 12 traders. These traders had now

participated in six previous experiments. The five replacements were drawn from the original pool

of subjects that had completed the risk attribute questionnaires. These new traders were chosen to

replace the risk types that had vacated so that in general, we maintained a wide dispersion of risk

types within the market. In addition, some of these new traders had sat in as observers to previous

experiments. Others viewed videos of the earlier experiments. All were instructed in the past

experimental results, and the various strategies previously used were explained. As such, we do not

believe that this change is a critical factor in the continuation of our investigation.
24An analysis of many of the last trades of period A for experiments 7–10 often shows either

a sharp spike up or down. This illustrates that the traders had become very efficient (through

learning) in their manipulation of closing prices. Given the large supply of securities available to

squelch a price bubble, speculators were no longer singularly (due to large initial endowments of

Fig. 73.8 Experiment 8: bid ask, close and equilibrium prices, one dividend with 5 trading periods,

mixed risk aversionand increase supply of shares. Bonus to top six traders. Subjects are fromLasVegas
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the large bubbles of these markets is that the institutional environment be biased

toward more purchasing ability relative to that of selling.

In summary, experiments 7–10 highlight the importance of the supply of secu-

rities and the supply of investable funds that may be augmented by short selling.

Bubbles observed in experiments 4 and 6 are immediately eliminated when the

relative purchasing advantage of long traders is removed. Rational pricing

trading capital) able to create capital gains by driving market prices up. With this constraint, they

quickly learned that all they needed to accomplish was to purchase the most securities at present

prices and then drive the market up on the final few trades. This was often easily accomplished in

that 1) only the second to last trade needed to higher in line with the calculation rules of the TPI

and 2) as no surprise, there were always many traders who were willing to sell their securities at

a price above the current level. The art to this strategy became a matter of timing; do not try to buy

the market too early lest you run out of capital, and do not be too late lest you be unable to make the

second to the last trade. There did not appear to be too much of a problem for buyers in

accomplishing this in experiments 7 and 8; however, starting in experiment 9, some short traders,

having become annoyed at bullish traders getting the tournament prize, began jockeying in these

last seconds with the long traders in order to drive prices down. The results of such feuds appear in

periods 3A, 4A, and 5A of experiment 9 and each A period of experiment 10. The winner of these

duels increasingly became the trader who was best able to execute his trade. Eventually, trading

activity become so enraged in the last 15 s of trading that the open outcry systems of double-oral

auction began to break down.

Fig. 73.9 Experiment 9: bid ask, close and equilibrium prices, one dividend with 5 trading

periods, mixed risk aversion and increase supply of shares. Bonus to top two traders. Subjects

are from Las Vegas

73 Creation and Control of Bubbles 2007



reflecting a modest risk premium results even when traders are faced with

a shortened investment horizon.

73.4.4 The Impact of Risk Aversion

The results of previous experiments, especially 6, showed that trader risk aversion

was an important factor in determining trader strategy and therefore price patterns.

In general, it was found that speculative traders were more likely to seize upon the

opportunity created by the introduction of uncertainty (via the tournament period)

in search of capital gains. In contrast, the more conservative traders were likely to

allow the speculators to act first by creating a positive price trend and would simply

sell at inflated prices, or they would allow speculators to first initiate the “burst” of

the bubble and then follow in their footsteps. Consequently, the conservative

traders were often those responsible for the perpetuation of a direction initially

set by speculators. The purpose of experiments 11–14 was to further test these

relationships.25

25Experiments 11–14 were conducted at a second university, and therefore, the results provide

information about the external validity of our experiments outside the setting of a single university.

Fig. 73.10 Experiment 10: bid ask, close and equilibrium prices, one dividend with 5 trading

periods, mixed risk aversion and increase supply of shares. Bonus to top two traders. Subjects are

from Las Vegas
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We chose at this time to create two separate trading groups according to risk

aversion, each composed of 12 traders. These 24 traders were chosen from a pool of

70 students that completed the risk ranking questionnaire described earlier. The

70 respondents were rank ordered from highest to lowest in risk aversion. The top

12 and bottom 12 students were chosen to participate in the experiments. This

method allows us to obtain good separation according to risk aversion. Contrary to

our previous experiments, these markets would be made up entirely of one risk

aversion class. We label these two risk classes as speculators and conservatives.

This is a relative nomenclature as all of these traders are considered to be risk

averse, and we only presume to provide an ordinal measure of risk aversion.

The design of these experiments follows that of experiments 1–6, as we wish to

test for the presence of bubbles, and the initial endowments of experiments 7–10

have already been shown to eliminate bubbles. All of these traders had previously

participated in two experimental markets and therefore can be considered experi-

enced. Nevertheless, we test for rationality of pricing in experiments 11 and

13 before introducing the shortened horizons in experiments 12 and 14.

Figures 73.11–73.14 reveal that both markets are quite rational in that they

charge a discount from PFE as a risk premium. As expected, the conservative

traders of experiment 13 charge a larger risk premium than the speculative

traders of experiment 11. This result provides strong evidence in support of our

Fig. 73.11 Experiment 11: bid ask, close and equilibrium prices, two dividends and five trading

periods each, with speculative traders. Subjects are from FSU, experiment 1
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measure/separation of risk aversion. We also note that the speculative group

exhibits prices above the PFE levels of period B. This is consistent with our earlier

results where this was found in the single-period case.

Experiments 12 and 14 introduce the tournament compensation schedule to

induce a shorter investment horizon. As expected, the speculative group seizes

upon the opportunity and price bubbles are generated in the latter periods. Also to

no surprise, the conservative group does not create the pressure necessary to cause

bubbles to form. As a result, we conclude that a necessary condition for asset

bubbles is the presence of speculators.26

26A detailed examination of individual trades reveals the speculative group of traders who are

found to be more innovative in designing new trading strategies both in the creating and bursting of

bubbles. The finding is consistent with the observation made by Benjamin Friedman (1992) in his

review of a dozen NBER working papers on asset pricing. He finds these recent research results

demonstrate that rational speculative behaviors such as an attempt by investors to learn from other

investors, to affect another’s opinion, or to simply engage in protective trading could in some

context, such as imperfect information, magnify price fluctuations.

Fig. 73.12 Experiment 12 bid ask, close and equilibrium prices, one dividend with 5 trading

periods, with speculative traders. Subjects are from FSU, experiment 1. Mixed bonus: to top 6

traders in first half and top 2 traders only in the second half. Subjects are from FSU, experiment 1

2010 J.S. Ang et al.



73.4.5 The Formation of Negative Bubbles

We have just learned that the effect of the reduced investment horizon is to increase

the incentive for short-term speculative gains and that speculative traders are those

most eager to earn these profits. We now extend the research design to investigate

the question of whether negative bubbles are also possible. We test this proposition

by conducting four new experiments (labeled as experiments 15–18 in Table 73.1).

We conduct experiments 15 and 16 as “controls” to replicate the positive bubble

environment found in experiments 4, 6, and 12. Experiments 15 and 16 validate our

previous results with a new set of experimental subjects, while Figs. 73.15 and

73.16 plot the pattern of close prices relative to the equilibrium level (horizontal

line). In both experiments, large positive bubbles emerge in most trading years.

We now pose the following question, “Would an environment opposite to that of

Design 2 lead to negative bubbles?” We keep the structure of Design 2, but since it

was the unequal endowment effect (more purchasing power versus selling pressure,

under 2 securities, 10,000 francs) that created the ability to pursue profits in

a positive bubble environment, we reverse the endowment effect in experiments

17 and 18 by providing 10 securities and 1,000 francs to each trader. This one

change provides traders in experiments 17 and 18 with a much greater ability to buy

relative to sell.

Fig. 73.13 Experiment 13 bid ask, close and equilibrium prices, two dividends and five trading

periods each, with speculative traders. Subjects are from FSU, experiment 1. Mixed bonus: to top 6

traders in first half and top 2 traders only in the second half. Subjects are from FSU, experiment 1
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Fig. 73.14 Experiment 14 bid ask, close and equilibrium prices, one dividend with 5 trading

periods, with conservative traders. Mixed bonus: to top 6 traders in first half and top 2 traders only

in the second half. Subjects are from FSU, experiment 1

Fig. 73.15 Experiment 15 bid ask, close and equilibrium prices, two periods, mixed risk

aversion. Subjects are from FSU, experiment 2. Considered most sophisticated

2012 J.S. Ang et al.



The results plotted in Figs. 73.17 and 73.18 show a preponderance for negative

bubbles. While the initial 4 years of experiment 17 show some learning adjustment

to this new and difficult trading scheme, large price discounts emerge to the extent

that period 5A’s closing price is insignificantly different than period 5B’s which is

Fig. 73.16 Experiment 16 bid ask, close and equilibrium prices, one dividend with 5 trading

periods, and mixed risk aversion. Subjects are from FSU, experiment 2. Considered most

sophisticated

Fig. 73.17 Experiment 17 bid ask, close and equilibrium prices, two periods, and mixed risk

aversion. Increase supply of shares. Subjects are from FSU, experiment 2. Considered most

sophisticated
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a single period receiving only a single dividend. By experiment 18, each year shows

downward trending markets in each A period. The reader may notice that the

positive bubbles seem to burst, while the negative bubbles don’t. However, since

our design did not allow more cash to be made available through borrowing or

infusion, correction may not be observed in the short trading period.

73.5 Conclusions

The results of this study have a number of implications for real-world markets.

Experiments 1–6 seem to imply that within an environment that restricts selling

pressures, a shortened investment horizon is sufficient to create asset bubbles.

In application to the real world, short-term performance of traders, portfolio man-

agers, etc., could create pressures leading to price bubbles. Experiments 7–10 provide

restrictions to the previous conclusion in that a shortened investment horizon creates

bubble pressure only when the market environment favors buyers over sellers.

Unfortunately, most of our real-world securities markets do have such a bias via

restricted short sales, asymmetric leverage for longs versus shorts, restricted options

and futures, and the like. Experiments 11–14 add to the puzzle by demonstrating the

role of speculators within bubble formation. As a whole, the study suggests that

necessary and sufficient conditions for the formation of asset bubbles are a shortened

investment horizon, restricted selling activity relative to buyers, and the presence of

speculators. We have also shown that repeated replication of these experiments under

different settings still produces robust results.

Fig. 73.18 Experiment 18 bid ask, close and equilibrium prices, two period, and mixed risk

aversion. Increase supply of shares. Subjects are from FSU, experiment 2. Considered most

sophisticated

2014 J.S. Ang et al.



The first and third variables are a matter of fact within US securities markets,

while restricted selling activity relative to buyers can take many forms. Either

enhancing the buyer’s position or restricting the seller’s position is sufficient.

Examples include increasing purchasing (speculative) ability through reduced

stock margin levels, introduction of high leverage stock index futures, and, in

macroeconomic terms, a growing money supply or savings level. This latter

variable may help explain the previous high levels of the Japanese equity market.

The high level of Japanese savings creates very large endowments available for

investment purchase. Given a limited supply of securities, our experimental

markets show that these conditions will lead to a bubble. They also suggest that

the bubble will burst when there is greater equating between the supply and

demand. Recent changes in the Japanese institutional framework may, as

predicted by this study, have led to the bursting of that bubble.

The primary prescription put forth for regulatory authorities in eliminating unnec-

essary market volatility resulting from asset bubbles is to create an institutional

environment that does not restrict the transfer of information to the market.

Structure the variables so that both bulls and bears have equal costs in executing

their trades.

Appendix 1: Statistical Analysis

Table 73.4 summarizes the ordinary least squares regression analyses of the impact

upon the divergence of asset prices from their PFE levels in period A.27

In particular, we test the following relation:

PL � PFE ¼ ƒ I, E, I � E, T, I � E � T, S, I � S, A, I � A, $ð Þ (73.5)

where:

PL – PFE ¼ the deviation from equilibrium for period A of each trading year where

PL is the last trade of the period and PFE is the perfect foresight equilibrium

price,

ƒ ¼ a linear additive model,

I ¼ a dummy variable representing the shortened investment horizon according to

Table 73.1 I¼ 1 for shortened horizon and 0 otherwise (i.e., experiments 4, 610,

12, 14),

E ¼ a dummy variable representing the endowment effect according to Table 73.1.

E ¼ 1 when 2 securities are issued and 0 otherwise (i.e., experiments 1–6,

11–14),

I*E ¼ an interaction dummy variable representing both a shortened investment

horizon and two-security endowment (i.e., experiments 4, 6, 12, 14),

27See the classic textbooks by Greene (2012), Wooldridge (2010), or Hayashi (2000) for details on

the implementation and interpretation of OLS.
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T ¼ a dummy variable representing the tournament effect according to Table 73.1.

T¼ 1 when there is a tournament prize for two traders only and 0 otherwise (i.e.,

experiments 4, 6, 12, 14 (years 4 and 5), 9, and 10),

I*E*T ¼ an interaction dummy variable representing a shortened investment

horizon, a two-security endowment, and a tournament effect (i.e., experiments

4, 6, 9, 10 (years 4 and 5)),

S ¼ a dummy variable representing the extent to which speculators participated in

the experiments according to Table 73.1. S ¼ 1 for experiments 11 and 12 and

0 otherwise,

I*S ¼ an interaction dummy variable representing the shortened investment hori-

zon and a pure speculative trader market (i.e., experiment 12),

A ¼ the ratio of end-of-period asset inventory for speculative traders to total asset

holdings. Speculative traders are those who scored in the top one-half of the risk

measurement questionnaires,

I*A ¼ an interaction variable for shortened investment horizon and ratio asset

holdings for speculators (experiments 4, 6–10, 12, 14),

$ ¼ a dummy variable representing experiments where traders risked their own

money according to Table 73.1. $ ¼ 1 when their own money is used and

0 otherwise (i.e., experiments 5 and 6).

Due to their differential design, the results for experiments 1–10 appear sepa-

rately in Panel A and those for experiments 11–14 in Panel B.

Model 1 of Panel A tests the impact of (1) I¼ 1, a shortened horizon; (2) E¼ 1, a

restricted endowment effect (wealth and supply effects); and (3) I ¼ 1, E ¼ 1, an

interaction of a shortened horizon with restricted initial endowment. Given that the

regression was run with no intercept, the coefficients represent estimates of each

variable’s independent impact. The results suggest that neither a shortened invest-

ment horizon nor a biased endowment effect (advantage to “bulls” versus “bears”)

is sufficient to induce bubble behavior. However, the interaction of these two

variables is highly significant in explaining the bubble results of these experiments.

That is, an environment that provides both the incentive and the ability to profit

from a bubble will likely result in positive price divergence.

As hypothesized earlier, we test for the heightened effect of tournament incen-

tives (i.e., T ¼ 1) by examining the effect of “superstar” prizes paid to only the top

two traders (as outlined in Tables 73.1 and 73.3). We also test for an interaction

effect with a shortened horizon (I ¼ 1) and restricted endowment (E ¼ 1). Model

2 results are consistent with Model 1 in that a tournament effect is not sufficient in

itself (t ¼ 0.13 on T variable); however, in conjunction with a reduced horizon

and restricted endowment, the tournament interacts to explain a significant part

(t ¼ 4.57 on I*E*T) of the bubbles in these experiments.

In Model 3, we observe the impact of speculative traders vis-á-vis conservatives

by introducing a measure of asset purchase activity. The end-of-period asset

holdings for the speculative group (the top one-half of traders in risk ratings) are

compared to the total asset endowment for all traders. In the absence of any effect,

assets should be evenly divided, and this ratio, A, should be equal to.5. The results

of Model 3 indicate that speculators independently do not impact the presence of
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a bubble (t ¼ 0.01 for A); however, when speculators operate within a shortened

horizon (I*A), they do significantly differentiate themselves from conservatives by

buying more and contributing to positive price bubbles. Finally, the impact of the

use of the trader’s own money is shown not to significantly alter the effects of the

price bubbles (t ¼ �0.54 for $). The R2 of .80 suggests that the vast majority of

price deviation from PFE levels can be explained by investment horizon, endow-

ment effects, and risk aversion.

Panel B reports the results for experiments 11–14 where markets were composed

of either all speculators (11, 12) or all conservatives (13, 14). Due to this makeup,

variables A and I*A are not defined in these regressions although S and I*S are

substituted in their place and represent the speculative markets (11 and 12) and the

interaction of shortened horizon with a speculative market (12). In addition,

a restricted endowment effect (E ¼ 1) is imposed for experiments 11–14 since

experiments 7–10 clearly established their necessity in creating bubbles. Model

4 results highlight the significant positive effect of the combined shortened

horizon/restricted endowment effect (t ¼ 6.98 for I). More importantly, the spec-

ulative group statistically differs from conservatives with an additional mean price

difference of 89.9 (t ¼ 4.92). Model 5 supports the results of experiments 1–10 in

that 1) a shortened investment horizon with restricted endowments leads to price

bubbles (t ¼ 2.71) for I, 2) a heightened tournament incentive will heighten

short-term horizons and lead to positive price effects (t ¼ 2.83 for I*T), and 3)

speculators contribute to positive price bubbles in restricted endowment environ-

ments (t ¼ 3.17 for S).28

The visual analysis of experiments 15–18 (negative bubble experiments) is

confirmed by the regression results reported in Table 73.5. The variables are as

defined earlier under Eq. 73.5 albeit the EN representing a dummy variable for the

negative endowment effect. EN¼ 1 when the initial endowment equals 10 securities

and 1,000 firms and 0 otherwise. In addition, since the shortened horizon variable

I occurs for all years except 1A of each experiment, I and E are highly correlated.

The design is therefore set to only measure the interaction effects of a shortened

horizon and endowment. The four periods (1A of each experiment) are the control

periods where a shortened horizon is not present (dummy NI ¼ 1 for not I).

The parameter estimates of Model 6 show significant positive results for both

positive and negative bubbles. The joint presence of a shortened horizon induced by

a tournament payoff along with a buy side endowment (2 securities, 10,000 firms),

that is, I*E ¼ 1, leads to an average increase of 400.6 francs in price levels.

The single alteration of the endowment to sell side (10 securities, 1,000 francs)

in the presence of a tournament leads to an average decrease in price of 201.3

francs. The estimate for NI reflects the insignificant impact of the control periods

where the endowment effect is present but without the tournament payoff inducing

a shortened horizon. So as in the earlier results, the combined effect of the incentive

28Furthermore, although insignificant, the p-value for I*S is equal to.14, suggesting that the

speculative difference may be even greater under a shortened investment horizon.
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(i.e., the tournament) and the ability (i.e., the endowment) works to create both

positive and negative price bubbles.

Appendix 2: Additional Tests

To check the robustness of our results, we conduct eight final experiments in

a unique and different setting, the former Communist country of Albania.29 Of its

many unique characteristics, one of the most important is its history of being the

most isolated (politically and economically) country in Europe since World War II.

Since democratic reforms opened in 1991, a new business school was opened in the

second largest city of Albania, Shkodra, where the third year students served as

traders. Would the students whose country didn’t have a securities market

29In addition, we perform further OLS regressions and report the results in Table 73.5.

Table 73.5 Negative bubble and single period results

Model Intercept NI I*E I*EN R2

Panel A

Experiments 15–18 (n = 20)

6 NOINTb 45.0 (0.37) 400.6*** (4.67) −201.3** (−2.34) .55

Panel B

Experiments 19–22 (n = 40)

7 NOINTb −22.8 (−1.60) 22.5** (2.36) −92.9***(−6.89) .57

Panel C

Experiments 23–26 (n = 20)

8 −130.0** (−3.61) 174.5*** (3.95) −208.0*** (−4.08) .80

This table shows the extent to which endowment in conjunction with other variables causes a

deviation from perfect foresight equilibrium valuesa. The following regression is estimated

separately for experiments 15–18, 19–22, and 23–26 according to the experimental design of

Table 73.1.

PL-PFE = f(.NI; E; I*E; EN; I*EN)
at-values in parentheses. Variables defined as follows:

PL-PFE represents the deviation from equilibrium for Period A of each trading year where PL is

the last trade of the period and PFE is the Perfect Foresight Equilibrium price

I is a dummy variable representing the shortened Investment horizon according to Table 73.1.

I ¼ 1 for shortened horizon, and 0 otherwise

E is a dummy variable representing the Endowment effect according to Table 73.1. E ¼ 1 when

2 securities are issued, and 0 otherwise

I*E is an interaction dummy variable representing both a shortened investment horizon and two

security endowment

EN is a dummy variable representing the sell side of the Endowment effect hypothesized to lead

Negative bubbles. E ¼ 1 when 10 securities are issued and 0 otherwise

I*EN is an interaction dummy variable representing both a shortened investment horizon and a

ten security environment
bNOINT means the regression was run by suppressing the intercept.
*, **, ***Signify statistical significance levels at .10, .05, and .01, respectively.
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Fig. 73.19 Experiment 19 bid ask, close and equilibrium prices, one dividend with 5 trading

periods, mixed risk aversion. Subjects are from Albania

Fig. 73.20 Experiment 20 bid ask, close and equilibrium prices, one dividend with 5 trading

periods, mixed risk aversion, and bonus to top traders. Subjects are from Albania
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Fig. 73.21 Experiment 21 bid ask, close and equilibrium prices, one dividend with 5 trading

periods, mixed risk aversion and bonus to top traders. Subjects are from Albania

Fig. 73.22 Experiment 22 bid ask, close and equilibrium prices, two periods, mixed risk

aversion, and bonus to top traders. Increase supply of shares. Subjects are from Albania
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or a history of free market trade show the same results as we had found at

US universities? While our previous experiments had the most experienced traders

ever used in a study, these may indeed represent the least experienced traders examined

to date which may be regarded as an extreme test of the validity of our results.

Because of the newness of the trading experience for these students, a single-

period design was used in the first four experiments. For each experiment’s ten

trading years (no period B), asset payoffs were for a single dividend payoff. The

amounts used were the same as those of Table 73.2 so that equilibrium levels

remained at 230 for each year. As shown in Table 73.1, Design 7 (experiment 19)

consists of a single-period security without a tournament effect. Design 8 (experi-

ments 20 and 21) introduces the tournament payoff of Table 73.3 (Schedule Two)

within the single-period environment. This allows us to test for the presence of

bubbles in the simpler pricing environment while also easing the learning experi-

ence of the Albanian students toward two-period tournament pricing.

The pricing results for these three experiments can be seen in Figs. 73.19–73.21.

Without the tournament in experiment 19, pricing is rational and typical showing

a discount (risk premium) of about 30 francs from the equilibrium level of 230.

Near the end of experiment 20, the tournament effect appears to have created some

Fig. 73.23 Experiment 23 bid ask, close and equilibrium prices, two dividends with five trading

periods each, and mixed risk aversion. Subjects are from Albania
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price movement above equilibrium. This pressure continues into experiment

21 where prices trade at an average premium of 30 francs. While these premiums

do not constitute a bubble, it is clear they had a significant positive impact on

pricing levels. Would this effect be eliminated (reversed) by changing the buy/sell

pressure as was done earlier under Design 6 where negative bubbles were induced?

Design 9 tests this proposition by changing the endowment from 2 securities and

5,000 francs to 20 securities and 500 francs. The results, reported in Fig. 73.22,

show that even in these simple markets, the endowment effect combined with

tournament payoff leads to pricing away from equilibrium. These observations

are confirmed by the regression results of Model 7 in Table 73.5 where buy side

preference (I*E ¼ 1) leads to significant increase in prices, while sell side prefer-

ence (I*EN¼ 1) leads to lower prices. The absence of a tournament payoff (NI¼ 1)

leads to insignificant price effects as investment horizon cannot be altered in

a single-period market.

The Albanian students had now participated in four single-period experiments

and were ready to attempt two-period pricing. Experiment 23 was a simple

two-period pricing environment without any tournament payoff as in Design

1 (control). The plot of prices in Fig. 73.23 shows that the students initially

struggled with two-period pricing since period A prices (two payoffs) differed little

Fig. 73.24 Experiment 24 bid ask, close and equilibrium prices, one dividend with 5 trading

periods, and mixed risk aversion. Subjects are from Albania
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Fig. 73.25 Experiment 25 bid ask, close and equilibrium prices, one dividend with 5 trading

periods, mixed risk aversion. Subjects are from Albania

Fig. 73.26 Experiment 26 bid ask, close and equilibrium prices, one dividend with 5 trading

periods, and mixed risk aversion. Increase supply of shares. Subjects are from Albania
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from period B prices (single payoff), though by the end of the experiment enough

learning had developed.

Experiments 24 and 25 introduce the shortened investment horizon (tournament

effect) within the two-period framework as in Design 2 earlier. The price patterns in

Figs. 73.24 and 73.25 show the creation of positive price bubbles to levels

approaching 650 francs. Despite the historical background of this country and

these students, they responded to market pressures in the same bubble-like manner.

The last experiment, 26, alters the endowment to the sell side as before to see if

negative bubbles can also be obtained. Price paths in Fig. 73.26 show a general

downward trend of prices. The prices in period A show significant and growing

discounts from the equilibrium levels of 460. These observations are confirmed by

the regression results reported in Panel C of Table 73.5 with buy side endowment

contributing 174.5 francs and sell side endowment reducing levels by 208.0 francs.
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Abstract

The literature on range volatility modeling has been rapidly expanding due to its

importance and applications. This chapter provides alternative price range

estimators and discusses their empirical properties and limitations. Besides, we

review some relevant financial applications for range volatility, such as value-at-

risk estimation, hedge, spillover effect, portfolio management, and microstruc-

ture issues.

In this chapter, we survey the significant development of range-based vola-

tility models, beginning with the simple random walk model up to the condi-

tional autoregressive range (CARR) model. For the extension to range-based

multivariate volatilities, some approaches developed recently are adopted, such

as the dynamic conditional correlation (DCC) model, the double smooth transi-

tion conditional correlation (DSTCC) GARCH model, and the copula method.

At last, we introduce different approaches to build bias-adjusted realized range

to obtain a more efficient estimator.

Keywords

Range • Volatility forecasting • Dynamic conditional correlation • Smooth

transition • Copula • Realized volatility • Risk management

74.1 Introduction

Financial volatility is a key input in derivative pricing, asset allocation, investment

decisions, hedging, and risk analysis; volatility modeling thus has became an

important task in financial markets, and it has held the attention of academics and

practitioners over the last three decades. Nevertheless, following Barndorff-Nielsen

and Shephard (2005) or Andersen et al. (2003), financial volatility is a latent factor

and hence it cannot be observed directly. Financial volatility thus can only be

estimated using its signature on certain known market price processes; when the

underlying process is more sophisticated or when observed market prices suffer

from market microstructure noise effects, the results are less clear.

It is well known that the time series of asset prices usually exhibit volatility

clustering or autocorrelation. In incorporating the characteristics into the dynamic

process, the generalized autoregressive conditional heteroskedasticity (GARCH)

family of models proposed by Engle (1982) and Bollerslev (1986) and the stochastic

volatility (SV) models advocated by Taylor (1986) are two popular and useful

alternatives for estimating and modeling time-varying conditional financial volatility.
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However, as pointed by Alizadeh et al. (2002), Brandt and Diebold (2006),

Chou (2005), and others, both GARCH and SV models are inaccurate and inefficient,

because they are based on the closing prices of the reference period, failing to use the

information content inside the reference. In other words, the path of the price inside the

reference period is totally ignored when volatility is estimated by these models.

Especially in turbulent days with drops and recoveries in the markets, the traditional

close-to-close volatility indicates a low level, while the daily price range shows

correctly that the volatility is high.

The price range, also known as high/low range or range volatility, is basically

defined as the difference between the highest and lowest market prices over a fixed

sampling interval. The price range has been known for a long time and has recently

experienced renewed interest as a proxy of the latent volatility. The information

contained in the opening, highest, lowest, and closing prices of an asset is widely

used in Japanese candlestick charting techniques and other technical analysis

indicators, such as the directional movement indicator (DMI). Early applications

of range in the field of finance can be traced to Mandelbrot (1971) and the academic

work on the range-based volatility estimator which began in the early 1980s.

Several authors, back to Parkinson (1980), developed several volatility measures

which were far more efficient than the classical return-based volatility estimators.

Building on the earlier results of Parkinson (1980), many studies1 showed that one

can use the price range information to improve volatility estimation. In addition to

being significantly more efficient than the squared daily return, Alizadeh et al. (2002)

also demonstrated that the conditional distribution of the log range is approximately

Gaussian, thus greatly facilitating maximum likelihood estimation of stochastic vol-

atility models. Moreover, as pointed out by Alizadeh et al. (2002) and Brandt and

Diebold (2006), the range-based volatility estimator appears robust to microstructure

noise such as bid-ask bounce. By adding microstructure noise to the Monte Carlo

simulation, Shu and Zhang (2006) also supported the finding of Alizadeh et al. (2002)

that range estimators are fairly robust toward microstructure effects.

Cox and Rubinstein (1985) explained the problem that despite the elegant theory

and the support of simulation results, the range-based volatility estimator has

performed poorly in empirical studies. Chou (2005) argued that the failure of all

the range-based models in the literature is caused by their ignorance of the temporal

movements of price range. Using a proper dynamic structure for the conditional

expectation of range, the conditional autoregressive range (CARR) model, pro-

posed by Chou (2005), successfully resolves this puzzle and retains its superiority

in empirical forecasting abilities. The in-sample and out-of-sample volatility fore-

casting using S&P 500 index data shows that the CARR model does provide

more accurate volatility estimator compared with the GARCH model. Similarly,

1See Garman and Klass (1980), Beckers(1983), Ball and Torous (1984), Wiggins (1991), Rogers

and Satchell (1991), Kunitomo (1992), Yang and Zhang (2000), Alizadeh et al. (2002), Brandt and

Diebold (2006), Brandt and Jones (2006), Chou (2005, 2006), Cheung (2007), Martens and van

Dijk (2007), Chou and Wang (2007), Floros (2009), Chou et al. (2009), and Chou and Liu (2010,

2011).
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Brandt and Jones (2006) formulated a model that is analogous to Nelson’s (1991)

EGARCH model but uses the square root of the intraday price range in place of the

absolute return. Both studies find that the range-based volatility estimators offer

a significant improvement over their return-based counterparts. Moreover, Chou

et al. (2009) extended CARR to a multivariate context using the dynamic condi-

tional correlation (DCC) model proposed by Engle (2002a). They found that this

range-based DCC model performs better than other return-based volatility models

in forecasting covariances. In this chapter, we also review alternative range-based

multivariate volatility models in Sect. 74.3.

Recently, many studies have used high-frequency data to get an unbiased and

highly efficient estimator for measuring volatility; see Andersen et al. (2003) and

McAleer and Medeiros (2008) for a review. The volatility built by nonparametric

methods is called realized volatility, which is calculated by the sum of

nonoverlapping squared returns within a fixed time interval. Martens and van

Dijk (2007) replaced the squared return with the price range to get a more efficient

estimator, namely, the realized range. In their empirical study, the realized range

was a significant improvement over realized return volatility. In addition,

Christensen and Podolskij (2007) independently develop the realized range and

showed that this estimator is consistent and relatively efficient under some specific

assumptions.

The remainder of the chapter is laid out as follows. Section 74.2 introduces the

price range estimators. Section 74.3 describes the range-based volatility models,

including univariate and multivariate ones. Section 74.4 presents the realized range.

The financial applications of range volatility are provided in Sect. 74.5. Finally, the

conclusion is showed in Sect. 74.6.

74.2 The Price Range Estimators

A few price range estimators and their estimation efficiency are briefly intro-

duced and discussed in this section. The price ranges which can be calculated

by the daily opening, highest, lowest and closing prices are readily available

for many assets. Most data suppliers provide daily highest/lowest prices as

summaries of intraday activity. For example, Datastream records the intraday

price range for most securities, including equities, currencies, and commodi-

ties, going back to 1955. Thus, range-based volatility proxies are easily calcu-

lated. When using this record, the additional information yields a great

improvement when used in financial applications. Roughly speaking, knowing

these records allows us to get closer to the real underlying process, even if we

do not know the whole path of asset prices. For an asset, let’s define the

following variables:

Ot ¼ the opening price of the tth trading day.

Ct ¼ the closing price of the tth trading day.

Ht ¼ the highest price of the tth trading day.

Lt ¼ the lowest price of the tth trading day.
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The efficiency for the Parkinson (1980) estimator intuitively comes from the fact

that the price range of intraday trading gives more information regarding the future

volatility than two arbitrary points in this series (the closing prices). Assuming that

the asset price follows a simple diffusion model without a drift term, his estimator

ŝ2
P can be written as follows:

ŝ2
P ¼ 1

4 ln 2
lnHt � ln Ltð Þ2: (74.1)

But instead of using two data points, the highest and lowest prices, four data

points, the opening, closing, highest, and lowest prices, might also give extra

information. Garman and Klass (1980) proposed several volatility estimators

based on the knowledge of the opening, closing, highest, and lowest prices. Like

Parkinson (1980), they assumed the same diffusion process and proposed their

estimator ŝ2
GS as

ŝ2
GK¼ 0:511 ln Ht=Ltð Þ½ �2 � 0:019 ln Ct=Otð Þ ln Htð Þ þ ln Ltð Þ � 2ln Otð Þ½f �

�2 ln Ht=Otð Þln Lt=Otð Þ�½ g � 0:383 ln Ct=Otð Þ½ �2:
(74.2)

As mentioned in Garman and Klass (1980), their estimator can be presented

practically as ŝ2

GK
0 ¼ 0:5 ln Ht=Ltð Þ½ �2 � 2ln2� 1½ � ln Ct=Otð Þ½ �2: Molnár (2012)

showed that in the absence of high-frequency data, returns normalized by their

estimator are, approximately, distributed normally.

The price path cannot be monitored when markets are closed; however, Wiggins

(1991) found that both the Parkinson estimator and Garman-Klass estimator were

still biased downward compared to the traditional estimator, because the observed

highs and lows were smaller than the actual highs and lows. Garman and Klass

(1980) and Grammatikos and Saunders (1986), nevertheless, estimated the potential

bias using simulation analysis and showed that the bias decreases with an increasing

number of transactions. Therefore, it is relatively easy to adjust the estimates of

daily variances to eliminate the source of bias.

Because the Parkinson (1980) and Garman and Klass (1980) estimators

implicitly assumed that log-price follows a geometric Brownian motion with no
drift term, further refinements were made by Rogers and Satchell (1991) and

Kunitomo (1992). Rogers and Satchell (1991) added a drift term in the stochastic

process that could be incorporated into a volatility estimator using only daily

opening, highest, lowest, and closing prices. Their estimator ŝ2
RS can be written as

follows:

ŝ2
RS ¼

1

N

Xt
n¼t�N

ln Hn=Onð Þ ln Hn=Onð Þ � ln Cn=Onð Þ½ �
þ ln Ln=Onð Þ ln Ln=Onð Þ � ln Cn=Onð Þ½ �:

(74.3)
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Rogers et al. (1994) reported that the Rogers-Satchell estimator yields theoret-

ical efficiency gains compared to the Garman-Klass estimator. They also reported

that the Rogers-Satchell estimator appears to perform well when changing drift

with as few as 30 daily observations.

Different from Rogers and Satchell (1991), Kunitomo (1992) used the opening

and closing prices to estimate a modified range corresponding to a hypothesis of

a Brownian bridge of the transformed log-price. This basically tries to correct the

highest and lowest prices for the drift term:

ŝ2
K ¼ 1

bN

Xt
p¼t�N

ln Ĥn=L̂n

� �� �
, (74.4)

where. two estimators Ĥn ¼ Arg
ti

Max
Pti

Pti � On þ Cn � Onð Þ=ti½ � þ Cn � Onð Þf
�

ti 2 n� 1, n½ �j g
�

and L̂n ¼ Arg
ti

Min
Pti

Pti � On þ Cn � Onð Þ=ti½ � þ Cn � Onð Þf
�

ti 2 n� 1, n½ �j g
�
are denoted as the end-of-the-day drift correction highest and

lowest prices. bN ¼ 6/(Np2) is a correction parameter.

Finally, Yang and Zhang (2000) made further refinements by deriving a price

range estimator that is unbiased, independent of any drift, and consistent in the

presence of opening price jumps. Their estimator ŝ2
YZ thus can be written as follows:

ŝ2
YZ ¼ 1

N � 1ð Þ
Xt
n¼t�N

ln On=Cn�1ð Þ � ln On=Cn�1ð Þ
h i

þ k

N � 1ð Þ
Xt
n¼t�N

ln On=Cn�1ð Þ � ln On=Cn�1ð Þ
h i

þ 1� kð Þ ŝ2
RS,

(74.5)

where k ¼ 0:34
1:34þ Nþ1ð Þ= N�1ð Þ . The symbol X is the unconditional mean of X, and

sRS
2 is the Rogers-Satchell estimator. The Yang-Zhang estimator is simply

the sum of the estimated overnight variance, the estimated opening market

variance, and the Rogers and Satchell (1991) drift-independent estimator. The

resulting estimator therefore explicitly incorporates a term for the closed market

variance.

Shu and Zhang (2006) investigated the relative performance of the four range-

based volatility estimators including Parkinson, Garman-Klass, Rogers-Satchell,

and Yang-Zhang estimators for S&P 500 index data and found that the price range

estimators all perform very well when an asset price follows a continuous geometric

Brownian motion. However, significant differences among the various range esti-

mators are detected if the asset return distribution involves an opening jump or

a large drift.
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In terms of efficiency, all previous estimators exhibit substantial improvements.

Defining the efficiency measure of a volatility estimator ŝ2
i as the variance

estimation compared with the close-close estimator, ŝ2, that is,

Eff ŝ2
i

� � ¼ Var ŝ2
� �

Var ŝ2
i

� �
:

(74.6)

Parkinson (1980) reported a theoretical relative efficiency gain ranging from 2.5

to 5, which means that the estimation variance is 2.5–5 times lower. Garman and

Klass (1980) reported that their estimator has an efficiency of 7.4; while the Yang

and Zhang (2000) and Kunitomo (1992) variance estimators resulted in

a theoretical efficiency gain of 7.3 and 10, respectively.

In addition to the variance estimation, Rogers and Zhou (2008) proposed a new

estimator for the correlation based on the opening, closing, high, and low prices of

two asset prices. However, they concluded that the range-based estimator of

correlation does not perform better than the simpler estimator based only on the

opening and closing prices. Nevertheless, it still points to new possibilities for

future research.

74.3 The Range-Based Volatility Models

This section provides a brief overview of the models used to forecast range-based

volatility. In what follows, the models are presented in increasing order of com-

plexity. For an asset, the range of the log-prices is defined as the difference between

the daily highest and lowest prices in a logarithm type. It can be denoted by

Rt ¼ ln Htð Þ � ln Ltð Þ: (74.7)

According to the Christoffersen’s (2002) result applied to the S&P 500 data, the

range-based volatility Rt showed more persistence than the squared return based on

estimated autocorrelations. Thus, the range-based volatility estimator of course

could be used instead of the squared return for evaluating the forecasts from

volatility models, and with the time series of Rt, one can easily construct

a volatility model under the traditional autoregressive framework.

Instead of using the data of range, nevertheless, Alizadeh et al. (2002) focused

on the variable of the log range, ln(Rt), since they found that in many applied

situations, the log range follows an approximately normal distribution. Therefore,

all the models introduced in the section except for Chou’s CARR model are

estimated and forecasted using the log range.

The following range-based volatility models were first introduced with

some simple specifications, including random walk, moving average (MA), expo-

nentially weighting moving average (EWMA), and autoregressive (AR) models.
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Hanke and Wichern (2005) thought that these models were fairly basic techniques

in the applied forecasting literature. Additionally, we also provide some models

with a much higher degree of complexity, such as the stochastic volatility (SV),

CARR, and range-based multivariate volatility models.

74.3.1 The Random Walk Model

The log range ln(Rt) can be viewed as a random walk. It means that the best forecast

of the next period’s log range is this period’s estimate of log range. As in most

papers, the random walk model is used as the benchmark for the purpose of

comparison.

E ln Rtþ1ð Þ Itj � ¼ ln Rtð Þ,½ (74.8)

where It is the information set at time t. The estimator E[ln(Rt + 1)|It] is obtained
conditional on It.

74.3.2 The MA Model

MA methods are widely used in time series forecasting. In most cases, a moving

average of length N where N ¼ 20, 60, 120 days is used to generate log range

forecasts. Choosing these lengths is fairly standard because these values of

N correspond to 1 month, 3 months, and 6 months of trading days, respectively.

The expression for the N day moving average is shown below:

E ln Rtþ1ð½ Þ Itj � ¼ 1

N

XN�1

j¼0

ln Rt�j

� �
: (74.9)

74.3.3 The EWMA Model

EWMA models are also very widely used in applied forecasting. In EWMA

models, the current forecast of log range is calculated as the weighted average of

the one period past value of log range and the one period past forecast of log range.

This specification appropriately provides the underlying log range series with no

trend.

E ln Rtþ1ð Þ Itj � ¼ lE ln Rtð Þ It�1j � þ 1� lð Þln Rtð Þ:½½ (74.10)

The smoothing parameter, l, lies between zero and unity. If l is zero then the

EWMA model is the same as a random walk. If l is one, then the EWMA model

places all of the weight on the past forecast. In the estimation process the optimal
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value of l was chosen based on the root mean squared error criteria. The optimal l
is the one that records the lowest MSE.

Like the above-mentioned EWMA model, Harris and Yilmaz (2010) combined

the Parkinson range estimator and the open-to-close return to propose a hybrid

EWMA variance model.

ŝHybrid
tþ1 ¼ lŝHybrid

t þ 1� lð Þŝ 0
P, t, (74.11)

where ŝ
0
P ¼ 1

4 ln 2
lnHt � ln Ltð Þ2 þ Ot � Ct�1ð Þ2:

74.3.4 The AR Model

This model uses an autoregressive process to model log range. It combines the

dynamic volatility with the range information. There are n lagged values of past log
range to be used as drivers to forecast one period ahead.

E ln Rtþ1ð Þ½ � ¼ b0 þ bi
Xn
i¼1

ln Rtþ1�ið Þ: (74.12)

Li and Hong (2011) introduced the range-based autoregressive volatility

(AV) model which was first proposed by Hsieh (1991, 1993). Their empirical

study showed that the range-based AV model performs better than the GARCH

model in the in-sample and out-of-sample comparisons.

74.3.5 The Discrete-Time Range-Based SV Model

Alizadeh et al. (2002) presented a formal derivation of the discrete-time SV model

from the continuous-time SV model. The conditional distribution of log range is

approximately Gaussian:

ln Rtþ1 ln Rt � N ln Rþ r ln Rt�1 � ln R
� �

,b2Dt
� �

,
�� (74.13)

where Dt ¼ T/N, T is the sample period, and N is the number of intervals. The

parameter b models the volatility of the latent volatility. Following Harvey

et al. (1994), a linear state space system including the state equation and the signal

equation can be written as

ln R iþ1ð ÞDt ¼ ln Rþ rDt ln RiDt � ln R
� �þ b

ffiffiffiffiffi
Dt

p
u iþ1ð ÞDt: (74.14)

ln f siDt, iþ1ð ÞDt
� ��� �� ¼ g ln RiDt þ E ln f s�iDt, iþ1ð ÞDt


 ����
���

h i
þ e iþ1ð ÞDt: (74.15)

74 Range Volatility: A Review of Models and Empirical Studies 2037



Equation 74.14 is the state equation and Eq. 74.15 is the signal equation. In

Eq. 74.15, E is the mathematical expectation operator. The state equation errors are

i.i.d. N(0,1) and the signal equation errors have a mean of zero.

A two-factor model can be represented by the following state equation:

ln R iþ1ð ÞDt ¼ ln Rþ ln R1, iþ1ð ÞDt þ ln R2, iþ1ð ÞDt:

ln R1, iþ1ð ÞDt ¼ r1,Dt ln R1, iDt þ b1
ffiffiffiffiffi
Dt

p
u1, iþ1ð ÞDt: (74.16)

ln R2, iþ1ð ÞDt ¼ r2,Dt ln R2, iDt þ b2
ffiffiffiffiffi
Dt

p
u2, iþ1ð ÞDt:

The error terms u1 and u2 are contemporaneously and serially independentN(0, 1)
random variables. Compared with one-factor volatility model for currency future

prices, the two-factor model shows more desirable regression diagnostics. Asai and

Unite (2010) extended this model to capture the leverage and size effects, but their

empirical result did not support Alizadeh et al. (2002) theory; on the contrary, they

showed that the conditional distributions of the selected returns are non-normal.

74.3.6 The Range-Based EGARCH Model

Brandt and Jones (2006) incorporated the range information into the EGARCH

model, named by the range-based EGARCH model. The model significantly

improves both in-sample and out-of-sample volatility forecasts. The daily log

range and log returns are defined as the followings:

ln Rtð Þ It�1 � N 0:43þ ln ht, 0:29
2

� �
, rt

�� ��It�1 � N 0; h2t
� �

, (74.17)

where ht is the conditional volatility of the daily log return rt. Then, the range-based
EGARCH for the daily volatility can be expressed by

ln ht � ln ht�1 ¼ k y� ln ht�1ð Þ þ fXR
t�1 þ drt�1=ht�1, (74.18)

where y is denoted as the long-run mean of the volatility process and k is denoted as

the speed of mean reversion. The coefficient d decides the asymmetric effect of

lagged returns. The innovation

XR
t�1 ¼

ln Rt�1ð Þ � 0:43� ln ht�1

0:29
(74.19)

is defined as the standardized deviation of the log range from its expected value. It

means f is used to measure the sensitivity to the lagged log ranges. In short, the

range-based EGARCH model replaces the innovation term with the standardized

log range.
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74.3.7 The CARR Model

This section provides a brief overview of the CARR model used to forecast range-

based volatility. The CARR model is also a special case of the multiplicative error

model (MEM) of Engle (2002b) extended from the GARCH approach. The MEM

model is used to model a nonnegative valued process, such as trading volume,

duration, realized volatility, and range.2 The MEM model provides conditional

expectations of the variables like the GARCH approach and avoids the effect of

zeros as resorting to logs. It can be extended to a multivariate case through the use

of copula functions (Cipollini et al. 2009).

Instead of modeling the log range in the previous parts of this section, Chou (2005)

focused the process of the price range directly.With the time series data of price range

Rt, Chou (2005) presented the CARR model of order (p, q) or CARR (p, q) as

Rt ¼ ltet, et � f :ð Þ,
lt ¼ oþ

Xp

i¼1

aiRt�i þ
Xq

j¼1

bjlt�j,
(74.20)

where lt is the conditional mean of the range based on all information up to time

t and the distribution of the disturbance term et, or the normalized range, is assumed

to have a density function f(.) with a unit mean. Since et is positively valued given

that both the price range Rt and its expected value lt are positively valued, a natural
choice for the distribution is the exponential distribution.

The equation of the conditional expectation of range can easily be extended to

incorporate other explanatory variables, such as trading volume, time to maturity,

and lagged return:

lt ¼ oþ
Xp

i¼1

aiRt�i þ
Xq

j¼1

bjlt�j þ
XL
k¼1

lkXk: (74.21)

This model is called the CARR model with exogenous variables, or the CARRX

model. The CARR model essentially belongs to a symmetric model. In order to

describe the leverage effect of financial time series, Chou (2006) divided the whole

price range into two single-side price ranges, upward range and downward range.

Further, he defined UPRt, the upward range, and DNRt, the downward range, as the

differences between the daily highs, daily lows, and the opening price, respectively,

at time t. This can be expressed as follows:

UPRt ¼ ln Htð Þ � ln Otð Þ, (74.22)

DNRt ¼ ln Otð Þ � ln Ltð Þ: (74.23)

2Please refer to Engle and Russell (1998), Engle and Gallo (2006), and Manganelli (2005).
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Similarly, with the time series of single-side price range, UPRt or DNRt,

Chou (2006) extended the CARR model to the asymmetric CARR (ACARR)

model. In volatility forecasting, the asymmetric model also performed better

than the symmetric model. Chen et al. (2008) proposed a range-based threshold

conditional autoregressive (TARR) model which has superior ability in volatility

forecasting. In addition, Lin et al. (2012) proposed a nonlinear smooth transition

CARR model to capture smooth volatility asymmetries in international financial

markets.

74.3.8 The Range-Based Multivariate Volatility Model

The multivariate volatility models have been extensively researched in recent

studies. They provide relevant financial applications in various areas, such as

asset allocation, hedging, and risk management. Bauwens et al. (2006) offered

a review of the multivariate volatility models. As to the extension of the univariate

range models, Fernandes et al. (2005) proposed one kind of multivariate CARR

(MCARR) model using the formula Cov(X, Y) ¼ [V(X + Y) � V(X) � V(Y)]/2.
Moreover, Lee and Shin (2008) drove conditions for stationarity, geometric ergo-

dicity, and b-mixing with exponential decay. Analogous to Fernandes et al. (2005))

work, Brandt and Diebold (2006) used no-arbitrage conditions to build the covari-

ances in terms of variances. However, this kind of method could substantially apply

to a bivariate case.

Chou et al. (2009) combined the CARR model with the DCC model of Engle

(2002a) to propose a range-based volatility model, which uses the ranges to replace

the GARCH volatilities in the first step of DCC. They concluded that the range-

based DCC model performs better than other return-based models (MA100,

EWMA, CCC, return-based DCC, and diagonal BEKK) through the statistical

measures, RMSE and MAE, based on four benchmarks of implied and realized

covariance.

The DCC model is a two-step forecasting model which estimates univariate

GARCH models for each asset and then calculates its time-varying correlation by

using the transformed standardized residuals from the first step. The related

discussions about the DCC model can be found in Engle and Sheppard (2001),

Engle (2002a), and Cappiello et al. (2006). It can be viewed as a generalization of

the constant conditional correlation (CCC) model proposed by Bollerslev (1990).

The conditional covariance matrix Ht of a k � 1 return vector rt in CCC (rt|Ot � 1

� N(0, Ht)) can be expressed as

Ht ¼ DtRDt, (74.24)

Where Dt a k � k diagonal matrix with time-varying standard deviations
ffiffiffiffiffiffiffi
hi, t

p
of the ith return series from GARCH on the ith diagonal. R is a sample correlation

matrix of rt.
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The DCC is formulated in the following specification:

Ht ¼ DtRtDt,

Rt ¼ diag Qtf g�1=2Qtdiag Qtf g�1=2 ,
(74.25)

Qt ¼ S∘ ii
0 � A� B


 �
þ A∘Zt�1Zt�1 þ B∘Qt�1,Zt ¼ D�1

t � rt,

where i is a vector of ones and ◦ is the Hadamard product of two identically sized

matrices which are computed simply by element multiplication. Qt and S are,

respectively, the conditional and unconditional covariance matrices of the stan-

dardized residual vector Zt that came from GARCH. For the CARR case, the

standardized residual vector Zt
* is calculated from the adjusted conditional

range.3 A and B are estimated parameter matrices. Most cases, however, set them

as scalars. In a word, DCC differs from CCC by only allowing R to be time varying.

It is difficult to introduce the exogenous variables into the DCC model because

of the technical limitations for the mean reverting process. Chou and Cai (2009)

proposed a double smooth transition conditional correlation CARR (DSTCC-

CARR) model.4 In addition to the multi-asset CARR part, the DSTCC-CARR

model builds the smooth transition correlation structure through the standardized

residuals Zt
* of the rescaled range.

E Z�
t Z

0 �
t Ot�1j � ¼ Pt,

h
(74.26)

Pt ¼ 1� G2tð Þ 1� G1tð ÞP 11ð Þ þ G1tP 21ð Þ
� �

þ G2t 1� G1tð ÞP 12ð Þ þ G1tP 22ð Þ
� �

, (74.27)

where the transition logistic functions areGjt ¼ 1þ e�gj sjt�cjð Þ
 ��1

, gj > 0, j ¼ 1, 2.

The symbols cj and gj in the transition function are location and speed parameters,

respectively. Please see Chou and Cai (2009) for the details. Base on this framework,

Cai et al. (2009) used CPI and VIX as transition variables to investigate the

correlations among six international stock indices.

74.3.9 Other Model Extensions

In addition to the classification of range models, Harris et al. (2011) developed

a cyclical volatility model which employs the range to investigate the short and long

3For asset i, zi,t
* ¼ ri,t/li,t

* , where li,t
* ¼ adji � li,t and adji ¼

si

l̂i
. The scaled expected range li,t

* is

computed by a product of li,t and the adjusted coefficient adji which is the ratio of the uncondi-

tional standard deviationssi for the return series to the sample mean l̂i of the estimated conditional

range.
4Silvennoien and Terasvirta (2008, 2009) proposed the smooth transition conditional correlation

GARCH (STCC-GARCH) model and the double smooth transition conditional correlation

GARCH (DSTCC-GARCH) model.
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dynamics of exchange rate volatility. Their results indicated that the cyclical

volatility model performed better than the range-based EGARCH and FIEGARCH

models in computational efficiency and out-of-sample forecast. In contrast to

modeling range directly, some studies put the range into existing models to increase

the explanatory power. For example, Lin and Rozeff (1994) put the estimated range

process into the GARCHmodel and showed that the range estimator was still useful

in explaining the conditional variance.

74.4 The Realized Range Volatility

There has been much research investigating the measurement of volatility due to

the use of high-frequency data. In particular, the realized volatility, calculated by

the sum of squared intraday returns, provides a more efficient estimate for volatility.

The review of realized volatility has been discussed in Andersen et al. (2001),

Andersen et al. (2003), Barndorff-Nielsen and Shephard (2005), Andersen

et al. (2006, 2007), and McAleer and Mederos (2008). Martens and van Dijk

(2007) and Christensen and Podolskij (2007) replaced the squared intraday return

with the high/low range to get a new estimator called realized range.

Initially, we assumed that the asset price Pt follows the geometric Brownian

motion:

dPt ¼ mPtdtþ sPtdzt, (74.28)

where m is the drift term, s is the constant volatility, and zt is a Brownian motion.

There are t equal-length intervals divided into a trading day. The daily realized

volatility RVt at time t can be expressed by

RVt ¼
Xt
i¼1

lnPt, i � lnPt, i�1

� �2
, (74.29)

where Pt,i is the price for the time i � D on the trading day t and D is the time

interval. Then, t � D is the trading time length in a trading day. Moreover, the

realized range RRt is

RRt ¼ 1

4ln2

Xt
i¼1

lnHt, i � lnLt, i�1

� �2
, (74.30)

where Ht,i and Lt,i are the highest price and the lowest price of the ith interval on the
tth trading day, respectively.

As mentioned before, several studies suggest improving efficiency by using the

open and close prices, like Garman and Klass (1980). Furthermore, assuming that Pt

follows a continuous sample path, Martingale, Christensen, and Podolskij (2007)
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proposed integrated volatility and showed this range estimator remains consistent in

the presence of stochastic volatility.

ln Pt ¼ ln P0 þ
ðt
0

msdsþ
ðt
0

ss�dzt, for 0 � t < 1: (74.31)

The obvious and important question is that the realized range should be seriously

affected by microstructure noise. Martens and van Dijk (2007) considered a bias-

adjustment procedure, which scales the realized range by using the ratio of the

average level of the daily range and the average level of the realized range.

Christensen et al. (2009) provided another bias correlation for the realized range

to help divide the high-frequency data to minimize its asymptotic conditional

variance. Both found that the scaled realized ranges perform better than the

(scaled) realized volatility. Todorova (2012) also showed that the adjusted realized

ranges perform better than the daily range for the DAX 30 index.

It is interesting to note that the realized range can be extended to estimate

covariance. Bannouh et al. (2009) used the concept of Brandt and Diebold’s

(2006) non-arbitrage portfolio to propose a realized co-range estimator:

RCRt ¼ 1

2l1l2
RRP, t � l21RR1, t � l22RR2, t
� �

, (74.32)

where RRp,t, RR1,t, and RR2,t are the realized ranges of the portfolio P, asset 1, and
asset 2. l1 and l1 are the weights of two assets in the portfolio (l1 + l2 ¼ 1).

74.5 The Financial Applications of Range Volatility

The range mentioned in this chapter is a measure of volatility. From the theoretical

points of view, it indeed provides a more efficient estimator of volatility than the

return. It is intuitively reasonable due to the further information provided by the range

data. In addition, the return volatility neglects the price fluctuation, especially when

existing a short distance between the closing prices of the two trading days. We can

therefore conclude that the high/low range volatility should contain some additional

information compared with the close-to-close volatility. Moreover, the range is readily

available, which has low cost. Hence, most research related to volatility may be

applied to the range. Bollerslev et al. (1992) and Poon and Granger (2003) provided

extensive discussions on the application of volatilities in the financial markets.

Before the range was adapted by the dynamic structures, however, its application

was very limited.5 Based on the SV framework, Gallant et al. (1999) and Alizadeh,

Brandt, and Diebold incorporated the range into the equilibrium asset pricing

models. Chou (2005) and Brandt and Jones (2006), on the other hand, filled the

5In some studies, range was used as one of the estimators to improve the explanatory power of

models.
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gap between a discrete-time dynamic model and range. Their work creates many

opportunities for future research. In the following sections, we will give a classified

review for the financial applications of range volatility.

74.5.1 Value at Risk

Value at Risk (VaR) is designed to measure the potential loss of the asset. It is widely

used in the financial markets. We can calculate it by VaRt
a ¼ mt + fast, where a is the

given significant level and fa is the left quantile of the distribution F at a. Asai and
Brugal (2012) used an asymmetric heterogeneous ARMA model to fit range for

estimating VaR and showed that the one-step-ahead VaR forecast of the log range

performed well during the global financial crisis. Chen et al. (2012) proposed a range-

based threshold conditional VaR (CAViaR) model which also outperformed other

models during the crisis. Moreover, Brownlees and Gallo (2010) showed that the

daily range performed as well as the ultra-high-frequency data (UHFD) volatility

measure they proposed for VaR prediction. In addition, Shao, Lian and Yin (2009)

used the CARR model to model the realized range in estimating VaR, but it only

performed the same with the realized volatility model. However, Louzis et al. (2012)

found that the adjusted realized range can generate superior VaR estimates.

74.5.2 Hedge

With the development of conditional volatility models, there has been a dramatic

increase in future hedging. From the calculation of minimum variance hedging, the

optimal dynamic hedge ratio can be expressed as ht ¼ rsS,t/sF,t, where r is the

correlation of spot and futures returns and ss,t and sF,t are the standard deviations of
spot and futures returns, respectively. Within frameworks of a constant conditional

correlation (CCC) model and a dynamic conditional correlation (DCC) model,

Chou and Liu (2011) showed that the range-based multivariate volatility model

has more efficiency gain than the return-based approaches.

74.5.3 Volatility Spillover

Volatility spillover can reflect the information flow among financial markets. Most

studies analyze the behavior of volatility spillover by estimating the conditional

variance and covariance. Gallo and Otranto (2008) estimated the weekly range

through a newMarkov Switching bivariate model to show the relevant role of Hong

Kong as a dominant market. Engle et al. (2012) applied daily range to a multivariate

MEM approach which is used to discuss the volatility transmission across East

Asian markets. Chiang and Wang (2011) combined copula functions with a time-

varying logarithmic CARR (TVLCARR) model to investigate the volatility conta-

gion for the G7 stock markets.
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74.5.4 Portfolio Management

Covariance process plays an important role in asset allocation. Based on the

conditional mean-variance framework, Chou and Liu (2010) used Chou

et al. (2009) method to show that the economic value of volatility timing for the

range is significant in comparison to the return. Wu and Liang (2011) did similar

work by incorporating dynamic copulas into an asymmetric CARR model. The

results imply that the range volatility can be extended to practical applications.

74.5.5 Microstructure Issues

In recent years, there has been a shift in attention to high-frequency data for some

financial assets. It must be noted that the microstructure analysis often accompanies

different levels of microstructure noise.6 Martens and van Dijk (2007) claimed that

the realized range also cannot avoid the bias caused from the microstructure noise.7

However, Akay et al. (2010) showed that the alternative range-based volatility

estimates are relatively efficient and removed the upward bias caused by the

microstructure noise. Kalev and Duong (2008) utilized Martens and van Dijk’s

(2007) realized range to test the Samuelson Hypothesis for the futures contract.8

74.5.6 Other Financial Applications

As mentioned above, range is available and can easily be applied to volatility

issues. Chou et al. (2103) adopted the CARR model to investigate the long-term

impact of terrorist attacks on the maturity, volume, and open interest effects for the

S&P 500 index futures. Corrado and Truong (2007) reported that the range esti-

mator has similar forecasting ability of volatility compared with the implied

volatility. However, the implied volatilities are not available for many assets and

the option markets are insufficient in many developed countries. In such cases, the

range is more practical. Besides, range is often used as one of volatility proxies.

Please refer to Liu and Hung (2010), Patton (2011), Liu et al. (2012), Chen and Wu

(2009), Karanasos and Kartsaklas (2009), and Gallo and Otranto (2008).

In contrast to the range itself, some studies pay more attention to the high and low

prices. Cheung et al. (2009) employed a vector error correlation model (VECM)

6In general, it mainly comes from bid-ask bounce and varies with the sampling frequency.
7For low-frequency data, Alizadeh et al. (2002) showed that the range estimator is efficient and

free of microstructure noise.
8The Samuelson (time-to-delivery) effect means that volatility increases when a futures contract

approaches its delivery date. Ripple and Moosa (2009) also used the realized range to test the

effect of maturity, trading volume, and open interest on crude oil futures. In contrast, Karali and

Thurman (2010) just used the daily range to prove the Samuelson effect.
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to model the dynamic relationship between the high and low prices of stock

indices. Please also see He and Wan (2009) and He et al. (2010) for the relevant

applications.

74.6 Conclusion and Limitations

Volatility plays a central role in many areas of finance. In view of the theoretical

and practical studies, the price range provides an intuitive and efficient estimator of

volatility. In this study, we began our discussion by reviewing the price range

estimators. There has been a dramatic increase in the number of publications on this

work since Parkinson (1980) introduced the high/low range. From then on, some

new range estimators have been considered with opening and closing prices. The

new price range estimators are distributed feasible weights according to the differ-

ences among the highest, lowest, opening, and closing. Through the analysis, we

can gain a better understanding of the nature of range.

Some dynamic volatility models combined with price range are also introduced

in this chapter. They led to broad applications in finance, especially the CARR

model, which incorporates both the superiority of range in forecasting volatility and

the elasticity of the GARCH model. In addition, the range-based volatility models

contribute significantly to the financial applications. Last, the realized range

replaced the squared intraday return of realized volatility with the high/low range

to obtain a more efficient estimator. Although the financial applications of range

volatility are still in its infancy, the possible areas such as risk management,

investment, and microstructure issues are explained in this chapter. Future studies

are obviously required for this topic.

The range estimator undoubtedly has some inherent shortcomings. It is well

known that the financial asset price is very volatile and is easily influenced by

instantaneous information. In statistics, the range is very sensitive to the outliers.

Chou (2005) provided an answer by using the quantile range to get a robust measure

of price range. For example, the new range estimator can be calculated by the

difference between the top and the bottom 5 % observations on average. Also see

Yeh et al. (2009) for further discussion.

In theory, many range estimators in previous sections depended on the assump-

tion of continuous-time geometric Brownian motion. The range estimators derived

from Parkinson (1980) and Garman and Klass (1980) required a geometric

Brownian motion with zero drift. Rogers and Satchell (1991) allowed a nonzero

drift, and Yang and Zhang (2000) further allowed overnight price jumps. Moreover,

only finite observations can be used to build the range. It means the range will

appear with some unexpected bias, especially for the assets with lower liquidity and

finite transaction volume. Garman and Klass (1980) pointed out that this will

produce the later opening and early closing. They also said the difference between

the observed highs and lows will be less than that between the actual highs and

lows. It means that the calculated high/low estimator should be downward biased.

In addition, Beckers (1983) pointed that disadvantaged buyers and sellers may trade
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the highest and lowest prices, so the range values might be less representative for

measuring volatility. Because of the limitations involved and the importance of

range volatility measure, range-based volatility modeling will continue to be

a specialist subject and studied vigorously.
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Abstract

This chapter describes a business model in a contingent claim modeling frame-

work. The model defines a “primitive firm” as the underlying risky asset of

a firm. The firm’s revenue is generated from a fixed capital asset and the firm

incurs both fixed operating costs and variable costs. In this context, the share-

holders hold a retention option (paying the fixed operating costs) on the core

capital asset with a series of growth options on capital investments. In this

framework of two interacting options, we derive the firm value.

The chapter then provides three applications of the business model. Firstly,

the chapter determines the optimal capital budgeting decision in the presence of

fixed operating costs and shows how the fixed operating cost should be
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accounted by in an NPV calculation. Secondly, the chapter determines the values

of equity value, the growth option, and the retention option as the building

blocks of primitive firm value. Using a sample of firms, the chapter illustrates

a method in comparing the equity values of firms in the same business sector.

Thirdly, the chapter relates the change in revenue to the change in equity value,

showing how the combined operating leverage and financial leverage may affect

the firm valuation and risks.

Keywords

Bottom-up capital budgeting • Business model • Capital budgeting • Contingent

claim model • Equity value • Financial leverage • Fixed operating cost • Gross

return on investment (GRI) • Growth option • Market performance measure •

NPV • Operating leverage • Relative value of equity • Retention option • Return

attribution • Top-down capital budgeting • Wealth transfer

75.1 Introduction

A “business model” often simply describes “ways that a firm makes money.” It is

a general description of the business environment, forecasts of earnings, and the

proposed business strategies, and it often lacks the rigorous specification of

a financial model. Despite the ambiguity, business models are important to corpo-

rate finance, investments, portfolio management, and many aspects of financial

businesses.

They provide a framework to determine a firm’s value, to evaluate

corporate strategies, and to distinguish one firm from another firm or one business

sector to another. The prevalent use of business models cannot be understated. Yet,

despite the tremendous growth in applications of financial modeling in capital

markets, the use of financial principles in developing business models is largely

unexplored.

An early example of financial modeling of a business is pioneered by Stoll

(1976). He presents a business model of a market maker. Demsetz (1968) suggests

that market makers are in the business of providing liquidity to a market and they

are compensated by the market via their bid-ask spreads. Stoll then develops the

optimal dealer’s bid-ask prices within Demsetz’s business environment and shows

precisely how a trader should set their bid-ask quotes, their trading strategies

relating to their inventory positions, and finally the profits to the traders under

competition. In short, Stoll provides the business model of a trading firm, leading to

the subsequent growth of the microstructure theory. The successful use of the

“dealer’s business model” in microstructure theory demonstrates the importance

of insights gained in modeling a business. For example, Ho and Marcis (1984)

extend the business model to incorporate the fixed operating costs of

a market making firm to determine the equilibrium number of market makers in

the AMEX market.
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However, to date, few rigorous business models have been proposed in the

corporate finance literature. There are some examples. Trigeorgis (1993) values

projects as multiple real options on the underlying asset value. Botteron et al. (2003)

use barrier options to model the flexibility in production and sales of multinational

enterprises under exchange rate uncertainties. Brennan and Schwartz (1985) deter-

mine the growth model of a mining firm. Cortazar et al. (2001) develop a real option

model for valuing natural resource exploration investments such as oil and copper

when there is joint price and geological-technical uncertainty. Gilroy and Lukas

(2006) formalize the choice of market entry strategy for an individual multinational

enterprise from a real option perspective. Fontes (2008) addresses investment

decisions in production systems by using real options. Sodal et al. (2008) value

the option to switch between the dry bulk market and wet bulk market for

a combination carrier. Villani (2008) combines the real option approach with the

game theory to examine an interaction between two firms that invest in R&D. Wirl

(2008) investigates optimal maintenance of equipment under uncertainty and the

options of scrapping versus keeping the equipment as a backup while paying the

keeping cost. These models explore the use of contingent claim models in various

corporate financial decisions ranging from abandoning or increasing the mining

capabilities to scrapping versus maintenance of equipment. In reality, real option

approach is in three different corporate uses. There are a strategic way of thinking,

an analytical valuation tool, and an organization-wide process for evaluation, mon-

itoring, and managing capital investment according to Triantis and Borison (2001).

This chapter extends the real option literature to describe the business models in

a more general context. The purpose of the chapter is twofold: firstly we propose the

use of real option approach to describe a business and secondly we show how such

a business model can be used in some applications.

Our model is a discrete time, multi-period, contingent claim model. We assume

that a firm is subjected to a business risk. The revenues are generated from a capital

asset. It has to incur a fixed operating cost, making a fixed payment continually

(a perpetual payment) to stay in business, and has the options to invest in future

projects. That is, the firm must pay an exercise price continually to retain the option

in business and at the same time maintains the growth options of Myers (1984).

Such retention options and the growth options cannot be separated.

The model is applicable to many business sectors, including the retail chain

companies, airlines, software companies, and other businesses whose revenues are

generated from a core capital investment and whose expense structure consists of

both fixed operating costs and variable costs. The inputs to the business model can

be drawn from the published financial statements and market data, and therefore,

the model is empirically testable.

We then show how the business model can be used in three important areas in

corporate finance: (1) to determine the optimal capital budgeting decision given

a fixed operating cost, (2) to relative value firms in the same business sector with

different business models, and (3) to relate the change of the firm’s revenue to the

change of the equity value.
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The first application deals with what Myers (1984) describes as two approaches

in capital budgeting, the discounted cash flow and strategic planning approaches, as

“two cultures and one problem” in the valuation of a firm. The bottom-up method

(the discounted cash flow approach) determines the net present value of a project,

and the manager accepts the project if the net present value is positive and rejects it

otherwise. The top-down method (the strategic planning approach) considers all

future state-dependent investments simultaneously and determines the optimal

investment strategies that maximize the firm value.

While the two approaches are related by the valuation of a firm, corporate finance

literature has not described how they are related to each other explicitly. Specifically,

in the presence of fixed operating costs, how should the “expenses” of a project, at

the margin, be incorporated in the NPV calculation? We show that the standard one

period model cannot describe the relationships between the cost of the project to the

future inflow of the project and the outflows of the project cost as well as the firm’s

fixed operating costs. In this chapter, we show how the NPV method is related to the

top-down method via the implied fixed-cost measure. Relating to this issue,

McDonald (2006) argues that the discounted cash flow and the real option valuation

should provide the same answer when the methods are used correctly. However, he

further argues that to the extent that the managers who use the real option valuation

have effectively adopted a different business model, there is a real and important

difference between the discounted cash flow and the real option valuation.

The second application of a business model deals with measuring the impact of

the growth option, the debt, and the fixed operating cost on the observed equity

value. These results are illustrated by applying the model to a sample of retail chain

companies.

The third application focuses on the relationship between the firm’s revenues and

the stock valuation. We show how the operating leverage and the financial leverage

together affect the change in the equity value with a change in the revenue. Themodel

provides a return attribution of the equity returns based on the firm’s business model.

This approach enables corporate managers to evaluate the impact of the firm’s

operating leverage and the financial leverage on the risk of the firm’s earnings.

The chapter proceeds as follows. Section 75.2 provides the business model of

a firm. Section 75.3 provides the numerical simulations of the capital budgeting

problem, comparing the optimal capital budgeting decisions based on the bottom-

up and top-down decisions. Section 75.4 provides the application of the business

model to the equity value decomposition. Section 75.5 describes return attribution

results using the business model. Finally, Sect. 75.6 contains the conclusions.

75.2 The Model Assumptions

Many retail chain stores must incur significant fixed operating costs in setting up the

distribution system, producing or buying the products, managing the core business

processes. At the same time, the retail chain store invests in new distribution

centers, and each investment is a capital budgeting decision. Each product
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development is a capital budgeting decision, which should increase the firm value at

the margin. These are some of many examples where capital budgeting decision on

each project is part of the business model of the firm, which must include the

management of a significant fixed operating cost.

The model uses the standard basic assumptions in real option literature. We

assume a multi-period discrete time model where all agents make their decisions at

specific regular intervals; the one period interest rate is RF, a constant; the firm

seeks to maximize the shareholders’ wealth; and the market is efficient.

We assume a frictionless market with no corporate taxes and personal taxes,

and therefore, the capital structure is irrelevant to the maximization of shareholders

value. The following assumptions describe the model of the firm of this chapter.

Assumption 1. The Business Risk of the Firm (GRI) In this model, unlike many

standard real option models, we use the sales (or revenue) of the firm as the risk driver

and not the operating profits, as commonly used. The sales represent the business risk

of the firm, while the operating profits are affected by the business model of the firm.

We assume that the firm is endowedwith a capital asset (CA). For example, the capital

asset can be a factory that produces goods and services resulting in sales. The sales

generated by one unit of the capital asset are called the gross return on investment
(GRI). GRI is the risk driver of themodel, and the risk represents the uncertain demand

for the products. Therefore, the sales are stochastic, given by the following equation.

Sales ¼ GRI� CA (75.1)

When the GRI increases, the firm would increase its sales for the same capital

asset. When there is a down turn in GRI, the sales would fall. Extending the model

to multiple risk sources should provide a more realistic model but may obscure the

basic insights that the model provides.

We assume that GRI follows a binomial lattice process that is lognormal with no

drift. The upstate and downstate are given by a proportional increase of exp(�s)
with probability q and a proportional decrease of exp(�s) with probability (1 – q). s
is the volatility assumed to be constant. The market probability q is chosen so that

the expected value of GRI over one period is the observed GRI at the beginning of

each step. That is, the risk follows a martingale process.

While GRI follows a recombining binomial process, we will use a

non-recombining tree notation. Specifically, we let n ¼ 0, 1, 2,. . ., and for each

time n, we let the index i denote the state variable i¼ 0, 1, 2,. . .,2n � 1. Then at any

node of the tree (n, i), the binomial upstate and downstate nodes of the following

step are denoted by (n, 2i + 1) and (n, 2i), respectively. Then the martingale process

is specified by the following equation:

GRI n; ið Þ ¼ q� GRI nþ 1, 2iþ 1ð Þ þ 1� qð Þ � GRI nþ 1, 2ið Þ,
q ¼ 1� e�s

es � e�s , where s is the volatility of GRI
(75.2)

for n ¼ 0, 1, 2,. . . and i ¼ 0, 1, 2,. . ., 2n � 1
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Let r be the cost of capital for the business risk, which is the required rate of return
for that business risk, GRI. Note that the standard cost of capital of a firm reflects the

risk of the firm’s free cash flows taking the operating leverage into account, not the

firm’s sales risk as we do here. Since the firm risk is the same at each node, the cost of

capital r is constant in all states and time periods on the lattice.

Assumption 2. The Primitive Firm (Vp) To apply the contingent claim valuation

approach to value the firm, we begin with the definition of the primitive firm as

the “underlying security.” The primitive firm is a simple corporate entity which has

no debt or claims other than the common shares, which are publicly traded.

The firm has one unit capital asset. The capital asset does not depreciate, and the

value does not change.We can think of the capital assets as the distribution centers of

a retail chain store. Let m be the gross profit margin. For simplicity, in this section,

we assume that there are no costs associated in generating the sales, and thatm equals

unity. And therefore, the firm’s sales are the profits, which are distributed to all the

shareholders. Equation 75.2 presents the sales risk, and the GRI(n,i) and r are the

sales and cost of capital of the primitive firm at each node (n,i) on the lattice.
Note that the sales (and hence the profits) are always positive, because GRI

follows a multiplicative process. By the definition of the cost of capital, the

primitive firm value at each node point on the binomial lattice is

VP n; ið Þ ¼ GRI n; ið Þ � m� CA

r
, where m ¼ 1 (75.3)

for n ¼ 0, 1, 2, . . . and i ¼ 0, 1, 2,. . ., 2n � 1.

Given the binomial process of the primitive firm, which we will use as the

“underlying security,” we can derive the risk-neutral probabilities, p(n, i), at time

n and state i. The derivation is given in Appendix 1.

p ¼ A� e�s

es � e�s , where A ¼ 1þ RF

1þ r
(75.4)

When the cost of capital equals the risk-free rate and when the volatility s is

sufficiently small, the risk-neutral probability is approximately 0.5. That is, when s
is small, the upward movement is approximately the same as the downward

movement, and therefore, the expected value with the binomial probability of 0.5

shows that the GRI must follow a martingale process. When the cost of capital is

high relative to the risk-free rate, the risk-neutral probability would assign a lower

weight to the upward movement, according to Eq. 75.4, to balance the use of the

risk-free rate, a lower rate than the cost of capital, for discounting the future value.

The use of the risk-neutral probability ensures the valuation method is consistent

with that of the market valuation of Eq. 75.3.

Note that as long as the volatility and the cost of capital are independent of the

time n and state i, the risk-neutral probability is also independent of the state and

time and is the same at each node point on the binomial lattice. We will value our
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firm relative to the primitive firm. Therefore, using the standard relative valuation

argument, we may assume that the primitive firm follows a drift at the risk-free rate.

The market probability q is relevant only to the extent of determining the cost of

capital r, but q is not used explicitly in the model.

The use of the risk-neutral probabilities enables us to discount all cash flows of

our firm by the risk-free rate in all states of the world. The primitive firm value Vp

specifies the stochastic process of the “underlying security,” and Eq. 75.4 is the

standard assumption made in the contingent claim valuation model.

Assumption 3. The Firm’s Cash Flows (CF) and Value (V) V is the value of a firm that

has fixed operating costs, fixed expenditures for operating purposes. The fixed

operating cost (FC) is independent of the units of the goods sold and is paid at

the end of each period. Payments to the vendors and suppliers and the employees’

salaries and benefits are some examples of the fixed operating costs, and they may

constitute a significant part of the firm’s cash outflow.

The net profit of the firm, using Eq. 75.1, is given by

CF n; ið Þ ¼ GRI n; ið Þ � CA n; ið Þ � FCð Þ (75.5)

for n ¼ 0, 1, 2, . . . and i ¼ 0, 1, 2,. . ., 2n � 1

Note that GRI is the only source of risk to the firm’s net income. The firm pays

all the net income as dividends. In the case of negative income, the

firm issues equity to finance the short fall of cash for simplicity. Therefore, the

firm’s net income is the free cash flows, and the present value of which is the firm

value V.

Assumption 4. The Planning Horizon (T) and the Terminal Conditions We assume

that there is a strategic planning time horizon T. We will value the firm at each node

at planning horizon T. Conditional on the firm not defaulted before reaching the

horizon T, we can determine the firm value at time T.

Without the loss of generality, we make some simplifying assumptions at the

terminal date. In this model, we assume that all future fixed operating cost is

capitalized at time T to be a constant FC(T). After the horizon date T, the firm

may default on the fixed operating cost. And therefore, the capitalized value of the

fixed operating cost should depend on the primitive firm value at time T. The value

of this capitalized value is also a contingent claim. The value, based on Merton

(1973), is provided in Appendix 2 and result will be used later. For clarity of the

presentation at this point, we keep the model simple without affecting the main

results. Therefore, at the terminal date T, the firm value is given by

V T; ið Þ ¼ Max
Vp � FC Tð Þ þ GRI T; ið Þ � CA T; ið Þ � FCð Þ,
Vp � FC Tð Þ þ GRI T; ið Þ � CA T; ið Þð ÞþIÞ � FC� Ið Þ, 0
� �

(75.6)

where Vp ¼ GRI T;ið Þ�CA T;ið Þ
r for i ¼ 0, 1, 2,. . ., 2n � 1.
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That is, the firm value at time T is the primitive firm value with the capital asset

CA, plus the cash flow of the firm over the final period, net of the capitalized fixed

costs. The limited liability of a corporation is assumed in this model, and therefore,

the firm value is bounded from being negative.

Assumption 5. Investment Decisions The firm has an option to make $I capital

investment at each node, (n, i) every year over the planning horizon. For simplicity,

we assume that the decisions are not reversible in that the firm cannot undo the

investments in any future state of the world.

The increase of the capital investment leads to a direct increase in the firm’s

capital assets. And, we have

CA nþ 1, 2ið Þ ¼ CA nþ 1, 2iþ 1ð Þ ¼ CA n; ið Þ þ I n; ið Þ (75.7)

The GRI of the business is not affected by the increase in the firm size, and

hence, the business risk is independent of the capital investment. However, the sales

are affected by the capital budgeting decisions. The marginal increase in sales to the

firm with the investment at the node (n,i) is given by

Sales n; ið Þ ¼ I n; ið Þ � GRI n; ið Þ (75.8)

Finally, the investment decisions are made at all the nodes such that the firm

value is maximized. It is important to note that since the firm can decide on the

investment at each state of the world, CA(n,i) at each node depends on the path to

that node. Therefore, the model is a path-dependent model.

These assumptions complete the description of the model. Assumption

(1) describes the risk class of the business. Assumption (2) introduces the primitive

firm enabling us to relate the cost of capital r to the risk-neutral valuation frame-

work. Assumption (3) specifies the business model of the firm, identifying the

firm’s free cash flows as the residual of all the claims, like the fixed costs, on the

firm’s sales. We use the simplest business model in this chapter, but this assumption

can be generalized to study different business models, which can be specified by

different cost and sales structure. Assumption (4) specifies the terminal condition,

following the standard assumptions made on the horizon in strategic planning.

Assumption (5) specifies the marginal investment I(n,i) that increases the capital

asset CA(n,i) The marginal returns of the investments can be generalized, even

though, we choose the simplest relationship here. Given the above assumptions, we

can now determine the maximum value of the firm based on the optimal capital

investment decisions.

Let us use the following numerical example to illustrate the model in Table 75.1.

Consider a particular scenario over two periods, where n ¼ 0, 1, 2.

The stochastic variable is GRI. Given the investment schedule on line 3, the

capital asset over time is given by line 4. Sales are determined by GRI and

CA. The fixed cost is constant over time. The free cash flow is then determined

following the standard income statements.
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75.3 Simulation Results of the Capital Budgeting Decisions

The firm seeks to maximize the firm value by using the control variables, which are

the capital investments, at all the node points along the scenario paths in the

binomial lattice to the horizon date. There are
XT
n¼1

2n capital investment decisions.

We use the backward substitution method based on the non-recombining tree.

We first assume a set of investment decisions, I(n, i), at each node along all paths.

Note that I(n, i) can equal to 0 in some of the nodes. At the horizon date, we can

determine the firm value at each node. Then we use the risk-neutral probability and

determine the firm value at time T � 1, such that the firm value at that node point

has a risk-free return based on the risk-neutral probability, V*. Specifically,

V� T � 1, ið Þ ¼ p � V T, 2iþ 1ð Þ þ 1� pð ÞV T, 2ið Þð Þ
1þ RF

(75.9)

for i ¼ 0, 1, . . .2T � 1 – 1.

Note that we are rolling back a non-recombining tree and not a recombining

lattice. Therefore, the state i here denotes a state along a scenario path of a tree, and

the states (2i + 1) and 2i refer to the binary states of the subsequent period.

If the firm value is less than the value FC + I, which is the cash outflow, the

firm declares bankrupt and has value zero; otherwise, the firm value is V*� FC� I.
That is,

V T � 1, ið Þ ¼ max
V�ð T � 1, ið Þþ
GRI � CA T � 1, ið Þ � FC� I T � 1, ið Þ, 0
� �

(75.10)

Note that we have assumed that the firm has decided on all the investment

decisions at the beginning of the period. Therefore, at each node, the firm is

obligated to invest I(n,i), a nonnegative value. We continue with this process

recursively, rolling back one period at a time. We then determine the firm value.

That is, we recursively apply the following Eq. 75.11 till n ¼ 0.

Table 75.1 The numerical

example for scenario
Time 0 1 2

GRI 0.05 0.1 0.15

Investment 1 0

CA 30 31 31

Sales 3.1 4.65

FC 3 3

Investment 1 0

Free cashflows �0.9 1.65
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V n� 1, ið Þ ¼ max

p � V n, 2iþ 1ð Þ þ 1� pð ÞV n, 2ið Þð Þ
1þ RF

þ
GRI n� 1, ið Þ � CA n� 1, ið Þ � FC� I n� 1, ið Þ, 0

2
4

3
5

(75.11)

for n ¼ 0, 1, . . .T � 1 and i ¼ 0, 1, . . ., 2n � 1.

We now seek a set of investment decisions I(n, i) along all the paths to determine

the highest value of the firm. This search can be accomplished by a nonlinear

optimization procedure.

For clarity of the exposition, we have chosen to use a non-recombining tree and

a nonlinear optimization to determine the firm value. However, the model can be

specified using a recombining binomial lattice, and the firm value can be deter-

mined using the standard roll back method, without the use of any numerical

nonlinear optimization method. The model is presented in Appendix 3. We have

shown that the two approaches are equivalent.

We simulate themodel with the following inputs: the risk-free rate of 10%; the cost

of capital r of 10%with volatility s of 30%; a risk-neutral probability p of 0.425557;

an initial capital asset CA of $30 million; and the capitalized fixed cost of FC/0.1,

where the capitalized fixed cost is assumed to present value of the perpetual fixed-cost

payment discounted at the risk-free rate. We consider the problem over 5 years where

the firm can invest $1million on a new distribution center at each node on the binomial

lattice. The optimal investment decisions (top-down capital budgeting decisions) are

determined by a nonlinear optimal search algorithm1, where the investment decisions

are the choice variables with the objective function being the firm value.

The optimal decision can be related to the capital budgeting decisions. When the

capital investment is made, the free cash flow (CF) is given by

CF ¼ GRI � CA� FC (75.12)

Investment decisions should be made at the margin, and therefore, one may

argue that the fixed operating cost is not needed to be considered. Given that the

cost of capital is r, then the net present value of the project is

NPV ¼ GRI � I

r
þ GRI � I � I (75.13)

The capital investment is made when NPV > 0.2 This capital budgeting decision

can be called a bottom-up approach. In this approach, line managers deal with the

capital budgeting decisions, maximizing the net present value of each project which

1We use an optimization subroutine, GlobalSearch, written in Mathematica. The description of the

procedure is provided at www.loehleenterprises.com.
2For clarity of the exposition, let the NPV be defined by Eq. 75.13. To be precise, the expected cash

flow may not be perpetual in the presence of default. We will explain the implication of default on

the free cash flow later in this section.
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they manage. The capital budgeting decisions are made from the line manager’s point

of view rather than the headquarters’ overall view, in the sense that the line manager

accepts or rejects a project by focusing on the project’s cash flows. If we assume that

there is no fixed operating cost, the bottom-up approach can be shown to be the same

as the top-down approach. In sum, the net present valuemaximization at the local level

should lead to the global optimization for the firm that has no fixed operating costs.

Figure 75.1 shows the capital budgeting decisions using the bottom-up approach,

where 1 and 0 denote the acceptance and rejection decision, respectively. For

example, 0 at the top node represents that the firm rejects the project at time 0 and

state 0. Since we assume the non-recombining tree, we have 2n states at period n.

However, if we optimize the capital budgeting decisions using the top-down

method, we have different optimal decisions shown in Fig. 75.2, where the shaded

nodes represent the states where the capital budgeting decisions differ between the

bottom-up and top-down methods.

When we compare Figs. 75.1 and 75.2, the results show that the firm accepts

projects using the bottom-up approach that are rejected by the top-down approach.

That means many NPV positive projects may have negative impact to firm value.

Note that our model is consistent to that of Myers (1977). By viewing the fixed

operating cost as claims to the value of the primitive firms, positive net present

value project may not be accepted by the global optimization to maximize the firm

value. Our model interprets the result to suggest that portion of the fixed operating

costs should be incorporated in the calculation of the net present value of the

project. Therefore, our valuation framework provides a model to adjust for the

presence of fixed operating costs in capital budgeting in a multi-period context,

something that the Myers model does not cover.

Specifically, we define the marginal present value MPV(n, i) at any node point

(n, i) to be the marginal increase in the firm value in accepting a project at node (n, i)
based on the top-down optimized solution. It is computed

MPV n; ið Þ ¼ FV� n; ið Þ � FV n; ið Þ (75.14)

where FV*(n, i) and FV(n, i) are the firm values at the node (n, i) with the

investment and without the investment, respectively, while holding all the invest-

ment decisions in other nodes constant. This definition of the marginal change in the

firm value isolates the effect of the investment at a specific node from the growth

options at the other nodes.

Let NPV(n, i) be the net present value of the project at node (n, i) such that

NPV ¼ PV � I (75.15)

and let the present value of the fixed cost as a function of the primitive firm value at

node (n, i) be

F n; ið Þ ¼ F Vp

� �
(75.16)
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Then the “wealth transfer,” WT, the loss of the shareholders value in taking the

project in the presence of the fixed cost, is given by

WT n; ið Þ ¼ dF

dVp
PV n; ið Þ (75.17)

It follows that the marginal change in the firm value is the NPV net of the wealth

transfer effect.

MPV n; ið Þ ¼ NPV n; ið Þ �WT n; ið Þ (75.18)

Rearranging Eqs. 75.15, 75.17, and 75.18, we have

MPV n; ið Þ ¼ PV n; ið Þ � D� I (75.19)
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D ¼ 1� dF

dVp
(75.20)

Note that D as a function of the firm value is determined by the fixed-cost structure.

Since we assume that the fixed cost is a fixed cash flow at any time and state, the

function is the same at any node. Equation 75.19 can be interpreted intuitively. In the

presence of a fixed cost, the capital budgeting decision depends on the fixed-cost

factor. Portion of the present value of the incoming cash flow should first be adjusted

by the fixed-cost factor and the project is taken (rejected) if MPV > (<) 0.

D can be derived in our model, as the fixed cost can be valued. The plot of the

fixed-cost factor as a function of the percentage change in the firm value is provided

in Fig. 75.3 below.
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As expected, the fall in the firm value would lead to a lower discount factor,

resulting in more positive NPV projects being rejected. When the firm value is

significantly high, the fixed-cost factor is one, and then the NPV and the top-down

approach are the same. In general, given a firm’s business model, the fixed-cost

factor function can be derived. And this function provides the link between the

bottom-up and top-down capital budgeting problem.

The model assumes that all the projects are independent of each other in the

sense that the capital budgeting decision of one project is independent of the other

projects. Using the bottom-up method, the independence of projects would lead to

independence in the capital budgeting decisions across the projects. Yet in the

presence of the fixed operating cost, it is straightforward to show that optimal

decisions of the projects are related. For example, referring to Fig. 75.2 in the

top-down capital budgeting decision, we would optimally invest in the upstate for

period 1 and would again optimally invest in period 2 in both the upstate

and downstate. However, if we do not invest in period 1, then the top-down optimal

solution would lead to no investment in the subsequent downstate in the second

period. Therefore, the model shows that these projects are not independent in

the capital budgeting decision, contrary to the bottom-up capital budgeting

decision rule.

75.4 Relative Valuation of Equity

In this section, we decompose the value of the primitive firm into its components.

We recognize that the firm’s capitalization is a compound option on the underlying

business risk. These embedded options are options on the financial leverage,

operating leverage and the strategic value. We estimate these option values using

a sample of retail chain stores, and we show that such decomposition can provide us

useful insights into the valuation the firms’ equities.

In deriving the value of the firm, we assume that the firm pays out all the

free cash flows and we construct a recombining lattice from the tree described in
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the previous section, such that the firm value is derived by the rolling back

procedure. The recombining lattice is described in Appendix 3.

We consider the following retail chain stores: Wal-Mart, Target, Lowe’s and

Darden. We will describe these firms in brief. Wal-Mart (WMT) is now the largest

retailer in North America. The company is operating approximately 4,000 stores

worldwide. WMT is also a leader in developing and implementing retail informa-

tion technology. Target (TGT) is the fourth largest US general merchandise retailer.

It has approximately 1,000 stores, with much of their revenue derived from its

discount stores. Lowe’s Companies (LOW) is the second largest US home improve-

ment retailer, selling retail building materials and supplies through more than

600 stores. Darden Restaurants, Inc (DRI) has over 600 restaurants and is

a leader in the casual dining sector. The details of implementing the model using

the observed data are provided in Appendix 4.

In this sample of firms, they all share the basic business model of retail chain

business. They focus on their core production of their products and they sell the

products through their distribution networks. The turnover, which is the sales to the

total asset, depends on consumer spending. In times of recession, consumers may

lower their spending on merchandizing, dining, and expenditures. As such, we may

consider these firms as belonging to the similar risk class with similar cost of capital

for the business.

We have shown that the inputs to the business model are profit margin m, fixed

operating costs FC, turnover x, capital investment rate I, and leverage l. All these
inputs can be derived or observed from the financial statements. The business

model then derives the market value of equity, which is also observed in the market.

We can calibrate the cost of capital of the business and the business volatility such

that the equity value and the model inputs best fit the observed values.

Specifically, we use the data below, based on January 31, 2002 financial state-

ments, as input to the business model in Table 75.2.

We then determine the implied volatility of the business risk driver (volatility)

and the implied cost of capital of the business by minimizing the sum of squares of

the observed market performance measures and the corresponding model value.

The results are presented in Table 75.3.

Table 75.2 Inputs to the business model

Target Lowe’s Wal-Mart Darden

GRI 2.9769 2.5807 4.8082 2.2823

Gross profit margin(m) 0.3169 0.2880 0.2274 0.2222

Fixed cost/total asset(FC/CA) 0.6564 0.4684 0.7907 0.2293

Capital investment (I/CA) 0.1563 0.2381 0.1530 0.1130

Leverage(CA/E) 1.7218 1.2965 1.3033 1.7190

GRI ¼ Sales/Capital assets

Gross profit margin ¼ (Sales � cost of goods sold)/Sales

I/A ¼ Capital investment/Capital assets

Leverage ¼ Capital assets/Equity
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The results show that the cost of capital implied from the firm’s equity value for

Wal-Mart is particularly low when compared with the other retail chain stores.

Darden has the highest cost of capital, which is 12.42 %. Target and Lowe’s has

similar cost of capital of about 9 %.

We can now decompose the primitive firm value of each firm into it building

blocks of value.We have shown that the market equity value is a compound option of

three options. Equity is an option on the firm value, which has an embedded

real option net of the “perpetual risky coupon debt” of the fixed costs. Or the

market equity value can be built from the underlying firm value. Starting from the

underlying firm value, we can add the real option and net of the perpetual debt. Then

all equity firms with a real option (which is an all equity growth firm) are

the underlying risky assets, whose European call option is the market value of equity.

Let Vp be the value of the firm without debt, growth, or fixed costs, which we

called the primitive firm. It can be calculated by using the valuation model

assuming that the fixed cost and capital investment rate are zero. Let Vfc be the

value of the firm without debt and growth, but has the fixed costs, which we call the

fixed-cost firm. F is the market value of the fixed costs, which is defined as

F ¼ Vp � Vfc (75.21)

Let V be the value of the firm without debt, but with optimal capital investment

strategy and fixed cost. Then G is the value of the growth option, which can be

calculated as the difference between the firm value V and the firm without

growth, Vfc.

G ¼ V � Vfc: (75.22)

D is the market value of the debt, relatively valued to the firm value V. Then the

market capitalization of the firm (market value of the equity) is the underlying firm

with the growth option net of the fixed costs and the debt.

S ¼ V � D (75.23)

Or the equity value can be reexpressed as

Table 75.3 Reported and estimated market performance measures

Target Lowe’s Wal-Mart Darden

Reported Estimated Reported Estimated Reported Estimated Reported Estimated

S/E 5.1009 5.3231 5.3543 5.4717 7.6893 7.8420 3.1623 3.2699

S/V 0.8321 0.8500 0.9054 0.9089 0.9351 0.9363 0.8634 0.8779

Cost of capital 0.0860 0.0821 0.0702 0.1036

Volatility 0.2776 0.3908 0.3149 0.3772

The cost of capital and volatility are used to calibrate the model such that the sum of squares of the

difference between reported and the estimated S/E, p/e and S/V is minimized
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S ¼ Vp � Fþ G� D (75.24)

The decomposition of the value is summarized in Table 75.4.

To compare the results across the firms, we can normalize the equity value by the

firm’s book equity value, by considering the market-to-book multiples (S/E), as

reported in the last row of Table 75.4. The results show that Wal-Mart has the

highest multiple of 7.8420.

Now, Table 75.5 provides insights into the determinants of the market multiples

of the firms. We can use the above results and derive the values in proportions as

reported below.

Note that the multiple (S/E) is the product of all the ratios presented in the rows

above. And therefore, the table provides a decomposition of the equity multiples.

The result shows that the firms have significant fixed operating costs. For example,

Target’s fixed operating cost is 80.44 % of the primitive firm value. However, the

market assigns a significant growth value to Target. In fact, the firm with growth

option is a multiple of 1.5602 to the firm without growth option. The results also

show that Wal-Mart attains the high multiple because of its high value of the

primitive firm value to its total asset. As we have shown above, the high multiple

value is mainly the result of a market low cost of capital to the firm business.

The business model provides a systematic approach to determine the building

blocks of value to the market observed equity value. And therefore, this approach

provides us insight into the determinants of the market value of equity.

Table 75.4 The value decomposition of the capitalization value S

Target Lowe’s Wal-Mart Darden

Mkt equity (S) 41,840 36,520 275,270 3,385

Primitive firm (V*) 161,313 84,728 762,427 9,612

Mkt value fixed cost (F) 129,766 60,269 568,304 6,438

Growth option (G) 17,674 15,722 99,878 682

Mkt value of debt (D) 7,382 3,661 18,732 471

Book equity (E) 7,860 6,674 35,102 1,035

Estimated (S/E) 5.3231 5.4717 7.8420 3.2699

Table 75.5 Determinants of the market multiples

Target Lowe’s Wal-Mart Darden

Vp/CA 11.9200 9.7913 16.6651 5.4017

Vfc/Vp 0.1956 0.2887 0.2546 0.3302

V/Vfc 1.5602 1.6428 1.5145 1.2148

CA/E 1.7218 1.2965 1.3033 1.7190

S/V 0.8500 0.9089 0.9363 0.8779

S/E 5.3231 5.4717 7.8420 3.2699

Book value(E/shares) 8.7062 8.6044 7.8004 5.8818
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75.5 Equity Return Attribution

The business model can also provide insights into the relationship between the

equity value and the firm’s revenue. In this section, we use the business model to

determine the impact of a 1 % increase in the gross investment return on the stock

returns. And in the process, we determine impact of the operating leverage,

financial leverage, and the growth option on the equity returns.

First note that the stock price multiple to the book value can be expressed as

follows.

S

E
¼ Vp

CA
� Vfc

Vp
� V

Vfc
� S

V
� CA

E
(75.25)

It follows that

ln
S

E
¼ ln

Vp

CA
þ ln

Vfc

Vp
þ ln

V

Vfc
þ ln

S

V
þ ln

CA

E
(75.26)

Given in proportional increase of GRI by 1 %, the change of the equity to book

multiple is given by

Dln
S

E
¼ Dln

Vp

CA
þ Dln

Vfc

Vp
þ Dln

V

Vfc
þ Dln

S

V
þ Dln

CA

E
(75.27)

This equation provides an attribution of the proportional change in the stock

multiple. The changes of the components are simulated and are provided in

Table 75.6.

Note that the sum of the rows equal to the stock price change (the last row). For

example, consider Wal-Mart; 1 % increase in the gross return on investment, and

hence 1 % increase in sales, would lead to 1.97 % increase in the equity value.

The return attribution shows that a significant portion of this return comes from the

increase in the primitive firm value (1 %) and the effect of the operating leverage

(1.07 %). The % increase of the primitive firm value is directly proportional to

Table 75.6 Stock return decomposition by firm values

Target Lowe’s Wal-Mart Darden

ln(Vp/CA) 0.0100 0.0100 0.0100 0.0100

ln(Vfc/Vp) 0.0138 0.0085 0.0107 0.0070

ln(V/Vfc) –0.0022 –0.0014 –0.0022 0.0003

ln(S/V) 0.0027 0.0010 0.0013 0.0016

ln(CA/E) 0.0000 0.0000 0.0000 0.0000

ln(Book value(E/shares)) 0.0000 0.0000 0.0000 0.0000

ln(Stock price) 0.0244 0.0180 0.0197 0.0189
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the % increase in revenue, by definition. The increase in the growth option value is

impacted less by the revenue change, resulting in a negative contribution of the

equity returns (–0.22 %). The financial leverage has an insignificant impact

(0.13 %) because of the relatively low financial leverage of Wal-Mart measured

in market value. The capital asset and book equity value are not affected by the

change in revenues. This result seems to apply approximately to other stores in this

sample of retail chain stores, showing that these stores are quite similar in the sense

that they are industry leaders in their specific businesses. However, for retail chain

stores with higher operating leverage relative to the firm’s value, then the relation-

ships are more complex.

The analysis shows that the business model enables us to identify how the

operating leverage and financial leverage affect the equity returns and thus provides

useful insights into the relationship between the market valuation and the profit-

ability of the business. The use of the contingent claim approach to formulate the

business risk enables us to incorporate the risk of the business (the volatility of

the gross return on investment) to the debt structure and the operating leverage

of the firm, something that the traditional financial ratio approach cannot capture.

75.6 Conclusions

This chapter provides a parsimonious model of a firm. The model enables us to

value the firm as a contingent claim on the business risks. Using a contingent claim

valuation framework, we can then relate the firm maximization to the capital

budgeting rule, the fixed operating costs, and the cost of capital of the project as

well as that of the firm. The model enables us to determine the impact of the fixed

costs on the NPV valuation of a project. The business model also enables us to gain

insight into the building blocks of value for the firm’s equity and the relationship of

the equity returns to its revenues.

Specifically, we have shown that the top-down and bottom-up decisions are

related by the fixed-cost factor, which is a function of the firm value. This function

can be specified given the business model of the firm. The lower the firm value is,

the deeper the discount on the present value of the project is. Therefore, this may

lead to a rejection of a positive NPV project. This result has several implications in

corporate finance. For some firms with high operating leverage, for example,

communication companies, seeking to acquire other firms, the model suggests

that the acquisition analysis should focus not only on the synergic effect in the

capital budgeting decision but the fixed-cost factor opposing effect. For a start-up

company, the extensive use of the operating cost substituting the variable costs

would adversely affect its capital budgeting decisions.

While we use retail chain stores to describe the business model, other businesses

also share a similar model. Also, the model can be generalized to incorporate

multiple risk sources or perpetual fixed operating costs with more complex fixed-

cost schedules. These and other extensions of the model are not expected to change

the key insights provided in the chapter.
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Furthermore, the model assumptions can be relaxed to further investigate other

corporate finance issues. For example, the model can analyze the impact of the fixed

operating costs on the debt structure. Debts can be viewed as junior debt to the

“perpetual debt,” the fixed operating cost. The underlying security in this contin-

gent claim valuation is the primitive firm. The impact of the fixed operating costs on

the firm’s debt may explain the bond behavior observed in the market, as the bond

would behave like a junior debt (Ho and Lee 2004b).

Appendix 1: Derivation of the Risk-Neutral Probability

The risk-neutral probabilities p(n,i) can be calculated from the binomial tree of Vp.

Let Vp(n,i) be the firm value at node (n,i). In the upstate, the firm value is

Vp n; ið Þ ¼ GRI n; ið Þ � CA

r

By the definition of the binomial process of the gross return on investment,

Vp nþ 1, 2iþ 1ð Þ ¼ Vp n; ið Þes

Further, the firm pays a cash dividend of Cu ¼ Vp(n,i) � r � es. Therefore, the
total value of the firm Vp

u, an instant before the dividend payment in the upstate, is

Vu
p ¼ Vp � 1þ rð Þ � es (75.28)

Similarly, the total value of the firm Vp
d, an instant before the dividend payment

in the downstate, is

Vd
p ¼ Vp � 1þ rð Þ � e�s (75.29)

Then the risk-neutral probability p is defined as the probability that ensures the

expected total return is the risk-free return.

p� Vu
p þ 1� pð Þ � Vd

p ¼ 1þ RFð Þ � Vp (75.30)

Substituting Vp, Vp
u, Vp

d into equation above and solve for p, we have

p ¼ A� e�s

es � e�s (75.31)

Where A ¼ 1þRF

1þr .
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Appendix 2: The Model for the Fixed Operating Cost at Time T

When the firm may default the fixed operating cost, the fixed operating cost can be

viewed as a perpetual debt of a risk bond. The valuation formula of the perpetual

debt is given by Merton (1973).

F V;1ð Þ ¼ FC

rf
1�

2FC
s2V

� �2rf
s2

G 2þ 2rf
s2

� �M 2rf
s2

, 2þ 2rf
s2

,
�2FC

s2V

� 	8<
:

9=
;,

Where

V ¼ the primitive firm value

FC ¼ fixed cost per year

rf ¼ risk free rate

G ¼ the gamma function (defined in the footnote)

s ¼ the standard deviation of gGRI
M (•) ¼ the confluent hypergeometric function (defined in the footnote)

M a, 2þ a, � 2FC

s2V

� 	

¼ 1

brf
e

b

V

� aþ að ÞbFC b

V

� 	a

þ

e

b

VFC aVG 2þ aðð Þ þ 1þ að Þ b� aVð ÞG 1þ a,
b

V

� 	

2
6664

3
7775

where

a ¼ 2rf
s2

, b ¼ 2FC

s2
,G xð Þ ¼

ð1
0

t x�1e�tdt,

and G a; xð Þ ¼
ð1
0

t x�1e�tdt:

Appendix 3: The Valuation Model Using the Recombining Lattice

In this model specification, we assume that the GRI stochastic process follows

a recombining binomial lattice:

GRI n; jð Þ ¼ q� GRI nþ 1, jþ 1ð Þ þ 1� qð Þ � GRI nþ 1, jð Þ,
q ¼ 1� e�s

es � e�s , where s is the volatility of GRI,

where n ¼ 0, 1,. . . T and j ¼ 0, . . ., n.
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At time T, the horizon date, consider the node (T, j); j is the state on

a recombining lattice. Suppose that the firm has made k investments in the

period T, where 0 � k � T � 1. The firm value is given by Eq. 75.32:

V T; j; kð Þ ¼ Max

GRI T; jð Þ � CAþ k þ 1ð ÞIð Þ
r

� FC Tð Þþ
GRI T; jð Þ � CAþ k þ 1ð ÞIð Þ � FC� Ið Þ,
GRI T; jð Þ � CAþ kIð Þ

r
� FC Tð Þþ

GRI T; jð Þ � CAþ kIð Þ � FCð Þ, 0

2
666664

3
777775
,

for k ¼ 0, . . . , T and j ¼ 0, . . . , T

(75.32)

and CA is the initial capital asset.

Now we roll back one period. We then compare the firm value with or

without making an investment I. Given that the firm at the end of the period

T � 1 has already invested k times and would not invest at time T � 1, the

firm value is

p � V T, jþ 1; kð Þ þ 1� pð Þ � V T; j; kð Þ
1þ RFþGRI T � 1, jð Þ � CAþ kIð Þ � FC

(75.33)

If the firm at that time invests in the capital asset, then the firm value is

p � V T, jþ 1; kð Þ þ 1� pð Þ � V T; j; kð Þ
1þ RFþGRI T � 1, jð Þ � CAþ k þ 1ð ÞIð Þ � FC� I

(75.34)

Optimal decision is to maximize the values of the firm under three

possible scenarios: taking the investment, not taking the investment, or

defaulting. Therefore, the value of the firm at the node (T � 1, j) with

k investments is

v ¼ V T � 1, j; kð Þ

¼ Max

p � V T, jþ 1; k þ 1ð Þ þ 1� pð Þ � V T, j; k þ 1ð Þ
1þ RF

þ
GRI T � 1, jð Þ � CAþ k þ 1ð ÞIð Þ � FC� I,
p � V T, jþ 1; kð Þ þ 1� pð Þ � V T; j; kð Þ

1þ RF
þ

GRI T � 1, jð Þ � CAþ kIð Þ � FC, 0

2
666664

3
777775
,

for ¼ 0, 1, . . . ,T � 1, and j ¼ 0, 1, . . . , T � 1:

(75.35)

Now we can determine the firm value recursively for each n, n ¼ T � 1,

T � 2,. . .1.
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At the initial period,

V T; j; kð Þ ¼

Max
p � V T, jþ 1; kð Þ þ 1� pð Þ � V T; j; kð Þ

1þ RF
þ

GRI T; jð Þ � CAþ kIð Þ � FC, 0

2
4

3
5,

for T ¼ j ¼ k ¼ 0:

(75.36)

The firm value at the initial time can then be derived by recursively rolling back

the firm value to the initial point, where n ¼ 0. We follow the method of the fiber

bundle modeling approach in Ho and Lee (2004a).

To illustrate, we use a simple numerical example. Following the previous

numerical example, we assume that the GRI is 0.1, the capital asset CA is 30, the

risk-free rate and the cost of capital are both 10 %, the risk-neutral probability is

0.425557, the volatility 30 %, the fixed cost FC is 3, and finally the investment is 1.

Given the above assumption, the binomial process is presented below.

The binomial lattice of GRI

Time 0 1 2 3

j GRI

3 0.245960311

2 0.18221188 0.134985881

1 0.134985881 0.1 0.074081822

0 0.1 0.074081822 0.054881164 0.040656966

Given the GRI binomial lattice, we can now derive the firm value lattices. The

values are derived by backward substitution. The firm value depends on the capital

asset level CA, the state j, and the time n.

Firm value V(n,j,CA)

State j CA

3 55.2836 32

2 14.9999 32

1 0.0000 32

0 0.0000 32

j

3 52.5780 31

2 31.0516 13.5150 31

1 5.3286 0.0000 31

0 0.0000 0.0000 31

j

3 49.8725 30

2 29.0473 12.0302 30

1 14.9802 4.6541 0.0000 30

0 6.329610 1.0230 0.0000 0.0000 30

Time n 0 1 2 3
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At time 3, the firm values are derived by Eq. 75.32 for each level of outstanding

capital asset level at time 3, an instant before the investment decision. Then the firm

values for time 2 are derived by Eq. 75.34. Once again, the firm value depends on

the outstanding CA level. The firm value at time 0 does not involve any investment

decision, and therefore, it is derived by rolling back from the firm values where the

CA level is 30.

Appendix 4: Input Data of the Model

The input data of the model are derived from the balance sheets and income

statements of the firms.

IS Target Lowe’s Wal-Mart Darden

Revenue 39,888 22,111.1 217,799 4,021.2

Costs of sales 27,246 15,744.2 168,272 3,127.7

Gross profit 12,642 6,366.9 49,527 893.5

Gross profit margin (m)a 0.3169 0.2880 0.2274 0.2222

Fixed cost 8,883 4,053.2 36,173 407.7

Depreciation 1,079 534.1 3,290 153.9

Interest cost 464 180 1,326 31.5

Other incomes 0 24.7 2,013 0.9

Pretax incomes 2,216 1,624.3 10,751 301.3

Tax 842 601 3,897 104.2

Effective tax ratio (t)b 0.3800 0.3700 0.3625 0.3458

aGross profit/Revenue
bTax/Pretax incomes

Balance sheet Target Lowe’s Wal-Mart Darden

Capital assets 13,533 8,653.4 45,750 1,779.5

Gross return on invest (GRI)a 2.9475 2.5552 4.7606 2.2597

LTDb 8,088 3,734 18,732 517.9

Book equity 7,860 6,674.4 35,102 1,035.2

aInitial GRI without the investment ¼ Revenue/Capital assets
bWe assume that the firms have only one bond. This assumption can be relaxed using the

information of the debt structure of a firm

Market information Target Lowe’s Wal-Mart Darden

Sharesa 902.8 775.7 4,500 176

Stock pricea 44.41 46.07 59.98 18.6

Market capitalization (equity)a 40,093 35,736 269,910 3,274

(continued)
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Market information Target Lowe’s Wal-Mart Darden

Risk free rate (Rf)
b 0.06 0.06 0.06 0.06

Coupon rateb 0.06 0.06 0.06 0.06

Max investc 2,115 2,060.5 7,000 201

amarket data
bWe assume that the risk free rate and coupon rate are 6 %
cWe use the capital expenditure in cash flow statements as the Max invest
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Abstract

Vector autoregression (VAR) models have been used extensively in finance and

economic analysis. This paper provides a brief overview of the basic VAR

approach by focusing on model estimation and statistical inferences. Applica-

tions of VAR models in some finance areas are discussed, including asset

pricing, international finance, and market microstructure. It is shown that such

approach provides a powerful tool to study financial market efficiency, stock

return predictability, exchange rate dynamics, and information content of stock

trades and market quality.
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76.1 Introduction

Following seminar work by Sims (1980), the vector autoregression (VAR)

approach has been developed as a powerful modeling tool for studying the

interactions among economic and financial variables and for forecasting. As basic

VAR models focus on the statistical representation of the dynamic behavior of

time-series data but without much restriction on the underlying economic

structure and can be easily estimated, they have gained increasing popularity

in both economics and finance. In this chapter, we provide an overview of

basic VAR models and some of their most popular applications in financial

economics.

76.2 A Brief Discussion of VAR Models

A basic p-lag VAR model has the following form:

Xt ¼ Aþ F1Xt�1 þ F2Xt�2 þ . . .þ FpXt�p þ et, t ¼ 1, 2, . . . T, (76.1)

where Xt¼ (x1,t, x2,t, . . ., xn,t)
0, and it is an (n� 1) vector of economic time series. In

addition, F are coefficient matrices and et is an (n � 1) vector of residuals. The

residual vector is assumed to have zero mean, zero autocorrelation, and time

invariant covariance matrix O. For example, a p-lag bivariate VAR model can be

expressed as

x1, t

x2, t

� �
¼ a1

a2

� �
þ f1

1, 1 f1
1, 2

f1
2, 1 f1

2, 2

 !
x1, t�1

x2, t�1

� �

þ � � � þ
fp
1, 1 fp

1, 2

fp
2, 1 fp

2, 2

 !
x1, t�p

x2, t�p

� �
þ e1, t

e2, t

� �
,

(76.2)

where cov(e1,t, e2,s) ¼ s12 if t ¼ s and cov(e1,t, e2,s) ¼ 0 otherwise.

76.2.1 Estimation

In order to estimate a VAR model, the number of lags of endogenous variables has

to be determined first, as the results and hence inferences from estimation can be
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very sensitive to the lag choice. The general rule is to choose the lag p to minimize

some model selection criteria. Two most common information criteria include the

Akaike (AIC) and the Schwarz-Bayesian (SBC):

AIC pð Þ ¼ ln
X�

pð Þ
����

����þ
2

T
pn2 (76.3)

and

SBC pð Þ ¼ ln
X�

pð Þ
����

����þ
lnT

T
pn2, (76.4)

where
X�

pð Þ ¼ T�1
XT

t¼1
êtêt

0, and p, T, and n represent the lag, sample size, and

number of variables, respectively. Once the lag is determined, the VAR model can

be estimated using either the ordinary least squares (OLS) method or the maximum

likelihood method.1

76.2.2 Inferences

Since a p-lag VAR model contains many parameters, interpreting the estimation

results can be difficult especially when p is large. Instead of focusing on interpreting
each individual parameter estimated, some summary measures are usually

employed to provide useful information on the dynamics among variables

included in the model. In this section, we focus on three major kinds of

summary analysis.

76.2.2.1 Granger-Causality Tests
One important application of the VAR approach is forecasting. Specifically, this

approach can be used to address such questions as whether some variables

contain valuable information about the future dynamics of other variables in the

model. Granger (1969) proposes a test on the forecasting relationship between two

variables, which was further developed in Sims (1972).

According to Granger (1969), in a bivariate VAR model as discussed above,

if x1 helps predict x2, then x1 Granger-causes x2. Otherwise, x1 fails to
Granger-cause x2. More formally, x1 fails to Granger-cause x2 if for all s > 0,

the mean squared error (MSE) of a forecast of x2,t+s based on (x2,t, x2,t–1, . . .) is the
same as the MSE of a forecast of x2,t+s based on (x1,t, x1,t–1, . . .) and (x2,t, x2,t–1, . . .).

To test whether x1 Granger-causes x2, we can estimate the following model:

1For further discussions on VAR techniques, see Watson (1994); Lutkepohl (1991), and Stock and

Watson (2001), among others.
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x2, t ¼ a2 þ f1
2, 1 x1, t�1 þ . . .þ fp

2, 1 x1, t�p þ f1
2, 2 x2, t�1 þ . . .þ fp

2, 2 x2, t�p þ e2, t:

(76.5)

Then we can conduct an F-test on the null hypothesis:

H0: f
1
2, 1 ¼ . . . ¼ fp

2, 1 ¼ 0:

If the null hypothesis is rejected, we can conclude that x1 Granger-causes x2.
While Granger-causality tests provide useful information on the forecasting

ability of the model variables, the predicative power of one variable is not equiv-

alent to its true causality ability. Therefore, results from Granger-causality tests

need to be interpreted with great caution.

76.2.2.2 Impulse Response Analysis
Another approach to examine the interactions among variables in the VAR model is

to use impulse response functions, which represent the reactions of model variables

to shocks hitting the system. In order to estimate the impulse response function, we

first transform the VAR model into vector moving average form:

Xt ¼ mþ et þC1et�1 þC2et�2 þC3et�3 þ . . . , (76.6)

where ∂Xtþs

∂e0t
¼ Cs. Therefore, the (i, j) component of Cs, ci;j

s captures the effects of

a one-unit shock to variable j at time t (e jt) on variable i at time t + s (xi,t+s) and hence
is interpreted as the impulse response function.

However, such interpretation is only possible if the elements of et are not

correlated, i.e., the variance-covariance matrix of et is a diagonal matrix. Sims

(1980) proposes a recursive causal ordering to solve this problem. For example, if

Xt ¼ (x1,t, x2,t, x3,t), then the variables in the Xt can be ordered in a way so that x1,t
affects x2,t and x3,t but not vice versa and x2,t affects x3,t but not vice versa. Which

particular order to use should be determined by the specific context and economics

models being examined. With such recursive causal reordering, the VARmodel can

be rewritten as

x1, t ¼ a1 þP1, 1Xt�1 þP1, 2Xt�2 þ . . .þP1, pXt�p þ �1, t
x2, t ¼ a2 þ b2, 1x1, t þP2, 1Xt�1 þP2, 2Xt�2 þ . . .þP2, pXt�p þ �2, t

⋮
xn, t ¼ an þ bn, 1x1, t þ . . .þ bn, n�1xn�1, t þPn, 1Xt�1 þPn, 2Xt�2

þ . . .þPn, pXt�p þ �n, t:

(76.7)

Transform this VAR model into the Wold representation:

Xt ¼ mþY0�t þY1�t�1 þY2�t�2 þY3�t�3 þ . . . , (76.8)
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where L0 is a lower triangular matrix. The impulse response function can be

estimated as

∂xi, tþs

∂�j, t
¼ ysi, j (76.9)

where i, j ¼ 1, 2, . . . , n and s > 0.

76.2.2.3 Variance Decomposition
A related issue on the influence of a one-unit shock to the system is its contribution

to the variance of the forecast error in predicting the future value of each variable in

the system. Specifically, if we write the forecast error of Xt+s at time t as

Xtþs � X̂tþsjt ¼ et þ L1etþs�1 þ L2etþs�2 þ � � � þ Ls�1etþ1, (76.10)

the MSE of this forecast is

MSE X̂tþsjt
� � ¼ E Xtþs � X̂tþsjt

� �
Xtþs � X̂tþsjt
� �0h i

¼ Oþ L1OL1
0 þ � � � þ Ls�1OLs�1

0
: (76.11)

For one variable in the model, x1, the forecast error has the form:

xi, tþs � x̂i, tþsjt ¼
Xs�1

h¼0

rhi, 1�1, Tþs�h þ � � � þ
Xs�1

h¼0

rhi, n�n,Tþs�h: (76.12)

With the same recursive causal ordering as discussed in the previous section, the
variance and covariance matrix is orthogonal. Therefore, the variance of the

forecast error for xi,t+s is

var xi, tþs � x̂i, tþsjt
� � ¼ s2�1

Xs�1

h¼0

rhi, 1
� �2

þ � � � þ s2�n
Xs�1

h¼0

rhi, n
� �2

: (76.13)

76.3 Applications of VARs in Finance

The VAR models have been used very broadly in the finance literature. In this

chapter, we focus on a few important applications to illustrate the advantages and

some potential concerns when applying this methodology in empirical studies.
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76.3.1 Stock Return Predictability and Optimal Asset Allocation

The VAR has been widely regarded as a useful model to study stock return

predictability. Campbell and Shiller (1987) propose the following VAR model for

asset returns:

Dyt
St

	 

¼ a Lð Þ b Lð Þ

c Lð Þ d Lð Þ
	 


Dyt�1

St�1

	 

þ u1t

u2t

	 

: (76.14)

where in the case of the present value model of stock prices, yt is dividend and St is
the difference between stock price and a multiple of dividends; and in the case of

the term structure of interest rates, yt is one-period interest rate and St is the spread
between long-term and short-term interest rates.

For stock market data, they use real annual prices and real dividends on a broad

stock index from 1981 to 1986. For term structure data, they use monthly US

Treasury 20-year yield series and 1-month Treasury bill rate. They find that yt is
nonstationary and its first difference Dyt is stationary, while St is in general

stationary in both the stock market and term structure cases. There is weak evidence

of cointegration between stock prices and dividends, although the cointegration

relationship in the term structure is more significant. They find that the yield spread

Granger-causes short-rate changes and that excess returns on long-term bonds are

significantly predictable, although the expectation hypothesis of the term structure

is formally rejected. As for stock market, dividend changes are found to be highly

predictable and the dividend-price spreads Granger-cause dividend changes. The

present value model of stock price is however rejected.

Using a log-linear approximation for stock prices and dividends, Campbell and

Shiller (1989) estimate the following bivariate VAR:

dt
rt�1 � Ddt�1

	 

¼ a Lð Þ b Lð Þ

c Lð Þ d Lð Þ
	 


dt�1

rt�2 � Ddt�2

	 

þ u1t

u2t

	 

(76.15)

where dt is log dividends, dt is log dividend-price ratio, rt is ex post discount rate,

and rt � Ddt is interpreted as the growth-adjusted discount rate. Campbell and

Shiller (1989) find that stock returns are somewhat predictable. The lagged log

dividend-price ratio has a positive impact on stock returns, and lagged real dividend

growth rate has a negative impact. The findings that dividend-price ratio has

predicting power for future stock returns are consistent with earlier studies (e.g.,

Shiller 1984; Flood et al. 1986). Log dividend-price ratio Granger-causes real

dividend growth. Short-term discount rates are not helpful in explaining stock-

price movements.

Hodrick (1992) studies the statistical properties of three models for predicting

stock returns on long horizons. The three model specifications are (1) OLS

regression of stock return on past dividend yield originally proposed by Fama
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and French (1988), (2) a reorganization of the first specification where log

stock return is regressed by cumulative past dividend yields, and (3) a first-order

VAR in three variables: log stock returns, dividend yields, and 1-month Treasury

bill return relative to its previous 12-month moving average. Using simulations,

Hodrick (1992) finds that the VAR alternative has the correct size, and

provides unbiased long-horizon statistics, and therefore is the preferred

technique to the other two model specifications in the prediction of stock

return over long horizons. Empirically, the VAR tests provide strong evidence

of predictive power of the 1-month-ahead return. The VAR approach is

a useful alternative way to properly calculate various statistics in long-horizon

predictions, including the implied regression slope coefficients, implied R2, and

variance ratios.

Several authors report that the log of earnings, dividends, and stock prices are

integrated of order one processes, and both dividend payout and dividend yields are

stationary (e.g., Cochrane 1992; Mankiw et al. 1991; Lee 1996). That is, log

earnings and dividends series are cointegrated of order one. Log stock prices and

log dividends are also cointegrated of order one. Lee (1998) employs a tri-variate

structural VAR model to identify the various components of stock price and

examine the response of stock prices to different types of shocks: permanent

and temporary changes in earnings and dividends and changes in discount factors

and nonfundamental factors. The variables in the structural VAR are the change in

log earnings, the spread between log dividends and earnings, and the spread

between log stock prices and dividends. Lee (1998) finds that about half of the

stock-price variation is unrelated to earnings or dividend changes. Time-varying

excess stock returns account for much of the remaining deviation of stock prices.

Deviation of stock prices from fundamentals does not persist for a long time,

suggesting a fad interpretation of stock market movements.

The VAR has been employed to study optimal consumption and portfolio

decisions over long horizons when asset returns are not i.i.d. For example,

Campbell and Viceira (1999) use a restricted VAR consisting of the excess stock

market returns over the risk-free rate and the log dividend-price ratio. The VAR

parsimoniously describes the changing investment opportunity over time for the

long-horizon investor. The predictability of asset returns over time significantly

increases the complexity of the optimal consumption and portfolio solution. Using

a log-linear approximation, Campbell and Viceira (1999) nicely obtain an analytic

solution. Optimal portfolio consists of two components. The first component is the

myopic demand which is what one would obtain in the absence of asset return

predictability. This is the classical result on optimal asset allocation. The second

component is the hedging demand which arises due to the serial correlation of asset

returns. Campbell et al. (2003) extend the model to allow multiple assets in the

VAR. Viceira (2001) examines long-horizon consumption and portfolio decisions

with nontradable labor income. These studies demonstrate how the VAR can

be conveniently employed to yield interesting and important insight in the

consumption and portfolio optimization.
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76.3.2 Exchange Rate Prediction

The VAR is widely used to study exchange rate dynamics. We summarize several

papers on exchange rate predictability. There is a large literature on exchange rates

forecasting, started from the seminal work of Meese and Rogoff (1983), who report

that most structural and time-series exchange rate models, including an

unconstrained VAR consisting of exchange rate and six key macroeconomic vari-

ables, cannot produce a better forecast of future spot exchange rates than the naı̈ve

random walk model. Subsequent authors develop various models and techniques to

better understand exchange rate dynamics, hoping to produce more accurate fore-

cast of exchange rates than the naı̈ve random walk.

Bekaert and Hodrick (1992) consider the following VAR model for two coun-

tries (e.g., the United States which is called country 1 and Japan which is called

country 2):

Yt ¼ A0 þ A1Yt�1 þ utþ1 (76.16)

where

Yt ¼ [r1t, r2t, rs2t, dy1t, dy2t, fp2t]
0,

rjt is the excess equity market return in country j,

rsjt is the excess dollar rate of return on a currency j money market investment,

dyjt is the dividend yield in country j,

fpjt is the forward premium on currency j in terms of the US dollars.

They find that dividend yields that are known to have predictive power for equity

returns can predict excess returns in foreign exchange market. Similarly, forward

premiums that are known to predict excess returns in the foreign exchange market

have predictive power for equity excess returns. They also find that excess returns

in the foreign exchange market have strong positive persistence.

Baillie and Bollerslev (1989) employ a VAR to study the long-run and short-run

dynamics of spot and forward exchange rates for seven major currencies against the

US dollar. They report that spot and forward exchange rates can be characterized as

unit-root processes, and spot and forward exchange rates are cointegrated for each

currency pair. Furthermore, one common unit root, or stochastic trend, is detected

in the multivariate time-series models for the seven spot and forward exchange

rates. These findings suggest that the seven exchange rates possess one long-run

relationship and that the disequilibrium error around the long-run relationship can

partly explain the subsequent short-run movements in the exchange rates.

Diebold et al. (1994) examine one immediate implication of the Baillie and

Bollerslev (1989) finding that spot and forward exchange rates are cointegrated.

That is, cointegration implies an error-correction representation of spot and forward

exchange rates that should better forecast the change in future spot exchange rate

than the naı̈ve random walk model. Empirical findings of Diebold et al. (1994) are

however quite negative. The VAR model with the cointegration restriction does not

produce more accurate out-of-sample forecast of exchanges rates than the simple

martingale model in short horizons. Mark (1995) and Mark and Sul (2001) however
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find substantial predictability of exchange rates over longer horizons (3–4 years)

when monetary fundamental variables are employed.

Numerous papers study the information contents of the forward foreign exchange

rate premium in predicting future spot exchange rate changes. According to the

uncovered interest rate parity, when the forward exchange rate is traded at a 1 %

premium relative to the current spot exchange rate, the future spot exchange rate

should be expected to depreciate by 1%.However, empirically the uncovered interest

rate parity is strongly rejected. Furthermore, the forward premium often forecasts the

change in future spot exchange rate in the opposite direction. Hai et al. (1997) propose

a permanent-transitory components model for the spot and forward exchange rates.

The permanent component which is shared by the spot and forward exchange rates is

a random walk without drift, while the transitory components of spot and forward

exchange rates are assumed to follow a vector autoregressive moving average

process. The model is estimated using the Kalman filter. They report that this simple

parametric model is useful in understandingwhy the forward rate may be an unbiased

predictor of future spot rate even though an increase in forward premium predicts

a dollar appreciation. The estimates of the expected excess return on short-term

dollar-denominated assets are persistent and reasonable in magnitude.

Mark and Wu (1998) find that a vector error correction model for the spot and

forward exchange rates can account for many salient features of the data. In

particular, the estimated risk premium series is highly persistent, the risk premium

and the expected future depreciation of the spot exchange rate alternate between

positive and negative values and change sign infrequently. They show that standard

intertemporal asset pricing model is not capable of generating reasonable foreign

exchange risk premiums and therefore does not help to explain why the forward

exchange premium forecasts future spot exchange rate changes in the wrong

direction. On the other hand, a noise-trader model along the line of De Long

et al. (1990) is potentially promising in explaining the anomaly.

76.3.3 Measuring Market Quality and Informational Content of
Stock Trades

The VAR approach has also been applied to high-frequency data to measure

informational content of stock trades and the quality of security markets. For

example, Hasbrouck (1991) uses the following vector autoregressive system to

model the interaction of trades and quote revisions:

rt ¼
XI
i�1

airt�i þ
XI
i¼0

bix
0
t�i þ v1, t, (76.17)

and

x0t ¼
XI
i�1

cirt�i þ
XI
i¼1

dix
0
t�i þ v2, t, (76.18)
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where t indexes transactions and rt and x0t represent price changes and trade

direction, respectively. Within this framework, the information content of a trade

is measured as the ultimate impact of the trade innovation on the stock price and can

be inferred from the impulse respond function of price changes to a shock to x0t .
Specifically, if an order arrives at time t, its cumulative impact on quote revisions

through step m is represented by

am v2, t
� � ¼

Xm
i¼0

E rtþijv2, t
� �

: (76.19)

As m increases, am(v2,t) can be shown to converge to the revisions in the efficient
price resulting from the shock v2,t.

Notably, this model differs from usual VAR specification since the contempo-

raneous net trading volume appears as one of the independent variables

in explaining quotes returns. This is largely due to the trades/quote timing

convention assumed in the study. According to Hasbrouck (1991), trades (xt)
take place after market makers post bid and ask quotes (rt�1). Based on the

trades occurred, market makers revise their quotes (rt) and more trades follow.

Therefore, even though xt and rt carry the same subscript t, they are not determined

simultaneously. In fact, rt takes place after xt and hence cannot influence xt.
Such recursive causal ordering is also necessary in order to estimate the impulse

response function.

In another influential paper, Hasbrouck (1993) uses the VAR specification to

discuss a new measure of market quality. In this model, security transaction prices

are decomposed into a random walk component, identified as the efficient price, and

a residual stationary component, termed the pricing error. Specifically, the

(logarithm of) the actual transaction price at t, pt, is modeled as

pt ¼ mt þ st (76.20)

where mt is the efficient price which follows a random walk and st is the pricing

error which is a zero-mean covariance-stationary stochastic process.

As discussed in Hasbrouck (1993), the pricing error consists of two components,

an information uncorrelated component (e.g., arising from inventory effects) and an

information correlated component (which arises from adverse selection effects).

This dispersion of the pricing error, denoted ss, measures how closely the real

transaction price tracks the efficient price and hence measures the market quality:

the smaller the ss, the higher the market quality.

To empirically determine ss, Hasbrouck (1993) estimates a vector

autoregressive (VAR) model over a set of four price and trade variables {rt, x
0
t ,

xt, x
1=2
t }, where rt ¼ pt – pt�1, x

0
t is the trade direction (which is equal to 1 for buys

and �1 for sells), and xt and x
1=2
t represent signed size and signed square root of

size, respectively. The ss is then calculated for each firm as a function of the

estimated variance-covariance matrix and the coefficient matrix of the VAR
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model under the Beveridge-Nelson identification restriction (1981).2 Applying this

measure to a sample of NYSE firms, Hasbrouck (1993) finds that the average ss is
about 0.33 % of the stock price, and it exhibits elevation at both the beginning and

end of the trading session.

76.3.4 Relative Informational Efficiency

The relative informational efficiency of related asset markets has been of great

interests to finance scholars for decades. Numerous studies have employed the

VAR approach to address substantial questions such as whether prices/trading

activities in one market reflect new information faster than that in the other markets.

Following seminal work by Black (1975), there has been a huge literature studying

inter-market relationships between the stock and option markets. The underlying

rationale is that any information related to the value of a firm’s equity security

should also be reflected in its derivative contracts, and which market moves first in

response to the arrival of new information is determined to a large degree by

informed traders’ preferences for trading. According to Black (1975), the option

market might be more attractive to informed traders than the market for the

underlying stock because options offer higher financial leverage, and the option

market is characterized by less stringent margin requirements and no uptick rule for

short selling.

Whether the option market is indeed leading the stock market in reflecting new

information has been directly examined in numerous empirical studies. One

approach is to analyze the dynamic relationship between the stock and option

markets using a VAR model. For example, Chan et al. (2002) propose the following

multivariate VAR model on the trades and quotes revisions in options and their

underlying stocks:

rt ¼ a1rt�1 þ � � � þ aprt�p þ b0xt þ b1xt�1 þ � � � bpxt�p þ e1, t, (76.21)

and

xt ¼ c1rt�1 þ � � � þ cprt�p þ d1xt�1 þ � � � dpxt�p þ e2, t: (76.22)

In this model, rt ¼ [rst , r
c
t , r

p
t ]

0 and xt ¼ [xst , x
c
t , x

p
t ]

0, where rst , r
c
t , and rpt denote

returns calculated using quote midpoints and xst , x
c
t , and xpt represent net trading

volume (buyer-initiated volume minus seller-initiated volume) in the stock, call,

and put option markets during time interval t, respectively. Further, the error terms

e1,t and e2,t are assumed to have zero means and are jointly and serially uncorrelated.

This specification is in the same spirit as in Hasbrouck (1991) since the

2For more estimation details, refer to Hasbrouck (1993).
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contemporaneous net trading volume appears as one of the explanatory variables

for quote returns but not vice versa.

The quote returns and net trading volumes are calculated on a 5-min intervals for

a sample of 14 most actively traded NYSE stocks with options traded on CBOE for

a total of 231 trading days. The authors find that stock net trading volume, but not

option trading volume, carries explanatory power for both contemporaneous and

subsequent stock and option quote revisions. On the other hand, both stock and

option quote revisions predict subsequent quote changes in both markets. These

findings suggest that informed traders only initiate trades in the stock market.

However, they also trade in the option market by submitting limit orders. This is

consistent with the notion that the less liquidity in the option market might

discourage informed traders to trade using market orders, despite the high financial

leverage it offers.3

The VAR approach has also been used in a recent literature on the relative

informational efficiency of stocks and corporate bonds. As both stocks and corpo-

rate bonds are claims on the issuing firms’ assets, any information on the value of

these assets will affect their prices. The analysis on the lead-lag relationships

between the stock and bond price movements can then be used to address the

question as to whether stocks lead bonds in reflecting firm-specific information:

Rs, t ¼ as þ
XI
i¼1

bis, sRs, t�i þ
XL
i¼1

gis, bRb, t�i þ es, t, (76.23)

and

Rb, t ¼ ab þ
XI
i¼1

bib, sRs, t�i þ
XL
i¼1

gib, bRb, t�i þ eb, t, (76.24)

3Whether options lead stocks in the price discovery process is still a question open to debate. Early

studies in this literature present strong evidence in favor of the option lead in prices. For example,

Latane and Rendleman (1976) and Beckers (1981) show that the volatility implied in option prices

predicts future stock-price volatility. Consistently, Manaster and Renleman (1982) find that the

option-implied stock prices contain valuable information about the equilibrium prices of the

underlying stocks that has not been revealed in the stock market. However, Vijh (1988) questions

the results in Manaster and Rendleman (1982), since using daily closing prices introduces a bias

associated with the bid-ask spread and nonsynchronous trading. After purging the effects of

bid-ask spreads, Stephan and Whaley (1990) find that the stock market leads the option market.

Nevertheless, Chan et al. (1993) argue that the stock lead is due to the relative smaller stock tick. If

the average of the bid and ask is used instead of transaction prices, neither market leads the other.

Latter studies on the stock option lead-lag analysis have been focused more on the trading volume.

Easley et al. (1998) show that “positive news option volumes” and “negative news option

volumes” have predictive power for future stock-price changes. See also Pan and Poteshman

(2006) and Cao et al. (2003). By measuring the relative share of price discovery occurring in the

stock and option markets, Chakravarty et al. (2004) conclude that informed trading takes place in

both stock and option markets, suggesting an important role for option volume.
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where Rs,t (Rb,t) represents the return on the stock (bond) at time t. Within this

framework, Granger-causality tests are conducted to identify the lead-lag

relationships.

Hotchkiss and Ronen (2002) examine pre-TRACE (FIPS) transaction price sum-

maries for 55 high-yield bonds and find that stocks do not lead bonds, consistent with

Zhou (2009) who finds that lagged TRACE 50 high-yield bond prices contain valuable

information about current stock returns, and that they serve an important role in

disseminating firm-specific information.4 In contrast, Downing et al. (2009) conclude

that stock returns do lead nonconvertible bond returns at the hourly level in times of

financial distress and that therefore the corporate bond market is less informationally

efficient.5 Gurun et al. (2011) also find significant stock leads for daily bond indices,

which diminish with certain information releases. The findings of less informational

efficiency of corporate bonds seem to be consistent with the notion that the liquidity

(transaction costs) for corporate bonds is much lower (higher) than that for stocks.

However, in a recent study by Ronen and Zhou (2012), the authors question the ability

of VAR in capturing the information flow between stocks and bonds. Since for any

given firm there typically is multiplicity of bond issues (in contrast to a single or very

few stock issues), VAR analysis on pair-wise comparisons of each bond with the

issuer’s stock can be misleading. In fact, it cannot reveal the information most desired

by a single trader: whether there exists at least one bond constituting an information-

based trading venue. For more discussions, see Ronen and Zhou (2012).

76.4 Summary

This chapter endeavors to summarize the basic structure of a VAR model and some

related estimation methods and structural analysis. It also offers a quick overview

of some important applications of the VAR approach in both economics and

finance. Despite all the advantages for the VAR models, it is important to realize

that VAR models can only be applied to stationary time-series data. Therefore, in

order to properly implement this approach in empirical studies, certain tests on the

stationarity of the time-series data have to be conducted first. If null hypothesis of

stationarity is rejected, a vector error correction model (VECM) should be used

instead. For more details on VAR and VECM models, please refer to

Hamilton (1994).

4Zhou’s (2009) analysis incorporates the option market trades in addition to the stock and bond

market transactions. Chava and Tookes (2005) also incorporate the option markets and examine

the volatility reaction of stock, bond, and options to macroeconomic and firm specific information,

finding significant effects near announcements. Overall, they find that corporate bond and option

trades have information content for future stock price movements.
5For convertible bonds, Downing et al. (2009) find that these results also hold, but only for those

with conversion options deep in the money. Kwan (1996) first examines the relation between

individual stocks and bonds using weekly quote data and also finds evidence in support of stock

leads.
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Abstract

High-dimensional data analysis is becoming more and more important to both

academics and practitioners in finance and economics but is also very challenging

because the number of variables or parameters in connection with such data can

be larger than the sample size. Recently, several variable selection approaches
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have been developed and used to help us select significant variables and construct

a parsimonious model simultaneously. In this chapter, we first provide an over-

view of model selection approaches in the context of penalized least squares. We

then review independence screening, a recently developed method for analyzing

ultrahigh-dimensional data where the number of variables or parameters can be

exponentially larger than the sample size. Finally, we discuss and advocate

multistage procedures that combine independence screening and variable

selection and that may be especially suitable for analyzing high-frequency

financial data.

Penalized least squares seek to keep important predictors in a model while

penalizing coefficients associated with irrelevant predictors. As such, under cer-

tain conditions, penalized least squares can lead to a sparse solution for linear

models and achieve asymptotic consistency in separating relevant variables from

irrelevant ones. Independence screening selects relevant variables based on certain

measures of marginal correlations between candidate variables and the response.

Keywords

Model selection • Variable selection • Dimension reduction • Independence

screening • High-dimensional data • Ultrahigh-dimensional data • Generalized

correlations • Penalized least squares • Shrinkage • Statistical learning • LASSO •

SCAD penalty • Oracle property

77.1 Introduction

High-dimensional data analysis has now become increasingly frequent and neces-

sary in various research fields, such as finance, genetics, computer science, and

geography. For example, the price of a stock may depend on a huge number of

variables, such as the company’s dividend yields and price-to-earnings ratios, past

values of the stock, related bond and derivative prices, other relevant companies’

stock prices, overall market information, and some other macroeconomic factors.

How to select significant variables for the price of this stock is important and yet

challenging given the high-dimensional space of potential predictors. Another

example is the estimation of covariance matrix in portfolio problem. Suppose we

want to construct an optimal portfolio using, say, 200 stocks. In this case, there are

20,100 parameters in the covariance matrix to estimate. As the number of stocks to

be included in the analysis increases, the number of such parameters to be estimated

will increase dramatically. It is also challenging to estimate this large covariance

matrix using the traditional statistical methods. For more examples, see Fan and Li

(2006), Hastie et al. (2009), and Fan et al. (2011b).

One method often used in the literature to make high-dimensional problems

tractable is to assume the sparsity condition – namely, only a small number of

predictors are assumed to contribute to the response variable. Under the sparsity

principle, variable selection approaches play a fundamental role in model selection.

For instance, traditional subset selection methods combined with variable selection
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criteria, such as the Akaike (1973) information criterion (AIC) and the Bayesian

information criterion (Schwartz 1978), may perform well in the relatively low

dimensional space. However, these methods suffer from expensive computational

cost and model instability for high-dimensional data (Breiman 1996). Recently,

various regularization methods have been proposed for variable selection in high-

dimensional data analysis. Examples include the least absolute shrinkage and

selection operator (LASSO) of Tibshirani (1996), the smoothly clipped absolute

deviation (SCAD) (Fan and Li 2001; Zou and Li 2008), the least-angle regression

(LARS) algorithm (Efron et al. 2004), the elastic net (Zou and Hastie 2005; Zou and

Zhang 2009), the adaptive LASSO (Zou 2006), and the Dantzig selector (Candes

and Tao 2007), among others. With the sparsity assumption, regularization

methods can improve both the prediction accuracy and the model interpretability

in the high-dimensional setting. Some of these newly proposed variable selection

methods have been used in economics and finance recently, in areas such as

macroeconomic forecasting (Bai and Ng 2008), term structure of interest rates

(Huang and Shi 2010), and portfolio choice (Goto and Xu 2010).

Nonetheless, one very important challenge facing both researchers and practi-

tioners nowadays is to better understand ultrahigh-dimensional data, where

the number of predictors, say, p, is usually much larger than the sample size, say,

n (p � n) – namely, log p ¼ O(na) for some a > 0. Issues such as computational

expediency, statistical accuracy, and algorithmic stability call for new statistical

modeling techniques for dimension reduction and model selection (Fan et al. 2009).

One such idea is a two-stage procedure: In the first stage (the “screening” stage), some

kind of screening is used to reduce the dimension of the original data set; in the next

stage (the “cleaning” stage), well-established variable selection methods are used to

simultaneously select significant variables and estimate statistical effects of those

selected variables. Ji and Jin (2012) show that under certain settings, the two-stage

approach has advantages over the one-stage LASSO and subset selection in identi-

fying important predictors in the ultrahigh-dimensional analysis.

One way to implement the first step is to use the independence screening frame-

work developed recently in the theoretical statistics literature. Specifically, at the

screening stage, independence screening procedures are used to remove as many

irrelevant variables as possible in order to reduce the dimensionality from ultrahigh

p to a relatively large-scale d that may be less than n. As such, the independence

screening procedures can dramatically reduce the computational complexity. Fan and

Lv (2008) propose the sure independence screening (SIS) via Pearson correlation

ranking to effectively narrow down the ultrahigh dimensionality to a moderate scale,

in which the aforementioned regularization methods can be applied. The authors

further show that the SIS enjoys a sure screening property within the context of linear

regressions with Gaussian predictors and responses. That is, all truly important

predictors can be selected with probability approaching one as the sample size goes

to the infinity. Hall and Miller (2009) use the generalized correlation learning to

capture nonlinear dependence between predictors and the response. Fan et al. (2009)

and Fan and Song (2010) consider a more general version of independent learning

that ranks the maximum marginal likelihood estimators or the maximum marginal
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likelihood for generalized linear models. Some other studies are based on nonpara-

metric methods. For instance, Fan et al. (2011a) propose independence screening

based on spline approximation in sparse ultrahigh-dimensional additive models; Zhu

et al. (2011) use amodel-free sure independent ranking and screening (SIRS) to select

important predictors in a general class of multi-index models; and Li et al. (2012)

study a unified screening framework via distance correlation learning.

It is also worth mentioning that these screening procedures can possess some

favorable theoretical properties, such as the sure screening property (Fan and Lv

2008) and the ranking consistency property (Zhu et al. 2011).

We should also note that two importantmethods in the literature albeit not focused

in this review are factor models and principal component analysis (PCA). Factor

models are widely used in unsupervised learning as a means of dimension reduction.

The factor structure provides a sequence of best linear approximations tomultivariate

data set, by seeking nonredundant components that are as statistically independent as

possible. In the Gaussian setting, it suffices to find linear orthogonal components, as

high-order cross dependence is determined by secondmoments alone. Consequently,

PCA becomes a standard procedure in multivariate analysis and is described in any

textbooks on multivariate analysis (see, e.g., Mardia et al. 1980). Extensions of PCA

include principal curves and surfaces (Hastie 1994), curvilinear component analysis

(Demartines and Hérault 1997), and independent component analysis (Comon 1994).

The factor approach has been used widely in finance and economics. For instance, it

has been applied to macroeconomic forecasting (Stock and Watson 2002) and asset

volatility prediction (Anderson and Vahid 2007). See Campbell et al. (1997) for

a more complete reference.

The rest of this chapter is organized as follows. Section 77.2 reviews well-

established variable selection methods within the framework of penalized least

squares. In Sect. 77.3, we provide a brief review of the existing independence

screening methods and call for application in financial studies. Section 77.4 dis-

cusses model selection versus dimension reduction. Section 77.5 concludes.

77.2 Variable Selection Approaches

Variable selection techniques play an increasingly important role in the high-

dimensional problems. Here, the high dimensionality means that p ¼ O(na) with
0< a< 1. In the early stages of statistical modeling, it is typical to include as many

as potential influential predictors into a model in order to reduce possible model

bias. Nonetheless, it is natural to assume that only a subset of predictors contribute

to the response in the true model. Under this sparsity assumption, variable selection

can improve both the prediction accuracy and the interpretability of the fitted

model.

Consider the following linear regression model:

y ¼ Xbþ e, (77:1)
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where y ¼ (Y1,. . ., Yn)
T is an n � 1 vector of responses, X ¼ (x1, . . ., xn)

T is an

n � p random design matrix, b ¼ (b1, . . ., bp)
T is a p � 1 vector of parameters, and

e ¼ (e1,. . ., en)
T is an n � 1 vector of independent and identically distributed (i.i.d.)

random errors.

When the dimension parameter p is large, it is natural to assume that the model

is sparse – namely, only a small subset of predictors, say, true predictors {Xj : bj 6¼ 0,

j¼ 1, . . ., p}, contribute to the response y. We can use variable selection techniques to

help identify true predictors.

77.2.1 Classic Variable Selection Criteria

A variable selection criterion is a statistic of a fitted model that measures the

goodness of fit. The literature on this issue is extensive. Two well-known examples

are the Akaike (1973) information criterion (AIC) and the Bayesian information

criterion (BIC) developed by Schwartz (1978). Another example is the generalized

cross-validation statistic (GCV) proposed by Craven and Wahba (1979). Also, Shao

(1997) discusses the consistency and efficiency of variable selection, and Miller

(2002) provides a comprehensive review of the subset selection in regression.

Below we review some widely used variable selection criteria:

• Residual sum of squares (RSS). For the linear regression model (77.1), many

variable selection criteria are built on the residual sum of squares (RSS) that is
defined as follows:

RSS ¼ y� Xb̂
���

���
2

¼
Xn
i¼1

Yi � xib̂
� �2

, (77:2)

where b̂ is an estimate of b. Because xib̂ is the fitted value of the ith observation
Yi, RSS can measure the goodness of model fit.

• R2 and adjusted R2. R2 is a commonly used statistic for model fitting and is

related to RSS. Specifically, we have

R2
d ¼ 1� RSSd

RSS0
, (77:3)

where RSSd is the residual sum of squares when an intercept and d predictors are
fitted in the model, where 1 � d � p, and RSS0 is the RSS with only the intercept
fitted. R2 can measure how well the fitting of the d predictors is. However, it is

known that R2 increases with the number of predictors used in the model.

Therefore, R2 cannot serve as a variable selection criterion. The adjusted R2

addresses this concern of R2 by penalizing the number of predictors used. The

more predictors used, the higher the penalty.

The adjusted R2 is also called Fisher’s A-statistic. The latter is defined as

follows:
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Ad ¼ 1� 1� R2
d

� � n� 1

n� d

¼ 1� RSSd= n� dð Þ
RSS0= n� 1ð Þ :

(77:4)

Fisher’s A-statistic Ad does not necessarily increase when a new predictor is

added to the model. Therefore, it can serve as a variable selection criterion for

model fitting.

• Prediction sum of squares (PRESS). This is a prediction-based variable selection
criterion proposed by Allen (1974). When a model includes d predictors,

PRESSd is defined as follows:

PRESSd ¼
Xn
i¼1

Yi � bYid

� �2
, (77:5)

where bYid is the predicted value of Yi from the fitted model using all observations

but the ith one.

• Cross-validation (CV). Cross-validation can be considered to be a generalization
of PRESS. The idea of CV is that we randomly set a small number of observa-

tions (the testing set) aside, use the remaining observations (the training set) to fit

the model, predict the testing data set, and then summarize the performance of

the prediction.

If we set only one observation aside each time, we obtain the so-called

leave-one-out CV, that is, essentially the PRESS. In practice, we can partition the

data set into K equivalent subsets, leave one subset out each time, and predict

this subset using the remaining K – 1 ones. Both CV and PRESS can be used to

estimate the prediction errors of the fitted model and provide a good measure of

how well the prediction of the proposed model is.

A related statistic is the generalized cross-validation statistic (GCV) for linear
regression models proposed by Craven and Wahba (1979) and is defined by the

following:

GCV ¼ RSSd=n

1� d=nð Þ2 : (77:6)

It is shown that under the mild conditions, if n is much larger than d, the PRESS
statistic can be asymptotically approximated by

PRESSd � n2

n� dð Þ2 RSSd

¼ RSSd

1� d=nð Þ2 ¼ nGCV:

(77:7)
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Therefore, GCV is also a widely used variable selection criterion.

• Akaike information criterion (AIC). Proposed by Akaike (1973), AIC is related to

the Kullback-Leibler mean information and is defined as follows:

AIC ¼ RSSd þ 2ds2: (77:8)

It is known that AIC is equivalent to Mallows’ Cp (Mallows 1973) measure in

linear regression models. For such a model with d predictors, Mallows’ Cp of the

model is given by the following:

Cp ¼ RSSd
s2

� n� 2dð Þ: (77:9)

• Bayesian information criterion (BIC). The BIC, suggested by Schwartz (1978),

is defined by the following:

BIC ¼ RSSd þ log nð Þds2: (77:10)

In practice, we choose a model with the smallest information criterion to

achieve variable selection. It can be shown that the BIC is a consistent criterion.

That is, when assuming there exists a true model with finite parameters, the BIC
can determine the true model as the sample size approaching the infinity.

However, the AIC may provide an overfitted model. On the other hand, the

AIC is an asymptotically less efficient criterion (Shao 1997), but the BIC is not.

77.2.2 Penalized Least Squares

Although the best subset selection with classic variable selection criteria can

perform well in practice, the method suffers from the highly expensive computa-

tional cost, especially for the high-dimensional regression models. Furthermore, the

subset selection approaches lack stability, and their theoretical properties are

difficult to examine (Breiman 1996).

For linear regression models (77.1), penalized least squares (PLS) methods

provide one alternative that can overcome the aforementioned limitations of the

subset selection approaches. Consider the following objective function Q(b):

Q bð Þ ¼ 1

2
y� Xbk k2 þ n

Xp

j¼1

pl bj
�� ��� �

, (77:11)

where pl(·) is the penalty function and l is the regularity parameter that controls the

size of the penalty. We can obtain the PLS estimate b̂PLS by minimizing the

objective function Q(b). If there is no penalty, then we recover the objective

function of ordinary least squares and obtain the OLS estimate b̂OLS.
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In the balance of this subsection, we will discuss some well-known penalty

functions as well as how to choose a good penalty function. Moreover, we will

provide connections between the penalized least squares (77.11) and the classic best

subset selection and the ridge regression.

77.2.2.1 Lq Penalties with 0 � q � 2
• L0 Penalty: Best Subset Selection
The best subset selection with classic variable selection criteria can be written as the

form of PLS with some L0 penalty functions. Notice that choosing a model with the

minimum Cp is equivalent to minimizing the following PLS objective function:

Q bð Þ ¼ 1

2
y� Xbk k2 þ s2

Xp

j¼1

I bj
�� �� 6¼ 0
� �

: (77:12)

Motivated by (77.12), the best subset selection with classic variable selection

criteria is equivalent to minimizing the objective function (77.11) with the follow-

ing L0 penalty function:

pl bj
�� ��� � ¼ l2

2
I bj
�� �� 6¼ 0
� �

(77:13)

with a different tuning parameter l.
For example, AIC is asymptotically equivalent to the following PLS:

Q bð Þ ¼ 1

2
y� Xbk k2 þ n

s
ffiffiffiffiffiffiffiffi
2=n

p� �2

2

Xp

j¼1

I bj
�� �� 6¼ 0
� �

(77:14)

with l ¼ s
ffiffiffiffiffiffiffiffi
2=n

p
. Another example is BIC, which is asymptotically equivalent to

the PLS as follows:

Q bð Þ ¼ 1

2
y� Xbk k2 þ n

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log nð Þ=np� �2
2

Xp

j¼1

I bj
�� �� 6¼ 0
� �

(77:15)

with l ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log nð Þ=np

.

• L2 Penalty: Ridge Regression
The well-known ridge regression is proposed by Hoerl and Kennard (1970) in order

to deal with the collinearity problem in predictors. Although ridge regression

cannot possess the variable selection feature, it is a solution of penalized least

squares (77.11) with an L2 penalty – namely, pl bj
�� ��� � ¼ l

2
bj
�� ��2. Therefore, the ridge

regression estimates can be obtained by minimizing the following PLS objective

function:
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Q bð Þ ¼ 1

2
y� Xbk k þ nl

2

Xp

j¼1

bj
�� ��2: (77:16)

Like the ordinary least squares, the ridge regression also has the explicit

solution:

b̂ ¼ XTXþ nlIp
� ��1

XTy, (77:17)

where Ip is a p � p identity matrix.

• Lq Penalty: Bridge Regression
This regression is proposed by Frank and Friedman (1993) and corresponds to the

following objective function:

Q bð Þ ¼ 1

2
y� Xbk k2 þ nl

q

Xp

j¼1

bj
�� ��q, (77:18)

where 0 < q< 2. The penalty function used here, the Lq penalty, bridges the L0 and
L2 penalties. The current literature focuses on bridge regressions with 0 < q < 1

(Friedman 2008; Zou and Li 2008), as they perform well in the presence of noised

surrogates correlated with a true explanatory variable. In these situations, the

penalty function is concave over (0, 1). In the appendix, we discuss the

thresholding operator induced by the L0.5 penalty and investigate its implementa-

tion based on local linear approximation.

• L1 Penalty: LASSO
The least absolute shrinkage and selection operator (LASSO) is first proposed by

Tibshirani (1996). Specifically, the LASSO estimate is the solution to the following

problem:

min
b

1

2
y� Xbk k2,

subject to
Xp

j¼1

bj
�� �� � s,

(77:19)

where the tuning parameter s controls the regularization size. The main advantage

of LASSO is that it allows us to shrink regression coefficients and select significant

predictors simultaneously.

The LASSO solutions are shown to be equivalent to the penalized least squares

with the L1 penalty as follows:

Q bð Þ ¼ 1

2
y� Xbk k2 þ nl

Xp

j¼1

bj
�� ��: (77:20)
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Therefore, the LASSO is a special case of the bridge regression with q¼ 1. It can

be shown that the LASSO can exactly shrink some coefficients to zero and hence

gives a sparse model, which enhances the model interpretability.

Although penalized L0 regressions can be used to conduct variable selection, the
computation involved is usually extensive, and the set of selected predictors can be

unstable. Penalized L2 regressions (ridge regressions) can shrink the estimated

coefficients and make the model stable, but these regressions do not possess the

variable selection feature. Penalized L1 regressions (LASSO) can provide both

shrinkage estimation and variable selection, but the estimators are biased even for

large true coefficients. The natural question is then: “What kind of penalty functions

is good for variable selection and parameter estimation?”

77.2.2.2 The SCAD Penalty
Fan and Li (2001) argue that good penalty functions should provide the estimators

with the following three properties in the high-dimensional regression problems:

1. Unbiasedness: The penalized estimator should be nearly unbiased to reduce

model bias, especially for the large true coefficients.

2. Sparsity: The penalized estimator can automatically set small estimated coeffi-

cients to zero to achieve variable selection and reduce model complexity.

3. Continuity: The penalized estimator is continuous in the data in the sense that it

can avoid instability in model prediction.

To proceed, Fan and Li (2001) consider the linear regression model (77.1) with

the design matrixX satisfyingXTX¼ nIp, where Ip is a p� p identity matrix. It then

follows that (77.11) can be rewritten as the following:

Q bð Þ ¼ 1

2
y� Xb̂0

���
���
2

þ n

2
b̂0 � b
���

���
2

þ n
Xd
j¼1

pl bj
�� ��� �

,

¼ 1

2
y� Xb̂0

���
���
2

þ n
Xd
j¼1

1

2
b̂0j � bj
� �2

þ pl bj
�� ��� �	 


,

(77:21)

where b̂0 ¼ XTy=n is the ordinary least squares estimate. The first term of (77.21) is

constant with respect to b, so minimizing the object Q(b) reduces to a

componentwise regression problem. Consider the univariate minimization problem:

ŷ zð Þ ¼ argmin
y2R

1

2
z� yð Þ2 þ pl yj jð Þ

	 

: (77:22)

Antoniadis and Fan (2001) and Fan and Li (2001) examine the conditions under

which the univariate penalized estimator ŷ zð Þ can possess the above three

properties:

1. Unbiasedness if pl
0 (y) ¼ 0 for large y

2. Sparsity if miny � 0{y + pl
0 (y)} > 0

3. Continuity if and only if arg miny � 0{y + pl
0 (y)} ¼ 0
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where pl(y) is nondecreasing and continuously differentiable on [0, 1) and pl
0 (0)

means pl
0 (0+) here. In general, a good penalty function pl(y) should be singular at

the origin to generate sparse estimators in variable selection and concave when y is
large to reduce the model bias.

It has been shown in the literate that an Lq penalty does not satisfy the unbi-

asedness condition. As such, such a penalty function increases the model bias. To

construct a penalty function satisfying all the three conditions mentioned above,

Fan and Li (2001) introduce the smoothly clipped absolute deviation (SCAD)

penalty, whose first derivative is given by the following:

p0l yð Þ ¼ l I y � lð Þ þ al� yð Þþ
a� 1ð Þl I y > lð Þ

	 

, (77:23)

where y > 0, pl(0) ¼ 0, and a > 2. Here, a ¼ 3.7 is often suggested by a Bayesian

argument. Another penalty function, called minimax concave penalty (MCP) by

Zhang (2010), has the same spirit as SCAD, and its first derivative is given by the

following:

p0l yð Þ ¼ al� yð Þþ
a

: (77:24)

For more theoretical and numerical studies of SCAD and MCP, see Fan and Li

(2001), Zou and Li (2008), and Zhang (2010).

77.2.2.3 The Oracle Property
In addition to the aforementioned properties, another equally important property

established in Theorem 2 of Fan and Li (2001) is the oracle property. Ensuring the

optimal asymptotic performance, the oracle property entitles statistician the power

to work as well as if they had an oracle.

Specifically, assume that the true parameter vector b0 ¼ [b10
T , b20

T ]T and

b20
T ¼ 0, and under some regularity conditions, the

ffiffiffi
n

p
-consistent local minimizer

b̂ ¼ b̂T
1 ; b̂

T
2

h iT
of the above Q(b) with SCAD penalty satisfies the following

conditions:

• Sparsity: b̂2 ¼ 0.

• Asymptotic normality:

ffiffiffi
n

p
I1 b10ð Þ þ Sð Þ b̂1 � b10 þ I1 b10ð Þ þ Sð Þ�1

b
n o

! N 0, I1 b10ð Þð Þ,

in distribution, where S ¼ diag{pl
00
(jb10j)}, I1(b10) ¼ I1(b10, 0) is the Fisher

information with knowing b20 ¼ 0 in advance, and b ¼ sgn(b10) ∘ pl
0 (jb10j) with

∘ denoting the componentwise product.

As shown in Fan and Li (2001), hard thresholding and SCAD have oracle

property when ln ! 0 and
ffiffiffi
n

p
ln ! 1 , and are thus more efficient than least

squares directly applied to the full model if the model is sparse. The authors further
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conjecture that the LASSO may not have the oracle property because of the bias

problem. This conjecture is recently proven in Zou (2006), who also proposes a

variation of the LASSO – the adaptive LASSO – to make oracle property attainable

for the L1 penalty.
The basic idea underlying the adaptive LASSO is adding the adaptive weights

for penalizing different coefficients in the L1 penalty. Specifically, the objective

function of the adaptive LASSO is given as follows:

Q bð Þ ¼ 1

2
y� Xbk k2 þ nl

Xp

j¼1

ŵj bj
�� ��, (77:25)

where ŵj

� �p
j¼1

can be estimated by ŵj ¼ ebj

���
���

� ��g
with any root-n-consistent

estimates eb . Zou (2006) shows that with an appropriately chosen l, the adaptive

LASSO performs as well as the oracle.

Another issue with L1 penalty concerns its difficulty in dealing with highly

correlated variables in the predictor set. In their simulation study, Zou and Hastie

(2005) show that the LASSO solution paths are unstable in the presence of

multicollinearity. To fix this problem, these authors propose another generalization

of the LASSO via combining L1 penalty and L2 penalty, called elastic net (EN), that
is given by the following:

Q bð Þ ¼ 1

2
y� Xbk k2 þ nl1

Xp

j¼1

bj
�� ��þ nl2

Xp

j¼1

b2j : (77:26)

This method can be used to encourage a grouping effect. Furthermore, Zou and

Hastie (2005) suggest that the estimator b̂enet ¼ 1þ l2
n

� �
argmin Q bð Þ be used in

order to correct for the double-shrinkage problem in the implementation of the

elastic net method.

Notice that in Eq. 77.26, the L1 part performs automatic variable selection, while

the L2 part stabilizes the solution paths and hence improves the prediction perfor-

mance. In order for the elastic net to have the oracle property, Zou and Zhang (2009)

propose the adaptive elastic net as a combination of the L2 penalty and the adaptive
L1 penalty. They show that the adaptive elastic net enjoys the oracle property under

the assumption that the model dimension diverges with the sample size.

77.2.3 Computational Algorithms

So far we have reviewed a number of representative model selection methods used

in the literature. In this subsection, we discuss the implementation of some of these

methods:

• The LQA algorithm. When the convex penalty function (e.g., the L1 penalty) is
used, the objective function (77.11) is convex, and hence convex optimization

algorithms can be applied. However, some penalty functions (e.g., the SCAD
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penalty) are used, and then the object is not convex anymore. Fan and Li (2001)

propose a unified and effective local quadratic approximation (LQA) algorithm

for optimizing a nonconvex penalized objective function.

The idea is to use the quadratic curve to locally approximate the objective

function. To be specific, for a given initial value b0 ¼ (b0,. . ., bp0)
T which is not

close to 0, the penalty function pl(·) can be locally approximated by a quadratic

function as follows:

pl bj
�� ��� � �0¼ p0l bj

�� ��� �
sgn bj
� � � p0l bj0

�� ��� �
= bj0
�� ��� �

bj, for bj � bj0: (77:27)

In another word, we have

pl bj
�� ��� � � pl bj0

�� ��� �þ 1

2

p0l bj0
�� ��� �

bj0
�� �� b2j � b2j0

� �
, for bj � bj0: (77:28)

With the LQA, the objective function (77.11) with nonconvex penalty

becomes a convex function and admits a closed-form solution. The LQA algo-

rithm sets the sufficiently small coefficients to zero and hence produces a sparse

model. However, a drawback of this algorithm is that once a coefficient is

shrunken to zero, it will remain to be zero in subsequent iterations.

• The LLA algorithm. Instead of using LQA, Zou and Li (2008) suggest a better

approximation by using the local linear approximation (LLA) as follows:

pl bj
�� ��� � � pl bj0

�� ��� �þ p0l bj0
�� ��� �

bj
�� ��� bj0

�� ��� �
, for bj � bj0: (77:29)

The LLA is the minimum convex majorant of the concave function on [0, 1).
With the LLA, the objective function (77.11) with a nonconvex penalty becomes

an iteratively reweighted penalized L1 regression. Zou and Li (2008) show that

the one-step LLA estimator naturally adopts a sparse representation and enjoys

the oracle properties. In the appendix, we would illustrate the execution of this

one-step sparse estimator with the L0.5 and SCAD penalty.

• LARS algorithm. Efron et al. (2004) develop the least-angle regression (LARS)

algorithm for penalized variable selection. This fast and efficient algorithm can

produce the entire LASSO solution path b̂ lð Þ, l > 0
n o

, which is piecewise

linear in l. See Efron et al. (2004) for details.

77.3 Independence Screening Procedures

Modern technology for data collection allows researchers to collect ultrahigh-

dimensional data at relatively low cost in economics, finance, and scientific fields.

Here, ultrahigh dimensionality means that the number of predictors (p) is highly

greater than the number of observations (n). Specifically, p¼O(exp(an)) with a> 0.
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That is, the dimensionality p is allowed to increase as the sample size n at the

exponential rate. However, for such ultrahigh-dimensional data, the aforementioned

regularization methods may fail because of issues on computational cost, statistical

accuracy, and algorithmic stability (Fan et al. 2009). To solve these problems,

statisticians and econometricians proposed a two-stage screening and cleaning

approach. That is, an independence screening procedure is applied first and

then followed by regularization methods. Ji and Jin (2012) further theoretically

demonstrate that under some regularity conditions, the two-stage approach can

outperform the one-stage LASSO and subset selection. In this section, we

briefly review the recent developments of independence screening procedures for

ultrahigh-dimensional data.

77.3.1 Sure Independence Screening

For ultrahigh-dimensional linear regression model, Fan and Lv (2008) propose the

sure independence screening (SIS) via Pearson correlation learning to reduce the

ultrahigh dimension down to a relative large scale.

Consider the following linear regression model, as defined earlier in Eq. (77.1):

y ¼ Xbþ e:

Under the sparsity assumption, denote the truemodel asM*¼ {1� j� p : bj 6¼ 0}

with the model size s ¼ |M*|, where |M*| represents the number of elements in the

set M*. Then denote the standardized columnwise design matrix as Xs and define

o ¼ (o1, . . ., op)
T as follows:

o ¼ XT
s y: (77:30)

Note that oj is the marginal Pearson correlation between the jth predictor

Xj and the response Y scaled by its standard deviation. On the other hand,

oj can also be considered as the least squares estimated coefficient for

standardized Xj in the marginal regression y ¼ Xjbj + e. Therefore, |oj| can

characterize the magnitude of marginal relationship between the predictor Xj and

the response Y.
The SIS ranks the importance of all predictors according to |oj| and removes

those predictors weakly correlated with the response Y, i.e., ones with small

absolute values of oj. To be specific, for any given g 2 (0,1), the SIS selects

predictors with the first [gn] largest |oj| and defines the submodel

M̂g ¼ 1 � j � p : oj

�� �� is among the first gn½ � largest of all� �
,

where [gn] denotes the integer part of gn. Under some regularity conditions, Fan and

Lv (2008) show that
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P M	 
 M̂g

� �
! 1, as n ! 1: (77:31)

That is, the proposed SIS can efficiently shrink the ultrahigh dimension p down

to a relatively large-scale d ¼ [gn], while all truly important predictors can be

selected into the submodelM̂g with probability approaching one as the sample size

tends to the infinity. This desirable theoretical property is called sure screening

property by Fan and Lv (2008).

77.3.2 Generalized Correlation Ranking

Sure independence screening via Pearson correlation learning can perform well in

the ultrahigh-dimensional linear regression model. However, Pearson correlation

can only capture the linear relationship between each predictor Xj and the response

Y. When Pearson correlation r(Xj, Y) is zero, it only means that the response Y is

linearly uncorrelated with the predictor Xj. If the predictor Xj is nonlinearly but not

linearly influential to the response Y, the SIS is most likely to miss this important

predictor. In order to capture the nonlinearity in the ultrahigh-dimensional

problems, Hall and Miller (2009) suggest techniques based on ranking generalized

empirical correlation between the response Y and each predictor Xj, which can

capture both linearity and nonlinearity.

Hall and Miller (2009) define the generalized correlation between two random

variables X and Y as follows:

rg X; Yð Þ ¼ sup
h2ℋ

cov h Xð Þ,Yf gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var h Xð Þf g var Yð Þp ,

where ℋ is a class of functions including all linear functions. For example, it is

a class of polynomial functions up to a given degree. Notice that ifℋ is restricted to

be a class of all linear functions, rg(X, Y) is the absolute value of Pearson correla-

tion r(X, Y). Therefore, rg(X, Y) can be naturally considered as a generalization of

the conventional Pearson correlation.

Assume that (X1, Y1), (X2, Y2), . . . ,(Xn, Yn) are independent and identically

distributed observed pairs of two random variables X and Y. The generalized

correlation rg(X, Y) between X and Y can be estimated as follows:

r̂g X; Yð Þ ¼ sup
h2ℋ

Xn

i¼1
h Xið Þ � h
� �

Yi � Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
h Xið Þ2 � h

2
n o

�
Xn

i¼1
Yi � Y
� �2r , (77:32)

where h ¼ n�1
Xn

i¼1
h Xið Þ and Y ¼ n�1

Xn

i¼1
Yi.

The proposed generalized correlation characterizes both linear and nonlinear

relationships between two random variables. Therefore, the generalized correlation

rg(Xj, Y) can be considered as a marginal utility to measure the influential effort of

the predictor Xj on the response Y.
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Hall and Miller (2009) suggest that in practice we rank the predictors based on

the magnitude of estimated generalized correlation r̂g Xj; Y
� �

. As such, we order

r̂g Xĵ1
; Y

� �
� r̂g Xĵ2

,Y
� �

� . . . � r̂g Xĵp
; Y

� �
and have

ĵ1 � ĵ2 � . . . � ĵp

denote the empirical ranking of the indices of all predictors. Intuitively, the higher

ranking the predictor has, the more important it is on the response in terms of the

generalized correlation. Therefore, given a suitable cutoff, one can select predictors

with higher rankings and thus reduce the ultrahigh dimensionality to a relatively

low scale.

Hall and Miller (2009) suggest a bootstrap procedure to choose a cutoff.

To illustrate this procedure, let S ¼ {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} represent

the original data set and S*¼ {(X1
*, Y1

*), (X2
*, Y2

*), . . . , (Xn
*, Yn

*)} be a resample drawn

randomly from Swith replacement. Denote by r(j) the ranking of the jth predictor Xj

such as ĵr jð Þ ¼ j. Let r*(j) be the ranking of Xj using the bootstrapped resample S*.
Given a value a, such as 0.05, compute a nominal (1 – a)-level two-sided prediction
interval of the ranking, r̂� jð Þ, r̂þ jð Þ½ �. Hall and Miller (2009) propose a criterion to

regard the predictor Xj as influential if r̂þ jð Þ < 1
2
p. In practice, the cutoff can also be

replaced by some smaller fraction of p, such as 1
4
p . Therefore, the proposed

generalized correlation ranking reduces the ultrahigh p down to the size of the

selected model M̂k ¼ j : r̂þ jð Þ < kpf g, where 0 < k < 1/2 is a constant multiplier

to control the size of the selected model M̂k.

77.3.3 Sure Independence Screening for GLIM

The SIS procedure (Fan and Lv 2008) provides one possible method for dealing

with ultrahigh-dimensional problems. However, the procedure applies to ordinary

linear regression models only, and the theoretical properties of SIS rely heavily on

the joint normality assumptions on the response and predictors. These constraints

limit significantly the applicability of the SIS for categorical variables, even within

the context of linear models.

To this end, Fan and Song (2010) propose a more general version of sure indepen-

dence screening procedure for generalized linear models. They considered the maxi-

mum marginal likelihood estimator (the MMLE, for short) or the marginal likelihood

ratio as amarginal utility to rank the importance of each predictor. The conditions under

which the proposed MMLE possesses the sure screening property are also explored.

Moreover, Fan and Song (2010) discuss how to choose the size of the selected model.

First, consider the generalized linear model (GLIM) with canonical link. That is,

the response variable Y conditional on the predictors x ¼ (X1, . . ., Xp)
T is from an

exponential family, whose probability density function takes the canonical form

f Y xj y xjð Þ ¼ exp yy xð Þ � b y xð Þð Þ þ c yð Þf g, (77:33)
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for some known functions b(·), c(·), and y(x) ¼ xTb. Without loss of generality,

assume that the dispersion parameter f ¼ 1 and each predictor are standardized

with mean 0 and variance 1.

Therefore, the log-likelihood for the natural parameter y of the GLIM is

‘ y; yð Þ ¼ b yð Þ � yy: (77:34)

Parallel to Fan and Lv (2008), let M* ¼ {1 � j � p : bj 6¼ 0} be the true model

with the model size s ¼ |M*|. Fan and Song (2010) defined the maximum marginal

likelihood estimator (MMLE) b̂M
j of the jth predictor Xj as

b̂M
j ¼ b̂M

j, 0; b̂
M
j

� �
¼ arg min

b0, b1

Xn
i¼1

‘ b0 þ b1Xij, Yi

� �
, (77:35)

where Yi is the ith observed response andXij is the ith observation of the jth predictor.
Although the MMLE b̂M

j is a wrong estimated coefficient for jth predictor Xj in the

joint model, the b̂M
j can preserve useful non-sparsity information of Xj in the joint

model for variables screening under some mild conditions. Therefore, it is reason-

able to consider themagnitude of b̂M
j as amarginal utility to rank the importance ofXj

and select a submodel, given a prespecified threshold gn:

M̂gn ¼ 1 � j � p : b̂M
j

���
��� � gn

n o
: (77:36)

Theorem 4 of Fan and Song (2010) shows that the MMLEs are uniformly

convergent to the population values and establishes the sure screening property of

the MMLE screening procedure under some regularity conditions.

Fan and Song (2010) further discuss how large the selected model M̂gn should

be. Under certain regularity assumptions, they show that with probability

approaching one,

M̂gn

���
��� ¼ O n2klmax Sð Þ� �

, (77:37)

where k determines how large the thresholding parameter gn is and lmax(S) is the
maximum eigenvalue of the covariance matrix S of predictors x, which controls

how correlated the predictors are. If lmax(S) ¼ O(nt), the size of M̂gn has the

order O(n2k+t), which can guide practitioners to choose the thresholding rule.

77.3.4 Model-Free Feature Screening

Zhu et al. (2011) propose a model-free feature screening, called sure independent

ranking and screening (SIRS), for ultrahigh-dimensional data. Compared with the

SIS and other model-based sure independence screening approaches, the SIRS

works for a very general multi-index model framework including many commonly
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used parametric and semiparametric models. Therefore, the proposed SIRS is more

robust to possible model misspecification and can be considered as model-free.

Let Cy be the support of the response Y and denote the conditional distribution

function of Y given x as F(y|x) ¼ P(Y � y|x). Define the index sets of active

predictors and inactive predictors, respectively, by

A ¼ k : F y xjð Þ functionally depends on Xk for some y 2 Cy

� �
,

I ¼ k : F y xjð Þ does not functionally depend on Xk for any y 2 Cy

� �
:

Xk for k 2 A is called an active predictor, whereas Xk for k 2 I is called an

inactive predictor.

Considering a general model framework, we assume that F(y|x) depends on

x only through bTxA for some p1 � K constant matrix b. That is,

F y xjð Þ ¼ F0 y bTxA
��� �

, (77:38)

where F0(�|�) is an unknown function.

Without loss of generality, assume thatE(Xk)¼ 0 and var(Xk)¼ 1 for k¼ 1 , . . . , p.
Define

O yð Þ ¼ E xF y xjð Þf g ¼ E xE 1 Y � yð Þ xj½ �f g ¼ cov x, 1 Y � yð Þf g:

Then define a new marginal utility ok at the population level by

ok ¼ E O2
k Yð Þ� �

, k ¼ 1, . . . , p,

where Ok(y) is the kth element of O(y). Intuitively, if Xk and Y are independent, then

Xk and 1(Y � y) for any y 2 Cy are independent resulting in that ok ¼ 0. On the

other hand, if Xk and Y are correlated, then Xk and 1(Y � y) for some y 2 Cy are

correlated and thus ok > 0.

For a random sample {(Xi1, . . . , Xip, Yi), i ¼ 1, . . . , n} from {x, Y}, the sample

moment estimator of ok is derived by

ôk ¼ 1

n

Xn
j¼1

Ô2
k Yj

� � ¼ 1

n

Xn
j¼1

1

n

Xn
i¼1

Xik1 Yi � Yj

� �
( )2

, k ¼ 1, . . . , p,

Zhu et al. (2011) suggest to employ the sample estimate ôk to rank all the

candidate predictors and select the top ones as the estimate of the active predictors.

Further, Theorem 2 of Zhu et al. (2011) theoretically shows that under some

regularity conditions, for d ¼ min
k2A

ok �max
k2I

ok , there exists a sufficiently small

constant sd > 0 such that
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P max
k2I

ôk < min
k2A

ôk

� �
� 2p exp n log 1� dsd=4ð Þ=3f g: (77:39)

This theorem demonstrates the ranking consistency property of the SIRS —

namely, the SIRS screening method using ôk always ranks an active predictor ahead

of an inactive one with the probability tending to one. This property provides a clear

separation between the active and inactive predictors. Thus, the SIRS is asymptot-

ically consistent in selection for the ultrahigh-dimensional problems.

For the independence screening, Fan and Lv (2008) suggest a hard threshold rule

to choose the top variables in the order of O(n/log n), while Zhu et al. (2011)

recommend a soft thresholding rule based on adding artificial auxiliary variables to

the data. First, randomly generate q auxiliary variables {Z1, . . . , Zq} which are

independent of both x and Y. Then, consider the (p + q) dimensional vector

(X1, . . . , Xp, Z1, . . . , Zq) as the predictors and apply the independence screening

method to pick top variables. In details, denote ok as the marginal utility for kth
predictor for k ¼ 1, . . . , p + q. Because {Z1, . . . , Zq} are truly inactive, it can be

shown that under some mild conditions, max
l¼1, ..., q

ôpþl < min
k2A

ôk holds with

probability tending to one. Then one can select the predictor subset

M̂s ¼ k : ôk > max
l¼1, ..., q

ôpþl

	 

. Zhu et al. (2011) suggest to choose q ¼ p

empirically and used numerical studies to show that the soft thresholding rule

with this choice can work quite well.

77.3.5 Extensions of Independence Screening

77.3.5.1 Iterative Version of Independence Screening
Fan and Lv (2008) have shown that the SIS can perform very well when the assumed

conditions are satisfied. However, when these restrictive conditions fail, the SIS

procedure may be problematic. For example, when a variable is jointly correlated,

but marginally uncorrelated with the response, the SIS is unlikely to select this

important variable, resulting in high false-negative rate. On the other hand, when

a variable is jointly uncorrelated but highly marginally correlated with the response,

the SIS is likely to select this unimportant variable, resulting in high false-positive

rate. To overcome this problem, Fan and Lv (2008) provide an important methodo-

logical extension of the SIS, called the iterative sure independence screening (ISIS).

The steps of the ISIS procedure are provided as follows:

Step 1: Apply the SIS to the full data set and select an index setÂ1 of size d¼ [n/log n].
Then implement the variable selection approaches, such as penalized least squares

with SCAD penalty, on the index set Â1 to select a submodelM̂1. LetM̂ ¼ M̂1.

Step 2: Compute the residuals from regressing the response Y over Xj : j 2 M̂
n o

.

Then treat these residuals as the new responses and apply the same procedure in

Step 1 to the remaining variables with indices 1; . . . ; pf gnM̂ to obtain another

submodel1 M̂2. Let M̂ ¼ M̂1 [ M̂2.
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Step 3: Iterate the process until j M̂ j� d0, where d0 is the prescribed number and

d0 < n. The index set M̂ is the final selected submodel by the ISIS.

Fan and Lv (2008) demonstrate empirically that the ISIS procedure can

outperform the ordinary SIS.

Also, Fan et al. (2009) extend this version of ISIS by using themarginal likelihood

to rank the importance of variables. Fan et al. (2011a) provide iterative nonparametric

independence screening for the sparse ultrahigh-dimensional additive models.

Finally, Zhu et al. (2011) develop an iterative version of the model-free independence

screening with iteratively transforming the space of predictors.

77.3.5.2 Reduction of False-Positive Rate
The independence screening procedures are commonly used for feature selection,

but they are usually conservative and result in many false-positive variables.

Fan et al. (2009) propose a simple resampling technique that can help reduce the

false-positive rate.

LetAbe the set of active indices.We partition the samples randomly into two parts

with the same sample size and then apply one independence screening, such as the

SIS and the ISIS, to these two subsamples. DenoteÂ1 andÂ2 as the selected submodel

based on the first half and the second half of the samples, respectively. Under some

conditions, both Â1 and Â2 possess the sure screening property. That is, both Â1 and

Â2 can contain all active indices (i.e., A) with the probability tending to one, i.e.,

P A 
 Â1

� �
! 1, P A 
 Â2

� �
! 1, as n ! 1:

Then define Â ¼ Â1 \ Â2 as a new estimate of the active set A. Therefore, the

estimate Â also satisfies the sure screening property:

P A 
 Â
� �

! 1, as n ! 1:

Intuitively, the probability that one unimportant variable has to be selected twice

into both Â1 and Â2 is very small, so Â can be expected to contain much fewer

unimportant variables which may be falsely selected into Â1 or Â2. In the result, this

simple resampling approach reduces the false-positive rate efficiently.

77.4 Variable Selection Versus Sufficient Dimension Reduction

Of course, methods for analyzing (ultra)high-dimensional data are by no means

limited to those aforementioned. In particular, dimension reduction techniques have

constituted an appealing alternative to feature selection in dealing with the curse of

dimensionality (Bellman 1961). While both variable selection and dimension

reduction are regularized approaches aiming to alleviate the high variance and

overfitting problems in (ultra) high-dimensional analysis, it might be useful to

draw a broad comparison between them.
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There has been a growing interest in dimension reduction methods for regression

analysis since the early 1990s, perhaps due to the introduction of sliced inverse

regressions (Li 1991) and sliced average variance estimation (Cook and Weisberg

1991). Notably, the proposition of sufficient dimension reduction theory (SDR) by

Cook (1998) offers a unified paradigm that can help reduce the dimension of the

predictor vector X without loss of information about the response y. The underlying
idea is to replace X with a minimal set of their linear combinations �0X, which
concentrates the relevant information in X. More formally, SDR seeks a subspace S
based on � such that Y⊥ (X \ PSX), where⊥ stands for independence andPS denotes
the orthogonal projection onto S.

As can be seen from their definitions, the fundamental difference between

variable selection and SDR lies in their assumptions about the model structure.

While variable selection approaches are underpinned by the sparsity principle that

assumes that only a small number of original predictors X contribute to the response

y, SDR grounds on the existence of latent variables �0X, the common sources of

systematic variation in y. As to the analysis of high-dimensional data in finance,

there is no obvious conclusion which framework is preferable. Consider the empir-

ical model where y denotes the aggregate return/volatility of a particular asset class
and X consists of hundreds of macroeconomic and financial indicators. On the one

hand, the classic asset pricing theory postulates that variations in y depend on a few
key risk factors, e.g., aggregate consumption surplus, endowment volatility, and

investor sentiment, which typically cannot be directly measured. Thus, the “latent

factor” interpretation seems more relevant in this situation. On the other hand, most

existing SDR methods suffer because the estimated linear reductions usually

involve all of candidate predictors X. As a consequence, the results can be hard to

interpret, the return-driving force may be difficult to identify, and the efficiency

gain may be less than that possible with variable selection.

To sum, there are several methods available for conducting an ultrahigh-

dimensional analysis. Depending on the type of application, some methods rely

on dimension reduction, some others rely on variable selection, and a few employ

both tactics. How to maximize dimension reduction and simultaneously improve

model interpretability poses a significant challenge to financial econometricians.

Recent developments in sparse sufficient dimension reduction theory (Li 2007;

Zhou and He 2008; Chen et al. 2010) show promise in providing a unified method

that can screen out irrelevant and redundant predictors and at the same time lead to

a few linear combinations of active predictors.

77.5 Conclusion

One important development in the financial markets over the past decade or so is

the explosion of financial data of unprecedented size and complexity, such as

intraday transaction data on both exchange-traded securities (e.g., TAQ) and

OTC market securities (e.g., TRACE). As such, high- and ultrahigh-dimensional
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data analysis has attracted a lot of attention from both researchers and practitioners.

In this chapter, we have reviewed several existing variable selection methods and

independence screening procedures developed recently in the statistics literature

that are used to estimate a sparse model and select significant variables

simultaneously.

While shrinkage-based variable selection methods have been successfully

applied in many high-dimensional analyses, their direct applications to ultrahigh-

dimensional statistical learning problems may raise issues associated with compu-

tational expediency and algorithm stability. In these situations, feature screening

seems to be an essential step, as it is only concerned with the marginal response of

the dependent variable to individual candidate predictors and thus enjoys great

computational efficiency.

Appendix 1: One-Step Sparse Estimates

This appendix outlines the local linear approximation (LLA) algorithm, discussed

in Sect. 77.2.3, for finding a solution of penalized least squares for a broad class of

penalty functions. For illustration, we focus on the nondifferentiable, nonconvex

L0.5 and SCAD penalties introduced in Sect. 77.2.2, as both are ideally suited to the

LLA algorithm (Zou and Li 2008). Recall that these two penalty functions are given

by Eqs. (77.18) and (77.23), respectively. We note that L0.5 and SCAD apparently

lead to concave objective functions that are singular at the origin. We illustrate later

that in linear regressions this optimization problem can be reduced into solving

penalized least squares with an L1 penalty.
We begin with the following one-step LLA estimator:

b̂ ¼ arg min
b

1

2
y� Xbk k2 þ n

Xp

j¼1

p0l ebj

���
���

� �
bj
�� ��

( )
, (77:40)

where the initial estimate eb is usually represented by the ordinary least squares

estimator in practice if n > p. Theoretically, eb could be any root-n-consistent
estimator for b. In the case where n < p, the plain vanilla L1 estimator (LASSO)

would be employed instead.

Following Zou and Li (2008), we discuss separately algorithms for the objective

function Q(b) with two different types of penalty functions, which correspond to

L0.5 and SCAD, respectively. Nonetheless, the idea underlying the two algorithms

is the same – namely, using a data transform to simplify the penalized least squares

to a standard L1 regularization problem, for which we can take advantage of the

related efficient algorithms. In particular, the LARS algorithm (Efron et al. 2004)

has been widely applied to obtain the entire solution path of LASSO and forward

stage-wise regressions. The relevant R package can be downloaded from http://

www.stanford.edu/~hastie/swData.htm#SvmP.

Consider first type one of penalty functions.
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Type 1. The tuning parameter could be disentangled from the penalty function,

i.e., pl(y) satisfies that pl(y) ¼ lpl(y) and pl
0 (y) > 0. For example, bridge penalties

pl(|y|) ¼ l|y|q for 0 < q < 1 and the logarithm penalty pl(|y|) ¼ l log|y|.

Algorithm 1

Step 1. Create working data by x	j ¼ xj=p
0
l
ebj

���
���

� �
, for j ¼ 1 , . . . , p.

Step 2. Apply the LARS algorithm to solve the penalized L1 regression:

b̂	 ¼ argmin
b

1

2
y� X	bk k2 þ nl

Xp

j¼1

bj
�� ��

( )
:

Step 3. Let the final one-step estimator be b̂j ¼ b̂	
j =p

0
l
ebj

���
���

� �
for j ¼1 , . . . , p.

As we can see, through the one-step sparse estimator, LLA for the L0.5 penalty is

equivalent to the adaptive LASSO, with ŵj ¼ ebj

���
���
�0:5

(see Eq. 4 in Zou 2006). In

computing the LARS estimates, tuning parameter l can be chosen using the cv.lars
routine embedded in the “lars” package. For example, the following command

cv:lars xstar, y,K ¼ 5, plot:it ¼ TRUE, se ¼ TRUE, type ¼ “lasso”ð Þ

instructs the R to plot fivefold cross-validated mean squared prediction error (MSE)

for different values of l. Then we are able to pick the l with the smallest MSE and

find out the step in LARS corresponding to that l value. The main function of the

package

lars xstar, y, type ¼ “lasso”ð Þ
provides the entire sequence of coefficients and fits, starting from zero to the least

squares fit.

Next, consider type 2 of penalty functions.

Type 2. pl(y) satisfies that the derivative pl
0 (y) is zero for some values. In

addition, the regularization parameter l cannot be separated from pl(y). For

example, the SCAD penalty with the first derivative

p0l yð Þ ¼ l I y � lð Þ þ al� yð Þþ
a� 1ð Þl I y > lð Þ

	 

, (77:41)

where y > 0, pl(0) ¼ 0, and a > 2.

We define U ¼ {j : pl
0 (y) ¼ 0} and V ¼ {j : pl

0 (y) > 0}. Accordingly, we write

X ¼ [XU, XV] and b̂ ¼ b̂T
U; b̂

T
V

� �T
.

Algorithm 2

Step 1. Create working data by x	j ¼ xjl=p0l ebj

���
���

� �
, for j 2 V. Let HU be

the projection matrix in the space of {xj
*, j 2 U}. Compute ey ¼ I � HUð Þy and

eX	
V ¼ I � Hð ÞX	

V .
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Step 2. Apply the LARS algorithm to solve the penalized L1 regression:

b̂	
V ¼ arg min

b

1

2
ey � eX	

Vb
���

���
2

þ nl
Xp

j¼1

bj
�� ��

( )
:

Step 3. Compute b̂	
U ¼ X	T

U X	
U

� ��1
X	T

U ey � X	
V b̂

	
V

� �
. Then, the final one-step

estimator b̂ is obtained by

b̂U ¼ b̂	
U and b̂j ¼ b̂	

j l=p
0
l
ebj

���
���

� �
for j 2 V:

We note that cross-validation routine is not applicable in this situation, as the sets

U and V could change as l varies. In other words, different values of the tuning

parameter lead to different transforms of observations. As a result, the SCAD-type

penalty requires reexecuting the cross-validation and solving the one-step estimator

for each fixed l. Alternatively, we can determine l by a non-data-driven approach

such as the BIC-based tuning parameter selector. Indeed, Wang et al. (2007) show that

the commonly used generalized cross-validation tends to overshoot the correct number

of nonzero coefficients. Instead, BIC can be used to consistently identify the true

model. For practitioners, it would be more convenient to directly call the procedure

getfinalSCADcoef included in the “SIS” package (Fan et al. 2010). The option tune.
method ¼ c (“AIC”, “BIC”) is used to specify the selection criterion.

Finally, we use a simple numerical example to illustrate the performance of

one-step sparse estimates. In this example, simulation data is generated

by executing the following command in the R 2.15.0 program:

set:seed 0ð Þ
b < � c 4, 4, 4, � 6 	 sqrt 2ð Þð Þ
n ¼ 150

p ¼ 300

x ¼ matrix rnorm n 	 p,mean ¼ 0, sd ¼ 1ð Þ, n, pð Þ
y < � x , 1 : 4½ �% 	%bþ rnorm 150ð Þ

:

The one-step sparse estimates with the L0.5 and SCAD penalty are summarized

as follows. Both selection methods include all four significant variables, and the

L0.5 penalty falsely selects one noise variable. The estimated nonzero coefficients

under these two methods are reported in the following:

bscad ¼ 3:986, 3:937, 3:944, � 8:369½ �,
bL05 ¼ 3:942, 3:964, 3:997, � 8:388, 0:237½ �:

Note that this example alone does not mean that the SCAD outperforms the L0.5
penalty, because a valid Monte Carlo simulation study usually requires at least

1,000 simulated data sets.
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Abstract

This provides a basic overview of the nature and variety of hedonic empirical

pricing models that are employed in the economics literature. It explores the

history of hedonic modeling and summarizes the field’s utility-theory-based,

microeconomic foundations. It also provides a discussion of and potential

solutions for common problems associated with hedonic modeling.
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This paper examines three specific, different hedonic specifications, the

linear, semilog, and Box–Cox transformed hedonic models, and applies

them to real estate data. It also discusses recent innovations related to hedonic

models and how these models are being used in contemporary studies.

Keywords

Hedonic models • Regression • Real estate • Box–Cox • Pricing • Price indexes •

Semilog • Least squares • Housing • Property

78.1 Introduction

Hedonic modeling first originated as a method for valuing the demand and the price

of farm land.1 Although Court (1939) is widely considered to be the father of

hedonic modeling, his paper had nothing to do with real estate; instead,

Court created a hedonic pricing index for automobiles. Regardless of how they

are used, hedonic regressions deconstruct the price of an asset into the asset’s

component parts and then use some form of ordinary least squares regression

analysis to examine how each individual piece uniquely contributes to the item’s

overall value.

The consumer price index is probably the most famous example of the use of

hedonic regressions as a control mechanism for differences in the quality of

products over time. The consumer price index measures the change over time in

the price of a bundle of goods. But, if the quality of the goods in the bundle

changes over time, then one can imagine that obtaining a high quality prediction

of the value of the index at some future point in time can be problematical. For

example, imagine trying to predict the price of an automobile today, based upon

pricing information from the 1963. A Chevrolet Corvette costs substantially more

money today that it did back in 1963. Some of the increase in the car’s price is due

to inflation, but another part of the price increase is because Corvettes are far

safer, faster, and lighter today than they were back then. Corvettes nowadays

enjoy a vast technical superiority over their vintage forbearers. The technical

improvements clearly add value. As we will see below, they add “hedonic utility.”

So when trying to predict the price of a new Corvette with a turbo-charged engine,

air conditioning, 6-speed transmission, airbags, and a sport-tuned suspension, one

cannot examine the simple inflationary price increase of a Corvette, but in

addition one must examine the price increases of the additional individual

improvements.

Although the consumer price index might arguably be the most famous use of

hedonic modeling techniques, hedonic pricing models are also widely utilized to

price other items, such as electronics, clothing, and, in particular, real estate

1Hass (1922) and Wallace (1926) both use hedonic-style models to value farmland in the

Midwestern United States.
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(the focus of this paper), where they are most often utilized to correct for the

heterogeneity among properties and houses. Since each house has idiosyncratic

characteristics that make it unique, estimating demand or prices from real

estate data can be challenging. Rather than pricing a given house or property

directly, a researcher can deconstruct the house and property into their

value-adding components, such as lot size, square feet, the number of

bathrooms, the number of bedrooms, and neighborhood quality. A well-

specified hedonic model will estimate the contribution to the total price of

each of these features separately. If it is the price that is estimated, then the

hedonic model is called an “additive” model. If, instead, the elasticity is esti-

mated, then it is called a “log” model. This short primer will explore in some

detail the nature and variety of hedonic pricing models and should provide

a solid foundation for any researcher interested in employing this widely utilized

empirical technique.

78.2 The Theoretical Foundation

Although many empirical papers using hedonic modeling techniques were

published in the years that followed Court’s work, Lancaster’s (1966) seminal

paper is the first attempt to create a theoretical foundation for hedonic modeling.

To this end, Lancaster presented a groundbreaking theory of hedonic utility.

Lancaster argues that it is not necessarily a good itself that creates

utility, but instead the individual “characteristics” of a good that create utility.

Specifically, an item’s utility is simply the aggregated utility of the individual

utility of each of its characteristics. For example, the utility that comes from

owning an expensive car comes not so much from the car itself, but from the fact

that it provides not only transportation but also fast acceleration, enhanced

safety, attractive styling, increased prestige, etc. Furthermore, he argues that

items can be arranged into groups based on the characteristics they contain.

Consumers make their purchasing decisions within a group based on the number

of characteristics a good possesses per unit cost. For example, people make their

home purchase decisions based upon the number of bedroom, number of

bathrooms, etc.

Although Lancaster is the first to discuss hedonic utility, he says nothing about

pricing or pricing models. Rosen (1974) is the first to present a theory of hedonic

pricing. Rosen argues that an item can be valued as the sum of its utility generating

characteristics; that is, an item’s total price should be the sum of the individual

prices of its characteristics. This implies that an item’s price can be regressed upon

the characteristics to determine the way in which each characteristic uniquely

contributes to the price. Although Rosen did not formally present a functional

form for the hedonic pricing function, his model clearly implies a nonlinear pricing

structure.

For a more thorough review of the extant literature, please see the excellent

surveys by Follain and Jimenez (1985) and Sheppard (1999).
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78.3 The Data

The data are 7,088 observations of real estate transactions of properties that are

located in the Klein School District, of suburban Houston, between January

1, 1992 and December 31, 1995. The data set provides information on property,

home, and transaction characteristics. Property characteristics include the lot size

in square feet, distance to the central business district, and information on

neighborhood submarkets within the overall Klein area. Home characteristics

include the size of the house in square feet, year built, number of bathrooms,

number of bedrooms, a dummy variable for the existence of a pool, and whether

the house has any known defects. Transaction characteristics include the list

price, the transaction price, the list date, the number of days that the property

remained on the market prior to being sold, whether the property is sold “as is,”

whether the home was sold by a financial institution that had previously

foreclosed on the property, and the identity of the listing and selling real estate

brokers.

Out of the initial 7,088 observations, 146 observations are deleted due to missing

or obviously incorrect data. In addition, several screens are employed to increase

the homogeneity of the properties in our sample and to eliminate observations in

which data may not have been entered correctly. Properties are omitted if their:

1. Age exceeds 30 years old (24 observations).

2. Lot size is smaller than 5,000 or larger than 50,000 ft2 (165 observations).

3. Living space exceeds 4,000 ft2 (362 observations).

4. Number of bathrooms (full and half) exceeds six (six observations).

The final sample includes 6,385 observations. Table 78.1 includes the summary

statistics for the dependent variables.

Table 78.1 Summary statistics

Name Mean St. dev Minimum Maximum

SALE 98,114 44,438 18,000 385,000

FT 2,250 668 819 3,994

AGE 12.60 5.90 0 28

LOT 9,563 3,972 5,000 49,933

BED 3.63 0.60 1 6

BATH 2.22 0.44 1 5.1

POOL 0.14 0.35 0 1

FC 0.05 0.21 0 1

ASIS 0.01 0.12 0 1

D1DUMMY 0.03 0.16 0 1

CBD 20.26 3.50 10.61 28.86

NEW 0.02 0.13 0 1

SUMMER 0.41 0.49 0 1
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78.4 The Linear Model

The basic additive hedonic equation is one where the value of an asset is regressed

against the characteristics that determine its value. This linear model is appropriate

when there are heterogeneous products and heterogeneous buyers, and the hetero-

geneous items to be valued can be easily replaced/restocked once they have been

purchased, i.e., there is a continuous, uninterrupted supply of the item to be priced.

In this case, the pricing model of the item is very simply the sum of the prices of its

component parts, where

Value ¼ f S;N;L;C;Tð Þ

where

S represents the structural characteristics of the home and property, e.g., square

footage, property size, and number of bedrooms

N represents the neighborhood characteristics

L represents the location within a giving market

C represents the contract conditions, e.g., is the property sold as is and is there

a condo fee?

T represents the date or time that the transaction price is observed.

For ease of notation, we allow the matrix X to represent the combination of the

individual vectors S, N, L, C, and T

VALUE ¼ Xbþ e (78.1)

Thus an item’s expected price is the characteristics X times b, where b repre-

sents a vector of marginal prices.

78.5 Empirical Specification

78.5.1 The Dependent Variable

In real estate modeling, it is common to use the most recent transaction price as

a dependent variable. There are also studies that use rent as the dependent variable,

but rents are problematical since different apartments may have different terms in the

rental agreement; for example, some might include heat and hot water or parking. One

way of dealing with the “rent” problem is to obtain the cost of utilities (or parking) for

properties where the utilities are not included in the rental agreement and add these

costs to the base rental price to get an adjusted rental price. Another possibility is to use

the actual rental price as a dependent variable and then add a dummy-independent

variable that equals one if the unit includes utilities or parking and zero otherwise.

Using actual transaction prices circumvents these problems but exposes the researcher

to another problem that current transactions may not be representative of the total

housing stock: a selection bias.
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78.5.2 Independent Variables

One of the principal criticisms of the hedonic modeling of real estate prices is the

severity of the omitted variable problem: the coefficient estimates are often not

robust to changes in the model’s specification. This implies that researchers must be

very careful when interpreting the coefficients of a hedonic regression. A sampling

of recent hedonic real estate models yields the following common dependent

variables:

Structural characteristics of the home and property: square footage of the unit,

square footage of the property, total number of rooms, total number of bed-

rooms, total number of bathrooms, the existence of a pool, any known defects,

structural type (single family, duplex, condominium, etc.), age, air conditioning,

finished basement, fireplaces, garages, etc.

Neighborhood characteristics: quality of the school system, quality of the neigh-

borhood, median salary.

Location within a giving market: distance from the central business district,

proximity to a train station, distance to supermarket, distance to schools,

flooding area.

Contract conditions: was the property sold as is? Was it a foreclosure?

For a more complete discussion of the potential explanatory variables, please see

Hocking (1976), Leamer (1978), and Amemiya (1980).

78.5.3 Example Using the Linear Model

Table 78.2 presents the results of a linear hedonic pricing model where the

dependent variable is the property’s transaction price. The independent variables

include the square footage of the home and its square, the age of the home and its

square, the size of the lot and its square, the number of bedrooms and its square,

dummy variables representing the number of bathrooms, the proximity in miles to

the central business district, a dummy variable for a pool, foreclosure, sold as is, if

there are defects, if the home is brand new, and if the property was listed in the

summer.

The results of the hedonic regression will likely not be surprising to anyone that

has ever shopped for a home. The hedonic model has parceled out the value of the

home/property into its component parts and has succeeded in explaining 84.3 % of

the value of transaction price. The relationship between real estate transaction

prices and the square footage of the home is concave; for small homes small

increases in size have a larger marginal impact than for larger homes. The same

is true for the square footage of the property and the bedrooms. The relationship

between transaction price and age is convex; implying that the market price of

young houses depreciates at a larger rate than that of older houses. It is not

surprising that given the hot summers in Texas, a pool adds substantial value

(in this case $11,447 of value), nor is it surprising that foreclosed upon properties

and properties that are sold as is tend to sell for less money than other properties.
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Properties farther from the central business district also tend to sell for higher

prices. Interestingly, properties listed in the summer tend to sell for on average

$1,260 higher prices than those not listed in the summer.

The principal use of a linear hedonic model is to help researchers construct

a property’s transaction price from its component parts. So, using the above

model, a 3-year-old, 1,800 ft2 home, with a 200 ft by 200 ft lot, three bedrooms

and two baths, and a pool, sold at a foreclosure sale, with no known defects, which

is located 7 miles from the central business district and listed in the summertime,

would have a predicted transaction price of $102,092.

78.6 The Semilog Model

When the item to be priced cannot be easily restocked, for example, a home, then

nonlinearities arise in the hedonic pricing structure. To deal with this, it is common

for researchers to employ the following semilogarithmic functional form for the

hedonic model:

VALUE ¼ exbe (78.2)

Table 78.2 OLS regression of transaction price on the independent variables

OLS sale

Coefficient T-stat

FT 0.94591 10.33

SQFT �8.65E-04 �15.35

AGE �3,035.3 �20.71

SQAGE 59.356 10.25

LOT 1.7881 10.01

SQLOT �1.62E-05 �3.59

BED 42,839 11.40

SQBED �6,207.4 �12.35

BATH 2 6,305.7 2.11

BATH 3 4,199.3 5.82

BATH 4 15,936 17.26

BATH 5 16,196 6.26

POOL 11,447 16.85

FORECLOSE �10,025 �9.03

ASIS �11,932 �6.21

DEFECT �383.98 �0.28

CBD 267.98 4.12

NEW 3,004.3 1.60

SUMMER 1,260.8 2.81

CONSTANT �17,355 �2.78

R2 84.3 %
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thus

ln VALUE ¼ Xbþ e (78.3)

In this case, the log of an item’s expected price is the sum of its characteristics

X times b, and the marginal price of each individual attribute x is

PRICE xð Þ ¼ exb (78.4)

where x is the current level of the characteristic and b is the regression coefficient.

Notice that the semilog form implies that the price of a given characteristic varies

with its level, i.e., the prices are nonlinear.

The semilog structural hedonic pricing model has several advantages over its

linear counterpart. The principal advantage is that it permits the value of a given

characteristic (e.g., the number of bathrooms) to vary proportionately with the value

of other characteristics (the number of bedrooms). This is not the case with a linear

model, where a second bathroom adds the same value to a house that has one

bedroom as it does to one that has five bedrooms.

78.6.1 Example Using the Semilog Model

Table 78.3 presents the results of a linear hedonic pricing model where the dependent

variable is the log of the property’s transaction price. Again, the results are not

surprising. An advantage of the semilog form is that the model’s coefficients

are easily interpreted. The percentage change in the value of the house for a unit

change in the dependent variable can be represented as eb � 1, where b is the

regression coefficient.2 For example, if the coefficient on the variable that represents

a pool equals 0.104, then adding a pool to a house would increase its value by

e0.104 � 1 ¼ 10.96%.

78.7 The Box–Cox Model

Although not as widely employed due to the difficulty of interpreting the

coefficients, a more general form of the hedonic pricing model was first

presented by Halvorsen and Pollakowski (1981), which applies the seminal

work of Box and Cox (1964) to hedonic modeling. The basic Box–Cox

transformation is

2See Halvorsen and Palmquist (1980).
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X lð Þ ¼ Xl � 1

l
, if l 6¼ 0,X > 0 (78.5)

¼ ln X, if l ¼ 0

So the basic form of the Box–Cox model is given by

VALUE ¼ X lð Þbþ e (78.6)

Please see the Appendix for a discussion of how the Box–Cox coefficients are

estimated. Notice that when l equals one, the Box–Cox structural form reduces to

the linear form. A more general form of the Box–Cox model can be expressed by

VALUE yð Þ ¼ b0 þ
X

j
bjX

l
j þ 1

2

X
j

X
k
gjkX

l
j X

l
k (78.7)

In this case, when y and l are both equal to one and the cross products gjk are all
zero, then Eq. 78.7 reduces down to a simple linear regression model. When y and l
are both equal to zero and the cross products gjk are all also equal to zero, then the

model reduces down to a straightforward log-log functional form.

Table 78.3 OLS regression of LOGSALE on the dependent variables

OLS LOGSALE

Coefficient T-stat

FT 6.76E-04 28.68

SQFT �5.57E-08 �11.89

AGE �2.50E-02 �20.48

SQAGE 4.33E-04 8.98

LOT 2.02E-05 13.62

SQLOT �2.70E-10 �7.17

BED 0.3214 10.28

SQBED �4.46E-02 �10.66

BATH 2 1.29E-02 0.52

BATH 3 5.32E-02 8.86

BATH 4 0.11094 14.44

BATH 5 9.35E-02 4.35

POOL 0.10416 18.43

FORECLOSE �0.13635 �14.77

ASIS �0.18429 �11.52

DEFECT �9.26E-03 �0.81

CBD 4.17E-03 7.71

NEW �2.02E-02 �1.29

SUMMER 1.38E-02 3.69

CONSTANT 9.5387 183.40

R2 87.5 %
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The Box–Cox model was first introduced into the mainstream finance literature

by C. F. Lee in his seminal 1976 paper, which examines the Functional Form and

the Dividend Effect of the Electric Utility Industry. Other excellent examples of

the application of the Box–Cox model to finance include Lee and Kau (1976), and

(Lee et al. 1980).

One of the most innovative uses of Box–Cox hedonic models in real estate has

been to back out property depreciation rates for federal tax reasons. Hulton and

Wykcoff (1981) present evidence of a constant geometric rate derived from

a hedonic model with a Box–Cox transformation of the value industrial and

commercial buildings. The more flexible Box–Cox approach permits relationships

to emerge instead of forcing a predetermined, and perhaps ad hoc, functional form.

78.7.1 Example Using the Box–Cox Model

Table 78.4 presents the results of a linear hedonic pricing model where

the dependent variable is the Box–Cox transformation of the property’s

transaction price. Notice that lambda emerges from the model and is not exoge-

nously imposed.

Table 78.4 Box–Cox regression of the transaction price on the dependent variables

Box sale

Coefficient T-stat

FT 2.35E-04 31.29

SQFT �2.19E-08 �14.67

AGE �7.82E-03 �20.13

SQAGE 1.34E-04 8.71

LOT 6.49E-06 13.69

SQLOT �8.79E-11 �7.33

BED 0.10082 10.12

SQBED �1.39E-02 �10.43

BATH 2 8.94E-03 1.13

BATH 3 1.70E-02 8.87

BATH 4 3.37E-02 13.76

BATH 5 2.86E-02 4.17

POOL 3.28E-02 18.21

FORECLOSE �4.49E-02 �15.26

ASIS �6.17E-02 �12.10

DEFECT �3.08E-03 �0.85

CBD 1.39E-03 8.05

NEW �7.83E-03 �1.57

SUMMER 4.40E-03 3.69

CONSTANT 6.1796 372.70

R2 87.5 %

l �0.100
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78.8 Problems with Hedonic Modeling

78.8.1 The Identification Problem

There is an inherent identification problem that occurs when one attempts to model

an item’s demand function when the prices that one has to work with come from the

interaction of the item’s supply and demand functions: it is difficult to separate out

the supply and demand impact on price. There is a second problem with hedonic

modeling that comes from the nonlinear nature of the pricing structure. In a simple

demand model, the price of an item is taken as given, and consumers make their

purchase decision (quantity) based upon the exogenous price, i.e., consumers are

price takers. But, as seen above, nonlinear hedonic models imply that the price of

a characteristic is correlated with quantity; so consequently, buyers will select not

only the quantity of a characteristic but, by design, also its price. Several authors,

Blomquist and Worley (1982) or Diamond and Smith (1985), have attempted to

solve this problem through the use of instrumental variables.

78.8.2 The Equilibrium Pricing Problem

A key aspect of demand modeling is that observed prices are assumed to be

equilibrium prices. Unfortunately, in markets such as real estate where adjustment

costs can be large, the notion of observed prices being equilibrium ones becomes

problematical. There are several papers that attempt to deal with the disequilibrium

character of real estate transaction prices. See Maclennan (1977, 1982) for a good

overview of the disequilibrium problem.

There are several ways in which researches have attempted to deal with the

disequilibrium problem. Bowden (1978) addresses the problem by utilizing only

those observations that are either at or near equilibrium. He employs a switching

regression technique. See Anas and Eum (1984) for an application of this “disequi-

librium” hedonic modeling technique. Although switching regression models can

be effective at mitigating the disequilibrium problem, they are not without their

challenges. The major problem is how to differentiate between equilibrium

and disequilibrium prices. Another problem is that modelers are often more inter-

ested in predicting actual future transaction prices rather than so-called equilibrium

prices.

Another way to deal with the disequilibrium problem is to find a way to adjust

prices back to their equilibrium levels. There are several papers that use this

technique.3 The technique involves estimating a time series index of prices and

then finding a way to determine which prices are equilibrium ones (e.g., prices may

be deemed to be near their equilibrium values if there was little or no price change from

period to period). Take this set of equilibrium prices and estimate their determining

3See Abraham and Hendershott (1996), Malpezzi (1998), and Drieman and Follain (2000).
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characteristics, so that for each period there is an actual price, and estimated

index price, and an estimated equilibrium price. From these prices it is possible

to determine the extent to which the price is out of equilibrium. The last step

is to find the determinants of the disequilibrium and adjust the initial prices

accordingly.

78.9 Recent Developments

There have been some interesting recent developments in the area of hedonic

modeling. Below is a brief synopsis of a few recent papers and issues that are on the

cutting edge of the literature. Costanigro et al. (2007) argue that when researchers

disregard heterogeneity across assets, they introduce an aggregation bias into their

estimated prices. They suggest that a model that estimates hedonic functions that are

specific to price ranges yields more accurate predictions. Collins et al. (2007) examine

a similar uniqueness problem but with respect to art rather than wine.

Goetzmann and Peng (2006) analyze and present a model that adjusts for the bias

that occurs because of a house seller’s reservation price in transaction-based hedonic

price indexes. They present a hedonic model where the ratio of sellers’ reservation

prices to the actual market value has an impact on trading volume and can lead to

a bias in the observed transaction prices. They find that there is an upward bias to

index returns when trading volume decreases.

Diewert (2002) and Feenstra and Knittel (2004) examine the problem of

quality adjustments in a hedonic model. These papers examine whether the output

price index for a durable good can also be used as (partial) input price index.

Although these papers focus on the producer price index, the quality adjustments

can be applied more widely. The authors find that the relevant input price is the

value of the characteristic bundle of the underlying asset (i.e., the market price)

divided by the quantity of the individual characteristics associated with the

bundle. For example, if one were to buy a cleaning service, one would take the

price of the cleaning service divided by the total number of benefits provided by

the service (e.g., the time savings, the convenience, the trustworthiness, the

quality of the work).

Bajari and Benkard (2005) reexamine hedonic models of demand for differen-

tiated products. They nicely generalize Rosen’s original hedonic model to allow for

unobservable product characteristics and for the hedonic pricing function to have

a nonseparable form. They use a semi-parametric approach to demonstrate that if

there are only a few products, one can construct bounds on an individual’s utility

parameters, and in addition other important considerations, for example, aggregate

demand and consumer surplus.4 Heckman et al. (2010) examine nonadditive

4Please see Bontemps et al. (2008), Jensen and Webster (2007), Ferreira and McMillan (2007),

Hahn and Mathews (2007), and Epple et al. (2006) for additional work on this interesting theme.
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hedonic models. In specific, they examine the issue of nonparametric identification

and estimation of these models.

Recently, hedonic models that have been employed examine issues of

substantial political importance. Sander and Polasky (2009), Poudyal

et al. (2009), Hoshino and Kuriyama (2010), Cutter et al. (2011), (Brander and

Koeste 2011), and Nordman and Wagner (2012) all provide evidence on the high

value of wide-open spaces in the United States. Jiao and Liu (2010) examines this

same issue in Wuhan, China. Donovan and Butry (2010) examine a related issue:

the value of trees that line city streets. Gopalakrishnan et al. (2011) examine the

value of disappearing beaches due to beach erosion. Kim et al. (2010) and Bayer

et al. (2009) utilize hedonic models to measure the value of air quality.

Lastly, Bishop and Murphy (2011) have an innovative paper that utilized

a dynamic hedonic model to estimate the willingness to pay in order to avoid

violent crime.

Hedonic regressions are being increasingly used to better understand the drivers

of prices for consumer products. Costanigro et al. (2007, 2009), and Panzone (2011)

have utilized hedonic models to examine fluctuations in wine prices. Thrane

(2009) uses a hedonic model to determine whether sensory or objective attributes

drive wine prices. Benfratello et al. (2009) examine the issue of taste

versus reputation. Kassie et al. (2011) utilize a hedonic model to examine the prices

of cattle.

78.10 Summary

This short primer provides an overview of the literature and the

microeconomic theory that underpins modern hedonic pricing models. At their

most basic, hedonic pricing models deconstruct an asset’s price into the price of

the asset’s individual component parts and then use some form of ordinary

least squares regression analysis, using either a linear, semilog, or Box–Cox

structural form, to examine how each individual component part uniquely

contributes to the item’s overall value. This paper explores each of these

aforementioned structural forms and their associated problems and in addition

offers some guidance on common treatments of the dependent and independent

variables.

Appendix

This appendix describes the maximum likelihood technique used for the estimation

of the nonlinear parameters of the Box–Cox transformation. Given the functional

form specified in Eqs. 78.5–78.7 and employing the assumption that there is some l
for which the error term in Eq. 78.6 has an approximate normal distribution with

mean of zero and a variance of s2, then for the nth observation, the density function
can be represented as
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f zjb,Sð Þ ¼ e
�1

2
z�mð Þ0

X�1
z� mð Þ

h i

2pð Þn2 Sj j12
, where z ¼ y lð Þ (78.8)

If E(y) is linear, that is, m¼ Xb and∑¼ s2I, then the density function transforms

into something more tractable:

f zjb,Sð Þ ¼ e � 1

2s2
z�Xbð Þ0 z�Xbð Þ

� �

2ps2ð Þn2 (78.9)

Next, in order to get the density function for y rather than z, we must multiply the

density function for z by its Jacobian. If we do so, then we obtain

f yjb,S, lð Þ ¼ e � 1

2s2
z�Xbð Þ0 z�Xbð Þ

� �

2ps2ð Þn2
Yn
i¼1

yl�1
i (78.10)

the corresponding log-likelihood function of which is delineated as

ln L b,s2, ljy� � ¼ � 1

2s2
z� Xbð Þ0 z� Xbð Þ � n

2
ln 2ps2
� �

þ l� 1ð Þ
Xn
i�1

ln yi (78.11)

Now that we have the log of the likelihood function, the values of the parameters

b, l, and s are determined by maximum likelihood estimation.

References

Abraham, J. M., & Hendershott, P. H. (1996). Bubbles. Journal of Housing Research, 7(2),
191–208.

Amemiya, T. (1980). Selection of regressors. International Economic Review, 21, 331–354.
Anas, A., & Eum, S. J. (1984). Hedonic analysis of a housing market in disequilibrium. Journal of

Urban Economics, 15, 107–123.
Bajari, P., & Lanier Benkard, C. (2005). Demand estimation with heterogeneous consumers and

unobserved product characteristics: A hedonic approach. Journal of Political Economy,
113(6), 1239–1276.

Bayer, P., Keohane, N., & Timmins, C. (2009). Migration and hedonic valuation: The case of air

quality. Journal of Environmental Economics and Management, 58(1), 1–14.
Benfratello, L., Piacenza, M., & Sacchetto, S. (2009). Taste or reputation: What drives market

prices in the wine industry? Estimation of a hedonic model for Italian premium wines. Applied
Economics, 41(17), 2197–2209.

Bishop, K., & Murphy, A. (2011). Estimating the willingness to pay to avoid violent crime:

A dynamic approach. The American Economic Review, 101(3), 625–629.

2132 B.J. Sopranzetti



Blomquist, G., & Worley, L. (1982). Specifying the demand for housing characteristics: The

exogeneity issue. In D. B. Diamond & G. Tolley (Eds.), The economics of urban amenities.
New York: Academic Press.

Bontemps, C., Simioni, M., & Surry, Y. (2008). Semiparametric hedonic price models: Assessing

the effects of agricultural nonpoint source pollution. Journal of Applied Econometrics, 23(6),
825–842.

Bowden, R. J. (1978). The econometrics of disequilibrium. Amsterdam: North Holland.

Box, G. E. P., & Cox, D. (1964). An analysis of transformations. Journal of the American
Statistical Association Society Series B, 26, 211–252.

Brander, L., & Koeste, M. (2011). The value of urban open space: Meta-analyses of contingent

valuation and hedonic pricing results. Journal of Environmental Management, 92(10),
2763–2773.

Collins, A., Scorcu, A. E., & Zanola, R. (2007). Sample selection bias and time instability of
hedonic art price indexesWorking Papers 610, Dipartimento Scienze Economiche, Universita’

di Bologna.

Costanigro, M., McCluskey, J. J., & Mittelhammer, R. C. (2007). Segmenting the wine market

based on price: Hedonic regression when different prices mean different products. Journal of
Agricultural Economics, 58(3), 454–466.

Costanigro, M., Mittelhammer, R., & McCluskey, J. (2009). Estimating class-specific parametric

models under class uncertainty: Local polynomial regression clustering in an hedonic analysis

of wine markets. Journal of Applied Econometrics, 24(7), 1117–1135.
Court, A. T. (1939). Hedonic Price Indexes with automotive examples. In C. F. Roos (ed.), The

dynamics of automobile demand (pp. 99–177). New York: The General Motors Corporation.

Cutter, B., Fernandez, L., Sharma, R., & Scott, T. (2011). Dynamic analysis of open space value
using a repeat sales/hedonic approach (Unpublished Working Paper). University of Oregon.

Diamond, D. B., Jr., & Smith, B. (1985). Simultaneity in the market for housing characteristics.

Journal of Urban Economics, 17, 280–292.
Diewert, W. E. (2002). Hedonic producer price indexes and quality adjustment (Discussion Paper

No. 02-14). Vancouver: University of British Columbia

Donovan, G., & Butry, D. (2010). Trees in the city: Valuing street trees in Portland, Oregon.

Landscape and Urban Planning, 94(2), 77–83.
Dreiman, M., & Follain. J. R. (2000). Drawing inferences about housing supply elasticity from

house price responses to income shocks, Freddie Mac, Processed.

Epple, D., Romano, R., & Sieg, H. (2006). Admission, tuition, and financial aid policies in the

market for higher education. Econometrica, 74(4), 885–928.
Feenstra, R. C., & Knittel, C. R. (2004). Re-assessing the U.S. quality adjustment to computer

prices: The role of durability and changing software, NBER chapters. In Price index concepts
andmeasurement (pp. 129–160). Cambridge,MA:National Bureau of Economic Research, Inc.

Follain, J. R., & Jimenez, E. (1985). Estimating the demand for housing characteristics: A survey

and critique. Regional Science and Urban Economics, 15(1), 77–107.
Goetzmann, W., & Peng, L. (2006). Estimating house price indexes in the presence of seller

reservation prices. Review of Economics and Statistics, 88(1), 100–112.
Gopalakrishnan, S., Smith, M., Slott, J., & Murray, A. (2011). The value of disappearing beaches:

A hedonic pricing model with endogenous beach width. Journal of Environmental Economics
and Management, 61(3), 297–310.

Haas, G. C. (1922). Sales prices as a basis for farm land appraisal. (Technical Bulletin 9) St. Paul:
The University of Minnesota Agricultural Experiment Station.

Hahn, W. F., & Mathews, K. H. (2007). Characteristics and hedonic pricing of differentiated beef

demands. Agricultural Economics, 36(3), 377–393.
Halverson, R., & Pollakowski, H. O. (1981). Choice of functional form equations. Journal of

Urban Economics, 10(1), 37–49.
Halvorsen, R., & Palmquist, R. (1980). The interpretation of dummy variables in Semilogarithmic

regressions. American Economic Review, 70, 474–475.

78 Hedonic Regression Models 2133



Heckman, J., Matzkin, R., & Nesheim, L. (2010). Nonparametric identification and estimation of

nonadditive hedonic models. Econometrica, 78(5), 1569–1591.
Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics, 32,

1–49.

Hoshino, T., & Kuriyama, K. (2010). Measuring the benefits of neighbourhood park amenities:

Application and comparison of spatial hedonic approaches. Environmental and Resource
Economics, 45(3), 429–444.

Hulton, C., & Wycoff, F. (1981). The measurement of economic depreciation. In C. Hulten (Ed.),

Depreciation, inflation, and the taxation of income from capital. Washington, DC: Urban

Institute Book.

Jensen, P. H., & Webster, E. (2007). Labelling characteristics and demand for retail grocery

products in Australia. Australian Economic Papers, 47(2), 129–140.
Jiao, L., & Liu, Y. (2010). Geographic field model based hedonic valuation of urban open spaces in

Wuhan, China. Landscape and Urban Planning, 98(1), 47–55.
Kassie, G., Abdulai, A., &Wollny, C. (2011). Heteroscedastic hedonic price model for cattle in the

rural markets of central Ethiopia. Applied Economics, 43(24), 3459–3464.
Kim, S. G., Cho, S. H., Lambert, D., & Roberts, R. (2010). Measuring the value of air quality:

Application of the spatial hedonic model. Air Quality, Atmosphere & Health, 3(1), 41–51.
Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political Economy, 74,

57–132.

Leamer, E. E. (1978). Specification searches: Ad Hoc inference with nonexperimental data.
New York: Wiley.

Lee, C. F. (1976). Functional form and the dividend effect of the electric utility industry. Journal
of Finance, 31(5), 1481–1486.

Lee, C. F., & Kau, J. B. (1976). The functional form in estimating the density gradient: An

empirical investigation. Journal of American Statistical Association, 71, 326–327.
Lee, C. F., Fabozzi, F. J., & Francis, J. C. (1980). Generalized functional form for mutual fund

returns. Journal of Financial and Quantitative Analysis, 15, 1107–1120.
Maclennan, D. (1977). Some thoughts on the nature and purpose of hedonic price functions.Urban

Studies, 14, 59–71.
Maclennan, D. (1982). Housing economics. London: Longman.

Malpezzi, S. (1998). A simple error correction model of house prices (Wisconsin-Madison

CULER Working Papers. 98–11). Madison: University of Wisconsin, Center for Urban Land

Economic Research.

Nordman, E., & Wagner, J. (2012). Public purchases and private preferences: Challenges for

analyzing public open space acquisitions. Urban Forestry & Urban Greening, 11(2), 179–186.
Panzone, L. (2011). The lost scent of Eastern European wines in Western Europe: A hedonic

model applied to the UK market. British Food Journal, 113(8), 1060–1078.
Poudyal, N., Hodges, D., & Merrett, C. (2009). A hedonic analysis of the demand for and benefits

of urban recreation parks. Land Use Policy, 26(4), 975–983.
Rosen, S. (1974). Hedonic prices and implicit markets: Product differentiation in pure competi-

tion. Journal of Political Economy, 82(1), 34–55.
Sander, H., & Polasky, S. (2009). The value of views and open space: Estimates from a hedonic

pricing model for Ramsey County, Minnesota, USA. Land Use Policy, 26(3), 837–845.
Sheppard, S. (1999). Hedonic analysis of housing markets. In P. C. Cheshire & E. S. Mills (Ed.),

Handbook of regional and urban economics, (vol 3). Amsterdam: Elsevier.

Thrane, C. (2009). Explaining variation in wine prices: The battle between objective and sensory

attributes revisited. Applied Economics Letters, 16(13), 1383–1386.
Wallace, H. A. (1926). Comparative farmland values in Iowa. Journal of Land and Public Utility

Economics, 2, 385–392.

2134 B.J. Sopranzetti



Optimal Payout Ratio Under Uncertainty
and the Flexibility Hypothesis: Theory and
Empirical Evidence

79

Cheng-Few Lee, Manak C. Gupta, Hong-Yi Chen, and Alice C. Lee

Contents

79.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2136

79.2 Review of the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2139

79.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2141

79.4 Optimum Dividend Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2144

79.5 Relationship Between the Optimal Payout Ratio and the Growth Rate . . . . . . . . . . . . . . 2146

79.6 Relationship Between Optimal Payout Ratio and Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2152

79.6.1 Case 1: Total Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2152

79.6.2 Case 2: Systematic Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2154

79.6.3 Case 3: Total Risk and Systematic Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2154

79.6.4 Case 4: No Change in Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2155

79.7 Empirical Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2156

79.7.1 Sample Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2157

79.7.2 Univariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2159

Disclaimer: Views and opinions presented in this publication are solely those of the authors and do

not necessarily represent those of State Street Corporation, which is not associated in any way with

this publication and accepts no liability for its contents.

C.-F. Lee (*)

Department of Finance and Economics, Rutgers Business School, Rutgers, The State University of

New Jersey, Piscataway, NJ, USA

Graduate Institute of Finance, National Chiao Tung University, Hsinchu, Taiwan

e-mail: lee@business.rutgers.edu; cflee@business.rutgers.edu

M.C. Gupta

Temple University, Philadelphia, PA, USA

e-mail: mcgupta@temple.edu

H.-Y. Chen

Department of Finance, National Central University, Taoyuan, Taiwan

e-mail: fnhchen@ncu.edu.tw

A.C. Lee

State Street Corp., USA

e-mail: alice.finance@gmail.com

C.-F. Lee, J. Lee (eds.), Handbook of Financial Econometrics and Statistics,
DOI 10.1007/978-1-4614-7750-1_79,
# Springer Science+Business Media New York 2015

2135

mailto:lee@business.rutgers.edu
mailto:cflee@business.rutgers.edu
mailto:mcgupta@temple.edu
mailto:fnhchen@ncu.edu.tw
mailto:alice.finance@gmail.com


79.7.3 Multivariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2161

79.7.4 Moving Estimates Process for Structural Change Model . . . . . . . . . . . . . . . . . . . . 2164

79.8 Summary and Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2166

Appendix 1: Derivation of Eq. 79.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2167

Appendix 2: Derivation of Eq. 79.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2169

Appendix 3: Derivation of Eqs. 79.28 and 79.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2170

Appendix 4: Using Moving Estimates Process to Find the Structural Change

Point in Eq. 79.36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2173

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2173

Abstract

We theoretically extend the proposition of DeAngelo and DeAngelo’s (Journal
of Financial Economics 79, 293–315, 2006) optimal payout policy in terms of

the flexibility dividend hypothesis. We also introduce growth rate, systematic

risk, and total risk variables into the theoretical model. Our empirical findings

show that based on flexibility considerations, a company will reduce its payout

when the growth rate increases. In addition, a nonlinear relationship exists

between the payout ratio and the risk. In other words, the relationship between

the payout ratio and risk is negative (or positive) when the growth rate is higher

(or lower) than the rate of return on total assets.

We use a panel data collected in the USA from 1969 to 2009 to empirically

investigate the impact of growth rate, systematic risk, and total risk on the optimal

payout ratio in terms of the fixed-effects model. Furthermore, we implement the

moving estimates process to find the empirical breakpoint of the structural change

for the relationship between the payout ratio and risks and confirm that the

empirical breakpoint is not different from our theoretical breakpoint. Our theoret-

ical model and empirical results can therefore be used to identifywhether flexibility

or the free cash flow hypothesis should be used to determine the dividend policy.

Keywords

Dividends • Payout policy • Optimal payout ratio • Flexibility hypothesis • Free

cash flow hypothesis • Signaling hypothesis • Fixed effect • Clustering effect •

Structural change model • Moving estimates processes • Systematic risk • Total

risk • Market perfection

79.1 Introduction

Corporate dividend policy has long engaged the attention of financial economists,

dating back to the irrelevance theorem of Miller and Modigliani (1961; M&M

hereafter), in which they state that a rational and perfect economic environment is

free of illusion. Since then, their rather controversial findings have been challenged

and tested by weakening the assumptions or introducing imperfections into the

analysis. For example, the signaling models developed by Bhattacharya (1979),

Miller and Rock (1985), and John and Williams (1985) and the free cash flow
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hypothesis proposed byEasterbrook (1984) and Jensen (1986) are the twowell-known

propositions challenging M&M’s dividend irrelevance theorem; however, empirical

studies examining signaling and free cash flow hypotheses have yieldedmixed results.

DeAngelo and DeAngelo (2006) reexamine the irrelevance of the M&M dividend

irrelevance theorem by allowing partial dividend payout. They argue that the original

M&M (1961) irrelevance result is due to the fact that they consider either paying out

all earnings or not paying any of them at all. Therefore, payout policy might be

relevant if partial payout is allowed. In other words, DeAngelo and DeAngelo (2006)

use dividend flexibility hypothesis to show their dividend relevance results. Under-

lying the flexibility hypothesis, the current paper (1) develops a theoretical model to

support the proposition of DeAngelo and DeAngelo’s (2006) optimal payout policy

when the partial payout is allowed, (2) reconciles the dispute between free cash flow

hypothesis and flexibility hypothesis in dividend policy literature, and (3) performs

empirical tests in terms of theoretical results derived in this paper.

First of all, following DeAngelo and DeAngelo (2006), we develop

a dynamic model allowing firms to hold some amount of cash into a positive NPV

project for the reason of financial flexibility. Under the assumption of stochastic rate

of return and the dividend flexibility hypothesis, we carry out the optimization

procedure to maximize firm value, and the final expression of the optimal dividend

policy of the firm is thus derived. The model is comprehensive and allows structural

analysis of different variables that could be relevant for corporate dividend policy.

For example, the model incorporates the rate of return on assets, growth rate, and risk

(systematic, firm-specific, and total risk) to name a few variables that could affect

corporate dividend decisions. Comparative statics provide insights into the effect of

each of these parameters on corporate dividend policy, and this is followed by an

analysis of the interaction effects of these variables on corporate dividend policy.

Second, the implications of the optimization results are explained. Our results

show that the relationship between the optimal payout ratio and the growth rate is

negative in general. We investigate the separate and then the combined effects of

market-dependent and market-independent components of risk on the optimal

dividend policy. We perform comparative static analyses of the relationships

between the payout ratio and (1) change in total risk, (2) change in systematic

risk, (3) simultaneous changes in both total risk and systematic risk, and (4) no

change in risk. We examine in detail the effects of variations in the profitability rate,

its distribution parameters, and their dynamic behavior on the optimal dividend

policy of the firm. The theoretical relationship between the payout ratio and the

growth ratio implies that high growth firms need to reduce the payout ratio and

retain more earnings to build up “precautionary reserves” for flexibility consider-

ations, but low growth firms are likely to be more mature and already build up their

reserves. More importantly, the relationship between the payout ratio and the risks

reflects different dividend policies at high growth firms and low growth firms. With

higher risk, the costs of external funds increase; therefore, to optimize shareholders’

wealth, high growth firms tend to reduce their payouts and keep more relatively

low-cost funds to sustain their high growth, whereas low growth firms tend to pay

more dividends and reduce the risk for shareholders.
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Third, our theoretical model and its implications lead us to three testable hypoth-

eses. Although a large and growing body of empirical research on the optimal

dividend payout policy has emerged, none of it has a solid theoretical model to

support findings or introduces a nonlinear structured model on payout policy.1 We

here try to empirically examine three hypotheses derived from our theoretical optimal

payout model. Using data collected in the USA from 1969 to 2009, we analyze

28,333 dividend-paying firm-years. Our empirical results show that firms’ payout

ratios are negatively related to firms’ growth, and a negative (or positive) rela-

tionship exists between firms’ risks and the dividend payout ratios among firms

with higher (or lower) growth rates relative to their rate of return on assets. Our

empirical results are consistent with our theoretical model under the dividend

flexibility hypothesis. We also find that growth and risk interact in explaining the

payout ratio, indicating that the payout ratio is not linearly related to the growth

rate or to the risk of the firm. Furthermore, we implement the moving estimates

process to find the empirical breakpoint of the structural change for the relation-

ship between the payout ratio and risks and confirm that the empirical breakpoint

is not different from our theoretical breakpoint.

The primary contributions of this paper are our theoretical derivation of an optimal

payout ratio under the dividend flexibility hypothesis and our demonstration of a

negative but nonlinear relationship between the payout ratio and the growth rate.

More importantly, we theoretically and empirically locate a structural change point

for the relationship between the payout ratio and the growth rate. Rozeff (1982),

Aivazian et al. (2003), Blau and Fuller (2008), and others conclude that a firm’s risk

and optimal payout are negatively related. Contrary to these conclusions and

generally held beliefs, the dynamic optimization model developed here shows

that the optimal payout is not necessarily negatively related to risk but implies that

payout policies differ in high growth firms and low growth firms. High growth

firms pay out their dividends for flexibility considerations, but low growth firms

pay out their dividends to reduce their free cash flow problem. In addition, this

paper also shows that the relationship between firms’ payouts and their growth

rates (or risks) can be affected by their risks (or growth rates). Contrary to earlier

studies, the theoretical model developed here shows that the optimal payout ratio

is not linearly related to the growth rate or to the risk of the firm, and whether the

rate of return on assets is higher or lower than the growth rate has significant effect

on the relationships between these variables. The results are borne out by rather

extensive empirical research done in this paper based on 40 years of data collected

in the USA from 1969 to 2009.

The stochastic dynamic optimization model developed here challenges many

commonly held beliefs and results obtained from earlier studies. It provides more

meaningful relationships among total risk and its separate components

(systematic and firm-specific), growth rate, rate of return on assets, and optimal

1For example, Rozeff (1982), Jagannathan et al. (2000), Grullon et al. (2002), Aivazian

et al. (2003), and Blau and Fuller (2008).
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dividend policy. Our results represent an advance in corporate finance literature

because all the important variables included in this study were never simulta-

neously included in those earlier studies, and more importantly, the interaction

effects among these variables were neither recognized nor fully appreciated.

We believe that this study is the first of its kind to provide a theoretical basis

for relating dividend policies with firm risks, growth rates, and return on assets

(ROAs) in an interrelated fashion.

The remainder of this paper is organized as follows: Section 79.2 contains

a review of the literature on dividend-relevant theories and the findings

of empirical work on dividend policy. In Sect. 79.3 we lay out a dynamic model

used in subsequent sections to examine the existence, or nonexistence, of

an optimal dividend policy. Section 79.4 provides the final expression of the

optimal dividend policy of the firm derived from the optimization procedure to

maximize firm value. In Sect. 79.5 we present both a detailed form and

an approximated form of the relationship between the optimal dividend payout

ratio and the growth rate. Section 79.6 includes a discussion of the effects of -

market-dependent and market-independent components of risk on the optimal

dividend policy. Section 79.7 includes empirical evidence supporting the model and

implications in previous sections, and the conclusion appears in Sect. 79.8.

79.2 Review of the Literature

Corporate dividend policy has puzzled financial economists, dating back to the

dividend irrelevance theorem proposed by M&M (1961). Since then, their

controversial findings have been challenged and tested by weakening the

assumptions or introducing imperfections into the analysis. The signaling

models developed by Bhattacharya (1979), Miller and Rock (1985), and John

and Williams (1985) suggest that because of the asymmetric information

between managers and shareholders, managers use dividends as a signal to

release private information to the market; however, empirical studies examining

the signaling hypothesis have yielded mixed results. Nissim and Ziv (2001),

Brook et al. (1998), Bernheim and Wantz (1995), Kao and Wu (1994), and Healy

and Palepu (1988) support the signaling (asymmetric information) hypothesis by

finding a positive association between dividend increases and future profitability.

Kalay and Lowenstein (1986) and Asquith and Mullins (1983) find that dividend

changes are positively associated with stock returns in the days surrounding

dividend announcements, and Sasson and Kolodny (1976) identify that there is

a positive association between the payout ratio and average rates of return.

Studies by Benartzi et al. (1997), DeAngelo et al. (1996), and Grullon

et al. (2002), however, reveal no support for the hypothesized relationship

between dividend changes and future profitability.

Using agency cost theory, Easterbrook (1984) and Jensen (1986) propose the

free cash flow hypothesis, arguing that because managers cannot credibly

precommit to shareholders, they will not invest excess cash in negative-NPV
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projects. Dividend changes may convey information about how the firm will use

future cash flow. Again, the results of empirical studies have been mixed at best.

Several researchers, including Agrawal and Jayaraman (1994), Jensen et al. (1992),

and Lang and Litzenberger (1989), find positive supports for the agency cost

hypothesis, but others find no support for this hypothesis, for example,

Howe et al. (1992), Denis et al. (1994), and Yoon and Starks (1995).

DeAngelo and DeAngelo (2006) argue that M&M’s (1961) dividend irrele-

vance occurs because they consider either paying out all earnings or not paying

any of them at all; therefore, payout policy might have impact on firm value if

partial payout is allowed. In other words, DeAngelo and DeAngelo (2006) use the

dividend flexibility hypothesis to show their dividend relevance results. Blau and

Fuller (2008) have theoretically and empirically shown that the dividend flexibil-

ity hypothesis is indeed a reasonable dividend policy. In addition, several

empirical studies show evidence of firms preferring financial flexibility, for

example, Lie (2005), DeAngelo et al. (2006), Denis and Osobov (2008), and

Gabudean (2007).

Besides focusing on the relevance of dividend policy, a growing body of

literature deals with the determinants of optimal dividend payout policy. For

example, Rozeff (1982) shows that the optimal dividend payout is related to the

fraction of insider holdings, the growth of the firm, and the firm’s beta coefficient.

He also finds evidence that the optimal dividend payout is negatively correlated to

beta risk, and supporting that beta risk reflects the leverage level of a firm.

Jagannathan et al. (2000) empirically show that operation risk is negatively

related to the propensity to increase payouts. Grullon et al. (2002) show that

dividend changes are related to the change in the growth rate and the change in the

rate of return on assets. They also find that dividend increases should be associ-

ated with subsequent declines in profitability and risk. Aivazian et al. (2003)

examine eight emerging markets and show that, similar to US firms, dividend

policies in emerging markets can also be explained by profitability, debt, and the

market-to-book ratio. None of the foregoing scholars, however, has a solid theo-

retical model to support their finding.

We use these authors’ works as a springboard to deal with the flexibility

hypothesis and develop the theoretical underpinnings and a stochastic dynamic

optimization model determining the conditions for an optimal dividend policy. We

believe that ours is the first attempt ever made to include growth rate, risks, and

more importantly, the rate of return and its distribution parameters in a single model

deriving the conditions for an optimal dividend policy; furthermore, this paper

empirically tests the findings and conclusions of the theoretical model developed

here, using an extensive data set involving 28,333 dividend-paying firm-years from

1969 to 2009. The results of the empirical tests confirm and validate the findings of

the theoretical model and provide new insights in the determination of optimal

dividend policy, the influence of each explanatory variable listed above, and more

importantly, their interaction effects on the corporate dividend policy. Notably,

some of these results run counter to categorically stated conclusions reached in

earlier studies.
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79.3 The Model

We develop the dividend policy model under the assumptions that the capital

markets represent the closest approximation to the economists’ ideal of a perfect

market – zero transaction costs, rational behavior on the part of investors, and the

absence of tax differentials between dividends and capital gains. It is assumed that

the firm is not restricted to financing its growth only by retained earnings and that its

rate of return, r
�
tð Þ, is a nonstationary random variable, normally distributed with

mean, m, and variance, s(t)2.
Let A(0) represent the initial assets of the firm and h be the growth rate. Then the

earnings of this firm are given by Eq. 79.1, which is

ex tð Þ ¼ er tð ÞA 0ð Þeht (79.1)

where x
�
tð Þ represents the earnings of the firm, and the tilde (�) denotes its random

character.

Based upon DeAngelo and DeAngelo’s (2006) assumption, we allow that the

firm partially pay out its earnings and retain a certain amount of earnings in support

of its growth.2 The retained earnings of the firm, y(t), can therefore be expressed as
follows:

y tð Þ ¼ ex tð Þ � m tð Þed tð Þ, (79.2)

where d
�
tð Þ is the dividends per share and m(t) is the total number of shares

outstanding at time t.
Equation 79.2 further indicates that the focus of the firm’s decision making is on

retained earnings, which implies that dividend d
�
tð Þ also becomes a random

variable. The growth of a firm can be financed by retained earnings or by issuing

new equity.

The new equity raised by the firm at time t can be defined as follows:

e tð Þ ¼ dp tð Þ _m tð Þ, (79.3)

Where

p(t) ¼ price per share;

_m tð Þ ¼ dm tð Þ=dt;
d ¼ degree of market perfection, 0 <d � 1.

The value of d equal to one indicates that new shares can be sold by the firm at

current market prices.

2DeAngelo and DeAngelo (2006) carefully explain why partial payout is important to obtain an

optimal ratio under perfect markets. In addition, they also argue that partial payout is important to

avoid the suboptimal solution for optimal dividend policy.
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From Eqs. 79.1, 79.2 and 79.3, investment in period t is the sum of retained

earnings and funds raised by new equity, so the investment in period t can be written
as follows:

hA 0ð Þeht ¼ ex tð Þ � m tð Þed tð Þ þ d _m tð Þp tð Þ: (79.4)

This implies that

ed tð Þ ¼ er tð Þ � h½ �A 0ð Þeht þ d _m tð Þp tð Þg=m tð Þ;�
(79.5)

and the mean and variance of the dividends per share can be expressed as follows:

E ed tð Þ
h i

¼ m� h½ �A 0ð Þeht þ d _m tð Þp tð Þg=m tð ÞVar ed tð Þ
h i

¼ A 0ð Þ2s tð Þ2e2th=m2 tð Þ:
n

(79.6)

Also, let us postulate an exponential utility function of the following form3:

U ed tð Þ
h i

¼ �ea
~d tð Þ, where a > 0: (79.7)

Following the moment generating function, we have

E �e�a~d tð Þ
� �

¼ �e�aE ~d tð Þ½ �þ a2
2
Var ~d tð Þ½ �, (79.8)

where d tð Þ is the certainty equivalent value of ed tð Þ.4
From Eqs. 79.6 and 79.8, the certainty equivalent dividend stream can be

written as

d tð Þ ¼ m� hð ÞA 0ð Þeth þ d _m tð Þp tð Þ
m tð Þ � a

0
A 0ð Þ2s tð Þ2e2th

m tð Þ2 , (79.9)

where a0 ¼ a/2. Therefore, taking advantage of exponential utility, we can obtain

a risk adjusted dividend stream. Furthermore,d tð Þwill reduce to the certainty case if
we assume s(t)2 ¼ 0.

In accordance with the capital asset pricing theory developed by Sharpe (1964),

Lintner (1963), and Mossin (1966), the total risk can be decomposed into system-

atic risk and unsystematic risk; that is, r
�
tð Þ can be defined as follows:

er tð Þ ¼ aþ beI tð Þ þee tð Þ, (79.10)

3Pratt (1964) provides a detailed analysis of the various utility functions. Exponential, hyperbolic,

and quadratic forms have been variously used in the literature, but the first two seem to have

preference over the quadratic form because the latter has the undesirable property that it ultimately

turns downwards.
4From the moment generating function discussed in Hogg and Craig (2004), we know that

E �etyð Þ ¼ �etE yð Þ þ 1
2
t2Var yð Þ. Let t ¼ �a, then the right-hand side of (8) is easily obtained.

2142 C.-F. Lee et al.



whereeI tð Þ is the market index; ee tð Þ � N 0; s2e
� �

; a and b are regression parameters;

and Var beI tð Þ
� �

and Var ee tð Þð Þ represent the systematic and unsystematic risk,

respectively.

Following Eqs. 79.10 and 79.6 can be rewritten as

E ed tð Þ
h i

¼ aþ bI � h
� �

A oð Þeht þ d _m tð Þp tð Þ�=m tð ÞVar ed tð Þ
h ih

¼ A 0ð Þ2 b2Var eI tð Þ
� �

þ Var e tð Þð Þ
h i

e2th=m tð Þ2

¼ A 0ð Þ2 r tð Þ2s tð Þ2 þ 1� r tð Þ2
� �

s tð Þ2
h i

e2th=m tð Þ2, (79.11)

where

r(t) ¼ the correlation coefficient between er tð Þ and eI;
a ¼ market-independent component of the firm’s rate of return;

bI ¼ market-dependent component of the firm’s rate of return;

r(t)2s(t)2 ¼ nondiversifiable risk; and

(1�r(t)2)s(t)2 ¼ diversifiable risk.

The unsystematic risk usually can be diversified away by the investors,5 so the

certainty equivalent value in Eq. 79.9 should be revised as

d̂ 0 tð Þ ¼ aþ bI � h
� �

A oð Þeth þ d _m tð Þp tð Þ
m tð Þ � a0A oð Þ2r tð Þ2s tð Þ2e2th

m tð Þ2 : (79.12)

Following Lintner (1962), we observe that the stock price should equal the

present value of this certainty equivalent dividend stream discounted at a riskless

rate of return. Therefore,

p 0ð Þ ¼
ðT
0

d̂ 0 tð Þe�ktdt, (79.13)

where

p(0) ¼ the stock price at t ¼ 0;

k ¼ the risk free rate of return;

T ¼ the planning horizon.

This model will be used in subsequent sections to find the functional form of m(t)
and optimize the payout ratio. The formulation of our model is different from that of

M&M (1961), Gordon (1962), Lerner and Carleton (1966a), and Lintner (1964).

For example, in contrast to our model, M&M consider neither the nonstationarity of

the firm’s rate of return in their model nor explicitly incorporated uncertainty in their

valuation model. Their models are also essentially static and would not permit an

extensive analysis of the dynamic process of moving from one equilibrium state to

another; furthermore, the formulation of our model is different from those who

propose to capitalize the market-dependent and market-independent components of

5See Lintner (1965), Mossin (1966), and Sharpe (1964).
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the uncertain stream of earnings at the risky and riskless rates, respectively.6 Instead,

we view the market value of a firm as the present value of certainty equivalents of

random future receipts. In the next section, we carry out the optimization of Eq. 79.13

and derive the final expression for the optimal payout ratio.7

79.4 Optimum Dividend Policy

Based upon the evaluation model developed in the previous section, in this section

we will derive an optimal dividend payout ratio.

Substituting Eq. 79.12 into Eq. 79.13, we obtain

p 0ð Þ ¼
ðT
0

Aþ bI � h
� �

A 0ð Þeth þ d _m tð Þp tð Þ
m tð Þ � a

0
A 0ð Þ2r tð Þ2s tð Þ2e2th

m tð Þ2
" #

e�ktdt:

(79.14)

To maximize Eq. 79.14, we observe that

p tð Þ ¼
ðT
t

d̂
0
sð Þe�k s�tð Þds ¼ ekt

ðT
t

d̂
0
sð Þe�ksds, (79.15)

where s ¼ the proxy of time in the integration.

From Eq. 79.15, we can formulate a differential equation as

dp tð Þ
d tð Þ ¼ _p tð Þ ¼ kp tð Þ � d̂

0
tð Þ: (79.16)

Substituting Eq. 79.12 into Eq. 79.16, we obtain the differential equation

_p tð Þ þ d
_m tð Þ
m tð Þ � k

� �
p tð Þ ¼ �G tð Þ, (79.17)

Where

G tð Þ ¼ aþ bI � h
� �

A 0ð Þeth
m tð Þ � a

0
A oð Þ2r tð Þ2s tð Þ2e2th

m tð Þ2 : (79.18)

Following Kreyszig (2010) and Lee and Shi (2010), we solve the differential

Eq. 79.17 and obtain the solution as indicated in Eq. 79.19.

p tð Þ ¼ ekt

m tð Þd
ðT
t

G sð Þm sð Þde�ksds: (79.19)

6See Brennan (1973).
7For further explanation of the optimization of the deterministic and stochastic control models and

their applications to economic problems, please see Aoki (1967), Bellman (1990 and 2003), and

Intriligator (2002).
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Then, Eq. 79.20 can be obtained from Eqs. 79.18 and 79.19, implying that the

initial value of a stock can be expressed as the summation of present values of its

earnings stream adjusted by the risk taken by the firm.

p 0ð Þ ¼ 1

m 0ð Þd
ðT
0

aþ bI � h
� �

A 0ð Þethm tð Þd�1 � a
0
A 0ð Þ2r tð Þ2s tð Þ2e2thm tð Þd�2

n o
e�ktdt:

(79.20)

To maximize firm value, the Euler-Lagrange condition for the optimization of p(o)
is given by Eq. 79.21,8

d� 1ð Þ aþ bI � h
� �

A 0ð Þethm tð Þd�2 � a
0
A 0ð Þ2r tð Þ2s tð Þ2e2thm tð Þd�3 d� 2ð Þ ¼ 0:

(79.21)

Therefore, the optimal shares outstanding at time t can be derived.

m tð Þ ¼ 2� dð Þa0
A 0ð Þethr tð Þ2s tð Þ2

1� dð Þ aþ bI � h
� � : (79.22)

From Eqs. 79.18, 79.19 and 79.22, we can obtain the maximized stock value

p tð Þ ¼
aþ bI � h
� �2

1� dð Þekt�thd
ðT
t

edhs�ks r sð Þs sð Þð Þ2d�2ds

a0
2� dð Þ2r tð Þ2ds tð Þ2d

: (79.23)

From Eq. 79.22, we also obtain the optimal number of shares of new equity

issued at time t

_m tð Þ¼
h 2�dð Þa0

A 0ð Þethr tð Þ2s tð Þ2þ 2�dð Þa0
A 0ð Þeth½r tð Þ2 _s tð Þ2þs tð Þ2 _r tð Þ2

n o

1�dð Þ aþbI�h
� � : (79.24)

From Eqs. 79.23 and 79.24, we have the amount generated from issuing

new equity

_m tð Þp tð Þ¼

aþbI�h
� �

ekt� d�1ð ÞthA 0ð Þ hr tð Þ2s tð Þ2þr tð Þ2 _s tð Þ2þs tð Þ2 _r tð Þ2
� �ðT

t

es dh�kð Þ r sð Þs sð Þð Þ2d�2ds

2�dð Þr tð Þ2ds tð Þ2d
:

(79.25)

From Eqs. 79.5 and 79.25, we can obtain D tð Þ ¼ m tð Þd tð Þ. From Eqs. 79.1 and

79.10, we can obtain x tð Þ ¼ aþ bI
� �

A 0ð Þeht . When d approaches unity, we can

derive the optimal payout ratio as

8For the derivation of Eq. 79.21, please refer to the Appendix 2.
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D tð Þ
x tð Þ ¼ aþ bI � h

� �

aþ bI
� � 1þ e h�kð Þ T�tð Þ � 1

	 

h� kð Þ hþ _s tð Þ2

s tð Þ2 þ
_r tð Þ2
r tð Þ2

! )
:

(
(79.26)

Equation 79.26 implies an optimal payout ratio when we use an exponential

utility function to derive the stochastic dynamic dividend policy model. This result

does not necessarily imply that the dividend policy results derived by M&M (1961)

are false because we allowed free cash flow to be paid out partially as assumed by

DeAngelo and DeAngelo (2006) instead of paying out all free cash flows as

assumed by M&M (1961).

In the following section, we use Eq. 79.26 to explore the implications of the

stochasticity, the stationarity (in the strict sense), and the nonstationarity of

the firm’s rate of return for its dividend policy.9 We also investigate in detail the

differential effects of variations in the systematic and unsystematic risk components

of the firm’s stream of earnings on the dynamics of its dividend policy.

79.5 Relationship Between the Optimal Payout Ratio and the
Growth Rate

In this section, we investigate the relationship between the optimal payout ratio and

the growth rate in terms of both exact and approximate approaches. Taking the

partial derivative of Eq. 79.26 with respective to the growth rate, we obtain

@ D tð Þ=x tð Þ	 

@h ¼ � 1

aþ bI

� � �k þ he h�kð Þ T�tð Þ

h� k

� �

þ 1� h

aþ bI

� � �kð Þ þ h h� kð Þ T � tð Þ½ �e h�kð Þ T�tð Þ þ k

h� kð Þ2
" #

:

(79.27)

The sign of Eq. 79.27 is affected not only by the growth rate (h) but also by the

expected rate of return on assets (aþ bI), the duration of future dividend payments

(T�t), and the cost of capital (k).
Since the sign of Eq. 79.27 cannot be analytically determined, we use a sensitiv-

ity analysis approach to investigate the sign of Eq. 79.27. Table 79.1 shows the sign

of partial derivatives of Eq. 79.27 under different values of the growth rate and the

rate of return on assets as well as duration (T�t). We find that the relationship

between the optimal payout ratio and the growth rate is always negative when the

growth rate is higher than the rate of return on assets. If the growth rate is lower than

the rate of return on asset, the direction of relationship essentially depends on the

duration of the dividend payment (T�t). We find that the sign of Eq. 79.27 is

9See Hamilton (1994), pp. 45–46.
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negative if the duration (T�t) is small and the growth rate and rate of return on

assets are within a reasonable range. In addition, the curved lines in Table 79.1 also

indicate a nonlinear relationship between the growth rate and the optimal payout

ratio. We can therefore conclude that the relationship between the optimal payout

ratio and the growth rate is nonlinear and generally negative.

Based upon Eq. 79.27, Fig. 79.1 plots the change in the optimal payout ratio with

respect to the growth rate in different durations of dividend payments and costs of

capital. We find a negative relationship between the optimal payout ratio and the

growth rate, indicating that a firm with a higher rate of return on assets tends to pay

out less when its growth opportunities increase. Moreover, a firm with a lower

growth rate and higher expected rate of return will not decrease its payout when its

growth opportunities increase, but a firm with a lower growth and a higher expected

rate of return on asset is not a general case in the real world. We also find that the

duration of future dividend payments is an important determinant of the dividend

payout decision, but the effect on the cost of capital is relatively minor.

In the finite growth case, if (h–k)(T–t) < 1, then following the Maclaurin

expansion, the optimal payout ratio under no change in risk defined in Eq. 79.26

can be written as

D tð Þ=x tð Þ	 
 � 1� h

aþ bI

� �
1þ h T � tð Þð Þ: (79.28)

The partial derivative of Eq. 79.28 with respective to the growth rate is

@ D tð Þ=x tð Þ	 

@h

� aþ bI
� �� h
	 


T � tð Þ � h T � tð Þ � 1

aþ bI

� �
: (79.29)

Equation 79.29 indicates that the relationship between the optimal dividend

payout and the growth rate depends on firm’s level of growth, the rate of return

on assets, and the duration of future dividend payment.10 Equation 79.29 is negative

when the rate of return on assets is lower than the growth rate. This implies that the

firm will reduce its payout when its growth rate increases. The higher growth rate

(h) and the lower rate of return on assets (aþ bI ) will lead to a more negative

relationship between dividend payout ratio and growth rate. More specifically, the

condition of Eq. 79.29 will lead to a negative relationship between the optimal

payout ratio and the growth rate.

h >
1

2
aþ bI
� �� 1

T � tð Þ
� �

: (79.30)

Consistent with the sensitivity analysis of Eq. 79.27, when a firm with a high

growth rate or a low rate of return on assets faces a growth opportunity, it will

decrease its dividend payout to generate more cash to meet such a new investment.

A possible explanation is that high growth firms need more retained earnings

to meet their future growth opportunities because the growth rate is the main

10Please see the Appendix 3 for the derivation of Eq. 79.28 and 79.29.
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determinant of value in the case of such companies, but low growth firms do not

need more earnings to maintain their low growth perspective and can afford to

increase their payouts. Based on the flexibility concerns, the relationship between

firms’ payout ratios and their growth rates is therefore negative.

79.6 Relationship Between Optimal Payout Ratio and Risks

Equation 79.26 implies that the optimal payout ratio is a function of the expected

profitability rate (aþ bI), growth rate (h), cost of capital (k), age (T–t), total risk
(s(t)2), and the correlation coefficient between profit and market rate of

return (r(t)2). In addition, Eq. 79.26 is also a function of two dynamic variables –

the relative time rate of change in the total risk of the firm, _s tð Þ2=s tð Þ2
h i

, and

the relative time rate of change in the covariability of the firm’s earnings with the

market, _r tð Þ2=r tð Þ2
h i

. This theoretical dynamic relationship between the optimal

payout ratio and other determinants can be used to do empirical studies to determine

dividend policy. The dynamic effects of variations in _s tð Þ2=s tð Þ2
h i

and

_r tð Þ2=r tð Þ2
h i

on the time path of optimal payout ratio can be investigated under

the following four cases: (1) changes in total risk, (2) changes in correlation

between profit and the market rate of return (i.e., systematic risk), (3) changes in

total risk and systematic risk, and (4) no changes in risk.

79.6.1 Case 1: Total Risk

First, we examine the effect of _s tð Þ2=s tð Þ2
h i

on the optimal payout ratio. By

differentiating Eq. 79.26 with respect to _s tð Þ2=s tð Þ2
h i

, we obtain

@ D tð Þ=x tð Þ	 


@ _s tð Þ2=s tð Þ2
h i ¼ 1� h

aþ bI

� �
e h�kð Þ T�tð Þ � 1

h� k

� �
: (79.31)

In Eq. 79.31 the cost of capital, k, can be either larger or smaller than the growth

rate h. We can show that e
h�kð Þ T�tð Þ�1

h�k is always larger than 0, regardless of whether k is

larger or smaller than h.11 Thus, the sign of Eq. 79.31 depends on the sign of

1� h
aþbI

� �
, which depends on the growth rate h relative to aþ bI

� �
:

11If h > k, then e(h–k)(T–t) > 1, and both the numerator and denominator are greater than zero,

resulting in a positive value; if h < k, then e(h–k)(T–t) < 1, and both the numerator and denominator

are less than zero, resulting in a positive value. Thus, e
h�kð Þ T�tð Þ�1

h�k is always larger than 0, regardless

of whether k is larger or smaller than h.
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If the growth rate h is equal to aþ bI
� �

, then 1� h
aþbI

� �
is equal to zero.

Equation 79.31 is thus zero, and the change in total risk will not affect the payout

ratio because the first derivative of the optimized payout ratio, Eq. 79.26, with

respect to _s tð Þ2=s tð Þ2
h i

is always zero.

If growth rate h is larger than aþ bI
� �

, then the entire first derivative of

Eq. 79.26 with respect to _s tð Þ2=s tð Þ2
h i

is negative (i.e., Eq. 79.31 is negative);

furthermore, h > aþ bI
� �

implies that the growth rate of a firm is larger than its

expected profitability rate. An alternative case is h < aþ bI
� �

, which implies that

the growth rate of a firm is less than its expected profitability rate. This situation can

occur when a company is either in a low growth, no growth, or negative

growth stage. Under this situation, a company will increase its payout ratio as

shown in Eq. 79.31. If h < aþ bI
� �

, then Eq. 79.31 is positive, indicating that

a relative increase in the risk of the firm would increase its optimal payout ratio. This

implies that a relative increase in the total risk of the firm would decrease its optimal

payout ratio. Lintner (1965) and Blau and Fuller (2008) have found this kind of

relationship, yet they did not theoretically show how it can be derived.

Jagannathan et al. (2000) empirically show that operation risk is negatively

related to the propensity to increase payouts in general and dividends in partic-

ular. Our theoretical analysis in terms of Eq. 79.31 shows that the change in total

risk is negatively or positively related to the payout ratio, conditional on the

higher growth rate relative to the expected profitability rate. We find negative

relationships between payout and the change in total risk for high growth firms

h > aþ bI
� �� �

. A possible explanation is that in the case of high growth firms,

a firm must reduce the payout ratio and retain more earnings to build up “precau-

tionary reserves,” which become all the more important for a firm with volatile

earnings over time. High growth firms thus tend to retain more earnings when they

face higher risk. By contrast, in the case of established low growth firms

h < aþ bI
� �� �

, low growth firms are likely to be more mature and have most

likely already built such reserves over time. They probably do not need more

earnings to maintain their low growth perspective and can afford to increase the

payout; consequently, when facing higher risk on their earnings, low growth firms

can reduce their shareholders’ risk by paying more dividends to their shareholders.

The age of the firm (T–t), which is one of the variables in Eq. 79.31, becomes an

important factor because the very high growth firms are also the newer firms with

very little builtup precautionary reserves.

Under more dynamic conditions, we provide further evidence of the validity of

Lintner’s (1965) observations that, ceteris paribus, optimal dividend payout ratios

vary directly with the variance of the firm’s profitability rates. The rationale for

such relationships, even when the systematic risk concept is incorporated into the

analysis, is obvious, that is, holding r(t)2 constant and letting the s(t)2 increase

imply that the covariance of the firm’s earnings with the market does not change

though its relative proportion to the total risk increases.
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79.6.2 Case 2: Systematic Risk

To examine the effect of a relative change in _r tð Þ2=r tð Þ2
h i

(i.e., systematic risk) on

the dynamic behavior of the optimal payout ratio, we differentiate Eq. 79.26 to

obtain

@ D tð Þ=x tð Þ	 


@ _r2 tð Þ=r2 tð Þ	 
 ¼ 1� h

aþ bI

� �
e h�kð Þ T�tð Þ � 1

h� k

� �
: (79.32)

The sign of Eq. 79.32 can be analyzed as with Eq. 79.31, so the conclusions of

Eq. 79.32 are similar to those of Eq. 79.31. A relative change in r(t)2 can either

decrease or increase the optimal payout ratio, all things being equal. The effect of

nonstationarity in the firm’s nondiversifiable risk would tend to be obliterated

should both the systematic and the unsystematic components of total risk not be

clearly identified in the expression for optimal payout ratio. Although the total risk

of the firm is stationary (i.e., _s tð Þ2=s tð Þ2
h i

is equal to zero), a change in the total risk

complexion of the firm could still conceivably occur because of an increase or

decrease in the covariability of its earnings with the market. Equations 79.26 and

79.32 clearly identify the effect of such a change in the risk complexion of the firm

on its optimal payout ratio.

An examination of Eq. 79.26 indicates that only when the firm’s earnings are

perfectly correlated with the market (i.e., r2 ¼ 1), whether the management arrives

at its optimal payout ratio using the total variance concept of risk or the market

concept of risk does not matter. For every other case, the optimal payout ratio

followed by management using the total variance concept of risk would be an

overestimate of the true optimal payout ratio for the firm based on the market

concept of risk underlying the capital asset pricing theory.

Management may decide not to use the truly dynamic model and instead substitute

an average of the long run systematic risk of the firm, but for _r2 tð Þ > 0, because the

initial average is higher than the true r2(t), the management would pay out less or

more in the form of dividends than is optimal. In other words, the payout ratio

followed in the initial part of the planning horizon would be an overestimate or an

underestimate of the optimal payout under truly dynamic specifications.

Rozeff (1982) empirically shows a negative relationship between the b coefficient

(systematic risk) and the payout level. The theoretical analysis in terms of Eq. 79.32

provides a more detailed analytical interpretation of his findings. The explanations of

these results are similar to those discussed for findings in previous sections.

79.6.3 Case 3: Total Risk and Systematic Risk

In our third case, we attempt to investigate the compounded effect of a simulta-

neous change in the total risk of the firm and also a change in its decomposition into
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the market- dependent and market-independent components. Taking the total

differential of Eq. 79.26 with respect to _s tð Þ2=s tð Þ2
h i

and _r tð Þ2=r tð Þ2
h i

, we obtain

d D tð Þ=x tð Þ	 
 ¼ gd
_s tð Þ2
s tð Þ2

!
þ gd

_r tð Þ2
r tð Þ2

!
,

  
(79.33)

where g ¼ 1� h
aþbI

� �
e h�kð Þ T�tð Þ � 1

h�k

h i
. Also, g can be either negative or positive, as

shown above.

Now from Eq. 79.33, the greatest decrease or increase in the optimal payout ratio

would obviously occur when both _s tð Þ2 and _r tð Þ2 are positive. This implies that the

total risk of the firm increases, and in addition, its relative decomposition into

systematic and unsystematic components also changes, making the firm’s earnings

still more correlated with the market. Under this circumstance, the decrease or

increase in the optimal payout would now represent the compounded effect of both

these changes; however, it is conceivable that although _s tð Þ2 is positive, _r tð Þ2 is

negative, tending to offset the decrease or increase in the optimal payout ratio

resulting from the former. Alternatively, _s tð Þ2 could be negative, indicating

a reduction in the total risk of the firm and may offset the increase in the optimal

payout ratio resulting from a positive _r tð Þ2.
To what extent the inverse variations in the total risk and the risk complexion of

the firm will offset each other’s effects on the optimal payout ratio for the firm

would, of course, be dependent upon the relative magnitudes of _r tð Þ2 and _s tð Þ2. To
see the precise trade-off between the two dynamic effects of _s tð Þ2=s tð Þ2

h i
and

_r tð Þ2=r tð Þ2
h i

on the optimal payout ratio, let the total differential of Eq. 79.26,

given in Eq. 79.33, be set equal to zero, yielding

d _s tð Þ2=s tð Þ2
h i

¼ �d _r tð Þ2=r tð Þ2
h i

: (79.34)

Equation 79.34 implies that the relative increase (or decrease) in s(t)2 has

a one-to-one correspondence with the relative decrease (or increase) in p(t)2, so
in Eq. 79.34 conditions are established for relative changes in p(t)2 and s(t)2, which
lead to a null effect on the optimal dividend payout ratio.

79.6.4 Case 4: No Change in Risk

Now we consider the least dynamic situation, in which no changes exist in total risk

or systematic risk, assuming _s tð Þ2 ¼ 0 and _r tð Þ2 ¼ 0. Under this circumstance,

Eq. 79.26 reduces to

D tð Þ=x tð Þ	 
 ¼ 1� h

aþ bI

� � �k þ he h�kð Þ T�tð Þ

h� k

� �
: (79.35)
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Thus, when the firm’s total risk and covariability of its earnings with the market

are assumed stationary, Eq. 79.35 indicates that a firm’s optimal payout ratio is

independent of its risk. Notice that neither s(t)2 nor r(t)2 now appears in the

expression for the optimal payout ratio given in Eq. 79.35. These conclusions,

like those of Wallingford (1972a, b), for example, run counter to the intuitively

appealing and well-accepted theory of finance emphasizing the relevance of risk for

financial decision making.12 Our model clearly shows that the explanation for such

unacceptable implications of the firm’s total risk and its market-dependent and

market-independent components for the firm’s optimal payout policy lies, of

course, in the totally unrealistic assumptions of stationarity underlying the deriva-

tion of such results as illustrated in Eq. 79.35.

79.7 Empirical Evidence

A growing body of literature focuses on the determinants of optimal dividend payout

policy. Rozeff (1982), Jagannathan et al. (2000), Grullon et al. (2002), Aivazian

et al. (2003), Blau and Fuller (2008), and others empirically investigate the determi-

nation of dividend policy, but none of them has a solid theoretical model to support

their findings. Based upon our theoretical model and its implications discussed in the

foregoing sections, we develop the three testable hypotheses that follow:

Hypothesis 1 Firms generally reduce their dividend payouts when their growth

rates increase.

The negative relationship between the payout ratio and the growth ratio in our

theoretical model implies that high growth firms need to reduce the payout ratio and

retain more earnings to build up “precautionary reserves,” but low growth firms are

likely to be more mature and already build up their reserves for flexibility consid-

erations. Rozeff (1982), Fama and French (2001), Blau and Fuller (2008), and

others argue that high growth firms will have higher investment opportunities and

tend to pay out less in dividends. Based upon flexibility concerns, we predict that

high growth firms pay higher dividends. This result is obtained when risk factor is

not explicitly considered.

Following Eqs. 79.31 and 79.32, we theoretically find that the relationship

between the payout ratio and the risk can be either negative or positive, depending

upon whether the growth rate is higher or lower than the rate of return on total

assets. Based upon this finding, we develop two other hypotheses.

Hypothesis 2 The relationship between the firms’ dividend payouts and their risks

is negative when their growth rates are higher than their rates of return on asset.

High growth firms need to reduce the payout ratio and retain more earnings to

build up “precautionary reserves,” which become more important for a firm with

12For example, Lintner (1963).
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volatile earnings over time. For flexibility considerations, high growth firms tend to

retain more earnings when they face higher risk. This theoretical result is consistent

with the flexibility hypothesis.

Hypothesis 3 The relationship between the firms’ dividend payouts and their risks

is positive when their growth rates are lower than their rates of return on asset.

Low growth firms are likely to be more mature and have most likely already built

such reserves over time, and they probably do not need more earnings to maintain

their low growth perspective and can afford to increase the payout (see Grullon

et al. 2002). Because the higher risk may involve higher cost of capital and make the

free cash flow problem worse, for free cash flow considerations, low growth firms

tend to pay more dividends when they face higher risk. This theoretical result is

consistent with the free cash flow hypothesis.

79.7.1 Sample Description

We collect the firm information, including total asset, sales, net income, and

dividends payout, from Compustat. Stock price, stock returns, share codes, and

exchange codes are retrieved from the Center for Research in Security Prices

(CRSP) files. The sample period is from 1969 to 2009. Only common stocks

(SHRCD ¼ 10, 11) and firms listed on NYSE, AMEX, or NASDAQ

(EXCE ¼ 1, 2, 3, 31, 32, 33) are included in our sample. We exclude utility

services (SICH ¼ 4900–4999) and financial institutions (SICH ¼ 6000–6999).13

The sample includes those firm-years with at least 5 years of data available to

compute average payout ratios, growth rate, return on assets, beta, total risk, size,

and book-to-market ratios. The payout ratio is measured as the ratio of the dividend

payout to the net income. The growth rate is the sustainable growth rate proposed

by Higgins (1977). The beta coefficient and total risk are estimated by the market

model over the previous 60 months. For the purpose of estimating their betas, firm-

years in our sample should have at least 60 consecutive previous monthly returns.

To examine the optimal payout policy, only firm-years with five consecutive

dividend payouts are included in our sample.14 Considering the fact that firm-

years with no dividend payout one 1 year before (or after) might not start (or stop)

13We filter out those financial institutions and utility firms based on the historical Standard

Industrial Code (SIC) available from COMPUSTAT. When a firm’s historical SIC is unavailable

for a particular year, the next available historical SIC is applied instead. When a firm’s historical

SIC is unavailable for a particular year and all the years after, we use the current SIC from

COMPUSTAT as a substitute.
14To avoid creating a large difference in dividend policy, on one hand managers partially adjust

firms’ payout by several years to reduce the sudden impacts of the changes in dividend policy. On

the other hand, they use not only 1-year firm conditions but also multiyear firm conditions to

decide how much they will pay out. In examining the optimal payout policy, we use the 5-year

rolling averages for all variables.
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their dividend payouts in the first (fourth) quarter of the year, we exclude from our

sample firm-years with no dividend payouts 1 year before or after to ensure the

dividend payout policy reflects the firm’s full-year condition.

Table 79.2 shows the summary statistics for 2,645 sample firms during the

period from 1969 to 2009. Panel A of Table 79.2 lists the number of firm-year

observations for all sample high growth firms and low growth firms, respectively.

High growth firm-years are those firm-years that have 5-year average sustainable

growth rates higher than their 5-year average rate of return on assets. Low growth

firm-years are those firms with 5-year average sustainable growth lower than their

Table 79.2 Summary statistics of sample firm characteristics

Panel A. Sample size

Year

Number of firm-years

Year

Number of firm-years

All Growth > ROA Growth < ROA All Growth > ROA Growth < ROA

1969 345 161 184 1990 690 522 168

1970 360 175 185 1991 668 511 157

1971 404 201 203 1992 653 494 159

1972 513 269 244 1993 642 460 182

1973 535 308 227 1994 655 479 176

1974 572 371 201 1995 651 483 168

1975 609 432 177 1996 693 530 163

1976 650 486 164 1997 725 582 143

1977 678 530 148 1998 743 620 123

1978 711 553 158 1999 725 612 113

1979 779 620 159 2000 709 607 102

1980 764 636 128 2001 659 569 90

1981 929 785 144 2002 599 503 96

1982 1,203 1,003 200 2003 571 475 96

1983 1,151 933 218 2004 525 433 92

1984 1,067 832 235 2005 481 391 90

1985 1,010 744 266 2006 510 430 80

1986 958 669 289 2007 542 451 91

1987 897 645 252 2008 579 470 109

1988 847 615 232 2009 610 484 126

1989 721 531 190 All
years

28,333 21,065 6,728

Panel B of Table 79.2 Descriptive statistics of characteristics of sample

Payout ratio Growth rate ROA Beta Total risk Size ($MM) M/B

All sample (N ¼ 28,333)

Mean 0.3793 0.1039 0.0723 1.0301 0.0106 3,072 1.7940

Median 0.3540 0.0886 0.0648 1.0251 0.0089 291 1.3539

Stdev 0.1995 0.7444 0.0389 0.4272 0.0078 14,855 1.9479

High growth firms (N ¼ 21,065)

Mean 0.3180 0.1233 0.0698 1.0624 0.0112 3,267 1.7951

Median 0.2996 0.1002 0.0638 1.0581 0.0095 314 1.3757

(continued)
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5-year average rate of return on assets. The sample size increases from 345 firms in

1969 to 1,203 firms in 1982, while declining to 610 firms by 2009. A total of 28,333

dividend-paying firm-years are included in the sample. When classifying high

growth firms and low growth firms relative to their return on assets, the proportion

of high growth firms increases over time. The proportion of firm-years with

a growth rate higher than return on assets increases from less than 50 % during

the late 1960s and early 1970s to 80 % in 2008. Panel B of Table 79.2 shows the

5-year moving averages of mean, median, and standard deviation values for the

measures of payout ratio, growth rate, rate of return, beta coefficient, total risk,

market capitalization, and market-to-book ratio across all firm-years in the sample.

Among high growth firms, the average growth rate is 12.33 %, and the average

payout ratio is 31.80 %; but for low growth firms, the average growth rate is 4.13 %,

and the average payout ratio is 57.62 %. High growth firms undertake more beta

risk and total risk, indicating that high growth firms undertake both more systematic

risk and unsystematic risk to pursue a higher rate of return.

79.7.2 Univariate Analysis

To examine Hypothesis 1, we divide our sample into five groups by growth rate. As

Table 79.3 Panel A indicates, the average (median) payout ratio is 48.64 %

(48.35 %) for the lowest growth group and is 22.13 % (19.67 %) for the highest

growth group. The argument of “precautionary reserves” for flexibility concerns

Table 79.2 (continued)

Panel B of Table 79.2 Descriptive statistics of characteristics of sample

Payout ratio Growth rate ROA Beta Total risk Size ($MM) M/B

Stdev 0.1658 0.8060 0.0355 0.4352 0.0070 15,806 1.6496

Low growth firms (N ¼ 6,728)

Mean 0.5762 0.0413 0.0800 0.9265 0.0087 2,447 1.7904

Median 0.5542 0.0524 0.0692 0.9375 0.0071 229 1.3007

Stdev 0.1690 0.4918 0.0476 0.3822 0.0099 11,250 2.6909

This table presents the descriptive statistics for those major characteristics of our sample firms.

Sample includes those firms listed on NYSE, AMEX, and NASDAQ with at least 5 years of data

available to compute average payout ratios, growth rate, return on assets, beta, total risk, size, and

book-to-market ratios. All financial service operations and utility companies are excluded. Panel

A lists the numbers of firm-years observations for all sample firms, high growth firms, and low

growth firms, respectively, during the period between year 1969 and year 2009. High growth firm-

years are defined as firm-years with sustainable growth rates higher than their rates of return on

assets. Low growth firm-years are defined as firm-years with sustainable growth rates lower than

their rate of return on assets. Panel B lists the mean, median, and standard deviation values of the

5-year average of the payout ratio, growth rate, rate of return on assets, beta risk, total risk, size,

and book-to-market ratio. The payout ratio is measured as the ratio of the dividend payout to the

earnings. Growth rate is the sustainable growth rate proposed by Higgins (1977). The beta

coefficient and total risk are estimated by the market model over the previous 60 months. Size is

defined as market capitalization calculated by the closing price of the last trading day of June of

that year times the outstanding shares at the end of June of that year
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and Hypothesis 1 can therefore be confirmed. We further divide our sample in to

five groups by beta risk and total risk indicated in Panel B and Panel C of Table 79.3.

We can observe a monotonic decrease in payout ratios when the beta risk or the

total risk increases, which is consistent with the findings of Rozeff (1982), Fenn and

Liang (2001), Grullon et al. (2002), Aivazian et al. (2003), and Blau and Fuller

(2008), but they do not consider the relationship between the payout ratio, and the

risk may alter by the growth. To examine the Hypothesis 2 and Hypothesis 3, we

further divide our sample by 2-way sorts on the growth rate and risks. High growth

groups are firm-years with sustainable growth rates higher than their rate of return

on total assets. Low growth groups are firm-years with sustainable growth rates

lower than their rate of return on total assets. In Table 79.3 Panel B, among high

growth firms, the average (median) payout ratio decreases from 31.73 % (30.10 %)

Table 79.3 Payout ratios partitioned by growth rate and risks

Panel A. Payout ratios partitioned by growth rate

Low growth High growth

1 2 3 4 5

All sample Mean 0.4864 0.3835 0.3272 0.2696 0.2213

Median 0.4835 0.3795 0.3196 0.2556 0.1967

Panel B. Payout ratios partitioned by beta risk

Low beta High beta

1 2 3 4 5

All sample Mean 0.3912 0.3940 0.3963 0.3609 0.3371

Median 0.3716 0.3765 0.3737 0.3328 0.3009

High growth firms Mean 0.3173 0.3229 0.3204 0.3025 0.2886

Median 0.3027 0.3081 0.3028 0.2874 0.2588

Low growth firms Mean 0.6115 0.6064 0.6182 0.6189 0.6292

Median 0.5864 0.5748 0.5947 0.6042 0.6090

Panel C. Payout ratios partitioned by total risk

Low total risk High total risk

1 2 3 4 5

All sample Mean 0.4274 0.4058 0.3618 0.3285 0.3041

Median 0.4099 0.3808 0.3333 0.2899 0.2588

High growth firms Mean 0.3499 0.3286 0.2957 0.2698 0.2531

Median 0.3381 0.3138 0.2745 0.2431 0.2190

Low growth firms Mean 0.6078 0.6202 0.6269 0.6091 0.6115

Median 0.5732 0.5942 0.6062 0.5863 0.6025

This table presents the average and the median payout ratios in different groups partitioned by

growth rate, beta risk, or total risk during the sample period from 1969 to 2009. Panel A reports the

average and the median payout ratios by one-way sort on the growth rate. Panel B reports the

average and the median payout ratios by independent two-way sort on the growth rate and the beta.

Panel C reports the average and the median payout ratios by independent two-way sort on the

growth rate and the total risk. High growth firm-years are defined as firm-years with sustainable

growth rates higher than their rates of return on assets. Low growth firm-years are defined as

firm-years with sustainable growth rates lower than their rate of return on assets
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to 28.86 % (25.88 %) when the beta risk increases. Among low growth firms,

however, the average (median) payout ratio increases from 61.15 % (58.64 %) to

62.92 % (60.90 %) when the beta risk increases. Similar to Panel B, Panel C also

shows a negative relationship between the payout ratio and the total risk among

high growth firms and a positive relationship between the payout ratio and the total

risk among low growth firms. Above all, the static analysis results of Panel B and

Panel C support Hypotheses 2 and 3 that the relationship between the payout ratio

and the risk depends upon the growth rate of a firm.

79.7.3 Multivariate Analysis

To examine the relationship between the payout ratio and other financial variables,

we propose fixed-effects models of the payout ratio as follows15:

ln
payout ratioi, t

1� payout ratioi, t
� �

 !
¼ aþ b1Riski, t þ b2Di, t gi, t < c � ROAi, t

� �
� Riski

þ b3Growthi, t þ b4Riski, t � Growthi, t

þb5ln Sizeð Þi, t þ b6ROAi, t þ ei, t:

(79.36)

In the regression, the dependent variable is the logistic transformation of the

payout ratio. Independent variables include risk measure (beta coefficient or total

risk), the interaction of dummy variable and risk measure, growth rate, the inter-

action of risk measure and growth rate, log of size, and rate of return on total

assets.16 Based upon the theoretical model and its implications from Sect. 79.6, we

assume that c is equal to 1. The dummy variable (Di) is equal to 1 if a firm’s 5-year

average growth rate is less than its 5-year average rate of return on assets and

0 otherwise. Such structure allows us to analyze the relationship between payout

ratio and growth rate and the relationship between payout ratio and risk under

different growth rate levels.

Thompson (2010), Peterson (2009), and Cameron et al. (2006) have pointed out

that standard errors of 2-way fixed-effects estimates can be biased if 2-dimensional

clustering (clustering in the cross-sectional errors and clustering in time-series

errors) is not controlled for. Thompson (2010) and Boehmer et al. (2010) have

empirically found that these clustering effects are not important for large samples.

15The dummy variableDi,t(gi,t< c . ROAi,t) used in Eq. 79.36 implies that the relationship between

the payout ratio and risks is nonlinear (piecewise regression). In other words, the breakpoint of the

structural change is at gi,t¼ c . ROAi,t. Based upon our theoretical model, we assume that c is equal
to 1 in our empirical work.
16Besides merely adding an interaction dummy as indicated in Eq. 79.36, we include an intercept

dummy to take care of the individual effect of two groups. We also run regressions for high growth

firms and low growth firms separately. Results from both models are qualitatively the same as

those from Eq. 79.36 and also support Hypotheses 1–3.
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The robust standard errors are very similar to standard errors for ordinary least

square (OLS), suggesting that the fixed effects and control variables are removing

most of the correlation that is present across observations. In addition, our dataset

cannot be meaningfully applied to the clustering effect model17; therefore, statis-

tical inferences in this paper are conducted using fixed-effects standard errors.

Table 79.4 provides the results of fixed-effects regressions for 2,645 firms during

the period 1969 to 2009.Model (1) andModel (2) show that the estimated coefficients

of the growth rate are�0.03 with a t-statistics of�4.85 and�0.03 with a t-statistics
of �4.85, respectively. Such significantly negative coefficients confirm Hypothesis

1, which states that high growth firms will pay less in dividends for the consideration

of flexibility. We also include an interaction term of risk and growth rate intoModel
(3) andModel (4). The results inModel (3) andModel (4) also support Hypothesis 1.

Models (1–4) show that the relationship between the payout ratio and the risk is

significantly negative. The results are similar to the findings of Rozeff (1982),

Jagannathan et al. (2000), and Grullon et al. (2002), indicating that dividend

payouts are negatively correlated to firm risks; but our theoretical model shows

that if firms follow their optimal dividend payout policy, the relationship between

dividend payouts and firm risks depends on their growth rates relative to their rate

of return on total assets as our theoretical analysis presented in Sect. 79.6.

In Table 79.2, we find the number of firms with a higher growth rate with respect

to their rate of return on assets greater than the number of firms with a lower growth

rate with respect to their rates of return on assets. When pooling high growth firms

and low growth firms together, the negative risk effect of high growth firms will

dominate the positive risk effect of low growth firms due to the larger proportion of

high growth firms in the observations. The results of the negative relationship

between the payout ratio and the risk shown in Models (1–4) may therefore result

from the greater proportion of high growth firms. Based on our subsequent analysis,

the effect of growth rates on dividend payout policies can be more accurately found

when firms are separated into high growth firms and low growth firms relative to

their rates of return on total assets of return on assets.

To test Hypotheses 2 and 3, we introduce an interaction term of the dummy

variable and the risk. In Model (5) and Model (6), the estimated coefficients of risk

are �0.23 with a t-statistics of �13.88 and �0.22 with a t-statistics of �12.69,

respectively. The significantly negative coefficients support the hypothesis 2 that,

because of the consideration of flexibility, the payout ratio and the risk are nega-

tively correlated for firms with a higher growth rate relative to their rate of return on

assets. In addition, significant and positive coefficients of the interaction term of the

dummy variable and the risk indicate that, when the risk changes, the dividend

policy for low growth firms is different from that of high growth firms. By summing

the coefficient of risk and the coefficient of interaction term, we can obtain coefficients

17Because our sample is an unbalanced panel data, the clustering computer program cannot

meaningfully estimate the variance components, variance of firm V̂ firm

� �
, variance of time

V̂ time

� �
, and heteroskedasticity-robust OLS variance V̂white

� �
.
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of 0.48 and 35.54 for beta and total risk, respectively, indicating the relationship

between the payout ratio and the risk for low growth firms is positive. That is, when

the risk increases, lowgrowth firmswill follow their optimal payout policies to increase

their dividend payouts. Hypothesis 3 is thus confirmed in our empirical work. Blau and

Fuller (2008) find that the flexibility hypothesis is more suitable than the free cash flow

hypothesis to explain the dividend policy, but their method cannot separate the

dividend policy decisions between high growth firms and low growth firms. Conse-

quently, themodel used in this paper can be regarded as a generalization of their results.

InModel (7) andModel (8) in Table 79.4, we further include the interaction term
of the risk and the growth rate into the regressions. The results still support our

hypotheses that the relationship between the payout ratio (Hypothesis 1) and the

growth rate is negative and the relationship between the payout ratio and the risk

depends on firm’s growth rate with respect to its rate of return on total assets

(Hypotheses 2 and 3). In addition, we find that the interaction terms of the risk and

the growth rate are significantly different from zero. We also find that the adjusted

R-squares for Models (5–8) are higher than those for models without dummies.

F-tests also reject the null hypothesis that the regression with the interaction of the

dummy variable and the risk is not different from the regression without the

interaction of the dummy and the risk. We can thus conclude that the payout ratio

is not linearly related to the growth rate or to the risk, and previous empirical studies

on dividend policy using linear model may suffer from model misspecification.

79.7.4 Moving Estimates Process for Structural Change Model

In Eqs. 79.31 and 79.32 in Sect. 79.6, we theoretically show that the

structural change breakpoint for the relationship between the payout ratio and

risks is at gi,t ¼ ROAi,t. In empirical works, we use dummy variable approach

to separate the sample into a high growth (gi,t > c . ROAi,t) group and a low growth

(gi,t < c . ROAi,t) group, assuming c is equal to 1, and empirically test the

relationship between the payout ratio and risks for high growth firms and low

growth firms. Based on the moving estimates process developed by Chow (1960),

Hansen (1996, 1999, 2000), and Zeileis et al. (2002), we try to estimate the

empirical breakpoint of the structural change and examine whether the empirical

breakpoint is different from our theoretical breakpoint or not.

By using the moving estimates process, we can obtain an empirical estimate of

c ¼ 0.93 when using beta risk and c ¼ 0.97 when using total risk.18 That is, the

breakpoint of the structural change is at gi,t ¼ 0.93� ROAi,t or gi,t ¼ 0.93� ROAi,t.

Then we redoModel (5) toModel (8) of Table 79.4 by using the empirical structural

change point instead of the theoretical structural change point. In Table 79.5,

18Gujarati (2009) shows that this kind of problem can be regarded as piecewise regression by using

moving estimates processes. Please see the Appendix 4 for the details of the moving estimates

process.
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we compare to the theoretical model and find that the estimates and significances

using the empirical breakpoint of the structural change are almost the same as those

using the theoretical breakpoint indicated in Table 79.4. Results obtained from the

moving estimates process show the existence of an empirical breakpoint for the

relationship between the payout ratio and risks and also confirm that the dummy

variable used in Eq. 79.36 is both theoretically and empirically acceptable.

79.8 Summary and Concluding Remarks

In this paper, we extend the model developed in earlier studies and improve upon

the results obtained in those studies on optimal dividend payout. By allowing partial

dividend payout for the consideration of flexibility, we theoretically show the

existence of the optimal dividend payout. The results obtained in this paper are

different from those of M&M (1961) because, contrary to their model, the model

developed here is dynamic, is under uncertainty, and allows the firm to retain some

earnings for positive NPV projects, following DeAngelo and DeAngelo (2006) and

Blau and Fuller (2008). The dynamic stochastic model developed and empirically

tested here is comprehensive and for the very first time includes several variables

simultaneously that have not been included in any of the earlier studies. More

specifically, the optimization model developed here includes, among other things,

a stochastic rate of return on assets, corporate growth rate, and total risk (broken

down into its systematic and firm-specific components).

We further analyze the effects of different parameters on the optimal payout

ratio. A sensitivity analysis and an approximation form show a negative but

nonlinear relationship between the optimal dividend payout ratio and the growth

rate. We also explicitly derive the theoretical relationship between the optimal

payout ratio and risks. Results of the comparative static analyses cast a different

light on the relationship between corporate dividend policy and risk. That the risk

and dividend payout are negatively related is generally believed. On the contrary,

the relationship between risk and dividend payout is positive when the growth rate

is less than the company’s rate of return on assets. Only when the growth rate

exceeds the rate of return on assets does the relationship between dividend payout

and risk turns negative. In sum, this paper shows for the first time that the

relationship between growth and dividend payout is nonlinear. In addition, no

research has ever shown that the relationship between risk rates and the dividend

payout is nonlinear and influenced by other important variables, those of the

company’s rate of return on assets and growth rate.

Based upon our theoretical model, we develop three testable hypotheses and try to

reconcile conflicts between the flexibility hypothesis and the free cash flow hypoth-

esis in existing literature. The empirical research covers 40 years of US data from

1969 to 2009 for 28,333 dividend-paying firm-years. Our empirical results show that

the optimal dividend payout ratio is negatively, but not linearly, related to the growth

rate. In addition, the optimal dividend payout ratio is negatively (positively) related to

both total risk and systematic risk when the growth rate is higher (lower) than the rate
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of return on assets. Such results also confirm the argument that high growth firms pay

dividends due to flexibility considerations and low growth firms pay dividends due to

the consideration of the free cash flow problem.

In sum, this paper develops a dynamic stochastic model deriving relationships

between corporate dividend payout and several important financial variables. The

relationships derived from the model are then tested by extensive empirical

research. The relationships found between dividend payout and the growth rate

and between dividend payout and risk run counter to those observed in earlier

studies and also counter to generally held beliefs. Extensive empirical research

validated the conclusions derived from the dynamic stochastic optimization

model developed in this paper. For the first time we report here in the literature

that these relationships are nonlinear and not solely negative as found in other

studies. Thus, this paper extends the model developed in earlier studies and

improves upon the results obtained in those studies on optimal dividend payout.

We believe that this paper may contribute to an understanding dividend policy in

the literature.

Appendix 1: Derivation of Eq. 79.19

This appendix presents a detailed derivation of the solution to the variable partial

differential equation, Eq. 79.17, which is similar to Gould’s (1968) Eq. 79.9 in

investigation the adjustment cost. Following Gould’s (1968) approach, we first

derive a general solution for a standard variable partial differential equation.

Then we apply this general equation to solve Eq. 79.17. The standard variable

partial differential equation can be defined as

_p tð Þ þ g tð Þp tð Þ ¼ q tð Þ: (79.37)

As a particular case of Eq. 79.37, the equation

_p tð Þ þ g tð Þp tð Þ ¼ 0 or
_p tð Þ
p tð Þ ¼ �g tð Þ (79.38)

has a solution

p tð Þ ¼ c � exp �
ð
g tð Þdt

� �
: (79.39)

By substituting constant c with function c(t), we have the potential solution to

Eq. 79.37

p tð Þ ¼ c tð Þ � exp �
ð
g tð Þdt

� �
: (79.40)
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Taking a differential with respect to t, we obtain

_p tð Þ ¼ _c tð Þ � exp �
ð
g tð Þdt

� �
� c tð Þ � exp �

ð
g tð Þdt

� �
g tð Þ

¼ _c tð Þ � exp �
ð
g tð Þdt

� �
� p tð Þg tð Þ: (79.41)

Therefore,

_p tð Þ þ p tð Þg tð Þ ¼ _c tð Þ � exp �
ð
g tð Þdt

� �
: (79.42)

From Eqs. 79.37 and 79.42, we have

_c tð Þ � exp �
ð
g tð Þdt

� �
¼ q tð Þ: (79.43)

Equivalently,

_c tð Þ ¼ q tð Þ � exp
ð
g tð Þdt

� �
: (79.44)

Therefore,

c tð Þ ¼
ð
q tð Þ � exp

ð
g tð Þdt

� �
dt: (79.45)

Substituting Eq. 79.45 into Eq. 79.39, we have the general solution of Eq. 79.37

p tð Þ ¼ exp �
ð
g tð Þdt

� �
�
ð
q tð Þ exp

ð
g tð Þdt

� �
dt

� �
: (79.46)

To solve Eq. 79.17, we will apply the above result. Let g tð Þ ¼ d _m tð Þ
m tð Þ � k

and q(t) ¼ –G(t).
Because

exp

ð
g tð Þdt

� �
¼ exp

ð
d
_m tð Þ
m tð Þ � k

� �
dt

� �
¼ exp d

ð
_m tð Þ
m tð Þ dt� kt

� �

¼ exp dIn m tð Þð Þ � ktþ cð Þ ¼ c1 � m tð Þdexp �ktð Þ, where c1 > 0,

(79.47)

then we have

P tð Þ ¼ c2 � m tð Þ�d
exp ktð Þ �

ð
q tð Þc3 � m tð Þdexp �ktð Þdt

� �
,

where c2 > 0, and c3 > 0

(79.48)
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or equivalently,

P tð Þ ¼ c4 � ekt

m tð Þd
�
ð
�G tð Þm tð Þd

ekt
dt

" #
,

where c4 > 0:

(79.49)

Finally, we have

P tð Þ ¼ c
ekt

m tð Þk �
ð
G tð Þm tð Þde�ktdt: (79.50)

Changing from an indefinite integral to a definite integral, Eq. 79.49 can be

shown as

p tð Þ ¼ ekt

m tð Þd
ðT
t

G sð Þm sð Þde�ksds,

which is Eq. 79.19.

Appendix 2: Derivation of Eq. 79.21

This appendix presents a detailed derivation of Eq. 79.21. In Eq. 79.51, the initial

value of the firm can be expressed as

p 0ð Þ ¼ 1

m 0ð Þd
ðT
0

aþ bI � h
� �

A 0ð Þethm tð Þd�1 � a
0
A 0ð Þ2r tð Þ2s tð Þ2e2thm tð Þd�2

n o
e�ktdt:

(79.51)

To maximize firm value, the number of shares outstanding at each point of time

should be determined; therefore, the objective function can be written as follows:

max
m tð Þf gTt¼0

p 0ð Þ: (79.52)

Following the Euler-Lagrange condition (see Chiang 1984), we take first-order

conditions on the objective function with respect to m(t), where t 2 [0, T], and let

such first-order conditions be equal to zero:

1

m 0ð Þd
d� 1ð Þ aþ bI � h

� �
A 0ð Þethm tð Þd�2

n

� a
0
A 0ð Þ2r tð Þ2s tð Þ2e2thm tð Þd�3 d� 2ð Þ

o
e�ktdt ¼ 0,

Where

t 2 0; T½ �: (79.53)
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To simplify Eq. 79.53,

d� 1ð Þ aþ bI � h
� �

A 0ð Þethm tð Þd�2 � a
0
A 0ð Þ2r tð Þ2s tð Þ2e2thm tð Þd�3 d� 2ð Þ ¼ 0,

where

t 2 0; T½ �, (79.54)

which is Eq. 79.21.

Appendix 3: Derivation of Eqs. 79.28 and 79.29

This appendix presents a detailed derivation of both Eqs. 79.28 and 79.29. In

Eq. 79.55, the optimal payout ratio with no changes in total risk or systematic

risk is

D tð Þ=x tð Þ	 
 ¼ 1� h

aþ bI

� � �k þ he h�kð Þ T�tð Þ

h� k

� �
: (79.55)

Considering the finite growth case, if (h – k)(T – t)< 1, then followingMaclaurin

expansion, the e(h–k)(T–t) can be expressed as

e h�kð Þ T�tð Þ ¼ 1þ h� kð Þ T � tð Þ þ h� kð Þ2 T � tð Þ2
2!

þ h� kð Þ3 T � tð Þ3
3!

:

� 1þ h� kð Þ T � tð Þ
(79.56)

Therefore, Eq. 79.31 can be approximately written as

D tð Þ=x tð Þ	 
 � 1� h

aþ bI

� �
1þ h T � tð Þð Þ,

which is Eq. 79.38.

We further take the partial derivative of Eq. 79.33 with respect to the growth

rate. Then the partial derivative of optimal payout ratio with respect to the growth

rate can be approximately written as

@ D tð Þ=x tð Þ	 

@h

� aþ bI
� �

T � tð Þ � 2h T � tð Þ � 1

aþ bI

� �
,

which is Eq. 79.29.
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Table 79.6 Moving estimates process for testing the break point of structural change

F-statistics F-statistics

c Beta risk Total risk c Beta risk Total risk

0.20 120.38 92.78 1.01 658.58 533.26

0.25 147.77 114.94 1.02 646.43 524.02

0.30 205.83 153.89 1.03 636.99 516.94

0.35 252.56 179.52 1.04 621.57 506.64

0.40 333.30 244.85 1.05 619.94 507.41

0.45 395.33 298.05 1.06 610.91 503.46

0.50 421.89 320.42 1.07 616.34 505.71

0.55 445.75 340.36 1.08 610.81 502.08

0.60 505.14 213.02 1.09 608.96 505.16

0.65 532.57 205.06 1.10 609.88 496.72

0.70 572.82 411.85 1.15 610.61 499.96

0.75 600.57 452.04 1.20 575.99 473.31

0.80 633.15 485.64 1.25 543.25 445.85

0.85 674.48 524.66 1.30 532.27 431.02

0.90 675.53 542.20 1.35 505.57 408.10

0.91 682.40 547.18 1.40 487.91 388.90

0.92 678.08 542.58 1.45 446.97 364.58

0.93 682.43 549.74 1.50 408.25 326.46

0.94 679.55 547.81 1.55 383.32 304.93

0.95 679.52 546.92 1.60 345.32 266.34

0.96 675.88 549.83 1.65 327.34 249.22

0.97 668.42 543.73 1.70 309.13 231.42

0.98 669.35 547.23 1.75 296.67 223.43

0.99 664.33 548.16 1.80 278.69 212.60

1.00 622.77 545.64

This shows the F-statistics of moving estimates processes. The nonstructural change regression

and structural change regression are as follows:

ln
payout ratioi, t

1� payout ratioi, tð Þ
� �

¼ aþ b1Riski, t þ b2Growthi, t þ b3 ln Sizeð Þi, t þ b4ROAi, t þ ei, t

ln
payout ratioi, t

1� payout ratioi, t
� �

 !
¼ aþ b

0
1Riski, t þ b

0
2D gi, t < c � ROAi, t

� �
� Riski þ b

0
3Growthi, t

þ b
0
5 ln Sizeð Þi, t þ b

0
6ROAi, t þ ei, t

The dependent variable is the payout ratio with a logistic transformation. The breakpoint, c, is
between 0.2 times and 1.8 times the rate of return on total assets. The dummy variable is equal to

1 if a firm’s 5-year average growth rate is less than c times its 5-year average ROA and

0 otherwise. The independent variables are beta risk (total risk), dummy times beta risk (total

risk), growth rate, log of size, and the rate of return on assets. F-statistics are under the null

hypothesis that the relationship between the payout ratio and the risk does not depend on the

growth rate of a firm
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Fig. 79.2 Moving estimates process for testing the break point of structural change. The
figures show the F-statistics of moving estimates processes. The nonstructural change regression

and structural change regression are as follows:

ln
payout ratioi, t

1� payout ratioi, tð Þ
� �

¼ aþ b1Riski, t þ b2Growthi, t þ b3 ln Sizeð Þi, t þ b4ROAi, t þ ei, t

ln
payout ratioi, t

1� payout ratioi, tð Þ
� �

¼ aþ b
0
1Riski, t þ b

0
2D gi, t < c � ROAi, t

� �
� Riski þ b

0
3Growthi, t

þ b
0
5 ln Sizeð Þi, t þ b

0
6ROAi, t þ ei, t.

The dependent variable is the payout ratio with a logistic transformation. The breakpoint, c, is
between 0.2 times and 1.8 times rate of return on total assets. The dummy variable is equal to 1 if

a firm’s 5-year average growth rate is less than c times its 5-year average ROA and 0 otherwise. The

independent variables are beta risk (total risk), dummy times beta risk (total risk), growth rate, log of

size, and the rate of return on assets. F-statistics is under the null hypothesis that the relationship

between the payout ratio and the risk does not depend on the growth rate of a firm. The risk used in

Fig. 79. 2a is the beta, and the risk used in Fig. 79. 2b is the total risk
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Appendix 4: Using Moving Estimates Process to Find the
Structural Change Point in Eq. 79.36

To estimate the empirical breakpoint, we first assume the dummy variable associ-

ated with risk as D(gi,t < c . ROAi,t). We introduce a no structural change model,

Eq. 79.57, and a structural change model, Eq. 79.58. In Eq. 79.58, c is a continuous
constant variable, ranging from 0.2 to 1.8 (c 2 [0.2, 1.8]). The breakpoint of

structural change is at gi,t ¼ c . ROAi,t.

ln
payout ratioi, t

1� payout ratioi, t
� �

 !
¼ aþ b1Riski,t þ b2Growthi,t

þ b3 ln Sizeð Þi,t þ b4ROAi, t þ ei,t (79.57)

ln
payout ratioi, t

1� payout ratioi, t
� �

 !
¼ aþ b

0
1Riski,t þ b

0
2D gi, t < c � ROAi,t

� �
� Riski

þb
0
3Growthi,t þ b

0
4ln Sizeð Þi,t þ b

0
5ROAi,t þ ei,t

(79.58)

By using the moving estimates process, we calculate the F-statistics for

all potential structural change points between gi,t ¼ 0.2 � ROAi,t and gi,t ¼ 1.8 �
ROAi,t. The F-test is under the null hypothesis that no structural change on the

relationship between the payout ratio and the risk. That is, Eq. 79.57 is identical to

Eq. 79.58. Finally, we can locate the breakpoint of the structural change at the point

with highest value of F-statistics.
From Table 79.6, the process has a clear peak at c ¼ 0.93 when using the beta

risk as the independent variable and c ¼ 0.96 when using the total risk as the

independent variable. Figure 79.2 also graphically presents a peak F-statistics point
at c ¼ 0.93 (0.96) in terms of beta risk (total risk). Results from the moving

estimates process indicate that a structural change on the relationship exists

between the payout ratio and risks. The breakpoint of the structural change is at

gi,t ¼ 0.93 � ROAi,t or gi,t ¼ 0.97 � ROAi,t.
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Abstract

This chapter uses an exponential generalized beta distribution of the second kind

(EGB2) to model the returns on 30 Dow Jones industrial stocks. The model

accounts for stock return characteristics, including fat tails, peakedness

(leptokurtosis), skewness, clustered conditional variance, and leverage effect.
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The evidence suggests that the error assumption based on the EGB2 distribution

is capable of taking care of skewness, kurtosis, and peakedness and therefore is

also capable of making good predictions on extreme values. The goodness-of-fit

statistic provides supporting evidence in favor of EGB2 distribution in modeling

stock returns. This chapter also finds evidence that the leverage effect is dimin-

ished when higher moments are considered.

The EGB2 distribution used in this chapter is a four-parameter distribution. It

has a closed-form density function and its higher-order moments are finite and

explicitly expressed by its parameters. The EGB2 distribution nests many widely

used distributions such as normal distribution, log-normal distribution, Weibull

distribution, and standard logistic distribution.

Keywords

Expected stock return • Higher moments • EGB2 distribution • Risk manage-

ment • Volatility • Conditional skewness • Risk premium

80.1 Introduction

Focusing on economic rationales, financial economists have identified a set of

fundamental variables to predict stock returns over time, including market risk,

change in interest rate, inflation rate, real activities, default risk, term premium,

dividend yields, and earning yields, among other variables. In the cross-sectional

analysis, Fama and French (1996) further emphasize size factor (SMB) and value

factor (HML). Depending on the frequency of the data being studied, the Monday

effect or the January effect is usually added to the model to highlight calendar

anomalies. The empirical evidence of statistical significance to justify these vari-

ables is rather diverse. The mixed results have been attributed to variations in

sample size, frequency, country, market, and/or model specification. As Avramov

(2002) argues, the lack of consensus in choosing the “correct” variables may stem

from model uncertainty, since the equilibrium asset pricing theories are not explicit

about which variables should be included in the predictive regression.

To deal with this uncertainty, researchers occasionally resort to a missing

variable. It becomes more apparent as GARCH-type models show that financial

data demonstrate some sort of volatility clustering phenomenon. To incorporate the

conditional variance into the mean equation is definitely helpful in tying stock

returns to volatility (See French et al. 1987; Akgiray 1989; Baillie and DeGennaro

1990; and Bollerslev et al. 1992, among others). However, the GARCH-type

specification based on a normal distribution is unsatisfactory for use with data

that entail extreme values. Recent financial market developments show that signif-

icant daily loss occurs more frequently, and the volatility cannot reasonably be

predicted from a normal distribution. The popularity of using a normal distribution

assumption lies in the fact that the statistical analysis of stock returns can be

simplified, allowing the analyst to focus on the first two moments. This simplifica-

tion, however, misses the information contained in higher order moments.
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To account for higher-order moments is important in modeling stock return

series for the following reasons. First, from an econometric point of view, Hansen

(1994) notes that empirical specifications of asset pricing models are incomplete

unless the full conditional model is specified. Estimation and forecasting accuracy

depends on the full specification of the distribution moments. Many authors have

found that higher-order moments (and co-moments) can serve as explanatory vari-

ables for modeling stock returns (Harvey and Siddique 2000; Patton 2004; Ranaldo

and Favre 2005; Bali et al. 2008; Boyer et al. 2010). The exclusion of higher-order

moments information in the asset return model is bound to result in missing variable

and misspecification problems.

Second, from the perspective of empirical finance studies, higher-order moments

have particular economic meanings. Johnson and Schill (2006) suggest that Fama-

French factors (SMB and HML) can be viewed as proxies for higher-order

co-skewness and co-kurtosis. They show that Fama-French loadings generally

become insignificant when higher-order systematic co-moments are included in

cross-sectional regressions of portfolio returns.

Third, for portfolio management, higher-order moments are considered additional

risk instruments in constructing the “new” portfolio theory, as argued by Jurczenko and

Maillet (2002) and papers cited there. Further, the underlying theory of stochastic

dominance (Vinod 2004) suggests that portfolio selection is determined not only by the

conditional mean and variance but also by the skewness and kurtosis. The evidence

provided by Harvey et al. (2010) and Cvitanic et al. (2008) substantiates the validity of

the new portfolio theory. Moreover, in their recent studies, Andersen and Sornette

(2001) and Malevergne and Sornette (2005) find that by incorporating higher-order

moments risk, it is possible to increase the expected return on the portfolio while

lowering its risks. Similarly, Tang (1998) finds that diversification reduces standard

deviation but worsens negative skewness and fat tails in his study of the Hong Kong

stock market. The evidence thus points to the fact that pricing risk based exclusively on

the second moment may be very misleading. In light of this consideration, existing risk

management techniques ought to be revised as well.

The significance of higher-order moments has been revealed in a series of

dramatic market events, such as the market crash in 1987, the Asian crisis in

1997, the financial collapses of LTCM, the bust of internet bubble, and the

subprime loan crisis in 2007. To address excess risk, both financial institutions

and regulatory agencies demand risk management techniques to deal with occur-

rences of extreme values. Although Value at Risk (VaR) has been invented to

predict a portfolio’s maximum loss over a target horizon in a given confidence

interval, the standard VaR models based on normal distribution often underestimate

the potential risk.

Three approaches have been developed in the literature to deal with higher-order

moments. The first approach is to treat higher-order moments as explanatory vari-

ables in the stock return equation. The four-moment CAPM by Jurczenko and

Maillet (2002) and Ranaldo and Favre (2005) are the examples. The difficulty of

this approach lies in how to generate the explanatory variables. Generating explan-

atory variables usually relies on higher frequency data or a rolling sample method.
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The second approach is to apply the GARCH approach to higher conditional

moments. Harvey and Siddique (1999) consider the conditional skewness, Brooks

et al. (2005) tackle the autoregressive conditional kurtosis, and Conrad et al. (2009)

find that individual securities’ volatility, skewness, and kurtosis are strongly related

to subsequent returns. Although these studies are capable of extracting information

from the higher-order moments and use them to explain the conditional mean, they

have not completely resolved the fundamental issue that the dependent variable

frequently violates the assumption of a normal distribution.1 This leads to the third

approach: applying non-Gaussian distributions to model stock returns so that

higher-order moments are naturally incorporated. This chapter falls into the third

category.

The knowledge that stock returns are not following the Gaussian distribution

dates back to the papers by Mandelbrot (1963) and Fama (1965). Subsequent

research includes Officer (1972), Clark (1973), McCulloch (1985), Bollerslev

(1987), Nelson (1991), Hansen (1994), Liu and Brorsen (1995), and Mittnik

et al. (1999) among others. These studies propose the t distribution, skewed

t distribution, general error distribution (GED, also known as exponential power

distribution), and a-stable Levy distributions. Briefly speaking, the t distribution
is symmetric so that it inherently fails to describe the issue of skewness. The GED

is not flexible enough to allow for larger innovations. The stable distribution

has theoretical appeal because of the generalized central limit theorem; however,

its moments are not defined for an order greater than a. In particular, the variance is
not defined except for one special case, normal distribution; the skewness and

kurtosis are always not defined. Finally, the skewed t distribution used in Hansen

(1994) is far from being parsimonious, and it is hard to interpret its parameters

because transformations are imposed.

Recognizing the weakness of the above distributions, it is necessary to have

a model that encompasses the features of asymmetry, a high peak, and fat tails.

We find that an exponential generalized beta distribution of the second kind

(EGB2) 2 is able to meet the diverse criteria, which forms the research foundation

of this chapter.

Results emerging from this chapter show that the EGB2 distribution works very

well in dealing with high-order moments of individual stock returns. The evidence

indicates that AR(1)-GJR-GARCH(1,1) model based on the EGB2 distribution

provides a unique specification in handling the stylized facts of stock return

behaviors: autocorrelation, conditional heteroskedasticity, leverage effect, skew-

ness, excess kurtosis, and peakedness.

1Both Harvey and Siddique (1999) and Brooks et al. (2005) use a t distribution. As shown in this

paper, a t distribution has heavy tails but is not a good fit for stock return data with regard to

peakedness.
2There are other names for the EGB2 distribution in other nonfinancial fields or in non-American

journals; for example, generalized logistic distribution in Wu et al. (2000), z-distribution in

Barndorff-Nielsen et al. (1982), the Burr-type distribution in actuarial science in Hogg and

Klugman (1983), and four-parameter kappa distribution in geology in Hosking (1994).
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This study contributes to the literature in the following aspects. We find

that using EGB2 distribution is superior to models based on a normal

distribution and t distribution in handling skewness and kurtosis, as is evident

by the goodness-of-fit statistics. Second, the prevalence of the risk management

method Value at Risk (VaR) can be handled and updated via the EGB2

distribution. It informs investors that omitting higher moments “. . .will lead
to a systematic underestimate of the true riskiness of a portfolio, where

risk is measured as the likelihood of achieving a loss greater than some

threshold” (Brooks et al. 2005, p. 400). Third, this chapter systematically

examines all 30 stocks in the Dow Jones industrial index. The individual

stocks cover a broad range of assets and reveal a variety of fat tail characteris-

tics. The model encompasses a rich spectrum of asset features that help in

guiding portfolio decisions. Fourth, we find that the asymmetric effect

(leverage effect) has been diminished when the EGB2 distribution is applied.

It implies that the so-called leverage effect is, at least, partially attributable to

the model’s misspecification due to the imposition of a normal distribution of

return series.

The remainder of the chapter is organized as follows. Section 80.2 describes the

methodology of the EGB2-GARCH model. Section 80.3 discusses the data.

Section 80.4 presents the empirical results on the stock returns by applying different

distributions; Sect. 80.5 reports the goodness-of-fit tests; Sect. 80.6 contains the

probability evaluation using the EGB2 distribution. Section 80.7 contains

conclusions.

80.2 The GARCH-Type Model Based on the EGB2 Distribution

80.2.1 General Specification

The AR(1)-GARCH(1,1)-GJR-EGB2 stock return model can be represented by

a system given below:

Rt ¼ f0 þ f1Rm, t þ f2Rt�1 þ dD87 þ eit (80.1a)

et ¼
ffiffiffiffi
ht

p
ut (80.1b)

ht ¼ wþ ae2t�1 þ bht�1 þ g I et�1 < 0ð Þe2t�1 (80.1c)

et ℑt�1 � D 0; ht; zð Þj (80.1d)

Equation 80.1a is the mean equation, where Rt is an individual stock’s

excess return (stock return minus the risk-free rate) at time t; et is an error term.

The inclusion of an AR(1) term in the mean equation accounts for the autocorre-

lation arising from nonsynchronous trading or slow price adjustments
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(Lo and MacKinlay 1990; Amihud and Mendelson 1987).3 The market’s equity

premium (stock market return minus the risk-free rate), Rmt, at time t is included in

the equation to capture the market risk as suggested by the CAPM. The dummy

variable, D87, takes a value of unity in the week of October 19, 1987, and

0 otherwise. The series, ut, in Eq. 80.1b is a standardized error by conditional

variance.

The conditional variance, ht, is assumed to follow GARCH(1,1); w,a, and

b > 0 to ensure a strictly positive conditional variance; and I is an indicative

function that takes a value of 1 only when the error term has a negative value.

The g is used to capture the asymmetric effect of the extraordinary shock

to the variance: bad news usually results in a bigger effect than good news

does. In this study, we adopt the asymmetric GARCH approach suggested by

Glosten et al. (1993) for its simplicity and effectiveness. The distribution of et is
assumed to be a general specification conditional on the distribution captured by the

parameter z. For the normal distribution, the error follows that et|ℑt–1 � N(0, ht).
As a variant of a normal distribution, in this chapter, we consider two alternatives:

t- and EGB2 distributions.

80.2.2 Modeling Financial Time Series Based on Non-Normal
Distributions

Student’s t distribution is well known for its capacity to capture the fat tail

phenomenon. Bollerslev (1987), Bollerslev et al. (1994), and Hueng and McDonald

(2005) incorporated t distribution into the GARCH model specification. The pdf of

a normalized Student’s t distribution takes the form of

t x; d; s; vð Þ ¼ G vþ1
2

� �

G v
2

� �
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p v� 2ð Þp 1þ 1

v� 2

x� d
s

� �2
" #�vþ1

2

(80.2)

where x is a random variable, v is the degree of freedom of the t distribution (v> 2),

and G is the gamma function. The excess kurtosis coefficient of the t distribution is

given by 6
v�4

for v > 4. In light of system (80.1a–80.1d), the only change is in the

error distribution, which is given by et|ℑt � 1 � t(0, ht, v). From this perspective,

3Dependent on the significance test of the AR(1) coefficient in the AR(1)-GARCH(1,1) model, the

AR(1) term is then dropped for some stocks. The following stocks do not have an AR(1) variable:

MSFT, HON, DD, GM, IBM, MO, CAT, BA, PFE, AA, DIS, MCD, JPM, and INTC. Stock PG,

which is the only one that shows Q(30) any significance, adds an AR(4) variable to ensure that the

autocorrelation is removed. The rest of this paper follows this pattern. Recent literature suggests

that the sign of the AR(1) coefficient, f2, can be used to detect feedback trading behavior (Sentana

and Wadhwani 1992; Antoniou et al. 2005). Our results show that the coefficient of AR(1) is

negative.
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both the coefficients and the degree of freedom of the t distribution are estimated

simultaneously by maximizing the following log-likelihood function:

logL ¼ T log G
vþ 1

2

� �
� log

�
G

v

2

� �
� 0:5log p v� 2ð Þð Þ

�	 


� 0:5
X

log htð Þ þ vþ 1ð Þlog 1þ et2

ht v� 2ð Þ
� �	 


(80.3)

Although the t distribution is good at modeling fat tails for time data, its

shortcoming is the built-in symmetrical nature. The distribution, however, is unable

to take care of the skewness characteristic present in the financial time series. Thus,

we turn to an exponential generalized beta distribution of the second kind (EGB2)

developed by McDonald (1984, 1991) and McDonald and Xu (1995).

EGB2 is attractive because of its simplicity and ease in estimating the parameters.4

There is a closed-form density function for the EGB2 distribution; its higher-order

moments are finite and explicitly expressed by its parameters. Moreover, it is flexible

and able to accommodate a wider range of data characteristics, such as thick tails and

skewness, than the more commonly used normal and log-normal distributions.

The EGB2 distribution has the probability density function (pdf) given by

EGB2 x; d; s; p; qð Þ ¼
e

x�d
sð Þh ip

sj jB p; qð Þ 1þ e
x�d
sð Þh ipþq (80.4)

where x is a random variable; d is a location parameter that affects the mean of the

distribution; s reflects the scale of the density function; p and q (p > 0 and q > 0) are

shape parameters that together determine the skewness and kurtosis of the distribution

of the excess return series; B(p, q) is the beta function.5 As suggested by McDonald

4It is not our intention to exhaust all the non-Gaussian models in our study, which is infeasible.

Rather, our strategy is to adopt a distribution that is rich enough to accommodate the features of

financial data. To our knowledge, there are different types of flexible parametric distributions

parallel to the EGB2 distribution to model both third and fourth moments in the literature. One

family of such distributions is a skewed generalized t distribution (SGT) (Theodossiou 1998;

Hueng and Brooks 2003). Special cases of SGT include generalized t distribution (McDonald and

Newey 1988), skewed t distribution (Hansen 1994), and skewed generalized error distribution

(SGED) (Nelson 1991). The skewness and excess kurtosis of SGT are in the range (�1, 1) and

(1.8, 1), respectively. Another family is inverse hyperbolic sin distribution (IHS) (Johnson 1949

and Johnson et al. 1994). The skewness and excess kurtosis of IHS is in the range (3, 1) and

(�1,1). EGB2 has less coverage for skewness and excess kurtosis than SGT and IHS. However,

it covers many skewness-kurtosis combinations encountered in practice and performs “impres-

sively” in estimating the slope coefficient in a simulation (Theodossiou et al. 2007). Other families

of flexible distributions are also available in the literature. But there isn’t any comparison with the

EGB2 distribution.
5It should be noted that beta function here has nothing to do with the stock’s beta.
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(1991), the EGB2 is suitable for coefficient of skewness values between�2 and 2 and

coefficient of excess kurtosis values up to 6. The distribution is capable of accommo-

dating fat-tailed and skewed error distributions pertinent to stock return modeling.6

For the standardized EGB2 distribution with shape parameters p and q, the
univariate GARCH-EGB2 log-likelihood function is7

logL ¼ T log
ffiffiffiffi
O

p� �� log B p; qð Þð Þ þ pD
� �þ

X
p

ffiffiffiffi
O

p
etffiffiffiffi
ht

p
 !

� 0:5 log htð Þ
"

� pþ qð Þlog 1þ exp

ffiffiffiffi
O

p
etffiffiffiffi
ht

p þ D

 ! !#

(80.5)

where D ¼ c(p)� c(q), O ¼ c 0 (p) + c 0 (q), and c and c0 represent digamma and

trigamma functions, respectively.8 The BFGS algorithm is used in RATS to con-

duct a maximum likelihood estimation. The skewness and excess kurtosis for the

EGB2 distribution are given respectively by

Skewness ¼ g p; qð Þ ¼ c00 pð Þ � c00 qð Þ
c0 pð Þ þ c0 qð Þð Þ1:5 (80.6)

Kurtosis ¼ h p; qð Þ ¼ c000 pð Þ þ c000 qð Þ
c0 pð Þ þ c0 qð Þð Þ2 (80.7)

and c00 and c000 represent tetragamma and pentagamma functions.

Since the skewness and kurtosis coefficients are based on parameters p and q, the
standard deviation of skewness and kurtosis coefficients can be drawn by using

a standard delta method (see the appendix for details). By using these measures, we

can judge if the EGB2 distribution correctly handles skewness and kurtosis.

80.3 Data and Summary Statistics

When asset returns are analyzed, movements in the Dow Jones Industrial Average

(DJIA) are often considered one of the most important pieces of news that indicate

6Many distributions are nested in the EGB2 distribution. Wang et al. (2001) show that the EGB2

distribution is very powerful in modeling exchange rates that have fat tails and leptokurtosis

features. The EGB2 converges to normal distribution as p ¼ q approaches infinity, to log-normal

distribution when only p approaches infinity, to the Weibull distribution when p ¼ 1 and

q approaches infinity, and to the standard logistic distribution when p ¼ q ¼ 1. It is symmetric

(called a Gumbel distribution) for p ¼ q. The EGB2 is positively (negatively) skewed as p > q
(p < q) for s > 0.
7This can be obtained in the appendix of Wang et al. (2001).
8The digamma function is the logarithmic derivative of the gamma function; the trigamma

function is the derivative of the digamma function.
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the health of financial markets and investment performance. This chapter uses the

DJIA’s 30 stocks as the sample, which represents a group of well-established and

diverse companies. The sample covers the period from October 29, 1986, through

December 31, 2005. One of the reasons for using this period is its completeness, so

we can employ and assess information on all 30 stocks in the sample period.9 This

time period also captures the most vigorous recent stock market advancements

while covering several major market crashes and financial crises.

Following the conventional approach, returns from the Standard & Poor’s

500 (SP 500) index are used to measure the market return. Both daily returns on

the S&P 500 index and data on the 30 Dow Jones firms are compounding and

including dividend payments. These data are taken from the CRSP database. The

short-term interest rate is measured by the 3-month Treasury bill rate, which is

taken from the Federal Reserve’s website.10 The daily risk-free rate is measured by

using the annual rate divided by 360. The excess stock return is the difference

between actual stock returns and the short-term interest rate.

Weekly data are used in order to be consistent with industrial practice. For

example, Value Line, Bloomberg, and Baseline all use weekly data on stocks to

calculate the stocks’ beta. Daily stock returns are seldom used in industry. It also

helps to smooth out the volatility for single date outliers. An additional advantage

of using weekly observations is that some calendar effects, such as the Monday

effect, can be avoided. The excess returns are measured on a weekly basis.

Table 80.1 reports summarized statistics for the weekly excess returns.

Looking at Table 80.1, we find that six stocks have a positive value for the

skewness coefficient and two are significant at the 1 % level, while the remaining

24 stocks show negative values and 13 of them are significant at the 1 % level.11

A negative skewness coefficient means that there are more negative extreme values

9Stock C (CitiGroup) in Table 80.1 began its trading data on Oct 29, 1986. Within this period, only

one stock has one missing value. Stock MO (Philips Morris Co.) was not traded on May 25, 1994,

because of “pending news which could affect the stock price.” Philip Morris’ board was meeting to

announce whether the company would split its food and tobacco units on May 25, 1994. In this

sample period, the most striking event is the market crash on October 19, 1987. This paper

considers the 1987 market crash as an outlier in the later part. The week of the 9–11 terrorist

attacks has only 1 day of trading information and is incorporated into the next week.
10http://www.federalreserve.gov/releases/H15/data.htm#top, Treasury bill secondary market rates

(serial: tbsm3m) are the averages of the bid rates quoted on a bank discount basis by a sample of

primary dealers who report to the Federal Reserve Bank of New York. The rates reported are based

on quotes at the official close of the US government securities market for each business day.
11The sign of the skewness coefficient is related to data frequency. The skewness of the weekly

return has nothing to do with the skewness of the daily return. For example, the stock HON

(index ¼ 2) shows significant positive skewness in its daily return but significant negative

skewness in its weekly return.
12The skewness coefficient is the relation between the second order moment and the third order

moment. It is calculated by T
T�1ð Þ T�2ð Þs3

X
xi � mð Þ3 where m is the mean of the sample. The

literature about the positive and negative values of the distribution skewness is confusing. The

skewness in our study is based on the distribution’s moments (Kenney and Keeping 1962).
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than positive extreme values in the sample period.12 With respect to the excess

kurtosis (kurtosis coefficient minus 3), all of the estimated values are statistically

significant at the 1 % level, suggesting a serious fat-tailed problem. The range of the

excess kurtosis coefficient is between 1.08 and 24.13. By checking the range of

peakedness measured by the inter-quartile range (i.e., 0.75 fractile minus 0.25

fractile), we found that it lies between 1.01 and 1.26. This range is much lower

than the referenced figure, 1.35, indicating the presence of a high peak in the

probability density function for all of the stocks under investigation. While testing

for dependency, Ljung-Box Q statistics show that ten stocks are serially

autocorrelated, and 27 of the 30 stocks are autocorrelated in the squared term as

shown by a Q2 test. The latter suggests a volatility clustering phenomenon and is

consistent with a GARCH-type specification. By inspecting the Jarque-Bera statis-

tics, the normality for all 30 stocks is uniformly rejected.13

The preliminary statistical results from Table 80.1 clearly indicate that the

popular normality assumption does not conform to the weekly returns. The indi-

vidual stock returns often show positive excess kurtosis (fat tails), accompanied by

skewness. The evidence of peakedness is not in agreement with the normal distri-

bution either. Besides the non-Gaussian features, some weekly stock returns present

autocorrelation and almost all of them feature volatility clustering.

80.4 Empirical Evidence

In this section, we estimate the system of equations from Eq. 80.1a through 80.1d

and present evidence of the GARCH(1,1) model based on different distributions.

We analyze the impact of outliers on the EGB2 distribution.

80.4.1 GARCH(1,1) Model Based on the Normal Distribution

Table 80.2 reports the estimates of the GARCH(1,1) model based on the assump-

tion that the error series follows a normal distribution, et|ℑt–1 �N(0, ht).
14 Looking

at the t-statistics, the null hypothesis of the absence of skewness is rejected at the

1 % level for 11 out of 30 cases (four positive and seven negative), while the null

hypothesis of the absence of excess kurtosis is rejected in all of the cases. Moreover,

the Jarque-Bera tests show that all of the return residuals are rejected by assuming

13All the non-normality features are more remarkable in daily data but less so in monthly data.

This is consistent with Brown and Warner’s (1985) report that the non-normal features tend to

vanish in low-frequency data, such as monthly observations. Even so, subject to individual

monthly stock returns, the Jarque-Bera test rejects the normality for 23 of the 30 stocks at the

1 % level.
14The standardized residuals are obtained by dividing the estimated regression residuals by its

conditional standard deviation. Standardizing the error term makes the distribution comparison

feasible. Mean and variance are not reported in the table due to the use of normalization.
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Gaussian distribution. If we check further into the measure of peakedness, the

estimate values range from 1.06 to 1.30. All of these figures are lower than the

reference point of a standard normal distribution, 1.35, indicating that all of the

returns are leptokurtic. It is apparent that assuming that residuals for the estimated

financial data are normally distributed is invalid.

80.4.2 GARCH(1,1) Model Based on the Student’s t Distribution

Estimating the model by using a t distribution indicates that the excess kurtosis has
mostly been removed from the estimated residuals. As shown in Table 80.3,

29 stocks show that the coefficients of excess kurtosis are insignificant. This

demonstrates the effectiveness of t distribution in modeling the excess kurtosis.

However, the problem of skewness has not been resolved at all. The evidence shows

that 18 out of 30 are significant at the 5 % level or higher. There are four significant

positive and eight significant negative skewness coefficients in the standardized

residuals at the 1 % level.15

Another problem emerging from this model is insufficient peakedness of the

distribution. The range of the estimated degree of freedom is (3.9 � 11.1), which

corresponds to the range of peakedness (1.53 � 1.39). Note that the actual peaked-

ness measurement from Table 80.3 is in the range of (1.02 � 1.29), indicating the

presence of leptokurtosis. The evidence shows that the t distribution is worse than

the normal distribution in modeling peakedness (see Fig. 80.1).

80.4.3 GARCH(1,1) Model Based on the EGB2 Distribution

To advance our study, we reestimate the GARCH(1,1) model by employing the

EGB2 distribution. Table 80.4 reports the comparable statistics based on

the standardized residuals from GARCH(1,1) cum EGB2 distribution: et|ℑt � 1

� EGB2(0, ht, p, q). The results show that the skewness problem for most cases

has been alleviated by using the EGB2 distribution. The evidence indicates that

only five stocks show the presence of skewness. Turning to the statistics of excess

kurtosis, we find that the EGB2 distribution works well on some stocks’ kurtosis but

not all of them. The evidence in Table 80.4 indicates that nine stocks still show

excess kurtosis.

Table 80.4 also contains the range of p (0.334� 1.776) and of q (0.348� 1.669).

The reported p- and q-values suggest that the residuals’ distributions are far from

15To deal with the skewness, a number of skewed t distributions have been proposed (Theodossiou
1998; Hueng and Brooks 2003). One obvious drawback of a skewed t distribution in our study is

the outcome of its peakedness measurement, which displays platykurtosis (flat topped in density).

This appears to be the opposite of the leptokurtic stock returns. For this reason, we do not report

results from the GARCH model based on a skewed t distribution in order to focus on the EGB2

distribution. However, the results are available upon request.
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the normal distribution that requires that both p- and q-values approach infinity.

Based on the estimated shape parameters, the expected peakedness for the 30 stocks

is in the range of (1.07 � 1.26). The peakedness obtained from residuals of the

mean equation is in the range of (1.06 � 1.30), conforming to the existence of high

peak implied by the EGB2 distribution.

With respect to the beta coefficients, we find that the estimated values are highly

significant, ranging from 0.69 to 1.32. The evidence suggests that the market risk is

still one of the most influential factors for predicting individual stocks. It is of

interest to compare the beta values and the associated standard errors across

different distributions. As may be seen from Fig. 80.2, where the figures are mainly

reproduced from Tables 80.2, 80.3 and 80.4, we find no significant difference

among them for the estimated betas. This is not surprising, since the estimations

of the betas are obtained from the average effect based on the whole probability

space. Our finding is consistent with the results form Nelson (1991) and

Hansen (1994).

While inspecting the lagged individual stock return variable, about half of them

present negative signs and are statistically significant, indicating that a mean

reversion process is present in the weekly data. Turning to the 1987 market crash

dummy, the testing results show that 20 out of 30 stocks are significant at the 5 %

level, although the signs are mixed. The diverse movements signify the profound

impact due to an influential observation. Consistent with most financial data, with

a few exceptions, the coefficients of the GARCH equation for each stock are found

to be highly significant.

One of the most striking results emerging from the estimations is that while

testing the leverage effect, only four stocks are found to be statistically significant

at the 5 % level. The number of stocks that present asymmetric effects has been

reduced dramatically, as compared with the statistics reported in Table 80.2,

where 15 stocks show a significant asymmetric effect. It can be argued that the

so-called asymmetric effect may result from the fact that empirical analysis was

built on a misleading assumption by imposing a normal distribution on the

financial data.

One fact in Table 80.4 is a bit disturbing: three stocks show their kurtosis

coefficient being greater than 6, which is beyond the scope of EGB2 distribution.

Despite this shortcoming and the abovementioned nine stocks that have significant

kurtosis, we find a significant improvement compared with the model by assuming

the normal distribution or the t distribution. The predicted skewness and excess

kurtosis of the EGB2 distribution are much closer to the observed skewness and

kurtosis. Thus, the EGB2 distribution has a good fit, although the results are not

perfect.16 Finally, we test the independence of the correlation on statistics for both

return level and return squares, and we find that in only three cases in each Q and Q2

test can the null hypothesis be rejected at the 5 % level but none at the 1 % level. In

general, the models are adequate.

16Some refinement of the model is contained in the following section.
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80.4.4 The Impact of Outliers

Theoretically, the EGB2 distribution is feasible for coefficients of skewness in

a range of (�2, 2) and the coefficients of excess kurtosis in (0, 6). However, the

statistics in Table 80.4 are not completed in these desired ranges. Two possible

reasons might contribute to these problems. First, the residual series was contam-

inated by the presence of outliers. As pointed out by Peña et al. (2001), an outlier

can have very serious effects on the properties of the observed time series and affect

the estimated residuals and the parameter values. Second, the mean equation and/or

the variance equation may be misspecified, although an asymmetric effect has been

considered.17 To address this issue, we further investigate the stock return series on

which the outliers might more seriously impinge.

By investigating the microstructure of the nine stocks with excess kurtosis, we

find a common phenomenon: multiple outliers are present. This means that a 1987

market crash dummy is incapable of accommodating multiple extreme values in the

data series. For instance, stock UTX (index ¼ 10) has an extreme value of �38 %

during the week of the 9–11 terrorist attacks in 2001. To address this issue, we

identify the outliers and patch the outliers by using intervention analysis as in Box

and Tiao (1975) and the extension by Tsay et al. (2000) and Peña et al. (2001).

Table 80.5 reports the statistics of the residual analysis for these nine stocks by

adding different dummies in the mean equation. This result is rather encouraging, as

evidenced by the reduction of the significance of the kurtosis coefficient. It reveals

that the kurtosis problem is somehow related to a failure to account for extraordi-

nary events that disturb the data structure, rather than the failure of the EGB2

distribution. It is evident that after removing the effect of the outliers in a given time

series, the EGB2 distribution is capable of addressing the financial data with

skewness and kurtosis in an appropriate range.18

80.5 Distributional Fit Test

Previous sections emphasized estimates of parameters pertinent to modeling the

skewness and kurtosis of the standardized residuals by applying non-Gaussian

distributions. As part of the modeling process, model checking in terms of goodness

of fit is also important. Table 80.6 and Fig. 80.3 compare a GARCH(1,1) model based

on three distributions: normal, Student’s t, and EGB2. The reported log-likelihood

function values (negative) clearly show that the EGB2 distribution outperforms the

17Engle et al. (1987) suggest putting a conditional volatility variable in the mean equation, which

is called the GARCH-M model. However, the expected sign of the conditional variance variable is

uncertain, according to literature surveys. Since we do not find its statistical significance in our

empirical experiment (not reported), the conditional mean term is excluded from our test equation.
18Longin (1996) proposes the use of a Frechet distribution, which is able to highlight those extreme

price movements. However, his model does not cover whole return distributions but only extreme

values.
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Table 80.6 Fitness comparisons among alternative distributions

Index Ticker

Likelihood (-lnL) Chi-square statistics

Normal t EGB2 Normal t EGB2

1 MSFT 2,727.663 2,405.698 1,836.975 56.32** 70*** 38.6

2 HON 2,939.66 2,655.106 2,078.661 77.76*** 129.92*** 60.12***

3 KO 3,070.488 2,747.057 2,175.794 45.6 89.76*** 30.2

4 DD 3,080.986 2,748.706 2,180.607 50.32 70.88*** 41.04

5 XOM 3,286.659 2,949.103 2,378.235 46.24 49.6* 38

6 GE 3,330.797 2,998.795 2,428.805 33.36 54.72** 23.32

7 GM 2,851.589 2,529.761 1,958.933 40.56 78.32*** 36.4

8 IBM 2,940.611 2,646.765 2,076.628 87.84*** 151.04*** 128.68***

9 MO 2,870.27 2,589.11 2,016.484 76.56*** 138.72*** 49*

10 UTX 3,086.131 2,777.7 2,204.927 56.24** 86.4*** 42.64

11 PG 3,099.136 2,798.107 2,226.256 77.6*** 106.4*** 47.92

12 CAT 2,808.847 2,515.001 1,941.912 71.04*** 110.88*** 50.52*

13 BA 2,869.513 2,546.216 1,974.935 54.72** 77.36*** 44.12

14 PFE 2,906.508 2,585.459 2,014.814 66*** 84.08*** 31.2

15 JNJ 3,094.648 2,764.042 2,194.88 68.72*** 86.72*** 53**

16 MMM 3,213.133 2,899.268 2,330.127 69.92*** 99.68*** 54.88**

17 MRK 2,921.886 2,622.322 2,049.385 54.88** 91.52*** 54.68**

18 AA 2,820.431 2,491.263 1,921.461 43.92 69.84*** 34

19 DIS 2,947.914 2,628.138 2,057.377 45.84 76.56*** 47.64

20 HPQ 2,640.579 2,341.888 1,768.097 68.56*** 117.92*** 67.28***

21 MCD 3,021.621 2,694.789 2,125.111 65.36*** 117.12*** 45.52

22 JPM 2,851.61 2,527.93 1,957.228 54.72** 78.32*** 48.72*

23 WMT 2,993.255 2,660.808 2,091.682 48.64 64.48*** 36.68

24 AXP 3,013.207 2,681.583 2,111.124 42.32 72.8*** 40.72

25 INTC 2,560.727 2,232.273 1,663.033 58.8** 63.04*** 26.32

26 VZ 3,055.394 2,733.302 2,162.317 64.4*** 106.32*** 50.28*

27 T 3,023.173 2,700.77 2,129.957 51.84* 85.84*** 45.16

28 HD 2,838.915 2,515.001 1,943.85 50.24 77.92*** 42.24

29 AIG 3,097.629 2,777.491 2,206.573 56** 63.28*** 39.72

30 C 2,918.77 2,633.718 2,060.1 75.44*** 91.04*** 39.76

This table compares the GARCH(1,1) model based on three distributions: normal, Student’s t(T),
and EGB2 based on a negative logarithm of the likelihood function value (Left) and the w2

goodness-of-fit test statistic value (Right). The quantiles are computed via 40 intervals. The degree

of freedom (d.f.) is 37 for the EGB2, 38 for the t distribution and 39 for the normal distribution.

The chi-square critical values at the 1 %, 5 %, and 10 % levels are 59.89, 52.19, and 48.36,

respectively, with d.f. being 37; 61.16, 53.39, and 49.51 with d.f. being 38; and 62.43, 54.57, and

50.66 with d.f. being 39. ***Indicates 1 % significance, **5 %, and *10 %
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rival distributions: the normal distribution and the t distribution. However, as noted
by Boothe and Glassman (1987), making non-nested distribution comparisons based

on log-likelihood values can lead to spurious conclusions.19 Consequently, we

calculate the goodness-of-fit (GoF) statistics20 to compare differences between

observed distribution of standardized residuals and theoretical distribution based on

estimated shape parameters following Snedecor and Cochran (1989).

The null hypothesis tested by the GoF statistics is that the observed and predicted

distribution functions are identical. The statistic is calculated by

GoF ¼
Xk
i¼1

f i � Fið Þ2
Fi

(80.8)

where fi is the observed count of actual standardized residuals in the i th data class

(interval), Fi is the predicted count derived from the estimated values for the

distribution parameters, and k is the number of data intervals used in distributional

comparisons. GoF has an asymptotic chi-square distribution with degrees of freedom

equal to the number of intervals minus the number of estimated distribution
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Fig. 80.3 Comparisons of log-likelihood function values in different models. The greater the

function value the better of the fit the model is. The figure plots the negative logarithm value of the

likelihood function

19Normal distribution is a special case of the EGB2 distribution. A likelihood ratio rest suggests

that there is significant improvement in the fit of the EGB2 distribution over that of the normal

distribution.
20The chi-square test is an alternative to the Anderson-Darling and Kolmogorov-Smirnov

goodness-of-fit tests. The chi-square test and Anderson-Darling test make use of the specific

distribution in calculating critical values. This has the advantage of allowing a more sensitive

test and the disadvantage that critical values must be calculated for each distribution.
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parameters minus one. For EGB2 distribution, two parameters are estimated; for

Student’s t distribution, one parameter is estimated; for the normal distribution, no

parameter is required, since the error term has been standardized.

Table 80.6 reports the results of the w2 test for three distributions used in

the GARCH(1,1) model. The test power is maximized by choosing a data

class equiprobably (equal probability). The rule of thumb of the chi-square test

is to choose the number of groups starting at 2 T0.4.21 The test results show

that the null hypothesis is rejected by 12 stocks on the normal distribution at the

1 % level, 28 stocks on the t distribution and only three stocks on the EGB2

distribution. Furthermore, the w2 statistic also shows that the EGB2 distribution

yields lower absolute values. We can conclude that the model based on the

EGB2 distribution has the least deviation of the residuals from the theoretical

distribution. The evidence suggests that the Student’s t distribution is able to

solve the kurtosis problem, but it could not fit the whole error distributions

due to peakedness. Putting the evidence together, it is clear that the EGB2

distribution is superior to the t distribution and the normal distribution in our

empirical analysis.

80.6 Implication of EGB2 Distribution

One of the main objectives of analyzing financial data for risk management purposes

is to provide an answer to the question: how should we evaluate the probability of the

extreme values by using statistical distributions? According to the normal distribu-

tion, the 1987 market crash with more than �17s (daily data) would have never

happened. However, recent market crashes indicate that big market swings or

significant declines in asset prices happen more frequently than we expect. Although

VaR is one of the most prevalent risk measures under normal conditions, it cannot

deal with those extreme values, since extreme values are not normal. From this

perspective, the EGB2 distribution provides a management tool for calculating risk.

Table 80.7 reports the probability of the semivolatility of shocks. Here, we

concentrate on the probability of the error term having negative shocks. From this

table, we see that the predicted probability for extreme values (beyond �2s) is
greater than that of the normal distribution. For instance, probabilities of a �5s
and �7s shock for MSFT (index ¼ 1) are 4.9E-5 and 8.4E-7, much greater than

2.8E-7 and 1.3E-12 based on the normal distribution.

Yet, the probabilities for the EGB2 distribution under a moderate range

(within �2s) are less than that of the normal distribution. This is an alternative

way to determine the peakedness and fat tails of portfolio returns. Notice that

the crossing point between the EGB2 distribution and the normal distribution is in

21Our sample contains 999 observations; 40 intervals are used. Each group (data class) has

theoretically 25 observations. The degrees of freedom are 37, 38, and 39 for the EGB2 distribution,

the t distribution and the normal distribution, respectively. (The chi-squared critical values are

given in the note in Table 80.6.)
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the neighborhood of �2s, where the probabilities of both distributions are about the
same value. This feature implies that VaR at the 95 % confidence level based on the

normal distribution is by chance consistent with reality. However, beyond this critical

level, the VaR method based on the normal distribution leads an underestimation in

forecasts of losses. Nevertheless, the EGB2 distribution in this regard provides

a broader spectrum of risk information for guiding risk management.

Table 80.7 The probability of negative extreme shocks in the error term

Stock

Shocks

�7s �6s �5s �4s �3s �2s �1s

1 MSFT 8.41E-07 6.42E-06 4.90E-05 0.000373 0.002832 0.021062 0.137138

2 HON 7.31E-06 3.76E-05 0.000193 0.000984 0.005031 0.025703 0.12933

3 KO 3.42E-06 2.03E-05 0.00012 0.000708 0.004177 0.024489 0.135087

4 DD 2.83E-06 1.73E-05 0.000105 0.000642 0.003902 0.023582 0.134136

5 XOM 1.05E-06 8.00E-06 6.07E-05 0.000459 0.003429 0.024407 0.143861

6 GE 4.52E-07 3.96E-06 3.47E-05 0.000303 0.002615 0.021451 0.141932

7 GM 3.30E-06 1.96E-05 0.000117 0.000693 0.004112 0.024242 0.134684

8 IBM 1.83E-05 8.05E-05 0.000352 0.001534 0.006686 0.029148 0.126866

9 MO 2.35E-05 9.97E-05 0.00042 0.001761 0.007391 0.031013 0.129726

10 UTX 1.17E-05 5.64E-05 0.000269 0.001287 0.006139 0.029219 0.135227

11 PG 1.53E-05 7.00E-05 0.000318 0.00144 0.006526 0.029553 0.132183

12 CAT 5.00E-06 2.74E-05 0.00015 0.000818 0.004465 0.024337 0.129658

13 BA 3.28E-06 1.97E-05 0.000118 0.000708 0.004233 0.025055 0.137264

14 PFE 9.08E-06 4.58E-05 0.00023 0.001154 0.00578 0.028808 0.137298

15 JNJ 1.90E-06 1.25E-05 8.18E-05 0.000536 0.003512 0.022751 0.135477

16 MMM 1.07E-05 5.16E-05 0.000248 0.001193 0.005729 0.027508 0.130414

17 MRK 9.13E-06 4.53E-05 0.000224 0.001105 0.005452 0.026874 0.130475

18 AA 2.66E-06 1.66E-05 0.000103 0.00064 0.00397 0.024331 0.137113

19 DIS 4.92E-06 2.74E-05 0.000152 0.000842 0.004664 0.025708 0.134949

20 HPQ 7.93E-06 4.05E-05 0.000206 0.001045 0.005301 0.02685 0.132606

21 MCD 2.13E-06 1.36E-05 8.67E-05 0.000552 0.003515 0.022249 0.132611

22 JPM 5.72E-06 3.12E-05 0.00017 0.00092 0.004991 0.026883 0.136911

23 WMT 1.21E-06 8.74E-06 6.28E-05 0.000451 0.003228 0.022585 0.138697

24 AXP 1.09E-06 8.05E-06 5.92E-05 0.000435 0.003184 0.022668 0.139658

25 INTC 1.14E-05 5.56E-05 0.000269 0.0013 0.006275 0.030129 0.138371

26 VZ 3.65E-06 2.13E-05 0.000124 0.00072 0.004185 0.024206 0.133382

27 T 6.62E-06 3.50E-05 0.000184 0.000964 0.005062 0.026487 0.133843

28 HD 6.65E-06 3.56E-05 0.00019 0.00101 0.005372 0.028274 0.139248

29 AIG 1.35E-06 9.52E-06 6.69E-05 0.000469 0.003282 0.022544 0.137761

30 C 1.91E-06 1.24E-05 7.97E-05 0.000514 0.003315 0.021299 0.13028

If normal 1.28E-12 9.87E-10 2.87E-07 3.17E-05 0.00135 0.02275 0.158655

The probability is calculated based on estimated p- and q-values of the EGB2 distribution. It tells

how often the error terms have negative extreme values. The probability values based on the

normal distribution are the same for all 30 stocks
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80.7 Conclusions

In this chapter, we present empirical evidence on the stock return equation based

on market risk, time series pattern, and asymmetric conditional variance for

the 30 Dow Jones stocks. Special attention is placed on the issue of presenting

skewness, kurtosis, and outlier effects. Although we find no significant difference

over the estimated betas and the corresponding standard errors of the distributions,

the evidence shows that the exponential generalized beta distribution of the

second kind (EGB2) is superior to the Student’s t distribution and the normal

distribution in dealing with data that demonstrate skewness and excess kurtosis

simultaneously. The superiority of the EBG2 distribution in modeling financial

data is not only due to its flexibility but also to its closed-form density function

for the distribution. Its higher-order moments are finite and explicitly expressed by

its parameters. Thus, the EGB2 model provides a useful tool for forecasting

variances involving extreme values. As a result, this model can have practical use

for risk management.

Consistent with the finding in the literature, the asymmetric effects are

highly significant in the standard GJR-GARCH specification by assuming normal

distributions. However, by incorporating the heavy tail information into the

distributions, we can reduce the asymmetric effects. Our study confirms that the

EBG2 distribution has the capacity to deal with the asymmetric effects.

Since excess kurtosis is often caused by outliers, our finding suggests that removing

the contamination of outliers from the residuals enhances the performance of EGB2

distributions. In short, the GJR-GARCH-type model based on the EGB2

distribution provides a richer framework for modeling stock return volatility.

It accommodates several special stock return features, including fat tails,

skewness, peakedness, autocorrelation, volatility clustering, and leverage effect.

As a result, this model is effective for empirical estimation and suitable for

risk management.

Appendix 1

Delta Method and Standard Errors of the Skewness and Kurtosis
Coefficients of the EGB2 Distribution

The delta method, in its essence, expands a function of a random variable about its

mean, usually with a one-step Taylor approximation, and then takes the variance.

For example, if we want to approximate the variance of G(x) where x is a random

variable with mean m and G(x) is differentiable, we can try

G xð Þ � G mð Þ þ x� mð ÞG0 mð Þ (80.9)
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so that

Var G xð Þð Þ � G0 mð Þ2Var xð Þ (80.10)

where G0() ¼ dG/dX. This is a good approximation only if x has a high probability

of being close enough to its mean so that the Taylor approximation is still good.

The nth central moments of the EGB2 distribution is given by

The nth moment ¼ sn cn�1 pð Þ þ �1ð Þncn�1 qð Þ� �
(80.11)

where cn is nth order a polygamma function. Correspondingly, the skewness

coefficient is given by

Skewness ¼ g p; qð Þ ¼ c00 pð Þ � c00 qð Þ
c0 pð Þ þ c0 qð Þð Þ1:5 (80.12)

The variance of the skewness coefficient by the delta method is given by

Var Skewnessð Þ ¼ g
0
p p; qð Þ2var pð Þ þ g

0
q p; qð Þ2var qð Þ

þ 2g
0
p p; qð Þg0

q p; qð Þcov p; qð Þ (80.13)

where

g
0
p p; qð Þ ¼ c000 pð Þ c0 pð Þ þ c0 qð Þð Þ � 1:5c00 pð Þ c00 pð Þ � c00 qð Þð Þ

c0 pð Þ þ c0 qð Þð Þ2:5 (80.14)

g
0
q p; qð Þ ¼ �c000 qð Þ c0 pð Þ þ c0 qð Þð Þ � 1:5c00 qð Þ c00 pð Þ � c00 qð Þð Þ

c0 pð Þ þ c0 qð Þð Þ2:5 (80.15)

Similarly, the excess kurtosis coefficient is given by

Kurtosis ¼ h p; qð Þ ¼ c000 pð Þ þ c000 qð Þ
c0 pð Þ þ c0 qð Þð Þ2 (80.16)

The variance of the kurtosis coefficient by the delta method is given by

Var Kurtosisð Þ ¼ h
0
p p; qð Þ2var pð Þ þ h

0
q p; qð Þ2var qð Þ

þ 2h
0
p p; qð Þh0

q p; qð Þcov p; qð Þ (80.17)
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where

h
0
p p; qð Þ ¼ c0000 pð Þ c0 pð Þ þ c0 qð Þð Þ � 2c00 pð Þ c000 pð Þ þ c000 qð Þð Þ

c0 pð Þ þ c0 qð Þð Þ3 (80.18)

h
0
q p; qð Þ ¼ c0000 qð Þ c0 pð Þ þ c0 qð Þð Þ � 2c00 qð Þ c000 pð Þ þ c000 qð Þð Þ

c0 pð Þ þ c0 qð Þð Þ3 (80.19)

In the equations above, high-order polygamma functions are involved.

A polygamma function is the nth normal derivative of the logarithmic derivative

of G(z):

cn zð Þ ¼ dnþ1

dznþ1
ln G zð Þð Þ (80.20)

which, for n > 0, can be written as

cn zð Þ ¼ �1ð Þnþ1n!
X1
k¼0

1

zþ kð Þnþ1
(80.21)

which is used to calculate polygamma functions in this chapter.

Note: This appendix is based on the paper by Wang et al. (2001). However, there

are typos and errors in that paper. The standard deviation formula for skewness used

by Wang et al. (2001) is incorrect (see g0q(p,q) equation in the paper at http://www.
econ.queensu.ca/jae/2001-v16.4/wang-fawson-barrett-mcdonald/Appendix4_delta_

derivations.pdf). We therefore provide this appendix. Accordingly, as we reviewed

and replicated that paper by using the data supplied by the Journal of Applied
Econometrics, the EGB2 distribution doesn’t remove the skewness problem

completely as shown in their Table 3. In addition, there is a computational error in

the JPY series, so that its kurtosis has not been resolved either.
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Abstract

This study examines the profits of revenue, earnings, and price momentum

strategies in an attempt to understand investor reactions when facing multiple

information of firm performance in various scenarios. We first offer evidence that

there is no dominating momentum strategy among the revenue, earnings, and price

momentums, suggesting that revenue surprises, earnings surprises, and prior

returns each carry some exclusive unpriced information content. We next show

that the profits of momentum driven by firm fundamental performance information

(revenue or earnings) depend upon the accompanying firm market performance

information (price), and vice versa. The robust monotonicity in multivariate

momentum returns is consistent with the argument that the market does not only

underestimate the individual information but also the joint implications of multiple

information on firm performance, particularly when they point in the same

direction. A three-way combined momentum strategy may offer monthly return

as high as 1.44 %. The information conveyed by revenue surprises and earnings

surprises combined account for about 19 % of price momentum effects, which

finding adds to the large literature on tracing the sources of price momentum.

Keywords

Revenue surprises • Earnings surprises • Post-earnings-announcement drift •

Momentum strategies

81.1 Introduction

Financial economists have long been puzzled by two robust and persistent anom-

alies in the stock market: price momentum (see Jegadeesh and Titman 1993, 2001;

Rouwenhorst 1998), and post-earnings-announcement drift (see Ball and Brown

1968; Foster et al. 1984; Bernard and Thomas 1989; Chan et al. 1996). More

recently, Jegadeesh and Livnat (2006b) also find that price reactions to revenue

surprises on announcement dates only partially reflect the incremental information

conveyed by the surprises. The information contents carried by revenue, earnings

and stock prices are intrinsically linked through firm operations and investor

evaluation, and there is evidence of mutual predictability for respective future values
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(e.g., see Jegadeesh and Livnat 2006b). Nonetheless, investors, aware of the linkages

among the information content conveyed by revenue, earnings and prices (see

Ertimur et al. 2003; Raedy et al. 2006; and Heston and Sadka 2008), may still fail

to take full account of their joint implications when pricing the stocks.

This study investigates how investors price securities when facing multiple

information contents of a firm, particularly those firm performance information

that are most accessible for investors – price, earnings, and revenue.1 The long-

short strategy of momentums, widely used in the literature, provides a venue to

detect market reactions toward individual and multiple information contents.

Accordingly, this study will start with documenting the revenue momentum profits

and re-confirming the earnings and price momentums profits. Explorations with

momentum strategies expect to yield implications that answer our two research

questions. First, among the performance information of revenue surprises, earnings

surprises, and prior returns, does each carry some exclusive information content

that is not priced by the market? Second, do investors mis-react toward the joint

implications as well as individual information of firm revenue, earnings, and price?

Our first research question is explored by testing momentum dominance. One

momentum strategy is said to be dominated if its payoffs can be fully captured by

the information measure serving as the sorting criterion of another momentum

strategy. Note that our emphasis here is not asset pricing tests; instead, as in Chan

et al. (1996) and Heston and Sadka (2008), we focus on the return anomalies based

on revenue surprises, earnings surprises, and prior returns. Results from both

a pairwise nested comparison and a regression analysis indicate that revenue

surprises, earnings surprises, and prior returns each lead to significant momentum

returns that cannot be explained away by one another. That is, revenue momentum

neither drives nor rides earnings or price momentum. Following the information

diffusion hypothesis of Hong and Stein (1999), our evidence then suggests that

revenue surprises, earnings surprises, and prior returns each contribute to the

phenomenon of gradual information flow, or that each have some exclusive infor-

mation content that is not priced by the market.2 Further regression tests indicate

1Researches in the literature offer some evidence on the information linkage among revenue,

earnings and prices. For example, Lee and Zumwalt (1981) find that revenue information is

complementary to earnings information in security rate of return determination. Bagnoli

et al. (2001) find that revenue surprises but not earnings surprises can explain stock prices both

during and after the internet bubble. Swaminathan and Weintrop (1991) and Ertimur et al. (2003)

suggest that the market reacts significantly more strongly to revenue surprises than to expenses

surprises. Rees and Sivaramakrishnan (2001) and Jegadeesh and Livnat (2006b) also find that,

conditional on earnings surprises, there is still a certain extent of market reaction to the informa-

tion conveyed by revenue surprises. Ghosh et al. (2005) find that sustained increases in earnings

are supported by sustained increases in revenues rather than by cost reductions.
2The asset pricing tests of Chordia and Shivakumar (2006) support that price momentum is

subsumed by the systematic component of earnings momentum, even though they also find

earnings surprises and past returns have independent explanatory power for future returns. This

latter finding is consistent with the results of Chan et al. (1996) and our results, as is reported later.

In comparison, Chan et al. (1996), Jegadeesh and Livnat (2006b), and we focus on whether and
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that earnings surprise and revenue surprise information each accounts for about

14 % and 10 % of price momentum returns, and that these two fundamental

performance information combined account for just about 19 % of price momentum

effects. These results provide additional evidence in the literature on the sources of

price momentum (e.g., see Moskowitz and Grinblatt 1999; Lee and Swaminathan

2000; Piotroski 2000; Grundy and Martin 2001; Chordia and Shivakumar 2002,

2005; Ahn et al. 2003; Griffin et al. 2003; Bulkley and Nawosah 2009; Chui

et al. 2010; Novy-Marx 2012).

Our second research question inquires how the market reacts to the joint impli-

cations of multiple information measures. The three measures under our study all

carry important messages on innovations in firm performance, and therefore expect

to trigger investor reactions. They become ideal target to be studied to entail

implications on how investors process multiple information interactively in pricing

stocks. The results from two-way sorted portfolios find that the market anomalies

vary monotonically with the joint condition of revenue surprises, earnings surprises,

and prior returns, and anomalies tend to be strongest when stocks show the strongest

signals in the same direction. The cross-contingencies of momentums are observed in

that the momentum returns driven by fundamental performance information (revenue
surprises or earnings surprises) change with the accompanying market performance
information (prior returns), and vice versa. Such finding, as interpreted by the

gradual-information-diffusion model, is consistent with the suggestion that the mar-

ket not only underreacts to individual firm information but also underestimates the

significance of the joint implications of revenue, earnings, and price information.3

These results also have interesting implications for investment strategies that the

fundamental performance information plays an important role in differentiating

future returns among price winners, while the market performance information is

particularly helpful in predicting future returns for stock with high surprises in

revenue or earnings. Specifically, price winners, compared to price losers, yield

higher returns from revenue/earnings momentum strategies; stock with greater sur-

prises in fundamentals yield greater returns from price momentums.

The results of our dominance tests and multivariate momentum suggest that

a combined momentum strategy should yield better results over single-criterion

momentum strategies. A combined momentum strategy using all three performance

measures is found to yield monthly returns as high as 1.44 %, which amounts to an

annual return of 17.28 %. Such a combined momentum strategy outperforms single-

criterion momentum strategies by at least 0.72 percentage points in monthly return.

how firm characteristics, such as revenue surprises, earnings surprises, and prior returns, are

related to future cross-sectional returns, while Chordia and Shivakumar (2006) also conduct

asset pricing tests.
3The firm performance measures, revenue, earnings, and stock price, do not only share common

origins endogenously but also have added implications for future values of one another. Jegadeesh

and Livnat (2006b) have documented evidence on the temporal linkages among these variables. In

this study, we focus on the further inquiry that whether investors fully exploit such temporal

linkages among these firm performance information in pricing stocks.
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Our conclusions remain robust whether we use raw returns or risk-adjusted returns,

whether we include January results or not, and whether we use dependent or

independent sorts. Chan et al. (1996), Piotroski (2000), Griffin et al. (2005),

Mohanram (2005), Sagi and Seasholes (2007), Asem (2009), and Asness

et al. (2013) conduct similar tests on combined momentum strategies using alter-

native sorting criteria.4 In comparison, our study is the first to document results

considering these three firm performance information, revenue surprises, earnings

surprises, and prior returns altogether.

In terms of persistency, the earnings momentum strategy is found to exhibit the

strongest persistence, while the revenue momentum strategy is relatively short-

lived. All the same, the short-lived revenue momentum effect is prolonged when the

strategy is executed using stocks with the best prior price performance and more

positive earnings surprises. In fact, the general conclusion supports our claim of

cross-contingencies of momentum as applied to momentum persistence.

This study contributes to the finance literature in several respects. First, we

specifically identify the profitability of revenue momentum and its relation with

earnings surprises and prior returns in terms of momentum strength and persistence.

A revenue momentum strategy executed with a 6-month formation period and

6-month holding-period strategy yields an average monthly return of 0.61 % for

the period between 1974 and 2009. Second, this study identifies empirical inter-

relations of anomalies arising from three firm performance information – revenue,

earnings and price. To the best of our knowledge, we are the first to offer evidence

that there is no dominating momentum strategy among the three, and that the profits

of momentum driven by firm fundamental performance information (revenue or

earnings) depend upon the accompanying firm market performance information

(price), and vice versa.5 Third, aside from academic interest, the aforementioned

findings may well serve as useful guidance for asset managers seeking profitable

investment strategies. Fourth, this study also adds to the large literature attempting to

trace the sources of price momentum. Our numbers indicate that the information

conveyed by revenue surprises and earnings surprises combined account for about

19 % of price momentum effects. Last, our results offer additional evidence to the

literature using the behavioral explanation for momentums.6 Our empirical results

4Chan et al. (1996) and Griffin et al. (2005) find that when sorting prior price performance and

earnings surprises together, the profits of a zero-investment portfolio are higher than those of single

sorting. Piotroski (2000) and Mohanram (2005) develop fundamental indicators, FSCORE and

GSCORE, to separate winners from losers. Sagi and Seasholes (2007) find that price momentum

strategy becomes even more profitable when applied to stocks with high revenue growth volatility,

low costs, or valuable growth options. Asness et al. (2013) find that the combination of value strategy

and momentum strategy can perform better than either one alone. Asem (2009) find the momentum

profits can be enhanced combining prior price returns and dividend behaviors.
5Heston and Sadka (2008) and Novy-Marx (2012) also provide evidence that earnings surprises are

unable to explain price momentum. However, this study is the first to consider earnings surprises

and revenue surprises at the same time in explaining price momentum.
6Barberis et al. (1998), Daniel et al. (1998), Hong and Stein (1999), Jackson and Johnson (2006),

Verardo (2009), and Moskowitz et al. (2012) provide evidence in support of behavioral
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are consistent with the suggestion that revenue surprises, earnings surprises, and prior

returns each carry some exclusive unpriced information content. Moreover, the

monotonicity of abnormal returns found in multivariate momentums suggests that

the market does not only underestimate the individual information but also the joint

implications of multiple information on firm performance. Such suggestion is new to

the literature, and may also present a venue to track the sources of price momentum.

The study is organized as follows. In Sect. 81.2, we develop our models and

describe the methodologies. In Sect. 81.3, we describe the data. In Sect. 81.4, we

report the results on momentum strategies based on a single criterion. In Sect. 81.5,

we discuss the empirical results of exploration of inter-relations among revenue,

earnings, and price momentums using strategies built on multiple sorting criteria.

In Sect. 81.6, we test the persistency and seasonality of momentum strategies.

Section 81.7 concludes.

81.2 Revenue, Earnings, and Price Momentum Strategies

81.2.1 Measures for Earnings Surprises and Revenue Surprises

We follow Jegadeesh and Livnat (2006a, b) and measure revenue surprises and

earnings surprises based on historical revenues and earnings.7 Assuming that both

quarterly revenue and quarterly earnings per share follow a seasonal random walk

with a drift, we define the measure of revenue surprises for firm i in quarter t,
standardized unexpected revenue growth (SURGE), as

SURGEi,t ¼
QR

i,t � E QR
i,t

� �

sRi,t
, (81:1)

where Qi,t
R is the quarterly revenue of firm i in quarter t, E(Qi,t

R ) is the expected

quarterly revenue prior to earnings announcement, and si,t
R is the standard deviation

of quarterly revenue growth.

The same method is applied to measure earnings surprises, specifically stan-

dardized unexpected earnings (SUE), defined as

SUEi,t ¼
QE

i,t � E QE
i,t

� �

sEi,t
, (81:2)

explanation to momentum effect, while Grundy and Martin (2001), Johnson (2002), Ahn

et al. (2003), Sagi and Seasholes (2007), Li et al. (2008), Liu and Zhang (2008), and Wang and

Wu (2011) attribute momentum effect to missing risk factors. In addition, Korajczyk and Sadka

(2004) and Lesmond et al. (2004) re-examine the profitability of momentum strategies after taking

the transaction cost into account and get mixed results.
7See Appendix for a detailed discussion of measures to estimate revenue and earnings surprises.
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where Qi,t
E is the quarterly earnings per share from continuing operations, E(Qi,t

E ) is

the expected quarterly earnings per share prior to earnings announcement, and si,t
E is

the standard deviation of quarterly earnings growth.

81.2.2 Measuring the Profitability of Revenue, Earnings, and
Price Momentum Strategies

We construct all three momentum strategies based on the approach suggested by

Jegadeesh and Titman (1993). To evaluate the information effect of earnings

surprises on stock returns, we form an earnings momentum strategy analogous to

the one designed by Chordia and Shivakumar (2006). At the end of each month, we

sort sample firms by SUE and then group the firms into ten deciles.8 Dec 1 includes

stocks with the most negative earnings surprises, and Dec 10 includes those with the

most positive earnings surprises. The SUEs used in every formation month are

obtained from the most recent earnings announcements, made within three months

before the formation date.

We hold a zero-investment portfolio, long the most positive earnings surprises

portfolio and short the most negative earnings surprises portfolio, for K (K ¼ 3, 6,

9, and 12) subsequent months, not rebalancing the portfolios during the holding

period. Such positive minus negative strategy (PMN) holds K different long-

positive and short-negative portfolios each month. Accordingly, we obtain

a series of zero-investment portfolio returns, which are the monthly returns to this

earnings momentum strategy. Similarly, we apply this positive-minus-negative

method to construct a revenue momentum strategy.

In the case of price momentum, we form a zero-investment portfolio each month

by taking a long position in the top decile portfolio (winner) and a short position in

the bottom decile portfolio (loser), and we hold this winner minus loser portfolio

(WML) for subsequent K months. We thus obtain a series of zero-investment

portfolio returns, i.e., the returns to the price momentum strategy.

81.3 Data and Sample Descriptions

81.3.1 Data

We collect from Compustat the firm basic information, earnings announcement

dates, and firm accounting data. Stock prices, stock returns, share codes, and

8Note that we sort the sample firms into five quintile portfolios on each criterion in our later

construction of multivariate momentum strategies. To conform to the same sorting break points,

we also test the single momentum strategies based on quintile portfolios and find the results remain

similar to those based on decile portfolios.
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exchange codes come retrieved from the Center for Research in Security Prices

(CRSP) files. The sample period is from 1974 through 2009. Only common stocks

(SHRCD ¼ 10, 11) and firms listed on New York Stock Exchange, American Stock

Exchange, or Nasdaq (EXCE ¼ 1, 2, 3, 31, 32, 33) are included in our sample. We

exclude from the sample regulated industries (SIC ¼ 4,000–4,999) and financial

institutions (SIC¼ 6,000–6,999). We also exclude firms with stock prices below $5
on the formation date, considering that investors generally pay only limited

attention to such stocks.

For the purpose of estimating their revenue surprises (SURGE), earnings sur-

prises (SUE), and prior price performance, firms in the sample should have at least

eight consecutive quarterly earnings announcements and six consecutive monthly

returns before each formation month. To examine the return drift following the

estimated SURGE, SUE, and prior price performance, firms in the sample need to

have at least 12 consecutive monthly returns following each formation month.

Firms in the sample should also have corresponding SURGE, SUE, size and

book-to-market factors available in each formation month.

81.3.2 Sample Descriptions

Table 81.1 presents the summary statistics for firm size, estimates of revenue

surprises and estimates of earnings surprises for our sample firms between year

1974 and year 2009. Panel A shows that there are 223,831 firm-quarters during the

sample period. Median firm market capitalization is $235 million. Panel B and

Panel C describe the distributions the revenue surprises (SURGE) and the earnings

surprises (SUE) across firms of different market capitalization and different book-

to-market ratio. Around 54 % of revenue surprises and 50 % of earnings surprises

are positive.9

The values of SURGE and SUE are expected to be positively correlated. After all,

a firm’s income statement starts with revenue (sales) and ends with earnings; these

two attributes share common firm operational information to a great extent, and their

innovations, SURGE and SUE, should be correlated as well. Table 81.2 shows the

time-series average of the cross-sectional correlations between 1974 and 2009. Panel

A and Panel B present, respectively, the Pearson correlations and Spearman rank

correlations. The average of both types of correlations between SURGE and SUE is

0.32, while prior price performance is not as significantly correlated with SURGE or

SUE, with average correlations equal to about 0.15 and 0.19, respectively.

We then partition the sample by book-to-market ratio (B/M) and size. Value

firms and small firms are found to exhibit slightly higher correlations among

9To ensure that firm accounting information is available to public investors at the time the stock

returns are recorded, we follow the approach of Fama and French (1992) and match the accounting

data for all fiscal years ending in calendar year t� 1 with the returns for July of year t through June
of t + 1. The market capitalization is calculated by the closing price on the last trading day of June

of a year times the number of outstanding shares at the end of June of that year.
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SURGE, SUE, and prior price performance than growth firms and large firms,

although the differences in correlations across B/M and size groups are not signif-

icant. Table 81.2 also shows the fractions of months where non-zero correlations

are significant at the 1 % level. These numbers again confirm that the correlations

between SURGE and SUE tend to be strongest across various classifications of

firms, followed by correlations between SURGE and prior returns, and then those

between SUE and prior returns.

Table 81.1 Summary statistics of sample firm characteristics

Panel A: sample size and firm market capitalization

Number of firm-quarters Market cap (million dollars)

Mean Median Min Max

ALL 223,831 2,276 235 0.91 602,433

Panel B. Descriptive statistics of SURGE

Positive SURGE Negative SURGE Zero SURGE

N Mean Median STD N Mean Median STD N

ALL 121,525 3.31 2.84 2.34 102,306 �3.00 �2.56 2.21 0

Growth 45,670 3.63 3.25 2.40 27,829 �2.84 �2.35 2.21 0

Mid-BM 50,881 3.21 2.73 2.32 46,309 �3.05 �2.62 2.25 0

Value 24,974 2.91 2.41 2.20 28,168 �3.06 �2.69 2.15 0

Small 61,827 3.19 2.70 2.31 54,935 �2.96 �2.57 2.14 0

Mid-size 38,338 3.41 2.98 2.37 30,591 �3.02 �2.56 2.28 0

Large 21,360 3.45 2.99 2.40 16,780 �3.06 �2.56 2.33 0

Panel C. Descriptive statistics of SUE

Positive SUE Negative SUE Zero SUE

N Mean Median STD N Mean Median STD N

ALL 112,068 2.42 1.89 1.94 111,330 �2.92 �2.11 2.59 433

Growth 37,928 2.47 1.98 1.92 35,407 �2.83 �2.10 2.43 164

Mid-BM 48,767 2.41 1.88 1.94 48,221 �2.92 �2.09 2.60 202

Value 25,373 2.37 1.79 1.95 27,702 �3.04 �2.17 2.76 67

Small 56,746 4.42 1.87 1.94 59,765 �2.86 �2.04 2.54 251

Mid-size 35,031 2.43 1.91 1.93 33,773 �2.98 �2.18 2.65 125

Large 20,291 2.42 1.92 1.92 17,792 �3.01 �2.21 2.66 57

This table presents the descriptive statistics for major characteristics of our sample stocks. Our

sample includes stocks listed on the NYSE, the AMEX, and Nasdaq with data available to compute

book-to-market ratios, revenue surprises, and earnings surprises. All financial service operations and

utility companies are excluded. Firms with prices below $5 as of the earnings announcement date are

also excluded. Panel A lists numbers of firm-quarter observations between January 1974 and

December 2009. Panel B and Panel C respectively list the mean and median values the measure of

revenue surprises (SURGE) and for themeasure of earnings surprises (SUE) across all firm-quarters in

our sample. Statistics for positive surprises, negative surprises, and zero surprises are presented

separately. Sample firms are also classified into bottom 30 %, middle 40 %, and top 30 % groups by

their respective market capitalizations or book-to-market ratios. The breakpoints for the size

subsamples are based on ranked values of market capitalization of NYSE firms. The breakpoints for

the book-to-market subsamples are based on ranked values of book-to-market ratio of all sample firms
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Table 81.2 Correlation among revenue surprises, earnings surprises, and prior price performance

Panel A. Pearson correlations among SURGE, SUE, and prior 6-month returns

Correlated

variables

All firms Subsample by B/M Subsample by size

Value Mid Growth Small Mid Large

(SURGE, SUE) 0.3200*** 0.3331*** 0.3361*** 0.2818*** 0.3641*** 0.2917*** 0.2362***

(101.17) (84.46) (107.04) (65.93) (118.69) (69.91) (42.64)

[100 %] [100 %] [100 %] [100 %] [100 %] [100 %] [71.1 %]

(SURGE, Prior
returns)

0.1458*** 0.1272*** 0.1263*** 0.1353*** 0.1686*** 0.1304*** 0.1061***

(44.09) (33.86) (35.67) (35.36) (55.44) (29.78) (17.78)

[88.7 %] [41.5 %] [64.6 %] [62.7 %] [86.9 %] [55.4 %] [35.9 %]

(SUE, Prior
returns)

0.1868*** 0.2120*** 0.2015*** 0.1496*** 0.2330*** 0.1523*** 0.0959***

(65.54) (57.68) (54.40) (47.01) (75.82) (40.74) (20.93)

[98.4 %] [81.9 %] [92.7 %] [68.1 %] [98.8 %] [67.1 %] [23.7 %]

Panel B. Spearman rank correlations among SUE, SURGE, and prior 6-month-returns

Correlated

variables

All firms Subsample by B/M Subsample by size

Value Mid Growth Small Mid Large

(SURGE, SUE) 0.3231*** 0.3367*** 0.3397*** 0.2828*** 0.3652*** 0.2952*** 0.2407***

(106.09) (93.92) (112.08) (68.22) (124.45) (72.92) (45.40)

[100 %] [100 %] [100 %] [99.8 %] [100 %] [100 %] [74.4 %]

(SURGE, Prior
returns)

0.1426*** 0.1227*** 0.1255*** 0.1315*** 0.1647*** 0.1285*** 0.1032***

(42.61) (33.68) (36.33) (33.09) (55.45) (29.37) (17.58)

[86.6 %] [41.8 %] [63.4 %] [58.2 %] [87.8 %] [53.3 %] [35.0 %]

(SUE, Prior
returns)

0.1834*** 0.2117*** 0.1980*** 0.1383*** 0.2314*** 0.1501*** 0.0959***

(63.98) (59.29) (54.79) (41.56) (76.68) (39.50) (20.21)

[97.2 %] [84.0 %] [91.1 %] [62.0 %] [99.3 %] [64.8 %] [23.2 %]

This table presents the correlations among SURGE, SUE and prior returns of our sample firms. At

the end of each month, each sample firm should have its corresponding most current SUE, most

current SURGE, and previous 6-month return. SURGE and SUE are winsorized at 5 % and 95 %,

setting all SURGE and SUE values greater than the 95th percentile to the value of the 95th

percentile and all SURGE and SUE values smaller than the 5th percentile to the value of the 5th

percentile. Panel A lists the average Pearson correlations among SUE, SURGE, and prior returns

between 1974 and 2009. Panel B lists the average Spearman rank correlations, where all sample

firms are grouped into ten portfolios based on SURGE, SUE, and prior-6-month-returns indepen-

dently at the end of each month. Decile 1 portfolio consists of firms with the lowest value of the

attribute (SURGE, SUE, or prior 6-month returns), and Decile 10 consists of firms with the highest

value of the attribute. The correlations are calculated at the end of each month. The values reported

in the table are monthly averages of those correlations. Sample firms are further classified into

bottom 30 %, middle 40 %, and top 30 % groups by their respective market capitalizations or

book-to-market ratios at the end of the formation months. The breakpoints for the size subsamples

are based on ranked values of market capitalization of NYSE firms. The breakpoints for the book-

to-market subsamples are based on ranked values of book-to-market ratio of all sample firms. The

numbers in parentheses are the average t-statistics under the null hypothesis that the correlation is

zero.***, **, and * indicate statistical significance at 1 %, 5 %, and 10 %, respectively. Percentages

in brackets represent the fraction of the months with non-zero correlations that are significant at the

1 % level
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These preliminary results suggest that revenue surprises and earnings surprises

share highly correlated information, while each still have a distinctive content,

a conclusion consistent with Swaminathan and Weintrop (1991) and Jegadeesh and

Livnat (2006b). The information content conveyed by market information, i.e.,

prior returns, differs more from that carried by the two fundamental information

measures, SURGE and SUE.

81.3.3 Descriptive Statistics for Stocks Grouped by SURGE, SUE,
and Prior Returns

We next compare the firm characteristics for portfolios characterized by different

revenue surprises (SURGE), earnings surprises (SUE) and prior returns. All sample

stocks are sorted into quintiles based on their SURGE, SUE, and prior 6-month

returns independently. The characteristics of those quintile portfolios are reported

in Table 81.3. Several interesting observations emerge.

The price level, as expected, is found to be lowest for the price losers (P1).

Stocks with negative revenue surprises (R1) or negative earnings surprises (E1) also

have lower price levels, while the trend is not as obvious as for price losers. We also

find price losers (P1) and price winners (P5) tend to be smaller stocks. Another

interesting observation revealed in the book-to-market ratios is that stocks with the

most positive SURGE or the most winning returns tend to be growth stocks. Stocks

with the most positive SUE also have lower B/M ratios, but to much less of

a degree. This suggests that growth stocks are characterized by strong revenue

but not necessarily strong earnings.

The last three sections of Table 81.3 list the SURGE, SUE, and prior returns for

those sorted portfolios. Stocks with strong SURGE also tend to have higher SUE

and higher prior returns. A similar pattern is seen for stocks with high SUE or high

prior returns. Stocks with strong SURGE, strong SUE, or winning prior returns tend

to excel on all three information dimensions. This relation is consistent with the

positive correlations reported in Table 81.2.

81.4 Empirical Results of Univariate Momentum Strategies

Table 81.4 presents the monthly returns to momentum strategies based on firms’

revenue surprises (SURGE), earnings surprises (SUE), and prior price performance,

respectively termed as revenue momentum, earnings momentum, and price

momentum strategies. Decile portfolio results are reported here.

We first examine the profitability of revenue momentum. We are interested in

knowing whether the well-documented post-announcement revenue drift also

enables a profitable investment strategy. Following a similar strategy of earnings

momentum by Chordia and Shivakumar (2006), we define a revenue momentum

portfolio as a zero-investment portfolio by buying stocks with the most positive

revenue surprises and selling stocks with the most negative revenue surprises.
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Panel A of Table 81.4 reports significant returns to the revenue momentum strat-

egies. These strategies yield average monthly returns of 0.94 %, 0.93 %, and

0.84 %, respectively, by holding the relative-strength portfolios for 3, 6, and

9 months. This research, to the best of our knowledge, is the first to document

specific evidence on the profitability of revenue momentum.

We also test with more recent data the profitability of earnings momentum and

price momentum strategies, which have both been studied in the literature. Panel B

of Table 81.4 reports the results for the earnings momentum strategies. We again

find that these positive-minus-negative (PMN) zero-investment portfolios yield

significantly positive returns for holding periods ranging from 3 to 12 months.

The profit is strongest when the PMN portfolios are held for 3 months, leading to an

average monthly return of 0.99 %, significant at the 1 % level. The results are

consistent with those of Bernard and Tomas (1989) and Chordia and Shivakumar

(2006). Chordia and Shivakumar (2006) find a significant monthly return of 0.96 %

on a 6-month holding-period earnings momentum strategy executed over

Table 81.4 Returns to revenue momentum, earnings momentum, and price momentum strategies

Panel A. Revenue momentum returns

Holding period Low High PMN CAPM_Adj. (1) FF3_Adj. (2)

3 months 0.0074*** 0.0163*** 0.0089*** 0.0084*** 0.0105***

(2.56) (5.37) (7.19) (6.88) (9.22)

6 months 0.0097*** 0.0158*** 0.0061*** 0.0056*** 0.0079***

(3.34) (5.17) (5.10) (4.71) (7.32)

9 months 0.0118*** 0.0154*** 0.0036*** 0.0030*** 0.0054***

(4.01) (5.03) (3.03) (2.58) (5.16)

12 months 0.0131*** 0.0145*** 0.0014 0.0010 0.0034***

(4.43) (4.78) (1.24) (0.87) (3.36)

Panel B. Earnings momentum returns

Holding period Low High PMN CAPM_Adj. (1) FF3_Adj. (2)

3 months 0.0079*** 0.0178*** 0.0099*** 0.0099*** 0.0102***

(2.71) (6.14) (9.77) (9.71) (9.90)

6 months 0.0098*** 0.0169*** 0.0071*** 0.0070*** 0.0077***

(3.35) (5.81) (7.82) (7.71) (8.42)

9 months 0.0116*** 0.0164*** 0.0048*** 0.0048*** 0.0056***

(3.92) (5.65) (5.68) (5.59) (6.63)

12 months 0.0127*** 0.0155*** 0.0028*** 0.0028*** 0.0037***

(4.28) (5.37) (3.60) (3.64) (4.47)

Panel C. Price momentum returns

Holding period Loser Winner WML CAPM_Adj. (1) FF3_Adj. (2)

3 months 0.0085** 0.0179*** 0.0094*** 0.0101*** 0.0113***

(2.18) (4.81) (3.23) (3.48) (3.80)

6 months 0.0088** 0.0182*** 0.0093*** 0.0098*** 0.0112***

(2.29) (4.94) (3.47) (3.62) (4.09)

9 months 0.0099*** 0.0183*** 0.0084*** 0.0085** 0.103***

(2.62) (5.02) (3.57) (3.62) (4.32)

(continued)
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1972–1999, while we show a significant monthly return of 0.71 % for a sample

period extending to 2009.

Panel C shows the performance of price momentum strategies. Similar to the

results in Jegadeesh and Titman (1993), price momentum strategies yield average

monthly returns of 0.94 %, 0.93 %, 0.84 %, and 0.61 %, for the 3, 6, 9, and

12 months holding-period respectively.

A comparison of the three momentum strategies indicates that the highest returns

are for price momentum, followed by earnings momentum and revenue momentum.

Meanwhile, the profitability for earnings momentum portfolio deteriorates faster than

for pricemomentumas the holding period extends from3 to 12months.10 The revenue

momentum strategy yields the smallest and the shortest-lived profits, with returns

diminishing to an insignificant levelwhen the holding period is extended to 12months.

Following a similar approach by Fama and French (1996) and Jegadeesh and

Titman (2001), we implement the capital asset pricing model and a Fama-French

three factor (FF-3) model to examine whether the momentum returns can be

10We show later that earnings momentum actually demonstrates stronger persistence than price

momentum when the momentum portfolios are held over 2 years.

Table 81.4 (continued)

12 months 0.0109*** 0.0171*** 0.0061*** 0.0062*** 0.0085***

(2.94) (4.72) (2.93) (2.94) (4.06)

This table presents monthly returns and associated t-statistics from revenue, earnings, and price

momentum strategies executed during the period from 1974 through 2009. For the revenue

momentum strategy, firms are grouped into ten deciles based on the measure SURGE during

each formation month. Decile 1 represents the most negative revenue surprises, and Decile

10 represents the most positive revenue surprises. The values of SURGE for each formation

month are computed using the most recent revenue announcements made within three months

before the formation date. The zero-investment portfolios—long the most positive revenue

surprises portfolio and short the most negative revenue surprises portfolio (PMN) —are held for

K (K¼ 3, 6, 9, and 12) subsequent months and are not rebalanced during the holding period. Panel

A lists the average monthly returns earned from the portfolio of those firms with the most negative

SURGE (low), from the portfolio of those with the most positive SURGE (high), and from the

earnings momentum strategies (PMN). Earnings momentum strategies are developed with the

same approach of revenue momentum strategies, by buying stocks with the most positive earnings

surprises and selling stocks with the most negative earnings surprises. The zero investment

portfolios are then held for K subsequent months. Panel B lists the average monthly returns earned

from the portfolio of those firms with the most negative SUE (low), from the portfolio of those

with the most positive SUE (high), and from the earnings momentum strategies (PMN). For the

price momentum strategy, firms are sorted into 10 ascending deciles on the basis of previous

6 months returns. Portfolios of buying Decile 1 (winner) and selling Decile 10 (loser) are held for

K subsequent months and not rebalanced during the holding period. The average monthly returns

of winner, loser, and price momentum strategies are presented in Panel C. Risk-adjusted momen-

tum returns are also provided in this table. Adj. (1) is momentum returns adjusted by CAPM, and

Ad.j (2) is momentum returns adjusted by the Fama-French 3-factor model.***, **, and * indicate

statistical significance at 1 %, 5 %, and 10 %, respectively
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explained by pricing factors.11 The last two columns in Panel A of Table 81.4 list

the risk-adjusted returns to revenue momentum, which remain significant. The

market risk premium, size factor, and book-to-market factor, while serving to

capture partial effects of the revenue momentum strategy, are still unable to explain

away abnormal returns entirely. The FF-3 factor adjusted return for 6 months

remains strong at 0.79 % with a t-statistic equal to 7.32. The risk-adjusted returns

to earnings momentum and price momentum in Panels B and C of Table 81.4 are

similar to those in the literature (see Jegadeesh and Titman 1993; and Chordia and

Shivakumar 2006) and generally confirm the conclusion of Fama (1998) that post-

earnings-announcement drift and price momentum profits remain significant.

81.5 Interrelation of Revenue, Earnings, and Price Momentum

We further examine the interrelation of momentum strategies through tests

of dominance, cross-contingencies, and combined strategies. The objective

is to find empirical support for hypotheses for our two research questions.

First, we hypothesize that revenue surprises, earnings surprises, and prior returns

each have some exclusive information content that is not captured by the market.

Under this hypothesis, a particular univariate momentum strategy should not be

subsumed by another strategy, which we examine through dominance tests. Second,

we hypothesize that the market not only underreacts to individual firm information,

but also underestimates the significance of the joint implications of revenue, earn-

ings, and price information. Under this hypothesis, return anomalies are likely to be

most pronounced when the information variables all point in the same direction.

81.5.1 Testing for Dominance Among the Momentum Strategies

To tackle the interrelation of momentums, we first explore whether any of the three

momentum strategies is entirely subsumed by another strategy. Stock price repre-

sents the firm value evaluated by investors in the aggregate, given their available

information. The most important firm fundamental information for investors is

undoubtedly firm earnings, which summarize firm performance. Jegadeesh and

Livnat (2006b) point out that an important reference for investors regarding the

persistence of firm earnings is offered by firm revenue information. Obviously,

these three pieces of firm-specific information, revenue, earnings and stock

price, share significant information content with each other. The anomalies

of their corresponding momentums therefore may arise from common sources.

That is, payoffs to a momentum strategy based on one measure, being revenue

11We obtain monthly data on market return, the risk-free rate, and SMB and HML from Kenneth

French’s website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/).
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surprises, earnings surprises, or prior returns, may be fully captured by another

measure. The dominance tests serve to test for such a possibility.

We first apply the pairwise nested comparison model introduced by George and

Hwang (2004) and test whether one particular momentum strategy dominates

another. Table 81.5 reports the results in three panels. Panel A compares the

revenue momentum and earnings momentum strategies. In Panel A.1, stocks are

first sorted on earnings surprises, with each quintile further sorted on revenue

surprises. We find that, when controlling for the level of earnings surprises, the

revenue momentum strategy still yields significant profits. The zero-investment

portfolio returns for 6-month holding periods range from 0.26 % to 0.36 %.

In Panel A.2, stocks are first sorted on revenue surprises, and then on earnings

surprises. Likewise, the returns to an earnings momentum strategy, when control-

ling for the level of revenue surprises, are still significantly positive. These paired

results indicate that neither earnings momentum nor revenue momentum dominates

one another.

We follow the same process in comparing revenue momentum and price

momentum strategies. Results in Panel B indicate that all the nested revenue

momentum strategies and the nested price momentum strategies are found profit-

able, with the exception of revenue momentum in the loser stock group. In general,

we still conclude that neither revenue momentum nor price momentum is domi-

nated by the other. Panel C of Table 81.5 presents the results of the nested

momentum strategies based on two-way sorts on earnings surprises and prior

returns. Returns to all these nested momentum strategies remain significantly

positive.

The pairwise nested comparisons suggest that revenue surprises, earnings sur-

prises, and prior returns each convey some unpriced information which is not

shared by each other, and therefore further contributes to a momentum effect.

A second approach allows us to simultaneously isolate the returns contributed by

each momentum portfolio. Taking advantage of George and Hwang’s (2004)

model, we implement a panel data analysis with six performance dummies.

Rit ¼ ajt þ b1jtRi,t�1 þ b2jtsizei,t�1 þ b3jtR1i,t�j þ b4jtR5i,t�j

þ b5jtE1i,t�j þ b6jtE5i,t�j þ b7jtP1i,t�j þ b8jtP5i,t�j þ eit
(81:3)

where j ¼ 1, . . . , 6. We first regress firm i’s return in month t on control variables

and six dummies for the portfolio ranks. We include the previous month return

Ri,t�1 to control for the bid-ask bounce effect and the market capitalization sizei,t�1

to control for the size effect in the cross-sectional regressions. Momentum portfolio

dummies, R1i,t�j, R5i,t � j, E1i,t � j, E5i,t � j, P1i,t � j, and P5i,t � j, indicate whether

firm i is included in one or more momentum portfolios based on their scores in

month t � j. To obtain momentum profits corresponding to the Jegadeesh and

Titman (1993) strategies, we average the estimated coefficients of the independent

variable over j ¼ 1, . . . , 6, and then subtract the coefficient average for the bottom

quintile portfolio from that for the top quintile portfolio. These are the returns
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Table 81.5 Momentum strategies: two-way dependent sorts by revenue surprises, earnings

Surprises, and prior returns

Panel A. Revenue Momentum vs. Earnings Momentum

A.1 Revenue momentum in various SUE groups A.2 Earnings momentum in various SURGE
groups

Portfolios

classified by

SUE

Portfolios

classified by

SURGE

Ave.

Monthly

Return t-stats

Portfolios

classified by

SURGE

Portfolios

classified by

SUE

Ave.

Monthly

Return t-stats

E1 (Low) R1 (Low) 0.0065 R1 (Low) E1 (Low) 0.0064

R5 (High) 0.0101 E5 (High) 0.0104

R5-R1 0.0036 (3.24) E5-E1 0.0040 (4.66)

E2 R1 (Low) 0.0086 R2 E1 (Low) 0.0079

R5 (High) 0.0115 E5 (High) 0.0113

R5-R1 0.0028 (2.85) E5-E1 0.0034 (4.91)

E3 R1 (Low) 0.0090 R3 E1 (Low) 0.0089

R5 (High) 0.0119 E5 (High) 0.0131

R5-R1 0.0029 (3.29) E5-E1 0.0042 (6.03)

E4 R1 (Low) 0.0096 R4 E1 (Low) 0.0096

R5 (High) 0.0122 E5 (High) 0.0140

R5-R1 0.0026 (2.70) E5-E1 0.0043 (5.59)

E5 (High) R1 (Low) 0.0116 R5 (High) E1 (Low) 0.0112

R5 (High) 0.0149 E5 (High) 0.0152

R5-R1 0.0033 (3.22) E5-E1 0.0040 (4.74)

Panel B. Revenue momentum vs. Price momentum

B.1 Revenue momentum in various PriorRet
groups

B.2 Price momentum in various SURGE groups

Portfolios

classified by

Prior Ret

Portfolios

classified by

SURGE

Ave.

Monthly

Return t-stats

Portfolios

classified by

SURGE

Portfolios

classified by

Prior Ret

Ave.

Monthly

Return t-stats

P1 (Loser) R1 (Low) 0.0070 R1 (Low) P1 (Loser) 0.0072

R5 (High) 0.0077 P5 (Winner) 0.0095

R5-R1 0.0008 (0.67) P5-P1 0.0024 (1.35)

P2 R1 (Low) 0.0083 R2 P1 (Loser) 0.0084

R5 (High) 0.0099 P5 (Winner) 0.0110

R5-R1 0.0015 (1.82) P5-P1 0.0026 (1.51)

P3 R1 (Low) 0.0091 R3 P1 (Loser) 0.0092

R5 (High) 0.0123 P5 (Winner) 0.0135

R5-R1 0.0032 (4.33) P5-P1 0.0042 (2.29)

P4 R1 (Low) 0.0089 R4 P1 (Loser) 0.0092

R5 (High) 0.0132 P5 (Winner) 0.0149

R5-R1 0.0042 (5.53) P5-P1 0.0057 (3.35)

P5 (Winner) R1 (Low) 0.0106 R5 (High) P1 (Loser) 0.0080

R5 (High) 0.0175 P5 (Winner) 0.0176

R5-R1 0.0070 (7.03) P5-P1 0.0096 (4.82)

(continued)
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contributed by each momentum strategy when the contributions from other momen-

tum strategies are controlled for.

Panel A of Table 81.6 reports the regression results. The returns isolated for

revenue momentum, earnings momentum, and price momentum are listed in the

last three rows. The results are all significant in terms of either raw returns or FF-3

factor adjusted returns when all months are included or when all non-January

months are included. Note, however, that the isolated returns to revenue momentum

(R5�R1) and to price momentum (P5�P1) strategies are no longer significantly

positive in January. The insignificant returns in January are consistent with the

tax-loss-selling hypothesis, proposing that investors sell poorly performing stocks

in October through December and buy them back in January (e.g., see Keim 1989;

Odean 1998; Grinblatt and Moskowitz 2004).

The overall significant profits contributed by R5 � R1 (E5 � E1 or P5 � P1)
indicate market underreactions with respect to the information content of revenue

Table 81.5 (continued)

Panel C. Earnings momentum vs. Price momentum

C.1 Earnings momentum in various PriorRet
groups

C.2 Price momentum in various SUE groups

Portfolios

classified by

SURGE

Portfolios

classified by

Prior Ret

Ave.

Monthly

return t-stats

Portfolios

classified by

Prior Ret

Portfolios

classified by

SURGE

Ave.

Monthly

return t-stats

P1 (Loser) E1 (Low) 0.0063 E1 (Low) P1 (Loser) 0.0066

E5 (High) 0.0096 P5 (Winner) 0.0097

E5-E1 0.0034 (3.73) P5-P1 0.0031 (1.62)

P2 E1 (Low) 0.0082 E2 P1 (Loser) 0.0083

E5 (High) 0.0106 P5 (Winner) 0.0118

E5-E1 0.0024 (3.67) P5-P1 0.0035 (1.80)

P3 E1 (Low) 0.0090 E3 P1 (Loser) 0.0081

E5 (High) 0.0126 P5 (Winner) 0.0134

E5-E1 0.0036 (5.96) P5-P1 0.0052 (2.87)

P4 E1 (Low) 0.0091 E4 P1 (Loser) 0.0096

E5 (High) 0.0137 P5 (Winner) 0.0143

E5-E1 0.0046 (7.69) P5-P1 0.0047 (2.65)

P5 (Winner) E1 (Low) 0.0104 E5 (High) P1 (Loser) 0.0100

E5 (High) 0.0178 P5 (Winner) 0.0177

E5-E1 0.0073 (8.78) P5-P1 0.0077 (4.16)

This table presents the results of pairwise nested comparison between momentum strategies. Panel

A shows the comparison between revenue momentum and earnings momentum during the period

from 1974 to 2009. In each month, stocks are first sorted into five groups by earnings surprises

(revenue surprises), then further sorted by revenue surprises (earnings surprises) in each group. All

portfolios are held for 6 months. The monthly returns to 10 extreme portfolios and 5 conditional

earnings (revenue) momentum strategies are presented. Pair tests are provided under the hypoth-

esis that conditional earnings (revenue) momentum profits are the same. Panel B shows the

comparison between revenue and price momentum strategies, and Panel C shows the comparison

between earnings and price momentum strategies
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surprises (earnings surprises or prior price performance) unrelated to the other two

information measures. The isolated returns are greatest for price momentum

(0.66 %), followed by earnings momentum (0.43 %) and then revenue momentum

(0.28 %). This is similar to our earlier results on single-criterion momentum. Such

a finding again rejects the existence of a dominating momentum strategy among the

three.

We do not find that information leading to revenue momentum or earnings

momentum fully captures the price momentum returns. Similar findings are

documented by Chan et al. (1996), Heston and Sadka (2008), and Novy-Marx

(2012) for the relation between earnings surprises and price momentum.

We would like to examine specifically how much of the price momentum can be

explained by revenue surprises and/or earnings surprises information. For this

reason, we perform similar regressions by including only a subset of portfolio

dummies. The results are reported in Panel B of Table 81.6. In the case of raw

returns, the return to price momentum without isolating other momentum sources

is 0.81 %, while it is only reduced to 0.73 % after controlling for revenue momen-

tum, to 0.70 % after controlling for earnings momentum, and to 0.66 % after

controlling for both. In other words, information leading to revenue momentum

and earnings momentum each accounts for about 10 % and 14 % of price momen-

tum, and the two pieces of information combined account for just about 19 % of

price momentum effects. The results for risk-adjusted returns are similar. This

conclusion adds to the large literature attempting to trace the sources of price

momentum. Our numbers indicate that the information conveyed by revenue

surprises or earnings surprises seems to make only a limited contribution to price

momentums.

Results of the pairwise nested comparisons in Table 81.5 and the regression

analysis in Table 81.6 both support the hypothesis that revenue surprises, earnings

surprises, and prior returns each have some unpriced information content that is

exclusive to each measure itself. This conclusion also suggests the possibility that

one can improve momentum strategies by using all three information measures.

81.5.2 Two-Way Sorted Portfolio Returns and Momentum
Ccross-Contingencies

Here and in the next section, we examine the momentum strategies using multiple

sorting criteria. These results serve to answer the research question of whether

investors underestimate the implications of joint information of revenue surprises,

earnings surprises, and prior returns.

Given that the market usually informs investors with not just a single piece but

multiple pieces of firm information, the incremental information content of addi-

tional firm data is likely to be contingent upon other information for the stock.

Jegadeesh and Livnat (2006b) suggest that the information content of SURGE has

implications for the future value of SUE and such information linkage is particu-

larly significant when both measures point in the same direction. Jegadeesh and
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Livnat (2006a) further find that the market, including financial analysts, underesti-

mates the joint implications of these measures and thus firm market value.

Our second research question extends Jegadeesh and Livnat (2006b) by addi-

tionally considering the information of prior price performance. We hypothesize

that return anomalies should be most pronounced when the joint implications of

multiple measures are most underestimated by the market, and this likely occurs

when all information variables point in the same direction. In addition, a different

but related issue is that any momentum profits driven by one measure may well

depend on the accompanying alternative information, which we call the cross-
contingencies of momentum. We use multivariate sorted portfolios to test this

hypothesis.

81.5.2.1 Two-Way Sorts on Revenue Surprises and Earnings Surprises
We start by testing the performance of investment strategies based on the joint

information of revenue surprises and earnings surprises. We sort stocks into quin-

tiles on the basis of their revenue surprises and then independently into quintiles

based on earnings surprises during the 6-month formation period on each portfolio

formation date. Panel A of Table 81.7 presents the raw returns of these 25 two-way

sorted portfolios. The intersection of R1 and E1, labeled as R1� E1, is the portfolio
formed by the stocks with both the lowest SURGE and the lowest SUE, and the

intersection of R5 and E5 labeled as R5� E5, represents the portfolio formed by the

stocks with both the highest SURGE and the highest SUE.

We first note that the next-period returns of the 25 two-way sorted portfolios

increase monotonically with SURGE as well as with SUE. The return to the

portfolio with a similar level of SURGE increases with SUE (e.g., the return

increases from 0.88 % for R1 � E1 to 1.21 % for R1 � E5). Similarly, the payoffs

to the portfolio of stocks with a similar level of SUE increase with SURGE (e.g., the

return increases from 1.23 % for R1 � E5 to 1.70 % for R5 � E5). That is, stocks
that have performed well in terms of revenue and earnings continue to outperform

expectations and yield higher future returns.

Panel D of Table 81.7 shows the corresponding risk-adjusted abnormal returns

for each of the 5 � 5 double-sorted portfolios based on SURGE and SUE. The

monotonicity we see in raw returns in Panel A persists for the risk-adjusted returns.

The most positive abnormal returns are for the portfolio of high-SURGE and high-

SUE stocks (R5 � E5) while the most negative abnormal returns are for the

portfolio of low-SURGE and low-SUE stocks (R1 � E1). This provides direct

and robust evidence that the return anomalies tend to be most pronounced when

SURGE and SUE point in the same direction.

The evidence of monotonicity suggests that the market underreaction is at its

extreme when different elements of stock performance information signal in the same

direction, i.e., the scenarios of R1� E1 or R5� E5. These are the scenarios where the
information of SURGE and SUE are expected to have the most significant joint

implications for firm value, while market underestimation of their joint implications

is found to be strongest, leading to the most pronounced return drifts in the next period.

This observation is consistent with the suggestion by Jegadeesh and Livnat (2006a, b).
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Table 81.7 Momentum strategies: two-way sorts by revenue surprises, earnings surprises, and

prior returns

Panel A. Raw returns sorted on revenue surprises (SURGE) and earnings surprise (SUE)

SUE Arbitrage
returns on
portfolios
sorted by
earningsE1(Low) E2 E3 E4 E5(High)

R1(Low) 0.0088 0.0107 0.0109 0.0112 0.0121 0.0049 (4.63)

R2 0.0098 0.0112 0.0117 0.0129 0.0139 0.0041 (4.71)

SURGE R3 0.0106 0.0121 0.0134 0.0142 0.0154 0.0048 (5.40)

R4 0.0108 0.0124 0.0133 0.0137 0.0165 0.0057 (5.84)

R5(High) 0.0123 0.0141 0.0141 0.0146 0.0170 0.0039 (3.43)

Arbitrage
returns on
portfolios
sorted by
revenue

0.0043 0.0034 0.0032 0.0034 0.0036

(2.86) (2.59) (2.84) (2.84) (2.70)

Revenue-earnings combined momentum strategy: R5 � E5 – R1 � E1 0.0081 (6.25)

Panel B. Raw returns sorted on revenue surprises (SURGE) and prior price performance

Prior price performance Arbitrage
returns on
portfolios
sorted by priceP1(Loser) P2 P3 P4 P5(Winner)

R1(Low) 0.0089 0.0104 0.0109 0.0109 0.0122 0.0034 (1.45)

R2 0.0099 0.0112 0.0121 0.0121 0.0135 0.0036 (1.59)

SURGE R3 0.0108 0.0125 0.0133 0.0139 0.0161 0.0053 (2.26)

R4 0.0100 0.0125 0.0131 0.0141 0.0176 0.0076 (3.66)

R5(High) 0.0090 0.0112 0.0143 0.0156 0.0198 0.0108 (4.67)

Arbitrage returns on
portfolios sorted by
price

0.0001 0.0008 0.0033 0.0048 0.0078

(0.06) (0.79) (3.69) (5.21) (6.43)

Revenue-Price combined momentum strategy: R5 � P5–R1 � P1 0.0109 (4.53)

Panel C. Raw returns sorted on earnings surprises (SUE) and prior price performance

Prior price performance Arbitrage
returns on
portfolios
sorted by priceP1(Loser) P2 P3 P4 P5(Winner)

E1(Low) 0.0083 0.0103 0.0109 0.0107 0.0105 0.0045 (1.94)

E2 0.0098 0.0115 0.0119 0.0126 0.0141 0.0044 (1.89)

SUE E3 0.0099 0.0117 0.0127 0.0134 0.0162 0.0062 (2.73)

E4 0.0106 0.0120 0.0133 0.0138 0.0168 0.0062 (2.81)

E5(High) 0.0107 0.0127 0.0149 0.0160 0.0201 0.0092 (4.01)

Arbitrage returns on
portfolios sorted by
earnings

0.0030 0.0023 0.0040 0.0053 0.0078

(2.66) (3.10) (5.49) (7.51) (7.79)

(continued)
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Table 81.7 (continued)

Price-revenue combined momentum strategy: E5 � P5 – E1 � P1 0.0118 (5.47)

Panel D. Risk-adjusted returns sorted on revenue surprises (SURGE) and earnings surprise
(SUE)

SUE Risk-adjusted
returns on
portfolios
sorted by
earningsE1(Low) E2 E3 E4 E5(High)

R1(Low) �0.0043 �0.0026 �0.0020 �0.0013 0.0005 0.0049 (4.52)

R2 �0.0029 �0.0017 �0.0008 0.0002 0.0013 0.0043 (4.79)

SURGE R3 �0.0016 �0.0004 0.0008 0.0017 0.0032 0.0049 (5.38)

R4 �0.0008 0.0006 0.0011 0.0018 0.0044 0.0052 (5.21)

R5(High) 0.0021 0.0027 0.0023 0.0033 0.0054 0.0033 (2.86)

Risk-adjusted returns
on portfolios sorted by
revenue

0.0064 0.0053 0.0043 0.0046 0.0045

(4.78) (4.32) (3.98) (4.16) (3.54)

Revenue-earnings combined momentum strategy: R5 � E5 – R1 � E1 0.0081 (6.25)

Panel E. Risk-adjusted returns sorted on revenue surprises (SURGE) and prior price

Prior price performance Risk-adjusted
returns on
portfolios
sorted by priceP1(Loser) P2 P3 P4 P5(Winner)

R1(Low) �0.0050 �0.0028 �0.0018 �0.0015 0.0002 0.0052 (2.22)

R2 �0.0037 �0.0018 �0.0004 �0.0002 0.0015 0.0052 (2.26)

SURGE R3 �0.0025 �0.0002 0.0009 0.0017 0.0040 0.0066 (2.76)

R4 �0.0026 0.0002 0.0013 0.0025 0.0059 0.0085 (4.05)

R5(High) �0.0032 �0.0005 0.0029 0.0044 0.0086 0.0118 (4.98)

Risk-adjusted returns
on portfolios sorted by
price

0.0018 0.0023 0.0047 0.0059 0.0087

(1.38) (2.49) (5.80) (6.86) (7.49)

Revenue-price combined momentum strategy: R5 � P5 – R1 � P1 0.0097 (7.86)

Panel F. Risk-adjusted returns sorted on earnings surprises (SUE) and prior price
performance

Prior price performance Risk-adjusted
returns on
portfolios
sorted by priceP1(Loser) P2 P3 P4 P5(Winner)

E1(Low) �0.0051 �0.0024 �0.0012 �0.0010 0.0010 0.0062 (2.65)

E2 �0.0039 �0.0014 �0.0005 0.0006 0.0027 0.0066 (2.79)

SUE E3 �0.0033 �0.0011 0.0004 0.0013 0.0042 0.0075 (3.20)

E4 �0.0025 �0.0004 0.0012 0.0020 0.0051 0.0076 (3.35)

E5(High) �0.0018 0.0003 0.0029 0.0041 0.0083 0.0096 (4.07)

(continued)
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Investors may execute various long-short strategies with those 25 portfolios.

Those listed in the farthest right column of Panel A indicate earnings momentum

returns for stocks with a particular level of SURGE, while those listed in the last

row are returns on revenue momentum for stocks with a given level of SUE.12

We now examine the cross-contingencies of momentum. The revenue momentum

measure is 0.36 % per month in the high-SUE subsample E5 and 0.43% per month in

the low-SUE subsample E1. Meanwhile, the earnings momentum measure is 0.39 %

per month in the high-SURGE subsample R5, and 0.49 % per month in the

low-SURGE subsample R1. We do not observe significant variations in momentum

returns across SUE or SURGE. Panel D shows similar patterns when returns to

momentum portfolios are adjusted for size and B/M risk factors. All of the profits

generated earnings momentum strategies or revenue momentum strategies remain

significantly positive.

81.5.2.2 Two-Way Sorts on Revenue Surprises and Prior Returns
We apply similar sorting procedures based on the joint information of revenue

surprises and prior price performance. The results for raw returns as shown in Panel

12Similar to Hong et al. (2000), one may characterize the former strategy as earnings momentum

strategies that are “revenue-momentum-neutral” and the latter as revenue momentum strategies

that are “earnings-momentum-neutral.”

Table 81.7 (continued)

Risk-adjusted returns
on portfolios sorted by
earnings

0.0036 0.0027 0.0041 0.0051 0.0072

(3.25) (3.64) (5.61) (7.07) (7.05)

Price-revenue combined momentum strategy: E5 � P5 – E1 � P1 0.0133 (6.09)

For each month, we form equal-weighted portfolios according to the breakpoints of two of three

firm characteristics: a firm’s revenue surprises (SURGE), its earnings surprises (SUE), and its prior

6-month stock performance. Panel A and Panel D present raw returns and risk-adjusted returns of

the 25 portfolios independently sorted on SURGE and on SUE. The returns of a revenue-earnings

combined momentum strategy are obtained by buying the portfolio of the best SURGE stocks and

the stocks with the best SUE (SURGE ¼ 5 and SUE ¼ 5) and selling the portfolio of the poorest

SURGE stocks and the stocks with the poorest SUE (SURGE ¼ 1 and SUE ¼ 1). Panel B and

Panel E present raw returns and risk-adjusted returns of the 25 portfolios independently sorted on

SURGE and on prior price performance. The returns of a revenue-price combined momentum

strategy is obtained by buying stocks in the portfolio of the best SURGE and the highest price

performance and selling stocks in the portfolio of the poorest SURGE and the lowest price

performance. Panel C and Panel F present the raw returns and risk-adjusted of the 25 portfolios

independently sorted on SUE and on prior price performance. The returns of a earnings-price

combined momentum strategy is obtained by buying stocks in the portfolio of the best SUE and the

highest price performance and selling stocks in the portfolio of the poorest SUE and the lowest

price performance. We also present the arbitrage returns and risk-adjusted arbitrage returns of

single sorted portfolios based on the quintiles of price performance, SUE or SURGE at the bottom

(and on the right hand side) of each panel for the purpose of comparisons. Risk-adjusted return is

the intercept of the Fama-French 3-factor regression where the dependent variable is the arbitrage

return or the excess return which is the difference between the raw return and the risk-free rate
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B of Table 81.7, generally exhibit a pattern similar to Panel A but with the following

differences. Although the future returns still rise with SURGE among the average and

winner stocks, they become insensitive to SURGE for loser stocks. A closer look at

the return for portfolio R1� P1 down to the return for portfolio R5� P1 indicates that
loser portfolio returns simply do not vary much with the level of SURGE.

Panel E lists risk-adjusted returns for the 5 � 5 portfolios sorted on prior returns

and SURGE. A similar monotonic pattern, now in relation with SURGE as well as

with prior returns, is observed for most of those abnormal returns. That is, stocks

that have performed well in terms of revenue (firm fundamental information) and

prior returns (firm market information) continue to outperform expectations and

yield higher future returns, and vice versa.

As to the cross-contingencies of momentums, the results in Panel B indicate that

the revenue momentum strategies executed with winner stocks yield higher returns

than those executed with loser stocks. For example, the revenue momentum

strategy executed with the most winning stocks yields a monthly return of 0.78 %

(R5 � P5 – R1 � P5), while with the most losing stocks it yields only a monthly

return of 0.01 % (R5 � P1 – R1 � P1). Likewise, the price momentum strategy

executed with stocks with greater SURGE yields higher returns than with those

with lower SURGE. For example, the price momentum strategy executed with the

lowest SURGE stocks yields a monthly return of 0.34 % (R1 � P5 – R1 � P1),
while with the highest SUE stocks it yields a monthly return as high as 1.08 %

(R5 � P5–R5 � P1). The difference of 0.74 percentage between R1 and R5

subsamples is statistically and economically significant, with price momentum

profits more than 200 % higher in R5 than in R1.

These observations suggest that the revenue surprise information is least effi-

cient among winner stocks, producing the greatest revenue drift for the next period,

and that the prior return information is least efficient among stocks with the most

positive SURGE producing the strongest return continuation. One noteworthy point

is that revenue momentum is no longer profitable among loser stocks. Panel E

shows similar patterns of momentum cross-contingencies when returns to

momentum portfolios are adjusted for size and B/M risk factors.

The message for investment strategy is that prior returns are most helpful in

distinguishing future returns among stocks with high SURGE, and the same is true

for the implications of revenue surprises for stocks of high prior returns. On the

other hand, when a stock is priced unfavorably by the market, the information of

revenue surprises does not offer much help in predicting its future returns.

81.5.2.3 Two-Way Sorts on Earnings Surprises and Prior Returns
Panel C of Table 81.7 shows the raw returns for multivariate momentum strategies

based on the joint information of earnings surprises and prior returns. Several

findings are observed. First, as in the cases shown in Panels A and B, the next-

period returns of the 25 two-way sorted portfolios increase monotonically with SUE

as well as with prior returns. For example, when a firm has a highly positive earnings
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surprises (E5) while having had winning stock returns (P5), these two pieces of

information together are likely to have particularly strong joint implications for firm

value. Such condition leads to an average monthly return as high as 2.01% in the next

6-month period, possibly attributable to even greater investor underreactions.

Panel F of Table 81.7 shows the risk-adjusted abnormal returns for each of the

5 � 5 double-sorted portfolios based on SUE and prior returns. The monotonicity

we see in raw returns in Panel C persists for the risk-adjusted returns. The most

positive abnormal returns are for the portfolio of high-SUE and high-prior-return

stocks (E5 � P5) while the most negative abnormal returns are for the portfolio of

low-SUE and low-prior-return stocks (E1 � P1).
Looking now at the cross-contingencies between earnings momentum and price

momentum, the earningsmomentumstrategy executedwithwinner stocks yields higher

returns (0.78 %) than that executed with loser stocks (0.30 %), and that the price

momentum strategy executed with positive-SUE stocks yields higher returns (0.92 %)

than that executed with negative-SUE stocks (0.45 %). Panel F shows risk-adjusted

returns for thesemomentum strategies and reveals a similar pattern as in Panel C for raw

returns. Results indicate that themarket underreactions to price performance are contin-

gent upon the accompanying earnings performance, and vice versa.

Can we reconcile our results on momentum cross-contingencies with the behav-

ioral explanations for momentum returns? Barberis et al. (1998) observe that

a conservatism bias might lead investors to underreact to information and then

result in momentum profits. The conservatism bias, described by Edwards (1968),

suggests that investors underweight new information in updating their prior beliefs.

If we accept the conservatism bias explanation for momentum profits, one might

interpret our results as follows.

Investors update their expectations of stock value using firm fundamental perfor-

mance information as well as technical information, and their information updates

are subject to conservatism biases. The evidence of momentum cross-contingencies

suggests that the speed of adjustment to market performance information (historical

price) is contingent upon the accompanying fundamental performance information

(earnings and/or revenue), and vice versa. Our results in Panel B and Panel C of

Table 81.7 suggest that stock prices suffer from a stronger conservatism bias from

investors and thus delay more in their adjustment to firm fundamental performance

information (earnings or revenue) when those stocks experience good news, instead

of bad news, as to market performance (prior returns). This then leads to greater

earnings or revenue momentum returns for winner stocks than for loser stocks.

Similar scenario also leads to greater price momentum returns for high-SUE or

high-SURGE stocks than for low-SUE or low-SURGE stocks.

This would mean that investors are subject to a conservatism bias that is

asymmetric with respect to good news vis-à-vis bad news. That is, investors tend

to be even more conservative in reacting to information on firm fundamental

performance (market performance) for stocks issuing good news than those issuing

bad news about their market performance (fundamental performance).
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81.5.3 Combined Momentum Strategies

The negative results on dominance tests in Table 81.5 and Table 81.6 mean that

each of the information variables, SURGE, SUE, and prior returns, at least to some

extent, independently leads to abnormal returns. This then suggests that a combined

momentum strategy using more than one of these information measures should

offer improved momentum profits. While Chan et al. (1996), Piotroski (2000),

Griffin et al. (2005), Mohanram (2005), Sagi and Seasholes (2007), Asness

et al. (2013), and Asem (2009) have examined the profitability of combined

momentum strategies based on other measures, to the best of our knowledge, we

offer the first evidence on the profitability of combined momentum strategies using

the three most accessible information on firm performance, i.e., prior returns,

earnings surprises, and revenue surprises altogether.

81.5.3.1 Bivariate Combined Momentums
Table 81.8 compares and analyzes the combined momentum returns. Panel A shows

raw and FF-3 factor adjusted returns to momentum strategies based on one-way,

two-way, and three-way sorts. We start with bivariate combined momentums.

If we buy stocks with the highest SURGE and the highest SUE (R5 � E5) while
selling stocks with the lowest SURGE and the lowest SUE (R1 � E1), such
a revenue-and-earnings combined momentum strategy yields a monthly return as

high as 0.81 %, which is higher than the univariate momentum return earned solely

on the basis of revenue surprises (0.47 %) or earnings surprises (0.58 %) when using

quintile portfolios. This result is also a consequence of our observation that the

sorted portfolio returns increase monotonically with both SURGE and SUE.

Panel A of Table 81.8 also shows that investors earn an average monthly return

of 1.09 % by buying stocks with the highest SURGE and the most winning prior

returns (R5 � P5) and selling stocks with the lowest SURGE and the most losing

prior returns (R1 � P1). This revenue-and-price combined momentum strategy
again outperforms the simple revenue momentum (0.47 %) and the simple price

momentum strategy (0.72 %). Similarly, an earnings-and-price combined momen-
tum strategy offers an average monthly return of 1.18 %, which outperforms the

univariate earnings momentum (0.58 %) and the price momentum strategy

(0.72 %).

Note that the strategy using SURGE and SUE yields a return (0.81 %) poorer

than that using SURGE and prior returns (1.09 %) or that using SUE and prior

returns (1.18 %). This suggests that it is important to take advantage of market

information (prior returns) as well as firm fundamental information (SURGE and

SUE) when it comes to formulation of investment strategies.

81.5.3.2 Multivariate Combined Momentums
Next, we further sort stocks into quintiles independently and simultaneously based

on SURGE, SUE, and prior price performance to obtain three-way sorted portfo-

lios. A revenue-earnings-price combined momentum strategy is performed by

buying the stocks with the most positive revenue surprises, the most positive

2246 H.-Y. Chen et al.



T
a
b
le

8
1
.8

C
o
m
p
ar
is
o
n
s
o
f
as
so
rt
ed

si
n
g
le

an
d
co
m
b
in
ed

m
o
m
en
tu
m

st
ra
te
g
ie
s

P
a
n
el

A
.
S
u
m
m
a
ry

o
f
m
o
m
en
tu
m

re
tu
rn
s
fr
om

v
ar
io
u
s
si
n
gl
e/
m
u
lt
ip
le

so
rt
in
g
cr
it
er
ia

O
n
e-
w
ay

so
rt
s

T
w
o
-w

ay
so
rt
s

T
h
re
e-
w
ay

so
rt
s

M
o
m
en
tu
m

S
tr
at
eg
y

R
aw

R
et
u
rn

A
d
j.

R
et
u
rn

M
o
m
en
tu
m

S
tr
at
eg
y

R
aw

R
et
u
rn

A
d
j.

R
et
u
rn

M
o
m
en
tu
m

S
tr
at
eg
y

R
aw

R
et
u
rn

A
d
j.

R
et
u
rn

M
o
m
(R
)

0
.0
0
4
7
*
*
*

0
.0
0
6
3
*
*
*

M
o
m
(R

+
E
)

0
.0
0
8
1
*
*
*

0
.0
0
9
7
*
*
*

M
o
m
(R

+
E
+
P
)

0
.0
1
4
4
*
*
*

0
.0
1
6
8
*
*
*

(4
.4
2
)

(6
.7
7
)

(6
.2
5
)

(7
.8
6
)

(6
.0
6
)

(7
.1
2
)

M
o
m
(E
)

0
.0
0
5
8
*
*
*

0
.0
0
6
3
*
*
*

M
o
m
(R

+
P
)

0
.0
1
0
9
*
*
*

0
.0
1
3
6
*
*
*

(8
.1
7
)

(8
.8
1
)

(4
.5
3
)

(5
.7
5
)

M
o
m
(P
)

0
.0
0
7
2
*
*
*

0
.0
0
8
7
*
*
*

M
o
m
(E

+
P
)

0
.0
1
1
8
*
*
*

0
.0
1
3
3
*
*
*

(3
.3
6
)

(4
.0
1
)

(6
.2
5
)

(6
.0
9
)

P
an

el
B
.
C
o
n
tr
ib
u
ti
on

of
m
o
m
en
tu
m

re
tu
rn
s
fr
om

si
n
gl
e
p
ri
or

p
er
fo
rm

an
ce

in
fo
rm

at
io
n

In
cr
em

en
ta
l
re
tu
rn

co
n
tr
ib
u
ti
o
n
o
f
re
v
en
u
e

m
o
m
en
tu
m

In
cr
em

en
ta
l
re
tu
rn

co
n
tr
ib
u
ti
o
n
o
f
ea
rn
in
g
s

m
o
m
en
tu
m

In
cr
em

en
ta
l
re
tu
rn

co
n
tr
ib
u
ti
o
n
o
f
p
ri
ce

m
o
m
en
tu
m

D
if
f.
in

m
o
m
en
tu
m

st
ra
te
g
ie
s

R
et
u
rn

d
if
fe
re
n
ce

D
if
f.
in

m
o
m
en
tu
m

st
ra
te
g
ie
s

R
et
u
rn

d
if
fe
re
n
ce

D
if
f.
in

m
o
m
en
tu
m

st
ra
te
g
ie
s

R
et
u
rn

d
if
fe
re
n
ce

M
o
m
(R

+
P
)
�

M
o
m
(P
)

0
.0
0
3
8
*
*
*

M
o
m
(E

+
P
)
�

M
o
m
(P
)

0
.0
0
4
8
*
*
*

M
o
m
(E

+
P
)
�

M
o
m
(E
)

0
.0
0
6
1
*
*
*

(3
.9
1
)

(6
.6
9
)

(3
.4
8
)

(c
on

ti
nu

ed
)

81 Does Revenue Momentum Drive or Ride Earnings or Price Momentum? 2247



T
a
b
le

8
1
.8

(c
o
n
ti
n
u
ed
)

M
o
m
(R

+
E
)
�

M
o
m
(E

)
0
.0
0
2
3
*
*
*

M
o
m
(R

+
E
)
�

M
o
m
(R

)
0
.0
0
3
5
*
*
*

M
o
m
(R

+
P
)
�

M
o
m
(R
)

0
.0
0
6
3
*
*
*

(2
.2
8
)

(5
.7
6
)

(3
.5
8
)

M
o
m
(R

+
E
+
P
)

�
M
o
m
(P

+
E
)

0
.0
0
2
4
*
*
*

M
o
m
(R

+
E
+
P
)

�
M
o
m
(R

+
P
)

0
.0
0
3
3
*
*
*

M
o
m
(R

+
E
+
P
)

�
M
o
m
(R

+
E
)

0
.0
0
6
2
*
*
*

(2
.7
0
)

(4
.4
7
)

(4
.0
4
)

P
an

el
C
.
C
o
n
tr
ib
u
ti
on

of
m
o
m
en
tu
m

re
tu
rn
s
fr
om

m
u
lt
ip
le

p
ri
or

p
er
fo
rm

an
ce

in
fo
rm

at
io
n

In
cr
em

en
ta
l
re
tu
rn

co
n
tr
ib
u
ti
o
n
o
f
(r
ev
en
u
e
+

ea
rn
in
g
s)

m
o
m
en
tu
m

In
cr
em

en
ta
l
re
tu
rn

co
n
tr
ib
u
ti
o
n
o
f
(r
ev
en
u
e
+

p
ri
ce
)
m
o
m
en
tu
m

In
cr
em

en
ta
l
re
tu
rn

co
n
tr
ib
u
ti
o
n
o
f
(e
ar
n
in
g
s
+

p
ri
ce
)
m
o
m
en
tu
m

D
if
f.
in

m
o
m
en
tu
m

st
ra
te
g
ie
s

R
et
u
rn

d
if
fe
re
n
ce

D
if
f.
in

m
o
m
en
tu
m

st
ra
te
g
ie
s

R
et
u
rn

d
if
fe
re
n
ce

D
if
f.
in

m
o
m
en
tu
m

st
ra
te
g
ie
s

R
et
u
rn

d
if
fe
re
n
ce

M
o
m
(R

+
E
+
P
)

�
M
o
m
(P
)

0
.0
0
7
2
*
*
*

M
o
m
(R

+
E
+
P
)

�
M
o
m
(E
)

0
.0
0
8
5
*
*
*

M
o
m
(R

+
E
+
P
)

�
M
o
m
(R
)

0
.0
0
9
6
*
*
*

(5
.4
7
)

(4
.3
8
)

(5
.5
4
)

T
h
is
ta
b
le
p
re
se
n
ts
th
e
re
tu
rn

co
n
tr
ib
u
ti
o
n
b
y
co
n
si
d
er
in
g
ad
d
it
io
n
al
so
rt
in
g
cr
it
er
io
n
,
b
ei
n
g
re
v
en
u
e
su
rp
ri
se
s,
ea
rn
in
g
s
su
rp
ri
se
s
o
r
p
ri
o
r
re
tu
rn
s.
In

th
e
ta
b
le
,

R
,
E
,
an
d
P
re
sp
ec
ti
v
el
y
re
fe
r
to

re
v
en
u
e
m
o
m
en
tu
m
,
ea
rn
in
g
s
m
o
m
en
tu
m
,
an
d
p
ri
ce

m
o
m
en
tu
m

st
ra
te
g
y
.
M
o
m
en
tu
m

st
ra
te
g
ie
s
b
as
ed

o
n
co
m
b
in
ed

cr
it
er
ia

ar
e
in
d
ic
at
ed

w
it
h
p
lu
s
si
g
n
s.
F
o
r
ex
am

p
le
,
R
+
P
d
en
o
te
s
re
ve
nu

e-
pr
ic
e
co
m
bi
ne
d
m
om

en
tu
m
st
ra
te
gy
,
th
at
is
,
R
5
�

P
5
–
R
1
�

P
1
.
P
an
el
A
su
m
m
ar
iz
es

ra
w

re
tu
rn
s
an
d
ri
sk
-a
d
ju
st
ed

re
tu
rn
s
o
b
ta
in
ed

fr
o
m

m
o
m
en
tu
m

st
ra
te
g
ie
s
b
as
ed

o
n
o
n
e-
w
ay

so
rt
s,
tw
o
-w

ay
so
rt
s,
an
d
th
re
e-
w
ay

so
rt
s.
R
is
k
-a
d
ju
st
ed

re
tu
rn

is
th
e

in
te
rc
ep
t
o
f
th
e
F
am

a-
F
re
n
ch

3
-f
ac
to
r
re
g
re
ss
io
n
o
n
ra
w
re
tu
rn
.
P
an
el

B
li
st
s
th
e
re
tu
rn

co
n
tr
ib
u
ti
o
n
s
o
f
ea
ch

ad
d
it
io
n
al

so
rt
in
g
cr
it
er
io
n
b
as
ed

o
n
th
e
re
tu
rn

d
if
fe
re
n
ce
s.
T
h
e
as
so
ci
at
ed

t-
st
at
is
ti
cs

ar
e
in

p
ar
en
th
es
es
.
P
an
el
C
li
st
s
th
e
in
cr
em

en
ta
l
re
tu
rn
s
o
b
ta
in
ed

b
y
ap
p
ly
in
g
ad
d
it
io
n
al
tw
o
so
rt
in
g
cr
it
er
ia
.
A
ll
re
tu
rn
s

ar
e
ex
p
re
ss
ed

as
m
o
n
th
ly

re
tu
rn
s.
*
*
*
,
*
*
,
an
d

*
in
d
ic
at
e
st
at
is
ti
ca
l
si
g
n
ifi
ca
n
ce

at
1
%
,
5
%
,
an
d
1
0
%
,
re
sp
ec
ti
v
el
y

2248 H.-Y. Chen et al.



earnings surprises, and the highest prior returns (R5 � E5 � P5), and selling the

stocks with the most negative revenue surprises, the most negative earnings sur-

prises, and the lowest prior returns (R1 � E1 � P1). This leads to a monthly

momentum return of 1.44 %, which provides the highest investment returns of all

the paired momentum strategies discussed so far.

Panels B and C of Table 81.8 present the differences in portfolio performance,

which indicate the incremental contribution to momentum portfolio returns from

each additional sorting criterion. The results are straightforward. The joint consid-

eration of each additional performance measure, whether it is revenue surprises,

earnings surprises, or prior returns, helps improve the profits of momentum strat-

egies significantly. The net contribution from price momentum is the greatest

(0.62 %), followed by earnings momentum (0.33 %), and then revenue momentum

(0.24 %). This result further supports the argument that revenue, earnings, and price

all convey to some extent exclusive but unpriced information.

81.5.3.3 Dependent Sorts Versus Independent Sorts
With highly correlated sorting criteria, as indicated in Table 81.2, independent

multiple sorts may result in portfolios with limited numbers of stocks and therefore

insufficient diversification. This will then lead to results that might be confounded

by factors other than the intended sorting features. More important, only dependent

sorts provide a way to identify the precise conditional momentum returns.

Table 81.9 presents the returns and the associated t-statistics for two-way and

three-way sorted combined momentum strategies using independent sorts and

dependent sorts in different orders. For two-way sorted combined momentum

strategies, dependent sorts are found to generate returns that are insignificantly

different from those from independent sorts. For three-way sorted combined

momentum strategies, however, the results are found to vary significantly with

the sorting method. The three-way dependent sorts, in any order, yield investment

strategies that significantly outperform those using independent sorts; independent

sorts create an average monthly return of 1.44 %, while dependent sorts lead to an

average monthly return ranging from 1.66 % to 1.89 %. Yet to take advantage of

a more simplified presentation, we report results from only independent sorts in

Tables 81.7 and 81.8. Note that the general conclusions we have drawn remain

unchanged with dependent sorts.

81.6 Persistency and Seasonality

81.6.1 Persistence of Momentum Effects

We next examine the persistence of momentum effects driven by revenue surprises,

earnings surprises, and prior price performance. Stock prices tend to adjust slowly

to information, and abnormal returns will not continue once information is fully

incorporated into prices. Following the argument of conservatism bias (see

Edwards 1968; and Barberis et al. 1998), an examination of the persistence of
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Table 81.9 Returns of combined momentum strategies – a comparison between dependent sorts

and independent sorts

Momentum

Strategies

Independent

sorts Dependent sorts

SURGE |
SUE

SUE |
SURGE

Mom(R + E) 0.0081*** 0.0084*** 0.0088***

(6.25) (6.95) (6.88)

Dep_sorts –
Indep_sorts
(t-statistic
only)

(0.55) (1.49)

P6 |
SURGE

SURGE |
P6

Mom(R + P) 0.0109*** 0.0104*** 0.0106***

(4.53) (4.66) (5.19)

Dep_sorts –
Indep_sorts
(t-statistic
only)

(�1.17) (�0.57)

P6 | SUE SUE | P6

Mom(E + P) 0.0118*** 0.0111*** 0.0115***

(5.47) (5.24) (6.20)

Dep_sorts –
Indep_sorts
(t-statistic
only)

(�1.76) (�0.55)

P6|
SURGE|
SUE

SURGE|
P6|SUE

P6|SUE|
SURGE

SUE|P6|
SURGE

SURGE|
SUE|P6

SUE|
SURGE|
P6

Mom
(R + E + P)

0.0144*** 0.0175*** 0.0166*** 0.0189*** 0.0188*** 0.0171*** 0.0168***

(6.06) (4.16) (4.12) (4.29) (4.45) (4.47) (4.36)

Dep_sorts –
Indep_sorts
(t-statistic
only)

(1.86) (1.45) (2.44) (2.60) (1.61) (1.39)

This table presents returns and the associated t-statistics from two-way and three-way sorted

combined momentum strategies, which are formed using independent sorts or dependent sorts.

A momentum strategy formed on the basis of multiple criteria, which we call combined momentum

strategy, is said to apply independent sorts if portfolios are independently sorted into quintiles

according to their SURGE, SUE, and prior price performance, with the partition points being

independent across these criteria. A combined momentum strategy is said to apply dependent sorts

if portfolios are sorted into quintiles according to their SURGE, SUE, and prior price performance,

with a particular sorting order. For example, a two-way sorted momentum strategy based on SURGE

and SUE using dependent sorts could be formed by first sorting on SURGE then on SUE (SUE|
SURGE) or first sorting on SUE then on SURGE (SURGE|SUE). We present here the returns of

momentum strategies following all possible sequences of two-way dependent sorts and three-way

dependent sorts.***, **, and * indicate statistical significance at 1 %, 5 %, and 10 %, respectively

2250 H.-Y. Chen et al.



momentum returns will reveal the speed of adjustment in reaction to revenue

surprises, earnings surprises, and prior returns. More interestingly, the variations

of persistence in conditional momentums will demonstrate how one element of

information (e.g., revenue surprises) affects the speed of adjustment to another

(e.g., prior returns).

Table 81.10 presents the cumulative returns from revenue, earnings, and price

momentum strategies. The formation period is kept at 6 months, and the cumulative

returns are calculated up to 36 months after the event time. Panel A shows that the

zero-investment portfolios built upon revenue surprises maintain their return

momentum for 6 months. The buy-and-hold returns drop to insignificance

21 months after the portfolio formation. In Panel B, the profits of earnings momen-

tum portfolios, although are not as high as on price momentum in the short term,

demonstrate greater persistence than price momentum, with the cumulative returns

continuing to drift upward for 25 months after portfolio formation. The cumulative

returns still remain significant at 4.65 % 3 years after portfolio formation. Panel

C shows that the profits to price momentum portfolio drift upward for 11 months

after portfolio formation and start to reverse thereafter. The cumulative returns

remain significant at 3.22 % on monthly terms 36 months after portfolio formation.

Figure 81.1 compares the cumulative returns to those three univariate momen-

tum strategies. Price momentum generates the highest cumulative returns in the

short term (for a 1 year holding period), while earnings momentum demonstrates

the most persistent performance, as cumulative returns continue to grow up to

2 years after portfolio formation. On the other hand, the payoffs to revenue

momentum seem to be neither as persistent nor as strong as the other two strategies.

Figure 81.2 presents the cumulative returns for momentum strategies conditional

on alternative performance measures. Figure 81.2a, b present the cumulative

returns of revenue momentum conditional on high-low SUEs and prior returns.

They show that the revenue momentums remain short-lived, regardless of the level

of SUE or the level of prior returns. The portfolio returns to a revenue momentum

strategy with loser stocks not only quickly dissipate in the short term and actually

reverse to negative returns starting 7 months after portfolio formation.

Figure 81.2c, d demonstrate the cumulative returns for earnings momentums

conditional on high-low SURGE and prior returns. Figure 81.2c shows that the

earnings momentum returns remain similar for the low-SURGE and the high-

SURGE stocks during the first 20 months after portfolio formation. Such finding

of momentum contingencies in fact conforms to our results in Panel A of Table 81.8.

More interesting, as we hold the portfolio for over 20 months, the earnings

momentum strategy with low-SURGE stocks starts deteriorating while the strategy

with high-SURGE stocks still maintain significantly positive returns up to

36 months after the portfolio formation. Figure 81.2d, on the other hand, shows

that earnings momentum effects are both greater and longer-lasting for winner

stocks than for loser stocks. The caveat on investment strategy is that earnings

momentum returns are higher and more longer-lived when applied over stocks with

superior price history in the past 6 months.
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In Figure 81.2e, f, price momentum strategies yield higher and more persistent

returns for stocks with positive SUE or SURGE than for stocks with negative SUE

or SURGE. A comparison of Fig. 81.2e, f also finds that high-SURGE serves as

a more effective driver than high-SUE for stocks to exhibit greater and more

persistent price momentum.

These observations on momentum persistence provide further support for our

claim on momentum cross-contingencies. We find that the persistence of

a momentum, just like the magnitude of the momentum returns, depends on the

accompanying condition of another firm information. Such cross-contingencies are

again not as strong in the relation between revenue momentum and SUE or between

earnings momentum and SURGE, as shown in Fig. 81.2a, c. Results suggest that

investors update their expectations based on the joint information of revenue

surprises, earnings surprises, and prior price performance, and the speed of adjust-

ment to firm fundamental information (SURGE or SUE) depends on the prevailing

content of firm market information (prior returns), and vice versa.

81.6.2 Seasonality

Jegadeesh and Titman (1993), Heston and Sadka (2008), Asness et al. (2013),

Novy-Marx (2012), and Yao (2012) find that prior return winners outperform losers

in all months except January, leading to positive profits for a price momentum
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Fig. 81.1 Persistence of momentum effects. This figure shows the average cumulative returns

of relative strength portfolios with respect to revenue surprises, earnings surprises, and prior price

performance. The relative strength portfolio is buying stocks in highest quintile and selling stocks

in lowest quintile on every formation date, and holding for 36 months. The cumulative returns are

calculated by adding monthly returns from formation month t to month t + i
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strategy in all months except January but negative profits for that strategy in

January. Chordia and Shivakumar (2006) also find significant seasonality effects

in returns to the earnings momentum strategy. Do a revenue momentum strategy

and combined momentum strategies exhibit similar seasonalities?

Table 81.11 presents results for tests of seasonal patterns in returns to univariate

momentum strategies and combined momentum strategies. For all types of momen-

tum strategies, momentum profits in January are either negative or insignificantly

different from zero. F-tests reject the hypothesis that the returns to momentum

strategies are equal in January and non-January months. We therefore conclude

that, as in finding elsewhere, there is seasonality in momentum strategies, and

revenue surprises, earnings, surprises, and prior returns all yield significantly

positive returns only in non-January months.
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Fig. 81.2 Cumulative returns of momentum effect conditional on performance measure.
These figures show the average cumulative returns of relative strength portfolio with respect to

revenue surprises, earnings surprises, and prior price performance conditional on one another. The

holding period is up to 36 months. The cumulative profits are calculated by adding monthly returns

from formation month t to month t + i. (a) Cumulative returns of revenue momentum conditional

on SUE. (b) Cumulative returns of revenue momentum conditional on prior price performance.

(c) Cumulative returns of earnings momentum conditional on SURGE. (d) Cumulative returns of

earnings momentum conditional on prior price performance
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81.7 Conclusions

This study focuses on the three firm performance information that receive most

attentions from investors – revenue, earnings and price. We attempt to understand

how investors incorporate those information variables altogether in stock

prices. Multivariate momentums are therefore used as a venue in the exploration.

We provide new evidence that a revenue momentum strategy yields an

average monthly return of 0.61 %, and remain significant after adjustment for

market factor and FF-3 factors. Compared to the results of price momentum

and earnings momentum, revenue momentum is less profitable and relatively

short-lived.

Dominance tests show that none of the three momentum strategies generate

returns that can be fully captured by the information driving an alternative strategy.

This finding answers our first research question, and suggests that revenue sur-

prises, earnings surprises, and prior returns each carry some unpriced information

that is exclusive to itself. In particular, the information conveyed by revenue

surprises and/or earnings surprises only makes a limited contribution to price

momentum. The overall evidence indicates that while revenue serves as a base

for a firm’s earnings and stock valuation, revenue momentum neither drives nor

rides earnings or price momentum.

Table 81.11 Returns of momentum strategies in january and non-january months

Momentum Strategies All months Jan. Feb.–Dec. F-Statistic p-Value

Mom(R) 0.0047*** �0.0061 0.0057*** 31.66 <0.01

(4.42) (�1.59) (5.19)

Mom(E) 0.0058*** 0.0026 0.0061*** 6.12 0.01

(8.17) (0.72) (8.67)

Mom(P) 0.0072*** �0.0134 0.0090*** 28.28 <0.01

(3.36) (�1.32) (4.25)

Mom(R + E) 0.0081*** �0.0062 0.0094*** 37.42 <0.01

(6.25) (�1.09) (7.22)

Mom(R + P) 0.0109*** �0.0164 0.0134*** 40.05 <0.01

(4.53) (�1. 44) (5.62)

Mom(E + P) 0.0118*** �0.0082 0.0136*** 26.18 <0.01

(5.47) (�0.73) (6.48)

Mom(R + E + P) 0.0144*** �0.0131 0.0169*** 41.72 <0.01

(6.06) (�1.11) (7.26)

This table presents average monthly returns and the associated t-statistics for the returns obtained
from single momentum strategies, two-way sorted combined momentum strategies, and two-way

sorted combined momentum strategies for all calendar months, for January, and for non-January

months. The F-statistics and p-values are computed under the hypothesis that the returns to

momentum strategies are equal in January and non-January months.***, **, and * indicate statistical

significance at 1 %, 5 %, and 10 %, respectively
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Our second research question inquires how investors process the joint implica-

tions of multiple firm performance information. The results from double sorted

portfolios find that next-period returns increase monotonically with each informa-

tion variable, and the highest (lowest) abnormal return occurs for stocks receiving

the best (worst) news in both variables. We further observe cross-contingencies of

momentum profits in that momentum returns driven by fundamental performance

information (SUE or SURGE) are positively associated with the accompanying

market performance information (prior returns), and the reverse holds as well. For

example, earnings/revenue momentum strategies with winner stocks yield higher

returns than with loser stocks; a price momentum strategy with stocks with higher

SURGE/SUE yields higher returns than with lower SURGE/SUE stocks. This

pattern would mean that investors are subject to a conservatism bias that is

asymmetric with respect to good news vis-à-vis bad news. The above findings are

consistent with the claim that investors underestimate the joint implications of

revenue surprises, earnings surprises, and prior returns, particularly when they

point in the same direction. The speed of adjustment to firm fundamental informa-

tion also depends on the accompanying market information, and vice versa.

The persistence of profitability also varies amongst the three momentums and

exhibits inter-dependency. An earnings momentum strategy is found to present the

strongest persistence, while the revenue momentum strategy is the shortest-lived

among the three, except when the strategy is executed over price winner stocks.

In general, the speed of adjustment to firm fundamental information also depends

on the accompanying market information, and vice versa. Exploiting sources of

momentums from three information variables altogether, a combined momentum

strategy using independent sorts yields a monthly return of 1.44 %, amounting to an

annual return as high as 17.28 %. The net contribution from prior return information

is the greatest, followed by earnings surprises, and then revenue surprises.

Revenue, earnings, and historical prices are the most readily available firm

performance information that investors use for stock evaluation. The pricing effect

from investors’ joint consideration of revenue, earnings, and prior returns is yet

well explored in the finance literature. Our results are serving as useful guidance for

asset managers identifying profitable investment strategies and for financial econ-

omists understanding the source of momentums in future research.

Appendix: A Measures of Earnings and Revenue Surprises

The literature provides a variety of measures to estimate earnings and revenue

surprises. There are generally two approaches to building the measures; one is

based on historical earnings/revenue data and the other on analysts’ forecasts.

The empirical literature demonstrates consistent post-earnings-announcement

drift, whichever method is used to measure the earnings surprises. For example,

Foster et al. (1984) and Bernard and Thomas (1989) assume that the differences

in quarterly earnings per share follow an AR(1) process, and find that firms

with highly unexpected earnings outperform firms with poor unexpected
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earnings. Chan et al. (1996) analyze earnings momentum effects by applying three

different earnings surprise measures built upon a seasonal random walk model,

cumulative abnormal stock returns around the announcement date, and changes in

analyst earnings forecasts. Jegadeesh and Livnat (2006a) use a seasonal random

walk model with a drift and an analysts’ forecast model to estimate earnings

surprises, and find both approaches can capture the drift following earnings

surprises.

Empirical research however finds inconsistent results as to whether revenues or

expenses provide added information content over earnings, mostly thanks to the

different measures being applied (e.g., see Hopwood and McKeown 1985;

Swaminathan and Weintrop 1991; Ertimur et al. 2003; Rees and Sivamakrishnan

2001; Jegadeesh and Livnat 2006b). There are particular advantages and disadvan-

tages when it comes to estimating expected earnings/revenues according to histor-

ical data or analyst forecast data. Considering that Compustat reports only restated

accounting data, historical data on earnings/revenues might suffer a look-ahead bias

to the extent that some input data are not available at the time we calculate earnings

and revenue surprises. The analyst forecast approach has the advantage that it does

not suffer from a potential look-ahead bias problem, and allows us to include in our

sample young firms that do not have the accounting data required by the historical

data approach. Its major disadvantage is that a sample will be limited to firms with

analyst forecast data available.

Our study requires not only earnings forecast data but also revenue forecast data,

which are not available from IBES until 1996, although even after 1996 many IBES

sample firms still lack revenue forecasts. With such a restriction, the empirical results

might be biased and lose their generality. Weighing the pros and cons, we elect to

borrow the approach of Jegadeesh and Livnat (2006a, b) and measure earnings

surprises and revenue surprises on the basis of historical earnings and revenues.

Specifically, we follow Jegadeesh and Livnat (2006b) and assume that quarterly

earnings per share follow a seasonal random walk with a drift. We use the earnings

per share in the same quarter of the previous year, instead of earnings per share in

the previous quarter, to proxy for the earnings expectation; this approach takes into

account the seasonality of earnings. We also accommodate a possible trend in

earnings growth by including a drift term in the expected earnings. The drift

term, di,t
E , is calculated from the average growth of previous eight quarters.

Expected quarterly earnings per share for firm i and quarter t are estimated by

E QE
i, t

� �
¼ QE

i, t�4 þ dEi, t (81:4)

and

dEi, t ¼

X8
j¼1

QE
i, t�j � QE

i, t�j�4

� �

8
: (81:2)
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The estimator for the standard deviation of quarterly earnings growth, si,t
E , for

computing earnings surprises is

sEi, t ¼
1

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X8
j¼1

QE
i, t�j � E QE

i, t�j

� �h i2
vuut : (81:6)

We therefore define our measure of SUE for i in quarter t as Eq. 81.1 in the text:

SUEi, t ¼
QE

i, t � E QE
i, t

� �

sEi, t
: (81:1)

The same method is applied to measure revenue surprises. To deal with possible

seasonal effects and trend effects in quarterly revenues, we again assume the

quarterly revenue follows a seasonal random walk with a drift. That is, the expected

quarterly revenue per share and the drift term are estimated as:

E QR
i, t

� �
¼ QR

i, t�4 þ dRi, t (81:7)

and

dRi, t ¼

X8
t¼1

QR
i, t�j � QR

i, t�j�4

� �

8
: (81:8)

For computing revenue surprises, the standard deviation of quarterly revenue

growth is estimated by the year-to-year growth of revenue for the prior eight

quarters:

sRi, t ¼
1

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X8
j¼1

QR
i, t�j � E QR

i, t�j

� �h i2
vuut : (81:9)

Therefore the measure of revenue surprises is defined as Eq. 81.2 in the text:

SURGEi, t ¼
QR

i, t � E QR
i, t

� �

sRi, t
: (81:2)
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are irregular substantial price fluctuations. The VG-NGARCH model imposes

a nonlinear asymmetric structure on the conditional shape parameters in a

variance-gamma process, which describes the arrival rates for news with

different degrees of influence on price movements and provides an ex ante

probability for the occurrence of large price movements. On the other hand,

the GARJI model, a mixed GARCH-jump model proposed by Chan and Maheu

(Journal of Business & Economic Statistics 20:377–389, 2002), adopts two

independent autoregressive processes to model the variances corresponding to

moderate and large price movements, respectively. An empirical study using

daily stock prices of four major banks, namely, Bank of America, J.P. Morgan

Chase, Citigroup, and Wells Fargo, from 2006 to 2009 is performed to compare

the two models. The goodness of fit of the VG-NGARCH model vs. the GARJI

model is demonstrated.

Keywords

VG-NGARCH model • GARCH-jump model • Autoregressive conditional jump

intensity • GARJI model • Substantial price fluctuations • Shape parameter •

Variance-gamma process • Ex ante probability • Daily stock price • Goodness

of fit

82.1 Introduction

To model asset returns, the following two frequently observed circumstances must

be recognized: the volatility clustering and the leverage effect (Nelson 1991;

Campbell and Hentschel 1992; Engle and Ng 1993). The two phenomena have

led to the development of the family of nonlinear asymmetric GARCH models in

financial forecasting and derivatives pricing (Nelson 1991; Engle and Ng 1993;

Glosten et al. 1993; Ding et al. 1993). Nevertheless, Gaussian distributed return

innovations in conventional ARCH-/GARCH-type models are unable to capture

irregular substantial price fluctuations resulting from extreme news reports, even

when the heteroskedasticity in the conventional ARCH-/GARCH-type models has

been taken care.

To account for both normal and large price movements, a mixed GARCH-

jump model that combines a GARCH-type model with a Poisson jump process for

the dynamics of log-returns was first proposed by Jorion (1988). Later, compli-

cated mixed GARCH-jump models that consider jumps in both log-returns and

volatilities were developed by Duffie et al. (2000), Pan (2002), Eraker

et al. (2003), and Eraker (2004). The mixed GARCH-jump model with

autoregressive jump intensity (GARJI), proposed by Chan and Maheu (2002), is

a more advanced mixed GARCH-jump model, of which the conditional variance

of asset returns is divided into two parts corresponding to moderate and large

price movements resulting from normal and extreme news events, respectively.

The dynamics of the two variances in a discrete-time setting are sketched by two
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conditionally independent autoregressive processes (Chan and Maheu 2002;

Maheu and McCurdy 2004).

Instead of a jump-diffusion process in the mixed GARCH-jump model with a

continuous sample path for the asset price dynamics, the VG-NGARCH model is

a GARCH-type model that uses a variance-gamma (VG) process, a pure jump

process having finite sum of absolute price movements during a defined time frame,

to model the price dynamics to avoid the problem that the sum of absolute price

movements during a finite time period is infinite. As pointed by Madan et al. (1998),

the VG process is a purely jump Levy process of infinite activities characterizing

a “high” arrival rate of jumps of different sizes and will adequately allow us to

dispense with the need to consider the variant influences of news reports on the

magnitude of price movements (Andersen 1996; Clark 1973; Ross 1989). With

the VG process, the VG-NGARCH model captures the volatility clustering and

the leverage effect by modeling the VG process’s shape parameter in a nonlinear

asymmetric autoregressive process. For this reason, the VG-NGARCH model is

more informative and parsimonious compared to the GARJI model. The specifica-

tion of a VG process is given in Appendix 1.

The goodness of fit of the VG-NGARCH and the GARJI model to the log of

stock price returns of four major banks listed in the S&P 500 are given. Since latent

random business times are introduced into the VG framework, to find parameter

estimates, Monte Carlo expectation-maximization (MCEM) algorithm together

with the Metropolis algorithm are implemented. The two estimation approaches

are given in Appendix 2.

The structure of this article continues as follows. In Sect. 82.2, the two GARCH-

type models, namely, the VG-NGARCH and the GARJI models, are introduced. In

Sect. 82.3, results of the empirical study and the performance of the two types of

GARCH models are presented and compared. Finally, a concluding remark is made

on Sect. 82.4.

82.2 Model Specifications

This section gives introduction and specifications for the GARJI model and the

VG-NGARCH model.

82.2.1 GARJI Model

Chan and Maheu (2002) proposed a GARCH-jump model with autoregressive

conditional jump intensity, i.e., the GARJI model, in which the conditional variance

of return innovations is divided into two distinct modules that define smooth and

steep fluctuations in price driven by normal and extreme news events, respectively.

The GARJI model employs two conditionally independent autoregressive processes

for the two components in a discrete-time economy in which the trading period
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[0, T] is partitioned into T subintervals (0, 1], (1, 2], . . . , (T�1, T]. The dynamics of

the log-return Yt ¼ ln(St/St�1) are as follows:

Yt ¼ mþ et, t ¼ 1, . . . ,T: (82.1)

Here the return innovation et is partitioned into two independent components e1,t
and e2,t corresponding to normal and unusual price movements, respectively. Let

F t�1 be the information set available at time t�1. Conditional on F t�1 , the

innovation from normal price movement

e1, t F t�1 � N 0;s2
t

� ��� (82.2)

is normally distributed with the conditional variance, st
2, being parameterized by

a GARCH function of the previous return innovation et�1 as

s2t ¼ a0 þ a1 et�1 � cð Þ2 þ a2s2t�1: (82.3)

The parameters employed for the GARCH function are based on the work of

Chan and Maheu (2002) and Maheu and McCurdy (2004), albeit in a more simpli-

fied range that accommodates the asymmetric feedback from positive through

negative news while allowing for the ex post evaluation of the expected number

of jumps through the interval (t�2, t�1] as a result of the information set F t�1 at

time t�1. The second component, e2,t, represents the jump innovation and is the

discrepancy between the total jump size and the expected total jump size of the nt
jumps during (t�1, t], i.e.,

e2, t ¼
Xnt
j¼1

Ut, j � ylt,

where Ut,j is the jth jump size being normally distributed with mean y and standard
deviation d and nt denotes the number of jumps distributed according to Poisson

with an autoregressive conditional jump intensity (ARJI)

lt ¼ l0 þ rlt�1 þ gxt�1: (82.4)

The intensity residual, xt�1 ¼ E nt�1 F t�1j Þ � lt�1ð , is defined as the difference

between the filter expected number of jumps given F t�1, E nt�1 F t�1j Þð and the

previous intensity lt�1. The probabilities of jumps to fluctuate periodically and cluster

with a persistence parameter of 0 < r < 1 are afforded by specifying the conditional

intensity. The conditional density of the log-return Yt given the information setF t�1 is

f YtjF t�1ð Þ ¼
X1
nt¼0

f Yt nt;F t�1jð Þ e
�ltlntt
nt!

, (82.5)
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where the conditional probability density f(Ytjnt, F t�1) is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p s2t þ ntd

2
� �q exp � Yt � mþ ylt � yntð Þ2

2 s2t þ ntd
2

� �
 !

:

From Eqs. 82.1 to 82.5, it is clear that the main feature of GARJI model is

the inclusion of both normal and extreme return innovations. Because these

two types of innovations certainly affect future volatility differently. Nevertheless,

it is impossible to identify the cutoff point between normal and extreme

price movements by observing the log-returns. Consequently, only an ex post

probability for the number of jumps, nt, from the information set F t�1 at time

t can be acquired, as nt is non-observable. The ex post probability for nt jumps given

F t�1 is

P ntjF tð Þ ¼ f Ytjnt,F t�1ð Þ
f YtjF t�1ð Þ � e�ltlntt

nt!
: (82.6)

82.2.2 VG-NGARCH Model

To model stock price dynamics, Madan and Seneta (1990), Madan and Milne

(1991), Madan et al. (1998), Carr et al. (2003), and Geman et al. (2001) considered

the use of a VG process. In the following the specification of log-returns in terms of

a VG process is given in a discrete-time setting. For t ¼ 1,. . ., T, the time-t
log-return Yt ¼ ln(St/St�1) can be formulated as

Yt ¼ mþ ft þ ygt þ et (82.7)

where m denotes the mean of instantaneous return rate, gt denotes a gamma-

distributed random time change during the interval (t� 1, t], and ft denotes a time-

varying parameter. The specification of a VG process is given in Appendix 1.

Because of the characteristics of the VG process, the return innovation et is

conditionally Gaussian distributed as

et F t�1 � N 0, s2gt
� �

:
�� (82.8)

It is worth noting that the conditional variance of the innovation et depends on gt
during the interval (t � 1, t]. To accommodate the volatility clustering effect, the

random time change gt is considered to be gamma-distributed with a time-varying

shape parameter nt, specifically

gt F t�1 � gamma nt; 1ð Þ:j (82.9)
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It is further assumed that the shape parameter nt follows a nonlinear asymmetric

NGARCH (1,1) process that depends on the previous return innovation et�1 and

shape parameter nt�1, respectively. The relation among them is as follows:

vt ¼ a0 þ a1 et�1 � c
ffiffiffiffiffiffiffiffi
vt�1

pð Þ2 þ a2vt�1, t�1 (82.10)

where c>0. The time-varying parameter ft in Eq. 82.7 is defined to be

ft ¼ nt ln 1� y� 1

2
s2

� �
: (82.11)

The skewness and kurtosis of log-return at time t are functions of the drift

parameter y, volatility s, and the first four moments of the shape parameter nt,
which depend on the NGARCH parameters a ¼ (a0, a1, a2, c). The skewness and
kurtosis functions are given in Appendix 3. According to the skewness and kurtosis

functions, the sign of the skewness relies on the sign of the drift parameter y.
Moreover, if a0 > 0 and a1(s

2 + c2) + a2 < 1, then shape parameter becomes

stationary, and

v1 ¼ limt!1E ntþ1ð Þ ¼ a0 1� s2 þ c2
� �

a1 � a2
� 	�1

: (82.12)

From Eq. 82.18, the proposal transition density f of the target distribution, i.e.,

the posterior distribution p(g|Y;Q), is chosen to be the distribution of T independent

gamma random variables with shape parameters n1� 0.5, . . .,nT� 0.5, respectively,

and scale parameter 1/k. Specifically,

f /
YT
t¼1

exp �kgt þ nt � 1:5ð Þlog gtð Þð Þ:

At the lth iteration of the independent Metropolis chain algorithm, a random

sample of time changes g ¼ (g1,. . ., gT)
0 is drawn from the proposed transition

density f. The random sample g is accepted and g(l) ¼ g with probability

min exp �
XT
t¼1

dt
gt
� dt

g
l�1ð Þ
t

 !" #
, 1

( )
; (82.13)

otherwise, g(l) ¼ g(l�1).

82.3 Empirical Study

Due to the extended periods of market instability experienced by banks as

a consequence of the extreme news reports associated with the 2008 financial crisis,

this study selects four big commercial banks listed in the S&P 500, namely,
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the Bank of America (BAC), J.P. Morgan Chase (JPM), Citigroup (Citi), and Wells

Fargo (WF), to study their stock price dynamics. Daily price data including intraday

highs and lows, and adjusted close prices, are collected from January 3, 2006

to December 31, 2009. Table 82.1 lists the correlation coefficients among them.

Since all correlation coefficients exceed 0.7, their price movements are highly

correlated. Table 82.2 lists the mean, standard deviation, skewness, and kurtosis

for log-returns of the four banks.

82.3.1 Estimation and Validation

Parameter estimates and log-likelihood of the VG-NGARCH model for each bank

are given in Table 82.3. Besides model fitting, two testing procedures were

conducted and the results are also contained in Table 82.3.

The first one with the null hypothesis, H0: a1 ¼ a2¼ c¼ 0, helps us to determine

whether the VG-NGARCH model can be reduced to a simpler model, i.e., the VG

model by Madan et al. (1998). Based on the likelihood ratio test, the

autoregressive shape dynamics are strongly favored for all banks over the VG

model with constant shape parameter. The second testing procedure is the Ljung-

Box test, with H0 describing the randomness of residuals. To compute Ljung-Box

Q statistic, the lag is set to be 25, and the large p-values for all banks, as shown

in Table 82.3, indicate that there is no significant serial correlation remaining

among the residuals for all banks after their log-returns were fitted by the

VG-NGARCH model.

Table 82.1 Correlations of daily log-returns

Bank Bank of America J.P. Morgan Citigroup Wells Fargo

Bank of America 1 0.81168 0.80231 0.84943

J.P. Morgan Chase 1 0.71070 0.84059

Citigroup 1 0.71889

Wells Fargo 1

Table 82.2 Summary for daily log-returns

Bank Bank of America J.P. Morgan Citigroup Wells Fargo

Days 754 754 754 754

Mean �0.00138 �0.00019 �0.00246 0.00003

St.dev 0.03769 0.03269 0.04294 0.03153

Min �0.30408 �0.19694 �0.3056 �0.21034

Max 0.2409 0.19368 0.45729 0.28371

Range 0.54498 0.39062 0.76289 0.49406

Skewness �0.47452 0.02702 0.67837 0.09241

Kurtosis 16.62389 9.24964 27.40201 15.55658
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Parameter estimates and log-likelihood of GARJI for each bank are given in

Tables 82.4. After fitting GARJI model for each bank, residuals are diagnosed by

the Ljung-Box test, with the lag being 25. From Table 82.4, the p-values of the

Ljung-Box Q statistic for all banks under GARJI model are much smaller than those

under the VG-NGARCHmodel. To be more specific, p-values for Bank of America

and Wells Fargo are too small to provide strong evidence that there is significant

serial correlation among the residuals for Bank of America and Wells Fargo after

fitting the GARJI model to their log-returns.

Table 82.3 VG-NGARCH model estimates and tests

Parameter Bank of America J.P. Morgan Citigroup Wells Fargo

y �0.0058 �0.0060 �0.0076 �0.0039

s 0.0218 0.0205 0.0239 0.0178

n1 2.7839 2.3371 2.9322 3.5000

a0 0.1682 0.1082 0.1651 0.1619

a1 0.4038 0.3929 0.4629 0.4529

a2 0.5347 0.5408 0.4808 0.5008

c 0.0081 0.0005 0.0003 0.0083

Log-likelihood 1,951.7 1,857.4 1,841.6 1,945.0

H0: a1 ¼ a2 ¼ c ¼ 0

Log-likelihood 1,684.6 1,688.1 1,636.7 1,763.4

Likelihood ratio test 526.2 345.2 409.8 386.8

p-value 0.0000 0.0000 0.0000 0.0000

H0: Residuals are random

Ljung-Box Q (lag ¼ 25) 8.9911 6.5697 11.5924 8.2869

p-value 0.9986 0.9999 0.9929 0.9991

Table 82.4 GARJI model estimates and tests

Parameter Bank of America J.P. Morgan Citigroup Wells Fargo

l0 0.1165 0.1072 0.1164 0.0754

r 0.3923 0.4799 0.3053 0.3626

g 0.4570 0.3579 0.1034 0.5886

y 0.0102 0.0154 0.0099 0.0080

d 0.0218 0.0341 0.0306 0.0546

s0 0.0312 0.0279 0.0405 0.0283

a0 0.0001 0.0001 0.0001 0.0001

a1 0.3568 0.4351 0.545 0.3634

a2 0.5872 0.4997 0.3856 0.5761

c 0.0356 0.0645 0.0218 0.0909

Log-likelihood 1,887.1 1,843.7 1,764.1 1,918.0

H0: Residuals are random

Ljung-Box Q (lag ¼ 25) 43.7338 30.5120 31.4383 43.7169

p-value 0.012 0.2061 0.1761 0.012
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82.3.2 Model Selection Based on Information Criteria

Since the two models are not nested, their goodness of fit is measured by the

following three criteria based on log of the maximum likelihood and the number

of parameters: Akaike information criterion (AIC), Schwarz criterion (SC), and

Hannan-Quinn criterion (HQ). The formulas for the three criteria are as follows:

AIC ¼ �2 L=Tð Þ þ 2 k=Tð Þ
SC ¼ �2 L=Tð Þ þ klog Tð Þ=T
HQ ¼ �2 L=Tð Þ þ 2klog log Tð Þð Þ=T

where L is log of the maximum likelihood, k is the number of parameters, and T is

the sample size. The model minimizing these information criteria is preferred.

Comparing log-likelihoods and the three information criteria for the

VG-NGARCH and GARJI models listed on Tables 82.3, 82.4, and 82.5, the

VG-NGARCH model not only has higher log-likelihood values but also

has smaller values on AIC, SC, and HQ for all banks, suggesting that it provides

not only better fitting but also more parsimonious model specification for these

bank data.

82.3.3 Evaluation of Volatility Forecasts

This subsection evaluates the performance of each model on variance forecasts

through comparing the out-of-sample volatility forecasts of the VG-NGARCH

model with those of the benchmark GARJI. To assess out-of-sample forecasts,

a range-based estimate of ex post volatility was calculated in compliance with the

method of Parkinson (1980) and Maheu and McCurdy (2004) as follows:

Ranget ¼
ffiffiffi
�

p
log Pt, h=Pt, l
� �

,

where Pt,h and Pt,l represent the intraday high prices and low prices, respectively.

The parameter � in the above formula is the calibration parameter to make the range

Table 82.5 Information criteria

Bank of America J.P. Morgan Citigroup Wells Fargo

VG-NGARCH model

AIC �5.1610 �4.9083 �4.8662 �5.0278

SC �5.1181 �4.8654 �4.8233 �5.0056

HQ �5.1445 �4.8918 �4.8497 �5.0106

GARJI model

AIC �4.9579 �4.8426 �4.6474 �4.9465

SC 4.8904 �4.7752 �4.5799 �4.8801

HQ �4.9319 �4.8167 �4.6214 �4.9209
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estimate of the unconditional variance equal the unconditional variance of daily

returns. To conduct out-of-sample analyses, all models were reestimated using

observations from January 2, 2008 to December 31, 2009. These out-of-sample

estimates were kept to derive the out-of-sample forecast for the date-t conditional
variance given F t�1, denoted as eVar Yt F t�1j Þð . Following the approach of Maheu

and McCurdy (2004), the range-based ex post volatilities were regressed on the

out-of-sample forecasts of the conditional variances as

Ranget ¼ b0 þ b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eVar Yt F t�1j Þ þ errort:ð

q
(82.14)

The coefficient of determination, R2, of the regression tells us the proportion of

the total variation for the range-based volatilities explained by the out-of-sample

conditional variance forecasts. Hence, the model with higher R2 is considered to be

superior in forecasting volatilities. The R2s of the regression models given in

Eq. 82.14 are displayed on Table 82.6 for all banks under the VG-NGARCH and

GARJI models, respectively. Since R2s under the VG-NGARCH model are

all larger than those under the GARJI model for all banks, the VG-NGARCH

outperforms the GARJI model on out-of-sample volatility forecasts.

82.3.4 Prediction of Large Price Movements or Jumps

In this subsection, the VG-NGARCH model is examined for its performance on

predicting the probability of large price movements due to extreme events. Here,

large price movement is defined to occur when the absolute log-return exceeds 0.05.

From Eqs. 82.7, 82.8, and 82.9, the ex ante probability of large price movements is

given by

Table 82.6 Out-of-sample variance forecasts

Bank of America J.P. Morgan Citigroup Wells Fargo

VG-NGARCH

b0 0.0000 0.0023 0.0049 0.0098

b1 1.1626 1.1666 1.2582 1.0759

R2 0.6575 0.6407 0.6482 0.6148

F 963.8306 895.3023 924.9720 801.2075

p-value 0 0 0 0

GARJI

b0 �0.0392 �0.0221 �0.0333 �0.0206

b1 1.3681 1.3284 1.4201 1.2472

R2 0.6500 0.6317 0.6470 0.5727

F 932.1904 861.0316 919.9395 672.7951

p-value 0 0 0 0
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P jYt > 0:05j jF t�1ð Þ ¼
ð1

0

1� F
0:05� mþ ft þ ygtð Þ

s
ffiffiffiffi
gt

p
� �
 �

h gtð Þdgt

þ
ð1

0

F
�0:05� mþ ft þ ygtð Þ

s
ffiffiffiffi
gt

p
� �

h gtð Þdgt

(82.15)

where h(gt) denotes the probability density function of a gamma distribution with

shape and scale parameters nt and 1, respectively.

For the GARJI model, the performance of prediction on jumps is based on the ex

post probability of at least one jump occurring, which is expressed as

P nt � 1 F tj Þ ¼ 1� P nt ¼ 0 F tj Þ,ðð (82.16)

where, following Eq. 82.6,

P nt ¼ 0jF tð Þ ¼ e�lt f Ytj0,F t�1ð Þ
f Yt F t�1j Þ:ð

After the parameters in Eqs. 82.15 and 82.16 are replaced by their estimates,

P Yt > 0:05j jF t�1j Þð and P nt � 1 F t�1jj Þð are estimated for the whole study period

for each bank. In order to compare their performances, the probabilities belonging

to Years 2006 and 2008 are plotted on Figs. 82.1 and 82.2, respectively. From

Fig. 82.1, the ex ante probabilities for large price movements under the

VG-NGARCH model are smoother than those resulting from the GARJI model

over the same period, where no noteworthy extreme events occurred during 2006.
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Thus, the ex post probabilities of jumps from the GARJI model tend to over

predict the chance of jumps when price movements are moderate.

On the other hand, as Year 2008 has been well recognized by the occurrences of

financial turbulence and crisis, Fig. 82.2 does demonstrate that much higher
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probabilities of large price movements and jumps are predicted compared to those

of Year 2006. Specifically, on September 16, 2008, the log-returns for Bank of

America, J.P. Morgan, Citigroup, and Wells Fargo were �0.2398, �0.1066,

�0.1642, and �0.1007, respectively. The corresponding ex ante probabilities of

large price movements using the VG-NGARCH model were 0.7114, 0.4544,

0.6621, and 0.5368, respectively, while the ex post probabilities of jumps using

the GARJI model were 0.8308, 0.6806, 0.7980, and 0.8348, respectively. Though

both models show the ability to catch up large price movements or jumps, the

VG-NGARCH model provides smoother and thus more reliable predictions than

the GARJI model.

82.4 Conclusion

Differing from the GARJI model, for the VG-NGARCH model, based on a

purely jump VG process, no cutoff point is required between normal and extreme

price movements. In addition, instead of two independent autoregressive

processes, a nonlinear asymmetric autoregressive process is used to model the

shape parameter of the VG process. This makes the VG-NGARCH model

more informative and parsimonious compared to the GARJI model. Furthermore,

the empirical study demonstrates that through diagnosing the randomness of

residuals, computing three information criteria (AIC, SC, and HQ), forecasting

out-of-sample conditional volatility, and predicting the likelihood of large

price movements or jumps, the VG-NGARCH model consistently outperforms

the GARJI model. The superiority of the VG-NGARCH model relative to

the benchmark GARJI model should improve the prediction ability of the occur-

rences of extreme events and hence is a better modeling approach to make

financial management.
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Appendix 1: Variance-Gamma Process

AVG process is a Brownian motion evaluated at a random business time modulated

by a stochastic gamma process, to replace the role of Brownian motion. Specifi-

cally, at time s, a VG process X is given by

X sð Þ ¼ yg s; 1; gð Þ þ sW g s; 1; gð Þð Þ, (82.17)

where g(s; 1, g) is the gamma process with unit mean rate and variance g,W represents

a standard Brownian motion, and y and s are the drift and volatility parameters,

respectively. The extent of random time change Dg ¼ g(s;n,g) � g(0;n,g) is the

increment of the gamma process during the interval (0, s]. Therefore, Dg follows

gamma distribution with shape and scale parameters being ns and g, respectively.
Since the scale parameter g can be transformed into one, it is set to one in our study.

Appendix 2: Parameter Estimation: Monte Carlo EM and
Metropolis Algorithm

Method of maximum likelihood is adopted for the VG-NGARCH model. However,

since the random time changes g1, . . ., gT are unobservable, the parameters of the

VG-NGARCH model are unidentifiable. To resolve this problem, the mean of

instantaneous return rate m is set to the mean of the log-returns Y1, . . ., YT, namely,

m̂ ¼ Y , and the Monte Carlo EM (MCEM) algorithm (Wei and Tanner 1990;

McCulloch 1997) is employed to estimate the parameters Q ¼ (y, s, n1, a)0,
where a ¼ (a0, a1, a2, c) is the NGARCH parameter.

To perform the MCEM algorithm, at each iteration a set of K samples of

the unobservable random time changes, g(1), . . ., g(K), where g(l) ¼ (g1
(l),. . ., gT

(l)),

1 ≦ l ≦ K, are drawn from the posterior distribution p(g|Y;Q), which is

p gjY;Yð Þ /
YT
t¼1

exp �kgt � dt=gt þ nt � 1:5ð Þlog gtð Þf g, (82.18)

where nt ¼ a0 þ a1 et�1 � c
ffiffiffiffiffiffiffiffi
nt�1

p� �2 þ a2vt�1 is the time-t shape parameter, and the

coefficients k and dt are

k ¼ y2

2s2
þ 1 and dt ¼

Yt � Y � ft

� �2
2s2

:

Since Eq. 82.18 is not proportional to any density function of well-known

distributions, it is not possible to directly sample the time changes, g(1), . . ., g(K),
from the posterior distribution p(gjY;Q) at each iteration of the EM

algorithm. Consequently, the Metropolis chain strategy is carried out here
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(Metropolis et al. 1953; Hastings 1970). In the independent Metropolis chain

algorithm, a random outcome is sampled from its target distribution p by generating

a chain of size L as follows: at the nth step of the chain, if the chain is at a point

Xn¼ x, a candidate value y is sampled from a proposal transition density f(y) for the
next location Xn+1. The candidate Xn+1 ¼ y is accepted with probability

p x; yð Þ ¼ min
p yð Þf xð Þ
p xð Þf yð Þ ; 1
� 

:

An independent uniform random variate U is generated; if U < p(x, y), then
Xn+1 ¼ y; otherwise the step is rejected and the chain remains at Xn+1 ¼ x. After
L such steps, where L is sufficiently large, a realization is obtained from the target

distribution p.

Appendix 3: Skewness and Kurtosis of Log-returns

The unconditional skewness and kurtosis of log-return at time t are expressed in

terms of the model parameters and the first four moments of the shape parameter nt,
which are

Skewness Ytð Þ¼ 2y3þ3ys2
� �

E ntð Þþ3 tþyð Þ y2þs2
� �

V ntð Þþ tþyð Þ3E3 nt�E ntð Þð Þ
y2þs2
� �

E ntð Þþ tþyð Þ2V ntð Þ
h i3=2 ;

(82.19)

Kurtosis Ytð Þ ¼ 3 y2 þ s2
� �2

E n2t
� �þ 3s4 þ 6y4 þ 12y2s2

� �
E ntð Þ þ Q

y2 þ s2
� �

E ntð Þ þ tþ yð Þ2V ntð Þ
h i2 , (82.20)

where t ¼ ln(1 � y � s2/2); and

Q ¼ 6 tþ yð Þ2 y2 þ s2
� �

E n3t
� �þ E3 ntð Þ � 2E ntð ÞE n2t

� �� 	
þ 4 tþ yð Þ 2y4 þ 3y2s2

� �
V ntð Þ þ tþ yð Þ4E4 nt � E ntð Þð Þ:

References

Andersen, T. G. (1996). Return volatility and trading volume: An information flow interpretation

of stochastic volatility. Journal of Finance, 51, 169–204.
Campbell, J. Y., & Hentschel, L. (1992). No news is good news: An asymmetric model of

changing volatility in stock returns. Journal of Financial Economics, 31, 281–381.
Carr, P., Geman, H., Madan, D. B., & Yor, M. (2003). Stochastic volatility for Levy processes.

Mathematical Finance, 13, 345–382.

2278 L.-J. Kao et al.



Chan, W. H., & Maheu, J. M. (2002). Conditional jump dynamics in stock market returns. Journal
of Business & Economic Statistics, 20, 377–389.

Clark, P. K. (1973). A subordinated stochastic process model with finite variance for speculative

prices. Econometrica, 41, 135–155.
Ding, Z., Granger, C. W. J., & Engle, R. F. (1993). A long memory property of stock market

returns and a new model. Journal of Empirical Finance, 1, 83–106.
Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and option pricing for affine jump-

diffusions. Econometrica, 68, 1343–1376.
Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. Journal

of Finance, 48, 1749–1778.
Eraker, B. (2004). Do stock prices and volatility jump? Reconciling evidence from spot and option

prices. Journal of Finance, 59, 1367–1404.
Eraker, B., Johannes, M., & Polson, N. (2003). The impact of jumps in volatility and returns.

Journal of Finance, 53, 1269–1300.
Geman, H., Madan, D. B., & Yor, M. (2001). Times changes for Lévy processes. Mathematical
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Abstract

We consider the problem of constructing a portfolio of finitely many assets

whose return rates are described by a discrete joint distribution. We present

a new approach to portfolio selection based on stochastic dominance.

The portfolio return rate in the new model is required to stochastically

dominate a random benchmark. We formulate optimality conditions and duality

relations for these models and construct equivalent optimization models with
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utility functions. Two different formulations of the stochastic dominance

constraint, primal and inverse, lead to two dual problems which involve von

Neumann–Morgenstern utility functions for the primal formulation and rank-

dependent (or dual) utility functions for the inverse formulation. We also discuss

the relations of our approach to value at risk and conditional value at risk.

Numerical illustration is provided.

Keywords

Portfolio optimization • Stochastic dominance • Stochastic order • Risk •

Expected utility • Duality • Rank-dependent utility • Yaari’s dual utility •

Value at risk • Conditional value at risk

83.1 Introduction

The problem of optimal portfolio selection is subject of major theoretical and

computational studies in finance. A fundamental issue while dealing with uncertain

outcomes is a theoretically sound approach to their comparison.

The theory of stochastic orders plays a fundamental role in economics

(see Mosler and Scarsini 1991; Whitmore and Findlay 1978). These are relations

which induce partial order in the space of real random variables in the following

way. A random variable R dominates the random variable Y if E[u(R)] � E[u(Y)]
for all functions u(∙) from certain set of functions, called the generator of the order.

The concept of stochastic dominance is very popular and widely used in economics

and finance because of its relation to models of risk-averse preferences (Fishburn

1964). It originated from the theory of majorization (Hardy et al. 1934; Marshall

and Olkin 1979) for the discrete case and was later extended to general distributions

(Quirk and Saposnik 1962; Hadar and Russell 1969; Rothschild and Stiglitz 1969).

Stochastic dominance of second order is defined by the set of nondecreasing

concave functions: a random variable R dominates another random variable Y in

the second order if E[u(R)] � E[u(Y)] for all nondecreasing concave functions u(∙)
for which these expected values are finite. Thus, no risk-averse decision maker will

prefer a portfolio with return rate Y over a portfolio with return rate R.
A popular approach is the utility optimization approach. Von Neumann and

Morgenstern in their book (von Neumann and Morgenstern 1944) developed

the expected utility theory: for every rational decision maker there exists a utility

function u(∙) such that the decision maker prefers outcome R over outcome Y if and

only if E[u(R)] � E[u(Y)]. This approach can be implemented also very efficiently;

however, it is almost impossible to elicit the utility function of a decision maker

explicitly. More difficulties arise when a group of decision makers with different

utility functions who have to reach a consensus. Recently, the dual utility theory
(or rank-dependent expected utility theory) has attracted much attention in eco-

nomics. This approach was first presented in (Quiggin 1982) and later rediscovered
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in a special case in (Yaari 1987). From a different system of axioms, than those of

von Neumann and Morgenstern, one derives that every decision maker has a certain

rank-dependent utility function w: [0, 1] ! ℝ. Then a nonnegative outcome R is

preferred over a nonnegative outcome Y, if and only if

�
ð1

0

w pð ÞdF �1ð Þ R; pð Þ � �
ð1

0

w pð ÞdF �1ð Þ Y; pð Þ, (83.1)

where F(�1)(R;∙) is the inverse distribution function of R. For a comprehensive

treatment of the rank-dependent utility theory, we refer to (Quiggin 1993), and

for its application in actuarial mathematics, see (Wang et al. 1997; Wang and

Yong 1998).

Another classical approach, pioneered by (Markowitz 1952, 1959, 1987), is the

mean–risk approach, which compares the portfolios with respect to two character-

istics. One is the expected return rate (the mean) and another one is the risk, which
is given by some scalar measure of the uncertainty of the portfolio return rate.

The mean–risk approach recommends the selection of Pareto-efficient portfolios

with respect to these two criteria. In a mean–risk portfolio model, we combine these

criteria by specifying some parameter as a trade-off between them. As a parametric

optimization problem, the mean–risk model can be solved numerically very

efficiently, which makes this approach very attractive (Konno and Yamazaki

1991; Ruszczynski and Vanderbei 2003).

In this chapter we formulate a model for risk-averse portfolio optimization and

demonstrate its relation to the expected utility approach and to rank-dependent

utility approach. We optimize the portfolio performance under an additional con-

straint that the portfolio return rate stochastically dominates a benchmark return

rate, for example, the return rate of an index. The model is based on our earlier

publications (Dentcheva and Ruszczynski 2003a, b, c, 2004a, c) where we have

introduced a new model for risk-averse optimization. This approach has

a fundamental advantage over mean–risk models and utility function models.

All data for our model are readily available. In mean–risk models the choice of

the risk measure has an arbitrary character, and it is difficult to argue for one

measure against another. Similarly, optimization of expected utility requires the

form of the utility function to be specified. Our analysis, departing from the

benchmark outcome, generates implied utility function of the decision maker.

It is implicitly defined by the benchmark used and by the problem under consider-

ation. We provide two problem formulations in which the stochastic dominance has

a primal or inverse form: a Lorenz curve. The primal form has a dual problem in

terms of expected utility functions, and the inverse form has a dual problem in terms

of rank-dependent utility functions. In this way our model provides also a link

between this two competing economic approaches. Duality relations with coherent

measures of risk are explored in (Dentcheva and Ruszczynski 2008).
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83.2 The Portfolio Problem

Let R1, R2, . . ., Rn be random return rates of assets 1, 2, . . . , n. We assume that

E[|Rj|] < 1 for all j ¼ 1, . . . , n.
Our aim is to invest our capital in these assets in order to obtain some desirable

characteristics of the total return rate on the investment. Denoting by x1, x2, . . ., xn
the fractions of the initial capital invested in assets 1, 2, . . ., n, we can easily derive
the formula for the total return rate:

R xð Þ ¼ R1x1 þ R2x2 þ � � � þ Rnxn: (83.2)

Clearly, the set of possible asset allocations can be defined as follows:

X ¼ x 2 ℝn : x1 þ x2 þ � � � þ xn ¼ 1, xj � 0, j ¼ 1, 2, . . . , n
� �

:

In some applications one may introduce the possibility of short positions, i.e.,
allow some xj’s to become negative. Other restrictions may limit the exposure to

particular assets or their groups, by imposing upper bounds on the xj’s or on their

partial sums. One can also limit the absolute differences between the xj’s and

some reference investments xj , which may represent the existing portfolio, etc.

Our analysis does not depend on the detailed way this set is defined; we only use the

fact that it is a convex polyhedron. All modifications discussed above define some

convex polyhedral feasible sets and are, therefore, covered by our approach.

The main difficulty in formulating a meaningful portfolio optimization problem

is the definition of the preference structure among feasible portfolios. If we use only

the mean return rate E[R(x)], then the resulting optimization problem has a trivial

and meaningless solution: invest everything in assets that have the maximum

expected return rate. For these reasons the practice of portfolio optimization resorts

usually to two approaches.

In the first approach we associate with portfolio x some dispersion measure

r(R(x)) representing the variability of the return rate R(x). In the classical

Markowitz model (Markowitz 1952, 1959, 1987), the function r(R(x)) is the

variance of the return rate,

r R xð Þð Þ ¼  R xð Þ½ �,
but many other measures are possible here as well.

The mean–risk portfolio optimization problem is formulated as follows:

max
x2X

 R xð Þ½ � � lr R xð Þð Þ: (83.3)

Here, l is a nonnegative parameter representing our desirable exchange rate of

mean for risk. If l ¼ 0, the risk has no value, and the problem reduces to the

problem of maximizing the mean. If l > 0 we look for a compromise between the

mean and the risk. Alternatively, one can minimize the risk function r(x), while
fixing the expected return rate E[R(x)] at some value m, and consider a family of
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problems parametrized by m. The reader is referred to the book (Elton et al. 2006)

for the modern perspective on mean–risk analysis in portfolio theory.

The general question of constructing mean–risk models which are in harmony

with the stochastic dominance relations has been the subject of the analysis of the

recent papers (Ogryczak and Ruszczynski 1999, 2001, 2002). We have identified

there several primal risk measures, most notably central semideviations, and dual

risk measures, based on the Lorenz curve, which are consistent with the stochastic

dominance relations.

The second approach is to select a certain utility function u : ℝ ! ℝ and to

formulate the following optimization problem

max
x2X

 u R xð Þð Þ½ �: (83.4)

It is usually required that the function u(∙) is concave and nondecreasing, thus

representing preferences of a risk-averse decision maker (Fishburn 1964, 1970).

Recently, a dual (rank-dependent) utility model attracts much attention. It is

based on distorting the cumulative probability distribution of the random variable

R(x) rather than applying a nonlinear function u(∙) to the realizations of R(x). The
corresponding problem has the following form

max
x2X

ð1

0

F �1ð Þ R xð Þ, pð Þdw pð Þ: (83.5)

Here F(�1)(R(x),p) is the p-quantile of the random variable R(x), and w(∙) is the
rank-dependent utility function, which distorts the probability distribution. We

discuss this in Sect. 83.3.2.

The challenge in both utility approaches is to select the appropriate utility function

or rank-dependent utility function that represents our preferences and whose applica-

tion leads to nontrivial and meaningful solutions of Eqs. 83.4 and 83.5.

In this chapter we propose an alternative approach, by introducing a comparison

to a benchmark return rate into our optimization problem. The comparison is based

on the stochastic dominance relation. More specifically, we consider only portfolios

whose return rates stochastically dominates a certain benchmark return rate.

83.3 Stochastic Dominance

83.3.1 Direct Forms

In the stochastic dominance approach, random return rates are compared by

a point-wise comparison of some performance functions constructed from their

distribution functions. For a real random variable V, its first performance function is

defined as the right-continuous cumulative distribution function of V:

F1 V; �ð Þ ¼ ℙ V � �f g for � 2 ℝ:
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A random return V is said (Lehmann 1955; Quirk and Saposnik 1962) to stochas-
tically dominate another random return S in the first order, denoted V �(1) S, if

F1 V; �ð Þ � F2 S; �ð Þ for all � 2 ℝ:

We can say that V is “stochastically larger” than S, because it takes values lower
than � with smaller (or equal) probabilities than S, no matter what the target � is.

The second performance function F2 is given by areas below the distribution

function F,

F2 V; �ð Þ ¼
ð�

�1
F1 V; xð Þdx for � 2 ℝ,

and defines the weak relation of the second-order stochastic dominance (SSD).

That is, random return V stochastically dominates S in the second order, denoted

V �(2) S, if

F2 V; �ð Þ � F2 S; �ð Þ for all � 2 ℝ

(see Hadar and Russell 1969; Rothschild and Stiglitz 1969).

We can express the function F2(V;∙) as the expected shortfall (see, e.g., Levy

2006; Ogryczak and Ruszczynski 1999): for each target value �, we have

F2 V; �ð Þ ¼  � � Vð Þþ
� �

, (83.6)

where (� � V)+ ¼ max(� � V, 0). The function F(2)(V;∙) is continuous, convex,
nonnegative, and nondecreasing. It is well defined for all random variables V with

finite expected value. Due to this representation, the second-order stochastic

dominance relation V �(2) S can be equivalently characterized by the system of

inequalities on the expected shortfall below any target �:

 � � Vð Þþ
� � �  � � Sð Þþ

� �
for all � 2 ℝ: (83.7)

Also, we obtain an equivalent characterization in terms of the expected utility

theory of von Neumann and Morgenstern (see, e.g., Hanoch and Levy 1969; Levy

2006; M€uller and Stoyan 2002):

(i) For any two random variables V, S, the relation V�(1) S holds true if and only if
for all nondecreasing functions u(∙) defined on ℝ, we have

 u Vð Þ½ � �  u Sð Þ½ �: (83.8)

(ii) For any two random variables V, S with finite expectations, the relation V �(2)

S holds true if and only if Eq. 83.8 is satisfied for all nondecreasing concave

functions u(∙).
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In the context of portfolio optimization, we consider stochastic dominance

relations between random return rates defined by Eq. 83.2. Thus, we say that

portfolio x dominates portfolio y in the first order, if

F1 R xð Þ; �ð Þ � F1 R yð Þ; �ð Þ for all � 2 ℝ:

This is illustrated in Fig. 83.1.

Similarly, we say that x dominates y in the second-order (R(x) �(2) R(y)) if

F2 R xðð Þ; �Þ � F2 R yðð Þ; �Þ for all � 2 ℝ:

Recall that the individual return rates Rj have finite expected values, and thus the

function F2(R(x);∙) is well defined. The second-order relation is illustrated in Fig. 83.2.

83.3.2 Inverse Forms

Let us consider the inverse model of stochastic dominance, frequently referred to as

Lorenz dominance. For a real random variable V (e.g., a random return rate), we

define the left-continuous inverse of the cumulative distribution function F1(V;∙) as
follows:

F �1ð Þ V; pð Þ ¼ inf � : F1 V; �ð Þ � pf g for 0 < p < 1:

Given p 2 (0.1), the number q ¼ q(V;p) is called a p-quantile of the random

variable V if

ℙ V < qf g � p � ℙ V < qf g:

�
0

1�

´

F1(R(x); ´)

F1(R(y); ´)

Fig. 83.1 First-order

stochastic dominance

R(x) �(1) R(y)

�

�

´

F2(R(y); ´)

F2(R(x); ´)

Fig. 83.2 Second-order

dominance R(x) �(2) R(y)
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For p 2 (0.1) the set of p-quantiles is a closed interval, and F(�1)(V;p) represents
its left end.

Directly from the definition of the first-order dominance, we see that

V� 1ð Þ S , F �1ð Þ V; pð Þ � F �1ð Þ S; pð Þ for all 0 < p < 1: (83.9)

The first-order dominance constraint can be interpreted as a continuum of

probabilistic (chance) constraints, studied in stochastic optimization (see, Prekopa

2003; Dentcheva 2005).

Our analysis uses the absolute Lorenz function F(�2)(V;�) : [0,1]!ℝ, introduced

in (Lorenz 1905). It is defined as the cumulative quantile:

F �2ð Þ V; pð Þ ¼
ðp

0

F �1ð Þ V; tð Þdt for 0 < p < 1, (83.10)

F(�2)(V;0) ¼ 0.

Similarly to F2(V;∙) the function F(�2)(V;∙) is well defined for any random

variable V, which has a finite expected value. We notice that

F �2ð Þ V; 1ð Þ ¼
ð1

0

F �1ð Þ V; tð Þdt ¼  V½ �:

By construction, the Lorenz function is convex. Lorenz functions are commonly

used for inequality ordering of positive random variables, relative to their (positive)

expectations (see Arnold 1980; Gastwirth 1971; Muliere and Scarsini 1989). Such

a Lorenz function, p 7!F �2ð Þ V; pð Þ= V½ �, is convex and nondecreasing. The abso-

lute Lorenz function, though, is not monotone when negative outcomes occur.

It is well known (see, e.g., Ogryczak and Ruszczynski 2002) that we may fully

characterize the second-order dominance relation by using the function F(�2)(V;∙):

V� 2ð Þ S , F �2ð Þ V; pð Þ � F �2ð Þ S; pð Þ for all 0 � p � 1: (83.11)

This characterization of stochastic dominance by Lorenz functions is widely

used in economics and statistics.

We now provide an equivalent characterization by rank-dependent utility

functions. It is analogous to the characterization by expected utility functions.

In the chapter (Dentcheva and Ruszczynski 2006b) the following characteriza-

tion has been shown:

(i) For any two random variables V, S, the relation V �(1) S holds true if and only
if for all nondecreasing functions w(∙) defined on [0,1], we have

ð1

0

F �1ð Þ V; pð Þdw pð Þ �
ð1

0

F �1ð Þ S; pð Þdw pð Þ: (83.12)
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(ii) For any two random variables V, Swith finite expectations, the relation V�(2) S
holds true if and only if Eq. 83.12 is satisfied for all nondecreasing concave

functions w(∙).
The functions w(∙) appearing in this characterization are rank-dependent (dual)

utility functions.

In the context of portfolio optimization, we consider stochastic dominance

relations between random return rates defined by Eq. 83.2. Thus, we say that

portfolio x dominates portfolio y in the first order, if

F �1ð Þ R xð Þð Þ; p� � F �1ð Þ R yð Þ; pð Þ for all p 2 0; 1ð Þ:

This is illustrated in Fig. 83.3.

Similarly, we say that x dominates y in the second-order (R(x) � (2) R(y)), if

F �2ð Þ R xð Þ; pð Þ � F �2ð Þ R yð Þ; pð Þ for all p 2 0; 1½ �: (83.13)

Recall that the individual return rates Rj have finite expected values, and thus the

function F(�2)(R(x);�) is well defined. The second-order relation is illustrated

in Fig. 83.4.

Second-order dominance R(x) � (2) R(y) in the inverse form.

�

0 1 p
�

F(−1)(R(x); ´)

F(−1)(R(y); ´)

Fig. 83.3 First-order

stochastic dominance

R(x) �(1) R(y) in the

inverse form
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83.3.3 Relations to Value at Risk and Conditional Value at Risk

There are fundamental relations between the concepts of value at risk (VaR) and

conditional value at risk (CVaR) and the stochastic dominance constraints. The

VaR constraint in the portfolio context is formulated as follows. We define the loss

rate L(x) ¼ � R(x). We specify the maximum fraction op of the initial capital

allowed for risk exposure at risk level p 2 (0,1), and we require that

ℙ L xð Þ � op

� � � 1� p:

Denoting by VaRp(L(x)) the left (1� p)-quantile of the random variable L(x), we
can equivalently formulate the VaR constraint as

VaRp L xð Þð Þ � op:

The first-order stochastic dominance relation between two portfolios is equiva-

lent to the continuum of VaR constraints. Portfolio x dominates portfolio y in the

first order, if

VaRp L xð Þð Þ � VaRp L yð Þð Þ for all p 2 0; 1ð Þ:
The CVaR at level p, roughly speaking, has the following form:

CVaRp L xð Þð Þ ¼  L xð Þ L xð Þ �j VaRp L xð Þð Þ� �
:

This formula is precise if VaRp(L(x)) is not an atom of the distribution of L(x).
More precisely we express it as follows:

10

F(−2)(R(x);p)

E R(x)

F(−2)(R(y);p)

[ ]

E R(y)
[ ]

p

Fig. 83.4 Second order

dominance in the inverse

form
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CVaRp L xð Þð Þ ¼ 1

p

ðp

0

VaRt L xð Þð Þdt:

We note that

CVaRp L xð Þð Þ ¼ � 1

p
F �2ð Þ R xð Þ, pð Þ: (83.14)

Another description uses extremal properties of quantiles and equivalently

represents CVaR as follows (see Rockafellar and Uryasev 2000):

CVaRp L xð Þð Þ ¼ inf
�

1

p
 � � R xð Þð Þþ
� �� �

� �
: (83.15)

A CVaR constraint on the portfolio x can be formulated as follows:

CVaRp L xð Þð Þ � op: (83.16)

Using Eqs. 83.14 and 83.13, we conclude that the second-order stochastic

dominance relation for two portfolios x and y is equivalent to the continuum of

CVaR constraints:

R xð Þ � 2ð Þ R yð Þ , CVaRp L xð Þð Þ � CVaRp L yð Þð Þ for all p 2 0; 1ð Þ: (83.17)

Assume that we compare the performance of a portfolio x with a random

benchmark Y (e.g., an index return rate or another portfolio return rate) requiring

R(x) �(2) Y. Then the fraction op of the initial capital allowed for risk exposure at

level p is given by the benchmark Y:

op ¼ CVaRp �Yð Þ, p 2 0; 1ð Þ:

Assume that Y has a discrete distribution with realizations yi, i¼ 1, . . . , m. Then
relation (83.7) is equivalent to

 yi � R xð Þð Þþ
� � �  yi � Yð Þþ

� �
, i ¼ 1, . . . ,m: (83.18)

This result does not imply that the continuum of CVaR constraints (83.17) can

be replaced by finitely many constraints of form

CVaRpi R xð Þð Þ � CVaRpi Yð Þ, i ¼ 1, . . . ,m:

with some fixed probabilities pi, i ¼ 1, . . . , m. The reason is that we do not know at

which probability levels the CVaR constraints have to be imposed.

83 Risk-Averse Portfolio Optimization via Stochastic Dominance Constraints 2291



83.4 The Dominance-Constrained Portfolio Problem

83.4.1 Direct Formulation

The starting point for our model is the assumption that a benchmark random

return rate Y having a finite expected value is available. It may have the form of

Y ¼ R zð Þ , for some benchmark portfolio z . It may be an index or our current

portfolio. Our intention is to have the return rate of the new portfolio, R(x),
preferable over Y. Therefore, we introduce the following extension of the optimi-

zation problem (83.3):

max  R xð Þ½ � � lr R xð Þð Þ
subject to

(83.19)

R xð Þ� 2ð ÞY, (83.20)

x 2 X: (83.21)

Similarly to Eq. 83.3, we optimize a mean–risk objective function, but we

introduce a constraint that the portfolio return dominates a benchmark. Even

when l ¼ 0 and we maximize just the expected value of the return rate, our

model will still lead to nontrivial solutions, due to the presence of the dominance

constraint (83.20).

To increase flexibility of model (83.19–83.21), we may also allow a uniform

shift of R(x) by a constant c, as in the following model:

max  R xð Þ½ � � lr R xð Þð Þ � dc
subject to

R xð Þ þ c� 2ð ÞY,
x 2 X:

Here d > 0 can be interpreted a cost of the shift c. Observe that the shift c may

also become negative, in which case we are rewarded for uniformity of

dominating Y. The shift c may be interpreted as an additional cash added to the

return, and d is the interest to be paid when the loan is paid back.

To simplify the derivations, from now on we focus on the simplest formulation

of the dominance-constrained problem:

max  R xð Þ½ �
subject to

(83.22)

R xð Þ� 2ð ÞY, (83.23)

x 2 X: (83.24)

We can observe the first advantage of our problem formulation: all data in it are

readily available. Moreover, the set defined by Eq. 83.23 is convex (see Dentcheva

and Ruszczynski 2003c, 2004a, b).
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Let us assume now that Y has a discrete distribution with realizations yi
attained with probabilities pi, i ¼ 1, . . ., m. We also assume that the return rates

have a discrete joint distribution with realizations rjt, t ¼ 1, . . ., T, j ¼ 1, . . ., n,
attained with probabilities pt, t ¼ 1, 2, . . ., T. Then the formulation of the

stochastic dominance relation (83.23) resp. (83.18) simplifies even further.

Introducing variables sit representing the shortfall of R(x) below yi in realization

t, i ¼ 1, . . ., m, t ¼ 1, . . ., T, we can formulate problem (83.22–83.24) as follows:

max
XT
t¼1

pt
Xn
j¼1

xjrjt

subject to

(83.25)

Xn
j¼1

xjrjt þ sit � yi, i ¼ 1, . . . ,m, t ¼ 1, . . . , T, (83.26)

XT
t¼1

ptsit �
Xm
k¼1

pk yi � ykð Þþ, i ¼ 1, . . . ,m, (83.27)

sit � 0, i ¼ 1, . . . ,m, t ¼ 1, . . . , T: (83.28)

x 2 X: (83.29)

Indeed, or every feasible point x of Eqs. 83.22, 83.23, and 83.24, setting

sit ¼ max 0, yi �
Xn
j¼1

xjrjt

 !
, i ¼ 1, . . . ,m, t ¼ 1, . . . ,T,

we obtain a feasible pair (x, s) for Eqs. 83.26, 83.27, 83.28, and 83.29. Conversely,

for any feasible pair (x, s) for Eqs. 83.26, 83.27, 83.28, and 83.29, inequalities

Eqs. 83.26 and 83.28 imply that

sit � max 0, yi �
Xn
j¼1

xjrjt

 !
, i ¼ 1, . . . ,m, t ¼ 1, . . . ,T:

Taking the expected value of both sides and using Eq. 83.27, we obtain

F2 R xð Þ; yið Þ � F2 Y; yið Þ, i ¼ 1, . . . ,m:

Therefore, problem (83.22–83.24) is equivalent to problem (83.25–83.29).

If the set X is a convex polyhedron, problem (83.25–83.29) becomes a large-

scale linear programming problem. It may be solved by general-purpose linear

programming solvers. However, the size of the problem increases dramatically with

the number of assets n, their return realizations T, and benchmark realizations m,
which makes it impractical for even moderate dimensions (in thousands). For the

purpose of solving these problems, we developed a specialized decomposition

method presented in (Dentcheva and Ruszczynski 2006a).
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83.4.2 Inverse Formulation

Assume that the return rates have a joint discrete distribution realizations rjt, t ¼ 1,

T, j ¼ 1,. . .,n, attained with probabilities pt, t ¼ 1, 2,. . .,T. Moreover, we assume

that all probabilities pt are equal, that is, pt ¼ 1/T, t ¼ 1,. . .,T. This is the case of

empirical distributions. Correspondingly, we assume that Y has a discrete distribu-

tion with m¼ T equally probable realizations yt, t¼ 1,. . .,T. We use the symbol R[t]

(x) to denote the ordered realizations of R(x), that is,

R 1½ � xð Þ � R 2½ � xð Þ � � � � � R T½ � xð Þ:

Since R(x) has a discrete distribution, the functions F2(R(x);∙) and F(�2)(R(x);∙)
are piecewise linear. Owing to the fact that all probabilities pt are equal, the break
points of F(�2)(R(x);∙) occur at t/T, for t ¼ 0,1,. . .,m. The same applies to F(�2)(Y;∙).
It follows from Eq. 83.13 that the stochastic dominance constraint (83.23) can be

equivalently expressed as

F �2ð Þ R xð Þ; t
T

	 

� F �2ð Þ Y;

t

T

	 

, t ¼ 1, . . . ,T:

Note that F(�2)(R(x); 0) ¼ F(�2)(Y;0) ¼ 0. We have

F �2ð Þ R xðð Þ; t
T
Þ ¼ 1

T

Xt
k¼1

R k½ � xð Þ, t ¼ 1, . . . ,T:

Therefore problem (83.22–83.24) can be written with an equivalent inverse form

of the dominance constraint:

max  R xð Þ½ �
subject to

(83.30)

Xt
k¼1

R k½ � xð Þ �
Xt
k¼1

y k½ �, t ¼ 1, . . . ,T, (83.31)

x 2 X: (83.32)

It was shown in (Ogryczak andRuszczynski 2002) that the function x 7!∑k¼ 1
t R[k](x)

is concave and positively homogeneous. It is also polyhedral. Therefore, Eq. 83.31

are convex polyhedral constraints. If the set X is a convex polyhedron, problem

(83.30–83.32) has an equivalent linear programming formulation.

All these transformations are possible due to the crucial assumption that the

probabilities of all elementary events are equal. If they are not equal, the break

points of the function F(�2)(R(x);∙) depend on x, and therefore inequality (83.13)

cannot be reduced to finitely many convex inequalities. This is in contrast to the

primal formulation, where the discreteness of Y alone was sufficient to reduce the

stochastic dominance constraint to finitely many convex inequalities.
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We have to observe that the quantile formulation (83.31) of stochastic dominance

constraints is more involved than the primal formulation and requires more sophisti-

cated computational methods. Using Eq. 83.31 directly would require employing

nonsmooth optimization methods to solve problem (83.30–83.32). Equivalent formu-

lation with linear constraints has very many constraints, because of the large number

of pieces of the function x 7! ∑ k ¼ 1
t R[k](x). Still, in (Dentcheva and Ruszczynski

2010) we have developed a highly efficient cutting plane method, which significantly

outperforms direct approaches.

83.5 Optimality and Duality

83.5.1 Primal Form

From now on we assume that the probability distributions of the return rates are

discrete with finitely many realizations rjt, t ¼ 1, . . ., T, j ¼ 1, . . ., n, attained with

probabilities pt, t ¼ 1, 2, . . ., T. We also assume that there are finitely many

ordered realizations of the benchmark outcome Y : y1 < y2 < � � � < ym.
The probabilities of these realizations are denoted by pi, i ¼ 1,. . .,m. We also

assume that the set X is compact.

We define the set U of functions u:ℝ ! ℝ satisfying the following conditions:

• u(∙) is concave and nondecreasing.

• u(∙) is piecewise linear with break points yi, i ¼ 1, . . . , m.
• u(t) ¼ 0 for all t � ym.

It is evident that U is a convex cone.

Let us define the function L:ℝn � U ! ℝ as follows:

L x; uð Þ ¼  R xð Þ þ u R xð Þð Þ � u Yð Þ½ �: (83.33)

It will play for problem (83.22–83.24) a similar role to that of a Lagrangian.

It is well defined, because for every u 2 U and every x 2 ℝn, the expected value

E[u(R(x))] exists and is finite.

The following theorem has been proved in a more general version in (Dentcheva

and Ruszczynski 2003c) (see also Dentcheva and Ruszczynski 2006a).

Theorem 1 If x̂ is an optimal solution of Eqs. 83.22, 83.23, and 83.24, then there
exists a function û 2 U such that

L x̂; ûð Þ ¼ max
x2X

L xûð Þ (83.34)

 û R x̂ð Þð Þ½ � ¼  û Yð Þ½ �: (83.35)

Conversely, if for some function û 2 U an optimal solution x̂ of Eq. 83.34 satisfies
Eqs. 83.23 and 83.35, then x̂ is an optimal solution of Eqs. 83.22, 83.23, and 83.24.
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We can also develop duality relations for our problem. With the function (83.33)

we can associate the dual function

D uð Þ ¼ max
x2X

L x; uð Þ:

We are allowed to write the maximization operation here, because the set X is

compact and L(∙,u) is continuous.
The dual problem has the following form:

min
u2U

D uð Þ: (83.36)

The set U is a closed convex cone and D(∙) is a convex function, so Eq. 83.36 is

a convex optimization problem.

Theorem 2 Assume that Eqs. 83.22, 83.23, and 83.24 has an optimal solution. Then
problem (83.36) has an optimal solution, and the optimal values of both problems
coincide. Furthermore, the set of optimal solutions of Eq. 83.36 is the set of
functions û 2 U satisfying Eqs. 83.34 and 83.35 for an optimal solution x̂ of
Eqs. 83.22, 83.23, and 83.24.

Note that all constraints of our problem are linear or convex polyhedral, and

therefore we do not need any constraint qualification conditions here.

The “Lagrange multiplier” u is directly related to the expected utility theory of von
Neumann and Morgenstern. We have established earlier that the second-order stochas-

tic dominance relation is equivalent to Eq. 83.8 for all utility functions in U. Our result
shows that one of them, û �ð Þ, assumes the role of a Lagrange multiplier associated with

Eq. 83.23. A point x̂ is a solution to Eqs. 83.22, 83.23, and 83.24 if there exists a utility
function û �ð Þ such that x̂ maximizes over X the objective function E[R(x)] augmented

with this dual utility. We see that the optimization problem in Eq. 83.34 is equivalent to

max
x2X

 v R xð Þð Þ½ �, (83.37)

where v(�) ¼ � + u(�). At the optimal solution the function v̂ �ð Þ ¼ � þ û �ð Þ is the
implied utility function. It attaches higher penalty to smaller realizations of R(x)
(bigger realizations of L(x)). By maximizing L(R(x),u) we look for x such that the

left tail of the distribution of R(x) is thin.
It is important to stress that the optimal function û �ð Þ is piecewise linear, with

break points at the realizations y1, . . ., ym of the benchmark Y. Therefore, the dual
problem has also an equivalent linear programming formulation.

83.5.2 Inverse Form

In addition to the assumption that all involved distributions are discrete, we

also assume that all probabilities pt are equal and that m ¼ T.
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We introduce the set W of concave nondecreasing functions w:[0,1] ! ℝ.

It is evident that W is a convex cone.

Recall the identity

 R xð Þ½ � ¼
ð1

0

F �1ð Þ R xð Þ; pð Þdp:

Let us define the function F : X �W ! ℝ as follows:

F x;wð Þ ¼
ð1

0

F �1ð Þ R xð Þ; pð Þdpþ
ð1

0

F �1ð Þ R xðð Þ; pÞdw pð Þ

�
ð1

0

F �1ð Þ Y; pð Þdw pð Þ: (83.38)

It plays a role similar to that of a Lagrangian of Eqs. 83.30, 83.31, and 83.32.

Theorem 3 If x̂ is an optimal solution of Eqs. 83.30, 83.31, and 83.32, then there
exists a function ŵ 2 W such that

F x̂; ŵð Þ ¼ max
x2X

F x; ŵð Þ (83.39)

ð1

0

F �1ð Þ R x̂ð Þ; pð Þdŵ pð Þ ¼
ð1

0

F �1ð Þ Y; pð Þdŵ pð Þ: (83.40)

Conversely, if for some function ŵ 2 W an optimal solution x̂ of Eq. 83.39 satisfies
Eqs. 83.31 and 83.40, then x̂ is an optimal solution of Eqs. 83.30, 83.31, and 83.32.

We can also develop a duality theory based on Lagrangian Eq. 83.38. For every

function w 2 W the problem

max
x2X

F x;wð Þ (83.41)

is a Lagrangian relaxation of problem (83.30–83.32). Its optimal value, c(w), is
always greater than or equal to the optimal value of Eqs. 83.30, 83.31, and 83.32.

We define the dual problem as

min
w2W

c wð Þ: (83.42)

The set W is a closed convex cone, and c(�) is a convex function, so problem

(83.42) is a convex optimization problem. Duality relations in convex programming

yield the following result.
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Theorem 4 Assume that problem (83.30–83.32) has an optimal solution. Then
problem (83.42) has an optimal solution, and the optimal values of both
problems coincide. Furthermore, the set of optimal solutions of Eq. 83.42 is the
set of functions ŵ 2 W satisfying Eqs. 83.39 and 83.40 for an optimal solution x̂ of
Eqs. 83.30, 83.31, and 83.32.

The “Lagrange multiplier” w in this case is related to rank-dependent expected

utility theory. We have established earlier that the second-order stochastic domi-

nance relation is equivalent to Eq. 83.12 for all dual utility functions in W. Our

result shows that one of them, ŵ �ð Þ , assumes the role of a Lagrange multiplier

associated with Eq. 83.31. A point x̂ is a solution to Eqs. 83.30, 83.31, and 83.32 if

there exists a dual utility function ŵ �ð Þ such that x̂ maximizes over X the objective

function E[R(x)] augmented with this dual utility. We can transform the Lagrangian

Eq. 83.38 in the following way:

F X;wð Þ ¼
ð1

0

F �1ð Þ R xð Þ; pð Þdpþ
ð1

0

F �1ð Þ R xðð Þ; pÞdw pð Þ �
ð1

0

F �1ð Þ Y; pð Þdw pð Þ

¼
ð1

0

F �1ð Þ R xð Þ; pð Þdv pð Þ �
ð1

0

F �1ð Þ Yð ; pÞdw pð Þ,

where v(p) ¼ p + w(p). At the optimal solution the function v̂ pð Þ ¼ pþ ŵ pð Þ is the

quantile utility function implied by the benchmark Y. Since

ð1

0

F �1ð Þ Y; pð Þdw pð Þ is

fixed, the problem at the right-hand side of Eq. 83.39 becomes a problem of

maximizing the implied rank-dependent expected utility in X. It attaches higher

weights to quantiles corresponding to smaller probabilities p. By maximizing

F(R(x), w) we look for x such that the left tail of the distribution of R(x) is thin.
Similarly to von Neumann–Morgenstern utility function, it is very difficult to elicit

the dual utility function in advance. Our model derives it from a random benchmark.

The optimal function ŵ �ð Þ is piecewise linear, with break points at t
T, t ¼ 1,. . ., T.

Therefore, the dual problem has also an equivalent linear programming

formulation. This property, though, is conditioned on the assumption of equal

probabilities.

83.6 Numerical Illustration

We have tested our approach on a basket of 719 real-world assets, using 616 pos-

sible realizations of their joint return rates (Ruszczynski and Vanderbei 2003).

Historical data on weekly return rates in the 12 years from Spring 1990 to Spring

2002 were used as equally likely realizations.

Implied utility functions corresponding to dominance constraints for four bench-

mark portfolios.
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We have used four benchmark return rates Y. Each of them was constructed as

a return rate of a certain index composed of our assets. Since we actually know the

past return rates, for the purpose of comparison, we have selected equally weighted

indexes composed of the N assets having the highest average return rates in

this period. Benchmark 1 corresponds to N ¼ 26, Benchmark 2 corresponds to

N ¼ 54, Benchmark 3 corresponds to N ¼ 82, and Benchmark 4 corresponds to

N ¼ 200. Our problem was to maximize the expected return rate, under the

condition that the return rate of the benchmark portfolio is dominated. Since the

benchmark point was a return rate of a portfolio composed from the same basket,

we have m ¼ T ¼ 616 in this case.
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Fig. 83.5 Implied utility functions corresponding to dominance constraints for four benchmark

portfolios
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We have solved the problem by our method of minimizing the dual problem

which was presented in (Dentcheva and Ruszczynski 2006a).

The implied utility functions from Eq. 83.37 obtained by solving the optimiza-

tion problem (83.34) in the optimality conditions are illustrated in Fig. 83.5. We see

that for Benchmark Portfolio 1, which contains only a small number of fast growing

assets, the utility function is linear on almost the entire range of return rates. Only

very negative return rates are penalized.

If the benchmark portfolio contains more assets and is therefore more diversified

and less risky, in order to dominate it, we have to use a utility function which

introduces penalty for a broader range of return rates and is steeper. For the broadly

based index in Benchmark Portfolio 4, the optimal utility function is smoother and

is nonlinear even for positive return rates. It is worth mentioning that all these utility

functions, although nondecreasing and concave, have rather complicated shapes.

It would be a very hard task to guess the utility function that should be used to

obtain a solution which dominates our benchmark portfolio.

Obviously, the shape of the utility function is determined by the benchmark

within the context of the optimization problem considered. If we change the

optimization problem, the utility function will change.

Finally, we may remark that our model (83.22–83.24) can be used for testing the

statistical hypothesis that the return rate Y of the benchmark portfolio is nondominated.
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Abstract

In Heston stochastic volatility framework, the main problem for implementing

Heston semi-analytic formulae for European-style financial claims is the inverse

Fourier integration. Without good implementation procedures, the numerical

results obtained from Heston formulae cannot be robust, even for customarily

used Heston parameters, as the time to maturity is increased. We compare three

major approaches to solve the numerical instability problem inherent in the

fundamental solution of the Heston model and show that the simple adjusted-

formula method is much simpler than the rotation-corrected angle method of
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Kahl and Jäckel and also greatly superior to the direct integration method of

Shaw if taking computing time into consideration.

In this chapter, we used the fundamental transform method proposed by Lewis

to reduce the number of variables from two to one and separate the payoff function

from the calculation of the Green function for option pricing. Furthermore, the

simple adjusted formula is shown to be a robust option pricer as no complex

discontinuities arise in this formulation even without the rotation-corrected angle.

Keywords

Heston • Stochastic volatility • Fourier inversion • Fundamental transform •

Complex logarithm • Rotation-corrected angle • Simple adjusted formula •

Green function

84.1 Introduction

Since the initial breakthrough by Heston (1993), the literature on asset pricing using

stochastic volatility models has expanded dramatically over the last decade to capture

the volatility smiles and skews appeared in market quotes. Within this class, the

Heston stochastic volatility model famous for its closed-form characteristic function

has spread widely in financial products. For example, Fang and Oosterlee (2011) used

Heston model to price Bermudan and barrier options. However, the implementations

of Heston formulae are not as straightforward as they may appear, and most numer-

ical procedures are not reported in detail (see Lee 2005).

Recently, the robustness of Heston formula has become one of the main issues

on option pricing (see the discussion of Albrecher et al. (2007)). The complex

logarithm contained in the formula of the Heston model is the primary problem. As

the claim of Lord and Kahl (2010), the characteristic function of Heston stochastic

volatility model and all of its extensions can be discontinuous, leading to

completely wrong option prices if the complex logarithm is restricted to its princi-

pal branch. This chapter compares three main approaches to this problem: rotation-

corrected angle, direct integration, and simple adjusted formula.

It is a well-known fact that the logarithm of a complex variable z ¼ reiy is

multivalued, i.e., ln z ¼ ln jzj + i(arg(z) + 2pn) where arg(z) 2 [�p, p) and n 2 Z.

If one restricts the logarithm to its principal branch by setting n¼ 0 (similar to most

software packages, such as C++, Gauss, and Mathematica), it is necessarily

discontinuous at the cut (see Fig. 84.1).

The Heston model is represented in Lewis’ illustration, in which the type of

financial claim is entirely decoupled from the calculation of the Green function.

Different payoffs are then managed through elementary contour integration over

functions and contours that depend on the payoff. In this way, one can see that the

issue is fundamentally related to the Green function component of the solution.

Once the implementation problems in the Green function component of the solution

have been solved, the robustness of the formulae for all European-style financial

claims in Heston model can be assured.
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The rest of this chapter proceeds as follows: Sect. 84.2 gives the derivation of the

transformed-based solution for Heston stochastic volatility model and introduces

the discontinuity problem arising from the derived formula. Section 84.3 compares

three main solutions to the discontinuity problem and gives some numerical

examples to illustrate their usefulness. Section 84.4 summarizes the chapter.

84.2 The Transform-Based Solution for Heston Stochastic
Volatility Model

Heston stochastic volatility model is based on the system of stochastic differential

equations, which represent the dynamics of the stock price and variance processes

under the risk-neutral measure

dSt ¼ rStdtþ St
ffiffiffiffiffi
Vt

p
dWS tð Þ (84.1)

dVt ¼ k y� Vtð Þdtþ sV
ffiffiffiffiffi
Vt

p
dWV tð Þ: (84.2)

St and Vt denote the stock price and its variance at time t, respectively; r is the
risk-free interest rate. The variance evolves according to a square-root process: y is
the long-run mean variance, k is the speed of mean reversion, and sV is the

parameter which controls the volatility of the variance process. WS and WV are

two standard processes of Brownian motion having the correlation r. The Heston

partial differential equation for a European-style claim C(S,V,t) with expiration T is

∂C
∂t

þ VS2

2

∂2C

∂S2
þ sVrSV

∂2C

∂S∂V
þ s2VV

2

∂2C

∂V2
þ rS

∂C
∂S

þ k y� Vð Þ∂C
∂V

� rC ¼ 0:

(84.3)

The fundamental transformmethod proposed by Lewis (2000) can reduce Eq. 84.3

from two variables to one and entirely separate every (volatility independent) payoff

−10 −5 0 5 10

−3

−2

−1

0

1

2

3

Arg [z]

q

Fig. 84.1 Discontinuities

occur at the cut by restricting

the logarithm of a complex

variable z ¼ eiy to the

principal branch
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function from the calculation of the Green function. After substituting the

following, t ¼ T � t, x ¼ log(S) + r(T � t), C(S,V,t) ¼ W(x,V,t)e�r(T�t) into

Eq. 84.3, we have

∂W
∂t

¼ 1

2
V

∂2W

∂x2
� ∂W

∂x

� �
þ rsVV

∂2W

∂x∂V
þ 1

2
s2VV

∂2W

∂V2
þ k y� Vð Þ∂W

∂V
: (84.4)

Let G(f,V,t) denote the Fourier transform of W(x,V,t):

G f;V; tð Þ �
ð1
�1

eifxW x;V; tð Þdx: (84.5)

Given the transform G(f,V,t), the inversion formula is

W x;V; tð Þ ¼ 1

2p

ðiIm f½ �þ1

iIm f½ ��1
e�ifxG f;V; tð Þdf: (84.6)

so that differentiation w.r.t. x becomes multiplication by �if in the transform.

By taking the t derivative of both sides of Eq. 84.5 and then replacing ∂W/∂t inside
the integral by the right-hand side of Eq. 84.4, we translate Eq. 84.4 into a PDE for

G(f,V,t):

∂G
∂t

¼ 1

2
s2VV

∂2G

∂V2
� 1

2
V f2 � if
� �

Gþ k y� Vð Þ � ifsVrVð Þ∂G
∂V

: (84.7)

Hence, a solution G(f,V,t) to Eq. 84.7, which satisfies G(f,V,0) ¼ 1, is called

a fundamental transform. Given the fundamental transform, a solution for

a particular payoff can be obtained by

C S;V; tð Þ ¼ 1

2p
e�r T�tð Þ

ðiIm f½ �þ1

iIm f½ ��1
e�ifx W

�
f;V; 0ð ÞG f;V; tð Þdf, (84.8)

where eW f;V; 0ð Þ is the Fourier transform of the payoff function at maturity.

We will deal with a few common types of payoff functions and see what

restrictions are necessary for their Fourier transforms to exist.

84.2.1 Call Option

At maturity, the payoff of a vanilla call option with strike K is Max[ST � K, 0] in
terms of our original variables. In terms of the logarithmic variables, we have

W(x,V,0) ¼ Max[ex � K, 0], so the Fourier transform of the payoff is of the form
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W
�

f;V; 0ð Þ ¼
ð1
�1

eifxW x;V; 0ð Þdx ¼
ð1
log K½ �

eifx ex � Kð Þdx

¼ K1þif= if� f2
� �

, (84.9)

which does not exist unless Im[f] > 1.

84.2.2 Put Option

The payoff of a vanilla put option with strike K is Max[K � ST,0]. Its transformed

payoff is also K1+if/(if � f2), but the restriction is Im[f] < 0.

84.2.3 Digital Call

The payoff of a digital call with strike K is H[ST � K] where H is a Heaviside

function. Its transformed payoff is � Kif/(if), subject to Im[f] > 0.

84.2.4 Cash-Secured Put

The payoff of a cash-secured put with strike K is Min[ST,K]. Its transformed payoff

is K1+if/(f2 � if), subject to 0 < Im[f] < 1.

The fundamental solution of Eq. 84.7 is in the form

G f;V; tð Þ ¼ eA t;fð ÞþB t;fð ÞV : (84.10)

After substituting Eq. 84.10 into Eq. 84.7, a pair of ordinary differential equa-

tions for A(t,f) and B(t,f) is obtained

A
� ¼ ykB: (84.11)

B
� ¼ 1

2
B2s2V � B kþ ifsVrð Þ � 1

2
f2 � if
� �

: (84.12)

The solutions can be expressed by

B t;fð Þ ¼ kþ irsVfþ d fð Þð Þ
s2V

1� ed fð Þt� �
1� g fð Þed fð Þtð Þ (84.13)

A t;fð Þ ¼ ky
s2V

kþ irsVfþ d fð Þð Þt� 2log
g fð Þed fð Þt � 1

g fð Þ � 1

� �� �
(84.14)
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using the auxiliary functions

g fð Þ ¼ kþ irsVfþ d fð Þ
kþ irsVf� d fð Þ , d fð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � if
� �

s2V þ kþ irsVfð Þ2
q

: (84.15)

If the complex, multivalued logarithm is restricted to the principal branch

only, discontinuities are necessarily incurred at the cut of the complex logarithm

along the integration path, resulting in an incorrect value for Heston formula.

Figure 84.2 illustrates the discontinuity problem in the implementation of the

fundamental solution. In this example, depicted in Fig. 84.2,

S0 ¼ 100, r ¼ 0.0319, V0 ¼ 0.010201, r ¼ –0.70, k ¼ 6.21, y ¼ 0.019,

sV ¼ 0.61, and Im[f] ¼ 2.

Reasonable parameters in practice may incur the numerically induced disconti-

nuity such that the correct treatment of the phase jump is very crucial. In fact, in

examples with long maturity periods, discontinuities are certain to arise from the

formula presented in Eq. 84.14 for A(t,f), if the complex logarithm uses the

principal branch only and 2ky/s2V is not an integer (see Fig. 84.3).

One may shift the problem from the complex logarithm to the evaluation of

G f;V; tð Þ ¼ g fð Þed fð Þt � 1

g fð Þ � 1

� ��2a

ea kþirsVfþd fð Þð ÞtþB t;fð ÞV , (84.16)
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Fig. 84.2 The discontinuity occurs in the fundamental solution of the Heston model if

the logarithm with complex arguments is restricted to the principal branch. Underlying: dSt ¼ r

Stdtþ
ffiffiffiffiffi
Vt

p
StdWS tð Þwith S0 ¼ 100 and r ¼ 0.0319. Variance: dVt ¼ k y� Vtð Þdtþ sV

ffiffiffiffiffi
Vt

p
dWV tð Þ

with V0 ¼ 0.010201, k ¼ 6.21, y ¼ 0.019, sV ¼ 0.61, and r ¼ –0.70. Time to maturity: T ¼ 2.00.

The red line was obtained by evaluating A(t,f) with the unfixed form given in Eq. 84.14. The

green dashed line was obtained by evaluating A(t,f) with the adjusted formula given in Eq. 84.31

and is the correct curve. The logarithmic function for both cases is restricted to using only the

principal branch

2308 J.-H. Guo and M.-W. Hung



where a ¼ ky/s2V . However, this formula comes with the related branch-switching

problem of the complex power function, and discontinuities do not diminish in its

implementation. Note that taking a complex variable z to the power a gives

za ¼ raeiay: (84.17)

After restricting arg(z) 2 [�p, p), the complex plane is cut along the negative

real axis. Whenever z crosses the negative real axis, the sign of its phase changes

from p to –p. Therefore, the phase of za changes from ap to –ap. This may lead to

a jump because

eip ¼ e�ip ) eiap 6¼ e�iap if a =2 Z

eiap ¼ e�iap if a 2 Z

	
: (84.18)

To demonstrate this, Fig. 84.4 gives the scenario that a 2 Z and there is no jump

at all. Figure 84.5 gives another scenario that a =2 Z and the complex power function

indeed incurs jumps.
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Fig. 84.3 Discontinuities arise quite naturally for customarily used Heston parameters, typically

occurring in practice as time to maturity is increased. The other parameters are the same as those

specified in Fig. 84.2
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84.3 Solutions to the Discontinuity Problem of Heston Formula

In the literature, various authors propose the idea of carefully keeping track of the

branch by monitoring the complex logarithm function for each step along a discretized

integral path to remedy phase jumps. As described in Kruse and Nögel (2005), if the

imaginary value of the complex logarithm for one step differs from the previous one by

more than 2p, the jump of 2p is added or subtracted to recover the continuity of phase.

However, using this approach, the already complex integrals of Heston formula may

become too complicated in practice. Therefore, simulation is also considered as

a practical alternative for finding option prices (see Broadie and Kaya 2006).

To make matters worse, discontinuities arise quite naturally for customarily used

Heston parameters simply as time to maturity is increased, thereby illustrating the

importance of the correct treatment of phase jumps for Heston formula. Kahl and

−20 −10 0 10 20

−0.4

−0.2

0.0

0.2

0.4

R
e[

f]

Im [G(f,V,t)]Fig. 84.4 If the power of

a complex variable za is
restricted to the principal

branch, a 2 Z makes

discontinuities diminish at the

cut. The fundamental function

G(f,V,t) in Eq. 84.16 is

evaluated with the same

parameters specified in

Fig. 84.2 except for

k ¼ 19.58421. In this

scenario, a ¼ ky/s2V ¼ 1

−20 −10 0 10 20

−0.5

0.0

0.5

R
e[

f]

Im [G(f,V,t)]

Fig. 84.5 If the power of a complex variable za is restricted to the principal branch, a =2 Z makes

discontinuities occur at the cut. The fundamental function G(f,V,t) in Eq. 84.16 is evaluated with
the same parameters specified in Fig. 84.2. In this scenario, a ¼ ky/s2V ¼ 0.3170921
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Jäckel (2005) remedied these discontinuities using the rotation-corrected angle of the

phase of a complex variable. Shaw (2006) dealt with this problem by replacing the

call to the complex logarithm by direct integration of the differential equation. In

addition, Guo and Hung (2007) also proposed a simple adjusted formula to solve this

discontinuity problem. From a computational and convenience point of view, the

solution of Guo and Hung (2007) can be implemented easily and is thereby suitable

for practical application. These solutions are presented by the following statements.

84.3.1 Rotation-Corrected Angle

In order to guarantee the continuity of A(t,f), a rotation-corrected term must be

additionally calculated in advance. First, we introduce the notation

g fð Þ ¼ rg fð Þeiyg fð Þ, (84.19)

d fð Þ ¼ ad fð Þ þ ibd fð Þ: (84.20)

The next step is to have a closer look at the denominator of (g(f)ed(f)t � 1)/

(g(f) � 1):

g fð Þ � 1 ¼ rg fð Þeiyg fð Þ � 1 ¼ r�g fð Þei w�g fð Þþ2pmð Þ (84.21)

where

m ¼ int
yg fð Þ þ p

2p

� �
, (84.22)

w�g fð Þ ¼ arg g fð Þ � 1ð Þ, (84.23)

r�g fð Þ ¼ g fð Þ � 1j j, (84.24)

and with int[•] denoting Gauss’s integer brackets. The same calculation is done with

the numerator:

g fð Þed fð Þt � 1 ¼ rg fð Þeiyg fð Þe ad fð Þþibd fð Þð Þt � 1 ¼ rg fð Þead fð Þtei yg fð Þþbd fð Þtð Þ � 1

¼ r�gd fð Þei w�gd fð Þþ2pnð Þ
(84.25)

where

n ¼ int
yg fð Þ þ bd fð Þtþ p

2p

� �
, (84.26)
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w�gd fð Þ ¼ arg g fð Þed fð Þt � 1

 �

, (84.27)

r�gd fð Þ ¼ g fð Þed fð Þt � 1
�� ��: (84.28)

Hence, we can compute the logarithm of (g(f)ed(f)t � 1)/(g(f) � 1) quite

simply as

log
g fð Þed fð Þt � 1

g fð Þ � 1

� �
¼ log r�gd fð Þ=r�g fð Þ

h i

þ i w�gd fð Þ � w�g fð Þ þ 2p n� mð Þ
h i

, (84.29)

where 2p(n � m) is the rotation-corrected angle.

84.3.2 Direct Integration

Another way to avoid the branch cut difficulties arising from the choice of the

branch of the complex logarithm is to perform direct numerical integration of A(t,f)
w.r.t. t according to Eq. 84.11. Given B(t,f), A(t,f) can be obtained by

A t;fð Þ ¼ yk
ðt
0

B s;fð Þds: (84.30)

After replacing the call to the complex logarithm by direct integration of the

differential equation, the complex logarithm cannot be a problem anymore, and the

continuity of A(t,f) is guaranteed.

84.3.3 Simple Adjusted Formula

Here, we briefly introduce the simple adjusted formula of Guo and Hung (2007) to

the discontinuity problem in the implementation of Heston formula. The solution

is to move exp[�d(f)t] into the logarithm of A(t,f) by simply adjusting A(t,f)
as follows:

A t;fð Þ ¼ ky
s2V

kþ irsVf� d fð Þð Þt� 2log
g fð Þed fð Þt � 1

g fð Þ � 1
e�d fð Þt

� �� �
: (84.31)

The insight in formula (84.31) is that the subtraction of the number 1 from

a complex variable, c, results simply in a shift parallel to the real axis. Because an

imaginary component must be added to move a complex number across the

negative real axis, the phases of c � 1 and c exist on the same phase interval.
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Therefore, the logarithms of c � 1 and c have the same rotation count number. It

illuminates this simple solution to assure that the phase of A(t,f) is continuous,
without the necessity of a rotation-corrected term.

The logarithm presented in Eq. 84.31 is the only term possibly giving rise to

discontinuity. Trivially,

log
g fð Þed fð Þt � 1

g fð Þ � 1
e�d fð Þt

� �
¼ log

g fð Þ
g fð Þ � 1

� �
þ log

g fð Þed fð Þt � 1

g fð Þed fð Þt

� �
: (84.32)

Because the subtraction of 1 does not affect the rotation count of the phase of

a complex variable, g(f) has the same rotation count number (m) as g(f) � 1, and

g(f)ed(f)t � 1 also has the same rotation count number (n) as g(f)ed(f)t. Hence,
log[(g(f)ed(f)t � 1)/((g(f) � 1)ed(f)t)] needs no rotation-corrected terms for all

levels of Heston parameters because

log
g fð Þed fð Þt � 1

g fð Þ � 1ð Þed fð Þt

� �
¼ log g fð Þ½ � � log g fð Þ � 1½ �ð Þ

þ log g fð Þed fð Þt � 1
h i

� log g fð Þed fð Þt
h i
 �

: (84.33)

Hence, the formula in Eq. 84.31, for A(t,f), provides a simple solution to the

discontinuity problem for Heston stochastic volatility model.

Compared to the rotation-corrected angle method, the simple adjusted-formula

method needs no rotation-corrected terms in the already complex integral of

Heston formula to recover its continuity for all levels of Heston parameters.

Although the direct integration method neither needs the rotation-corrected

terms to guarantee the continuity of Heston formula, it inevitably introduces the

discretization bias into the evaluation of the Green function component of the

solution. This bias may create another serious problem of computation. Many

steps may be necessary to reduce the bias to an acceptable level, and, hence, more

computational effort is needed to guarantee that the bias is small enough. As

a consequence, the direct integration method requires more computing time than

the simple adjusted-formula method to avoid the discontinuity problem arising

from the complex logarithm.

Figure 84.6 illustrates a comparison of the computing time for applying the

simple adjusted-formula and direct integration methods to evaluate a European call

option. The direct integration method is more time-consuming than the simple

adjusted-formula method. Moreover, the simple adjusted-formula method has an

advantage in that its time consumption remains almost at the same level as the time

to maturity increases. In contrast, the computing time via the direct integration

method increases rapidly with an increase in time to maturity. These computational

results were performed on a desktop PC with an Intel Pentium D 3.4 GHz processor

and 1 GB of RAM, running Windows XP Professional. The codes were written

using the Mathematica software.
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Table 84.1 is an illustration of the usefulness of the simple adjusted

formula for evaluating European call options in Heston model using the

complex logarithm restricted to the principal branch. The algorithm was

verified using Monte Carlo simulation with the exact method proposed by

Broadie and Kaya (2006) for the stochastic volatility process. Although the

exact method of simulation has the advantage that its convergence rate is

0.656
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Fig. 84.6 Computing time comparison under Heston stochastic volatility model for a European

call option: direct integration versus simple adjusted formula. The red line represents the com-

puting time for evaluating a standard call option price using A(t,f) via direct integration w.r.t. t
given in Eq. 84.30. The green dashed line represents the computing time for evaluating the same

call option price using A(t,f) via the simple adjusted formula given in Eq. 84.31. The other

parameters are the same as those specified in Fig. 84.2

Table 84.1 Impact of the discontinuity problem on the evaluation of European call options in

Heston model on stochastic volatility

T (year)

Monte Carlo simulation with

the exact method (10,000

trials)

Fundamental solution of the Heston model

Adjusted formula

using formula

(84.31)

Unfixed formula using

formula (84.14)

0.50 4.2658 4.2545 4.2555

1.00 6.7261 6.8061 6.4483

1.50 8.9510 8.9557 8.3286

2.00 10.9633 10.8830 9.7079

2.50 12.6100 12.6635 10.5542

3.00 14.2591 14.3366 10.9778

Here, S0 ¼ 100.00, K ¼ 100.00, r ¼ 0.0319, V0 ¼ 0.010201, r ¼ –0.70, k¼ 6.21, y¼ 0.019, and

s v ¼ 0.61. Note that the evaluation of the fundamental solution of the Heston model using

formula (84.31) still yields values consistent with those of the Monte Carlo simulation for all

time-to-maturity cases, although the complex logarithm is restricted to the principal branch
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much faster than that of the conventional Euler discretization method, it is,

of course, computationally more burdensome than the simple adjusted-formula

method.

84.4 Summary

This chapter looks at the issue raised by branch cuts in the transform solutions

for European-style financial claims in the Heston model. The multivalued

nature of the complex logarithm and power functions results in numerical

instability in the implementation of the fundamental transform. Compared to

the work of Kahl and Jäckel (2005), neither the direct integration method of

Shaw (2006) nor the simple adjusted formula of Guo and Hung (2007) requires

rotation-corrected terms to assure the robustness of the evaluation of Heston

formulae. After taking computing time into consideration, the evidence

shows that the simple adjusted-formula method is greatly superior to the direct

integration method.
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Abstract

We begin with an overview of frequentist and Bayesian approaches to incorpo-

rating change points in time series models of asset returns and their volatilities.

It has been found in many empirical studies of stock returns and exchange rate

that ignoring the possibilities of parameter changes yields time series models

with long memory, such as unit-root nonstationarity and high volatility persis-

tence. We therefore focus on the ARX-GARCH model and introduce two

timescales, using the “short” timescale to define GARCH dynamics and the
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“long” timescale to incorporate parameter jumps. This leads to a Bayesian

change-point ARX-GARCH model, whose unknown parameters may undergo

occasional changes at unspecified times and can be estimated by explicit recur-

sive formulas when the hyperparameters of the Bayesian model are specified.

We describe efficient estimators of the hyperparameters of the Bayesian model

leading to empirical Bayes estimators of the piecewise constant parameters with

relatively low computational complexity. We also show how the computation-

ally tractable empirical Bayes approach can be applied to the frequentist prob-

lem of partitioning the time series into segments under sparsity assumptions on

the change points.

Keywords

ARX-GARCH • Bounded complexity • Contemporaneous jumps • Change-point

models • Empirical Bayes • Frequentist segmentation • Hidden Markov models •

Hyperparameter estimation • Markov chain Monte Carlo • Recursive filters •

Regression models • Stochastic volatility

85.1 Introduction

As we have noted in Lai and Xing (2010), portfolio theory, asset pricing, and

hedging all involve volatilities, and volatility modeling is a cornerstone of empir-

ical finance. Since the seminal works of Engle (1982) and Bollerslev (1986),

generalized autoregressive conditionally heteroskedastic (GARCH) models have

been widely used to model and forecast volatilities of financial time series. In many

empirical studies of stock returns and exchange rates, estimation of the parameters

n, a, and b in the GARCH (1,1) model

yn ¼ snϵn, s2n ¼ 1� a� bð Þn2 þ ay2n�1 þ bs2n�1

reveals high volatility persistence, with the maximum likelihood estimate of

a + b close to 1. To model such persistence, Engle and Bollerslev (1986) considered

the “integrated” GARCH (IGARCH) models, and Baillie et al. (1996) introduced

fractional integration in their FIGARCH models, with a slow hyperbolic rate of

decay for the influence of the past innovations, to quantify the long memory of

exchange rate volatilities. However, it has been pointed out that if the model

parameters undergo occasional changes, then the fitted models that assume time-

invariant parameters tend to exhibit long memory; see Diebold (1986),

Perron (1989), Rappoport and Reichlin (1989), and Lamoureux and Lastrapes

(1990). Therefore the long memory in the IGARCH and FIGARCH models may

be due to the long timescale of the parameter changes that are ignored in these

models.

The frequentist approach to incorporating change points in regression models

assume that the change points are unknown parameters to be estimated from the

data; see Quandt (1958, 1960), Andrews et al. (1996), Bai (1997, 1999),
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Bai et al. (1998), Bai and Perron (1998, 2003), Qu and Perron (2007); and the

references therein. Finding these change points amounts to segmenting the data.

Because of the computational complexity and analytic intractability, it is prohibi-

tively difficult to extend these methods from relatively simple regression models to

incorporate change points in a stochastic regression model with GARCH-type error

variances. An alternative approach is Bayesian and assumes that the change points

and the associated regimes are generated by some stochastic process so that the

unknown regression parameters can be estimated from their posterior distribution

via Bayes theorem; see Goldfeld and Quandt (1973) and Hamilton (1989, 1990).

The Bayesian approach has been used to develop hidden Markov models (HMM)

for asset returns, allowing contemporaneous jumps in their levels and volatilities.

Markov chain Monte Carlo (MCMC) methods are used to estimate the hidden states

and the unknown hyperparameters of the Bayesian method. Section 85.2 gives an

overview of the literature, including the SVCJ models (stochastic volatility models

with contemporaneous jumps in returns and volatilities) that have been an active

area of research in finance and econometrics in the past decade.

In Sect. 85.3 we describe a much simpler class of Bayesian change-point models

for asset returns and their volatility that we recently developed. This class of models

yields explicit recursive filters and smoothers, thereby obviating the reliance on

MCMC methods whose convergence properties and performance in change-point

time series models have not been systematically studied because of their computa-

tional complexity. The optimal Bayes estimates in our change-point ARX-GARCH

model involve unspecified hyperparameters, which can in principle be estimated by

the EM algorithm. For regime-switching ARCH models, Cai (1994) have noted the

“tremendous complication” of the normal equations of the EM algorithm, making it

“extremely difficult” to implement for sample sizes exceeding 50. By using recur-

sive representations of the summands of the log-likelihood function, we have

a relatively simple algorithm to evaluate the log-likelihood function and estimate

the hyperparameters of the change-point model. In Sect. 85.3, after introducing the

change-point ARX-GARCH model, we first describe the associated filters for

estimating the piecewise constant ARX parameter bn and long-run volatility nn
based on the observations y1, . . ., yn, assuming known hyperparameters that include

the GARCH parameters associated with short-term volatility changes. Bounded

complexity mixture (BCMIX) approximations are also developed for efficient

computation of these filters and of the likelihood function to estimate the

hyperparameters. We then use these closed-form recursions to develop BCMIX

approximations to the Bayes estimates (smoothers) of bt and nt for 1 � t � n. In
contrast to our empirical Bayes approach that assumes a relatively simple stochastic

model for change points, the frequentist approach which is often called “segmen-

tation” assumes the change points and the pre- and post-change regression coeffi-

cients in regression models to be unknown parameters and uses maximum

likelihood to estimate them and a model selection criterion to determine the number

of change points. Section 85.3 also uses the relative simplicity of the EB smoothers

to resolve difficulties in the frequentist segmentation problem. Section 85.4 gives

some concluding remarks and discussion.
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85.2 Overview of Bayesian Models with Jumps in Returns
and Volatilities

85.2.1 Jumps in Regression Parameters, Error Variance,
and ARCH Parameters

Since this chapter focuses on volatility modeling as in Lai and Xing (2010), we only

review Bayesian change-point models that include changes in volatilities. Albert

and Chib (1993) consider ARX models (autoregressive models with exogenous

inputs) whose levels and error variances are subject to regime changes determined

by a two-state Markov chain with unknown transition probabilities. Specifically,

assuming the state space for the two-state Markov chain to be {0, 1}, with

st ¼ 1 representing that a change has occurred at time t, their model can be

expressed as

yt ¼ bTxt þ gst þ
Xk
i¼1

fi yt�i � bTxt�1 � gst�1

� �þ s2 þ t2st
� �1=2

ϵt, (85.1)

in which ϵt are independent standard normal, s2, t2, g, f1, . . . , fk are unknown

parameters such that f(z) :¼ 1� f1z� � � � � fkz
k has zeros outside the unit circle.

Their abstract says, “The unobserved states, one for each time point, are treated as

missing data and then analyzed via the simulation tool of Gibbs sampling. This

method is expedient because the conditional posterior distribution of the parame-

ters, given the states, and the conditional posterior distribution of the states, given

the parameters, all have a form amenable to Monte Carlo sampling. The approach is

straightforward and generates marginal posterior distribution for all parameters of

interest. Posterior distributions of the states, future observations, and the residuals,

averaged over the parameter space are also obtained.” The unknown

hyperparameters in their Bayesian model are estimated by maximum likelihood.

Instead of including ARX dynamics as in Eq. 85.1, Hamilton and Susmel (1994)

consider regime-switching ARCH models

yt ¼ aþ fyt�1 þ t stð Þ
ffiffiffiffi
ht

p
ϵt, (85.2a)

ht ¼ a0 þ a1u
2
t�1 þ � � � þ aqu

2
t�q, (85.2b)

in which ϵt are independent standard normal, a, f, a0, . . . , aq, t(1), . . . , t(K) are
unknown parameters, and st is an unobserved K-state Markov chain with unknown

transition probabilities on state space {1, . . . , K}. They use maximum likelihood to

estimate the unknown parameters and also develop a complicated summation

formula to compute the conditional density of (st, st�1, . . . , st�q) given y1, . . . , yt.
They call (85.2) a Markov-switching ARCH model, denoted SWARCH(K, q), and
have also extended it to include leverage effects by addingxu2t�1I ut�1�0f g to the right-
hand side of (85.2b), in which case the model is denoted SWARCH-L(K, q).
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These Markov-switching ARCH (or ARCH-L) models can also use the standard-

ized Student-t instead of standard normal errors as in the usual GARCHmodels; see

Lai and Xing (2010, Sect. 93.2.3).

Instead of ARCH models, So et al. (1998) consider stochastic volatility models

(Lai and Xing 2010, Sect. 93.2.7) and include regime-switching features in those

models. Their Markov-switching stochastic volatility (MSSV) models are of the form

yt ¼
ffiffiffiffi
ht

p
ϵt, log ht ¼ t stð Þ þ f log ht�1 þ �t, (85.3)

in which ϵt are independent standard normal, �t are independent N(0, s
2) and f, s2,

t(1), . . ., t(K) are unknown parameters, and st is an unobserved K-state Markov

chain with unknown transition probabilities on {1, . . . , K}. As in Albert and Chib

(1993), they use Gibbs sampling to estimate by Monte Carlo the posterior distri-

bution of the states and also of the ht after putting a prior distribution on the vector

of unknown parameters and transition probabilities.

Assuming the number, but not the locations, of the change points to be known,

Wang and Zivot (2000) consider a deterministically trending dynamic time series

model in which multiple structural changes in level, trend, and error variance are

modeled through specification of the prior distributions. Their model is a segmented

heteroskedastic AR(k) model

yt ¼
Xmþ1

i¼1

ai þ bitð ÞI ti�1�t<tif g þ siϵt
� �þ

Xk
j¼1

fjyt�j, (85.4)

with t0 ¼ 1, tm+1 ¼ T, and m change points at unknown times t1, . . ., tm in the

interval [1, T]. The ϵt in Eq. 85.4 are independent standard normal, and the ai, bi, si,
and fj are unknown parameters. Letting y denote the vector consisting of these

unknown parameters and t1, . . . , tm, they put a prior distribution on y and use Gibbs
sampling to estimate its posterior distribution. Bayes factors, or posterior odds, or

Schwarz’s BIC can be used to selectm, and they have found from simulation studies

that Bayes factors and the BIC have satisfactory performance, while posterior odds

are quite sensitive to the prior probabilities of models with different numbers of

breaks.

McCulloch and Tsay (1993) consider AR(k) models with occasional level shifts

yt ¼ mt þ
Xk
i¼1

fi yt�i � mt�ið Þ þ �t, (85.5)

in which �t are independent N(0, s
2), or with occasional variance shifts

yt ¼ mþ
Xk
i¼1

fiyt�i þ stϵt, (85.6)
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in which ϵt are independent standard normal. The mt in Eq. 85.5 are

piecewise constant so that It :¼ I mt 6¼mt�1f g are i.i.d. Bernoulli(p) with

P(It ¼ 1) ¼ p. Similarly, in Eq. 85.6, It :¼ I st 6¼st�1f g are i.i.d. Bernoulli(p).
To complete the prior specification of mt, McCulloch and Tsay (1993) write

mt ¼ mt�1 + ztIt and specify zt to be a sequence of independent and identically

distributed (i.i.d) normal random variables with variance t2 and independent of It.
They also put conjugate priors on f1, . . ., fk and s2. Similarly, for Eq. 85.6, they

writest ¼ st�1n
It
t and specify nt

2 are i.i.d. inverted w2-random variables conditional on

(m, f1, . . ., fk), which is assigned a conjugate prior distribution. Gibbs sampling is

used to estimate the unknown parameters; after assigning “quite diffuse” prior

distribution to the hyperparameters.

Lai et al. (2005) have introduced a more general change-point model than that of

McCulloch and Tsay (1993). This change point has been reviewed in Sect. 93.3.3 of

Lai and Xing (2010) and allows jumps in level, autoregressive parameters, and error

variance, thereby incorporating both Eqs. 85.5 and 85.6. In addition, the model

yields explicit recursive formulas for estimating the parameters and do not need

Gibbs sampling or other Monte Carlo methods for its implementation. One may

wonder why a more general model can be easier to implement. The key lies in the

specification of the new parameter value at a change point. Specifically, McCulloch

and Tsay (1993) assume mt ¼ mt�1 + ztIt (or st ¼ st�1n
It
t ), while Lai et al. (2005)

assume ut ¼ (1 � It�1)ut�1 + Itzt. Thus, the Bayesian model of Lai, Liu, and Xing

samples a completely new value of the parameter vector at a change point while that

of McCulloch and Tsay samples the increment mt � mt�1 or st/st�1 at a change

point. The great reduction in computational complexity by sampling a new param-

eter value over sampling an increment was first noticed by Yao (1984) in his

simplification of the Bayesian model of Chernoff and Zacks (1964) for mean shifts

in a Gaussian sequence of normal random variables with common known variance

but piecewise constant means.

85.2.2 Stochastic Volatility Models with Jumps in Returns
and Volatilities

To estimate the magnitude and assess the significance of stochastic volatility and

jump risk premia in option pricing, contemporaneous jumps in prices and in

stochastic volatilities have been incorporated in continuous-time models of asset

price dynamics. Bakshi et al. (1997) have shown substantial improvement over

including only jumps in prices, while Bates (2000) and others have found such

improvement to be small. Further studies show unanimous support for jumps in

prices but disagree on the importance of jumps in volatilities and even on how the

volatility jumps should be modeled. Duffie et al. (2000) developed analytic

methods for asset valuation and econometric analysis in the setting of affine

jump-diffusion state processes. They pointed out that price jumps should depend

on the size of volatility jumps via the jump intensities and introduced the following
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continuous-time stochastic volatility models that incorporate contemporaneous

jumps in returns and volatilities for the asset price St ¼ eYt :

dYt

dVt

� �
¼ m

k y� Vt�ð Þdt
� �

þ
ffiffiffiffi
V

p
t�

1 0

rsn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
sn

� �
dWt þ xydNy

t

xndNn
t

� �
, (85.7)

where Vt� ¼ lims"t Vs, Wt is a standard 2-dimensional Brownian motion, Nt
y and Nt

n

are Poisson processes with constant intensities ly and ln, and xy and xn are random
jump sizes in returns and volatilities, respectively. Such specification covers most of

the popular models used in portfolio allocation and option pricing. For example, the

case ly ¼ ln ¼ 0 is equivalent to Heston’s (1993) stochastic volatility model, and the

case of ln ¼ 0 and normal xy is the same as Bates’ (1996) model that has normally

distributed jumps in returns. For the general model (85.7), Eraker et al. (2003)

developed a simulation-based Bayes estimator, using Markov chain Monte Carlo

(MCMC), of the jumps in returns and volatilities after discretizing Eq. 85.7 into

Y tþ1ð ÞD ¼ YtD ¼ mDþ ffiffiffiffiffiffiffiffiffiffi
VtDD

p
ϵytþ1ð ÞD þ xytþ1ð ÞDJ

y
tþ1ð ÞD,

V tþ1ð ÞD � VtD ¼ k y� VtDð ÞDþ sn
ffiffiffiffiffiffiffiffiffiffi
VtDD

p
ϵntþ1ð ÞD þ xntþ1ð ÞDJ

n
tþ1ð ÞD,

(85.8)

where J(t + 1)D
y (or J(t + 1)D

n ) is the indicator variable of a jump at (t + 1)D, ϵ(t + 1)D
y and

ϵ(t + 1)D
n are standard normal random variables with correlation r, and D is the time-

discretization interval. Letting Y ¼ (y1, . . . , yk) denote the parameter vector and

assuming Jy¼ Jv (i.e., contemporaneous jumps), they note that the posterior density

of Y and the latent volatility, jump times, and jump sizes satisfy

f Y, J, xy, xn,VjYð Þ / f YjY, J, xy, xn,Vð Þf Y; J; xy; ; xn;Vð Þ

and use the MCMC algorithm to generate samples by iteratively drawing from the

following conditional posteriors till convergence to the stationary distribution:

parameters : f YijY�i, J, x
y, xn,V, Yð Þ, i ¼ 1, . . . , k, with Y�i ¼ Y∖ yif g,

jump times : f JtD ¼ 1jY, xy, xn,V,Yð Þ, t ¼ 1, . . . ,T
jump sizes : f xytDjY, JtD ¼ 1, xn,V, Y

� �
, f xntDjY, JtD ¼ 1, xn ,V,Y
� �

, t ¼ 1, . . . , T
volatility : f VtDjV tþ1ð ÞD,V t�1ð ÞD,Y, J, xy, xn,Y

� �
, t ¼ 1, . . . ,T:

Broadie et al. (2007) discussed the issue more thoroughly and found strong

evidence in support of stochastic volatility and jumps in both price and volatility.

85.3 A Simple Stochastic Change-Point ARX-GARCH Model

The model (85.7), which is often referred to as SVCJ (stochastic volatility model

with contemporaneous jumps in returns and volatilities), assumes Poisson arrivals

85 Stochastic Change-Point Models of Asset Returns and Their Volatilities 2323



of contemporaneous jumps in returns and volatilities with constant intensity. In

discrete time, this is equivalent to JtD being independent Bernoulli, which is

assumed in the models of McCulloch and Tsay (1993) and Lai et al. (2005)

discussed at the end of Sect. 85.2.1. What (85.8) adds to these models is the SV

dynamics in the second equation of Eq. 85.8, in contrast to piecewise constant st in
Eq. 85.6 or in Lai et al. (2005). Because SV is a nonlinear state-space model, this

makes the SVCJ model difficult to implement and also explains the need for

MCMC algorithm. Replacing SV by a GARCH model achieves similar properties

but obviates the need of filtering in a state-space model. To incorporate structural

changes in the regression coefficients and the unconditional variance of the random

disturbances in an autoregressive model with exogenous inputs (ARX), while

allowing the conditional variances to follow a GARCH model, Lai and Xing

(2013) consider the change-point ARX-GARCH model

yt ¼ bTt xt þ nt
ffiffiffiffi
ht

p
ϵt, (85.9)

in which the parameter vector bt and the unconditional variance nt
2 are piecewise

constant, with jumps at times of structural change, the vector xt consists of exog-
enous variables and the past observations yt�1, yt�2, . . . , yt�k, and hn represents

short-term proportional fluctuations in variance generated by the GARCH model

hn ¼ 1�
Xk
i¼1

ai �
Xk0

l¼1

bl

0
@

1
Aþ

Xk
i¼1

aiw
2
n�i þ

Xk0

l¼1

blhn�l with wt ¼
ffiffiffiffi
ht

p
ϵt: (85.10)

The ϵt are assumed to be i.i.d. standard normal random variables such

that ϵt are independent of xt and the time-invariant GARCH parameters a1, . . . , ak,
b1, . . . , bk0 are assumed to satisfy

ai � 0, bl � 0 and
Xk
i¼1

ai þ
Xk0

l¼1

bl � 1: (85.11)

Letting tt¼ 1/(2nt
2), we assume ut¼ (bt

T,tt)
T to be piecewise constant and satisfy

the following conditions:

(A1) For t > t0 ¼ max(k, k0), the change times of ut form a renewal process with

i.i.d. inter-arrival times that are geometrically distributed with parameter p, or
equivalently,

It :¼ 1 ut 6¼ut�1f g are i:i:d: Bernoulli pð Þ with P It ¼ 1ð Þ ¼ p,

It0 ¼ 1, and there is no change point prior to t0.
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(A2) ut ¼ (1 � It)ut�1 + It(zt
T,gt)

T, where (z1
T,g1)

T, (z2
T,g2)

T, . . . are i.i.d. random

vectors such that ztjgt � Normal(z, V/(2gt)), gt � wd
2/r, where wd

2 denotes the

chi-square distribution with d degrees of freedom.

(A3) The processes {It}, {ut}, and {(xt, ϵt)} are independent.

This model generalize the approach developed by Lai et al. (2005), who consider

the special case of AR models with occasional jumps in regression parameters and

error variances. The last paragraph of Sect. 93.3.3 of Lai and Xing (2010) has given

a brief introduction of the model, and we provide more complete details here and

also an updated account that includes some recent results.

85.3.1 Closed-Form Recursive Filters

Conditions (A1)–(A3) specify a Markov chain with unobserved states (It, ut). The
observations (xt, yt) are such that (yt � bt

Txt)/nt forms a GARCH process.

This hidden Markov model (HMM) has hyperparameters p, z, V, r, d, a1, . . ., ak,
b1, . . ., bk0. To estimate ut assuming known hyperparameters, let Jn ¼ max{t � n :

In ¼ 1} and note that n � Jn � k by
(A1). Define Yn ¼ x1; y1; . . . ; xn; ynð Þ and Yj, n ¼ xj; yj; . . . ; xn; yn

	 

. The esti-

mates b̂n and n̂
2
n based onYn are weighted averages of b̂n, j and n̂

2
n, j based onYj, n, with

the weights pn,j to be specified. The b̂n, j and n̂
2
n, j can be computed recursively (with

increasing n and fixed j). Initializing at n ¼ j � 1 with b̂n, j ¼ z, V̂n, j ¼ V, and

n̂2n, j ¼ r= 2dð Þ, define for n � j

ĥn, j ¼ 1�
Xk
i¼1

ai �
Xk0

l¼1

bl

0
@

1
Aþ

Xk0

l¼1

blĥn�l, j

þ
Xk
i¼1

ai
yn�i � b̂

T

n�i, jxn�i

	 
2

n̂2n�i, j
(85.12a)

Vn, j ¼ Vn�1, j � Vn�1, jxnx
T
nVn�1, j= ĥn, j þ xTnVn�1, jxn

� �� �
, (85.12b)

b̂n, j ¼ b̂n�1, j þ Vn�1, jxn yn � b̂
T

n�1, jxn

	 

= ĥn, j þ xTnVn�1, jxn
� �n o

, (85.12c)

n̂2n, j ¼
d þ n� j� 2

d þ n� j� 1
n̂2n�1, j þ

1

d þ n� j� 1
�

yn � b̂
T

n�1, jxn

	 
2

ĥn, j þ xTnVn�1, jxn
: (85.12d)
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The weights pn,j are given recursively by

pn, j / p�n, j :¼
p f nn=f 00 if j ¼ n,
1� pð Þpn�1, jf nj=f n�1, j if j � n� 1

�
(85.13)

where letting zn, j ¼ Vn, j V�1zþ
Xn

t¼j
xtyt=ĥt, j

	 

and

rn, j ¼
1

2
rþ zTV�1z� zTn, jV

�1
n, jzn, j þ

Xn
t¼j

y2t =ĥt, j, (85.14)

pn, j ¼ p�n, j=
Xn

j
0 ¼1

p�
n, j 0 , and the fnj are given explicitly by

f nj ¼ Vn, j
�� ��1=2G d þ n� jþ 1ð Þ=2ð Þr� dþn�jþ1Þ=2ð Þ

n, j ,

f 00 ¼ Vj j1=2G d=2ð Þ r=2ð Þ�d=2:
(85.15)

These formulas are extensions of those for the special case xt ¼ (yt�1, . . ., yt�k)
T

and ht � 1 considered by Lai et al. (2005). The extension from the case ht � 1 to

more general known ht basically amounts to extending ordinary least squares

estimation (given the most recent change-point Jn) to generalized least squares

estimation.

85.3.2 Estimation of Hyperparameters

The above Bayesian filter involves z, V, r, d, p, and h ¼ (a1, . . ., ak, b1, . . ., bk0).
Note that z is the prior mean of bt and r/(d � 2) is the prior mean of 2n2 at time

t when parameter changes occur. As noted in Lai and Xing (2008), it is more

convenient to represent the wd
2/r prior distribution for (2nt

2)� 1 as a gamma (d/2, r/2)
distribution so that d does not need to be an integer. The recursions (85.12b) and

(85.12c) are basically recursions for ridge regression which shrinks the generalized

least squares estimate (using the weights ĥt, j) towards z, with V�1 and ∑ t ¼ j
n xtxt

T

being the matrix weights for the shrinkage target and the generalized least squares

estimator, respectively. The shrinkage target z and its associated weight matrix V�1

are relevant when n� j is small but become increasingly negligible with increasing

n � j. We can estimate z, V, r, and d by applying the method of moments to the

stationary distribution of the Markov chain (It, yt, ϵt) that is partially observed via

(xt, yt). Details are given in the next paragraph. With z,V, r, and d replaced by these
estimates, we then estimate h and p by maximum likelihood, noting that the

log-likelihood function ‘n based on y1, . . ., yn has the representation

log ‘n h; pð Þ ¼
Xn
t¼1

log
Xt
j¼1

p�t, j h; pð Þ
" #

, (85.16)

where p�t, j is given by Eq. 85.13.
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Lai and Xing (2013) use the method-of-moments estimates of z, V, r, and
d based on (xt, yt), 1 � t � n. From (A2) and (A3), it follows that E(bt) ¼ z,
Cov(bt) ¼ (Ent

2)V, and E(xtyt) ¼ xtxt
Tz. From n � L moving windows {(xt, yt) : s �

t � s + L} of these data, compute the least squares estimates

b̂
sð Þ ¼

X
s�t�sþL

xtx
T
t

 !�1 X
s�t�sþL

xtyt: (85.17)

Each b̂
sð Þ

is a method-of-moments estimate of z, and so is

b̂ ¼ n� Lð Þ�1
Xn�L

s¼1
b̂

sð Þ
. If an oracle would reveal the change times up to time

n, then one would segment the time series accordingly and use the least squares

estimate for each segment to estimate the regression parameter for that segment.

The average of these least squares estimates over the segment would provide

a method-of-moments estimate of z. Similarly, the average squared residual in

each segment is a method-of-moments estimate of E(nt
2) ¼ r/[2(d � 2)], and so is

the average of these values over the segments; see Engle and Mezrich (1996). In

ignorance of the change points, the segments are replaced by moving windows of

length L + 1 in Eq. 85.9 and estimate z by the average b of the b̂
sð Þ
. Likewise r and

d can be estimated by equating the mean and variance of the inverted gamma

distribution for nt
2 to their sample counterparts for the average squared residuals:

r̂

2 d̂ � 2
� � � ¼ n :¼ n� Lð Þ�1

Xn�L

s¼1

X
s�t�sþL

yt � xTt b̂
sð Þ	 
2

= Lþ 1ð Þ
" #

,

r̂2

2 d̂ � 2
� �� �2

d̂ � 4
� �h i ¼ n� Lð Þ�1

Xn�L

s¼1

X
s�t�sþL

yt � xTt b̂
sð Þ	 
2

= Lþ 1ð Þ � n

" #2
:

(85.18)

Similarly Lai and Xing (2013) estimate V by

V̂ ¼ 2 d̂ � 2
� �

=r̂
 �

n� Lð Þ�1
Xn�L

s¼1

b̂
sð Þ � b

	 

b̂

sð Þ � bÞ
	 
T

: (85.19)

85.3.3 Bounded Complexity Mixture Approximations

Although Eq. 85.13 provides closed-form recursions for updating the weights pt,i,
1 � i � t, the number of weights increases with t, resulting in rapidly increasing

computational complexity and memory requirements for estimating yn as

n increases. A natural idea to reduce the complexity and to facilitate the use of

parallel algorithms for the recursions is to keep only a fixed number M of weights

at every stage n (which is tantamount to setting the other weights to be 0).
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Lai and Xing (2013) keep the most recent m weights pn,i (with n � m < i � n)
and the largestM� m of the remaining weights, where 1� m<M. Specifically, let

Kn�1 denote the set of indices i for which pn�1,i is kept at stage n � 1; thus Kn�1

	 n� 1, , . . . , n� mf g. At stage n, define pn,i* by Eq. 85.5 for i 2 nf g [ Kn�1, and

let in be the index not belonging to {n, n � 1, . . ., n � m + 1} such that

p�n, in ¼ min p�n, i : j 2 Kn�1 and j � n� m
n o

, (85.20)

choosing in to be the one farthest from n if the minimizing set in (85.12) has more

than one element. Define Kn ¼ nf g [ Kn�1 � inf gð Þ, and let

pn, i ¼
p�n, iX

j2Kn

p�n, j:
(85.21)

Lai and Xing (2013) use these bounded complexity mixtures (BCMIX) not

only to approximate the filters bt; ntð ÞjYt but also to approximate the likelihood

function (85.8), in which we replace ∑ j¼1
t by

X
j2Kt

. They use a grid of the form

{2j/n : j0 � j � j1}, where j0 < 0 < j1 are integers, to search for the maximum p̂n of

‘n p; �̂nð Þ over the grid. Letting l ¼ p;hð Þ, l̂n ¼ pn; �̂nð Þ is used to replace l in the

recursions (85.4) and (85.5). The update ĥn of the GARCH parameters after

observing (xn, yn) uses simply a single iteration of the Newton-Raphson iteration

procedure to maximize ‘n p̂n�1;hð Þ when n � n0 and uses more iterations until

convergence for small n. Therefore relatively fast updates of the hyperparameters

estimates can be used to implement the adaptive BCMIX filters.

85.3.4 Sequential BCMIX Forecasts

The AR-GARCH model is often used to forecast future returns and their volatilities

for portfolio optimization and risk management; see Sects. 6.4.1 and 12.2.3 of Lai

and Xing (2008). Incorporating exogenous inputs and change points into the model

improves the forecasts. For the change-point ARX-GARCH model, first assume

that the hyperparameters are known. Since xn+1 consists of yn, . . ., yn�k+1 and other

input variables up to time n and since time n + 1 has prior probability p of being

a change point, the forecast ŷnþ1jn of yn+1 givenYn is related to the filter b̂n given in

Sect. 85.1 by

ŷnþ1jn ¼ pzTxnþ1 þ 1� pð Þb̂T

nxnþ1, (85.22)

noting that bn+1 is equal to bn with probability 1 � pn,n. Similarly, the forecast

v̂2nþ1jn of nn+1
2 given Yn is
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n̂2nþ1jn ¼
pp

2 d � 2ð Þ þ 1� pð Þn̂2njn, (85.23)

assuming d > 4 in view of Eq. 85.10. Note that the conditional variance in the

GARCH model involves nn
2hn rather than nn

2. Lai and Xing (2013) can use Eq. 85.4a

with n replaced by n + 1 to forecast hn+1. In particular, for GARCH (1,1),

they forecast hn+1 by hnþ1, j ¼ 1� a� bð Þ þ bĥn, j þ a yn � b̂
T

n, jxn

	 
2
=n̂2n, j and

use the weights pn,j in Eq. 85.13 to weight

n̂2nþ1, jĥnþ1, j ¼ pr
2 d � 2ð Þ þ 1� pð Þn̂2n, j
� �

1� a� bð Þ þ bĥn, j þ
a yn � b̂

T

n, jxn

	 
2

n̂2n, j

8><
>:

9>=
>;
:

(85.24)

85.3.5 BCMIX Smoothers

Lai and Xing (2013) begin by deriving the Bayes estimate (smoother) of ut¼ (bt
T,tt)

T

given Yn for 1 � t � n in the “oracle” setting in which the ht are specified exactly

(by the oracle) so that there are explicit recursive representations of the posterior

mean of ut givenYn for 1 � t � n. To obtain the optimal smoother E ytjYnð Þ for 1 �
t� n, they use Bayes theorem to combine the forward filter ytjYt with the backward

filterytjYtþ1, n. Because the ht are assumed known in yt � bTt xt
� �

=
ffiffiffiffi
ht

p ¼ ntϵt and the
ϵt are i.i.d. standard normal, the backward filter has the same form as the forward

filter. In fact, assumptions (A1)–(A3) define a reversible Markov chain of jump

times and jump magnitudes, assuming In�t0þ1 ¼ 1 and no change points afterwards.

Let p denote the density function of the stationary distribution. Letting eJtþ1 ¼ min

s � tþ 1 : Is ¼ 1f g and qtþ1, j ¼ P eJtþ1 ¼ jjYtþ1, n

	 

for j � t + 1, one can reverse

time and obtain a backward filter that is similar to the forward filter:

f utjYtþ1, n
� � ¼ pp utð Þ þ 1� pð Þ

Xn
j¼tþ1

qtþ1, j f utþ1jYtþ1, n,eJtþ1 ¼ j
	 


,

in which

qtþ1, j / q�tþ1, j ¼
pf jj=f 00 if j ¼ tþ 1,

1� pð Þqtþ2, jf tþ1, j=f tþ2, j if j � tþ 2:

�

Application of Bayes theorem then yields

f utjYnð Þ / f utjYtð Þf utjYtþ1, n
� �

=p utð Þ

/ p
Xt
i¼1

pi, t f utjYn,Citð Þ þ 1� pð Þ
X

1�i�t<j�n

pi, tqtþ1, j
f ij f 00
f it f tþ1, j

f utjYn,Cij

� �
,
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where Cij ¼ {Ii ¼ 1, Ii+1 ¼ � � � ¼ Ij ¼ 0, Ij+1 ¼ 1}. Let tn ¼ (tj,i, 1 � i � j � n). The
optimal smoother for bt and nt

2 are given by

btjtn,Yn �
X

1�i�t�j�n

aijtN zj, i,Vj, i= 2tj, i
� �� �

, tj, ijYn � w2dþj�iþ1=rj, i, (85.25)

whereVj,i, zj,i, and rj,i are same as those defined in Eqs. 85.4 and 85.6 and aijt can be
determined recursively by

aijt ¼ a�ijt=At, At ¼
X

1�i�t�j�n

a�ijt,

a�ijt ¼
ppi, t, i � t, j ¼ t,
api, tqtþ1, j f 00 f ij=f it f tþ1, j, i � t, j > t:

� (85.26)

Moreover, the posterior probability of having a change point at time t is given
by

P Itþ1 ¼ 1jYnð Þ ¼
X
1�i�t

P CitjYnð Þ ¼ p=At:

The next step is to approximate aijt by âijt that replaces the ht, which is actually

unknown, by the estimates ĥj, i defined recursively for j � i by Eq. 85.12a. As in

Sect. 85.3.1, we assume known hyperparameters p and h for the time being. Using

the BCMIX approximation to the forward and backward filters, we approximate the

sum in Eq. 85.25 and that defining At in Eq. 85.26 by

btjtn,Yn �
X

i2Kt, j2 tf g[eK tþ1

aijtN zj, i,Vj, i= 2tj, i
� �� �

, tj, ijYn � w2dþj�iþ1=rj, i (85.27)

where Kt is the same as that in Sect. 85.3.3 for the forward filter and eKtþ1 is the

corresponding set for the backward filter. Assuming known h and p, the BCMIX

estimates for bt and nt given Yn are

b̂tjn ¼
X

i2Kt, j2 tf g[eK tþ1

aijtzj, i, n̂2tjn ¼
X

i2Kt, j2 tf g[eK tþ1

aijt
rj, i

d þ j� i� 1
,

t̂tjn ¼
X

i2Kt, j tf g[eK tþ1

aijt d þ j� iþ 1ð Þ= 2rj, i
	 


:
(85.28)

The conditional probability of a change point at time t(�n) given Yn is

estimated by

P̂ Itþ1 ¼ 1jYnð Þ ¼ p=At: (85.29)
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Without assuming p and h to be known, we can use the BCMIX approximation

in the log-likelihood function (85.16) based onYn and evaluate its maximizer p̂; ĥð Þ.
Replacing (p, h) by p̂; ĥð Þ in Eq. 85.28 yields the BCMIX empirical Bayes

smoother.

85.3.6 Application to Segmentation

In principle, the frequentist approach to multiple change-point problems for regres-

sion models reviewed in Sect. 85.1 can be extended to ARX-GARCH models by

maximizing the log-likelihood over the locations of the change points and the

piecewise constant parameters when it is assumed that there are k change points.

This optimization problem, however, is much more difficult than that for regression

models and only constitutes an inner loop of an algorithm whose outer loop is

another minimization, over k, of a suitably chosen model selection criterion to

determine k. For computational and analytic tractability, the frequentist approach

typically assumes that k is small relative to n and that adjacent change points are

sufficiently far apart so that the segments are identifiable except for relatively small

neighborhoods of change points; see Bai and Perron (1998). Lai and Xing (2011)

formulate these assumptions for the piecewise constant parameter vectors ut as
follows:

(B1) The true change points occur at t1
(n) < � � � < tk

(n) such that lim infn ! 1n�1

(ti
(n) � ti�1

(n) ) > 0 for 1 � i � k + 1, with t0
(n) ¼ 0 and tk + 1

(n) ¼ n.
(B2) There exists d > 0, which does not depend on n, such that

min1�i�k u
t
nð Þ
i

� u
t
nð Þ
i�1

���
��� � d for all large n.

In the context of ARX-GARCH models, Lai and Xing (2013) also assume

that the stochastic regressors satisfy the stability condition:

(B3) max1�t�n xtk k2=n!P 0 and ∑ t¼1
n xtxt

T/n converge almost surely to a positive

definite nonrandom matrix.

Under (B1)–(B3) and assuming that m� |log n|1+ϵ andM�m¼O(1) as n!1,

for some ϵ > 0, Lai and Xing (2013) have shown that the BCMIX smoother ûtjn
satisfies

max
1�t�n:min1�i�k t�t

nð Þ
ij j�m

ûtjn � ut
�� ��! 0, as n ! 1 (85.30)

uniformly in a1/n � p � a2/n. They apply this result to estimate the change times

t1
(n), . . ., tk

(n) in (B1) as follows. Let

Dt ¼ ûtþm � ût�m

�� ��2, (85.31)

and let t̂1 be the maximizer of Dt over m < t < n � m. After t̂1, . . . , t̂j�1 have been

defined, define
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t̂j ¼ arg max
t:m<t<n�m,min1�i� j�1 t�t̂ ij j�m

Dt; (85.32)

these estimates of the change times are unordered and do not depend on the number

k of change points. Assuming that there are k change points, they order t̂1, . . . , t̂k as
t̂ 1ð Þ, k < � � � < t̂ kð Þ, k to provide estimates of t1

(n) < � � � < tk
(n). Let u(j) be the common

value of ut in the interval tj�1
(n) � t < tj

(n). Assuming t1
(n), . . ., tk

(n) to be known, the

parameter vectors u(1), . . ., u(k+1) can be estimated by maximum likelihood.

Replacing the t1
(n), . . ., tk

(n) by the estimates t̂ 1ð Þ, k < � � � < t̂ kð Þ, k in these MLEs

leads to the quasi-likelihood estimators eu 1ð Þ
, . . . ,eu kþ1ð Þ

, eh, and the quasi-likelihood

Ln kð Þ ¼
Xkþ1

j¼1

Xt̂ jð Þ, k�1

t¼t̂ j�1ð Þ, k

log f yt; u
jð Þ;h

	 

(85.33)

in which f(·;u, h) in the density function of yt given the piecewise constant

parameter values, noting that yt � bTt xt
� �

= nt
ffiffiffi
h

p
t

� �
is standard normal. Assuming

a known upper bound K on the number k of change points in (B1), Lai and Xing

(2013) propose to estimate k by

k̂n ¼ arg max
1�k�K

Ln kð Þ � k þ 1ð ÞCnf g,

where Cn is a penalty term that satisfies

Cn ! 1 and Cn=n ! 0 as n ! 1; (85.34)

making use of Theorem 1, they have shown that k̂n !P k, eh!P h, and eu jð Þ !P u jð Þ for
1 � j � k + 1. Their simulation studies show that this segmentation procedure

performs well in frequentist and Bayesian scenarios.

85.4 Discussion

The idea of representing the GARCH model by nt
ffiffiffi
h

p
tϵt , in which nt

2 is the

unconditional variance and ht follows the GARCH dynamics in Eq. 85.10, has

also been used by Engle and Rangel (2008) in their spline-GARCH model that uses

a deterministic function of time and exogenous variables to model nt by

lognt ¼ bTxt þ f0tþ
XI
i¼0

fi t� tið Þ2þ:

The change-point ARX-GARCH model uses a piecewise constant function to

model nt instead and relates the exogenous variables xt to yt via the regression
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model (85.9), allowing contemporaneous jumps in the regression coefficients

and the unconditional variances. As in Lai et al. (2005) who consider the

special case ht � 1 and xt ¼ (yt�1, . . ., yt�k)
T, the stochastic model (85.9) for

jumps in (bt, nt) involves linear Bayes methods and conjugate priors, yielding

BCMIX approximations to the Bayes estimate of (bt, nt
2). The BCMIX approxima-

tions also provide estimates of the hyperparameters in the Bayesian model with

relatively low computational complexity, yielding empirical Bayes estimates of the

piecewise constant parameters that are efficient from both computational and

statistical viewpoints. Section 85.6.6 shows how the computationally attractive

EB estimates can be used to address the challenging frequentist problem of

segmentation.

The empirical study in Lai and Xing (2013) of weekly returns of SP500 index,

from the week starting on January 2, 1990, to the week starting on August 24, 2009,

shows that segmenting the data by the method in Sect. 85.3.6 can remove the

spurious long memory in volatility exhibited by fitting the AR-GARCH model to

the entire time series without incorporating possible parameter changes during the

long period that has undergone several structural changes. The apparent long

memory arises from the (long) timescale for parameter changes. The segments

are more general than the “regimes” in regime-switching volatility models (which

are HMMs) reviewed in Sect. 85.2.1, in which difficulties in estimating the

hyperparameters are noted. To address these difficulties, Gray (1996, pp. 35–36)

modifies the usual regime-switching GARCHmodel by aggregating the conditional

variances from different regimes at each time step. In Lai and Xing’s segmentation

approach, the GARCH parameters are separately estimated for different segments.

However, to determine the segments using the empirical Bayes estimates, the

Bayesian model assumes changes only in the unconditional variance nt
2 but not in

the GARCH parameters a1, . . ., ak, b1, . . ., bk0. Not only does this model circumvent

the computational difficulties of regime-switching GARCH (or even ARCH)

models noted by Cai (1994) and Gray (1996), but it also captures the short-run

dynamics of the conditional variance and the structural changes of the long-run

volatility. Although not allowing the GARCH parameters to change over time may

appear too restrictive, one can in fact estimate them and the other hyperparameter

p from moving windows of current and past data, instead of from the entire past

history as in Eq. 85.16, thereby implicitly allowing these hyperparameters to

change slowly over time.
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Abstract

This paper first reviews the recent literature on the unspanned stochastic vola-

tilities (USV) documented in the interest rate derivatives markets. The USV

refers to the volatility factors implied in the interest rate derivatives prices that

have little correlation with the yield curve factors. We then present the result in

Li and Zhao (Journal of Finance, 62, 345–382, 2006) that a sophisticated DTSM
without USV feature can have serious difficulties in hedging caps and cap

straddles, even though they capture bond yields well. Furthermore, at-the-money

straddle hedging errors are highly correlated with cap implied volatilities and

can explain a large fraction of hedging errors of all caps and straddles across
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moneyness and maturities. These findings strongly suggest that the unmodified

dynamic term structure models, assuming the same set of state variables for both

bonds and derivatives, are seriously challenged in capturing the term structure

volatilities. We also present a multifactor term structure model with stochastic

volatility and jumps that yields a closed-form formula for cap prices from Jarrow

et al. (Journal of Finance, 61, 341–378, 2007). The three-factor stochastic

volatility model with Poisson jumps can price interest rate caps well across

moneyness and maturity. Last we present the nonparametric estimation results

from Li and Zhao (2009). Specifically, the forward densities depend significantly

on the slope and volatility of LIBOR rates, and mortgage market activities have

strong impacts on the shape of the forward densities. These results provide

nonparametric evidence of unspanned stochastic volatility and suggest that the

unspanned factors could be partly driven by activities in the mortgage markets.

These findings reinforce the claim that term structure models need to accommo-

date the unspanned stochastic volatilities in pricing and hedging interest rate

derivatives.

The econometric methods in this chapter include extended Kalman filtering,

maximum likelihood estimation with latent variables, local polynomial method,

and nonparametric density estimation.

Keywords

Term structure modeling • Interest rate volatility • Heath-Jarrow-Morton model •

Nonparametric density estimation • Extended Kalman filtering

86.1 Introduction

Interest rate caps and swaptions are among the most widely traded interest rate

derivatives in the world. According to the Bank for International Settlements, their

combined notional values are more than ten trillion dollars in recent years, which

are many times bigger than that of exchange-traded options. Because of the size of

these markets, accurate and efficient pricing and hedging of caps and swaptions

have enormous practical importance. Pricing interest rate derivatives are more

demanding than pricing bonds in that the derivatives are more sensitive to the

higher-order moments of the distributions for underlying and therefore the models

need to be able to capture the interest rate volatilities as well as the interest rates

themselves. Under the unified framework of the dynamic term structure models

(hereafter DTSMs), a benchmark in the term structure literature, the same set of risk

factors are used in pricing bonds and derivatives. Consequently, the set of risk

factors can be indentified with the observations of bond yields or swap rates, while

the inclusion of derivative prices can help in terms of the efficiency of the estima-

tion but not essential. The practitioners, on the other hand, generally apply the

Heath-Jarrow-Morton (HJM) type of models in pricing interest rate derivatives, in

which the entire yield curve is taken as given, and sometimes factors independent of

yield curve, such as stochastic volatilities and jumps, are added in a piece-meal

2338 F. Zhao



approach. This divergence foreshadows one of the key issues of the fast-growing

literature on LIBOR-based interest rate derivatives, the so-called unspanned sto-

chastic volatility (USV) puzzle.1

Interest rate caps and swaptions are derivatives written on LIBOR and swap

rates, and the traditional view is that their prices be determined by the same set of

risk factors that determine LIBOR and swap rates. However, several recent studies

have shown that there seem to be risk factors that affect the prices of caps and

swaptions but are not spanned by the underlying LIBOR and swap rates. Heidari

and Wu (2003) show that while the three common term structure factors (i.e., the

level, slope, and curvature of the yield curve) can explain 99.5 % of the variations

of bond yields, they explain less than 60 % of swaption implied volatilities. After

including three additional volatility factors, the explanatory power is increased to

over 97 %. Similarly, Collin-Dufresne and Goldstein (2002) show that there is

a very weak correlation between changes in swap rates and returns on at-the-money

(ATM) cap straddles: the R2s of regressions of straddle returns on changes of swap

rates are typically less than 20 %. Furthermore, one principal component explains

80 % of regression residuals of straddles with different maturities. As straddles are

approximately delta neutral and mainly exposed to volatility risk, they refer to the

factor that drives straddle returns but is not affected by the term structure factors as

“unspanned stochastic volatility” (hereafter USV). Jagannathan et al. (2003) find

that an affine three-factor model can fit the LIBOR/swap curve rather well. How-

ever, they identify significant shortcomings when confronting the model with data

on caps and swaptions, thus concluding that derivatives must be used when

evaluating term structure models. On the other hand, Fan et al. (2003) provide

evidence against the existence of USV and show the swaptions can be hedged using

bonds alone with an HJMmodel and the difference from the previous studies results

from the nonlinear dependence of derivative prices on the yield curve factors. Li

and Zhao (2006) show the yield curve factors extracted using a quadratic term

structure model can hedge the bonds perfectly, but not the interest rate caps, and the

unhedged components can systematically improve hedging performance across

moneyness. They argue the difference is likely due to the fact that the interest

caps are more sensitive to the volatility factors than the swaptions, and also the

DTSMs are suitable to address the question whether the derivatives are redundant

since the HJM type of models needs using both data sets for estimation. Overall,

most studies suggest that interest rate derivatives are not redundant securities and

cannot be hedged using bonds alone. In other words, bonds do not span interest rate

derivatives. In the following table we regress weekly cap straddle returns at

different moneyness and maturity on weekly changes in the three yield factors

and obtain very similar results. In general, the R2s in Table 86.1 are very small for

straddles that are close to the money. For deep ITM and OTM straddles, the R2s

1Another issue is the relative pricing between caps and swaptions. Although both caps and

swaptions are derivatives on LIBOR rates, existing models calibrated to one set of prices tend to

significantly misprice the other set of prices. For a more detailed review of the literature, see Dai

and Singleton (2003).
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increase significantly. This is consistent with the fact that the ATM straddles are

more sensitive to the volatility risk than others away from money.

The existence of USV has profound implications for term structure modeling,

especially on the existing multifactor dynamic term structure models, a widely

popular term structure model followed by a huge literature in the last decade. One

of the main reasons of the popularity of these models is their tractability: they

provide closed-form solutions for the prices of not only zero-coupon bonds but also

a wide range of interest rate derivatives (see, e.g., Duffie et al. 2000; Chacko and

Das 2002; Leippold and Wu 2002). The closed-form formulae significantly reduce

the computational burden of implementing these models and simplify their appli-

cations in practice. However, almost all existing DTSMs assume that derivatives

are redundant and can be perfectly hedged using solely bonds. Hence, the presence

of USV in the derivatives market implies that one fundamental assumption under-

lying all DTSMs does not hold, and these models need to be substantially extended

to incorporate the unspanned factors before they can be applied to derivatives.

However, as Collin-Dufresne and Goldstein (2002) show, it is rather difficult to

introduce USV in traditional DTSMs: one must impose highly restrictive assump-

tions on model parameters to guarantee that certain factors that affect derivative

prices do not affect bond prices. In other words, the ATSMs with USV are restricted

version of the existing ATSMs. Some recent papers, for example, Bikbov and

Chernov (2004), have tested the USV restrictions by comparing USV models to

the nesting unrestricted ATSMs and rejected the USV restrictions when both

models are fitted to both bonds and derivatives data. This approach, however,

gives misleading conclusions. The USV for term structure models resembles the

inclusion of stochastic volatility (SV) in the stock price process, where the natural

comparison is between the Black-Scholes model and the SV model. Similarly, the

USV model should be nesting the traditional DTSM without USV for statistical

testing. Specifically, if the unrestricted three-factor affine model is a good fit for

the term structure of interest rates, one should test whether adding one more factor,

i.e., a four-factor affine model with USV, will help capture the derivatives data.

Some recent studies have also provided evidence in support of the existence of

USV using bonds data alone. They show the yield curve volatilities backed out from

a cross section of bond yields do not agree with the time-series filtered volatilities,

via GARCH or high-frequency estimates from yields data. This challenges the

traditional DTSMs even more since these models cannot be expected to capture the

option implied volatilities if they cannot even match the realized yield curve

volatilities. Specifically, Collin-Dufresne et al. (2004, CDGJ) show that the

LIBOR volatility implied by an affine multifactor specification from the swap

rate curve can be negatively correlated with the time series of volatility obtained

from a standard GARCH approach. In response, they argue that an affine four-

factor USV model delivers both realistic volatility estimates and a good cross-

sectional fit. Andersen and Benzoni (2006), through the use of high-frequency data

on bond yields, construct the model-free “realized yield volatility” measure by

computing empirical quadratic yield variation for a cross section of fixed matu-

rities. They find that the yield curve fails to span yield volatility, as the systematic
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volatility factors are largely unrelated to the cross section of yields. They claim that

a broad class of affine diffusive, Gaussian-quadratic, and affine jump-diffusive

models is incapable of accommodating the observed yield volatility dynamics.

An important implication is that the bond markets per se are incomplete and yield

volatility risk cannot be hedged by taking positions solely in the Treasury bond

market. They also advocate using the empirical realized yield volatility measures

more broadly as a basis for specification testing and (parametric) model selection

within the term structure literature. Thompson (2008), on the LIBOR/swap data,

argues when the affine models are estimated with the time-series filtered yield

volatility, they can pass on his newly proposed specification test, but not with the

cross-sectional backed-out volatility. From these studies on the yields data alone,

there may exist an alternative explanation for the failure of DTSMs in effectively

pricing derivatives in that the bonds small convexity makes bonds not sensitive

enough to identify the volatilities from measurement errors. Therefore, efficient

inference requires derivatives data as well.

It can be argued in the same fashion that identification of the unspanned factors

can be most efficiently accomplished by adding derivatives data to the analysis.

Duarte (2008) shows mortgage-backed security (MBS) hedging activity affects

interest rate volatility and proposes a model that takes these effects as a measure

for the stochastic volatility of the underlying term structure. However, it is unclear

whether the realized volatility is indeed different from the implied volatility due to

the MBS effects.

Li and Zhao (2009) provide one of the first nonparametric estimates of

probability densities of LIBOR rates under forward martingale measures using

caps with a wide range of strike prices and maturities.2 The nonparametric

estimates of LIBOR forward densities are conditional on the slope and volatility

factors of LIBOR rates, while the level factor is automatically incorporated in

existing methods.3 They find that the forward densities depend significantly on

the slope and volatility of LIBOR rates. For example, the forward densities

become more dispersed (compact) when the slope of the term structure (the

volatility of LIBOR rates) increases. Further analysis reveals a nonlinear rela-

tion between the forward densities and the volatility of LIBOR rates that

depends on the slope of the term structure. With a flat (steep) term structure,

higher volatility tends to lead to more dispersed (compact) forward densities.

This result suggests that the speed of mean reversion of the volatility process

depends on the slope of the term structure, a feature that has not been explicitly

2The nonparametric forward densities estimated using caps, which are among the simplest and

most liquid OTC interest rate derivatives, allow consistent pricing of more exotic and/or less liquid

OTC interest rate derivatives based on the forward measure approach. The nonparametric forward

densities can reveal potential misspecifications of most existing term structure models, which rely

on strong parametric assumptions to obtain closed-form formula for interest rate derivative prices.
3Andersen and Benzoni (2006) show the “curvature” factor is not significantly correlated with the

yield volatility and it is true in this paper as well; therefore, the volatility effect here is not due to

the “curvature” factor.
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accounted for by existing term structure models. Additionally, this paper doc-

uments important impacts of mortgage market activities on the LIBOR forward

densities even after controlling for both the slope and volatility factors. For

example, the forward densities at intermediate maturities (3, 4, and 5 years) are

more negatively skewed when refinance activities, measured by the Mortgage

Bankers Association of America (MBAA) refinance index, are high. Demands

for out-of-the-money (OTM) floors by investors in mortgage-backed securities

(MBS) to hedge potential losses from prepayments could lead to more nega-

tively skewed forward densities. The impacts of refinance activities are most

significant at intermediate maturities because the durations of most MBS are

around 5 years. The forward density at 2-year maturity is more rightly skewed

when ARMs origination (measured by the MBAA ARMs index) is high. Since

every ARM contains an interest rate cap that caps the mortgage rate at a certain

level, demands for OTM caps from ARMs lenders to hedge their exposures to

rising interest rate could lead to more rightly skewed forward densities. The

impacts of ARMs are most significant at 2-year maturity because most ARMs

get reset within the first 2 years. These empirical results have important impli-

cations for the unspanned stochastic volatility puzzle by providing nonparamet-

ric and model-independent evidence of USV. The impacts of mortgage activities

on the forward densities further suggest that the unspanned factors could be

partially driven by activities in the mortgage markets.

The next question naturally is how to best incorporate USV into a term structure

model so it can price wide spectrum of interest rate derivatives effectively. In

contrast to the approach of adding USV restrictions to DTSMs, it is relatively easy

to introduce USV in the Heath et al. (1992) (hereafter, HJM) class of models, which

include the LIBOR models of Brace et al. (1997) and Miltersen et al. (1997), the

random field models of Goldstein (2000), and the string models of Santa-Clara and

Sornette (2001). Indeed, any HJM model in which the forward rate curve has

stochastic volatility and the volatility and yield shocks are not perfectly correlated

exhibits USV. Therefore, in addition to the commonly known advantages of HJM

models (such as perfectly fitting the initial yield curve), they offer the additional

advantage of easily accommodating USV. Of course, the trade-off here is that in an

HJM model, the yield curve is an input rather than a prediction of the model.

Recently, several HJM models with USV have been developed and applied to

price caps and swaptions. Collin-Dufresne and Goldstein (2003) develop a random

field model with stochastic volatility and correlation in forward rates. Applying the

transform analysis of Duffie et al. (2000), they obtain closed-form formulae for

a wide variety of interest rate derivatives. However, they do not calibrate their

models to market prices of caps and swaptions. Han (2007) extends the model of

LSS (2001) by introducing stochastic volatility and correlation in forward rates.

Han (2007) shows that stochastic volatility and correlation are important for

reconciling the mispricing between caps and swaptions. Trolle and Schwartz

(2009) develop a multifactor term structure model with unspanned stochastic

volatility factors and correlation between innovations to forward rates and their

volatilities.
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Jarrow et al. (2007) develop a multifactor HJM model with stochastic volatility

and jumps in LIBOR forward rates. The LIBOR rates follow the affine jump

diffusions (hereafter, AJDs) of Duffie et al. (2000), and a closed-form solution for

cap prices is provided. Given a small number of factors can explain most of the

variation of bond yields, they consider low-dimensional model specifications based

on the first few (up to three) principal components of historical forward rates. Their

model explicitly incorporates jumps in LIBOR rates, making it possible to differ-

entiate the importance between stochastic volatility and jumps for pricing interest

rate derivatives.

In section two of this review, we will discuss how the original DTSMs have

difficulty in pricing and hedging interest rate derivatives, as shown in Li and Zhao

(2006). In section three, we present the HJM model as in Jarrow et al. (2007).

Finally, we will provide nonparametric evidence from Li and Zhao (2009) showing

both the realized and implied yield volatilities cannot be spanned by the yield curve

factors.

86.2 Term Structure Models with Spanned Stochastic Volatility

We begin with a two-factor spot rate model with stochastic volatility as in Longstaff

and Schwartz (1992). Under the risk-neutral measure Q, the short rate r and its

volatility V follow a two-dimensional square-root process:

drt ¼ kr yr � rtð Þdtþ
ffiffiffiffiffi
Vt

p
dW1

Q
t ; (86.1)

dVt ¼ kV yV � Vtð Þdtþ s
ffiffiffiffiffi
Vt

p
dW2

Q
t : (86.2)

The price of the zero-coupon bond P(t, T) with maturity T can be solved through

the fundamental PDE for bond pricing:

1

2
V Prr þ s2Pvv
� �þ Prkr yr � rð Þ þ Pvkv yv � Vð Þ þ Pt ¼ rP (86.3)

for 0 � t � T with the terminal condition P(T, T) ¼ 1. The price P(t, T) and yield

y(t, T) are functions of the state variables {rt, Vt}:

P t; Tð Þ ¼ eA T�tð ÞþB T�tð ÞrtþC T�tð ÞVt , (86.4)

y t; Tð Þ ¼ � log P t; Tð Þð Þ
T � t

¼ �A T � tð Þ
T � t

� B T � tð Þ
T � t

rt � C T � tð Þ
T � t

Vt, (86.5)

where A, B, and C are coefficients depending on maturity. It is clear here that the

state variables are linear combinations of the yield curve factors such as level and

slope. In this sense, the stochastic volatility is spanned by the bond yields. Both

bonds and bond derivatives can be priced through the fundamental PDE and the
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same set of state variables enters into their prices. We should note here that the

volatility process in this model serves two roles. First, it helps to price the cross

section of bonds, making the model more flexible than one-factor models in

generating various shapes of the yield curve. Second, it is the volatility process of

the short rate; therefore, it can be inferred using the time series of the short rate

alone. One essential question to address therefore is whether the volatility process

inferred cross-sectionally fits the time-series properties stipulated by the model.

The potential failure in the fit can be due to the model misspecification or the fact

that the volatility process cannot be identified using the yield curve factors. For

illustration, we discuss the example given in Casassus et al. (2005):

drt ¼ kr yt � rtð Þdtþ
ffiffiffiffiffi
Vt

p
dW1

Q
t , (86.6)

dyt ¼ kr gy tð Þ � 2kryt þ Vt

kr

� �
dt, (86.7)

dVt ¼ mV Vt; tð Þdtþ s Vt; tð ÞdWQ
2t, (86.8)

where the long-run mean of the short rate yt has a pure drift process and the short

rate volatility Vt follows a stochastic process with general drift and diffusion

functions that only depend on the volatility itself. It can be shown that the zero-

coupon bond price P(t, T) depends only on the short rate and its long-run mean, not

on the volatility, i.e.,

P t; Tð Þ ¼ eA t;Tð ÞþB T�tð ÞrtþC T�tð Þyt : (86.9)

It can also be shown that the price of a European call option on the zero-coupon

bond, however, depends on the volatility Vt. For this example, the call option cannot

be hedged by using bonds alone.

Therefore, it is an important exercise to test whether a sophisticated DTSM

without the USV factor can be used to hedge the interest derivatives. Dai and

Singleton (2003) review many of the current dynamic term structure models, and

these models include the affine term structure models (ATSMs) of Duffie and Kan

(1996) and the QTSMs of ADG (2002) and many others.4

In a typical dynamic term structure model, the economy is represented by the

filtered probability space (O, F , {F t}0�t�T, P), where {F t}0�t�T is the augmented

filtration generated by an N-dimensional standard Brownian motion, W, on this

probability space. It is usually assumed that {F t}0�t�T satisfies the usual hypothesis

(see Protter 1990).

4The affine models include the completely affine models of Dai and Singleton (2000), the

essentially affine models of Duffee (2002), and the semi-affine models of Duarte (2004). Other

DTSMs include the hybrid models of Ahn et al. (2003), the regime-switching models of Bansal

and Zhou (2003), and models with macroeconomic jump effects, such as Piazzesi (2001), and

many others.

86 Unspanned Stochastic Volatilities and Interest Rate Derivatives Pricing 2345



The ATSMs rely on the following assumptions:

• The instantaneous interest rate rt is an affine or quadratic function of the

N-dimensional state variables Xt,

r Xtð Þ ¼ b0Xt þ a, (86.10)

• The state variables follow a multivariate affine process:

dXt ¼ K y� Xt½ �dtþ SStdWt, (86.11)

where St is a diagonal matrix with elements being the square root of an affine

function of Xt. Hence, the conditional means and variances of the state variables are

affine functions of the state variables.

• The market price of risk is a function of the state variables:

z Xtð Þ ¼ �0XtS
�
t þ �1S

�
t , (86.12)

where St
� is a diagonal matrix with elements being the inverse of those in St

wherever positive zero otherwise.

The zero-coupon bond with time to maturity t can be priced by risk-neutral

pricing:

D t; tð Þ ¼ EQ
t e�

ðtþt

t

r Xeð Þds:1
� �

¼ e�A tð Þ�B tð Þ0Xt:
(86.13)

The functions of A(t) and B(t) satisfy a system of ordinary differential equations.

The continuously compounding yield y(t, t) follows

y t; tð Þ ¼ 1

t
A tð Þ þ B tð Þ0Xt

	 

: (86.14)

The interest rate derivatives can be priced similarly via risk-neutral pricing.

Without any restrictions on the model parameters, the loadings for the state vari-

ables, B(t), are not zero in general. Hence, the state variables can always be backed
out given enough number of yields, leaving the derivative prices been redundant in

identifying the state variables.

The QTSMs rely on the following assumptions:

• The instantaneous interest rate rt is an affine or quadratic function of the

N-dimensional state variables Xt:

r Xtð Þ ¼ X
0
tCXt þ b0Xt þ a (86.15)

• The state variables follow a multivariate Gaussian process:

dXt ¼ mþ xXt½ �dtþ SdWt, (86.16)
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• The market price of risk is an affine function of the state variables:

B Xtð Þ ¼ �0 þ �1Xt: (86.17)

Note that in the above equations c, x, ∑, and �1 are N-by-N matrices; b, m, and
�0 are vectors of length N; and a is a scalar. The quadratic relation between rt and Xt

has the desired property that rt is guaranteed to be positive ifc is positive semidefinite

anda� 1
4
b0Cb � 0:AlthoughXt follows a Gaussian process in Eq. 86.2, interest rate

rt exhibits conditional heteroskedasticity because of the quadratic relationship

between rt and Xt. As a result, the QTSMs are more flexible in modeling volatility

clustering in bond yields and correlations among the state variables than the ATSMs.

Consequently, the yield to maturity, y(t, t), is a quadratic function of the state

variables:

y t; tð Þ ¼ 1

t
X

0
tA tð ÞXt þ b tð Þ0Xt þ c tð Þ

h i
: (86.18)

In contrast, in the ATSMs the yields are linear in the state variables, and therefore

the correlations among the yields are solely determined by the correlations of the state

variables. Although the state variables in the QTSMs follow multivariate Gaussian

process, the quadratic form of the yields helps to model the time-varying volatility and

correlation of bond yields. Leippold and Wu (2002) show that a large class of fixed-

income securities can be priced in closed form in the QTSMs using the transform

analysis of Duffie et al. (2000). The details of the derivation are in the appendix.

The first test for these models is to capture both the cross-sectional and time-series

properties of bond yields, which has been reviewed inDai and Singleton (2003). Even

though themost sophisticatedmodels can fit the cross section of bond prices verywell

and they can capture the time-series property of the first moment of the yield curve

factors, they do not perform satisfactorily in capturing the second moment. The

second test is to see whether these models can be used to price and hedge a cross

section of interest rate derivatives. The task to performing the second task is made

somewhat easier due to one major advantage of these DTSMs in that they provide

closed-form solutions for a wide range of interest rate derivatives.

The empirical results shown below are fromLi andZhao (2006), inwhich they study

the performance of QTSMs in pricing and hedging interest rate caps. Even though the

study is based on QTSMs, the empirical findings are common to ATSMs as well.5

5In the empirical analysis of Li andZhao (2006), theQTSMs are chosen for several reasons. First, since

the nominal spot interest rate is a quadratic function of the state variables, it is guaranteed to be positive

in the QTSMs. On the other hand, in the ATSMs, the spot rate, an affine function of the state variables,

is guaranteed to be positive only when all the state variables follow square-root processes. Second, the

QTSMs do not have the limitations facing the ATSMs in simultaneously fitting interest rate volatility

and correlations among the state variables. That is, in the ATSMs, increasing the number of factors that

follow square-root processes improves the modeling of volatility clustering in bond yields, but reduces

the flexibility in modeling correlations among the state variables. Third, the QTSMs have the potential

to capture observed nonlinearity in term structure data (see, e.g., Ahn and Gao 1999). Indeed, ADG

(2002) and Brandt and Chapman (2002) show that the QTSMs can capture the conditional volatility of

bond yields better than the ATSMs.
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To price and hedge caps in the QTSMs, both model parameters and latent state vari-

ables need to be estimated. Due to the quadratic relationship between bond yields and

the state variables, the state variables are not identified by the observed yields even in

the univariate case in the QTSMs. Previous studies such as ADG (2002) have used the

efficient method of moments (EMM) of Gallant and Tauchen (1998) to estimate the

QTSMs. Li and Zhao (2006) use the extended Kalman filter (EKF) to estimate model

parameters and extract the latent state variables in one step. The details of the imple-

mentation of the EKF are in the appendix.

The pricing analysis can reveal two sources of potential model misspecification.

One is on the number of factors in the model as a missing factor usually causes large

pricing errors. An analogy is using Black-Scholes model, while the stock price is

generated from a stochastic volatility model. The other is on the assumption of the

innovation process of each factor. If the innovation of the factor has a fat-tailed

distribution, the convenient assumption of Gaussian distribution is going to deliver

large pricing error as well. So from a pricing study, we cannot conclude one or the

other or both cause large pricing errors. On the other hand, hedging analysis focuses

on the changes of the prices, so even if the marginal distribution of the prices can

be highly non-Gaussian, the conditional distribution for a small time step can still

be reasonably approximated with Gaussian distribution. As the result, a deficiency

in hedging, especially at high frequency, reveals more about the potential missing

factors than the distribution assumption in a model.

In Li and Zhao (2006), QTSMs can capture yield curve dynamics extremely well.

First, given the estimated model parameters and state variables, they compute the

1-day-ahead projection of yields based on the estimatedmodel. Figure 86.1 shows that

QTSM1 model projected yields are almost indistinguishable from the corresponding

observed yields. Secondly, they examine the performance of the QTSMs in hedging

zero-coupon bonds, assuming that the filtered state variables are traded and use them

as hedging instruments. The delta-neutral hedge is conducted for zero-coupon bonds

of six maturities on a daily basis. Hedging performance is measured by variance ratio,

which is defined as the percentage of the variations of an unhedged position that can be

reduced by hedging. The results on the hedging performance in Table 86.2 show that

in most cases the variance ratios are higher than 95 %. This should not be surprising

given the excellent fit of bond yields by the QTSMs.

If the LIBOR and swap market and the cap market are well integrated, the

estimated three-factor QTSMs should be able to hedge caps well. Based on the

estimated model parameters, the delta-neutral hedge of weekly changes of difference

cap prices is conducted using filtered state variables as hedging instruments. It is also

possible to use LIBOR zero-coupon bonds as hedging instruments by matching the

hedge ratios of a difference cap with that of zero-coupon bonds. Daily rebalance –

adjustment of the hedge ratios everyday given changes in market conditions – is

implemented to improve hedging performance. Therefore, daily changes of a hedged

position are the difference between daily changes of the unhedged position and the

hedging portfolio. The latter equals to the sum of the products of a difference cap’s

hedge ratios with respect to the state variables and changes in the corresponding state

variables.Weekly changes are just the accumulation over daily positions. The hedging
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effectiveness is measured by variance ratio, the percentage of the variations of an

unhedged position that can be reduced by hedging. This measure is similar in spirit to

R2 in linear regression. The variance ratios of the threeQTSMs inTable 86.3 show that

all models have better hedging performance for ITM, short-term (maturities from 1.5

to 4 years) difference caps6 than OTM, medium- and long-term difference caps

(maturities longer than 4 years). There is a high percentage of variations in long-

term and OTM difference cap prices that cannot be hedged. The maximal flexible

model QTSM1 again has better hedging performance than the other two models. To

control for the fact that the QTSMsmay be misspecified, in Panel B of Table 86.3, the

hedging errors of eachmoneyness/maturity group are further regressed on the changes

of the three yield factors. While the three yield factors can explain some additional

hedging errors, their incremental explanatory power is not very significant. Thus, even
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Fig. 86.1 The observed yields (dot) and the QTSM1 projected yields (solid)

6The difference cap is the difference of the caps with subsequent maturities and the same strike

prices. Instead of having caplets ranging from as early as 6 months, the difference cap only has

caplets of a small maturity region.
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excluding hedging errors that can be captured by the three yield factors, there is still

a large fraction of difference cap prices that cannot be explained by the QTSMs.

Table 86.4 reports the performance of the QTSMs in hedging cap straddles. The

difference floor prices are computed from difference cap prices using the put-call

parity and construct weekly straddle returns. As straddles are highly sensitive to

volatility risk, both delta- and gamma-neutral hedges are needed. The variance ratios

of QTSM1 are as low as the R2s of linear regressions of straddle returns on the yield

factors in Table 86.1, suggesting that neither approach can explain much variations of

straddle returns. Collin-Dufresne and Goldstein (2002) show that 80 % of straddle

regression residuals can be explained by one additional factor. Principal component

analysis of ATM straddle hedging errors in Panel B of Table 86.4 shows that the first

factor can explain about 60% of the total variations of hedging errors. The second and

third factor each explains about 10 % of hedging errors, and two additional factors

combined can explain about another 10% of hedging errors. The correlationmatrix of

the ATM straddle hedging errors across maturities in Panel C shows that the hedging

errors of short-term (2, 2.5, 3, 3.5, and 4 years), medium-term (4.5 and 5 years), and

long-term (8, 9, and 10 years) straddles are highly correlated within each group,

suggesting that there could be multiple unspanned factors.

To further understand whether the unspanned factors are related to stochastic

volatility, we study the relationship between ATM cap implied volatilities and

straddle hedging errors. Principal component analysis in Panel A of Table 86.5

shows that the first component explains 85 % of the variations of cap implied

volatilities. In Panel B, we regress straddle hedging errors on changes of the three

yield factors and obtain R2s that are close to zero. However, if we include the

weekly changes of the first few principal components of cap implied volatilities, the

R2s increase significantly: for some maturities, the R2s are above 90 %. Although

the time series of implied volatilities are very persistent, their differences are not

and we do not suffer from the well-known problem of spurious regression. In the

extreme case in which we regress straddle hedging errors of each maturity on

changes of the yield factors and cap implied volatilities with the same maturity,

the R2s in most cases are above 90 %. These results show that straddle returns are

mainly affected by volatility risk but not term structure factors.

Table 86.2 The performance of QTSMs in modeling bond yields

Maturity (year)

0.5 1 2 5 7 10

QTSM3 0.717 0.948 0.982 0.98 0.993 0.93

QTSM2 0.99 0.956 0.963 0.975 0.997 0.934

QTSM1 0.994 0.962 0.969 0.976 0.997 0.932

This table reports the performance of the three-factor QTSMs in capturing bond yields. Variance

ratios of model-based hedging of zero-coupon bonds in QTSMs using filtered state variables as

hedging instruments. Variance ratio measures the percentage of the variations of an unhedged

position that can be reduced through hedging
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As ATM straddles are mainly exposed to volatility risk, their hedging errors can

serve as a proxy of the USV. Panels A and B of Table 86.6 report the R2s of

regressions of hedging errors of difference caps and cap straddles across moneyness

and maturity on changes of the three yield factors and the first five principal

components of straddle hedging errors. In contrast to the regressions in Panel D

of Table 86.6, which only include the three yield factors, the additional factors from

straddle hedging errors significantly improve the R2s of the regressions: for most

moneyness/maturity groups, the R2s are above 90 %. Interestingly for long-term

caps, the R2s of ATM and OTM caps are actually higher than that of ITM caps.

Therefore, a combination of the yield factors and the USV factors can explain cap

prices across moneyness and maturity very well.

While the above analysis is mainly based on the QTSMs, the evidence on USV is

so compelling that the results should be robust to potential model misspecification.

The fact that the QTSMs provide excellent fit of bond yields but can explain only

a small percentage of the variations of ATM straddle returns is a strong indication

that the models miss some risk factors that are important for the cap market. While

we estimate the QTSMs using only bond prices, we could also include cap prices in

model estimation. We do not choose the second approach for several reasons. First,

the current approach is consistent with the main objective of our study: use risk

factors extracted from the swap market to explain cap prices. Second, it is not clear

that modifications of model parameters without changing the fundamental structure

of the model could remedy the poor cross-sectional hedging performance of the

QTSMs. In fact, if the QTSMs indeed miss some important factors, then no matter

how they are estimated (using bonds or derivatives data), they are unlikely to have

good hedging performance. Finally, Jagannathan et al. (2003) do not find significant

differences between parameters of ATSMs estimated using LIBOR/swap rates and

cap/swaption prices. The existence of USV strongly suggests that existing DTSMs

need to relax their fundamental assumption that derivatives are redundant securities

Table 86.5 Straddle hedging errors and cap implied volatilities

Principal component

Panel A. Percentage of variance of ATM cap implied volatilities explained by the principal

components

1 2 3 4 5 6

85.73 % 7.91 % 1.85 % 1.54 % 0.72 % 0.67 %

Maturity

Panel B. R2s of the regressions of ATM straddle hedging errors on changes of the three yield

factors (row one); changes of the three yield factors and the first four principal components of the

ATM cap implied volatilities (row two); and changes of the three yield factors and maturity-wise

ATM cap implied volatility (row three)

1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10

0.10 0.06 0.02 0.01 0.01 0.04 0.00 0.00 0.01 0.01 0.00 0.01 0.04

0.29 0.49 0.54 0.43 0.63 0.47 0.95 0.96 0.21 0.70 0.68 0.89 0.96

0.68 0.70 0.81 0.87 0.85 0.90 0.95 0.98 0.95 0.98 0.97 0.98 0.99

This table reports the relation between straddle hedging errors and ATM cap implied volatilities
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by explicitly incorporating USV factors. It also suggests that it might be more

convenient to consider derivative pricing in the forward rate models of

HJM (1992) or the random field models of Goldstein (2000) and Santa-Clara and

Sornette (2001) because it is generally very difficult to introduce USV in DTSMs.

For example, Collin-Dufresne and Goldstein (2002) show that highly restrictive

assumptions on model parameters need to be imposed to guarantee that some state

variables that are important for derivative pricing do not affect bond prices. In

contrast, they show that it is much easier to introduce USV in the HJM and random

field class of models: any HJM or random field model in which the forward rate has

a stochastic volatility exhibits USV. While it has always been argued that HJM and

random field models are more appropriate for pricing derivatives than DTSMs, the

reasoning given here is quite different. That is, in addition to the commonly known

advantages of these models (such as they can perfectly fit the initial yield curve

while DTSMs generally cannot), another advantage of HJM and random field

models is that they can easily accommodate USV (see Collin-Dufresne and Gold-

stein (2002) for illustration).

The existence of USV suggests that these models may not be directly applicable

to derivatives because they all rely on the fundamental assumption that bonds and

derivatives are driven by the same set of risk factors. In this paper, we provide

probably the first empirical analysis of DTSMs in hedging interest rate derivatives

and hope to resolve the controversy on USV through this exercise.

86.3 LIBOR Market Models with Stochastic Volatility and
Jumps: Theory and Estimation

In this section, we develop a multifactor HJM model with stochastic

volatility and jumps in LIBOR forward rates and discuss model estimation

and comparison using a wide cross section of difference caps. Instead of

modeling the unobservable instantaneous spot rate or forward rate, we focus

on the LIBOR forward rates which are observable and widely used in the market.

86.3.1 Specification of the LIBOR Market Models

Throughout our analysis, we restrict the cap maturity T to a finite set of dates

0 ¼ T0 < T1 < � � � < TK < TK+1 and assume that the intervals Tk+1 – Tk are equally
spaced by d, a quarter of a year. Let Lk(t) ¼ L(t, Tk) be the LIBOR forward rate for

the actual period [Tk, Tk+1], and similarly let Dk(t) ¼ D(t, Tk) be the price of a zero-
coupon bond maturing on Tk: thus, we have

L t; Tkð Þ ¼ 1

d
D t; Tkð Þ
D t; Tkþ1ð Þ � 1

� �
, for k ¼ 1, 2, . . .K: (86.19)

For LIBOR-based instruments, such as caps, floors, and swaptions, it is convenient

to consider pricing under the forward measure. Thus, we will focus on the dynamics
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of the LIBOR forward rates Lk(t) under the forward measureℚk+1, which is essential

for pricing caplets maturing at Tk+1. Under this measure, the discounted price of any

security usingDk+1 (t) as the numeraire is a martingale. Therefore, the time-t price of
a caplet maturing at Tk+1 with a strike price of X is

Caplet t; Tkþ1;Xð Þ ¼ dDkþ1 tð ÞEℚkþ1

t Lk Tkð Þ � Xð Þþ	 

, (86.20)

where Eℚkþ1

t is taken with respect to ℚk+1 given the information set at t. The key to

valuation is modeling the evolution of Lk(t) under ℚ
k+1 realistically and yet parsi-

moniously to yield closed-form pricing formula. To achieve this goal, we rely on the

flexible AJDs of Duffie et al. (2000) to model the evolution of LIBOR rates.

We assume that under the physical measure ℙ, the dynamics of LIBOR rates are

given by the following system of SDEs, for t 2 [0, Tk) and k ¼ 1, . . . , K:

dLk tð Þ
Lk tð Þ ¼ ak tð Þdtþ sk tð ÞdZk tð Þ þ dJk tð Þ, (86.21)

where ak(t) is an unspecified drift term, Zk(t) is the k-th element of a K-dimensional

correlated Brownian motion with a covariance matrix C(t), and Jk(t) is the k-th
element of a K-dimensional independent pure jump process assumed independent

of Zk(t) for all k: to introduce stochastic volatility and correlation, we could allow

the volatility of each LIBOR rate sk(t) and each individual element of C(t) to
follow a stochastic process. But such a model is unnecessarily complicated and

difficult to implement. Instead, we consider a low-dimensional model based on the

first few principal components of historical LIBOR forward rates. We assume that

the entire LIBOR forward curve is driven by a small number of factors N< K(N� 3

in our empirical analysis). By focusing on the first N principal components of

historical LIBOR rates, we can reduce the dimension of the model from K to N.
Following LSS (2001) and Han (2007), we assume that the instantaneous

covariance matrix of changes in LIBOR rates shares the same eigenvectors as the

historical covariance matrix. Suppose that the historical covariance matrix can be

approximated as H ¼ UL0U
0, where L0 is a diagonal matrix whose diagonal

elements are the first N largest eigenvalues in descending order, and the

N columns of U are the corresponding eigenvectors.7 Our assumption means that

the instantaneous covariance matrix of changes in LIBOR rates with fixed time to

maturity, Ot, shares the same eigenvectors as H. That is,

Ot ¼ ULtU
0, (86.22)

7We acknowledge that with jumps in LIBOR rates, both the historical and instantaneous covari-

ance matrices of LIBOR rates contain a component that is due to jumps. Our approach implicitly

assumes that the first three principal components from the historical covariance matrix capture the

variations in LIBOR rates due to continuous shocks and that the impact of jumps is only contained

in the residuals.
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where Lt is a diagonal matrix whose i-th diagonal element, denoted by Vi(t), can be
interpreted as the instantaneous variance of the i-th common factor driving the yield

curve evolution at t. We assume that V(t) follows the square-root process that has

been widely used in the literature for modeling stochastic volatility (see, e.g.,

Heston 1993):

dVi tð Þ ¼ ki vi � Vi tð Þð Þdtþ xi
ffiffiffiffiffiffiffiffiffiffi
Vi tð Þ

p
d eWi tð Þ (86.23)

where eWi tð Þ is the i-th element of an N-dimensional independent Brownian motion

assumed independent of Zk(t) and Jk(t) for all k.
8

While Eqs. 86.4 and 86.5 specify the instantaneous covariance matrix of LIBOR

rates with fixed time to maturity, in applications we need the instantaneous covari-

ance matrix of LIBOR rates with fixed maturities∑t. At t¼ 0, St coincides with Ot;

for t > 0, we obtain ∑t from Ot through interpolation. Specifically, we assume that

US,j is piecewise constant,
9 i.e., for time to maturity s 2 (Tk, Tk+1):

U2
s ¼

1

2
U2

k þ U2
kþ1

� �
: (86.24)

We further assume that Us,j is constant for all caplets belonging to the same

difference cap. For the family of the LIBOR rates with maturities T ¼ T1, T2, . . ., TK,
we denoteUT–t the time-tmatrix that consists of rows ofUTk�t, and thereforewehave the

time-t covariance matrix of the LIBOR rates with fixed maturities:

St ¼ UT�tLtU
0
T�t (86.25)

To stay within the family of AJDs, we assume that the random jump times arrive

with a constant intensity lJ, and conditional on the arrival of a jump, the jump size

follows a normal distribution N(mJ, s
2
J). Intuitively, the conditional probability at

time t of another jump within the next small time interval Dt is lJDt, and conditional
on a jump event, the mean relative jump size is m ¼ exp mJ þ 1

2
s2J

� �� 1.10 We also

assume that the shocks driving LIBOR rates, volatility, and jumps (both jump time

and size) are mutually independent from each other.

8Many empirical studies on interest rate dynamics (see, e.g., Andersen and Lund 1997; Ball and

Torous 1999; Chen and Scott 2001) have shown that correlation between stochastic volatility and

interest rates is close to zero. That is, there is not a strong “leverage” effect for interest rates as for

stock prices. The independence assumption between stochastic volatility and LIBOR rates in our

model captures this stylized fact.
9Our interpolation scheme is slightly different from that of Han (2002) for the convenience of

deriving closed-form solution for cap prices.
10For simplicity, we assume that different forward rates follow the same jump process with

constant jump intensity. It is not difficult to allow different jump processes for individual

LIBOR rates and the jump intensity to depend on the state of the economy within the AJD

framework.
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Given the above assumptions, we have the following dynamics of LIBOR rates

under the physical measure ℙ:

dLk tð Þ
Lk tð Þ ¼ ak tð Þdtþ

XN
j¼1

UTk�t, j

ffiffiffiffiffiffiffiffiffiffi
Vj tð Þ

q
dWj tð ÞþdJk tð Þ, k¼ 1,2, . . . , K: (86.26)

To price caps, we need the dynamics of LIBOR rates under the appropriate

forward measure. The existence of stochastic volatility and jumps results in an

incomplete market and hence the nonuniqueness of forward martingale

measures. Our approach for eliminating this nonuniqueness is to specify the

market prices of both the volatility and jump risks to change from the physical

measure ℙ to the forward measure ℚk+1.11 Following the existing literature, we

model the volatility risk premium as �kþ1
j

ffiffiffiffiffiffiffiffiffiffi
Vj tð Þ

p
, for j ¼ 1, . . . ,N. For the jump

risk premium, we assume that under the forward measureℚk+1, the jump process

has the same distribution as that under P, except that the jump size follows

a normal distribution with mean mJ
k+1 and variance sJ

2. Thus, the mean relative

jump size under ℚk+1 is mk+1 ¼ exp(mJ
k+1 + 2

1sJ
2) � 1. Our specification of the

market prices of jump risks allows the mean relative jump size under ℚk+1 to be

different from that under ℙ, accommodating a premium for jump size uncer-

tainty. This approach, which is also adopted by Pan (2002), artificially absorbs

the risk premium associated with the timing of the jump by the jump size risk

premium. In our empirical analysis, we make the simplifying assumption that

the volatility and jump risk premiums are linear functions of time to maturity,

i.e., �j
k+1 ¼ cjv(Tk � 1) and mJ

k+1 ¼ mJ + cJ(Tk � 1).12 Due to the no arbitrage

restriction, the risk premiums of shocks to LIBOR rates for different forward

measures are intimately related to each other. If shocks to volatility and jumps

are also correlated with shocks to LIBOR rates, then both volatility and jump

risk premiums for different forward measures should also be closely related to

each other. However, in our model shocks to LIBOR rates are independent of

that to volatility and jumps, and as a result, the change of measure of LIBOR

shocks does not affect that of volatility and jump shocks. Due to stochastic

volatility and jumps, the underlying LIBOR market is no longer complete, and

there is no unique forward measure. This gives us the freedom to choose the

functional forms of �j
k+1 and mJ

k+1. See Andersen and Brotherton-Ratcliffe (2001)

for similar discussions.

11The market prices of interest rate risks are defined in such a way that the LIBOR rate is

a martingale under the forward measure.
12In order to estimate the volatility and jump risk premiums, we need a joint analysis of the

dynamics of LIBOR rates under both the physical and forward measures, as in Chernov and

Ghysels (2000), Pan (2002), and Eraker (2004). In our empirical analysis, we only focus on the

dynamics under the forward measure. Therefore, we can only identify the differences in the risk

premiums between forward measures with different maturities. Our specifications of both risk

premiums implicitly use the 1-year LIBOR rate as a reference point.
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Given the above market prices of risks, we can write down the dynamics of

log (Lk(t)) under forward measure ℚk+1:

d log Lk tð Þð Þ ¼ � lJmkþ1 þ 1

2

XN
j¼1

U2
Tk�t, jVj tð Þ

 !
dt

þ
XN
j¼1

UTk�t, j

ffiffiffiffiffiffiffiffiffiffi
Vj tð Þ

q
dWℚkþ1

j tð Þ þ dJℚ
kþ1

k tð Þ:
(86.27)

For pricing purpose, the above process can be further simplified to the following

one which has the same distribution:

dlog Lk tð Þð Þ ¼ � lJmkþ1 þ 1

2

XN
j¼1

U2
Tk�t, jVj tð Þ

 !
dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
j¼1

U2
Tk�t, jVj tð Þ

vuut dZℚkþ1
k tð Þ þ dJℚkþ1

k tð Þ,
(86.28)

where Zℚkþ1

k tð Þ is a standard Brownian motion under ℚk+1. Now the dynamics of

Vi(t) under ℚ
k+1 becomes

dVi tð Þ ¼ kkþ1
i v�kþ1

i
� Vi tð Þ

� �
dtþ xi

ffiffiffiffiffiffiffiffiffiffi
Vi tð Þ

p
d eWℚkþ1

i tð Þ (86.29)

where eWℚQkþ1

is independent of Zℚkþ1

, kkþ1
j ¼ kj � xj�

kþ1
j , and v�kþ1

j ¼ kjvj
kj�xj�

kþ1
j

,

j ¼ 1, . . . N. The dynamics of Lk(t) under the forward measureℚk+1 are completely

captured by Eqs. 86.28 and 86.29.

Given that LIBOR rates follow AJDs under both the physical and forward

measures, we can directly apply the transform analysis of Duffie et al. (2000) to

derive closed-form formula for cap prices. Denote the state variables at t as Yt¼ (log

(Lk(t)), Vt)
0 and the time-t expectation of eu YT

k under the forward measure ℚk+1 as

c u; Yt; t; Tkð Þ≜Eℚkþ1

t eu�YTk½ �. Let u ¼ (u0, 01xN)
0, and then the time-t expectation of

LIBOR rate at Tk equals

Eℚkþ1

t exp u0log Lk Tkð Þð Þ½ �f g ¼ c u0,Yt, t,Tk

� �

¼ exp a sð Þ þ u0log Lk tð Þð Þ þ B sð Þ0Vt

	 

,

(86.30)

where s ¼ Tk – t and closed-form solutions of a(s) and B(s) (an N-by-1 vector) are

obtained by solving a system of Riccati equations in the appendix.

Following Duffie et al. (2000), we define

Ga, b y;Yt; Tk;ℚkþ1
� � ¼ Eℚkþ1

t ea�log Lk Tkð Þð Þ1 b�log Lk Tkð Þð Þ�yf g
h i

, (86.31)
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and its Fourier transform

Ga, b v; Yt; Tk;ℚkþ1
� � ¼

ðeivydGa, b yð Þ

R

¼ Eℚkþ1
t e aþivbð Þ�log Lk Tkð Þð Þ

h i

¼ c aþ ivb,Yt, t,Tkð Þ:

(86.32)

Levy’s inversion formula gives

Ga, b y; Yt; Tk;ℚkþ1
� � ¼ c aþ ivb, Yt, t, Tkð Þ

2
� 1

p

ð1
0

Im c aþ ivb,Yt, t, Tkð Þe�ivy½ �
v

dv:

(86.33)

The time-0 price of a caplet that matures at Tk+1 with a strike price of X equals

Caplet 0; Tkþ1;Xð Þ ¼ dDkþ1 0ð ÞEℚkþ1

0 Lk Tkð Þ � Xð Þþ	 

, (86.34)

where the expectation is given by the inversion formula

Eℚkþ1

0 Lk Tkð Þ � X½ �þ ¼ G1,�1 �lnX; Y0, Tk,ℚkþ1
� �

� XG0,�1 �lnX; Y0,Tk,ℚkþ1
� �

:
(86.35)

The new models developed in this section nest some of the most important

models in the literature, such as LSS (2001) (with constant volatility and no jumps)

and Han (2007) (with stochastic volatility and no jumps). The closed-form formula

for cap prices makes an empirical implementation of our model very convenient

and provides some advantages over existing methods. For example, Han (2007)

develops approximations of ATM cap and swaption prices using the techniques of

Hull and White (1987). However, such an approach might not work well for away-

from-the-money options. In contrast, our method would work well for all options,

which is important for explaining the volatility smile.

In addition to introducing stochastic volatility and jumps, our multifactor HJM

models also have advantages over the standard LIBOR market models of Brace

et al. (1997) and Miltersen et al. (1997) and their extensions often applied to caps in

practice.13 While our models provide a unified multifactor framework to characterize

the evolution of the whole yield curve, the LIBOR market models typically make

separate specifications of the dynamics of LIBOR rates with different maturities.

13Andersen and Brotherton-Ratcliffe (2001) and Glasserman and Kou (2003) develop LIBOR

models with stochastic volatility and jumps, respectively.
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As suggested by LSS (2001), the standard LIBOR models are “more appropriately

viewed as a collection of different univariate models, where the relationship between

the underlying factors is left unspecified.” In contrast, the dynamics of LIBOR rates

with different maturities under their related forward measures are internally consis-

tent with each other given their dynamics under the physical measure and the market

prices of risks. Once our models are estimated using one set of prices, they can be

used to price and hedge other fixed-income securities.

86.3.2 Estimation Method and Results

We estimate our new market model using prices from a wide cross section of

difference caps with different strikes and maturities. Every week we observe prices

of difference caps with 10 moneyness and 13 maturities. However, due to changing

interest rates, we do not have enough observations in all moneyness/maturity

categories throughout the sample. Thus, we focus on the 53 moneyness/maturity

categories that have less than 10 % of missing values over the sample estimation

period. The moneyness and maturity of all difference caps belong to the following

sets {0.7, 0.8, 0.9, 1.0, 1.1} and {1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0,

9.0, 10.0} (unit in years), respectively. The difference caps with time to maturity

less than or equal to 5 years represent portfolios of two caplets, while those with

time to maturity longer than 5 years represent portfolios of four caplets.

We estimate the model parameters by minimizing the sum of squared percentage

pricing errors (SSEs) of all relevant difference caps.14 Consider the time-series

observations t ¼ 1, . . . , T , of the prices of 53 difference caps with moneyness mi

and time to maturities ti, i ¼ 1, . . . , M ¼ 53. Let y represent the model parameters

which remain constant over the sample period. Let C(t, mi, ti) be the observed price
of a difference cap with moneyness mi and time to maturity ti and let

Ĉ t, ti,mi,Vt yð Þ, yð Þ denote the corresponding theoretical price under a given

model, where Vt(y) is the model implied instantaneous volatility at t given model

parameters y. For each i and t, denote the percentage pricing error as

ui, t yð Þ ¼ C t;mi; tið Þ � Ĉ t,mi, ti,Vt yð Þ, yð Þ
C t;mi; tið Þ , (86.36)

where Vt(y) is defined as

Vt yð Þ ¼ argmin
Vtf g

XM
i¼1

C t;mi; tið Þ � Ĉ t,mi, ti,Vt, yð Þ
C t;mi; tið Þ

" #2
: (86.37)

14Due to the wide range of moneyness and maturities of the difference caps involved, there could

be significant differences in the prices of difference caps. Using percentage pricing errors helps to

mitigate this problem.
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We provide empirical evidence on the performance of six different models in

capturing the cap volatility smile. The first three models, denoted as SV1, SV2,

and SV3, allow one, two, and three principal components to drive the forward rate

curve, respectively, each with its own stochastic volatility. The next three models,

denoted as SVJ1, SVJ2, and SVJ3, introduce jumps in LIBOR rates in each of the

previous SV models. SVJ3 is the most comprehensive model and nests all the

others as special cases. We first examine the separate performance of each of

the SV and SVJ models, and then we compare performance across the two classes

of models. The estimation of all models is based on the principal components

extracted from historical LIBOR forward rates between June 1997 and July

2000.15

The SV models contribute to cap pricing in four important ways. First, the three

principal components capture variations in the levels of LIBOR rates caused by

innovations in the “level,” “slope,” and “curvature” factors. Second, the stochastic

volatility factors capture the fluctuations in the volatilities of LIBOR rates reflected

in the Black implied volatilities of ATM caps.16 Third, the stochastic volatility

factors also introduce fatter tails in LIBOR rate distributions than implied by

the lognormal model, which helps capture the volatility smile. Finally, given our

model structure, innovations of stochastic volatility factors also affect the covariances

between LIBOR rates with different maturities. The first three factors, however,

are more important for our applications, because difference caps are much less

sensitive to time-varying correlations than swaptions.17 Our discussion of the

performance of the SV models focuses on the estimates of the model parameters

and the latent volatility variables and the time-series and cross-sectional pricing errors

of difference caps.

A comparison of the parameter estimates of the three SV models in Table 86.7

shows that the “level” factor has the most volatile stochastic volatility, followed, in

decreasing order, by the “curvature” and “slope” factor. The long-run mean v1ð Þ and
volatility of volatility (x1) of the first volatility factor are much bigger than that of

the other two factors. This suggests that the fluctuations in the volatilities of LIBOR

rates are mainly due to the time-varying volatility of the “level” factor. The

estimates of the volatility risk premium of the three models are significantly

negative, suggesting that the stochastic volatility factors of longer maturity

LIBOR rates under the forward measure are less volatile with lower long-run

mean and faster speed of mean reversion. This is consistent with the fact that the

Black implied volatilities of longer maturity difference caps are less volatile than

that of short-term difference caps.

15The LIBOR forward curve is constructed from weekly LIBOR and swap rates from Datastream

following the bootstrapping procedure of LSS (2001).
16Throughout our discussion, volatilities of LIBOR rates refer to market implied volatilities from

cap prices and are different from volatilities estimated from historical data.
17See Han (2002) for more detailed discussions on the impact of time-varying correlations for

pricing swaptions.
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Our parameter estimates are consistent with the volatility variables inferred from

the prices of difference caps. The volatility of the “level” factor is the highest

among the three (although at lower absolute levels in the more sophisticated

models). It starts at a low level and steadily increases and stabilizes at a high

level in the later part of the sample period. The volatility of the “slope” factor is

much lower and relatively stable during the whole sample period. The volatility of

the “curvature” factor is generally between that of the first and second factors. The

steady increase of the volatility of the “level” factor is consistent with the increase

of Black implied volatilities of ATM difference caps throughout our sample period.

In fact, the correlation between the Black implied volatilities of most difference

caps and the implied volatility of the “level” factor is higher than 0.8. The

correlation between Black implied volatilities and the other two volatility factors

is much weaker. The importance of stochastic volatility is obvious: the fluctuations

in Black implied volatilities show that a model with constant volatility simply

would not be able to capture even the general level of cap prices.

The other aspects of model performance are the time-series and cross-sectional

pricing errors of difference caps. The likelihood ratio tests in Panel A of Table 86.8

overwhelmingly reject SV1 and SV2 in favor of SV2 and SV3, respectively. The

Diebold-Mariano statistics in Panel A of Table 86.8 also show that SV2 and SV3

have significantly smaller SSEs than SV1 and SV2, respectively, suggesting that the

Table 86.7 Parameter estimates of stochastic volatility models

Parameter

SV1 SV2 SV3

Estimate Std. err Estimate Std. err Estimate Std. err

kl 0.0179 0.0144 0.0091 0.0111 0.0067 0.0148

k2 0.1387 0.0050 0.0052 0.0022

k3 0.0072 0.0104

n1 1.3727 1.1077 1.7100 2.0704 2.1448 4.7567

n2 0.0097 0.0006 0.0344 0.0142

n3 0.1305 0.1895

z1 1.0803 0.0105 0.8992 0.0068 0.8489 0.0098

z2 0.0285 0.0050 0.0117 0.0065

z3 0.1365 0.0059

c1v �0.0022 0.0000 �0.0031 0.0000 �0.0015 0.0000

c2v �0.0057 0.0010 �0.0007 0.0001

c3v �0.0095 0.0003

Objective function 0.0834 0.0758 0.0692

This table reports parameter estimates and standard errors of the one-, two-, and three-factor

stochastic volatility models. The estimates are obtained by minimizing the sum of squared

percentage pricing errors (SSEs) of difference caps in 53 moneyness and maturity categories

observed on a weekly frequency from August 1, 2000, to September 23, 2003. The objective

functions reported in the table are rescaled SSEs over the entire sample at the estimated model

parameters and are equal to RMSE of difference caps. The volatility risk premium of the ith
stochastic volatility factor for forward measure Qk+1 is defined as �i

k+1 ¼ civ(Tk � 1)
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more sophisticated SV models improve the pricing of all caps. The time series of

RMSEs of the three SVmodels over our sample period18 suggest that except for two

special periods where all models have extremely large pricing errors, the RMSEs of

all models are rather uniform with the best model (SV3) having RMSEs slightly

above 5 %. The two special periods with high pricing errors cover the period

between the second half of December 2000 and the first half of January 2001, and

the first half of October 2001, and coincide with high prepayments in mortgage-

backed securities (MBS). Indeed, the MBAA refinancing index and prepayment

speed (see Fig. 3 of Duarte 2004) show that after a long period of low prepayments

between the middle of 1999 and late 2000, prepayments dramatically increased at

the end of 2000 and the beginning of 2001. There is also a dramatic increase of

prepayments at the beginning of October 2001. As widely recognized in the fixed-

income market,19 excessive hedging demands for prepayment risk using interest

rate derivatives may push derivative prices away from their equilibrium values,

which could explain the failure of our models during these two special periods.20

In addition to overall model performance asmeasured by SSEs, we also examine the

cross-sectional pricing errors of difference caps with different moneyness and matu-

rities.Wefirst look at the squared percentage pricing errors,whichmeasure both the bias

and variability of the pricing errors. Then we look at the average percentage pricing

errors (the difference between market and model prices divided by the market price) to

see whether SV models can on average capture the volatility smile in the cap market.

The Diebold-Mariano statistics of squared percentage pricing errors of individ-

ual difference caps between SV2 and SV1 in Panel B of Table 86.8 show that SV2

reduces the pricing errors of SV1 for some but not all difference caps. SV2 has the

most significant reductions in pricing errors of SV1 for mid- and short-term around-

the-money difference caps. On the other hand, SV2 has larger pricing errors for

deep ITM difference caps. The Diebold-Mariano statistics between SV3 and SV2 in

Panel C of Table 86.8 show that SV3 significantly reduces the pricing errors of

many short- (2–3 years) and midterm around-the-money and long-term

(6–10 years) ITM difference caps.
Table 86.9 reports the average percentage pricing errors of all difference caps

under the three SV models. Panel A of Table 86.9 shows that, on average, SV1

underprices short-term and overprices mid- and long-term ATM difference caps
and underprices ITM and overprices OTM difference caps. This suggests that SV1

cannot generate enough skewness in the implied volatilities to be consistent with

18RMSE of a model at t is calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0
t ŷ
� �

ut ŷ
� �

=M

r
: We plot RMSEs instead of SSEs

because the former provides a more direct measure of average percentage pricing errors of

difference caps.
19We would like to thank Pierre Grellet Aumont from Deutsche Bank for his helpful discussions on

the influence of MBS markets on OTC interest rate derivatives.
20While the prepayment rates were also high in later part of 2002 and for most of 2003, they might

not have come as surprises to participants in the MBS markets given the two previous special

periods.
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the data. Panel B shows that SV2 has some improvements over SV1, mainly for

some short-term (less than 3.5 years) ATM and midterm (3.5–5 years) slightly

OTM difference caps. But SV2 has worse performance for most deep ITM (m¼ 0.7

and 0.8) difference caps: it actually worsens the underpricing of ITM caps. Panel C

of Table 86.9 shows that relative to SV1 and SV2, SV3 has smaller average

percentage pricing errors for most long-term (7–10 years) ITM, midterm

(3.5–5 years) OTM, and short-term (2–2.5 years) ATM difference caps and bigger

average percentage pricing errors for midterm (3.5–6 years) ITM difference caps.

There is still significant underpricing of ITM and overpricing of OTM difference

caps under SV3.

Overall, the results show that stochastic volatility factors are essential for captur-

ing the time-varying volatilities of LIBOR rates. The Diebold-Mariano statistics in

Table 86.8 shows that in general more sophisticated SV models have smaller pricing

errors than simpler models, although the improvements are more important for close-

to-the-money difference caps. The average percentage pricing errors in Table 86.9

show that, however, even the most sophisticated SV model cannot generate enough

volatility skew to be consistent with the data. While previous studies, such as Han

(2007), have shown that a three-factor stochastic volatility model similar to ours

performs well in pricing ATM caps and swaptions, our analysis shows that the model

fails to completely capture the volatility smile in the cap markets. Our findings

highlight the importance of studying the relative pricing of caps with different

moneyness to reveal the inadequacies of existing term structure models; the same

inadequacies cannot be obtained from studying only ATM options.

One important reason for the failure of SV models is that the stochastic volatility

factors are independent of LIBOR rates. As a result, the SV models can only generate

a symmetric volatility smile, but not the asymmetric smile or skew observed in the

data. The pattern of the smile in the cap market is rather similar to that of index

options: ITM calls (and OTM puts) are overpriced, and OTM calls (and ITM puts) are

underpriced relative to the Black model. Similarly, the smile in the cap market could

be due to a market expectation of dramatically declining LIBOR rates. In this section,

we examine the contribution of jumps in LIBOR rates in capturing the volatility smile.

Our discussion of the performance of the SVJ models parallels that of the SV models.

Parameter estimates in Table 86.10 show that the three stochastic volatility

factors of the SVJ models resemble that of the SV models closely. The “level”

factor still has the most volatile stochastic volatility, followed by the “curvature”

and the “slope” factor. With the inclusion of jumps, the stochastic volatility factors

in the SVJ models, especially that of the “level” factor, tend to be less volatile than

that of the SV models (lower long-run mean and volatility of volatility). Negative

estimates of the volatility risk premium show that the volatility of the longer

maturity LIBOR rates under the forward measure has lower long-run mean and

faster speed of mean reversion.

Most importantly, we find overwhelming evidence of strong negative jumps in

LIBOR rates under the forward measure. To the extent that cap prices reflect

market expectations of future evolutions of LIBOR rates, the evidence suggests

that the market expects a dramatic decline in LIBOR rates over our sample
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period. Such an expectation might be justifiable given that the economy has been

in recession during a major part of our sample period. This is similar to the

volatility skew in the index equity option market, which reflects investors’ fear

of the stock market crash such as that of 1987. Compared to the estimates from

index options (see, e.g., Pan 2002), we see lower estimates of jump intensity

(about 1.5 % per annual), but much higher estimates of jump size. The positive

estimates of a jump risk premium suggest that the jump magnitude of longer

maturity forward rates tends to be smaller. Under SVJ3, the mean relative jump

sizes, exp (mJ + cJ(Tk � 1) + sJ
2/2) � 1, for 1-, 5-, and 10-year LIBOR rates

are �97 %, �94 %, and �80 %, respectively. However, we do not find any

incidents of negative moves in LIBOR rates under the physical measure with

a size close to that under the forward measure. This big discrepancy between

jump sizes under the physical and forward measures resembles that between the

physical and risk-neutral measures for index options (see, e.g., Pan 2002). This

could be a result of a huge jump risk premium.

The likelihood ratio tests in Panel A of Table 86.11 again overwhelmingly reject

SVJ1 and SVJ2 in favor of SVJ2 and SVJ3, respectively. The Diebold-Mariano

Table 86.10 Parameter estimates of stochastic volatility and jump models

Parameter

SVJ1 SVJ2 SVJ3

Estimate Std. err Estimate Std. err Estimate Std. err

k1 0.1377 0.0085 0.0062 0.0057 0.0069 0.0079

k2 0.0050 0.0001 0.0032 0.0000

k3 0.0049 0.0073

v1 0.1312 0.0084 0.7929 0.7369 0.9626 1.1126

v2 0.3410 0.0030 0.2051 0.0021

v3 0.2628 0.3973

z1 0.8233 0.0057 0.7772 0.0036 0.6967 0.0049

z2 0.0061 0.0104 0.0091 0.0042

z3 0.1517 0.0035

c1v �0.0041 0.0000 �0.0049 0.0000 �0.0024 0.0000

c2v �0.0270 0.0464 �0.0007 0.0006

c3v �0.0103 0.0002

l 0.0134 0.0001 0.0159 0.0001 0.0132 0.0001

mJ �3.8736 0.0038 �3.8517 0.0036 �3.8433 0.0063

cJ 0.2632 0.0012 0.3253 0.0010 0.2473 0.0017

sJ 0.0001 3.2862 0.0003 0.8723 0.0032 0.1621

Objective function 0.0748 0.0670 0.0622

This table reports parameter estimates and standard errors of the one-, two-, and three-factor

stochastic volatility and jump models. The estimates are obtained by minimizing the sum of

squared percentage pricing errors (SSEs) of difference caps in 53 moneyness and maturity

categories observed on a weekly frequency from August 1, 2000, to September 23, 2003.

The objective functions reported in the table are rescaled SSEs over the entire sample at the

estimated model parameters and are equal to RMSE of difference caps. The volatility risk

premium of the ith stochastic volatility factor and the jump risk premium for forward measure

Qk+1 are defined as �i
k+1 ¼ civ(Tk � 1) and mJ

k+1 ¼ mJ + cJ(Tk � 1), respectively
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statistics in Panel A of Table 86.11 show that SVJ2 and SVJ3 have significantly

smaller SSEs than SVJ1 and SVJ2, respectively, suggesting that the more sophis-

ticated SVJ models significantly improve the pricing of all difference caps. The
Diebold-Mariano statistics of squared percentage pricing errors of individual dif-
ference caps in Panel B of Table 86.11 show that SVJ2 significantly improves the

performance of SVJ1 for long-, mid-, and short-term around-the-money difference
caps. The Diebold-Mariano statistics in Panel C of Table 86.11 show that SVJ3

significantly reduces the pricing errors of SVJ2 for long-term ITM and some mid-

and short-term around-the-money difference caps. Table 86.12 shows the average

percentage pricing errors also improve over the SV models.

Table 86.13 compares the performance of the SVJ and SV models. During the

first 20 weeks of our sample, the SVJ models have much higher RMSEs than the SV

models. As a result, the likelihood ratio and Diebold-Mariano statistics between the

three pairs of SVJ and SV models over the entire sample are somewhat smaller than

that of the sample period without the first 20 weeks. Nonetheless, all the SV models

are overwhelmingly rejected in favor of their corresponding SVJ models by both

tests. The Diebold-Mariano statistics of individual difference caps in Panels B, C,

and D show that the SVJ models significantly improve the performance of the SV

models for most difference caps across moneyness and maturity. The most inter-

esting results are in Panel D, which show that SVJ3 significantly reduces the pricing

errors of most ITM difference caps of SV3, strongly suggesting that the negative

jumps are essential for capturing the asymmetric smile in the cap market.

Our analysis shows that a low-dimensional model with three principal com-

ponents driving the forward rate curve, stochastic volatility of each component,

and strong negative jumps captures the volatility smile in the cap markets rea-

sonably well. The three yield factors capture the variations of the levels of LIBOR

rates, while the stochastic volatility factors are essential to capture the time-

varying volatilities of LIBOR rates. Even though the SV models can price ATM

caps reasonably well, they fail to capture the volatility smile in the cap market.

Instead, significant negative jumps in LIBOR rates are needed to capture the

smile. These results highlight the importance of studying the pricing of caps

across moneyness: the importance of negative jumps is revealed only through

the pricing of away-from-the-money caps. Excluding the first 20 weeks and the

two special periods, SVJ3 has a reasonably good pricing performance with an

average RMSE of 4.5 %. Given that the bid-ask spread is about 2–5 % in our

sample for ATM caps, and because ITM and OTM caps tend to have even higher

percentage spreads,21 this can be interpreted as a good performance.

Despite its good performance, there are strong indications that SVJ3 is

misspecified and the inadequacies of the model seem to be related to MBS markets.

For example, while SVJ3 works reasonably well for most of the sample period, it

has large pricing errors in several special periods coinciding with high prepayment

activities in the MBS markets. Moreover, even though we assume that the

21See, for example, Deuskar et al. (2003).
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stochastic volatility factors are independent of LIBOR rates, Table 86.14 shows

strong negative correlations between the implied volatility variables of the first

factor and the LIBOR rates. This result suggests that when interest rate is low,

cap prices become too high for the model to capture and the implied volatilities

have to become abnormally high to fit the observed cap prices. One possible

explanation of the “leverage” effect is that higher demands for caps to hedge

prepayments from MBS markets in low interest rate environments could artifi-

cially push up cap prices and implied volatilities. Therefore, extending our

models to incorporate factors from MBS markets seems to be a promising

direction of future research.

86.4 Nonparametric Estimation of the Forward Density

For LIBOR-based instruments such as caps, floors, and swaptions, it is conve-

nient to consider pricing using the forward measure approach. We will therefore

focus on the dynamics of LIBOR forward rate Lk(t) under the forward measure

ℚk+1, which is essential for pricing caplets maturing at Tk+1. Under this measure,

the discounted price of any security using Dk+1(t) as the numeraire is

a martingale. Thus, the time-t price of a caplet maturing at Tk+1 with a strike

price of X is

C Lk tð Þ,X, t, Tkð Þ ¼ dDkþ1 tð Þ
ð1
X

y� Xð Þpℚkþ1

Lk Tkð Þ ¼ y Lk tð Þj Þdy,ð (86.38)

where pℚ
kþ1

Lk Tkð Þ ¼ y Lk tð Þj Þð is the conditional density of Lk(Tk) under forward
measureℚk+1. Once we know the forward density, we can price any security whose

payoff on Tk+1 depends only on Lk(t) by discounting its expected payoff under

ℚk+1 using Dk+1 (t).
Existing term structure models rely on parametric assumptions on the distribu-

tion of Lk(t) to obtain closed-form pricing formulae for caplets. For example, the

standard LIBOR market models of Brace et al. (1997) and Miltersen et al. (1997)

assume that Lk(t) follows a lognormal distribution and price caplet using the Black

formula. The models of Jarrow et al. (2007) assume that Lk(t) follows affine jump

diffusions of Duffie et al. (2000).

Table 86.14 Correlations between LIBOR rates and implied volatility variables

L(t, 1) L(t, 3) L(t, 5) L(t, 7) L(t, 9) V1(t) V2(t) V3(t)

V1(t) �0.8883 �0.8772 �0.8361 �0.7964 �0.7470 1 �0.4163 0.3842

V2(t) 0.1759 0.235 0.2071 0.1545 0.08278 �0.4163 1 �0.0372

V3(t) �0.5951 �0.485 �0.4139 �0.3541 �0.3262 0.3842 �0.0372 1

This table reports the correlations between LIBOR rates and implied volatility variables from

SVJ3. Given the parameter estimates of SVJ3 in Table 86.4, the implied volatility variables are

estimated at t by minimizing the SSEs of all difference caps at t
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86.4.1 Nonparametric Method

We estimate the distribution of Lk(t) under ℚ
k+1 using the prices of a cross section

of caplets that mature at Tk+1 and have different strike prices. Following Breeden

and Litzenberger (1979), we know that the density of Lk(t) under ℚ
k+1 is propor-

tional to the second derivative of C(Lk(t), t, Tk, X) with respect to X:

pℚ
kþ1

Lk Tkð Þ Lkj tð Þð Þ ¼ 1

dDkþ1 tð Þ
∂2C Lk tð Þ, t,Tk,Xð Þ

∂X2
Xj ¼ Lk Tkð Þ: (86.39)

In standard LIBOR market models, it is assumed that the conditional density of

Lk(Tk) depends only on the current LIBOR rate. This assumption, however, can be

overly restrictive given the multifactor nature of term structure dynamics. For

example, while the level factor can explain a large fraction (between 80 % and

90 %) of the variations of LIBOR rates, the slope factor still has significant

explanatory power of interest rate variations. Moreover, there is overwhelming

evidence that interest rate volatility is stochastic,22 and it has been suggested that

interest rate volatility is unspanned in the sense that it cannot be fully explained by

the yield curve factors such as the level and slope factors.

One important innovation of our study is that we allow the volatility of Lk(t) to be
stochastic and the conditional density of Lk(Tk) to depend on not only the level but

also the slope and volatility factors of LIBOR rates. Denote the conditioning

variables as Z(t)¼ {s(t), v(t)}, where s(t) (the slope factor) is the difference between
the 10- and 2-year LIBOR forward rates and v(t) (the volatility factor) is the first

principal component of EGARCH-filtered spot volatilities of LIBOR rates across

all maturities. Under this generalization, the conditional density of Lk(Tk) under the
forward measure ℚk+1 is given by

pℚ
kþ1

Lk Tkð Þ Lk tð Þj ,Z tð Þð Þ ¼ 1

dDkþ1 tð Þ
∂2C Lk tð Þ,X, t,Tk,Z tð Þð Þ

∂X2
Xj ¼ Lk Tkð Þ:

(86.40)

Next we discuss how to estimate the SPDs by combining the forward and

physical densities of LIBOR rates. Denote an SPD function as p. In general, p
depends on multiple economic factors, and it is impossible to estimate it using

interest rate caps alone. Given the available data, all we can estimate is the

projection of p onto the future spot rate Lk(Tk):

pk Lk Tkð Þ; Lk tð Þ,Z tð Þð Þ ¼ Eℙ
t p Lk Tkð Þj ; Lk tð Þ,Z tð Þ½ �, (86.41)

where the expectation is taken under the physical measure. Then the price of the

caplet can be calculated as

22See Andersen and Lund (1997), Ball and Torous (1999), Brenner et al. (1996), Chen and Scott

(2001), and many others.
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C Lk tð Þ,X, t, Tk, Z tð Þð Þ ¼ dEℙ
t p � Lk Tkð Þ � Xð Þþ	 


¼ d
ð1
X

pk yð Þ y� Xð Þpℙ Lk Tkð Þ ¼ y Lk tð Þj , Z tð Þð Þdy,
(86.42)

where the second equality is due to iterated expectation and pℙ(Lk(Tk) ¼ yjLk(t),
Z(t)) is the conditional density of Lk(Tk) under the physical measure.

Comparing Eqs. 86.2 and 86.6, we have

pk Lk Tkð Þ; Lk tð Þ,Z tð Þð Þ ¼ Dkþ1 tð Þ p
ℚ

kþ1

Lk Tkð Þ Lk tð Þj ,Z tð Þð Þ
pℙ Lk Tkð Þ Lk tð Þj , Z tð Þð Þ : (86.43)

Therefore, by combining the densities of Lk(Tk) under ℚ
k+1 and ℙ, we can

estimate the projection of p onto Lk(Tk). The SPDs contain rich information on

how risks are priced in financial markets. While Ait-Sahalia and Lo (1998,

2000); Jackwerth (2000), Rosenberg and Engle (2002), and others estimate the

SPDs using index options (i.e., the projection of p onto index returns), our

analysis based on interest rate caps documents the dependence of the SPDs on

term structure factors.

Similar to many existing studies, to reduce the dimensionality of the problem,

we further assume that the caplet price is homogeneous of degree 1 in the current

LIBOR rate:

C Lk tð Þ,X, t, Tk, Z tð Þð Þ ¼ dDkþ1 tð ÞLk tð ÞCM Mk tð Þ, t,Tk,Z tð Þð Þ, (86.44)

whereMk(t)¼ X/Lk(t) represents the moneyness of the caplet. Hence, for the rest of

the paper, we estimate the forward density of Lk(Tk)/Lk(t) as the second derivative of
the price function CM with respect to M:

pℚ
kþ1 Lk Tkð Þ

Lk tð Þ Z tð Þj
� �

¼ 1

dDkþ1 tð Þ
∂2CM Mk tð Þ, t, Tk, Z tð Þð Þ

∂M2
M ¼ Lk Tkð Þ=Lk tð Þj :

(86.45)

86.4.2 Empirical Results

In this section, we present nonparametric estimates of the probability densities of

LIBOR rates under physical and forward martingale measures. In particular, we

document the dependence of the forward densities on the slope and volatility factors

of LIBOR rates.

Figure 86.2 presents nonparametric estimates of the forward densities at differ-

ent levels of the slope and volatility factors at 2-, 3-, 4-, and 5-year maturities. The

two levels of the slope factor correspond to a flat and a steep forward curve, while

the two levels of the volatility factor represent low and high volatility of LIBOR

rates. The 95 % confidence intervals are obtained through simulation. The forward
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densities should have a zero mean since LIBOR rates under appropriate forward

measures are martingales. The expected log percentage changes of the LIBOR rates

are slightly negative due to an adjustment from the Jensen’s inequality. We

normalize the forward densities so that they integrate to one. However, we do not

have enough data at the right tail of the distribution at 4- and 5-year maturities. We

do not extrapolate the data to avoid potential biases.

Figure 86.2 documents three important features of the nonparametric LIBOR

forward densities. First, the lognormal assumption underlying the popular LIBOR

market models is grossly violated in the data, and the forward densities across all

maturities are significantly negatively skewed. Second, all the forward densities

depend significantly on the slope of the term structure. For example, moving from

a flat to a steep term structure, the forward densities across all maturities become

much more dispersed and more negatively skewed. Third, the forward densities

also depend on the volatility factor. Under both flat and steep term structures, the

forward densities generally become more compact when the volatility factor

increases. This is consistent with a mean-reverting volatility process: high vola-

tility right now leads to low volatility in the future and more compact forward

densities.

To better illustrate the dependence of the forward densities on the two condi-

tioning variables, we also regress the quantiles of the forward densities on the two

factors. We choose quantiles instead of moments of the forward densities in our

regressions for two reasons. First, quantiles are much easier to estimate. While

quantiles can be obtained from the CDF function, which is the first derivative of the

price function, moments require integrations of the forward density, which is the

second derivative of the price function. Second, a wide range of quantiles provide

a better characterization of the forward densities than a few moments, especially for

the tail behaviors of the densities.

Suppose we consider I and J levels of the transformed slope and volatility factors

in our empirical analysis. For a given level of the two conditioning variables (si, vj),
we first obtain a nonparametric estimate of the forward density at a given maturity

and its quantiles Qx(si, vj), where x can range from 0 % to 100 %. Then we consider

the following regression model:

Qx Si; vjð Þ ¼ b0x þ b1x � si þ b2x � vj þ b3x � si � vj þ ex, (86.46)

where i¼ 1, 2, . . . , I, and j¼ 1, 2, . . . , J. We include the interaction term to capture

potential nonlinear dependence of the forward densities on the two conditioning

variables.

Figure 86.3 reports regression coefficients of the slope and volatility factors for

the most complete range of quantiles at each maturity, i.e., b1x and b2x as a function
of x. While Fig. 86.3 includes only the slope and volatility factors as explanatory

variables, Fig. 86.4 contains their interaction term as well. Though in results not

reported here we also include lagged conditioning variables in our regressions, their

coefficients are generally not statistically significant.
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Fig. 86.2 (continued)
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Fig. 86.2 Nonparametric estimates of the LIBOR forward densities at different levels of the slope

and volatility factors. The slope factor is defined as the difference between the 10- and 2-year
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The regression results in Fig. 86.3 are generally consistent with the main findings

in Fig. 86.2. The slope coefficients are generally negative (positive) for the left (right)

half of the distribution and becomemore negative or positive at both tails. Consistent

with Fig. 86.2, this result suggests that when the term structure steepens, the forward

densities becomemore dispersed and the effect is more pronounced at both tails. One

exception to this result is that the slope coefficients become negative and statistically

insignificant at the right tail at 5-yearmaturity. The coefficients of the volatility factor

are generally positive (negative) for the left (right) half of the distribution. Although

the volatility coefficients start to turn positive at the right tail of the distribution, they

2-Yeara b

c d

3-Year 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

S
lo

pe
 C

oe
ffi

ci
en

t

Quantile

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

S
lo

pe
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

4-Year 5-Year

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.6
−0.4
−0.2

0
0.2
0.4

S
lo

pe
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.1

0

0.1

0.2

0.3

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.4

−0.2

0

0.2

0.4
S

lo
pe

 C
oe

ffi
ci

en
t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.1

0

0.1

0.2

0.3

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

Fig. 86.3 Impacts of the slope and volatility factors on LIBOR forward densities. This figure

reports regression coefficients of different quantiles of the forward densities at 2-, 3-, 4-, and

5-year maturities on the slope and volatility factors of LIBOR rates in Eq. 86.27 without the

interaction term

�

Fig. 86.2 (continued) 3-month LIBOR forward rates. The volatility factor is defined as the first

principal component of EGARCH-filtered spot volatilities and has been normalized to a mean that

equals one. The two levels of the slope factor correspond to flat and steep term structures, while the

two levels of the volatility correspond to low and high levels of volatility
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are not statistically significant. These results suggest that higher volatility leads to

more compact forward densities, a result that is generally consistent with that in

Fig. 86.2.

In Fig. 86.4, although the slope coefficients exhibit similar patterns as that in

Fig. 86.3, the interaction term changes the volatility coefficients quite significantly.

2-Yeara b

c d

3-Year

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

S
lo

pe
 C

oe
ffi

ci
en

t

Quantile

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

S
lo

pe
*V

ol
.

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

S
lo

pe
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

0

0.5

S
lo

pe
*V

ol
.

Quantile

4-Year 5-Year

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

S
lo

pe
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.4

−0.2

0

0.2

0.4

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.5

0

0.5

S
lo

pe
*V

ol
.

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

S
lo

pe
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.5

0

0.5

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

1

S
lo

pe
*V

ol
.

Quantile

Fig. 86.4 Impacts of the slope and volatility factors (with their interaction term) on LIBOR

forward densities. This figure reports regression coefficients of different quantiles of the forward

densities at 2-, 3-, 4-, and 5-year maturities on the slope and volatility factors of LIBOR rates and

their interaction term in Eq. 86.27
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The volatility coefficients become largely insignificant and exhibit quite different

patterns than those in Fig. 86.3. For example, the volatility coefficients at 2- and

3-year maturities are largely constant across different quantiles. At 4- and 5-year

maturities, they even become negative (positive) for the left (right) half of the

distribution. On the other hand, the coefficients of the interaction term exhibit similar

patterns as that of the volatility coefficients in Fig. 86.3. These results suggest that the

impacts of volatility on the forward densities depend on the slope of the term structure.

Figure 86.5 presents the volatility coefficients at different levels of the slope factor

(i.e., b̂2x þ b̂3x � si, where si¼ 0.3 or 2.4). We see clearly that the impact of volatility

on the forward densities depends significantly on the slope factor. With a flat term

structure, the volatility coefficients generally increase with the quantiles, especially

at 3-, 4-, and 5-year maturities. The volatility coefficients are generally negative

(positive) for the left (right) tail of the distribution, although not all of them are
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Fig. 86.5 Nonlinear dependence of LIBOR forward densities on the volatility factor of LIBOR

rates. This figure presents regression coefficients of quantiles of LIBOR forward densities on the

volatility factor at different levels of the slope factor. The two levels of the slope factor represent

flat and steep term structures
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statistically significant. However, with a steep term structure, the volatility coeffi-

cients are generally positive (negative) for the left (right) half of the distribution for

most maturities. Therefore, if the current volatility is high and the term structure is

flat (steep), then volatility is likely to increase (decline) in the future.We observe flat

term structure during early part of our sample when the Fed has raised interest rate to

slow down the economy. It could be that the market was more uncertain about future

state of the economy because it felt that recession was imminent. On the other hand,

we observe steep term structure after the Internet bubble bursted and the Fed has

aggressively cut interest rate. It could be that the market felt that the worst was over

and thus was less uncertain about future state of the economy.

Our nonparametric analysis reveals important nonlinear dependence of the

forward densities on both the slope and volatility factors of LIBOR rates. These

results have important implications for one of the most important and controversial

topics in the current term structure literature, namely, the USV puzzle. While

existing studies on USV mainly rely on parametric methods, our results provide

nonparametric evidence on the importance of USV: even after controlling for

important bond market factors, such as level and slope, the volatility factor still

significantly affects the forward densities of LIBOR rates. Even though many

existing term structure models have modeled volatility as a mean-reverting process,

our results show that the speed of mean reversion of volatility is nonlinear and

depends on the slope of the term structure.

Some recent studies have documented interactions between activities in mort-

gage and interest rate derivatives markets. For example, in an interesting study,

Duarte (2008) shows that ATM swaption implied volatilities are highly correlated

with prepayment activities in the mortgage markets. Duarte (2008) extends the

string model of Longstaff et al. (2001) by allowing the volatility of LIBOR rates to

be a function of the prepayment speed in the mortgage markets. He shows that the

new model has much smaller pricing errors for ATM swaptions than the original

model with a constant volatility or a CEV model. Jarrow et al. (2007) also show that

although their LIBOR model with stochastic volatility and jumps can price caps

across moneyness reasonably well, the model pricing errors are unusually large

during a few episodes with high prepayments in MBS. These findings suggest that if

activities in the mortgage markets, notably the hedging activities of government-

sponsored enterprises, such as Fannie Mae and Freddie Mac, affect the supply/

demand of interest rate derivatives, then this source of risk may not be fully spanned

by the factors driving the evolution of the term structure.23

In this section, we provide nonparametric evidence on the impact of mortgage

activities on LIBOR forward densities. Our analysis extendsDuarte (2008) in several

important dimensions. First, by considering caps across moneyness, we examine the

impacts of mortgage activities on the entire forward densities. Second, by explicitly

allowing LIBOR forward densities to depend on the slope and volatility factors of

23See Jaffee (2003) and Duarte (2006) for excellent discussions on the use of interest rate

derivatives by Fannie Mae and Freddie Mac in hedging interest rate risks.
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LIBOR rates, we examine whether prepayment still has incremental contributions in

explaining interest rate option prices in the presence of these two factors.24 Finally,

in addition to prepayment activities, we also examine the impacts of ARMs origi-

nation on the forward densities. Implicit in any ARM is an interest rate cap, which

caps the mortgage rate at a certain level. Since lenders of ARMs implicitly sell a cap

to the borrower, they might have incentives to hedge such exposures.25

Our measures of prepayment and ARMs activities are the weekly refinancing

and ARMs indexes based on the weekly surveys conducted by MBAA, respec-

tively. The two indexes, as plotted in Fig. 86.6, tend to be positively correlated

with each other. There is an upward trend in ARMs activities during our sample

period, which is consistent with what happened in the housing market in the past

few years.

To examine the impacts of mortgage activities on LIBOR forward densities, we

repeat the above regressions by including two additional explanatory variables that

measure refinance and ARMs activities. Specifically, we refer to the top 20 % of the

observations of the refinance (ARMs) index as the high prepayment (ARMs) group.

After obtaining a nonparametric forward density at a particular level of the two

conditioning variables, we define two new variables “Refi” and “ARMs,” which
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Fig. 86.6 Mortgage Bankers Association of America (MBAA) weekly refinancing and ARMs

indexes. This figure reports the logs of the refinance and ARMs indexes obtained by weekly

surveys at the Mortgage Bankers Association of America (MBAA)

24While the slope factor can have nontrivial impact on prepayment behavior, the volatility factor is

crucial for pricing interest rate options.
25We thank the referee for the suggestion of examining the effects of ARMs origination on the

forward densities.
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Fig. 86.7 Impacts of refinance and ARMs activities on LIBOR forward densities. In this figure,

for each quantile of LIBOR forward densities at 2-, 3-, 4-, and 5-year maturities, we report

regression coefficients of the quantile on (i) the slope and volatility factors and their interaction

term as in Eq. 86.27 and (ii) refinance and ARMs activities
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measure the percentages of observations used in estimating the forward density that

belong to the high prepayment and ARMs groups, respectively. These two variables

allow us to test whether the forward densities behave differently when prepayment/

ARMs activities are high. To control for potential collinearity among the explan-

atory variables, we have orthogonalized any new explanatory variable with respect

to existing ones.

Figure 86.7 contains the new regression results with “Refi” and “ARMs” for the

four maturities. The coefficients of the slope, volatility, and the interaction term

exhibit similar patterns as that in Fig. 86.4.26

The strongest impacts of ARMs on the forward densities occur at 2-year maturity,

as shown in Panel A of Fig. 86.7. Therefore, highARMs origination shifts themedian

and the right tail of the forward densities at 2-year maturity toward the right. This

finding is consistent with the notion that hedging demands fromARMs lenders for the

cap they have shortedmight increase the price of OTMcaps. One possible reason that

the effects of ARMs aremore pronounced at 2-year maturity than at 3-, 4-, and 5-year

maturities is that most ARMs get reset within the first 2 years.

While high ARMs activities shift the forward density at 2-year maturity to the

right, high refinance activities shift the forward densities at 3-, 4-, and 5-year

maturities to the left. We see that the coefficients of Refi at the left tail are

significantly negative. While the coefficients also are significantly negative for

the middle of the distribution (40–70 % quantiles), the magnitude of the coefficients

is much smaller. These can be seen in Panels B, C, and D of Fig. 86.7. Therefore,

high prepayment activities lead to much more negatively skewed forward densities.

This result is consistent with the notion that investors in MBS might demand OTM

floors to hedge their potential losses from prepayments. The coefficients of Refi are

more significant at 4- and 5-year maturities because the duration of most of MBS

are close to 5 years.

Our results confirm and extend the findings of Duarte (2008) by showing that

mortgage activities affect the entire forward density and consequently the pricing of

interest rate options across moneyness. While prepayment activities affect the left

tail of the forward densities at intermediate maturities, ARMs activities affect the

right tail of the forward densities at short maturity. Our findings hold even after

controlling for the slope and volatility factors and suggest that part of the USV

factors could be driven by activities in the mortgage markets.

86.5 Conclusion

The unspanned stochastic volatility puzzle is one of the most important topics in the

current term structure modeling. Similar to the stochastic volatility in the equity

options literature, the existence of USV challenges the benchmark in the current

26In results not reported, we find that the nonlinear dependence of the forward densities on the

volatility factor remains the same as well.
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term structure literature, the dynamic term structure models. But it also in part

explains why the practitioners generally apply the HJM type of models for interest

rate derivatives, where sometimes the models are applied in an inconsistent manner

across securities. Unlike the stock options models where the underlying stock price

usually follows a univariate process, it is more challenging to argue that the

stochastic volatilities of yields are not spanned by the existing yield curve factors.

We in this paper review the current literature, which is mostly in support of the USV

using either bonds data or both bonds and derivatives data. We present the results in

Li and Zhao (2006) that the DTSMs have serious difficulty in hedging against the

interest rate caps. We also present the results from Li and Zhao (2009) where they

show nonparametrically both the actual volatility of interest rates and the liquidity

component of the implied volatility affect the derivative prices after controlling for

the yield curve factors. This paper also presents the model developed in Jarrow

et al. (2007), which is quite rich parametrically to capture a spectrum of derivative

prices. We can expect that the USV will have the similar effect on interest rate

derivatives as the stochastic volatility on the equity options literature with many

more issues to be addressed in the future.

Appendix 1: The Derivation for QTSMs

To guarantee the stationarity of the state variables, we assume that x permits the

following eigenvalue decomposition:

x ¼ ULU�1

where L is the diagonal matrix of the eigenvalues that take negative values,

L � diag[li]N, and U is the matrix of the eigenvectors of x, U � [u1u2 . . .
uN]. The conditional distribution of the state variables Xt is multivariate Gaussian

with conditional mean

E XtþDt Xtj½ � ¼ UL�1 F� IN½ �U�1mþ UL�1 F� IN½ �U�1Xt (44.47)

and conditional variance

var XtþDt Xtj � ¼ UYU0½ (44.48)

where F is a diagonal matrix with elements exp(liDt) for i ¼ 1, . . ., N, Y is an

N-by-N matrix with elements

vij
li þ lj

eDt liþljð Þ � 1
� �� �

,

where [vij]N � N ¼ U�1 ∑ ∑0 U0 � 1.
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With the specification of market price of risk, we can relate the risk-neutral

measure Q to the physical one P as follows:

E
dQ

dP
F tj

� �
¼ exp �

ðt
0

z Xsð Þ0dWs � 1

2

ðt
0

z Xsð Þ0z Xsð Þds
� �

, for t � T: (44.49)

Applying Girsanov’s theorem, we obtain the risk-neutral dynamics of the state

variables

dXt ¼ dþ gXt½ �dtþ
X

dWt
Q

where d¼ m�∑ �0,g¼ x�∑ �1, andWt
Q is an N-dimensional standard Brownian

motion under measure Q.
Under the above assumptions, a large class of fixed-income securities can be

priced in (essentially) closed form (see Leippold and Wu 2002). We discuss the

pricing of zero-coupon bonds below and the pricing of caps. Let V(t, t) be the time-t
value of a zero-coupon bond that pays 1 dollar at time T(t ¼ T � t). In the absence

of arbitrage, the discounted value process exp(�Ð 0
t r(Xs)ds)V(t,t) is a Q-martingale.

Thus, the value function must satisfy the fundamental PDE, which requires the

bond’s instantaneous return equals the risk-free rate:

1

2
tr
XX0 ∂2V t; tð Þ

∂Xt∂X
0
t

� �
þ ∂V t; tð Þ

∂X
0
t

dþ gXtð Þ þ ∂V t; tð Þ
∂t

¼ rtV t; tð Þ (44.50)

with the terminal condition V(t, 0) ¼ 1. The solution takes the form

V t; tð Þ ¼ exp �X
0
tA tð ÞXt � b tð Þ0Xt � c tð Þ

h i
,

where A(t), b(t), and c(t) satisfy the following system of ordinary differential

equations (ODEs):

∂A tð Þ
∂t

¼ cþ A tð Þgþ g0A tð Þ � 2A tð Þ
XX0

A tð Þ;

∂b tð Þ
∂t

¼ bþ 2A tð Þdþ g0b tð Þ � 2A tð Þ
XX0

b tð Þ;

∂c tð Þ
∂t

¼ aþ b tð Þ0d� 1

2
b tð Þ0

XX0
b tð Þ þ tr

XX0
A tð Þ

h i
;

with A 0ð Þ ¼ 0N�N;b 0ð Þ ¼ 0N;c 0ð Þ ¼ 0:

Consequently, the yield to maturity, y(t, t), is a quadratic function of the state

variables:

y t; tð Þ ¼ 1

t
X

0
tA tð ÞXt þ b tð Þ0Xt þ c tð Þ

h i
:
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In contrast, in the ATSMs the yields are linear in the state variables, and

therefore the correlations among the yields are solely determined by the correla-

tions of the state variables. Although the state variables in the QTSMs follow

multivariate Gaussian process, the quadratic form of the yields helps to model the

time-varying volatility and correlation of bond yields.

Leippold and Wu (2002) show that a large class of fixed-income securities can

be priced in closed form in the QTSMs using the transform analysis of Duffie

et al. (2000). They show that the time-t value of a contract that has an exponential

quadratic payoff structure at terminal time T, i.e.,

exp �q XTð Þð Þ ¼ exp �X
0
TAXT � b

0
XT � c

� �

has the following form:

C q;Xt; t; Tð Þ ¼ EQ e
�
ðT
t

r Xsð Þds
e�q XTð ÞjF t

0
B@

1
CA:

¼ exp �XtA T � tð ÞXt � b T � tð Þ0Xt � c T � tð Þ	 

: (44.51)

where A(.), b(.), and c(.) satisfy the ODEs (86.4), (86.5), and (86.6) with the initial

conditions A 0ð Þ ¼ A, b 0ð Þ ¼ b and c 0ð Þ ¼ c. The time-t price a call option with

payoff e�q XTð Þ � y
� �þ

at T ¼ tþ t equals

C q; y;Xt; tð Þ ¼ ΕQ e
�
ðT
t

r Xsð Þds
e�q XTð Þ � y
� �þ

jF t

0
B@

1
CA:

¼ ΕQ e
�
ðT
t

r Xsð Þds
e�q XTð Þ � y
� �

1 �q XTð Þ � ln yð Þf gjF t

0
B@

1
CA:

¼ Gq, q �ln yð Þ,Xt, tð Þ � yG0, q �ln yð Þ,Xt, tð Þ,

where Gq1, q2 y;Xt; tð Þ ¼ EQ e
�
ðT
t

r Xsð Þds
e�q1 XTð Þ1 q2 XTð Þ � yf g F tj

2
64

3
75 and can be

computed by the inversion formula

Gq1, q2 y;Xt; tð Þ ¼ c q1;Xt; t; Tð Þ
2

� 1

p

ð1
0

eivyc q1 þ ivq2ð Þ � e�ivyc q1 � ivq2ð Þ
iv

dv: (44.52)
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Similarly, the price of a put option is

P q; y; t;Xtð Þ ¼ yG0,�q ln yð Þ,Xt, tð Þ � Gq,�q ln yð Þ,Xt, tð Þ:

We are interested in pricing a cap which is portfolio of European call options on

future interest rates with a fixed strike price. For simplicity, we assume the face

value is 1 and the strike price is r. At time 0, let t, 2t, . . ., nt be the fixed dates for

future interest payments. At each fixed date kt, the r-capped interest payment is

given by t R k � 1ð Þt, ktð Þ � rð Þþ , where R((k � 1)t, kt) is the t-year floating

interest rate at time (k � 1)t, defined by

1

1þ tR k � 1ð Þt, ktð Þ ¼ q k � 1ð Þt, ktð Þ

¼ ΕQ exp �
ðkt

k�1ð Þt
r Xsð Þds

 !
Fj k � 1ð Þt

 !
:

The market value at time 0 of the caplet paying at date kt can be expressed as

Caplet kð Þ ¼ EQ exp �
ðkt
0

r Xsð Þds
� �

t R k � 1ð Þt, ktð Þ � rð Þþ
� �

¼ 1þ trð ÞEQ exp �
ð k�1ð Þt

0

r Xsð Þds
 !

1

1þ trð Þ � q k � 1ð Þt, ktð Þ
� �þ" #

:

Hence, the pricing of the k-th caplet is equivalent to the pricing of an

(k � 1)t � for � t put struck at K ¼ 1
1þtrð Þ. Therefore,

Caplet kð Þ ¼ G0,�qt lnK,X k�1ð Þt, k � 1ð Þt� �

� 1

K
Gqt,�qt lnK,X k�1ð Þt, k � 1ð Þt� �

: (44.53)

Similarly for the k-th floorlet,

Floorlet kð Þ ¼ �G0, qt �lnK,X k�1ð Þt, k � 1ð Þt� �

þ 1

K
Gqt, qt �lnK,X k�1ð Þt, k � 1ð Þt� �

: (44.54)

Appendix 2: The Implementation of the Kalman Filter

To implement the extended Kalman filter, we first recast the QTSMs into a state-

space representation. Suppose we have a time series of observations of yields of
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L zero-coupon bonds with maturities G ¼ (t1, t2, . . . , tL). Let X be the set of

parameters for QTSMs and Yk ¼ f(Xk,G;X) be the vector of the L observed yields at

the discrete time points kDt, for k ¼ 1, 2, . . . , K, where Dt is the sample interval

(1 day in our case). After the following change of variable,

Zk ¼ U�1 x�1mþ Xk

� �
,

we have the state equation

Zk ¼ FZk�1 þ wk, wk 	 N 0;Yð Þ

where F and Y are first introduced in Eqs. 86.4 and 86.5, and measurement

equation

Yk ¼ dk þ HkZk þ vk, vk 	 N 0;Rvð Þ

where the innovations in the state and measurement equations wk and vk follow
serially independent Gaussian processes and are independent from each other. The

time-varying coefficients of the measurement equation dk and Hk are determined at

the ex ante forecast of the state variables:

Hk ¼
∂f Uz� x�1m,G
� �

∂z
zj ¼ Zk k�1j

dk ¼ f UZk k�1j � x�1m,G
� �� HkZk k�1j þ Bk,

where Zk|k�1 ¼ FZk�1.

In the QTSMs, the transition density of the state variables is multivariate

Gaussian under the physical measure. Thus, the transition equation in the Kalman

filter is exact. The only source of approximation error is due to the linearization of

the quadratic measurement equation. As our estimation uses daily data, the approx-

imation error, which is proportional to 1-day-ahead forecast error, is likely to be

minor. Furthermore, we can minimize the approximation error by introducing

the correction term Bk.
27 The Kalman filter starts with the initial state variable

Z0 ¼ E(Z0) and the variance-covariance matrix P0
Z:

PZ
0 ¼ E Z0 � E Z0ð Þð Þ Z0 � E Z0ð Þð Þ0	 


:

These unconditional mean and variance have closed-form expressions that can

be derived using Eqs. 86.4 and 86.5 by letting Dt goes to infinity. Given the set of

27The differences between parameter estimates with and without the correction term are very

small, and we report those estimates with the correction term Bk.
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filtering parameters, {X, Rv}, we can write down the log-likelihood of observations

based on the Kalman filter K:

log ℒ Y;Xð Þ ¼
XK
k¼1

log f Yk; Yk�1; X;Rvf gð Þ

¼ � LK

2
log 2pð Þ � 1

2

XK
k¼1

log PY
k k�1j




� 1

2

XK
k¼1

Yk � Yk k�1j
� �0

PY
k k�1j

� ��1

Yk � Yk k�1j
� �� �

with Yk�1 is the information set at time (k–1) Dt, and is the time Pk|k � 1
Y (k–1) Dt,

conditional variance of Yk

PY
k k�1j ¼ HkP

Z
k k�1j H

0
k þ Rv;

PZ
k k�1j ¼ FPZ

k�1F
0 þY:

Appendix 3: Derivation of the Characteristic Function

The solution to the characteristic function of log (Lk(Tk)),

c u0; Yt; t; Tkð Þ ¼ exp a sð Þ þ u0log Lk tð Þð Þ þ B sð Þ0Vt

	 

,

a(s) and B(s), 0 � s � Tk satisfy the following system of Riccati equations:

dBj sð Þ
ds

¼ �kkþ1
j Bj sð Þ þ 1

2
B2
j sð Þx2j þ

1

2
u20 � u0
	 


U2
s, j, 1 � j � N,

da sð Þ
ds

¼
XN
j¼1

kkþ1
j ykþ1

j Bj sð Þ þ lJ G u0ð Þ � 1� u0 G 1ð Þ � 1ð Þ½ �,

where the function G is

G cð Þ ¼ exp mkþ1
J cþ 1

2
s2Jc

2

� �
:

The initial conditions are B(0) ¼ 0N�1, a(0) ¼ 0, and kj
k+1 and yj

k+1 are the

parameters of Vj(t) process under ℚ
k+1.
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For any l < k, given that B(Tl) ¼ B0 and a(Tl) ¼ ao, we have the closed-form

solutions for B(Tl+1) and a(Tl+1). Define constants

p ¼ u20 � u0
	 


U2
s, j, q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kkþ1
j

� �2
þ px2j ,

r
c ¼ p

q�kkþ1
j

and d ¼ p

qþkkþ1
j

. Then we have

Bj Tlþ1ð Þ ¼ c� cþ dð Þ c� Bj0

� �

d þ Bj0

� �
exp �qdð Þ þ c� Bj0

� � , 1 � j � N,

a Tlþ1ð Þ ¼ a0 �
XN
j¼1

kkþ1
j ykþ1

j ddþ 2

x2j
ln

d þ Bj0

� �
exp �qdð Þ þ c� Bj0

� �
cþ d

� � !" #

þ l Jd G u0ð Þ � 1� u0 G 1ð Þ � 1ð Þ½ �,

if p 6¼ 0 and Bj(Tl+1)¼ Bj0, a(Tl+1)¼ a0 otherwise. B(Tk) and a(Tk) can be computed

via iteration.
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Abstract

This chapter examines alternative equity valuation models and their ability to

forecast future stock prices. Equity valuation models included Ohlson’s (1995)

Model, Feltham and Ohlson’s (1995) Model, and Warren and Shelton’s (1971)

Model. Five research hypotheses are developed to examine whether different

estimation techniques, earnings measures, and combined forecasting methods

can improve the ability to predict future stock prices. We find that the simulta-

neous equation estimation procedure can produce more accurate future stock

price forecasts than the traditional single equation estimation method in terms of

smaller prediction errors. In addition, the combined forecast method can further

reduce the prediction errors by using combination of individual forecasts.

Empirical evidence also shows that investors can use comprehensive earnings

to more accurately forecast future stock prices in these valuation models.

We use simultaneous equation estimation technique to investigate the stock

price forecast ability of Ohlson’s Model, Feltham and Ohlson’s Model, and

Warren and Shelton’s (1971) Model. Moreover, we use the combined forecast-

ing methods proposed by Granger and Newbold (1973) and Granger and

Ramanathan (1984) to form combined stock price forecasts from individual

models. Finally, we examine whether comprehensive earnings can provide

incremental price-relevant information beyond net income.

Keywords

Ohlson Model • Feltham and Ohlson Model • Warren and Shelton Model •

Equity valuation models • Simultaneous equation estimation • Fundamental

analysis • Financial statement analysis • Financial planning and forecasting •

Combined forecasting • Comprehensive earnings • Abnormal earnings •

Operating earnings • Accounting earnings

87.1 Introduction

In this chapter, we investigate new estimation procedures and combination of forecast

methods of alternative equity valuation models, namely, the Ohlson (1995) Model,

the Feltham and Ohlson (1995) Model (FO Model henceforth), and the Warren and

Shelton (1971)Model (WSModel henceforth). TheOhlsonModel and the FOModel

are valuation models based on information obtained from income statement and

balance sheet, i.e., earnings and book value per share, while the WSModel accounts

for the overall operating and financial environments of the firm. This chapter first uses

simultaneous equation estimation procedures to estimate the information dynamics in

these models and compare their forecast ability of future stock prices. Moreover, we

examine the stock price forecasts ability of the Ohlson and FOModel by using other

forms of earnings. Given the Ohlson Model and FO Model are derived based on the

clean surplus relation (CSR), the earnings or income in CSR should include all

changes in equity during a period except those resulting from investments by
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owners and distributions to owners. The earnings under this concept are closer

to comprehensive income rather than the bottom-line net income that had been

frequently used in previous empirical studies. Given its consistency with the

accounting-based valuation theory, we further investigate the stock price forecast

ability of the Ohlson and FO Model by using the comprehensive income in the

empirical model specification. Finally, we employ forecast combination methods to

integrate the individual stock price forecasts from these models and explore possible

improvement in terms of producing smaller prediction errors.

Our empirical results suggest that the simultaneous equation estimation of the

information dynamics improves the explanatory power of the models. Prior litera-

ture in testing the accounting-based valuation model did not consider the feedback

effect between the variables of interest. In other words, the traditional linear

information dynamics conjectured that the earnings dynamics is an AR(1) process

which is determined by past earnings and other value-relevant information such as

the analyst earnings forecasts. However, following Tsay et al. (2008), we incorpo-

rate the feedback effect between the earnings and value-relevant information vari-

ables, such as analyst earnings forecasts, and improve the predictability of future

stock prices in terms of better forecast accuracy. We find that simultaneous equa-

tion estimation procedure produces smaller mean forecast errors than the single

equation estimation procedure by 5.14 % (3.14 %) on average in our sample period

for the Ohlson (FO) Model. Moreover, with the addition of other accounting

information variables in the WSModel, we find further improvement in forecasting

future stock prices. The future stock price forecasts from the WS Model are smaller

than those predicted by the Ohlson (FO) Model by 5.26 % (2.23 %) annually in our

sample period. By considering the firm’s overall operating and financial environ-

ment, the model produces smaller prediction errors to the previous two models

considering only earnings and book value per share.

Given the future stock price forecasts from these models, we employ forecast

combination methods to integrate these individual forecasts in order to generate

more accurate future stock price forecasts. We find that the combined future

stock price forecasts based on weighted least square regression methods with the

geometric weighting scheme produce smaller prediction errors than individual

forecasts from the Ohlson, FO, and WS Model. The combined forecasts using the

Ohlson (FO) Model with the WS Model generate smaller prediction errors than

the individual forecasts by 7.16 % (4.07 %) annually. These results suggest superior

accuracy of the combined forecast methods compared to the individual forecasts in

terms of future stock price prediction errors. If comprehensive (operating) income

is used in the Ohlson (FO) Model, we find that the prediction errors of future stock

price forecast can be reduced up to 3.30 % (2.44 %) compared to using net income.

Moreover, when comprehensive (operating) income-based Ohlson (FO) Model

forecasts are combined with WS Model forecasts, the reduction in pricing errors

can reach up to 17.85 % (15.96 %). We find that comprehensive income indeed has

incremental price-relevant information beyond bottom-line net income in terms of

generating more accurate stock price forecasts in these valuation models. Our

results provide new evidence in the value relevance of comprehensive income
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and shed light on how the issuance of Statement of Financial Accounting Standard

No. 130, Reporting Comprehensive Income, can help investors better assess the

overall performance of the corporation.

The remainder of this chapter is organized as follows. Section 87.2 provides

literature review in accounting-based valuation models and the financial planning

and forecast models. The theoretical development and empirical implementation

of these models are discussed. Section 87.3 presents the sample selection

criteria, model specification of the linear information dynamics, and the research

hypotheses for the empirical tests. Section 87.4 discusses the empirical results of

individual forecasts and combined forecasts for future stock prices from these

models. Section 87.5 provides the summary of this chapter.

87.2 Literature Review

In this section, we first review the theoretical development and the empirical

assessment of the Ohlson Model and the FO Model. We then review the financial

planning and forecasting model developed by Warren and Shelton (1971). We

also provide the background and prior academic research on the comprehensive

earnings reporting issues. Finally, we will review the combined forecasting

methods proposed by Granger and Newbold (1973), Granger and Ramanathan

(1984), and Diebold and Pauly (1987).

87.2.1 Ohlson Model (1995) and Feltham-Ohlson Model (1995)

The Ohlson Model provides a theoretical framework linking the valuation to the

reported financial statement variables. The traditional dividend discount model

states the following relations:

Pt ¼
X1
t¼1

R�t
f
edtþt

� �
(87.1)

where Pt is the price of the firm’s equity at time t, edtþt is the dividends paid at

time t, and Rf is the risk-free rate plus one. The restrictive nature of this relation is

that Eq. 87.1 does not relate the reported financial statement numbers to firm value.

In Eq. 87.1, the value depends on the accounting data that influences the present

value of expected future dividends. Since this distribution of wealth eventually

converge with the creation of wealth, the Ohlson Model considers how the current

value depends on accounting measures of wealth creation process. The Ohlson

Model introduced the clean surplus relations (CSR) assumption requiring that

income over a period equals net dividends and the change in book value of equity.

CSR ensures that all changes in shareholder equity that do not result from trans-

actions with shareholders (such as dividends, share repurchases, or share offerings)

are reflected in the income statement. In other words, CSR is an accounting system
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recognizing that the periodical value created is distinguished from the value

distributed.

Let xt denote the earnings for period (t � 1, t), yt denote the book value at time t,
and xt

a ¼ xt � (Rf � 1)yt � 1 denote the abnormal earnings at time t. The clean

surplus relations yt ¼ yt � 1 + xt � dt imply that

Pt ¼ yt þ
X1
t¼1

R�t
f Et exatþt

� �
(87.2)

the firm’s value is equal to its book value adjusted for the present value of expected

future abnormal earnings. The variables on the right-hand side of (87.2) are still

forecasts, not past realizations. To deal with this problem, the Ohlson Model

introduced the information dynamics to link the value to the contemporaneous

accounting data. Assume exat
� �

t�1
follows the stochastic process

exatþ1 ¼ oxat þ vt þee1, tþ1

evtþ1 ¼ gvt þee2, tþ1
(87.3)

where vt is value-relevant information other than abnormal earnings and 0 � o,
g � 1. Based on Eqs. 87.2 and 87.3, the Ohlson Model demonstrated that the value

of the equity is a function of contemporaneous accounting variables as follows:

Pt ¼ yt þ â1xat þ â2vt (87.4)

where â1 ¼ ô= Rf � ô
� 	

and â2 ¼ Rf = Rf � ô
� 	

Rf � ĝ
� 	

. Or equivalently,

Pt ¼ k ’xt � dtð Þ þ 1� kð Þyt þ a2vt (87.5)

where k ¼ Rf � 1
� 	

ô= Rf � ô
� 	

and ’ ¼ Rf/(Rf � 1). Equations 87.4 and 87.5

imply that themarket value of the equity is equal to the book value adjusted for (i) the

current profitability as measured by abnormal earnings and (ii) other information

that modifies the prediction of future profitability. One major limitation of the

Ohlson Model is that it assumed unbiased accounting. In Eq. 87.3, since both

abnormal earnings and other information follow an AR(1) process, over time their

averages are zero and thus the average abnormal earnings are zero as well. If given

biased (conservative) accounting, the average abnormal earnings will be nonzero.

Consequently, the future growth in book value will become an important factor.

This motivated Feltham and Ohlson (1995) to introduce additional dynamics to deal

with this issue.

The FO Model analyzes how firm value relates to the accounting information

that discloses the results from both operating and financial activities. For the

financial activities, there are relatively perfect markets and the accounting measures

for book value and market value of these assets are reasonably close. However for

the operating assets, accrual accounting usually results in difference between the

book value and the market value of these assets since they are not traded in the

market. Accrual accounting for the operating assets consequently results in
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discrepancy between their book value and market value and thus influences the

goodwill of the firm. Similar to the Ohlson Model, the information dynamics in the

FO Model is

eoxatþ1 ¼ o10 þ o11ox
a
t þ o12oat þ o13v1t þee1tþ1

foatþ1 ¼ o20 þ o22ox
a
t þ o24v2t þee2tþ1

ev1tþ1 ¼ o30 þ o33v1t þee3tþ1

ev2tþ1 ¼ o40 þ o44v2t þee4tþ1

(87.6)

where oxt
a is the abnormal operating earnings, oat is the operating assets, v1t and v2t

are the other value-relevant information variables for firm at time t, respectively.
The derived implied pricing function is

Pt ¼ yt þ l̂0 þ l̂1oxat þ l̂2oat þ l̂3v1t þ l̂4v2t (87.7)

where

l̂0 ¼
1þ rð Þ

ô10 1þ r � ô22ð Þ 1þ r � ô33ð Þ 1þ r � ô44ð Þ
þô12ô20 1þ r � ô33ð Þ þ ô13ô30 1þ r � ô22ð Þ
þô14ô40 1þ r � ô44ð Þ

2
4

3
5

r 1þ r � ô11ð Þ 1þ r � ô22ð Þ 1þ r � ô33ð Þ 1þ r � ô44ð Þ
l̂1 ¼ ô11

r 1þ r � ô11ð Þ
l̂2 ¼ 1þ rð Þô12

1þ r � ô11ð Þ 1þ r � ô22ð Þ
l̂3 ¼ 1þ rð Þô13

1þ r � ô11ð Þ 1þ r � ô33ð Þ
l̂4 ¼ 1þ rð Þô14

1þ r � ô11ð Þ 1þ r � ô44ð Þ

(87.8)

Or equivalently,

Pt ¼ k fxt � dtð Þ þ 1� kð Þyt þ â2oat þ l̂3v1t þ l̂4v2t (87.9)

where k ¼ Rf � 1
� 	

ô11= Rf � ô11

� 	
and f ¼ Rf/(Rf � 1). The implied valuation

function in Eqs. 87.7 and 87.9 is a weighted average of the firm’s operating

earnings, the firm’s book value, and the other value-relevant information with an

adjustment for the understatement of the operating assets resulting from accrual

accounting. The major contribution of the FO Model is that it considered the

accounting conservatism in the equity valuation.

A complementary study by Lehman (1993) also examined the similar problem in

the computation share value. Essentially this chapter aimed at identifying cash

flows more fundamental than dividends in the computation of the present values.

Specifically, the cash flows that were the focus of this chapter have the following

properties: (i) Similar to dividends, current prices of the shares are the risk-adjusted
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present value of the cash flows. (ii) Unlike the dividends, these cash flows have to

be invariant to the changes in dividend policy. Lehman (1993) provided three

building blocks to identify cash flows that are more fundamental than dividends

and with the property that they are invariant to the changes in the dividend policy.

The first building block is to transform the present value computation using the

future dividends into a relation using future values of arbitrary cash flows.

The second building block is the restriction of the changes in the dividend policy

to be zero net present value alteration of future dividend stream that leave the risk

premium of the firm unaffected. In other words, this chapter made the assumption

that only the changes in investment and financial policies would alter the riskiness

of the firm but not the changes in the dividend policy. The final building block is the

translation of economic earnings into accounting earnings that can be obtained from

the financial statement. Essentially this assumption states that the accounting

earnings used in computing the present value of the shares have to include all

relevant capital gains and losses from investment associated with dividend policy.

Lehman (1993) is different from the Ohlson Model and FO Model in determin-

ing the user cost of capital. Lehman (1993) generalizes the assumption that

expected earnings are linearly related to lagged earnings, dividends, and book

value. Although it also imposes CSR, the earnings are not confined to accounting

earnings. Moreover, Lehman (1993) also differs from the FO Model in the speci-

fication of the book value of equity. It uses an aggregate book value approach which

does not separate the effects of net financial assets from the net operating assets. In

the absence of conservative accounting, there will be no differences between two

valuation methods given that book value of equity is equal to the market value of

equity. However, given that the current GAAP is biased towards conservative

accounting, the valuation implications on equity shares are different between the

two models. Finally, Lehman (1993) relaxes Ohlson/FO assumption that changes in

dividend payments change next period’s earnings by one plus the risk-free discount

rate by using a general risk-adjusted rate to discount dividends.

The line of research in empirically testing the Ohlson Model and FO Model has

been growing large since its introduction. Previous empirical literature focused on

either the value-relevant information variables (Abarbanell and Bushee 1997;

Myers 1999; Dechow et al. 1999; Liu et al. 2002; Begley and Feltham 2002) or

the dynamics of the earnings process (Morel 2001; Callen and Morel 2001).

However, none of them documented empirical validity of the Ohlson Model. Callen

and Segal (2005) showed that the nested Ohlson Model is rejected in favor of the

FO Model but it did not improve the predictability power of the future stock prices.

Based on these previous studies, we will examine whether the simultaneous equa-

tion approach in estimating the information dynamics can improve the predictabil-

ity power of the Ohlson and FO Model.

The other potential cause of the lack of empirical validity of the residual income

valuation models is the use of net income as the earnings measure in the linear

information dynamics. Given these models are based on the clean surplus relation,

the earnings measure should include all changes in equity except those resulting

from investments by owners and distributions to owners. Consequently, the
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determination of stock price in the valuation functions of Eqs. 87.4 and 87.7 cannot

be complete unless the earnings include all the value-added activities in the firm

(Linsmeier et al. 1997a). Comprehensive income is defined as the change in equity

(net assets) of a business enterprise during a period from transactions and other

events and circumstances from nonowner sources (Statements of Financial

Accounting Concepts No. 6, Elements of Financial Statements, 1985). Accounting
standards in the USA sometimes allow nonowner changes in asset and liabilities,

such as foreign currency translation adjustments, available-for-sale marketable

securities adjustments, and minimum required pension liability adjustments, to

bypass the income statement. The exclusion of these value-relevant items in

financial reporting might mislead the users of financial statement information in

assessing the value of the firm.

The debate of whether the firms should report comprehensive income or more

streamlined bottom-line income can be traced back to the 1930s (Brief and Peasnell

1996). The supporters of Reporting Comprehensive Income argue that it captures

all sources of value creation within a firm. Comprehensive income allows the users

of the financial statement information to consider all relevant factors for earnings

forecasting and firm value assessment. It also grants less leeway for the managers to

engage in earnings management which could potentially distort the actual perfor-

mance of the firms.1 On the other hand, the opponents to the comprehensive income

reporting point out that it includes many items that are transitory in nature which are

not representative of the core operation of the firms. The inclusion of these

nonrecurring and extraordinary items hinders income measure to reflect the firm’s

long-term cash flow prospects (Dhaliwal et al. 1999). It is also argued that these

items add noises to reported earnings and make it difficult for forecasts. The users

of the financial statements should be able to focus on a single measurement that

summarizes all the value-relevant information without much manager’s discretion

in reporting this figure.2

The debate of whether firms in the USA should employ comprehensive income

reporting led to the issuance of Statement of Financial Accounting Standard

No. 130 (SFAS 130), Reporting Comprehensive Income, by Financial Accounting

Standards Board. SFAS 130 requires firms to report comprehensive income in their

primary financial statements. In the pre- and post-SFAS 130 era, there were many

studies examining the value relevance of this requirement to report comprehensive

income. Cheng et al. (1996) evaluate the usefulness of different earnings definition

and find that the conventional income measures such as operating income and net

income provide better explanatory power for residual security returns than com-

prehensive income. Dhaliwal et al. (1999) examine the value relevance of the major

three components in comprehensive income required by SFAS 130. Their results

1Previous literatures in advocating comprehensive income reporting include Robinson (1991),

Johnson et al. (1995), Beresford et al. (1996), and Smith and Reither (1996).
2Previous literatures in advocating current operating performance concepts of reporting income

include Kiger and Williams (1977), Black (1993), Brief and Peasnell (1996), and Holthausen and

Watts (2001).
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suggest that only the marketable securities adjustment item improves the income

and returns association. More importantly, they fail to find support to show com-

prehensive income is a better measurement for firm performance than net income

and raise questions about the reporting requirement in SFAS 130. Biddle and Choi

(2006) on the other hand find that comprehensive income outperforms other income

measure in explaining equity returns and predicting future income and operating

cash flows. Chambers et al. (2007) argue that prior studies in the pre-SFAS 130 era

suffer from the measurement error problem in calculating the comprehensive

earning. These authors show that the aforementioned three major components in

the comprehensive income are indeed priced by the market in the post-SFAS

130 era when these items are specifically reported by requirement. In addition to

the US findings, there are also many other international studies regarding the

value relevance of comprehensive income.3 The results, however, are mixed

because of the different local accounting standards and time period within which

the requirements are implemented.

87.2.2 Warren and Shelton Model (1971)

In addition to the accounting-based valuation model discussed above, operational

financial planning models can also be used to forecast stock prices. One of such

mathematical models is the Warren and Shelton (1971) Model. The WSModel uses

a simultaneous equation approach to analyze important operating and financial

variables. The WS Model considers the overall operational and financial environ-

ment of the firm. It is flexible so that it can be adapted and extended to meet various

circumstances. The model accounts for the interrelations between investment

activity, financing activity, dividend policy, and the production decision of the

firm and their influences on the market value of the firm.

The critical inputs in the WS Model are the sales growth rate forecast and

several operating ratios. The WS Model has four segments including 20 equations

simultaneously determining 20 unknowns. The four segments are corresponding to

the firm’s sales, investments, financing, and return to investment concepts in the

financial theory. The model first generates the sales and earnings forecasts given the

historical data. Further, the model calculates the total assets required to support

these sales and earnings forecasts and the venue through which these assets are to

be financed. Finally, given these operation and financing decisions, the models

determine the stock per share data.

Essentially the WS Model generates the price per share estimate from the

assumptions about the firm’s future growth in revenue, its financial and operating

policies, and the overall economic environment. The model provides a valuation

3International evidence of the debate of comprehensive income reporting in countries such as UK

and New Zealand can be found in O’Hanlon and Pope (1999), Cahan et al. (2000), Brimble and

Hodgson (2007), and Lin (2006).
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framework that includes many different parameter inputs which generate a wide

range of estimates that can be presented statistically by a distribution with a

mean and variance. The user of the model can easily examine the implication of

alternative underlying firm-level and economy-wide environment changes on the

equity share prices.

87.2.3 Forecast Combination

Forecast evaluation is of interest in many areas of empirical finance research, such as

market efficiency (Fama 1970, 1991), volatility of the observed asset returns (Shiller

1979; LeRoy and Porter 1981; Fama and French 1988), and forward exchange rates

(Hansen and Hodrick 1980). Borrowing from Diebold and Lopez (1996) and Yee

(2008), we consider two groups of combining forecast methods, i.e., the variance-

covariance method and the regression method. Bates and Granger (1969) first

proposed the variance-covariance method for forecast combination. Denote the

one-period-ahead stock price forecast at time t, ŷit, tþ1 , from model i∈{1,2}; the

combined forecast can be formed as the weighted average between the two forecasts:

ŷct, tþ1 ¼ oŷ1t, tþ1 þ 1� oð Þŷ2t, tþ1

which is an unbiased forecast if the weights sum up to unity. Moreover, the

composite forecast error has the same relation as the combined forecast

ect, tþ1 ¼ oe1t, tþ1 þ 1� oð Þe2t, tþ1

and the variance of the combined forecast

s2c ¼ o2 þ s2
11
þ 1� oð Þ2s2

22
þ 2o 1� oð Þs12

where s11
2 , s22

2 , and s12
2 are the variance of the forecast from model one, model two,

and their covariance. The optimal weight to minimize the forecast error o can be

derived as

o ¼ s222 � s12
s2

11
þ s222 � 2s12

which is determined by the variances of each individual forecast and the covariance

between them. The asymptotic properties of the optimal weights are

lim
s2
11
!1

o ¼ 0 lim
s2
22
!1

o ¼ 1 lim
s2
11
!0

o ¼ 1 lim
s2
22
!0

o ¼ 0

Therefore, the variance-covariance method places larger weight on the more

reliable forecast in forecast combination.
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The regression method in forecast combination suggests a regression model in

which the realization of yt+1 is regressed on the past forecasts of yt+1 to determine

the optimal weights (Chong and Hendry 1986; Fair and Shiller 1989, 1990):

ytþ1 ¼ a0 þ a1ŷ1t, tþ1 þ a2ŷ2t, tþ1 þ et, tþ1 (87.10)

Granger and Ramanathan (1984) showed that the optimal weight determined in

the variance-covariance method has a regression interpretation as the coefficient

vector in regression model (87.10) of a linear projection of yt+1 onto the forecasts

yi
tþ1

subject to the constraints that the weights ai sum to unity and the exclusion of

the intercept term. However, a number of researchers have recognized that the true

but unknown variance-covariance matrix in determining the optimal weight o is not

fixed over time. Therefore, the ensuing research in this literature focused on the

time-varying combining weights (Granger and Newbold 1973; Diebold and Pauly

1987) which can be achieved by using the technique of weighted least square

(WLS). Diebold and Pauly (1987) proposed a WLS estimator:

âWLS ¼ X0W0Xð Þ�1
X0WY

where the weighting matrix can be considered for the following schemes:

1. Equal weight (standard regression-based combining): wtt ¼ 1 for all t. (W1)

2. Linear weighting: wtt ¼ t for all t. (W2)

3. Geometric weighting: wtt ¼ lT � t, 0 < l � 1, or wtt ¼ lt, l > 1. (W3)

4. tl (t-lambda): wtt ¼ tl, l � 0. (W4)

The geometric weighting has the appealing property that the weights increase at

an increasing rate as we get closer to the present time. This yields heavy weighting

on the more recent observation which might provide better accuracy for forecast

values. Moreover, the geometric weighting can provide a weighting scheme that

dies out fairly quickly which might be useful in modeling forecasts under an

unstable environment. Similarly, the t-lambda (tl) specification can also produce

weights that die out quickly, but it has an even more appealing fundamental

characteristic that its weighting scheme can increase at an either increasing or

decreasing rate as we get closer to the present time. When l ¼ 0, one obtains the

constant weighting scheme in case (1), while when l ¼ 1, the linear weighting

scheme in case (2) emerges.

The forecast combination equation with two primary individual forecasts can be

written as

Y
T�1ð Þ

¼ f
T�3ð Þ

a
3�1ð Þ

þ e
T�1ð Þ

where

ai ¼ Pi tð Þ ¼ pi0 þ pi1tþ � � � þ pig, i ¼ 0, 1, 2
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ft ¼ (1,ft
1,ft

2), a¼ (a0,a1,a2) ’, and f is the matrix with tth row ft. The time-varying

combining weights are deterministic nonlinear polynomial functions of time. The

advantage of this regression-based deterministically time-varying parameters

model over the weighted least square approach is that this method can explicitly

model any parameter evolution in the forecast combination equation. This approach

can also project the evolution in when the forecasts are combined. The general

polynomial and unrestricted regression-based combination is the following:

yt ¼ p00 þ p01t
� 	þ p10 þ p11t

� 	
t�1

f 1t þ p20 þ p21t
� 	

t�1
f 2t

¼ p00 þ p01tþ p10t�1f
1
t þ p11 tt�1f

1
t

� 	þ p20t�1f
2
t þ p21 tt�1f

2
t

� 	 (87.11)

Similarly, the forecast can be obtained after estimating the parameters p̂i0 and p̂
i
1:

tŷtþ1 ¼ p̂00 þ p̂10 tþ 1ð Þ� 	þ p̂10 þ p̂11 tþ 1ð Þ� 	
t
f 1tþ1

þ p̂20 þ p̂21 tþ 1ð Þ� 	
t
f 2tþ1 (87.12)

The weighted least square approach can be further combined with the time-

varying parameters to determine the optimal weight in the forecast combination

equation. For example, one can use geometric weighting scheme lT�t to construct

the weighting matrix W and then estimate the parameters in Eq. 87.11. The

estimated parameters p̂i0 and p̂i1 are then used in Eq. 87.12 to compute the forecast

values. We will explore more possible combination of different weighting schemes

and the time-varying parameters model to examine the combination of primary

individual forecasts.

87.3 Data and Methodology

In this section, we first introduce the sample selection criteria. Then we present the

research hypotheses and model specifications for the empirical tests discussed in

the next section.

87.3.1 Data

The data used in this chapter is obtained from the intersection of the following three

data sets between 1980 and 2007: annual Compustat for historical accounting

data, monthly Center for Research in Security Prices (CRSP) for stock returns, and

analyst forecast file from I/B/E/S. The following Compustat data items are used to

construct the variables required in the empirical analysis in this chapter: cash and cash

equivalent (# 1), total assets (# 6), long-term debt (# 9), interest expense (# 15),

investments and advancements (# 32), debt in current liabilities (# 34), interest

income (# 62), preferred shares (# 130), short-term investments (# 193), total
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liabilities (# 181), and notes payable (# 206). Moreover, the book value per share and

price data are obtained from Compustat as well. For the Ohlson Model, the data

required are already available from the data obtained from the aforementioned

sources. However, for empirically testing the FO Model, further distinction between

the net operating assets and the net financial assets, and between the operating earnings

and the financial earnings, has to be conducted. As discussed previously, the FOModel

assumes that the conservative accounting only applies to the operating assets while

financial activities are all zero net present value investments. Consequently, only

operating assets generate the differences between their book value and the market

value which is the goodwill. However, neither theory nor the empirical rules demon-

strate how to distinguish between the financial and operating assets. We follow the

procedure outlined in Penman (2000) and Callen and Segal (2005) to calculate the

operating assets and the financial assets:

Financial Assets ¼ Cash and Cash Equivalent # 1ð Þ þ Investments and Advancements # 32ð Þ
þ Short� Term Investments # 193ð Þ

Financial Liabilities ¼ Long� Term debt # 9ð Þ þ Debt in Current Liabilities # 34ð Þ
þ Notes Payable # 206ð Þ

Operating Assets ¼ Total Assets # 6ð Þ � Financial Assets

Operating Liabilities ¼ Preferred Shares # 130ð Þ þ Total Liabilities # 181ð Þ
� Financial Liabilities

Net Operating Assets ¼ Operating Assets� Operating Liabilities

Net Financial Assets ¼ Financial Assets � Financial Liabilities

We also use comprehensive (operating) earnings in the linear information

dynamics and examine how it affects the accuracy in forecasting future stock

prices. SFAS 130 is effectively adopted in 1998 before which firms were not

required to report comprehensive income. We follow Cheng et al. (1993), Dhaliwal

et al. (1999), and Biddle and Choi (2006) to measure the comprehensive income.

We did not use the actual reported comprehensive income given the lack of

consistency in reporting of firms in our sample period.4 The definition of compre-

hensive income by SFAS 130 is the net income adjusted for “other comprehensive

income” items. These items include (1) the change in the balance of unrealized

and losses on available-for-sale marketable securities (MSA), (2) the change in

cumulative foreign currency translation adjustments (RECTA), and (3) the change

in additional minimum pension liability in excess of unrecognized prior service

costs (PENADJ). All these variables are scaled by the beginning-of-period market

value of equity and they are calculated by using the Compustat data.MSA andRECTA

4In the post-SFAS 130 periods, Compustat has not yet completely disclosed all components in

comprehensive income. Currently, Compustat only reports some of the items related to compre-

hensive income and these data are only complete after year 2001. Given that our empirical tests

require sufficient time series to conduct forecasting, we employ the measurement methodology in

Cheng et al. (1993) and Dhaliwal et al. (1999) to estimate comprehensive income.
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are items marketable securities adjustment and Retained Earnings � Cumulative
Translation Adjustment obtained directly from Compustat. PENADJ is calculated as
Pension-Additional Minimum Liability (PADDML) � Pension-Unrecognized Prior
Service Cost (PCUPSO). The comprehensive income defined in SFAS 130, NI130, is
equal to NI+MSA+RECTA+PENADJ:

Comprehensive Income x130ð Þ ¼ Net Income # 172ð Þ þMSA # 238ð Þ
þ RECTA # # 230ð Þ þ PENADJ # 297� # 298ð Þ

Given the adjustments in calculating the comprehensive income, we further

define the comprehensive operating income (ox130) which is used in the information

dynamics of the FO Model. Following Nissim and Penman (2001), we define the

comprehensive operating income as follows:

Comprehensive Operating Income ox130ð Þ ¼ Comprehensive Income x130ð Þ
þ Comprehensive Net Financial Expenses NFEð Þ �Minority Interest in Income # 49ð Þ

where

Comprehensive Net Financial Expenses (NFE)
¼ Core Net Financial Expenses (Core NFE) + Unusual Financial Expenses (UFE)
¼ After-Tax Interest Expense (# 15�(1-marginal tax rate5)) + Preferred Dividends

(# 19) – After-Tax Interest Income (# 62�(1-marginal tax rate)) + Change in

MSA (Lag # 238 – # 238)

Several other variables used in this chapter are discussed below. The earning

used in our empirical analysis is the earnings from the continued operations

obtained from I/B/E/S. We follow Callen and Segal (2005) to use the

earnings reported in the I/B/E/S because of their comparability with the analyst

earnings forecasts. Moreover, the interest rate on debt is computed as the

interest expense (DATA 15) divided by the average financial liabilities. The cost

of equity capital is calculated by the Fama-French three-factor model and the

annualized 3-month treasury bill rate. Finally, we exclude the financial institution

(SIC 6000) from the sample because of their minimal level of operating assets

and the additional regulatory requirements. Observations with market value of

equity less than $10 million, with negative operating and financial assets

(liabilities), and with negative net operating and financial earnings are excluded

as well. Finally, firms whose empirical variables are less than two firm years are

deleted.

5Borrowing from Nissim and Penman (2001), the marginal tax rate is the top statutory federal tax

rate plus 2 % average state tax rate. For our sample periods, the top statutory federal tax rate was

46 % in 1979–1986, 40 % in 1987, 34 % in 1988–1992, 35 % in 1993–1999, 40 % in 2000–2002,

and 35 % in 2003–2008.
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87.3.2 Research Hypotheses

Following Dechow et al. (1999) and Callen and Segal (2005), the empirical works in

testing the Ohlson Model and FO Model employ the analyst earnings forecast to be

the proxy for the other value-relevant information variable. The FO Model further

supplements the Ohlson Model with the adjustment for conservative accounting

towards which US GAPP is biased. By using the data in the US market, the FO

Model is expected to produce better stock price forecast accuracy in terms of smaller

prediction errors. As a result, we formulate our first testable hypothesis as follows:

H10 The Feltham and Ohlson (1995)Model provides more accurate future stock price
forecasts, in terms of smaller mean forecast errors, than the Ohlson (1995) Model.

The use of analyst earnings forecasts is commonly used by the practitioner as well

since they capture the forward-looking estimation of the performance of the firm.

Should one use the analyst earnings forecasts to predict the future earnings, it is

possible that there exists a relation between the two variables. Moreover, for the FO

Model, it is also possible that there exist feedback relations of the operating earnings

and operating assets with the short-term and long-term analyst earnings forecasts. As

a result, we follow Tsay et al. (2008) to use a simultaneous equation approach to

estimate the linear information dynamics in both the OhlsonModel and FOModel. By

employing the simultaneous equation estimation in the linear information dynamics,

we expect to capture the interaction of the future-period earnings with the current-

period analyst earnings forecasts. We conjecture that the earnings forecasts influence

the future-period earnings and thus the valuation of the equity. At the same time, the

current-period earnings also affect the earnings forecasts produced by the analysts. It is

the interrelationships between these variables that determine the fundamental value of

the equity shares. Thus, we develop our second testable hypothesis as follows:

H20 Simultaneous equation estimation of the linear information dynamics gener-
ates more accurate future stock price forecasts, in terms of smaller mean forecast
errors, than single equation estimation in both the Ohlson (1995) Model and
Feltham and Ohlson (1995) Model.

In addition to the Ohlson Model and FO Model discussed above, we next focus

on the stock price forecasts ability of the WS Model. The WS Model uses

a simultaneous equation approach to forecast future stock price by considering

both operating and financing decision of the firms. The WS Model is more com-

prehensive than the residual income valuation models because it accounts for the

interrelations between investment activity, financing activity, dividend policy, and

the production decision of the firm. Given its flexibility, the WS Model is expected

to better predict future stock prices than the Ohlson/FO Model discussed previ-

ously. Thus, our third testable hypothesis is the following:

H30 The Warren and Shelton (1971) Model can generate more accurate future
stock price forecasts, in terms of smaller mean forecast errors, than both the Ohlson
(1995) Model and Feltham and Ohlson (1995) Model.
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After considering the future stock price forecasts from these valuation models, we

further investigatewhether they can be combined to formmore accurate forecasts.We

thus employ the combined forecast methods (Granger and Newbold 1973; Granger

and Ramanathan 1984; Diebold and Pauly 1987) to examine whether forecast com-

bination is more accurate than individual forecasts in terms of mean forecast errors.

Therefore, the fourth testable hypothesis in this chapter is the following:

H40 The combination of individual forecasts from the Ohlson Model/Feltham-
Ohlson Model and the WS Model can generate more accurate future stock price
forecasts, in terms of smaller mean forecast errors, than each individual forecasts.

Finally, we investigate whether comprehensive (operating) earnings can provide

incremental price-relevant information beyond bottom-line earnings. We employ the

comprehensive (operating) earnings in the linear information dynamics of the

Ohlson Model/Feltham-Ohlson Model and examine its effects on the future stock price

forecasts. These forecasts are further combined with the WS Model forecasts and their

forecast accuracy is examined. Thus, the fifth testable hypothesis can be stated as follows:

H50 Using comprehensive earnings as the earnings measure in the linear informa-
tion dynamics of the Ohlson Model and Feltham-Ohlson Model can generate more
accurate future stock price forecasts, in terms of mean forecast error, than bottom-
line earnings as the earnings measure.

87.3.3 The Model Specifications

In this section, we propose two sets of the linear information dynamics in the Ohlson

Model and FO Model. The estimated coefficients from these information dynamics

are further used in the valuation function to forecast future stock prices. The first set of

specifications includes the single equation and the simultaneous equation estimation

with the analyst forecast of earnings in the linear information dynamics of the Ohlson

Model. The single equation approach specified in this set is essentially the model

tested in Dechow et al. (1999). Moreover, as Tsay et al. (2008) stated that there are

feedback relations between the other value-relevant information and the earnings, we

further employ the simultaneous equation linear information dynamics. More specif-

ically, we examine whether the feedback effect between the current earnings, analyst

forecasts, and the book value improves the predictability of the model.

1. Model Set I: In the first model specification, we test the Ohlson Model with the

other value-relevant information variable. This variable essentially summarizes

information that is captured in a firm’s stock because it can predict future abnormal

earnings but is not yet reflected in the financial statements. Here we test a modified

version of Dechow et al. (1999) model in which the other value-relevant informa-

tion variable is the analysts’ earnings forecasts. The linear information dynamic is

exai, tþ1 ¼ o10 þ o11x
a
i, t þ o12vi, t þeei1, tþ1

evi, tþ1 ¼ o20 þ o22vi, t þeei2, tþ1
(87.13)
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where exai, tþ1 is the abnormal earnings of firm i at time t, and ni,t is the difference
between the conditional expectation of abnormal earnings for firm i at

time period t+1 based on all available information and the expectation

of abnormal earnings, i.e., vi, t ¼ Et exai, tþ1

h i
� o11x

a
i, t . Following Dechow

et al. (1999), the period t conditional expectation of period t+1 earnings is the

median consensus analyst forecast of period t+1 earnings denoted by ft, i.e., Et

exai, tþ1

h i
¼ f ai, t ¼ f i, t � ryi, t, where fi,t is the median consensus analyst earnings

forecasts of next year’s earnings measured at the first month after the publication

of the annual financial report. Consequently, the other value-relevant informa-

tion can thus be written as vi,t ¼ fi,t
a � o11xi,t

a .

The simultaneous equation specification of the linear information dynamic

on the other hand is

exai, tþ1 ¼ o10 þ o11x
a
i, t þ o12vi, t þeei1, tþ1

evi, tþ1 ¼ o20 þ o21x
a
i, t þ o22vi, t þeei2, tþ1

(87.13)

where the coefficient o21 represents the feedback effect from current-period

abnormal earnings to next-period analyst earnings forecasts. Given the

specification of the information dynamics in Eqs. 87.12 and 87.13, the implied

valuation function can be written as

Pi, t ¼ yi, t þ b̂0 þ b̂1x
a
i, t þ b̂2vi, t (87.14)

where the estimated coefficients are

b̂0 ¼
1þ r̂ i, t
� 	

ô10 1þ r̂ i, t � ô22

� 	þ ô12ô20

� �

r̂ i, t 1þ r̂ i, t � ô11

� 	
1þ r̂ i, t � ô22

� 	

b̂1 ¼
ô11

1þ r̂ i, t � ô11

� 	

b̂2 ¼
1þ r̂ i, t
� 	

ô12

1þ r̂ i, t � ô11

� 	
1þ r̂ i, t � ô22

� 	

and r̂ i, t is the cost of equity capital for firm i at time t. Or equivalently,

Pi, t ¼ k ’xi, t � di, t
� 	þ 1� kð Þyi, t þ b̂2vi, t (87.15)

where k ¼ r̂ i, tô11= 1þ r̂ i, t � ô11

� 	
and ’ ¼ 1þ r̂ i, t

� 	
=r̂ i, t:

In the second set of the model specification, we test the FO Model with single

equation and simultaneous equation linear information dynamics. The FOModel

argues that it is important to separate the financial assets and the operating

assets in the valuation function since only operating assets generate goodwill.
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The FOModel considers the practice of accrual accounting and how it influences

the equity valuation.

2. Model Set II: The single equation linear information dynamics in the FO Model

is the following:

eoxai, tþ1 ¼ o10 þ o11ox
a
i, t þ o12oai, t þ o13v1i, t þee1i, tþ1

foaai, tþ1 ¼ o20 þ o22oai, t þ o24v2i, t þee2i, tþ1

ev1i, tþ1 ¼ o30 þ o33v1i, t þee3i, tþ1

ev2i, tþ1 ¼ o40 þ o44v2i, t þee4i, tþ1

(87.16)

and the simultaneous linear information dynamics is

eoxai, tþ1 ¼ o10 þ o11ox
a
i, t þ o12oai, t þ o13v1i, t þ o14v2i, t þee1i, tþ1

foaai, tþ1 ¼ o20 þ o21ox
a
i, t þ o22oai, t þ o23v1i, t þ o24v2i, t þee2i, tþ1

ev1i, tþ1 ¼ o30 þ o31ox
a
i, t þ o32oai, t þ o33v1i, t þ o34v2i, t þee3i, tþ1

ev2i, tþ1 ¼ o40 þ o41ox
a
i, t þ o42oai, t þ o43v1i, t þ o44v2i, t þee4i, tþ1

(87.17)

where oxi,t
a is the abnormal operating earnings for firm i at time t, and oai,t is the

operating assets for firm i at time t. Moreover, the value-relevant information

variables v1i,t and v2i,t are the growth in expected operating earnings and

the expected growth in operating assets, respectively. The expected operating

earnings are measured as the difference between the median consensus analyst

earnings forecast for next year and the expected net interest revenue (product of

end-of-current-year financial liabilities and the interest on debt). The growth in

expected operating earnings is defined as the expected change in operating earnings

divided by operating assets, i.e., v1i, t ¼ Et D eoxtþ1½ �=oat ¼ Et eoxtþ1 � oxt½ �=oat ,
where the current-period operating earnings oxt are calculated as actual earnings

reported by the I/B/E/S minus the interest revenue (product of beginning-of-

current-year financial liabilities and the interest on debt). The expected growth in

net operating asset is defined as the change in expected operating asset divided by

the operating asset, i.e., v2i, t ¼ Et D eoatþ1½ �=oat. Following Liu and Ohlson (2000),
we use the analyst earnings forecasts of long-term earnings growth rates as a proxy

for the expected growth in net operating assets.6

Given the specification of the information dynamics in Eqs. 87.16 and 87.17, the

implied valuation function is

Pi, t ¼ yi, t þ l̂0 þ l̂1oxai, t þ l̂2oai, t þ l̂3v1i, t þ l̂4v2i, t (87.18)

6The long-term growth forecast generally represents an expected increase in operating earnings

over the company’s next full business cycle. Usually, these forecasts refer to a period of between

3 and 5 years. Thomson Financial recommends the median value for long-term growth forecast

rather than the mean. The median value is less affected by outlier forecasts.

2418 H.-Y. Chen et al.



where

l̂0 ¼
1þ r̂ i, t
� 	 ô10 1þ r̂ i, t � ô22

� 	
1þ r̂ i, t � ô33

� 	
1þ r̂ i, t � ô44

� 	
þô12ô20 1þ r̂ i, t � ô33

� 	þ ô13ô30 1þ r̂ i, t � ô22

� 	
þô14ô40 1þ r̂ i, t � ô44

� 	

2
4

3
5

r̂ i, t 1þ r̂ i, t � ô11

� 	
1þ r̂ i, t � ô22

� 	
1þ r̂ i, t � ô33

� 	
1þ r̂ i, t � ô44

� 	

l̂1 ¼ ô11

1þ r̂ i, t � ô11

� 	

l̂2 ¼
1þ r̂ i, t
� 	

ô12

1þ r̂ i, t � ô11

� 	
1þ r̂ i, t � ô22

� 	

l̂3 ¼
1þ r̂ i, t
� 	

ô13

1þ r̂ i, t � ô11

� 	
1þ r̂ i, t � ô33

� 	

l̂4 ¼
1þ r̂ i, t
� 	

ô14

1þ r̂ i, t � ô11

� 	
1þ r̂ i, t � ô44

� 	

Or equivalently,

Pi, t ¼ k fxi, t � di, t
� 	þ 1� kð Þyi, t þ l̂2oai, t þ l̂3v1i, t þ l̂4v2i, t (87.19)

where k ¼ r̂ i, tô11= 1þ r̂ i, t � ô11

� 	
and f ¼ 1þ r̂ i, t

� 	
=r̂ i, t.

On the basis of these model specifications, we empirically test the research

hypotheses constructed in the previous section. For the model’s ability to explain

the cross section of the stock prices, we first estimate the parameters oii in the

linear information dynamics under both single equation and simultaneous equation

model. Given these estimated coefficientsoii, we compute the theoretical stock prices

implied by the pricing equations and compare the results to the observed prices.

Pricing errors of the implied valuation function will be calculated and we examine

the model’s ability to explain the cross section of stock prices under different model

specifications. For the predictability of future stock prices on the other hand,we run the

regression of each valuation function to obtain the estimated coefficients. These

estimated coefficients are then used with the observation in the future periods to

compute the theoretical value of the equity in the future periods. Similarly, the

prediction errors of these prices calculated from the implied valuation function are

calculated for the comparison between various model specifications.

87.4 Empirical Results

Based on the research hypotheses constructed in the previous section, this chapter

empirically tests the Ohlson Model and the FO Model under different linear

information dynamics. We conjecture that the linear information dynamic includ-

ing the value-relevant information variables such as analyst earnings forecasts and

the insider transaction activity improves the power of the model to explain the cross

87 Alternative Equity Valuation Models 2419



section of stock prices and to predict future price movement. Furthermore, we also

expect the simultaneous linear information dynamic to exhibit superior ability in

pricing the equity share than its single equation counterpart.

In the following empirical analysis, we first use single equation approach and the

simultaneous equation approach to estimate the coefficient in each linear information

dynamic specification. The estimated coefficients are then used to compute the

theoretical price of the equity implied by the valuation function. These implied values

are then compared to the prices actually being observed to examine whether the

model explains the cross section of the stock prices. If the Ohlson Model and the FO

Model have empirical content, then the pricing errors produced by these specifications

will not be statistically significant. Furthermore, we test the model’s ability to forecast

the future-period stock prices. We use the panel data random effect model in each

implied valuation functions to estimate the coefficients. These estimated coefficients

are then used with the future-period firm-level data to compute the forecasts of the

stock prices. Similarly if the models have empirical content, they should produce

minimal pricing errors compared to the model tested in the previous literature.

87.4.1 Summary Statistics

Table 87.1 provides the summary statistics of the variables used in our empirical

analysis.We note that the mean earnings per share in our sample period is 0.415 while

the abnormal earnings per share is �0.294. This indicates that the firms on average

earned less than the required cost of equity capital of 0.146 in our sample period.

Moreover, the analysts are on average optimistic about future earnings performance

of the firms given that the mean analyst earnings per share forecast is a positive 0.172.

The two value-relevant information variables in the FO Model, expected growth in

operating earnings and in operating assets, have mean values of 0.031 and 0.018,

respectively, in our sample period. Finally, the mean of the book value per share and

stock price per share in our sample period is 9.015 and 21.361, respectively.

87.4.2 Time Series Behavior of Linear Information Dynamics

We next examined the time series behavior of the linear information dynamics in

the Ohlson Model and FOModel in Tables 87.2 and 87.3, respectively.7 Panel A1 in

Table 87.2 shows that the abnormal earnings follow a stationary process since the

coefficients of the lagged variables sum up less than one. Moreover, the first lag of

7Since the linear information dynamics contains lagged dependent variables, the OLS estimation is

inconsistent. We proceed our estimation by the IV estimation and panel GMM proposed by

Anderson and Hsiao (1981) and Arellano and Bond (1991), respectively. The panel GMM is

more efficient than the IV estimator because of additional lags of dependent variable as instru-

ments. The results from the two estimation methods are similar and we reported the results from

panel GMM estimator.
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the abnormal earnings accounts for the most serial correlation in the abnormal

earning process. Even though the estimated coefficients for the other lagged vari-

ables are statistically significant at 5 %, the adjusted R2 is approximately the same

after considering these lags. Therefore, we found that the AR(1) process for

abnormal earnings is sufficient for the linear information dynamics in the Ohlson

Model and the FO Model as documented by previous literature. Furthermore, Panel

B1 in Table 87.2 showed that after accounting for the analyst forecasts in the linear

information dynamics for the abnormal earnings, the adjusted R2 increases to 69 %

from 40 %. This indicates that the analyst earnings forecast serves to be an

appropriate value-relevant variable that adds explanatory power to the linear

information dynamics.

Table 87.1 Descriptive statistics for variables used in sample (1980–2008)

Variables Mean

Std.

dev. Q1 Median Q3

Beta (b) 0.9926 2.4995 0.30 0.85 1.56

Cost of equity capital (r) 0.0342 0.0436 0.01 0.02 0.04

Earnings per share (x) 0.5545 1.0330 �0.02 0.60 1.24

Abnormal earnings per share (xa) 0.3198 1.0269 �0.24 0.37 1.00

Growth in expected operating earnings (v1) 0.1721 0.0357 �0.09 �0.04 0.05

Expected growth of operating assets (v2) 0.2253 0.0362 �0.09 �0.04 0.05

Book value per share (b) 8.0327 5.4195 3.74 7.13 11.41

Analyst earning forecasts of abnormal earnings per

share (v)
1.3031 0.0895 0.25 0.66 1.20

Stock price per share (P) 15.5368 11.0900 6.75 13.75 23.13

Comprehensive earnings per share (x130) 15.6134 13.2147 5.47 14.03 24.33

Marketable securities adj. (MSA) 0.0743 0.2161 0.02 0.09 0.16

Foreign currency translation adj. (RECTA) 0.0000 0.0087 �0.01 0.01 0.04

Pension requirement adj. (PENADJ) 0.0765 0.1357 0.02 0.08 0.05

Comprehensive operating earnings per share (ox130) 16.4327 12.3154 8.11 14.54 25.67

Our sample contains all available data in Compustat, CRSP, and I/B/E/S from 1980 to 2008. The

firm’s beta b is calculated based on the market model using the monthly rate of returns in the past

60 months. The cost of equity r is calculated based on the CAPM. Abnormal earnings per share

(xa) are the current-period earnings per share less the previous earnings per share growing at the

cost of equity capital r. v is the analyst earnings forecasts of abnormal earnings per share. v1 is the
growth in expected operating earnings per share, measured as the difference between the median

consensus analyst earnings per share forecast for next year and the expected net interest revenue

(product of end-of-current-year financial liabilities and the interest on debt), divided by operating

asset oa. v2 is the expected growth in operating assets which is proxied by the analyst earnings per
share forecasts of long-term earnings growth rate, divided by operating asset oa. x130 is the

comprehensive earnings per share which is calculated as earnings per share adjusted for market-

able securities adjustments (MSA) in Compustat, cumulative foreign currency translation adjust-

ments (RECTA) in Compustat, and pension requirement adjustments (PENADJ). PENADJ is

calculated as Pension-Additional Minimum Liability (PADDML) � Pension-Unrecognized Prior

Service Cost (PCUPSO) in Compustat. MSA, RECTA, and PENADJ are all scaled by the

beginning-of-period total shares outstanding. Comprehensive operating income (ox130) is equal
to comprehensive income (x130) adjusted for comprehensive net financial expenses (NFE) and
minority interest in income
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Table 87.2 Time series behavior of Ohlson Model linear information dynamics

Estimated regression coefficients

Adj. R2o10 o11 o12 o13

Panel A1: Autoregressive property of abnormal earnings with different lags

Model: exai, tþ1 ¼ o10 þ o11x
a
i, t þee i1, tþ1

0.0338 0.7788 0.3719

(0.0425) (<0.0001)

Model: exai, tþ1 ¼ o10 þ o11x
a
i, t þ o12x

a
i, t�1 þee i1, tþ1

0.0057 0.6111 0.2864 0.3811

(0.0412) (<0.0001) (<0.0001)

Model: exai, tþ1 ¼ o10 þ o11x
a
i, t þ o12x

a
i, t�1 þ o13x

a
i, t�2 þee i1, tþ1

�0.1312 0.4889 0.2798 0.1622 0.3566

(0.0312) (<0.0001) (<0.0001) (0.0655)

Panel A2: Autoregressive property of abnormal comprehensive earnings with different lags

Model: exa130i, tþ1 ¼ o10 þ o11x
a
130i, t þee i1, tþ1

0.0155 0.8012 0.4114

(0.0231) (0.0001)

Model: exa130i, tþ1 ¼ o10 þ o11x
a
130i, t þ o12x

a
130i, t�1 þee i1, tþ1

0.0121 0.7411 0.1642 0.3978

(0.0013) (<0.0001) (0.0654)

Model: exa103i, tþ1 ¼ o10 þ o11x
a
103i, t þ o12x

a
103i, t�1 þ o13x

a
130i, t�2 þee i1, tþ1

�0.0004 0.7841 0.1681 0.0914 0.4001

(0.1124) (0.0003) (0.0241) (0.1511)

Panel B1: Autoregressive property of abnormal earnings with other information variables

Model: exai, tþ1 ¼ o10 þ o11x
a
i, t þ o12vi, t þee i1, tþ1

0.0524 0.6054 0.3052 0.4121

(<0.0001) (0.0105) (0.0211)

Panel B2: Autoregressive property of abnormal comprehensive earnings with other information variables

Model: exa130i, tþ1 ¼ o10 þ o11x
a
130i, t þ o12vi, t þee i1, tþ1

0.0214 0.6327 0.1864 0.4364

(0.0015) (0.0064) (0.0514)

Panel C: Autoregressive property of analyst earnings per share forecast with different lags

Model: evi, tþ1 ¼ o10 þ o11vi, t þee i2, tþ1

0.1754 0.4185 0.6884

(<0.0001) (<0.0001)

Model: evi, tþ1 ¼ o10 þ o11vi, t þ o12vi, t�1 þee i2, tþ1

0.2374 0.4339 0.2634 0.6791

(0.0050) (<0.0001) (<0.0001)

Model: evi, tþ1 ¼ o10 þ o11vi, t þ o12vi, t�1 þ o13vi, t�2 þee i2, tþ1

0.1499 0.3866 0.2561 0.1735 0.7015

(0.0015) (<0.0001) (<0.0001) (0.0745)

Panel GMM methodology proposed by Arellano and Bond (1991) is used to examine the

autoregressive property of earnings and other value-relevant information variable in the Ohlson

Model. The estimated coefficients oij and the adjusted R2 from the regression are provided in

each panel. xi,t
a is the abnormal earnings per share for firm i at year t. x130i,t

a is the abnormal

comprehensive earnings per share for firm i at time t. v1i,t is the consensus analyst earnings per

share forecasts for year t+1 at year t. The p-values associated with each estimated coefficients are

reported in the parenthesis below. Our sample contains all available data in Compustat, CRSP, and

I/B/E/S from 1980 to 2008
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Table 87.3 Time series behavior of Feltham-Ohlson Model linear information dynamics

Estimated regression coefficients

Adj. R2o10 o11 o12 o13

Panel A1: Autoregressive property of abnormal operating earnings with different lags

Model: eoxai, tþ1 ¼ o10 þ o11ox
a
i, t þee1i, tþ1

�0.0099 0.2897 0.6434

(0.1241) (<0.0001)

Model: eoxai, tþ1 ¼ o10 þ o11ox
a
i, t þ o12ox

a
i, t�1 þee1i, tþ1

�0.0227 0.2567 0.0935 0.6413

�0.1762 (<0.0001) (<0.0001)

Model: eoxai, tþ1 ¼ o10 þ o11ox
a
i, t þ o12ox

a
i, t�1 þ o13ox

a
i, t�2 þee1i, tþ1

�0.0339 0.1886 0.1048 0.0992 0.6505

(0.0513) (<0.0001) (<0.0001) (<0.0001)

Panel A2: Autoregressive property of abnormal comprehensive operating earnings with different

lags

Model: eoxa103i, tþ1 ¼ o10 þ o11ox
a
130i, t þ ee1i, tþ1

0.0132 0.4231 0.7211

(0.0845) (<0.0001)

Model: eoxa130i, tþ1 ¼ o10 þ o11ox
a
130i, t þ o12ox

a
130i, t�1 þee1i, tþ1

�0.0017 0.3978 0.1412 0.6877

(0.0512) (<0.0001) (0.0014)

Model: eoxa130i, tþ1 ¼ o10 þ o11ox
a
130i, t þ o12ox

a
130i, t�1 þ o13ox

a
130i, t�2 þee1i, tþ1

�0.1687 0.4067 0.0874 0.1021 0.7158

(0.0647) (0.0014) (0.0008) (0.0214)

Panel B: Autoregressive property of operating assets with different lags

Model:foai, tþ1 ¼ o10 þ o11oai, t þee1i, tþ1

0.0903 0.2432 0.7941

(0.0714) (0.0015)

Model:foai, tþ1 ¼ o10 þ o11oai, t þ o12oai, t�1 þee1i, tþ1

0.3092 0.2417 0.1274 0.8004

(0.1150) (0.0023) (0.3543)

Model:foai, tþ1 ¼ o10 þ o11oai, t þ o12oai, t�1 þ o13oai, t�2 þee1i, tþ1

0.0979 0.1767 0.0601 0.0148 0.8111

(0.0691) (0.0056) (0.1245) (0.2234)

Panel C1: Autoregressive property of abnormal operating earnings with other information

variables

Model: eoxai, tþ1 ¼ o10 þ o11ox
a
i, t þ o12oai, t þee1i, tþ1

0.0699 0.2895 0.4023 0.6433

(0.1186) (<0.0001) (0.0049)

Model: eoxai, tþ1 ¼ o10 þ o11ox
a
i, t þ o12oai, t þ o13v1i, t þee1i, tþ1

0.0708 0.2886 0.2744 0.1125 0.7236

(0.1161) (<0.0001) (0.0151) (0.0278)

Panel C2: Autoregressive property of abnormal comprehensive operating earnings with other

information variables

Model: eoxa130i, tþ1 ¼ o10 þ o11ox
a
130i, t þ o12oai, t þee1i, tþ1

(continued)
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Table 87.3 (continued)

Estimated regression coefficients

Adj. R2o10 o11 o12 o13

0.0422 0.3115 0.5104 0.7144

(0.0848) (<0.0001) (0.0001)

Model: eoxa130i, tþ1 ¼ o10 þ o11ox
a
130i, t þ o12oai, t þ o13v1i, t þee1i, tþ1

0.0214 0.2871 0.3481 0.3978 0.8412

(0.0214) (<0.0001) (<0.0001) (0.0008)

Panel D: Autoregressive property of operating assets with other information variables

Model:foai, tþ1 ¼ o10 þ o11oai, t þ o12v2i, t þee1i, tþ1

�0.0602 0.2204 0.3052 0.8321

(<0.0001) (<0.0001) (0.0420)

Panel E: Autoregressive property of growth of expected operating earnings with different lags

Model: ev1i, tþ1 ¼ o10 þ o11v1i, t þee1i, tþ1

�0.0436 �0.0587 0.3125

(0.6591) (<0.0001)

Model: ev1i, tþ1 ¼ o10 þ o11v1i, t þ o12v1i, t�1 þee1i, tþ1

�0.0422 �0.0674 0.1324 0.3016

(0.6673) (<0.0001) (0.0745)

Model: ev1i, tþ1 ¼ o10 þ o11v1i, t þ o12v1i, t�1 þ o13v1i, t�2 þee1i, tþ1

�0.0394 �0.0778 0.1238 0.0747 0.3214

(0.6882) (<0.0001) (0.1023) (0.0621)

Panel F: Autoregressive property of expected growth of operating assets with different lags

Model: ev2i, tþ1 ¼ o10 þ o11v2i, t þee2i, tþ1

0.6493 0.6685 0.4874

(0.0004) (<0.0001)

Model: ev2i, tþ1 ¼ o10 þ o11v2i, t þ o12v2i, t�1 þee2i, tþ1

0.3393 0.1599 0.2912 0.4905

(0.0356) (<0.0001) (0.0647)

Model: ev2i, tþ1 ¼ o10 þ o11v2i, t þ o12v2i, t�1 þ o13v2i, t�2 þee2i, tþ1

0.2717 0.1180 0.1568 0.2004 0.4951

(0.0771) (<0.0001) (0.0487) (0.1311)

Panel GMM methodology proposed by Arellano and Bond (1991) is used to examine the

autoregressive property of earnings and other value-relevant information variable in the FO

Model. The estimated coefficients oij and the adjusted R2 from the regression are provided in

each panel. oxi,t
a is the abnormal operating earnings per share for firm i at year t. ox130i,t

a is the

abnormal comprehensive operating earnings per share for firm i at year t. oai,t is operating asset

scaled by total assets for firm i at year t. v1i,t is the growth in expected operating earnings, measured

as the difference between the median consensus analyst earnings forecast for next year and the

expected net interest revenue (product of end-of-current-year financial liabilities and the interest

on debt). v2i,t is the expected growth in operating assets, measured by the analyst earnings forecasts

of long-term earnings growth rate. The p-values associated with each statistics are reported in the

parenthesis below. Our sample contains all available data in Compustat, CRSP, and I/B/E/S from

1980 to 2008
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Given that the Ohlson Model and FO Model are based on clean surplus relation,

we also use comprehensive (operating) earnings in estimating the linear informa-

tion dynamics and deriving implied valuation function. In Panel A2 of Table 87.2,

we first investigate the autoregressive property of abnormal comprehensive earn-

ings. Similar to the results found in Panel A1, we find strong statistical and

economic magnitude of lag one comprehensive earnings, i.e., ranging from

0.7411 to 0.8012. The higher-ordered lags do not provide additional information

given the adjusted R2 does not improve after including additional lagged compre-

hensive earnings. The analyst earnings forecasts also retain its value relevance in

the presence of the comprehensive earnings. Panel B2 of Table 87.2 shows that

including analyst earnings forecasts improves the adjusted R2 in the regression,

from 0.4121 to 0.4363, with only lagged comprehensive earnings in Panel B1.

These results confirm our previous finding that lagged one comprehensive earnings

and analyst earnings forecasts are sufficient to estimate the earnings dynamics in the

Ohlson Model. More interestingly, using comprehensive earning, instead of the

bottom-line earnings, also seems to provide explanatory power given the high

adjusted R2 in the regression. Finally, Panel C showed the extended autoregressive

process for the analyst earnings forecasts. We note that the AR(1) process again is

sufficient for the linear information dynamics given that the further lagged variables

do not contribute to the overall explanatory power of the model. In summary, we

found that AR(1) process is sufficient for both the aerial correlation in abnormal

earnings and analyst earnings forecasts. Incorporating the analyst earnings forecasts

into the linear information dynamics indeed improved the ability of the model to

explain the abnormal earnings process in addition to its own serial dependence.

Table 87.3 summarizes the autoregressive behavior of the abnormal operating

earnings, operating assets, expected growth of operating earnings, and expected

growth of operating assets in the linear information dynamics of the FO Model. We

found that the AR(1) process is sufficient for all four variables given that the

adjusted R2 is approximately the same after more lagged variables are considered.

In Panel A1, e.g., when the lag 2 abnormal earnings are added, the estimated

coefficient for lag 1 is still statistically significant. Although the lag 2 abnormal

earnings are also statistically significant, lag 1 abnormal earnings account for most

of the serial dependence of the abnormal earnings process. Moreover, when addi-

tional lag 3 abnormal earnings are considered, the significance of the lag 1 abnormal

earnings and adjusted R2 is not affected. Similar results can be found for operating

assets, expected growth in operating earnings, and expected growth in operating

assets. Thus, we note that the AR(1) process is sufficient for the aforementioned

variables in the linear information dynamics of the FO Model. In Panel A2 of

Table 87.3, we investigate the dynamics of comprehensive operating earnings.

Similar to the operating earnings dynamics in Panel A1, we find that lag 1 compre-

hensive earnings are sufficient in explaining the dynamics and additional lagged

variables do not provide more information.

Panel C1 in Table 87.3 showed that incorporating more value-relevant variables

in the linear information dynamics increases the ability of the model to explain the

variation of abnormal operating earnings. With only lagged abnormal earnings and
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operating assets as the independent variables in the model, both of the variables are

statistically significant with estimated coefficients of 0.2895 and 0.4023, respec-

tively. When the expected growth of operating earnings is incorporated, lagged

abnormal operating earnings and operating assets are still statistically significant

and moreover the adjusted R2 increased from 0.6433 to 0.7236. This indicates that

the additional value-relevant variable, the expected growth in appearing earnings,

indeed increased the explanatory power of the linear information dynamics. More-

over, the results in Panel C2 indicate that under the single equation estimation,

incorporating operating assets and analyst earnings forecasts into the comprehen-

sive operating earnings dynamics provides more information given the higher

adjusted R2 in the regression. In Panel D, we examine the addition of value-

relevant variable, the expected growth in operating assets, in the autoregressive

property of the operating assets. Incorporating the expected growth in operating

assets as the additional value-relevant variable increased the adjusted R2 from

0.7941 to 0.8321. Therefore, for the linear information dynamics of the operating

assets, the expected growth in operating assets further improves the explanatory of

the model. In summary, we find that similar to the Ohlson Model, the value-relevant

variables incorporated in the FO Model provide additional information beyond

the accounting variables. We next examine how different specification of these

linear information dynamics affects the implied pricing function in evaluating the

stock prices.

87.4.3 Estimation of Linear Information Dynamics

We start our empirical analysis by estimating the linear information dynamics using

both the single equation estimation and simultaneous equation estimation in the

Ohlson Model and FO Model.8 We then use these estimated coefficients along with

the observed inputs in the implied pricing functions to compute the theoretical price

of the shares. Our conjecture is that given there exist feedback relations between the

accounting variables and the value-relevant information variables, the simultaneous

equation estimation more accurately estimates the linear information dynamics, and

thus, the resulting pricing function produces smaller pricing errors than those under

the single equation estimation.

Panel A1 in Table 87.4 provides the estimated coefficients from both the single

equation specification and the simultaneous equation specification of the Ohlson

Model information dynamics with the analyst earnings forecasts. The single

8The single equation estimation is conducted by the panel GMM estimator as in Table 87.2A and B.

Since our system of simultaneous equation specification of information dynamics involves endog-

enous regressors from other equations, we use the more efficient error-component three-stage least

square (3SLS) estimator proposed by Baltagi (1981) to conduct the estimation. Essentially, the 3SLS

is a combination of the two-stage least square (2SLS) estimator and the seemingly unrelated

regression (SUR) estimator. 3SLS considers both the simultaneous equation bias and the cross

equation correlation of the errors.
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equation specification is essentially those shown in Panel B and C1 in Table 87.2 by

using the panel GMM estimator. Following Tsay et al. (2008), we conjecture that

there is a feedback relation between the current-period abnormal earnings xt+1
a and

current-period analyst forecasts for the next-period earnings vi,t+1. Compared to the

single equation specification, the simultaneous equation specification also estimates

the feedback effect from the abnormal earnings to the analyst earnings forecasts. By

jointly estimating the coefficient, we found that the coefficients o21 are statistically

significant (0.3791), indicating that the abnormal earnings indeed affect the analyst

earnings forecasts for next period. In Panel A2 of Table 87.4, we estimate the linear

information dynamics in the Ohlson Model by using the comprehensive earnings

dynamics. The estimated o21 is 0.4369 which is higher than 0.3791 in Panel A1 in

which bottom-line earnings are used as the earnings measure in the information

dynamics. This result suggests that abnormal comprehensive earnings provide

a stronger feedback effect to the analyst earnings forecasts while the other esti-

mated coefficients retain their statistical and economic magnitude. The statistical

significant o21 suggests that the single equation specification in traditional Ohlson

Model linear information dynamics is not correctly identified and the simultaneous

equation estimation of the linear information dynamics might yield more price-

relevant information in forecasting future stock price.

Panel B1 in Table 87.4 compares the single equation and simultaneous equation

specification of the linear information dynamic with bottom-line earnings in the FO

Model. In the single equation specification, all the coefficients associated with the

accounting variables and the value-relevant information variables are statistically

significant. This indicates that the linear information dynamics in the FO Model

indeed possess empirical content to capture the variation in abnormal operating

earnings and operating assets. We further extended the single equation

specification to simultaneous equation specification to examine whether there

exist feedback relations between the accounting variables and the value-relevant

information variables. For example, the coefficient o31 which measures how

current-period abnormal operating earnings affect the expected growth in

abnormal operating earnings is statistically significant of 0.2725. Moreover, the

coefficient o42, which measures how current-period operating asset affects the

next-period expected growth in operating asset, is also statistically significant

of 0.3895. These results suggest that there exist feedback relations of abnormal

operating earnings and operating assets with their expected growth in the

future periods. Estimating the linear information dynamics by the simultaneous

equation approach improves the information content provided of these variables

in computing the implied value of the shares. In Panel B2 of Table 87.4, we

use comprehensive operating earnings to estimate the linear information

dynamics in the FO Model. Compared to the results in Panel B1, we find

stronger feedback effects given the larger estimated coefficients o31 (0.2931)

and o42 (0.4873) under the estimation with abnormal comprehensive operating

earnings. In the next section, we will further examine the pricing errors of

the implied valuation function by employing these estimated coefficients with the

observed inputs.
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87.4.4 Prediction Errors of Stock Price Forecasts

Table 87.5 provides the summary of prediction errors of stock prices from the

Ohlson Model and FO Model using different estimation methods for linear infor-

mation dynamics (single equation vs. simultaneous equation estimation) and dif-

ferent earnings measures (bottom-line earnings vs. comprehensive earnings). More

specifically, we estimated the coefficients in the linear information dynamics oij

and used them with the observed inputs abnormal earnings and analyst earnings

forecasts to compute the theoretical price of the share at end of each year t given the

implied valuation function for the Ohlson Model in Eq. 87.14 and for the FOModel

in Eq. 87.18. We then measure how these implied values of the share differ from the

observed current market price per share, i.e., the prediction errors for the stock

prices. The prediction errors are represented by the mean forecast errors, which are

calculated as the observed market price per share minus the implied price from the

model divided by the market price per share at end of each period t.

In Panel A of Table 87.5, we first observe that simultaneous equation estimation

of the linear information dynamics indeed improves the future stock forecast

accuracy by producing significantly smaller prediction errors than those generated

by the single equation estimation. The prediction error difference, DSimul�Single, is

significantly negative for both abnormal earnings and abnormal comprehensive

earnings at �0.0514 and �0.0305, respectively. We then discuss whether using

abnormal comprehensive earnings can improve the stock price forecast ability of

each individual model. Under both single equation and simultaneous equation

estimation specifications, we calculate the forecast error differences between

using abnormal earnings and comprehensive abnormal earnings as the earnings

measures in the information dynamics, i.e., Dxa
130

�xa . We are expected to observe

smaller forecast errors when using abnormal comprehensive earnings because of its

consistency with the clean surplus relation which is used in deriving the implied

valuation function in the Ohlson Model. The result in Panel A of Table 87.5 shows

that the forecast error differences Dxa
130

�xa are statistically significant at �0.0334

(�0.0225) under single equation (simultaneous equations) estimation. Our

results suggest that under both estimation specifications of the linear information

dynamics, abnormal comprehensive earnings outperform the abnormal earnings in

terms of predicting future stock prices by generating smaller average forecast

errors. Similar improvement in prediction accuracy can also be found in Panel

B of Table 87.5 where comprehensive operating earnings are used in estimating the

linear information dynamics in the FO Model. The result in Panel B of Table 87.5

suggests that the forecast error differences Doxa
130

�oxa are statistically significant

at �0.0244 (�0.0186) under single equation (simultaneous equations) estimation.

This indicates that abnormal comprehensive operating earnings provide more

value-relevant information than abnormal operating earnings in estimating linear

information dynamics and computing the 1-year-ahead model-implied stock prices.

In sum, the empirical results we have shown in this chapter further demonstrate that

comprehensive (operating) earnings can also produce more accurate future stock

price forecasts in the residual valuation models.
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Table 87.6 summarizes the mean forecast errors for 1- to 5-year forecasts of the

WS Model. At each year from 1980 to 2002, financial data of each firm are used as

the base year information in theWSModel to forecast the future-period stock prices

in the next 5 years. In particular, for each firm at year t, the sales growth rate is

estimated by the linear regression model using all the past sales available in

Compustat. We then calculated the mean forecast errors of future stock prices by

each number-of-years-ahead forecast errors across all rolling periods. We note that

the mean forecast errors mostly increase monotonically with number-of-years-

ahead forecasts. We compare WS Model forecasts to Ohlson/FO Model forecasts

with both bottom-line earnings and comprehensive earnings. We calculate the

mean forecast error difference between the WS Model and Ohlson Model with

bottom-line earnings (DWS � Ohlson) and comprehensive earnings (DWS�Ohlson x130ð Þ).
We also calculate the mean forecast error difference between the WS Model and

FO Model with operating earnings (DWS � FO) and comprehensive operating

earnings (DWS�FO ox130ð Þ ). Our results suggest that the WS Model produces more

accurate stock prices than the Ohlson/FO Model in the shorter term. The average

Table 87.6 Prediction errors of stock price forecast of the Warren-Shelton Model

Number-of-years-ahead

forecasts M.F.E. DWS � Ohlson DWS � FO DWS�Ohlson x130ð Þ DWS�FO ox130ð Þ
1 0.3418 �0.1146 �0.0327 �0.0921 �0.0141

(<0.0001) (<0.0001) (0.0050) (<0.0001) (0.0123)

2 0.4132 �0.0751 �0.0157 �0.0051 �0.0513

(0.0003) (0.0451) (0.0122) (0.0741) (0.0523)

3 0.5981 0.0354 �0.0084 �0.0003 �0.0024

(<0.0001) (0.3214) (0.0645) (0.1522) (0.0841)

4 0.7016 �0.0641 0.0123 0.0874 0.0845

(0.0005) (0.0354) (0.2147) (0.0987) (0.1137)

5 0.9142 0.0687 �0.0011 0.0783 0.0746

(<0.0001) (0.3329) (0.2457) (0.0874) (0.1068)

Table 87.6 summarizes the mean forecast errors (M.F.E.) for 1–5-year-ahead stock price forecasts
of the WS Model. From 1980 to 2002, financial data of each firm are used as the base year

information in theWSModel to forecast the future-period stock prices in the next 5 years. For each

firm at year t, the sales growth rate is estimated by the linear regression model using all the past

sales available in Compustat. We then calculated the mean forecast errors of the stock prices by

each number-of-years-ahead forecast errors across all rolling periods. DWS � Ohlson represents the

difference of forecast errors between the WS Model and Ohlson Model with its linear information

dynamics estimated by simultaneous equation method. DWS�Ohlson x130ð Þ represents the difference of
forecast errors between the WS Model and Ohlson Model with comprehensive earnings as its

earnings measure and its linear information dynamics estimated by simultaneous equation method.

DWS � FO represents the difference of forecast errors between theWSModel and FOModel with its

linear information dynamics estimated by simultaneous equation method. DWS�FO ox130ð Þ represents
the difference of forecast errors between the WS Model and FO Model with comprehensive

operating earnings as its earnings measure and its linear information dynamics estimated by

simultaneous equation method. The p-values associated with each estimated coefficients are

reported in the parenthesis below. Our sample contains all available data in Compustat, CRSP,

and I/B/E/S from 1980 to 2008
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1-year-ahead stock price forecast error is 0.3418 which is significantly lower than

those forecasted by the Ohlson and FO Model using either bottom-line earnings or

comprehensive earnings. The mean forecast error differences are all significantly

negative for the 1-year forecast in Table 87.6. However, in the longer term, the

model produces relatively less accurate forecasts. Our findings suggest that the WS

Model considering the interrelations between investment activity, financing activ-

ity, dividend policy, and the production decision of the firm provides better forecast

accuracy in terms of the stock prices than the residual income valuation models

discussed in the previous sections. Nonetheless, the forecast accuracy crucially

depends on the model inputs such as sales growth rate, current assets as a percent of

sales, fixed asset as a percent of sales, dividend payout ratio, and the leverage ratio.

Therefore, we next examined how the sensitivity of these model inputs affects the

resulting forecasts.

Table 87.7 summarizes the sensitivity analysis of several model inputs in the WS

Model, i.e., sales growth rate, total assets as a percent of sales, dividend payout ratio,

and leverage ratio. In Panel A, we showed how sensitive the stock price forecasts are

to the changes in the sales growth rate. It is expected that higher sales growth rate

leads to higher stock prices because of higher future earnings. When the sales growth

rate changed from its median to its third quartile, the 1-year-ahead mean forecast

errors reduced from 0.4238 to 0.3954. Since the WS Model underestimates the stock

prices as shown in Table 87.6, increases in sales growth rate result in higher

stock prices and thus smaller pricing errors. When the sales growth rate decreases

from its median to the first quartile, the implied stock prices decrease and pricing

errors increase accordingly. Similar patterns of the changes of the pricing errors can

be observed in longer years ahead forecasts. Furthermore, the sensitivity analysis

regarding the total assets as a percent of sales is shown in Panel B. The stock prices

are expected to decrease in assets as a percent of sales because more equity funds

were required to support asset requirement and thus larger the pricing errors. The base

case inputs for the total assets as a percent of the sales are the median value of each

firm’s available historical data.We examined the sensitivity of the stock price forecast

to the first and third quartile value of the firm’s total asset as a percent of sales. The

mean forecast errors of 1-year-ahead stock prices increased (decreased) to 0.4756

(0.4048) from 0.4238 if the third (first) quartile of total assets as a percent of sales is

used. Similar patterns are observed in 2- and 3-year-ahead forecasts but results for

longer-year-ahead forecasts are not obvious.

Panel C summarizes the sensitivity of stock price forecasts to the firm’s payout

ratio. We expect the pricing errors to decrease in the dividend payout ratio because

as more dividends were paid to shareholders, the firm relies more on new issues of

common stocks for the financing requirement which leads to potential decline in the

stock prices. The mean forecast errors increased (decreased) to 0.4451 (0.4198) if

the third (first) quartile of the firm’s historical dividend payout ratio is used as the

model input. Panel D summarized the sensitivity of stock prices to the changes in

the firm’s leverage. We expect the stock prices to increase in leverage and thus

smaller pricing errors. The mean forecast errors decrease (increase) to 0.4187

(0.4408) if the third (first) quartile of the historical leverage ratio is used as the
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model input in forecasting future stock prices. The longer-year-ahead forecasts are

again not as apparent as the shorter-term forecasts suggesting the model’s lack of

ability of accurate forecast in the long run. In summary, our results suggest that the

stock price forecasts are most sensitive to the changes in sales growth rate given

the largest change in the mean forecast errors. This is not a surprising result since

the starting point of the WS Model is the sales growth estimate. The sensitivity

of the stock price forecasts to the other exogenously given variables such as the total

assets as a percent of sales, dividend payout ratio, and the leverage ratio does not

have a significant impact on the forecasts as the sales growth rate. Overall, the

results are consistent with the model conjecture that stock price forecasts are

influenced by the aforementioned inputs and sales growth rate is the most important

factor in producing the accurate forecasts from the model.

Table 87.7 Sensitivity analysis of stock price forecast errors of the Warren-Shelton Model

Number-of-years-ahead forecasts

Q1 Median Q3

M.F.E. V/P M.F.E. V/P M.F.E. V/P

Panel A: Sales growth rate

1 0.6101 0.5436 0.4238 0.6381 0.2954 0.6741

2 0.7187 0.4981 0.5002 0.5402 0.365 0.5632

3 0.8354 0.4026 0.5841 0.4783 0.4899 0.5271

4 0.9163 0.3156 0.7136 0.4297 0.5153 0.5012

5 1.0125 0.2103 0.9362 0.3882 0.7041 0.4132

Panel B: Total asset as a percent of sales

1 0.4048 0.6541 0.4238 0.6381 0.4756 0.6018

2 0.5015 0.5564 0.5011 0.5344 0.2321 0.4987

3 0.6136 0.4541 0.5841 0.4783 0.6328 0.4655

4 0.6654 0.4465 0.7136 0.4297 0.7843 0.4415

5 0.8972 0.4125 0.9362 0.3882 0.9637 0.4213

Panel C: Dividend payout ratio

1 0.4198 0.6608 0.4238 0.6381 0.4451 0.6231

2 0.4936 0.5412 0.4981 0.5138 0.5215 0.5155

3 0.5787 0.5121 0.5841 0.4783 0.6123 0.4338

4 0.6897 0.4511 0.7136 0.4297 0.7122 0.4136

5 0.8987 0.4015 0.9362 0.3882 0.9345 0.3788

Panel D: Leverage ratio

1 0.4408 0.5389 0.4238 0.6381 0.4187 0.6658

2 0.5321 0.5128 205144 0.5312 0.5108 0.5974

3 0.6087 0.4569 0.5841 0.4783 0.5941 0.4568

4 0.7136 0.4158 0.7136 0.4297 0.6543 0.4412

5 0.9302 0.4111 0.9362 0.3882 0.8741 0.4123

Table 87.7 summarizes the sensitivity analysis of the model inputs: sales growth rate, total assets

as a percent of sales, dividend payout ratio, and leverage ratio in the WS Model. We calculate the

mean forecast errors (M.F.E.) of stock price forecasts from WS Model by using the first quartile,

median, and the third quartile of the respective model inputs. The p-values associated with each

estimated coefficients are reported in the parenthesis below. Our sample contains all available data

in Compustat, CRSP, and I/B/E/S from 1980 to 2008
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87.4.5 Forecast Combination

In the previous section, the implied valuation functions of the Ohlson Model and

FO Model were investigated for their ability in forecasting future stock prices.

In this section, we examine how the stock price forecasts from these models can be

combined with the Warren-Shelton Model to further improve their forecast

ability in terms of prediction errors. More specifically, we employ the forecast

combination proposed by Bates and Granger (1969), Granger and Newbold (1973),

Granger and Ramanathan (1984), and Diebold and Pauly (1987) to examine the

combined predictability of future stock prices from different primary individual

forecasts.

We use the different weighting schemes in equations (W1) through (W4) in

Sect. 87.2.3 to construct the weighting matrixW in the WLS estimation. Moreover,

we employ the linear and quadratic deterministic time-varying parameters model to

produce time-varying weights. Similar to the regression model in Eq. 87.12, the

estimator can be written as

Linear : tŷtþ1 ¼ p̂00 þ p̂01 tþ 1ð Þ� 	þ p̂10 þ p̂11 tþ 1ð Þ� 	
t
f RItþ1 þ p̂20 þ p̂21 tþ 1ð Þ� 	

t
f WS
tþ1

Quadratic : tŷtþ1 ¼ p̂00 þ p̂01 tþ 1ð Þ þ p̂02 tþ 1ð Þ2
� �

þ p̂10 þ p̂11 tþ 1ð Þ þ p̂12 tþ 1ð Þ2
� �

t
f RItþ1

þ p̂20 þ p̂21 tþ 1ð Þ þ p̂22 tþ 1ð Þ2
� �

t
f WS
tþ1

where t f t + 1
RI and t f t + 1

WS are the 1-year stock price forecast from the residual income

valuation models (Ohlson/FO Models) and the WS Model, respectively. We con-

sider the following estimators for forecasting future stock prices:

M1. WLS, geometric weights, linear deterministic time-varying parameters

M2. WLS, geometric weights, quadratic deterministic time-varying parameters

M3. WLS, tl weights, linear deterministic time-varying parameters

M4. WLS, tl weights, linear quadratic time-varying parameters

M5. OLS (simple unrestricted regression-based combination)

M6. Variance-covariance combination

Panel A1 (A2) in Table 87.8 provides the prediction errors of 1-year-ahead stock

prices from the forecast methods M1 through M6 combining the Ohlson Model

forecasts using bottom-line (comprehensive) earnings and WSModel forecasts. We

also compare the forecast errors of these combined forecasts to those individual

forecasts under the Ohlson Model and WS Model alone. If the combined forecast

methods indeed improve the model’s ability to provide better accuracy, then the

combined methods are expected to produce smaller pricing errors. Our results

suggest that method M3 yields the best 1-year-ahead stock price forecast in terms

of smallest mean forecast errors. Method M3 employs the t-lambda (tl) weighting
specification with the linear deterministic time-varying parameters in the WLS

estimator to generate optimal weights for each individual forecast from the Ohlson

Model and WS Model. The M3 forecast combination method produces a mean
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forecast error of 0.2841 (0.2779) in Panel A1 (A2) which is significantly lower than

the individual forecast from either the Ohlson Model or the WS Model. For the

Ohlson Model using comprehensive earnings, the mean forecast error differences

between the M3 method and the Ohlson Model (WS Model) DMi�M7
(DMi�M8

) are

significant at �0.1785 (�0.0639), suggesting that forecast combination is indeed

lower that the prediction error of individual forecasts. These results show that the

WLS estimator with t-lambda (tl) weighting specification and linear deterministic

time-varying parameters generates the lower prediction errors for stock price

forecasts than other forecast combination methods and the individual forecasts.

Moreover, we find that in general, the forecast combination methods M1 through

M4 generate smaller pricing errors than the individual forecasts from the Ohlson

Model andWSModel. The OLS (M5) and variance-covariance method (M6) on the

other hand do not improve each model’s ability in forecasting future stock prices

given the insignificant prediction error differences.

In a similar fashion, Panel B1 (B2) in Table 87.8 provides the prediction errors of

forecast combination methods M1 through M6 by combining the FO Model fore-

cast using (comprehensive) operating earnings and WS Model forecasts. Compared

to the individual forecasts from the FOModel and WSModel, methods M1 through

M4 again produce significantly lower prediction errors while M5 and M6 fail to

obtain improvement in forecasting 1-year-ahead stock prices in the sample. The M4

forecast combination method produces lowest mean forecast error, i.e., 0.2284

(0.2045) in Panel B1 (B2) among all different forecast combination methods. The

mean forecast error generated by M4 is also significantly lower than that produced

by either the FO Model or WS Model. For example, in Panel B2, the mean forecast

error differences between the M4 method forecast and the FO Model (WS Model)

forecast, or DMi�M7
(DMi�M8

), are significant at �0.1596 (�0.1373). This suggests

that forecast combination indeed is lower than the prediction error of individual

forecasts. Overall, our findings demonstrate that the appealing features of geometric

weighting schemes and time-varying parameters in forecast combination provide

superior accuracy in predicting future stock prices. The WLS estimator with

geometric weighting schemes and time-varying parameters places more weights

on the better forecast technique over time. Given the different structural designs of

the residual income valuation models and the WS Model, each of them could

provide superior forecast than the other under specific market condition.

87.5 Summary

This chapter investigates the stock price forecast ability of three alternative valu-

ation models, namely, the Ohlson (1995) Model, Feltham and Ohlson (1995)

Model, and the Warren and Shelton (1971) Model. In this chapter, we have

developed five research hypotheses to test whether different earnings measures,

estimation techniques, and combined forecast methods can improve these models’

ability in predicting future stock prices. In the first hypothesis, we test whether the

FO Model can produce smaller prediction errors for future stock prices than the
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Ohlson Model. The second hypothesis examines whether simultaneous equation

estimation of the linear information dynamics in the Ohlson and FO Model can

generate smaller prediction errors for future stock prices than those produced by

single equation estimation. In the third hypothesis, we investigate whether the WS

Model can generate more accurate future stock price forecasts than both the Ohlson

and FO Model. The fourth hypothesis examines whether combination of individual

forecasts from the Ohlson Model, FO Model, and WS Model can produce more

accurate future stock price forecast than each individual model. Finally, the fifth

hypothesis tests whether the use of comprehensive income, instead of net income,

can generate more accurate future stock price forecasts in these valuation models.

We first use simultaneous equation estimation approach to estimate the infor-

mation dynamics for the Ohlson Model and FO Model and to forecast future stock

prices. Our empirical results suggest that the simultaneous equation estimation of

the information dynamics improves the ability of the Ohlson Model and FO Model

in capturing the dynamic of the abnormal earnings process. The predictability of the

1-year-ahead stock prices is also more accurate under the simultaneous equation

estimation in terms of smaller prediction errors. We then use the WS Model to

predict stock price per share and find that the WSModel can generate smaller future

stock price prediction errors than those predicted by the Ohlson Model and FO

Model. These findings indicate a better stock price forecast ability of the WSModel

in determining future stock prices. The superior accuracy compared to the Ohlson

Model and FO Model is due to the incorporation of both operation and financing

decisions of the firms. We also combine these different stock price forecasts by

using various time-varying parameters models proposed by Granger and

Newbold (1973) and Diebold and Pauly (1987) to examine whether forecast

combination provides better prediction accuracy. The combined forecasting

methods generally produce more accurate stock price forecasts than those made

by individual models.

Previous literature found supporting evidence that comprehensive income can

provide price-relevant information beyond bottom-line net income (Cheng

et al. 1993; Dhaliwal et al. 1999; O’Hanlon and Pope 1999). Given that the Ohlson

Model and FO Model are based on the clean surplus relation, we further investigate

the price relevance of comprehensive (operating) income in these valuation models.

Our results suggest that using comprehensive (operating) income in the Ohlson

(FO) Model can further reduce the prediction errors of future stock price forecasts

under both single equation and simultaneous equation estimation of linear infor-

mation dynamics. Moreover, this superior predictability also leads to smaller

prediction errors in the combined forecasting in which Ohlson (FO) Model fore-

casts are combined with WS Model forecasts. Evidence shown in our study

demonstrates that comprehensive (operating) income indeed provides incremental

price-relevant information beyond bottom-line net income.

In sum, we investigate the empirical validity in terms of stock price forecast

accuracy of alternative equity valuation models. By employing the simultaneous

equation estimation and combined forecasting methods, we find that these models

can produce higher estimate accuracy in predicting future stock prices. We also
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found that using comprehensive income can further reduce the prediction errors

generated by these valuation models. Our findings contribute to the literature in

equity valuation models as well as the setting of accounting standard on reporting

comprehensive financial performance.
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Abstract

This research examines the use of various forms of time series models to predict

the total NAV of an asset allocation mutual fund. In particular, the mutual fund

case used is the Vanguard Wellington Fund. This fund maintains a balance

between relatively conservative stocks and bonds. The period of the study on
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which the prediction of the total NAV is based is the 24-month period of 2010 and

2011, and the forecasting period is the first 3months of 2012. Forecasting the total

NAV of a massive conservative allocation fund, composed of an extremely

large number of investments, requires a method that produces accurate result.

Achieving this accuracy has no necessary relationship to the complexity of the

variety of the methods typically present in many financial forecasting studies.

Various types of methods and models were used to predict the total NAV of

the Vanguard Wellington Fund. The first set of model structures included

simple exponential smoothing, double exponential smoothing, and Winter’s method

of smoothing. The second set of predictive models used represented trend models.

They were developed using regression estimation. They included linear trend model,

quadratic trend model, and an exponential model. The third type of method used was

a moving-average method. The fourth set of models incorporated the Box-Jenkins

method, including an autoregressive model, a moving-average model, and

an unbounded autoregressive and moving-average method.

Keywords

NAV of a mutual fund • Asset allocation fund • Combination of forecasts •

Single exponential smoothing • Double exponential smoothing • Winter’s

method • Linear trend model • Quadratic trend model • Exponential trend

model • Moving-average method • Autoregressive model • Moving-average

model • Unbounded autoregressive moving-average model

88.1 Introduction

The purpose of this study is to develop a predictive time series model for the total

NAV of a massive balanced asset allocation mutual fund during a period of time

when there is not a massive decline in the economy. The historical period chosen

was the 24-month period beginning January of 201 and running through December

2011. The forecasting period is the first 3 months of 2012.

The forecast of mutual funds with vast numbers of investments is certainly

not the same as forecasting a single investment or a group of like investments.

Forecasting net asset values of an investment structure consisting of a massive

asset allocation of stocks in various industry groups, various types of bond

investments, as well as both domestic and international investments presents

a specialized type of financial forecasting problems.

88.1.1 NAV of a Mutual Fund

A mutual fund is an investment vehicle that operates as an investment pool. Initial

investors put up prearranged amounts and issued shares of the mutual fund, with

these shares representing their ownership interest. After the initial issuance, more

investors can buy into the mutual fund by buying shares at the current net asset
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value, or total NAV. This may be more or less than the original total NAV,

depending on how the investments of the mutual fund have performed.

NAV is simply the current total value of the assets of the fundminus any liabilities

or management fees divided by the number of shares. For most mutual funds, NAV is

constantly calculated during market hours, from the moment of the first investment is

made. Thus, investors can know exactly how their mutual fund is performing at any

given time, and investors can buy or sell mutual funds at any time.

NAV mutual fund investors follow NAV closely, and some even use an invest-

ment strategy of investing in mutual funds, based on the trends in NAV over time.

The study of NAV history is a common practice among sophisticated investors and

is considered by many to be one of the best metrics of mutual fund performance.

Mutual funds are variable. Even the best mutual funds have occasionally

declined. Many sector-based mutual funds are very cyclical. The NAV managers

make big savings up and down across multiyear economic cycles. Many investors

study these patterns and make investment decisions on the basis of AV histories and

others just look to invest in funds or managers with good track records in

crating NAVs.

88.1.2 Asset Allocation Fund

On a historical basis, the performance of stocks has typically outperformed most

other investments. However, stock investments carry more risk than many other

investment types. Many tout the success of asset allocation in the investment

process. Asset allocation investments cut across such investment classes (stocks,

bonds, and cash) and across international boundaries.

The asset allocation strategy seems to balance risk and reward by apportioning

portfolio assets according to individual goals, risk tolerance, and investment hori-

zon. The three main asset classes, equities, fixed income, and cash and equivalents,

all have different levels of risk and return, so each will behave differently over time.

There are no simple methods that can find the correct allocation for every

individual. However, most financial experts agree that asset allocator is a key and

crucial decision for investing. The selection of an individual security is secondary

to how each investor allocates their investment in stocks, bonds, and case and

equivalent.

The asset allocation mutual funds (life cycle or target date funds) that attempt to

provide investors with portfolio structures that address the investor’s age, risk

profile land investment objective, via an appropriate apportionment of asset classes.

88.1.3 Vanguard Wellington Fund (VWELX)

Vanguard Wellington Funds are one of the few funds that survived the stock market

crash of 1929. VanguardWellington was created just months before that collapse of

the stock market.
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As of June 2012, VWELX has assets totaling over $30 billion. Roughly

two-thirds of the portfolio consists of stocks that typically pay dividends. The

fund can invest up to 25 % of its portfolio in non-US securities.

Typically the fund maintains a balance between relatively conservative stocks

and bonds. Thus, it is designed to weather bear markets, but it may not perform as

well as more aggressive funds during market rallies. Such a balanced fund is

a middle-of-the-road investment that seeks to provide some combination of income,

capital appreciation, and the conservation of capital by investing in a max of stocks

and bonds. The fund invests in a mix of undervalued and dividend-paying stocks

and mostly investment-grade bonds.

88.2 Computations: Models and Results

The forecasting models used in this study were implemented through the use of

Minitab 16 time series procedures. The data used in the forecasting process can be

viewed in Fig. 88.1. In the period of January 2010 through December 2011, the total

NAV of VWELX goes from a bi less than 30 billion to a slightly more than

30 billion. The nature of these modeling structures can be detailed in the appendix

of the paper (Atsulaki and Valavanis 2009; Botlen and Busse 2004; Francis and

Ghijsels 1999; Frances et al. 2005; Lendasse et al. 2000; Pas and Lin 2005; Taylor

and Snyder 2012; Wang et al. 2012).

The first set of models used is the regression-type model:

1. Linear growth model

2. Quadratic growth model

3. Exponential growth model

4. An S-curve model

The second type of model used was a moving-average model. The third set of

models used consists of exponential smoothing models:

1. Single exponential smoothing

2. Double exponential smoothing

3. Winter’s multiplicative model

4. Winter’s additive model

The fourth set of models consists of an autoregressive model:

1. Autoregressive nonseasonal model

In forecasting the first 3 months of 2012, the following can be seen:

Best forecasting model for period (25):

1. Quadratic growth model

2. Autoregressive nonseasonal model

3. Winter’s additive model

Best forecasting model for period (26):

1. Linear growth model

2. Exponential growth model

3. S-curve model
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Best forecasting model for period (27):

1. Exponential growth model

2. Autoregressive nonseasonal model

3. S-curve model

It appears that the best model for forecasting in all three periods is the

exponential growth model, followed closely by the autoregressive nonseasonal

model. In evaluating the fit of the exponential growth model, the results, in terms

of MAPE, MAD, and MSD, are well based.

While this model is quite simple in its performance on predicting the

NAV in months 25, 26, and 27, the January–March 2012 is the best of all

the models.

The forecasting period of the model structure is somewhat limited in nature.

Months prior to January 2010 were a time of great economic turmoil

(the worst since the Great Depression almost 70 years ago), and thus, these

months were not used. In addition to further study of time series of NAV

using the first 3 months of 2012 in the forecasting process of the second

3 months of 2012, we suggest using other forecasting studies to predict the

total NAV of VWELX. We also suggest the development of macroeconomic

econometric models to predict the total NAV of VWELX. Furthermore, the use of

combination of forecasts is another topic for consideration in this forecasting

process.

88.2.1 Combination of Forecasts

Besides just selecting one forecast when several sets of forecasts are

available, the possibility exists to form a composite set of forecasts. This very

basic idea has proven to be very effective over a wide range of management

forecasting applications (see Bates and Granger 1969; Clemen 1984;

Granger 1989).

If one has J forecasts over a given quantity S in a previous time period,

a combined forecast is a weighted average of individual forecasts:

0
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Fig. 88.1 NAV of VWELX

88 Time Series Models to Predict the Net Asset Value 2449



D ¼
XJ
I¼1

wi ¼ 1 and wi ¼ 0, j ¼ 1, . . . , k

The simplest weighting would be to consider all forecasting methods equal. If,

however, a historical record of past forecasting results was available, then an

appropriate combination of weights would be based upon their performance. The

weights could vary over time. A possible methodology based on various historical

forecasting evaluations could, also, be determined (see, e.g., Lawrence and Reeves

1981, 1982; Lawrence et al 2009). Such a process will be the topic of future

research (Tables 88.1 and 88.2).

Appendix 1: A Forecasting Method Used in NAV Forecasting

Simple Exponential Smoothing

Simple exponential smoothing provides an exponentially weighted moving average

of all previously observed values. The model is often appropriate for data with no

predictable upward or downward trend. Exponential smoothing continually revises

an estimate in the light of more recent experiences. This method is based on

averaging past values of a series in an exponentially decreasing manner. The

exponentially smoothing equation is

Ŷ tþ1 ¼ aYt 1� að ÞŶ t

where

Ŷt+1: new smoothed value or the forecasting value for the next period

a: smoothing constant (0 < a <1)

Yt: actual value of the series in period t

Ŷt: old smoothed value of the forecast for period t

Simple exponential smoothing, as moving averages, uses only past values of a

time series to forecast future values of the same series and is properly employed

when there is no trend or seasonality present in the data. With exponential smoothing,

the forecast value at any time is a weighted average of all the available previous

values: the weights decline geometrically as you go back in time. Moving-average

forecasting gives equal weights to the past values included in each average;

exponential smoothing gives more weight in the recent observations and less to the

older observations. The weights are made to decline geometrically with the age of the

observation to confirm to the argument that the most recent observations contain

the most relevant information so that they should be accorded proportionately more

influence than older observations.

Exponential smoothing proceeds as do moving averages by smoothing past

values of the series; the calculations for producing exponentially smoothed fore-

casts can be expressed as an equation. The weight of the most recent observation is
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assigned by multiplying the observed value by a, the next most recent observation

by (1�a)a, the next observation by (1�a)2a, and so on. The number chosen for a is

called the smoothing constant.

The value of the smoothing constant a must be between 0 and 1. The value of the

smoothing constant cannot be equal to 0 or 1; if it is, the entire idea of exponential

smoothing is negated. If a value close to 1 is chosen, recent values of the time series

are weighted heavily relative to those of the distant past when the smoothed values are

calculated. Likewise, if the value of a is chosen close to 0, then the values of the time

series in the distant past are given weights comparable to those given the recent values.

The rate at which the weights decrease can be seen from their values for an a of 0.1.

Regardless of the smoothing constant chosen, the weights will eventually sum to 1.

Whether the sum of the weights converges on 1 quickly or slowly depends on the

smoothing constant chosen. If a smoothing constant of 0.9 is chosen, then the sum of the

weights will approach 1 much more rapidly than when the smoothing constant is 0.1.

In choosing a, select values close to 0 if the series has a great deal of random

variation; select values close to 1 if the forecast values depend strongly on recent

changes in the actual values. The root-mean-squared error is often used as the

criterion for assigning an appropriate smoothing constant; the smoothing constant

with the smallest root-mean-squared error would be selected as the model likely to

produce the smallest error in generating additional forecasts. In practice, relatively

small values of a generally work best when simple exponential smoothing is the

most appropriate model.

Table 88.2 Forecasting models and fit measures

# Type Model MAPE MAD MSD MS

1 Linear growth Yt ¼ 28.393 + 0.156 * t 3.18356 0.96921 1.37241

2 Quadratic

growth

Yt ¼ 27.400 + .386 t

+ 0.00917 t**2
3.08086 0.92772 1.21882

3 Exponential

growth model
Yt ¼ 28:4085 t � 1:00519ð Þ��t 3.19579 0.97401 1.38708

4 S-curve Yt ¼ 10* * 3/(31.1135 +

5.73251) * (0.897029 * *t)

3.26895 0.98605 1.31431

5 Moving

average

None 2.01333 0.60863 0.49273

6 Single

exponential

smoothing

a ¼ 0.2 3.37824 1.03623 1.63207

7 Double

exponential

smoothing

a ¼ 0.2 3.59835 1.09078 1.83576

8 Winter’s

multiplicative

a ¼ 0.02, g ¼ 0.2, D ¼ 0.2 3.51305 1.05655 1.76160

9 Winter’s

additive

a ¼ 0.02, g ¼ 0.2, D ¼ 0.2 3.44271 1.03609 1.75187

10 Autoregressive

nonseasonal

Yt ¼.040625 + .7057AR(1) +

1.1172MA(1)

0.7735
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Double Exponential Smoothing

A variation of simple exponential smoothing that includes trends is referred to as

double exponential smoothing. This technique is appropriate only when the data

vary around an average or have a step or gradual change. This double exponential

model is composed of two elements:

Ŷ tþ1 ¼ St þ Tt

where

St: smoothed error

Tt: current trend estimate

St ¼ Yt þ a1 Yt � Ŷ e

� �

Tt ¼ Tt�1 þa2 Ŷ t � Ŷ t�1� � Tt�1

� �

a1: smoothing constant

a2: smoothing constant

A method similar to double moving averages is double exponential smoothing.

This method accounts for trend and retains the advantage of requiring less data than

moving averages, an attribute of all exponential smoothing methods.

Double exponential smoothing uses a single coefficient, alpha, for both

smoothing operations. As in double moving averages, this method computes the

difference between single and double smoothed values as a measure of trend. It

then adds this value t the single smoothed value together with adjustment for the

current trend.

As is true for simple exponential smoothing, double smoothing requires starting

values to initialize the formulae. The advantages of double smoothing are as follows:

1. It models the trends and level of a time series.

2. It is computationally more efficient than double moving averages.

3. It requires less data than double moving averages. Because one parameter is

used, parameter optimization is simple.

Although parameter optimization is simple, there is some loss of flexibility

because the best smoothing constants for the level and trend may not be equal.

The exponential smoothing model is not a full model; it does not model the

seasonality of a series. Often series have seasonality. Thus, it is not recommended

unless the data is first deseasonalized.

Winter’s Method

Winter’s method is similar to those of other linear exponential smoothing methods

but has the advantage of being capable of dealing with seasonal data in addition to

data that have a trend. The three basic smoothing equations of Winter’s method are

as follows:
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St ¼ aþ Xt=It�L½ � þ 1� að Þ St�1 þ Tt�1ð Þ
Tt ¼ b St�St�1ð Þ þ 1� bð ÞTt�1

It ¼ t Xt=SL½ �tþ 1� tð ÞIt�L

where

St: smoothed value of deseasonalized service

Tt: smoothed value of trend

It: smoothed value of seasonal factor

L: length of seasonality (four quarters or a year)

Trend Models

The expected value of a series may change as time passes since the influence of

factors changes. If the movement is long term and only in one direction, up or down,

it is called a trend.

With trended series, one assumes that there is some functional relationship between

the expected value of the series and the time variable. This function usually involves

some unknown parameters b0, b1, . . . that must be estimated from the series history.

A time series whose average value changes over time is called nonstationary.

Trend is a particular kind of nonstationary in which the pattern of change has two

main properties:

1. It is of long duration compared to the forecast horizon.

2. It is predominantly in one direction only, either upward or downward.

A time series y1, y2, . . . is said to have trend if the expected value of yi changes

over time so that

E ytð Þ ¼ fðb0,b1, . . . , tÞ t ¼ 1, 2, . . .

where f (b0, b1,. . ., t) is predominantly either an increasing or a decreasing function

of t over the forecasting horizon (the time for which forecasts are to be constructed).

A model for trended time series is as follows:

yt ¼ the actual value of the series at time t

Tt ¼ the expected value (trend) of the series at time t

¼ f(b0, b1, . . .;t)
et ¼ a random variable representing irregular fluctuations around the trend

where f(b0, b1,. . .; t) is an increasing or decreasing function describing the trend pattern.
The general trend model is yt ¼ Ti + e t ¼ 1, 2, . . .. This model describes

a consistently growing or declining series with variation from trend (Tt) caused by

random influences (et). In most cases, it is assumed that the et’s form a stationary

random series with E(et) ¼ 0 for all t.

There may be some confusion about whether a trend is only a part of a very long

cycle. However, practically speaking, a portion of a long cycle may be modeled as
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trend if the cycle has not changed direction during the time period of interest to the

forecaster and if no such change is anticipated. Under these circumstances, it is

probably only academic whether the movement is truly a trend of a cycle. If a cycle

is modeled as trend and it happens to turn over during the forecast horizon, then

large forecast errors may result.

Among the major sources of trend are the following:

1. Population changes

2. Technological changes

3. Changes in social custom

4. Inflation/deflation

5. Changing environmental conditions

6. Changing market acceptance

Linear Trend Model
These models indicate the increases or decreases like a straight line and are

represented by the equation

Ŷ t ¼ b0 þ b1t

where

Yt is the predicted value of the trend at time t. The values of b0 and b1 are found

by the method of least squares.

Quadratic Trend Model
Another trend model often used is a quadratic trend model:

Ŷ t ¼ b0 þ b1t1 þ . . .þ b2t
2

where the values of b0, b1, and b2 are found by the method of least squares.

Exponential Trend Model
Furthermore, when the time series starts slowly and then appears to be increasing at

an increasing rate such that the percentage difference from observed is constant, an

exponential trend can be fitted. The exponential trend is given by

Ŷ t ¼ b0b
t
1

The coefficient is related to the growth rate. If the exponential trend b1 is fit to

annual data, the annual growth rate is estimated to be 100 (b1�1)%.

Moving-Average Method

In the method of simple averages, the mean of the data set is to forecast the future.

However, if the forecaster is more concerned with more recent observations,

88 Time Series Models to Predict the Net Asset Value 2455



a constant number of data points can be specified to compute the mean for the most

recent set of observations. This process is referred to as a moving average. As each

new data set observation becomes available, a new mean is computed by adding the

newest value and dropping the oldest. This moving average is used to forecast the

next period.

A moving average of adding K MA(K) is given by

Ŷt+1: the actual value at period t

Ye+1: forecasted value for the next period

K: the number of terms in the moving average

Each observation in the process is given an equal weight. The rate of response to

changes in the series depends on the number of period in K. The moving-average

model does not handle trend or seasonality factor.

To compute the weighted average of a set of data, each first observation is

multiplied by a weight representing its relative importance; then the produces are

summed, and finally this sum is divided by the sum of the weights. The resulting

weights then sum to 1.0 ad are called normalized weights, which are often

expressed as percentages. They give quite a clear picture of the proportionate

influence of each observation on the value of the average. In forecasting formulae,

w0 ¼ the weight given to the most recent observation

w1 ¼ the weight given to the one-period-old observation

w2 ¼ the weight given to the two-period-old observation

. . .
wi ¼ the weight given to the i-period-old observation

In smoothing schemes with normalized weights, then the one-step-ahead fore-

cast is

Ŷ tþ1 ¼ b0 tð Þ ¼ w0yt þ wtyt�1 þ . . .þ wk�1yt�kþ1 k � t ¼
Xk�1

0

wiyt�1

and the p-step-ahead forecast is

Ŷ tþp ¼ Ŷ tþ1 p � t

Because the weights move toward one step each time a new observation is

obtained, the average computed is called a moving average.

With the updating procedure, the weighting scheme changes at each step. That

is, the weights at time t are 1/t,1/t, 1/t,. . ., 1/t and at time t + 1 become 1/(t + 1),

1/(t + 1), . . ., 1/(t + 1). This method is referred to as updating the mean. Since all

previous observations enter equally into the average, updating the mean provides

a maximal amount of smoothing and, thus, a minimal amount of tracking.

Another concept used in interpretingmoving averages is the center of the average.

The center is that point in time which the average most represents. The center is not

necessarily the idle of the interval; it depends on theweighting scheme. However, the

average used in updating the mean is centered at (t + 1)/2, the middle of the interval

from 1 to t, because of the symmetry of the weights.
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Varying amounts of smoothing and tracking can be obtained by altering the

weighting scheme. A common way to reduce the extreme smoothing of updated

mean forecasts is to compute the mean of only the k most recent observations. The

result is called a moving average of length k. Varying the value of k varies the

amount of smoothing, with smaller values of producing less smoothing (more

tracking). For any particular series, the forecaster may select k according to the

amount of smoothing desired, or k may be chosen to optimized one of the standard

criteria (RMSE, MAD, etc.) mentioned earlier in this section. In actually, this

method discards all observations that are more than k units old, and the weight to

each of the k most recent observations is equal and constant over time. There must

be k observations to begin the forecasting, and to compute new forecasts we must

retain all k of the most recent observations from step to step.

Box-Jenkins (ARIMA) Model

ARIMA models are a class of linear models that are capable of representing

stationary as well as nonstationary time series. ARIMA models make use of

information in the series itself to generate forecasts.

Box-Jenkins method is a forecasting methodology since it does not assume any

particular pattern in the historical data of the series. To begin with the selection of

an ARIMS model is based on the examination of the time series, and it is

autocorrelated for several time lags. In specifics, the pattern of known autocorrela-

tion is associated with a particular ARIMA model structure.

The Box-Jenkins method of forecasting is different from most methods. The

technique does not assume any particular pattern in their historical data of the series

to be forecast. It uses an iterative approach of identifying a possible usefulmodel from

a general class ofmodels. The chosenmodel is then checked against the historical data

to see whether it accurately describes the series. The model fits well if the residuals

between the forecasting model and the historical data points are small, randomly

distributed, and independent. If the specified model is not satisfactory, then the

process is repeated by using another model designed to improve on the original one.

A general class of Box-Jenkins models for a stationary time series is the

ARIMA, or autoregressive integrated moving average, models. Stationary time

series is one shoes average value is not changing over time. This group of models

includes the autoregressive models with only autoregressive terms with both

autoregressive and moving-average terms. The Box-Jenkins methodology allows

the analyst to select the model that best fits the data.

Selection of an appropriate model can be made by comparing the distributions of

autocorrelation coefficients of the time series being fitted with the theoretical

distributions for the various models.

There are three basic stages in the modeling process: identification, fitting, and

diagnostic checking.

The objective of identification is to select the forecast model that seems most

appropriate to the time series under study. The data are used to generate a series of
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sample autocorrelation functions. These are now compared to certain theoretical

autocorrelation functions from known forecast models to seek the best

match between the sample and theoretical results. With this, the forecast model is

identified and selected. The principle of parsimony is applied in that the

model with the smallest number of coefficients that is suitable for the item is the

selected model.

Upon selecting the model, fitting is carried on where the coefficients are

estimated. The estimates are found so that they yield the fit of the past demands

which procedures the minimum sum of squared residual errors.

Using the fitted results, the residual errors are examined to determine the

adequacy of the fit. A good fit will yield residual errors that are randomly

distributed with mean zero and a common variance. The check is made via the

autocorrelation function of the residual errors.

If the diagnostic check fails, then the three stages are repeated until a model is

found which gives appropriate results.

Autoregressive Models
The first type of model that will be examined is an autoregressive model. A pth

order autoregressive model takes the following form:

Yt : a0 þ a1Yt�1 þ a2Yt�2 þ . . .þ apYt�p þ et

where

Ye: response variable at time t

Yt�1, Yt�2, . . . + Yt�p: response variable at various time lags

a0, a1, a2, a3,. . ., ap: coefficient to be estimated

et: error term at time t

The given model has the form of a regression model with lagged values of the

dependent variable in the independent variable. This model is referred to as an

autoregressive model.

Moving-Average Model
A moving-average model is given by the gth-order moving-average model, which

takes the following form:

Yt ¼ mþ et � e1tt�1 � b2tt�1 � . . .� bgtt�g

where

Yt: response variable at time t

m: constant mean of the process

b1, b2, b3,. . ., bg: coefficients to be estimated

et: error term; variables not explained by the model

et�1, tt�2 . . . �et�g: errors in previous time periods

A moving-average model provides a forecast of Yt based on a linear

combination of a finite number of past errors.
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Unbounded Autoregressive and Moving-Average Models
A model that has both autoregressive terms can be combined with a model having

moving-average terms. It is referred to as a mixed autoregressive moving-

average form.

The form of the model is

Yt : a0 þ a1Yt�1 þ a2Yt�2 þ . . .þ apYt�p þ et þ �b1et�1 � b2et�2 . . .� bgtt�g

� �
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programming technique. These methodologies are applied to determine useful

financial ratios and the subsequent bond ratings. The analysis shows that the

stepwise discriminant analysis fails to be an efficient solution as the hybrid approach

using the goal programming technique outperforms it, which is a compromised

solution for the maximization of the two objectives, namely, the maximization of

the explanatory power and the maximization of discriminant power.

Keywords

Multivariate technique • Discriminant analysis • Factor analysis • Principal

component analysis • Stepwise discriminant analysis • Goal programming •

Bond ratings • Compromised solution • Explanatory power • Discriminant power

89.1 Introduction

Financial ratios are widely used in all financial analysis and planning. Banks use

a firm’s current and quick ratio to determine acceptability, for commercial loans; the

leverage ratio is used as a proxy for a firm’s capital measure in predicting bankruptcy

and to analyze the impact of leverage on the market value of a firm. In financial

analysis and planning determination, lenders or managers need to measure

a customer’s (either an individual’s or a firm’s) short-term or long-term financial

position. The multivariate statistical techniques of factor analysis (or principal com-

ponent analysis) and discriminant analysis had been used in such instances to identify

important financial ratios and to construct one or several well-known financial

indicator(s), namely, the financial z-score (Altman 1968; Altman and Eisenbeis

1968; Altman et al. 1977). Although the financial z-scores are a compromise between

theory and practice, z-scores have been used extensively by practitioners and acade-

micians in credit analysis and bankruptcy prediction (Altman 1983). In literature,

factor analysis (or principal component analysis) is often used to extract a set of

variables with significant explanatory power in a high-dimensional dataset. Together

with discriminant analysis, objects are classified into several homogeneous groups by

the financial indicator(s) extracted from the factor analysis (or principal component

analysis). The credit-scoring model by Pinches and Mingo (1973) is an example of

the aforementioned stepwise principal component-discriminant analysis approach.

However, when used together, due to their conflicting objectives, the performance of

the stepwise principal component-discriminant analysis might not be as satisfactory

as it would be when used separately.

Instead of stepwise principal component-discriminant analysis, the methodology

of factor -discriminant analysis in conjunction with the minimax goal programming

is explored in this chapter. In Sect. 89.2, the theory and methodology of discrim-

inant analysis will be explored. Section 89.3 will discuss the theory and methodol-

ogy of factor (or principal component) analysis.

In Sect. 89.4, the performance of a hybrid multivariate credit-scoring model that

involves a compromise maximization of the two conflicting objectives associated

with the principal component and discriminant analysis is presented, and its
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performance using Pinches and Mingo (1973) data is illustrated. Finally, the results

of this chapter are summarized in Sect. 89.5.

89.2 Discriminant Analysis

The purposes of discriminant analysis are twofold: (1) to test for mean group

differences among the groups and (2) to construct a classification scheme based

upon a set of m variables in order to assign previously unclassified observations to

appropriate groups. For example, in a study of corporate bankruptcy, Altman (1968)

used data from a sample of failed firms and a sample of existing firms and developed

a classification rule that uses financial ratios to determine whether bankrupt firms had

significantly different financial ratios prior to failure than did solvent firms.

89.2.1 Two-Group Discriminant Analysis

A linear two-group discriminant function can be defined as

Yi ¼ a1x1i þ . . . :þ amxmi (89.1)

where Yi is a binary variable used to indicate two alternative options, e.g., good or

bad accounts in credit analysis, bankrupt or non-bankrupt firms in

corporate bankruptcy analysis, and problem or nonproblem banks in banking

analysis. x1i,.., xmi are m explanatory variables. Two different methods can be

used to estimate the coefficients of Eq. 89.1; they are the dummy regression method

and the eigenvalue method. The dummy regression method is given in

Sect. 89.2.1.1, while the eigenvalue method is given in Sect. 89.2.1.2.

It is important for readers to understand the relationship between the logic of

two-group discriminant analysis and the regression technique to estimate related

discriminant function parameters. Following Tatsuoka (1988), Johnston and

Dinardo (1996), and Eisenbeis and Avery (1972), the basic equation of discriminant

analysis as derived in Appendix 1 can be defined as

B� ECð ÞA ¼ 0,

D
0 ¼ X1, 1 � X1, 2 . . . ,Xm, 1 � Xm, 2

� �
,

(89.2)

where B ¼ DD0 is the between-group variance; C is the within-group variance; A is

the vector representing the coefficients such that

|A � lI| ¼ 0, where I is the identity matrix and l is the eigenvalue; and E is the

ratio of the weighted between-group variance to the pooled within-group variance.

Multiplying by C�1 into both sides of Eq. 89.2, the characteristic equation associ-

ated with Eq. 89.2 is

C�1B� EI
� �

A ¼ 0: (89.3)

In order to use the linear discriminant function for empirical analysis, one must

estimate the coefficients of Eq. 89.2. To illustrate the computation of two-group
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discriminant functions as a multiple regression equation and the eigenvalue

method, we shall use a numerical example illustrated in Table 89.1, which shows

the number scores of two groups on two predictor variables, i.e., the liquidity

ratio X1 and the leverage ratio X2, and the response variable Y. All members of

group 1 are assigned Y ¼ 1, and all members of group 2 are given Y ¼ 0. There are

two alternative methods, the dummy regression and the eigenvalue method, to

estimate the discriminant function. The two methods are stated as below.

89.2.1.1 Dummy Regression Method
If there are two explanatory variables, i.e., m ¼ 2, Eq. 89.1 can be written as

yi ¼ a1x1i þ a2x2i (89.4)

where yi ¼ Yi � Y , x1i ¼ a1X1i þ a2X1 , and x2i ¼ X2i � X2 . The equation system

used to solve a1 and a2 can be defined as

Var x1ið Þa1 þ Cov x1i; x2ið Þa2 ¼ Cov x1i, yi
� �

Cov x1i; x2ið Þa1 þ Var x2ið Þa2
¼ Cov x2i, yi

� �
:

Following the data listed in Table 89.1, Var(x1i), Var(x2i), Cov(x1i, x2i),
Cov(x1i, yi), and Cov(x2i, yi) are calculated as follows:

Var x1ið Þ ¼
X

X2
1i

n
�

X
X1i

n

 !2

¼ 32þ 29:19

n
� 13:6þ 14:9

n

� �2

¼ 61:19

14
� 28:5

14

� �2

¼ 0:2267;

Table 89.1 Roster of liquidity and leverage ratios

Group 1 (N1 ¼ 6) Group 2 (N2 ¼ 8)

x1i x2i Yi x1i x2i Yi
2.0 0.50 1 1.8 0.35 0

1.8 0.48 1 1.9 0.34 0

2.3 0.49 1 1.7 0.42 0

3.1 0.41 1 1.5 0.49 0

1.9 0.43 1 2.2 0.36 0

2.5 0.44 1 2.8 0.38 0

1.6 0.55 0

1.4 0.56 0

Two groups with response variable Y and two predictors X1 and X2
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Var x2ið Þ ¼
X

X2
2i

n
�

X
X2i

n

 !2

¼ 1:2671þ 1:5447

14
� 2:75þ 3:45

14

� �2

¼ 0:0048;

Cov x1i; x2ið Þ ¼ 12:424

14
� 2:0357ð Þ 0:4428ð Þ

¼ 0:8874� 0:9014

¼ �0:014;

Cov x1i; yið Þ ¼
X

X1iYi

n
� X1

� �
Y
� �

¼ 13:6

14
� 2:0357ð Þ 0:4285ð Þ

¼ 0:9714� 0:8722

¼ 0:0992;

Cov x2i; yið Þ ¼
X

X2iYi

n
� X2

� �
Y
� �

2:75

14
� 0:4428ð Þ 0:4288ð Þ

¼ 0:0:1964� 0:1897

¼ 0:00668:

Using Cramer’s rule, a1 and a2 can be calculated as:

a1 ¼
0:0992 �0:0140

0:0066 0:0048

����
����

0:2267 �0:0140

�0:0140 0:0048

����
����

¼ 0:00047616þ 0:0000924

0:0010886� 0:000196
¼ 0:63697

a2 ¼
0:2267 0:00992

�0:0140 0:0066

����
����

0:2267 �0:0140

�0:0140 0:0048

����
����

¼ 0:00149þ 0:00138

0:00108� 0:00019
¼ 3:2359
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Normalizing the regression coefficient by dividing a2 into a1, we obtain

a1=a2
1

	 

¼

0:63697

3:2359
1

" #
¼ 0:1968

1

	 

: (89.5)

89.2.1.2 Eigenvalue Method
For the eigenvalue method, the elements of the matrices C and B in Eq. 89.2 can be

calculated as:

C11 ¼ 32� 13:6ð Þ2
6

þ 29:19� 14:9ð Þ2
8

¼ 2:612;

C22 ¼ 1:2671� 2:75ð Þ2
6

þ 1:5447� 3:45ð Þ2
8

¼ 0:0636

C12 ¼ 6:179� 13:6� 2:75

6
þ 6:245� 14:9 � 3:45

8
¼ �0:2350;

B11 ¼ 6
13:6

6
� 2:0357

	 
2
þ 8

14:9

8
� 2:0357

	 
2

¼ 0:5601;

B22 ¼ 6
2:75

6
� 0:4428

	 
2
þ 8

3:45

8
� 0:4428

	 
2

¼ 0:0025

B12 ¼ 6
13:6

6
� 2:0357

� �
2:75

6
� 0:4428

� �

þ8
14:9

8
� 2:0357

� �
3:45

8
� 0:4428

� �

¼ 0:03753:

The matrices C and B can now be formulated as

C ¼ 2:612 �0:2350
�0:2350 0:0636

	 

B ¼ 0:5601 0:03753

0:03753 0:0025

	 

:
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Therefore, we can obtain

C�1B ¼ 0:4007 0:0268
0:0268 0:1384

	 

:

Now, the characteristic equation |C�1B � EI| ¼ 0 can be solved as

E2 � 0.5391E ¼ 0, whose single nonzero root is E1 ¼ 0.5391. Now, the adjoint

of C�1B � E1I is

�0:4007 �0:0268
�0:2071 �0:1384

	 


Hence, the eigenvector of C�1B, with larger elements set equal to unity, is

A1 ¼ �0:4007=� 2:071
1

	 

¼ 0:1935

1

	 

:

When the vector of regression weights a1 and a2 obtained earlier is similarly

rescaled, we arrive at the same solution as in Eq. 89.5, which was obtained by the

dummy regression method in Sect. 89.2.1.1. Alternatively, the nonzero root,

E1 ¼ 0.5391, can be substituted into Eq. 89.2, yielding:

�0:4007� 0:5391 �0:0268
�2:071 �0:1384� 0:5391

	 

a1
a2

	 

¼ 0:

Equation 89.3 implies that

�0:138a1 þ 0:027a2 ¼ 0

2:071a1 � 0:4007a2 ¼ 0:

By normalizing a21 + a22 ¼ 1, one has the same result in Eq. 89.5.

89.2.2 K-Group Discriminant Analysis

The two-group discriminant analysis theory can be readily generalized to the

K-group case. Assume there are K samples of size N for each of the

K populations with means m1, . . . , mK and weights w1, . . . , wK, respectively, and

a common variance-covariance matrix S. A set of r linear combinations of the

p explanatory variables X ¼ (X1, . . . ,Xp)
0, or discriminant functions D1 ¼ y

0
1X, . . .,

Dr ¼ yr
0
X, r � min(K � 1, p), where the coefficient vectors y1 ¼ S� 1/2x1, . . .,
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yr¼ S� 1/2xr, where xj is subject to the constraints x
0
ixi¼ 1 and x

0
ixj¼ 0 for all j< i,

are determined sequentially as follows.

Given the first i-1 coefficient vectors y1, . . . , yi � 1, i � r, the ith coefficient

vector ui is obtained by choosing xi that maximizes the ratio comparing the

variability between the groups to that within the groups, which can be formulated

in the object function

g1 xið Þ ¼ x
0
iAxi (89.6)

where the p�p positive-definite matrix

A ¼ S�1
2

XK
j¼1

wj mj � m
� �

mj � m
� �0

 !
S�1

2 (89.7)

Here, m ¼
Xk
i¼1

wimi is the overall mean and S is the common p�p

variance-covariance matrix of the K populations. By maximizing the

objective function g, the K population means of the r discriminant functions

D1 ¼ y
0
1X, . . ., Dr ¼ y

0
rX, r � min(K � 1, p) are separated as much as possible so

that the chance of misclassification of objects is reduced and thereby the discrim-

inant power is maximized.

89.3 Factor Analysis and Principal Component Analysis

89.3.1 Factor Analysis

Factor analysis has been applied in marketing, finance, and accounting. For exam-

ple, Johnson and Dinardo (1996) used factor analysis to extract eight factors from

61 financial ratios. Anderson (2003), Tatsuoka (1988), and Churchill and Iacobucci

(2004) argued that factor analysis is a popular “analyses of interdependence”

technique, which is concerned with the overall relationships among the set of

p explanatory variables that characterize the objects. In more specific, the model

can be formulated as

Y ¼ mþ bfþ U (89.8)

Where f is the m � 1 vector of unobservable factors, m is a fixed vector of means,

and U is a vector of unobservable specific errors. The p�m matrix b consists of

factor loadings (m < p), which are parameters to be estimated. To estimate model

(89.8), it is always assumed

E fð Þ ¼ 0,

E Uð Þ ¼ 0,E f 0fð Þ ¼ M,

E UU
0� � ¼ S,

E fU0ð Þ ¼ 0

2468 L.-J. Kao et al.



where S is a diagonal matrix. From (89.8), the covariance matrix of the observa-

tions Y is

E Y � mð Þ Y � mð Þ0 ¼ bMb
0 þ S: (89.9)

Two alternative approaches exist in estimating (89.8); they are the principal

component method and the maximum-likelihood method. The principal component

method for extracting factors or calculating the coefficient matrix to meet the

foregoing statistical assumption can be found in both Johnson and Dinardo

(1996) and Tatsuoka (1988). The maximum-likelihood method can be found in

Lawley (1940), Lawley and Maxwell (1963), and Joreskog (1967). In addition to

model (89.8), factor scores of the latent factors f1, \ . . ., fm are also of the primary

interest and are estimated.

89.3.2 Principal Component Analysis

In many empirical studies, the number of variables under consideration is too large

to handle. A way of reducing the number of variables to be treated is to discard the

linear combinations that have small variances and to study only those with large

variances. For example, the first principal component is the normalized linear

combination (i.e., the sum of squares of the coefficients being one) with maximum

variance. In essence, principal component analysis is for dimensionality reduction,

i.e., for transforming a number p of possibly correlated observable variables

X ¼ X1; . . . ;Xp

� �0

into a smaller number u, u < p, of uncorrelated variables Y1,. . ., Yu called principal

components to account for as much variability, or the explanatory power, as

possible. The principal components Y1 ¼ w
0
1X, . . . , Yu ¼ w

0
uX are determined

sequentially that given the first i-1 principal components, i�u, the ith principal

component Yi is determined by choosing wi that maximizes the variance of Yi, i.e.,

var Yið Þ ¼ wi

0
Xwi

subject to the constraints w
0
iwj ¼ 0 for all j < i and w

0
iwi ¼ 1, where X is the overall

variance-covariance matrix

X ¼ Sþ
Xk
i¼1

wi mi � mð Þ mi � mð Þ0 :

To be compatible with discriminant analysis, the constraints w
0
iwj ¼ 0 for all

j < i and w
0
iwj ¼ 1 are relaxed and let wi ¼ S� 1/2xi, i � u, where the vector
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xi satisfies the constraints that x
0
ixi ¼ 1 and x

0
ixj ¼ 0 for all j < i. As the norm

w
0
iwi ¼ x

0
iS

� 1xi is not restricted to one, we consider an objective function g2that
represents the normalized explanatory power of Yi as follows

g2 xið Þ ¼ x
0
iS

�1
2XS�1

2xi
x

0
iS

�1xi
: (89.10)

89.4 Multivariate Analysis of Industrial Bond Ratings

Pinches andMingo developed a credit-scoringmodel based on the stepwise discriminant

analysis procedure, in which a set of six key financial ratios with significant variability or

explanatory power is chosen first from 35 candidate financial variables using factor

analysis first. After the selection process, discriminant analysis is implemented to

combine and weight the six key financial variables to produce credit scores with

maximal discriminatory power that discriminate obligors among different benchmark

ratings ex ante as much as possible. However, the object function of the factor analysis,

similar to that of the principal component analysis g1 in (89.10), and the object function
g2 of the K-group discriminant analysis in (89.6) contradict with each other. For this

reason, the extracted factors with significant explanatory power might have very low

discriminatory power. Or it might occur that extracted factors with insignificant explan-

atory power but have very high discriminatory power. Some compromised approach

needs to be developed to overcome the problem. A goal programming technique,

namely, the minimax goal programming technique by Ignizio and Romero (2003), is

considered to be used in conjunction with the principal component and K-group dis-

criminant analysis to find a compromise solution between the two objectives g1 and g2.
The description of the minimax goal programming technique is given in Appendix 2.

Here, the rating data from Pinches and Mingo (1973) in which a total of 132 indus-

trial corporate bonds rated B, Ba, Baa, A, Aa based on Moody’s ratings from January

1, 1967, to December 31, 1968, are adopted for analysis. Four different approaches are

compared with one another, they are (1) principal component analysis, (2) K-group
discriminant analysis, (3) stepwise discriminant analysis by Pinches and Mingo, and

(4) hybrid of principal component and discriminant analysis using minimax goal

programming technique. The two object functions g1 and g2, or the discriminant

power and explanatory power, of the four approaches are listed in Tables 89.2 and 89.3.

89.5 Summary

In this chapter, method and theory of the three multivariate techniques, namely,

discriminant analysis, factor analysis, and principal component analysis, are

discussed in detail. In addition, the stepwise principal component-discriminant

analysis by Pinches and Mingo (1973) is improved using a goal programming

technique. These methodologies are applied to determine useful financial ratios

and the subsequent bond ratings.
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The analysis shows that the stepwise discriminant analysis fails to be an efficient

solution as the hybrid approach using the goal programming technique outperforms

it, which is a compromised solution for the maximization of the two objectives,

namely, the maximization of the explanatory power and the maximization of

discriminant power.

Appendix 1: Derivation of the Discriminant Function

Data composed of two samples of size N1 and N2 for two-group discriminant

analysis must meet the following assumptions: (1) that the groups being investi-

gated are discrete and identifiable, (2) that each observation in each group can be

described by a set of measurements on m characteristics or variables, and (3) that

these m variables have a multivariate normal distribution in each population.

Table 89.2 Classification using hybrid of principal component and discriminant analysis

Actual rating

Predicted rating Aa A Baa Ba B Total

In-sample

Aa 10 2 0 0 0 12

A 1 14 1 0 0 16

Baa 0 1 12 5 0 18

Ba 0 0 2 19 0 21

B 0 0 0 0 17 17

Total 11 17 15 24 17 84

Out-sample

Aa 2 3 0 0 0 5

A 1 5 2 0 0 8

Baa 0 1 6 1 0 8

Ba 0 0 2 17 0 19

B 0 0 0 2 6 8

Total 3 9 10 20 6 48

Table 89.3 Object functions of four approaches

Model

Criteria

Principal component

analysis

K-group
discriminant

Stepwise

discriminant

analysis

Hybrid discriminant

analysis

In-sample

g1 54.80 % 4.01 % 10.55 % 11.79 %

g2 48.81 % 88.10 % 63.10 % 85.71 %

Out-sample

g1 46.70 % 4.82 % 10.37 % 11.65 %

g2 58.33 % 70.83 % 70.83 % 75.00 %
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In vector notation, the nth observation can be represented as an m � 1 column

vector of the form

X
0
n ¼ X1n;X2n; � � �;Xmnð Þ,

where n ¼ 1, . . . . , N1 or n ¼ 1, . . . . . , N2. Under these assumptions, the linear

discriminant function can be defined as Eq. 89.11

Yi ¼ a1X1i þ aX2i þ � � � þ amXmi: (89.11)

The ai’s were chosen to maximize the ratio of the weighted between-group

variance to the pooled within-group variance. Ladd (1966) has proposed

a discriminant criterion E, as defined as Eq. 89.12, to determine the coefficients

a1, a2, . . . , am:

E ¼ A
0
DD

0
A

A
0
CA

¼ A
0
BA

A
0
CA

(89.12)

where

A0 ¼ [a1, a2, � � �, am];
D

0 ¼ X1, 1 � X1, 2,X2, 1 � X2, 2,Xm, 1 � Xm, 2
� �

;

C ¼ within-group variance matrix and

DD0 ¼ between-group variance matrix.

There are two alternative methods (a) and (b) that can be used to derive the basic

equation of discriminant analysis as defined in Eq. 89.13 in the following:

(a) Subsequent vector derivation method

Symbolically, we may find the derivative of E with the respect to the column

vector of A and equate the result to the m � 1 vector (see Tatsuoka (1971),

p. 160–161). The vector equation thus obtained is

∂E
∂A

¼ 2 BA A
0
CA

� �� A
0
BA

� �
CA

� �

A
0
CA

� �2 ¼ 0:

Dividing both numerator and denominator of the middle member by A0CA and

using the definition of E in Eq. 89.12, this equation reduces to

2 BA� ECA½ �
A

0
CA

¼ 0,

which is equivalent to

B� ECð ÞA ¼ 0: (89.13)
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(b) Long-hand method

If m ¼ 2, then Eq. 89.12 can be rewritten as

E ¼ b11a
2
1 þ b22a

2
2 þ 2b12a1a2

c11a21 þ c22a22 þ 2c12a1a2

where b11, b22, and b12 are elements of B and c11, c21, and c12 are elements of

C in Eq. 89.2. Taking the partial derivative of E with respect to a1, we obtain:

∂E
∂a1

¼ 2b11a1 þ 2b12a2ð Þ C11a
2
1 þ C22a

2
2 þ 2C12a1a2

��

� b11a
2
1 þ b22a

2
2 þ 2b12a1a2

� �
2C11a1 þ 2C12a2

2
� �i

� C11a
2
1 þ C22a

2
2 þ 2C12a1a2

� ��2

¼ 2 b11a1 þ b12a2Þ � E C11a1 þ C12a2ð Þ½ �
� C11a

2
1 þ C22a

2
2 þ 2C12a1a2

� ��1
:

Setting this equation equal to zero and simplifying, we get b11a1 + b12a2 ¼
E(C11a1 +C12a2). Similarly, upon equating ∂E/∂a2 to zero and simplifying, we get

b21a1 + b22a2 ¼ E(C21a1 + C22a2). Using matrix notation, we have

b11 b12
b21 b22

	 

A ¼ E

C11 C12

C21 C22

	 

A:

Therefore, we obtain Eq. 89.13, which can be used to formulate the charac-

teristic equation for solving A as follows. If A* maximizes the function shown in

Eq. 89.11, then so does any A** ¼ kA*, where k is a scalar. Substituting A** for

A* simply multiplies both the numerator and denominator by k2. Because the

coefficients themselves are not unique, there are several methods of calculating

the discriminant function. Johnston and Dinardo (1996) show that the vector A*

that maximizes the ratio E is proportional to the vector A (i.e., A ¼ kA*), which

maximizes G ¼ A0DD0A subject to the constraint that L ¼ A0CA, where L is an

arbitrary constant. Let l be a Lagrange multiplier and define

F ¼ A
0
DD

0
A� l A

0
CA� L

� �
:

Setting the derivative of F with respect to A equal to zero yields

∂F
∂A

¼ 0 ¼ 2DD
0
a� 2lCA (89.14)
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Where D0A is a scalar, say H. Hence, Eq. 89.14 can be rewritten as (l/Η)

CA ¼ D, and thus

A
l
H

� �
¼ C�1D ¼ A1:

It can be seen that A1 is a solution to Eq. 89.13 since

DD
0 � lC

� �
A1 ¼ DD

0 � lC
� �

A
l
H

� �
¼ 0:

Alternatively, adding the term EBA to both sides of Eq. 89.13, one has

(1 + E)BA ¼ E(B + C)A or

B� E
0
S

� �
A ¼ 0, (89.15)

where E0 ¼ E/(1 + E) and S ¼ (B + C). Now Eq. 89.15 can be used as an

alternative of Eq. 89.13, and an alternative objective function can be defined as

E
0 ¼ A0DD0A

A
0
SA

,

where S ¼ [Sij] ¼ the m � m matrix of Sij; here Sij is the sum of the cross

products ofXi � X andXj � X. Following the same procedure mentioned above,

we have

A
l
H

� �
¼ S�1D ¼ A2:

Ladd (1966) has shown that A2 is proportional to A1. These results

imply that the parameters of a two-group discriminant function can be

estimated by using the related data of S and D. Let Y ¼ 1 for

observations in group 1 and Y ¼ 0 for those in group 2; then, using the

multiple regression technique, Ladd (1966) showed that the regression

coefficient vector A ¼ S� 1MD, where M ¼ [N1N2]/[N1 + N2], and N1 and

N2 are total observations in group 1 and group 2, respectively. It follows

straightforwardly showing that the parameters obtained from the eigenvalue

method differ from those of the dummy regression method only by

a constant M.

2474 L.-J. Kao et al.



Appendix 2: Minimax Goal Programming Technique

The goal programming (GP) technique is a multi-objective optimization approach.

Several classes of goal programming are developed, including weighted goal

programming, lexicographic goal programming, and minimax goal programming.

In this study, as a balance between discriminant power as well as explanatory power

is desired, the minimax goal programming technique is introduced as follows. In the

standard GP formulation, each of the objectives is given aspiration levels.

Unwanted deviations from this aspiration levels are minimized in an achievement

function. For the minimax goal programming, the maximal deviation d from

amongst the set of goals is minimized. There are numerous forms of minimax

goal programming; here we adopt the one by Ignizio and Romero (2003) as follows:

Achievement function : Min d

s:t:
gmax1 � g1 xð Þ
gmax1 � gmin1

� � � d

gmax2 � g2 xð Þ
gmax2 � gmin2

� � � d

Constraints : x
0
x ¼ 1 and d � 0

where x is the decision variable and the four values gmax1 ¼ g1(x�1), g
min
2 ¼ g2(x�1),

gmax2 ¼ g2(x�2), and gmin1 ¼ g1(x�2) and x�1 and x�2 are the optimal solutions for

objectives g1 and g2, respectively.
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Abstract

The estimation of the implied volatility is the one of most important topics in

option pricing research. The main purpose of this chapter is to review the

different theoretical methods used to estimate implied standard deviation and

to show how the implied volatility can be estimated in empirical work. The OLS

method for estimating implied standard deviation is first introduced, and the

formulas derived by applying a Taylor series expansion method to Black–

Scholes option pricing model are also described. Three approaches of estimating

C.-F. Lee (*)

Department of Finance and Economics, Rutgers Business School, Rutgers, The State University of

New Jersey, Piscataway, NJ, USA

Graduate Institute of Finance, National Chiao Tung University, Hsinchu, Taiwan

e-mail: lee@business.rutgers.edu; cflee@business.rutgers.edu

T. Tai

Department of Finance and Economics, Rutgers, The State University of New Jersey, Piscataway,

NJ, USA

e-mail: tzutai@pegasus.rutgers.edu

C.-F. Lee, J. Lee (eds.), Handbook of Financial Econometrics and Statistics,
DOI 10.1007/978-1-4614-7750-1_90,
# Springer Science+Business Media New York 2015

2477

mailto:lee@business.rutgers.edu
mailto:cflee@business.rutgers.edu
mailto:tzutai@pegasus.rutgers.edu


implied volatility are derived from one, two, and three options, respectively.

Regarding to these formulas with the remainder terms, the accuracy of these

formulas depends on how an underlying asset is close to the present value of

exercise price in an option. The formula utilizing three options for estimating

implied volatility is more accurate rather than other two approaches.

In empirical work, we use call options on S&P 500 index futures in 2010 and

2011 to illustrate how MATLAB can be used to deal with the issue of conver-

gence in estimating implied volatility of future options. The results show that the

time series of implied volatility significantly violates the assumption of constant

volatility in Black–Scholes option pricing model. The volatility parameter in the

option pricing model fluctuates over time and therefore should be estimated by

the time series and cross-sectional model.

Keywords

Implied volatility • Implied standard deviation (ISD) • Option pricing model •

MATLAB • Taylor series expansion • Ordinary least squares (OLS) • Black–

Scholes model • Options on S&P 500 index futures

90.1 Introduction

The volatility of the return of the underlying asset is the important factor in option

pricing model (see Merton 1973; Black and Scholes 1973). However, the standard

deviation of the underlying asset return cannot be observed directly (See Merton

1976; Macbeth et al. 1979; Chance 1986). The estimation of the implied volatility

of the underlying asset in option framework becomes the one of most important

topics in option pricing research. There are two main methods developed in the

finance literature to estimate the standard deviation of the underlying asset in option

framework: (1) the historical standard deviation and (2) the implied standard

deviation (called ISD hereafter) derived from the Black–Scholes’ option pricing

model framework (See Hull 2011).

Garman and Klass (1980) study the historical standard deviation by using

open, high, low prices, and closed prices’ data to estimate the standard deviation.

To support the use of historical standard deviation for implied standard deviation

in option pricing model requires that the underlying asset’s rate of return is

stationary over the option’s life, which contradicts the time-varying standard

deviation documented by Schwert (1989).

Since the Black–Scholes’ option pricing model is a nonlinear equation, an explicit

analytic solution for the ISD is not available in the literature (except for at-the-money

call), and numerical methods are used to approximate the ISD (see Latane and

Rendleman 1976; Beckers 1981; Manaster and Koehler 1982; Brenner and

Subrahmanyam 1988; Lai et al. 1992; Chance 1996; Hallerback 2004; Corrado and

Miller 1996, 2004; Li 2005). The derivation and use of the ISD for an option as

originated by Latane and Rendleman (1976) have become a widely used methodol-

ogy for variance estimation. By applying the Newton-Raphson method, Manaster
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and Koehler (1982) provide an iterative algorithm for the ISD. Brenner and

Subrahmanyam (1988) applied Taylor series expansion at zero base to the cumulative

normal function in pricing Black–Scholes option pricing model up to the first-order

term and set the underlying asset price to equal the present value of exercise price to

solve the ISD. Lai et al. (1992) derive a closed-form solution for the ISD in terms of

the delta ∂C/∂S and ∂C/∂E. Following the same approach as Brenner and

Subrahmanyam, Corrado and Miller (1996, 2004) utilize the cumulative normal

function at zero to the first-order term to derive a quadratic equation of the ISD. Then

the ISD can be obtained by solving the quadratic equation. Hallerback (2004) also

derives an improved formula, which is similar to Corrado and Miller’s formula

(1996), to compute the ISD. Later, Li (2005) bases on Brenner and Subrahmanyam’s

approach to expand the expression to third-order term and solve for the ISD with

a cubic equation. Since Li includes third-order term in the Taylor expansion on the

cumulative normal distribution in his derivation, Li claims that his formula of ISD

provides a consistently more accurate estimate of the true ISD than that of Brenner

and Subrahmanyam’s formula.

However, the fact that there are as many estimated ISD of an underlying asset

as the number of different exercise price in options violates the constant

variance assumption used in deriving the Black–Scholes’ option pricing model.

Chance (1996) assumes different exercise prices result in different ISDs,

which violate the constant variance assumption used in deriving the Black–Scholes’

option pricing model. Under the existence of a call at-the-money assumption,

Chance uses Brenner and Subrahmanyam’s formula to calculate the at-the-money’s

ISD. Chance then applies Taylor series expansion to the difference of the call

options in terms of the first and the second-order terms. The drawback of Chance’s

method is the constraint of the use only for at-the-money option price. In other

words, if the underlying asset price deviates from the present value of the exercise

price and the call option price is not available (or unobservable) in the market, then

Chance’s formula for the ISD may not apply. Later, Ang et al. (2009, 2012) relax

the constraint in Chance’s method and develop three formulas which depend on

a Taylor series expansion and utilize single, two, and three options, respectively, to

estimate implied volatility.

The purpose of this chapter is to review the different theoretical methods used to

estimate ISD and to show how the implied volatility can be estimated in empirical

work. We use the data from options on S&P 500 index futures in 2010 and 2011 to

illustrate how MATLAB can be used to deal with the issue of convergence in

estimating implied volatility of options on index futures. This chapter is organized

as follows. In Sect. 90.2, we review the OLS method used in estimation of the ISD

in Black–Scholes’ option pricing model and expand this method to estimate the

implied volatility of the underlying asset for options on the index futures. Then, in

Sect. 90.3, we introduce the formulas of implied volatility developed by Ang

et al. (2012) which apply a Taylor series expansion to the Black–Scholes option

pricing model. The process and results of empirical work on estimating ISD for

options on S&P 500 index futures are shown in Sect. 90.4. Finally, Sect. 90.5

represents the conclusions of this study.
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90.2 Estimating the Implied Standard Deviation with OLS
Method

Black and Scholes (1973) and Merton (1973) derive the European call option

pricing model on a stock as follows:

C¼ SN d1ð Þ � Ke�rtN d2ð Þ
d1 ¼ 1n S=Kð Þ þ rþs2=2ð Þt½ �=s ffiffiffi

t
p

d2 ¼ d1 � s
ffiffiffiffiffi
t,

p (90.1)

where C is the call premium, S is the underlying stock price, K is the exercise price,

r is the instantaneous risk-free rate, t is the time to the maturity, s is the standard

deviation of the underlying asset rate of return on annual basis, and N(x) is the

standard cumulative normal distribution function up to x.

The sensitivities, or first partial derivatives, of the call option formula in

Eq. 90.1 with respect to the change of the volatility of the underlying stock can

be derived as

∂C
∂s

¼ S
ffiffiffi
t

p
N0 d1ð Þ ¼ S

ffiffiffi
t

p

S
ffiffiffiffiffiffi
2p

p e�d21=2 (90.2)

where N0(x) is the standard normal probability density function at value x.

Equation 90.2 shows the positive relationship between the call option price and the

volatility of the underlying stock. Since a call option has no downside risk (except for

its cost), increasing risk of the underlying stock simply enlarges the probability that the

option will end up in the money by expiration (hence, with a larger intrinsic value).

The OLS method for estimating implied standard deviation is first proposed by

Whaley (1982). Although Whaley’s original intent for this method was to improve

upon the existing weighting techniques, his ordinary least squares (OLS) approach

can also be used to derive the implied standard deviations (ISD) for call options. To

begin the development of his method, Whaley applies a Taylor series expansion

around some initial value of the standard deviation and omits higher-order terms.

Mathematically, this is expressed as

CM
j, t ¼ CT

j, t s0ð Þ þ ∂CT
j, t

∂s

�����s ¼ s0

 !
ss � s0ð Þ þ ej, t, (90.3)

j ¼ 1, 2, . . . , Jð Þ

where Cj,t
M denotes the market price for the option j at time t, Cj,t

T is the theoretical

model price estimated by Eq. 90.1 for the option j at time t based on an estimated

value for the ISD (s0), s0 is the estimated ISD evaluated from some initialization

value up to some minimum level of tolerance of error, ss denote the true or actual
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ISD which we are looking for, and ej,t is the random disturbance term for option j at

time t. By rearranging Eq. 90.3, we can obtain

CM
j, t � CT

j, t s0ð Þ
h i

þ s0
∂CT

j, t

∂s

�����s ¼ s0

 !
¼ ss

∂CT
j, t

∂s

�����s ¼ s0

 !
þ ej, t (90.4)

j ¼ 1, 2, . . . , Jð Þ

since Cj, t
M is observable in market

∂CT
j, t

∂s

���s ¼ s0
� �

and Cj, t
T (s0) can be evaluated at

any given value s0 by using Eqs. 90.1 and 90.2.

Whaley (1982) then applies OLS, which minimizes the sum of squared residuals,

to achieve a single, weighted s from the options on a particular stock. The actual

estimation procedures begin from a linearization of the option pricing model around

0, and then OLS is applied to Eq. 90.4. The process thus proceeds in an iteration

manner until the estimated ISD ŝs satisfies an acceptable tolerance of

ŝs � s0
s0

����
���� < Q, (90.5)

where Q is a small positive number where Whaley(1982) uses Q equal to 0.0001 as

the acceptable tolerance of estimated error and ŝs is the estimate for the true ISD ss
for the market option price. If the tolerance criterion is not satisfied, ŝs becomes the

new initialization value and the OLS procedure is repeated.

The OLS method also can be applied to estimate the ISD for options on index

future with the similar procedure of a Taylor series expansion (See Wolf 1982; Park

et al. 1985; Ramaswamy et al. 1985; Brenner et al. 1985). The call options on index

future derived by Black (1975, 1976) are given by

CF
t ¼ e�rt FtN d3ð Þ � KN d4ð Þ½ �

d3 ¼ 1n Ft=Kð Þ þ s2f =2
� �

t
h i�

sf
ffiffiffi
t

p

d4 ¼ d3 � sf
ffiffiffi
t

p
,

(90.6)

where Ct
F is the model price for a call option on index future at time t, Ft is the

underlying index future price at time t, K is the exercise price of the call option on

index future, t is the option’s remaining time to maturity in terms of a year, r is the

continuous annualized risk-free rate, sf
2 is the instantaneous variance of returns of

the underlying index future contract over the remaining life of the option, and N(x)

is the standard cumulative normal distribution function up to x.

There is similar procedure with Whaley’s method to calculate the ISD for options

on S&P 500 index futures. The ISD is obtained by first choosing an initial estimate,

s0, and then using Eq. 90.7 to iterate towards the correct value as follows:

CF
t, j � CF

t, j s0ð Þ ¼ s1 � s0ð Þ ∂CF
j, t

∂s

�����s ¼ s0

 !
, (90.7)
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where CF
t,j denotes the market price of call option j at time t, CF

t,j (s0) is the

theoretical price of call option j at time t given s equal to s0, s0 is the initialized

estimate of the ISD, s1 ¼ estimate of the true ISD from iteration,
∂CF

t, j
∂s

���s ¼ s0
� �

is

the partial derivative of the call option on index future with respect to the standard

deviation evaluated at a s0. In the context of the Black (1976) option pricing model,

the partial with respect to the standard deviation of the underlying index future can

be expressed explicitly as

∂CF
t, j

∂s
¼ Fte

�rt ffiffiffi
t

p
N

0
d3ð Þ ¼ Fte

�rt
ffiffiffi
t

p
ffiffiffiffiffiffi
2p

p e�d23=2, (90.8)

where d3 is defined as in Eq. 90.6 and N0(x) is the standard normal probability

density function at value x. The partial derivative formula in Eq. 90.8 is also called

Vega of a call option on index futures which is represented the rate of change

of the value of a call option on index futures with respect to the volatility of

the underlying index futures. The iteration proceeds by reinitializing s0 to equal

s1 at each successive stage until an acceptable tolerance level in Eq. 90.5 is

attained.

90.3 Estimating the Implied Standard Deviation with Taylor
Series Expansion Method

In this section, we first introduce the exact closed-form solution in for the ISD under

the condition that the underlying asset price equals the present value of the exercise

price. Then we discuss Ang et al.’s (2012) alternative formulas to estimate the ISD

by applying a Taylor series expansion to the Black–Scholes option pricing model

under the relaxation of the previous restrictive condition.

When the underlying stock price equals the present value of the exercise price

(i.e., S ¼ Ke�rt), the Eq. 90.1 can be reduced as follows:

C ¼ S N s
ffiffiffi
t

p
=2ð Þ � N �s

ffiffiffi
t

p
=2ð Þ½ �

¼ S 1� 2N �s
ffiffiffi
t

p
=2ð Þ½ �

¼ S 2N s
ffiffiffi
t

p
=2ð Þ � 1½ �:

(90.9)

Based on the characteristics of existence and uniqueness of the inverse cumula-

tive normal distribution, an exact closed-form solution for the ISD in Eq. 90.9 can

be derived as

s
ffiffiffi
t

p ¼ 2N�1 Sþ Cð Þ= 2Sð Þ½ �: (90.10)

Ang et al. (2012) apply Taylor’s formula to the cumulative normal functions in

Eq. 90.1 at base ln S=Ke�rtð Þ= s
ffiffiffi
t

pð Þ up to the second-order terms, then the
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European call option in Eq. 90.1 can be rearranged as a quadratic equation of s
ffiffiffi
t

p
plus the remainder term as follows1:

s2t 4 Sþ Ke�rtð Þ � S� Ke�rtð Þln S=Ke�rtð Þ½ � � 4s
ffiffiffi
t

p ffiffiffiffiffiffi
2p

p
2C� Sþ Ke�rtð Þ

þ 8ln S=Ke�rtð Þ S� Ke�rtð Þ 1þ ln S=Ke�rtð Þ=4ð Þ2
� �

� Sþ Ke�rtð Þln S=Ke�rtð Þ=4
h i

þ e ¼ 0:

(90.11)

Dropping the remainder term e, the ISD can be obtained by solving the root of

quadratic equation function in Eq. 90.11. Since Ang et al. (2012) utilize four times

of a Taylor series expansion method to derive the quadratic function of a European

call option and the remainder terms are omitted, the ISD calculated by Eq. 90.11 is

not an exact formula. Therefore, the effectiveness of using Eq. 90.11 to estimate the

ISD depends on the deviation of the underlying stock price (S) from the present

value of exercise price (Ke�rt).

Moreover, Ang et al. (2012) derive the second alternative formula for estimating

ISD by using two call options,C1 and C2, on the same underlying stock but at

different exercise, K1 and K2, respectively (here we assume K1 < K2). By applying

Taylor series expansion to Eq. 90.1 for two call options at K2 for C1 and at K1 for

C2, respectively, we can obtain

C1 ¼ C2 � e�rtN ln S=K2e
�rtð Þ= s

ffiffiffi
t

p� �� s
ffiffiffi
t

p
=2

� �
K1 � K2ð Þ þ e1, (90.12)

C2 ¼ C1 � e�rtN ln S=K1e
�rtð Þ= s

ffiffiffi
t

p� �� s
ffiffiffi
t

p
=2

� �
K2 � K1ð Þ þ e2: (90.13)

Here e1 and e2 are the remainder terms of C1 at K2 and C2 at K1 from Eq. 90.1.

Dividing both sides of Eqs. 90.12 and 90.13 by e�rt (K2�K1) and simple manip-

ulations produce the same left-hand side of (C1–C2)/e
�rt(K2�K1).

Then applying the inverse function of cumulative normal function on both sides

and after using the Taylor’s formula yields the following equations:

N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þ½ � ¼ ln S=K1e
�rtð Þ= s

ffiffiffi
t

p� �� s
ffiffiffi
t

p
=2þ �1, (90.14)

N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þ½ � ¼ 1n S=K2e
�rtð Þ= s

ffiffiffi
t

p� �� s
ffiffiffi
t

p
=2þ �2, (90.15)

where Z1 and Z2 are the remainder terms of Taylor’s formulas derived from

Eqs. 90.12 and 90.13, respectively. After combining Eqs. 90.14 and 90.15 and

dropping the remainder terms (Z1 + Z2), the quadratic function of s
ffiffiffi
t

p
can be

shown as

1The details of the derivation of Eq. 90.10 can be found in Ang et al. (2012) paper.
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s
ffiffiffi
t

p� �2 þ 2N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þ½ � s ffiffiffi
t

p� �

� ln S2= e�2rtK1K2

� �	 
¼ 0: (90.16)

Thus, the ISD can be solved as

s
ffiffiffi
T

p ¼ �N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þ½ � þ ffiffiffi
z

p
when S > K1

�N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þ½ � � ffiffiffi
z

p
whenS � K1 � K2

�

z ¼ N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þð Þ	 
2 þ ln S2=e�2rtK1K2

� �
:

(90.17)

It is clear that if stock price is less than the lower exercise K1 (i.e., then

both call options are out of the money), and if we had chosen the value with

the plus sign of
ffiffiffi
z

p
in Eq. 90.17, ISD calculated by Eq. 90.17 will be

overstated. The advantage of this formula is that a sufficient condition to calculate

ISD by Eq. 90.17 only requires that there existed any two consecutive call

option values with different exercise prices. But, the accuracy of this

formula will depend on the magnitude of the deviation between these two exercise

prices.

Ang et al. (2012) further extend this approach to include a third option to

derive the third formula. Similar to Eq. 90.16, if there is a third call option C3

with the exercise price K3, then the following Eq. 90.18 must hold for K2, K3

and C2, C3.

s
ffiffiffi
t

p� �2 þ 2N�1 C2 � C3ð Þ=e�rt K3 � K2ð Þ½ � s ffiffiffi
t

p� �

� ln S2= e�2rtK2K3

� �	 
¼ 0: (90.18)

Given the constant variance assumption in Black and Scholes option model, the

following Eq. 90.19 is thus derived by subtracting Eq. 90.18 from Eq. 90.16 as

follows:

s
ffiffiffi
t

p ¼ ln K3=K1ð Þ= 2 N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þð Þ � N�1 C2 � C3ð Þ=e�rt K3 � K2ð Þð Þ� �	 

:

(90.19)

An advantage of using Eq. 90.19 rather than Eq. 90.17 to estimate the ISD is to

circumvent the sign issue that appears in Eq. 90.17. However, a drawback of using

Eq. 90.19 is that there must exist at least three instead of two call options for

Eq. 90.17. Equation 90.19 provides a simple formula to calculate ISD because all

option values and exercise price are given and the inverse function of the standard

cumulative normal function also available in the Excel spreadsheet. Ang

et al. (2012) state that this third formula in Eq. 90.19 is more accurate method for

estimating ISD based on their simulation results.
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90.4 Illustration of Estimating Implied Standard Deviation by
MATLAB

The data for this study for estimating ISD include the call options on the S&P

500 index futures which are traded at the Chicago Mercantile Exchange (CME).2

According to Eq. 90.6, we need the information of market call option price on

S&P 500 index, the annualized risk-free rate, S&P 500 index futures price,

exercise price, and maturity date on the contracts as input variables to calculate

the ISD of call option on S&P 500 index futures. Daily closed-price data of S&P

500 index futures and options on S&P 500 index futures was gathered from

Datastream for two periods of time: the options expired on March, June, and

September, 2010; options expired on March, June, and September, 2011; and the

S&P 500 index future from October 1, 2008, to November 4, 2011. The S&P

500 spot price is based on the closed price of S&P 500 index on Yahoo! Finance3

during the same period of S&P 500 index future data. The risk-free rate used in

Black model is based on 3-month Treasury bill from Federal Reserve Bank of

St. Louis.4 The selection of these futures option contracts is based on the length of

trading days. The futures options expired on March, June, September, and Decem-

ber have over 1 year trading date (above 252 observations), and other options only

have more or less 100 observations. Therefore, we only choose the futures options

with longer trading period to investigate the distributional statistics of these ISD

series. Studying two different time periods (2010 and 2011) of call options on S&P

500 index futures will allow the examination of ISD characteristics and move-

ments over time as well as the effects of different market climates.

The tolerance level used is the same formula as shown in Eq. 90.5, and let the

tolerance level Q equal to 0.000001 as follows:

s1 � s0
s0

����
���� < :000001

This chapter utilized financial toolbox in MATLAB to calculate the implied

volatility for futures option that the code of function is as follows5:

Volatility ¼ blsimpv Price, Strike, Rate, Time, Value, Limit, Tolerance, Classð Þ

2Nowadays Chicago Mercantile Exchange (CME), Chicago Board of Trade (CBOT), New York

Mercantile Exchange (NYMEX), and Commodity Exchange (COMEX) are merged and operate as

designated contract markets (DCM) of the CME Group which is the world’s leading and most

diverse derivatives marketplace. Website of CME group: http://www.cmegroup.com/
3Website of Yahoo! Finance is as follows: http://finance.yahoo.com
4Website of Federal Reserve Bank of St. Louis: http://research.stlouisfed.org/
5The syntax and the code from m-file source of MATLAB for Implied Volatility Function of

Futures Options are represented in Appendix 1. The detailed information of the function and

example of calculating the implied volatility for futures option also can be referred on MathWorks

website: http://www.mathworks.com/help/toolbox/finance/blkimpv.html
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where the blsimpv is the function name in MATLAB; Price, Strike, Rate, Time,

Value, Limit, Tolerance, and Class are input variables; Volatility is the annualized

ISD (also called implied volatility). The advantages of this function are the allow-

ance of the upper bound of implied volatility (Limit variable) and the adjustment of

the implied volatility termination tolerance (Tolerance variable), in general, equal

to 0.000001.

A summary of the ISD distributional statistics for S&P 500 index futures call

options in 2010 and 2011 appears in Table 90.1. The most noteworthy feature from

this table is the significantly different mean values of the ISD that occur for

different exercise prices. The means and variability of the ISD in 2010 and 2011

appear to be inversely related to the exercise price. Comparing the mean ISDs

across time periods, it is quite evident that the ISDs in 2011 are significantly

smaller. Also, the time-to-maturity effect observed by Park and Sears (1985) can

be identified. The September options in 2011 possess higher mean value of the ISD

than those maturing in June and March with the same strike price.

The other statistical measures listed in Table 90.1 are the relative skewness and

relative kurtosis of the ISD series, along with the studentized range. Skewness

measures lopsidedness in the distribution and might be considered indicative of

a series of large outliers at some point in the time series of the ISDs. Kurtosis

measures the peakedness of the distribution relative to the normal and has been

found to affect the stability of variance (see Lee and Wu 1985). The studentized

range gives an overall indication as to whether the measured degrees of skewness

and kurtosis have significantly deviated from the levels implied by a normality

assumption for the ISD series.

Although an interpretation of the effects of skewness and kurtosis on the ISD

series needs more accurate analysis, a few general observations are warranted at

this point. Both 2010 and 2011 ISD’s statistics present a very different view of

normal distribution, certainly challenging any assumptions concerning normality in

Black–Scholes option pricing model framework. Using significance tests on the

results of Table 90.1 in accordance with Jarque–Bera test, the 2010 and 2011

skewness and kurtosis measures indicate a higher proportion of statistical signifi-

cance. We also utilize simple back-of-the-envelope test based on the studentized

range to identify whether the individual ISD series approximate a normal distribu-

tion. The studentized range larger than 4 in both 2010 and 2011 indicates that

a normal distribution significantly understates the maximum magnitude of devia-

tion in individual ISD series.

As a final point to this brief examination of the ISD skewness and kurtosis, note

the statistics for MAR10 1075, MAR11 1200, and MAR11 1250 contracts. The

relative size of these contract’s skewness and kurtosis measures reflect the high

degree of instability that its ISD exhibited during the last 10 days of the contract’s

life. Such instability is consistent across contracts. However, these distortions

remain in the computed skewness and kurtosis measures only for these

particular contracts to emphasize how a few large outliers can magnify the size

of these statistics. For example, the evidence that S&P 500 future price jumped on
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January 18, 2010, and plunged on February 2, 2011, causes the ISD of these

particular contracts sharply increasing on that dates. Thus, while still of interest,

any skewness and kurtosis measures must be calculated and interpreted with

caution.

One difficulty in discerning the correct value for the volatility parameter in the

option pricing model is due to its fluctuation over time. Therefore, since an accurate

estimate of this variable is essential for correctly pricing an option, it would seem

Table 90.1 Distributional statistics for the ISD series of call options on S&P 500 index futures

Option seriesa Mean

Std.

dev. CVb Skewness Kurtosis

Studentized

rangec Observations

Call futures options in 2010

MAR10 1075

(C070WC)

0.230 0.032 0.141 2.908 14.898 10.336 251

JUN10 1050

(B243UE)

0.263 0.050 0.191 0.987 0.943 6.729 434

JUN10 1100

(B243UF)

0.247 0.047 0.189 0.718 �0.569 4.299 434

SEP10 1100

(C9210T)

0.216 0.024 0.111 0.928 1.539 6.092 259

SEP10 1200

(C9210U)

0.191 0.022 0.117 0.982 2.194 6.178 257

Call futures options in 2011

MAR11 1200

(D039NR)

0.206 0.040 0.195 5.108 36.483 10.190 384

MAR11 1250

(D1843V)

0.188 0.027 0.145 3.739 25.527 10.636 324

MAR11 1300

(D039NT)

0.176 0.021 0.118 1.104 4.787 8.588 384

JUN11 1325

(B513XF)

0.165 0.016 0.095 �1.831 12.656 10.103 200

JUN11 1350

(A850CJ)

0.161 0.018 0.113 �0.228 1.856 8.653 234

SEP11 1250

(B9370T)

0.200 0.031 0.152 2.274 6.875 7.562 248

SEP11 1300

(B778PK)

0.185 0.024 0.131 2.279 6.861 7.399 253

SEP11 1350

(B9370V)

0.170 0.025 0.147 2.212 5.848 6.040 470

aOption series contain the name and code of futures options with information of the strike price and

the expired month, for example, SEP11 1350 (B9370V) represents that the futures call option is

expired on September 2011 with the strike price $1,350, and the parentheses is the code of this

futures option in Datastream
bCV represents the coefficient of variation that is standard deviation of option series divided by

their mean value
cStudentized range is the difference of the maximum and minimum of the observations divided by

the standard deviation of the sample
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that time series and cross-sectional analysis of this variable would be as important

as the conventional study of security price movements. Moreover, by examining the

ISD series of each call options on S&P 500 index futures over time as well

as within different time sets, the unique relationships between the underlying

stochastic process and the pricing influences of differing exercise prices,

maturity dates, and market sentiment (and, indirectly, volume), might be

revealed in a way that could be modeled more efficiently. Therefore, we should

consider autoregressive–moving-average (ARMA) models or cross-sectional

time series regression models to analyze the ISD series and forecast the price

of call options on S&P 500 index futures by predicting the future ISD of these

options.

90.5 Summary and Concluding Remarks

The research in estimation of the implied volatility becomes the one of most

important topics in option pricing research because the standard deviation of the

underlying asset return, which is the important factor in Black–Scholes’ option

pricing model, cannot be observed directly. The purpose of this chapter is to review

the different theoretical methods used to estimate implied standard deviation and to

show how the implied volatility can be estimated in empirical work. We review the

OLS method and a Taylor series expansion method for estimating the ISD in

previous literature. Three formulas for the estimation of the ISD by applying

a Taylor series expansion method to Black–Scholes option pricing model can be

derived from one, two, and three options, respectively. Regarding to these formulas

with the remainder terms in a Taylor series expansion method, the accuracy of these

formulas depends on how an underlying asset is close to the present value of

exercise price in an option.

In empirical work, we illustrate how MATLAB can be used to deal with

the issue of estimating implied volatility for call options on S&P 500 index

futures in 2010 and 2011. The results show that the time series of implied

volatility significantly violate the assumption of constant volatility in Black–

Scholes option pricing model. The skewness and kurtosis measures reflect the

instability and fluctuation of the ISD series over time. Therefore, in the

future research in the ISD, we should consider autoregressive–moving-average

(ARMA) models or cross-sectional time series regression models to analyze and

predict the ISD series to forecast the future price of call options on S&P 500 index

futures.

Appendix 1: The Syntax and Code for Implied Volatility Function
of Futures Options in MATLAB

The function name of estimating implied volatility for European call options on

index futures in this chapter are as below:
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Syntax

Volatility ¼ blsimpv Price, Strike, Rate, Time, Value, Limit, . . .Tolerance, Classð Þ

The input variables that can be a scalar, vector, or matrix in the function of

estimating implied volatility are described in Table 90.2

The code from m-file source of MATLAB for implied volatility function of

futures options is shown as below:

function volatility¼ blkimpv(F, X, r, T, value, varargin)
% BLKIMPV Implied volatility from Black’s model for

futures options.
% Compute the implied volatility of a futures price from

the market
% value of European futures options using Black’s model.
%
% Volatility ¼ blkimpv(Price, Strike, Rate, Time, Value)
% Volatility ¼ blkimpv(Price, Strike, Rate, Time, Value,

Limit, . . .
% Tolerance, Class)
%
% Optional Inputs: Limit, Tolerance, Class.
%
% Inputs:
% Price - Current price of the underlying asset (i.e.,

a futures contract).
%

Table 90.2 The description of input variables used in blsimpv function in MATLAB

Price Current price of the underlying asset (a futures contract)

Strike Exercise price of the futures option

Rate Annualized, continuously compounded risk-free rate of return over the life of

the option, expressed as a positive decimal number

Time Time to expiration of the option, expressed in years

Value Price of a European futures option from which the implied volatility of the

underlying asset is derived

Limit (optional) Positive scalar representing the upper bound of the implied volatility search

interval. If Limit is empty or unspecified, the default ¼ 10, or 1,000 % per

annum

Tolerance
(optional)

Implied volatility termination tolerance. A positive scalar. Default ¼ 1e-6

Class (optional) Option class (call or put) indicating the option type from which the implied

volatility is derived. May be either a logical indicator or a cell array of

characters. To specify call options, set Class ¼ true or Class ¼ {‘call’}; to

specify put options, set Class ¼ false or Class ¼ {‘put’}. If Class is empty or

unspecified, the default is a call option
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% Strike - Strike (i.e., exercise) price of the futures
option.

%
% Rate - Annualized continuously compounded risk-free

rate of return
% over the life of the option, expressed as a positive dec-

imal number.
%
% Time - Time to expiration of the option, expressed in

years.
%
% Value - Price (i.e., value) of a European futures option

from which
% the implied volatility is derived.
%
% Optional Inputs:
% Limit - Positive scalar representing the upper bound of

the implied
% volatility search interval. If empty or missing, the

default is 10,
% or 1000% per annum.
%
% Tolerance - Positive scalar implied volatility termina-

tion tolerance.
% If empty or missing, the default is 1e-6.
%
% Class - Option class (i.e., whether a call or put) indi-

cating the
% option type from which the implied volatility is derived.

This may
% be either a logical indicator or a cell array of charac-

ters. To
% specify call options, set Class ¼ true or

Class ¼ {’call’}; to specify
% put options, set Class ¼ false or Class ¼ {’put’}. If

empty or missing,
% the default is a call option.
%
% Output:
% Volatility - Implied volatility derived from European

futures option
% prices, expressed as a decimal number. If no solution is

found, a
% NaN (i.e., Not-a-Number) is returned.
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%
% Example:
% Consider a European call futures option trading at

$1.1166, with an
% exercise prices of $20 that expires in 4 months. Assume

the current
% underlying futures price is also $20 and that the risk-

free rate is 9%
% per annum. Furthermore, assume we are interested in

implied volatilities
% no greater than 0.5 (i.e., 50% per annum). Under these

conditions, any
% of the following commands
%
% Volatility ¼ blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5)
% Volatility ¼ blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5,

[], {’Call’})
% Volatility ¼ blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5,

[], true)
%
% return an implied volatility of 0.25, or 25%, per annum.
%
% Notes:
% (1) The input arguments Price, Strike, Rate, Time, Value,

and Class may be
% scalars, vectors, or matrices. If scalars, then that

value is used to
% compute the implied volatility from all options. If more

than one of
% these inputs is a vector or matrix, then the dimensions of

all
% non-scalar inputs must be the same.
% (2) Ensure that Rate and Time are expressed in consistent

units of time.
%
% See also BLKPRICE, BLSPRICE, BLSIMPV.
% Copyright 1995-2003 The MathWorks, Inc.
% $Revision: 1.4.2.2 $ $Date: 2004/01/08 03:06:15 $
% References:
% Hull, J.C., "Options, Futures, and Other Derivatives",

Prentice Hall,
% 5th edition, 2003, pp. 287-288.
% Black, F., "The Pricing of Commodity Contracts," Journal

of Financial
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% Economics, March 3, 1976, pp. 167-79.
%
%
% Implement Black’s model for European futures options as

a wrapper
% around a general Black-Scholes option model.
%
% In this context, Black’s model is simply a special case of

a
% Black-Scholes model in which the futures/forward con-

tract is
% the underlying asset and the dividend yield ¼ the risk-

free rate.
%
ifnargin< 5
error(’Finance:blkimpv:TooFewInputs’, . . .
’Specify Price, Strike, Rate, Time, and Value.’)
end
switchnargin
case 5
[limit, tol, optionClass] ¼ deal([]);
case 6
[limit, tol, optionClass] ¼ deal(varargin{1}, [], []);
case 7
[limit, tol, optionClass] ¼ deal(varargin{1}, varargin

{2}, []);
case 8
[limit, tol, optionClass] ¼ deal(varargin{1:3});
otherwise
error(’Finance:blkimpv:TooManyInputs’, ’Too many

inputs.’)
end
try
volatility ¼ blsimpv(F, X, r, T, value, limit, r, tol,

optionClass);
catch
errorStruct ¼ lasterror;
errorStruct.identifier ¼ strrep(errorStruct.identifier,

’blsimpv’, ’blkimpv’);
errorStruct.message ¼ strrep(errorStruct.message,

’blsimpv’, ’blkimpv’);
rethrow(errorStruct);
end
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Abstract

In this chapter, we provide a new approach to estimate future credit risk on target

portfolio based on the framework of CreditMetrics™ by J.P. Morgan. However,

we adopt the perspective of factor copula and then bring the principal component

analysis concept into factor structure to construct a more appropriate depen-

dence structure among credits.

In order to examine the proposed method, we use real market data instead of

virtual one. We also develop a tool for risk analysis which is convenient to use,

especially for banking loan businesses. The results show the fact that people

assume dependence structures are normally distributed will indeed lead to risk
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underestimation. On the other hand, our proposed method captures better fea-

tures of risks and shows the fat-tail effects conspicuously even though assuming

the factors are normally distributed.

Keywords

Credit risk • Credit VaR • Default correlation • Copula • Factor copula •

Principal component analysis

91.1 Introduction

Credit risk is a risk that generally refers to counterparty failure to fulfill its contrac-

tual obligations. The history of financial institutions has shown that many banking

association failures were due to credit risk. For the integrity and regularity, financial

institutions attempt to quantify credit risk as well as market risk. Credit risk has great

influence on all financial institutions as long as they have contractual agreements.

The evolution of measuring credit risk has been progressed for a long time. Many

credit risk measure models were published, such as CreditMetrics by J.P. Morgan

and CreditRisk + by Credit Suisse. On the other side, New Basel Accords (Basel II

Accords) which are the recommendation on banking laws and regulations construct

a standard to promote greater stability in financial system. Basel II Accords allowed

banks to estimate credit risk by using either a standardized model or an internal

model approach, based on their own risk management system. The former approach

is based on external credit ratings provided by external credit assessment institu-

tions. It describes the weights, which fall into five categories for banks and sover-

eigns and four categories for corporations. The latter approach allows banks to use

their internal estimation of creditworthiness, subject to regulatory. How to build

a credit risk measurement model after banking has constructed internal customer

credit rating? How to estimate their default probability and default correlations?

This thesis attempts to implement a credit risk model tool which links to internal

banking database and gives the relevant reports automatically. The developed model

facilitates banks to boost their risk management capability.

The dispersion of the credit losses, however, critically depends on the correla-

tions between default events. Several factors such as industry sectors and corpora-

tion sizes will affect correlations between every two default events. The

CreditMetrics™model (1997) issued from J.P. Morgan proposed a binomial normal

distribution to describe the correlations (dependence structures). In order to

describe the dependence structure between two default events in detail, we adopt

copula function instead of binomial normal distribution to express the dependence

structure.

When estimating credit portfolio losses, both the individual default rates of each

firm and joint default probabilities across all firms need to be considered. These

features are similar to the valuation process of collateralized debt obligation

(CDO). A CDO is a way of creating securities with widely different risk charac-

teristics from a portfolio of debt instrument. The estimating process is almost the
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same between our goal and CDO pricing. We focus on how to estimate risks. Most

CDO pricing literature adopted copula functions to capture the default correlations.

Li (2000) extended Sklar’s issue (1959) that a copula function can be applied to

solve financial problems of default correlation. Li (2000) pointed out that if the

dependence structure were assumed to be normally distributed through binomial

normal probability density function, the joint transformation probability would be

consistent with the result from using a normal copula function. But this assumption

is too strong. It has been discovered that most financial data have skew or fat-tail

phenomenon. Bouye et al. (2000) and Embrechts et al. (1999) pointed out that the

estimating VaR would be underestimated if the dependence structure were

described by normal copula comparing to actual data. Hull and White (2004)

combined factor analysis and copula functions as a factor copula concept to

investigate reasonable spread of CDO. How to find a suitable correlation to

describe the dependence structure between every two default events and to speed

up the computational complexity is our main object. Bielecki et al. (2012) apply the

Markov copula approach to model joint default between counterparty and the

reference name in a CDS contract.

This chapter aims to:

1. Construct an efficient model to describe the dependence structure

2. Use this constructed model to analyze overall credit, marginal, and industrial

risks

3. Build up an automatic tool for banking system to analyze its internal credit risks

91.2 Methodology

91.2.1 CreditMetrics

Gupton et al. (1997) adopt the main framework of CreditMetrics and calculate

credit risks by using real commercial bank loans. The calculating dataset for this

chapter is derived from a certain commercial bank in Taiwan. Although there may

be some conditions which are different from the situations proposed by

CreditMetrics, the calculating process by CreditMetrics can still be appropriately

applied to this chapter. For instance, the number of rating degrees in CreditMetrics

adopted in S&P’s rating category is 7, i.e., AAA to C, but in this loan dataset, there

are 9� instead. The following is the introduction to CreditMetrics model framework.

This model can be roughly divided into three components, i.e., value at risk due

to credit, exposures, and correlations, respectively, as shown in Fig. 91.1. In this

section, these three components and how does this model work out on credit risk

valuation will be briefly introduced. Further details could be referred to

CreditMetrics technical document.

91.2.1.1 Value at Risk Due to Credit
The process of valuing value at risk due to credit can be decomposed into three

steps. For simplicity, we assumed there is only one stand-alone instrument which is
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a corporation bond. (The bond property is similar to loan as they both receive

certain amount of cash flow every period and principal at the maturity.) This bond

has 5-year maturity and pays an annual coupon at the rate of 5 % to express the

calculation process if necessary. Some modifications to fit real situations will

be considered later. In Step 1, CreditMetrics assumed that all risks of one portfolio

are due to credit rating changes, no matter defaulting or rating migrating. It is

significant to estimate not only the likelihood of default but also the chance of

migration to move toward any possible credit quality state at the risk horizon.

Therefore, a standard system that evaluated “rating changing” under a certain

horizon of time is necessary. This information is represented more concisely in

transition matrix. Transition matrix can be calculated by observing the historical

pattern of rating change and default. They have been published by S&P and

Moody’s rating agencies or calculated by private banking internal rating systems.

Besides, the transition matrix should be estimated for the same time interval (risk

horizon) which can be defined by user demand, usually in 1-year period. Table 91.1

is an example to represent 1-year transition matrix.

In the transition matrix table, AAA level is the highest credit rating, and D is the

lowest; D also represents that default occurs. According to the above transition

matrix table, a company which stays in AA level at the beginning of the year has the

probability of 0.64 % to go down to BBB level at the end of the year. By the same

Exposures Correlations

Credit Rating Seniority Credit Spread

Rating Migration
Likelihood

Recovery Rate
In Default

Present Value
Revaluation

Rating SeriesUser portfolio

Market
Volatilities

Models
(correlations)

Joint Credit
Rating Changes

Exposure
Distributions

Standard Deviation of value due to credit qualities changes for a
single exposure

Value at Risk due to Credit

Fig. 91.1 Structure of CreditMetrics model

Table 91.1 One-year transition matrix

Initial rating

Rating at year-end (%)

AAA AA A BBB BB B CCC D

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0

AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0

A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18

BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06

B 0 0.11 0.24 0.91 6.48 83.46 4.07 5.20

CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79

Source: J.P. Morgan’s CreditMetrics – technical document (1997)
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way, a company which stays in CCC level at the beginning of the year has the

probability of 2.38 % to go up to BB level at the end of the year. In this chapter, the

transition matrix is to be seen as an external data.1

In Step 1, we describe the likelihood of migration to move to any possible quality

states (AAA to CCC) at the risk horizon. Step 2 is valuation. The value at the risk

horizon must be determined. According to different states, the valuation falls into

two categories. First, in the event of a default, recovery rate of different seniority

class is needed. Second, in the event of up (down) grades, the change in credit

spread that results from the rating migration must be estimated, too.

In default category, Table 91.2 shows the recovery rates by seniority class which

this chapter adopts to revaluate instruments. For instance, if the holding bond (5-year

maturity that pays an annual coupon at the rate of 5 %) is unsecured and the default

occurs, the recovery value will be estimated using its mean value which is 36.15 %.

In rating migration category, the action of revaluation is to determine the cash

flows which result from holding the instrument (corporation bond position).

Assuming a face value of $100, the bond pays $5 (an annual coupon at the rate of

5 %) each at the end of the next 4 years. Now, the calculating process to describe the

value V of the bond assuming the bond upgrades to level A by the formula below:

V ¼ 5þ 5

1þ 3:72%ð Þ þ
5

1þ 4:32%ð Þ2 þ
5

1þ 4:93%ð Þ3 þ
105

1þ 5:32ð Þ4 ¼ 108:66

The discount rate in the above formula comes from the forward zero curves

shown in Table 91.3, which is derived from CreditMetrics technical document. This

chapter does not focus on how to calculate forward zero curves. It is also seen as an

external input data.

Step 3 is to estimate the volatility of value due to credit quality changes for this

stand-alone exposure (level A, corporation bond). From step 1 and step 2, the

likelihood of all possible outcomes and distribution of values within each

outcome are known. CreditMetrics used two measures to calculate the risk estimate:

Table 91.2 Recovery rates by seniority class

Class

Recovery rate of Taiwan debt business research using

TEJ data

Mean (%) Standard deviation (%)

Loan Secured 55.38 35.26

Unsecured 33.27 30.29

Corporation bond Secured 67.99 26.13

Unsecured 36.15 37.17

Source: Da-Bai Shen et al. (2003), Research of Taiwan recovery rate with TEJ Data Bank

1We do not focus on how to model probability of default (PD) but focus on how to establish the

dependence structure. The 1-year transition matrix is a necessary input to our model.
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One is standard deviation, and the other is percentile level. Besides these two

measures, this chapter also embraces marginal VaR which denotes the increment

VaR due to adding one new instrument in the portfolio.

91.2.1.2 Exposures
As discussed above, the instrument is limited to corporation bonds. CreditMetrics

has allowed the following generic exposure types:

1. Non-interest bearing receivables

2. Bonds and loans

3. Commitments to lend

4. Financial letters of credit

5. Market-driven instruments (swap, forwards, etc.)

The exposure type this chapter aims at is loans. The credit risk calculation process

of loans is similar to bonds as previous example. The only difference is that loans do

not pay coupons. Instead, loans receive interests. But the CreditMetrics model can

definitely fit the goal of this chapter to estimate credit risks on banking loan business.

91.2.1.3 Correlations
In most circumstances, there is usually more than one instrument in a target

portfolio. Now, multiple exposures are taken into consideration. In order to extend

the methodology to a portfolio of multiple exposures, estimating the contribution to

risk brought by the effect of nonzero credit quality correlations is necessary. Thus,

the estimation of joint likelihood in the credit quality co-movement is the next

problem to be resolved. There are many academic papers which address the

problems of estimating correlations within a credit portfolio. For example,

Gollinger and Morgan (1993) used time series of default likelihood to

correlate default likelihood, and Stevenson and Fadil (1995) correlated the default

experience across 33 industry groups. On the other hand, CreditMetrics proposed

a method to estimate default correlation. They have several assumptions:

(A) Afirm’s asset value is the processwhich drives its credit rating changes and default.

(B) The asset returns are normally distributed.

(C) Two asset returns are correlated and bivariate normally distributed, and

multiple asset returns are correlated and multivariate normally distributed.

Table 91.3 One-year forward zero curves by credit rating category

Category Year 1 Year 2 Year 3 Year 4

AAA 3.60 4.17 4.73 5.12

AA 3.65 4.22 4.78 5.17

A 3.72 4.32 4.93 5.32

BBB 4.10 4.67 5.25 5.63

BB 5.55 6.02 6.78 7.27

B 6.05 7.02 8.03 8.52

CCC 15.05 15.02 14.03 13.52

Source: J.P. Morgan’s CreditMetrics – technical document (1997)
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According to assumption A, individual threshold of one firm can be calculated.

For a two-exposure portfolio, which credit ratings are level B and level AA and

standard deviations of returns are s and s0, respectively, it only remains to specify

the correlation r between two asset returns. The covariance matrix for the bivariate

normal distribution is

S ¼ s2 rss0

rss0 s02

� �

Then the joint probability of co-movement that both two firms stay in the same

credit rating can be described by the following formula:

Pr ZBB < R1 < ZB,Z
0
AAA < R2 < Z0

AA

� � ¼
ðZB

ZBB

ðZ0
AA

Z0
AAA

f r, r0;Sð Þ dr0ð Þdr

where ZBB, ZB, Z
0
AAA, Z

0
AA are the thresholds. Figure 91.2 gives a concept of the

probability calculation. These three assumptions regarding estimating the default

correlation are too strong, especially assuming the multiple asset returns are multi-

normally distributed. In the next section, a better way of using copula to examine

the default correlation is proposed.

91.2.2 Copula Function

Consider a portfolio consists of m credits. The marginal distribution of each

individual credit risks (defaults occur) can be constructed by using either the

historical approach or the market implicit approach (derived credit curve from

market information). But the question is: how to describe the joint distribution or

Upgrade to BBB

Firm remains
BB rated

Downgrade to B

Firm defaults

Asset return over one year

ZCCC ZB ZBBB ZA ZAAZAAA

Fig. 91.2 Distribution of asset returns with rating change thresholds
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co-movement between these risks (default correlation)? In a sense, every joint

distribution function for a vector of risk factors implicitly contains both

a description of the marginal behavior of individual risk factors and a description

of their dependence structure. The simplest assumption of dependence structure is

mutual independence among the credit risks. However, the independent assumption

of the credit risks is obviously not realistic. Undoubtedly, the default rate for

a group of credits tends to be higher when the economy is in a recession and

lower in a booming. This implies that each credit is subject to the same factors from

macroeconomic environment and that there exists some form of dependence among

the credits. The copula approach provides a way of isolating the description of

the dependence structure. That is, the copula provides a solution to specify a joint

distribution of risks, with given marginal distributions. Of course, this problem has

no unique solution. There are many different techniques in statistics which can

specify a joint distribution with given marginal distributions and a correlation

structure. In the following section, the copula function is briefly introduced.

91.2.2.1 Copula Function
An m-dimensional copula is a distribution function on [0,1]m with standard uniform

marginal distributions:

C uð Þ ¼ C u1; u2; . . . ; umð Þ (91.1)

C is called a copula function.

The copula functionC is a mapping of the form C:[0, 1]m! [0, 1], i.e., a mapping

of the m-dimensional unit cube [0, 1]m such that every marginal distribution is

uniform on the interval [0, 1]. The following two properties must hold:

1. C(u1, u2, . . . , um, S) is increasing in each component ui.

2. C(1, . . . ,1, ui, 1, . . . , 1, S) ¼ ui for all i ∈{1, . . . , m}, ui ∈[0, 1].

91.2.2.2 Sklar’s Theorem
Sklar (1959) underlined the applications of the copula. Let F(•) be anm-dimensional

joint distribution function with marginal distribution F1, F2, . . . , Fm.

There exist a copula C: [0, 1]m ! [0, 1] such that

F x1; x2; . . . ; xmð Þ ¼ C F1 x1ð Þ,F2 x2ð Þ, . . . ,Fm xmð Þð Þ (91.2)

If the margins are continuous, then C is unique.

For any x1, . . . , xm inℜ¼ [�1,1] and X has joint distribution function F, then

F x1; x2; . . . ; xmð Þ ¼ Pr F1 X1ð Þ � F1 x1ð Þ,F2 X2ð Þ � F2 x2ð Þ, . . . ,Fm Xmð Þ � Fm xmð Þ½ �
(91.3)

According to Eq. 91.2, the distribution function of (F1(X1), F2(X2), . . . , Fm(Xm))
is a copula. Let xi ¼ Fi

�1(ui), then
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C u1; u2; . . . ; umð Þ ¼ F F�1
1 u1ð Þ,F�1

2 u2ð Þ, . . . ,F�1
m umð Þ� �

(91.4)

This gives an explicit representation of C in terms of F and its margins.

91.2.2.3 Copula of F
Li (2000) used the copula function conversely. The copula function links univariate

marginals to their full multivariate distribution. For m uniform random variables,

U1, U2, . . . , Um, the joint distribution function C is defined as

C u1; u2; . . . ; um;Sð Þ ¼ Pr U1 � u1,U2 � u2, . . . ,Um � um½ � (91.5)

where S is correlation matrix of U1, U2, . . . , Um.

For given univariate marginal distribution functions F1(x1), F2(x2), . . . , Fm(xm).
xi ¼ Fi

�1(ui), the joint distribution function F can be described as follows:

F x1; x2; . . . ; xmð Þ ¼ C F1 x1ð Þ,F2 x2ð Þ, . . . ,Fm xmð Þ,Sð Þ (91.6)

The joint distribution function F is defined by using a copula.

The property can be easily shown as follows:

C F1 x1ð Þ,F2 x2ð Þ, . . . ,Fm xmð Þ,Sð Þ ¼ Pr U1 � F1 x1ð Þ,U2 � F2 x2ð Þ, . . . ,Um � Fm xmð Þ½ �
¼ Pr F�1

1 U1ð Þ � x1,F
�1
2 U2ð Þ � x2, . . . ,F

�1
m Umð Þ � xm

� 	

¼ Pr X1 � x1,X2 � x2, . . . ,Xm � xm½ �
¼ F x1; x2; . . . ; xmð Þ

The marginal distribution of Xi is

C F1 þ1ð Þ,F2 þ1ð Þ, . . . ,Fi xið Þ, . . . ,Fm þ1ð Þ,Sð Þ
¼ Pr X1 � þ1,X2 � þ1, . . . ,Xi � xi, . . . ,Xm � þ1½ �
¼ Pr Xi � xi½ �
¼ Fi xið Þ

(91.7)

Li showed that with given marginal functions, we can construct the joint

distribution through some copulas accordingly. But what kind of copula should

be chosen corresponding to the realistic joint distribution of a portfolio? For

example, the CreditMetrics chose Gaussian copula to construct multivariate

distribution.

By Eq. 91.6, this Gaussian copula is given by

CGa u;Sð Þ ¼ Pr F X1ð Þ � u1,F X2ð Þ � u2, . . . ,F Xmð Þ � um,Sð Þ
¼ FS F�1 u1ð Þ,F�1 u2ð Þ, . . . ,F�1 umð Þ� � (91.8)
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where F denotes the standard univariate normal distribution, F�1 denotes the

inverse of a univariate normal distribution, and FS denotes multivariate normal

distribution. In order to easily describe the construction process, we only discuss

two random variables u1 and u2 to demonstrate the Gaussian copula:

CGa u1; u2; rð Þ ¼
ðF�1 u1ð Þ

�1

ðF�1 u2ð Þ

�1

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ð Þp exp � v21 � 2rv1v2 þ v22

2 1� r2ð Þ
� �

dv2dv1

(91.9)

where r denotes the correlation of u1 and u2.
Equation 91.9 is also equivalent to the bivariate normal copula which can be

written as follows:

C u1, u2,rð Þ ¼ F2 F�1 u1ð Þ,F�1 u2ð Þ� �
(91.10)

Thus, with given individual distribution (e.g., credit migration over 1-year

horizon) of each credit asset within a portfolio, we can obtain the joint distribution

and default correlation of this portfolio through copula function. In our methodol-

ogy, we do not use copula function directly. In the next section, we bring in

the concept of factor copula for further improvement to form the default

correlation. Using factor copula has two advantages. One is to avoid constructing

a high-dimensional correlation matrix. If there are more and more instruments

(N> 1,000) in our portfolio, we need to store N-by-N correlation matrix; scalability

is one problem. The other advantage is to speed up the computation time because of

the lower dimension.

91.2.3 Factor Copula Model

In this section, copula models that have a factor structure will be introduced. It is

called factor copula because this model describes dependence structure between

random variables not from the perspective of a certain copula form, such as

Gaussian copula, but from the factors model. Factor copula models have been

broadly used to assess price of collateralized debt obligation (CDO) and credit

default swap (CDS). The main concept of factor copula model is that under a certain

macro environment, credit default events are independent to each other. And the

main causes that affect default events come from potential market economic

conditions. This model provides another way to avoid dealing with multivariate

normal distribution (high-dimensional) simulation problem.

Continuing the above example, a portfolio is consisted of m credits. In the first

we consider the simplest example which contains only one factor and define Vi as

the asset value of ith credit under single factor copula model. Then this ith
credit asset value can be expressed by one factor M (mutual factor) chosen from

macroeconomic factors and one error term ei:
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Vi ¼ riM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
ei (91.11)

where ri is weight of M, and the mutual factor M is independent of ei.
Let the marginal distribution of V1, V2, . . . , Vm are Fi, i¼ 1, 2 , . . . , m. Then the

m-dimensional copula function can be written as

C u1; u2; . . . ; umð Þ ¼ F F�1
1 u1ð Þ,F�1

2 u2ð Þ, . . . ,F�1
m umð Þ� �

¼ Pr V1 � F�1
1 u1ð Þ,V2 � F�1

2 u2ð Þ, . . . ,Vm � F�1
m umð Þ� �

(91.12)

where F is the joint cumulative distribution function of V1, V2, . . . ,Vm.

It has been known that M and ei are independent of each other, according to

iterated expectation theorem; Eq. 91.12 can be written as

C u1; u2; . . . ; umð Þ ¼ E Pr V1 � F�1
1 u1ð Þ,V2 � F�1

2 u2ð Þ, . . . ,Vm � F�1
m unð Þ� �

Mj� �

¼ E
Ym
i¼1

Pr riM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

q
ei � F�1

i uið Þ
� �

Mj
( )

¼ E
Ym
i¼1

Fe, i
F�1
i uið Þ � riMffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2i
p

 !
Mj

( )

¼
ð Ym

i¼1

Fe, i
F�1
i uið Þ � riMffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2i
p

 ! !
g Mð ÞdM

(91.13)

Using the above formula, the m-dimensional copula function can be derived.

Moreover, according to Eq. 91.13, the joint cumulative distribution F can also be

derived:

F t1; t2; . . . ; tmð Þ ¼
ð Ym

i¼1

Fe, i
F�1
i FT, i tið Þ� �� riM

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

p
 ! !

g Mð ÞdM (91.14)

Let Fi(ti) ¼ Pr(Ti � ti) represents i credit default probability (default occurs

before time ti), where Fi is the marginal cumulative distribution. We note here that

CDX pricing cares about when the default time Ti occurs. Under the same envi-

ronment (systematic factor M) (Andersen and Sidenius (2004)), the default proba-

bility Pr(Ti � ti) will be equal to Pr(Vi � ci), which represent that the probability

asset value Vi is below its threshold ci. Then joint default probability of these

m credits can be described as follows:

F c1; c2; . . . ; cmð Þ ¼ Pr V1 � c1,V2 � c2, . . . ,Vm � cmð Þ
Now, we bring the concept of principal component analysis (PCA). People use

PCA to reduce the high-dimensional or multivariable problems. If someone would

like to explain one thing (or some movement of random variables), he/she has to
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gather interpreting variables related to those variable movements or their correla-

tion. Once the kinds of interpreting variables are too huge or complicated, it

becomes harder to explain those random variables and will produce complex

problems. Principal component analysis provides a way to extract approximate

interpreting variables to cover maximum variance of variables. Those representa-

tive variables may not be “real” variables. Virtual variables are allowed and depend

on the explaining meaning. We do not talk about PCA calculation processes; further

detail could be referred to Jorion (2000). Based on factor model, the asset value of

m credits with covariance matrix S can be described as follows:

Vi ¼ ri1y1 þ ri2y2 þ . . .þ rimym þ ei (91.15)

where yi are common factors between these m credits and rij is the weight (factor

loading) of each factor. The factors are independent of each other. The question is:

how to determinate those yi factors and their loading? We use PCA to derive the

factor loading. Factor loadings are based on listed price of those companies in

the portfolio to calculate their dependence structure. The experimental results will

be shown in the next section. We note here that the dependence structure among

assets have been absorbed into factor loadings (Fig. 91.3).

User portfolio

Exposures Correlations

Credit Rating Seniority Credit Spread

Copula Function Application

Portfolio Value Risk due to Credit

External data

Internal data

Rating Migration
Likelihood

Recovery Rate
In Default

Present Value
Revaluation

Rating SeriesUser portfolio

Market
Volatilities

Models
(Normal Copula)

Joint Credit
Rating Changes

Exposure
Distributions

Standard Deviation of value due to credit qualities changes for a
single exposure

Value at Risk due to Credit

CreditMetrics Model

Copula Function 

Factor Copula Function 

Principal Component
Analysis

Fig. 91.3 Architecture of proposed model
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91.3 Experimental Results

The purpose of this chapter is to estimate credit risk by using principal component

analysis to construct dependence structure without giving any assumptions to

specify formulas of copula. In other words, the data were based on itself to describe

the dependence structure.

91.3.1 Data

In order to analyze credit VaR empirically through proposed method, this investi-

gation adopts the internal loan account data, loan application data, and customer

information data from a commercial bank on current market in Taiwan. For

reliability of data authenticities, all the data are in Taiwan stock market instead of

virtual one. This also means now the portfolio pool contains only the loans of listed

companies and does not contain the loan of unlisted companies. According to the

period of these data, we can estimate two future portfolio values. They are values on

2003 and 2004, respectively.

All requirement data are downloaded automatically from database system to

workspace for computations. Before going to the detail of the experiments, the

relevant data and experimental environment are introduced as follows.

91.3.1.1 Requirements of Data Input
1. Commercial bank internal data: This internal data contains nearly 40,000 entries

of customer’s data, 50,000 entries of loan data, and 3,000 entries of application

data. These data contain maturity dates, outstanding amount, credit ratings,

interest rate for lending, market type, etc. up to December 31, 2004.

2. One-year period transition matrix: The data was extracted from Yang (2005),

who used the same commercial bank history data to estimate a transition matrix

which obeyed Markov chain (Table 91.4).

3. Zero forward rate: Refer to Yang (2005), based on computed transition matrix to

estimate the term structure of credit spreads. Furthermore, they added

corresponding risk-free interest rate to calculate zero forward rates from

discounting zero spot rates (Table 91.5).

4. Listed share prices at exchangemarket and over-the-countermarket:We collected

weekly listed share prices of all companies at exchange and over-the-counter

markets in Taiwan from January 1, 2000, to December 31, 2003, in total 3 years’

data, through Taiwan Economic Journal Data Bank (TEJ).

91.3.2 Simulation

In this section, the simulation procedure of analyzing banking VaR is briefly

introduced. There are two main methods of experiments: A and B. A is the method

that this chapter proposed which uses factor analysis to explain the dependence
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structure and to simulate the distribution of future values. B is the contrast set which

are used traditionally and popularly in most applications such as CreditMetrics. We

call it the multi-normal (normal/Gaussian copula) simulation method.

Both of these two methods need three input data tables: credit transition matrix,

forward zero curves, and share prices of each corporation in the portfolio pool. The

detail of normal copula method procedure is not mentioned here; readers can refer

to technical documentation of CreditMetrics. Now, the process of factor analysis

method is shown as follows:

1. Extract the data entries that do not mature under given date, from database

system including credit ratings, outstanding amounts, and interest rates.

2. According to the input transition matrix, we can calculate standardized thresh-

olds for each credit rating.

3. Use the share prices of those corporations in the portfolio pool to calculate

equities correlations.

Table 91.4 One-year transition matrix (commercial data)

Initial rating

Rating at year-end (%)

1 2 3 4 5 6 7 8 9 D

1 100 0 0 0 0 0 0 0 0 0

2 3.53 70.81 8.90 5.75 6.29 1.39 0.19 2.74 0.06 0.34

3 10.76 0.03 72.24 0.24 10.39 5.78 0.31 0.09 0.06 0.10

4 1.80 1.36 5.85 57.13 18.75 11.31 2.45 0.32 0.70 0.33

5 0.14 0.44 1.58 2.39 75.47 16.97 1.49 0.61 0.49 0.42

6 0.09 0.06 0.94 2.44 13.66 70.58 6.95 1.68 0.76 2.81

7 0.05 0.05 0.27 3.72 3.75 14.49 66.39 8.05 0.12 3.11

8 0.01 0 0.03 0.45 0.21 1.34 2.00 77.10 0.44 18.42

9 0 0 0.02 0.09 1.46 1.80 1.36 3.08 70.06 22.13

D 0 0 0 0 0 0 0 0 0 100

Source: Yang (2005)

Table 91.5 One-year forward zero curves by credit rating category (commercial data)

Yield (%) 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year

Credit rating 1 1.69 2.08 2.15 2.25 2.41 2.53 2.58 2.62 2.7

2 2.57 2.88 3.19 3.44 3.72 3.94 4.07 4.18 4.33

3 2.02 2.41 2.63 2.85 3.11 3.32 3.45 3.56 3.71

4 2.6 2.93 3.28 3.59 3.91 4.17 4.34 4.48 4.65

5 2.79 3.1 3.48 3.81 4.15 4.42 4.6 4.75 4.93

6 4.61 5.02 5.16 5.31 5.51 5.67 5.76 5.83 5.93

7 6.03 6.16 6.56 6.83 7.07 7.23 7.28 7.31 7.36

8 22.92 23.27 22.54 21.91 21.36 20.78 20.15 19.52 18.94

9 27.51 27.82 26.4 25.17 24.09 23.03 21.97 20.97 20.08

Source: Yang (2005)
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4. Use principal component analysis to obtain each factor loadings for all factors

under the assumption that these factors obey some distributions (e.g., standard

normal distribution) to simulate their future asset value and future possible credit

ratings.

5. According to possible credit ratings, discount the outstanding amounts by their

own forward zero curves to evaluate future value distributions.

6. Display the analysis results.

91.3.3 Discussion

91.3.3.1 Tools and Interfaces Preview
For facility and convenience, this chapter uses MATLAB and MySQL to construct

an application tool to help tool users analyze future portfolio value more efficiently.

Following is this tool’s interactive interfaces:

Basic Information of Experimental Data: (Pie Chart)
The non-computing data and pie charts give user the basic view of loan information.

These charts present the proportion of each composition of three key elements: loan

amount of companies, industry, and credit rating. To assist user, construct an

overview of concerned portfolio (Fig. 91.4).

Pie chart of loan amount weight in terms of enterprise, industry, and credit rating.

Information According to Experimental data: (Statistic Numbers)
Besides graphic charts, the second part demonstrates a numerical analysis. The first

part is the extraction of the company data which has maturity more than the given

months, and the second part is the extraction of the essential data of top weighted

companies. Parts I and II extract data without any computation; the only thing has

been done is to sort or remove some useless data (Figs. 91.5 and 91.6).

Set Criteria and Derive Fundamental Experimental Result
This portion is the core of proposed tool; it provides several functions of compu-

tations. Here are the parameters that users must decide themselves:

1. Estimated year.

2. Confidence level.

3. Simulation times. Of course, the more simulation time user chooses, the more

computational time will need.

4. Percentage of explained factors which is defined for PCA method. Using the

eigenvalues of given normalized assets (equities) values, we can determinate the

explained percentage.

5. This function gives user the option to estimate all or portion of the companies of

portfolio pool. The portion part is sorted according to the loan amount of

each enterprise. User can choose multiple companies they are most concerned.

The computational result is written to a text file for further analysis.
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Fig. 91.4 Interface of part I
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6. Distribution of factors. This is defined for PCA method, too. There are two distri-

butions that user can choose: standard normal distribution or Student’s t-distribution.

The default freedom of Student’s t-distribution is set as one (Fig. 91.7).

Report of Overall VaR Contributor
User may be more interested in the detail of risk profile at various levels. In this part,

industries are discriminated from 19 sections, and credits are discriminated from nine

levels. This allow user to see where the risk is concentrated visually (Fig. 91.8).

Fig. 91.5 Interface of part II

Fig. 91.6 Companies data downloads from part II interface
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91.3.3.2 Experimental Result and Discussion
Table 91.6 represents the experimental results. For objectivity, all simulation times

are set to 100,000 times which is large enough to obtain stable numerical results.2

Based on the provided data, the 1-year future portfolio value of listed corporations

on 2003 and 2004 can be estimated. In other words, standing on January 1, 2002, we

can estimate the portfolio value on December 31, 2003. Or standing on January 1,

2003, we can estimate the portfolio value on December 31, 2004. The following

tables listed the experimental results of factor copula methods of different factor

distributions and compared with multi-normal method by CreditMetrics. The head

of the tables are parameter setting, and the remained fields are experimental results.

We note here the formula Eq. 91.15

Vi ¼ ri1y1 þ ri2y2 þ . . .þ rimym þ ei

where the distribution of factors y1, y2. . .ym listed in the following table is standard

normally distributed and Student t-distributed (assumes freedoms are 2, 5, and 10).

Fig. 91.7 Interface of part III

2We have examine the simulation times; 100,000 times is enough to have a stable computational

result.
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There are some messages that can be derived from the above table. First,

obviously, risk of future portfolio value by multi-normal method is less than by

proposed method. The risk amount of proposed method is 3–5 times over multi-

normal method. This result corresponds to most research that copula function can

capture the fat-tail phenomenon which prevails over practical market more ade-

quately. Second, the distribution of future portfolio value by proposed method is

more diversified than multi-normal method which concentrated on nearly 400,000

with 50,000 times while proposed method with 17,000 times. Third, it is very clear

to see that risks with factors using Student’s t-distribution to simulate are more than

with normal distribution, and the risk amount tends toward the same while the

degree of freedom becomes larger. Fourth, the mean of portfolio of proposed

method is smaller than that of multi-normal method, but the standard deviation of

proposed method is much more than multi-normal method. It shows that the overall

possible portfolio values by proposed method have the trend to become less worth

and also fluctuate more rapidly.

The above discrepancies between two methods give us some inferences. First,

the proposed method provides another way to estimate more actual credit risks of

Fig. 91.8 VaR contribution of individual credits and industries
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Table 91.6 Experimental result of estimated portfolio value at the end of 2003

Estimate year: 2003

Parameter setting

Simulation time: 100,000 Percentage of explained factors: 100.00 %

Involved listed enterprise number: 40 Loan account entries: 119

Result

Factor distribution assumption : normal distribution F � N(0,1)

Credit VaR 95 % Credit VaR 99 % Portfolio mean Portfolio s.d.

Multi-normal 192,113.4991 641,022.0124 3,931,003.1086 136,821.3770

PCA 726,778.6308 1,029,766.9285 3,812,565.6170 258,628.5713

Multi-Normal method

6

5

4

3

2

1

0
0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 106

x 104

PCA method

2

x 106

x 104

1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
1.5 2 2.5 3 3.5 4 4.5

Factor distribution assumption : Student’s t-distribution, freedom ¼ (2)

Credit VaR 95 % Credit VaR 99 % Portfolio mean Portfolio s.d.

Multi-normal 191,838.2019 620,603.6273 3,930,460.5935 136,405.9177

PCA 1,134,175.1655 1,825,884.8901 3,398,906.5097 579,328.2159

Multi-Normal method

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 106

x 104

5
4.5

4
3.5

3
2.5

2
1.5

1
0.5

0

PCA method

0.50

8000

1 1.5 2 2.5 3 3.5 4 4.5
x 106

7000

6000

5000

4000

3000

2000

1000

0

Factor distribution assumption : Student’s t-distribution, freedom ¼ (5)

Credit VaR 95 % Credit VaR 99 % Portfolio mean Portfolio s.d.

Multi-normal 192,758.7482 610,618.5048 3,930,923.6708 135,089.0618

PCA 839,129.6162 1,171,057.2562 3,728,010.5847 337,913.7886

(continued)
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portfolio containing risky credits through market data, and this method captures

fat-tail event more notably. Second, the computation time of proposed method is

shorter thanmulti-normal method. In Table 91.7, when using fully explained factors,

computation time by proposed method is still faster than by multi-normal method.

The computation time decreases as the required explained ratio is set lower.

Table 91.6 (continued)

Factor distribution assumption : Student’s t-distribution, freedom ¼ (5)

Credit VaR 95 % Credit VaR 99 % Portfolio mean Portfolio s.d.

Multi-Normal method

6

5

4

3

2

1

0
0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 106

x 104

PCA method

15000

1 1.5 2 2.5 3 3.5 4 4.5
x 106

10000

5000

0

Factor distribution assumption : Student’s t-distribution, freedom ¼ (10)

Credit VaR 95 % Credit VaR 99 % Portfolio mean Portfolio s.d.

Multi-normal 192,899.0228 600,121.1074 3,930,525.7612 137,470.3856

PCA 773,811.8411 1,080,769.3036 3,779,346.2750 291,769.4291

Multi-Normal method

6

5

4

3

2

1

0
0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 106

x 104

PCA method

1 1.5

18000

2 2.5 3 3.5 4 4.5
x 106

16000
14000
12000
10000
8000
6000
4000
2000

0

Table 91.7 CPU time for factor computation (simulation time: 100,000 year: 2003)

Method

Explained ratio (s)

100 % 90�95 % 80�85 % 70�80 % Below 60 %

Multi-normal 2.5470 2.6090 2.2350 2.2500 2.3444

PCA 1.2030 0.7810 0.7030 0.6720 0.6090
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This means less numbers of factors are used for the expected explained level.

Third, Table 91.8 which retrieves individual credit VaR contribution to whole

portfolio from 19 industries shows that the main risk comes from electronics

industry. Based on the commercial data, we find out that among its loan account

entries, the electronics industry customers have the proportion of exceeding half of

loan entries (63/119). The credit VaR of electronics industry computed by proposed

method is six times more than by multi-normal method. This effect reveals that the

multi-normal method lacks the ability to catch concentrative risks. On the contrary,

based on factor structure, the mutual factor loadings extracted by the correlation

among companies express more actual risks. Fourth, for finite degree of freedom,

the t-distribution has fatter tails than Gaussian distribution and is known to generate

tail dependence in the joint distribution.

Table 91.9 shows the impact on risk amount by using different factor numbers.

According to Table 91.9, the risks decrease as the explained level decreases; this is

a trade-off between time-consuming and afforded risk amount. Most research and

reports say 80 % explained level is large enough to be accepted.

91.4 Conclusion

Credit risk and default correlation issues have been probed in recent research, and

many solutions have been proposed. We take another view to examine credit risks

and derivative tasks. On our perspective, the loan credits in target portfolio like the

widely different risk characteristics from a portfolio of debt instruments and their

properties and behavior are the same in the main.

In this chapter, we propose a new approach which connects the principal

component analysis and copula functions to estimate credit risks of bank loan

businesses. The advantage of this approach is that we do not need to specify

Table 91.8 Individual credit VaR of top 5 industries

Industry

Credit VaR

Multi-normal method PCA method

(No. 1) Electronics 40,341 252,980

(No. 2) Plastic 42,259 42,049

(No. 3) Transportation 22,752 22,391

(No. 4) Construction 7,011 7,007

(No. 5) Textile 2,884 2,765

Table 91.9 Estimate portfolio value at the end of 2004 with different explained level

95 % confidence level, F � (0,1)

100 % 90�95 % 80�85 % 70�80 % 60�70 %

Multi-normal 208,329.40 208,684.38 209,079.72 208,686.22 207,710.63

PCA 699,892.33 237,612.60 200,057.74 187,717.73 183,894.91
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particular copula functions to describe dependence structure among credits. On the

contrary, we use a factor structure which covers market factor and idiosyncratic

factor, and the computed risks have heavy-tail phenomenon. Another benefit is that

it reduces the difficulties to estimate parameters which copula functions will use.

This approach provides another way and has better performance than conventional

method such as assume the dependence structures are normally distributed.

In order to describe the risk features and other messages that bank policymakers

may like to know, we wrote a tool for risk estimation and results display. It contains

basic data information preview which just downloads data from database and does

some statistic analyses. It also provides different parameter settings and uses Monte

Carlo simulation to calculate credit VaR and finally gives an overview of individual

credit VaR contributions. The experimental results are consistent with previous

studies that the risk will be underestimated compared with real risks if people

assume dependence structure are normally distributed. In addition, the aforemen-

tioned approach and tool still have some rooms to be improved such as recovery

rate estimations, how to chose distributions of factors, and more friendly user

interface.
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Abstract

Malliavin and Mancino (2009) proposed a nonparametric Fourier transform

method to estimate the instantaneous volatility under the assumption that the

underlying asset price process is a semi-martingale. Based on this theoretical

result, this chapter first conducts some simulation tests to justify the effective-

ness of the Fourier transform method. Two correction schemes are proposed

to improve the accuracy of volatility estimation. By means of these Fourier

transform methods, some documented phenomena such as volatility daily
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effect and multiple risk factors of volatility can be observed. Then, a linear

hypothesis between the instantaneous volatility and VIX derived from Zhang

and Zhu (2006) is investigated. We extend their result and adopt a general linear

test for empirical analysis.

Keywords

Information content • Instantaneous volatility • Fourier transform method • Bias

reduction • Correction method • Local volatility • Stochastic volatility • VIX •

Volatility daily effect • Online estimation

92.1 Introduction

Volatility estimation has been recognized as a core problem along the development

of modern financial markets. There are enormous literatures devoted to this subject.

The concept of “information content” is introduced to categorize a huge amount of

studies. More precisely, backward and forward information contents of volatility

are used and distinguished by time.

For any given time point, the backward information refers to the usage of a set of

past information. A segment of historical data of an underlying risky asset, such as

historical stock prices, is a typical example. In contrast, the forward information

refers to the usage of financial data that contain risk exposure in the future.

Financial derivatives such as futures and options are typical examples.

The backward information content of volatility is extensively investigated in

the fields of financial statistics and econometrics. See Tsai (2005), Engle (2009),

and references therein. The forward information content of volatility is

almost exclusively studied in the field of mathematical finance and financial

engineering. Within all these academic fields, parametric models play the key

role to analyze financial data such as stocks and options because certain mathe-

matical structures allow for analytic or computational assessments to relevant

estimation procedures.

Relatively few results on nonparametric models can be found to analyze vola-

tility. Dupire formula and VIX Gatheral (2006) are frontiers to compute some kinds

of volatility using traded option data. Of course, these volatilities contain

forward information. In the context of backward information, the dual concept of

VIX, i.e., the integrated variance, is the historical volatility squared, which is

defined as the variance of the standardized returns and easy to calculate.

The instantaneous volatility, denoted by st, can be viewed as the dual concept

of Dupire formula, in which the volatility s(T, K) depends on the maturity

T and the strike price K. Unfortunately, estimation of the instantaneous volatility

is hard.

One accessible way to estimate the instantaneous volatility is taken directly from

the result of a differentiation on the quadratic variation h�, � it of the underlying price
process S. That is, for small D > 0,
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st �
S; Sh itþD � S; Sh it

D

This approximation is theoretically consistent but not plausible for practical

implementation. One main reason is that the differentiation is sensitive to data

frequency as seen from the above approximation. See Zhang and Mykland (2005)

for improved methods on this direction.

Not until recently, Malliavin and Mancino (2009) proposed a Fourier transform

method for estimation of the instantaneous volatility. This alternative approach is

integral based, not differentiable based, as the aforementioned difference approx-

imation. The authors claim that this approach is particularly suitable for the analysis

of high-frequency time series and for the computation of cross volatilities.

However, Reno (2008) alerts that the Fourier algorithm performs badly near

boundaries of estimated volatility time series data, i.e., estimated volatility of the

first and last 1 % time series is not accurate enough. The author recommends

discarding those volatility estimates near the boundary. Yet, this compromise

may constitute a drawback in estimation. One example is that, when exclusively

following Reno (2008), dropping the most recent 1 % volatility estimates will

distort the prediction of a short-time volatility, say 1-day volatility.

To avoid this “boundary effect” pitfall, price correction schemes by matching the

estimated volatility with observed price returns have been proposed in

Han et al. (2014) and Han (2014). These schemes only require solving some

regression equations derived from the maximum likelihood method so they are

easy to implement. Additional advantages include (i) no loss of data observations

and (ii) reduction of the volatility bias generated from the Fourier transformmethod.

Based on those developed Fourier transform methods to estimate the instanta-

neous volatility, this chapter further conducts two empirical studies as applica-

tions. The first empirical study investigates dynamic behaviors of volatility under

three different sampling frequencies: high, medium, and low. In particular, the

daily effect, a U shape of volatility, and evidence of multiple risk factors of

volatility are observed. These observations are consistent with empirical findings

in financial literatures. The second empirical study reveals the linear relationship

between VIX and the instantaneous volatility. We derive a theoretical result and

apply a general linear test to justify the linearity. Two datasets are used for

empirical examination. They include TAIEX (January 2001–March, 2011) and

S&P 500 index and its VIX (January 1990–January 2011). Data period covers

both tranquil and turbulent times.

The organization of this chapter is as follows. Section 92.2 reviews the Fourier

transform method and two price correction schemes, including a linear and

a nonlinear correction method. Section 92.3 conducts some simulation tests for

typical local and stochastic volatility models. Section 92.4 investigates the dynamic

behavior of volatility under different sampling frequencies. Section 92.5 conducts

a linear test for the instantaneous volatility and its VIX. Section 92.6 concludes

this chapter.
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92.2 Volatility Estimation: Introduction to Fourier Transform
Method

Fourier transform method (Malliavin and Mancino (2009)) is a nonparametric

method to estimate multivariate volatility process. Its main idea is to reconstruct

volatility as time series in terms of sine and cosine basis under the following

continuous semi-martingale assumption. Let ut be the log-price of an underlying

asset S at time t, i.e., ut ¼ 1n St, and follow a diffusion process

dut ¼ mtdtþ stdWt, (92.1)

where mt is the instantaneous growth rate and Wt is a one-dimensional standard

Brownianmotion.One can estimate the time series volatilitystwith the following steps.
• Step 1: Compute the Fourier coefficients of the underlying ut as follows:

a0 duð Þ ¼ 1

2p

ð2p

0

dut, (92.2)

ak duð Þ ¼ 1

p

ð2p

0

cos ktð Þdut, (92.3)

bk duð Þ ¼ 1

p

ð2p

0

sin ktð Þdut, (92.4)

for any k� 1, so that u tð Þ ¼ a0 þ
X1
k¼1

� bk duð Þ
k

cos ktð Þ þ ak duð Þ
k

sin ktð Þ
� �

. Note

that the original time interval [0, T] can always be rescaled to [0, 2p] as shown in
above integrals.

• Step 2: Compute the Fourier coefficients of variance st
2 as follows:

ak s2
� � ¼ lim

N!1
p

2N þ 1

XN�k

S¼�N

a�s duð Þa�sþk duð Þ þ b�s duð Þb�sþk duð Þ� �
(92.5)

bk s2
� � ¼ lim

N!1
p

2N þ 1

XN�k

S¼�N

a�s duð Þb�sþk duð Þ � b�s duð Þa�sþk duð Þ� �
, (92.6)

for k � 0, in which as
�(du) and bs

�(du) are defined by

a�s duð Þ ¼
as duð Þ,

0,

a�s duð Þ,

if s > 0

if s ¼ 0

if s < 0

and b�s duð Þ ¼
bs duð Þ,

0,

�b�s duð Þ,

if s > 0

if s ¼ 0

if s < 0:

8<
:

8<
:
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• Step 3: Reconstruct the time series of variance st
2 by

s2
t ¼ lim

N!1

XN
k¼0

’ dkð Þ ak s2
� �

cos ktð Þ þ bk s2
� �

sin ktð Þ� �
, (92.7)

where’ xð Þ ¼ sin 2 xð Þ
x2 is a smooth function with the initial condition ’(0)¼ 1 and d

is a smooth parameter typically specified as d ¼ 1
50
(Reno 2008).

From Eqs. 92.2, 92.3, and 92.4, it is observed that the integration error of Fourier

coefficients is adversely proportional to data frequency. That is, when the data

frequency gets higher, each integral becomes more accurate.

This Fourier transform method is easy to implement because, as shown in

Eqs. 92.5 and 92.6, Fourier coefficients of the variance time series can be approx-

imated by a finite sum of multiplications of a* and b*. This integration method can

accordingly avoid drawbacks inherited from those traditional methods based on the

differentiation of quadratic variation.

92.2.1 Price Correction Schemes: Bias Reduction

It is documented that this Fourier transform method incurs a “boundary effect.” Reno

(2008) notes that Fourier algorithm provides inaccurate estimate for volatility time

series near the boundary of simulated data. He suggests that all the time series of

estimated volatility near the first and last 1 % should be discarded for the purpose of

better estimation. This compromise is in contrast to the Markov property, which is

a key assumption in the stochastic financial theory Shreve (2000). For example, when

one is about to compute the value at risk, evaluate option prices, or hedge financial

derivatives, he or she may need the most updated volatility for computational tasks.

Two correction schemes to remedy this boundary deficit are reviewed as follows.

Recall that ut defined in Eq. 92.1 is the natural logarithm of asset price. Based

on the Euler discretization, the increment of log-price ut can be approximated by

st

ffiffiffiffiffiffiffiffi
Dtet

p
. That is,

Dut � st

ffiffiffiffiffiffiffiffiffiffi
Dtet,

p
(92.8)

where Dt denotes a small discretized time interval and et denotes a sequence of i.i.d.
standard normal random variables. This approximation is derived from neglecting

the drift term of small order Dt and using the increment distribution of Brownian

motion DWt ¼
ffiffiffiffiffiffiffiffiffiffi
Dtet,

p
. Given a set of discrete observations of log returns, let ŝt

denote the volatility time series estimated from the original Fourier transform

method. Two correction schemes including nonlinear and linear correction methods

have been proposed in Han et al. (2014) and Han (2014), respectively. These

Fourier transform methods are effective to reduce bias of volatility estimation,

known as the boundary effect.
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1. Nonlinear Correction Method: This method consists of a linear trans-

formation on the natural logarithm of estimated variance process ŝ2
t in

order to guarantee the positiveness of estimated volatility. That is, we transform

Ŷ t ¼ 2lnŝt to aþ bŶ t so that the corrected volatility st ¼ exp aþ bŶ t

� �
=2

� �

> 0 satisfies Dut � exp aþ bŶ t

� �
=2

� � ffiffiffiffiffiffiffiffi
Dtet

p
, where Dut ¼ ut+1 � ut, and

a and b denote the correction variables. This linear transformation on Ŷ t can be

understood as the first-order approximation to a possible nonlinear transformation

on estimated volatility ŝt. Then, we can use the maximum likelihood method to

regress out correction variables via the relationship between logarithm of squared

standardized return Dut=
ffiffiffiffiffi
Dt

p
and the driving volatility process aþ bŶ t:

ln
Dutffiffiffiffiffi
Dt

p
	 
2

¼ aþ bŶ t þ lne2t : (92.9)

2. Linear Correction Method: This method directly applies a linear transforma-

tion on the estimated volatility as

st ¼ aþ bŝt: (92.10)

Substituting this corrected volatility st into Eq. 92.8, Dut � aþ bŝtÞ
ffiffiffiffiffiffiffiffi
Dtet

p�
is

obtained. For regression purpose, we take squares on both sides, then a natural

logarithm to obtain the following nonlinear equation:

ln Dut=
ffiffiffiffiffi
Dt

p� �2
� ln aþ bŝtÞ2 þ lnet2:

�

We remark that there is no guarantee that the corrected volatility estimation

defined in Eq. 92.10 remains positive. This is a disadvantage compared with the

previous nonlinear correction method.

Note that these correction methods do not involve any model parameters, so they

retain the spirit of non-parameterization.

92.3 Simulation Tests

In this section, two well-known volatility models including a local volatility model

and a stochastic volatility model are considered for simulation studies in order to

justify effectiveness of these Fourier transform methods.

92.3.1 Case I: Local Volatility Model

A local volatility model of the following form

dSt ¼ a m� Stð Þdtþ bSgt dwt
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is employed. Model parameters are taken from Jiang (1998) based on the following

estimation result: a ¼ 0.093, m ¼ 0.079, b ¼ 0.794, and g ¼ 1.474. A simulation

procedure is used to generate sample processes of the price St and its volatility

st ¼ bSt
g. This simulation is done by the Euler discretization with time step size

Dt ¼ 1/250, and the total sample number is 5,000.

Based on the original Fourier transform method and two proposed price correc-

tion schemes, three volatility time series can be estimated. These are compared with

the actual volatility series generated from the local volatility model. Criteria for

error measurements include mean squared error (MSE) and maximum absolute

error (MAE). Comparison results are shown below:

1. MSE: 7.52E-04 (original Fourier method), 1.19E-05 (nonlinear correction

method), and 7.61E-06 (linear correction method)

2. MAE: 0.04 (original Fourier method), 0.02 (nonlinear correction method), and

0.01 (linear correction method)

Price correction methods are effective to reduce both error criteria at least by

half in this simulated example. Other vast simulation studies also show similar

results of bias reduction.

92.3.2 Case II: Stochastic Volatility Model

Stochastic volatility models often possess the mean-reverting property. Among

various models, the Ornstein-Uhlenbeck process is often taken as the driving

one-factor volatility model, which is also known as the exp-OU model in finance.

It is defined as

dSt ¼ mStdtþ exp Yt=2ð ÞStdW1t,
dYt ¼ a m� Ytð Þdtþ bdW2t,

 �
(92.11)

where St denotes the underlying risky asset price, m the return rate, and W1t and

W2t are two correlated Brownian motions. The volatility process st is defined

as exp(Yt/2), m denotes the long-run mean, a denotes the rate of mean reversion, b
denotes the vol-vol (volatility of volatility), and Yt denotes the Ornstein-

Uhlenbeck process. Model parameters are set as follows: m ¼ 0.01,

S0 ¼ 50, Y0 ¼ � 2, m ¼ � 2, a ¼ 5, b ¼ 1, and r ¼ 0. To simulate sample

processes, the time discretization is set as Dt ¼ 1/5,000 and the total number of

samples is 5,000.

The procedure to conduct our simulation study is as follows. First, time series of

volatility st ¼ exp(Yt/2) and the asset price St are simulated. Using the original

Fourier transform method and the nonlinear correction method, two volatility time

series are estimated to compare with the true volatility time series. Comparison

results are as follows:

1. Mean squared error: 0.0324 (original FTM), 0.0025 (corrected FTM)

2. Maximum absolute error: 0.3504 (original FTM), 0.1563 (corrected FTM)
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From these simulated results, over a half of errors are reduced by the corrected

FTM. Similar reduction can also be found among a vast of simulations. It is worth

noting that the employed nonlinear correction method is based on the maximum

likelihood method, which is fairly easy to compute numerically.

This section conducted simulation tests for two corrected Fourier transform

methods for the instantaneous volatility estimation. It is observed that those

methods can effectively reduce bias generated from the truncation errors of the

original Fourier transform method. Next, we apply these methods to analyze

volatility of indices such as S&P 500 in the USA and TAIEX (Taiwan Stock

Exchange Capitalization Weighted Stock Index) in Taiwan.

92.4 Volatility Estimation Under Different Sampling
Frequencies

92.4.1 Volatility Daily Effect

It is well documented that volatility demonstrates a daily effect under the high

sampling frequency. This effect causes a pattern of U shape on volatility, which

is often observed from intraday data. TAIEX, complied by Taiwan Stock

Exchange, is updated every 15 s and publically available. Such easy access to

the data enables an exploration of the daily effect. The sampled data period is from

February 10 to 15 for four consecutive trading days in 2011. In Fig. 92.1, the

bottom line, labeled as vol with magnitude on the left Y-axis, shows four U shapes

of the instantaneous volatility. Using an average-type deseasoning technique, see

Wild and Seber (1999), time series of deseasoned volatility, labeled as

Vol_Deseasoned with magnitude on the right Y-axis, is shown in the middle

part of that figure. This deseasoned volatility is often used to measure the actual

activity of volatility.

92.4.2 Multiple Risk Factors of Volatility

From the statistical point of view, volatility is a latent variable, and its estimation

causes a lot of attentions during the last two decades. See review papers of Broto

and Ruiz (2004), Molina et al. (2010), Yu (2010), and references therein.

In virtue of the nonparametric Fourier transform method, volatility is

represented as a Fourier transformation of the underlying asset prices, which can

be calculated but is subject to some truncation errors. Then given such estimation

modified by our correction schemes, one can further investigate parameters given

a prescribed model. Therefore, a new approach to estimate the exp-OU stochastic

volatility model parameters can be given as follows:

Step 1: Use a corrected Fourier transform method to estimate the instantaneous

volatility ŝt . By taking a natural logarithm Ŷt ¼ 2lnŝt , the time series of the

driving volatility OU becomes available.
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Step 2:Discretize theOUprocess and use themaximum likelihoodmethod to estimate

three parameters with the OU process. Detailed description can be found in Han

et al. (2014), but estimators for parameters defined in Eq. 92.11 are given below:

â ¼ 1

Dt
1�

XN
t¼2

Ŷ t

 ! XN�1

t¼1

Ŷ t

 !
� N � 1ð Þ

XN�1

t¼1

Ŷ tŶ tþ1

 !

XN�1

t¼1

Ŷ t

 !2

� N � 1ð Þ
XN�1

t¼1

Ŷ
2

t

 !

2
666664

3
777775
,

b̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1ð ÞDt

XN�1

t¼1

Ŷ tþ1 � âmDt þ 1� âDtÞŶ t

� ��� �2
vuut ,

m̂ ¼ �1

âDt

XN
t¼2

Ŷ t

 ! XN�1

t¼1

Ŷ
2

t

 !
�

XN�1

t¼1

Ŷ t

 ! XN�1

t¼1

Ŷ tŶ tþ1

 !

XN�1

t¼1

Ŷ t

 !2

� N � 1ð Þ
XN�1

t¼1

Ŷ
2

t

 !

2
666664

3
777775
:

These estimators are employed to estimate model parameters under three dif-

ferent sampling frequencies, i.e., high (5 months_1 day, 5-min data for one trading

day), medium (1 day_2 years, daily data for 2 years), and low (1 week_10 years,

weekly data for 10 years). Parameter m, the long-run mean, is referred as the risk

level of volatility. Figure 92.2 illustrates its estimation from January 3 to March

31 of 2011. To be more precise, for any given date, we use historical data of 1 day,

2 years, and 10 years separately, then adopt the M estimator for parameter m under
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Fig. 92.1 2011/02/10�2011/02/15 TAIEX’s estimated Ivol (every 15 s)
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these three different frequencies. Our dataset is TAIEX and the data resource is

from Taiwan Stock Exchange.

Two other model parameters which include rate of mean reversion a and vol-vol
b are related to invariance property of time scales. See Fouque et al. (2000) for

detailed discussions.

From Table 92.1, both mean-reverting rate a and vol-vol b are proportional to

data sampling frequency. That is, the higher the data frequency, the larger those

parameter sizes are. Note that those parameters are well separated, especially the

rate of mean reversion. These estimations show a strong evidence of multiple time

scales on volatility.

92.5 Hypothesis of Linearity Between the Instantaneous
Volatility and VIX

VIX (Volatility Index) is complied by Chicago Board Options Exchange (CBOE).

Its formula is mainly based on out-of-money S&P 500 index options with weights

depending on the corresponding strike prices. The full definition and formula can

be found on Hull (2008) or the VIX white paper published by CBOE.1 VIX

is often used to measure an aggregated risk exposure in the next 30 calendar

days. Hence, the information content of VIX is forward, as opposed to its dual

backward information content of volatility, i.e., the 30-day historical volatility.

Fig. 92.2 2011/01/03�2011/03/31 long-run mean (m) of the exp-OU stochastic volatility model

1www.cboe.com/micro/vix/vixwhite.pdf
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In addition, due to a strong negative correlation with the S&P 500 index, VIX is

popularly used as a fear gauge.

92.5.1 Theoretical Result

Zhang and Zhu (2006) obtained a linear relationship between the VIX squared and

the square of the instantaneous volatility under the Heston model Heston (1993).

This result is based on the following derivation. Under a risk-neutral probability

measure, the instantaneous variance Vs is assumed to follow a square root process

dVs ¼ am� aþ lð ÞVs½ �dtþ b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VsdWs

p
,

where m denotes the long-run mean, a the rate of mean reversion, b the variance of

variance,Ws the standard Brownian motion, and l the volatility risk premium under

the probability measure change. Taking mathematical expectations to the previous

stochastic differential equation on both sides, we obtain

dEt Vs½ � ¼ am� aþ lð ÞEt Vs½ �dt: (92.12)

This is because an exchange of integral and differential is assumed, and the

expectation (conditioned at time t) over the Brownian motion term is zero.

The notation Et[.] means a conditional expectation given the filtration at time

t under a risk-neutral probability measure.

Equation 92.10 is a linear ordinary equation, and its solution is given as

Et Vs½ � ¼ am
aþ l

þ Vt � am
aþ l

	 

e� aþlð Þ s�tð Þ:

Since VIX2 can also be defined as a variance swap rate Hull (2008), one can

evaluate it by its definition

VIX2
t ¼ Et

1

t0

ðtþt0

t

Vsds

� �

¼ 1

t0

ðtþt0

t

Et Vsð Þds,

Table 92.1 Model parameter estimations under different data frequencies

a (a _ std) b (b _ std)

5 months_1 day 11,661.39 (2,681.39) 114.83 (14.70)

1 day _ 2 years 23.81 (2.08) 6.29 (0.27)

1 week _ 10 years 2.62 (0.17) 2.18 (0.07)
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where t0 is defined by 30
365
. In summary, under the Heston model, a linear relationship

between VIX2 and the instantaneous variance Vt is deduced by

VIX2
t ¼ Aþ BVt,

where constant coefficients are

A ¼ a m

aþ l
1� 1� e� aþlð Þt0

aþ lð Þt0

� �
, B ¼ 1� e� aþlð Þt0

aþ lð Þt0 :

Next, we generalize this result to a more general class of models, within which

the long-run mean m and vol-vol b can be time dependent but deterministic. Even

under his larger model class, we still can derive and obtain a linear relationship

between VIX square and the instantaneous variance.

Theorem 1 Assume that the instantaneous variance st follows a mean-reverting

process

dst ¼ a m tð Þ � stð Þdtþ g stð ÞdWt, (92.13)

where functions m and g exist such that the classical assumption of stochastic

differential equations (see Oksendal (1998)) is satisfied. A linear relationship

between VIX square and the instantaneous variance

VIX2
t ¼ Aþ Bs2

t ,

where A ¼ � 1
t

ðt
0

ðt
0

e2a s�tð Þh sð Þdsdt and B ¼ 1
2at e2at � 1ð Þ.

Proof Apply Ito’s Lemma to st
2 to obtain

ds2
t ¼ 2am tð Þst � 2as2

t þ g2 stð Þ� �
dtþ 2stg stð ÞdWt:

Then, take a mathematical expectation over both sides

dE s2
t

� � ¼ �2aE s2
t

� �þ h tð Þ� �
dt, (92.14)

where h(t) ¼ E⌊2am(t)st + g2(st)c is a time-dependent deterministic function. This

equation is known as the linear ordinary differential equation with an inhomoge-

neous term. The unique solution is given by

E s2
t

� � ¼ s2
0e

2at �
ðt
0

e2a s�tð Þh sð Þds,

and VIX2 defined as VIX2
0 ¼ 1

t

ðt
0

Es2
t dt ¼ Aþ Bs2

0. Coefficients are

A ¼ � 1
t

ðt
0

ðt
0

e2a s�tð Þh sð Þdsdt and B ¼ 1
2at e2at � 1ð Þ.
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92.5.2 Empirical Results

The previous theorem advocates a linear relationship between the VIX squared and

the instantaneous variance. No empirical analysis on this theoretical result is found

to our best knowledge. The reason may come from the fact that estimation for the

instantaneous variance was difficult. In virtue of the corrected Fourier transform

methods, one can estimate time series st
2. Daily VIX and the estimated instanta-

neous volatility of S&P 500 index within the time period from January 2, 1990, to

January 31, 2011, are shown in Fig. 92.3. Our data resource is from Yahoo!

Finance.

We adopt the general linear test approach, see Kutner et al. (2005), to examine

the linear relationship between VIX2 and the instantaneous variance s2. Assuming

that the null hypothesis is

H0 : b1 ¼ 0,

H1 : b1 6¼ 0:



and the alternative is Yi ¼ b0 + b1Xi + ei, one can use the least squares method to

obtain the sum of squared errors, denoted by SSE(F), which is chi-square distrib-

uted with the degree of freedom (n-2) and denoted by dfF. Similarly under the null

hypothesis, the model is assumed to be Yi ¼ b0 + ei, and the sum of squared errors,

denoted by SSE(R), which is also chi-square distributed with the degree of freedom
(n-1), denoted by dfR. The F statistic is defined by

Fig. 92.3 Daily VIX, denoted by VIX/100, and the estimated instantaneous volatility, denoted by

F_adj_MLE_Vol, of S&P 500 index within the time period from January 2, 1990, to January

31, 2011
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F� ¼
SSE Rð Þ�SSE Fð Þ

df R�df F
SSE Fð Þ
df F

� F 1� a, df R � df F, df Fð Þ,

where the confidence level is (1 � a). Our data size is n ¼ 1,091 and estimated

linear equation is

VIX_2 ¼ 0:039342þ 0:180687V:

Given the significance level alpha ¼ 1 %, the value of F statistic is equal to

6192.8 > F(0.99, 1, n � 2) ¼ 6.639621 so that the null is rejected.

92.6 Concluding Remarks and Future Works

This chapter presents methods of nonparametric Fourier transform for estimating

the instantaneous volatility in one dimension. Based on these results, we conduct

simulation tests for a local model and a stochastic volatility model and two

empirical studies. They include (1) volatility behaviors under different sampling

frequencies and (2) linear hypothesis between the instantaneous volatility and VIX.

As a matter of fact, this method can be used for high-dimensional case. That

allows for estimating dynamic volatility matrices. As a result, this whole approach

may be suitable to study subjects of portfolio risk management, systemic risk

analysis, etc. We leave these as future works.
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Abstract

Breeden (1979) and Grinols (1984) and Cox et al. (1985) have described the

importance of supply side for the capital asset pricing. Black (1976) derives

a dynamic, multiperiod CAPM, integrating endogenous demand and supply.

However, Black’s theoretically elegant model has never been empirically tested

for its implications in dynamic asset pricing.We first theoretically extend Black’s

CAPM. Then, we use price, dividend per share, and earnings per share to test the

existence of supply effect with US equity data. We find the supply effect is

important in US domestic stock markets. This finding holds as we break the

companies listed in the S&P 500 into ten portfolios by different level of payout

ratio. It also holds consistently if we use individual stock data.

A simultaneous equation system is constructed through a standard

structural form of a multiperiod equation to represent the dynamic relationship

between supply and demand for capital assets. The equation system is exactly

identified under our specification. Then, two hypotheses related to supply

effect are tested regarding the parameters in the reduced form system. The

equation system is estimated by the seemingly unrelated regression (SUR)

method, since SUR allow one to estimate the presented system simultaneously

while accounting for the correlated errors.

Keywords

CAPM • Asset • Endogenous supply • Simultaneous equations • Reduced form •

Seemingly unrelated regression (SUR) • Exactly identified • Cost of capital •

Quadratic cost • Partial adjustment

93.1 Introduction

Breeden (1979) and Grinols (1984) and Cox et al. (1985) have described the

importance of supply side for the capital asset pricing. Cox et al. (1985) study

a restricted technology to allow them to explicitly solve their model for reduced

form. Grinols (1984) focuses on describing market optimality and supply decisions

which guide firms in incomplete markets in the absence of investor unanimity.

Black (1976) extends the static CAPM by Sharpe (1964), Litner (1965), and Mossin

(1966) explicitly allowing for the endogenous supply effect of risky securities to

derive the dynamic asset pricing model.1 Black modifies the static model by

explicitly allowing for the existence of the supply effect of risky securities.

In addition, the demand side for the risky securities is derived from a negative

exponential function for the investor’s utility of wealth. Black finds that the static

1This dynamic asset pricing model is different from Merton’s (1973) intertemporal asset pricing

model in two key aspects. First, Black’s model is derived in the form of simultaneous equations.

Second, Black’s model is derived in terms of price change, and Merton’s model is derived in terms

of rates of return.
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CAPM is unnecessarily restrictive in its neglect of the supply side and proposes that

his dynamic generalization of the static CAPM can provide the basis for many

empirical tests, particularly with regard to the intertemporal aspects and the role of

the endogenous supply side. Assuming that there is a quadratic cost structure of

retiring or issuing securities and that the demand for securities may deviate from

supply due to anticipated and unanticipated random shocks, Black concludes that if

the supply of a risky asset is responsive to its price, large price changes will be

spread over time as specified by the dynamic capital asset pricing model.

One important implication in Black’s model is that the efficient market

hypothesis holds only if the supply of securities is fixed and independent of current

prices. In short, Black’s dynamic generalization model of static wealth-based

CAPM adopts an endogenous supply side of risky securities by setting equal

quantity demanded and supplied of risky securities. Lee and Gweon (1986) extend

Black’s framework to allow time-varying dividend payments and then test the

existence of supply effect in the situation of market equilibrium. Their results reject

the null hypothesis of no supply effect in the US domestic stock market.

The rejection seems to imply a violation of efficient market hypothesis in the US

stock market.

It is worth noting that some recent studies also relate return on portfolio to

trading volume (e.g., Campbell et al. 1993; Lo and Wang 2000). Surveying the

relationship between aggregate stock market trading volume and the serial corre-

lation of daily stock returns, (Campbell et al. 1993) suggest that a stock price

decline on a high-volume day is more likely than a stock price decline on

a low-volume day. They propose an explanation that trading volume occurs when

random shifts in the stock demand of non-informational traders are accommodated

by the risk-averse market makers. Lo and Wang (2000) also examine the CAPM in

the intertemporal setting. They derive an intertemporal CAPM (ICAPM) by defin-

ing preference for wealth instead of consumption, by introducing three state

variables into the exponential types of investor’s preference as we do in this

paper. This state-dependent utility function allows one to capture the dynamic

nature of the investment problem without explicitly solving a dynamic optimization

problem. Thus, the marginal utility of wealth depends not only on the dividend of

the portfolio but also on future state variables. This dependence introduces dynamic

hedging motives in the investors’ portfolio choices. That is, this dependence

induces investors to care about future market conditions when choosing their

portfolio. In equilibrium, this model also implies that an investor’s utility

depends not only on his wealth but also on the stock payoffs directly. This “market

spirit,” in their terminology, affects investor’s demand for the stocks. In other

words, for even the investor who holds no stocks, his utility fluctuates with the

payoffs of the stock index.

Black (1976), Lee and Gweon (1986), and Lo and Wang (2000) develop models

by using either outstanding shares or trading volumes as variables to connect

the decisions in two different periods, unlike consumption-based CAPM

which uses consumption or macroeconomic information. Black (1976) and Lee

and Gweon (1986) both derive the dynamic generalization models from the
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wealth-based CAPM by adopting an endogenous supply schedule of risky

securities.2 Thus, the information of quantities demanded and supplied can now

play a role in determining the asset price. This proposes a wealth-based model as an

alternative method to investigate intertemporal CAPM.

In this chapter, we first theoretically extend the Black’s dynamic, simultaneous

CAPM to be able to test the existence of the supply effect in the asset pricing

determination process. We use two datasets of price per share and dividend

per share to test the existence of supply effect with US equity data. The

first dataset consists most companies listing in the S&P 500 of the US stock market.

The second dataset is the companies listed in the Dow Jones Index. In this study, we

find the supply effect is important in the US stock market. This finding holds as

we break the companies listed in the S&P 500 into ten portfolios. It also holds if we

use individual stock data. For example, the existence of supply effect holds

consistently in most portfolios if we test the hypotheses by using individual stock

as many as 30 companies in one group. We also find that one cannot reject the

existence of supply effect by using the stocks listed in the Dow Jones Index.

This chapter is structured as follows. In Sect. 93.2, a simultaneous equation

system of asset pricing is constructed through a standard structural form of a

multiperiod equation to represent the dynamic relationship between supply and

demand for capital assets. The hypotheses implied by the model are also presented

in this section. Section 93.3 describes the two sets of data used in this paper.

The empirical finding for the hypotheses and tests constructed in previous section

is then presented. Our summary is presented in Sect. 93.4.

93.2 Development of Multiperiod Asset Pricing Model with
Supply Effect

Based on the framework of Black (1976), we derive a multiperiod equilibrium asset

pricing model in this section. Black modifies the static wealth-based CAPM by

explicitly allowing for the endogenous supply effect of risky securities. The

demand for securities is based on the well-known model of James Tobin (1958)

and Harry Markowitz (1959). However, Black further assumes a quadratic cost

function of changing short-term capital structure under long-run optimality

condition. He also assumes that the demand for security may deviate from supply

due to anticipated and unanticipated random shocks.

Lee and Gweon (1986) modify and extend Black’s framework to allow time-

varying dividends and then test the existence of supply effect. In Lee and Gweon’s

model, two major differing assumptions from Black’s model are: (1) the model

allows for time-varying dividends, unlike Black’s assumption constant dividends,

2It should be noted that Lo and Wang’s model did not explicitly introduce the supply equation in

asset pricing determination. Also, one can identify the hedging portfolio using volume data in the

Lo and Wang model setting.
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and (2) there is only one random, unanticipated shock in the supply side instead of

two shocks, anticipated and unanticipated shocks, as in Black’s model. We follow

the Lee and Gweon set of assumptions. In this section, we develop a simultaneous

equation asset pricing model. First, we derive the demand function for capital

assets, then we derive the supply function of securities. Next, we derive the

multiperiod equilibrium model. Thirdly, the simultaneous equation system is

developed for testing the existence of supply effects. Finally, the hypotheses of

testing supply effect are developed.

93.2.1 The Demand Function for Capital Assets

The demand equation for the assets is derived under the standard assumptions

of the CAPM.3 An investor’s objective is to maximize their expected utility function.

A negative exponential function for the investor’s utility of wealth is assumed:

U ¼ a� h� e �bWtþ1f g, (93:1)

where the terminal wealthWt+1¼Wt(1 + Rt);Wt is initial wealth; and Rt is the rate of

return on the portfolio. The parameters a, b, and h are assumed to be constants.

The dollar returns on N marketable risky securities can be represented by

Xj, tþ1 ¼ Pj, tþ1 � Pj, t þ Dj, tþ1, j ¼ 1, . . . , N, (93:2)

where

Pj, t+1 ¼ (random) price of security j at time t + 1

Pj, t ¼ price of security j at time t

Dj, t+1 ¼ (random) dividend or coupon on security at time t + 1

These three variables are assumed to be jointly normally distributed. After

taking the expected value of Eq. 93.2 at time t, the expected returns for each

security, xj, t+1, can be rewritten as

xj, tþ1 ¼ EtXj, tþ1 ¼ EtPj, tþ1 � Pj, t þ EtDj, tþ1, j ¼ 1, . . . , N, (93:3)

where

EtPj, tþ1 ¼ E Pj, tþ1jOt

� �

EtDj, tþ1 ¼ E Dj, tþ1jOt

� �

EtXj, tþ1 ¼ E Xj, tþ1 Otj Þ�

Ot is the given information available at time t.

3The basic assumptions are as follows: (1) a single period moving horizon for all investors; (2) no

transaction costs or taxes on individuals; (3) the existence of a risk-free asset with rate of return, r*;

(4) evaluation of the uncertain returns from investments in terms of expected return and variance

of end-of-period wealth; and (5) unlimited short sales or borrowing of the risk-free asset.
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Then, a typical investor’s expected value of end-of-period wealth is

wtþ1 ¼ EtWtþ1 ¼ Wt þ r� Wt � qtþ1
0Pt

� �þ qtþ1
0xtþ1, (93:4)

where

Pt ¼ (P1, t, P2, t, P3, t, . . ., P N, t)
0

xt+1 ¼ (x1, t+1, x2, t+1, x3, t+1, . . ., xN, t+1)
0 ¼ EtPt+1–Pt + EtDt+1

qt+1 ¼ (q1, t+1, q2, t+1, q3, t+1, . . ., qN, t+1)
0

qj,t+1 ¼ number of units of security j after reconstruction of his portfolio

r* ¼ risk-free rate

In Eq. 93.4, the first term on the right hand side is the initial wealth, the second

term is the return on the risk-free investment, and the last term is the return on the

portfolio of risky securities. The variance of Wt+1 can be written as

V Wtþ1ð Þ ¼ E Wtþ1 � wtþ1ð Þ Wtþ1 � wtþ1ð Þ0 ¼ qtþ1
0Sq, tþ1, (93:5)

where S ¼ E(Xt+1–xt+1)(Xt+1–xt+1)
0 ¼ the covariance matrix of returns of risky

securities.

Maximization of the expected utility of Wt+1 is equivalent to:

Max wtþ1 � b

2
V Wtþ1ð Þ, (93:6)

By substituting Eqs. 93.4 and 93.5 into Eq. 93.6, Eq. 93.6 can be rewritten as:

Max 1þ r�ð ÞWt þ qtþ1
0 xtþ1 � r�Ptð Þ � b=2ð Þqtþ1

0Sqtþ1: (93:7)

Differentiating Eq. 93.7, one can solve the optimal portfolio as:

qtþ1 ¼ b�1S�1 xtþ1 � r�Ptð Þ: (93:8)

Under the assumption of homogeneous expectation, or by assuming that all the

investors have the same probability belief about future return, the aggregate

demand for risky securities can be summed as:

Qtþ1 ¼
Xm
k¼1

qktþ1 ¼ cS�1 EtPtþ1 � 1þ r�ð ÞPt þ EtDtþ1½ �, (93:9)

where c ¼ S(bk)�1.

In the standard CAPM, the supply of securities is fixed, denoted as Q*. Then,

Eq. 93.9 can be rearranged as Pt ¼ (1/r*)(xt+1–c
�1 S Q*), where c�1 is the market

price of risk. In fact, this equation is similar to the Lintner’s (1965) well-known

equation in capital asset pricing.
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93.2.2 Supply Function of Securities

An endogenous supply side to the model is derived in this section, and we present

our resulting hypotheses, mainly regarding market imperfections. For example, the

existence of taxes causes firms to borrow more since the interest expense is

tax-deductible. The penalties for changing contractual payment (i.e., direct and

indirect bankruptcy costs) are material in magnitude, so the value of the firm would

be reduced if firms increase borrowing. Another imperfection is the prohibition of

short sales of some securities.4 The costs generated by market imperfections reduce

the value of a firm, and, thus, a firm has incentives to minimize these costs. Three

more related assumptions are made here. First, a firm cannot issue a risk-free

security; second, these adjustment costs of capital structure are quadratic; and

third, the firm is not seeking to raise new funds from the market.

It is assumed that there exists a solution to the optimal capital structure and that

the firm has to determine the optimal level of additional investment. The one-period

objective of the firm is to achieve the minimum cost of capital vector with

adjustment costs involved in changing the quantity vector, Qi, t+1:

Min EtDi, tþ1Qi, tþ1 þ 1=2ð Þ DQi, tþ1
0AiDQi, tþ1

� �
,

subject toPi, tDQi, tþ1 ¼ 0,
(93:10)

where Ai is a ni � ni positive-definite matrix of coefficients measuring the assumed

quadratic costs of adjustment. If the costs are high enough, firms tend to stop

seeking raise new funds or retire old securities. The solution to Eq. 93.10 is

DQi, tþ1 ¼ Ai
�1 liPi, t � EtDi, tþ1

� �
, (93:11)

where li is the scalar Lagrangian multiplier.

Aggregating Eq. 93.11 over N firms, the supply function is given by

DQtþ1 ¼ A�1 BPt � EtDtþ1ð Þ, (93:12)

where A�1 ¼
A�1
1

A�1
2

⋱
A�1
N

2
664

3
775 , B ¼

l1I
l2I

⋱
lNI

2
664

3
775 , and

Q ¼
Q1

Q2

⋮
QN

2
664

3
775:

4Theories as to why taxes and penalties affect capital structure are first proposed byModigliani and

Miller (1958) and then Miller (1977). Another market imperfection, prohibition on short sales of

securities, can generate “shadow risk premiums” and, thus, provide further incentives for firms to

reduce the cost of capital by diversifying their securities.
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Equation 93.12 implies that a lower price for a security will increase the amount

retired of that security. In other words, the amount of each security newly issued is

positively related to its own price and is negatively related to its required return and

the prices of other securities.

93.2.3 Multiperiod Equilibrium Model

The aggregate demand for risky securities presented by Eq. 93.9 can be seen as

a difference equation. The prices of risky securities are determined in a multiperiod

framework. It is also clear that the aggregate supply schedule has similar structure.

As a result, the model can be summarized by the following equations for demand

and supply, respectively:

Qtþ1 ¼ cS�1 EtPtþ1 � 1þ r�ð ÞPt þ EtDtþ1ð Þ, (93:9)

DQtþ1 ¼ A�1 BPt � EtDtþ1ð Þ: (93:12)

Differencing Eq. 93.9 for period t and t+1 and equating the result with Eq. 93.12,

a new equation relating demand and supply for securities is

cS�1 EtPtþ1 � Et�1Pt � 1þ r�ð Þ Pt � Pt�1ð Þ þ EtDtþ1 � Et�1Dt½ � ¼ A�1 BPt � EtDtþ1ð Þ þ Vt,

(93:13)

where Vt is included to take into account the possible discrepancies in the system.

Here, Vt is assumed to be random disturbance with zero expected value and no

autocorrelation.

Obviously, Eq. 93.13 is a second-order system of stochastic differential

equation in Pt and conditional expectations Et�1Pt and Et�1Dt. By taking the

conditional expectation at time t�1 on Eq. 93.13, and because of the properties

of Et�1[EtPt+1] ¼ Et�1Pt+1 and Et�1E(Vt) ¼ 0, Eq. 93.13 becomes

cS�1 Et�1Ptþ1 � Et�1Pt � 1þ r�ð Þ Et�1Pt � Pt�1ð Þ þ Et�1Dtþ1 � Et�1Dt½ �
¼ A�1 BEt�1Pt � Et�1Dtþ1ð Þ:

(93:130)

Subtracting Eq. 93.130 from Eq. 93.13,

1þ r�ð ÞcS�1 þ A�1B
� �

Pt � Et�1Ptð Þ ¼ cS�1 EtPtþ1 � Et�1Ptþ1ð Þ
þ cS�1 þ A�1
� �

EtDtþ1 � Et�1Dtþ1ð Þ � Vt:
(93:14)

Equation 93.14 shows that prediction errors in prices (the left hand side) due

to unexpected disturbance are a function of expectation adjustments in price

(first term on the right hand side) and dividends (the second term on the right

hand side) two periods ahead. This equation can be seen as a generalized capital

asset pricing model.

2542 C.-F. Lee et al.



One important implication of the model is that the supply side effect can be

examined by assuming the adjustment costs are large enough to keep the firms from

seeking to raise new funds or to retire old securities. In other words, the assumption

of high enough adjustment costs would cause the inverse of matrix A in Eq. 93.14 to

vanish. The model is, therefore, reduced to the following certain equivalent

relationship:

Pt � Et�1Pt ¼ 1þ r�ð Þ�1
EtPtþ1 � Et�1Ptþ1ð Þ þ 1þ r�ð Þ�1

EtDtþ1 � Et�1Dtþ1ð Þ þ Ut,

(93:15)

Where Ut ¼ �c�1S(1 + r*)�1Vt.

Equation 93.15 suggests that current forecast error in price is determined by the

sum of the values of the expectation adjustments in its own next-period price and

dividend discounted at the rate of 1 + r*.

93.2.4 Derivation of Simultaneous Equation System

From Eq. 93.15, if price series follow a random walk process, then the price series

can be represented as Pt ¼ Pt�1 + at, where at is white noise. It follows that

Et�1Pt ¼ Pt�1, EtPt+1 ¼ Ptand Et�1Pt+1 ¼ Pt�1. According to the results in

Appendix 1, the assumption that price follows a random walk process seems to

be reasonable for both datasets. As a result, Eq. 93.14 becomes

� r�cS�1 þ A�1B
� �

Pt � Pt�1ð Þ þ cS�1 þ A�1
� �

EtDtþ1 � Et�1Dtþ1ð Þ ¼ Vt:

(93:16)

Equation 93.16 can be rewritten as

G pt þ H dt ¼ Vt, (93:17)

where

G ¼ � (r * cS�1 + A�1B)

H ¼ (cS�1 + A�1)

dt ¼ EtDt+1 � Et�1Dt+1

pt ¼ Pt � Pt�1.

If Eq. 93.17 is exactly identified and matrix G is assumed to be nonsingular, then

as shown in Greene (2004), the reduced form of this model may be written as5

pt ¼ Pdt þ Ut, (93:18)

5The identification of the simultaneous equation system can be found in Appendix 2.
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where P is a n-by-n matrix of the reduced form coefficients and Ut is a column

vector of n reduced form disturbances. Or

P ¼ �G�1H, and Ut ¼ G�1Vt: (93:19)

Equations 93.18 and 93.19 are used to test the existence of supply effect in the

next section.

93.2.5 Test of Supply Effect

Since the simultaneous equation system as in Eq. 93.17 is exactly identified, it can

be estimated by the reduced form as Eq. 93.18. A proof of identification problem of

Eq. 93.17 is shown in Appendix 2. That is, Eq. 93.18, pt ¼Pdt + Ut, can be used to

test the supply effect. For example, in the case of two portfolios, the coefficient

matrix G and H in Eq. 93.17 can be written as6

G ¼ g11 g12
g21 g22

� �
¼ � r�cs11 þ a1b1ð Þ �r�cs12

�r�cs21 � r�cs22 þ a2b2ð Þ
� �

,

H ¼ h11 h12
h21 h22

� �
¼ cs11 þ a1 cs12

cs21 cs22 þ a2

� �
: (93:20)

Since P ¼ � G� 1 H in Eq. 93.21, P can be calculated as

�G�1H¼ r�cs11þa1b1 r�cs12
r�cs21 r�cs22þa2b2

� ��1 cs11þa1 cs12

cs21 cs22þa1

� �

¼ 1

Gj j
r�cs22þa2b2 �r�cs12

�r�cs21 r�cs11þa1b1

� �
cs11þa1 cs12

cs21 cs22þa1

� �

¼ 1

Gj j
r�cs22þa2b2ð Þ cs11þa1ð Þ� r�cs12cs21 r�cs22þa2b2ð Þcs12� r�cs12 cs22þa1ð Þ

�r�cs21 cs11þa1ð Þþ r�cs11þa1b1ð Þcs21 �r�cs21cs12þ r�cs11þa1b1ð Þ cs22þa1ð Þ
� �

¼ p11 p12
p21 p22

� �
:

(93:21)

From Eq. 93.21, if there is a high enough quadratic cost of adjustment, or if

a1 ¼ a2 ¼ 0, then with s12 ¼ s21, the matrix would become a scalar matrix in which

diagonal elements are equal to r*c2 (s11 s22 � s12
2), and the off-diagonal elements

are all zero. In other words, if there is high enough cost of adjustment, firm tends to

stop seeking to raise new funds or to retire old securities. Mathematically, this will

be represented in a way that all off-diagonal elements are all zero and all diagonal

6sij is the ith row and jth column of the variance-covariance matrix of return. ai and bi are the

supply adjustment cost of firm i and overall cost of capital of firm i, respectively.
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elements are equal to each other in matrix П. In general, this can be extended into

the case of more portfolios. For example, in the case of N portfolios, Eq. 93.18

becomes

p1t
p2t
⋮
pNt

2
664

3
775 ¼

p11 p12 � � � p1N
p21 p22 � � � p2N
⋮ ⋮ ⋱ ⋮
pN1 pN2 � � � pNN

2
664

3
775

d1t
d2t
⋮
dNt

2
664

3
775þ

u1t
u2t
⋮
uNt

2
664

3
775: (93:22)

Equation 93.22 shows that if an investor expects a change in the prediction of the

next dividend due to additional information (e.g., change in earnings) during the

current period, then the price of the security changes. Regarding the US equity

market, if one believes that how the expectation errors in dividends are built into the

current price is the same for all securities, then, the price changes would be

only influenced by its own dividend expectation errors. Otherwise, say if the supply

of securities is flexible, then the change in price would be influenced by the

expectation adjustment in dividends of all other stocks as well as that in its own

dividend.

Therefore, two hypotheses related to supply effect to be tested regarding the

parameters in the reduced form system shown in Eq. 93.18 are as follows:

Hypothesis 1: All the off-diagonal elements in the coefficient matrix P are zero if

the supply effect does not exist.

Hypothesis 2: All the diagonal elements in the coefficients matrixP are equal in the

magnitude if the supply effect does not exist.

These two hypotheses should be satisfied jointly. That is, if the supply effect

does not exist, price changes of a security should be a function of its own dividend

expectation adjustments, and the coefficients should all be equal across securities.

In the model described in Eq. 93.16, if an investor expects a change in the

prediction of the next dividend due to the additional information during the current

period, then the price of the security changes.

Under the assumption of the efficiency in the domestic stock market, if the

supply of securities is fixed, then the expectation errors in dividends are built in the

current price is the same for all securities. This phenomenon implies that the price

changes would only be influenced by its own dividend expectation adjustments. If

the supply of securities is flexible, then the change in price would be influenced by

the expectation adjustment in dividends of all other securities as well as that of its

own dividend.

93.3 Data and Empirical Results

In this section, we derive the test by analyzing the US domestic stock market. Most

details of the model, the methodologies, and the hypotheses for empirical tests are

previously discussed in Sect. 93.2. However, before testing the hypotheses, some

other details of the related tests that are needed to support the assumptions used in

the model are also briefly discussed in this section.
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This section examines the hypotheses derived earlier for the US domestic stock

market by using the companies listed in S&P 500 and, then, by using the companies

listing in Dow Jones Index. If the supply of risky assets is responsive to its price,

then large price changes, which are due to the change in expectation of future

dividend, will be spread over time. In other words, there exists supply effect in

the US domestic stock markets. This implies that the dynamic instead of static

CAPM should be used for testing capital assets pricing in the equity markets of the

United States.

93.3.1 Data and Descriptive Statistics

Three hundred companies are selected from the S&P 500 and grouped into ten

portfolios with equal numbers of 30 companies by their payout ratios. The data are

obtained from the Compustat North America industrial quarterly data. The data

starts from the first quarter of 1981 to the last quarter of 2002. The companies

selected satisfy the following two criteria. First, the company appears on the S&P

500 at some time period during 1981 through 2002. Second, the company must have

complete data available – including price, dividend, earnings per share, and shares

outstanding – during the 88 quarters (22 years). Firms are eliminated from the

sample list if one of the following two conditions occurs:

(i) Reported earnings are either trivial or negative.

(ii) Reported dividends are trivial.

Three hundred fourteen firms remain after these adjustments. Finally, excluding

those seven companies with highest and lowest average payout ratio, the remaining

300 firms are grouped into ten portfolios by the payout ratio. Each portfolio

contains 30 companies. Figure 93.1 shows the comparison of S&P 500 index and the

value-weighted index of the 300 firms selected (M). Figure 93.1 shows that the

trend is similar to each other before the third quarter of 1999. However, there exist

some differences after third quarter of 1999.

To group these 300 firms, the payout ratio for each firm in each year is

determined by dividing the sum of four quarters’ dividends by the sum of four

quarters’ earnings; then, the yearly ratios are further averaged over the 22-year

period. The first 30 firms with highest payout ratio comprise portfolio one, and so

on. Then, the value-weighted average of the price, dividend, and earnings of each

portfolio is computed. Characteristics and summary statistics of these ten portfolios

are presented in Tables 93.1 and 93.2, respectively. Table 93.1 presents

information of return, payout ratio, size, and beta for ten portfolios. From the

results of this table, there appears to exist an inverse relationship between return

and payout ratio, payout ratio and beta. However, the relationship between payout

ratio and beta is not so clear. This finding is similar to that of Fama and

French (1992).

Table 93.2 shows the first four moments of quarterly returns of the market

portfolio and ten portfolios. The coefficients of skewness, kurtosis, and Jarque-

Bera statistics show that one cannot reject the hypothesis that log return of most
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portfolios is normal. The kurtosis statistics for most sample portfolios are close to

three, which indicates that heavy tails are not an issue. Additionally, Jarque-Bera

coefficients illustrate that the hypotheses of Gaussian distribution for most

portfolios are not rejected. It seems to be unnecessary to consider the problem of

heteroskedasticity in estimating domestic stock market if the quarterly data

are used.
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Fig. 93.1 Comparison of S&P 500 and market portfolio

Table 93.1 Characteristics of ten portfolios

Portfolioa Returnb Payoutc Size (000) Beta (M)

1 0.0351 0.7831 193,051 0.7028

2 0.0316 0.7372 358,168 0.8878

3 0.0381 0.5700 332,240 0.8776

4 0.0343 0.5522 141,496 1.0541

5 0.0410 0.5025 475,874 1.1481

6 0.0362 0.4578 267,429 1.0545

7 0.0431 0.3944 196,265 1.1850

8 0.0336 0.3593 243,459 1.0092

9 0.0382 0.2907 211,769 0.9487

10 0.0454 0.1381 284,600 1.1007

aThe first 30 firms with highest payout ratio comprise portfolio one, and so on
bThe price, dividend, and earnings of each portfolio are computed by value-weighted of the

30 firms included in the same category
cThe payout ratio for each firm in each year is found by dividing the sum of four quarters’

dividends by the sum of four quarters’ earnings; then, the yearly ratios are then computed from

the quarterly data over the 22-year period
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93.3.2 Dynamic CAPM with Supply Side Effect

If one believes that the stockmarket is efficient (i.e., if one believes theway inwhich the

expectation errors in dividends are built in the current price is the same for all securities),

then price changes would be influenced only by its own dividend expectation errors.

Otherwise, if the supply of securities is flexible, then the change in price would be

influenced by the expectation adjustment in dividends of other portfolios as well as that

in its own dividend. Thus, two hypotheses related to supply effect are to be tested and

should be satisfied jointly in order to examine whether there exists a supply effect.

Recalling from the previous section, the structural form equations are exactly

identified, and the series of expectation adjustments in dividend, dt, are exogenous
variables (dt can be estimated from earnings per share and dividends per share by

using a partial adjustment model as presented in Appendix 3). Now, the reduced

form equations can be used to test the supply effect. That is, Eq. 93.22 needs to be

examined by the following hypotheses:

Hypothesis 1: All the off-diagonal elements in the coefficient matrix P are zero if

the supply effect does not exist.

Hypothesis 2: All the diagonal elements in the coefficients matrixP are equal in the

magnitude if the supply effect does not exist.

These two hypotheses should be satisfied jointly. That is, if the supply effect does

not exist, price changes of each portfolio would be a function of its own dividend

expectation adjustments, and the coefficients should be equal across all portfolios.

The estimated coefficients of the simultaneous equation system for ten portfolios

are summarized in Table 93.3.7 Results of Table 93.3 indicate that the estimated

Table 93.2 Summary statistics of portfolio quarterly returnsa

Country Mean (quarterly) Std. dev. (quarterly) Skewness Kurtosis Jarque-Bera

Market portfolio 0.0364 0.0710 �0.4604 3.9742 6.5142*

Portfolio 1 0.0351 0.0683 �0.5612 3.8010 6.8925*

Portfolio 2 0.0316 0.0766 �1.1123 5.5480 41.470**

Portfolio 3 0.0381 0.0768 �0.3302 2.8459 1.6672*

Portfolio 4 0.0343 0.0853 �0.1320 3.3064 0.5928

Portfolio 5 0.0410 0.0876 �0.4370 3.8062 5.1251

Portfolio 6 0.0362 0.0837 �0.2638 3.6861 2.7153

Portfolio 7 0.0431 0.0919 �0.1902 3.3274 0.9132

Portfolio 8 0.0336 0.0906 0.2798 3.3290 1.5276

Portfolio 9 0.0382 0.0791 �0.2949 3.8571 3.9236

Portfolio 10 0.0454 0.0985 �0.0154 2.8371 0.0996

aQuarterly returns from 1981:Q1to 2002:Q4 are calculated

* and ** denote statistical significance at the 5 % and 1 % level, respectively

7The results are similar when using either the FIML or SUR approach. We report here the

estimates of the SUR method.
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diagonal elements seem to vary across portfolios and most of the off-diagonal

elements are significant from zero. However, simply observing the elements in

matrix П directly cannot justify either accept or reject the null hypotheses derived

for testing the supply effect. Two tests should be done separately to check whether

these two hypotheses are both satisfied.

For the first hypothesis, the test of supply effect on off-diagonal elements, the

following regression in accordance with Eq. 93.22 is run for each portfolio:

pi, t ¼ bidi, t þ Sj 6¼ibjdj, t þ ei, t, i, j ¼ 1, . . . , 10: (93:23)

The null hypothesis then can be written as H0: bj ¼ 0, j ¼ 1, . . ., 10, j 6¼ i.

The results are reported in Table 93.4. Two test statistics are reported. The first test

uses an F distribution with 9 and 76 degrees of freedom, and the second test uses

a chi-squared distribution with 9 degrees of freedom. The null hypothesis is

rejected at 5 % significance level in six out of ten portfolios, and only two portfolios

cannot be rejected at 10 % significance level. This result indicates that the null

hypothesis can be rejected at conventional levels of significance.

For the second hypothesis of supply effect on all diagonal elements of Eq. 93.22,

the following null hypothesis needs to be tested:

H0 : pi, i ¼ pj, j for all i, j ¼ 1, . . . , 10:

To do this null hypothesis test, we need to estimate Eq. 93.22 simultaneously,

and then, we calculate Wald statistics by imposing nine restrictions on this equation

system. Under the above nine restrictions, the Wald test statistic has a chi-square

distribution with 9 degrees of freedom. The statistic is 18.858, which is

greater than 16.92 at 5 % significance level. Since the statistic corresponds to

a p-value of 0.0265, one can reject the null hypothesis at 5 %, but it cannot reject

H0 at a 1 % significance level. In other words, the diagonal elements are not similar

to each other in magnitude. In conclusion, the above empirical results are sufficient

to reject two null hypotheses of nonexistence of supply effect in the US stock

market.

In order to check whether the individual stocks can hold up to the same testing,

we use individual stock data as many as 30 companies in one group. The results are

summarized in Table 93.5. From Table 93.5, we find that the above conclusion

seems to be sustainable if we use individual stock data. More specifically, the

diagonal elements are not equal to each other at any conventional significant level

and the off-diagonal elements are significantly from zero in each group composed

of 30 individual stocks.

We also find that one cannot reject the existence of supply effect by using the

stocks listed in the Dow Jones Index. Again, to test the supply effect on off-diagonal

elements, Eq. 93.23 is run as the following for each company:

pi, t ¼ bidi, t þ Sj 6¼ ibjdj, t þ ei, t, i, j ¼ 1, . . . , 29: (93:230)
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The null hypothesis then can be written as H0: bj ¼ 0, j ¼ 1, . . ., 29, j 6¼ i.

The results are summarized in Table 93.6. The null hypothesis is rejected at 1 %

significance level in 26 out of 29 companies. For the second hypothesis of

supply effect on all diagonal elements, the following null hypothesis is also tested:

H0: pi, i ¼ pj, j, for all i, j ¼ 1, . . ., 29.
TheWald test statistic has a chi-square distribution with 28 degrees of freedom. The

statistic is 86.35. That is, one can reject this null hypothesis at 1 % significance level.

93.4 Summary

We examine an asset pricing model that incorporates a firm’s decision concerning

the supply of risky securities into the CAPM. This model focuses on a firm’s

financing decision by explicitly introducing the firm’s supply of risky securities

into the static CAPM and allows the supply of risky securities to be a function of

security price. And thus, the expected returns are endogenously determined by both

demand and supply decisions within the model. In other words, the supply effect

may be one important factor in capital assets pricing decisions.

Our objective is to investigate the existence of supply effect in the US stock

markets. We find that supply effect is important in the US stock market. This

finding holds as we break the companies listed in the S&P 500 into ten portfolios.

It also holds if we use individual stock data. These test results show that two null

hypotheses of the nonexistence of supply effect do not seem to be satisfied jointly.

In other words, this evidence seems to be sufficient to support the existence of

supply effect and, thus, imply a violation of the assumption in the one-period static

CAPM, or to imply a dynamic asset pricing model may be a better choice in the US

domestic stock markets.

Table 93.4 Test of supply effect on off-diagonal elements of matrix Пa,b

R2 F- statistic p-value Chi-square p-value

Portfolio 1 0.1518 1.7392 0.0872 17.392* 0.0661

Portfolio 2 0.1308 1.4261 0.1852 14.261 0.1614

Portfolio 3 0.4095 5.4896 0.0000 53.896*** 0.0000

Portfolio 4 0.1535 1.9240 0.0607 17.316** 0.0440

Portfolio 5 0.1706 1.9511 0.0509 19.511** 0.0342

Portfolio 6 0.2009 1.2094 0.2988 12.094 0.2788

Portfolio 7 0.2021 1.8161 0.0718 18.161* 0.0523

Portfolio 8 0.1849 1.9599 0.0497 19.599** 0.0333

Portfolio 9 0.1561 1.8730 0.0622 18.730** 0.0438

Portfolio 10 0.3041 3.5331 0.0007 35.331*** 0.0001

api, t ¼ bi 0 di, t + Sj 6¼ ibj 0 dj, t + e 0
i, t i, j ¼ 1, . . . ,10.

Hypothesis: all bj ¼ 0, j ¼ 1, . . . , 10, j 6¼ i
bThe first test uses an F distribution with 9 and 76 degrees of freedom, and the second uses

a chi-squared distribution with 9 degrees of freedom

*, **, and *** denote statistical significance at the 10 %, 5 %, and 1 % level, respectively
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For the future research, we will first modify the simultaneous equation asset

pricing model defined in Eqs. 93.9 and 93.12 to allow for testing the existence of

market disequilibrium in dynamic asset pricing. Then, we will use disequilibrium

estimation methods developed by Amemiya (1974), Fair and Jaffe(1972), and

Quandt (1988) to test whether there is price adjustment in response to an excess

demand in equity market.

Appendix 1: Modeling the Price Process

In Sect. 93.2.3, Eq. 93.16 is derived from Eq. 93.15 under the assumption

that all countries’ index series follow a random walk process. Thus, before further

discussion, we should test the order of integration of these price series.

From Hamilton (1994), we know that two widely used unit root tests are the

Dickey-Fuller (DF) and the augmented Dickey-Fuller (ADF) tests. The former

can be represented as Pt ¼ m + gPt�1 + et, and the latter can be written as

DPt ¼ m + g Pt�1 + d1DPt�1 + d2DPt�2 + . . . + dpDPt�p + et.

Table 93.5 Test of supply effect (by individual stock)

Test of supply effect on the diagonal

elements:

H0: pii ¼ pjj for all i, j¼ 1, 2, . . . , 30

Test supply effect on off-diagonal elements:

pi,t¼ bi 0 di,t + Sj 6¼ ibj 0 dj, t + e 0
i, t, for i, j¼ 1, 2,

. . . , 30; H0: all bj ¼ 0, j ¼ 1, 2, . . . , 30, j 6¼ i

Different significant level

1 % 5 % 10 %

Group 1 w2 ¼ 113.65, p-value ¼ 0.0000 Reject 23 in

30 equations

Reject 25 in

30 equations

Reject 25 in

30 equations➔ Reject H0 at 1 %

Group 2 w2 ¼ 52.08, p-value ¼ 0.0053 Reject 21 in

30 equations

Reject 24 in

30 equations

Reject 25 in

30 equations➔ Reject H0 at 1 %

Group 3 w2 ¼ 86.53, p-value ¼ 0.0000 Reject 26 in

30 equations

Reject 27 in

30 equations

Reject 28 in

30 equations➔ Reject H0 at 1 %

Group 4 w2 ¼ 88.58, p-value ¼ 0.0000 Reject 21 in

30 equations

Reject 24 in

30 equations

Reject 25 in

30 equations➔ Reject H0 at 1 %

Group 5 w2 ¼ 101.14, p-value ¼ 0.0000 Reject 25 in

30 equations

Reject 26 in

30 equations

Reject 28 in

30 equations➔ Reject H0 at 1 %

Group 6 w2 ¼ 69.14, p-value ¼ 0.0000 Reject 17 in

30 equations

Reject 21 in

30 equations

Reject 22 in

30 equations➔ Reject H0 at 1 %

Group 7 w2 ¼ 181.10, p-value ¼ 0.0000 Reject 29 in

30 equations

Reject 30 in

30 equations

Reject 30 in

30 equations➔ Reject H0 at 1 %

Group 8 w2 ¼ 116.97, p-value ¼ 0.0000 Reject 29 in

30 equations

Reject 29 in

30 equations

Reject 29 in

30 equations➔ Reject H0 at 1 %

Group 9 w2 ¼ 117.44, p-value ¼ 0.0000 Reject 27 in

30 equations

Reject 28 in

30 equations

Reject 29 in

30 equations➔ Reject H0 at 1 %

Group 10 w2 ¼ 109.50, p-value ¼ 0.0000 Reject 25 in

30 equations

Reject 27 in

30 equations

Reject 27 in

30 equations➔ Reject H0 at 1 %
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Similarly, in the US stock markets, the Phillips-Perron test is used to check

whether the value-weighted price of market portfolio follows a random walk

process. The results of the tests for each index are summarized in Table 93.7.

It seems that one cannot reject the hypothesis that all indices follow a random walk

process since, for example, the null hypothesis of unit root in level cannot be

rejected for all indices but are all rejected if one assumes there is a unit root in

the first-order difference of the price for each portfolio. This result is consistent with

most studies that find that the financial price series follow a random walk process.

Table 93.6 Test of supply effect (companies listed in the Dow Jones Index)

GVKEY Security i
R2 of each

equation i

H0: all bj ¼ 0, j ¼ 1, 2, . . ., 29, j 6¼ i

Chi-square p-value

1300 Honeywell International Inc 0.7088 137.08 0.0000

1356 Alcoa Inc 0.6716 120.84 0.0000

1447 American Express 0.4799 55.47 0.0015

1581 AT&T Corp 0.5980 56.16 0.0012

2285 Boeing Co 0.5291 66.75 0.0001

2817 Caterpillar Inc 0.5887 83.10 0.0000

2968 JPMorgan Chase & Co 0.5352 68.12 0.0000

3144 Coca-Cola Co 0.5927 87.04 0.0000

3243 Citigroup Inc 0.6082 88.63 0.0000

3980 Disney (Walt) Co 0.6457 104.06 0.0000

4087 Du Pont (E I) De Nemours 0.6231 98.37 0.0000

4194 Eastman Kodak Co 0.3793 36.14 0.1416

4503 Exxon Mobil Corp 0.5653 76.50 0.0000

5047 General Electric Co 0.5425 61.17 0.0003

5073 General Motors Corp 0.5372 66.73 0.0001

5606 Hewlett-Packard Co 0.4755 53.61 0.0025

5680 Home Depot Inc 0.6753 106.00 0.0000

6008 Intel Corp 0.5174 60.05 0.0004

6066 Intl Business Machines Corp 0.5596 75.31 0.0000

6104 Intl Paper Co 0.5512 72.58 0.0000

6266 Johnson & Johnson 0.5211 67.59 0.0000

7154 McDonalds Corp 0.4416 45.53 0.0195

7257 Merck & Co 0.4109 40.82 0.0558

7435 3M CO 0.6344 105.07 0.0000

8543 Altria Group Inc 0.5751 72.25 0.0000

8762 Procter & Gamble Co 0.5816 84.19 0.0000

9899 SBC Communications Inc 0.5486 72.81 0.0000

10983 United Technologies Corp 0.6595 116.19 0.0000

11259 Wal-Mart Stores 0.6488 111.85 0.0000

Test the off-diagonal elements: pi,t¼ bi 0 di,t + Sj6¼ibj 0 dj,t + e 0
i,t, for i, j¼ 1, . . .,29, null hypothesis

H0: all bj ¼ 0, j ¼ 1, 2, . . ., 29, j 6¼ i

Test of supply effect on the diagonal elements; H0: pii ¼ pjj for all i, j ¼ 1, 2, . . ., 29 Result:

w2 ¼ 86.35, p-value ¼ 0.0000 ! Reject H0 at 1 %

Microsoft Corp. is not included since it had paid dividends twice for the whole sample period
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Appendix 2: Identification of the Simultaneous Equation System

Note that given G is nonsingular, P ¼ �G�1 H in Eq. 93.19 can be written as

where A ¼ G H½ � ¼

g11 g12 . . . . . . g1n h11 h12 . . . . . . h1n
g21 g22 . . . . . . g1n h21 h22 . . . . . . h2n
: :
: :
gn1 gn2 . . . . . . gnn hn1 hn2 . . . . . . hnn

0
BBBB@

1
CCCCA

W ¼ P In½ �0 ¼

p11 p12 . . . p1n 1 0 . . . . . . 0

p21 p22 . . . p1n 0 1 . . . . . . 0

: :
: :

pn1 pn2 . . . pnn 0 0 . . . . . . 1

0
BBBB@

1
CCCCA

(93:24)

That is, A is the matrix of all structure coefficients in the model with dimension

of (n � 2n), and W is a (2n � n) matrix. The first equation in Eq. (93.24) can be

expressed as

A1W ¼ 0, (93:25)

where A1 is the first row of A, i.e., A1 ¼ [g11 g12 . . .. g1n h11 h12 . . ... h1n].

Table 93.7 Unit root tests for Pt

Pt ¼ m + gPt�1 + et Phillips-Perron testa

Estimated c2 (std. error) Adj. R2 Level 1st differenceb

Market portfolio 1.0060 (0.0159) 0.9788 �0.52 �8.48**

S&P 500 0.9864 (0.0164) 0.9769 �0.90 �959**

Portfolio 1 0.9883 (0.0172) 0.9746 �0.56 �8.67**

Portfolio 2 0.9877 (0.0146) 0.9815 �0.97 �9.42**

Portfolio 3 0.9913 (0.0149) 0.9809 �0.51 �13.90**

Portfolio 4 0.9935 (0.0143) 0.9825 �0.61 �7.66**

Portfolio 5 0.9933 (0.0158) 0.9787 �0.43 �9.34**

Portfolio 6 0.9950 (0.0150) 0.9808 �0.32 �8.66**

Portfolio 7 0.9892 (0.0155) 0.9793 �0.64 �9.08**

Portfolio 8 0.9879 (0.0166) 0.9762 �0.74 �9.37**

Portfolio 9 0.9939 (0.0116) 0.9884 �0.74 �7.04**

Portfolio 10 0.9889 (0.0182) 0.9716 �0.69 �9.07**

*5 % significant level; ** 1 % significant level
aThe process assumed to be random walk without drift
bThe null hypothesis of zero intercept terms, m, cannot be rejected at 5 %, 1 % level for all

portfolios
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Since the elements of P can be consistently estimated, and In is the identity

matrix, Eq. 93.25 contains 2n unknowns in terms of ps. Thus, there should be

n restrictions on the parameters to solve Eq. 93.25 uniquely. First, one can try to

impose normalization rule by setting g11 equal to 1 to reduce one restriction. As

a result, there are at least n�1 independent restrictions needed in order to solve

Eq. 93.25.

It can be illustrated that the system represented by Eq. 93.17 is exactly identified

with three endogenous and three exogenous variables. It is entirely similar to those

cases of more variables. For example, if n ¼ 3, Eq. 93.17 can be expressed in the

form

�
r � cs11 þ a1b1 r � cs12 r � cs13

r � cs21 r � cs22 þ a2b2 r � cs23
r � cs31 r � cs32 r � cs33 þ a3b3

0
B@

1
CA

p1t

p2t

p3t

0
B@

1
CA

þ
cs11 þ a1 cs12 cs13

cs21 cs22 þ a2 cs23

cs31 cs32 cs33 þ a3

0
B@

1
CA

d1t

d2t

d3t

0
B@

1
CA ¼

v1t

v2t

v3t

0
B@

1
CA

(93:26)

where

r* ¼ scalar of risk-free rate

sij ¼ elements of variance-covariance matrix of return

ai ¼ inverse of the supply adjustment cost of firm i

bi ¼ overall cost of capital of firm i

For example, in the case of n ¼ 3, Eq. 93.17 can be written as

g11 g12 g13
g21 g22 g23
g31 g32 g33

0
@

1
A

p1t
p2t
p3t

0
@

1
Aþ

h11 h12 h13
h21 h22 h23
h31 h32 h33

0
@

1
A

d1t
d2t
d3t

0
@

1
A ¼

v1t
v2t
v3t

0
@

1
A: (93:27)

Comparing Eq. 93.26 with Eq. 93.27, the prior restrictions on the first equation

take the form g12 ¼ �r*h12 and g13 ¼ �r*h13 and so on.

Thus, the restriction matrix for the first equation is of the form

F ¼ 0 1 0 0 r� 0

0 0 1 0 0 r�

� 	
(93:28)

Then, combining Eq. 93.25 and the parameters of the first equation gives

g11 g12 g13 h11 h12 h13½ �

p11 p12 p13 0 0

p21 p22 p13 1 0

p31 p32 p33 0 1

1 0 0 0 0

0 1 0 r� 0

0 0 1 0 r�

0
BBBBBBBB@

1
CCCCCCCCA

0 0 0 0 0½ � : (93:29)
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That is, extending Eq. 93.29, we have

g11p11 þ g12p21 þ g13p31 þ h11 ¼ 0,

g11p12 þ g12p22 þ g13p32 þ h12 ¼ 0,

g11p13 þ g12p23 þ g13p33 þ h13 ¼ 0,

g12 þ r�h12 ¼ 0, and

g13 þ r�h13 ¼ 0:

(93:30)

The last two (n�1¼ 3�1¼ 2) equations in Eq. 93.30 give the value h12 and h13,

and the normalization condition, g11¼ 1, allows us to solve Eq. 93.25 in terms of ps
uniquely. That is, in the case n ¼ 3, the first equation represented by Eq. 93.25,

A1W¼ 0, can be finally rewritten as Eq. 93.30. Since there are three unknowns, g12,

g13, and h11, left for the first three equations in Eq. 93.30, the first equation A1 is

exactly identified. Similarly, it can be shown that the second and the third equations

are also exactly identified.

Appendix 3: Derivation of the Formula Used to Estimate dt

To derive the formula for estimating dt, we first define the partial adjustment

model as

Dt ¼ a1 þ a2Dt�1 þ a3Et þ ut (93:31)

where Dt ¼ dividend per share in period t, Dt�1 ¼ dividend per share in period t�1,

Et¼ earnings per share in period t are dividends and earnings, and ut¼ error term in

period t. Similarly,

Dtþ1 ¼ a1 þ a2Dt þ a3Etþ1 þ utþ1: (93:310)

And thus,

Εt�1 Dt½ � ¼ a1 þ a2Dt�1 þ a3Εt�1 Et½ �, (93:32)

Εt Dtþ1½ � ¼ a1 þ a2Dt þ a3Εt Etþ1½ �, (93:33)

Εt�1 Dtþ1½ � ¼ a1 þ a2Εt�1 Dt½ � þ a3Εt�1 Etþ1½ �: (93:34)

Substituting Eq. 93.32 to Eq. 93.34, we have

Εt�1 Dtþ1½ � ¼ a1 þ a1a2 þ a22Dt�1 þ a2a3Εt�1 Et½ � þ a3Εt�1 Etþ1½ �: (93:340)

Subtracting Eq. 93.340 from Eq. 93.33 on both hand sides, we have

Εt Dtþ1½ � � Εt�1 Dtþ1½ � ¼ �a1a2 þ a2Dt � a22Dt�1 � a2a3Εt�1 Et½ �
þ a3Εt Etþ1½ � � a3Εt�1 Etþ1½ �: (93:35)

Equation Eq. 93.35 can be investigated depending upon whether Et is following

a random walk.

93 A Dynamic CAPM with Supply Effect Theory and Empirical Results 2557



Case 1 Et follows an AR(p) process.

If the time series of Et is assumed to be stationary and follows an AR(p) process,

then after taking the seasonal differences, we obtain

dEt ¼ r0 þ r1dEt�1 þ r2dEt�2 þ r3dEt�3 þ r4dEt�4 þ et, (93:36)

where dEt ¼ Et � Et�4.

The expectation adjustment in seasonally differenced earnings, or the revision in

forecasting future seasonally differenced earnings, can be solved as

Et dEtþ1½ ��Et�1 dEtþ1½ � ¼r1 �r0þdEt�r1dEt�1�r2dEt�2�r3dEt�3�r4dEt�4ð Þ:
(93:37)

Since Εt[dEt+1] � Εt�1[dEt+1] ¼ Εt[Et+1] � Εt�1[Et+1], we have

Εt Etþ1½ ��Εt�1 Etþ1½ � ¼ r1 �r0þdEt�r1dEt�1�r2dEt�2�r3dEt�3�r4dEt�4ð Þ:
(93:38)

Furthermore, from Eq. 93.36, we have

Εt�1 dEt½ � ¼ r0 þ r1dEt�1 þ r2dEt�2 þ r3dEt�3 þ r4dEt�4: (93:39)

Similarly, Εt�1[dEt] ¼ Εt�1[E1 � Et�4] ¼ Εt�1[Et] � Et�4; thus, Εt�1[Et] can be

found by

Εt�1 Et½ � ¼ r0þr1 dEt�1ð Þþr2 dEt�2ð Þþr3 dEt�3ð Þþr4 dEt�4ð ÞþEt�4: (93:40)

Finally, the expectation adjustment in dividends, dt, can be found by plugging

Eqs. 93.38 and 93.40 into Eq. 93.35:

dt � Εt Dtþ1½ � � Εt�1 Dtþ1½ � ¼ �a1a2 þ a2Dt � a22Dt�1

� a2a3 r0 þ r1dEt�1 þ r2dEt�2 þ r3dEt�3 þ r4dEt�4 þ Et�4ð Þ
þ a3r1 �r0 þ dEt � r1dEt�1 � r2dEt�2 � r3dEt�3 � r4dEt�4ð Þ

(93:41)

Or

dt ¼ C0 þ C1Dt þ C2Dt�1 þ C3dEt þ C4dEt�1 þ C5dEt�2 þ C6dEt�3

þ C7dEt�4 þ C8Et�4 (93:42)

where C0 to C8 are functions of a1 to a1 and r0 to r4.
That is, the expectation adjustment in dividends, dt, can be found by the

coefficients estimated in Eqs. 93.31 and 93.36, i.e., a1 to a3 and r0 to r4, and the

observable data from the time series of Dt and Et.
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Case 2 Et follows a random walk process.

If the series of earnings, Et, follows a random walk process, i.e., Εt[Et+1] ¼ Et,

Εt�1[Et] ¼ Et�1, and Εt�1[Et+1] ¼ Et�1, then Eq. 93.35 can be redefined:

dt � Εt Dtþ1½ � � Εt�1 Dtþ1½ � ¼ C0 þ C1Dt þ C2Dt�1 þ C3Et þ C4Et�1 (93:43)

where C0 ¼ �a1a2 C1 ¼ a2, C2 ¼ � a2
2, C3 ¼ a3, and C4 ¼ � a3(1 + a2).

That is, the expectation adjustment in dividends, dt, can be found by the

observable data from the time series of Dt and Et.

In this study, we assumed that Et follows a random walk process. Therefore, we

used Eq. 93.43 instead of Eq. 93.42 to estimate dt in Eqs. 93.22 and 93.23 in

the text.
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Abstract

Under martingale and joint-normality assumptions, various optimal hedge

ratios are identical to the minimum variance hedge ratio. As empirical studies

usually reject the joint-normality assumption, we propose the generalized

hyperbolic distribution as the joint log-return distribution of the spot and

futures. Using the parameters in this distribution, we derive several most

widely used optimal hedge ratios: minimum variance, maximum Sharpe

measure, and minimum generalized semivariance. Under mild assumptions

on the parameters, we find that these hedge ratios are identical. Regarding the

equivalence of these optimal hedge ratios, our analysis suggests that the

martingale property plays a much important role than the joint distribution

assumption.

To estimate these optimal hedge ratios, we first write down the log-likelihood

functions for symmetric hyperbolic distributions. Then we estimate these param-

eters by maximizing the log-likelihood functions. Using these MLE parameters

for the generalized hyperbolic distributions, we obtain the minimum variance

hedge ratio and the optimal Sharpe hedge ratio. Also based on the MLE

parameters and the numerical method, we can calculate the minimum general-

ized semivariance hedge ratio.

Keywords

Optimal hedge ratio • Generalized hyperbolic distribution • Martingale

property • Minimum variance hedge ratio • Minimum generalized

semivariance • Maximum Sharpe measure • Joint-normality assumption •

Hedging effectiveness

94.1 Introduction

Because of their low transaction cost, high liquidity, high leverage, and ease of

short position, stock index futures are among the most successful innovations in the

financial markets. Besides the speculative trading, they are widely used to hedge

against the market risk of the spot position. One of the most important issues for

investors and portfolio managers is to calculate the optimal futures hedge ratio, the

proportion of the position taken in futures to the size of the spot so that the risk

exposure can be minimized.

The optimal hedge ratios typically depend on the objective functions under

consideration. In literature on futures hedging, there are two different types of

objective functions: the risk function to be minimized and the utility function to

be maximized. Johnson (1960) obtains the minimum variance hedge ratio by

minimizing the variance of the change in the value of the hedged portfolios. On

the other hand, as Adams and Montesi (1995) indicate, corporate managers are

more concerned with the downside risk rather than the upside variation.

A measure of the downside risk is the generalized semivariance (GSV) where
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the risk is computed from the expectation of a power function of shortfalls from

the target return (Bawa 1975, 1978; Fishburn 1977). De Jong et al. (1997) and

Lien and Tse (1998, 2000, 2001) have calculated several GSV-minimizing

hedge ratios. Regarding the utility function approach, we consider the Sharpe

measure (SM) criteria, i.e., the ratio of the portfolio’s excess return to its

volatility. Howard and D’Antonio (1984) formulate the optimal hedge ratio by

maximizing the Sharpe measure.

Normally, these optimal hedge ratios under different approaches are not

the same. However, with the joint-normality and martingale assumptions,

they are identical to the minimum variance hedge ratio. Unfortunately, many

empirical studies indicate that major markets typically reject the joint-normality

assumption (Chen et al. 2001; Lien and Tse 1998). In particular, the fat-tail property

of the return distribution affects the hedging effectiveness substantially. It will be

useful to find out the nature of the optimal hedge ratios under more

realistic assumption. In this paper we introduce the bivariate generalized

hyperbolic distributions as alternative joint distributions for returns in the spot

and futures markets.

Barndorff-Nielsen (1977, 1978) develops the generalized hyperbolic (GH)

distributions as a mixture of the normal distribution and the generalized inverse

Gaussian (GIG) distribution first proposed in 1946 by Etienne Halphen. The class of

the generalized hyperbolic distributions includes the hyperbolic distributions, the

normal inverse Gaussian distributions, and the variance-Gamma distributions,

while the normal distribution is a limiting case of the generalized hyperbolic

distributions. Uses of the generalized hyperbolic distributions have been increasing

in finance literature. To model the log returns of some financial assets, Eberlein and

Keller (1995) consider the hyperbolic distribution and Barndorff-Nielsen (1995)

proposes the normal inverse Gaussian distribution. For more recent applications of

the generalized hyperbolic distributions in finance, see Bibby and Sørensen (2003),

Eberlein et al. (1998), Rydberg (1997, 1999), K€ucher et al. (1999), and Bingham

and Kiesel (2001).

In terms of the parameters for the bivariate hyperbolic distributions, we have

developed in this paper the minimum variance hedge ratio, GSV-minimizing hedge

ratio, and the SM-maximizing hedge ratio. Moreover, the relationships between

these hedge ratios are explored. In particular, under the martingale assumption, we

can still obtain the result that these hedge ratios are the same as the minimum

variance hedge ratio (see Theorems 2.1, 2.4 and Proposition 2.2). Based on the

maximum likelihood estimation of the parameters and the numerical methods, we

calculate and compare the different hedge ratios for TAIEX futures and S&P

500 futures.

The chapter is divided into five sections. Section 94.1 first introduces the

definitions and some basic properties for GIG and GH distributions. In Sect. 94.2,

we study the optimal hedge ratios under different approaches and estimate these

ratios in terms of the parameters for GH distributions. In Sect. 94.3, we discuss the

kernel density estimators and MLE method for parameter estimation problem. The

last section provides the concluding remarks.

94 A Generalized Model for Optimum Futures Hedge Ratio 2563



94.2 GIG and GH Distributions

94.2.1 The Generalized Hyperbolic Distributions

To introduce the generalized hyperbolic distribution, we first recall some basic

properties of generalized inverse Gaussian (GIG) distributions. Note that for any

d, c > 0 and l ∈ R, the function

dGIG l;d;cð Þ xð Þ ¼ c=dð Þl
2Kl dcð Þ x

l�1e�
1
2
d2x�1þc2xð Þ, x > 0 (94.1)

is a probability density function on (0, 1). Here, the function

Kl xð Þ ¼ 1

2

ð1
0

ul�1e�
1
2
x u�1þuð Þdu, x > 0 (94.2)

is the Bessel functions of the third kind with index l. The distribution with the density
function dGIG(l, d, c)(x) on the positive half-line is called a generalized inverse

Gaussian (GIG) distribution with parameters l, d, c and denoted by GIG(l, d, c).
The moment generating function of the generalized inverse Gaussian distribution is

given by

MGIG l; d; cð Þ uð Þ ¼
ð1
0

euxdGIG l; d; cð Þ xð Þdx ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 2u

q

0
B@

1
CA

l
Kl d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 2u

q� �

Kl dcð Þ

(94.3)

with the restriction 2u < c2. From this, we obtain

 GIG½ � ¼ d
c

Klþ1 dcð Þ
Kl dcð Þ

Var GIG½ � ¼ d
c

� �2 Klþ2 dcð Þ
Kl dcð Þ � K2

lþ1 dcð Þ
K2

l dcð Þ
� �

:

Barndorff-Nielsen (1977) introduced the class of generalized hyperbolic

(GH) distributions as mean-variance mixtures of normal distributions. More pre-

cisely, one says that a random variable Z has the generalized hyperbolic distribution

GH(l, a, b, d, m) if

Z Yj ¼ y � N mþ by, yð Þ,
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where Y is a random variable with distribution GIG l; d;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p� �
and

N(m + by, y) denotes the normal distribution with mean m + by and variance y.
From this, one can easily verify that the density function for GH(l, a, b, d, m) is
given by the formula

dGH l;a;b;d;mð Þ xð Þ ¼
ð1
0

dN mþby, yð Þ xð Þd
GIG l;d;

ffiffiffiffiffiffiffiffiffiffi
a2�b2

p	 
 yð Þdy

¼ c
d

� �l e x�mð Þb
ffiffiffiffiffiffi
2p

p
Kl dcð Þ

d2 þ x� mð Þ2
a2

" #l�1
2

2

Kl�1
2
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� mð Þ2

q� �

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
.

The class of hyperbolic distributions is the subclass of GH distributions obtained

when l is equal to 1. We write H(a, b, d, m) instead of GH(1, a, b, d, m). Using the

fact that K1/2(z) ¼ (p/2z)1/2e�z, one obtains the density for H(a, b, d, m) is

dH a;b;d;mð Þ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

2adK1 d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p� � e�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� mð Þ2

q
þ b x� mð Þ: (94.4)

The normal inverse Gaussian (NIG) distributions were introduced to finance in

Barndorff-Nielsen (1995). It is a subclass of the generalized hyperbolic distribu-

tions obtained for l equal to �1/2. The density of the NIG distribution is given by

dNIG a;b;d;mð Þ xð Þ ¼ d
p

a2

d2 þ x� mð Þ2
" #1

2

edcþ x�mð ÞbK1 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� mð Þ2

q� �
:

94.2.2 Multivariate Modeling

In finance one does not look at a single asset, but at a bunch of assets. Since the

assets in the market are typically highly correlated, it is natural to use multivariate

distributions. A straightforward way for introducing multivariate generalized

hyperbolic (MGH) distributions is via the mixtures of multivariate normal distri-

butions with the generalized inverse Gaussian distributions. In fact the multivariate

generalized hyperbolic distributions were introduced and investigated in Barndorff-

Nielsen (1978).

Let D be a symmetric positive-definite d � d- matrix with determinant

|D| ¼ 1. Assume that l ∈ R, b, m ∈ Rd, d > 0, and a2 > b0Db. We say that

a d-dimensional random vector Z has the multivariate generalized hyperbolic

distribution MGH(l, a, b, d, m, D) with parameters (l, a, b, d, m, D) if

Z Yj ¼ y � Nd mþ yDb, yDð Þ,
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where Nd(A, B) denotes the d-dimensional normal distribution with mean vector

A and covariance matrix B, and Y distribution asGIG l; d;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b

0
Db

q� �
. Here we

notice that the generalized hyperbolic distributions are symmetric if and only if

b ¼ (0, . . ., 0)0. For l ¼ (d + 1)/2 we obtain the multivariate hyperbolic distribu-

tions. For l ¼ �1/2 we obtain the multivariate normal inverse Gaussian

distribution.

The density function of the distributionMGH(l, b, d, m,D) is given by the formula

dMGH xð Þ ¼ cd

Kl�d=2 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� mð Þ0D�1 x� mð Þ

q� �

a�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� mð Þ0D�1 x� mð Þ

q� �d=2�l
e b

0
x� mð Þ

� �
(94.5)

where cd ¼ a2�b
0
Db

	 

=d2

� �
l=2

2pð Þd=2Kl d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b

0
Db

p	 
. The mean and covariance of MGH are given by

 MGH l; a; b; d; m;Dð Þ½ � ¼ mþ Db GIG l; d;cð Þ½ �, (94.6)

Var MGH l; a; b; d;m;Dð Þ½ � ¼ D GIG l; d;cð Þ½ �
þ Dbb0DVar GIG l; d;cð Þ½ � (94.7)

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b0Db

p
. (For details, see, e.g., Blæsid (1981).)

94.3 Futures Hedge Ratios

We consider a decision maker. At the decision date (t ¼ 0), the agent engages in the

production of Q(Q > 0) commodity units for sale at the terminal date (t ¼ 1) at the

random cash price P1. In addition, at the decision date the agent can sell X commodity

units in the futures market at the price F0 but must repurchase them back at the terminal

date at the random futures price F1. Let the initial wealth be V0¼P0Q and the end-of-

period wealth be V1 ¼ P1Q + (F0 � F1)X. Then we consider the wealth return that is

ery ¼ V1 � V0

V0

¼ P1Qþ F0X � F1X � P0Q

P0Q

¼ P1 � P0

P0

� F1 � F0

F0

F0

P0

X

Q

� �
¼ erp � yerf

(94.8)

where erp ¼ P1 � P0ð Þ=P0 and erf ¼ F1 � F0ð Þ=F0 are one-period returns on the

spot and futures positions, respectively. h ¼ X/Q is the hedge ratio and

y ¼ h(F0/P0). (Note that y is so-called the adjusted hedge ratio.)

The main objective of hedging is to choose the optimal hedge ratio y. However,
the optimal hedge ratio will depend on a particular objective function to be
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optimized. We recall some most widely used theoretical approaches to the optimal

futures hedge ratios and compute explicitly these optimal ratios in terms of the

parameters for MGH distributions. For a comprehensive review of futures hedge

ratios, see Chen et al. (2003).

94.3.1 Minimum Variance Hedge Ratio

The most widely used hedge ratio is the minimum variance hedge ratio which

is known as the MV hedge ratio. The objective function to be minimized is the

variance of ery.
Clearly we have Var ery½ � ¼ s2rp þ y2s2rf � 2yrsrpsrf , where srp and srf are

standard deviations of erp and erf , respectively, and r is the correlation coefficient

between erp and erf . The MV hedge ratio is obtained by minimizing Var ery½ � .
Simple calculation shows that the MV hedge ratio is given by

y�MV ¼ r
srp
sr

f

: (94.9)

Theorem 2.1 Assume erf ;erp
	 
0 is distributed as MGH(l, a, b, d, m, D), where

b ¼ (b1, b2)0, m ¼ (m1, m2)0, and D ¼ D11

D21

�
D12

D22

�
is symmetry. Then we have

y�MV ¼ D12 GIG½ � þ dfp
D11 GIG½ � þ dff

(94.10)

where GIG¼GIG l; d;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b0Db

p� �
and

dff ¼ b21D
2
11 þ 2b1b2D11D12 þ b22D

2
12

� �
Var GIG½ �

dfp ¼ b21D11D12 þ b1b2 D11D22 þ D2
12

	 
þ b22D12D22

� �
Var GIG½ �:

In particular, if b ¼ (0, . . . ,0)0, then y�MV ¼ D12

D11
.

94.3.2 Sharpe Hedge Ratio

We consider the optimal hedge ratio that incorporates both risk and expected return.

Howard and D’Antonio (1984) considered the optimal level of futures contracts by

maximizing the ratio of the portfolio’s excess return to its volatility, that is,

max
y

mrp � ymrf � rL

sy
, (94.11)

94 A Generalized Model for Optimum Futures Hedge Ratio 2567



where sy is the standard deviation of ery,mrp ,mrf are expected values for erp and
erf , respectively, and rL is the risk-free interest rate.

Consider the function

r yð Þ ¼ mrp � ymrf � rL

sy
:

Then we have

r
0
yð Þ ¼

y �s2rf mrp � rL

� �
þ mrf srf rp

h i
þ mrp � rL

� �
srprf � s2rpmrf

s3y
(94.12)

where srf rp ¼ Cov erp;erf
	 


and, hence, the critical point for r(y) is given by

y�s ¼
srp
srf

� �2
mrf � r srp

srf
mrp � rL

� �

r srp
srf

mrf � mrp � rL

� � : (94.13)

It follows from Eq. 94.12 that if mrp � mL > r
srp
srf

mrf , then r0(y) > 0 for y < y�s
and r0(y) < 0 for y > y�s . Hence, y

�
s is the optimal hedge ratio (Sharpe hedge ratio)

for Eq. 94.11. Similarly, if mrp � mL < r
srp
srf

mrf , then r(y) has a minimum at y�s .

(Note that if mrp � mL ¼ r
srp
srf

mrf , then r(y) is strictly monotonic in y�s .)
The measure of hedging effectiveness (abbreviated HE) is given in Howard and

D’Antonio (1984) by

HE ¼ r y�s
	 


=
mrp � rL

srp

� �
: (94.14)

Write

z¼ mrf =srf

mrp � rL

� �
=srp

: (94.15)

(z is also called the risk-return relative.) Then we have

y�s ¼
srp
srf

r� z
1� zr

� �

and

HE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� zð Þ2
1þ r2

þ 1:

s

Clearly the last equality implies that
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HE
> 1 when r 6¼ z
¼ 1 when r ¼ z:



Moreover, without any distribution assumption, we have the following relation-

ship between y�s and y
�
MV . In particular, if the expected return on the futures contract

is zero and mrp > rL, then the Sharpe hedge ratio reduces to the minimum variance

hedge ratio.

Proposition 2.2 Assume mrp > rL and 1 > zr. Then we have

y�s > y�MV when mf < 0

y�s ¼ y�MV when mf ¼ 0

y�s < y�MV when 0< mf :

8<
:

Recall that srf rp ¼ Cov erp;erf
	 


. Then we have

y�s ¼
s2rpmrf � srf rp mrp � rL

� �

srf rpmrf � s2rf mrp � rL

� � : (94.16)

From this and by Eqs. 94.6 and 94.7, we obtain

Theorem 2.3 Assume erf ;erp
	 
0 is distributed as in Theorem 2.1. Assume that

zfp m1 þ b1D11 þ b2D12ð Þ GIG½ �½ � < zff m2 þ b1D21 þ b2D22ð Þ GIG½ � � rL½ �:
Then we have

y�s ¼
zpp m1 þ b1D11 þ b2D12ð Þ GIG½ �½ � � zfp m2 þ b1D21 þ b2D22ð Þ GIG½ � � rL½ �
zfp m1 þ b1D11 þ b2D12ð Þ GIG½ �½ � � zff m2 þ b1D21 þ b2D22ð Þ GIG½ � � rL½ �

(94.17)

where dff, dfp, GIG are the same as in Theorem 2.1 and

dpp ¼ b21D
2
21 þ 2b1b2D21D22 þ b22D

2
22

� �
Var GIG½ �

zff ¼ D11 GIG½ � þ dff
zfp ¼ D12 GIG½ � þ dfp
zpp ¼ D22 GIG½ � þ dpp:

94.3.3 Minimum Generalized Semivariance Hedge Ratio

In this case, the optimal hedge ratio is obtained by minimizing the generalized

semivariance (GSV) given below:
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Ln c;Xð Þ ¼
ðc
�1

c� xð ÞndF xð Þ, n > 0, (94.18)

where F(·7) is the probability distribution function of the return X. The GSV is

specified by two parameters: the target return c and the power of the shortfall n.
(Note that if the density function of X is symmetric at c, then we obtain

L2(c, X) ¼ Var(X)/2. Hence, in this case, the GSV approach is the same as that of

the minimum variance.) The GSV, due to its emphasis on the returns below the

target return, is consistent with the risk perceived by managers (see Lien and Tse

2001). For futures hedge, we consider Ln c; yð Þ ¼ Ln c,erp � yerf
	 


.

Under some conditions on the joint distribution, we obtain that the minimum

GSV hedge ratio is the same as the minimum variance hedge ratio.

Theorem 2.4 Assume erf ;erp
	 


is the same as in Theorem 2.1. If b¼ 0 and m1 ¼ mrf¼
0, then the minimum GSV hedge ration is the same as the minimum variance hedge
ration i.e., y�GSV ¼ y�MV ;¼ D12

D11

	 

.

In empirical studies, the true distribution is unknown or complicated. Then y�GSV
can be estimated from the sample by using the so-called empirical distribution

method adapted in, e.g., Price et al. (1982) and Harlow (1991). Suppose we have

m observations of erf ;erp
	 


, say, (rf(i), rp(i)), i¼ 1, 2, . . . , m. From this, the GSV can

be estimated by the formula

Lobsn c; yð Þ ¼ 1

m

Xm
i¼1

c� ri, y
	 
n

Iri, y�c, (94.19)

where ri,y ¼ rp(i) � yrf(i). Given c and n, numerical methods can be used to search

the hedge ratio that minimizing the sample GSV, Lobsn (c,y).

94.4 Estimation and Simulation

94.4.1 Kernel Density Estimators

Assumed that we have n independent observations x1, . . . , xn from the random

variable X with the unknown density function f. The kernel density estimator for the

estimation of f is given by

f̂ h xð Þ ¼ 1

nh

Xn
i¼1

K
x� xi
h

� �
, x 2 R (94.20)

where K is a so-called kernel function and h is the bandwidth. In this chapter we

work with the Gaussian kernel:K xð Þ ¼ 1=
ffiffiffiffiffiffi
2p

p
exp �x2=2
� �

and h ¼ 4=3ð Þ1=5sn�1
5 .
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(For more details, see Scott (1979).) Meanwhile it is worth noting that Lien and Tse

(2000) proposed the kernel density estimation method to estimate the probability

distribution of the portfolio return for every y, and then grid search methods were

adapted to find the optimum GSV hedge ratio (Figs. 94.1 and 94.2).

Fig. 94.1 Normal density and Gaussian kernel density estimators

Fig. 94.2 Log-densities of daily log returns of major indices and futures (2000–2004)
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94.4.2 Maximum Likelihood Estimation

We focus on how to estimate the parameters of a density function f(x;Y), where Y
is the set of parameters to be estimated. Suppose that we have m independent

observations x1, . . . , xn of a random variable X with the density function f(x; Y).

The maximum likelihood estimator ŷMLE is the parameter set that maximizes the

likelihood function

L Yð Þ ¼
Yn
i¼1

f xi;Yð Þ:

Clearly this is equivalent to maximizing the logarithm of the likelihood function

log L Yð Þ ¼
Xn
i¼1

log f xi;Yð Þ:

The log-likelihood function for hyperbolic distribution H(a, b, d, m) is given by

‘H a;b;d;mð Þ Yð Þ ¼ n log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
� log 2� log a� log d� log K1 d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p� �� �

þ
Xn
i¼1

�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ xi � mð Þ2

q
þ b xi � mð Þ

� �
:

The symmetric MGH density function is given by the formula

a=dð Þl
2pð Þd=2Kl adð Þ

Kl�d
2

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� mð Þ0D�1 x� mð Þ

q� �

a�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� mð Þ0D�1 x� mð Þ

q� �d
2
�l

,

and, in particular, the two-dimensional symmetric hyperbolic distributions

(i.e., b ¼ 0 and l ¼ 3/2) have the density

H2 ¼ a=dð Þ3=2

23=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
paK3

2
adð Þ

q e�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� m0ð ÞD�1 x� mð Þ:

q

From this, we obtain the log-likelihood function for two-dimensional symmetric

hyperbolic distributions (Figs. 94.3 and 94.4):
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‘H2
¼ n

3

2
log

a
d
� 3

2
log 2� 1

2
log p� log a� log K3

2
adð Þ

� �

� a
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ xi � mð Þ0D�1 xi � mð Þ

q
:

94.4.3 Simulation of Generalized Hyperbolic Random Variables

From the representation of GH distribution as a conditional normal distribution

mixed with the generalized inverse Gaussian, a schematic representation of the

algorithm reads as follows:

1. Sample Y from GIG(l, d, c) distribution
2. Sample e from N(0, 1)
3. Return X ¼ mþ bY þ ffiffiffi

Y
p

e
Similarly, for simulating an MGH distributed random vector, we have:

1. Set D ¼ LTL via Cholesky decomposition

2. Sample Y from GIG(l, d, c) distribution
3. Sample Z from N(0, I), where I is d � d-identity matrix

4. Return X ¼ mþ YDbþ ffiffiffi
Y

p
LTZ

The efficiency of the above algorithms depends on the method of sampling

the generalized inverse Gaussian distributions. Atkinson (1982) applied the method

of rejection algorithm to sampling GIG. We adopt their method for simulation of

estimated hyperbolic random variables.

Fig. 94.3 Estimated symmetric H2 distributions
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94.5 Concluding Remarks

Although there are many different theoretical approaches to the optimal futures

hedge ratios, under the martingale and joint-normality assumptions, various opti-

mal hedge ratios are identical to the minimum variance hedge ratio. However,

empirical studies show that major market data reject the joint-normality assump-

tion. In this paper we propose the generalized hyperbolic distribution as the joint

log-return distribution of the spot and futures. In terms of the parameters for

generalized hyperbolic distributions, we obtain several most widely used optimal

hedge ratios: minimum variance, maximum Sharpe measure, and minimum gener-

alized semivariance. In particular, under mild assumptions on the parameters, we

show that these theoretical approaches are equivalent.

To estimate these optimal hedge ratios, we first write down the log-likelihood

functions for symmetric hyperbolic distributions. Then we calculate these parameters

by maximizing the log-likelihood functions. Using these MLE parameters for the GH

distributions, we obtain the MV hedge ratio and the optimal Sharpe hedge ratio by

Theorems 2.1 and 2.3, respectively. Also based on the MLE parameters and the

numerical method, we calculate the minimum generalized semivariance hedge ratio.

Fig. 94.4 Sharpe value
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Regarding the equivalence of these three optimal hedge ratios, our results

suggest that the martingale property plays a much important role than the joint

distribution assumption.

However, conditional heteroskedasticity and stochastic volatility are observed in

many spot and futures price series. This implies that the optimal hedge strategy

should be time-dependent. To account for this dynamic property, parametric spec-

ifications of the joint distribution are required. Based on our work here, it is

interesting to extend the results to time-varying hedge ratios.
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Abstract

The endogeneity problem has received a mixed treatment in corporate finance

research. Although many studies implicitly acknowledge its existence, the

literature does not consistently account for endogeneity using formal economet-

ric methods. This chapter reviews the instrumental variables (IV) approach to

endogeneity from the point of view of a finance researcher who is implementing

instrumental variables methods in empirical studies. This chapter is organized

into two parts. Part I discusses the general procedure of the instrumental vari-

ables approach, including two-stage least square (2SLS) and generalized method
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of moments (GMM), the related diagnostic statistics for assessing the validity of

instruments, which are important but not used very often in finance applications,

and some recent advances in econometrics research on weak instruments. Part II

surveys corporate finance applications of instrumental variables. We found that

the instrumental variables used in finance studies are usually chosen arbitrarily,

and very few diagnostic statistics are performed to assess the adequacy of IV

estimation. The resulting IV estimates thus are questionable.

Keywords

Endogeneity • OLS • Instrumental variables (IV) estimation • Simultaneous

equations • 2SLS • GMM • Overidentifying restrictions • Exogeneity test •

Weak instruments • Anderson-Rubin statistic • Empirical corporate finance

95.1 Introduction

Corporate finance often involves a number of decisions that are intertwined and

endogenously chosen by managers and/or debtholders and/or shareholders. For

example, in order to maximize value, firms must form an effective board

of directors and grant their managers an optimal pay-performance compensation

contract. Debtholders have to decide how much debt and with what features

(junior or senior, convertible, callable, maturity length, etc.) should the debt be

structured. Given that these endogenously chosen variables are interrelated and

are often partially driven by unobservable firm characteristics, the endogeneity

problem can make the standard OLS results hard to interpret (Hermalin and

Weisbach 2003).

The usual approach to the endogeneity problem is to implement the

instrumental variables estimation method. In particular, one chooses instrumental

variables that are correlated to the endogenous regressors, but uncorrelated to the

structural equation errors and then employs a two-stage least square (2SLS)

procedure.

The endogeneity problem has received a mixed treatment in corporate finance

research. Although many studies implicitly acknowledge its existence, the liter-

ature does not consistently account for endogeneity using formal econometric

methods. There is an increasing emphasis on addressing the endogeneity

problem in recent work, and the simultaneous equations model is now being

used more commonly. However, the instrumental variables are often chosen

arbitrarily and few diagnostic statistics are performed to assess the adequacy of

IV estimation.

This chapter reviews the instrumental variables approach to endogeneity from the

point of view of a finance researcher who is implementing instrumental variables

methods in empirical studies. We do not say much on the distribution theory and the

mathematical proofs of estimation methods and test statistics as they are well

covered in econometrics textbooks and articles. The chapter proceeds as follows:

Sect. 95.2 describes the statistical issue raised by endogeneity. Section 95.3 discusses
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the commonly used instrumental variables approaches to endogeneity: the two-stage

least squares estimation (2SLS) and the generalized method of moments (GMM)

estimation. Section 95.4 discusses the conditions of a valid instrument and the related

diagnostic statistics, which are critical but not frequently used in finance applications.

Section 95.5 considers the weak instrument problem, that is, the instruments are

exogenous but have weak explanatory power for explaining the endogenous regres-

sor. Some recent advances in econometrics research on statistical inference with

weak instruments are briefly discussed. Section 95.6 surveys corporate finance

applications of instrumental variables. Section 95.7 concludes.

95.2 Endogeneity: The Statistical Issue

To illustrate the endogeneity issue, assume that we wish to estimate parameter b of

a linear regression model for a population of firms

Y ¼ Xbþ u (95.1)

where Y is the dependent variable, which is typically an outcome such as return or

profitability, X is the regressor that explains the outcome, and u is the unobservable

random disturbance or error. If u satisfies the classical regression conditions, the

parameters b can be consistently estimated by the standard OLS procedures. This

can be shown from the probability limit of OLS estimator

Plim bOLS ¼ bþ Cov X; uð Þ=Var Xð Þ (95.2)

When the disturbance and the regressor are not correlated and hence the second

term is zero, the OLS estimator will be consistent. But if the disturbance is

correlated with the regressor, that is, the explanatory variable in Eq. 95.1 is

potentially endogenous,1 the usual OLS estimation generally results in biased

estimator.

In applied finance work, endogeneity is often caused by omitted variables and/or

simultaneity. Omitted variables problem arises when the explanatory variable X is

hard to measure or depends on some unobservable factors, which are part of the

error term u, thus X and u are correlated. The correlation of explanatory variables

with unobservable may be due to self-selection: the firm makes the choice of X for

the reason that is unobservable. An example is the private information held by

a firm in making a debt issue, in which the terms and structure of the debt offering

are likely to be correlated with unobserved private information held by the firm.

The Heckman two-step procedure (Heckman 1979) is extensively used in corporate

1Traditionally, a variable is defined as endogenous if it is determined within the context of a model.

However, in applied econometrics the “endogenous” variable is used more broadly to describe the

situation where an explanatory variable is correlated with the disturbance and the resulting

estimator is biased (Wooldridge 2002).
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finance for modeling this omitted variable.2 Endogeneity may also be caused by

simultaneity, in which one or more of the explanatory variables are determined

simultaneously along with the dependent variable. For example, if Y is firm value

and X is management compensation, the management compensation contract is

partly determined by the anticipated firm value Y from choosing X, and the general

OLS estimator is biased in this situation.

95.3 Instrumental Variable Approach to Endogeneity

95.3.1 Instrumental Variables and Two-Stage Least Square (2SLS)

The method of instrumental variable (IV) approach provides a general solution to

the problem of endogenous explanatory variables. To see how, consider the fol-

lowing setup:

Y ¼ Xbþ u (95.3)

where Y is N � 1 vector of observations on the dependent variable, X is N � K

matrix of explanatory variables, and u is unobservable mean-zero N � 1 vector of

disturbance correlated with some elements of X.

To use the IV approach, we need instruments at least as many as explanatory

variables in the model. The instruments should be sufficiently correlated with the

endogenous explanatory variables but asymptotically uncorrelated with u, and the

explanatory variables that are exogenous can serve as their own instruments as they are

uncorrelated with u. Specifically, the valid instruments must satisfy the orthogonality

condition and there must be no linear dependencies among the exogenous variables.

In a just-identified setup, using an N � K matrix Z to instrument for X, the IV

estimator can be solved as

bIV ¼ Z0Xð Þ�1
Z0Yð Þ þ Z0Xð Þ�1

Z0u (95.4)

bIV ¼ bþ Z0Xð Þ�1
Z0u (95.5)

If Z and u are not correlated and Z0X has full rank

E Z0uð Þ ¼ 0 (95.6)

E Z0Xð Þ ¼ K (95.7)

2The finance literature using self-selection models has little interest in estimating the endogenous

decision itself (the parameter b in Eq. 95.1) but is more interested in using self-selection models to

reveal and test for the private information that influences the decision. In contrast, this chapter

focuses on how to implement IV approach to estimate the parameter consistently. The readers

interested in finance application of self-selection models are referred to Li and Prabhala (2007).
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The second term of the right hand side of Eq. 95.5 becomes 0, bIV will be

consistent and the unique solution for the true parameters b when the conditions

(95.6) and (95.7) hold.

When we have more exogenous variables than needed to identify the parameters,

for example, if the instrumental variables Z is an N � L matrix, where L > K, the

model is said to be overidentified, and there are (L � K) overidentifying restrictions

because (L � K) instruments could be discarded and the parameters can still be

identified. If L< K, the parameters cannot be identified. Therefore, the order condition

L�K is necessary for the rank condition, which requires that Z is sufficiently related to

X so Z0K has full column rank K. In an overidentifying model, any linear combinations

of the instruments can also be used as instruments. Under homoskedasticity, the

two-stage least square (2SLS) is the most efficient IV estimator out of all possible

linear combinations of the valid instruments since the method of 2SLS chooses the

most highly correlated with the endogenous explanatory variable.

The name “two-stage least squares” comes from its two-step procedure:

Step 1: Obtain the fitted value of each endogenous explanatory variable from

regressing each endogenous explanatory variable on all instrumental variables.

This is called the first-stage regression. Using the matrix notation, the matrix of

the fitted values can be expressed as X̂ ¼ Z Z0Zð Þ�1
Z0X (if any xi is exogenous,

its fitted value is itself).

Step 2: Run the OLS regression of the dependent variable on the exogenous

explanatory variables in the structural Eq. 95.1 and the fitted values obtained

from the first-stage regression in place of the observations on the endogenous

variables. This is the second-stage regression. The IV/2SLS estimator that

uses the instruments X̂ can be written as b̂ ¼ X̂
0
X

� ��1

X̂
0
Y . Substitute

Z(Z0Z)�1Z0X for X̂; this 2SLS estimator can be written as

b̂ ¼ X0Z Z0Zð Þ�1
Z0X

h i�1

X0Z Z0Zð Þ�1
Z0Y (95.8)

In practice, it is best to use a software package with 2SLS command rather than

carry out the two-step procedure because the reported OLS standard errors of the

second-stage regression are not the 2SLS standard errors. The 2SLS residuals and

covariance matrix are calculated by the original observations on the explanatory

variables instead of the fitted values of the explanatory variables.

In searching valid instrument, both the orthogonality condition and the rank

condition are equally important. When an instrument is not fully exogenous and the

correlation between the instrument and the explanatory variable is too small, the

bias in IV estimator may not be smaller than the bias in OLS estimator. To see this,

we compare the bias in the OLS estimator with the bias in the IV estimator for

model (95.3):

bOLS � b ¼ Cov X; uð Þ=Var Xð Þ ¼ surx, u=sx (95.9)
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bIV � b ¼ Cov Z; uð Þ=Cov X;Zð Þ ¼ surz, u=sxrx, z (95.10)

where ri,j is the correlation coefficient between variable i and variable j. Thus, the

IV estimator has smaller bias than OLS estimator only if r2x,z is larger than r2z,u/
r2x,u.

3 Although this comparison involves the population correlations with

unobservable variable u and cannot be estimated directly, it indicates that when

the instrument is only weakly correlated to the endogenous regressor, the IV

estimator is not likely to improve upon on the OLS (see Bartels 1991 for the

discussions of quasi-instrumental variables). Even if the instruments are perfectly

exogenous, the low relevance of the instruments can increase asymptotic standard

errors and reduce the power of the tests. We can see from Eq. 95.10 that the

inconsistency in the IV estimator can get extremely large if the correlation between

X and Z gets close to zero and makes the IV estimator undesirable.

The orthogonality of an instrument is difficult to ascertain because we cannot test

the correlation between one observable instrument and the unobservable disturbance.

But in the case of overidentifying model (i.e., the number of instruments exceeding

the number of regressors), the overidentifying restrictions test can be used to evaluate

the validity of the additional instruments under the assumption that at least one

instrument is valid. We will discuss the tests for validity of the instrument in Sect.

95.4. For checking the rank condition, often we estimate the reduced form for each

endogenous explanatory to make sure that at least one of the instruments not in X is

significant. If the reduced form regression fits poorly, the model is said to suffer from

weak instrument problem and the standard asymptotic theory cannot be employed to

make inference. We will discuss the weak instruments problem in Sect. 95.5.

95.3.2 Hypothesis Testing with 2SLS

Testing hypotheses about a single parameter estimate in model (95.3) is straight-

forward using an asymptotic t-statistic. For testing restrictions on multiple param-

eters, Wooldridge (2002) provides a method to compute a residual-based F-statistic.

Rewrite the Eq. 95.3 into a partitioned model

Y ¼ X1b1 þ X2b2 þ u (95.11)

where X1 is N� K1, X2 is N� K2, and K1 + K2 ¼ K. Let Z denote an N� L matrix

of instruments and assume the rank and the orthogonality conditions hold. Our

interest is to test the K2 restrictions:

H0 : b2 ¼ 0 against H1 : b2 6¼ 0 (95.12)

In order to calculate the F-statistics for 2SLS, we need to calculate the sum of

squared residuals from the restricted second-stage regression, denoted as SŜRr; the

sum of squared residuals from the unrestricted second-stage regression, denoted as

SŜRur; and the sum of squared residuals from unrestricted 2SLS, denoted as SSRur.
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The F-statistics is calculated as

F � SŜRr � SŜRur

� �
SSRur

� N� Kð Þ
K2

� FK2, N�K (95.13)

When the homoskedasticity assumptions cannot be made, we need to calculate

the heteroskedasticity-robust standard errors for 2SLS. Some statistical packages

compute these standard errors using a simple command. Wooldridge (2002) shows

the robust standard errors can be computed in the following steps:

Step 1: Apply 2SLS procedures and obtain the 2SLS residual, denoted ûi for

each observation i, i ¼ 1. . .N, then use ûi to calculate the SSR and ŝ2, where

ŝ2 � SSR
N�K

, andVar b̂j

� �
, whereVar b̂j

� �
¼ ŝ2 X̂

0
X̂

� ��1

, and the standard error is

denoted as se b̂j

� �
, j ¼ 1. . .K.

Step 2: Obtain the fitted value of each explanatory variables, denoted as x̂ij ,

j ¼ 1. . .K.
Step 3: Regress each element of x̂ij on all other x̂ik where k 6¼ j, and obtain the

residuals from the regressions, denoted as r̂ijfor each j.

Step 4: Compute the heteroskedasticity-robust standard errors of b̂j , denoted as

seheter b̂j

� �
:

seheter b̂j

� �
¼ N

N� Kð Þ
� �1=2 se b̂j

� �

ŝ

2
4

3
5
2

1

m̂j

� �1=2
, where m̂j ¼

XN

i¼1
r̂ijûi (95.14)

95.3.3 Instrumental Variables and Generalized Method
of Moments (GMM)

When we have a system of equations, with sufficient instruments we can still

apply 2SLS procedure to each single equation in the system to obtain acceptable

results. However, in many cases we can obtain more efficient estimators by

estimating parameters in the system equations jointly. This system instrumental

variables estimation approach is based on the principle of the generalized method

of moments (GMM). As discussed in the previous section, the orthogonality

conditions require that the valid instruments are uncorrelated to the disturbance,

i.e., the population moment condition E(Z0m) is equal to zero. Thus, by this

principle the optimal parameter estimate is chosen so that the corresponding

sample moment is also equal to zero. To show this, reconsider the linear

model (95.3) for a random sample from the population, with Z as an

N � L matrix of instruments orthogonal to u for the set of L linear equations in

K unknowns and assume the rank condition holds, the sample moment condition

must satisfy
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N�1
XN
i¼1

Z0
i Yð i � Xib̂

�
¼ 0 (95.15)

where the i subscript is included for notational clarity. When we have an exactly

identified model where L ¼ K and Z0X is invertible, we can solve for the general-

ized method of moments (GMM) estimator b̂ in full matrix notation as b̂ ¼ Z0Xð Þ�1

Z0Y, which is the same IV estimator obtained in Eq. 95.4. When L>K, the model is

overidentified; we cannot choose K unknowns to satisfy the L equations and

generally the Eq. 95.15 will not have a solution. If we cannot set the sample

moment condition exactly equal to zero, we can at least choose the parameter

estimate b̂ so that the vector in Eq. 95.15 is as close to zero as possible. One idea is

to minimize the squared Euclidean length of the L � 1 vector in Eq. 95.15 and the

optimal GMM estimator b̂ is the minimizer.

The starting point for GMM estimation is to specify the GMM criterion function

Q b̂;Y
� �

, which is the sample moment in Eq. 95.15 in a quadratic form with an

L � L symmetric and positive definite weighting matrix Ŵ :

Q b̂;Y
� �

�
XN
i¼1

Z0
i Yi � Xib̂
� �" #0

Ŵ
XN
i¼1

Z0
i Yi � Xib̂
� �" #

(95.16)

The GMM estimator b̂ can be obtained by minimizing the criterion function Q

b̂;Y
� �

over b̂ and the unique solution in full matrix notation is

b̂ ¼ X0ZŴZ0X
� ��1

X0ZŴZ0Y
� �

(95.17)

It can be shown that if the rank condition holds and the chosen weighting matrix

Ŵ is positive definite, the resulting GMM estimator is asymptotically consistent.

There is no shortage of such matrix. However, it is important that we choose

the weighting matrix that produces the GMM estimator with the smallest asymp-

totic variance. To do this, first we need to find the asymptotic variance matrix offfiffiffiffi
N

p
b̂ � b
� �

. Plug Eq. 95.17 into Eq. 95.3 to get

b̂ ¼ bþ X0ZŴZ0X
� ��1

X0ZŴZ0u
� �

(95.18)

Thus, the asymptotic variance matrix Avar
ffiffiffiffi
N

p
b̂ � b
� �

can be shown as

Avar
ffiffiffiffi
N

p
b̂ � b
� �

¼ Var C0WCð Þ�1
C0WZ0u

h i

¼ C0WCð Þ�1
C0WSWC C0WCð Þ�1

(95.19)

where Z0X � C, S � Var(Z 0u). It can be shown that if the weighting matrix W is

chosen such that W ¼ S�1, the GMM estimator has the least asymptotic variance.

The details can be found in Hayashi (2000, p. 212). By setting W � S�1, the

Eq. 95.19 can be simplified as
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Avar
ffiffiffiffi
N

p
b̂ � b
� �

¼ C0S�1C
� ��1 ¼ X0ZS�1ZX

� ��1
(95.20)

Therefore, the efficiency of the GMM estimator depends on if we can consis-

tently estimate S (the variance of the asymptotic distribution of Z0u). Since the

2SLS estimator is consistent though not necessarily efficient, it can be used as an

initial estimator to obtain the residuals, which in turn can be used as the estimator

for S. The two-step efficient GMM procedure is given in Wooldridge (2002) as

follows:

Step 1: Use the 2SLS estimator as an initial estimator since it is consistent, denoted

as eb, to obtain the 2SLS residuals by emi ¼ Yi � Xi
eb, i¼ 1, 2,. . . ,N. For a system

of equations, apply 2SLS equation by equation. This allows the possibility that

different instruments are used for different system equations.

Step 2: Estimate S, the variance of the asymptotic distribution of Z0u by

Ŝ ¼ N�1
XN
i¼1

Z
0
ieuieu

0

i
Zii (95.21)

Then use W ¼ Ŝ
�1

as the weighting matrix to obtain the efficient GMM

estimator. We can plug Ŝ
�1

into Eq. 95.17 and obtain the efficient GMM estimator

b̂ ¼ X0ZŜ
�1
Z0X

� ��1

X0ZŜ
�1
Z0Y

� �
(95.22)

Following Eq. 95.19, the asymptotic variance matrix V̂ of the optimal GMM

estimator can be estimated as

V̂ ¼ X0ZŜ
�1
ZX

� ��1

(95.23)

The square roots of diagonal elements of this matrix V̂ are the asymptotic

standard errors of the optimal GMM estimator.

95.3.4 Hypothesis Testing Using GMM

The t-statistics for the hypothesis testing after GMM estimation can be directly

computed by using the asymptotic standard errors obtained from the variance

matrix V̂ . For testing multiple restrictions, the GMM criterion function can be

used to calculate the statistic. For example, suppose our interest is to test

Q restrictions for the K unknowns in the system; thus, the Wald statistics

is a limiting null w2Q. To apply this statistics, we need to assume the optimal

weighting matrix W ¼ S�1 is chosen to obtain the GMM estimator with and

without imposing the Q restrictions. Define the residuals evaluated at the

unrestricted GMM estimator b̂u as ûu � Yi � Xib̂u and the residuals evaluated at

the restricted GMM estimator b̂r as ûr � Yi � Xib̂r . By plugging the calculated
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residuals ûu and ûr into the criterion function (95.16) for the unrestricted model and

the restricted model, respectively, the criterion function statistic is computed as

the difference between the two criterion function values, divided by the sample

size N. The criterion function statistic has chi-square distribution with Q degrees of

freedom.

95.4 Validity of Instrumental Variables

95.4.1 Test for Exogeneity of Instruments

When researchers explore various alternative ways to solve the endogeneity prob-

lem and consider the instrumental variables estimation to be the most promising

econometric approach, the next step is to find and justify the instruments used. The

orthogonality condition (95.6) is the sufficient condition in order for a set of

instruments to be valid. When the condition is not satisfied, the IV estimator is

inconsistent. In practice, we cannot test whether an observable instrument is

uncorrelated with the unobservable disturbance. But when we have more instru-

ments than needed to identify an equation, we can use any subset of the instruments

for estimation and the estimates should not be significantly different if the instru-

ments are valid. Following the principle of Hausman (1978), we can test whether

the additional instruments are valid by comparing the estimates of an overidentified

model with those of a just-identified model.

The model we wish to test is

Y ¼ Xbþ u (95.24)

where X is a vector of 1 � K explanatory variables with some elements correlated

with u, Z is a vector of 1 � L instruments, and L > K so the model has L � K

overidentifying restrictions and we can use any 1 � K subset of Z as instruments

for X. Let Z1 be a vector of 1 � (L � K) extra instruments. The overidentifying

restrictions require that E(Z1
0 u)¼ 0. The LM statistic can be computed by regressing

the 2SLS residuals from the original model (95.24) on the full set of instruments Z and

use the obtained uncentered R2 times N. The asymptotic distribution of the statistic is

w2L�K. Another way to test the overidentifying restrictions is to use a test statistic

based on the difference between the minimized values of the IV criterion function for

the overidentified model and the just-identified model. By the moment condition, the

minimized value of the criterion function is equal to zero for the just-identified model.

Thus, the test statistic is the minimized value of the criterion function for the

overidentified model (95.24), divided by the estimate of the error variance from

the samemodel. This test is called Sargan’s test, after Sargan (1958), and numerically

the Sargan’s test is identical to the LM statistic discussed above.

The usefulness of the overidentifying restrictions test is that if we cannot

reject the null, we can have some confidence in the overall set of instruments

used. This suggests that it is preferable to have an overidentified model for
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empirical application, because the overidentifying restrictions can and should

always be tested. However, we also need to note that the overidentifying restrictions

test is performed under the assumption that at least one instrument is valid. If this

assumption does not hold, we will have a situation that all instruments have similar

bias and the test will not reject the null. It could also be that the test has low power 4

for detecting the endogeneity of some of the instruments.

The heteroskedasticity-robust test can be computed as follows. Let H be any

1 � (L � K) subset of Z. Regress each element of H onto the fitted value of X and

collect the residuals, denoted as n̂. The asymptotic w2L�K test statistic is obtained as

N minus the sum of squared residuals from regressing 1 on û0n̂.
For the system equations using GMM estimation, the test of overidentifying

restrictions can be computed by using a similar criterion function-based procedure.

The overidentification test statistic is the minimized criterion function (95.16)

evaluated at the optimal (efficient) GMM estimator, and there is no need to be

divided by an estimator of error variance because the GMM criterion function takes

account of the covariance matrix of the error terms:

N�1=2
XN
i¼1

Z0
i Yi � Xib̂
� �" #0

Ŵ N�1=2
XN
i¼1

Z0
i Yi � Xib̂
� �" #

� w2L�K (95.25)

The GMM estimator using the optimal weighting matrix is called the minimum

chi-square estimator because the GMM estimator b̂ is chosen to make the criterion

function minimum. If the chosen weighting matrix is not optimal, the expression

(95.25) fails to hold. This test statistic is often called Hansen’s J-statistic after

Hansen (1982) or Hansen-Sargan statistic for its close relationship with the

Sargan’s test in the IV/2SLS estimation. The Hansen’s J-statistic is distributed as

chi-square in the number of overidentifying restrictions, (L � K), since K degrees

of freedom are lost for having estimated K parameters,5 and it is consistent in the

presence of heteroskedasticity.

It is strongly suggested that an overidentifying restrictions test on instruments

should always be performed before formally using the IV estimation, but we also need

to be cautious in interpreting the test results. There are several situations in which the

null will be rejected. One possibility is that the model is correctly specified, and some

of the instruments are indeed correlated with the disturbance and thus are invalid. The

other possibility is that the model is not correctly specified, for instance, some vari-

ables are omitted from the regression function. In either case, the overidentifying test

statistic leads us to reject the null hypothesis but we cannot be certain about which is

the case. Another problem is that in small samples, the actual size of the Hansen’s

J-test far exceeds the nominal size and the test usually rejects too often.

4If the instruments are only weakly related to the endogenous explanatory variables, the power of

the test can be low.
5A potential problem is that the test is not consistent against some failures of the orthogonality

condition due to the loss of degrees of freedom from K to K-L.
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95.4.2 Whether IV Estimator Is Really Needed

In many cases, we may suspect that certain explanatory variables are endogenous

but do not know whether the IV estimation is reasonably preferred to the OLS

estimation. However, it is important to know that using instrumental variable to

solve for the endogeneity problem in empirical research is like a trade-off between

efficiency and consistency. As discussed in Bartels (1991), the asymptotic mean

square error of the IV estimator can be partitioned into three components:

AMSE b̂IV

� �
¼ s2

u=Ns2
X

	 

1þ 1� s2

XZ

� �
=s2

XZ þ Ns2
Zu=s2

XZ

	 

(95.26)

where u is the structural error, X is the explanatory variable, Z is the instrumental

variable, and N is the sample size. The first term in the second bracket of (95.26)

corresponds to the asymptotic variance of the OLS estimator, the second term

corresponds to the additional asymptotic variance produced by using IV estimator

rather than the OLS estimator, and the third term captures the inconsistency if the

instruments are not truly exogenous. Thus, even when we find perfectly exoge-

nous instruments so that s2
Zu ¼ 0, the standard error for the IV estimator will

exceed the standard error for the OLS estimator by 1/s2
XZ. As the correlation

between X and Z gets close to zero, the standard error for the IV estimator can get

extremely large.

Because the IV estimator is less efficient than the OLS estimator, unless we have

strong evidence that the explanatory variable is endogenous, the IV estimation is

not preferred to the OLS estimation. Therefore, it is always useful to run a test for

endogeneity before using the IV approach. This endogeneity test dates back to

Durbin (1954), subsequently extended by Wu (1973) and Hausman (1978). Thus,

we refer to the test of this type as Durbin-Wu-Hausman tests. To illustrate the

procedure, write a population model as

Y1 ¼ bY2 þ gZ1 þ u (95.27)

where Y1 is the dependent variable, Y2 is 1� K2 vector of the possible endogenous

explanatory variables, Z1 is 1 � K1 vector of exogenous explanatory variables, and

K1 + K2 ¼ K; also Z1 is a subset of the 1 � L exogenous variables Z, assuming

Z satisfies the orthogonality condition and E(Z0Y2) has full rank.

Our interest is to test the null hypothesis that Y2 is actually exogenous:

H0 : Y1 ¼ bY2 þ gZ1 þ u, E Y2
0uð Þ ¼ 0 against

H1 : Y1 ¼ bY2 þ gZ1 þ u, E Y2
0uð Þ 6¼ 0

Under H0 both IV and the OLS estimators are consistent, and they should

not differ significantly. Under H1 only the IV estimator is consistent.

Thus, the original idea of the endogeneity test is to check whether the IV estimator

is significantly different from the OLS estimator. The test can also be made by

2588 C.-J. Wang



just comparing the estimated coefficients of the parameters of interest, which is b̂
in our case. The suitable Hausman statistic thus can be calculated as

b̂IV �b̂OLS

� �0
Var b̂IV

� �
� Var b̂OLS

� �h i�1

b̂IV �b̂OLS

� �
.6

We often use Hausman (1978) regression-based form of the test, which is

easier to compute and asymptotically equivalent to the original endogeneity

test. Following the procedure described in Wooldridge (2002), the first step is to

regress each element of the K2 possibly endogenous variables against all exoge-

nous variables Z. The 1 � K2 vector of the obtained reduced form error is denoted

as n. Since Z is uncorrelated to the structural error u and the reduced form error

n, Y2 is endogenous if and only if u and n are correlated. To test this, we can

project u onto n as

u ¼ lnþ e (95.28)

where n is uncorrelated to e and e is uncorrelated to Z; thus, the test of whether Y2 is

exogenous is equivalent to test whether the joint test of l (the K2 restrictions)

is significantly different from 0.

By plugging Eqs. 95.9 into 95.8, we have the equation

Y1 ¼ bY2 þ gZ1 þ lnþ e (95.29)

Since e is uncorrelated to n, Z1, and Y2 by construction, the test of the

null hypothesis can be done by using a standard joint F-test on l in an OLS

regression (for the single endogenous variable, a t-statistic can be used in

the same procedure), and the F-statistic has the F(K2, N-K-K2) distribution. If we

reject the null H0: l ¼ 0, there is evidence that at least some elements of Y2 are

indeed endogenous. So the use of IV approach is justified assuming the instruments

are valid. If the heteroskedasticity is suspected under H0, the test can be made

robust to heteroskedasticity in m (since m ¼ e under H0) by computing the

heteroskedasticity-robust standard errors.7 Another use of this regression-based

form of the test is that the OLS estimates of b and l for Eq. 95.29 should be

identical to their 2SLS estimates for the Eq. 95.27 using Z as the instruments

(see Davidson and MacKinnon 1993 for the details), and that allows us to examine

whether the differences in the OLS and 2SLS point estimates are practically

significant.

6If the assumption of homoskedasticity cannot be made, this standard error is invalid because the

asymptotic variance of the difference is no longer the difference in asymptotic variances.
7Since the robust (Hubert-White) standard errors are asymptotically valid to the presence of

heteroskedasticity of unknown form including homoskedasticity, these standard errors are often

reported in empirical research especially when the sample size is large. Several statistical packages

such as Stata now report these standard errors with a simple command, so it is easy to obtain the

heteroskedasticity-robust standard errors.
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95.5 Identification and Inferences with Weak Instruments

95.5.1 Problems with Weak Instruments and Diagnosis

As stated in the very beginning of this chapter, a valid instrument should be

asymptotically uncorrelated with the structural error (orthogonality) but sufficiently

correlated with the endogenous explanatory variable for which it is supposed to

serve as instrument (relevance). The relevance condition is critical for the structural

model to be identified. If the instruments have little relevance, the instruments will

not enter the first-stage regression, then the sampling distribution of IV statistics are

generally not normal and the IV estimates and standard tests are unreliable.

A simple way to detect the presence of weak instruments is to look at the first-

stage F-statistic for the null hypothesis that the instruments are jointly equal to zero.

Staiger and Stock (1997) suggest that the instruments are considered to be weak if

the first-stage F-statistic is less than 10. Some empirical studies use R2 in the first-

stage regression as a measure of instrument relevance. However, Shea (1997)

argues that for the model with multiple endogenous regressors, when instruments

are highly collinear, IV may work poorly even if R2 is high for each first-stage

regression. For instance, suppose both the vector of endogenous regressors X and

the vector of instruments Z have rank of 2, while only one element of Z is highly

correlated to X. In this situation the regression of each element of X onto Z will

have high R2 even though b in the structural model may not be identified. Instead,

Shea (1997) proposes a partial R2, which measures the instrument relevance by

taking intercorrelations among the instruments into account. The idea is that the

instruments should work best when the part of instruments important to one

endogenous regressor is linearly independent of the part important to the other

endogenous regressor. Taking the example above, Shea’s partial R2 is the squared

correlation between the component of one endogenous regressor X1 orthogonal to

the other endogenous regressor X2 (i.e., the residuals from regressing X1 onto X2)

and the component of the fitted values of X1 orthogonal to the fitted values of X2

(i.e., the residuals from regressing the fitted values of X1 onto the fitted values of

X2). Shea’s partial R
2 can be corrected for the degrees of freedom by

R
2

p ¼ 1� N� 1ð Þ= N� Kð Þ½ � � 1� R2
p

� �
(95.30)

where R
2

p is the corrected partial R2, Rp
2 is uncorrected partial R2, N is the sample

size, and K is the number of exogenous variables in the system.

Another type of the tests for instrument relevance is testing whether the equation

is identified. Rothenberg et al. (1984) shows that at a formal level the strength of

instruments can be characterized in terms of the so-called concentration parameter

associated with the first-stage regression. He considers a simple linear model with

a single endogenous regressor X and without included exogenous regressors:

Y ¼ Xbþ u (95.31)
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X ¼ Z
Y

þ v (95.32)

where Y and X are N � 1 vectors of observations on endogenous variables, Z is an

N � K matrix of instruments, and u and v are N � 1 error vectors. The errors are

assumed to be i.i.d. as N(0, S) where s2
u, s

2
uv, and s2

v are elements of S, and the

correlation between the error terms r ¼ s2
uv/(susv) . In matrix notation the 2SLS

estimator can be written as b̂2SLS ¼ X0PZXð Þ�1
X0PZYð Þ , where the idempotent

matrix PZ ¼ Z0(Z0Z)�1Z0. The concentration parameter m2 associated with the

first-stage reduced form is defined as

m2 ¼
Y0

Z0Z
Y

=s2
v (95.33)

The concentration parameter m2 can be interpreted in terms of F, the first-stage

F-statistic for testing the hypothesis P ¼ 0 (i.e., the instruments do not enter

the first-stage regression). Let eF be the infeasible counterpart of F using the true

value of s2
v. Then KeF has a chi-squared distribution of K degrees of freedom and

noncentrality parameter m2. When the sample size is large, the E KeF
� �

ffi m2=Kþ 1;

thus, for large values of m2/K, (F � 1) can be used as an estimator for

m2/K. Rothenberg et al. (1984) shows that the concentration parameter m2 plays an
important role in the approximation to the distributions of 2SLS estimators and test

statistics. He emphasizes that for the normal approximation to the distribution of the

2SLS estimator to be precise, the concentration parameter m2 must be large. Thus,

a small F-statistic (i.e., a smaller value of m2/K) can indicate the presence of weak

instruments. There are several tests developed using the concentration matrix to

test for weak identification. Cragg and Donald (1993) proposed a statistic

using the minimum eigenvalue of the concentration parameter to test the null

hypothesis of underidentification, which occurs when the concentration matrix is

singular.

Stock and Yogo (2002) argue that when the concentration matrix is nonsingular

but its eigenvalues are sufficiently small, the inferences based on conventional

normal approximation distributions are misleading even though the parameters

might be identified. Thus, the minimum eigenvalues of the concentration matrix

m2/K can be used to detect the presence of weak instruments. By this principle Stock

and Yogo (2002) develop two alternative quantitative definition of the weak

instrument. A set of instruments is considered to be weak if m2/K is small enough,

so the bias in IV estimator to the bias in OLS estimator exceeds a certain threshold,

depending on the researcher’s tolerance, for example, 10 %. Alternatively, a set of

instruments is considered to be weak if m2/K is small enough, so the conventional

a-level Wald test-based IV statistic has an actual size exceeding a certain threshold,

again depending on the researcher’s tolerance. Stock and Yogo (2002) propose

using the first-stage F-statistic for making inferences about m2/K and develop the

critical values of F-statistic corresponding to the weak instrument threshold

m2/K. For example, if a researcher requires the 2SLS relative bias no more than

10 %, for a model with three instruments, the computed first-stage F-statistic has to

be larger than 9.08 for the threshold value m2/K larger than 3.71, so the null
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hypothesis that the 2SLS relative bias is less than or equal to 10 % (i.e., instruments

are weak) will be rejected. The readers are referred to Stock and Yogo (2002) for

a tabulation of the critical values for weak instrument tests with multiple endoge-

nous regressors.

95.5.2 Possible Cures and Inferences with Weak Instruments

Many of the key issues of weak instruments have been studied for decades,

however, most of the research on the estimation and inferences robust to weak

instruments is quite recent and their applications in finance still remain to be seen.

Therefore, this section just simply touches upon this topic and refers the reader to

the original articles for details.

In their survey of weak instrument and identification, Stock et al. (2002) con-

sidered the Anderson-Rubin statistic as “fully robust” to weak instruments, in the

sense that this procedure has the correct size regardless of the value of concentra-

tion parameter. For testing the null hypothesis for b ¼ b0, the Anderson-Rubin

statistic (Anderson and Rubin 1949) is computed as

AR b0ð Þ ¼ Y� Xb0ð Þ0PZ Y� Xb0ð Þ=K
Y� Xb0ð Þ0MZ Y� Xb0ð Þ= N� Kð Þ � FK,N�K (95.34)

where PZ ¼ Z(Z0Z)�1Z0 and MZ ¼ I � PZ. Testing the null hypothesis that the

coefficients of the endogenous regressors in the structural equation are jointly equal

to zero is numerically equivalent to estimating the reduced form of the equation

(with the full set of instruments as regressors) and testing that the coefficients of the

excluded instruments are jointly equal to zero. Therefore, the AR statistic is often

used for testing overidentifying restrictions. The Anderson-Rubin procedure pro-

vides valid tests and confidence set under weak instrument asymptotics,8 but it has

low power when too many instruments are added (see Dufour 2003). Berkowitz

et al. (2012) argue that when there is a mild violation of the orthogonality condition,

the Anderson and Rubin (1949) test may be oversized. In order to correct this

problem, the authors fractionally resampled Anderson-Rubin test by modifying

Wu’s (1990) resampling technique and obtain valid but more conservative critical

values.

Other fully robust tests discussed in Stock et al. (2002) include Moreira’s

conditional test by Moreira (2002), which fixes the size distortion of the test in

the presence of weak instruments and can be used to make reliable inference about

the coefficients of endogenous variables in the structural equation, and Kleibergen’s

8Stock et al. (2002) defines weak instrument asymptotics as the alternative asymptotics methods

that can be used to analyze IV statistics in the presence of weak instruments. Weak instrument

asymptotics involves a sequence of models chosen to keep concentration parameters constant as

sample size N ! 1 and the number of instruments held fixed.
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statistic by Kleibergen (2002), which is robust under both conventional and weak

instrument asymptotics.

Stock et al. (2002) considered several k-class estimators that are “partially

robust” to weak instruments, in the sense that these k-class estimators are more

reliable than 2SLS. The k-class is a set of estimators defined by the following

estimating equation with an arbitrary scalar k:

b̂ kð Þ ¼ X0 I� kMZð ÞX½ ��1
X0 I� kMZð ÞY½ � (95.35)

This class includes 2SLS, LIML, and Fuller-k. 2SLS is a k-class estimator

with k equal to 1; LIML is a k-class estimator with k equal to the LIML

eigenvalue; Fuller-k or called Fuller’s modified LIML, proposed by Fuller

(1977), sets k ¼ kLIML � a/(N � K), where K is the total number of instruments

and a is the Fuller constant, and the Fuller estimator with a ¼ 1 yields unbiased

results to second order with fixed instruments and normal errors; Jackknife 2SLS

estimator, proposed by Angrist et al. (1999), is asymptotically equivalent to k-class

estimator with k ¼ 1 + K/(N � K) (Chao and Swanson 2005). For a discussion of

LIML and k-class estimators, see Davidson and MacKinnon (1993).

Stock et al. (2002) found that LIML, Fuller-k, and Jackknife estimators have

lower critical value for weak instrument test than 2SLS (so the null will not be

rejected too often) and thus are more reliable when the instruments are weak.

Anderson et al. (2010, 2011) show that LIML estimator has good performance in

terms of the bounded loss functions and probabilities in the presence of many weak

instruments. However, Hahn et al. (2004) argued that due to the lack of finite

moment, LIML sometimes performs well but sometimes poorly in the weak

instrument situation. They found that the interquartile range and the root MSE of

the LIML often far exceed those of the 2SLS and hence suggested extreme caution

in using the LIML in the presence of weak instrument. Instead, Hahn et al. (2004)

recommend the Jackknife 2SLS estimator and Fuller-k estimator because the two

estimators do not have the “no moment” problem that LIML has. Theoretical

calculations and simulations show that Jackknife 2SLS estimator improves on

2SLS when many instruments are used and thus the weak instrument problem

usually occurs (see Chao and Swanson (2005) and Angrist et al. (1999)). Hahn

et al. (2004) also find that the bias and mean square error using Fuller-k estimator

are smaller than those using 2SLS and LIML.

95.6 Empirical Applications in Corporate Finance

In order to provide some insight into the use of IV estimation by finance

researchers, we follow the methodology used by Larcker and Rusticus (2010) to

conduct a search using the key words “2SLS,” “simultaneous equations,” “instru-

mental variables,” and “endogeneity” for papers published in Journal of Finance,
Journal of Financial Economics, Review of Financial Studies, and Journal of
Financial and Quantitative Analysis during the period from 1997 to 2012.
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As shown in Table 95.1, our search produced 30 published articles that use

instrumental variables approach to solve the endogeneity bias in the study of capital

structure, agency/ownership structure, pricing of public offering, debt covenants,

financial institutions, microstructure, diversification/acquisition, venture capital/

private equity, product market, and macroeconomics. Compared with the survey

of Larcker and Rusticus (2010) for the IV applications in accounting research

(which found 42 such articles in the recent decade), our list shows that the IV

estimation is less commonly used in finance research9 and often employed in

corporate finance-related studies.

Similar to the finding of Larcker and Rusticus (2010) on IV applications in

accounting research, there is little attempt in empirical finance research to develop

a formal structural equation to identify endogenous and exogenous variables in the

first place. Most take the endogeneity in the variables of interest as granted and only

Table 95.1 Finance research that uses instrumental variable methods

Capital structure/leverage ratio Debt covenants

Faulkender and Petersen (RFS 2006) Dennis et al. (JFQA 2000)

Yan (JFQA 2006) Chen et al. (JF 2007)

Molina (JF 2005) Macro/product market

Johnson (RFS 2003) Thorsten et al. (JFE 2000)

Desai et al. (JF 2004) Campello (JFE 2006)

Harvey et al. (JFE 2004) Garmaise (RFS 2008)

Agency/ownership structure/governance Financial institutions

Bitler et al. (JF 2005) Ljungqvist et al. (JF 2006)

Ortiz-Molina (JFQA 2006) Berger et al. (JFE 2005)

Palia (RFS 2001) Microstructure

Cho (JFE 1998) Brown et al. (JF 2008)

Wei et al. (JFQA 2005) Conrad et al. (JFE 2003)

Daines (JFE 2001) Kavajecz and Odders-White (RFS 2001)

Coles et al. (JFE 2012) Diversification/acquisition

Wintoki et al. (JFE forthcoming) Campa and Kedia (JF 2002)

Pricing of public offering Hsieh and Walkling (JFE 2005)

Cliff and Denis (JF 2004) Venture capital/private equity

Lee and Wahal (JFE 2004) Gompers and Lerner (JFE 2000)

Lowry and Shu (JFE 2002)

The sample is based on an electronic search for the term “2SLS,” “instrumental variables,”

“simultaneous equations,” and “endogeneity” for papers published in Journal of Finance, Journal
of Financial Economics, Review of Financial Studies, and Journal of Financial and Quantitative
Analysis during the period from 1997 to 2008

9Another reason we found a smaller number of finance papers using IV may be that we limit our

keywords to appearing in the abstract. Thus, our data may be more representative of the general

situation of the finance research using IV as their main tests.
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17 % conducted the endogeneity test (Hausman test). Almost all decided using IV

approach to solve the endogeneity problem directly without considering the alter-

natives. As we discussed in Sects. 95.3.1 and 95.5.1, without valid instruments, the

IV estimator can produce even more biased results than the OLS estimator and

finding good instruments can be very challenging. Therefore, the researcher should

investigate the nature of the endogeneity and explores alternative methods before

selecting the IV approach. We found that only Sorensen (2007) and Mitton (2006)

Table 95.2 Descriptive statistics for finance research that uses instrumental variables methods

A. Types of IV applications

Standard two-stage least squares

Capital structure/leverage ratio (4)

Agency/ownership structure/governance (7)

Pricing of public offering (1)

Debt covenants (2)

Financial institutions (1)

Microstructure (2)

Diversification/acquisition (1)

Total: 18

Two-stage Heckman

Pricing of public offering/debt covenants (2)

Financial institutions (1)

Microstructure (1)

Diversification/acquisition (1)

Venture capital/private equity (1)

Total: 6

GMM/3SLS

Capital structure/leverage ratio/governance (3)

Macro/product market (3)

Total: 6

B. Features of IV application

Two-stage Heckman GMM/3SLS Total

Specification/justification

Discussion of model/instruments 9 (50 %) 3 (50 %) 4 (66 %) 16 (53 %)

Endogeneity test 3 (17 %) 1 (17 %) 1 (17 %) 5 (17 %)

Reported statistics

IV relevance

First-stage regression 7 (39 %) 2 (33 %) 3 (50 %) 12 (40 %)

F-statistic for strength of IV 3 (17 %) 2 (33 %) 3 (50 %) 8 (27 %)

Partial R2 for IV 0 1 (17 %) 0

IV orthogonality

Overidentifying restrictions test 2 (11 %) 0 4 (66 %) 6 (20 %)

Concerns on WI 1 (6 %) 1 (17 %) 2 (33 %) 4 (13 %)

Total 18 6 6
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evaluated the situation and chose alternative methods and fixed effects model

instead to solve the endogeneity problem for the lack of good instruments.

Table 95.2 shows that the standard two-stage least square regression method is

the most commonly used procedure (18 out of 30), and the GMM/3SLS procedure

is more concentrated on the study of financial economics. Half of the research did

not discuss formally why a specific variable is selected as an instrumental variable,

and even fewer explicitly justify theoretically or statistically the validity of selected

instruments by examining the orthogonality and relevance of the instruments. All

studies have overidentified models but only 20 % performed the overidentifying

restrictions test to examine the orthogonality of the instruments. One study even

cited the low R2 in the first stage as evidence that the instruments do not appear to

be related to the error terms. It raises a great concern about the validity of the

instruments used and the possible bias in the resulted IV estimates.

Forty percent reported the first-stage results along with R2; however, it should be

noted that the first-stage R2 does not represent the relevance of the excluded

instruments but the overall explanatory power of all exogenous variables. Thus,

the strength of instruments can be overstated if judged by the first-stage R2. Only

27 % formally performed the first-stage F-statistic for the instrument relevance, one

study also used Shea’s partial R2 (Shea 1997), and none used Cragg and Donald’s

underidentification test (Cragg and Donald 1993) or Stock and Yogo’s weak

instrument test Stock and Yogo (2002). Given the absence of the weak instrument

test in most finance studies, many of the estimation results using IV approach are

questionable. It is also not surprising that only four studies among all addressed the

concerns with the weak instrument problem. Ljungqvist et al. (2006) used five bank

pressure proxies as instruments for analyst behavior in their two-step Heckman

MLE model for competing underwriting mandates but detected the weak instru-

ment problem by the low F-statistic. They interpreted the insignificant estimates in

the second step as possibly a result of weak instrument. Beck et al. (2000) discussed

the possible weak instrument problem (though not judged by any test) associated

with a difference estimator using the lagged value of the dependent variable, and

then decided to use the alternative method by estimating the regression in differ-

ence jointly with the regression in level to reduce the potential finite sample bias. It

appears that the recently developed weak-instrument-robust estimators and infer-

ences have not yet applied in finance research.

95.7 Conclusion

The purpose of this chapter is to present a practical procedure for using the

instrumental variables approach to solve the endogeneity problem in empirical

finance studies. The endogeneity problem has received a mixed treatment in finance

research. The literature does not consistently account for endogeneity using formal

econometric methods. When the IV approach is used, the instrumental variables are
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often chosen arbitrarily and few diagnostic statistics are performed to assess the

adequacy of IV estimation.

Given the challenge of finding good instruments, it is important that the

researcher analyzes the nature of the endogeneity and the direction of the bias if

possible, and then explores alternative empirical approaches so the problem can be

solved more appropriately. For example, in the presence of omitted variables, if the

unobservable effects, which are part of the error term, can be treated as random

variables rather than the parameters to be estimated, panel data models can be used

to obtain consistent estimates. When the IV approach is considered to be the most

appropriate estimation method, the researcher need to find and justify the instru-

ments theoretically and statistically. One way to describe an instrumental variable

is that a valid instrument Z for the potential endogenous variable X should be

redundant in the structural equation when X is already included, which means that

Z will not affect the dependent variable Y in any way other than through X. To

examine the orthogonality statistically, an overidentified model is preferred and

hence the overidentifying restrictions can be used. If the OID test cannot be

rejected, we then can have some confidence in the orthogonality of the overall

instruments. To examine the instrument relevance, the partial R2 and the first-stage

F-statistic on the joint significance of the instruments should be performed at the

minimum. The newly developed weak instrument tests (Cragg and Donald 1993;

Stock and Yogo 2002) can also be used as robust check, especially for the finite

samples. The researcher should keep in mind that the IV estimation method pro-

vides a general solution to the endogeneity problem, however; without strong and

exogenous instruments, the IV estimator is more biased and inconsistent than the

simple OLS estimator.
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Abstract

This research first discusses the evolution of probability for informed trading in

finance literature. Motivated by asymmetric effects, e.g., return and trading

volume in up and down markets, this study modifies a mixture of the Poisson
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distribution model by different arrival rates of informe d buys and sells to

measure the probability of informed trading proposed by Easley et al. (Journal

of Finance 51:1405–1436, 1996).

By applying the expectation–maximization (EM) algorithm to estimate the

parameters of the model, we derive a set of equations for maximum likelihood

estimation, and these equations are encoded in a SAS Macro utilizing SAS/IML

for implementation of the methodology.

Keywords

Probability of informed trading (PIN) • Expectation–maximization

(EM) algorithm • A mixture of Poisson distribution • Asset-pricing returns •

Order imbalance • Information asymmetry • Bid–ask spreads • Market micro-

structure • Trade direction • Errors in variables • GARCH

96.1 Introduction

This study investigates the probability of informed trading PIN which is widely

used in existing literature and is introduced by Easley et al. (1996). Easley

et al. (1996, 2002, 2008) have proposed the same arrival rate of informed orders

m for both bad and good events, and the likelihood is given by

L yjB, Sð Þ ¼ 1� að Þe�eb e
B
b

B!
e�es e

S
s

S!
þ ade�eb e

B
b

B!
e� mþesð Þ mþ esð ÞS

S!

þ a 1� dð Þe� mþebð Þ mþ ebð ÞB
B!

e�es e
S
s

S!
(96.1)

where a is the probability of new information, d is the probability that new informa-

tion is bad news, m is the arrival rate of informed buy orders and also that of informed

sell orders, and eb and es are the arrival rates of uninformed buyers and sellers. Until

Easley, Engle, O’Hara andWu (2008) models a time-varying arrival rate of informed

and uninformed traders, the model has been a static approach.

We allow the arrival rate of informed buyers to be different from that of

informed sellers in order to match the empirical environment. Furthermore, we

examine on intraday data and allow more than one informational event per day. The

modified model is given by

L yjB, Sð Þ ¼ 1� að Þe�eb e
B
b

B!
e�es e

S
s

S!
þ ade�eb e

B
b

B!
e� msþesð Þ ms þ esð ÞS

S!

þ a 1� dð Þe� mbþebð Þ mb þ ebð ÞB
B!

e�es e
S
s

S!
(96.2)

where mb is the arrival rate of informed buyers and ms is the arrival rate of informed

sellers. The function provides the structure necessary to exact information on the
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parameters y ¼ (a, d, m, eb, es) from the observable variables, buys and sells, to

measure PIN ¼ am
amþesþeb

. For the parameters in our model, y* ¼ (a, d, mb, ms, eb, es)

and probability of informed trading PIN� ¼ a djmsjþ 1�dð Þjmbjð Þ
a djmsjþ 1�dð Þjmbjð Þþesþeb

. The buys and

sells follow one of three Poisson processes on each day. The likelihood of

observing any sequence of orders that contains B buys and S sells on a no-event

day is given by

e�eb e
B
b

B!
e�es e

S
s

S!
(96.3)

Similarly, on a bad-event day, the likelihood of observing any sequence of

orders that contains B buys and S sells is

e�eb e
B
b

B!
e� mþesð Þ mþ esð ÞS

S!
(96.4)

Finally, on a good-event day, this likelihood is

e� mþebð Þ mþ ebð ÞB
B!

e�es e
S
s

S!
(96.5)

To estimate the order arrival rates of the buy and sell processes, we need

only consider the total number of buys, B, and the total number of sells, S, on
any day. The likelihood of observing B buys and S sells on a day of unknown

type is a mixture of the Poisson distribution, the weighted average of Eqs. 96.3,

96.4, and 96.5 using the probabilities of each type of day occurring to obtain

Eq. 96.1.

Church and Gale (1995) claim that a mixture of the Poisson distribution fits

the data better than the standard Poisson, producing more accurate estimates

of the variance. Johnson and Kotz (1969, pp. 135–136) survey a number of

applications of the negative binomial in a variety of fields and conclude that

“the negative binomial is frequently used as a substitute for the Poisson, when the

strict requirements of the Poisson is doubtful.” This is due to the negative

binomial, which can be viewed as a continuous mixture of infinitely many

Poissons, as suggested by Bookstein and Swanson (1974, p. 317).

Because days are independent, the likelihood of observing the data

M ¼ (Bi, Si)i¼1
I over I days is just the product of the daily likelihoods. Therefore,

L yjMð Þ ¼
YI
i

L yjBi, Sið Þ, (96.6)

To estimate the parameter vector y from any data set M, we maximize the

likelihood defined in Eq. 96.6.
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96.2 The Problem with PIN

The derivation of PIN requires the classification of trades into buyer- or seller-

initiated trades, and therefore errors can occur by possible misclassification. Ellis

et al. (2000) present that in the case of NASDAQ trades, the Lee and Ready (1991)

trade classification algorithm correctly classifies 81.05 % of the trades, with the

lowest rate of success among trades that take place inside the spread. Specifically,

the authors admit that “the success rate for classifying trades inside the quotes . . . is
substantially lower, falling to approximately 60 % for midpoint trades and to only

55 % for trades that are inside the quotes but not at the midpoint.” In the case of

NYSE trades, Odders-White (2000) reports a success rate of 85 % for the entire

sample. Boehmer et al. (2007) and Lei and Wu (2005) also point out that misap-

propriation of trades may bias PIN estimates and arrival rates may not be symmetric

and time varying.

To avoid this criticism or error, Popescu and Kumar (2008) use observed bid

and ask quotes, assume different depth at the bid and the ask, and include order

processing costs for estimating the probability of informed trading by extending

the model developed by Copeland and Galai (1983),1 which is the first model to

examine intraday informed trading under an option framework. The measure of

Popescu and Kumar (2008) can be computed at any point in time and thus can be

used to estimate changes in the level of information asymmetry over a short

interval. Although this methodology does not require trades to be distinguished

between buyer initiated and seller initiated, the estimation of order processing

costs based on three bid–ask spread structure models may introduce bias on the

estimated PIN. These three models include Glosten and Harris (1988) and

Madhavan and Smidt (1991) which model revision in trade price and

a proposed model which combines Hasbrouck (1991), Foster and Viswanathan

(1993), and Brennan and Subrahmanyam (1996) to model transaction size and

price revision.

Copeland and Galai (1983) extend Bagehot (1971) which employs bid–ask

spread to derive an adverse selection cost, use an option idea to describe the

quote spread of market maker to contain an option value, and consider the trade

value of straddle strategy as an adverse selection cost. Bollen et al. (2004) also

follow the same strategy by Copeland and Galai (1983) to measure an adverse

selection cost. Because the bid–ask spread carries unrealized price information and

hides future value, it seems more reasonable to observe the bid–ask spread from the

idea of an option.

1Copeland and Galai (1983) model informed trading as (1 � PI)[PBL(A � S0) + PSL(B � S0) +
PNL.0], where B is the bid price, A is the ask price, S0 is the dealer’s estimate of the “true” value of

a security (B < S0 < A), and PI is the probability that the next trade originates from an informed

trader, while PBL, PSL, and PNL are the conditional probabilities that the next liquidity trader will

buy, sell, or not trade when he/she faces the market maker. Popescu and Kumar (2008) revise it

into (1� PI)[PBL. DA. (A� S0) + PSL. DB. (B� S0) + PNL.0], where DA and DB denote the depth at

the ask and at the bid.
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Based on the setting of Easley et al. (1996, 2002, 2008), the informed order

imbalance is unavailable. We attain informed order imbalance in November 2008

and our work is the first to measure informed trading based on an order imbalance

signal. Although not fully explored here, this measure allows one to measure

informed order imbalance by (mb � ms)/(mb + ms). The measure is a proxy for

informed trading and is discussed in Lin et al. (2013), while the relationship

between PIN and arbitrage opportunity is determined in Chang and Lin (2014).

Like PIN, this measure is an estimate variable, and so it is potentially subject to

errors-in-variables bias. To correct the errors-in-variables problem in PIN, Easley
et al. (2002) suggest to create an instrument variable to use in place of the variable

in question. Lee and Chen (2012) include five other methods2 which can correct this

bias. Duarte and Young (2009) also allow the arrival rate of informed buyers mb to
be different from that of informed sellers ms and overcome the estimation dilemma

of standard PIN. In addition, Duarte and Young (2009) apply a time-varying

technique to examine whether PIN is priced and includes symmetric order-flow

shocks to capture the positive correlation they find between buys and sells. Chang

and Lin (2014) ignore to do so as they observe no significant correlation between

buys and sells in the data.

Easley et al. (2012) take a similar approach with a time-varying technique,

easing the estimation of PIN in high-volume markets and referring it to VPIN.
Easley et al. (2012) claim VPIN is updated in volume time and does not require the

intermediate estimation of nonobservable parameters or the application of numer-

ical methods.

Nevertheless, Easley et al. (2002) show that PIN as a proxy for the risk of

informed trading is priced. The results of Easley et al. (2002) provide evidence that

information plays a deeper role beyond what is captured in spreads. Duarte and

Young (2009) propose a model that decomposes PIN into two components, one

related to asymmetric information and one related to illiquidity. On the contrary,

they find the PIN component related to asymmetric information is not priced, while

the PIN component related to illiquidity is priced. This contrary finding makes itself

an open question for finance researchers.

96.3 The Estimation Methodology

To solve the likelihood function in Eqs. 96.1 and 96.2, we apply an expectation–

maximization (EM) algorithm. In statistics, an expectation–maximization

(EM) algorithm is an iterative method for finding a maximum likelihood or

maximum posteriori estimates of parameters in statistical models, where the

model depends on unobserved latent variables. The EM iteration alternates between

2The other five methods are (i) classical estimation method: either unconstrained or constrained

type, (ii) grouping method, (iii) mathematical programming method, (iv) maximum likelihood

method, and (v) LISREL and MIMIC methods.
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performing an expectation (E) step, which creates a function for the expectation of

the log-likelihood evaluated using the current estimate for the parameters, and

a maximization (M) step, which computes parameters maximizing the expected

log-likelihood found in step E. These parameter estimates are then used to deter-

mine the distribution of the latent variables in the next E step. We can derive a set of

equations for maximum likelihood estimation when the observed data consists of

complete pairs. These equations are encoded in a SASMacro utilizing SAS/IML for

implementation of the methodology. McLachlan and Krishnan (2008) have

discussed this algorithm in detail. In addition, Appendix 2 has presented the

estimation procedure of PIN.

96.4 Empirical Results

It is PIN that affects asset-pricing return consistent with economic analysis moti-

vates the empirical work in Chang and Lin (2014) to explore how PIN under various

cross-section and time-series sample splits is related to cash-futures basis, defined

as futures price minus stock price. PIN is calculated as per Eq. 96.1 or 96.2 to test

this relationship. The resulting higher significant regression coefficient of PIN
derived from different arrival rates of informed trades at buy side and sell side

confirms a conjecture that the revised PIN appears to capture the asymmetric

information in cash-futures basis spread better than does standard PIN. To deeply

understand the difference of these two PIN measures, this study furthermore

compares the distribution of the parameters in each model. The comparison esti-

mates the parameters of the two models using 5-min intraday data sourced from

Taiwan index futures and Taiwan stock index markets. To appropriate a trade

direction, two general approaches are used to infer the direction of a trade: (1) com-

pare the trade price to the bid/ask prices of the prevailing quote or (2) compare the

trade price to adjacent trades (the techniques commonly known as “tick tests”). In

this study, the algorithm of Ready and Lee (1991) is used for classifying index

futures data, while tick test3 is used for stock index data because of lack of quote

price at market level.

96.4.1 Preliminary Results

Both Tables 96.1 and 96.2 contain time-series averages from March 24, 1999,

through September 22, 2005, of means, medians, standard deviations, and the

3Tick test classifies each trade into four categories: an uptick, a downtick, a zero-uptick, and

a zero-downtick. A trade is an uptick (downtick) if the price is higher (lower) than the price of the

previous trade. When the price is the same as the previous trade (a zero tick) and if the last price

was an uptick, then the trade is a zero-uptick. Similarly, if the last price change was a downtick,

then the trade is a zero-downtick.
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median of parameter standard errors from the likelihood estimation. Parameters

as per Eqs. 96.1 and 96.2 are estimated for the index futures and stock

index in the Taiwan market. We achieve the parameters for the

Taiwan index futures market ŷfut ¼ â; d̂; m̂; êb; ês
� �

¼ 0:42; 0:51; 173; 76; 82ð Þ and
dPINfut ¼ 0:2997 for the case of the same arrival rate of informed trades, mfut, at the
buy side and sell side. Meanwhile, we achieve ŷ

�
fut ¼ â; d̂; m̂b; m̂s; êb; ês

� �
¼

0:60; 0:55; 147; 27; 77; 129ð Þ and dPIN�
fut ¼ 0:3046 for the case of different arri-

val rates of informed trades, mb
fut and ms

fut, at buy side and sell side. There are

1,005 out of 1,645 days (61 %) that the value of m fut is between mb
fut and ms

fut.

Table 96.1 Parameter summary statistics in Taiwan index futures market

Parameter Mean Median Standard deviation Median standard error

a 0.416 0.408 0.126 0.003

(0.601) (0.598) (0.178) (0.004)

d 0.514 0.516 0.197 0.005

(0.546) (0.561) (0.204) (0.005)

m 173 160.352 109.167 2.692

mb (147.437) (146.797) (132.094) (3.257)

ms (27.419) (66.203) (171.272) (4.223)

eb 75.983 69.405 45.941 1.133

(77.256) (70.914) (42.375) (1.045)

es 81.688 76.936 47.363 1.168

(129.918) (84.524) (119.959) (2.958)

PIN 0.300 0.296 0.067 0.002

(0.305) (0.299) (0.064) (0.002)

Table 96.2 Parameter summary statistics in Taiwan stock index market

Parameter Mean Median Standard deviation Median standard error

a 0.651 0.655 0.085 0.002

(0.658) (0.661) (0.074) (0.002)

d 0.517 0.520 0.115 0.003

(0.517) (0.517) (0.108) (0.003)

m 903,591 843,264 352,935 8,689

mb (892,352) (833,270) (356,513) (8,776)

ms (907,195) (838,015) (373,210) (9,187)

eb 579,489 536,094 219,850 5,412

(577,746) (535,663) (221,193) (5,445)

es 577,863 536,838 216,781 5,337

(574,816) (536,306) (215,968) (5,316)

PIN 0.334 0.332 0.047 0.001

(0.337) (0.334) (0.042) (0.001)
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Similarly, we achieve the parameters for the Taiwan stock index

ŷind ¼ â; d̂; m̂; êb; ês
� �

¼ 0:65; 0:52; 903591; 579489; 577863ð Þ and dPINind ¼
0:3343 for the case of the same mind, and meanwhile we obtain

ŷ
�
ind ¼ â; d̂; m̂b; m̂s; êb; ês

� �
¼ 0:66; 0:52; 892352; 907195; 577746; 574816ð Þ and

dPIN�
ind ¼ 0:3366 for the case of different arrival rates, mb

ind and ms
ind. There are

1,637 out of 1,650 days (99 %) that the value of mind is between mb
ind and ms

ind.

In Table 96.1, each parameter in the two models has a similar distribution,

except m and the arrival rate of uninformed sell orders, es, while in Table 96.2, there
is no such exception for the distribution of each parameter in the two models. The

PIN value estimated from each model is similar for both index futures and stock

index markets. The differential results of these two models may result from

volatile data or order imbalance between buys and sells. We observe that the

Taiwan index futures behave much more volatile than the Taiwan stock index.

The model of Easley et al. assumes a sole informed arrival rate for buys on a good-

event day and for sells on a bad-event day. The assumption might fit an individual

stock level better than a market level because information tends to be just good or

bad for an individual stock than for a market. Meanwhile, the model of Easley

et al. appears more appropriate for a stable or a less order imbalance market.

96.4.2 Application of PIN

Maturity effect may also play an information role in the market by helping the

market incorporate certain types of information into prices. In Table 96.3, PIN, as
derived from differential arrival rate of informed trades for index futures denoted

by pin(f) and stock index denoted by pin(s), is calculated to explore how they

Table 96.3 Asymmetry of maturity effect

Panel A. Volume effect

Dependent variables A/F 2000/10/24 B/F 2000/10/24 P-value

Rhat 1.5039 1.2485 0.0004

pin(f) 0.2960 0.2856 <0.0001

pin(s) 0.3290 0.3540 <0.0001

Panel B. Option introduction

Dependent variables A/F 2001/12/24 B/F 2001/12/24 P-value

Rhat 1.3697 1.2499 0.0364

pin(f) 0.2869 0.3075 <0.0001

pin(s) 0.3318 0.3359 <0.0001

This table compares sample split means using 5-min data. Rhat is the ratio of standard deviation for

index futures return over that for the spot index return calculated by sfut/sind. Panel A investigates the

day futures volume reached 10,000 contracts for the first time and Panel B examines the day options

were introduced to the market, respectively. Results reflect a testing period from March 1999 to

September 2005. P-values reflect the significance of the difference in means derived from t-tests
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evolve before and after the day index futures volume reached 10,000 contracts for

the first time and before and after the introduction of index futures options. Rhat is
the ratio of standard deviation for index futures return over standard deviation for

the spot index return. MacKinlay and Ramaswamy (1988) find that no arbitrage

implies equal volatility in the spot and futures markets. Therefore, the standard

deviation ratio Rhat should be one if arbitrage is tightly enforced. As shown in

Table 96.3, Rhat is generally higher than one for both markets indicating that

futures are more volatile than spot. In addition, Rhat increases after volume effect

and option introduction which signals market maturity. Increased pin(f) and

smaller pin(s) suggest volume effect facilitates price discovery in the futures

market, and this improvement seems to be switched from the spot market. Simi-

larly, reduced pin(f) and pin(s), in particular pin(f), indicate option introduction

induces much of the price discovery moved from the futures market to the option

market. The occurrence of price discovery in the option market may result from the

higher leverage trait of option trading.

96.5 Conclusion

The study focuses on comparing the estimation of probability of informed

trading for the model of Easley et al. and of our extension. The study introduces

mixtures of Poisson distribution, reports the evolution of PIN development,

summarizes the problems with PIN, and estimates PIN by EM algorithm. By

using Taiwan stock index and Taiwan index futures, this study examines the

distribution of the two model parameters and the price discovery effect before

and after futures volume effect and option introduction. The study finds PIN
calculated by Easley et al.’s model is similar to the PIN calculated by different

arrival rate of informed trading. This evidences Easley et al.’s simplified assump-

tion has no loss of generalization for obtaining PIN, whereas the assumption of

ours better fits volatile data and allows us to capture order imbalance of informed

trading.

Appendix 1: Poisson Mixtures

Generalized Poisson Mixtures

Poisson mixtures can be thought of as a generalization of two Poisson models where

the mixing parameter, a, is replaced with an arbitrary density function, f. The
density function f is intended to capture dependencies on hidden variables. The

general form of a Poisson mixture is

Pr xð Þ ¼
ð1

0

f oð Þp o; xð Þdo for x ¼ 0, 1, . . .
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where p is a Poisson

p o; kð Þ ¼ e�yok

k!
for k ¼ 0, 1, . . .

and f is an arbitrary density function. A density function should integrate to 1. That

is,

ð1

0

f oð Þdo ¼ 1.

Binomial Poisson Mixtures

We give an application of Poisson mixtures, e.g., binomial Poisson mixture as

follows:

Generate X1, X2,. . ., Xn, i.i.d. from

Pr Xi ¼ kð Þ ¼ 1� Pþ P
e�llk

k!
, k ¼ 0, 1, . . .

That is, the random variable Xi has a probability P of being from a Poisson

distribution with l > 0 and has a probability 1 � P of being zero, 0 < P < 1. When

k ¼ 0, it degenerates to a Poisson distribution. When k > 0, it is a binomial

1, otherwise 0.

Appendix 2: Estimation by EM Algorithm

To write a likelihood function by a framework of mixtures of Poisson distribution,

we define, for each i ∈ I, a vector Zi by Zi ¼ (Zi1, Zi2, Zi3) ¼ (1,0,0), (0,1,0), or

(0,0,1) depending if i has either no event, a good event, or a bad event, respectively.

X3
j¼1

Zi j ¼ 1, for each i:

M� ¼ Bi; Si; Zið ÞIi¼1 �
Y3
j¼1

P
Zij

j f
Zij

j Bi; Sið Þ, then

L yjBi, Si, Zið Þ �
Y3
j¼1

P
Zij

j f
Zij

j Bi; Sið Þ,

where P1 ¼ 1�a, P2 ¼ ad, P3 ¼ a(1 � d), P2 and P3 are independent, P1 ¼
1� P2 � P3, Zij, i is for date i, state j, and f

Zij

j equals 1 when Zij ¼ 0, while f
Zij

j is one

of Eqs. 96.3, 96.4, and 96.5 as Zij ¼ 1.
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Let V ¼ L yjM�ð Þ ¼
YI
i¼1

L yjBi, Sið , ZiÞ, then V B; S;Zð Þ �
YI
i¼1

Y3
j¼1

P
Zij

j f
Zij

j Bi; Sið Þ.

By taking logarithm and letting ‘ ¼ ln VjB, Sð Þ ¼
XI
i¼1

X3
j¼1

Zij lnPj þ Zij ln f j Bi; Sið Þ
n o

, we start to perform E-step of EM algorithm.

Assume

Q ¼ E ln VjB, Sð Þ ¼
XI
i¼1

X3
j¼1

E ZijjBi, Si
� �

lnPj þ E ZijjBi, Si
� �

ln f j Bi; Sið Þ
n o

,

(96.7)

where

E ZijjBi, Si
� � ¼ P Zij ¼ 1jBi, Si

� � ¼ P Zij ¼ 1,Bi ¼ b, Si ¼ s
� �

P Bi ¼ b, Si ¼ sð Þ

¼ Pj f j b; sð Þ
P1 f 1 b; sð Þ þ P2 f 2 b; sð Þ þ P3f 3 b; sð Þ :

Then r-step estimator is given by

Q ¼
XI
i¼1

X3
j¼1

Pjf j b; sð Þ
P1f 1 b; sð Þ þ P2f 2 b; sð Þ þ P3f 3 b; sð Þ lnPj

�

þ Pj f j b; sð Þ
P1 f 1 b; sð Þ þ P2 f 2 b; sð Þ þ P3f 3 b; sð Þ ln f j b; sð Þ

�

¼
XI
i¼1

X3
j¼1

a
rð Þ
ij lnP

rð Þ
j

þ C,

where a
rð Þ
ij ¼ P rð Þ

j
f rð Þ
j

b;sð Þ
P

rð Þ
1
f
rð Þ
1

b;sð ÞþP
rð Þ
2
f
rð Þ
2

b;sð ÞþP
rð Þ
3
f
rð Þ
3

b;sð Þ, and C is a constant.

The M-step is to maximize Q. We find the result of the first-order condition for

Pj is independent of j and the result is shown as follows:

∂Q
∂Pj

¼
XI
i¼1

a
rð Þ
ij

Pj
� a

rð Þ
i1

P1

 !
¼ 0, then

XI
i¼1

a
rð Þ
ij

Pj
¼
XI
i¼1

a
rð Þ
i1

P1

¼ d, where d is a constant

XI
i¼1

a
rð Þ
ij ¼ dPj,8j ¼ 1, 2, 3:
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Since
X3
j¼1

Pj ¼ 1, and
X3
j¼1

a
rð Þ
ij ¼ 1, we obtain

XI
i¼1

a
rð Þ
ij ¼ I and dPj¼ d and solve

Pj ¼ 1

I

XI
i¼1

a
rð Þ
ij ,8j ¼ 1, 2, 3: (96.8)

Applying EM algorithm in the estimation of PIN, we can simplify the estimation

procedure as the following steps:

1. A naı̈ve guess (or estimation) for initials of parameters, e.g., Pj
(0), eb

(0), es
(0), m(0)

2. Apply r-step Pj
(r), eb

(r), es
(r), m(r) into

E Z rð Þ
ij
jB, S

� �
¼

P rð Þ
j
f rð Þ
j

Bi; Sið Þ
P rð Þ

1
f rð Þ
1

Bi; Sið Þ þ P rð Þ
2
f rð Þ
2

Bi; Sið Þ þ P rð Þ
3
f rð Þ
3

Bi; Sið Þ ¼ a
rð Þ
ij :

3. After step (2), the function becomes complete-data MLE. We maximize like-

lihood function Q to estimate five parameters, P1
(r), P2

(r), eb
(r), es

(r), and m(r), and
derive Pj

(r + 1) and Zij
(r + 1). We obtain

P
rþ1ð Þ
j ¼ 1

I

XI
i¼1

a
rð Þ
ij

and

Z
rþ1ð Þ
ij ¼ P

rþ1ð Þ
j f

rð Þ
J Bi; Sið Þ

P
rþ1ð Þ
1 f

rð Þ
1 Bi; Sið Þ þ P

rþ1ð Þ
2 f

rð Þ
2 Bi; Sið Þ þ P

rþ1ð Þ
3 f

rð Þ
3 Bi; Sið Þ

: (96.9)

Numerical Example

Below are the results by using real data. An initial naı̈ve guess for (P1
(0),P2

(0),

P3
(0),eb

(0),es
(0),m(0)) ¼ (0.3, 0.4, 0.3, 1, 1, 1) when buys, Bi ¼ 193 and sells,

Si ¼ 179 during a 5-min interval. By Eqs. 96.3, 96.4, and 96.5, we calculate the

following:

f
0ð Þ
1 Bi; Sið Þ ¼ e�eb e

B
b

Bi!
e�es e

S
s

Si!
¼ e�1 � 1� e�1 � 1

193!� 179!
,

f
0ð Þ
2 Bi; Sið Þ ¼ e�eb e

B
b

Bi!
e� mþesð Þ mþ esð ÞS

Si!
¼ e�1 � 1� e�2 � 2

193!� 179!

f
0ð Þ
3 Bi; Sið Þ ¼ e� mþebð Þ mþ ebð ÞB

Bi!
e�es e

S
s

Si!
¼ e�2 � 2� e�1 � 1

193!� 179!
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and

a
0ð Þ
i1 ¼ Z 0ð Þ

i1
¼ 0:3� f

0ð Þ
1 Bi; Sið Þ

0:3� f
0ð Þ
1 þ 0:4� f

0ð Þ
2 þ 0:3� f

0ð Þ
3

a
0ð Þ
i2 ¼ Z 0ð Þ

i2
¼ 0:4� f

0ð Þ
2 Bi; Sið Þ

0:3� f
0ð Þ
1 þ 0:4� f

0ð Þ
2 þ 0:3� f

0ð Þ
3

a
0ð Þ
i3 ¼ Z 0ð Þ

i3
¼ 0:3� f

0ð Þ
3 Bi; Sið Þ

0:3� f
0ð Þ
1 þ 0:4� f

0ð Þ
2 þ 0:3� f

0ð Þ
3

:

Hence,

P
1ð Þ
1 ¼ 1

I

XI
i¼1

a
0ð Þ
i1 ,P

1ð Þ
2 ¼ 1

I

XI
i¼1

a
0ð Þ
i2 ,P

1ð Þ
3 ¼ 1

I

XI
i¼1

a
0ð Þ
i3 :

By Eq. 96.9, we obtain

Z
1ð Þ
i1 ¼ P

1ð Þ
1 f

0ð Þ
1 Bi; Sið Þ

P
1ð Þ
1 f

0ð Þ
1 Bi; Sið Þ þ P

1ð Þ
2 f

0ð Þ
2 Bi; Sið Þ þ P

1ð Þ
3 f

0ð Þ
3 Bi; Sið Þ

Z
1ð Þ
i2 ¼ P

1ð Þ
2 f

0ð Þ
2 Bi; Sið Þ

P
1ð Þ
1 f

0ð Þ
1 Bi; Sið Þ þ P

1ð Þ
2 f

0ð Þ
2 Bi; Sið Þ þ P

1ð Þ
3 f

0ð Þ
3 Bi; Sið Þ

Z
1ð Þ
i3 ¼ P

1ð Þ
3 f

0ð Þ
3 Bi; Sið Þ

P
1ð Þ
1 f

0ð Þ
1 Bi; Sið Þ þ P

1ð Þ
2 f

0ð Þ
2 Bi; Sið Þ þ P

1ð Þ
3 f

0ð Þ
3 Bi; Sið Þ

The complete-data MLE becomes

G ¼ lnV ¼
XI
i¼1

X3
j¼1

Zijln Pj þ Zijln f j Bi; Sið Þ
n o

:

When the observed data consists of complete pairs, we derive a set of equations

for maximum likelihood estimation. The first-order condition is

∂G
∂Pj

¼
XI
i¼1

Zij

Pj
¼ 0, 8j ¼ 1, 2, 3:

If j ¼ 3, then ∂G
∂P3

¼ 0, and P3 ¼ 1
I

XI
i¼1

Zi3

If j ¼ 2, then ∂G
∂P2

¼ 0, and P2 ¼ 1
I

XI
i¼1

Zi2

If j ¼ 1, then P1 ¼ 1� 1
I

XI
i¼1

Zi3 � 1
I

XI
i¼1

Zi3.
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To solve eb, the first-order condition is

∂Q
∂eb

¼
XI
i¼1

Zi1
∂ln f 1
∂eb

þ Zi2
∂ln f 2
∂eb

þ Zi3
∂ln f 3
∂eb

� 	
¼ 0 (96.10)

where

ln f 1 ¼ �eb þ Bi ln eb � ln Bi!ð Þ � es þ Si ln eS � ln Si!ð Þ,
ln f 2 ¼ �eb þ Bi ln eb � ln Bi!ð Þ � mþ esð Þ þ Si ln mþ eSð Þ � ln Si!ð Þ,
ln f 3 ¼ � mþ ebð Þ þ Bi ln mþ ebð Þ � ln Bi!ð Þ � es þ SilneS � ln Si!ð Þ:

We then rewrite Eq. 96.10 as

XI
i¼1

Zi1 �1þ Bi

eb

� 	
þ Zi2 �1þ Bi

eb

� 	
þ Zi3 �1þ Bi

mþ eb

� 	� 	
¼ 0

and then reorganize it to

XI
i¼1

Zi1 þ Zi2 þ Zi3ð Þ ¼
XI
i¼1

Zi1Bi þ Zi2Bi

eb
þ Zi3Bi

mþ eb

� 	
:

Since
XI
i¼1

Zi1 þ Zi2 þ Zi3ð Þ ¼ I and
XI
i¼1

Zi1Bi þ Zi2Bi

eb
þ Zi3Bi

mþ eb

� 	
¼ abxb þ bbyb,

we simplify the equation to

I ¼ abxb þ bbyb, . . . ið Þ

where xb ¼ 1

eb
, yb ¼

1

mþ eb
:

In a similar way, we can attain

∂Q
∂es

¼
XI
i¼1

Zi1
∂ln f 1
∂es

þ Zi2
∂ln f 2
∂es

þ Zi3
∂ln f 3
∂es

� 	
¼ 0:

I ¼ asxs þ bsys, . . . iið Þ
where xs ¼ 1

es
, ys ¼

1

mþ es
:

∂Q
∂m

¼
XI
i¼1

Zi1
∂ln f 1
∂m

þ Zi2
∂ln f 2
∂m

þ Zi3
∂ln f 3
∂m

� 	
¼ 0,

I �
XI
i¼1

Zi1 ¼ bsys þ bbyb:
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By substitute bbyb and bsys from equations (i) and (ii),

XI
i¼1

Zi1 þ I ¼ asxs þ ab xb, . . . iiið Þ:

We can rewrite xb, yb, and ys to

xb ¼

XI
i¼1

Zi1 þ I � asxs

ab
, yb ¼

asxs �
XI
i¼1

Zi1

bb
, and ys ¼

I � asxs
bs

:

To solve four variables, we need four equations. We hence artificially develop

equation (iv), substitute xb, yb, and ys to

1

yb
� 1

xb
¼ 1

ys
� 1

xs
. . . ivð Þ

and organize equation (iv) into

bb

asxs �
XI
i¼1

Zi1

� ab
XI
i¼1

Zi1 þ I� asxs

¼ bs
I� asxs

� 1

xs
:

Finally, we mathematically process fractions to a common denominator and

achieve a function:

f xð Þ ¼ a3x
3
s � a2x

2
s þ a1xs � a0

where

a3 ¼ aba
2
s þ a3s þ a2s bs þ a2s bs,

a2 ¼ abasI þ 2a2s I þ 2asbbI þ asbsI þ abas
XI
i¼1

Zi1 þ 2a2s
XI
i¼1

Zi1 þ asbb
XI
i¼1

Zi1

þ 2asbs
XI
i¼1

Zi1,

a1 ¼ asI
2 þ abI

XI
i¼1

Zi1 þ 3asI
XI
i¼1

Zi1 þ bsI
XI
i¼1

Zi1 þ asð
XI
i¼1

Zi1

�
2 þ bs

XI
i¼1

Zi1

 !2

þ bbI
2 þ bbI

XI
i¼1

Zi1,

a0 ¼ I2
XI
i¼1

Zi1 þ Ið
XI
i¼1

Zi1

�
2:

(96.11)
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Numerical Analysis Method

To solve xs in Eq. 96.11, we employ Newton’s method. In numerical analysis,

Newton’s method (also known as the Newton–Raphson method) is a method for

finding successively superior approximations to the roots of a real-valued function.4

The Newton–Raphson method for our case is implemented as follows.

Given our function f(x) defined over the real xs and its derivative f
0(xs), we begin

with a first guess xs
(0) for a root of the function f(xs). Provided that the function is

reasonably well behaved, a better approximation xs
(1) is

x 1ð Þ
s ¼ x 0ð Þ

s �
f x

0ð Þ
s

� �

f
0
x

0ð Þ
s

� � :

Geometrically, (xs
(1), 0) is the intersection with the x-axis of a line tangent to f at

(xs
(0), f(xs

(0))).

The process is repeated as

x nþ1ð Þ
s ¼ x nð Þ

s �
f x

nð Þ
s

� �

f
0
x

nð Þ
s

� �

until a sufficiently accurate value is reached.

The Precision of Parameter Estimation

Information on m, eb, es accumulates at a rate approximately equal to the square root

of the number of trade outcomes. On the other hand, information on a and d
accumulates at a rate approximately equal to the square root of the number of

trading days. The difference in information accumulation rates dictates that the

precision of m, eb, es will exceed that of a and d estimates.

Different m (mb, ms) Case

As shown in Eq. 96.2, the arrival rate of informed buyers differs from that of

informed sellers. For our model, Eqs. 96.4 and 96.5 are rewritten as

f 2 ¼ e�eb e
B
b

Bi!
e� msþ esð Þ ms þ esð ÞS

Si!
(96.4*)

4Newton’s method can also be extended to complex functions and to systems of equations.

2616 E. Lin and C.-F. Lee



f 3 ¼ e� mbþ ebð Þ mb þ ebð ÞB
Bi!

e�es e
S
s

Si!
(96.5*)

The parameters are estimated jointly. The empirical work of our case is

discussed in Chang and Lin (2014). We estimate the rate of informed and

uninformed trading on a particular day for index futures and spot markets, as well

as of the information event structure.

The logarithm of f1 remains the same, but those of f2 and f3 change to

ln f 2 ¼ �eb þ Bi ln eb � ln Bi!ð Þ � ms þ esð Þ þ Si ln ms þ esð Þ � ln Si!ð Þ,
ln f 3 ¼ � mb þ ebð Þ þ Bi ln mb þ ebð Þ � ln Bi!ð Þ � es þ Si ln eS � ln Si!ð Þ,

We use the same method for same m case to estimate eb, es, mb, and ms. We find it

easier to estimate y* ¼ (a, d, mb, ms, eb, es) than y ¼ (a, d, m, eb, es) because there is
one more condition for the case of different m. The details of the estimation are

shown as

∂Q
∂eb

¼
XI
i¼1

Zi1
∂ln f 1
∂eb

þ Zi2
∂ln f 2
∂eb

þ Zi3
∂ln f 3
∂eb

� 	
¼ 0

I ¼ abxb þ bbyb, . . . vð Þ
where xb ¼ 1

eb
, yb ¼

1

mb þ eb

∂Q
∂es

¼
XI
i¼1

Zi1
∂ln f 1
∂es

þ Zi2
∂ln f 2
∂es

þ Zi3
∂ln f 3
∂es

� 	
¼ 0

I ¼ asxs þ bsys, . . . við Þ
where xs ¼ 1

es
, ys ¼

1

ms þ es

∂Q
∂mb

¼
XI
i¼1

Zi1
∂ln f 1
∂mb

þ Zi2
∂ln f 2
∂mb

þ Zi3
∂ln f 3
∂mb

� 	
¼ 0

XI
i¼1

Zi3 ¼ bbyb, . . . viið Þ

where yb ¼
1

mb þ eb

∂Q
∂ms

¼
XI
i¼1

Zi1
∂ln f 1
∂ms

þ Zi2
∂ln f 2
∂ms

þ Zi3
∂ln f 3
∂ms

� 	
¼ 0

XI
i¼1

Zi3 ¼ bsys; . . . viiið Þ

where ys ¼
1

ms þ es
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We can solve xb, xs, yb, and ys from the following equations:

I ¼ abxb þ bbyb, . . . vð Þ
I ¼ asxs þ bsys, . . . við Þ
XI
i¼1

Zi3 ¼ bbyb, . . . viið Þ
XI
i¼1

Zi2 ¼ bsys: . . . viiið Þ

From (vii), yb ¼

XI
i¼1

Zi3

bb
, xb ¼

I�
XI
i¼1

Zi3

ab
, then eb ¼ ab

I�
XI
i¼1

Zi3

,mb ¼ bbXI
i¼1

Zi3

� eb.

From (viii), ys ¼

XI
i¼1

Zi2

bs
, xs ¼

I�
XI
i¼1

Zi2

as
, then es ¼ as

I�
XI
i¼1

Zi2

,ms ¼ bsXI
i¼1

Zi2

� es.

Based on these parameters, we are ready to calculate Easley et al.’s probability

of informed trading, PIN ¼ am
amþestþeb

and our revised PIN� ¼ a djmsjþ 1�dð Þjmbjð Þ
a djmsjþ 1�dð Þjmbjð Þþesþeb

.
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In this study, we investigate the relations between CEO stock options and

analysts’ earnings forecast accuracy and bias. We argue that a higher level of
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and/or reallocate their effort, and to possibly engage in gaming (such as

opportunistic earnings and disclosure management) and hypothesize that these

managerial behaviors will result in an increase in the complexity of

forecasting and, hence, in less accurate analysts’ forecasts. We also posit that

analysts’ optimistic forecast bias will increase as the level of stock options pay

increases. We reason that as forecast complexity increases with stock options

pay, analysts, needing greater access to management’s information to produce

accurate forecasts, have incentives to increase the optimistic bias in their

forecasts. Alternatively, a higher level of stock options pay may lead to

improved disclosure because it better aligns managers’ and shareholders’ inter-

ests. The improved disclosure, in turn, may result in more accurate and less

biased analysts’ forecasts.

Using ordinary least squares estimation, we test these hypotheses relating the

level of CEO stock options pay to analysts’ forecast accuracy and bias on

a sample of firms from the Standard & Poor’s ExecuComp database over the

period 1993–2003. Our OLS models relate forecast accuracy and forecast

bias (the dependent variables) to CEO stock options (the independent variable)

and controls for earnings characteristics, firm characteristics, and forecast

characteristics. We measure forecast accuracy as negative one times the

absolute value of the difference between forecasted and actual earnings scaled

by beginning of period stock price and forecast bias as forecasted minus actual

earnings scaled by beginning of period stock price. We control for differences in

earnings characteristics by including earnings volatility, whether the firm

has a loss, and earnings surprise; for differences in firm characteristics by

including firm size, growth (measured as book-to-market ratio, percentage

change in total assets, and percentage change in annual sales), and corporate

governance quality (measured as percentage of shares outstanding owned by the

CEO, whether the CEO is also chairman of the board of directors, number of

annual board meetings, and whether directors are awarded stock options); and

for differences in forecast characteristics by including analyst following and

analyst forecast dispersion. In addition, the models include controls for industry

and year. We use four measures of options: new options, existing exercisable

options, existing unexercisable options, and total options (sum of the previous

three), all scaled by total number of shares outstanding, and estimate two

models for each dependent variable, one including total options and the other

including new options, existing exercisable options, and existing unexercisable

options. We also use both contemporaneous as well as lagged values of options

in our main tests.

Our results indicate that analysts’ earnings forecast accuracy decreases and

forecast optimism increases as the level of stock options (particularly new

options and existing exercisable options) in CEO pay increases. These findings

suggest that the incentive alignment effects of stock options are more than

offset by the investment, effort allocation, and gaming incentives induced by

stock options grants to CEOs. Given that analysts’ forecasts are an important

source of information to capital markets, our finding of a decline in the quality of
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the information provided by analysts has implications for the level and variabil-

ity of stock prices. It also has implications for information asymmetry and cost

of capital, as well as for valuation models that rely on analysts’ earnings

forecasts.

Keywords

CEO stock options • Analysts’ forecast accuracy • Analysts’ forecast bias • CEO

compensation • Agency costs • Investment risk taking • Effort allocation •

Opportunistic earnings management • Opportunistic disclosure management •

Forecasting complexity

97.1 Introduction

Firms grant equity incentives such as stock pay, restricted stock, and stock options

to create incentives for executives to make decisions that benefit shareholders.1 By

linking executive compensation to shareholder wealth, stock options purportedly

help reduce agency costs that arise from the separation of ownership and control in

corporations. Over the last decade, stock options have become an increasingly

larger component of executive compensation. Most large firms compensate their

top executives through stock options which, on a Black-Scholes valuation basis,

now represent the largest single component of managerial pay (Murphy 1999; Hall

and Murphy 2003).

Several studies have examined the economic implications of stock options

and other forms of equity compensation. Much of that research has focused on

the relation between stock options compensation and firm performance

(Core et al. 1999; Guay 1999; Hanlon et al. 2003; Lam and Chng 2006; Bauman

and Shaw 2006), on the link between stock options and investment decisions (Smith

and Watts 1992; Bizjak et al. 1993), and on the relation between stock options

and dividend policy and dividend yield (Lambert et al. 1989; Atan et al. 2010).

Other research has examined whether stock options and other equity-based

compensation induce managers to increase short-term stock price through earnings

management (Bartov and Mohanram 2004; Cheng and Warfield 2005; Cao and

Laksmana 2010).2 Efendi et al. (2007) provide evidence that the amount of stock

options in-the-money is the most influential factor affecting the likelihood of

a misstatement. Bergstresser and Philippon (2006) document that managers with

a large proportion of stock and options holdings are more likely to use discretionary

accruals to manipulate earnings. Chen (2002) finds a negative relationship between

incentive compensation and stock ownership held by outside directors.

1Other reasons for granting stock options are to attract and retain executives, to conserve cash,

to reduce reported accounting expense, and to defer taxes.
2Although there is evidence relating earnings management to stock options compensation, little is

known about whether this earnings management actually results in higher payouts or about its

effect on other goals of the firm.
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The purpose of this study is to examine the implications of executive stock

options compensation for the accuracy of and bias in analysts’ earnings forecasts.

Prior research has studied the links between stock options compensation and

earnings/disclosure management and between disclosure quality/forecast complex-

ity and analysts’ forecast properties. However, it has not directly examined the link

between stock options compensation and analysts’ forecast accuracy and bias. Our

study provides a direct test of this link. One contribution of our study is that it

provides a triangulation of the relationships observed in prior research. If financial

intermediaries such as analysts can see through the incentives for manipulation by

managers with large stock options grants, then the quality of the information will

not be affected. However, if analysts cannot see through this manipulation, it will

affect the accuracy and bias of their forecasts, and, hence, it becomes an important

issue. In this regard, it validates those findings by empirically documenting the

relation between stock options compensation and the quality of analysts’ earnings

forecasts (a common proxy for a firm’s information environment).

Higher levels of stock options may induce managers to undertake riskier

projects, to change and/or reallocate their effort, and to possibly engage in gaming

(such as opportunistic earnings and disclosure management). Consequently, the

forecasting task will be more complex as the proportion of stock options compen-

sation increases, leading to less accurate forecasts. While the above reasoning

suggests that forecast accuracy may decrease as the level of stock options in CEO

pay increases, higher stock options pay may also result in increased accuracy if it

better aligns managers’ and shareholders’ interests. Hanlon et al. (2003) report an

increase in future operating earnings associated with past stock options grants,

providing empirical support for improved incentive alignment. Better incentive

alignment likely improves managers’ disclosures which, in turn, may lead to more

accurate forecasts.

Analysts’ compensation and reputation are, to a large extent, dependent on the

accuracy of their forecasts. They can improve the accuracy of their forecasts if they

have access to management’s private information.3 Such access becomes even

more valuable as the difficulty of the forecasting task increases. Analysts can

increase access to management’s private information by developing better relations

with management. One way of accomplishing this is by making optimistic

forecasts. In so doing, analysts trade off forecast bias for improved accuracy.

If forecasting difficulty increases with the level of stock options in CEO pay, then

so will the optimistic bias in analysts’ earnings forecasts. Alternatively, the

improved management disclosures resulting from the increased incentive alignment

effects of stock options may lead to less biased forecasts.

We present empirical evidence on the relation between the level of stock

options in CEO pay and the accuracy and bias of analysts’ earnings forecasts for

firms in the Standard & Poor’s ExecuComp database over the period 1993–2003.

3Ke and Yu (2006) and Chen and Matsumoto (2006) are examples of recent research on analysts’

incentives for access to management, i.e., the management relations hypothesis.
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We estimate the relations between the level of CEO stock options pay and

analysts’ forecast accuracy and bias using ordinary least squares estimation. We

use four measures of options: new options, existing exercisable options, existing

unexercisable options, and total options (sum of the previous three) all scaled by

total number of shares outstanding. We estimate two models, one including total

options and the other including new options, existing exercisable options, and

existing unexercisable options. We also use both contemporaneous as well as

lagged values of options in our main tests. Our results indicate that analysts’

earnings forecast accuracy decreases and forecast optimism increases as the level

of stock options (particularly for new options and existing exercisable options) in

CEO pay increases. These findings suggest that the incentive alignment effects of

stock options are more than offset by the investment, effort allocation, and gaming

incentives induced by stock options grants to CEOs.

While stock options may help companies attract, retain, and motivate

executives, they also have associated costs. Hall and Murphy (2003) indicate that

stock options may be an inefficient form of compensation because the value to

recipients who are undiversified and risk averse, and who neither can sell nor

hedge against their risk, is less than the cost to the firm. Consequently, options

are a costly form of compensation relative to cash or stock compensation.

We document a decrease in the quality of analysts’ earnings forecasts as the level

of stock options in CEO pay increases. Given that analysts’ forecasts are

an important source of information to capital markets, a decline in the quality

of the information provided by analysts has implications for the level and

variability of stock prices. It also has implications for information asymmetry and

cost of capital.

Our findings also have implications for investors, academics, and other users

of financial analysts’ forecasts. Because analysts’ forecasts serve as

expectations of a firm’s future prospects, they play an important role in firm

valuation. Analysts’ forecasts are also commonly used as measures of the

market’s earnings expectations in studies that investigate the relation between

earnings and stock returns and changes in analysts’ forecasts are related to

stock returns (Givoly and Lakonishok 1979; Imhoff and Lobo 1984; Stickel

1991; Barber et al. 2001; Jegadeesh et al. 2004). Furthermore, earnings forecasts

serve as inputs to other research outputs such as stock recommendations (Loh and

Mian 2006), target price forecasts (Bandyopadhyay et al. 1995), valuation

models (Frankel and Lee 1998), and growth and return on equity investment

models (Easton et al. 2002). By identifying the relations between the level of

stock options in CEO pay and forecast accuracy and bias, our study provides

investors, researchers, and other users with an ex ante indicator of the accuracy of

analysts’ forecasts.

The rest of this paper is organized as follows. Section 97.2 develops the

research hypotheses, and Sect. 97.3 describes the sample selection and

research design. Section 97.4 presents the results of the empirical analysis.

Section 97.5 reports the results of sensitivity tests, and Sect. 97.6 contains the

conclusions of the study.
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97.2 Hypotheses

97.2.1 CEO Stock Options and Forecast Accuracy

An increase in stock options pay to CEOs may increase the complexity of the

forecasting task for several reasons. First, the convex payoffs from options

may induce otherwise risk-averse managers to undertake riskier projects going

forward (Murphy 2003; Ross 2004). Theoretical models (Smith and Stulz 1985;

Smith and Watts 1992; Bizjak et al. 1993) demonstrate that, because managers’

investment decisions are particularly difficult to monitor, firms with substantial

investment opportunities tend to encourage higher investment activities by aligning

the interests of managers and shareholders through stock options grants.

Consistent with this notion, Rajgopal and Shevlin (2002) find empirical evidence

linking executive stock options and exploration risks in the oil and gas industry.

Relatedly, Guay (1999) documents that equity risk is positively related to the

convexity in executives’ compensation schemes. These results are consistent with

stock options providing managers with incentives to mitigate risk-related incentive

problems.

Second, the incentive effect of stock options is to motivate managers to exert

higher effort. Such contributions will translate into higher performance in both

the current and future periods. Managers exert effort in multiple dimensions

(Banker and Datar 1989; Holmstrom and Milgrom 1991). With new incentives,

managers may also reallocate their effort contributions in addition to exerting

higher effort. Stock options grants may induce managers to reallocate their effort

mix from short-term effort that focuses more on improving current performance to

long-term (or strategic) effort that places more emphasis on improving future

performance (Bushman and Indjejikian 1993; Feltham and Xie 1994). To the extent

that managers were short-term oriented prior to receiving stock options grants,

the reallocation of effort mix could have a negative impact on current performance.

The extent of this potential effect on current performance cannot be easily

gauged because the reallocation of effort mix is not directly observable or

predictable. This, in turn, may result in an increase in forecasting complexity.4

Third, managers with higher levels of stock options may engage in higher levels

of gaming (Hall 2003). This gaming behavior can take many forms including

opportunistic earnings and disclosure management. Lambert (2001) points out

that earnings management strategies will be influenced by the shape of the com-

pensation contract (i.e., whether it is linear, concave, or convex in a given region).

An increase in stock options pay relative to cash compensation will increase

the convexity of the compensation contract and result in increased incentives for

earnings management that is anti-smoothing in nature. Consequently, managers

4Furthermore, Feltham and Xie (1994) show that, if there are multiple tasks and multiple public

signals that are influenced by the manager’s action, it is unlikely that the market price provides an

efficient single performance measure. Therefore, overly relying on stock-based compensation may

lead to incongruent behavior by CEOs, further increasing the difficulty of the forecasting task.
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may increase their current earnings when earnings are high and reduce their current

earnings when earnings are low. Such behavior will directly contribute to an

increase in earnings volatility. Bartov and Mohanram (2004) provide

evidence consistent with the above argument. They document that managers inflate

earnings through accruals management in the period leading up to abnormally large

stock options exercises. Other research has examined whether stock options and

other equity-based compensation induce managers to engage in high levels of

earnings management. For example, Cheng and Warfield (2005) document

that managers with high equity incentives are more likely to manage earnings in

order to boost stock price, and that this earnings management, in turn,

increases personal gains from executives’ insider trading. Bergstresser and

Philippon (2006) also report that managers with a large proportion of stock and

options holdings are more likely to use discretionary accruals to manipulate

earnings.5

Another form of gaming could be voluntary disclosure management. Prior

research (e.g., Yermack 1997; Aboody and Kaznik 2000) shows that the timing

of corporate voluntary disclosures is related to the granting of stock options.

Aboody and Kaznik (2000) observe that CEOs who receive their options before

earnings are announced are significantly more likely to issue bad news forecasts and

less likely to issue good news forecasts than are CEOs who receive their awards

after the earnings announcement.6 They also find that management forecasts issued

during the 3 months prior to scheduled awards are significantly less optimistically

biased than forecasts issued for the same firms during other months. Because

managers receiving stock options employ such opportunistic disclosure strategies,

the complexity of the forecasting task increases as stock options pay increases. This

is especially true when CEOs get multiple stock options grants during the same

fiscal year.

The above arguments suggest that an increase in the level of stock options in

CEO compensation likely increases the difficulty of forecasting, resulting in less

accurate forecasts. However, recent research provides evidence suggesting that

stock options can improve the alignment between managers’ and shareholders’

interests. Hanlon et al. (2003) examine whether stock options granted to the top five

executives are related to future operating earnings. Their results indicate that each

5However, in related research, Hribar and Nichols (2007) provide evidence that not controlling for

operating volatility increases the risk of over-rejecting the null hypothesis of no earnings

management.
6Although Aboody and Kaznik (2000) study only fixed schedule awards, we argue that the

incentive to maximize the stock options pay by manipulating the stock price at the grant date is

present for all stock options awards, and that the incentive is especially strong for firms that make

multiple grants in a given year. We note that a large number of our sample firms made multiple

grants in the same fiscal year thus increasing this incentive. It is also interesting to note that the

stock options award dates are generally not publicly known until the issue of proxy statements

which are available only 2–3 months after the fiscal year-end (Yermack 1997).
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dollar of stock options granted is associated with more than one dollar of future

operating earnings over the next 5 years.

Cheng and Warfield (2005) examine the link between stock options and

stock ownership and earnings management. They provide evidence that

managers with high equity incentives (stock options and stock ownership) are

more likely to provide reported earnings meeting or just beating analysts’ forecasts

and are less likely to report large positive earnings surprises, suggesting that

stock options motivate types of earnings management that might increase forecast

accuracy.

Given that the literature provides mixed evidence, we present our hypothesis in

null form:

H1 Analysts’ earnings forecast accuracy is unrelated to the level of stock options in

CEO pay.

The alternate hypothesis is that earnings forecast accuracy is either posi-

tively or negatively related to the level of stock options in CEO pay.

Given that the alternate hypothesis is nondirectional, we test H1 using a

two-tailed test.

97.2.2 CEO Stock Options and Forecast Bias

Lim (2001) presents a model demonstrating that statistically optimal forecasts, in

terms of mean squared error, may be positively and predictably biased. In this

model, analysts trade off forecast bias for forecast accuracy. Analysts have incen-

tives to provide accurate forecasts in order to increase their compensation and

market value. They need access to management’s private information to improve

their forecast accuracy. Consequently, they have to maintain favorable relations

with management to ensure that they have access to such information. One way of

accomplishing this is by issuing optimistically biased forecasts. Although forecast

bias by itself is not desirable, analysts can increase their forecast accuracy by

incorporating in their forecasts the private information that management

makes available to them as a reward for their forecast optimism. And, because

access to management’s private information is more valuable when firms’ earnings

are less predictable, analysts have greater incentives to issue optimistic forecasts for

such firms.

Lim (2001) and Das et al. (1998) provide empirical evidence that analysts’

forecasts are more optimistically biased when earnings are less predictable and

the forecasting task is more complex. Recent examples of research supporting the

management relations hypothesis include Chen and Matsumoto (2006) and Ke and

Yu (2006). Chen and Matsumoto (2006) find that analysts issuing more

favorable recommendations experience a greater increase in their relative forecast

accuracy compared with analysts who issue less favorable recommendations. Ke

and Yu (2006) document that analysts produce more accurate forecasts and are less
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likely to be fired by their employers when they issue initial optimistic earnings

forecasts.

A higher level of CEO stock options pay may increase the forecasting

complexity because it may induce managers to undertake riskier investments, to

change/reallocate their effort, to manipulate accounting earnings, and to issue

opportunistic voluntary disclosures. Therefore, we expect analysts’ optimistic

forecast bias to increase as the level of stock options in CEO pay increases.

However, as discussed in the previous section, there is also evidence suggesting

that stock options can align the incentives of management and shareholders

(see, e.g., Hanlon et al. 2003), which, in turn, may lead to better disclosure and

less optimistic bias. Accordingly, we provide the following hypothesis stated in null

form:

H2 Analysts’ optimistic earnings forecast bias is unrelated to the level of stock

options in CEO pay.

The alternate hypothesis is that earnings forecast bias either increases or

decreases with the level of stock options in CEO pay. Given that the alternate

hypothesis is nondirectional, we test H2 using a two-tailed test.

97.3 Data Description and Research Design

97.3.1 Sample Selection

Our sample comprises firms with data available in the ExecuComp, I/B/E/S, and

Compustat databases for the period 1993–2003. We exclude financial institutions

and agricultural firms7 and observations for which the CEOs are not identified in

ExecuComp. These selection criteria result in an initial sample of 6,272 firm-year

observations.

We obtain compensation data from ExecuComp, earnings forecasts, actual

earnings, and stock prices from I/B/E/S. I/B/E/S forecasts generally exclude

extraordinary and other special items. By using forecast and actual earnings from

I/B/E/S, we ensure greater consistency between these two variables (Philbrick and

Ricks 1991). We test our hypotheses using forecasts made 9 months before the

earnings announcement.8 We obtain other required financial data from Compustat.

7To be consistent with the prior literature on executive pay (Core et al. 1999; Hanlon et al. 2003),

we omit financial institutions and agricultural companies. However, for completeness, we also

conducted the analysis with these companies included in the sample. Our main conclusions are

unaffected by this inclusion.
8We repeat all our analyses using 3-month-ahead forecasts to examine the robustness of our results

to the forecast horizon. Most results for the 3-month forecasts mirror those presented for the

9-month forecasts.
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Additionally, we require firms to have stock prices greater than one dollar to avoid

the small deflator problem, to have at least three analysts’ forecasts available to

obtain a reliable estimate of forecast dispersion, and to have total CEO pay of at

least one million dollars to avoid including firms that have low CEO incentives.

These restrictions, along with deletion of observations with values in the top and

bottom 1 % of the variables used in the regressions, result in 4,433 firm-year

observations for the 9-month-ahead forecast accuracy tests and 4,279 firm-year

observations for the 9-month-ahead forecast bias tests.9 Table 97.1 summarizes our

sample selection criteria.

97.3.2 Variable Measurement

97.3.2.1 CEO Options (OPTIONS)
We measure the level of CEO options pay (OPTIONS) as the ratio of the number of

options to total number of shares outstanding. This is consistent with the measure

employed by Cheng and Warfield (2005). It is a simple parsimonious variable

that measures the relative proportion of stock options in a CEO’s compensation

for a particular year. We use four measures of CEO options: new options,

existing exercisable options, existing unexercisable options, and total options

(sum of the previous three), all scaled by total number of shares outstanding.

We also use both contemporaneous as well as lagged values of OPTIONS in our

main tests.10

97.3.2.2 Forecast Accuracy (ACCURACY)
We measure forecast accuracy for the 9-month-ahead forecast as minus one times

the absolute value of the deviation of the mean EPS forecast from the actual EPS for

Table 97.1 Sample selection procedure

Total firm-year observations on ExecuComp data for years 1993–2003, where the CEO is

identified and without financial and agricultural firms

11,016

Less: Observations lost when merging with I/B/E/S data (4,744)

Subtotal 6,272

Less: Observations with total compensation less than $1 million (718)

Subtotal 5,554

Less: Observations with missing financial data (553)

Less: Deletion of extreme values and other restrictions (568)

Final sample for tests on forecast accuracy 4,433

9The sample firms represent a variety of industries, with the largest representation being retail

(8 %), electronic equipment (6.7 %), business services (5.3 %), and telecommunications (6 %).
10As a sensitivity check, when using lagged OPTIONS, we delete observations that have a new

CEO in the current year. Our main results are robust to deletion of these observations.
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that year divided by stock price at the forecast date. This measure increases with

forecast accuracy and is defined as

ACCURACYit ¼ �1ð Þ � FEPSt�1
it � AEPSit

�� ��
Pi, t�1

(97.1)

where, for firm i, ACCURACYt is minus one times the absolute forecast

error at time t, FEPSt�1
t is the mean EPS forecast from I/B/E/S for year t made at

time t � 1 (i.e., 9 months prior to the fiscal year-end), AEPSt is the actual earnings

per share obtained from I/B/E/S, and Pt�1 is the stock price at the time of the

forecast obtained from I/B/E/S.

97.3.2.3 Forecast Bias (BIAS)
We measure forecast bias for firm i at time t as the difference between the mean

EPS forecast made 9 months prior to the fiscal year-end and the actual EPS, divided

by stock price at the forecast date:

BIASit ¼ FEPSt�1
it � AEPSit

Pi, t�1

(97.2)

The variable BIAS increases as the level of forecast optimism increases.

97.3.2.4 Other Factors Affecting Forecast Accuracy and Bias
In our empirical tests, we control for previously identified determinants of forecast

accuracy and bias. These include earnings characteristics, firm characteristics, and

forecast characteristics.

97.3.2.5 Earnings Characteristics
Prior research (Lang and Lundholm 1996; Das et al. 1998; Brown 2001; Duru and

Reeb 2002) identifies earnings volatility (VOLROA), whether firms have account-

ing losses (LOSS), and absolute earnings surprise (ABSESUP) as earnings charac-

teristics that negatively affect forecast accuracy. Kross et al. (1990) and Lim (2001)

provide evidence that long-term earnings volatility is associated with less accurate

forecasts. This is because the forecasting task is more difficult for firms with

historically volatile earnings compared to firms with historically more stable

earnings. Prior studies (Brown 2001) also document that analysts’ forecasts of

firms with losses are generally less accurate than those of firms with profits, partly

due to the increased difficulty with estimating losses stemming from other

managerial incentives such as “big baths.” Lang and Lundholm (1996) and

Duru and Reeb (2002), among others, find that larger earnings surprises are

associated with less accurate forecasts. This may be due to the effect of anchoring

to previously reported earnings.

Consistent with prior research, we measure VOLROA as the standard deviation

of return on assets estimated using data from the prior 5 years, LOSS as an indicator
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variable representing firm-years with reported losses, and ABSESUP as the

absolute value of the difference between the current year’s EPS and the previous

year’s EPS, divided by stock price at the beginning of the year.

The same earnings characteristics also affect analysts’ optimistic bias.

In addition, Gu and Wu (2003) provide evidence that optimistic forecast bias is

negatively associated with earnings skewness (SKEW) primarily due to mean-

median differences in skewed earnings distributions. Prior research reports that

earnings predictability variables, such as earnings volatility and whether the firm is

a loss firm, are positively related to optimistic bias (Duru and Reeb 2002).

However, after controlling for the level of earnings, Eames and Glover (2003) do

not find a significant relation between forecast error and earnings predictability.

Given this finding, we include level of earnings (LEVEARN), measured as annual

earnings scaled by year-end market value of equity, as a control variable.11

We include earnings surprise (ESUP) in place of absolute earnings surprise as

a control variable for bias. This variable is measured as the difference between

the current year’s EPS and the previous year’s EPS, divided by the price at

the beginning of the year. We also include negative earnings surprise

(NEGESUP), where NEGESUP equals 0 if ESUP is positive and equals ESUP if

ESUP is negative. We include ESUP and NEGESUP to control for the

anchoring behavior of analysts who tend to anchor their forecasts closely to

previous period’s actual results.

97.3.2.6 Firm Characteristics
We include size (SIZE), growth (GROWTH, CHASSETS, and CHSALES), and

governance variables (SHROWN, CEOCHAIR, NUMMTGS, and DIROPT) as

firm-specific control variables that are likely to be related to forecast accuracy

and bias. We measure SIZE as the natural log of assets at the beginning of the year.

Previous studies report that SIZE is related to analyst forecast accuracy and bias

(Duru and Reeb 2002; Gu and Wu 2003; Ho and Tsay 2004). Because large firms

have a richer information environment, we expect a positive relation between

accuracy and size. From a strategic reporting bias standpoint, analysts have stronger

incentives to issue optimistic forecasts for smaller firms to facilitate management

communication since there is less public information available for these firms

(Lim 2001; Gu and Wu 2003). Therefore, we expect the coefficient on SIZE to be

negatively related to optimistic forecast bias.

We include the following three proxies for growth, GROWTH, CHASSETS, and

CHSALES, where GROWTH is the ratio of the book value of equity at

the beginning of the year to the market value of equity at the beginning of

the year (i.e., the book-to-market ratio), CHASSETS is the percentage change

in total assets at the beginning of the year, and CHSALES is the percentage

11Gu (2003) argues that inclusion of earnings level as a control variable will induce spurious

relationships between the variable capturing forecast efficiency and other control variables. Our

main results are stronger when we exclude earnings level as a control variable.
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change in annual sales at the beginning of the year.12 We include these measures of

growth as control variables because firm growth is an important driver of

forecast complexity; however, we do not offer directional predictions for these

proxies for growth.13

Prior research (Byard et al. 2006) shows that analyst forecast accuracy is

related to a firm’s corporate governance quality. We include SHROWN,

CEOCHAIR, NUMMTGS, and DIROPT as proxies for a firm’s governance quality.

We measure SHROWN as the number of shares owned by the CEO divided by the

total number of shares outstanding. Extant evidence indicates that insider owner-

ship generally serves to align insiders’ interests with those of shareholders

(e.g., McConnell and Servaes 1990). Additionally, higher insider ownership is

negatively associated with earnings management (Warfield et al. 1995). Higher

insider ownership induces insiders, including the CEO, to maximize shareholder

wealth, thereby mitigating the agency problem. Therefore, we expect SHROWN to

be positively related to accuracy. The variable CEOCHAIR is an indicator

variable which equals one if the CEO is also the chairman of the board and zero

otherwise. A CEO who is also chairman of the board of directors could undermine

the effectiveness of the board by dissuading directors from expressing alternative

viewpoints. Separation of the positions of Chairman and CEO is also an important

indicator of board independence (Jensen 1993; Daily and Dalton 1997). Combining

these positions leads to a conflict of interest and impairs the board’s independence

and effectiveness in executing its oversight and governance responsibilities.

The variable NUMMTGS indicates the number of board meetings held in a year.

Boards that meet more frequently should be more effective monitors of manage-

ment (Conger et al. 1998). In addition, Xie et al. (2003) find that the level of

earnings management is lower for companies whose boards meet more frequently.

The variable DIROPT is an indicator variable which equals one if the directors are

awarded stock options in the year and zero otherwise. Directors receiving higher

pay may be less vigilant in monitoring the management. This is especially true if the

directors were appointed to the board by the same CEO. Although CEOCHAIR,

NUMMTGS, and DIROPT are important proxies of a firm’s governance quality, we

do not offer directional predictions for these variables.

97.3.2.7 Forecast Characteristics
Prior research has identified two forecast characteristics that are related to

forecast accuracy and bias – number of analysts following a firm (Duru and

Reeb 2002; Das et al. 1998) and dispersion in analysts’ forecasts (Lang and

Lundholm 1996; Gu and Wu 2003). This research finds that forecast accuracy is

higher for firms with larger analyst following (FOLLOW) and lower for firms with

12Prior research on forecast accuracy and bias (e.g., Duru and Reeb 2002) does not control for

differences in growth. Our results are robust to the exclusion of GROWTH as a control variable in

the regressions.
13The variance inflation factors for variables in our main regressions are all below three, indicating

that there are no severe multicollinearity problems.
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higher analysts’ forecast dispersion (DISP). It also documents that optimistic

forecast bias decreases with analyst following and increases with forecast

dispersion.

Forecast dispersion may also proxy for the degree of difficulty in forecasting

earnings, with high analysts’ forecast dispersion firms exhibiting lower levels

of earnings predictability. Therefore, we also expect forecast dispersion to be

negatively related to forecast accuracy and positively related to forecast bias.

97.3.3 Empirical Models

We estimate the following regression model to test our first hypothesis on forecast

accuracy:

ACCURACYit ¼ a0 þ a1OPTIONSit þ a2VOLROAi, t�1 þ a3LOSSit þ a4ABSESUPit

þ a5GROWTHi, t�1 þ a6SIZEi, t�1 þ a7FOLLOWi, t�1 þ a8DISPi, t�1

þ a9SHROWNit þ a10CEOCHAIRit þ a11NUMMTGSit

þ a12DIROPTit þ a13GROWTHi, t�1 þ a14CHASSETSi, t�1

þ a15CHSALESi, t�1 þ Industry controlsh i þ Year controlsh i
þ eit

(97.3)

We include industry and year indicator variables to control for industry and year

fixed effects. We employ the 48 industries (other than financial and agricultural)

identified by Fama and French (1997) as our industry categories.

Hypothesis 1 predicts that forecast accuracy changes with the level of CEO stock

options pay. Therefore, we expect a1, the coefficient on OPTIONS, to be different

from zero. Recall that we are using four measures of OPTIONS: new options,

existing exercisable options, existing unexercisable options, and total options (sum

of the previous three). We use two models to test our hypothesis. We use total

options as the measure of OPTIONS in the first model, and we use new options,

existing exercisable options, and existing unexercisable options as measures of

OPTIONS in the second model. In addition, we use both contemporaneous as well

as lagged values of OPTIONS in our tests.

We include VOLROA, LOSS, and ABSESUP in the model to control for

cross-sectional differences in earnings characteristics because prior research

documents that these variables affect forecast accuracy. We include SIZE,

GROWTH, CHASSETS, and CHSALES to control for differences in firm

characteristics, and we include FOLLOW and DISP to account for the effects of

differences in forecast characteristics on forecast accuracy. We include SHROWN,

CEOCHAIR, NUMMTGS, and DIROPT to control for cross-sectional differences

in corporate governance. We discuss the expected signs on the control variables and

present their definitions in Sect. 97.3.2.
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We estimate the following regression model to test our second hypothesis on

forecast bias:

BIASit ¼ a0 þ a1OPTIONSit þ a2SKEWi, t�1 þ a3VOLROAi, t�1 þ a4LOSSit

þ a5LEVEARNit þ a6ESUPit þ a7NEGESUPit þ a8SIZEi, t�1

þ a9FOLLOWit þ a10DISPit þ a11SHROWNit þ a12CEOCHAIRit

þ a13NUMMTGSit þ a14DIROPTit þ a15GROWTHi, t�1 þ a16CHASSETSi, t�1

þ a17CHSALESi, t�1 þ Industry controlsh i þ Year controlsh i þ eit

(97.4)

Hypothesis 2 predicts that forecast bias increases or decreases as the level of

CEO stock options pay changes. Therefore, we expect a1, the coefficient on

OPTIONS, to be different from zero. Once again, we use two models to test

hypothesis 2. The first model uses total options as the measure of OPTIONS. The

second model uses new options, existing exercisable options, and existing

unexercisable options as measures of OPTIONS. We also include both contempo-

raneous and lagged values of these four measures.

We include SKEW, VOLROA, LOSS, LEVEARN, ESUP, and NEGESUP in

the model to control for cross-sectional differences in earnings characteristics that

have been shown in prior research to affect forecast bias. We include SIZE,

GROWTH, CHASSETS, and CHSALES to control for differences in firm charac-

teristics, and we include FOLLOW and DISP to account for differences in forecast

characteristics that affect forecast bias. We include SHROWN, CEOCHAIR,

NUMMTGS, and DIROPT to control for cross-sectional differences in corporate

governance. We discuss the expected signs on the control variables and present

their definitions in Sect. 97.3.2.

97.4 Empirical Analysis

97.4.1 Descriptive Statistics

Table 97.2 presents descriptive statistics for the key variables. Consistent with

prior research, the mean forecast bias (BIAS) is positive and 0.64 % of stock

price. The median value of forecast bias is 0.37 %, which is consistent with

prior research. The mean and median values of forecast accuracy (ACCURACY)

are negative by construction. The mean value of forecast accuracy is �1.30 % of

stock price. The level of new CEO stock options (NOPT) has a mean value of

0.21 % and a median value of 0.11 % indicating that, on average, a significant

amount of CEO stock options are awarded relative to the number of shares

outstanding.

Table 97.3 presents the correlation matrix for the stock options variables used in

the regression analysis. Forecast accuracy is significantly negatively related to all

97 CEO Stock Options and Analysts’ Forecast Accuracy and Bias 2635
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four components of CEO options, and forecast bias is significantly positively

related to all four components.

97.4.2 Estimation Results

Tables 97.4 and 97.5 present estimation results of our empirical models on forecast

accuracy and bias respectively. In each table, we present the results for our two

models, one using total options and the other using new options, existing exercis-

able options, and existing unexercisable options. We present the results using

contemporaneous measures of OPTIONS in Panel A and the results using lagged

values in Panel B.

Table 97.4 presents estimation results for Eq. 97.3. This specification is used to

test our first hypothesis that analyst forecast accuracy is unrelated to CEO stock

options.14 For the total options measure (model 1 in Table 97.4), the coefficient on

TOPT is negative and statistically significant at the 1 % level for both contempo-

raneous and lagged values, indicating rejection of hypothesis H1. Model 2 results

also indicate rejection of hypothesis H1 as both new options (NOPT) and existing

exercisable options (EOPT) have strong negative relations (significant at the 5 %

level or better) with forecast accuracy. Additionally, the relations between forecast

accuracy and the control variables are generally consistent with expectations and

with prior research. In particular, negative earnings (LOSS), absolute earnings

surprise (ABSESUP), and dispersion in analysts’ forecasts (DISP) are all negatively

related to forecast accuracy as predicted, and their coefficients are statistically

significant at the 1 % level in both Panel A and Panel B. Earnings volatility

(VOLROA) is also negative, as expected, and significant at the 5 % level in all

regressions.

Analyst following (FOLLOW) and firm size (SIZE) are positively related to

forecast accuracy, as expected, but neither is significant. Among the variables

without predicted signs, number of board meetings (NUMMTGS) is negative and

significant at 1 % when contemporaneous values are used, and change in sales

(CHSALES) is negative and significant for all specifications.

The above findings are consistent with the notion that the increased forecasting

complexity accompanying the increase in CEO stock options compensation

adversely affects the forecasting ability of financial analysts. This adverse effect

leads to a decline in the accuracy of their forecasts. The above result strongly

holds for total options in model 1 and new options and existing exercisable options

in model 2.

Table 97.5 presents estimation results for Eq. 97.4. This specification is used to

test hypothesis H2. If a1, the coefficient on OPTIONS, is significantly different

14We also estimate the regression without the absolute value of earnings surprise (ABSESUP) that

might be mechanically related to accuracy. The main results are not affected by the exclusion of

that variable. We note that inclusion of ABSESUP can only weaken the hypothesized relationship

between ACCURACY and OPTIONS because ABSESUP is closely related to ACCURACY.

97 CEO Stock Options and Analysts’ Forecast Accuracy and Bias 2639



Table 97.4 Stock options and forecast accuracy

Sign

Model 1 Model 2

Coefficient t-Statistics Coefficient t-Statistics

Panel A: Contemporaneous options

TOPT +/� �0.1162 �5.74***

NOPT +/� �0.1336 �2.63***

EOPT +/� �0.1300 �3.79***

UEOPT +/� �0.0882 �1.85*

VOLROA, t � 1 � �0.0073 �2.33** �0.0169 �2.33**

LOSS � �0.0098 �11.45*** �0.0098 �11.42***

ABSESUP � �0.0988 �17.67*** �0.0987 �17.65***

SIZE, t � 1 + 0.0004 1.39 0.0004 1.40

FOLLOW + 0.0000 0.58 0.0000 0.55

DISP � �0.6203 �13.67*** �0.6191 �13.63***

SHROWN + �0.0031 �0.49 �0.0029 �0.46

CEOCHAIR ? �0.0006 �1.04 �0.0005 �1.00

NUMMTGS ? �0.0002 �2.78*** �0.0002 �2.79***

DIROPT ? 0.0007 1.41 0.0007 1.39

GROWTH, t � 1 ? 0.0752 1.45 0.0741 1.43

CHASSETS, t � 1 ? �0.0000 �0.37 �0.0000 �0.38

CHSALES, t � 1 ? �0.0000 �1.98** �0.0000 �1.99**

INTERCEPT ? �0.0042 �1.52 �0.0042 �1.52

Industry control Yes Yes

Year control Yes Yes

Observations 4,433 4,433

F-value 30.84 29.93

Adjusted R2 30.77 % 30.74 %

Panel B: Lagged (previous year’s) options

TOPT, t � 1 +/� �0.1058 �5.21***

NOPT, t � 1 +/� �0.1308 �3.64***

EOPT, t � 1 +/� �0.1223 2.18**

UEOPT, t � 1 +/� �0.0307 �0.36

VOLROA, t � 1 � �0.0164 �2.27** �0.0166 �2.30**

LOSS � �0.0102 �11.91*** �0.0103 �11.94***

ABSESUP � �0.1011 �17.97*** �0.1011 �17.95***

SIZE, t � 1 + 0.0002 0.66 0.0002 0.64

FOLLOW + 0.0000 0.78 0.0000 0.73

DISP � �0.6114 �13.46*** �0.6131 �13.42***

SHROWN + �0.0062 �1.07 �0.0063 �1.08

CEOCHAIR ? �0.0002 �0.42 �0.0002 �0.37

NUMMTGS ? 0.0001 0.75 0.0001 0.70

DIROPT ? 0.0005 0.91 0.0005 0.94

GROWTH, t � 1 ? 0.0564 1.09 0.0556 1.07

CHASSETS, t � 1 ? �0.0000 �0.09 �0.0000 �0.13

(continued)
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from zero, the empirical results will reject our hypothesis H2 stated in the null.

Once again, to test H2, we use two models, one with total options for OPTIONS and

the second with new options, existing exercisable options, and existing

unexercisable options for OPTIONS. As before, we present the results for both

contemporaneous (Panel A) and lagged (Panel B) values of OPTIONS.15

Table 97.4 (continued)

Sign

Model 1 Model 2

Coefficient t-Statistics Coefficient t-Statistics

CHSALES, t � 1 ? �0.0000 �2.50** �0.0000 �2.48**

INTERCEPT ? �0.0045 �1.62 �0.0043 �1.53

Industry control Yes Yes

Year control Yes Yes

Observations 4,425 4,425

F-value 30.29 29.41

Adjusted R2 30.45 % 30.40 %

Variable definitions:

NOPT¼ new stock options to CEO in the current year scaled by total number of shares outstanding

EOPT ¼ existing exercisable stock options of CEO scaled by total number of shares outstanding

UEOPT ¼ existing unexercisable stock options of CEO scaled by total number of shares

outstanding

TOPT ¼ sum of NOPT, EOPT, and UEOPT
ACCURACY ¼ (�1) * absolute value of [mean EPS forecast � actual EPS]/price at forecast date

FOLLOW ¼ number of analysts following the firm

DISP ¼ forecast dispersion, measured as the standard deviation of analysts’ forecasts deflated by

price at the forecast date

VOLROA ¼ earnings volatility measured as the standard deviation of return on assets for the

previous 5-year period

ABSESUP ¼ earnings surprise measured as the absolute value of the difference between the

current year’s EPS and the last year’s EPS, divided by price at the beginning of the year

LOSS ¼ a dummy variable which equals to 1 when earnings are negative and 0 otherwise

SIZE ¼ firm size measured as the natural log of beginning assets

GROWTH ¼ beginning book value of equity divided by the beginning market value of equity

CHASSETS ¼ annual percentage change in total assets at the beginning of the year

CHSALES ¼ annual percentage change in total sales at the beginning of the year

SHROWN ¼ number of shares owned by the CEO divided by the total number of shares

outstanding

CEOCHAIR ¼ an indicator variable which equals “1” if the CEO is also the chairman of the board

and “0” otherwise

NUMMTGS ¼ the number of board meetings held in a year

DIROPT ¼ an indicator variable which equals “1” if the directors are awarded stock options in the

year and “0” otherwise
***Significant at the 0.01 level, **Significant at the 0.05 level, *Significant at the 0.10 level.

Significance levels are based on two-tailed tests

15We also estimate the model without earnings surprise (ESUP), negative earnings surprise

(NEGESUP), and level of earnings (LEVEARN) that might be mechanically related to bias. The

relationship between level of options and bias is not affected by the omission of those variables.
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Table 97.5 Stock options and forecast bias (optimism)

Sign

Model 1 Model 2

Coefficient t-Statistics Coefficient t-Statistics

Panel A: Contemporaneous options

TOPT +/� 0.1245 4.78***

NOPT +/� 0.1061 3.56***

EOPT +/� 0.1007 2.28**

UEOPT +/� 0.0223 0.37

SKEW, t � 1 � �0.3056 �1.14 �0.3105 �1.16

VOLROA, t � 1 ? 0.0382 3.95*** 0.0378 3.91***

LOSS ? 0.0107 7.56*** 0.0104 7.39***

LEVEARN ? �0.0615 �8.55*** �0.0615 �8.55***

ESUP ? �0.0542 �6.23*** �0.0541 �6.22***

NEGESUP ? 0.0026 3.39*** 0.0026 3.36***

SIZE, t � 1 � �0.0005 �1.47 �0.0005 �1.43

FOLLOW � �0.0000 �0.11 �0.0000 �0.09

DISP + 0.0000 1.46 0.0000 1.49

SHROWN � �0.0099 �1.23 �0.0097 �1.21

CEOCHAIR ? 0.0007 1.03 0.0007 1.05

NUMMTGS ? 0.0000 0.13 0.0000 0.14

DIROPT ? 0.0001 0.11 0.0001 0.10

GROWTH, t � 1 ? �0.2095 �3.18*** �0.2149 �3.26***

CHASSETS, t � 1 ? �0.0000 �1.07 �0.0000 �1.09

CHSALES, t � 1 ? 0.0000 0.35 0.0000 0.34

INTERCEPT ? 0.0080 2.25** 0.0081 2.27**

Industry control Yes Yes

Year control Yes Yes

Observations 4,279 4,279

F-value 14.85 14.54

Adjusted R2 18.26 % 18.35 %

Panel B: Lagged (previous year’s) options

TOPT, t � 1 +/� 0.1283 4.95***

NOPT, t � 1 +/� 0.1273 3.95***

EOPT, t � 1 +/� 0.1038 2.24**

UEOPT, t � 1 +/� 0.0294 0.41

SKEW, t � 1 � �0.2593 �0.96 �0.2639 �0.98

VOLROA, t � 1 ? 0.0337 3.46*** 0.0328 3.37***

LOSS ? 0.0115 8.11*** 0.0113 8.01***

LEVEARN ? �0.0607 �8.41*** �0.0605 �8.38***

ESUP ? �0.0546 �6.16*** �0.0545 �6.15***

NEGESUP ? 0.0026 3.38*** 0.0027 3.40***

SIZE, t � 1 � �0.0005 �1.46 �0.0005 �1.55

FOLLOW � �0.0000 �0.19 �0.0000 �0.21

DISP + 0.0000 1.51 0.0000 1.56

(continued)
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Table 97.5 (continued)

Sign

Model 1 Model 2

Coefficient t-Statistics Coefficient t-Statistics

SHROWN � �0.0031 �0.42 �0.0035 �0.47

CEOCHAIR ? 0.0008 1.23 0.0009 1.32

NUMMTGS ? 0.0001 0.86 0.0001 0.71

DIROPT ? �0.0000 �0.01 �0.0000 �0.07

GROWTH, t � 1 ? �0.1978 �2.98*** �0.1927 �2.90***

CHASSETS, t � 1 ? �0.0000 �1.24 �0.0000 �1.25

CHSALES, t � 1 ? �0.0000 �0.01 0.0000 0.05

INTERCEPT ? 0.0072 2.01** 0.0078 2.18**

Industry control Yes Yes

Year control Yes Yes

Observations 4,264 4,264

F-value 14.64 14.36

Adjusted R2 18.09 % 18.21 %

Variable definitions:

NOPT¼ new stock options to CEO in the current year scaled by total number of shares outstanding

EOPT ¼ existing exercisable stock options of CEO scaled by total number of shares outstanding

UEOPT ¼ existing unexercisable stock options of CEO scaled by total number of shares

outstanding

TOPT ¼ sum of NOPT, EOPT, and UEOPT
BIAS¼ signed forecast error measured as [mean EPS forecast � actual EPS]/price at forecast date

FOLLOW ¼ number of analysts following the firm

DISP ¼ forecast dispersion, measured as the standard deviation of analysts’ forecasts deflated by

price at the forecast date

SKEW ¼ difference between the mean and the median forecast scaled by price at the forecast date

VOLROA ¼ earnings volatility measured as the standard deviation of return on assets for the

previous 5-year period

ABSESUP ¼ earnings surprise measured as the absolute value of the difference between the

current year’s EPS and the last year’s EPS, divided by price at the beginning of the year

ESUP ¼ change in earnings (CHG_EPS) measured as the difference between the current year’s

EPS and the last year’s EPS, divided by price at the beginning of the year

LOSS ¼ a dummy variable which equals to 1 when earnings are negative and 0 otherwise

LEVEARN ¼ annual earnings scaled by the year-end market value of equity

SIZE ¼ firm size measured as the natural log of beginning assets

GROWTH ¼ beginning book value of equity divided by the beginning market value of equity

CHASSETS ¼ annual percentage change in total assets at the beginning of the year

CHSALES ¼ annual percentage change in total sales at the beginning of the year

SHROWN ¼ number of shares owned by the CEO divided by the total number of shares

outstanding

CEOCHAIR ¼ an indicator variable which equals “1” if the CEO is also the chairman of the board

and “0” otherwise

NUMMTGS ¼ the number of board meetings held in a year

DIROPT ¼ an indicator variable which equals “1” if the directors are awarded stock options in the

year and “0” otherwise
***Significant at the 0.01 level, **Significant at the 0.05 level, *Significant at the 0.10 level.

Significance levels are based on two-tailed tests
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For the total options measure (model 1 in Table 97.5), the coefficient on TOPT is

positive and statistically significant at the 1 % level for both contemporaneous and

lagged values, indicating rejection of hypothesis H2. The model 2 results also

indicate rejection of hypothesis H2 as both new options (NOPT) and existing

exercisable options (EOPT) have strong positive relations (significant at the 5 %

level or better) with forecast bias. These results are consistent with the management

relations hypothesis.

Additionally, the relations between forecast bias and the control variables are

generally consistent with the prior literature. We document a positive relation between

forecast bias and volatility of return on assets (VOLROA) and loss firms (LOSS). We

furthermore document a negative relation between forecast bias and growth

(GROWTH) for all the regressions. These results are consistent with the results reported

in prior research (Das et al. 1998; Duru and Reeb 2002; Eames and Glover 2003).

The evidence presented in Tables 97.4 and 97.5 supports the predictions that

analysts’ earnings forecast accuracy decreases and forecast optimism increases as

the level of stock options (in particular, new options and exercisable options) in

CEO pay increases. These results are robust to the time period (current versus prior

year) when the options are granted.

97.4.3 Additional Analysis

As an additional test, we examine the relations between an alternate measure of CEO

stock options and forecast accuracy and bias while controlling for endogeneity in the

model. Since the results reported in Tables 97.4 and 97.5 are most pronounced for

new options, we focus on an alternate proxy for new options, the proportion of stock

options pay in CEO total compensation (compensation mix, COMPMIX). We

measure this variable as the ratio of the Black-Scholes value of the new options

granted to the CEO in a given year to the total compensation granted to the CEO in

that year, where total compensation is the value of stock options plus cash compen-

sation (i.e., salary plus bonus). This is consistent with the measure employed by

Klassen andMawani (2000) and Ittner et al. (2003).We also control for endogeneity

as this may be a potential problem if both the level of CEO stock options pay and

analysts’ forecast accuracy/bias are determined by common variables such as

a firm’s fundamentals. To address this potential endogeneity problem, we examine

the relations between CEO options and analysts’ forecast accuracy/bias using

two-stage least squares regression analysis (2SLS).

In the first stage, we regress the level of CEO options, the dependent variable, on

previously identified, firm-specific determinants of stock options grants as well as

control variables (Core et al. 1999; Aggarwal and Samwick 1999). These additional

variables, related to cross-sectional differences in options compensation, include the

prior year’s return on assets (ROA), leverage ratio (LEV), and standard deviation of

monthly returns for the prior 12-month period (STD). Three sets of variables are

common to both regressions: growth (GROWTH), firm size (SIZE), and share
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Table 97.6 2SLS estimation of compensation mix and forecast accuracy and bias

Sign

Column 1 Column 2

Coefficient t-Statistics Coefficient t-Statistics

Panel A: Compensation mix and forecast accuracy

COMPMIX NA/+/� �0.3776 �8.69***

VOLROA, t � 1 NA/� �0.0378 �0.89

LOSS NA/� �0.0084 �8.31***

ABSESUP NA/� �0.1094 �16.52***

SIZE, t � 1 +/+ 0.0271 7.25*** 0.0002 0.55

FOLLOW NA/+ 0.0001 1.80*

DISP NA/� �0.5852 �10.91***

SHROWN �/+ �0.7432 �7.35*** �0.0030 �0.40

CEOCHAIR NA/? �0.0009 �1.37

NUMMTGS NA/? �0.0002 �2.03**

DIROPT NA/? 0.0009 1.46

GROWTH, t � 1 +/? 3.0900 3.69*** 0.0738 1.21

CHASSETS, t � 1 NA/? 0.0000 0.29

CHSALES, t � 1 NA/? 0.0000 �1.85

STD +/NA 1.1769 15.36***

ROA +/NA 0.1501 2.54**

LEV �/NA �0.1513 �5.19***

INTERCEPT ?/? 0.1972 5.40*** 0.0097 2.74***

Industry control Yes Yes

Year control Yes Yes

Observations 3,973 3,973

F-value 19.46 25.52

Adjusted R2 16.75 % 23.76 %

Panel B: Compensation mix and forecast bias

COMPMIX NA/+ 0.01343 2.88***

SKEW, t � 1 NA/� �0.3156 �1.16

VOLROA, t � 1 NA/? 0.0381 3.83***

LOSS NA/? 0.0116 7.80***

LEVEARN NA/? �0.0564 �7.79***

ESUP NA/� �0.0560 �6.33***

NEGESUP NA/� 0.0028 3.52***

SIZE, t � 1 +/� 0.0242 6.40*** �0.0008 �2.35**

FOLLOW NA/� �0.0000 �0.44

DISP NA/+ 0.0000 1.72*

SHROWN �/� �0.7714 �7.58*** �0.0104 �1.26

CEOCHAIR NA/? 0.0010 1.37

NUMMTGS NA/? 0.0000 0.03

DIROPT NA/? 0.0001 0.12

GROWTH, t � 1 +/? 3.0284 3.61*** �0.1895 �2.83***

(continued)
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Table 97.6 (continued)

Sign

Column 1 Column 2

Coefficient t-Statistics Coefficient t-Statistics

CHASSETS, t � 1 NA/? 0.0000 0.68

CHSALES, t � 1 NA/? �0.0000 �1.63

STD +/NA 1.2514 15.72***

ROA +/NA 0.1228 1.96**

LEV �/NA �0.1327 �4.44***

INTERCEPT ?/? 0.1972 5.40*** 0.0075 1.91*

Industry control Yes Yes

Year control Yes Yes

Observations 3,742 3,742

F-value 19.31 15.95

Adjusted R2 17.12 % 17.17 %

Variable definitions:

COMPMIX ¼ Black-Scholes value of stock options in CEO compensation divided by CEO total

compensation (i.e., cash salary + bonus + options)

ACCURACY ¼ (�1) * absolute value of [mean EPS forecast � actual EPS]/price at forecast date

BIAS ¼ the signed forecast error measured as the [mean EPS forecast � actual EPS]/price at

forecast date

FOLLOW ¼ number of analysts following the firm

DISP ¼ forecast dispersion, measured as the standard deviation of analysts’ forecasts deflated by

price at the forecast date

SKEW ¼ difference between the mean and the median forecast scaled by price at the forecast date

VOLROA ¼ earnings volatility measured as the standard deviation of return on assets for the

previous 5-year period

ESUP¼ change in earnings measured as the difference between the current year’s EPS and the last

year’s EPS, divided by price at the beginning of the year

NEGESUP ¼ 0 if ESUP is positive and is equal to ESUP if ESUP is negative

LOSS ¼ a dummy variable which equals 1 when earnings are negative and 0 otherwise

LEVEARN ¼ annual earnings scaled by the year-end market value of equity

GROWTH ¼ beginning book value of equity divided by beginning market value of equity

SIZE ¼ firm size measured as the natural log of beginning assets

SHROWN ¼ number of shares owned by the CEO divided by the total number of shares

outstanding

CEOCHAIR ¼ an indicator variable which equals “1” if the CEO is also the chairman of the board

and “0” otherwise

NUMMTGS ¼ the number of board meetings held in a year

DIROPT ¼ an indicator variable which equals “1” if the directors are awarded stock options in the

year and “0” otherwise

STD ¼ the standard deviation of monthly returns over previous year

ROA ¼ return on assets for year

LEV ¼ financial leverage (liabilities over equity)
***Significant at the 0.01 level, **Significant at the 0.05 level, *Significant at the 0.10 level.

Significance levels are based on one-tailed tests when the coefficient sign is predicted and on

two-tailed tests otherwise

NA ¼ not applicable
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ownership (SHROWN). In the second stage, we use the models described in Eqs. 97.3

and 97.4 with compensation mix (COMPMIX) as the proxy for OPTIONS.

The results reported in Table 97.6 are consistent with the results presented in

Tables 97.4 and 97.5. That is, for compensation mix (COMPMIX), we observe

a negative association between accuracy and COMPMIX and a positive association

between bias and COMPMIX.

97.5 Sensitivity Analyses

We conduct several additional tests to examine the robustness of our findings. First,

we control for cross-sectional correlation, since our tests are based on pooled

cross-sectional and time series data. Although we include fixed industry and year

effects in our primary tests, we conduct Fama-MacBeth estimation with industry

controls to account for residual cross-sectional correlation as an additional test.

The Fama-MacBeth t-statistics of the coefficient on total options in model 1 and

new options and exercisable options in model 2 are statistically significant at the

5 % level or higher for all the tests.

Second, we assess the sensitivity of our results to use of the median analysts’

forecast in place of the mean forecast for computing forecast accuracy and

bias. We estimate models (3) and (4) using these alternative measures of forecast

accuracy and bias as dependent variables and without earnings skewness as

an independent variable. We find that the results reported in Tables 97.4 and

97.5 are robust to the choice of median analysts’ forecasts in place of mean

forecasts.

Finally, since our sample period of years 1993–2003 includes both pre- and post-

SOX periods, we delete years 2002 and 2003 and carry out a subsample analysis

without the post-SOX periods. For the pre-SOX subsample, consistent with our

main results in Tables 97.4 and 97.5, total options in model 1 and new options and

exercisable options in model 2 have a significant negative association (at the 5 %

level or better) with forecast accuracy and a significant positive association

(at the 5 % level or better) with forecast bias.

97.6 Summary and Conclusions

We examine the relation between the level of CEO stock options and the accuracy

and bias of analysts’ earnings forecasts. We use four different measures of stock

options: new options, existing exercisable options, existing unexercisable options,

and total options (sum of the previous three). We also use both contemporaneous as

well as the lagged values of options compensation in our tests. We hypothesize that

forecast accuracy is related to the level of CEO stock options pay. This is

because higher levels of stock options may induce managers to undertake riskier
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projects, to change and/or reallocate their effort, and to possibly engage in gaming

(such as opportunistic earnings and disclosure management). However, higher

levels of stock options may also better align managers’ incentives with those of

shareholders and lead to more accurate forecasts. We also hypothesize that forecast

bias is related to the level of stock options in CEO pay. The underlying rationale for

this is that as the forecast complexity increases with stock options pay, analysts,

who need greater access to management’s information to produce accurate

forecasts, increase the optimistic bias in their forecasts. Alternatively, because

higher levels of CEO stock options may better align managers’ and shareholders’

incentives, they may lead to less biased forecasts.

Our results indicate that analysts’ earnings forecast accuracy decreases and

forecast optimism increases as the level of stock options in CEO pay

increases. Furthermore, our results are robust to the measure of CEO stock options

and to the use of current or prior year values of options. These findings suggest that

the incentive alignment effects of stock options are more than offset by the

investment, effort allocation, and gaming incentives induced by stock options

grants to CEOs.

Our study contributes to the current debate on the costs and benefits of the

stock options pay to managers. It demonstrates that the level of stock option

compensation in CEO pay is an important determinant of analysts’ earnings

forecast accuracy and bias. Analysts are an important information intermediary in

capital markets. The decline in the quality of their forecasts with increased stock

options compensation indicates that stock option compensation indirectly affects

the quality of the information available to market participants.
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comprehensive empirical study demonstrating whether and by how much each

generalized feature will improve option pricing and hedging performance.

This chapter fills this gap by first developing an implementable option model

in closed form that admits both stochastic volatility and stochastic interest rates

and that is parsimonious in the number of parameters. The model includes many

known ones as special cases. Based on the model, both delta-neutral and single-

instrument minimum-variance hedging strategies are derived analytically. Using

S&P 500 option prices, we then compare the pricing and hedging performance of

this model with that of three existing ones that respectively allow for (i) constant

volatility and constant interest rates (the Black–Scholes), (ii) constant volatility

but stochastic interest rates, and (iii) stochastic volatility but constant interest

rates. Overall, incorporating stochastic volatility and stochastic interest rates

produces the best performance in pricing and hedging, with the remaining

pricing and hedging errors no longer systematically related to contract

features. The second performer in the horse race is the stochastic volatility

model, followed by the stochastic interest rate model and then by the

Black–Scholes.

Keywords

Stock option pricing • Stochastic volatility • Stochastic interest rates •

Hedge ratios • Hedging • Pricing performance and Hedging performance

98.1 Introduction

Option pricing has, in the last two decades, witnessed an explosion of new models

that each relaxes some of the restrictive assumptions underlying the seminal Black

and Scholes (1973) model. In doing so, most of the focus has been on the counter-

factual constant volatility and constant interest-rate assumptions. For example,

Merton’s (1973) option pricing model allows interest rates to be stochastic but

keeps a constant volatility for the underlying asset, while Amin and Jarrow (1992)

develop a similar model where, unlike in Merton’s, interest rate risk is also priced.

A second class of option models admits stochastic conditional volatility for the

underlying asset but maintains the constant interest-rate assumption. These include

the Cox and Ross (1976) constant elasticity of variance model and the stochastic

volatility models of Bailey and Stulz (1989), Bates (1996b, 2000), Heston (1993),

Hull and White (1987a), Scott (1987), Stein and Stein (1991), and Wiggins (1987).

Recently, Bakshi and Chen (1997) and Scott (1997) have developed closed-form

equity option formulas that admit both stochastic volatility and stochastic interest

rates.1 Their efforts have, in some sense, helped reach the ultimate possibility of

1Amin and Ng (1993), Bailey and Stulz (1989), and Heston (1993) also incorporate both stochastic

volatility and stochastic interest rates, but their option pricing formulas are not given in closed

form, which makes applications difficult. Consequently, comparative statics and hedge ratios are

difficult to obtain in their cases.
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completely relaxing the Black–Scholes assumptions of constant volatility and

constant interest rates. As a practical matter, these sufficiently general pricing

formulas should in principle result in significant improvement in pricing and

hedging performance over the Black–Scholes model. While option pricing theory

has made such impressive progress, the empirical front is nonetheless far behind.2

Will incorporating these general features improve both pricing and hedging effec-

tiveness? If so, by how much? Can these relaxed assumptions help resolve the well-

known empirical biases associated with the Black–Scholes formula, such as the

volatility smiles [e.g., Rubinstein (1985, 1994)]? These empirical questions must be

answered before the potential of the general models can be fully realized in

practical applications.

In this chapter, we first develop a practically implementable version of the

general equity option pricing models in Bakshi and Chen (1997) and Scott (1997)

that admits stochastic interest rates and stochastic volatility, yet resembles to the

extent possible the Black–Scholes model in its implementability. We present

procedures for applying the resulting model to price and hedge option-like

derivative products. Next, we conduct a complete analysis of the relative empir-

ical performance, in both pricing and hedging, of the four classes of models that

respectively allow for (i) constant volatility and constant interest rates (the BS
model), (ii) constant volatility but stochastic interest rates (the SI model), (iii)
stochastic volatility but constant interest rates (the SV model), and (iv) stochastic

volatility and stochastic interest rates (the SVSI model). As the SVSI model has all

the other three models nested, one should expect its static pricing and dynamic

hedging performance to surpass that of the other classes. But, this performance

improvement must come at the cost of potentially more complex implementation

steps. In this sense, conducting such a horse race study can at least offer a clear

picture of possible trade-offs between costs and benefits that each model may

present.

Specifically, the SVSI option pricing formula is expressed in terms of the

underlying stock price, the stock’s volatility, and the short-term interest rate.

The spot volatility and the short interest rate are each assumed to follow

a Markov mean-reverting square-root process. Consequently, seven structural

parameters need to be estimated as input to the model. These parameters can

be estimated using the Generalized Method of Moments (GMM) of Hansen

(1982), as is done in, for instance, Andersen and Lund (1997), Chan et al. (1992).

2There have been a few empirical studies that investigate the pricing, but not the hedging,

performance of versions of the stochastic volatility model, relative to the Black–Scholes model.

These include Bates (1996b, 2000), Dumas et al. (1998), Madan et al. (1998), Nandi (1996), and

Rubinstein (1985). In Bates’ work, currency and equity index options data are used to test

a stochastic volatility model with Poisson jumps included. Nandi does investigate the pricing

and hedging performance of Heston’s stochastic volatility model, but he focuses exclusively on

a single-instrument minimum-variance hedge that involves only the S&P 500 futures. As will be

clear shortly, we address in this chapter both the pricing and the hedging effectiveness issues from

different perspectives and for four distinct classes of option models.
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Or, they can be backed out from the pricing model itself by using observed option

prices, as is similarly done for the BS model both in the existing literature and in

Wall Street practice.

In our empirical investigation, we will adopt this implied parameter approach to

implement the four models. In this regard, it is important to realize that the BS

model is implemented as if the spot volatility and the spot interest rates were

assumed to be time varying within the model, that is, the spot volatility is backed

out from option prices each day and used, together with the current yield curve, to

price the following day’s options. The SI and the SV models are implemented with

a similarly internally inconsistent treatment, though to a lesser degree. Since this

implementation is how one would expect each model to be applied, we chose to

follow this convention in order to give the alternatives to the standard BS model the

“toughest hurdle.” Clearly, such a treatment works in the strongest favor of the BS

model and is especially biased against the SVSI model.

Based on 38,749 S&P 500 call (and put) option prices for the sample period from

June 1988 to May 1991, our empirical investigation leads to the following conclu-

sions. First, on the basis of two out-of-sample pricing error measures, the SVSI

model is found to perform slightly better than the SV model, while they both

perform substantially better than the SI (the third-place performer) and the BS

model. That is, when volatility is kept constant, allowing interest rates to vary

stochastically can produce respectable pricing improvement over the BS model.

However, in the presence of stochastic volatility, doing so no longer seems to

improve pricing performance much further. Thus, modeling stochastic volatility is

far more important than stochastic interest rates, at least for the purpose of pricing

options. It is nonetheless encouraging to know that based on our sample, both the

SVSI and the SV models typically reduce the BS model’s pricing errors by more

than half, whereas the SI model helps reduce the BS pricing errors by 20 % or more.

While all four models inherit moneyness- and maturity-related pricing biases, the

severity of these types of bias is increasingly reduced by the SI, the SV, and

the SVSI models. In other words, the SVSI model produces pricing errors that are

the least moneyness or maturity related. This conclusion is also confirmed when

the Rubinstein (1985) implied-volatility-smile diagnostic is adopted to examine

each model.

Two types of hedging strategy are employed in this study to gauge the relative

hedging effectiveness. The first type is the conventional delta-neutral hedge, in which

as many distinct hedging instruments as the number of risk sources affecting the

hedging target’s value are used so as to make the net position completely risk

immunized (locally). Take the SVSI model as an example. The call option value is

driven by three risk sources: the underlying price shocks, volatility shocks, and shocks

to interest rates. Accordingly, we employ the underlying stock, a different call option,

and a position in a discount bond to create a delta-neutral hedge for a target call

option. That closed-form expressions are derived for each hedge ratio is of great value

for devising hedging strategies analytically. Similarly, for the SV model, we only

need to rely on the underlying stock and an option contract to design a delta-neutral
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hedge. Based on the delta-neutral hedging errors, the same performance ranking of

the four models obtains as that determined by their static pricing performance, except

that now the SVSI and the SV models and the SI and the BS models are respectively

pairwise virtually indistinguishable. This reenforces the view that adding stochastic

interest rates may not affect performance much. However, it is found that the average

hedging errors by the SVSI and the SV models are typically less than one-third of the

corresponding BS model’s hedging errors. Furthermore, reducing the frequency of

hedge rebalancing does not tend to reduce the SV and the SVSI models’ hedging

effectiveness, whereas the BS and the SI models’ hedging errors are often doubled

when rebalancing frequency changes from daily to once every 5 days. Therefore, after

stochastic volatility is controlled for, the frequency of hedge rebalancing will have

relatively little impact on hedging effectiveness. This finding is in accord with Galai’s

(1983a) results that in any hedging scheme, it is probably more important to control

for stochastic volatility than for discrete hedging [see Hull and White (1987b) for

a similar, simulation-based result for currency options].

To see how the models perform under different hedging schemes, we also look at

minimum-variance hedges involving only a position in the underlying asset. As

argued by Ross (1995), the need for this type of hedges may arise in contexts where

a perfect delta-neutral hedge may not be feasible, either because some of the

underlying risks are not traded or even reflected in any traded financial instruments

or because model misspecifications and transaction costs render it undesirable to

use as many instruments to create a perfect hedge. In the present context, both

volatility risk and interest rate risk are, of course, traded and hence can, as indicated

above, be controlled for by employing an option and a bond. But, a point can be

made that it is sometimes more preferable to adopt a single-instrument minimum-

variance hedge. To study this type of hedges, we again calculate the absolute and

the dollar-value hedging errors for each model. Results from this exercise indicate

that the SV model performs the best among all four, while the BS and the SV

models outperform their respective stochastic interest rate counterparts, the SI and

the SVSI models. Therefore, under the single-instrument hedges, incorporating

stochastic interest rates actually worsens hedging performance. It is also true that

hedging errors under this type of hedges are always significantly higher than those

under the conventional delta-neutral hedges, for each given moneyness and matu-

rity option category. Thus, whenever possible, including more instruments in

a hedge will in general produce better hedging effectiveness.

While our discussion is mainly focused on results obtained using the entire

sample period and under specific model implementation designs, robustness of

these empirical results is also checked by examining alternative implementation

designs, different subperiods, as well as option transaction price data. Especially,

given the popularity of the “implied-volatility matrix” method among practitioners,

we will also implement each of the four models and compare their pricing and

hedging performance, by using only option contracts from a given moneyness–

maturity category. It turns out that this alternative implementation scheme does not

change the rankings of the four models.
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The rest of the chapter proceeds as follows. Section 98.2 develops the SVSI option

pricing formula. It discusses issues pertaining to the implementation of the formula and

derives the hedge ratios analytically. Section 98.3 provides a description of the S&P

500 option data. In Sect. 98.4 we evaluate the static pricing and the dynamic hedging

performance of the four models. Concluding remarks are offered in Sect. 98.5.

98.2 The Option Pricing Model

Consider an economy in which the instantaneous interest rate at time t, denoted
R(t), follows a Markov diffusion process:

dR tð Þ ¼ yR � kRR tð Þ½ �dtþ sR
ffiffiffiffiffiffiffiffiffi
R tð Þ

p
doR tð Þ t 2 0; T½ �, (98.1)

where kR regulates the speed at which the interest rate adjusts to its long-run

stationary value yR
kR

and oR ¼ {oR(t) : t 2 [0, T]} is a standard Brownian motion.3

This single-factor interest rate structure of Cox et al. (1985) is adopted as it requires

the estimation of only three structural parameters. Adding more factors to the term

structure model will of course lead to more plausible formulas for bond prices, but it

can make the resulting option formula harder to implement.

Take a generic non-dividend-paying stock whose price dynamics are described

by

dS tð Þ
S tð Þ ¼ m S; tð Þdtþ

ffiffiffiffiffiffiffiffiffi
V tð Þ

p
doS tð Þ t 2 0; T½ �, (98.2)

where m(S, t), which is left unspecified, is the instantaneous expected return and oS

a standard Brownian motion. The instantaneous stock return variance, V(t), is
assumed to follow a Markov process:

dV tð Þ ¼ yv � kvV tð Þ½ �dtþ sv
ffiffiffiffiffiffiffiffiffi
V tð Þ

p
dov tð Þ t 2 0; T½ �, (98.3)

where again ov is a standard Brownian motion and the structural parameters have

the usual interpretation. We refer to V(t) as the spot volatility or, simply, volatil-

ity. This process is also frugal in the number of parameters to be estimated and is

similar to the one in Heston (1993). Letting r denote the correlation coefficient

between oS and ov, the covariance between changes in S(t) and in V(t) is

3Here we follow a common practice to assume from the outset a structure for the underlying price

and rate processes, rather than derive them from a full-blown general equilibrium. See Bates

(1996a), Heston (1993), Melino and Turnbull (1990, 1995), and Scott (1987, 1997). The simple

structure assumed in this section can, however, be derived from the general equilibrium model of

Bakshi and Chen (1997).
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Covt[dS(t), dV(t)] ¼ rsSsvS(t)V(t)dt which can take either sign and is time

varying. According to Bakshi et al. (1997, 2000), Bakshi and Chen (1997),

Bates (1996a), Cao and Huang (2008), and Rubinstein (1985), this additional

feature is important for explaining the skewness and kurtosis-related biases

associated with the BS formula. Finally, for ease of presentation, assume

that the equity-related shocks and the interest rate shocks are uncorrelated4:

Covt(doS, doR) ¼ Covt(dov, doR) ¼ 0.

By a result from Harrison and Kreps (1979), there are no free lunches in

the economy if and only if there exists an equivalent martingale measure with

which one can value claims as if the economy were risk neutral. For instance, the

time t price B(t, t) of a zero-coupon bond that pays $1 in t periods can be

determined via

B t; tð Þ ¼ EQ exp �
ðtþt

t

R Sð Þds
� �� �

, (98.4)

where EQ denotes the expectation with respect to an equivalent martingale measure

and conditional on the information generated by R(t) and V(t). Assume that the

factor risk premiums for R(t) and V(t) are, respectively, given by lR R(t) and lvV(t),
for two constants lR and lv. Bakshi and Chen (1997) provide a general equilibrium
model in which risk premiums have precisely this form and in which the interest

rate and stock price processes are as assumed here. Under this assumption, we

obtain the risk-neutralized processes for R(t) and V(t) below:

dR tð Þ ¼ yR�kR R tð Þ½ �dtþ sR
ffiffiffiffiffiffiffiffiffi
R tð Þ

p
doR tð Þ (98.5)

4This assumption on the correlation between stock returns and interest rates is somewhat severe

and likely counterfactual. To gauge the potential impact of this assumption on the resulting option

model’s performance, we initially adopted the following stock price dynamics:

dS tð Þ
S tð Þ ¼ m S; tð Þdtþ

ffiffiffiffiffiffiffiffiffi
V tð Þ

p
doS tð Þ þ sS,R

ffiffiffiffiffiffiffiffi
R tð Þ

p
doR tð Þ t 2 0; T½ �,

with the rest of the stochastic structure remaining the same as given above. Under this more realistic

structure, the covariance between stock price changes and interest rate shocks is Covt[dS(t),
dR(t)] ¼ sS,RsR R(t)S(t)dt, so bond market innovations can be transmitted to the stock market

and vice versa. The obtained closed-form option pricing formula under this scenario would have

one more parameter sS,R than the one presented shortly, but when we implemented this slightly

more general model, we found its pricing and hedging performance to be indistinguishable from

that of the SVSI model studied in this chapter. For this reason, we chose to present the more

parsimonious SVSI model derived under the stock price process in Eq. 98.2. We could also make

both the drift and the diffusion terms of V(t) a linear function of R(t) and oR(t). In such cases, the

stock returns, volatility, and interest rates would all be correlated with each other (at least globally),

and we could still derive the desired equity option valuation formula. But, that would again make

the resulting formula more complex while not improving its performance.
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dV tð Þ ¼ yv � kvV tð Þ½ �dtþ sv
ffiffiffiffiffiffiffiffiffi
V tð Þ

p
dov tð Þ, (98.6)

where kR � kR þ lR and kv � kv þ lv . The risk-neutralized stock price process

becomes

dS tð Þ
S tð Þ ¼ R tð Þdtþ

ffiffiffiffiffiffiffiffiffi
V tð Þ

p
doS tð Þ, (98.7)

that is, under the martingale measure, the stock should earn no more and no less

than the risk-free rate. With these adjustments, we solve the conditional expectation

in Eq. 98.4 and obtain the familiar bond price equation below:

B t; tð Þ ¼ exp �’ tð Þ � R tð ÞR tð Þ½ �, (98.8)

where ’ tð Þ ¼ yR
s2R

B� kRð Þtþ 2 ln 1� 1� e�Btð Þ B� kRð Þ
2B

� �� �
, R tð Þ

¼ 2 1� e�Btð Þ
2B� B� kR½ � 1� e�Btð Þ , and B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2R þ 2s2R

p
. See Cox et al. (1985) for an

analysis of this class of term structure models.

98.2.1 Pricing Formula for European Options

Now, consider a European call option written on the stock, with strike price K

and term to expiration t. Let its time t price be denoted by C(t, t). As (S, R, V)
form a joint Markov process, the price C(t, t) must be a function of S(t), R(t),
and V(t) (in addition to t). By a standard argument, the option price must solve

1

2
VS2

∂2C

∂S2
þ RS

∂C
∂S

þ rsvVS
∂2C

∂S∂V
þ 1

2
s2vV

∂2C

∂V2
þ yv � kvV½ �∂C

∂V

þ 1

2
s2RR

∂2C

∂R2
yR � kR R½ �∂C

∂R
� ∂C

∂t
� RC ¼ 0,

(98.9)

subject to C(t + t, 0) ¼ max{S(t + t) � K, 0}. In the Appendix 1 it is shown that

C t; tð Þ ¼ S tð ÞP1 t; t; S;R;Vð Þ � KB t; tð ÞP2 t; t; S;R;Vð Þ, (98.10)

where the risk-neutral probabilities,
Q

1 and
Q

2, are recovered from inverting the

respective characteristic functions [see Heston (1993) and Scott (1997) for similar

treatments]:

Y
j
t, t; S tð Þ,R tð Þ,V tð Þð Þ ¼ 1

2
þ 1

p

ð1
0

Re
e�if ln K½ �f j t, t, S tð Þ,R tð Þ,V tð Þ;fð Þ

if

" #
df,

(98.11)
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for j ¼ 1, 2. The characteristic functions fj are given by

f 1 t; tð Þ ¼ exp � yR
s2R

2ln 1� xR � kR½ � 1� e�xRt
	 

2xR

� �
þ xR � kR½ �t

� ��

� yv
s2v

2ln 1� xv � kv þ 1þ ifð Þrsv½ � 1� e�xvt
	 


2xv

� �� �

� yv
s2v

xv � kv þ 1þ ifð Þrsv½ �tþ ifln S tð Þ½ � þ 2if 1� e�xRt
	 


2xR � xR � kR½ � 1� e�xRtð ÞR tð Þ

þ if ifþ 1ð Þ 1� e�xvt
	 


2xv � xv � kv þ 1þ ifð Þrsv½ � 1� e�xvtð ÞV tð Þ
�
,

(98.12)

and

f 2 t; tð Þ ¼ exp � yR
s2R

2ln 1� x�R�kR
� �

1� e�x�Rt
	 

2x�R

 !
þ x�R�kR
� �

t

" #(

� yv
s2v

2ln 1� x�v þ ifrsv
� �

1� e�x�vt
	 


2x�v

 !
þ x�v�kv þ ifrsv
� �

t

" #

þ ifln S tð Þ½ � � ln B t; tð Þ½ � þ 2 if� 1ð Þ 1� e�x�Rt
	 


2x�R � x�R�kR
� �ð1� e�x�Rt

R tð Þ

þ if if� 1ð Þ 1� e�x�vt
	 


2x�v � x�v�kv þ ifrsv
� �

1� e�x�vt
	 
V tð Þ

)
,

(98.13)

where xR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2R � 2s2Rif

p
, xv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kv � 1þ ifð Þrsv½ �2 � if ifþ 1ð Þs2v

q
,

x�R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2R � 2s2R if� 1ð Þ

p
, and x�v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kv � ifrsv½ �2 � if if� 1ð Þs2v

q
. The price

of a European put on the same stock can be determined from the put–call parity.

The option valuation model in Eq. 98.10 has several distinctive features. First, it

applies to cases with stochastically varying interest rates and volatility. It contains

as special cases most existing models, such as the SV models, the SI models, and

clearly the BS model. Second, as mentioned earlier, it allows for a flexible corre-

lation structure between the stock return and its volatility, as opposed to the perfect

correlation assumed in, for instance, Heston’s (1993) model. Furthermore, the

volatility risk premium is time varying and state dependent. This is a departure

from Hull and White (1987), Scott (1987), Stein and Stein (1991), and Wiggins

(1987) where the volatility risk premium is either a constant or zero. Third, when

compared to the general models in Bakshi and Chen (1997) and Scott (1997), the

formula in Eq. 98.10 is parsimonious in the number of parameters; especially, it is

given only as a function of identifiable variables such that all parameters can be

estimated based on available financial market data.
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The pricing formula in Eq. 98.10 applies to European equity options. But, in

reality most of the traded option contracts are American in nature. While it is

beyond the scope of the chapter to derive a model for American options, it is

nevertheless possible to capture the first-order effect of early exercise in

the following manner. For options with early-exercise potential, compute the

Barone-Adesi and Whaley (1987) or Kim (1990) early-exercise premium, treating

it as if the stock volatility and the yield curve were time invariant. Adding this

early-exercise adjustment component to the European option price in Eq. 98.10

should deliver a reasonable approximation of the corresponding American option

price [e.g., Bates (1996b)].

98.2.2 Hedging and Hedge Ratios

One appealing feature of a closed-form option pricing formula, such as the one in

Eq. 98.10, is the possibility of deriving comparative statics and hedge ratios

analytically. In the present context, there are three sources of stochastic variations

over time, price risk S(t), volatility risk V(t), and interest rate risk R(t). Conse-
quently, there are three deltas:

DS t; t;Kð Þ � ∂C t; tð Þ
∂S

¼ P1 > 0 (98.14)

DV t; t;Kð Þ � ∂C t; tð Þ
∂V

¼ S tð Þ∂P1

∂V
� KB t; tð Þ∂P2

∂V
> 0 (98.15)

DR t; t;Kð Þ � ∂C t; tð Þ
∂R

¼ S tð Þ∂P1

∂V
� KB t; tð Þ ∂P2

∂V
� R tð ÞP2

� �
> 0, (98.16)

where, for g ¼ V, R and j ¼ 1, 2,

∂Pj

∂g
¼ 1

p

ð1
0

Re ifð Þ�1e�i fln K½ � ∂f j
∂g

� �
df: (98.17)

The second-order partial derivatives with respect to these variables are provided

in the Appendix.

As V(t) and R(t) are both stochastic in our model, these deltas will in general

differ from their Black–Scholes counterpart. To see how they may differ, let us

resort to an example in which we set R (t)¼ 6.27 %, S (t)¼ 279,
ffiffiffiffiffiffiffiffiffi
V tð Þp ¼ 22:12 %,

KR ¼ 0.481, yR ¼ 0.037, sR ¼ 0.049, Kv ¼ 1.072, yv ¼ 0.041, sv ¼ 0.284, and

r ¼ �0.60. These values are backed out from the S&P 500 option prices as of July

5, 1988. Fix K¼ $270 and t¼ 45 days. Let DS be as given in Eq. 98.14 for the SVSI

model and DS
bs its BS counterpart, with DS

bs calculated using the same implied

volatility.
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In unreported results, we plot the difference between DS and DS
bs, across different

spot price levels and different correlation values. The correlation coefficient r is

chosen to be the focus as it is known to play a crucial role in determining the

skewness of the stock return distribution. When r is at �0.50 and �1.0, the

difference between the deltas is W shaped, and it reaches the highest value when

the option is at the money. The reverse is true when r is positive. Thus, DS is

generally different from DS
bs. Analogous difference patterns emerge when the other

option deltas are compared with their respective BS counterpart.

We also plot DeltaV and DeltaR and observe the following. (i) The volatility

hedge ratio DV from the SVSI model is, at each spot price, lower than its BS

counterpart (except for deep in-the-money options when r < 0 and for deep out-of-

the-money options when r > 0).5 (ii) The interest rate delta, DR, and its BS

counterpart, DS
bs, are almost not different from each other for slightly out-of-the-

money options but can be dramatically different for at-the-money options as well as

for sufficiently deep in-the-money or deep out-of-the-money calls. For example,

pick r ¼ �1.0. When S ¼ $315, we have DR ¼ 30.94 and DR
bs ¼ 32.35; when

S ¼ $226, we have DR ¼ 0.003 and DR
bs ¼ 0.430. (iii) As expected, out-of-the-

money options are overall less sensitive to changes in the spot interest rate,

regardless of the model used. In summary, if a portfolio manager/trader relies, in

an environment with stochastic interest rates and stochastic volatility, on the BS

model to design a hedge for option positions, the manager/trader will likely fail.

Analytical expressions for the deltas are useful for constructing hedges based on

an option formula. Below, we present two types of hedges by using the SVSI model

as an example.

98.2.2.1 Delta-Neutral Hedges
To demonstrate how the deltas may be used to construct a delta-neutral hedge,

consider an example in which a financial institution intends to hedge a short

position in a call option with t periods to expiration and strike price K. In the

stochastic interest rate–stochastic volatility environment, a perfectly delta-neutral

hedge can be achieved by taking a long position in the replicating portfolio of the

call. As three traded assets are needed to control the three sources of uncertainty,

the replicating portfolio will involve a position in (i) some XS(t) shares of the

underlying stock (to control for the S(t) risk), (ii) some XB(t) units of a t-period
discount bond (to control for the R(t) risk), and (iii) some XC(t) units of another call
option with strike price K (or any option on the stock with a different maturity) in

order to control for the volatility risk V(t). Denote the time t price of the replicat-

ing portfolio by G tð Þ : G tð Þ ¼ X0 tð Þ þ XS tð ÞS tð Þ þ XB tð ÞB t; tð Þ þ XC tð ÞC t; t;K
	 


,

where X0(t) denotes the amount put into the instantaneously maturing risk-free bond

and it serves as a residual “cash position.” Deriving the dynamics for G(t) and
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comparing them with those of C(t, t; K), we find the following solution for the

delta-neutral hedge:

XC tð Þ ¼ DV t; t;Kð Þ
DV t; t;K
	 
 (98.18)

XS tð Þ ¼ DS t; t;Kð Þ � DS t; t;K
	 


XC tð Þ (98.19)

XB tð Þ ¼ 1

B t; tð ÞR tð Þ DR t; t;K
	 


XC tð Þ � DR t; t;Kð Þ �
(98.20)

and the residual amount put into the instantaneously maturing bond is

X0 tð Þ ¼ C t; t;Kð Þ � XS tð ÞS tð Þ � XC tð ÞC t; t;K
	 
� XB tð ÞB t; tð Þ, (98.21)

where all the primitive deltas, DS, DR, and DV, are as determined in Eqs. 98.14,

98.14, and 98.16. Like the option prices, these hedge ratios all depend on the values

taken by S(t), V(t), and R(t) and those by the structural parameters. Such a hedge

created using the general option pricing model should in principle perform better

than using the BS model. In the latter case, only the underlying price uncertainty is

controlled for, but not the uncertainties associated with volatility and interest rate

fluctuations.

In theory this delta-neutral hedge requires continuous rebalancing to reflect the

changing market conditions. In practice, of course, only discrete rebalancing is

possible. To derive a hedging effectiveness measure, suppose that portfolio

rebalancing takes place at intervals of length Dt. Then, precisely as described

above, at time t the short call option goes long in (i) XS(t) shares of the underlying
asset, (ii) XB(t) units of the t-period bond, and (iii) XC(t) contracts of a call option
with the same term to expiration but a different strike price K , and invests the

residual, X0, in an instantaneously maturing risk-free bond. After the next interval,

compute the hedging error according to

H tþ Dtð Þ ¼ X0e
R tð ÞDt þ XS tð ÞS tþ Dtð Þ þ XB tð ÞB tþ Dt, t� Dtð Þ

þXC tð ÞC tþ Dt, t� Dt;K
	 
� C tþ Dt, t� Dt;Kð Þ: (98.22)

Then, at time t + Dt, reconstruct the self-financed portfolio, repeat the hedging

error calculation at time t + 2Dt, and so on. Record the hedging errors H(t + jDt), for
j ¼ 1, � � � , J � t�t

Dt . Finally, compute the average absolute hedging error as

a function of rebalancing frequency Dt : H Dtð Þ ¼ 1
J

PJ
j¼1 H tþ jDtð Þj j and the

average dollar-value hedging error: H Dtð Þ ¼ 1
J

PJ
j¼1 H tþ jDtð Þ.

In comparison, if one relies on the BS model to construct a delta-neutral hedge,

the hedging error measures can be similarly defined as in Eq. 98.22, except that
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XB(t) and XC(t) must be restricted to zero and XS(t) must be the BS delta. Likewise,

if the SI model is applied, the only change is to set XC(t) to zero with DS and DR

determined by the SI model; in the case of the SV model, set XB(t) ¼ 0 and let DS

and DV be as determined in the SV model. The Appendix provides in closed form an

SI option pricing formula and an SV option formula.

98.2.2.2 Single-Instrument Minimum-Variance Hedges
As discussed before, consideration of such factors as model misspecification and

transaction costs may render it more practical to use only the underlying asset of the

target option as the hedging instrument. Under this single-instrument constraint,

a standard design is to choose a position in the underlying stock so as to minimize

the variance of instantaneous changes in the value of the hedge. Letting XS(t) again
be the number of shares of the stock to be purchased, solving the standard

minimum-variance hedging problem under the SVSI model gives

XS tð Þ ¼ Covt ds tð Þ, dC t; tð Þ½ �
Var dS tð Þ½ � ¼ DS þ rsv

DV t; tð Þ
S tð Þ , (98.23)

and the resulting residual cash position for the replicating portfolio is

X0 tð Þ ¼ C t; tð Þ � XS tð ÞS tð Þ: (98.24)

This minimum-variance hedge solution is quite intuitive, as it says that if stock

volatility is deterministic (i.e., sv ¼ 0) or if stock returns are not correlated with

volatility changes (i.e., r¼ 0), one only needs to longDS(t) shares of the stock and no
other adjustment is necessary. However, if volatility is stochastic and correlated with

stock returns, the position to be taken in the stock must control not only for the direct

impact of underlying stock price changes on the target option value but also for the

indirect impact of that part of volatility changes which is correlated with stock price

fluctuations. This effect is reflected in the last term in Eq. 98.23, which shows that the

additional number of shares needed besides DS is increasing in r (assuming sv > 0).

As for the previous case, suppose that the target call is shorted and that XS(t)
shares are bought and X0(t) dollars are put into the instantaneous risk-free bond, at

time t. The combined position is a self-financed portfolio. At time t + Dt, the
hedging error of this minimum-variance hedge is calculated as

H tþ Dtð Þ ¼ XS tð ÞS tþ Dtð Þ þ X0 tð ÞeR tð ÞDt � C tþ Dt, t� Dtð Þ: (98.25)

Unlike in Nandi (1996) where he uses the remaining variance of the hedge as

a hedging effectiveness gauge, we compute, based on the entire sample period, the

average absolute and the average dollar hedging errors to measure the effectiveness

of the hedge.

Minimum-variance hedging errors under the SV model as well as under the SI

model can be similarly determined accounting for their modeling differences. In the
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case of the SV model, there is still an adjustment term for the single stock position

as in Eq. 98.23. But, for the SI model, the corresponding XS(t) is the same as its DS.

For the BS model, this single-instrument minimum-variance hedge is the same as

the delta-neutral hedge. Both types of hedging strategy will be examined under each

of the four alternative models.

98.2.3 Implementation

In addition to the strike price and the term to expiration (which are specified in

the contract), the SVSI pricing formula in Eq. 98.10 requires the following values

as input:

• The spot stock price. If the stock pays dividends, the stock price must be adjusted

by the present value of future dividends.

• The spot volatility.

• The spot interest rate.

• The matching t-period yield to maturity (or the bond price).

• The seven structural parameters: {kR, yR, sR, kv, yv, sv, r}
For computing the price of a European option, we offer two alternative

two-step procedures below. One can implement these steps on any personal

computer:

Procedure A

Step 1. Obtain a time series each for the short rate, the stock return, and the

stock volatility. Jointly estimate the structural parameters, {kR, yR, sR, kv,
yv, sv, r}, using Hansen’s (1982) GMM.

Step 2. Determine the risk-neutral probabilities, P1 and P2, from the character-

istic functions in Eqs. 98.12 and 98.13. Substitute (i) the two probabilities,

(ii) the stock price, and (iii) the yield to maturity into (98.10) to compute the

option price.

While offering an econometrically rigorous method to estimate the struc-

tural parameters, Step 1 in Procedure A may not be as practical or convenient,

because of its requirement on historical data. A further difficulty with this

approach is its dependence on the measurement of stock volatility. In

implementing the BS model, practitioners predominantly use the implied

volatility from the model itself rather than relying on historical data. This

practice has not only reduced data requirement dramatically but also resulted

in significant performance improvement [e.g., Bates (2000) and Melino and

Turnbull (1990, 1995)]. Clearly, one can also follow this practice to imple-

ment the SVSI model.

Procedure B

Step 1. Collect N option prices on the same stock and taken from the same

point in time (or same day), for any N � 8. Let Ĉn t; tn;Knð Þ be the observed
price and Cn(t, tn, Kn) the model price as determined by Eq. 98.10 with S(t)
and R(t) taken from the market, for the n-th option with tn periods to

expiration and strike price Kn and for each n ¼ 1, . . . , N. Clearly, the

2666 C. Cao et al.



difference between Ĉn and Cn is a function of the values taken by V(t) and by
F � {kR, yR, sR, kv, yv, sv, r}. Define

ϵn V tð Þ,F½ � � Ĉn t; tn;Knð Þ � Cn t; tn;Knð Þ, (98.26)

for each n. Then, find V(t) and parameter vector F (a total of eight), so as to

minimize the sum of squared errors:

XN
n¼1

ϵn V tð Þ,F½ �2�� ��: (98.27)

The result from this step is an estimate of the implied spot variance and

seven structural parameter values, for date t. See Bates (1996b, 2000), Dumas

et al. (1998), Longstaff (1995), Madan et al. (1998), and Nandi (1996) where

they adopt this technique for similar purposes.

Step 2. Based on the estimate from the first step, follow Step 2 of Procedure A to

compute date-(t + 1)’s option prices on the same stock.

In the existing literature, the performance of a new option pricing model is often

judged relative to that of the BS model when the latter is implemented using the

model’s own implied volatility and the time-varying interest rates. Since volatility

and interest rates in the BS are assumed to be constant over time, this internally

inconsistent practice will clearly and significantly bias the application results in

favor of the BS model. But, as this is the current standard in judging performance,

we will follow Procedure B to implement the SVSI model and similar procedures to

implement the BS, the SV, and the SI models. Then, the models will be ranked

relative to each other according to their performance so determined.

98.3 Data Description

For all the tests to follow, we use, based on the following considerations, S&P

500 call option prices as the basis. First, options written on this index are the most

actively traded European-style contracts. Recall that like the BS model, formula

(98.10) applies to European options. Second, the daily dividend distributions are

available for the index (from the S&P 500 Information Bulletin). Harvey and

Whaley (1992a, b), for instance, emphasize that critical pricing errors can result

when dividends are omitted from empirical tests of any option valuation model.

Furthermore, S&P 500 options and options on S&P 500 futures have been the focus

of many existing empirical investigations including Bates (2000), Dumas

et al. (1998), Madan et al. (1998), Nandi (1996), and Rubinstein (1994). Finally,

we also used S&P 500 put option prices to estimate the pricing and hedging errors

of all four models and found the results to be similar, both qualitatively and

quantitatively, to those reported in the chapter. To save space, we chose to focus

on the results based on the call option prices.
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The sample period extends from June 1, 1988 through May 31, 1991. The

intradaily transaction prices and bid–ask quotes for S&P 500 options are obtained

from the Berkeley Option Database. Note that the recorded S&P 500 index values

are not the daily closing index levels. Rather, they were the corresponding index

levels at the moment when the recorded option transaction took place or when an

option price quote was recorded. Thus, there is no nonsynchronous price issue here,

except that the S&P 500 index level itself may contain stale component stock prices

at each point in time.

The data on the daily Treasury bill bid and ask discounts with maturities up to

1 year are hand collected from the Wall Street Journal and provided to us by Hyuk

Choe and Steve Freund. By convention, the average of the bid and ask Treasury bill

discounts is used and converted to an annualized interest rate. Careful attention is

given to this construction since Treasury bills mature on Thursdays, while index

options expire on the third Friday of the month. In such cases, we utilize the two

Treasury bill rates straddling the option’s expiration date to obtain the interest rate

of that maturity, which is done for each contract and each day in the sample. The

Treasury bill rate with 30 days to maturity is the surrogate used for the short rate in

Eq. 98.1 (and in the determination of the probabilities in Eq. 98.10).

For European options, the spot stock price must be adjusted for discrete divi-

dends. For each option contract with t periods to expiration from time t, we first

obtain the present value of the daily dividends D(t) by computing

D t; tð Þ ¼
Xt�t

S¼1

e�R t;sð ÞsD tþ sð Þ, (98.28)

where R(t, s) is the s-period yield to maturity. This procedure is repeated for all

option maturities and for each day in our sample. In the next step, we subtract the

present value of future dividends from the time t index level, in order to obtain

the dividend-exclusive S&P 500 spot index series that is later used as input into the

option models.

Several exclusion filters are applied to construct the option price data set. First,

option prices that are time stamped later than 3:00 p.m. Central Daytime are

eliminated. This ensures that the spot price is recorded synchronously with its

option counterpart. Second, as options with less than 6 days to expiration may

induce liquidity-related biases, they are excluded from the sample. Third, to

mitigate the impact of price discreteness on option valuation, option prices lower

than $3
8
are not included. Finally, quote prices that are less than the intrinsic value of

the option are taken out of the sample.

We divide the option data into several categories according to either

moneyness or term to expiration. A call option is said to be at the money (ATM)

if its S
K 2 0:97; 1:03ð Þ, where S is the spot price and K the strike; out-of-the-money

(OTM) if SK � 0:97; and in-the-money (ITM) if S
K � 1:03. A finer partition resulted in

nine moneyness categories. By the term to expiration, each option can be classified

as [e.g., Rubinstein (1985)] (i) extremely short term (<30 days), (ii) short term
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(30–60 days), (iii) near term (60–120 days), (iv) middle maturity (120–180 days),

and (v) long term (>180 days). The proposed moneyness and term-to-expiration

classifications resulted in 54 categories for which the empirical results will be

reported.

Table 98.1 describes sample properties of the S&P 500 call option prices used in

the tests. Summary statistics are reported for the average bid–ask midpoint price

and the total number of observations, for each moneyness–maturity category. Note

that there is a total of 38,749 call price observations, with deep in-the-money and

at-the-money options, respectively, taking up 32 % and 28 % of the total sample and

that the average call price ranges from $0.78 for extremely short term, deep out-of-

the-money options to $59.82 for long-term, deep in-the-money options.

98.4 Empirical Tests

This section examines the relative empirical performance of the four models.

The analysis is intended to present a complete picture of what each generalization

Table 98.1 Sample properties of S&P 500 index options

Moneyness Term to expiration (days)

S/K <30 30–60 60–90 90–120 120–180 �180 Subtotal

<0.93 0.78 1.33 1.99 2.84 4.88 7.82

{23} {246} {266} {431} {1,080} {1,538} {3,584}

0.93–0.95 1.02 1.91 3.30 5.08 8.14 12.86

{121} {595} {267} {319} {596} {646} {2,544}

0.95–0.97 1.35 3.05 5.35 7.45 10.87 15.91

{488} {1,012} {316} {351} {670} {628} {3,465}

0.97–0.99 2.47 5.53 8.23 10.83 14.19 19.33

{838} {1,020} {312} {336} {676} {706} {3,888}

0.99–1.01 5.27 8.99 11.96 14.55 17.95 23.20

{776} {954} {285} {308} {629} {631} {3,583}

1.01–1.03 9.65 13.17 15.99 18.84 22.06 27.74

{752} {906} {276} {283} {607} {597} {3,421}

1.03–1.05 14.79 17.80 20.80 23.36 26.39 31.91

{675} {844} {241} {264} {542} {501} {3,067}

1.05–1.07 20.20 22.63 25.83 27.83 30.69 35.70

{620} {760} {224} {242} {449} {473} {2,818}

�1.07 41.23 42.28 47.50 49.27 51.34 59.82

{2,143} {2,350} {1,284} {1,355} {2,184} {3,063} {12,379}

Subtotal {6,436} {8,687} {3,471} {3,889} {7,483} {8,783} {38,749}

The reported numbers are respectively the average quoted bid–ask midpoint price and the number

of observations. Each option contract is consolidated across moneyness and term-to-expiration

categories. The sample period extends from June 1, 1988 through May 31, 1991 for a total of

38,749 calls. Daily information from the last quote of each option contract is used to obtain the

summary statistics. S denotes the spot S&P 500 index level and K is the exercise price
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of the benchmark BS model can really buy in terms of performance improvement

and whether each generalization produces a worthy tradeoff between benefits and

costs. We will pursue this analysis by using three yardsticks: (i) the size of the

out-of-sample cross-sectional pricing errors (static performance); (ii) the size of

model-based hedging errors (dynamic performance); and (iii) the existence of

systematic biases across strike prices or across maturities (i.e., does the implied
volatility still smile?).

Based on Procedure B of Sect. 98.2.3, Table 98.2 reports the summary statistics

for the daily estimated structural parameters and the implied spot standard devia-

tion, respectively, for the SVSI, the SV, the SI, and the BS models. Take the SVSI

model as an example. Over the entire sample period 06:1988–05:1991, kv ¼ 0.906,

yv ¼ 0.042, and sv ¼ 0.414. These estimates imply a long-run mean of 21.53 % for

the volatility process. The implicit (average) half-life for variance mean reversion is

9.18 months. These estimates are similar in magnitude to those reported in Bates

(1996b, 2000) for S&P 500 futures options. The estimated parameters for the (risk

neutralized) short-rate process are also reasonable and comparable to those in Chan

et al. (1992). The presented correlation estimate for r is �0.763. The average

implied standard deviation is 19.27 %. As seen from the reported standard errors in

Table 98.2, for each given model the daily parameter and spot volatility estimates

are quite stable from subperiod to subperiod. Histogram-based inferences

(not reported) indicate that the majority of the estimated values are centered around

the mean.

In estimating the structural parameters and the implied volatility for a given

day, we used all S&P 500 options collected in the sample for that day (regardless

of maturity and moneyness). This is the treatment applied to the SI, the SV,

and the SVSI models. For the BS model, however, Whaley (1982) makes the point

that ATM options may give an implied-volatility estimate which produces the

best pricing and hedging results. Based on his justification, we used, for each

given day, one ATM option that had at least 15 days to expiration to back out the

BS model’s implied-volatility value. This estimate was then used to determine

the next day’s pricing and hedging errors of the BS model. See Bates (1996a)

for a review of alternative approaches to estimating the BS model’s

implied volatility.

Observe in Table 98.2 that for the overall sample period, the average implied

standard deviation is 19.27 % by the SVSI model, 19.02 % by the SV, 18.14 % by

the SI, and 18.47 % by the BS model, where the difference between the highest and

the lowest is only 1.13 %. For each subperiod the implied-volatility estimates are

similarly close across the four models. This is somewhat surprising. It should,

however, be recognized that this comparison is based only on the average estimates

over a given period. When we examined the day-to-day time-series paths of the four

models’ implied-volatility estimates, we found the difference between the two

models’ implied standard deviations to be sometimes as high as 6 %. Economically,

option prices and hedge ratios are generally quite sensitive to the volatility input

(see Figlewski 1989). Even small differences in the implied-volatility estimate can

lead to significantly different pricing and hedging results.
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98.4.1 Static Performance

To examine out-of-sample cross-sectional pricing performance for each model,

we use previous day’s option prices to back out the required parameter

values and then use them as input to compute current day’s model-based option

prices. Next, subtract the model-determined price from the observed market price,

to compute both the absolute pricing error and the percentage pricing error. This

procedure is repeated for each call and each day in the sample, to obtain the

average absolute and the average percentage pricing errors and their associated

standard errors. These steps are separately followed for each of the BS, the SI, the

SV, and the SVSI models. The results from this exercise are reported in Table 98.3.

Let’s first examine the relative performance in pricing OTM options.

Overpricing of OTM options is often considered a critical problem for the BS

model (e.g., McBeth and Merville 1979 and Rubinstein 1985). Panel A of

Table 98.3 reports the absolute and the percentage pricing error estimates for

OTM options. According to both error measures, the overall ranking of the four

models is consistent with our priors: the SVSI model outperforms all others,

followed by the SV, the SI, and finally the BS model. For extremely short-term

(<30 days) and extremely out-of-the-money ( SK < 0:93) options, for example, the

average absolute pricing error by the SVSI model is $0.23 versus $0.53 by the BS,

$0.28 by the SI, and $0.25 by the SV model. For this category, the BS model’s

absolute pricing error is cut by more than a half by each of the other three models.

Fix the moneyness category at S
K 2 0:93; 0:95ð Þ . Then, for medium-term

(120–180 days) options, the SVSI model produces an average absolute pricing

error of $0.44 versus $1.38 by the BS, $0.72 by the SI, and $0.39 by the SV model.

For short-term (30–60 day) calls, the absolute pricing errors are $0.44 by the SVSI,
$0.48 by the SV, $0.73 by the SI, and $0.90 by the BS model. Clearly, the

performance improvement is significant for each moneyness and maturity category

in Panel A, from the BS to the SI, to the SV, and to the SVSI model. This pricing

performance ranking of the four models can also be seen using the average percent-

age pricing errors, as given in the same table. Here, the SVSI model produces

percentage pricing errors that are the lowest in magnitude. As an example, take

OTM options with term to expiration of 30–60 days and with S
K 2 0:93; 0:95ð Þ In this

category the BS, the SI, the SV, and the SVSI models, respectively, have average

percentage pricing errors of �54.50 %, �46.20 %, �26.16 %, and �18.85 %. For

long-term options with S
K 2 0:93; 0:95ð Þ and with S

K 2 0:95; 0:97ð Þ, the SVSI model

results in a percentage pricing error that is as low as 0.71 % and 0.30 %, respectively.

For ATM calls, recall that the BS model’s implied-volatility input is backed out

from the (previous day’s) short-term ATM options, which should give the BS model

a relative advantage in pricing ATM options. In contrast, the implied spot variance for

the other models is obtained by minimizing the sum of squared errors for all options of

the previous day. Thus, for ATM options, one would expect the BS model to perform

relatively better. As seen from Panel B of Table 98.3, except for the shortest-term

ATM calls, the SVSI model typically generates the lowest absolute and percentage

pricing errors (especially for longer-term options), followed by the SV, by the SI,
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and finally by the BS model. For the shortest-term options with S
K 2 0:97; 0:99ð Þ and

S
K 2 0:99; 1:01ð Þ , the BS and the SI models perform somewhat better than the

other two.

Panel C of Table 98.3 reports the average absolute and percentage pricing errors

of ITM calls by all four models. While the previous ranking of the models based on

OTM and ATM options is preserved by Panel C, it can be noted that the average

percentage pricing error is below 1.0 % for 12 out of the 18 categories in the case

of the SVSI model, for 8 out of the 18 categories in the case of the SV model, for

three categories out of 18 for the SI model, and for none of the 18 categories in the

case of the BS model. The pricing improvement by the SV and the SVSI

models over the BS and the SI is quite substantial for ITM options, especially

for long-term options.

Some patterns of mispricing can, however, be noted across all moneyness–

maturity categories. First, all four models produce negative percentage pricing

errors for options with moneyness S
K � 0:99 and positive percentage pricing errors

for options with S
K � 1:03, subject to their time to expiration not exceeding 120 days.

This means that the models systematically overprice OTM call options while

underprice ITM calls. But the magnitude of such mispricing varies dramatically

across the models, with the BS producing the strongest and the SVSI model the

weakest systematic biases. Next, according to the absolute pricing error measure,

the SV model seems to perform slightly better than the SVSI in pricing calls with

more than 90 days to expiration. This pattern is, however, not supported by the

percentage pricing errors reported in Table 98.3, possibly because for these rela-

tively long-term calls the two models produce pricing errors that have mixed signs,

in which case taking the average absolute value of the pricing errors can sometimes

distort the picture. According to the percentage pricing errors, the SVSI model does

slightly better than the SV in pricing those longer-term options. Finally, for the BS

model, its absolute pricing error has a U-shaped relationship (i.e., “smile”) with

moneyness, and the magnitude of its percentage pricing error increases as the call

goes from deep in the money to deep out of the money, regardless of time to

expiration. These patterns are reduced by each relaxation of the BS model

assumptions.

98.4.2 Dynamic Hedging Performance

Recall that in implementing a hedge using any of the four models, we follow three

basic steps. First, based on Procedure B of Sect. 98.2.3, estimate the structural

parameters and spot variance by using day 1’s option prices. Next, on day 2, use

previous day’s parameter and spot volatility estimates and current day’s spot price

and interest rates, to construct the desired hedge as given in Sect. 98.2.2. Finally,

rely on either Eqs. 98.22 or 98.25 to calculate the hedging error as of day 3. We then

compute both the average absolute and the average dollar hedging errors of all call

options in a given moneyness–maturity category, to gauge the relative hedging

performance of each model.
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It should be recognized that in both the delta-neutral and the minimum-variance

hedging exercises conducted in the two subsections below, the spot S&P 500 index,

rather than an S&P 500 futures contract, is used in place of the “spot asset” for the

hedges devised in Sect. 98.2.2. This is done out of two considerations. First, the spot

S&P 500 and the immediate-expiration-month S&P 500 futures price generally

have a correlation coefficient close to one. This means that whether the spot index

or the futures price is used in the hedging exercises, the qualitative as well as the

quantitative conclusions are most likely the same. In other words, if it is demon-

strated using the spot index that one model results in better hedging performance

than another, the same hedging performance ranking of the two models will likely

be achieved by using an S&P 500 futures contract. After all, our main interest here

lies in the relative performance of the models. Second, when a futures contract is

used in constructing a hedge, a futures pricing formula has to be adopted. That will

introduce another dimension of model misspecification (due to stochastic interest

rates), which can in turn produce a compounded effect on the hedging results. For

these reasons, using the spot index may lead to a cleaner comparison among the

four option models.

98.4.2.1 Effectiveness of Delta-Neutral Hedges
Observe that the construction and the execution of the hedging strategy in

Eq. 98.22 requires, in the cases of the SV and the SVSI models, (i) the availability

of prices for four time-matched target and hedging-instrumental options, C t; t;Kð Þ,
C t; t;K
	 


,C tþ Dt, t� Dt;Kð Þ, and C tþ Dt, t� Dt;K
	 


, and (ii) the computation

of DS, DV, and DR for the target and the instrumental option. Due to this require-

ment, it is important to match as closely as possible the time points at which the

target and the instrumental option prices were respectively taken, in order to ensure

that the hedge ratios are properly determined. For this reason, we use as hedging

instruments only options whose prices on both the hedge construction day and the

following liquidation day were quoted no more than 15 s apart from the times when

the respective prices for the target option were quoted. This requirement makes the

overall sample for the hedging exercise smaller than that used for the preceding

pricing exercise, but it nonetheless guarantees that the deltas for the target and

instrumental options on the same day are computed based on the same spot price.

The remaining sample contains 15,041 matched pairs when hedging revision occurs

at 1-day intervals and 11,704 matched pairs when rebalancing takes place at 5-day

intervals. In addition, we partition the target options into three maturity classes, less

than 60 days, 60–180 days, and greater than 180 days, and report hedging results

accordingly.

In theory, a call option with any expiration date and any strike price can be

chosen as a hedging instrument for any given target option. In practice, however,

different choices can mean different hedging effectiveness, even for the same

option pricing model. Out of this consideration, we employ as a hedging instrument

the call option which has the same expiration date as the target option and whose

strike price is the closest, but not identical, to the target option’s.

2678 C. Cao et al.



Table 98.4 presents delta-neutral hedging results for the four models. Several

patterns emerge from this Table. First, the BS model produces the worst hedging

performance by most measures, the SI shows noticeable improvement according to

the average dollar hedging errors (especially in the 5-day hedging revision catego-

ries) but not so according to the average absolute hedging errors, while the SV and

the SVSI models have average absolute and average dollar hedging errors that are

typically one-third of the corresponding BS hedging errors, or lower. The improve-

ment by the SV and the SVSI is thus remarkable. Second, as portfolio adjustment

frequency decreases from daily to once every 5 days, hedging effectiveness dete-

riorates, regardless of the model used. The deterioration is especially apparent for

OTM and ATM options with S
K � 1:05. It should, however, be noted with emphasis

that for both the SV and the SVSI models, their hedging effectiveness is relatively

stable, whether the hedges are rebalanced each day or once every 5 days. For the BS

and the SI models, such a change in revision frequency can mean doubling their

hedging errors. This finding is strong evidence in support of the SV and the SVSI

models for hedging.

Third, the BS model-based delta-neutral hedging strategy always overhedges

a target call option, as its average dollar hedging error is negative for each

moneyness–maturity category and at either frequency of portfolio rebalancing. In

contrast, the dollar hedging errors based on the SV and the SVSI models are more

random and can take either sign. Therefore, the BS formula has a systematic

hedging bias pattern, whereas the SV and the SVSI do not.

Fourth, the SVSI model is indistinguishable from the SV according to their

absolute hedging errors, but is slightly better than the latter when judged using their

average dollar hedging errors. Similarly, the SI model has worse hedging perfor-

mance than the BS according to their absolute hedging error values, but the reverse

is true according to their dollar hedging errors. This phenomenon exists possibly

because with stochastic interest rates there are larger hedging errors of opposite

signs, so that when added together, these errors cancel out, but the sum of their

absolute values is nonetheless large.

Finally, no matter which model is used, there do not appear to be moneyness- or

maturity-related bias patterns in the hedging errors. In other words, hedging errors

do not seem to “smile” across exercise prices or times to expiration, as pricing

errors do. This is a striking disparity between pricing and hedging results.

98.4.2.2 Effectiveness of Single-Instrument Minimum-Variance Hedges
If one is, for reasons given before, constrained to using only the underlying stock to

hedge a target call option, dimensions of uncertainty that move the target option

value but are uncorrelated with the underlying stock price cannot be hedged by any

position in the stock and will necessarily be uncontrolled for in such a single-

instrument minimum-variance hedge. Based on the sample option data, the average

absolute and the average dollar hedging errors, with either a daily or a 5-day

rebalancing frequency, are given in Table 98.5 for each of the four models and

each of the moneyness–maturity categories. With this type of hedges, the relative

performance of the models is no longer clear-cut. For OTM options with S
K � 1:97,
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the SV model has, regardless of the hedging error measure used and the hedge

revision frequency adopted, the lowest hedging errors, followed by the SVSI, then

by the BS, and lastly by the SI model. For ATM options, the hedging performance by

the BS and the SV models is almost indistinguishable, but still better, by a small

margin, than that by both the SI and the SVSI models, whereas the latter two models’

performance is also indistinguishable. Finally, for ITM options, the BS model has the

best hedging performance, followed by the SV, the SVSI, and then by the SI model.

Having said the above, it should nonetheless be noted that for virtually all cases in

Table 98.5, the hedging error differences among the BS, the SV, and the SVSI models

are economically insignificant because of their low magnitude. Only the SI model’s

performance appears to be significantly poorer than the others’.

The fact that the SI model performs worse than the BS and that the SVSI model

performs slightly worse than the SV suggests that adding stochastic interest rates to

the option pricing framework actually make the single-instrument hedge’s perfor-

mance worse. This can be explained as follows. In the setup of the chapter, interest

rate shocks are assumed to be independent of shocks to the stock price and/or to the

stochastic volatility. Therefore, in the single-instrument minimum-variance hedges,

there is no adjustment in the optimal position in the underlying stock to be taken.

The hedging results in Table 98.5 have shown that if interest rate risk is not to be

controlled by any position in the hedging instrument, then it is perhaps better to

design a single-instrument hedge based on an option model that assumes no interest

rate risk. Assuming interest rate risk in an option pricing model and yet not

controlling for this risk in a hedge can make the hedging effectiveness worse.

In the case of the SV versus the BS model, the situation is somewhat different

from the above. As volatility shocks are assumed to be correlated with stock price

shocks, the position to be taken in the underlying stock (i.e., the hedging instru-

ment) needs to be adjusted relative to the BS model-determined hedge, so that this

single position not only helps contain the underlying stock’s price risk but also

neutralize that part of volatility risk which is related to stock price fluctuations (see

Eq. 98.23). Thus, by rendering it possible to use the single hedging position to

control for both stock price risk and volatility risk, introducing stochastic volatility

into the BS framework helps improve the single-instrument hedging performance,

albeit by a small amount. Nandi (1996) uses the remaining variance of a hedged

position as a hedging effectiveness measure, according to which he finds the SV

model performs better than the BS model. Our single-instrument hedging results are

hence consistent with his, regarding the SV versus the BS model.

It is useful to recall that all four models are implemented allowing both the spot

volatility and the spot interest rates to vary from day to day, which is, except in the

sole case of the SVSI model, not consistent with the models’ assumptions. Given

this practical ad hoc treatment, it may not come as a surprise that when only the

underlying asset is used as the hedging instrument, the four models performed

virtually indifferently, with the magnitude of their hedging error differences being

generally small. As easily seen, if all four models were implemented in a way

consistent with the respective model setups, the single-instrument hedges based on

the SVSI model would for sure perform the best.
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Comparing Tables 98.4 and 98.5, one can conclude that based on a given option

model, the conventional delta-neutral hedges perform far better than their single-

instrument counterparts, for every moneyness–maturity category. This is not sur-

prising as the former type of hedges involves more hedging instruments (except

under the BS model).

98.4.3 Regression Analysis of Option Pricing and Hedging Errors

So far we have examined pricing and hedging performance according to option

moneyness–maturity categories. The purpose was to see whether the errors have

clear moneyness- and maturity-related biases. By appealing to a regression analy-

sis, we can more rigorously study the association of the errors with factors that are

either contract specific or market condition dependent. Fix an option pricing model,

and let ϵn(t) denote the n-th call option’s percentage pricing error on day t. Then,
run the regression below for the entire sample:

ϵn tð Þ ¼ b0 þ b1
S tð Þ
Kn

þ b2tn þ b3SPREADn tð Þ
þb5LAGVOL t�1ð Þ þ b4SLOPE tð Þ þ �n tð Þ,

(98.29)

where Kn is the strike price of the call, tn the remaining time to expiration, and

SPREADn(t) the percentage bid–ask spread at date t of the call (constructed by

computing Ask�Bid
0:5 AskþBidð Þ , all of which are contract-specific variables. The variable,

LAGVOL(t � 1), is the (annualized) standard deviation of the previous day’s

intraday S&P 500 returns computed over 5-min intervals, and it is included in the

regression to see whether the previous day’s volatility of the underlying may cause

systematic pricing biases. The variable, SLOPE(t), represents the yield differential

between 1-year and 30-day Treasury bills. This variable can provide information on

whether the single-factor Cox et al. (1985) term structure model assumed in the

chapter is sufficient to make the resulting option formula capture all term structure-

related effects on the S&P 500 index options. In some sense, the contract-specific

variables help detect the existence of cross-sectional pricing biases, whereas

LAGVOL(t�1) and SLOPE(t) serve to indicate whether the pricing errors over

time are related to the dynamically changing market conditions. Similar regression

analyses have been done for the BS pricing errors in, for example, Galai (1983b),

George and Longstaff (1993), and Madan et al. (1998). For each given option

model, the same regression as in Eq. 98.29 is also run for the conventional delta-

neutral hedging errors, with ϵn(t) in Eq. 98.29 replaced by the dollar hedging error

for the n-th option on day t.
Table 98.6 reports the regression results based on the entire sample period,

where the standard error for each coefficient estimate is adjusted according to

the White (1980) heteroskedasticity-consistent estimator and is given in the

parentheses. Let us first examine the pricing error regressions. For every option
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model, each independent variable has statistically significant explanatory power

of the remaining pricing errors. That is, the pricing errors from each model

have some moneyness, maturity, intraday volatility, bid–ask spread, and term

structure-related biases. The magnitude of each such bias, however, decreases

from the BS to the SI, to the SV, and to the SVSI model. For instance, the BS

percentage pricing errors will on the average be 2.29 points higher when the yield

spread SLOPE(t) increases by one point, whereas the SV and the SVSI percentage

errors will only be, respectively, 0.32 and 0.34 points higher in response.

Thus, a higher yield spread on the term structure means higher pricing errors,

regardless of the option model used. This points out that a possible direction to
further improve pricing performance is to include the yield spread as a second
factor in the term structure model of interest rates. Other noticeable

patterns include the following. The BS pricing errors are decreasing, while

the SI, the SV, and the SVSI pricing errors are increasing, in both the option’s

time to expiration and the underlying stock’s volatility on the previous day.

The deeper in the money the call or the wider its bid–ask spread, the lower the

SI’s, the SV’s, and the SVSI model’s mispricing. But, for the BS model, its

mispricing increases with moneyness and decreases with bid–ask spread.

Even though all four models’ pricing errors are significantly related to each

independent variable, the collective explanatory power of these variables is not so

Table 98.6 Regression analysis of pricing and hedging errors

Coefficient

Percentage pricing errors Hedging errors

BS SI SV SVSI BS SI SV SVSI

Constant �0.05 0.28 0.24 0.11 �0.41 �0.30 0.00 �0.03

(0.03) (0.03) (0.02) (0.02) (0.11) (0.10) (0.05) (0.05)

S/K 0.22 �0.18 �0.20 �0.09 0.34 0.29 0.00 0.03

(0.03) (0.02) (0.01) (0.02) (0.09) (0.08) (0.04) (0.04)

t �0.04 0.04 0.08 0.05 0.03 0.08 0.00 0.00

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

SPREAD �5.24 �4.48 �2.13 �1.57 2.26 1.04 0.32 0.34

(0.12) (0.11) (0.07) (0.08) (0.48) (0.32) (0.23) (0.23)

SLOPE 2.29 1.33 0.32 0.34 �2.09 �2.01 �0.39 �0.39

(0.16) (0.13) (0.08) (0.11) (0.58) (0.65) (0.26) (0.25)

LAGVOL �0.16 0.12 0.06 0.04 �0.31 �0.51 �0.06 �0.05

(0.02) (0.02) (0.01) (0.01) (0.07) (0.05) (0.02) (0.02)

Adj. R2 0.29 0.22 0.12 0.07 0.01 0.01 0.00 0.00

The regression results below are based on the equation:

ϵn tð Þ ¼ b0 þ b1
S tð Þ
Kn

þ b2tn þ b3SPREADn tð Þ þ b4SLOPPE tð Þ þ b4LAGVOL t�1ð Þ þ �n tð Þ,
where ϵn(t) denotes either the percentage pricing error or the dollar hedging error of the n-th call on
date t; S/K and tn, respectively, represent the moneyness and the term to expiration of the option

contract; the variable SPREADn(t) is the percentage bid–ask spread; SLOPE(t) the yield differen-

tial between the 1-year and the 30-day Treasury bill rates; and LAGVOL(t�1) the previous day’s

(annualized) standard deviation of S&P 500 index returns computed from 5-min intradaily returns.

The standard errors, reported in parenthesis, are White’s (1980) heteroskedastically consistent

estimator. The sample period is 06:1988–05:1991 for a total of 38,749 observations
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impressive. The adjusted R2 is 29 % for the BS formula’s pricing errors, 22 % for

the SI’s, 12 % for the SV’s, and 7 % for the SVSI model’s. Therefore, while both the

BS and the SI model have significant overall biases related to contract terms and

market conditions (indicating systematic model misspecifications), the remaining

pricing errors under the SV and the SVSI are not as significantly associated with

these variables. About 93 % of the SVSI model’s pricing errors cannot be explained

by these variables!

As reported in Table 98.6, delta-neutral hedging errors by the BS and the SI

model tend to increase with the moneyness and the bid–ask spread of the target call,

but decrease with the non-contract-specific yield spread and lagged stock volatility

variables. Therefore, the two models are misspecified for hedging purposes, and

they lead to systematic hedging biases. But, overall, these variables can explain

only 1 % of the hedging errors by the two models. And, even more impressively,

none of the included independent variables can explain any of the remaining

hedging errors by the SV and the SVSI model, as their R2 values are both zero.

Finally, when the dollar pricing errors are used to replace the percentage pricing

errors or when the percentage hedging errors are employed to replace the dollar

hedging errors in the above regressions, the sign of each resulting coefficient

estimate and the magnitude of each R2 value in Table 98.6 remain unchanged.

Thus, the conclusions drawn from Table 98.6 are independent of the choice of the

pricing or hedging error measure. Results from these exercises are not reported here

but available upon request.

98.4.4 Robustness of Empirical Results

Using the entire sample period data, we have concluded that the evidence, based on

both static performance and dynamic performance measures, is in favor of both the

SVSI and the SV model. However, it is important to demonstrate that this conclu-

sion still holds when alternative test designs and different sample periods are used.

Below we briefly report results from two controlled experiments.

According to Rubinstein (1985), the volatility smile pattern and the nature

of pricing biases are time period dependent. To see whether our conclusion

may be reversed, we separately examined the pricing and hedging performance

of the models in three subperiods: 06:1988–05:1989, 06:1989–05:1990, and

06:1990–05:1991. Each subperiod contains about 10,000 call option observations.

As the results are similar for each subperiod, we provide the percentage pricing

errors in Panel A and the absolute delta-neutral hedging errors in Panel B of

Table 98.7, for the subperiod 06:1990–05:1991. It is seen that these results are

qualitatively the same as those in Tables 98.3 and 98.4.

We examined the pricing and hedging error measures of each model when the

structural parameters were not updated daily. Rather, retain the structural parameter

values estimated from the options of the first day of each month, and then, for the

remainder of the month, use them as input to compute the corresponding

model-based price for each traded option, except that the implied spot volatility
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Table 98.7 Robustness analysis

Panel A: percentage pricing errors, 06:1990–05:1991

Moneyness Model Term to expiration (days)

S/K <30 30–60 60–90 90–120 120–180 �180

<0.93 BS �76.51 �96.75 �74.73 �78.71 �61.36 �46.83

SI �26.88 �62.89 �38.89 �34.40 �18.68 �5.14

SV �25.05 �35.80 �12.59 �1.25 1.64 8.51

SVSI �20.56 �31.82 �8.15 �3.00 0.58 3.57

0.93–0.95 BS �54.99 �59.06 �31.97 �24.29 �19.28 �12.36

SI �46.25 �46.77 �28.99 �10.62 �9.55 �5.37

SV �26.57 �25.32 �8.57 �1.60 �0.33 1.50

SVSI �28.25 �21.71 �6.26 �2.18 �0.04 0.79

0.95–0.97 BS �34.72 �29.97 �16.71 �12.74 �10.27 �7.33

SI �31.85 �24.18 �16.79 �4.92 �5.35 �4.49

SV �20.09 �13.89 �5.54 �1.68 �0.56 0.61

SVSI �15.83 �13.08 �4.20 �3.29 �0.91 0.18

0.97–0.99 BS �15.93 �10.36 �5.84 �3.22 �3.46 �2.14

SI �15.27 �7.45 �7.22 2.36 �2.05 �1.24

SV �13.09 �7.04 �3.64 0.77 �0.47 0.15

SVSI �12.38 �7.49 �3.37 �0.90 �0.83 �0.33

0.99–1.01 BS �3.92 �1.23 0.62 1.54 0.65 1.99

SI �3.24 �0.09 �0.87 5.22 0.38 �0.09

SV �6.69 �3.43 �1.23 1.22 �0.10 0.14

SVSI �7.46 �4.17 �1.49 �0.33 �0.48 �0.27

1.01–1.03 BS 2.48 3.36 4.17 4.05 3.28 2.93

SI 2.73 3.75 2.78 5.57 1.82 �0.60

SV �0.92 �0.56 0.24 1.44 0.19 �0.24

SVSI �1.41 �1.02 �0.09 �0.59 �0.16 �0.53

1.03–1.05 BS 3.93 4.86 5.35 5.57 4.62 3.41

SI 3.95 4.92 4.08 6.62 2.61 �0.08

SV 1.21 0.74 0.82 1.87 0.39 �0.17

SVSI 0.85 0.19 0.48 0.79 0.08 �0.40

1.05–1.07 BS 3.69 5.07 5.84 6.36 5.12 4.93

SI 3.82 5.08 4.67 6.55 2.87 1.29

SV 1.83 1.52 1.49 2.07 0.51 �0.54

SVSI 1.68 1.18 1.17 1.38 0.32 �0.57

>1.07 BS 1.99 2.98 3.58 4.35 4.00 3.59

SI 2.44 2.90 2.77 4.08 1.93 �1.01

SV 1.43 1.40 1.21 1.47 0.45 �0.69

SVSI 1.38 1.30 1.18 1.18 0.46 �0.40

Panel B: absolute hedging errors (1 and 5 days), 06:1990–05:1991

Moneyness Model

1-day revision

5-day revisionTerm to expiration (days)

S/K <60 60–180 >180 <60 60–180 >180

<0.93 BS NA 0.42 0.48 NA 1.13 0.99

(continued)
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Table 98.7 (continued)

Panel B: absolute hedging errors (1 and 5 days), 06:1990–05:1991

Moneyness Model

1-day revision

5-day revisionTerm to expiration (days)

S/K <60 60–180 >180 <60 60–180 >180

SI 0.46 0.45 0.77 0.82

SV 0.17 0.22 0.18 0.30

SVSI 0.17 0.22 0.18 0.30

0.93–0.95 BS NA 0.40 0.50 NA 0.97 0.95

SI 0.45 0.47 0.73 0.75

SV 0.13 0.25 0.15 0.30

SVSI 0.13 0.25 0.15 0.30

0.95–0.97 BS NA 0.37 0.44 NA 0.96 0.85

SI 0.45 0.44 0.77 0.86

SV 0.16 0.22 0.16 0.29

SVSI 0.16 0.22 0.16 0.29

0.97–0.99 BS 0.39 0.42 0.47 0.72 0.95 0.97

SI 0.33 0.45 0.41 0.66 0.74 0.76

SV 0.14 0.17 0.17 0.16 0.17 0.24

SVSI 0.14 0.17 0.16 0.15 0.17 0.23

0.99–1.01 BS 0.41 0.43 0.50 0.99 0.91 0.89

SI 0.40 0.48 0.50 0.79 0.71 0.78

SV 0.16 0.16 0.17 0.20 0.17 0.28

SVSI 0.16 0.16 0.17 0.19 0.17 0.26

1.01–1.03 BS 0.40 0.46 0.47 0.99 0.89 0.83

SI 0.45 0.44 0.45 0.74 0.71 0.73

SV 0.17 0.17 0.18 0.19 0.20 0.25

SVSI 0.17 0.17 0.17 0.19 0.20 0.25

1.03–1.05 BS 0.45 0.43 0.50 0.88 0.85 0.97

SI 0.46 0.44 0.48 0.71 0.72 0.68

SV 0.17 0.14 0.17 0.18 0.16 0.27

SVSI 0.17 0.14 0.17 0.18 0.16 0.27

1.05–1.07 BS 0.46 0.47 0.51 0.73 0.78 0.77

SI 0.47 0.45 0.50 0.61 0.67 0.68

SV 0.18 0.14 0.22 0.19 0.16 0.24

SVSI 0.17 0.14 0.21 0.19 0.16 0.22

>1.07 BS 0.41 0.45 0.53 0.62 0.70 0.81

SI 0.38 0.46 0.50 0.48 0.64 0.75

SV 0.17 0.15 0.22 0.18 0.19 0.32

SVSI 0.16 0.15 0.21 0.18 0.18 0.31

The reported percentage pricing error is the sample average of the market price minus the model

price divided by the market price. The sample period is 06:1990–05:1991 for a total of 11,979 call

options

The average absolute hedging error for each model is reported based on the subsample period

06:1990–05:1991 (with a total of 6,440 observations)
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is updated each day based on the previous day’s option prices. The obtained

absolute pricing errors for the subperiod 06:1990–05:1991 indicate that the

performance ranking of the four models remains the same as before.

In addition, when we used only ATM (or only ITM or only OTM) option prices to

back out each model’s parameter values, the resulting pricing and hedging errors did

not change the performance ranking of the models either. This means that even if one

would estimate and use a matrix of implied volatilities (across moneynesses and

maturities) to accordingly price and hedge options in different moneyness–maturity

categories, it would still not change the fact that the SV and the SVSI models are

better specified than the other two for pricing and hedging. Given that the implied-

volatility matrix method has gained some popularity among practitioners, our results

should be appealing. On the one hand, they suggest that with the SV and the SVSI

models, there is far less a need to engage in moneyness- and maturity-related fitting.

On the other hand, if one is still interested in the matrix method, the SV and the SVSI

models should be better model choices.

Early in the project we used only option transaction price data for the pricing and

hedging estimations. But, that meant a far smaller data set, especially for the

hedging estimations. Nonetheless, the results obtained from the transaction prices

were similar to these presented and discussed in this chapter.

98.5 Concluding Remarks

We have developed and analyzed a simple option pricing model that admits both

stochastic volatility and stochastic interest rates. It is shown that this closed-form

pricing formula is practically implementable, leads to useful analytical hedge

ratios, and contains many known option formulas as special cases. This last feature

has made it relatively straightforward to conduct a comparative empirical study of

the four classes of option pricing models.

According to the pricing and hedging performance measures, the SVSI and the

SV models both perform much better than the SI and the BS models, as the former

typically reduce the pricing and hedging errors of the latter by more than a half.

These error reductions are also economically significant. Furthermore, the hedging

errors by the SV and the SVSI models are relatively insensitive to the frequency of

portfolio revision, whereas those of the SI and the BS models are sensitive.

Given that both the SV and the SVSI models can be easily implemented on

a personal computer, they should thus be better alternatives to the widely

applied BS formula. A regression-based analysis of the pricing and hedging

errors indicates that while the BS and the SI models show significant pricing biases

related to moneyness, time to expiration, bid–ask spread, lagged stock volatility,

and interest rate term spread, pricing errors by the SV and the SVSI models are not

as systematically related to either contract-specific or market-dependent variables.

Overall, the results lend empirical support to the claim that incorporating stochastic

interest rates and, especially, stochastic volatility can both improve option
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pricing and hedging performance substantially and resolve some known empirical

biases associated with the BS model.

The empirical issues and questions addressed in this chapter can also be

reexamined using data from individual stock options, American-style index

options, options on futures, currency and commodity options, and so

on. Eventually, the acceptability of option pricing models with the added

features will be judged not only by its easy implementability or even its

impressive pricing and hedging performance as demonstrated in this chapter

using European-style index calls but also by its success or failure in pricing

and hedging other types of options. These extensions are left for future research.

Appendix 1

Proof of the Option Pricing Formula in Eq. 98.10. The valuation PDE in Eq. 98.9

can be rewritten as

1

2

∂2C

∂L2
þ R� 1

2
V

� �
∂C
∂L

þ rsvV
∂2C

∂L∂V
þ 1

2
s2vV

∂2C

∂V2

þ yv � kvV½ �∂C
∂V

þ 1

2
s2RR

∂2C

∂R2
þ yR � kRR½ �∂C

∂R
� ∂C

∂t
� RC ¼ 0,

(98.30)

where we have applied the transformation L(t) � ln[S(t)]. Inserting the conjectured

solution in Eq. 98.10 into Eq. 98.30 produces the PDEs for the risk-neutralized

probabilities, Pj for j ¼ 1, 2:
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(98.31)

and
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(98.32)

Observe that Eqs. 98.31 and 98.32 are the Fokker–Planck forward equations for

probability functions. This implies thatP1 andP2 must indeed be valid probability

functions, with values bounded between 0 and 1. These PDEs must be separately

solved subject to the terminal condition:
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Y
j
tþ t, 0ð Þ ¼ 1L tþtð Þ�K j ¼ 1, 2: (98.33)

The corresponding characteristic functions for P1 and P2 will also satisfy

similar PDEs:
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and
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(98.35)

with the boundary condition:

f j tþ t, 0;fð Þ ¼ eifL tþtð Þ j ¼ 1, 2: (98.36)

Conjecture that the solution to the PDEs (98.34) and (98.35) is, respectively,

given by

f 1 tþ t, S tð Þ,V tð Þ,R tð Þ;fð Þ ¼ exp ur tð Þ þ uv tð Þ þ xr tð Þ þ R tð Þf
þxv tð ÞV tð Þ þ ifln S tð Þ½ �g (98.37)

f 2 t, t, S tð Þ,V tð Þ,R tð Þ;fð Þ ¼ exp zr tð Þ þ zv tð Þ þ yr tð Þ R tð Þf
þyv tð ÞV tð Þ þ ifln S tð Þ½ � � ln B t; tð Þ½ �g (98.38)

with ur(0)¼ uv(0)¼ xr(0)¼ xv(0)¼ 0 and zr(0)¼ zv(0)¼ yr(0)¼ yv(0)¼ 0. Solving

the resulting system of differential equations and noting that B(t + t, 0) ¼ 1 will

respectively produce the desired characteristic functions in Eqs. 98.12 and 98.13.

Both the constant interest rate–stochastic volatility and constant volatility–

stochastic interest rate option pricing models are nested in Eq. 98.10. In the con-

stant interest rate–stochastic volatility model, for instance, the partial derivatives

with respect to R vanish in Eq. 98.30. The general solution in Eqs. 98.37, 98.38,

and 98.40 will still apply except that now R(t) ¼ R (a constant), B(t, t) ¼ e�Rt,

xr(t) ¼ ift, yr(t) ¼ (if – 1)t, and ur(t) ¼ zr(t) ¼ 0. The final characteristic

functions f̂ j for the constant interest rate–stochastic volatility option model are

respectively given by

2696 C. Cao et al.
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2x�v � x�v � kv þ ifrsv
� �

1� e�x�vt
	 
V tð Þ

)
,

(98.40)

Similarly, the constant volatility–stochastic interest rate option model obtains

with V(t) ¼ V (a constant), xv tð Þ ¼ 1
2
if 1þ ifð Þt , yv tð Þ ¼ 1

2
if if� 1ð Þt , and

uv(t) ¼ zv(t) ¼ 0. The final characteristic functions ef j for the stochastic interest

rate–constant volatility model are

ef 1 ¼ exp
1

2
if 1þ ifð ÞVtþ ifln S tð Þ½ �

�

� yR
s2R

2ln 1� xR � kR½ � 1� e�xRt
	 

2xR

� �
þ xR � kR½ �t

� �

þ 2if 1� e�xRt
	 


2xR � xR � kR½ � 1� e�xRtð ÞR tð Þ
�
, (98.41)

and

ef 2 ¼ exp
1

2
if if� 1ð ÞVtþ ifln S tð Þ½ � � ln B t; tð Þ½ �

�

� yR
s2R

2ln 1�
x�

R
� kR

h i
1� e�x�Rt
	 


2x�
R

0
@

1
Aþ x�

R
� kR

h i
t

2
4

3
5

þ
2 if� 1ð Þ 1� e�x�

R
t

� �

2x�
R
� x�

R
� kR

h i
1� e�x�

R
t

� �R tð Þ
9=
;

, (98.42)
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Expressions for the Gamma Measures. The various second-order partial

derivatives of the call price in Eq. 98.10, which are commonly referred to as

Gamma measures, are given below:

GS � ∂2C t; tð Þ
∂S2

¼ ∂
Q

1

∂S
¼ 1

p

ð1
0

Re ifð Þ�1e�ifln K½ � f 1
if
S

� �
df: > 0: (98.43)

GV � ∂2C t; tð Þ
∂V2

¼ S tð Þ∂
2
Q

1

∂V2
�KB t; tð Þ∂

2
Q

2

∂V2
(98.44)

GR � ∂2C t; tð Þ
∂R2

¼ S tð Þ∂
2
Q

1

∂R2
�KB t; tð Þ ∂2

Q
2

∂R2
2R tð Þ∂

Q
2

∂R
þ R2 tð Þ

Y
2

� �
: (98.45)

GS,V � ∂2C t; tð Þ
∂S∂V

¼ ∂
Q

1

∂V
¼ 1

p

ð1
0

Re ifð Þ�1e�ifln K½ �∂
2f 1
∂V

�df:
�

(98.46)

where for g ¼ V, R and j ¼ 1, 2

∂2
Q

j

∂g2
¼ 1

p

ð1
0

Re ifð Þ�1e�ifln K½ � ∂
2f j

∂g2

" #
df: (98.47)
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Abstract

This chapter purports to provide a theoretical underpinning for the problem of

the Investment Company Act. The theory of the Le Chatelier principle is well

known in thermodynamics. The system tends to adjust itself to a new equilib-

rium as far as possible. In capital market equilibrium, added constraints on

portfolio investment in each stock can lead to inefficiency manifested in the

right-shifting efficiency frontier. According to the empirical study, the potential

loss can amount to millions of dollars coupled with a higher risk-free rate and

greater transaction and information costs.
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99.1 Introduction

In the wake of a growing trend of deregulation in various industries (e.g., utility,

banking, and airline), it has become more and more important to study the respon-

siveness of the market to the exogenous perturbations as the system is gradually

constrained. According to the law of thermodynamics, the system tends to adjust

itself to a new equilibrium by counteracting the change as far as possible. This law,

the Le Chatelier principle, was applied to economics by Samuelson (1949, 1960,

1972), Silberberg (1971, 1974, 1978), and to a class of spatial equilibrium models:

linear programming, fixed demand, quadratic programming, full-fledged spatial

equilibrium model by Labys and Yang (1996). Recently, it has been applied to

optimal taxation by Diamond and Mirrlees (2002).

According to subchapter M of the Investment Company Act of 1940, a diversified

mutual fund cannot have more than 5 % of total assets invested in any single company

and the acquisition of securities does not exceed 10% of the acquired company’s value.

By meeting this diversification threshold, funds are considered “pass-through” entities

enabling capital gains and income taxes to accrue to the fund’s investors. This

diversification rule, on the one hand, reduces the portfolio risk according to the

fundamental result of investment theory. On the other hand, more and more researchers

begin to raise questions as to the potential inefficiency arising from the Investment

Company Act (see Elton and Gruber 1991; Roe 1991; Francis 1993; Kohn 1994).

Further, Almazan et al. (2004) document inefficiencies from a broad set of mutual fund

investment constraints. With the exception of the work by Cohen and Pogue (1967),

Frost and Savarino (1988), and Loviscek and Yang (1997), there is very little evidence

to refute or favor this conjecture.

Empirical findings (e.g., Loviscek and Yang 1997) suggest that over 300 growth

mutual funds evaluated by Value Line show that the average weight for the

company given the greatest share of a fund’s assets was 4.29 %. However, the Le

Chatelier principle in terms of the Investment Company Act has not been scruti-

nized in the literature of finance. The objective of this chapter is to investigate the

Le Chatelier principle applied to the capital market equilibrium in the framework of

the Markowitz portfolio selection model.

99.2 The Le Chatelier Principle of the Markowitz Model

In a portfolio of n securities, Markowitz (1952, 1956, 1959, 1990, 1991) formulated

the portfolio selection model in the form of a quadratic programming as shown

below:
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minxixju ¼
X

i2I
X

j2Jxixjsij (99.1)

subject to

X
i2Irixi � k (99.2)

X
i2Ixi ¼ 1 (99.3)

xi � 0 8 i 2 I (99.4)

where

xi ¼ proportion of investment in security i
sii ¼ variance of rate of return of security i
sij ¼ covariance of rate of return of security i and j
ri ¼ expected rate of return of security i
k ¼ minimum rate of return of the portfolio

I and J are sets of positive integers
The resulting Lagrange function is therefore

L ¼ uþ l k �
X

rixij

� �
þ g 1�

X
xi

� �
(99.5)

The solution to the Markowitz is well known (1959). The Lagrange multiplier

of constraint Eq. 99.2 assumes the usual economic interpretation: change in total

risk in response to an infinitesimally small change in k while all other decision

variables adjust to their new equilibrium levels, i.e., l ¼ dv/dk. Hence, the
Lagrange multiplier is of utmost importance in determining the shape of the

efficiency frontier curve in the capital market. Note that values of xis are

unbounded between 0 and 1 in the Markowitz model. However, in reality, the

proportion of investment on each security many times cannot exceed a certain

percentage to ensure adequate diversification. As the maximum investment pro-

portion on each security decreases from 99 % to 1 %, the solution to the portfolio

selection model becomes more constrained, i.e., the values of optimum xs are

bounded within a narrower range as the constraint is tightened. Such impact on the

objective function v is straightforward: as the system is gradually constrained, the

limited freedom of optimum xs gives rise to a higher and higher risk level as k is
increased. For example, if parameter k is increased gradually, the Le Chatelier

principle implies that in the original Markowitz minimization system, isorisk

contour has the smallest curvature to reflect the most efficient adjustment

mechanism:

abs
∂2u
∂k2

� �
� abs

∂2u�

∂k2

� �
� abs

∂2u��

∂k2

� �
(99.6)
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where v* and v** are the objective function (total portfolio risk)

corresponding to the additional constrains of xi < s* and xi < s** for all

i and s* > s** represent different investment proportions allowed under V*
and V** and abs denotes absolute value. Via the envelope theorem (Dixit 1990)

we have

d L xi kð Þ, kð Þ ¼ u xi kð Þð Þf g
dk

¼ ∂ L xi kð Þ, kð Þ ¼ u xi kð Þð Þf g
∂k

¼ l xi ¼ xi kð Þj (99.7)

Hence, Eq. 99.6 can be rewritten as

abs
∂l
∂k

� �
� abs

∂l�

∂k

� �
� abs

∂l��

∂k

� �
(99.8)

Equation 99.8 states that the Lagrange multiplier of the original Markowitz

portfolio selection model is less sensitive to an infinitesimally small change in

k than that of the model when the constraints are gradually tightened. Note that

the Lagrange multiplier l is the reciprocal of the slope of the efficiency frontier

curve frequently drawn in investment textbooks. Hence, the original Markowitz

model has the steepest slope for a given set of xi s. However, the efficiency

frontier curve of the Markowitz minimization system has a vertical segment

corresponding to a range of low ks and a constant v. Only within this range

do the values of optimum xs remain equal under various degrees of constraints.

Within this range constraint Eq. 99.2 is not active; hence the Lagrange multiplier

is zero. As a result, equality relation holds for Eq. 99.8. Outside this range,

the slopes of the efficiency frontier curve are different owing to the result

of Eq. 99.8.

99.3 Simulation Results

To verify the result implied by the Le Chatelier principle, we employ a five-stock

portfolio with xi < 50 % and xi < 40 %. The numerical solutions are reported in

Table 99.1. An examination of Table 99.1 indicates that the efficiency frontier

curve is vertical and all optimum xs are identical between 0.001 < k < 0.075. After

that, the solutions of xs begin to change for the three models. Note that the

maximum possible value for x4 remains 0.4 throughout the simulation for k >
0.075 for the model with the tightest constraint xi < 0.4. In the case of xi < 0.5,

a relatively loosely constrained Markowitz system, all the optimum values of

decision variables remain the same as the original Markowitz model between

0.01 < k < 0.1. Beyond that range, the maximum value of x4 is limited to 0.5.

As can be seen from Table 99.1, the total risk v responds less volatile to the change
in k in the original unconstrained Markowitz system than that in the constrained

systems. In other words, the original Markowitz minimization system guarantees
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a smallest possible total risk due to the result of the Le Chatelier principle:

a thermodynamic system (risk-return space) can most effectively adjust itself to

the parametric change (temperature or minimum rate of return of a portfolio or k) if
it is least constrained.

99.4 Policy Implications of the Le Chatelier Principle

As shown in the previous section, the efficiency frontier curve branches off to the

right first for the most binding constraint of xi < s**. Consequently, the tangency

point between the efficiency frontier curve and a risk-free rate on the vertical axis

must occur at a higher risk-free rate. As the value of maximum investment propor-

tion for each stock s decreases, i.e., the constraint becomes more binding, there

is a tendency for the risk-free rate to be higher in order to sustain an equilibrium

(tangency) state. Second, one can assume the existence of a family of

isowelfare functions (or indifference curves) in the v-k space. The direct impact

of the Le Chatelier principle on the capital market equilibrium is a lower level of

welfare measure due to the right branching-off of the efficiency frontier curve.

In sum, as the constraint on the maximum investment proportion is tighter, the risk-

free rate will be higher and investors in the capital market will in general experience

a lower welfare level. In particular, the 5 % rule carries a substantial cost in terms

of shifting of the efficiency frontier to the right. The study by Loviscek and

Yang (1997) based on a 36-security portfolio indicates the loss is about 1–2

percentage points and the portfolio risk is 20–60 % higher. Given the astronomical

size of a mutual fund, 1–2 percentage point translates into millions of dollars

potential loss in daily return. Furthermore, over diversification would incur greater

transaction and information cost, which speaks against the Investment

Company Rule.

99.5 Concluding Remarks

In this note, we apply the Le Chatelier principle in the thermodynamics to

the Markowitz portfolio selection model. The analogy is clear: as a thermodynamic

system (or the capital market in the v-k space) undergoes some parametric

changes (temperature or minimum portfolio rate of change k), the system will adjust

most effectively if it is least constrained. The simulation shows that as

the constraint becomes more and more tightened, the optimum investment proportions

are less and less sensitive. Via the envelop theorem, it is shown that investors will be

experiencing a higher risk-free rate and a lower welfare level in the capital market, if

a majority of investors in the capital market experience the same constraint, i.e.,

maximum investment proportion on each security. Moreover, the potential loss

in daily returns can easily be in millions on top of much greater transaction and

information costs.
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Chollete, L., de la Penã, V., & Lu, C. (2011). “International diversification: A copula approach’’.

Journal of Banking and Finance, 35, 403–417.
Chong, Y. Y., & Hendry, D. F. (1986). Econometric evaluation of linear macroeconomic models.

Review of Economic Studies, 53, 671–690.
Chou, H., Zaabar, R., & Wang, D. (2013). Measuring and testing the long-term impact of terrorist

attacks on the US futures market. Applied Economics, 45, 225–238.
Chou, H., & Wang, D. (2007). Forecasting volatility of UK stock market: A test of conditional

autoregressive range (CARR) model. International Research Journal of Finance and Econom-
ics, 10, 7–13.

Chou, R. (2005). Forecasting financial volatilities with extreme values: the conditional

autoregressive range (CARR) model. Journal of Money Credit and Banking, 37, 561–82.
Chou, R. (2006). Modeling the Asymmetry of Stock Movements Using Price Ranges. Advances in

Econometrics, 20A, 231–257.
Chou, R. Y., & Liu, N. (2010). The economic value of volatility timing using a range-based

volatility model. Journal of Economic Dynamics and Control, 34, 2288–2301.
Chou, R. Y., & Liu, N. (2011). Estimating time-varying hedge ratios with a range-based multi-

variate volatility model. Working paper, Academia Sinica.

Chou, R. Y., & Cai, Y. (2009). Range-based multivariate volatility model with double smooth

transition in conditional correlation. Global Finance Journal, 20, 137–152.
Chou, R. Y. (1988). Volatility persistence and stock valuations: Some empirical evidence using

GARCH. Journal of Applied Econometrics, 3, 279–294.
Chou,R.Y.,Wu,C.,&Liu,N. (2009). Forecasting time-varying covariancewith a range-baseddynamic

conditional correlation model. Review of Quantitative Finance and Accounting, 33, 327–345.

2800 Reference Index



Chou, R., Engle, R. F., & Kane, A. (1992). Measuring risk aversion from excess returns on a stock

index. Journal of Econometrics, 52, 201–224.
Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions.

Econometrica, 28, 591–605.
Chow, G. (1983). Econometrics. New York: McGraw Hill.

Chow, Y. S. (1965). Local convergence of martingales and the law of large numbers. The Annals of
Mathematical Statistics, 36, 552–558.

Chowdry, B. (1986). Pricing of futures with quality option. Working paper, University of Chicago.

Christensen, J. H. E., Diebold, F. X., & Rudebusch, G. D. (2009a). An arbitrage-free generalized

Nelson-Siegel term structure model. Econometrics Journal, 12, 33–64.
Christensen, J. H. E., Diebold, F. X., & Rudebusch, G. D. (2011). The affine arbitrage-free class of

Nelson-Siegel term structure models. Journal of Econometrics, 164, 4–20.
Christensen, K., & Podolskij, M. (2007). Realized range-based estimation of integrated variance.

Journal of Econometrics, 141, 323–349.
Christensen, K., Podolskij, M., & Vetter, M. (2009b). Bias-correcting the realized range-

based variance in the presence of market microstructure noise. Finance and Stochastics, 13,
239–268.

Christiansen, C., & Ranaldo, A. (2011). The time-varying systematic risk of carry trade strategies.

Journal of Financial and Quantitative Analysis, 46(4), 1107–1125.
Christie, A. (1987). On cross-sectional analysis in accounting research. Journal of Accounting and

Economics, 9, 231–58.
Christie, A. A. (1981). The Stochastic Behavior of Common Stocks Variances: Value, Leverage

and Interest Rate Effects. Journal of Financial Economics, 10, 407–432.
Christie, W. G., & Huang, R. D. (1995). “Following the Pied Piper: Do individual Returns Herd

around the Market?” Financial Analyst Journal July-August, 31–37.
Christoffersen, P. F. (2002). Elements of financial risk management. San Diego: Academic Press.

Christoffersen, P. F., & Diebold, F. X. (2006). Financial asset returns, direction-of-change,

forecasting, and volatility dynamics. Management Science, 52, 1273–1287.
Christoffersen, P., Dorion, C., Jacobs, K., & Wang, Y. (2010a). Volatility components: affine

restrictions and non-normal innovations. Journal of Business and Economic Statistics, 28,
483–502.

Christoffersen, P., Elkamhi, R., Feunou, B., & Jacobs, K. (2010b). Option valuation with condi-

tional heteroskedasticity and nonnormality”. Review of Financial Studies, 23, 2139–2189.
Christoffersen, P., Jacobs, K., Ornthanalai, C., &Wang, Y. (2008). Option valuation with long-run

and short-run volatility components. Journal of Financial Economics, 90, 272–297.
Chu, C. C. (1984). Alternative methods for determining the expected market risk premium: Theory

and evidence. Ph.D. Dissertation, University of Illinois at Urbana-Champaign.

Chu, C. J., Stinchcombe, M., &White, H. (1996). Monitoring structural change. Econometrica, 64,
1045–1065.

Chuang, H., Lee, C. F., & Zhong, Z. K. (2011).Option bounds: a review and comparison. Working

paper.

Chung, K. H., Elder, J., & Kim, J. (2010a). Corporate governance and liquidity. Journal of
Financial and Quantitative Analysis, 45(02), 265–291.

Chung, S. L., Hung, M. W., & Wang, J. Y. (2010b). Tight bounds on American option prices”.

Journal of Banking and Finance, 34, 77–89.
Church, K. W., & Gale, W. A. (1995). Poisson Mixtures. Natural Language Engineering, 1(2),

163–190.

Churchill, G. A., & Iacobucci, D. (2004). Marketing research: Methodological foundations (Ninth

Ed.), South-Western College.

Churchill, G. A., Jr., & Research, M. (1983). Methodological Foundations (3rd ed.). New York:

CBS College Publishing.

Cipollini, F., Engle, R. F., & Gallo, G. M. (2009). A model for multivariate non-negative valued
processes in financial econometrics. Working paper.

Reference Index 2801



Citron, J. T., & Neckelburg, G. (1987). Country Risk and Political Instability. Journal of Devel-
opment Economics, 25, 385–395.
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González, P., & Garcı́a, J. C. (2002). Regulación del sector de seguros y planes de pensiones.

Revista ICE, Sistema Financiero: Novedades y Tendencias, 801, 51–67.

2828 Reference Index



Gonzalez-Rivera, G. (1998). Smooth transition GARCH models. Studies in Nonlinear Dynamics
and Econometrics, 3, 61–78.

Goodfellow, C., Bohl, M. T., & Gebka, B. (2009). Together we invest? Individual and institutional

investors’ trading behavior in Poland. International Review of Financial Analysis, 18(4),
212–221.

Gopalakrishnan, S., Smith., M. Slott, J., & Murray, A. (2011). The value of disappearing beaches:

A hedonic pricing model with endogenous beach width. Journal of Environmental Economics
and Management, 61(3), 297–310.

Gordon, M. J. (1962). The savings investment and valuation of a corporation. Review of Econom-
ics and Statistics, 44, 37–51.

Gordon, M. J. (1967). Some Estimates of the Cost of Capital to the Electric Utility Industry,

1954–57: Comment. American Economic Review(1267–1268).
Gordon, M. J. (1974). The General Solution to the Buy or Lease Decision: A Pedagogical Note.

Journal of Finance, 29(243–250).
Gordon, M. J. (1947a). The Cost of Capital to a Public Utility. East Lansing, Mich.: MSU Public

Utilities Studies.

Gorton, G., & Pennacchi, G. (1992). Financial innovation and the provision of liquidity services.

In J. R. Barth & R. Dan Brumbaugh (Eds.), Reform of Federal Deposit Insurance. New York:

Harper Collins.

Goto, M., & Karolyi, G. A. (2004). Understanding Electricity Price Volatility within and Across

Markets. Dice Centre Working Paper 2004-12, 1–41.

Goto, S., & Xu, Y. (2010). On mean variance portfolio optimization: improving performance

through better use of hedging relations. Working Paper, University of Rhode Island.

Gotoh, J. Y., & Konno, H. (2002). Bounding option prices by semidefinite programming: a cutting

plane algorithm”. Management Science, 48, 665–678.
Gould, J. P. (1968). Adjustment costs in the theory of investment of the firm. Review of Economic

Studies, 35, 47–55.
Gould, J. R. (1964). Internal pricing in corporations when there are costs of using an outside

market. The Journal of Business, 61–67.
Gourieroux, C., & Monfort, A. (1997). Time Series and Dynamic Models. Cambridge, UK:

Cambridge University Press.

Gow, O., & Taylor. (2010). Correcting for cross-sectional and time series dependence in account-

ing research. The Accounting Review 85(2), 483–512

Goyenko, R. Y., Holden, C. W., et al. (2009). Do liquidity measures measure liquidity? Journal of
Financial Economics, 92(2), 153–181.

Grabowski, H. G., & Mueller, D. C. (1972). Managerial and stockholder welfare models of firm

expenditures. The Review of Economics and Statistics, 54, 9–24.
Grammatikos, T., & Saunders, A. (1986). Futures price variability: a test of maturity and volume

effects. Journal of Business, 59, 319–330.
Granger, C.W. J. (1989a). Combining forecasts twenty years later. Journal of Forecasting, 8, 167–173.
Granger, C. W. (1989b). Invited review: Combining forecasts-twenty years later. Journal of

Forecasting, 8, 167–173.
Granger, C. (1992). Evaluating economic theory. Journal of Econometrics, 51, 3–5.
Granger, C. W. J., & Newbold, P. (1973). Some comments on the evaluation of economic

forecasts. Applied Economics, 5, 35–47.
Granger, C. W. J., & Newbold, P. (1986). "Forecasting economic time series", Second Edition.

San Diego: Academic Press.

Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series and fractional

differencing. Journal of Time Series 1, 15–29.
Granger, C. W. J., & Ramanathan, R. (1984). Improved methods of forecasting. Journal of

Forecasting, 3, 197–204.
Granger, C. W. J., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of

Econometrics, 2, 111–120.

Reference Index 2829



Granger, C. W. J. (1991). “Developments in the study of cointegrated economic variables.” In

R. F. Engle & C. W. J. Granger (Eds.), Long Run Economic Relationships, pp. 65–80. Oxford

University Press

Granger, C. W. J. (1980). Long memory relationships and the aggregation of dynamic models.

Journal of Econometrics, 14, 227–238.
Granger, C. W. J., & Ding, Z. (1996). Varieties of long memory models. Journal of Econometrics,

73, 61–77.
Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross spectral

methods. Econometrica, 37, 424–438.
Grant, D. (1977). Portfolio performance and the cost of timing decisions. Journal of Finance, 32,

837–846.

Gray, S. F. (1996). Modeling the conditional distribution of interest rates as a regime-switching

process. Journal of Financial Economics, 42, 27–62.
Green, P. E. (1988). Research for Marketing Decisions (Fifth Ed.), Prentice-Hall, Englewood

Cliffs.

Green, P. J., & Silverman, B. W. (1994). Nonparametric regression and generalized linear
models: A roughness penalty approach. Chapman &: Hall/CRC. ISBN 0412300400.

Green, R. (1984). Investment incentives, debt, and warrants. Journal of Financial Economics, 13,
115–36.

Greene, W. (2008). Econometric Analysis (6th ed.). Prentice Hall

Greene, W. (2008). Econometric Analysis. Pearson. Gruber
Greene, W. H. (2004). Econometric Analysis (4th ed.). New Jersey: Prentice Hall.

Greene, W.H. (2007). Econometric Analysis. Prentice Hall.
Greene, W. H. (2011). Econometric Analysis (11th ed.). New York: Macmillan Publishing

Company.

Greene, W. H. (2012). Econometric Analysis (7th ed.). Prentice Hall.

Greene, W. H., & Analysis, E. (2003). Prentice Hall.
Greene, W. H., & Analysis, E. (1997). 3nd Edition. New York: Macmillan Publishing Company.

Gregoriou, G. N., & Gueyie, J. P. (2003). Risk-adjusted performance of funds of hedge funds using

a modified Sharpe ratio. Journal of Wealth Management, 6, 77–83.
Gregory, J., & Laurent, J. P. (2005). Basket Default Swaps, CDO’s and Factor Copulas. Journal of

Risk, 7(4), 103–22.
Grewal, M. S., Andrews, A. P., & Corporation, E. (2001). Kalman Filtering: Theory and Practice

Using MATLAB. Wiley Online: Library. ISBN 0471392545.

Griffin, J. M., Harris, J. H., & Topaloglu, S. (2003). The dynamics of institutional and individual

trading. Journal of Finance, 58, 2285–2320.
Griffiths, P., & Remenyi, D. (2003). Information Technology in Financial Services: A Model for

Value Creation. Electronic Journal of Information Systems Evaluation, 6(2), 107–116.
Griliches, Z., & Hausman, J. A. (1986). Errors in Variables in Panel Data. Journal of Economet-

rics, 31, 93–118.
Grimshaw, A. S., & Wulf, W. A. (1997). The Legion vision of a worldwide virtual computer.

Communications of the ACM, 40(1), 39–45.
Grinblatt, M., & Keloharju, M. (2000). The investment behavior and performance of various

investor-types: A study of Finland’s unique data set. Journal of Financial Economics, 55,
43–67.

Grinblatt, M., Titman, S., & Wermers, R. (1995). Momentum investment strategies, portfolio

performance and herding: a study of mutual fund behavior. American Economic Review, 85,
1088–1105.

Grinold, R. C., & Kahn, R. N. (1992).Active portfolio management (2nd ed.). NY, NY:McGrawHill.

Grinols, E. L. (1984). Production and Risk Leveling in the Intertemporal Capital Asset Pricing

Model. The Journal of Finance, 39(5), 1571–1595.
Grootveld, H., & Hallerbach, W. (1999). Variance vs downside risk: Is there really that much

difference?”. European Journal of Operational Research, 114, 304–319.

2830 Reference Index



Grossman, S., & Hart, O. (1982). Corporate financial structure and managerial incentives. In The
Economics of Information and Uncertainty. Chicago: University of Chicago Press.

Grossman, S. J., & Shiller, R. J. (1981). The determinants of the variability of stock market prices.

American Economic Review, 71, 222–227.
Grullon, G., & Michaely, R. (2002). Dividends, share repurchases and the substitution hypothesis.

Journal of Finance, 57, 1649–1684.
Grullon, G., Michaely, R., & Swaminathan, B. (2002). Are dividend changes a sign of firm

maturity? Journal of Business, 75, 387–424.
Grundy, B. (1991). Option prices and the underlying assets return distribution”. Journal of

Finance, 46, 1045–1069.
Grunert, J., Norden, L., & Weber, M. (2005). The role of non-financial factors in internal credit

ratings. Journal of Banking and Finance, 29, 509–531.
Gu, F., & Wang, W. (2005). Intangible assets, information complexity, and analysts’ earnings

forecasts. Journal of Business Finance and Accounting, 32, 1673–1702.
Gu, K. (2002). The predictability of house prices. Journal of Real Estate Research, 24, 213–234.
Gu, Z., & Wu, J. S. (2003). Earnings skewness and analyst forecast bias. Journal of Accounting

and Economics, 35(1), 5–29.
Gu, Z. (2003). Controlling for actual earnings: Does it mitigate or create spurious relations in

analyst forecast efficiency? Working paper, Carnegie Mellon University

Gu, Z., & Wu, J. (2003). Earnings skewness and analyst forecast bias. Journal of Accounting and
Economics, 35, 5–29.

Gu, Z., & Xue, J. (2007). Do analysts overreact to extreme good news in earnings?”. Review of
Quantitative Finance and Accounting, 29, 415–431.

Guay, W. (1999). The sensitivity of CEO wealth to equity risk: An analysis of the magnitude and

determinants. Journal of Financial Economics, 53, 43–71.
Guay, W., & Harford, J. (2000). The cash-flow permanence and information content of dividend

increases versus repurchases. Journal of Financial Economics, 57, 385–415.
Guidi, M., Russell, A., & Tarbert, H. (2007). The efficiency of international oil markets in

incorporating US announcements during conflict and non-conflict periods”. Petroleum
Accounting and Financial Management Journal, 26(2), 67–86.

Guidolin, M., & Timmermann, A. (2005). “Economic implications of bull and bear regimes in UK

stock and bond returns’’. Economic Journal, 115, 111–143.
Guilbaud, O. (1998). Exact Kolmogorov-Type Test for Left-Truncated and/or Right-Censored

Data. Journal of American Statistical Association, 83, 213–221.
Gujarati, D. N. (2009). Basic Econometrics, 5th ed. New York, NY: McGraw-Hill.

Gukhal, C. R. (2001). Analytical valuation of American options on jump-diffusion processes.

Mathematical Finance, 11, 97–115.
Gultekin, N. (1983). Stock market returns and inflation: Evidence from other countries. Journal of

Finance, 38, 49–65.
Gunny, K. (2010). The relation between earnings management using real activities manipulation

and future performance: evidence from meeting earnings benchmarks. Contemporary Account-
ing Research, 27, 855–888.

Guo, H., & Wu, K. (2006). Liquidity premium analysis of Treasury bonds market in Shanghai

Stock Exchange. Finance and Economics (In Chinese), 217, 23–29.
Guo, H., & Whitelaw, R. F. (2006). Uncovering the risk-return relation in the stock market.

Journal of Finance, 61, 1433–1463.
Guo, H., Wu, G., & Zhijie Xiao. (2007). Estimating Value at Risk for Defaultable Bond Portfolios

by Regression Quantile. Journal of Risk Finance, 8(2), 166–185.
Guo, J., & Hung, M. (2007). A note on the discontinuity problem in Heston’s stochastic volatility

model. Applied Mathematical Finance, 14(4), 339–345.
Gupta, O. P., & Gupta, A. (2004). ‘Performance Evaluation of Select Indian Mutual

Fund Schemes: An Empirical Study (pp. 81–97). December: The ICFAI Journal of Applied

Finance.

Reference Index 2831



Gupta, A., & Subrahmanyam, M. (2001). An Examination of the Static and Dynamic Performance

of Interest Rate Option Pricing Models in the Dollar Cap-Floor Markets, Working paper, Case

Western Reserve University.

Gupta, M. C., & Walker, D. A. (1975). Dividend disbursal practices in commercial banking.

Journal of Financial & Quantitative Analysis, 10, 515–529.
Gupta, M., Pevzner, M., & Seethamraju, C. (2010). The implications of absorption cost accounting

and production decisions for future firm performance and valuation”. Contemporary Account-
ing Research, 27, 889–922.

Gupton, G., Finger, C., & Bhatia, M. (1997). CreditMetrics Technical Document. New York, NY:

Morgan Guaranty Trust Company.

Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing

models”. Journal of Finance, 52, 2003–2049.
Gurkaynak, R. S. (2005). Econometric tests of asset price bubbles: Taking stock. REDS working

paper No. 2005-04.

Gurun, U. G., Johnston, R., & Markov, S. (2011). Sell-side debt analysts and market efficiency,

working paper.

Gustavson, S. G., & Lee, C. F. (1986). Risk-return Tradeoff, Income Measurement and Capital

Asset Pricing for Life Insurers: An Empirical Investigation. The Geneva Papers on Risk and
Insurance, 11(38), 23–43.

Guttler, A. (2011). Lead-lag Relationships and Rating Convergence among Credit Rating Agen-

cies”. Journal of Credit Risk, 7, 95–119.
Gwilym, O., MacMillan, D., & Speight, A. (1999). The intraday relationship between volume and

volatility in LIFFE futures markets. Applied Financial Economics, 9, 593–604.
Gyetvan, F., & Shi, Y. (1992). Weak duality theorem and complementary slackness theorem for

linear matrix programming problems. Operations Research Letters, 11, 244–252.
Haas, G. C. (1922). Sales Prices as a Basis for Farm Land Appraisal, Technical Bulletin 9.

St. Paul: The University of Minnesota Agricultural Experiment Station.

Habib, A., & Hansen, J. (2008). Target shooting: Review of earnings management around earnings

benchmarks. Journal of Accounting Literature, 27, 25–70.
Hachicha, A., & Chaabane, A. (2007). Monetary policy transmission mechanism in Tunisia. Euro-

Mediterranean Economics and Finance Review, 1, 104–26.
Hadar, J., & Russell, W. (1969). Rules for ordering uncertain prospects. The American Economic

Review, 59, 25–34.
Hadlock,C. (1998). Ownership, Liquidity, and Investment.RANDJournal of Economics, 29, 487–508.
Hafner, C. (2012). Cross-correlating wavelet coefficients with applications to high-frequency

financial time series. Journal of Applied Statistics, 39, 1363–1379.
Hahn, J., Hausman, J., & Kuersteiner, G. (2004). Estimation with weak instruments: accuracy of

higher-order bias and MSE Approximation. Econometrics Journal, 7, 272–306.
Hahn, W. F., & Mathews, K. H. (2007). Characteristics and hedonic pricing of differentiated beef

demands. Agricultural Economics, 36(3), 377–393.
Hai, W., Mark, N., & Yangru, W. (1997). Understanding spot and forward exchange rate

regressions. Journal of Applied Econometrics, 12, 715–734.
Haight, R. G., & Holmes, T. P. (1991). Stochastic price models and optimal tree cutting: Results

for Loblolly pine. Natural Resource Modeling, 5, 424–443.
Hakansson, N., Beja, A., & Kale, J. (1985). On the Feasibility of Automated Market Making by

a Programmed Specialist. Journal of Finance, 1–20.
Hakkio, C. S., & Rush, M. (1989). Market efficiency and cointegration: an application to the

sterling deutschemark exchange markets. Journal of International Money and Finance, 8,
75–88.

Hall, B., & Murphy, K. (2003). The trouble with stock options. Journal of Economic Perspectives,
17(3), 49–70.

Hall, A. R., & Inoue, A. (2003). The Large Sample Behavior of the Generalized Method of

Moments Estimator in Misspecified Models. Journal of Econometrics, 361–394.

2832 Reference Index



Hall, B. (2003). Six challenges in designing equity-based pay. Journal of Applied Corporate
Finance, 15, 21–33.

Hall, B., & Liebman, J. B. (1998). Are CEOs really paid like bureaucrats? Quarterly. Journal of
Economics, 113, 653–691.

Hall, B. J., & Murphy, K. J. (2002). Stock options for undiversified executives. Journal of
Accounting and Economics, 33, 3–42.

Hall, B., & Murphy, K. J. (2000). Optimal Exercise Prices for Executive Stock Options. American
Economic Review, 90, 209–14.

Hall, P., &Miller, H. (2009). Using generalized correlation to effect variable selection in very high

dimensional problems. Journal of Computational and Graphical Statistics, 18, 533–550.
Hall, P. (1992). The Bootstrap and Edgeworth Expansion. New York: Springer.

Hallerback, W. G. P. M. (2004). An Improved Estimator for Black-Scholes-Merton Implied
Volatility. ERIM Report Series: Erasmus University.

Haltiwanger, J. C., & Waldman, M. (1989). Rational expectations in the aggregate. Economic
Inquiry, 27, 619–636.

Halton, J. H. (1960). On the Efficiency of Certain Quasirandom Sequences of Points in Evaluating

Multidimensional integrals. Numerische Mathematik, 2, 84–90.
Halverson, R., & Pollakowski, H. O. (1981). Choice of Functional Form Equations. Journal of

Urban Economics, 10(1), 37–49.
Halvorsen, R., & Palmquist, R. (1980). The Interpretation of Dummy Variables in Semilogrithmic

Regressions. American Economic Review, 70, 474–5.
Hamao, Y., & Mei, J. (2001). Living with the “enemy”: An analysis of foreign investment in the

Japanese equity market. Journal of International Money and Finance, 20, 715–735.
Hamburger, M., & Kochin, L. (1972). Money and stock prices: The channels of influence. Journal

of Finance, 27, 231–249.
Hamiltion, J. (1994). Time Series Analysis. Princeton University: Press.

Hamilton, D., & Cantor, R. (2004). Rating transitions and default conditional on watchlist, outlook

and rating history. Special Comment, Moody’s Investor Service.

Hamilton, J. (1994). Time Series Analysis, Princeton

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and

the business cycle. Econometrica, 57, 357–384.
Hamilton, J. D. (1990). Analysis of time series subject to changes in regimes. Journal of

Econometrics, 45, 39–70.
Hamilton, J. D. (1994b). Time Series Analysis. New Jersey: Princeton University Press.

Hamilton, J. D., & Susmel, R. (1994a). A conditional heteroskedasticity and change in regime.

Journal of Econometrics, 64, 307–333.
Hamilton, J. D., & Susmel, R. (1994b). Autoregressive conditional heteroskedasticity and changes

in regime. Journal of Econometrics, 64, 307–333.
Hamilton, J. D. (1988). Rational-expectations econometric analysis of changes in regime: an

investigation of the term structure of interest rates. Journal of Economic Dynamics and
Control, 12, 385–423.

Hammer, P. L. (1986). Partially Defined Boolean Functions and Cause-Effect Relationships.
International Conference on Multi-Attribute Decision Making Via OR-Based Expert Systems.
Passau, Germany: University of Passau.

Hammer, P. L., Kogan, A., & Lejeune, M. A. (2006). Modeling Country Risk Ratings Using

Partial Orders. European Journal of Operational Research, 175(2), 836–859.
Hammer, P. L., Kogan, A., & Lejeune, M. A. (2011). Reverse-Engineering Country Risk

Ratings: Combinatorial Non-Recursive Model. Annals of Operations Research, 188,
185–213.

Hammer, P. L., Kogan, A., & Lejeune, M. A. (2012). A Logical Analysis of Banks’ Financial

Strength Ratings. Expert Systems with Applications, 39(9), 7808–7821.
Hamori, S., & Tokihisa, A. (1997). Testing for a unit root in the presence of a variance shift.

Economics Letters, 57, 245–253.

Reference Index 2833



Han, B., Manry, D., & Shaw,W. (2001). Improving the precision of analysts’ earnings forecasts by

adjusting for predictable bias. Review of Quantitative Finance and Accounting, 17, 81–98.
Han, B. (2007). Stochastic Volatilities and Correlations of Bond Yields. Journal of Finance, 62,

1491–1524.

Han, C.-H. (2012). Robust Robust Hedging Performance and Volatility Risk in Option Markets,

Submitted

Han, C.-H., Liu, W.-H., & Chen, T.-Y. (2011). An Improved Procedure for VaR/CVaR Estimation

under Stochastic Volatility Models, Submitted.

Hand, D., & Henley, W. (1997). Statistical classification methods in consumer credit scoring:

A review, Series. Journal of the Royal Statistical Society, 160, 523–541.
Hanke, J., & Wichern, D. (2005). Business Forecasting (8th ed.). New York: Prentice Hall.

Hanley, K. W., Lee, C., & Seguin, P. (1996). The Marketing of Closed-end Fund IPOs. Journal of
Financial Intermediation, 5, 127–159.

Hanlon, M., Rajgopal, S., & Shevlin, T. (2003). Are executive stock options associated with future

earnings? Journal of Accounting and Economics, 36, 3–43.
Hanoch, G., & Levy, H. (1969). The efficiency analysis of choices involving risk. Review of

Economic Studies, 36, 335–346.
Hansen, B. E. (1992). Tests for parameter instability in regressions with I(1) processes. Journal of

Business and Economic Statistics, 10, 321–336.
Hansen, B. E. (1996). Inference when a Nuisance Parameter is Not Identified Under the Null

Hypothesis. Econometrica, 64, 413–430.
Hansen, B. E. (1997). Approximate asymptotic p-values for structural change tests. Journal of

Business and Economic Statistics, 15, 60–67.
Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference.

Journal of Econometrics, 93, 345–368.
Hansen, B. E. (2000). Sample splitting and threshold estimation. Econometrica, 68(3), 575–603.
Hansen, B. E. (2000). Testing for structural change in conditional models. Journal of Economet-

rics, 97, 93–115.
Hansen, B. E. (1994). Autoregressive Conditional Density Estimation. International Economic

Review, 35(3), 705–730.
Hansen, C. B., McDonald, J. B., & Theodossiou, P. (2006). Some Flexible Parametric Models for

Partially Adaptive Estimators of Econometric Models. Working Paper, Brigham Young

University.

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators.

Econometrica, 50(4), 1029–1054.
Hansen, L. P., & Hodrick, R. J. (1980). Forward exchange rates as optimal predictors of future spot

rates: An econometric analysis. Journal of Political Economy, 88, 829–853.
Hansen, L. P., & Jagannathan, R. (1991). Implications of security market data for models of

dynamic economies. Journal of Political Economy, 99, 225–262.
Hansen, L. P., & Richard, S. F. (1987). The role of conditioning information in deducing testable

restrictions implied by dynamic asset pricing models. Econometrica, 55(3), 587–613.
Hansen, R. S., & Crutchley, C. (1990). Corporate earnings and financings: An empirical analysis.

Journal of Business, 63, 347–371.
Hansen, R. S., & Chaplinsky, S. (1993). Partial anticipation, the flow of information and the

economic impact of corporate debt sales. Review of Financial Studies, 6, 709–32.
Haque, N. U., Kumar, M. S., Mark, N., & Mathieson, D. (1996). The Economic Content of

Indicators of Developing Country Creditworthiness. International Monetary Fund Working
Paper, 43(4), 688–724.

Haque, N. U., Kumar, M. S., Mark, N., & Mathieson, D. (1998). The Relative Importance of

Political and Economic Variables in Creditworthiness Ratings. International Monetary Fund
Working Paper, 46, 1–13.
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Schönbucher, P. & Schubert, D. (2001). Copula dependent default risk in intensity models.

Working paper, Department of Statistics, Bonn University.
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